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Abstract

During the last years the development of Brain-Computer Interface (BCI)
systems has experienced a rapid growth, due to the availability of more ac-
curate and sophisticated signal processing algorithms and to an increasing
understanding of brain signals. Thus, the range of BCI applications has
been significantly widening, paving the way for a completely novel and more
natural user experience in controlling remote devices.

Nowadays, the reduced portability of BCI systems limits their adoption
in everyday applications, exacerbating the fine-tuning, testing and use in
real-life scenarios. The ever-increasing computational power and flexibility
of embedded systems make them a viable solution to alleviate this issue.
This thesis proposes an infrastructure based on the NVIDIA Jetson TX2
embedded system designed to achieve this goal. In particular, it has been
designed to be portable, modular, and compatible with the most popular
BCI frameworks and commercial acquisition devices. Moreover, it enables
for a rapid design, implementation and testing of BCI systems, notably re-
ducing deployment time with respect to state-of-the-art architectures. The
effectiveness of the proposed system has been evaluated in implementing a
BCI system able to solve a two classes motor imagery problem (left vs right).





Estratto

Negli ultimi anni lo sviluppo di Brain-Computer Interface (BCI) ha avuto
una rapida crescita, grazie alla disponibilità di algoritmi di elaborazione dei
segnali più accurati e sofisticati e ad una crescente comprensione dei seg-
nali cerebrali. Quindi, gli utilizzi delle BCI si sono notevolmente ampliati,
aprendo la strada a modi completamente nuovi e più naturali per il controllo
di dispositivi remoti.

Attualmente, la ridotta portabilità delle BCI limita la loro adozione nelle
applicazioni di tutti i giorni, esacerbandone la messa a punto, la verifica e
l’uso in contesti reali. La sempre crescente capacità computazionale e la
flessibilità dei sistemi embedded li rende una possibile soluzione per alleviare
questo problema. Questa tesi propone un’infrastruttura basato sul sistema
embedded NVIDIA Jetson TX2 progettata per raggiungere questo obiettivo.
In particolare, essa è stata progettata per essere portabile, modulare e com-
patibile con i più diffusi framework per BCI e dispositivi commerciali per
l’acquisizione dei segnali. Inoltre, essa permette una rapida progettazione,
implementazione e validazione delle BCI, riducendo notevolmente i tempi
per arrivare al loro impiego rispetto allo stato dell’arte. L’efficacia del sis-
tema proposto è stata testata implementando una BCI capace di risolvere
un problema binario di motor imagery (destra contro sinistra).
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Chapter 1
Introduction

1.1 Brain-Computer Interfaces

A Brain-Computer Interface (BCI) is a system that maps electrophysiolog-
ical brain signals to the corresponding mental state, with the purpose of
controlling a program or a device. Classical BCIs rely uniquely on measure-
ments of brain signals while hybrid or multi-modal BCIs can include also
other physiological measures such as muscle or eye movement signals [12].
BCI applications can be parted in five main categories:

• Replacement of functions that were lost (for example, wheelchair con-
trol).

• Restoration of functions that were lost (for example, stimulation of
muscles in a paralyzed person).

• Improvement of functions that were reduced (for example, stroke re-
habilitation).

• Enhancement of functions (for example, anticipated detection and ac-
tuation of emergency brake).
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Figure 1.1: General architecture of a BCI. Adapted from:[1]

• Research to study brain functions

As we can see from Figure 1.1, a BCI system is made up of two main
components: signal acquisition and signal processing. The signal processing
part in turn is composed of three subparts, namely preprocessing, feature
extraction and classification. The output of a BCI is generally a stream of
commands whose meaning is highly application dependent.

1.1.1 Signal acquisition

The signal acquisition system monitors and aquires brain signals, usually
in form of electrical or metabolic activity. Four main methods are used to
measure electrical activity:

• Electroencephalography (EEG), which measures the voltage fluctua-
tions on the scalp;

• Magnetoencephalography (MEG) which measures magnetic fields pro-
duced by electrical currents in the brain;

• Electrocorticography (ECoG) which measures voltage fluctuations on

the cortex;

• Micro-electrode arrays which measure voltage fluctuations in the cor-
tex.
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All these measurements are the macroscopic result of ionic currents of
populations of neurons. On the other hand, metabolic activity is monitored
by means of Near-Infrared Spectroscopy (NIRS), which indirectly assesses
neuronal activity by measuring changes in oxygenated and deoxygenated
hemoglobin in tissues using near-infrared light, and Functional Magnetic Res-
onance Imaging (fMRI), which measures changes in blood flow that are effect
of brain activity.

Previous methods differ in three important aspects: the spatial and tem-
poral resolution of the measurements and the size of the area of the brain
that can be measured. The temporal resolution for micro-electrode arrays,
ECoG, EEG and MEG is in the millisecond range, whereas for NIRS and
fMRI it is in the order of seconds. The best spatial resolution is achieved
by micro-electrode arrays monitor the activity of up to a single neuron, then
there are ECoG and fMRI which can reach a spatial resolution in the order of
millimeters and then there is EEG in the centimeter range. EEG, fMRI and
NIRS provide the best coverage capability, being able to measure the whole
brain, while MEG can cover large parts of the brain and ECoG only small
cortical areas. The worst method in terms of coverage is the micro-electrode
arrays that covers only a few hundred neurons.

Signal acquisition is carried out by the hardware that actually measures
the brain signals and the software that conveys the acquired data to the
processing unit. This software component is responsible for synchronization
and storage of the acquired signals.

1.1.2 Signal processing

The signal processing is the part of the BCI that predicts a mental state
given some brain signals. As we have already mentioned it is divided in
three steps: preprocessing, feature extraction and classification. The feature
extraction and classification steps can be performed separately, extracting
reasonable neuroscientific features in one step and feeding them to a clas-
sifier in another, or jointly, performing both automatic feature extraction
and classification in a single step. The latter case corresponds to the signal
processing performed by Deep Learning models such as Convolutional Neu-
ral Networks (CNN), while the former corresponds to the classical procedure
in which two different machine learning models are used to perform feature
extraction and classification respectively.
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In the preprocessing step, which is common to both approaches, raw
signals are usually filtered and cleaned to increase the signal-to-noise ratio.
The cleaning procedure consists in the application of an artifact removal
algorithm able to identify and remove the artifactual components of the signal
preserving the integrity of the original brain signal. A subsampling is then
usually applied on preprocessed signals, in order to reduce the computational
complexity of subsequent stages.

Feature extraction turns the output signals of the previous steps into a
different representation that maximizes their discriminability based on the
mental states to which they are associated. This step is the core of the model
construction and is highly application dependent since it must extract fea-
tures relevant to the brain patterns that the adopted BCI paradigm aims to
recognize. BCIs are not a mind-reading devices, they can only detect very
specific patterns of brain activity that the subjects voluntarily or involuntar-
ily produce. The objective of the feature extraction step is to obtain features
that maximize the detectability of these patterns.

When the last step of the signal processing is performed separately, the
computed feature vector is fed into a classifier to recognize the corresponding
mental state. The classifier is a mathematical model usually trained in a
supervised fashion, i.e., given some feature vectors and the corresponding
labels it learns the pattern that best explains the association.

1.2 Thesis objective

BCIs are being investigated in an increasing number of everyday tasks, for
instance they have been experimented as driving assistant systems for pre-
venting accidents by detecting driver’s cognitive states like drowsiness and
mental fatigue [13] [14] or behavior intentions like emergency braking [15].

So far the majority of the experiments remain at a stage of laboratory
demonstration with the employment of expensive laboratory-grade signal ac-
quisition systems and bulky personal computers. These experiments had,
and are still having, a great impact in the improvement of the current state
of the art accuracy, but to effectively adopt BCIs in the everyday life we
need portable and modular systems. Some studies regarding the design of
portable BCI devices do exist, but most of them are focused on specific low
level implementations of BCI based on FPGA [16] or neuromorphic proto-
types [17].
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The aim of this thesis is to design an easy-to-use and flexible system for
BCI prototyping. The requirements for the target system are the ability to
acquire simultaneous signals coming from heterogeneous devices, to process
them with some general BCI frameworks and to aggregate in real-time the
predictions of the models. The issues that need to be addressed for building
such system are the synchronization of the signals in a context of mobility, the
integration of the BCI frameworks in an embedded device and the real-time
performance of such frameworks.

Another requirement of the target infrastructure is that it must be de-
signed as a distributed system, thus allowing also the distribution of the
various components on different machines to provide even more flexibility.

1.3 Thesis contribution

The work described in this thesis has been conducted in collaboration with
the Research and Development laboratories of Camlin Italy situated in
Parma. Camlin Italy is part of the CAMLIN Group, an international com-
pany operating in over 20 countries developing, producing and selling ad-
vanced products for a wide range of sectors, including power, rail and health;
moreover it is also involved in several R&D projects in a variety of scien-
tific sectors. In particular, Camlin Italy is the competence center for Data
Science and Artificial Intelligence and is specialized in the development of
applications based on Machine Learning algorithms.

This thesis proposes a portable and modular infrastructure based on the
NVIDIA Jetson TX2 embedded system that aims to allow the use of BCIs
in everyday life. The board has been chosen mainly to address the need of
computational power and portability of the BCI models, especially consid-
ering the employment of Deep Learning models that require a GPU. The
proposed platform takes care of signal acquisition and realignment, model
building and real-time command or feedback delivery. It has been designed
with flexibility in mind, allowing the users to choose acquisition devices and
BCI frameworks to use for model training.

The main contributions regarding the design of the described platform are
the integration of Lab Streaming Layer (LSL), the adopted transmission and
synchronization framework, the validation of its synchronization capabilities
in a real environment where multiple wireless devices stream data at high
frequencies, the characterization of different BCI framework and the analysis
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of their performances in real-time. In addition, given that the NVIDIA Jetson
provides an output video port, we also implemented a component (based
on the python library PsychoPy [18]) which deals with the presentation of
the visual stimuli or the real-time feedbacks used in the training sessions
of specific BCI paradigms. The integration of this component enhances the
infrastructure compactness as it provides also the ability to acquire internally
the training sets.

To test the effectiveness of the platform we implemented a real-time BCI
system with the future objective of presenting a realistic feedback by means
of the movements of a toy robot. The real-time capabilities of the system
have been verified (included the interaction with the robot), but to effectively
use it to present a feedback we need to improve the generalization capabilities
of the BCI models.

1.4 Structure of thesis

The thesis is structured as follows.

• In Chapter 2 we present an overview of the state-of-the-art concerning
EEG-based BCIs. In particular, in Section 2.1 we describe the patterns
that can be detected in EEG signals and some of the methods most
widely used for discrimination. In Section 2.3, we present a brief de-
scription of the most valuable studies involved in the development of
portable EEG-based BCIs.

• In Chapter 3 we describe the proposed infrastructure and its exper-
imental evaluation. We start introducing the most relevant design
choices we made, then, in Section 3.1, we describe core components
and technologies integrated in the infrastructure. Then, in Section 3.2
we present the experimental validation of synchronization and process-
ing capabilities of the infrastructure.

• In Chapter 4 we present the BCI system implemented to validate the
effectiveness of the proposed platform. In Section 4.1 we describe the
experimental paradigm designed for data acquisition, the methods used
to train the BCI model and the operation of the feedback sessions. Then
we present the results in Section 4.2.



1.4 Structure of thesis 7

• In Chapter 5 we draw the conclusions and propose some possible future
improvements.

At the end of Chapter 3 and 4 we present two sections that summarize
the original work done in the respective chapter.





Chapter 2
State of the art

2.1 Electroencephalography

Electroencephalography (EEG) is a monitoring technique measuring electri-
cal activity along the scalp; in particular, it monitors voltage fluctuations
produced by neural activity. It is one of the most common and used method
in literature because it is easy to use, portable, non-invasive and inexpensive;
moreover, it provides an excellent temporal resolution, that is an essential
requirement for real-time BCIs.

For these reasons, EEG was chosen in this thesis as acquisition mecha-
nism. However, its high sensitivity to artifacts induces a low signal-to-noise
ratio, that is one of the main drawbacks of EEG; thus, the next section will
show that artifact removal is an essential step in EEG signal analysis.

