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Extensive Summary 

Abstract 

Most of the additions of power capacity to allow electricity access in rural areas of 

DCs is forecasted to be provided by off-grid systems. The purpose of this work is to 

analyse and model technical and socio-economic aspects and uncertainties in off-grid 

rural energy planning, in order to provide a reliable and integrated approach to 

forecast long-term electricity demand. To accomplish this target, I relied on the Bass 

diffusion theory to assess the adoption of the connection to the microgrid across the 

social network of a fictitious rural village in Tanzania, whose characteristics were 

extrapolated from field data relative to a real village in the same area. I then 

developed a model based on Gompertz curves theory, to study the diffusion of 

appliances at the household level. Thanks to the obtained simulations, I could use 

LoadProGen platform to create daily load profiles of the same village and, eventually, 

I provided an example of a realistic off-grid system sizing procedure based on HOMER 

Pro software.  The results of the study suggest that, depending on input parameters, 

different outputs can be found. Taking into account the diffusion of appliances, for 

example, as the input data vary, a variability of almost 80% can be found in year 5 of 

the simulations at the output (from less than 50 to more than 250 purchases for fans). 

Therefore, all of the uncertainties need to be taken into consideration. The 

configuration of the same system can change in time and the needed size of the 

microgrid might even double between year 10 and year 20 of the system. A software 

allowing to study the evolution of the off-grid system in time would be of help in the 

sizing procedure. Lastly, these previous two aspects should be considered at the same 

time due to the observed different patterns in the daily load profiles of the different 

years of various studied scenarios.  

Introduction and Literature Review 

Almost 1.1 billion people still live in a condition of energy poverty. One of the possible 

ways to mitigate this urgent problem is to make sure that the investments in this field 

are sustainable and that the planning and sizing of electricity production is properly 

performed. Rural areas of DCs tend as well to be affected by the lack of reliable 
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information to allow researchers and potential investors to make reasonable 

estimates and forecasts. The reason why forecasting energy demand is so important 

is discussed by Hartvigsson [1], who developed a system dynamics model to show 

that the lack of power availability due to wrong forecasts may affect both the 

willingness of people to stay connected and the utility revenues. 

The purpose of this study is to analyse which are the main drivers of the diffusion of 

electricity in a rural village and to model the main uncertainties that lead to the final 

composition of the daily load curve of a certain area, in order to obtain a more 

comprehensive and reliable sizing of an off-grid system.  

I will organise the work by starting with a literature review, I will then present the 

method and tools I used and I will explain how I relied on actual field data to calibrate 

some parts of the model. I developed and calibrated an agent-based Bass diffusion 

model to simulate the grid connection spread across a fictitious rural village. I 

developed a second diffusion process for the electric appliances, based on Gompertz 

curves theory, as explained by Van Ruijven [2]. Then, I built daily load profiles 

through the software LoadProGen and gave them as an input to HOMER Pro, to obtain 

the sizing of a realistic off-grid system. 

The first issue related to the agent-based model is to describe the social network 

across which the diffusion process will take place. In the papers by Piccardi [3] and by 

Riva et al. [4] three different types of network are suggested to better define rural 

villages conformation: the random network, based on the randomization of the choice 

of the next node to add to the network and of its first contacts, given a certain average 

degree; the Barabasi-Albert network, based on Barabasi’s work [5] on scale free 

networks, where who has more contacts is more likely to further increase them; the 

social network, that is based on preferential attachment, where triangles tend to 

form, causing a high clustering structure. 

It has now been a while researchers have started analysing development and energy 

poverty mitigation through the study of diffusion processes within social networks. 

The first realistic diffusion models where developed in the 1960s and one of the best 

examples of these efforts is Bass model, which was created by Frank Bass in 1969. 

The diffusion of any good was theorized to be dependent on advertising and word of 
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mouth, that is external and internal influence respectively [6]. Bass model has a 

fundamental equation for the adoption rate at time t, which is the following:  

𝑓(𝑡) = [𝑝 + 𝑞𝐹(𝑡)][1 − 𝐹(𝑡)]     (a) 

where p is the probability of adoption due to external influence, q is the probability of 

adoption due to influence from other adopters and F is the proportion of population 

that has already adopted at time t. 

In his book, John D. Sterman [7] interprets the parameter q in the form 

𝑞 = 𝑐𝑖    (b) 

where c is the contact rate and i is the adoption rate of someone influenced by others. 

Van Ruijven’s [2] study is based on the use of Gompertz curves theory, which is a 

different formulation for describing diffusion processes. He cites an article by 

Kemmler [8], which states that household expenditures are the main correlating 

factor for electricity use by a household, to be considered by dividing the population 

in quintiles. He also introduces the concept of ownership of the appliances and builds 

a relation with the household expenditure. 

Rao and Ummel underline the importance of considering affordability rather than 

income in diffusion processes, which represents the share of expenditure to be 

maximally devoted to the adoption of an appliance [9]. 

In order to have more specific information about the load curves that a microgrid will 

have to manage, forecasts can be made in accordance with the purpose: load curves 

for intuitive system sizing are based on the estimation of the likely peak load of the 

system, but this might cause over- or under-estimation issues; load curves for 

numerical sizing are based on the use of more structured approaches in order to 

derive detailed load profiles.  

Mandelli [10] developed a procedure, called LoadProGen and characterised by the 

following features: it is based on input data coming from practical experience or local 

surveys; it is based on a rigorous mathematical formulation; it is bottom-up. 

Once the load curves are available, Rojas-Zerpa [11], in his work about energy 

planning, explains which are the main aspects to take into consideration when 

deciding which is the power system optimization tool that should be used. First, the 

application area: considering rural areas, models for distributed generation are the 

most interesting. Second, the planning horizon: it is useful, in some circumstances, to 
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take into consideration long-term (11-20 years) planning tools. Third, the objective of 

decision making: economic, social, or environmental. Fourth, the technologies to be 

included in the planning. A software called HOMER (Hybrid Optimisation Model for 

Electric Renewables) is taken into consideration, developed by NREL (National 

Renewable Energy Laboratory, USA) [12], which can handle a large set of 

technologies and can perform an optimization to decide which is the cheapest 

configuration in terms of Net Present Cost for decentralised systems. 

Materials and Methods 

In Figure a, a flow diagram of what will be explained in this chapter is shown. 

 

Figure a: flow diagram of the study procedure 

I started the research by collecting data that were available in the region of Njombe, 

in Tanzania, more precisely in the village of Bulongwa. This data, which were 

provided by Chalmers University of Technology, were collected from the control unit 

of an existing microgrid, which would allow knowing at each time-step (years from 

2009 to 2016) how many people were connected to the grid for the first time, while 

the first connection dated back to 2001. Bulongwa is a village of approximately 700 

households, where the South-Central Diocese of the Evangelican Lutheran Church 

created a mini-hydropower facility (180 kW), which would feed a microgrid in the 
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village. To obtain the curve of diffusion of the connection to the system, I performed a 

regression to produce a diagram, shown in Figure b, for the entire lifetime of the 

system, the red line representing the division between regression (based on the same 

growth rate of the available data of 2009-2010 years) and real data. 

 

Figure b: Bulongwa grid connection diffusion from 2001 to 2016 

Taking into account as reference a Bass diffusion process and using the regression 

equations (c-h), I could find the most likely p and q values of equation (a) for this 

village. These could be used as input in a Bass diffusion model of the connection to the 

system, which I developed on Matlab with the purpose of finding out which was the 

most appropriate type of social network I should use for this type of context. 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑘𝑋𝑘 + 𝜀  (c) 

𝑏1 =
(∑𝑥2

2)(∑𝑥1𝑦)−(∑𝑥1𝑥2)(∑𝑥2𝑦)

(∑𝑥1
2)(∑𝑥2

2)−(∑𝑥1𝑥2)
2    (d) 

𝑏2 =
(∑𝑥1

2)(∑𝑥2𝑦)−(∑𝑥1𝑥2)(∑𝑥1𝑦)

(∑𝑥1
2)(∑𝑥2

2)−(∑𝑥1𝑥2)
2    (e) 

where 

∑𝑥1𝑦 = ∑𝑋1𝑌 −
(∑𝑋1)(∑𝑌)

𝑁
    (f) 

∑𝑥2𝑦 = ∑𝑋2𝑌 −
(∑𝑋2)(∑𝑌)

𝑁
    (g) 

∑𝑥1𝑥2 = ∑𝑋1𝑋2 −
(∑𝑋1)(∑𝑋2)

𝑁
   (h) 

It was possible to obtain b1 and b2 values that in the current case correspond to p and 

q values. 

Thanks to the regression and a sensitivity analysis (shown in Figure c for the chosen 

network), using as input to Bass model the different types of network described 
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above, a Barabasi-Albert was identified for Bulongwa, with an average degree (k_avg) 

equal to 6 , presenting the smallest standard deviation from the real process.  

 

Figure c: Barabasi-Albert network sensitivity analysis and standard deviation evaluation 

For the rest of the study, a fictitious village will be considered, for which the type of 

network and the average degree will be kept constant. Due to their endogenous 

characteristics, which make them really area-specific, the variety of p and q will be 

brought forward in the next phases of the analysis through Monte Carlo method, 

which would consider a uniform distribution sampling of possible values for the two 

parameters. I chose to simulate and study a fictitious village composed of 400 

households, assumed to be located in the same geographic area of Bulongwa, but 

having no access to the grid at the time in which the study begins. 

I decided to model the microgrid connections along the planning horizon on Matlab 

through a standard Bass model. The values of p and q should vary in this way: 

𝑝 = 0.002 + (0.01 − 0.002) ∗ 𝑟𝑎𝑛𝑑  (i) 

and 
𝑞 = 0.2 + (0.7 − 0.2) ∗ 𝑟𝑎𝑛𝑑   (j) 

Their ranges include the calibrated values found for Bulongwa. A hundred 

simulations were performed, each one being saved in 21 matrices, containing the 

diffusion process year by year. 

To understand how the electrical appliances would spread across the village, I 

decided to develop a second part of the model, based on Gompertz curves theory, 

which was well explained by van Ruijven [2]. It is based on the concept of ownership, 

which is regulated by the following equation: 

,

, , ( ) , , ( )1000
* ( * ( * ))A U

q A U t A A U q U tOwnership EXP EXP PCOpc


 


     (k) 
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Where PCO is the expenditure per capita, β and γ are exogenous coefficients based on 

linear regressions from real data collection, differentiated by appliance, while α is the 

upper limit of appliance ownership.  

Once the level of ownership is available, the expenditure available of each household 

for a certain appliance is first necessary. I then made the assumption that the richest 

purchase first. Lastly, it is in the same work that the value of ownership parameters 

were provided, but I decided to let them vary through Monte Carlo method starting 

from the Indian values of van Ruijven (+/- 20% for Africa, with sampling from 

uniform distribution of probability) to avoid being too area-specific. 

The World Data Bank provides the yearly behaviour of per capita expenditure in 

Tanzania. Since the entire study by van Ruijven [2] is based on quintiles, it was 

decided to keep the same format. Five behaviours of the average expenditures of the 

5 quintiles of the village were obtained and it was possible to evaluate the yearly level 

of ownership, in each quintile, of each technology, depending on a correspondent 

level of average expenditure of the population.  

Plus, I obtained as many sets of curves of adoption of the appliances as the number of 

simulations (100 in the current case).  

In order to build the load curves, it was possible to use a software called LoadProGen: 

a platform, based on Matlab, which gives as output daily load profiles, which can be 

given in hours, quarters of hour, minutes or seconds. 

The total installed capacity (viz. the total number of forecasted electrical appliances 

owned by households) of the 100 simulations at year 20 was evaluated. Then, among 

all the 100 simulations, I selected the scenarios with the greatest, the lowest and the 

median number of installed appliances (viz. the 3 situations in which the ownership 

of the appliances among the population is the lowest, the median and the highest), 

namely MAX, MIN and MED scenarios. In order to make a long term forecast of the 

daily load profiles, it was decided to build the load curves for year 1, year 10, that is 

half of the lifetime, and year 20 of the planning, that is the last year of the system, for 

each one of the three scenarios.  

Once daily load curves were obtained it was possible to start the actual off-grid 

system sizing, which was performed using HOMER Pro software. HOMER Pro 

attempts to simulate a viable system for all possible combinations of the equipment 
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that the user wishes to consider, while making sure a certain load profile is 

responded. For each proposed solution a set of techno-economic parameters is 

provided, which allow the user to assess the economic feasibility of the different 

options. Given the output, it will be the user who will make his own evaluations based 

on his needs and requirements.  

Results and Discussion 

The whole research was started from the creation of the network structure of a 

fictitious community, that is shown in the figure below and was obtained using a 

Matlab script based on Barabasi-Albert network formula for the probability for a 

node to have a certain degree. 

𝑝(𝑘) ≈ 𝑘−𝑞   (l) 

where p is the probability and k the considered degree, while q is an experimentally 

determined parameter equal to 3 for BA networks. 

 

Figure d: BA network structure for fictitious village of 400 households, average degree of 6 

This network of Figure d is characterized by an average degree of 6. The average 

eigenvector centrality, equal to 0.0025, is a measure of the influence of a node in a 

network and is pretty low, considering its maximum could be 1. Closeness centrality 

of 0.000808 suggests that the network might have some nodes who are quite far from 

the rest, because the overall value keeps very low. Betweenness centrality of 425.625, 

suggests that to go from a node to the other a long distance should be covered, 

making it more likely to pass through many nodes several times. 

As a second step, the diffusion curves of appliances for 100 simulations were built, 

which are shown below for one of the chosen scenarios. Looking at the diagram of 
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Figure e for MAX scenario, it is possible to notice that it is only four appliances out of 

six that in 20 years actually get to be adopted. 

  

Figure e: appliance diffusion curves for MAX scenario 

Some appliances will never be adopted, since their price is larger than the 80% of 

total expenditure (due to affordability constraints) of each and every household. The 

diffusion of lightbulbs is not present, because as soon as one adopts electricity it is 

assumed that he will also install a lightbulb.  

Since MAX, MED and MIN scenarios also reflect the Bass diffusion model output, it can 

be useful to analyse the values of the parameters involved in the three cases, selected 

each time thanks to Monte Carlo method, from a uniform distribution of values.  

 

 Table a: parameters values from Monte Carlo method 

Given this table, it is possible to notice that p values follow the order of maximum, 

median and minimum. This, indeed, is reflected in the diffusion processes.  

In each of the scenarios, the year in which food storage adoption shoots up 

corresponds to the reaching of market saturation for fan and entertainment. The 

curves of washing machines are not S-shaped yet, because 20 years result not being 

enough for this technology to spread around.  

I then used the software LoadProGen to obtain 250 load profiles for each considered 

case.  The variability of MIN scenario at year 10 is larger (8% vs 5%), therefore this 
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curve is not as representative of what really happens as the curve for MAX case. 

Moreover, in every scenario, year 1 is not relevant to the sizing of the grid, since it 

only presents very small numbers of adoption. 

Year 20 curve of MED scenario is more similar to year 20 curve of MAX scenario, 

which suggests that the 100 simulations were closer to MAX rather than to MIN case. 

An example of the results for MAX scenario in shown in Figure f. 

 

Figure f: average load curves for year 1, 10 and 20 of MAX scenario 

It can be interesting to verify whether the shape of these load curves is realistic. 

 

Figure g: potential rural electricity load profile reference [10] 

Looking at this diagram, it can be said that the load profiles obtained for the current 

study have a realistic shape. It is not possible to make a comparison in terms of 

consumption due to the smaller considered capacity of the studied system.  

The off-grid system sizing was performed thanks to the use of the software HOMER 

Pro and the scheme of the microgrid, that was designed taking inspiration from what 

literature [13] suggested, is the following. 
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Figure h: scheme of microgrid for sizing 

Data relative to solar irradiance and wind speed were taken from NASA “Surface 

meteorology and Solar Energy” [14] and the prices and lifetimes of technologies were 

also found in the literature [15]–[17]. In Table b, an example of the results of HOMER 

optimization processes can be seen, specifically years 1, 10 and 20 of MAX scenario. 

