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Abstract

The definition of flight control laws is one of the most demanding activities in the

process of designing remote-controlled multirotor systems. Typically, the controller

is synthesised by means of techniques that rely on a prior modelling of the real

plant, which however frequently neglects some significant dynamic effects. To en-

sure robustness with respect to model uncertainties, a clear degradation of controlled

system performance in favour of stability is necessary. Data-driven tuning methods,

in contrast, do not require an accurate knowledge of the model, thus eliminating the

problem of under-modelling and therefore representing an efficient alternative in the

design of flight control laws. The purpose of this thesis is to extend the data-driven

methods available in the literature to tune both the attitude and the position PID

controllers of a small-scale quadrotor of the Micro Aerial Vehicles (MAVs) class. In

particular, the data-driven methods discussed in the literature present some limita-

tions that hinder their diffusion in the multirotor design framework and make them

totally unsuitable for any potential application in the helicopter industry. As part of

the present work, it has been shown that a data-driven method guaranteeing a-priori

closed-loop stability can be effectively implemented, thereby making the subsequent

experimental validation test virtually risk-free. In addition, by extending the Virtual

Reference Feedback Tuning (VRFT) algorithm, it has been possible to apply it to

closed-loop collected data. The resulting controller showed similar performance to

that obtained with open-loop collected data, while ensuring a significant simplifica-

tion of the tuning process. Finally, experimental tests have shown that data-driven

methods can provide performance comparable to model-based methods such as the

H∞, but requiring only one experimental test. These results pave the way for the

potential adoption of the proposed tuning approaches in the helicopter industry.





Sommario

La definizione delle leggi di controllo è una delle attività più onerose nel progetto

di sistemi multirotore a pilotaggio remoto. La sintesi del controllore è tipicamente

affidata a tecniche basate su una preventiva modellazione del sistema reale, la quale

però spesso trascura importanti dinamiche. Dovendo garantire robustezza rispetto a

tali incertezze di modello, si impone un decisivo degrado delle prestazioni del sistema

controllato a favore della stabilità. Le tecniche di taratura data-driven, al contrario,

non richiedono una conoscenza accurata del modello, eliminando dunque il proble-

ma delle dinamiche non modellate e rappresentando perciò una valida alternativa

nella progettazione delle leggi di controllo. Lo scopo del presente lavoro di tesi è

quello di estendere le tecniche data-driven presenti in letteratura, al fine di tarare i

controllori PID di assetto e posizione di un quadrirotore appartenente alla categoria

dei Micro Aerial Vehicles (MAVs). In particolare, i metodi data-driven discussi in

letteratura presentano limitazioni che ne ostacolano la diffusione nel progetto di

multirotori e li rendono totalmente inadatti a un’eventuale applicazione in ambito

elicotteristico. Nell’ambito del lavoro svolto, è stato dimostrato come sia possibile

realizzare un controllore mediante tecnica data-driven che garantisca, a priori, la

stabilità del sistema controllato, rendendo virtualmente priva di rischi la prova speri-

mentale di validazione. Inoltre, mediante estensione dell’algoritmo VRFT (Virtual

Reference Feedback Tuning), è stato possibile applicarlo, per la prima volta, a dati

raccolti in anello chiuso. Il controllore cos̀ı realizzato ha dimostrato prestazioni

paragonabili alla controparte ottenuta con dati raccolti in anello aperto, con notevole

semplificazione del processo di taratura. Infine, le prove sperimentali effettuate

hanno dimostrato che, mediante metodi data-driven, è possibile ottenere prestazioni

paragonabili a quelle proprie dei metodi model-based come l’H∞, richiedendo però

una sola prova sperimentale. Tutto ciò apre di fatto la strada al potenziale impiego

del metodo di taratura proposto in campo elicotteristico.
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Chapter 1

Introduction

One of the main objectives of control theory is to design a specific controller that

drives the output of a plant to track a defined setpoint signal or to satisfy a design

target.

In the model-based approach a mathematical model of the plant is required to

obtain the specific controller. Modelling the plant is necessary for this type of meth-

ods and it represents one of the most delicate and difficult steps in model-based

methods. As described in [1, 2], model identification can be adopted to obtain the

plant model exploiting measured data from experimental tests on the true system.

Different identification techniques can be used to get the model of the plant: in the

black-box framework the model is obtained directly and solely from the measured

input-output data, whereas exploiting grey-box algorithms, a physically-motivated

model is first derived from first principle considerations and then the model pa-

rameters are calibrated with the measured experimental data. However, even if the

most advanced identification method is employed, the model always represents an

approximation of the true system and some errors are inevitable. Consequently,

since the model-based approach is based on the assumption that the plant model

represents the true system, this methods is inherently less safe and less robust due to

the unmodelled dynamics. Robust control theory was born to deal with this kind of

problems including additive and multiplicative descriptions and the assumption of

bound on noise or model uncertainties. Furthermore, even if the model is accurate

but the assumptions on the system are not correct, the results on the convergence

and robustness of the closed-loop system are not always valuable.

Since in this work control theory is applied to an UAV, the state of the art of

system identification for UAVs must be considered. System identification is now a

well established approach for the development of control oriented models in the ro-



2 Introduction

torcraft field (see, e.g., [3, 4, 5] and the references therein). Though the application

to full scale rotorcraft is by now fairly mature, less experience has been gathered

on small-scale vehicles. In particular, it is apparent from the literature that mathe-

matical models for UAV dynamics are easy to establish as far as the kinematics and

dynamics of linear and angular motion are concerned, so that a large portion of the

available works dealing with UAV control is based on such models. Unfortunately,

characterising aerodynamic effects and additional dynamics such as, e.g., due to ac-

tuators and sensors, is far from trivial, and has led to an increasing interest in the

experimental characterisation of the dynamic response of UAVs.