Several types of electrodes can be integrated in EEG recording systems;
however, two main categories can be identified: wet and dry electrodes. The
former employs saline-based gel to enhance the contact between the electrode
and the scalp, in order to improve signal transmission; they are vary com-
mon in clinical applications and neuroscience research. On the other hand,
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dry electrodes do not require conductive pastes, and therefore are more suit-
able for commercial scenarios. Usually wet electrodes produce more accurate
data than dry ones, as they allow for a better contact between electrodes and
scalp [19]. On the contrary, dry electrodes possess very interesting charac-
teristics (e.g., usability) and are significantly less expensive, representing the
best compromise between cost and accuracy in several application scenarios.
Active electrodes are a third viable solution. They are made up of active elec-
tronics circuitry designed to suppress interference, carrying out impedance
transformation directly on the electrode (by means of an operational amplifier
that reduces the output impedance) and reducing the signal path length be-
tween electrode and first amplifier stage. The most commonly used electrode
type consists of sintered (coated) Ag/AgCl disks, which quickly establish and
then maintain consistent and stable electrochemical potentials against bio-
logical tissues, together with low dc offset variability. Moreover, Ag/AgCl
electrodes are free from potential allergenic compounds and have excellent
long-term electrical stability [4].

For multichannel recordings with a large number of electrodes, electrode
caps are often used. Traditionally, the International 10-20 system defined
by the International Federation of Societies for Electroencephalography and
Clinical Neurophysiology has been used to describe the locations of EEG
scalp electrodes, relative to anatomic landmarks on the human head.

Two recording procedures can be adopted, namely bipolar and referential.
In the bipolar mode, each active electrode has its own reference, whereas in
the referential mode each active electrode is referenced with respect to the
same electrode, i.e., the potential difference between each electrode and the
reference is measured.

Several different reference electrode placements are proposed in scientific
literature; the most commonly used are: vertex (Cz), linked-ears, linked-
mastoids, ipsilateral ear, and contralateral ear. There are also re-referencing
techniques, that perform spatial filtering to highlight relevant spatial pat-
terns, blurred by the original reference mode; the most widely used are Com-
mon Average Reference (CAR) and Laplacian [4].

EEG acquisition systems can be classified in two main classes with respect
to their connection to the processing system. Wired systems take advantage
of a wired connection to send their acquisitions to a stationary amplifier.
On the contrary, wireless systems acquire EEG signals from the electrodes
and amplify them in a device attached to the cap, before forwarding them
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to a computational device via a wireless connection. Wireless connection
avoids noise introduced by cable movements and, at the same time, allows
for completely free movements; wired systems, on the other hand, can provide
higher transmission frequencies and a better synchronization.

As mentioned earlier, one of the drawbacks of EEG is its low signal-to-
noise ratio due to the high sensitivity to artifacts.

Indeed, EEG signals recorded from the scalp are a superimposition of
neural and artifactual activity produced by multiple brain or extra-brain
processes, due to volume conduction effects. To isolate the significant part
of the signal is a very hard task, because it requires the removal of effects
produced by several noises sources.

The greatest part of artifacts belongs to two main groups: physiological
and system artifacts. The most common physiological artifacts arise from
eye movements, eye blinks, muscle noise and heart signals. System artifacts
are generated by 50/60 Hz power supply interference, impedance fluctuation,
cable defects, electrical noises and unbalanced impedances of the electrodes.

Often the preprocessing stage is able to reduce these artifacts, restoring
the informative information. Moreover, some artifacts are characterized by
signal properties that make their correction simple. For instance, power line
noise can be easily mitigated by applying a notch filter around the power
line frequency; others noises, especially the endogenous ones, require more
complex procedures.

In the following section we present the state of the art of artifact removal;
moreover, we introduce the physiological mechanisms that generate EEG
signals and finally we delve into the approaches for pattern detection in EEG
signals.

2.1.1 EEG artifacts

Because of volume conduction, EEG signals collected from the scalp are su-
pervisions of neural and artifactual activity form multiple brain or extra-brain
processes occurring within a large volume. Recently, Independent Compo-
nent Analysis (ICA) has been shown very promising results (applied with
other machine learning algorithms) for artifact removal as it allows to reverse
the superposition by separating EEG signals into statistically independent
components [20, 21, 22].
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Figure 2.1: Schematic overview of ICA applied to EEG data. Source:[2]

Independent Component Analysis

ICA assumes that the analyzed signal is composed by several statistically
independent components; it is based on the so-called blind source separa-
tion. Blind source separation tries to part statistically independent com-
ponents that compose the observed signals, with no a-priori knowledge
about source statistics or mixing process. If x = {x1(t), x2(t), ..., xN(t)}
is a signal composed by N components, ICA recovers its N sources, s =

{s1(t), s2(t), ..., sN(t)} whose linear mix has produced the measured signals
x. In particular:

x = As, (2.1)

where A is an unknown matrix. More specifically, ICA computes a version
u = Wx identical to the actual sources s but for scaling and a permutation,
being W the square matrix that linearly inverts the mixing process. The
rows of u, the so-called component activations, are the time courses of the
respective independent components; the columns of the inverse of matrix
W–1 represent the projection strengths of the respective components onto
each scalp sensor; these may be interpolated to show the topography (scalp
map) associated with each component.

ICA assumes that the source signals are independent and that their dis-
tributions are not Gaussian. Algorithms to compute W take generally ad-
vantage of an optimization process, thus, to choose their cost function is a
very important step. There are many available cost functions, but in general
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they are related to the statistical independence of the estimated components.
The two broadest definitions of independence for ICA are:

• Minimization of mutual information.

• Maximization of non-Gaussianity.

Thus, there are several algorithmic approaches to solve the ICA problem:
InfoMax, FastICA [23] and JADE [24] are just some examples of the widely
used ones in the scientific community.

ICA aims at obtaining statistically independent outputs, with no con-
straints on the matrix W, which represents the contributions of every source
on the original signal. There are some caveats in this approach; for instance,
ICA can not identify the actual number of source signals and an uniquely
correct ordering of sources based on their importance. Thus, the process-
ing of several time windows of EEG signals should be carefully carried out,
because the order and resultant independent components are generally ar-
bitrary. For this reason, ICA has been only successfully used for artifact
removal in conjunction with machine learning algorithms like Support Vec-
tor Machine (SVM), trained to recognize the artifactual components.

Figure 2.2 demonstrates eye movement and temporal muscles artifact re-
moval from a 5-seconds recording of EEG. The components representing the
artifacts are identified from the topographies and are eliminated by zeroing
out the corresponding rows of the activation matrix u and projecting the
remaining components to the scalp electrodes.

x̂ = W−1u (2.2)

2.1.2 Brain rhythms

Before starting to delve into the approaches used to extract information in
EEG-based BCIs, we need to understand the neurophysiological mechanisms
that produce EEG signals.

EEG records rhythmic activity that reflects the neural oscillations in the
central nervous system. These oscillations are fluctuations in the excitability
of populations of neurons. At the level of neural ensembles, synchronized
activity of large numbers of neurons gives rise to the macroscopic oscillations
that are measured by EEG devices [2, 25, 26]. Oscillations are described
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Figure 2.2: Demonstration of EEG artifact removal by ICA. Source:[2]

by three pieces of information: frequency, power and phase. Frequency is
the speed of the oscillation, power is the amount of energy in a frequency
band and is the squared amplitude of the oscillation, and phase is the position
along the sine wave at any given time point. Power and phase are independent
of each other, meaning that neural dynamics measured through power are
different from those measured through phase. As we will explain in more
details later, oscillations are also characterized by spatial localization and
temporal dynamic, which are among the most used characteristics in the
feature extraction step, especially in relation to the events that induced them.
Brain rhythms are grouped into five main frequency bands: delta (0.5-4 Hz),
theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-150 Hz).
This grouping results from neurobiological mechanisms of brain oscillations
[25] [27] [28], however there are no precise boundaries defining the bands
and, above all, there is not a unique interpretation of the different frequency
bands as the knowledge of the mechanisms that underline brain activity is still
blurred. However some empirical interpretations have been proposed in some
studies, for instance, delta waves have been associated with deep sleep and
have been detected also in the waking state, theta waves sometimes appear in
case of drowsiness or deep meditation, alpha have been recognized in cases of
relaxed awareness without attention or concentration, and beta waves have
been associated with active thinking, attention and problem solving [29].

These oscillations are the foundation of the methods described in the
following sections.
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Figure 2.3: The five main frequency bands. Source:[3]

2.2 EEG-based Brain-Computer Interfaces

It is important to realize that a BCI system is not a mind-reading device,
it can only detect very specific patterns of brain activity that the subject
voluntarily or involuntarily produces.

Two of the most used patterns that have been identified in electrical
signals generated from brain activity are event-related potentials (ERPs)
and event-related desynchronization/synchronization (ERD/ERS). They are
both time-locked to the inducing event, but while ERPs are also phase-
locked, ERDs/ERSs are non-phase-locked [2]. In a finger movement process,
for example, pre-movement negativity prominent prior to movement onset,
and post-movement beta oscillations occurring immediately after movement
offset are respectively phase-locked (evoked) and non-phase-locked processes
[30]. ERPs and ERD/ERS are among the most used patterns in the BCI
field because they can be modulated by the user’s voluntary intent in case of
ERD/ERS or by user’s attention shift in case of ERPs. In fact, the design
of an EEG-based BCI paradigm is largely about how to instruct the users
to express their voluntary intents so that the corresponding patterns can be
detected.
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Figure 2.4: ERP computation. Source: [4]

2.2.1 ERP

An Event Related Potential (ERP) is the measured time-locked response
that is direct result of a specific sensory, cognitive or motor event [31]. The
extraction of the ERP waveform is done by repeatedly presenting an event of
interest, such as a visual stimulus on a computer screen, and collecting the
small fraction of EEG measurements following this event.

Computationally, the ERP is detected by extracting EEG epochs time-
locked to the stimulus presentation and calculating the average over the
epochs. The reason why averaging allows to separate ERPs from the back-
ground brain activity relies on some assumptions:

• The ERPs are time-locked to the event and have the same shape and
latency across all the trials.

• The background brain activity can be approximated by a zero-mean
Gaussian random process which is uncorrelated between trials and non
time-locked to the event.

ERP waveforms in response to sensory (or cognitive) events usually con-
sist of a number of peaks and deflections that can be qualitatively character-
ized by amplitude, latency and scalp distribution. The amplitude provides
and index of the extent to which the event is perceived as natural whereas
the latency reveals the activation timing.
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ERPs have been successfully used in BCIs for anticipating emergency
breaks [32] [15] [33] and lane change intentions [34]. They have been widely
investigated also to increase accuracy and information transfer rate. For
instance they have been used to correct user’s erroneous decisions [35] [36] or
to re-calibrate a BCI system in a reinforcement learning fashion [37] allowing
it to l̈earn from its mistakes.̈ All these experiments focus on the analysis of
Error-related Potentials (ErrP), which are a specific subset of ERPs elicited
by the perception of erroneous events in form of expectation mismatch.

2.2.2 ERD/ERS

Sensory and cognitive processing and motor behavior result not only in event-
related potentials (ERPs), but also in changes in the sensorimotor rhythms
(SMR), which are µ-band rhythms (a subset of the α-band rhythms recorded
above the sensory-motor cortical area), in some circumstance with a β-band
accompaniment, that can be measured over the sensorimotor cortex.

The µ and β rhythms are commonly considered as EEG indicators of mo-
tor cortex and adjacent somatosensory cortex functions [38]. In fact, during
the real or imagery movement of a limb, a prominent attenuation of ongoing
µ rhythm can be observed over the rolandic area on the contralateral hemi-
sphere [39]. In particular, during motor execution, the initially contralateral
ERD develops a bilateral distribution [40], whereas during motor imagery this
ERD remains mostly limited to the contralateral hemisphere. This means
that the suppression of µ and central β rhythms is more pronounced at the
contralateral hemisphere when subjects imagine one-sided limb movements
than when they actually perform such movements.