 

Table b: HOMER Pro output for MAX scenario, year 1, 10 and 20, optimized case 

It can be noticed how between year 10 and year 20 of the system, the necessary 

installed capacity of PV increases of almost 75% and an increase can be consequently 

found in the net present cost values. It is also important to notice that year 1 

represents not even 5% of the final configuration and it would not be suggestable to 

take this into account for the sizing process. Results suggest that it is always 

necessary to take into account the whole lifetime of the system to have a clear idea of 

what to expect from the future, trying to avoid cost recovery failure. In all of the 

situations, it can be noticed that the optimal solution always consists of an all solar 

solution. This optimizing algorithm only takes into account the economical 

optimization of costs, while neglecting, for example, that having wind in addition to 

solar might give greater reliability to the grid, allowing for a differentiation in the 

generation resources. 

The drawback of this method is that it will not give a univocal outcome, but the 

decision will have to be a result of an analysis made by the user. Unless one wants to 
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make adjustments very soon after starting the facility, it is suggestable to take into 

account a long enough period of time to project the microgrid to avoid over- and 

under-estimation issues. 

Conclusion  

The aim of this work was to analyse how the main uncertainties related to developing 

countries realities influence the diffusion of electrical appliances and therefore the 

configuration of off-grid systems. To respond this purpose, the author started the 

research from real data analysis and used it as the basis to develop a model in Matlab, 

constituted of two parts. A first one based on Bass diffusion model and a second one 

based on Gompertz curves theory. 100 simulations were performed, which allowed to 

demonstrate that the uncertain endogenous factors actually have an impact on the 

output of the model, mainly contributing to the speed at which the diffusion process 

happens. For example, as the input data vary, a variability of almost 80% can be found 

in year 5 of the simulations at the output (from less than 50 to more than 250 

purchases for fans). Three scenarios were analysed more in depth. A long-term 

analysis was necessary to be able to properly design the microgrid, otherwise over- 

and under-estimation issues might have taken place. Between year 10 and year 20, 

indeed, there can even be a doubling of necessary generation capacity. The software 

used throughout the sizing procedure were LoadProGen and HOMER Pro. The first 

allows for the creation of many different load profiles at the same time, but does not 

take into account the evolution of the households in time. On the other hand, HOMER 

Pro only takes into account one load profile at a time and keeps it constant for the 

entire lifetime of the system it is sizing.  

The patterns which can be found comparing year 20 of the various scenarios do not 

always repeat in the previous years, which means that, by considering only a smaller 

amount of time (e.g., stopping the analysis at year 10) one would probably get the 

long-term estimates wrong and might incur bad cost recovery failures. 

It would be useful in the future to find or create a software which would allow to 

consider continuous changes in the load demand and in the household configuration, 

so to be able to size the system in one only step, by considering the 20 years evolution 

all at once. 
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Abstract 

Most of the additions of power capacity to allow electricity access in rural areas of 

DCs is forecasted to be provided by off-grid systems. The majority of rural villages is 

characterized by the lack of reliable data and information, which might cause the 

inappropriate sizing of energy solutions, leading to supply shortages or cost recovery 

failure. The purpose of this work is to analyse and model technical and socio-

economic aspects and uncertainties in off-grid rural energy planning, in order to 

provide a reliable and integrated approach to forecast long-term electricity demand. 

To accomplish this target, (i) I implemented a Bass diffusion process to assess the 

adoption of grid connection across the social network of a fictitious rural village in 

Tanzania, whose characteristics were extrapolated from field data relative to a real 

village in the same area. (ii) I then developed a model based on Gompertz curves 

theory, to study the diffusion of appliances at the household level. Thanks to the 

obtained data, (iii) I could use LoadProGen software to create daily load profiles of 

the same village and, eventually, (iv) I could provide an example of a realistic off-grid 

system sizing procedure based on HOMER Pro software. The study will go through all 

four phases. The results of the study suggest that all of the uncertainties need to be 

taken into consideration to avoid over- or under-sizing issues. Indeed, changing the 

uncertain endogenous values through a Monte Carlo algorithm, I obtained very 

different speeds of technology diffusion. For example, year 5 of the simulations 

presents 80% variations in purchases of fans depending on input data. A software 

which allows to study the evolution of the off-grid system in time would be of help, 

since HOMER Pro only takes one load curve at a time as an input. The importance of 

taking into account the entire lifetime of the system is further shown by the 

differences in the patterns observed in the daily load profiles of the different years of 

various studied scenarios. In a single scenario, the necessary generation capacity can 

double from year 10 to year 20 and the same happens to the net present costs of the 

system. While, comparing different scenarios, the one presenting maximum installed 

capacity at year 10 does not hold the same property at year 20.  

keywords: access to electricity, social network, diffusion process, grid sizing, 

appliance diffusion model 
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Sommario 

La maggior parte degli interventi per aumentare la capacità produttiva di energia 

elettrica delle aree rurali nei paesi in via di sviluppo, si prevede si concentri su sistemi 

“off-grid”, isolati e autonomi. La maggioranza dei villaggi rurali è caratterizzata dalla 

mancanza di dati e informazioni affidabili. Questo potrebbe portare a una 

progettazione inadeguata delle soluzioni energetiche, che, a sua volta, provocherebbe 

il pericolo di blackout e difficoltà nel recupero dei costi. Lo scopo di questo lavoro è 

analizzare e modellizzare gli aspetti tecnici e socio-economici e le incertezze che si 

riscontrano durante la progettazione dei sistemi off-grid nelle zone rurali, con 

l’obiettivo di fornire un metodo affidabile ed integrato per prevedere la domanda 

elettrica nel lungo termine. Come prima cosa (i) ho implementato un processo di Bass 

per analizzare la diffusione dell’allacciamento alla rete elettrica all’interno della rete 

sociale di un villaggio rurale fittizio in Tanzania, le cui caratteristiche provengono 

dall’estrapolazione di alcuni parametri dai dati reali di un villaggio della stessa area 

geografica. (ii) Ho poi sviluppato un modello, basato sulla teoria delle curve di 

Gompertz, per studiare la diffusione delle apparecchiature elettriche nelle case del 

villaggio. Utilizzando i dati così ottenuti, (iii) ho creato, grazie alla piattaforma 

LoadProGen, dei profili di carico giornalieri per il villaggio stesso e, infine, (iv) ho 

fornito un esempio realistico di progettazione di un sistema off-grid attraverso 

HOMER Pro. Lo studio toccherà i quattro aspetti che ho descritto. I risultati 

suggeriscono che, se si vogliono evitare problemi di sovrastima o sottostima della 

domanda, tutte le incertezze devono essere prese in considerazione. Infatti, 

cambiando il valore dei parametri endogeni in input con un algoritmo Monte Carlo, si 

ottengono velocità di diffusione delle tecnologie molto diverse. Ad esempio, all’anno 5 

delle simulazioni si ottiene una variabilità dell’80% nell’adozione dei ventilatori, 

dipendente dai parametri in input. Inoltre, sarebbe più efficiente avere un software 

che, a differenza di HOMER Pro, il quale prende una curva di carico alla volta come 

input, permetta lo studio dell’evoluzione nel tempo della domanda. Infine, 

l’importanza di prendere in considerazione l’intera vita utile del sistema è 

ulteriormente sottolineata dalle differenze che si possono osservare confrontando le 
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curve di carico dei diversi anni dei vari scenari studiati. Se si considera l’evoluzione 

nel tempo di un singolo scenario, la capacità di generazione necessaria può arrivare a 

raddoppiare tra l’anno 10 e l’anno 20 e lo stesso può succedere ai costi di 

investimento. Invece, se si confrontano i diversi scenari nel tempo, lo scenario che 

all’anno 10 presenta la massima capacità installata in termini di domanda, non 

mantiene questa condizione se si considerano gli anni successivi. 

parole chiave: accesso all’elettricità, reti sociali, processi di diffusione, pianificazione 

delle reti, modelli di diffusione delle apparecchiature elettriche
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1 Introduction  

During September 2015 UN Summit, the 17 Sustainable Development Goals were 

adopted by the world leaders and on the 1st of January, 2016 these actually came into 

force within the 2030 Agenda for Sustainable Development. One of the goals, number 

seven, seeks to provide “affordable and clean energy” for all. These days, almost 1.1 

billion people still live in a condition of energy poverty. One of the possible ways to 

mitigate this urgent problem is to make sure that the investments in this field are 

sustainable and that the planning and dimensioning of electricity production and 

distribution are properly performed. An issue that comes to surface at this stage is 

that those places in which people suffer from energy poverty tend as well to be 

affected by the lack of reliable information and datasets to allow researchers and 

potential investors to make reasonable estimates and forecasts. The reason why 

forecasting energy demand is so important is discussed by several authors in their 

studies. Hartvigsson [1] developed a system dynamics model to show how the power 

supply capacity should be accurately considered based on the forecasts of electricity 

demand. Indeed, the lack of power availability may affect both the willingness of 

people to stay connected and the utility revenues. Brivio et al. [18] demonstrate that 

the optimal size of the components of an off-grid system, especially the capacity of the 

battery energy storage system of photovoltaic off-grid systems, are sensitive to the 

evolution pattern of load. Van Ruijven et al. [19], while developing a bottom-up model 

to assess trends in electrification over the next decades in DCs, demonstrate how the 

demand level is a significant factor when assessing the potential of mini-grid 

technologies. Kivaisi [20] and Cabral et al. [21], [22] highlight the need to take into 

account the evolution of the electricity load when planning the system, since the 

marginal costs of energy services vary among supply alternatives (i.e. small 

photovoltaic (PV) systems when the load is low, grid-extension when it is high). Fuso 

Nerini [23] demonstrates how the cost of the energy system for reaching different 

levels of energy demand to satisfy in the village of Suro Craic in the years 2010-2030 

may vary from few hundreds to 8000 2010US$. 
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The purpose of this work is to identify and model the main drivers and complexities 

related to the diffusion of electricity use in a rural village and to model the main 

uncertainties that lead to the final composition of the daily load curve of a certain 

area, in order to obtain a more comprehensive and reliable sizing of an off-grid 

system. 

The approach that was chosen to perform this research is multidisciplinary, and goes 

from engineering to sociology and economy. The sizing of an energy facility depends 

on several fundamental parameters, such as the load curves of demand, which 

strongly depend on socio-economic aspects, e.g. the willingness of people to connect 

to the grid and to adopt a certain technology. Such socio-economic aspects are 

strongly related to the social environment that surrounds the individuals, who cannot 

be considered homogeneous actors of a standard world, but are characterized by a 

whole bunch of complexities and subjective features that should be indeed 

endogenously represented in  energy models [24]. My objective is to fill the gap in 

literature and make a connection between social networks theory, appliance diffusion 

process theory and off-grid systems sizing models, with the aim of reaching a more 

reliable design process of microgrids.  

In order to catch the whole variety of characteristics, I organised the work by starting 

with a literature review, which covers all the topics that were examined to 

understand the features of the studied environment and the necessary knowledge to 

work in it. This will be dealt with in chapter 2. Then, in chapter 3, I will present the 

method and the models and I will explain how I relied on actual field data from 

Tanzania for calibrating the social network structure to be used across the entire 

work. Moreover, I will go through the steps I followed to develop a model based on 

Bass diffusion process, to simulate how the microgrid connection spreads across a 

fictitious village. To be able to obtain reliable load profiles, a second diffusion process 

for the electrical appliances was developed, based on the Gompertz curves theory, as 

has been explained by Van Ruijven [2]. Eventually, it was possible to build daily load 

profiles through LoadProGen and give them as an input to HOMER Pro, to obtain a 

possible sizing of a realistic microgrid. In chapter 4, I will present and discuss the 

main results of the research, and in chapter 5 I will provide several final remarks plus 

some suggestions for future developments.  
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2 Literature Review 

For this work, I carried out a review of 75 papers and scientific articles. I downloaded 

the studies on Scopus platform and I found them using keywords like “energy in 

developing countries”, “electricity diffusion”, “diffusion models”, “behaviour of 

consumption”, “load curves”, “grid sizing” and other similar ones, which would allow 

me to find material about all of the topics I was going to go through. 

When someone is willing to plan and size the creation of an off-grid system, there are 

several aspects he should take into consideration. To properly size a microgrid, a 

forecast of the future load curves is necessary, to have an idea of which will be the 

peaks the system should be able to manage. The amount of energy a village uses, 

depends of course on how many appliances the households will use, but before that it 

depends on how many people actually have access to the grid. When taking into 

account a place with no access to electricity at year 0, it can be tricky to understand 

how the use of energy will diffuse across the population. Many uncertainties will 

come up along the process and several socio-economic and endogenous factors will 

contribute to the definition of the future load curves. A way to better design diffusion 

processes was proposed by several authors which I found in the literature. It consists 

of taking into account the innovation diffusion processes and the investigation of 

social network structures within a rural village, in terms of links among the 

households, which could allow the flow of information and the diffusion of knowledge 

about certain issues. Indeed, Peres et al. give an interesting definition of innovation 

diffusion as ‘the process of the market penetration of new products and services that 

is driven by social influences, which include all interdependencies among consumers 

that affect various market players with or without their explicit knowledge’ [25]. The 

demand of energy, therefore, will be strongly influenced by the network dynamics of 

a certain place. If the members of a given group adopt, the members of another group 

who is willing to differentiate by the other will tend to avoid adoption [26]. 

2.1 The network 
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The overall idea I could extrapolate from literature was that if one is trying to study 

diffusion across networks, it is necessary to know how to describe the network itself. 

In case of data availability, networks can be built by deriving the information (e.g., 

relationships among people) on the field and a matrix (called network graph) 

representing the real contacts across the people of the considered village would be 

obtained. The problem is that, often, data related to rural villages are very few. It will 

then be useful to have an idea of what the network looks like, or better, how it is 

possible to produce a realistic network, just knowing how many nodes (households) 

compose it.  

Some of the most important ideas relative to networks theory, come from the work of 

Matthew O. Jackson, a major expert in the field of social network studies, who wrote a 

book called “Social and Economic Networks” [27]. Here, several structures are 

explained and defined, based on how people can come into contact, with which 

criteria they get to know each other and which formations get to life among the nodes 

(the individuals) of the network (the community). Jackson says that along life people 

influence and get influenced by others and these mechanisms depend on who they 

meet and how they relate to the met ones. People have several types of contacts, that 

can differ depending on the social status of people, or the possibility of being 

relatives, or friends, or colleagues. The author also presents the main characteristic 

parameters of a network, with their definitions and explanations. The concepts and 

the different types of centrality are addressed thoroughly, explaining the difference 

among degree, closeness and eigenvector centrality. 

When defining networks, many researchers have proposed their own type of 

networks, which follow very specific formation rules.  

Many studies take into account the network structures to understand the social 

dynamics of rural areas, some starting from econometrics, like [28], others focusing 

on rural areas in general [29] or on more specific areas, like India [30] or Malawi [31]. 

In their study, in which the knowledge of the level of poverty of others in 600 

communities of Indonesia is assessed, Alatas et al. [32] say that the contacts among 

people depend on their relative economic well-being, but add that, as was checked 
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through independent data, it often happens that individuals get the richness ranking 

wrong and get biased by their own wrong beliefs. Overall, the majority of studies 

confirms that better connected people (in terms of number of connections) are also 

better at ranking others and usually place themselves in socially strong positions, as 

richer, as more influential and as more educated. 

Di Falco and Bulte [33], instead, while studying the types of farm management that 

might help mitigating the effect of weather shocks on the soil in rural areas, propose a 

type of network that is based on the distinction made by each individual between 

peers and non-peers among their contacts. Each person would be linked to his/her 

peer contacts, and given all links the network gets formed. This type of network is 

called kinship network and the main problem with it is that it can be built only 

through very specific surveys, containing questions that can be tricky, since it is not 

always clear to someone who is a peer and who is not in a context like the developing 

country village one. The same type of theory was already supported by Van Der 

Broeck and Dercon [34]. They had the idea that, for rural regions’ communities like 

Kagera in Tanzania, kinship networks should be considered the most appropriate 

form of network. Still, this type of networks is argued to be very sensitive to 

subjective impressions and it results very difficult to verify the information collected 

through the surveys. Other types of network, whose formation is more objective to 

assess, might be preferable for this type of work. 