Usually, trying to characterise difficult effects produces a complex model that

cannot be used for controller design. Indeed, a model with a high order or a high

level of nonlinearity leads to controllers with high order and high nonlinearity. Thus,

a controller reduction procedure is inevitable since controllers that are too complex

could be difficult or costly to design, use and maintain. This step is generally

problematic since any stability guarantees that were formulated for the full-order

controller may not transfer to the reduced-order one. Furthermore, whilst the op-

timality of the full-order controller can be guaranteed, that is not the case for the

reduced-controller.

In many applications the structure of the controller is predetermined. Many

industrial processes, for example, use predefined PID controllers and the procedure is

limited to tuning the PID gains. Tuning only the controller gains starting from a full-

order controller is far from trivial. For this reason, the full-order controller cannot

be employed and structured model-based control techniques have been developed.

To overcome all these limitations, the data-driven control approach emerges as

a valuable solution to obtain the specific controller. Since the main feature of these

methods is the ability to obtain or tune a controller directly from experimental input-

output plant data, they have been proposed to avoid the problem of under-modelling

and to facilitate the design of fixed-order controllers. Data-driven algorithms skip

the modelling phase almost entirely and instead reformulate the controller tuning

procedure as a parameter optimisation problem in which the optimisation is carried

out directly on the controller parameters. Furthermore, the achieved performance

of the controllers is not linked to the techniques used to model the plant or the

order of the identified plant model. It emerges that the main difference between

model-based and data-driven approaches is whether the plant model is involved

in the controller design. From this point of view, the data-driven class includes

also methods that are not strictly related to the control community such as neural

network based control methods or fuzzy control methods (see [6]). Several data-
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driven control design algorithms have been proposed recently. Compared to the

work in [7] which was focused on PID controllers and exploited simple empirical

rules, the new data-driven methods are based on a rigorous mathematical analysis

and under certain reasonable assumptions, they can guarantee also the stability of

the closed-loop system. The data-driven algorithms considered in this work are also

computationally efficient: this allows a fast re-tuning of the controller when the plant

performance is reduced (e.g., components ageing) or when the operating conditions

change (e.g., different payload or environment).

As other control strategies, data-driven methods are not omnipotent. Certain

assumptions must be made before applying these algorithms and, considering the

data-driven methods employed in this work, some of these assumptions involve the

system to control (such as, e.g., achievable closed-loop bandwidth, dominant dy-

namics, presence of time-delays). Without this information, obtaining a satisfactory

tuning can be challenging, as the choice of an unattainable closed-loop reference

model can lead to poor performance (not unlike erroneous structure selection in

model identification problems). The reader must not be surprised by this statement.

Indeed, the amount of required plant information is less than in the model-based

framework and, as will be explained in the following chapters, this information is

usually available from the plant manufacturer or can be obtained with simple open-

loop or closed-loop tests. Furthermore, some new definitions must be coined for these

methods such as robustness. Indeed, since these algorithms do not involve directly

the plant model and neither the unmodelled dynamics, the traditional definition of

robustness is no longer valid.

At this point where the data-driven framework is introduced, the reader might

wonder if data-driven methods perform better than model-based methods. Recall-

ing the results in [8], if the evaluation criterion is the variance of the controller

parameters, then the model-based approach achieves better results, since it has

been shown that an approach based on two optimisation steps is statistically effi-

cient (see again [8] and the references therein). Nevertheless, the previous criterion

represents only an intermediate step toward the evaluation of the methods. As will

be explained in the next chapter, where model reference control and the cost crite-

rion are presented, if the control cost achieved by the designed controller is taken

into account, the following considerations are valid:

• if the model structure is perfectly known and the model order is low, the

model-based approach is theoretically always the best approach.

• If the model structure is not completely known and/or a high order model is
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identified, the data-driven approach can statistically outperform the model-

based solution in terms of the control cost, even if the variance of the param-

eters remains larger.

• Because in the real world the model structure is never perfectly known and

under-modelling can not be avoided with a low-order model, the data-driven

approach may give better results in real applications.

The previous considerations are the conclusion of [8] and they are here reported

for the sake of clarity. Furthermore, in order to achieve a statistically efficient

estimate, the model-based approach requires both the system and the noise model

to be correctly parametrised. Finally, the data-driven approach leads to a convex

optimisation problem if the controller is linearly parametrised whereas the model-

based approach requires that both the controller and the plant model are linearly

parametrised.

In recent the literature, the validity of data-driven methods for UAV control law

tuning has been verified. In particular, in [9, 10] the data-driven tuning approach

has been applied to a large multirotor platform (5 kg Take-Off Weight (TOW))

characterised by attitude control via collective blade pitch. In [11] similar analyses

have been carried out on a medium-sized quadrotor (1.5 kg TOW) with variable-

speed, fixed-pitch rotors. The main purpose of this thesis is to extend the analyses

made so far by considering a Micro Aerial Vehicle (MAV), i.e. a small UAV with a

TOW of about 200 g. Besides validating previous results, the following objectives

have been pursued and successfully achieved:

• validate a data-driven algorithm with a stability constraint for attitude control;

• exploit the attitude controller to achieve position tracking via a cascade control

paradigm and tune the outer-loop position controller by means of a data-driven

algorithm;

• extend a data-driven algorithm to deal with data obtained from flight tests

performed in closed-loop conditions.
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Structure of the thesis

This thesis is organised as follows:

• Chapter 2: Overview of data-driven tuning methods. An overview

of model reference control and data-driven methods is provided and the most

promising algorithms are illustrated in detail.

• Chapter 3: UAV control architectures. After providing an explanation

of how the overall control system of a generic multirotor platform works, the

control architectures of the quadrotor adopted in this thesis are shown. In

particular, the unknown controller parameters that need to be tuned are illus-

trated for each control architecture.