This SMR attenuation is termed event-related desynchronization (ERD),
whereas the increase in SMR amplitude is termed event-related synchroniza-
tion (ERS) [41] [42]. Both phenomena are time-locket but not phase-locked
to the event and they are highly frequency band specific. An important fea-
ture of these patterns is that they are somehow related to the body map on
the sensorimotor cortex. For example, the left hand and right hand produce
the most prominent ERD/ERS pattern in the corresponding hand area in the
contralateral sensorimotor cortex [43]. In this regard, Figure 2.6 shows the
homunculus, the famous pictorial representation of the neurological “map”
of the areas and proportions of the brain dedicated to processing motor func-
tions, or sensory functions, for different parts of the body. It is an approx-
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Figure 2.5: ERD in the sensorimotor area associated to the right upper limb.
Source: [5]

imate and outdated representation, and in fact despite hundreds of studies
it hasn’t been discovered a unique layout able to discriminate sensory-motor
functions with reliable generalization, but it still gives a coarse idea of the
phenomenon.

Most of the BCI systems aimed at classifying single-trial EEGs during
motor imagery are based on SMR, and more specifically on characteristic
ERD/ERS spatial distributions corresponding to different motor imagery
states, such as left-hand, right-hand, or foot movement imagination.

2.2.3 Common Spatial Patterns

Common Spatial Patterns (CSP) has proved to be one of the most effective
techniques for detecting ERD/ERS [43] [44], and in fact it has been success-
fully adopted in some of the most important BCI competitions [45] [46]. It
is a data-driven subject-specific spatial filter technique used in BCI systems
as feature extraction method.

Given two distributions in a high-dimensional space, it determines spatial
filters that maximize variance for one class and that at the same time mini-
mize variance for the other class, assuming that the variance is an estimator
of the contained information. In fact, after having bandpass filtered the EEG
signals in the frequency domain of interest, high or low signal variance re-
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Figure 2.6: Homunculus. Source: [6]

flects respectively strong or attenuated rhythmic activity. As a consequence,
if the EEG signals are bandpass filtered in the sensorimotor frequency band
(7-30Hz) before applying the CSP algorithm, then the resultant spatial filters
are those maximizing the separability of the two classes based on ERD/ERS.

CSP computation

Let’s denote the EEG data of a single trial as the N × T matrix E, where N
is the number of channels and T is the number of samples of the trial. For
each of these matrices, the normalized spatial covariance can be calculated
as

C =
EE′

trace(EE′)
(2.3)

where ′ denoted the transpose operator and trace(x) is the sum of the di-
agonal elements of x. The spatial covariances C1 and C2 are calculated by
averaging over the trials of the corresponding class, and the composite spatial
covariance matrix is computed as

X = C1 + C2. (2.4)
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As X is a symmetrical matrix, it can be factored into its eigenvectors by
Singular Value Decomposition (SVD)

X = C1 + C2 = UΣU′ (2.5)

where U is the matrix of eigenvectors and Σ is the diagonal matrix of eigen-
values. Note that the eigenvalues are assumed to be sorted in descending
order. The whitening transformation

P =
√
Σ−1U′ (2.6)

equalizes the variances in the space spanned by U, i.e., all eigenvalues of
PXP′ are equal to one. If C1 and C2 are transformed as

S1 = PC1P′ and S2 = PC2P′ (2.7)

then S1 and S2 share common eigenvectors, i.e.,

if S1 = BΣ1B′ then S2 = BΣ2B′ and Σ1 + Σ2 = I (2.8)

where I is the identity matrix. Since the sum of the two corresponding eigen-
values is always one, the eigenvector with largest eigenvalue for S1 has the
smallest eigenvalue for S2 and vice versa. This property makes the eigen-
vectors B useful for classification of the two distributions. The projection of
whitened EEG onto the first and last eigenvectors in B (i.e., the eigenvec-
tors corresponding to the largest Σ1 and Σ2) will give feature vectors that
are optimal for discriminating two populations of EEG in the least squares
sense.

With the projection matrix W = B′P, the decomposition (mapping) of
a trial E is given as

Z = WE. (2.9)

The columns of W−1 are the common spatial patterns and can be seen as
time-invariant EEG source distribution vectors, i.e., the weights associated to
the channels. The first and the last columns of W−1 are the spatial patterns
that maximize the difference of variance.

The feature used for classification are obtained by filtering the EEG ac-
cording to (2.9) and taking the variance of a subset of the m signals most
suitable for discrimination. The signals Zp (p = 1 . . . 2m) that maximize the
difference of variance of the two tasks are the ones that are associated with
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the largest eigenvalues Σ1 and Σ2. These signals are the m first and last
rows of Z by construction of W. The features fp associated to one trial are
computed as log-variance of these signals, where the log transformation is
used to approximate normal distribution of the data.

fp = log

 var(Zp)
2m∑
i=1

var(Zi)

. (2.10)

2.2.4 Improvements of classical CSP: xCSP

Since the first usage of CSP as feature extraction method to discriminate
movement-related patterns in EEG [47] [44], many improved CSP-based
methods have been put forward to enhance the classification accuracy.

By construction, the original version of CSP is sensitive to noise and
prone to overfitting. To address this issue, in [48] Lotte and Guan proposed
a list of regularized variants that are referred to as RCSP . These approaches
are based on the addition of prior information to CSP and they differ in
the location where the prior is inserted. One of the presented possibilities is
at the covariance matrix estimation level and the other is at the objective
function level. In the former case the regularization term is added to shrink
the covariance matrix toward a prior on how the covariance matrix for mental
state considered should be, while in the latter it is added in order to penalize
solutions (i.e., regularizing spatial filters) that do not satisfy the given prior.
Other studies approached the regularization aspect introducing the transfer-
learning strategy into the classical CSP [49] [50] [51]. Samek et al., instead,
proposed a method called stationary CSP (sCSP) which regularizes the CSP
solution towards stationary subspaces; that is, the CSP is extended to be
invariant to non-stationarities in the data [52]. It reaches the goal by reducing
variations of the extracted features assuming that the variations are not task-
related like eye movements or electrode artifacts. Yong et al. proposed a
modified version of the RCSP [48] whereby the classical covariance estimates
are replaced by the robust covariance estimates obtained using the Minimum
Covariance Determinant (MCD) estimator [53]. The same goal of improving
the robustness of the covariance matrices estimation was tackled by Zhang
et al. in [54] by introducing local temporal correlation (LTC) information in
the estimation (LTCCSP).
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To address the problem of selecting the subject-specific frequency band for
the CSP algorithm, Lemm et al. [55] proposed the Common Spatio-Spectral
Pattern (CSSP) algorithm in which the filter is constructed by the method
of time-delay embedding. The idea was improved first by Dornhege et al. in
[56] with the Common Sparse Spatio-Spectral Pattern (CSSSP), and then by
Tomioka et al. in [57] with the Spectrally-weighted CSP (SpecCSP) which
simultaneously optimizes the filter in the frequency domain and the spatial
filter in an iterative procedure. A more lightweight approach to select the
optimal frequency and time range was proposed by Ang et al. in [58] with
the Filter Bank CSP (FBCSP) algorithm.

2.2.5 Deep learning

One of the challenges in mapping mental states to EEG data is finding rep-
resentations that are invariant to inter- and intra-subject variations, as well
as to inherent noise associated with EEG signals. Over the last decade it has
been proven that Deep Learning techniques are effective in solving similar is-
sues, in fact they have become the state of the art in domains affected by the
same issues like computer vision, speech recognition and natural language
processing.

Some studies have in fact applied recent advances in Deep Learning tech-
niques to EEG data with promising results. The used approaches can be
divided in two categories based on the adopted input representation: one
category uses directly the raw EEG signals, while the other converts the EEG
time series in 2D images by means of the Fast Fourier Transform (FFT) in
order to project the problem into a domain where deep networks are known
to perform well, namely computer vision.

An example of the latter is the work proposed by Tabar and Halici [59],
where the combination of a Convolutional Neural Network (CNN) and a
Stacked Autoencoder (SAE) is used for binary (left vs right) motor im-
agery classification. In this work the inputs of the deep network are 2D
time-frequency representations of the EEG time series. A similar approach
is used in [60] where the spectral power of each channel is used to con-
struct topographical maps (2D images) that are used as input of a recurrent-
convolutional network. Na Lu et al. [61] proposed an architecture named
Frequential Deep Belief Network (FDBN) based on FFT and stacked Re-
stricted Boltzmann Machines (RBMs). The statistically significant perfor-
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mance improvement achieved by the proposed solution over the state of the
art (FBCSP) suggests that frequency domain input to DBN can lead to much
better performance on motor imagery classification than the raw EEG time
series.

Regarding the other category, Stober et al. [62] propose a deep network
that takes as input the raw EEG signals. The core of the proposed ar-
chitecture, named Hydra-net, is composed by Convolutional Auto-Encoders
(CAEs) and the peculiarity is that the network is trained to encode both
cross-trial constraints (identification of features that are stable across trials
of the same class) and relative similarity constraints (identification of fea-
tures that allow to distinguish between classes by demanding that two trials
from the same class are more similar to each other than to trials from other
classes). Also the works proposed by Schirrmeister et al. [63] and Lawhern
et al. [64] consider raw EEG data as input of the respective CNNs. The two
studies employ classical CNNs and work on the same dataset (dataset 2A
from BCI competition IV) consisting of a four-classes (left, right, feet and
rest) motor imagery task.

The following section briefly describes notions and peculiarities related
to CNNs in order to better understand the motivations that led us to their
adoption for discriminating “move” vs “rest” states in this work. A more
detailed description of the model will be presented in chapter 4.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) [65] [66] [67] are a type of feed-
forward multi-layer neural networks with several alternations of convolution
and pooling layers and a fully connected layer at the end. Feed-forward net-
works pass an input through one or more layers of neurons until it reaches
the output layer. In each neuron the linear combination of its inputs is
passed through a, typically non-linear, activation function and the result
is forwarded to the neurons of the next layer. Common activation func-
tions are sigmoid f(x) =

1

1 + e−x
, tanh f(x) =

2

1 + e−2x
− 1, rectified

linear unit (ReLU) f(x) = max(0, x) and exponential linear unit (ELU)

f(α, x) =

{
α(ex − 1) x < 0

x x ≥ 0

CNNs can learn highly non-linear features (through convolutions and non-
linear activation functions) and represent higher-level features as composi-
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Figure 2.7: Convolutional Neural Network. Adapted from:[7]

tions of lower level features (through multiple layers of processing). In ad-
dition, the pooling layers create coarser intermediate feature representations
that can make the model more translation-invariant.

Network training is usually performed through the combination of
stochastic gradient descent and back-propagation to adjust weights and con-
volution filters by minimizing an objective function following the gradient.
Many improvements on the basic stochastic gradient descent algorithm have
been proposed, especially for avoiding to get stuck at local minima. Two com-
monly used variants are stochastic gradient descent with momentum [68] and
ADAM (Adaptive Moment Estimation) [69].

Deep neural networks such as CNN are inherently affected by overfitting,
i.e., the production of a model that explains too closely the available data
and may therefore fail to explain additional data. It is a common problem
in deep neural networks because it usually derives from the fact that the
model contains many more parameters than can be justified by the available
data. Some commonly used approaches used to address this issue are early
stopping, i.e., stopping the training process before the learner’s ability to
generalize starts to decrease, regularization, i.e., introducing constraints into
the objective function to force the model to be simpler, and dropout [70], i.e.,
randomly drop units (along with their connections) from the neural network
during training so that to prevent co-adaptation. The most widely used
regularization constraints are weight decay and sparsity constraint.

A CNN is a sequence of layers, each of which transforms one volume of
feature maps to another through a differentiable function. The three main
types of layers are: convolutional, activation, and pooling. In a convolu-
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tional layer, filters are slid over an input feature map with a certain stride,
i.e., shifted by a certain number of pixels, and for every position the addition
of the element wise multiplications between the two overlapping matrices
forms a single element of the output map. Filters act as feature detectors,
in fact different values of the matrix filter produce different feature maps for
the same input. Activation layers, typically placed after convolution layers,
have the purpose of introducing non-linearity and consist in the element-wise
transformation of a feature map into another by means of one of the acti-
vation functions listed above. The function of pooling layers, instead, is to
progressively reduce the spatial size of the input representation to reduce the
amount of parameters and computation in the network, and hence to also
control overfitting. A pooling layer reduces (downsamples) the dimensional-
ity of each feature map while retaining the most important information. The
most used pooling types are: max, avg, sum. In case of max pooling, the
output is composed by the largest element of each (usually) non-overlapping
subregions of the initial representation.