When assessing any of these types of network, as very well explained by Jackson [27], 

there is always a question to answer, that is whether the links formed by the nodes 

are bilateral or unilateral, meaning that a person A can get influenced by/be linked to 

a person B, but not necessarily the other way around. Knowing if a message can flow 

only from A to B, or only from B to A, or both ways, can be important to understand 

how a technology will spread around. 

An interesting work that I studied is by Van Den Bulte and Joshi [35]. While studying 

the diffusion of innovations, they define two different categories of consumers, 

starting from the difference between influentials and imitators. The first ones are 

more in touch with new developments than others, and have a disproportionate 

influence on others’ adoptions [36]. The latter ones, instead, tend to prefer low-risk 
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innovations and are in need of guidance of people that usually have similar or higher 

social status. Influentials tend to be independent or slightly influenced by other 

influentials; imitators, on the other hand, can get influenced both by influentials and 

by other imitators. 

In case of presence of this distinction, the network might be expected to present a 

conformation with some nodes that have a higher degree (number of contacts) than 

others, who are likely to be influentials, while more isolated nodes will more easily 

represent imitators. 

Influential people are believed to be convincing, informed and widely socially tied 

[37]. For this definition Goldenberg would take inspiration by Weimann [38], who 

suggests that influence is a combination of “who one is”, “what one knows” and “who 

one knows”. Goldenberg adds being innovative as another typical trait for influentials. 

Still, it is not enough to be either innovative or socially affirmed, but who is both, in 

case of the diffusion of new products or innovations, like electric appliances, is more 

likely to become one of the first to purchase (adopt) such technologies; imitators, on 

the other hand, will wait for the feedbacks of previous adopters before adopting 

something themselves and will go forming the large group of people who will actually 

push the innovation towards the reaching of market saturation. 

While the studies presented so far give a theoretical point of view, several authors try 

to give numerical values to the parameters related to network structure, which can 

give an idea of the orders of magnitude to be considered in rural contexts. Bandiera 

and Rasul, in their paper “Social networks and technology adoption in Northern 

Mozambique”, estimate that the average degree of the social network is 4.9 contacts 

per person [39]. Beaman et al., instead, in the work “Can Network Theory-based 

Targeting Increase Technology Adoption?” say that the probability of having multiple 

contacts who purchased a technology increases more rapidly as the technology 

spreads through the network. They call “degree” the number of contacts the nodes 

have who have purchased something and not the number of contacts in general, that 

is therefore going to be a variable number [40]. Finally, it is again Bandiera and Rasul 

who provide Table 1, which allow us to say that a good range for k_avg (average 
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degree) should be from 2 to 8, since their values are estimated for Mozambique that 

is a reality similar enough to Tanzanian one [39]. 

 

Table 1: Network average degree reference 

It is from Peres et al. [25], instead, that it is possible to learn more about the concept 

of clusters, which leads to the definition of the clustering coefficient. This parameter 

represents a measure of the connectedness of a network. Clusters are linked to the 

concept of homophily, that is the tendency of similar individuals to group among each 

other. A network which presents high clustering is one in which if a node A is linked 

to n nodes, a large part of these is also connected among each other, which for 

example is true in reality when you have a group of friends that all know each other, 

forming therefore high clustering levels. One of the main characteristics of these 

closed social structures is that they help strengthening the role of weak ties. Once 

given as input into a cluster, the information will not likely leave it. The only way it 

will have to get out of it is through a weak tie with the outside. 

The clustering coefficient can be evaluated as: 

 𝐶𝐶(𝑣) =
2∗𝑁𝑣

𝐾𝑣∗(𝐾𝑣−1)
       (1) 

where 𝑣 is the name of the considered node, K is its degree and N is the number of 

links that are present among its contacts. 

Starting from the concept of clusters, it is Christine Kiss and Martin Bichler [41] who 

try to go further into detail in the distinctions between the two consumer categories, 
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explaining that both imitators and influentials can have not only a positive impact on 

the willingness to adopt of others, but also a negative one, in case of negative 

feedbacks. They say that “dissatisfaction produces more negative word-of-mouth 

than satisfaction produces positive word-of-mouth” and propose a network structure 

called “scale-free”, based on the presence of centrally located and extensively high 

degree “hubs” that of course will represent the influentials. They also, for the first 

time, mention the importance of coupling network theory with other models that 

provide, as they say, “orthogonal information” related with diffusion mechanisms and 

endogenous aspects of the different nodes, in order to be then able to study in detail 

the diffusion of innovation in specific communities. 

2.2 Diffusion Process 

It has now been a while researchers have started analysing development and energy 

poverty mitigation through the study of diffusion processes within populations. Two 

types of diffusion need to be studied for the purpose of this work: the diffusion of the 

connection to the electric grid and the diffusion of the adoption of electric appliances, 

which are both necessary information in order to be able to size an off-grid system 

properly. An analysis of the diffusion models that will then be used for the connection 

to the microgrid is first performed. Then, some useful aspects for appliances diffusion 

will be added. 

The first realistic diffusion models were developed in the 1960s and one of the best 

examples of these efforts is Bass model, which was created by Frank Bass in 1969. For 

the first time the diffusion of any good was theorized to be dependent on two main 

aspects: advertising and word of mouth, that is external and internal influence 

respectively [6]. Bass model has a fundamental equation for the adoption rate at time 

t, which is the following:  

𝑓(𝑡) = [𝑝 + 𝑞𝐹(𝑡)][1 − 𝐹(𝑡)]     (2) 

where p is the probability of adoption due to external influence, q is the probability of 

adoption due to influence from other adopters and F is the proportion of population 

that has already adopted at time t. 
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Figure 1: Bass model flow diagram 

This equation, that has the strength of being very simple and intuitive, can be 

enriched in different ways with the target of taking into account other possible 

aspects that might influence the decision to adopt an innovation. 

Bass Model was found to have one major drawback, it indeed assumes homogeneous 

individuals who behave the same and get influenced with the same probability. 

Influence could originate by advertising or by other people who adopted beforehand. 

To respond this issue, many studies have been carried out about how to merge the 

simple and intuitive structure of Bass Model with the more specific and individualistic 

approach of Agent Based Models. What an ABM does, is taking into consideration the 

individual characteristics that differentiate one agent from the other and which might 

have an influence on the outcome of the diffusion process. The importance of the 

different aspects can be weighted accordingly to the considered individual or context. 

On the other hand, implementing an ABM is definitely more demanding in terms of 

data availability and might bring to a larger level of uncertainty in the outputs. Many 

examples of attempts to take into account individual aspects can be found in 

literature (e.g., [42], [43], [44], [45], [46], [47], [48], [49]) and the most relevant ones 

will be discussed below.  
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One of the first to propose this type of approach is a study in which Bass himself 

participated. The aim of his research work was to try to include in the model a state of 

the agents that were taken into account, who could now be considered to be either 

influentials or imitators, depending on whether they were supposed to be more 

influenced by the external inputs or by word of mouth [50].  

In the papers by Piccardi [3] and by Riva et al. [4], Bass model is compared to agent-

based models, while trying to understand which might be the influence of social 

networks in the diffusion processes. Three different types of network are suggested 

to better define rural villages conformation. The three of them are analysed and 

compared to make a speculative analysis and assess whether or not the network 

conformation is of influence in the diffusion process output. The proposed network 

typologies are: the random network, based on the randomization of the choice of the 

next node to add to the network and of its first contacts, given a certain average 

degree; the Barabasi-Albert network, based on Barabasi’s work [5] on scale free 

networks, which involve the idea that who has more contacts, that is a higher degree, 

is more likely to further increase them, acquiring even more links with respect to who 

had already less at each time step. Last, the social network is proposed, that is based 

on preferential attachment, where triangles tend to form and if node A and node B are 

“friends”, an added node C, that is already linked to B, will be more likely to get linked 

to node A, rather than to a fourth node D that is not linked to anyone yet, causing a 

high clustering structure. The formulation and obtainment of the three network 

typologies will be further explained in Materials and Methods chapter. 
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Figure 2: Random, Barabasi-Albert and Social network examples [4] 
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Two more things need to be highlighted from these papers. First, here as well the 

distinction between influentials and imitators is provided, based on the same 

definitions already given by the previous literature. Second, an important concept is 

expressed: in rural contexts, the behaviour of electricity demand often follows the 

diffusion of new electrical appliances and an increase in their use. By relying on 

diffusion models, it would be possible to simulate eventual scenarios of electrical 

appliances diffusion.  

The reason why network theory is so strongly linked to diffusion processes in 

developing countries, is that people in rural villages need to learn about the 

technology from multiple people before they adopt themselves and the people they 

hear from tend to be the ones that belong to their links in the network of their 

community. In these cases it might be that some people represent better entry points 

than others at inducing cascades of information about innovations and it would be 

valuable to identify the ones that would maximize diffusion [40]. To do it, network 

structures need to be correctly calibrated. 

In the beginning, researchers used to consider physical proximity as a good proxy for 

the connections that lead to technology diffusion. Beaman [40], instead, highlights 

that physical proximity does not appear to be a good proxy for social connections and 

cites Banerejee et al. [51], who say that in India, for example, a simple question like “if 

we want to spread information about a new loan product to everyone in your village, 

to whom do you suggest we speak?” is successful in identifying individuals with high 

eigenvector centrality and diffusion centrality, two parameters that allow to find the 

most suitable individuals to start an information cascade. The first one takes into 

account not only the number of links of the considered node, but also the number of 

links of its contacts, giving a better idea of how far information could spread; the 

latter instead adds the idea that the information is not going to spread more and more 

forever, but only takes into account a finite amount of time. 

A strong supporter of peer-based networks helps the connection between network-

theory and diffusion models stating that individuals want to act like their friends, 

individuals learn about the benefits of the technology from their friends, and 

individuals learn from their friends about how to use a new technology. Oster also 
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says that peer effects are more important in early months after product distribution, 

which is shown by the concave behaviour of the value of information: when someone 

has no information about something, having some more information is very helpful, 

moving from having a lot of information to even more is less helpful. [52] 

Once the starting scheme of the Bass model is set and its links with network theory 

are clear, it is possible to go back to the parameters definition. 

If the purpose is to analyse the adoption of electricity and electrical appliances at the 

village level in developing countries, several studies tried to understand how the 

external influence should be considered in models [8], [53], [54]. Since most often no 

advertising nor marketing mechanisms are implemented in such environments, Riva 

et al. [4] make an example with p=0 as an assumption. The attention can therefore 

shift towards the definition of what is inside the parameter q and what instead could 

be added outside the entire formula (2), meaning that there might be some variables 

that imply an exogenous contribution to the adoption rate, such as income of a 

household or education level of people. 

Once again, Bass contributed to the definition of this problem and, in a study he 

performed, he gives a number of possible alternatives to the initial model he had 

built, with the aim of including aspects such as price elasticity of electricity or income 

variation of households [55]. 

The study that most of all opens the path to the one here presented is included in a 

book by John D. Sterman of 2000 [7], in which he puts forward an innovative 

interpretation of the parameter q as the product of two sub-factors in the form 

𝑞 = 𝑐𝑖    (3) 

where c is the contact rate of the individual and i is the adoption rate, the two of 

which multiplied together give as a result the probability of adopting thanks to the 

process of word of mouth. 

In the paper “A discrete bass model and its parameter estimation”, Daisuke Satoh 

estimates for several situations the values of p and q, like shown in Table 2, using two 

different methods [56].  
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The ordinary least squares procedure (OLS) involves the estimation of the 

parameters by taking the discrete or regression equivalent of the following 

differential equation, that is discretized with an ordinary forward difference equation. 

𝑑𝐴(𝑡)

𝑑𝑡
= (𝑝 +

𝑞

𝑚
𝐴(𝑡))(𝑚 − 𝐴(𝑡))    (4) 

where the parameters are the same of equation (2), plus m, that is the total 

population, and A(t) that is the total number of adopters at time t. 

A time-interval bias is present in the OLS approach, since discrete time-series data 

are used to estimate a continuous-time model. To overcome the shortcomings of the 

OLS procedure, the nonlinear least squares estimation procedure (NLS) was 

designed, using the cumulative distribution function. The NLS estimation procedure 

overcomes the time-interval bias, but has some other problems: it may sometimes be 

very slow to converge or may not converge, it may be sensitive to the starting values 

for p, q, and m, or it may not provide a global optimum. 

 

Table 2: p and q values from literature 

Lawrence and Lawton [57], instead, found out that (𝑝 + 𝑞) ranged from 0.3 to 0.7 

over several innovations diffusion processes. Thanks to this and other literature it 

was possible to establish a range for p going from 0 to 0.1. 

It is possible to analyse on field gathered data and extrapolate empirical ranges of 

values for p and q parameters thanks to linear regression. 

An issue that might affect the shape of the adoption curve is discussed in a paper by 

Bandiera and Rasul [39], who explain that having many adopters in the network, 

while allowing for better circulation of information, increases incentives to delay 

adoption strategically and free ride on the knowledge or adoptions accumulated by 

others. 

Bonan et al. [58] as well, highlight something that should be kept in mind, which is the 

existence of spillover effects. People, indeed, do not only get information by their 
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links in the network or being reached by some kind of advertisement: they might 

gather knowledge about something on their own, by seeing other people doing things 

in a certain way, even if they might not be among their known ones. 

Dan Horsky [59] suggests the existence of models including the price decrease over 

time and also the existence of a category of “non-adopters” who cannot afford 

adopting.  

Still, in reality, many more factors might get to influence the adoption of something. 

Going through past literature it was possible to find several examples of studies 

which tried to include cultural or financial factors inside some diffusion models, 

independently on whether they were using Bass model or others. 

The most meaningful examples are listed in Table 3. 

AUTHORS INFLUENCING FACTORS 
DEVELOPING 

COUNTRY 

Pothitou et al. [60] Education level, household income NO 

Peres et al. [25] GDP per capita, health status, lifestyle NO 

Banerejee et al. [61] Age, caste, education, language, native home, occupation YES 

Leijten et al. [53] 
Monthly income, completed education, household 
compilation 

NO 

Eder et al. [62] 
Health, income, education level, housing, work, food, 
transportation, mobile payment usage, bank usage 

YES 

Louw et al. [63] Health, education YES 

Van Ruijven et al. [2] 
Health, expenditure, household size, education, labour, 
electricity tariffs, geographical information 

YES 

Wilson and 
Dowlatabadi [64] 

Income, education, absence of young children, people in ill 
health, elderly people presence,  gender, age 

NO 

Sabah et al. [65] 
Income, level of education, age, number of household 
members, interest in starting a business, house ownership 

YES 

Bonan et al. [58] Household expenditure, schooling, health YES 

Vivi Alatas et al. [32] 
Years of education, leadership position in the village, 
belonging to ethnic minorities or religious minorities, gender  

YES 
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Bonan et al. [66] 

Composition of the household, socio-economic status, health, 
education, income, working conditions, time allocation, 
savings, sources of energy, household expenditure on energy, 
appliances and cooking stoves, risk preferences, participation 
to informal groups, GPD localization 

YES 

Bandiera and Rasul 
[39] 

Livestock ownership, income, food consumption YES 

Saweda et al. [67] 

Household size, age of household head, highest years of 
education in the household, distance from the nearest farm, 
nearest market and nearest paved road, amount of land, 
value of non-productive assets 

YES 

Van den Broeck and 
Dercon [34] 

Sex, age, completion of primary education, land holdings YES 

Oster and Thornton 
[52] 

Age, grade, test scores, school fixed effects, parental 
education, family income 

YES 

Van den Bulte and 
Stremersch [36] 

Income, wealth, education, occupation, aesthetic preferences, 
place of residence, lineage race 

NO 

Horsky [59] Size of household, education, number of children NO 

Zhang et al. [68] 
Income, profession, education, family size, social network, 
price of product or service 

YES 

Rao and Ummel [69] 

Income, appliance price, affordability, reliability, race, 
religion, age, urban/rural, dwelling quality, vehicle 
ownership, household size, education, number of rooms, 
gender, home owning 

YES 

McNeil and Letschert 
[70] 

Demography, health appliances, living standards YES 

Table 3: influencing factors found in literature 

As it is possible to see in the table above, every effort made in the past to study the 

diffusion of some technology or novelty lead to the definition of some indicators 

which can all be grouped in three main categories: health, education and income, of 

which only income and education tend to be relevant when studying the diffusion of 

electric appliances.  