• Chapter 4: Data-driven algorithms for multirotor systems. All the

extensions of data-driven methods, made as part of this thesis, are discussed.

The main extension involves the possibility to tune the controller with experi-

mental data obtained from closed-loop flight tests. Furthermore, the methods

presented in Chapter 2 are extended to deal with the control problem illus-

trated in Chapter 3.

• Chapter 5: The ANT-1 MAV platform. After a brief overview of MAVs,

the considerd multirotor platform is presented in detail. In the last part of

this chapter, the test-bed is described.

• Chapter 6: Results. In this chapter all the results are thoroughly discussed.

First, all the data-driven tunings of the attitude controller are compared with

each other and with pre-existing model-based and manual tunings. Then, the

results obtained with closed-loop collected data are compared with that of the

open-loop ones. Finally, the tracking performance of the data-driven tuned

position controller is shown.

• Chapter 7: Conclusions and future developments. Some considerations

on the results are drawn and suggestions for future developments are provided.





Chapter 2

Overview of data-driven tuning

methods

Since data-driven methods are still in their infancy, different names are used in

the literature to describe this kind of algorithms: data-driven, data-based, model-

free. . . The term data-driven was first proposed in computer science but it recently

entered also the vocabulary of several researchers in the control community. As was

presented in Chapter 1, these methods were born to overcome the limitations of

model-based methods and this goal can be accomplished in different ways.

The first classification of the data-driven methods considers the structure of

the controller: some data-driven algorithms are able to tune only the unknown

parameters of a fixed-structure controller, others implicitly involve the plant model

structure and lead to a controller structure that is not fixed a priori (see [6]). The

first class of data-driven methods is considered in this work since the main goal is to

tune controllers with a fixed structure. Indeed, in most practical cases, changing the

controller structure is not feasible (e.g., the controller source code is not available).

Furthermore, in the UAV considered in this work, pre-existing controller tun-

ings obtained with model-based and manual methods were available, so the new

data-driven tunings have been compared with the previously defined ones without

changing the controller architecture. The determination of the control structure

goes beyond the scope of this work, but an alternative PID structure had to be

implemented in order to execute and compare all the algorithms described below.

The data-driven algorithms can be classified also on how they obtain the opti-

mal tuning. Some methods employ an iterative procedure. The Iterative Feedback

Tuning (IFT) method, that was first proposed in [12, 13] belongs to this class and

it was considered at the beginning of this work. It involves an iterative optimisation
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of the parameters of the structured controller according to an estimated gradient

of a control performance criterion. It is comparatively slow and requires several

experiments on the plant at each iteration. Moreover it can only guarantee that the

result is close to the local minimum of the cost function. Due to all these significant

drawbacks the IFT method was not considered in this thesis.

Beside iterative algorithms, the class of non-iterative methods proposes a more

attractive perspective to tune the controller parameters. Instead of performing mul-

tiple experiment on the process, the non-iterative methods are computationally ef-

ficient: they can be called also one-shot algorithms in the sense that a single batch

of experimental data is used to solve the optimisation problem. Thus they allow

also a fast re-tuning of the controller when the plant performance is reduced (e.g.,

components ageing) or operating conditions change (e.g., different payloads or en-

vironment). Virtual Reference Feedback Tuning (VRFT) and Correlation-based

Tuning (CbT) belong to this class and they are presented in detail in the next sec-

tions. Furthermore, in [14], VRFT was already extended to tune a cascade control

system with data from a single experiment and this makes VRFT the best candidate

to solve the tuning problem since the UAV exploits cascade control architectures, as

will be illustrated in Chapter 3.

Since the data-driven methods do not explicitly involve the plant model, it is

far from straightforward to ensure stability constraints on the closed-loop system.

Indeed, the VRFT method considers only the performance of the closed-loop sys-

tem, minimising the discrepancy between the desired an the actual input-output

behaviour. CbT, as presented in [15], allows to consider also the stability constraint

exploiting the small-gain theorem. The stability condition in the CbT algorithm

involves the discrepancy between the actual controller and a stabilising controller

previously defined (see again [15] for more details). Usually this controller is used to

collect the data in a closed-loop experiment. With stable but non-minimum phase

plant, this approach provides only a refinement of the already available controller

and the initial stabilising controller must be known. To overcome this limitation,

a recent method called controller unfalsification has been proposed (see [16]). It is

a non-iterative data-driven control design approach that incorporates stability tests

originally introduced for the unfalsified control framework (see again [16]). This

method is applied in this work to show its capability to deal with a real tuning

problem and to compare it with the other data-driven methods.
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2.1 Model reference control

Usually, the requirements on the closed-loop behaviour of the system are expressed as

simple conditions on, e.g., the bandwidth of the closed-loop system or its disturbance

rejection properties. In addition some robustness requirements may be considered

such as requiring a certain gain and phase margin.

The model reference approach represents a different way to define the design

target. It differs from traditional methods in how the requirements for the con-

troller are specified: instead of providing explicit limits on overshoot, bandwidth or

response time, the requirements are provided in the form of a reference model for

the closed-loop behaviour of the system. The objective is to design a controller such

that the difference between the reference model and the actual closed-loop behaviour

of the system is as small as possible.

C(z, θ) P (z)
uȳ e y

−

Figure 2.1: The control system.