In essence, via the convolutional layers we aim to extract the useful fea-
tures, via activation layers we introduce non-linearity to better explain the
real world, and via the pooling layers, we aim to make the features somewhat
invariant to scale, translation, distortion and rotation.

2.3 Portable infrastructures for BCI

As anticipated in the introduction, some studies regarding the design of
portable BCI devices exist, but none of them is flexible and modular enough
for our purpose. However two of them are worth mentioning because they
employ promising technologies that could be further investigated in future.

Nurse et al. [17] proposed an inspiring work in which IBM’s recently pre-
sented neuromorphic chip, named TrueNorth, is used to deploy Deep Learn-
ing models for offline self-paced motor execution decoding. Unfortunately the
BCI has not been validated in real-time, which is the most critical context
due to the high-frequency of the incoming brain signals.

Aravind and Babu [16], instead, used a FPGA to implement a basic BCI
consisting of a Finite Impulse Response (FIR) filter, a Discrete Wavelet
Transform (DWT) module for the feature extraction, and a Support Vector
Machine (SVM) for classification.
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Both systems consist of hard-coded modules implementing specific BCI
components, and thus do not allow an easy prototyping for experimenting
with different frameworks and methods. In addition they do not consider the
possibility of acquiring signals from multiple devices for more complex BCI
experiments.

As a consequence, these two platforms can be considered as interesting
solutions mainly for final implementation, while the proposed infrastructure
can be used both for continuous prototyping and implementation.



Chapter 3
Infrastructure

The main goal of this thesis is to design an easy-to-use infrastructure for
prototyping portable BCIs able to operate in real-time.

As a consequence the aim of the proposed infrastructure is to support the
designers in the implementation of BCIs on an embedded architecture where
both the pipeline that makes up the BCI and the platform on which it runs
have to be powerful enough to operate in real-time.

Thus, a custom infrastructure, based on an embedded system, is proposed
to support designers in implementing BCI systems, guarantying the needed
computational power for real-time operations. However, the careful and op-
timized implementation of the proposed infrastructure allows for real-time
use even on an embedded system, that make it easily portable and usable
in a wide range of everyday scenarios. Moreover, the architecture was de-
signed to be easily adopted by an expert of the BCI field, with only a very
simple training for platform use. An efficient way to achieve this goal is to
build up the architecture from basic “bricks” that are already widespread in
the neuroscientific community, and that, therefore, don’t require specific or
particular training effort by the typical user of the system

Each of the mentioned objectives sets some constraints in the architecture
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of the proposed system. For instance, portability constraint forced us to inte-
grate the whole platform on an embedded system, acting also as computing
core of the system. NVIDIA Jetson TX2 was chosen among all the available
embedded platforms, because it is compatible with the portability require-
ment of the architecture and, at the same time, its hardware provides the
computational power needed to carry out sophisticated processing methods
like artifact removal based on ICA and Deep Learning even in a real-time
scenario.

Moreover, flexibility and modularity are two mandatory requirements of
the proposed architecture, so we decided to adopt a system that can handle
complex models like Convolutional Neural Networks (CNN). In this context
the NVIDIA Jetson TX2 is an ideal solution because its GPU, with the
CUDA libraries, can considerably speed up training and parallel execution
of the majority of machine learning algorithms and prototyping frameworks
like PyTorch. Thus the integration of these frameworks in the platform does
not require any modification to the architecture or hardware enhancement.

Moreover, the proposed platform can be easily turned into an hetero-
geneous system, able to combine CPU and GPU to improve overall per-
formances. It is a notable advantage for real-time processing, allowing an
efficient workload partitioning between CPU (delegated to handle mainly in-
coming streams handling and synchronization) and GPU (that can take care
of intense parallelizable real-time processing tasks).

This scenario shows that the selected embedded system is appropriate
for the proposed infrastructure because its hardware features enable for an
efficient lead balancing.

Other embedded solutions have similar features to the NVIDIA Jetson
and satisfy the computational power constraints of the proposed architec-
ture; for example, FPGA-based systems (e.g., Xilinx Zynq) posses all these
characteristics. Although these systems can deliver better performances of
general purpose architectures, usually they are much more expensive than the
NVIDIA Jetson and require at least a good working knowledge of HDL lan-
guages (e.g., Verilog, VDHL), in order to be efficiently programmed. More-
over, high level languages and scripting languages (e.g., C++ or Python),
very common in the BCI community, can be only partially compatible with
this kind of embedded solutions; thus, porting of existing BCI systems could
be an hard task. All this considered, the NVIDIA platform appears to be
the best compromise for the aims of the proposed infrastructure.
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Portability and usability on the field have guided also the choice of the
acquisition devices (EEG headsets). In particular, we decided to adopt Blue-
tooth systems with dry electrodes (more specifically, Enobio [71] and Open-
BCI [72]) because they simplify the deployment and the use of the system.
However, this choice introduced several issues due to Bluetooth channel la-
tency and reduced signal quality, that have to be faced and solved in archi-
tecture design and testing.

3.1 Design

The greatest part of the system to deploy BCI systems described in literature
are made up of three main components: signal acquisition, signal processing
and actuation.

With the aim of utilizing standards and best practices of the field as much
as possible, we decided to keep the same structure in our architecture. For
each of the three components we looked for the most popular tools and we
aimed at building up a system that could take advantage of these tools, and
could be implemented efficiently maintaining portability and ease of use.

For this reason in a first design phase, an efficient implementation of the
three blocks was investigated with respect to organization, communication
and technologies to use. For instance, the communication between com-
ponents involved in signal processing and actuation takes place within the
NVIDIA Jetson TX2 and is a simple exchange of data (not even complex from
the point of view of the the bandwidth), whereas the communication between
signal acquisition and signal processing is much more complex. Moreover, in
this phase, for each component we identified alternative technologies and se-
lected the best ones according to architecture requirements. These choices
have introduced several challenges, mainly related to the real-time behavior,
that depends on three main aspects:

• amount of data to process (multiple multi-channel high-frequency
streams);

• choice of using Bluetooth acquisition systems to achieve portability and
flexibility for the usage on the field;

• complex processing pipeline (with potential demanding computations
like artifact removal and Deep Learning) in conjunction with real-time
actuation constraint.
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The Bluetooth transmission issue has been analyzed and partially charac-
terized in the infrastructure validation presented in Section 3.2. Nevertheless,
as we demonstrate in Chapter 4, the infrastructure is able to operate in real-
time and this means that latencies introduced by Bluetooth communication
are efficiently circumvented. This, of course, holds for the specific paradigm
considered, namely motor imagery/execution, because it doesn’t require a
time synchronization out of reach of Bluetooth and LSL since it involves
only two simultaneous streams. In particular, the two streams are the EEG
time series and the stream of markers associated with the stimuli presented
by the stimulus presentation system.

Another aspect that we had to consider in the design phase is that, having
to train offline the models used online by the component that deals with the
signal processing, it has been necessary to integrate in the architecture a
component that would allow the presentation of stimuli and feedback for
labelling the acquired data.

3.1.1 Signal Acquisition

As mentioned earlier, we opted for wireless devices with dry electrodes to
meet the requirements of portability and field usability. This choice intro-
duced the issue of the latencies typical of the Bluetooth transmission channel.
In general, however, a cabled system would bring better performances both
in terms of achievable transmission frequency and introduced latencies, but
at the same time it wouldn’t allow the same portability and usability in a
mobility scenario. Moreover, wireless transmission eliminates the noise in-
troduced in the signals by movements of the wires.

As for the choice of the embedded system, also for the acquisition devices
a relevant point is their price. In general, wireless devices are more expensive
due to the more complex technologies adopted to guarantee reliability in the
wireless data transmission. Moreover, the processes to obtain the compact-
ness indispensable for the portability of the device increases its price. Despite
being more expensive, we have used wireless devices because they are crucial
to achieving the predetermined portability goal.

To the same extent, the choice of adopting dry electrodes has brought
a slight reduction of the acquired signals quality, while has produced an
increased usability, consistently reducing the preparation time and the dis-
comfort due to the usage of the conductive gel. Also in this case the price is
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Figure 3.1: Lab Streaming Layer core components. Source:[8]

generally higher for the adopted typology, namely dry electrodes.

Enobio [71] has been used as main acquisition device; it is a research-
grade commercial Bluetooth device with 20 channels to which we attached
high-end dry electrodes produced by the same vendor. In addition, we have
also roughly investigated the performance of OpenBCI [72] to evaluate re-
sults achieved by an open-hardware low-end device. The preliminary results
confirmed that the Enobio produces considerably better signals, hence we’ve
postponed further investigations for future developments.

Synchronization of signals produced by different devices is a fundamental
issue in data acquisition. The proposed architecture aims to be as general
as possible and therefore it has to allow also complex acquisition sessions
involving multiple devices. To achieve this goal it is necessary to re-align all
the involved streams over a unique time basis. We identified two main tools:
Lab Streaming Layer (LSL) [8] and Tools for Brain-Computer Interaction
(TOBI) [73] [74]. We adopted LSL because it has significant advantages over
TOBI: firstly, unlike TOBI, it implements synchronization natively; secondly
it is general-purpose and cross-platform with interfaces for the most used
programming languages like C, C++, Python, Java, C# and Matlab; and
thirdly it is highly employed in the BCI field so it guarantees modularity
with respect to the BCI ecosystem.
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Lab Streaming Layer

Lab Streaming Layer (LSL) is an open-source library for the unified collec-
tion of time series that handles both networking and time-synchronization
of the data, providing tolerance to disconnections and intermittent network
failures. Data is transmitted via TCP and the streams are made available
to all the devices connected to the same network.

Networking is handled by two type of components: outlets and inlets.
Stream outlets are responsible for making time series data available on
the network. The data is pushed sample-by-sample or chunk-by-chunk
into the outlet, and can consist of single- or multi-channel data, with
regular or irregular sampling rate. Streams have XML meta-data attached
containing information like ID, type of signal, name and sampling rate.
Stream inlets connect to the outlets for receiving the time series data.
The library guarantees that the samples are received in order relying on
the TCP reliable message-oriented transmission. Streams are uniquely
identified by the ID for recovery purposes, but can also be resolved by name
or type. This architecture provides an abstraction mechanism to mask
attached hardware and reduces the clients burden to exactly know connected
hardware characteristics and address. A theoretically infinite number of
clients (inlets) can connect and pull data from a server (outlet). In addition,
data is buffered both at the sender and receiver side with configurable and
arbitrarily large buffers to tolerate intermittent network failures.

Time synchronization is mandatory to analyze multi-modal biosignals,
because streams typically come from different devices, whose clock are likely
out of phase with respect to each other, so a realignment with respect to a
unique timeline is needed in order to extract time-dependent information.
This is a key concern in EEG experiments because EEG analysis is typically
time-locked with respect to specific points in time, such as a key press or
the display of an image on a computer screen. If the timing of these events
cannot be realigned with the EEG data, this may cause the loss, reduction,
or blurring of the measured quantities triggered by the events. For instance,
Figure 3.2 shows the outcome of the synchronization procedure in an
experiment involving an EEG headset streaming at 500Hz, an accelerometer
with a sampling rate of 50Hz, and a program presenting visual stimuli at
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Figure 3.2: Multi-modal time synchronization

irregular sampling rate. After re-alignment all streams had been remapped
onto the same time base.

The built-in time synchronization in LSL relies on two pieces of data that
are collected with the actual sample data:

• A timestamp for each sample that is read from a local high-resolution
clock of the computer.

• Out-of-band clock synchronization information that is transmitted
along with each stream. This information consists of periodic measure-
ments (every few seconds) of the momentary offset between sender’s
and receiver’s clock.