Sopha et al. [71] proposed an innovative way to consider the decision making process 

of the individuals when deciding to adopt an appliance. Their theory categorizes four 

decision strategies: repetition, consumers will habitually consume a product that they 

have previously consumed; deliberation, consumers will evaluate all possible 

alternatives and consume the best one; imitation, consumers will choose the product 

that most of their social network consumes; social comparison: consumers will 

conduct a social comparison by comparing the product previously consumed with the 
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product that most of their peers consume and choose the best between those two. 

Also, they stated that parameterizing the ABM using survey results is a promising 

approach, because it provides a strong empirical foundation for the development of 

an agent based model [71]. 

While this paper looks for social characteristics of the individual to affect the decision 

making process, others tend to look at the subjective characteristics of each node. 

Pothitou et al. explain how household income, and to a lesser extent gender, is 

associated with energy-saving habits and behaviours [60].  

Menezes et al. [43] highlight that Bass model ignores the existence of more rigid 

barriers to adoption of new products by population, such as low level of income per 

capita and define the difference between total household earned income and fixed 

expenses which cannot be compressed (e.g. food, health, etc.) as the average 

disposable income of the households. The price of a technology needs to stand below 

this threshold in order for a household to be able to adopt it, that is, to become a 

potential adopter in the Bass diffusion model. Otherwise, the household will be a non-

adopter for that time step, until its disposable income will update. 

Bass model, though, is not the only type of diffusion model which allows to obtain the 

curve of spreading of an innovation across a group of people. Another example is 

provided by Gompertz curves, which involve aspects which are more related to the 

economic conditions of the individuals, while neglecting other parameters related to 

the social influence. Van Ruijven [2] suggests that household size and temperature 

should also be considered, plus adds a distinction between what happens in rural or 

urban areas and high or low income categories. Abdullah and Jeanty consider a 

further differentiation between private households and economic activities [65]. 

Other three aspects of van Ruijven’s paper are really relevant. First, it gives the 

advice, in case of lack of data, to use the application of electricity for lighting as a 

proxy for electrification rates of households [2]. Second, it cites an article by Kemmler 

[8], which states that household expenditure is the main correlating factor for 

electricity use by household, to be considered by dividing the population in quintiles. 

Third, it highlights several clusters of appliances, represented by: space cooling 
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applications, food storage facilities, washing machines, entertainment and 

communication appliances. 

Thanks to these ideas it was possible for Van Ruijven to introduce the concept of 

ownership of the appliances and to move from the use of Bass model, to the building 

of Gompertz curves. These are supposed to give a similar output as Bass model, but 

instead of taking into account the values of the endogenous p and q parameters, are 

based on a correlation with the household expenditure, which is explained by the 

following equation. 

,

, , ( ) , , ( )1000
* ( * ( * ))A U
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     (5) 

Where PCO is the expenditure per capita, β and γ are exogenous coefficients based on 

linear regressions from real data collection, differentiated by appliance, while α is the 

upper limit of appliance ownership.  

Van Ruijven explains how to build ownership curves in its paper “Model projections 

for household energy use in India” [2]. In it, useful values for the parameters of the 

diffusion model for appliances are provided, which are the only available in the 

existing literature for one developing country (i.e. India). 

Many others tried to use different methods to develop diffusion models of appliances. 

A first example of it is by Labandeira et al., who develop the so-called model of 

Random Effects. The idea is that households do not demand electricity for direct 

consumption but rather use it to produce a series of final goods and services: the final 

energy good (x) can be defined as a function dependent on the electricity consumed 

(e) as well as the natural gas consumed (g) and the stock of household appliances (a) 

[72]. 

𝑥 = 𝑓(𝑒, 𝑔, 𝑎)      (6) 

At first, consumers tend to minimize the costs of producing the energy good, then, 

they maximize their utility and when the price of electricity varies, households 

modify their stock of appliances. 

Van Den Bulte and Stremersch [36] conclude that diffusion curves reflect the level of 

income distribution, so that networks lose their commonly given importance. This 
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finding will be very useful for the current work in the next chapters, even if the 

attention will move from the GINI index to expenditure levels. Moreover, they 

concentrate their efforts on the estimation of the ratio q/p rather than on the two 

single parameters. Lastly, they assign much importance to one type of contagion, that 

is cross-cultural and social-normative one.  

Assimakopoulos [73], instead, proposes an innovative way of forecasting residential 

energy demand through appliances usage. This method consists of applying energy 

demand equations to ‘homogeneous’ groups of consumers which are endogenously 

defined by using multivariate statistical techniques on data. The decisions of 

households are then simulated. The repartition by energy products is then estimated 

for each group. 

 
Figure 3: example of structure of energy choices for a case study in Cyclades Islands 

Zhang et al. [68] create a model which includes income, profession, education, family 

size and social network of each segment of the network and captures the diffusion 

correlation between dependent technologies. The diffusion of one technology or 

product, indeed, may impede or improve the diffusion of another one. 
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Narashima D. Rao and Kevin Ummel in their paper “White goods for white people? 

Drivers of electric appliance growth in emerging economies” explain how ownership 

can be defined through parameters like market access, wealth, plus sometimes race, 

but most of all they underline the importance of considering affordability rather than 

income, which accounts for appliance price as well and can therefore change more 

easily over time. Each individual, depending on its own expenditure level, will have a 

marginal probability of owning a certain appliance. Given this, the individuals with 

the higher marginalities will be the ones that first adopt a certain technology, the 

others following in descending order. Affordability sets a threshold, which means that 

through affordability it is possible to choose a certain percentage value that should 

represent the share of expenditure to be maximally devoted to the adoption of an 

appliance [9]. 

The problem of this type of approach is that it is very context-specific and it is very 

difficult to use the data from a certain place as a basis for a theoretical analysis of 

another place. Therefore, for the current study it was necessary to find a different 

solution, consisting of making a ranking of the individuals based on their expenditure 

level. 

 

Figure 4: Marginal probability to adopt with respect to affordability level 
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In terms of complexities behind the forecast of electricity demand, another issue 

should be considered, that is the behaviour of electricity users that generate different 

electricity load profiles. Several studies have been carried out in order to assess the 

influence of consumer behaviour and habits on the elasticity of demand and on 

demand fluctuations. 

In most developed countries energy habits strongly depend on household income and 

to a lesser extent gender. Positive environmental attitudes are not necessarily 

indicative of a high level of knowledge of environmental issues or energy saving, but 

monetary incentives can be a very strong influencer of people behaviour. The 

conclusion of Pothitou et al. is that people with high environmental motivation are 

less sensitive to price than average [60]. 

Rai and Henri state that there is the need to understand why people use energy the 

way they do and how individuals respond to information about the costs and benefits 

of energy choices. Networks shape individuals’ access to information about 

technologies, their costs and benefits, and their propensity to adopt new patterns of 

behaviour. This means that it is not possible to separate the study of energy demand 

from the study of social interactions [74]. 

In order to link the diffusion processes and the obtainment of a load curve, an 

important economic tool is necessary, which is the creation of S-shaped curves. These 

are obtained as a final output of the diffusion processes. Their structure can be easily 

explained by looking at the different phases of adoption of a technology. At first only 

innovators (early adopters) purchase a technology, even if it still has no feedbacks. In 

fact, it will be they the ones who are going to give feedbacks to the rest of the 

community. After this first phase, the S-curve can either form, or it can fall back down, 

meaning that the technology does not spread at all. 

If the innovation does spread across the network, a phase of strong growth and high 

adoption rate will follow, until the majority of people will own that technology and 

the market will reach saturation. Then the curve will flatter again and the diffusion 

process will be over. 
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It is again the paper by Riva et al. that shows the correlation between different types 

of network and different shapes of diffusion curves [4]. 

 
Figure 5: S-Shaped curves for k=4, A(0)=0 and different types of network 

In the picture it is possible to see an example of the difference among the diffusion 

processes across different network structures, assuming initial adopters equal to 0 

and an average degree of 4 contacts. Once the diffusion process has been assessed, it 

will be possible to have clear which appliance was adopted by each household. In 

order to be able to size an entire off-grid system, though, it is necessary to have more 

specific information about the load curves that the microgrid will have to manage.  

2.3 Load Curves 

In order to make reasonable forecasts, several methods can be used which can be 

distinguished based on type of sizing process to perform. 

Intuitive sizing 
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For intuitive sizes of off-grid systems, especially in the case of home-based system 

and small capacities installed (i.e. in the order of Watts), load forecasting methods are 

based on the approximation of the reasonable peak power the power system should 

be able to respond to. In other words, the process can follow two possibilities. First, 

one can take in consideration the energy consumption related to each appliance and 

simply sum up the nominal power of all of those, assuming they might be switched on 

at the same time. 

𝐸𝑐 = ∑ 𝑁𝑗(∑ 𝑛𝑖𝑗𝑃𝑖𝑗ℎ𝑖𝑗)
𝐴𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒
𝑖

𝑈𝑠𝑒𝑟𝑐𝑙𝑎𝑠𝑠
𝑗     (7) 

where Ec is the total energy consumption, Nj is the number of households per user 

class, nij is the number of appliances of a certain type per household, Pij is the nominal 

power of the appliance, hij is the number of hours of operation of that appliance. 

Taking then into account the efficiency of the electricity generation it will be quite 

straight forward to obtain the amount of capacity we need to install. This first method 

might, nonetheless, bring to overestimations of the real load peak. The second option, 

instead, is to take the average load of a day and spread it across all the hours, so to 

make it uniform. This, on the other hand, will likely cause underestimations of the 

load peak.  

Numerical sizing 

For more detailed design processes, analysis of operation of the systems, long-term 

simulations, etc., more structured models are needed to generate reliable load 

profiles. 

In this case, more details for each appliance will be requested, such as the functioning 

windows and functioning time, which respectively represent the moment during the 

day in which a certain appliance might be in use and the total amount of time an 

appliance keeps working every day. 

It is Mandelli [10] who helps making further distinctions among the load curve 

forecasting procedures. He explains that load forecasting can be divided in: short-

term, which is used to predict loads from 1 h to a week ahead; medium-term, used to 

predict weekly, monthly and yearly peak loads up to 10 years ahead and is required 

for efficient grid operational planning; long-term, used to predict loads up to 50 years 
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ahead and is required for grid expansion planning. A second categorization would 

divide the forecasting methods as top-down or bottom-up approaches, whose 

definition is well explained in the image below. 

 

Figure 6: top-down and bottom-up forecast approaches definition 

Given these definitions, it is possible to take into account what Grandjean says an 

ideal model should look like. [75] 

▪ It has to be parametric in order to simulate various scenarios. 

▪ It has to be technically explicit, i.e. the different specificities of the simulated 

appliances must impact the load profile results. 

▪ It has to be evolutionary, i.e. new elements can be introduced so as to be simulated. 

▪ It has to be aggregative, so that results can be obtained at different levels 

(household, city, region, etc.). 

▪ All end-uses can be considered in the load profile calculations. 

In the light of this reference, Mandelli developed a new procedure, called LoadProGen 

and characterised by  the following features: 

▪ It is based on input data that can be easily assumed based on practical experience on 

similar context conditions or by mean of local surveys. 
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▪ It has to be based on a rigorous mathematical formulation, which allows generating 

the load profile, i.e. apart input data, the designer judgments should not affect the 

profile shape. 

▪ It has to be bottom-up, i.e. the load profile formulation has to rely on microscopic 

input data referring to each appliance’s features within a specific type of user class. 

With LoadProGen approach, each appliance of each household contributes to the load 

profile with its power demand. Through a stochastic approach, the switching-on 

times are defined and a realistic functioning of the appliances is simulated. For each 

user class a proper peak is obtained, thanks to a relation between load factor (ratio 

between actual electricity used and maximum possible theoretical usage), 

coincidence factor (ratio between actual power peak and possible theoretical power 

peak)  and number of users. Therefore, the load curves will present many spikes, 

whose values will not be random, but will result from the features of the considered 

appliances. LoadProGen is based on input data that can be surveyed or assumed in 

rural areas. It is important to know that the main purpose of this procedure is not to 

forecast load profiles, but rather to formulate them in an appropriate manner to 

support electrification studies in rural areas. [10] 

Once the load curves are available, it is eventually necessary to have a mathematical 

tool which allows us to plan and size the off-grid system. 

2.4 Off-grid System Planning 

Rojas-Zerpa [11], in his work about energy planning, explains which are the main 

aspects to take into consideration when deciding which is the tool that should be used 

to design off-grid systems. First, the application area: different models might indeed 

imply different planning methodologies. When considering rural areas, though, 

models for decentralized (or distributed) generation have recently gained a lot more 

interest. Second, the planning horizon: when designing an off-grid system it will be 

necessary to decide which is the time period we are willing to take into account. As 

Rojas-Zerpa says, the majority of existing literature takes into account short-term (1-

4 years) or medium-term (5-10 years) periods, but it is in fact useful, in some 

circumstances, to take into consideration long-term (11-20 years) planning tools. 
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Third, the objective of decision making, which might be either economical, or social, 

or even environmental. Fourth and last, the technologies to be included in the 

planning, depending on whether the off-grid system should be made of renewables 

only, or some other technologies are going to be implemented as well. 

It is in this context that a software called HOMER is first taken into consideration. 

HOMER (Hybrid Optimisation Model for Electric Renewables), developed by NREL 

(National Renewable Energy Laboratory, USA), appears repeatedly in the literature as 

a preferred tool [12]. It can handle a large set of technologies (PV, wind, hydro, fuel 

cells, boilers, etc.), loads (AC/DC, thermal and hydrogen), and can perform hourly 

simulations. HOMER is an optimisation tool that is used to decide the system 

configuration for decentralised systems. Its target is to find the cheapest solutions in 

terms of Net Present Cost, respecting the input constraints the user can give. The 

major drawback of this software is that it does not take into account the evolution of 

load curves in time and considers one only load profile for the entire lifetime of the 

system. It is, in fact, quite usual to find studies which take into account the long-term 

time horizon, but decide to use a constant load demand for the entire period of the 

study anyhow, which will likely bring to inaccurate results. 

Once the literature review was over and a sufficient knowledge of all the interesting 

topics for this research was developed, it was then possible to shift to the actual 

building of the model and to the learning of the functioning of the different necessary 

tools. 
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3 Materials and Methods 

In Figure 7, it is possible to observe all the steps I will explain in this chapter. 

 

Figure 7: flow diagram of the study procedure 

3.1 The Network 

In order to build a realistic model, it was necessary to start from real data. Even if the 

aim of the work is mostly speculative, it was possible to start the research from some 

data that had been collected in the region of Njombe, in Tanzania, more precisely in 

the village of Bulongwa. These data were collected from the control unit of an existing 

mini-grid, which would allow knowing at each time-step (years) how many people 

were connected to the mini-grid for the first time.  
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Bulongwa is a village of approximately 700 households, where the South-Central 

Diocese of the Evangelican Lutheran Church landed with a project for a hospital, 

which was open in 1968. This same project allowed, several years later, the creation 

of a mini-hydropower facility (180 kW), which would feed a mini-grid in the village, 

which is considered by GIZ in a report from 2009 about hydropower in Tanzania [76]. 

 

 

The data, which were provided by Chalmers University of Technology, are relative to 

the connections to this same grid and range from year 2009 to year 2016, while the 

first connection dates back to 2001. 

In order to obtain the S-curve of diffusion of the connection to the grid, it was possible 

to perform a regression which allowed obtaining a diagram for the entire lifetime of 

the system. Data were collected twice in the years and differed slightly; therefore, a 

yearly average was taken for the current study use. To obtain the values from 2001 to 

2009, I decided to take into account the growth rate of the number of connections 

between 2009 and 2010 and to keep it constant going backwards in time. The amount 

of connections obtained at year 2001 was assumed to be the number of people who 

had first connected at year 1 of the system. The resulting curve is shown in the graph, 

being the period after 2009 (marked in red) the relevant one.  

Figure 8: The hospital of Bulongwa 
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The first thing that had to be included in the model was a way to produce the network 

in case it was not given. It is important to notice that in this case each node of the 

network represents a household and not an individual person, so that each node 

might represent more than one subject. Starting from the paper by Riva et al. [4], it 

was possible to define which type of network mostly resembled the one of Bulongwa, 

which was not given.  