Consider the closed-loop system shown in Figure 2.1 with the unknown stable

linear Single-Input Single-Output (SISO) plant P (z) and the controller C(z; θ) where

θ is the n-dimension vector of controller parameters. The objective of minimising

the difference between the reference model and actual closed-loop transfer function

is formulated with the control cost criterion in the following:

JMR(θ) =

∥∥∥∥∥
(

P (z)C(z, θ)

1 + P (z)C(z, θ)
−M(z)

)
W (z)

∥∥∥∥∥
2

2

(2.1)

where M(z) is the closed-loop reference model and W (z) is a weighting function

chosen by the user to focus the model matching problem in the desired frequency

range. The optimal controller that minimises the control cost in (2.1) exists and is

given by:

C̄(z) =
M(z)

P (z) (1−M(z))
. (2.2)

In order to obtain the optimal controller in (2.2), two approaches can be adopted:

The model-based approach assumes that a detailed and reliable model of the

plant P (z) is available in order to directly compute the ideal controller.
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The data-driven approach attempts to minimise the control objective in (2.1) by

solving a parameter optimisation problem without first estimating a model of

the plant.

The model-based approach solves the model reference control problem assuming

that a model of the plant is available. As explained in Chapter 1, this model may

be derived exploiting different identification techniques but unmodelled dynamics

always exist. Note that the choice of a high order model is not a viable solution.

Indeed, the order of the ideal controller in (2.2) depends on the order of the plant

model.

As declared before, even if data-driven methods do not require accurate knowl-

edge of the process, at least some prior information on the plant is required. Con-

sidering the model reference control problem, this information is employed to select

a proper reference model M(z).

2.2 Virtual Reference Feedback Tuning

In this section the VRFT is introduced. This method was presented in [17, 18] and,

as the method name suggests, it exploits the idea of a virtual reference signal. The

key concept underlying VRFT is that if the input and the output of the controller

are known then the model matching problem in (2.1) can be reformulated as a

parameter identification problem on the controller.

The main features of VRFT are that the model-reference problem (2.1) is solved

without any knowledge of the system and using only a set of available open-loop

measurements DN = {u(t), y(t)}t=1..N , where N is the length of the dataset. The

only requirement for this experiment is that it must excite the system over the

entirety of the frequency range of interest.

Consider the reference signal r(t) that would feed the system in closed-loop

operation when the closed-loop model is M(z) and the output is the measured y(t).

Such a signal is called virtual reference because it is not used to generate y(t) and

it can be computed from the output data as

r(t) = M−1(z)y(t).

The signal r(t) can be computed offline and it represents the setpoint that generates

the output y(t) when the closed-loop is optimal, that is the closed-loop transfer

function is M(z). Starting from the signal r(t), the input of the controller can be
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computed as

e(t) = r(t)− y(t).

Since the input and the output of the controller are now known, the model matching

problem can be considered as an identification problem: a good controller (making

the closed-loop as close as possible to M(z)) is then the one that produces the

input sequence of the experiment u(t) when it is fed by the error signal e(t). The

information about the reference closed-loop model is embedded in the input signal

e(t).

Formally, the cost criterion minimised by the VRFT algorithm is the following:

JNV R(θ) =
1

N

N∑
t=1

(uL(t)− C(z, θ)eL(t))2 , (2.3)

where uL(t) and eL(t) are suitably filtered versions of u(t) and e(t) such that the cost

function (2.3) is a local approximation of the criterion (2.1) in the neighbourhood

of the minimum point. As explained in [17], the optimal choice of the filter L(z) is

|L|2 = |1−M |2|M |2|W |2 1

Φu
, ∀ω ∈ [−π, π], (2.4)

where Φu is the spectral density of u(t). L(z) is not needed if the considered con-

troller class contains the optimal controller which exactly solves the model matching

problem (this controller is defined in (2.2)).

Note that if the user considers a linearly parametrised controller class C(θ) ={
C(z, θ) = βT (z)θ , θ ∈ Rn

}
, the criterion in (2.3) can be rewritten as

JNV R(θ) =
1

N

N∑
t=1

(
uL(t)− ϕTL(t)θ

)2
, (2.5)

where ϕL(t) = β(z)eL(t) and the optimal parameters are:

θ̂N = arg min
θ
JNV R(θ). (2.6)

The closed form solution of the problem in (2.6) exists and it is:

θ̂N =

[
N∑
t=1

ϕL(t)ϕTL(t)

]−1 N∑
t=1

ϕL(t)uL(t). (2.7)

Since VRFT exploits a Predictor Error Method (PEM) identification procedure
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C(z, θ) P (z)
uȳ e + ỹ

−

ν
+

Figure 2.2: The control system with measurement noise.

to tune the controller, it has to deal with the problem related to these class of

methods. In particular, suppose that the output of the plant is affected by an

additive noise ν(t) (Figure 2.2):

ỹ(t) = P (z)u(t) + ν(t),

with the assumption that u(t) and ν(t) are uncorrelated. In this case the PEM

procedure is not adequate for this problem because the input of the controller is

affected by the noise ν(t) and this results in a biased parameter vector estimate. As

described in [17], an instrumental variable method can be employed to counteract

the effect of noise. The instrumental variable can be built in different ways and it

must be correlated with the regression variable and uncorrelated with the noise ν(t).

To satisfy these requirements, the instrumental variable can be chosen in two ways:

Repeated experiments. Assuming that different realisations of the noise affect

different experiments, the user has to perform a second experiment with the

same input u(t) obtaining a new noisy output signal ỹ′(t). Building the in-

strumental variable as

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ỹ′(t),

VRFT leads to the same results as in the noiseless case.

Plant identification. In some situations a second experiment with the same input

signal can not be performed. Thus, a way to build the instrumental variable

passes through the identification of the plant in order to get a model P̂ (z).

The model can be exploited to build the noiseless output as:

ŷ(t) = P̂ (z)u(t)

and the instrumental variable is

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷ(t).
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This approach guarantees a consistent estimate but its variance depends on

the quality of the model P̂ (z). Furthermore, the plant identification procedure

clashes with the data-driven idea of the VRFT method. Nevertheless the

reader should notice that P̂ (z) is not directly involved in the design of the

controller but it is employed only in the creation of the instrumental variable.