The clock resolution is less than a microsecond on practically all consumer
PCs and this allows LSL to achieve 50 ms synchronization accuracy with
minimal effort and 1 ms accuracy with effort. The effort needed to achieve
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these performance corresponds to the proper design of the local network, the
adoption of machines with enough computational power and, above all, the
accurate prior estimation of the mean constant bias of each signal source
involved in the acquisitions. This figure may be due to a constant drift in
the device or to latencies in the transmission channel between the device
and the machine starting the LSL stream (see red arrows in Figure 3.7).
This constant bias needs to be subtracted to each timestamp after the LSL
synchronization because it cannot be accounted for since it is not related
to the transmission channel under its control. In general, to achieve high
accuracy an estimation of all the latencies in the signal acquisition process
is needed.

The clock offsets are periodically measured using an algorithm deriving
from the Network Time Protocol (NTP). Each offset measurement involves
a brief sequence of n round-trip UDP packet exchanges between the two
involved computers. Each packet exchange yields an estimate of the
Round-Trip Time (RTT) and an estimate of the clock offset at the time of
the measurement with the RTT factored out. The final offset estimate for
the given measurement is the one out of the n measured which is associated
to the minimum RTT (to achieve a high chance of using only estimates that
were acquired in nominal packet transport conditions and with minimal
effect of transmission delays).

The clock offset θ is defined as

θ =
(t1 − t2) + (t2 − t3)

2
, (3.1)

and the round-trip time δ as

δ = (t3 − t0)− (t2 − t1), (3.2)

where

• t0 is the master timestamp of the request packet transmission,

• t1 is the slave timestamp of the request packet reception,

• t2 is the slave timestamp of the response packet transmission,

• t3 is the master timestamp of the response packet reception.
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Figure 3.3: Round-trip delay time δ. Adapted from:[9]

These estimates are correct when both the incoming and outgoing routes
between the master and the slave have symmetrical nominal delay. If the
routes do not have a common nominal delay, a systematic bias equal to half
the difference between the forward and backward travel times is present [9].
On a symmetric local area network, the travel time differences are the sum
of random delays due to multi-threading, buffering or interruptions and the
systematic difference in the latency of the two involved network stacks. Since
the algorithm reduces the probability of the random effects on estimates, the
residual inaccuracy is dominated by the systematic difference between the
latencies of the two network stacks (e.g. Linux vs. Windows), which can be
expected to be reasonably less than a millisecond on modern hardware and
operating systems.

Given a history of clock offset measurements between a master (ma-
chine acquiring streams coming from different streaming devices) and a slave
(streaming device), the timestamp of a sample collected at the slave side can
be remapped into the time domain of the master in order to be comparable
with the samples collected from the other slaves involved in the multi-modal
acquisition. In our architecture (see Figure 3.7) the master is the LabRecorder
and the slaves are the programs streaming data acquired by the EEG head-
sets and the accelerometers.

The synchronization performance is optimal when performed offline be-
cause the history of all clock offset measurements of the session is available;
this means that an accurate statistical estimation of the correction value for
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(a) (b)

Figure 3.4: Illustration of the offline dejittering process: (a) Before. (b) After.

each time point is made considering also future measurements. If performed
online only a subset of previous measurements is available and therefore the
performance is suboptimal. The offset correction can be performed by a
(robust) linear regression through the available clock offsets to estimate the
coefficients a and b to compute the correction values necessary to remap
timestamps. The linear regression attempts to model the relationship be-
tween correction values (dependent variable Y) and clock offset measure-
ments (explanatory variable X) by fitting a linear equation to observed data

Y = a+ bX (3.3)

The correction values are added to the original timestamps to account for
the clock offset progress between the two devices.

timestamps = timestamps+ Y (3.4)

To apply the clock offset correction and the method to use is optional,
however, by default it is performed through a robust linear regression mini-
mizing the Huber loss function by the Alternating Direction Method of Mul-
tipliers (ADMM) algorithm [75].

In addition to the clock offset, also the jitter in the timestamps must be
accounted to obtain a precise multi-modal alignment. Anyway, a jitter (e.g.,
Gaussian noise) will always be present in timestamps because the sampling is
not at fixed rate but on a somewhat random schedule dictated by hardware,
drivers and operating system.
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Also the dejittering step is optional and can be either online at the time of
data collection, or offline once all the data of the session have been collected.
It consists in a trend-adjusted smoothing algorithm which performs a re-
calculation of the timestamps of the streams that have regular sampling
rate. When performed offline (see Figure 3.4), it simply calculates a linear
fit between the index of each sample and its timestamp (thus assuming a
constant but arbitrary effective sampling rate) and then re-calculates from
it the timestamps of all samples based on their respective index.

Instead, to smooth the timestamps online, the Recursive Least Square
(RLS) algorithm is used, which updates the regression coefficients sample by
sample every time a chunk is pulled. Timestamps of a chunk are adjusted
according to the following equation:

timestamps = θ′ϕ, (3.5)

where

ϕ =

[
1 . . . 1 1

indexn−p . . . indexn−1 indexn

]
,

t =
[
timestampn−p . . . timestampn−1 timestampn

]
,

θ =

[
θ1
θ2

]
.

Elements of θ are the coefficients of the regression from sample index to
timestamp, and more specifically the intercept (θ1) and the slope (θ2) of the
linear mapping.

At each sample i of the chunk, the coefficients θ are update according to
the following recursive formulas:

xi =

[
1

indexi

]
,

ui =
[
timestampi

]
,

ei = ui − θ′n−1xi, (3.6)
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Figure 3.5: Software and hardware events. The vertical line is the software event,
while the blue spike is the hardware event. The horizontal red line is the trigger of the
software event based on the threshold. Source:[10]

ki = x′
iPi−1(λ+ x′

iPi−1xi)
−1, (3.7)

Pi = λ−1(Pi−1 − kix
′
iPi−1), (3.8)

θi = θi−1 + kiei, (3.9)

where λ is the tunable forgetting factor.

LSL validation

The authors of the library provide an experimental validation of the synchro-
nization capabilities: events were streamed via LSL in a network every time
an hardware event was triggered by a research grade data acquisition card
(National Instrument PCI-6230) running at 10kHz.

In the protocol, the hardware and software events were output by a com-
puter A and acquired by a computer B. In particular, the hardware events
were output by the NI-6230 in computer A and acquired by an analog input
box attached to computer B. In addition, the hardware events were fed back
into an input channel of the NI-6230 itself.
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(a)

(b)

Figure 3.6: LSL validation results. Adapted from:[10] (a) Latency (software event time
- hardware event time) over time. (b) Histogram and statistics of the latencies related
to the whole validation session.
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Once a certain threshold was reached, generated and streamed the soft-
ware events via LSL over the network from computer A to computer B.

Figure 3.6 (a) shows the latency (software event time - hardware event
time) over time, while Figure 3.6 (b) shows the histogram of the latencies
and statistics of the whole experimental campaign. Figure 3.6 (b) shows that
the jitter range is 0.36 to 0.21 ms, with a mean of 0.29 ms. This means that
the uncorrectable synchronization between a continuous LSL stream and an
irregular LSL stream is less than 1 ms in optimal conditions. Figure 3.6 (a)
shows that some sporadic outliers can occur. They are due to delays intro-
duced by OS in software events because of scheduling policies. In addition a
drift can be clearly observed, caused by statistical errors in the synchroniza-
tion or by variations in clock frequency due to temperature fluctuations.

It is worth noting that these results were achieved after the correction of
the mean constant bias of the acquisition device. As previously anticipated,
this figure needs to be estimated and subtracted to each timestamp after the
LSL synchronization because it cannot be estimated by LSL since it is not
related to the transmission channel. If it is not considered, it results in a
constant drift that is summed to the uncorrectable one.

These positive results are confirmed by the experimental validation of LSL
proposed by the vendor of the Enobio in [76] where a mean synchronization
bias of 0 ms with a 2 ms jitter is achieved after compensation of the mean
constant bias of the acquisition device.

LSL integration

Lab Streaming Layer is the core component of the proposed infrastructure,
indeed everything relies on the realignment of streams originating from dif-
ferent devices connected to the same network; thus, LSL has been integrated
in most of the components of the infrastructure.

First of all, it was compiled for the ARM architecture in order to be able
to use the library both on the NVIDIA Jetson TX2 and on Android devices.
Since the infrastructure aims at the acquisition of multi-modal biosignals in
mobility, we also developed an LSL-capable Android application in order
to acquire (via Bluetooth) and stream (over LSL) accelerometer and gyro-
scope data. We also refactored and ported onto the NVIDIA Jetson TX2 the
LSL acquisition program (LabRecorder) which acts as master in the acqui-
sition process by collecting and storing all the incoming streams along with
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their histories of measured clock offsets. More specifically, we improved the
streams identification to allow multiple streams of the same kind during the
same session. This is mandatory, for instance, when multiple accelerometers
(thus, multiple streams of the same type) are involved. Moreover, we en-
hanced LabRecorder with a system to handle actions scripts to automatically
instantiating and starting the communication among all programs, possibly
running on different devices, involved in a session. This communication rep-
resents the Inter-Process Communication (IPC) mechanism adopted in the
infrastructure for achieving synchronization among the different programs
and is generally based on sockets, publish-subscribe messaging protocols like
MQTT (Message Queue Telemetry Transport) or by LSL streams themselves.
This automatic synchronization is particularly important in sessions charac-
terized by a causal dependence between different softwares. For instance, it
occurs at the beginning of the trials triggered by the program that presents
the visual stimuli need to be communicated to the BCI models running on
other devices in order to erase the accumulated classification probabilities.
A simpler and more common example is when the program that deals with
the aggregation of the models predictions needs to send commands to an
actuator (e.g., a robot) in order to execute the desired actions.

3.1.2 Signal Processing

From the study of the literature, several frameworks have emerged for the
design of BCIs. Some already implement most of the state-of-the-art algo-
rithms and therefore we considered them for the choice of the components to
integrate in the infrastructure. In particular, the frameworks most used by
BCI experts turned out to be BCI2000 [77], OpenViBE [78] and BBCI [79],
BCILAB [80], MNE [81], BrainDecode [63] and Wyrm [11].

Since this thesis aims at designing a system for prototyping BCIs that
has to be easily usable by experts of the field, we decided to rely on these
off-the-shelf libraries in such a way to facilitate the adaptation to the
infrastructure, and at the same time to allow the easy porting of existent
projects that already make use of these libraries. An elicitation process has
been performed through a study of the different use cases to understand
which of these frameworks are more suitable for our purposes, i.e., real-time
capabilities and easy prototyping. The choice has fallen on three real-time
capable frameworks because of their manifold characteristics, which are:
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BCILAB, Wyrm and BrainDecode.

BCILAB is a very complete general-purpose library that has been devel-
oped by the same authors of LSL. It is written in MATLAB, and therefore
it is affected by disadvantages like cost (being MATLAB a commercial soft-
ware) and inability to be directly integrated on the NVIDIA Jetson TX2.
For this reason its integration would require additional hardware, a solution
that clashes with the portability requirement.

Wyrm is, instead, a very simple and intuitive low-level library written in
Python, that therefore can be directly integrated on the NVIDIA Jetson TX2.
Moreover it can take advantage of other Python libraries for signal processing
(for instance, MNE [81]) and machine learning (for instance, scikit-learn [82]).

Brain Decode is a very recent library, also written in Python, that imple-
ments various deep architectures based on Convolutional Neural Networks
(CNN) that are present in the literature. It has been chosen to investigate
the automatic feature extraction capabilities of Deep Learning methods ap-
plied to EEG because it is one of the most promising as it takes directly in
input the raw EEG signals instead of the usual image representation used in
most of the other Deep Learning frameworks.

An important aspect regarding this choice is that, being both written in
Python, Wyrm and BrainDecode can be used together.