The procedure consisted of using the available data to extrapolate the values of p and 

q parameters, in order to use them in a Bass model procedure and, through a 

sensitivity analysis, it was then possible to find which type of network, with the right 

input parameters, would give as an output the diffusion curve most similar to the one 

of Figure 9. 

As a first step, a linear regression was performed, starting from Bass formulation of 

its model. 

Starting from equation (2), it is possible to re-write the model, multiplying everything 

times N, so to obtain: 

𝑁𝑓(𝑡) = (𝑁𝑝 + 𝑐𝑖𝐴(𝑡))(𝑁 − 𝐴(𝑡))    (8) 

Figure 9: Bulongwa connections to the grid 
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where N is the total number of individuals, or, in this case, households. This can easily 

be written in the following manner: 

𝐴𝑅(𝑡) = 𝑝𝑃(𝑡) + 𝑐𝑖
𝐴(𝑡)

𝑁
𝑃(𝑡)      (9) 

where AR(t) is the adoption rate at time t, P(t) is the number of potential adopters 

equal to N minus the number of actual adopters, all at time t. 

Looking at this equation, it is possible to notice that the only missing information in 

the real data from Bulongwa are the values of p, i and c, or p, q and one between c and 

i, being the three dimensions dependent one on the other. Being equation (9) a linear 

one, it was possible to extrapolate the values of p and q through linear regression. 

Given the formula 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑘𝑋𝑘 + 𝜀  (10) 

and  

𝑏1 =
(∑𝑥2

2)(∑𝑥1𝑦)−(∑𝑥1𝑥2)(∑𝑥2𝑦)

(∑𝑥1
2)(∑𝑥2

2)−(∑𝑥1𝑥2)
2     (11) 

𝑏2 =
(∑𝑥1

2)(∑𝑥2𝑦)−(∑𝑥1𝑥2)(∑𝑥1𝑦)

(∑𝑥1
2)(∑𝑥2

2)−(∑𝑥1𝑥2)
2     (12) 

and knowing that 

∑𝑥1𝑦 = ∑𝑋1𝑌 −
(∑𝑋1)(∑𝑌)

𝑁
    (13) 

∑𝑥2𝑦 = ∑𝑋2𝑌 −
(∑𝑋2)(∑𝑌)

𝑁
    (14) 

∑𝑥1𝑥2 = ∑𝑋1𝑋2 −
(∑𝑋1)(∑𝑋2)

𝑁
    (15) 

it was possible to obtain b1 and b2 values that in the current case correspond to p and 

q values. 
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Given the values of p and q, it was then possible to build in Matlab a Bass model 

simulation, which would allow making a sensitivity analysis around the value of c, 

which in the script was called k_avg (average degree). 

First of all, based on literature, it was decided that k_avg should vary between 2 and 

8. 

Then, given the network creation process described by Riva et al. [4], it was possible 

to re-adapt it in order to obtain 12 different networks, built with three different 

methods and each of these for four different values of k_avg (2, 4, 6, 8). 

The three types of network that were used are the random, the Barabasi-Albert and 

the social one, which can be obtained using the following equations for the 

probability of a node to have a degree k. 

Random network 

𝑝(𝑘) =
𝑒−𝑘𝑎𝑣𝑔∗𝑘𝑎𝑣𝑔

𝑘

𝑘!
  (16)  

where p is the probability, k is the considered degree and kavg stands for average 

degree of the network, given by the equation 

𝑘𝑎𝑣𝑔 = (𝑁 − 1) ∗ 𝑝  (17) 

where N is the number of nodes of the network. 

Barabasi-Albert network 

𝑝(𝑘) ≈ 𝑘−𝑞   (18) 

where p is again the probability and k the considered degree, while q is an 

experimentally determined parameter equal to 3 for BA networks. 

Social network 

 𝑝(𝑘) = 𝛼 ∗ (𝑘 + 𝛽)

−2

𝑚𝑠,𝑎𝑣𝑔
−3

  (19) 

where p and k continue to be probability and degree, α and β are two experimental 

constants and ms,avg is the average number of nodes that at each time step gets mr new 

contacts.  
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Once these structures were clear, twelve network graphs (3 types of networks for 4 

values of k_avg) were built, in which each row and each column represented a 

household of the village and the boxes were equal to 1 if between the households 

there was a link and to 0 if there was not (the diagonal was therefore filled with zeros, 

since no loops around oneself are possible). These graphs were, one by one, given as 

input to the Bass model with p and q equal to the ones obtained from the regression 

and with a different value for k_avg, depending on which network was used. Twelve 

diffusion curves were obtained and, in order to understand which one was closer to 

the real data one, the standard deviation was evaluated for all the curves, taking into 

account only the relevant period from 2009 to 2016 (see Figure 10). The curve with 

the lower error was chosen and a certain type of network, the Barabasi-Albert, was 

therefore identified, with a k_avg=6, that allowed to simulate better the real process.  
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Figure 10: Social, Random and Barabasi-Albert network sensitivity and standard error evaluation 
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The values of p, q and k_avg, which were extrapolated from the regression and the 

simulations, were then compared to the values that can be found in literature and 

they happened to be in accordance with them. 

3.2 The Grid Connection Diffusion Process 

In general, once k_avg value is established, it is possible to obtain the range of q, or of 

i, which are both correlated with k_avg with the formula q=k_avg*i. In my case, the 

only obtained value will be i, while ranges of values of p and q were taken from 

literature. 

This preliminary phase of the research allowed to decide that for the following 

simulations and studies one only type of network would have been used, with 

k_avg=6, while the variety of p and q would have been brought forward in the next 

phases of the analysis, in order to make the research more comprehensive. To let the 

parameters vary, the Monte Carlo method was used by repeated samplings from a 

uniform distribution around the average values found in the literature. This algorithm 

allows performing several simulations of the same process using every time a 

different (random) combination of the input parameters, assigning them the values 

chosen within a certain range. It therefore allows the outcome to be more complete 

and effective, since it would take into account several reasonable possibilities starting 

from several ranges of values provided by the literature. To decide which parameters 

should be let varying, the given data should be deeply analysed and understood. 

One more necessity, instead, would be deciding where the ranges for the varying 

values should be taken from. 

The parameters that was decided should vary are q, the probability of adoption 

thanks to word of mouth and p, the probability of becoming connected to the grid 

thanks to external influence from advertising.  

The reason why some parameters were kept constant and others were not is based 

on the fact that p and q are endogenous factors, while the type of network and the 

value of k_avg can be evaluated through a survey. For sake of simplicity it was chosen 

to simulate and study a fictitious village composed of 400 households only, assumed 
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to be located in the same geographic area of Bulongwa, but having no access to the 

grid at the time in which the study begins. 

At this point, one Barabasi-Albert network composed of 400 households was built, 

with a k_avg=6. 

Once this was done, the diffusion process of the connection to the off-grid system 

could be run. 

It was decided to manage the attachment to the grid through a standard Bass model. 

The values of p and q should be let vary through the Monte Carlo method. 

p was assumed to vary among 0 and 0.01 and q among  0.2 and 0.7, ranges that were 

taken from literature [56], [57], therefore the simulations were made for  

𝑝 = 0.002 + (0.01 − 0.002) ∗ 𝑟𝑎𝑛𝑑  (20) 

and 

𝑞 = 0.2 + (0.7 − 0.2) ∗ 𝑟𝑎𝑛𝑑   (21) 

100 scenarios were therefore obtained, through a cyclic script which would create 

100 possible combinations of p and q values, also letting vary several other values 

related to the diffusion of appliances. A cycle for the simulations was created and 

inside the cycles, the diffusion process typical of a Barabasi-Albert network would 

take place, based on the previously obtained network. In fact, several simulations can 

be performed also of this sub-process of diffusion and a mean result can be then 

taken as a final output for each cycle. The Matlab script for this diffusion process can 

be found in Appendix A. 

In order to keep track  of the values that were assigned to each variable at each 

simulation, several arrays were built, which would update at the beginning of each 

cycle in order to save the random values created at each round and be able to 

perform some analysis based on the Monte Carlo method at the end of the process. 

Once the diffusion processes of electricity were obtained, it was possible to analyse 

appliances diffusion.  

3.3 Appliance Diffusion Process 

This second part of my model has two main objectives. The first is to provide the 

diffusion curves of appliances across the village, allowing me to know how many of 
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each appliances are purchased at each time step. The second target is to know which 

of the households purchase a certain technology at each time step. A first thing to 

notice, is that the adoption of the grid connection is assumed to be contemporary to 

the adoption of a lightbulb, which is considered to be a good proxy for electricity use 

[2], and will not appear among the studied appliances. 

The clusters of appliances were chosen according to van Ruijven [2] and it is 

necessary to decide how to allocate the appliances across the network, how many 

units of each component are sold and to whom. In order to answer these questions, 

the current study proposes an innovative possibility, which is studying the sizing of a 

grid thanks to the construction of two types of tools: ownership curves, depending on 

household expenditure, and load curves, depending on the effect of expenditure on 

the level of diffusion of a technology. These tools are already widely used in economic 

development studies and their use is favoured by the possibility of using standard 

surveys that allow estimating the needed values, with fewer uncertainties, right on 

field.  

When someone gets to know of the existence of some interesting technology, which 

could improve his/her life conditions, there is still one aspect, at least, that might 

force him/her not to adopt it, that is: he/she might not be able to afford it. 

In order to know how many appliances had to be adopted at a given time t, it was 

decided to use a similar approach to the one suggested in the literature by van 

Ruijven [2]. His model is a bottom-up approach to describe the evolution of 

residential energy use in India, starting from the dynamics of development and per 

capita expenditure. The author demonstrates, thanks to validation through historic 

residential data, that the  variation in income distribution significantly influences 

future projections of off-grid systems. Van Ruijven takes into account a concept called 

“ownership” which depends on the behaviour of per capita expenditure level along 

the years and depends on the following equation, already presented in the literature: 

,
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    (5) 

Through the formulas that had been derived by van Ruijven, it was possible to create 

some reference ownership curves also for the country of Tanzania. 
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The World Data Bank provides the yearly behaviour of per capita expenditure in 

Tanzania. Since the entire study by van Ruijven is based on quintiles, it was decided 

to keep the same format. It was therefore created, around each yearly value of 

average per capita expenditure, a distribution of 400 values, which were 

subsequently divided into 5 quintiles each. Of each of these quintiles, an average 

value was taken for each year and, putting all of the data together, 5 behaviours over 

time of the average expenditures of the 5 Tanzanian village quintiles were obtained.  

Starting from the values and equations in van Ruijven’s study, it was possible to 

obtain the yearly level of ownership, in each quintile, of each technology, depending 

on a correspondent level of average expenditure of the population. 

 

Figure 11: 1st quintile appliance diffusion 

 

Figure 12: 2nd quintile appliance diffusion 
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Figure 13: 3rd quintile appliance diffusion 

 

Figure 14: 4th quintile appliance diffusion 

 

Figure 15: 5th quintile appliance diffusion 
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The obtained curves allowed understanding which were the appliances that were 

mostly adopted by the households of each quintile, given a certain economic 

availability. Once the reference curves of ownership were built, it was necessary to 

develop a method which would allow allocating a certain amount of appliances, 

depending on the correspondence on the ownership curves, within the population of 

the considered village.  

The level of ownership should depend on three aspects.  

 The expenditure available for a certain appliance: indeed, at each time step, 

only the first appliance in order of adoption would be acquired starting from 

the full amount of available money, while the other appliances would be 

acquired during the same time step only if the remaining money was enough. 

In the model, the order in which the families were able to adopt was decided 

to be based on the price of the appliances, from the cheapest to the most 

expensive, which was: fan, entertainment facilities (TV), food storage facility 

(refrigerator), washing machine, air cooler (portable), air conditioner (cooling 

or heating system).  

 The position of a person in the social ranking. The social ranking is a list of the 

households based on the level of expenditure of each one. The idea is that, as 

long as they are connected to the grid, richer people adopt before with respect 

to the others because they have greater economic availability. Therefore, 

when trying to allocate the appliances to a certain percent amount of people 

of each quintile, it was possible to put households in a ranking and allocate 

the appliances only to the people connected to the grid who could “better” 

afford them. 

 β and γ parameters, which were empirically evaluated in the study of van 

Ruijven for the Indian area. Since Africa is still a developing country it is 

possible to assume that the values of the parameters of appliances are similar 

to those of India. Yet, it would be too much of a strong assumption to state 

they are the same. This is why, once again, Monte Carlo method was used in 

order to obtain a variability of the Indian values equal to a +/- 20%. At each 

simulation, besides choosing a random value for p and q, random values for β 
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and γ parameters of each appliances were obtained as well. These values 

would be saved inside several arrays to keep track of their history. 

In order to simulate a realistic process for the diffusion of appliances, it was decided 

to create a set of 400 realistic expenditures, based on the average values of 

expenditure per capita of Tanzania, provided by the World Bank for the year 2016. Of 

course in a real setting, with a real investment analysis going on, it would be 

necessary to collect the real data on-field. Since it would have to be an exogenous 

value, expenditure was assumed to update each year in order to go back to the 

starting value, assuming no changes in the economic status of the considered village 

for 20 years, which were supposed to be the lifetime of the considered off-grid system 

to be built.  

Given the average expenditure per capita, the 400 values of expenditure were 

obtained and then ranked in ascending order. The households were then divided into 

quintiles and for each quintile the average expenditure was calculated. From these 

values, it was possible to obtain the level of ownership of each quintile, which 

represents the number of adopters that should be reached at that certain time step. 

The allocation of appliances would go in order of price, meaning that the cheapest 

technologies were allocated first at each time step and then, based on the remaining 

economic availability, the households could “decide” to acquire something else. 

A model was therefore written which would allow the performing of all of these steps 

and would be a cycle going on for an arbitrary amount of time. The time step which 

was chosen was 1 year and the likely lifetime of the off-grid system was decided to be 

20 years, therefore the cycle was built for this exact amount of time. 

For each one of the 6 clusters of appliances a script like the one presented in 

Appendix B was created. This same script was repeated for each appliance cluster and 

the available expenditure would decrease going through the technologies, while at 

the beginning of each time-step it would get back to the initial value. 

For each appliance the parameters related to the ownership curve are necessary and 

can be evaluated through empirical data taken from surveys, while the costs were 
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taken, as already explained, by a catalogue written by GIZ, just like it was done for the 

nominal power [77]. 

Along the code, it is possible to see a term called aff. This parameter represents the 

affordability and in the considered study it was set to be equal to 1.2, meaning that 

the cost of the appliances had to be smaller or equal to the 80% of the expenditure in 

order for the adoption to be possible. The concept of affordability was found in a 

study by Rao [69] and its meaning is that most people would not spend their entire 

budget of the year on something that is not of primary necessity. 

Eventually, the two outputs of this second part of model would be: 

- as many sets of S-curves of adoption of the appliances as the number of 

simulations (100 in the current case). Each set of curves was characterized by 

a different combination of random values of p, q and appliance parameters. 

Each set containing 6 S-curves of diffusion, relative to the 6 clusters of 

technologies available in the code.  

- a set of matrices containing the record of who had purchased a certain 

technology and at which time step had done so. 

Thanks to these outputs further research could be done, as will be next explained. 

3.4 Load Curves 

Once the appliance diffusion model was created and the 100 simulations were ready, 

in order to build the entire load curves, it was possible to use a software called 

LoadProGen. 

It is Mandelli et al., who explain how this innovative software works in a paper from 

2016 called “Novel procedure to formulate load profiles for off-grid rural areas” [10]. 

LoadProGen is a platform, based on Matlab, which gives as output daily load profiles, 

which can be given in hours, quarters of hour, minutes or seconds. In order to do this, 

it requires some inputs to be given. Fortunately, almost all of the needed input, was 

given as output by the model that was just described. 

To start LoadProGen, the output scenarios of the diffusion model need to provide the 

distribution of appliances across the households. Depending on which types of 
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appliance a household has adopted along the process, it will be assigned to a category, 

or household type. The higher the number of categories, the higher the computational 

load for the software. Each one of the categories will be characterized by a specific 

number of appliances and for each appliance some data need to be filled in. 

In the following figure an example of GUI (Guided User Interface) of LoadProGen is 

shown. 