When the instrumental variable is selected, it can be used to solve the problem

in (2.5) and the optimal solution is:

θ̂IVN =

[
N∑
t=1

ζ(t)ϕTL(t)

]−1 N∑
t=1

ζ(t)uL(t).

The VRFT procedure is summarised in Algorithm 1.

Algorithm 1 The VRFT algorithm.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = (1−M(z))M(z)W (z)U−1(z).

3: Compute uL(t) as uL(t) = L(z)u(t).

4: Compute ϕ(t) = β(z)L(z)
(
M−1(z)− 1

)
ỹ(t).

5: Identify the plant model P̂ (z).

6: Compute ŷ(t) = P̂ (z)u(t).

7: Compute the instrumental variable ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷ(t).

8: Compute θ̂IVN =
[∑N

t=1 ζ(t)ϕTL(t)
]−1∑N

t=1 ζ(t)uL(t).

2.2.1 Cascade control systems

It has been shown in [14] that the VRFT rationale can be extended to multiple

nested loops, by still relying on a single experiment.

Consider the cascade control scheme in Figure 2.3 where only two loops are shown

without loss of generality and a noiseless environment is considered (see [14] for a

deeper presentation of the methodology). Given two reference models Mi(z) and

Co Ci Pi Po
u yiȳo eo ȳi ei yo

−−

Figure 2.3: Cascade control scheme with two nested loops.
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Mo(z), for the inner loop and the outer loop respectively, consider two families of lin-

ear proper controllers Ci(θi) = {Ci(z, θi) , θi ∈ Rni } and Co(θo) = {Co(z, θo) , θo ∈ Rno}
and the set of data DN = {u(t), yi(t), yo(t)}t=1,...,N being u(t) the control variable,

yi(t) the output of the inner loop, yo(t) the output of the outer loop. The inner

controller can be tuned by applying the standard VRFT as presented in Section 2.2.

For the outer controller, on the other hand, the approach needs to be different, as

the input of the system to control is the reference ȳi(t) (see again Figure 2.3), that is

not available in the dataset, since measurements are collected during an open-loop

experiment.

Nevertheless, in [14] it has been shown that the reference signal ȳi(t) can be

derived from the available data by exploiting the fact that the inner controller is

designed independently of the outer one. In detail, once Ci(z, θi) is fixed, the input

of the inner loop can be calculated as

ȳi(t) = ei(t) + yi(t),

where the tracking error comes from the result of the inner design as

ei(t) = C−1
i (z, θ̂i)u(t),

where θ̂i are the optimal parameters of the inner loop. With such a choice, ȳi(t) is

exactly the signal that would feed the inner loop in closed-loop working conditions

when the output is yi(t). Then, the outer controller can be easily found as a result

of VRFT synthesis, by using the set of I/O data Do
N = {ȳi(t), yo(t)}t=1,...,N . More

specifically, θo comes as the minimizer of

JV R(θo) =
1

N

N∑
t=1

(ȳiL(t)− Co(z, θo)eoL(t))2

where ȳiL(t) and eoL(t) are suitably filtered versions of ȳi(t) and eo(t), the latter

being the virtual error of the outer loop:

eo(t) = (M−1
o (z)− 1)yo(t).

The optimal filters for the inner and outer loop are discussed in [14], following

the rationale of [17].

The VRFT method for two nested cascade control loops with a single set of

experimental data is summarised in Algorithm 2.
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Algorithm 2 The VRFT method for two nested cascade control loops with a single
set of experimental data.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: repeat

3: Compute Li(z) = (1−Mi(z))Mi(z)Wi(z)U
−1(z).

4: Compute uL(t) as uL(t) = Li(z)u(t).

5: Compute eiL(t) as eiL(t) = Li(z)
(
M−1
i (z)− 1

)
yi(t).

6: Compute θ̂i = arg min
θi

1

N

∑N
t=1 (uL(t)− Ci(z, θi)eiL(t))2.

7: until Ci(z, θ̂i) is a minimum phase system, otherwise change Mi(z).

8: Compute ȳi(t) = C−1
i (z, θ̂i)u(t) + yi(t).

9: Compute Uo(z) such that
∣∣Uo (ejω)∣∣2 = Φȳi(ω) where Φȳi(ω) is the power spec-

tral density of ȳi(t).

10: Compute Lo(z) = (1−Mo(z))Mo(z)Wo(z)U
−1
o (z).

11: Compute ȳiL(t) as ȳiL(t) = Lo(z)ȳi(t).

12: Compute eoL(t) as eoL(t) = Lo(z)
(
M−1
o (z)− 1

)
yo(t).

13: Compute θ̂o = arg min
θo

1

N

∑N
t=1 (ȳiL(t)− Co(z, θo)eoL(t))2.

2.3 Correlation-based Tuning

As explained in Section 2.2, VRFT leads to a specific identification problem and

when experimental data is affected by noise, the PEM procedure is not consistent

to solve this problem. In order to overcome this limitation the CbT method is

considered in this work (see [15, 19, 20]). It is a non-iterative controller tuning

algorithm that employs the correlation approach to deal with noisy data. As in

the VRFT method, the performance specification is provided in terms of a closed-

loop reference model and VRFT and CbT share the same cost criterion to minimise

as defined in (2.1). Furthermore, CbT incorporates a stability constraint for the

closed-loop system: it is implemented as a set of convex constraints leading the

minimisation problem in (2.1) to a constrained optimisation problem. CbT is also

able to deal with nonminimum-phase or unstable plants (see again [15]).