The actual choice had fallen since the beginning on Wyrm because it has
all the characteristics needed by the infrastructure. We still decided to test it
against BCILAB (which is the state of the art in terms of BCI prototyping)
for approaching the BCI subject and, at the same time, for making a com-
parison of the different results. It has emerged that methods implemented
offline with BCILAB could not be used in real-time because of conflicts in
signal acquisition performed by the framework. In particular, latencies in-
troduced in data collection produced distortions that prevented the correct
signal filtering and thus reliable classification results. In addition, it has
emerged also that the performance achieved by CSP models trained with
Wyrm are generally higher than those trained with BCILAB, and this is due
to different implementations and default values in the algorithm. These two
aspects justify even further the choice of adopting Wyrm as BCI framework.
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Wyrm BCILAB
Generality Limited - only a few specific

methods are natively imple-
mented

Extensive - many state-of-
the art algorithms are imple-
mented

Extensibility High - can make use of any
Python library

High - can be extended with
MATLAB scripts

User-
friendliness

Limited - the experiments have
to be designed as Python
scripts

High - the experiments can be
run with a GUI

Online
behavior

Solid - it is possible to effec-
tively run online experiments
and there is room for complex
computations

Inadequate - insufficient per-
formance for real-time use

Portability High - written in Python then
it can be ported onto most of
the computer architectures

Limited - written in MATLAB
then it cannot be ported on
ARM architectures (in fact, it
cannot be directly ported onto
the NVIDIA Jetson)

Cost Low - open-source and can
run on any platform support-
ing Python

High - requires MATLAB,
which is a costly commercial
product

Table 3.1: BCI prototyping frameworks comparison

3.1.3 Actuation

As anticipated, the infrastructure has to offline train the models to use online,
so we integrated a component that allows to present audio-visual stimuli to
label acquired data. Moreover, in the literature there are examples of BCI
protocols with feedback and others without feedback, therefore the included
component must be able also to present feedbacks. For this reason we decided
to rely on PsychoPy [18] which is one of the most widely used frameworks in
the neuroscience community for this purpose. It is a free open-source library
allowing to run a wide range of neuroscience, psychology and psychophysics
experiments, written in Python, so it has all the aforementioned advantages
over the corresponding MATLAB counterparts. Besides PsychoPy, some
more advanced packages exist, such Unity and Blender, that are used to
create complex and involving stimulation protocols, for instance by means of
the Virtual Reality (VR).
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To get a more realistic user interaction during the real-time experiments
we implemented the communication with a LEGO MINDSTORMS EV3
robot in order to provide additional feedbacks using its movements.

3.1.4 Architecture

The proposed infrastructure is composed by three main parts, namely signal
acquisition, signal processing and actuation. The signal processing is handled
by Lab Streaming Layer LSL) [8], the signal processing by Wyrm [11] (along
with Mushu [83] for interfacing with LSL) and the actuation by PsychoPy
[18]. All these components have been integrated into an NVIDIA Jetson
TX2 embedded system to achieve the portability goal. LSL is responsible for
networking, synchronization and storage of the biosignals, Wyrm is respon-
sible for preprocessing, feature extraction and classification, and PsychoPy
is responsible for stimulus and feedback presentation.

In practice, the infrastructure is composed of three main softwares that
interact with each other: LabRecorder, which receives the LSL streams and
stores the desired ones, StimulusPresentation, which presents stimuli and
feedback, and Predictor which continuously computes the predictions based
on the received LSL streams and sends them back to StimulusPresentation

in order to present the feedback.
More specifically, the biosignal source devices stream the data, and these

data can be accessed by any program running on machines connected to the
same local network. In this way, both LabRecorder and Predictor can access
the same data simultaneously. While LabRecorder stores them, Predictor

computes the prediction probabilities by means of a pre-trained model fed
by the incoming signals and sends them back to StimulusPresentation

which presents the feedback accordingly. The stimuli presented by
StimulusPresentation are important because they force the users to think
specific tasks and at the same time are used to label the data stored by
LabRecorder. This process is fundamental for the offline analysis used
to train the model used by Predictor to produce the predictions in real-time.

Figure 3.7 represents the employment of the infrastructure in a complex
multi-modal BCI demo experiment. The biosignals are produced by two
headsets (OpenBCI and Enobio). The Enobio transmits signals to the
proprietary acquisition program, named NIC, via Bluetooth low energy
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Figure 3.7: Infrastructure

(BLE). Data is then streamed over the network by means of LSL. The
stream is acquired by LabRecorder that stores the time series, and at the
same time it is acquired also by Predictor by means of the LSL interface
implemented in Mushu. The same route is followed by the OpenBCI
data, with the only difference that the data is reveived via BLE and sent
directly by a program running on the NVIDIA Jetson TX2. In addition to
the two EEG devices, in this demonstration we have introduced also two
accelerometers connected via BLE. An ad-hoc Android application acquires
the data and streams it via LSL. In this way, both the LabRecorder and
the Predictor can acquire the four streams and act accordingly. More
specifically, LabRecorder stores them and Predictor processes them to
produce continuous probability predictions that are sent via socket to the
StimulusPresentation that presents the corresponding feedback on a screen
connected to the Jetson. At the same time specific movement instructions
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Figure 3.8: Experimental validation setting. Two OpenBCI, two accelerometers and
one Enobio are secured to a tube that is rolled to produce simultaneous quasi-sinusoidal
signals captured by the accelerometers integrated in the five devices.

deriving from the computed predictions are delivered to a robot via the
publish-subscribe messaging protocols MQTT.

3.2 Validation

3.2.1 Synchronization

To validate the synchronization capabilities of the infrastructure in a real
mobile context we designed an empirical experiment in which multiple Blue-
tooth low energy devices stream data via LSL.

This experiment is based on the assumption that LSL is able to syn-
chronize incoming streams with 1 ms accuracy, as demonstrated in the LSL
validation presented in Section 3.1.1. Based on this assumption we tried to
estimate the relative misalignment introduced among pairs of devices by the
Bluetooth transmission. The estimate of the misalignment is fundamental
for BCI applications because it determines which analysis can be performed
on the collected data and the maximum prediction frequency.

In particular, in the experiment we secured two OpenBCI, two accelerom-
eters and one Enobio to a tube that we rolled to produce simultaneous quasi-
sinusoidal signals captured by the accelerometers integrated in the five de-
vices. One session was divided in windows (intervals) where the bar was rolled
separated by intervals in order to be able to analyze the alignment between
two signals without worrying about possible large misalignments that could
lead to wrong overlaps breaking the correlation estimate. The windows were
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Figure 3.9: Experimental validation session. The bar is rolled back and forth vari-
ous times within 14 intervals spaced apart. The red line represents the progress of
the relative cumulative delay between one accelerometer (slave) and one OpenBCI
(master).

identified by means of the rolling mean of the signals and a threshold. Each
window was analyzed by computing the cross correlation between two signals
in order to estimate the number of samples of misalignment, and therefore
the temporal delay. The cumulative sum was then computed starting from
the beginning of the session to produce the progress of the relative delay.
Figure 3.9 shows the signal corresponding to the z axis of one accelerometer
of one entire session divided in 14 windows. The red line represents the cu-
mulated delay of the accelerometer with respect to one OpenBCI from the
beginning of the session. As we can see, the mean relative delay is -14.3 ms
(meaning that, on average, the accelerometer1 signals are received 14.3 ms
later than the OpenBCI ones) and the standard deviation is 14.99 ms. As
we have already mentioned, this delay is due to the Bluetooth transmission,
and is two orders of magnitude higher than the uncorrectable one introduced
by LSL. The fact that the standard deviation is in the same order of magni-
tude of the mean value does not allow us to improve alignment because even
though we can reduce the worst case delay by subtracting the mean value
to each timestamp, the order of magnitude of the nominal delays remains
the same. Nevertheless, the nominal values are acceptable for a good deal of
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(a)

(b)

Figure 3.10: One windows of the validation session session: (a) Zoom of one interval
(in yellow) and identification one subwindow (green). (b) Trend of the two signals
within the green subwindow highlighted in Figure (a) with the relative delay estimated
by means of the cross correlation of the two signals.

paradigms, including motor imagery/execution, which is our target.
Figure 3.10 shows one of the windows of the session and outlines the

procedure used to estimate the cumulative delay. In particular, the window
was divided into non-overlapping subwindows and the cross correlation of the
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two signals was computed in a rolling fashion in each of these subwindows.
In this way we were able to track the progress of the delay in each window
and, as a consequence, also in the entire session.

In the figure the same subwindow is presented in two different ways: in the
plot above it is highlighted in green within the respective window, while in the
plot below it is enlarged to show in more details the two signals. The delay
of 8 ms of the accelerometer with respect to the OpenBCI is estimated by
means of the cross correlation between the two signals within the subwindow.

From the experimental validation have emerged two significant issues re-
garding the Bluetooth transmission. First of all, we discovered that the
Enobio continuously loses the connection when other Bluetooth devices are
active in the same area and therefore we haven’t been able to evaluate its rel-
ative delay with respect to other devices. As a consequence, the experimental
validation didn’t take into account the Enobio as the problem is not due to
the infrastructure but it is device specific. However, it is important to note
that the Enobio, which is an expensive laboratory-grade device, can be safely
used in classical BCI experiments in which the only source of information is
the EEG stream since being the only active device it is not affected by the
mentioned problem, rather, it provides much cleaner signals with respect to
the OpenBCI.

The estimated delays of the other devices highlight a positive and a neg-
ative aspect: the positive is that the misalignment introduced by the Blue-
tooth communication is acceptable for the motor imagery paradigm, which
is our target, because the interesting frequencies of the signals are compat-
ible with the measured delays. The negative is that it is not true for all
BCI paradigms, and thus to use the infrastructure in a mobility scenario
for paradigms requiring a more accurate alignment we need to address the
Bluetooth communication issue. For instance, the P300 paradigm requires
sub-millisecond alignment because it is based on the detection of a positive
deflection of the EEG with latency of around 300 ms with respect to the
stimulus, and therefore needs a precise time base.

Figure 3.11 shows the progress of the relative delay of each device com-
pared to one of the two OpenBCI. As we can see the other OpenBCI has a
standard deviation of 61.8 ms, while the two accelerometers remain under
15 ms. We must take into account that the authors of LSL claim that it is
possible to achieve 50 ms accuracy without effort, and it was confirmed by
the order of magnitude shown in the figure despite the Bluetooth burden.
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Figure 3.11: Experimental validation results. Each plot represents the progress of the
relative delay accumulated during the entire session with respect to one of the two
OpenBCI.

Figure 3.12: Execution time of a single pass of Wyrm loop with artificial data.
Source:[11]

Another thing to consider is that the relative delay between the streams of
the two accelerometers is under 1 ms, so it is possible to achieve the desired
accuracy even with BLE devices. Nevertheless, these delays represent a prob-
lem for the analysis of complex high-frequency signals, because they make
undetectable some brain mechanisms, and therefore this issue limits the in-
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frastructure generality. In other words, some BCI paradigms like motor
imagery/execution are feasible, because they don’t require an extremely pre-
cise alignment among the streams, while others, like those based on Evoked
Potentials (e.g., Steady State Visual Evoked Potentials (SSVEP)) are not,
because, for instance, require a more accurate alignment between EEGs and
markers to detect the specific brain patterns.

To this regard, we have identified some possible improvements, mainly
concerning the acquisition devices. For instance, being the OpenBCI open-
hardware, it would be possible to either modify the firmware in order to
continuously estimate the Bluetooth transmission delay or directly integrate
LSL into the Arduino module of the OpenBCI. An alternative, in case these
modifications resulted to be too cumbersome, would be to switch to the WIFI
transmission which has been recently implemented by means of an extension
board. This change would also result in transmission benefits enabling higher
streaming frequencies but at the cost of a dramatically faster battery drain.

3.2.2 Processing

Wyrm is light and low-level, with only few and specific algorithms imple-
mented. However, due to its simplicity (the online evaluation is basically
just the Python loop sketched in the Algorithm 1) it can take advantage of
other Python libraries like MNE [81] and scikit-learn [82] to perform specific
tasks, or even interact with other BCI frameworks written in Python like
BrainDecode.