 

Figure 16: User interface of LoadProGen software, named GUI 

In this figure, the general settings are shown and clicking on each household it is 

possible to see which appliances the members of that category own. Moreover, by 

clicking on each appliance it is possible to set its parameters, as it is possible to notice 

on the right hand side of the figure. 

Nominal power rate values were taken from the catalogue of DC-Appliances, made by 

GIZ, called Photovoltaics for Productive Use Applications [77]. 

The Functioning cycle represents the amount of time the appliance goes on working in 

a row. 

Functioning time, instead, sums up the entire working time, considering all cycles. 
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Random variation parameters are supposed to give a certain variability, meaning that 

it might happen that something is switched on or off at times it was not expected to 

happen. 

Moreover, a specific cycle can be created for appliances which consume a different 

amount of power along one same cycle, but this can apply only if the time step is of 

the order of minutes. 

Lastly, the functioning windows represent the times of the day at which we expect the 

appliance to be at work, e.g., a lightbulb will be more likely to be switched on at night 

time. 

So far, in order to guarantee the highest level of variability possible, 100 simulations 

were performed. When implementing scenarios in LoadProGen it was decided to pick 

only some of the simulations to obtain the daily load profiles. The total installed 

capacity of each of the simulations at the end of the lifetime of the grid was evaluated. 

Then, the scenarios with the greatest, the lowest and the median capacity installed at 

year 20 were spotted, which will be called respectively MAX, MIN and MED. There 

were more than one with the same maximum load and more than one with the same 

lowest and median values. One random case among the others was chosen for each of 

the three groups of simulations and it was set up in order to be used as input in 

LoadProGen software. 

For each of the selected simulations, it is necessary to take into account the entire 

lifetime progress, since otherwise it is not possible to have an idea of how the system 

is supposed to be growing in time. 

When sizing a grid, it is possible to choose among several techniques to take care of 

the evolution of the system in time. Two of these methodologies can be of interest in 

this case. 

The first possibility is to take into account only the short term. In this case a very 

embryonal prototype of the entire grid will be produced at year 0, where only the 

short term demand of the first 1 to 5 years will be taken into account in order to build 

a grid which satisfies it. In this type of projects, there is usually the tendency to make 

a long term planning of which will be the needed future analysis to be carried out in 

order to expand the system when and if it will be necessary. This type of approach is 

of course more precautionary, since it allows to delay the full investment and to be 
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able to loose less money in case of a less florid outcome than the hoped one. On the 

other hand, it will imply that at the end of the lifetime the total amount of money 

spent on the grid sizing will be higher, because this approach will involve the need of 

more than one research campaigns, one at each expansion of the system. 

The second approach, instead, is definitely riskier and implies the use of a model or 

group of models like the ones proposed by the current study, which allow to forecast 

the demand along the entire lifetime of the grid to be built. In this case a larger 

project will be created and a larger capacity with respect to the one needed at year 0 

will be built, in view of the future expected adoptions. This second approach is the 

one that will be assumed in the current situation. 

In order to make a long term forecast of the daily load profiles of the considered 

fictitious village in Njombe, it was decided to consider 3 separate years for each of the 

selected simulations. The considered time-steps would be year 1, year 10, that is half 

of the lifetime, and year 20, that is the last year of the system. For each of the 

simulations, three Microsoft Excel files were built. In each file, the data related to one 

year were included. Each page contained the data related to a certain household 

category, but page 0, which contained general data useful for LoadProGen settings. In 

the following figures an example of page 0 and of one of the other pages is shown. 

 

Figure 17: page 0 example 



                                                               Materials and Methods 

69 

 

Figure 18: generic page of a household category example 

As it is possible to see from Figure 17, page 0 contains general information which 

would give an idea of the needed computational effort that the procedure will require. 

The number of load profiles represents the number of simulations that have to be 

run, the time steps, instead, can be either 1440 (minutes) or 24 (hours), or others 

depending on which is the smallest time unit needed. The number of user classes will 

represent the number of pages apart from page 0 that will need to be filled in, one for 

each household category. Maximum number of appliances and maximum number of 

windows depend on how many appliances are adopted by the household who adopts 

most and how many time windows the appliance with the most complicated features 

has. Eventually, a section called “Power profiles of specific appliances” is necessary in 

order to specify possible power cycles of certain appliances. 

Figure 18, on the other hand, is an example of a page relative to a household category. 

The different boxes are the same that were already explained looking at the GUI of the 

software and when the Excel file is loaded onto Matlab, these data will serve the exact 

same purposes. 

Once the 9 chosen scenarios were built, 3 for each selected simulation, it was possible 

to run LoadProGen. The daily load profiles that can be obtained thanks to it are 

shown in the picture below, where the units are Watts on the ordinates and hours of 

the day on the abscissas. 
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Figure 19: example of LoadProGen output for MIN scenario, year 20 

 
Given these many load profiles like the one above, there is still one more step to 

perform before obtaining the sizing of a grid. 

3.5 Off-grid System Sizing 

HOMER Pro by HOMER Energy is an optimization software for microgrid design, 

originally developed by NREL  (National Renewable Energy Laboratory). HOMER 

stands for Hybrid Optimization (Model) for Multiple Energy Resources and it 

attempts to simulate a viable system for all possible combinations of the equipment 

that the user wishes to consider. 

The time frame of the software is one year, but it is possible to provide different load 

forecasts for each day of the year, with a time step of one minute or one hour. For 

each proposed solution a set of economic parameters is also provided, which allow 

the user to assess the economic feasibility of the different options. 

Another useful tool is the Sensitivity Analysis option, which allows to run different 

simulations of the same system changing the value of some parameters and 

hours of the day 

W 
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comparing the results. It finally allows to have access to databases with resources 

forecasts for wind speed, sun radiation, temperature, fuel costs, etc., allowing the user 

to either choose a reference or to upload his own.  

 

Figure 20: HOMER home page 

In Figure 20, it is possible to see the home page of the software that allows for the 

choice of a name of the project and also asks for a location where this microgrid 

should be built in order for the engine to be able to look for the data related to the 

resources in the area. On the left hand side, below “required changes” the software 

collects possible suggestions to improve the on-going project and clicking on those 

tabs the correspondent page will open. 

Once the location has been set, it is necessary to give as input a certain type of load. It 

will be possible either to choose one from those provided by the software as a 

standard, or to upload a load the user has already from his own surveys, or in this 

case from LoadProGen output. 
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Figure 21: HOMER load input page 

As a second step, the load settings must be filled in. Among the required data, there 

will be two types of random variability. Day-to-day random variability represents the 

variability given by the difference in total consumption among the days of the year. It 

was assumed that all days would have the same load curve, but to be more precise it 

is appropriate to assign a certain variability when necessary. The time step 

variability, instead, represents the differences that might be present at the same 

hours in different days. 

Starting from LoadProGen output, which provided 250 possible load curves for the 

same day, it was possible to calculate these two values in the following manner. 

Time step variability 

 The average value A of load among the 250 available at each hour of the day 

was obtained.  

 The standard deviation SD was evaluated for each of the 24 distributions and 

the covariate was thus obtained: 
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𝐶𝑂𝑉 =
𝑆𝐷

𝐴
  (22) 

 The mean value of all covariates was considered to be the time step percent 

variability to be used as input in HOMER. 

Day-to-day variability 

 The total daily power consumption for each of the 250 scenarios was 

calculated  

 The average and standard deviation of the results were obtained 

 The covariate (equation 22) of the distribution of total consumptions was 

obtained and this was used as input for the day-to-day variability in HOMER.  

 

Figure 22: HOMER component data input page 

Once the load is properly designed, it is necessary to choose which will be the power 

generators allowing to respond the demand of electricity. In Figure 22, an example of 

input page for a solar system is presented. In this case a generic flat plate PV was 

chosen, but many others are available in HOMER library. Default data are provided 

for 1 kW of capacity and on the right hand side it is possible to define the sizes in 

terms of total capacity that the system is expected to need. The simulations will run 

using all of the options provided by the user and the software will give as an output 

the optimal solution in terms of demand satisfaction and costs. This type of data input 

was done for solar power, wind turbines, batteries for storage and a converter to 
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switch from AC to DC and the other way around. By selecting “HOMER Optimizer” 

option, the software will automatically optimize the amount of capacity needed. 

Once all of the input data is completed, it is possible to click on “calculate” and if 

everything is consistent the software will produce several possible solutions for grid 

sizing as an output. Given those, it will be the user who will make his own evaluations 

based on his needs and requirements. It might be that a certain differentiation of 

resources is preferred, even if it might increase the investment costs, or otherwise it 

might be preferable to spend the least money possible. These and other 

considerations depend on the surrounding settings and change with circumstances. 

A clear idea of what HOMER algorithm does is given by the following diagram. 

 

Figure 23: scheme of HOMER Pro algorithm 
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Once the overall mechanism is clear it is possible to go through which were the 

specific characteristics of my case study. 

Wind and solar power were chosen to be the generation resources. To be able to 

make reasonable forecasts, it was necessary to have some data relative to the 

temperature, solar irradiance and wind speed of the area of Njombe. All of these were 

available from the library of HOMER and it was decided to use the same reference for 

all the data, that is NASA “Surface meteorology and Solar Energy” work of 2011 [14]. 

From this work it was possible to obtain three parameter behaviours: global 

horizontal radiation monthly averaged values over a 22 years period from July 1983 

to June 2005, from which it was possible to obtain the monthly average solar Global 

Horizontal Irradiance (GHI) data; the air temperature monthly averaged values over a 

22 years period from July 1983 to June 2005; the wind speed at 50 m above the 

surface of the earth for terrain similar to airports monthly averaged values over a 10 

years period from July 1983 to June 1993. 

Given this data, it was possible to decide which type of generators to take into 

account. The choice made, was to keep the simplest components available in the 

software and check for their investment costs and lifetimes referring to literature.  

The wind turbine was a generic 3 kW turbine, characterized by an investment cost of 

4000 €/kW of capacity [15] and by a 20 years lifetime, given that it was assumed that 

no component would have a longer lifetime than the whole system itself. Operation 

and maintenance (O&M) costs were assumed to be 120 €/year, because they were 

supposed to decline proportionally to how much the investment costs had decreased 

with respect to default values of HOMER library. The behaviour of wind speed in the 

area and the relationship between wind speed and power output for the current 

component are shown in the diagrams below.  
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Figure 24: monthly average wind speed data 

 

Figure 25: power output relationship with wind speed for a 3 kW wind turbine 

 What happens in HOMER Pro is that one gives as an input the type of components 

that can be installed, then selects the “Homer Optimizer” option before running the 

simulations and the software will decide how many pieces of each technology are 

needed in order to respond the forecasted load demand. 

Taking into account solar technologies, instead, the chosen component was a generic 

flat PV with a rated capacity of 1 kW, which investment cost was 2000€/kW [17], 

while O&M costs would only be of about 10€/year for a lifetime of 20 years. In the 

figures below, the curve of GHI and the temperature behaviour in the area are shown. 

 

Figure 26: monthly average solar Global Horizontal Irradiance data 
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Figure 27: monthly average temperature data 

In order to better understand the data above, it is possible to notice some 

characteristics which can be very important. In Figure 24 it is possible to see how the 

level of wind speed along the year is not really high. In places like northern Scotland, 

where wind is usually present constantly along the year, wind speeds of ~11 m/s are 

usually reached. In Njombe region, it is possible to observe a level of wind speed of 

~5 m/s as a maximum, which though keeps practically constant between 4 and 5 m/s 

for the entire year. Looking at Figure 26, instead, we can notice how radiation and 

clearness index keep a very constant behaviour along the year, which is confirmed by 

the level of temperature, which keeps between 15 and 25°C for almost the entire 

year. If one compares the radiation behaviour in Njombe region with what happens, 

for example, in the south of Italy, it is possible to see how in this second location 

radiation keeps between 2 and 8 kWh/m2/day, while in Njombe the reached level is 

never as high, but it never goes below 5 kWh/m2/day for the entire duration of the 

year. 

It is then possible to analyse the other two components of the grid. 

As a storage facility, a very basic type of battery was chosen, that is a small 1 kWh 

generic lead acid battery with a nominal capacity of 1 kWh and a nominal voltage of 

12 V, it would have an investment cost of 300 € and O&M costs of 10 €/year. It would 

last for about 10 years, after which a second battery would need to be purchased to 

allow the grid to continue working [16]. 

The last needed component in order to make this grid working and realistic is the 

converter, which is a generic system with a 15 years lifetime, an investment cost of 

300€ and no O&M costs for the lifetime period. Its efficiency is assumed to be 95%. 

Once all of the components have been selected, it is necessary to understand how 

many of each should be installed. To make this evaluation, it is possible to take into 
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account the load forecasts, plus there is the chance to set a certain level of efficiency 

of the grid which tells which is the acceptable percentage of not responded demand 

every year. First, the average daily load curves of the various scenarios were taken 

into account, then the maximum annual capacity shortage was set to be equal to 10%, 

since it is typical for a developing country to have some shortages during the day. 

Now that the main characteristics of the grid are set, it is possible to go through which 

where the main results of this study. 

 



 

79 

4 Results and Discussion 

4.1 The Network 

The whole research was started using as a reference real data from Bulongwa village, 

which allowed to have a realistic basis in terms of network type and average degree 

on which to build the rest of the process. Once the basis was set, a new fictitious 

village of 400 households was created, through a Matlab script, based on the 

previously shown formula for BA networks. This village would have its characteristics 

and details, including the expenditure levels of the inhabitants. The obtained network 

structure is shown in the figure below. 

 

Figure 28: Network structure 

From the image it is possible to recognize the main features of a Barabasi-Albert 

network. It is based on the concept of preferential attachment, so that it is easy to 

understand which are the “older” nodes and which are the new ones, based on the 

number of links that they have. Several assumptions can be made about how the links 
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might happen in reality. Either by geographical proximity, or by age, or race, religion 

and other personal traits of each individual, but in this case it was decided to rank the 

households in terms of degree and richness. The ones with a higher degree (number 

of contacts) were assumed to be the richest. Of course this type of assumption would 

not be necessary in reality, because one would assess the network shape and the 

expenditures of the single nodes with a survey.  

 To better understand which type of network I will work on, it is possible to evaluate 

some characteristic parameters. 

 Eigenvector centrality  is a measure of the influence of a node in a network. The 

eigenvector centrality of a node is proportional to the sum of the centralities of 

the nodes it is in contact with. The average eigenvector centrality of this 

network is 0.0025, which is pretty low, considering that its maximal value 

could have been 1. 

 Closeness centrality is inversely proportional to the sum of the length of the 

shortest paths between the considered node and all other nodes in the graph. 

Thus the more central a node is, the closer it is to all other nodes. The average 

value for this network was 0.000808, which suggests that the network might 

have some nodes who are quite far from the rest, because the overall value 

keeps very low.  

 Betweenness centrality is based on the rule that for every pair of vertices in a 

connected graph, there exists at least one shortest path between the vertices. 

The betweenness centrality for each node is the number of these shortest 

paths in the entire network that passes through the node itself. The average 

value of it in the current network was 425.625, which, in accordance to 

closeness value, suggests that many paths pass through each node, as if to go 

from a node to the other a long distance should be covered, making it more 

likely to pass through many nodes several times. 

4.2 Electricity Connection Curves 

Once the network structure is given, it was next possible to build a Bass model on 

Matlab, based on a Monte Carlo algorithm, to let p and q values vary in the ranges 
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found in literature. From this second phase of the research, it was possible to obtain 

the grid connection diffusion curves shown below.  

 

Figure 29: grid connection diffusion curves for MAX, MED and MIN scenarios 
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The selected scenarios were chosen on the basis of the installed capacity at the 

household level at year 20. The maximum, the minimum and the median values of 

capacity were extrapolated from next paragraph results and the three correspondent 

simulations chosen. From here on, for sake of simplicity, I will call the scenarios MAX, 

MIN and MED. It is necessary to keep in mind that the model is built in a way in which 

at each time step, as this diffusion process upgrades and goes on, also the diffusion 

process of appliances goes on. The diffusion of appliances is strongly dependent on 

the diffusion of electricity, since anyone who does not connect to the microgrid will 

not be able to purchase nor use any appliances. Therefore, every scenario, not only 

will have different diffusion curves of appliances, but also different grid connection 

diffusion curves, since they will be the output of different input parameters, which 

will be further analysed in the next paragraph.  