In the CbT approach, the optimal controller is computed exploiting the error

ε(t, θ) as depicted in Figure 2.4. Indeed, the minimisation of (2.1) is equivalent to

minimising the norm of the system, given ε(t) as an output when it is fed by a

flat-spectrum input ȳ(t).

For a linearly parametrised controller, an approximation of the cost criterion
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C(z, θ) P (z)
u

M(z)

ȳ e + ỹ −
−

ν
+

+

ε

Figure 2.4: The tuning scheme for the CbT method.

defined in (2.1) can be made in order to make it convex. In particular the ap-

proximation considers the sensitivity function: the ideal sensitivity function is given

by

S̄(z) =
1

1 + C̄(z)P (z)
= 1−M(z)

where C̄(z) is the optimal controller that realises M(z) as defined in (2.2). Assuming

that the actual sensitivity function is equal to the ideal sensitivity function, that is

S(z, θ) =
1

1 + C(z, θ)P (z)
= S̄(z),

the model matching problem in (2.1) becomes convex and the tuning scheme for

the CbT method can be redrawn as in Figure 2.5 (see [15] for a discussion on the

approximation). Note that the same approximation is also exploited in the VRFT

algorithm to solve a convex optimisation problem (see [17]).

Considering the Figure 2.5 and the data DN = {ȳ(t), ỹ(t)}t=1..N from an open-

loop test, where N is the length of the dataset. The error ε(t, θ) depends on the

exogenous signals ȳ(t) and ν(t):

ε(t, θ) = M(z)ȳ(t)− C(z, θ)(1−M(z))ỹ(t)

= (M(z)− C(z, θ)(1−M(z))P (z)) ȳ(t)− C(z, θ)(1−M(z))ν(t). (2.8)

If the optimal controller defined in (2.2) is considered, the error in (2.8) becomes:

ε(t, θ) = −C̄(z) (1−M(z)) ν(t)

and since ν(t) is not correlated with the reference ȳ(t), the error computed with the

ideal controller is not correlated with ȳ(t). Thus, the goal is to find the optimal

controller parameter θ such that the error ε(t, θ) is uncorrelated with ȳ(t).

The implementation of the CbT method is now briefly illustrated (see [15] for
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P 1−M C

M

ȳ +

ν
+ ỹ − ε

+

open-loop experiment

Figure 2.5: The approximate tuning scheme for the CbT method.

more details). To decorrelate ε(t, θ) and ȳ(t), an extended instrumental variable ς(t)

correlated only with ȳ(t) is introduced:

ς(t) =
[
ȳF (t+ l) . . . ȳF (t) . . . ȳF (t− l)

]T
(2.9)

where l is a sufficiently large integer and

ȳF (t) = F (z)ȳ(t).

The filter F (z) assumes here the same role of the filter L(z) in the VRFT method

and the optimal choice of F (z) is such that

|F |2 = |1−M |2|W |2 1

Φȳ
, ∀ω ∈ [−π, π]

where Φȳ is the spectral density of the reference signal ȳ(t). See [15] for discussion

on the optimal filter. The correlation function is defined as

fN,l(θ) =
1

N

N∑
t=1

ς(t)ε(t, θ)

and the correlation criterion to minimise is

JN,l(θ) = fTN,l(θ)fN,l(θ).

Thus, the optimal controller parameters are

θ̂N = arg min
θ
JN,l(θ). (2.10)

The optimal parameters in (2.10) asymptotically converge to the optimiser of (2.1)
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(the proof is provided in [15]).

The choice of the parameter l in (2.9) is now discussed. This parameter represents

a trade-off between accuracy and bias: l must be large enough to minimise (2.1)

using (2.10) but the bias due to noise increases with l (see [15]). As proposed

in [8], selecting l close to the impulse response of the closed-loop reference model

M(z) represents a good trade-off. Finally, if the Signal to Noise Ratio (SNR) in

the experimental data is high, different choices of l can be made leading to better

performance, as will be illustrated in Section 6.1. In particular, in this specific case,

increasing the value of l leads to a better minimisation of (2.1) as the bias due to

noise is negligible thanks to the high SNR.

The CbT method is summarised in Algorithm 3.

Algorithm 3 The CbT algorithm.

1: Compute Ȳ (z) such that
∣∣Ȳ (ejω)∣∣2 = Φȳ(ω).

2: Compute F (z) = (1−M(z))W (z)Ȳ −1(z).

3: Compute ȳF (t) as ȳF (t) = F (z)ȳ(t).

4: Choose l close to the impulse response of M(z).

5: Compute ς(t) =
[
ȳF (t+ l) . . . ȳF (t) . . . ȳF (t− l)

]T
.

6: Compute the error ε(t, θ) = M(z)ȳ(t)− C(z, θ)(1−M(z))ỹ(t).

7: Compute fN,l(θ) = 1
N

∑N
t=1 ς(t)ε(t, θ).

8: Compute JN,l(θ) = fTN,l(θ)fN,l(θ).

9: Compute θ̂N = arg min
θ
JN,l(θ).

2.4 Controller unfalsification

As already discussed, data-driven methods are based on the assumption that the

model of the plant is not known, or at least not accurately enough. Typically, they

only require the identification of basic plant properties, generally inadequate for

control design purposes but essential to define an achievable closed-loop dynamic

model. The lack of an accurate plant model makes it impossible to guarantee the

stability of the closed-loop system before implementing and testing the controller on

the real plant. In order to overcome this critical limitation of data-driven methods,

an interesting controller design technique, called controller unfalsification, has been

presented in [16]. The proposed method is based on the unfalsified control theory.

As suggested in [16], by exploiting the concept of fictitious reference, one can define

cost functions in terms of discrepancy between desired input-output behaviour which
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allows the derivation of a data-driven controller tuning procedure that includes an

effective stability constraint.