Algorithm 1 Wyrm loop
while True do

getNewData
convertMushuData
preprocess
updateBuffer
getLastWindow
extractFeatures
predict
sendPrediction

end while

The performance estimated by the authors in terms of execution time
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(a) (b)

Figure 3.13: Execution time of a single pass of Wyrm loop on the NVIDIA Jetson TX2
with real data (without subsampling). (a) Three CSP (left vs right, rest vs right and
rest vs left) (b) The same three CSP plus one CNN (move vs rest) implemented in
BrainDecode.

of a single pass of the loop is presented in Figure 3.12 and is obtained with
synthetic data by varying sampling frequency and number of channels.
The execution time is lower than 10 ms in all concrete configurations
and therefore it is a promising result that paves the way to try more
complex models, such as the Convolutional Neural Networks implemented
in BrainDecode.

Indeed, we evaluated the execution time of the loop in a real context
(i.e., with real EEG data streamed via LSL) with the computation of four
models: three CSP (left vs right, rest vs right and rest vs left) for the 3-class
soft-voting and one CNN implemented in BrainDecode. Figure 3.13 shows
the estimates in two different configurations, namely with and without the
CNN, where the figures have been computed running through the loop 1000
times. The obtained results are interesting because they show that in a real
context with high-frequency incoming signals, the infrastructure is able to
deliver commands, on average up to 40 Hz, and in the worst case up to 33
Hz. This is an important result because originally we were targeting the goal
of reaching 20 Hz of command delivery frequency.

In addition, the comparison of the two plots shows that the introduc-
tion of the CNN produced an overhead of just 4 ms, so it demonstrates the
applicability of Deep Learning methods for real-time EEG analysis.
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3.3 Original work

The original work consists of three main contributions. The first concerns
with the integration of the LSL ecosystem into the NVIDIA Jetson TX2,
and in general into all the devices that require a library to stream or receive
biosignal time series. As explained in Section 3.1.1, apart from adapting
LSL to run on the Jetson, we developed an LSL-capable Android application
to acquire and stream (over LSL) accelerometer and gyroscope data. This
component is essential for the infrastructure because it allows multi-modal
acquisitions involving motion detection, that is needed by self-paced motor
execution BCI experiments, i.e., more natural experiments where the users
perform the actions independently, without the presentation of stimuli
imposing the action to perform.

The second contribution is the validation of the streaming and synchro-
nization capabilities of the infrastructure in a complex acquisition with
several devices streaming data via Bluetooth low energy (BLE). It was
tested in an experimental setting taking advantage of the accelerometers
integrated in the EEG headsets, thus without making use of expensive
hardware. The validation demonstrates that in acquisitions involving
multiple devices streaming via Bluetooth is hard to obtain synchronization
accuracies lower than 100 ms, and in some cases it is even impossible to
acquire data because of conflicts in transmission medium sharing. It is im-
portant to estimate the lower bound of synchronization capabilities because
it determines which BCI paradigms can be analyzed (for instance P300
ERPs cannot be analyzed because they need a much finer alignment) and
the frequency at which the model can be interrogated to compute predictions.

The third, and most important, contribution regards the implementation
of the softwares constituting the BCI and the design of their orchestration in
order to operate in real-time. The core of the infrastructure is the Predictor

program which is based on Wyrm and Mushu. It continuously acquires data
from LSL and computes the predictions according to a pre-trained model.
These predictions are sent to the StimulusPresentation program which per-
forms actions like presenting a feedback and/or sending commands to an
actuator.

This infrastructure has been designed to be flexible and modular: it
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is possible to collect data from many different devices in a transparent
way, provided that they can stream data via LSL, and also query differ-
ent Predictor programs simultaneously and aggregate the outputs in the
StimulusPresentation program in order to enhance the classification per-
formance. As we have highlighted in this chapter, the real-time behavior
is a crucial aspect for BCIs, and designing an infrastructure that can work
online is a very hard task, mostly because the signals arrive at very high fre-
quencies and therefore all the computation needs to be performed very fast.
This aspect is even more relevant if we want to perform such computations
on an embedded system to achieve portability. To succeed in this purpose
we tried different BCI frameworks to test the respective online performance.
The definitive choice has fallen on the most lightweight and minimal one
to reduced the computational burden avoiding fancy computations. This
choice affected the generality of the infrastructure because more complex
frameworks like BCILAB provide a greater variety of methods for many BCI
paradigms, while Wyrm has only a few and very specific methods natively
implemented. Nevertheless, it is extensible and, at the same time, can make
use of other python frameworks like MNE [81] and Scikit-learn [82] for specific
tasks in the computation.



Chapter 4
Proof of concept

4.1 Experimental setup

The infrastructure described in the previous chapter was tested in prototyp-
ing a motor imagery/execution BCI system able to recognize in real-time
brain patterns associated with two different intentions, namely left and right
hand movement. In the experiment we have been able to use the Enobio
acquisition device because its Bluetooth issues did not affect the motor im-
agery/execution paradigm. In this scenario EEG signals are the only source
of information, and thus no conflicts in transmission medium sharing were
present.

As first step we acquired the calibration datasets from four different sub-
jects. These datasets are made up of different sessions in which subjects were
instructed, by means of specific visual stimuli presented by StimulusPresen-
tation, to imagine and execute the target actions. The resultant datasets
are composed of a series of trials, marked according to the presented visual
stimuli. These markers were sent via LSL by StimulusPresentation at the
same time as the visual stimuli presentation.
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Figure 4.1: Acquisition protocol.

In the second phase, the calibration datasets were used to train subject-
specific models needed to recognize the mental states hidden in the subse-
quent feedback sessions. Models were based on some of the state-of-the-art
methods found in the literature, in particular we investigated the most used
variants of the Common Spatial Pattern (CSP) and the Convolutional Neural
Networks (CNN) implemented in BrainDecode.

The aim of the experiment was twofold: on the one hand we wanted to
test the infrastructure capabilities in the phases necessary to build a BCI, in
particular data acquisition and model training, and on the other we wanted
to build a preliminary BCI having sufficient discrimination performance to
be used as baseline for future developments. Indeed, we have been able to use
the infrastructure to acquire structured datasets and to use them to train the
BCI models with the framework of choice, achieving an offline classification
accuracy of 75% for three of the four subjects both in motor imagery and
motor execution, which is a promising result that can be considered as a
reliable baseline for future improvements.

4.1.1 Dataset acquisition

To record the calibration datasets we designed a specific stimulation protocol
that allowed to discriminate the two intentions both in motor imagery and in
motor execution in order to extract useful insights about the brain patterns
involved.

The protocol is depicted in Figure 4.1 and is composed of the following
steps:
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• Each trial begins with the presentation of a small cross at the center of
the screen. The cross is kept on the screen for the whole trial and its
purpose is twofold: it indicates the beginning of the trial and instructs
the subject to focus on a fixed point of the screen in order to avoid
ocular artifacts.

• After 1 second from the presentation of the cross, the trial cue is dis-
played to indicate the beginning of the motor imagery interval. It lasts
2 seconds, and during this period the subjects are instructed to imagine
the respective hand movement (or absence of movement in case of rest
trials). The cue is presented close to the cross in order to avoid ocular
saccades, and corresponds to an arrow pointing either left or right or
another rotated cross overlaid with the fixation one (rest trial).

• After the 2 seconds a little green circle appears in the center of the
fixation cross to indicate the beginning of the motor execution interval
for 4 seconds. At the same time, a feedback bar identical to the one
presented in the feedback sessions, starts to move at constant speed in
the direction indicated by the arrow. The speed is computed so that
the bar reaches the end exactly after 4 seconds.

• Between the end of one trial and the beginning of the next one, an
interval of random duration (from 1.5 second to 2 seconds) is introduced
to allow the subjects to recover from the tiring activity. We used a
random duration interval to avoid expectation effects.

The presentation of the feedback bar in the calibration session avoids
evoking different brain mechanisms that could lead to inconsistencies with
respect to feedback sessions.

A calibration dataset corresponds to one session. It is divided in 3 runs
of 42 randomly distributed trials, for a total of 126 trials evenly distributed
among the classes of interest. This means that a calibration dataset contains
42 trials for each class (left, right and rest). The rest trials are recorded
for future developments involving also the corresponding absence of move-
ment intention. Before the first run of each session we recorded a sequence
of induced artifacts like blinks, horizontal and vertical eye movements, jaw
clenches and swallowings to use in the offline analysis for artifact rejection
(by means of a specific pipeline for bad channel identification, bad epochs
and artifact rejection not described in this work).



58 Proof of concept

Figure 4.2: Adopted electrodes montage (10-20 system). Reference and Ground are
placed on the same ear lobe.

As we have already mentioned, we used the Enobio acquisition device to
acquire the EEG signals arranging the 20 dry electrodes according to the
montage shown in Figure 4.2, where Ground and Reference were placed on
the same ear lobe.

To mark the trials, the StimulusPresentation pushes on an LSL stream
the marker associated to the cue in the exact moment it is displayed. In
this way, during offline analysis it is possible to recover the epochs related
to the different classes. Alignment of the markers with the EEG signals is
performed by the storage program (LabRecorder).

4.1.2 Model training

Based on the neuroscientific literature and past BCI competitions results, we
decided to adopt the Common Spatial Pattern (CSP) as feature extraction
method. It provides state-of-the-art performance and requires relatively low
computational power, thus is well suited for real-time. We experimented with
the FBCSP, SpecCSP and RCSP variants for the automatic tuning of the
hyperparameters and regularization, but we did not obtained improvements
despite the increase in complexity and computational time. For this reason
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(a) (b)

(c) (d)

Figure 4.3: Grid search for width and position of the best window computed with
Wyrm (subject = S3, number of patterns = 3, classifier = LDA). (a) Width = 500,
(b) Width = 1000, (c) Width = 1500, (d) Width = 2000.

we focused on the classical CSP and we manually performed the tuning of the
hyperparameters by means of a grid search. The selected hyperparameters
are:

• Subject-specific frequency bands of the pass-band FIR filter used in the
preprocessing phase.
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• Width of the window for the computation of the spatial filter. This
parameter affects both performances and responsiveness of the system.

• Position of the window within the epochs. This depends on subject-
specific brain mechanisms and concentration ability.

• Number of patterns.

We performed the grid search experimenting with two different classifiers,
namely Linear Discriminant Analysis (LDA) and Support Vector Machines
(SVM), and we obtained the best results with the former.

Figure 4.3 shows results for the best subject data (S3) by keeping number
of patterns (3) and classifier (LDA) fixed. Before computing the spatial filter
data were subsampled from 500 Hz to 100 Hz and band-pass filtered between
4 and 30 Hz (subject-specific frequency band identified by means of a visual
inspection of the Power Spectral Density (PSD) computed on the previous
sessions data).

Each of the four plots shows the performance progress (i.e., the evalu-
ated probability of the true label) along the trial produced by models with
windows of same size. Each line represents the average progress of the corre-
sponding model computed with a 10-fold cross validation. For instance, the
blue line of Figure 4.3 (a) represents the performance of the model trained us-
ing the widow [-1250, -750] evaluated in all time instants of the trial. In this
way, we can evaluate the performance of all trained model as if they were
interrogated in real-time for the whole trial duration. This method gives
an approximation of the performance a model trained in a specific window
would have in all the time instances of the trial, thus spanning from motor
imagery to motor execution. This is particularly evident because some mod-
els perform well mostly in the second part of the trial (motor execution) while
others perform well mostly in the first part of the trial (motor imagery).

To evaluate the quality of a model we use also two other metrics, that
are responsiveness and robustness. Responsiveness can be characterized as
the time needed by the model to reach the maximum performance after the
beginning of the task, whereas Robustness corresponds to the duration of the
interval in which the model manages to maintain maximum performance.

Considering the three metrics together, the best motor imagery model
for subject S3 is the one computed extracting the window [-1500, -500]
(Figure 4.3 (b)) because it achieves the best overall performance and, at the
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Figure 4.4: CSP patterns of the best model.

same time, it is the one reaching the best performance earlier. In addition,
it also robust because the best performances are maintained for almost 1 s.
To the same extent, the best motor execution model for subject S3 is the
one computed extracting the window [1000, 3000] (Figure 4.3 (d)).

Figure 4.4 shows the six scalp maps (2D interpolations of the channel
weights given the channel positions) corresponding to the 3 spatial patterns
of the best motor imagery model of subject S3. As we explained in Section
2.2.3, the first and last m columns of the inverse of the projection matrix W
represent the patterns corresponding to the m most discriminative spatial
filters that are used to extract the features for classification.