4.3 Appliance Diffusion Curves 

Starting with the first intermediate outcome, it is possible to take into account one 

appliance as a first example to see what the Monte Carlo method produced in terms of 

differences among the simulations. If we consider the 100 diffusion curves of the fan, 

what we observe is the following diagram. 

 

Figure 30: 100 simulations of fan diffusion curve through Monte Carlo method 
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Looking at this picture, it is evident that depending on the values which we attribute 

to the endogenous parameters (viz. p, q, β and γ) , the final output will change much. 

By zooming on a detail at year 5, for example, it is possible to find out that the 

minimum option involves ~10 adoptions at year 5, while taking into account the 

highest curve the adoptions would be already above 250. This situation is better 

shown in the following figure. 

 

Figure 31: detail of year 5 of fan diffusion curves 

Given this situation, it is easy to understand why I directly analysed only three 

simulations, that are then going to be used for the entire study.  

The diagrams below show the S-shaped curves of diffusion of all the considered 

appliances across the village in the three different cases. 
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Figure 32: diffusion curves of appliances in the 3 scenarios MAX, MED and MIN 
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As it is possible to see from the diagrams, there are some patterns that repeat 

themselves in all cases. First, in the three histories, it is only four appliances out of six 

that in 20 years actually get to be adopted. It is important to remember the 

assumption of updating expenditures made in the beginning. Every year the 

households re-start from a certain amount of expenditure assumed to be constant 

over the years. This is usually not very realistic, since it is to be expected that 

households’ conditions might improve in the years, maybe thanks to the adoption of 

electricity itself, but it is a good approximation for such a tiny reality. It is also due to 

this assumption that some appliances will never get to be adopted, since their price is 

larger than the 80% of total expenditure (due to affordability constraints) of each and 

every household. 

The appliances that instead get to the market are five. First of all, lightbulbs, which 

are not present in the figures because as soon as one adopts electricity it is assumed 

that as a consequence he will also install a lightbulb, so that they were not included in 

the diffusion process based on Gompertz curves. Therefore, electricity and lightbulbs 

diffusion curves (see Figure 29) will be the same. 

Fans, which are the least expensive technology, are widely adopted and everyone 

who adopts electricity gets to have one at the end of the process in any of the 

scenarios. It was also noticed that by relaxing the constraint of “uniqueness of 

adoption” (each household is assumed to adopt only one piece of each appliance) it 

happened that some households would adopt more than one fan if they had enough 

expenditure left to use, which did not happen with any other more expensive 

component. The third appliance in order of amount of adoptions is the entertainment 

facility, for which the data of television were taken into account, yet it would have 

been the same to consider radios. In this case it is not the entire amount of electricity 

adopters who purchases an entertainment facility, but in all of the three cases a 

similar amount of people gets to buy a TV.  

Independently from which appliance we focus on, the difference among the three 

scenarios, is of course the velocity at which the market saturation is reached. To 

understand what is that makes the three scenarios different it can be useful to 

analyse which were the values of the parameters involved in the three cases. Indeed, 



Results and Discussion   

86 

before getting to the diffusion of appliances, at each time step a certain number of 

household will connect to the grid. The number of connected households will vary 

depending on the input parameter chosen through Monte Carlo algorithm and will 

strongly affect who will have the chance to purchase electrical appliances in the 

second part of the simulations. 

 

Table 4: values of the parameters p and q of the three simulations 

Given Table 4, it is possible to notice that the values of p actually follow the order of 

maximum, median and minimum. This indeed is reflected in the previous diagrams. 

For example, focusing on year 5, it is possible to see how in MAX scenario with 

respect to the other two (especially MIN one) the number of adopters of all 

technologies is already much higher. Looking for instance at the fan curves, it is 

possible to see that in MAX scenario at year 5 a number of adopters close to 150 is 

already present, which decreases to approximately 50 in the median case and falls to 

less than 50 in the minimum installed capacity scenario. The same reasoning can be 

done for all of the appliances. Independently from the numbers of adopters for which 

each S-curve will become flat, in the maximum installed capacity scenario the curve 

will grow faster than in the median and the minimum capacity ones. 

Other parameters to be taken into account are the characteristic values of β and γ of 

each appliance which as well change at every new simulation. Their variability 

influences the level of ownership of appliances and therefore the total number of 

adopters at each time step. In general, it is possible to state that the higher the value 

of β, the lower the number of adopters of a certain technology, because it represents 

the value of a negative exponential. The contrary is instead true when considering γ. 

Their values for the current study are shown in the table below. 
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Table 5: appliance parameter obtained through Monte Carlo method for the chosen scenarios 

A last question that one might ask when looking at the diffusion curves of appliances 

is what happens to the curve of food storage when it suddenly jumps up one year to 

the other. The answer to this can be found thinking about how the model works. 

Along the code, at every time step, households adopt the cheapest technology they do 

not possess yet as first, then, if some expenditure share is left they can buy other 

things. Food storage facilities are too expensive to be bought as a second purchase, 

therefore, in order for people to be able to adopt a refrigerator the market of fans and 

entertainment facilities had to be saturated first. In each of the diagrams, therefore, 

the year in which food storage adoption shoots up corresponds to the following year 

with respect to the flattening of the other two upper curves. 

Lastly, looking at the curves of washing machine in the different cases, it is possible to 

notice that they are not S-shaped yet. This because 20 years result not being enough 

for this technology to actually spread around. The adopters who appear already are 

early ones, or innovators, but more time is needed for the market to get to saturation. 

One of the best qualities of this model is that it does not only provide the diffusion 

curves as they are shown above, but adds qualitative information besides the 

quantitative knowledge of “how many” appliances were purchased. At the end of the 

process it is possible to know “who” purchased which appliances as well, which is a 

fundamental piece of knowledge for the next steps of the research. 

4.4 Daily Load Profiles 

In order to obtain the daily load profiles of the fictitious off-grid system that was 

meant to be sized, the software LoadProGen was used. As explained in the previous 

section, this software takes information about the single households as an input, to 
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then give the requested number of load profiles as an output (250 at each simulation 

in this case). 

From the previous steps, we adopted the MIN, MED and MAX scenarios of appliances 

diffusion to build the load profiles. For each of these it was decided to take into 

account three different years: year 1, year 10 and year 20. Doing so, it was possible to 

obtain the “evolution” of the three scenarios in time. 

LoadProGen was run nine times (viz. year 1, year 10 and year 20 for each MIN, MED 

and MAX scenarios) and each time it produced 250 possible daily load profiles, which 

were saved inside a 250x24 matrix (24 are the hours of a day). The output that was 

possible to obtain is shown in Figure 34 for MAX scenario, year 20. 

 

Figure 34: LoadProGen variability for MAX scenario, year 20 

Thanks to this, it was possible to evaluate an average daily load profile among the 250 

available and use it as an input for the sizing software. The resulting average curves 

for each of the 9 cases are shown in the following figures, for the three selected years 

of each chosen scenario. 
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Figure 35: LoadProGen average output load curves for the 3 scenarios MAX, MED and MIN 
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Looking at these diagrams, it is possible to analyse maximum and minimum capacity 

scenarios first. While in MAX scenario a peak load of ~75 kW is reached during an 

average day of year 20, in MIN one the peak stops at ~55 kW. Going back in time it is 

noticeable that the situation reverts. The scenarios I decided to analyse were chosen 

based on the situation at year 20, which means that at year 10 and year 1 the levels of 

adoption might be different. If we consider year 10 configuration, its load curve is 

higher in MIN scenario than in MAX one. This suggests three possibilities, which could 

bring MIN scenario above MAX one at year 10: 

 the number of appliances at year 10 in MIN case is larger than in MAX one, 

then at year 20 the situation reverts, possibly because MAX scenario has 

stronger word of mouth effects in the long term 

 the number of highly power demanding appliances in the MIN case is larger 

with respect to what happens in MAX scenario in the same period, then the 

situation reverts at year 20 

 the variability (among the 250 simulations) of MIN scenario is larger, 

therefore this curve is not as representative of what really happens as the 

curve for MAX case 

By looking at Table 4 and at the diagrams reported in the previous chapters, it is 

possible to state that, even if q parameter is slightly larger for MAX scenario than for 

MIN one, the third option is the most likely and in the following tables the variabilities 

of the three scenarios are shown to support this theory. 

 

Table 6:  random variability for minimum installed capacity scenario 
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Table 7: random variability for maximum installed capacity scenario 

 

Table 8: random variability for median installed capacity scenario 

To understand what these variabilities represent, it is possible to take into account 

the formulas obtained in Materials and Methods chapter for COV parameter (equation 

22), or to look at the example in Figure 34. These values were also used as HOMER 

Pro input in the next phase of the research. 

Looking at year 1, lastly, it is evident that this time horizon is not relevant to the 

sizing of the grid, since it only presents very small numbers of adoptions. 

If the MED scenario is eventually taken into account, it is possible to see how its year 

20 curve is more similar to the year 20 curve of the MAX scenario rather than to the 

one of the MIN case. This suggests that the 100 simulations made were more similar 

to the maximum case rather than to the minimum one, given the median diagram 

situation. 

Moreover, once again, the variability issue gives as a result a median year 10 with a 

greater electricity demand than the maximum scenario one. Yet, taking into account 

the MIN and the MED scenarios their behaviours at year 10 go back to what one 

would have expected since the beginning, so that MIN has a lower load curve than 

MED. 

Once the comparison is done, it can be interesting to verify whether the shape of 

these load curves is realistic or not. In modern western society, daily load curves for 

residential households present two peaks during the day: a smaller one in the 
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morning, when people wake up and get ready for the daily routine, and a higher one 

during the evening when people come back from work, cook and switch on some 

appliances, such as TV or radio to spend their free time at home. An example of this 

can be seen in the figure below, taken from Terna statistics for the day 29/09/2017 in 

Italy. 

 

In a rural country though, where the available facilities are assumed to be only the 

ones considered in the study, it is easy to understand why the morning peak seems 

not to be present. People are expected to wake up early in the morning, get ready and 

eat breakfast and then go to work. The appliances they might have inside the house 

include: lightbulbs, which will only be switched on at dark times; entertaining 

facilities, which tend to be used during free time; food storage facilities, which 

represent the base load for the grid, since these cannot be switched off if the purpose 

is to preserve food; washing machines, which might be used in the evening when 

people go back home and  might be willing to wash something for the following days. 

The other appliances were not purchased by anyone in this study and might actually 

represent a source of variability in the obtained load curves. Given these 

assumptions, it is interesting to see what other studies have obtained as real load 

profiles for rural countries. Some examples are shown in the following images. 

Figure 37: example of Italian daily load profile 
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Figure 38: potential rural electricity load profile reference [10] 

 

 

Figure 39: load profiles of different rural countries; (a) Ban Pang, Thailand; (b) Rural Western Australia; 
(c) Alaminos, Rural Philippines; (d) San Juanico, Rural Mexico;[78] 
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Figure 40: Load curves for thirteen Tanzanian villages, obtained through LoadProGen assuming 50% level 
of electricity access [79] 

Looking at these diagrams, it can be said that the load profiles obtained for the 

current study have a realistic shape, which is especially close to the (d) case of Figure 

39 and to the reference case of Figure 38. Lastly, another useful comparison is 

provided by Figure 40 which shows a very similar shape to the one I obtained, 

moreover for the same geographic area I am considering. Of course it is not possible 

to make a comparison in terms of consumption due to the large dimension of the 

examples present in literature and the smaller considered capacity of the studied 

system. As the communities of Sub-Saharan Africa develop and increase the number 

of used appliances for their daily routine, it is expected that their electricity load 

profiles get to have a shape that is always more similar to the one of a developed 

country such as Italy or any other. 

4.5 Off-grid System Optimization 

Once the daily load profiles are available, it is possible to start the actual process of 

off-grid system sizing. 

The process was performed thanks to the use of the software HOMER Pro, which is 

available online in its trial version and comes with a large amount of features and 

possibilities for the user.  

The first thing to do, was to decide which type of off-grid system was the most 

appropriate for this study case. It was decided to consider the installation of 

renewables only. As previously said, in Njombe area some hydropower is available 

and the existing grids rely on water resources. It was thought it could be interesting 
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to assess the dimensioning of a 100% renewable grid, without the use of hydropower, 

to make it a more generic option, since not every village has such an availability of 

water nearby. Moreover, HOMER Pro takes into account constant load profiles in 

time, which would make it unrealistic to consider the presence of, e.g., a diesel 

generator, which depends on operation costs (fuel prices) and therefore is way more 

subject to changes in the demand over time. Avoiding fossil fuel generation allowed 

me to make the system planning for three different years for each scenario, forcing 

HOMER to simulate an evolution in time of the microgrid. 

The scheme of the microgrid that was sized, taking inspiration from what literature 

[13] suggested, is the following. 

 

Considering the scheme of Figure 41, it is possible to see the similarities with the 

schemes of other projects which were found in literature, such as the one shown 

below, taken from [13]. The only difference between the following figure and my case 

study is given by the fact that instead of using the grid as it was done in this example, 

I will use the batteries to stabilize the system.  

Figure 41: grid scheme for year 20 of maximum installed capacity scenario 
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Figure 42: scheme of a microgrid project for a laboratory experiment in Athens  

Once the scheme is clear and the various components have been selected, it is 

possible to consider the usual three scenarios. For each of these, the three years of 

interest (years 1, 10, 20 for MIN, MED, MAX scenarios) were analysed. The drawback 

of using HOMER Pro, is that its optimizing algorithm only takes into account the 

economical optimization of costs, while neglecting the advantages that some other 

features might bring to the overall system, such as, for example, the possibility to 

have a more differentiated generation. HOMER Pro takes into account the constraints 

one gives as an input and develops the least expensive solutions possible. It is then on 

the user to make reasonable evaluations about the obtained results. 

A first thing one should decide, is whether he is fine with the definition of optimal 

solution HOMER proposes, because it might happen that someone is willing to 

optimize the system with respect to some other characteristics, even if it might mean 

to spend more money than what HOMER proposes. This reasoning helps 

understanding why two cases were included in the analysis. It was because, as it can 

be seen in the tables below, case 2 adds wind turbines to the generation capacity. 

Having wind in addition to solar might give greater reliability to the grid, for example 

during rainy or cloudy days, allowing for a differentiation in the generation resources.  

In the following tables the results can be found. 
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Table 9: year 1 sizing for minimum installed capacity scenario 

 

Table 10: year 10 sizing for minimum installed capacity scenario 

 

Table 11: year 20 sizing for minimum installed capacity scenario 

 

 

Table 12: year 1 sizing for maximum installed capacity scenario 
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Table 13: year 10 sizing of maximum installed capacity scenario 

 

Table 14: year 20 sizing of maximum installed capacity scenario 

 

 

Table 15: year 1 sizing of median installed capacity scenario 

 

Table 16: year 10 sizing of median installed capacity scenario 
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Table 17: year 20 sizing of median installed capacity scenario 

In the following diagram a summary of case 1 results for each scenario is provided. 

 

Figure 43: Summary of HOMER results for MAX, MED and MIN scenarios 

Given these results, it is now possible to compare them and analyse their content 

more in detail. The first thing to clarify is that in each of the simulations two or three 

results were given as an outcome by the software, but only the two best options were 

reported here. For each of the tables above, HOMER had selected case 1 as the 

optimized case in terms of Net Present Cost (NPC). 

In all the 9 situations, it is possible to recognize some patterns for the two selected 

cases. Analysing case 1, the optimum, it can be noticed that the output grid is always 

an all solar solution, with no wind turbines installed and therefore needing more 

batteries than the correspondent case 2.  

Giving a more comprehensive look at all of the tables, it can be said that the outcomes 

respect the expectations one could have in the beginning. The maximum capacity 
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scenario is expected to present a larger amount of installed components at the end of 

the process, while in the single scenarios, the installed generation capacity is 

expected to increase in time as the load profile does. These two things happen and 

accordingly to this output the same happens also to the net present cost of the 

system. The patterns that had been noticed in the previous chapters are also 

respected. Therefore, looking at year 10, case 1, for maximum and median scenarios, 

the number of installed kW of solar is greater in the median case rather than in the 

maximum one and the situation is going to reverse in the following years. For what 

concerns investment costs, MAX, MED and MIN scenario at year 20 keep the same 

ranking as for the installed capacity, but again the pattern changes going back to year 

10.  