2.4.1 Problem formulation

As in any other data-driven methods, the goal is the tuning of a controller pa-

rameter vector θ based on an available dataset, properly gathered by means of an

experimental test. The controller unfalsification method theoretically guarantees

closed-loop stability, as well as providing adequate output performance. According

to the method proposed in [16], such a result can be obtained by forcing input and

complementary sensitivity functions to be as close as possible to a-priori defined

reference models (respectively Q(z) and M(z)). By minimising the discrepancy be-

tween the complementary sensitivity function and the reference model M(z), one

forces the output behaviour to approximate the desired one. However, there is no

guarantee that the obtained controller actually stabilises the plant, even if the plant

is stable and non-minimum phase. Indeed, in such cases, instability can occur if the

reference model is not achievable or the dataset is very limited or strongly affected

by noise. For this reason, it is necessary to define a second reference model Q(z),

which is the desired input sensitivity function. As will be shown below, one can

ensure internal stability of the closed-loop by minimising the discrepancy between

input sensitivity and a properly defined Q(z). Such controller tuning procedure

leads to a multi-objective minimisation problem and it is convenient to reformulate

the problem exploiting the concept of Pareto optimal solution, as suggested in [16].

This allows one to define a single objective problem based on the minimisation of a

cost function of the form

J(θ) = (1− δ)Jn(θ) + δJv(θ), (2.11)

where Jn and Jv are related to input and output discrepancies respectively,

while δ ∈ [0, 1] is a weighting term which establishes a trade-off between closed-loop

stability and output performance.

Controller structure

The unfalsified control, as well as the VRFT and CbT approaches, requires that the

controller structure is defined a priori by the designer. A smart choice is to consider

a parametric controller family of the form

C(z, θ) =
N̄(z, θ) N∗(z)

D̄(z, θ) D∗(z)
, (2.12)
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where D∗(z) and N∗(z) are fixed polynomials with all unstable roots. Typically,

D∗(z) is associated with the presence of the controller integral term. Instead, N̄(z, θ)

and D̄(z, θ) are polynomials whose coefficients form the unknown parameter vector

θ, N̄(z, θ) = n0 + n1z + . . . niz
i and D̄(z, θ) = 1 + d1z + . . . djz

j , that is, θ =

[n0 n1 . . . ni d1 . . . dj ].

Reference models

Reference models Q(z) and M(z) have to be consistent with the prescribed controller

family in order to achieve a well-defined design problem. As suggested in [16], the

following conditions should be met:

• Q(z) factorised as Q(z) = N∗(z)Q̄(z) with Q̄(z) stable and minimum phase.

• Roots of N∗(z) are zeros of M(z).

• Roots of D∗(z) are zeros of 1−M(z).

Although the definition of the closed-loop reference model M(z) required few

information (see Chapter 1), the choice of the desired input sensitivity function

Q(z) is not trivial. Ideally, it should be defined as Q(z) = M(z)/P (z) to guarantee

the transfer functions to be consistent with each other, but due to the lack of an

accurate plant model, this relationship is only imposed in static conditions, i.e.

Q(1) = M(1)/P̂ (1) = 1/P̂ (1), so that

Q(z) =
1

P̂ (1)

NQ(z)

DQ(z)
.

Regarding the choice of poles and zeros of Q(z), one must rely on the estimated

transfer function of the plant to roughly identify its frequency response. More specif-

ically, focus should be placed on the frequency intervals where the magnitude of the

plant is higher, so that Q(z)P̂ (z) ∼= 1 within the desired bandwidth and� 1 beyond

this frequency.

2.4.2 Optimization criterion

In the following subsection, the optimisation criterion will be explained in detail.

First, it is essential to introduce the notion of fictitious reference rθ, which con-

sists of defining the setpoint signal by inverting the controller transfer function as

follows:

rθ(t) = C−1(z, θ)u(t) + ỹ(t), t = 0, 1, . . . , N.
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Figure 2.6: The tuning scheme for the controller unfalsification method.

Care should be taken not to confuse the virtual reference concept introduced by

the VRFT approach with the aforementioned fictitious reference. As a matter of

fact, the VRFT virtual reference is obtained by inverting the reference model M(z)

rather than the potential controller C(z, θ). Therefore, the approach outlined here

is much more similar to the alternative version of the VRFT suggested in [21], which

is based on the inverse controller identification.

The fictitious reference rθ(t) can be adopted as the input of the reference models

to obtain the ideal control variable and the ideal output:

u0(t) = Q(z)rθ(t) (2.13)

y0(t) = M(z)rθ(t). (2.14)

Basically, the optimisation criterion consists in selecting the parameter vector θ to

minimise the difference between the set of measured input-output experimental data

{u(t), ỹ(t)} and the signals u0(t) and y0(t), as schematically shown in Figure 2.6.

By replacing the definition of fictitious reference rθ(t) in equations (2.13) and (2.14),

the input-output discrepancies can be written as

u(t)− u0(t) = u(t)−Q(z)ỹ(t)− C−1(z, θ)Q(z)u(t) (2.15)

ỹ(t)− y0(t) = (1−M(z))ỹ(t)− C−1(z, θ)M(z)u(t). (2.16)

In general, the measured output ỹ(t) is affected by noise, so it can be expressed

as ỹ(t) = y(t) + ν(t) = P (z)u(t) + ν(t), where y(t) is the noise-free component of

the output. It follows that in (2.15) and (2.16) a term related to the measurement

noise appears. Nevertheless, under the assumption that the input signal u(t) and
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the output disturbance ν(t) are uncorrelated and the number of samples tends to

infinity, the solution that minimises a cost function based on the discrepancies tends

to the noise-free one.