The analysis of brain signals is, in general, a challenging task for a number
of reasons. The two most critical are variability across different subjects
of the brain mechanisms underlying the various intentions, and their non-
stationarity across different sessions.

This aspect is evident as we have not been able to reach satisfactory
results with one subject and even with the other three subjects we have
experienced difficulties in training models able go generalize across different
sessions. This aspect is one of the main challenges of the BCI field and is
generally due to slight differences in the electrodes disposition in different
sessions, but can also be due to changes in the environmental conditions that
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Figure 4.5: Snapshot of the feedback session.

affect users concentration.
However, the solution of these issues was not among the objectives of

this thesis, rather we wanted to build an infrastructure allowing an agile
training and implementation of BCIs on a single portable platform, and the
fact that subjects need ad-hoc models continuously trained to cope with
non-stationarity further reinforces the NVIDIA Jetson choice.

4.1.3 Feedback sessions

To further evaluate real-time performance of the infrastructure and quality
of the trained models, we run a series of feedback sessions in which the feed-
back bar movement was controlled by the continuous estimated probabilities
output by the Predictor according to the aggregation formula

p = (p′ ∗ 0.02) + (p ∗ 0.98). (4.1)

We decided to aggregate the probabilities for two reasons: firstly, we
wanted to incorporate in the instantaneous feedback value also past predic-
tions to create a robust averaged aggregated value, secondly we wanted to
smooth the movement of the bar not to distract the subjects in case of spikes
of the instantaneous predicted probability. To do so, we assign to the last
produced prediction a small “weight” of 0.02 giving greater importance to
accumulated past predictions. A snapshot of one of these feedback sessions
is shown in Figure 4.5.

In the feedback sessions we also started experimenting with the control
of the robot by means of commands issued based on the progress of the
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Figure 4.6: Reproduction of a feedback session snapshot. The progress of the aggre-
gated probability of “right” class used as feedback is reproduced in retrospect from
one stored dataset

aggregated probability. In this way we tested the full pipeline and the real-
time communication for the coming developments. To manage a simplified
context, we opted to send a command in a single-trial fashion (i.e., once for
each trial) once the accumulated prediction probability of the trial reached
a threshold. If no threshold was reached, no command was issued. The
accumulated probability was reset to 0.5 (even probability for left and right)
at the beginning of each trial, and the beginning of the aggregation started
only once the buffer of length equal to the model window was full. This
paradigm was set up just for preliminary evaluation purposes, but it could be
easily extended to a non-cued scenario where the commends are continuously
sent based on more complex decisions.

Figure 4.6 shows the reproduction in retrospect of the aggregated proba-
bility presented as feedback to subject S3 in one of the few successful feedback
sessions. In general, we have been able to achieve a minimum model gener-
ality across different sessions only with subject S3.

In the figure, Cyan intervals correspond to “right” trials, while yellow
intervals correspond to “left”. The presented feedback corresponds to the
aggregated probability of “right” class.

As we can see in the figure, the accuracy of the model in the presented
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(a) (b)

(c) (d)

Figure 4.7: Model performance (best window highlighted in green) with identification
of the command-delivery threshold set 5% lower than the maximum probability. Upper
and lower error bars correspond to the misclassification error of “right” and “left”
respectively. (a) S1, (b) S2, (c) S3, (d) S4.

snapshot is 66,6% (16 correctly classified trials out of 24, since in “left” trials
the “right” probability should decrease under 0.5, whereas it shouls increase
above 0.5 in “right” trials). However, considering that the model was trained
using motor imagery data, with a low command-delivery thresholds like 0.55
(right) and 0.45 (left) the real-time performance can be increased to more
than 70% by giving higher importance to the progress of the aggregated prob-
ability in the motor imagery interval (before the vertical dashed lines). A
similar reasoning can be used to choose an greater command-delivery thresh-
old if a motor execution model is used.
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The threshold is small compared to the classification probabilities
produced by the model because it is used with the aggregated probability,
which takes longer to reach high values due to the weight of 0.02 assigned to
new probabilities. An alternative way to trigger the command delivery could
be to use a threshold associated directly to the raw prediction probability
at each time point, and an empirical procedure to choose this threshold
is depicted in Figure 4.7, where it set to 95% of the maximum reached
probability, where the percentage can be decided based on the application
level of criticality.

In general, the command-delivery threshold is strictly model dependent
and very difficult to tune. In addition, we experienced difficulties in achieving
model generalization across different sessions and therefore we leave the work
of improving feedback session behavior to future developments.

4.2 Results

As we have seen in Figures 4.3 and 4.7, obtained results are promising because
we achieved an offline accuracy of 75% for three of the four subjects both in
motor imagery and motor execution. In particular the performances of the
best models trained with Wyrm (CSP for feature extraction and LDA for
classification) are summarized in Table 4.1.

S1 S2 S3 S4
[%] [%] [%] [%]

CSP 76.2 64.1 83.1 78.4

Table 4.1: Wyrm results (left vs right, see Figure 4.7)

As we mentioned, we decided to adopt the classical CSP for feature ex-
traction and LDA as classifier after an evaluation of the performance of
some alternatives. In this regard, we compared the results of the classi-
cal CSP against those of FBCSP, RCSP and SpecCSP, evaluating also the
differences using LDA and SVM as classifiers. This evaluation was carried
out with BCILAB because the three CSP variants are not implemented in
Whyrm. The best results adopting LDA and SVM as classifier (by varying
CSP algorithm) are summarized in Tables 4.2 and 4.3 respectively.
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S1 S2 S3 S4 Computation
time

[%] [%] [%] [%] [s]
CSP 66.1 63.5 80.5 66.3 5
FBCSP 61.0 64.1 78.4 65.5 10
RCSP 62.3 58.0 69.0 62.8 137
SpecCSP 64.2 61.8 77.1 62.3 185

Table 4.2: xCSP comparison with BCILAB (window width = 1 s, classifier = LDA)

S1 S2 S3 S4 Computation
time

[%] [%] [%] [%] [s]
CSP 64.2 64.0 78.3 65.8 128
FBCSP 58.6 57.5 72.5 59.7 250
RCSP 61.2 56.8 69.8 59.0 971
SpecCSP 64.4 59.7 75.0 65.2 185

Table 4.3: xCSP comparison with BCILAB (window width = 1 s, classifier = SVM)

As we can see from the comparison of Tables 4.2 and 4.1, the performance
of signal processing model composed of CSP and LDA is substantially differ-
ent between BCILAB and Wyrm implementations (the maximum difference
is 12.1% relative to subject S4). This can be explained by the different
libraries used to implement the covariance estimates of CSP and by the dif-
ferent default values assigned to the LDA algorithm by the two frameworks.
In any case Wyrm obtains the best results with all four subjects, and this
further reinforces the choice of its adoption in the architecture design.

To conclude the investigation of the frameworks, we also experimented
with the CNNs implemented in Brain Decode. The work conducted in this
thesis has arrived up to the analysis of “move” vs “rest” configuration, leaving
more complex analysis for future developments. The results are summarized
in Table 4.4, and have been obtained with a shallow CNN inspired by the
FBCSP pipeline (see [63]).
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S1 S2 S3 S4
[%] [%] [%] [%]

CNN 62.7 65.8 66.7 65.4

Table 4.4: BrainDecode results [move vs rest].

4.3 Original work

Regarding the BCI system implemented to test the infrastructure, the origi-
nal work consists of two main contributions.

The first refers to design and implementation of the protocol used dur-
ing data acquisition to instruct the users to think at the specific actions we
wanted to discriminate. The peculiarity of the designed protocol is that it
comprehends in each trial both motor imagery and motor execution inter-
vals, with the objective of collecting datasets allowing to discriminate the
two intentions both in motor imagery and in motor execution in order to ex-
tract useful insights about the brain patterns in the two different paradigms.
We also implemented the feedback delivery system whose peculiarity is the
usage of aggregated prediction probabilities in order to incorporate in the
instantaneous feedback also past predictions to make it smoother and more
robust.

The second contribution consists in the entire analysis that has led us
to the identification of a models effectively able to detect hand movement
intentions and executions. To achieve this result we evaluated different model
families available in literature and, once identified the most suitable to our
purpose, namely the Common Spatial Pattern, we investigated some variants
and the specific hyperparameters following a grid search approach. One
remarkable characteristic of the implemented grid search is the evaluation
procedure, which has been expressly designed to consider as metric not only
the absolute best performance as in a single-trial fashion, but also the running
performance along the whole trial length in order to consider also robustness
and reactivity of the models. This choice was made because the progress
of the prediction performance (enhanced with the breakdown of single class
performances) along an evaluation interval was much more informative than
the single best point, especially considering that our objective was to use
these predictions continuously to present a feedback (see Figure 4.7). By
using this method we have been able to train models able to achieve around
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75% of accuracy in offline binary (“left” vs “right”) classification.
In addition we also started investigating Brain Decode capabilities in

EEG analysis. In particular, we trained and run on the NVIDIA Jetson TX2
deep models (CNNs) achieving an average performance of 65.1% among four
subjects in the “move” vs “rest” configuration, i.e., discrimination of left and
right together against rest, and the results are summarized in Table 4.4.



Chapter 5
Conclusions and future work

The work of this thesis has been conducted in collaboration with Camlin
Italy, which is the competence center in Data Science and Artificial
Intelligence within CAMLIN, specialized in development and application of
Machine Learning algorithms in sectors like power, health and rail.

This thesis aimed at building a portable and flexible infrastructure
for prototyping BCIs to facilitate development and deployment, speeding
up performance improvement and real-life adoption. To achieve this goal
we integrated all the components necessary to prototype a BCI into the
NVIDIA Jetson TX2 embedded system. In particular, we integrated
LSL for signal synchronization, Wyrm for model building and real-time
operation, and PsychoPy for stimulus and feedback presentation. During
the development of the system we faced four main challenges:

• synchronization involving multiple devices streaming via Bluetooth is
not sufficiently accurate for all BCI paradigms;



70 Conclusions and future work

• issues in guaranteeing BCIs operating in real-time: not all the BCI
frameworks are suitable for the purpose;

• brain signals are extremely sensitive to artifacts and non-stationary;

• patterns used by CSP method do not appear in all subjects’ brain
activity.

The main objective of the thesis has been achieved since we built a
portable infrastructure with which we prototyped a BCI able to operate in
real-time. The most interesting aspect of the proposed infrastructure is that
it is able to produce prediction probabilities with complex models like CNNs
up to a frequency of 30 Hz.

The work done is valuable because it proposes an infrastructure that is
compatible with integration and deployment on the platform of state-of-the-
art softwares like autoreject [84] and the MNE [81] implementation of ICA
already used by the BCI team of company to address the artifact removal
challenge. In particular, this work paves the way for tackling the artifact
removal challenges also in a real-time context.

The proposed infrastructure aims to become the general solution for BCI
research and development and therefore we need to complete the work re-
lated to the streams synchronization by characterizing the transmission de-
lays introduced by Bluetooth communication channel and individual devices.
The BCI team of the company implemented a system written in LabVIEW
running on a National Instruments platform that will provide an absolute
reference (characterization of the master device) to the module implemented
in this thesis work to validate the synchronization. In this way we will be
able to characterize each single device involved in the acquisitions.

Concerning the BCI experiment, we achieved promising binary classi-
fication accuracies around 75% with three out of the four subjects despite
little effort has been done to remove potential artifacts. We also started
investigating the real-time behavior of the models in feedback sessions for
controlling the robot, but due to the experienced difficulties in achieving
model generality across different sessions we leave it to future developments.

Considering the infrastructure so far developed, some possible future de-
velopments are:
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• integration of LSL-style continuous delay estimation mechanisms in
every acquisition device to mitigate Bluetooth transmission issues;

• enhancement of BCI models generalization across sessions to improve
feedback reliability;

• robust discrimination of the third class (rest);

• integration of an online algorithm for artifact removal to improve ac-
curacy of the model;

• deeper investigation of deep learning approaches and their adoption in
BCIs for automatic feature extraction;

• enhancement of BCI systems with continuous learning approaches.
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