As explained in the previous sections, when facing the issue of sizing a long-term 

facility with scarce information, it is necessary to make some strategic decisions 

about how to manage the differences between short- and long-term behaviour of the 

demand. Looking at year 1 of the various scenarios, it can be said that this is not really 

representative of how the grid is supposed to become in the following years. For 

example, year 1 of MAX scenario represents not even 5% of the final configuration. 

Therefore, unless one wants to make adjustments very soon after starting the facility, 

it would be suggestable to take into account a slightly longer period of time to project 

the off-grid system.  

The problem, at this point, is that there is a huge uncertainty about which might be 

the values of the endogenous parameters that were let vary in the diffusion model 

thanks to the use of Monte Carlo method. There are two ways to handle this issue: the 

first is to prepare very specific questionnaires to assess which values it would be 

better to assign to each parameter. This process should be performed in every single 

village of interest and for a very large amount of households, making sure all types of 

these are taken into account. This process would be very time demanding and would 

need for a large amount of resources, both in economical and human terms. The 

questionnaires, indeed, would need for translation to the local language and local 

workers would be needed to go around administering the questionnaires to people. 

To do this, many guides are available, produced by many famous ONGs and 
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international cooperation and development organizations, usually linked with the 

United Nations programs. A very useful guide, for instance, is provided by the World 

Bank [80]. 

The second option, which is definitely to be considered less expensive and quicker to 

perform, follows exactly the steps that the author went through during this research 

work. The drawback of this method is that it will not give a univocal outcome, but the 

decision will have to be a result of a sensitivity analysis which takes into account the 

different possible solutions obtained as an output of the model and of the microgrid 

sizing software. 

In this second case, the main issue will be to decide whether to project and build the 

microgrid taking into account the entire needed generation capacity at year 20, or to 

start by projecting a certain amount of capacity, keeping in mind that some updates 

and modifications of the system will be needed at some point of its lifetime. Indeed, it 

can be noticed how between year 10 and year 20 of the system in MAX scenario, the 

necessary installed capacity of PV in case 1 increases of almost 75% and this increase 

can be consequently found in the net present cost values. Moreover, in the current 

case, three different scenarios to choose from were available, all of them relative to 

the same 400 households of one only village. It will be very difficult to decide which is 

the scenario expected to best fit into the considered situation.  

It is, of course, impossible to reach 100% certainty of which is the right decision to 

make, therefore a precautionary behaviour in the decision making process is 

definitely suggested.  

In this case it can be observed in the above tables that year 10 of median and 

maximum scenarios, imply the installation of less than one half of what would be 

expected to become the mini-grid capacity in the respective years 20. Looking at the 

minimum installed capacity scenario, instead, it can be noticed that year 20 

represents a half way with respect to the situations at year 10 and 20 of the other 

scenarios. It might therefore be a good choice to project the microgrid taking into 

account this option, in order to decrease the risk of money loss. It will then be easier 

to upgrade the system from ~244 kW of solar and ~1044 kWh of batteries to ~393 

kW and ~1622 kWh, rather than starting from ~105 kW and ~454 kWh as requested 

by year 10 of the maximum installed capacity scenario forecast.  
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A further improvement which could help the decision process for the current study 

would be the identification of some parameters on which to perform a sensitivity 

analysis through HOMER, such as for example the irradiation values, temperature 

data or wind speed. In general terms, though, the output of this work can be 

considered realistic and consistent with the expectations. A number of parameters 

which were let vary allowed to have an output which is generic enough to be fitting 

with a range of situations. 
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5 Conclusion 

The aim of this work was to analyse how the main complex dynamics and 

uncertainties related to developing countries realities influence the diffusion of 

electrical appliances and therefore the configuration of off-grid systems. In order to 

do it, it was necessary to model several technical and socio-economic aspects. It was 

possible to start by performing a wide literature review, which would cover all of the 

topics that might be needed in order to go through the research work. It was found 

out that socio-economic aspects had been studied and modelled thoroughly to 

contribute to the definition of diffusion processes, but so far in the energy sector the 

majority of studies would consider standard agents with no individual characteristics. 

The authors would tend to consider a stationary model in time, upon which to build 

their projects, without taking into account possible evolutions in time of the system 

or of the hosting community.  

The work, therefore, was started by considering a fictitious realistic village in the 

Tanzanian region of Njombe and its social network structure was obtained, thanks to 

a regression on field data, in the form of a Barabasi-Albert network of 400 households 

with an average degree of 6. A Bass diffusion model for the connections to the off-grid 

system was then developed, along with a model based on Gompertz curves theory for 

the diffusion of electrical appliances across the village. The two of these would run at 

the same time, updating each other’s results at every time step, over a time period of 

20 years, which was assumed to be the lifetime of the off-grid system to size. In order 

to take into consideration the uncertainties related to the presence of many 

endogenous factors, it was decided to use the so called Monte Carlo method to be able 

to maintain a certain level of variability of the most uncertain factors, letting them 

vary uniformly within some ranges found in the literature, or extrapolated from real 

data analysis. 100 simulations were performed, which allowed to demonstrate that 

the endogenous factors actually have an impact on what will be the output of the 

model. Depending on the input parameters, at year 5 of the simulations the fan might 

be purchased by less than 50 to more than 250 people. To keep the study as general 

as possible, 3 very different simulations, among the 100 available, were chosen to be 
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used in the following analyses. The choice was made on the basis of which was the 

amount of installed capacity at year 20 (last year of lifetime). For MAX (maximum 

installed capacity), MIN (minimum installed capacity) and MED (median installed 

capacity) scenarios a long-term analysis was necessary, to be able to properly design 

the microgrid, otherwise over- and under-estimation issues might have taken place. 

The software used throughout the sizing procedure were LoadProGen and HOMER 

Pro. LoadProGen allows for the creation of many different load profiles at the same 

time, but does not take into account the evolution of the household categories in time. 

On the other hand, HOMER Pro only takes into account one load profile at a time and 

keeps it constant for the entire lifetime of the system it is sizing. What was done, was 

running LoadProGen 3 times for each scenario, freezing the situation at year 1, 10 and 

20, in order to simulate the evolution of the mini-grid along time. In order to keep this 

evolutionary behaviour in HOMER Pro as well, it was decided to let the software 

design 9 different systems (MIN, MAX and MED scenarios, each taken at year 1, 10 

and 20), as if one was willing to plan an off-grid system able to answer to the specific 

load demand of each considered case for the entire duration of its lifetime. This 

allowed to make reasonable considerations about which type of approach would be 

more convenient when trying to size an off-grid system that is going to evolve in time 

in an uncertain manner. It would be useful in the future to find or create a software 

which would allow to consider continuous changes in the load demand and in the 

household configuration, so to be able to size the system in one only step, by 

considering the 20 years evolution all at once. Lastly, taking into account 3 different 

periods for each scenario, allowed to further confirm the necessity for a continuous 

software, since, the patterns which can be found comparing year 20 of the various 

scenarios do not always repeat in the previous years, which means that, by 

considering only a smaller amount of time (e.g., stopping the analysis at year 10) we 

would probably get the long-term estimates wrong and might incur bad cost recovery 

failures. Taking into account a single scenario, following its evolution in time, the 

necessary generation capacity might even double from year 10 to year 20 and 

accordingly to this output the same thing would happen to the net present cost of the 

system. Comparing different scenarios, the one presenting maximum installed 

capacity at year 20 might not hold the same property at year 10, which is indeed 
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reflected in HOMER Pro output. For what concerns investment costs, MAX, MED and 

MIN scenarios at year 20 will keep the same ranking as for the installed capacity, but 

again the pattern would change going back to year 10. It would be interesting in the 

future to try and use this procedure in a real case study in the field, to further 

demonstrate the necessity of modelling the complexities and uncertainties related to 

energy planning in rural areas.  
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Appendix A 

Here is presented the Matlab script for the Barabasi-Albert diffusion process: 

rand('state',0); 

  

%%% Barabasi & Albert (Scale-Free) MODEL 

%% DIFFUSION PROCESS 

  

ADOPTERS_BA = zeros(simulations,t+1); 

ADOPTERS_BA(:,1) = A_0; 

  

verifica_time_step_BA = zeros(N,t+1); 

  

for k = 1:simulations 

  

   deg = [degree(graph(A_poll_BA(:,:,k)))]';  %degree evaluates the 

degree of a node, while graph joins the nodes depending on the rules 

given inside the network matrix A_poll 

     

%%% INITIAL "SEEDING" of A0 

  

   states_N_iniz = zeros(1,N); 

     

   if A_0 ~= 0 

        [deg_sorted pos_sorted] = sort(deg(:),'descend');   %sort orders 

in ascending (default) or descending (if specified) order 

        pos_intitial = pos_sorted(1:A_0)'; 

        states_N_iniz(1,pos_intitial)=1; 

   else 

        pos_intitial=[]; 

   end 

     

%%% CREATE THE STRUCT of the STATES 

     

    states_N = struct('s', [states_N_iniz; zeros(t,N)], 'type', 

zeros(1,N)); 



Appendix A   

CVIII 

         %0 = POTENTIAL ADOPTER 

         %1 = ADOPTER 

         

    list=zeros(1,sum(deg));  %list is a vector of dimension equal to the 

number of total links present in the network, inside list there will be 4 

times number 1 if node 1 has degree equal to 4, 3 times number 2 if node 

2 has degree equal to 3, and so on. 

    posto=1; 

    for i=1:N 

        for j=1:deg(i) 

            list(posto)=i; 

            posto=posto+1; 

        end; 

    end; 

    for i=1:N 

        repeat=1; 

        while repeat 

            n=round(rand*sum(deg)+0.5); 

            if states_N.type(list(n))==0 

                states_N.type(list(n))=1; 

                repeat=0; 

            end; 

        end; 

    end; 

     

    clear i 

    clear j 

    

%%% DIFFUSION PROCESS 

            for m = 2 : t+1 

        for j = 1 : N 

            if states_N.s(m-1,j)==1 

                states_N.s(m:end,j)=1; 

                continue 

            end 

            contact_j = find(A_poll_BA(j,:,k));   %find finds the 

positions in which the matrix is different from 0 

contact_adopters_all_j=sum(states_N.s(m-1,contact_j)); 

    if states_N.type(j)==1 
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states_N.s(m,j)=rand<(p+q*contact_adopters_all_j); 

verifica_time_step_BA(j,m)=(k==1)*(p+q*contact_adopters_all_j); 

            elseif states_N.type(j)==0 

                states_N.s(m,j) = rand < (p + q*contact_adopters_all_j);           

verifica_time_step_BA(j,m)=(k==1)*(p+q*contact_adopters_all_j); 

            end 

        end 

        ADOPTERS_BA(k,m) = sum(states_N.s(m,:)); 

    end 

end 

ADOPTERS_BA_mean = mean(ADOPTERS_BA); 
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Appendix B 

Here is the Matlab script for the appliance diffusion process (fan example): 

%appliance parameters variability 
%fan 
beta_fan=1.194*0.8+(1.194*1.2-1.194*0.8)*rand; 
gamma_fan=4.144*0.8+(1.194*1.2-1.194*0.8)*rand; 
b_fan(sim)=beta_fan; 
g_fan(sim)=gamma_fan; 
 

%fan parameters 
p_fan=20; %power in W 
fan_cost=25; %cost in $ 
MaxOwn_fan=1; %maximum ownership of 1 household 
AvFloorSpace=8.98;  %average floor per capita in a household 
AvHouseSize=4.8;    %average number of people in a household 
alfa_fan=0.04*AvHouseSize*AvFloorSpace*MaxOwn_fan; %alfa of ownership 

curves 

 
%fan ownership 

  
%average expenditure of each quintile 
AV_Q1_fan=mean(EXP_Q1); 
AV_Q2_fan=mean(EXP_Q2); 
AV_Q3_fan=mean(EXP_Q3); 
AV_Q4_fan=mean(EXP_Q4); 
AV_Q5_fan=mean(EXP_Q5); 

  
%ownership level of each quintile 
OWN_Q1_fan=alfa_fan*exp(-beta_fan*exp(-gamma_fan/1000.*AV_Q1_fan)); 
OWN_Q2_fan=alfa_fan*exp(-beta_fan*exp(-gamma_fan/1000.*AV_Q2_fan)); 
OWN_Q3_fan=alfa_fan*exp(-beta_fan*exp(-gamma_fan/1000.*AV_Q3_fan)); 
OWN_Q4_fan=alfa_fan*exp(-beta_fan*exp(-gamma_fan/1000.*AV_Q4_fan)); 
OWN_Q5_fan=alfa_fan*exp(-beta_fan*exp(-gamma_fan/1000.*AV_Q5_fan)); 

  
%rounded number of adopters of each quintile at the considered time-step 
A_Q1_fan=round(OWN_Q1_fan*length(EXP_Q1)); 
A_Q2_fan=round(OWN_Q2_fan*length(EXP_Q2)); 
A_Q3_fan=round(OWN_Q3_fan*length(EXP_Q3)); 
A_Q4_fan=round(OWN_Q4_fan*length(EXP_Q4)); 
A_Q5_fan=round(OWN_Q5_fan*length(EXP_Q5)); 

  
O_f_Q1=0; 
O_f_Q2=0; 
O_f_Q3=0; 
O_f_Q4=0; 
O_f_Q5=0; 

  
for i=length(EXP_Q1):-1:1 
    if EXP(2,i)<MaxOwn_fan && EXP(1,i)>=aff*fan_cost && O_f_Q1<=A_Q1_fan 

&& EXP(9,i)==1 
        EXP(1,i)=EXP(1,i)-fan_cost; 
        EXP(2,i)=1; 
        O_f_Q1=O_f_Q1+1; 
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    end 
end 

  
for i=(length(EXP_Q1)+length(EXP_Q2)):-1:(length(EXP_Q1)+1) 
    if EXP(2,i)<MaxOwn_fan && EXP(1,i)>=aff*fan_cost && O_f_Q2<=A_Q2_fan 

&& EXP(9,i)==1 
        EXP(1,i)=EXP(1,i)-fan_cost; 
        EXP(2,i)=1; 
        O_f_Q2=O_f_Q2+1; 
    end 
end 

  
for i=(length(EXP_Q1)+length(EXP_Q2)+length(EXP_Q3)):-

1:(length(EXP_Q1)+length(EXP_Q2)+1) 
    if EXP(2,i)<MaxOwn_fan && EXP(1,i)>=aff*fan_cost && O_f_Q3<=A_Q3_fan 

&& EXP(9,i)==1 
        EXP(1,i)=EXP(1,i)-fan_cost; 
        EXP(2,i)=1; 
        O_f_Q3=O_f_Q3+1; 
    end 
end 

  
for i=(length(EXP_Q1)+length(EXP_Q2)+length(EXP_Q3)+length(EXP_Q4)):-

1:(length(EXP_Q1)+length(EXP_Q2)+length(EXP_Q3)+1) 
    if EXP(2,i)<MaxOwn_fan && EXP(1,i)>=aff*fan_cost && O_f_Q4<=A_Q4_fan 

&& EXP(9,i)==1 
        EXP(1,i)=EXP(1,i)-fan_cost; 
        EXP(2,i)=1; 
        O_f_Q4=O_f_Q4+1; 
    end 
end 

  
for 

i=(length(EXP_Q1)+length(EXP_Q2)+length(EXP_Q3)+length(EXP_Q4)+length(EXP

_Q5)):-1:(length(EXP_Q1)+length(EXP_Q2)+length(EXP_Q3)+length(EXP_Q4)+1) 
    if EXP(2,i)<MaxOwn_fan && EXP(1,i)>=aff*fan_cost && O_f_Q5<=A_Q5_fan 

&& EXP(9,i)==1 
        EXP(1,i)=EXP(1,i)-fan_cost; 
        EXP(2,i)=1; 
        O_f_Q5=O_f_Q5+1; 
    end 
end 

  
A_fan(t)=A_fan(t-1)+O_f_Q1+O_f_Q2+O_f_Q3+O_f_Q4+O_f_Q5; 
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