Hence, the two cost functions can be respectively defined as the squared Eu-

clidean norm of (2.15) and (2.16):

Jn = ‖(u− u0)‖2

Jv = ‖(ỹ − y0)‖2.

In conclusion, to obtain a single objective minimisation problem, these two cost

functions have to be combined together, as previously disclosed in (2.11), resulting

in the following design criterion:

θ̂(δ) = arg min
θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)} (2.17)

where θ̂ is the optimal solution associated with the controller that simultaneously

guarantees internal stability and the best possible closed-loop performance, and ΘS

is the set of all the parameter vectors θ such that C−1(z)Q(z) is stable.

2.4.3 Stability constraint and implementation

In general, a controller that exactly achieves M(z) stabilises the plant if and only

if the unstable zeros of P (z) and M(z) are the same. Since the plant model is

unknown, the choice of an appropriate reference model M(z) is not trivial. As al-

ready mentioned, the cost function Jn associated with the input sensitivity reference

model Q(z) is critical for considering the stability requirement. Indeed, if the plant

is stable, the controller CQ(z) that exactly achieves the reference model

Q(z) =
CQ(z)

1 + P (z)CQ(z)
,

guarantees stability of the closed-loop system. Consequently, when δ = 0 the min-

imisation of criterion (2.17) ensures that the stability requirement is met. However,

the stability is preserved also in a neighbourhood of δ equal to zero, in fact, the

following theorem holds.

Theorem 1. Let θ̂(0) be the solution of the minimisation process of Jn, so that the

controller C(z, θ̂(0)) stabilises the plant. Then, there exists δ̄ > 0, such that for any

δ < δ̄ the controller C(z, θ̂(δ)) is stabilising.



2.4 Controller unfalsification 23

Thanks to Theorem 1, it is possible to derive an effective tuning strategy that

takes into account the stability requirement, but before introducing the practical

implementation of the algorithm it is useful to specify what the stability test con-

sists of. The input discrepancy can be rewritten as function of the inverse of CQ(z)

and C(z) as suggested by Proposition 1.

Proposition 1. The input discrepancy can be written as

u(t)− u0(t) = ∆Q(z, θ)Q(z)u(t)−Q(z)n(t),

where

∆Q = C−1
Q (z)− C−1(z, θ).

By using Proposition 1 and relying on the small-gain theory, Theorem 2 can

be proven, thus obtaining the stability test. In addition, Proposition 1 clarifies the

existing relationship between input discrepancy and closed-loop stability. Proofs of

both theorems are widely discussed in [16].

Theorem 2. Let θ be the controller parameter vector. Then, if

‖Q(z)∆Q(z, θ)‖∞ < 1,

the controller C(z, θ) stabilises the unknown plant P (z).

Finally, as suggested in [16], the H∞ norm can be effectively estimated relying

only on the gathered dataset and input discrepancy. So, it can be rewritten as

‖Q(z)∆Q(z, θ)‖∞ ' sup
|û(ω)− û0(ω)|
|û(ω)|

, (2.18)

where, û(ω) and û0(ω) are the discrete Fourier transforms of u(t) and u0(t), respec-

tively.

Algorithm implementation

As already mentioned, if the experimental data-test is sufficiently informative and

the reference models are appropriately chosen, then minimisation (2.17) leads to a
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stabilising controller when δ = 0. This solution can be used as a first guess for a

second minimisation process, but this time with the aim of looking for the largest

δ that guarantees stability. In fact, thanks to Theorem 1, starting from δ = 1 and

then gradually decreasing it, we certainly find a value of δ, more or less close to zero,

such that the minimisation (2.17) leads to a stabilising controller. From a practical

point of view, the stability test is passed only if the estimate of ‖Q(z)∆Q(z, θ)‖∞
is less than 1 − α. The scalar α is required for taking into account the estimating

error related to a finite dataset and the presence of the disturbance.

To sum up, the tuning procedure developed in [16] is shown in Algorithm 4 in a

synthetic way.

Algorithm 4 Controller unfalsification tuning method.

1: repeat

2: Compute θ̂(δ) = arg min
θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)}, with δ = 0.

3: Compute u− u0 and estimate ‖Q(z)∆Q(z, θ̂(0))‖∞.

4: until ‖Q(z)∆Q(z, θ̂(0))‖∞ < 1− α otherwise change M(z).

5: repeat

6: Set δ = 1/2iter−1.

7: Compute θ̂(δ) = arg min
θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)}, with θ̂(0) as initial guess;

8: Compute u− u0 and estimate ‖Q(z)∆Q(z, θ̂(δ))‖∞.

9: until ‖Q(z)∆Q(z, θ̂(0))‖∞ < 1− α.
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UAV control architectures

In this chapter, the control architectures implemented on the under examination

multirotor system are presented. In particular, two different control structures have

been considered so that all the data-driven algorithms described in Chapter 2 can

be used. Indeed, the standard VRFT, CbT and controller unfalsification methods

require a SISO-type controller, but the VRFT algorithm has been extended to deal

with a Multiple-Input Single-Output (MISO) control structures (see Chapter 4)

in order to compare the results with pre-existing H∞ and manual tunings. For

each control architecture the controller transfer function and the related unknown

controller parameter vector will be outlined in the next sections. All the results of

the controller tunings will be widely discussed in Chapter 6.

The chapter is organised as follows. Section 3.1 outlines the overall control archi-

tecture of the quadrotor that includes both the position and the attitude controllers.

Then, the MISO control structure is described, focusing on the attitude control loop

(Section 3.2) and on the position control loop (Section 3.3). Finally, the second

control structure, consisting in a SISO PID cascade controller, is illustrated in Sec-

tion 3.4. Notice that, for this control architecture, only the attitude controller is

provided.

3.1 Overall control architecture

The control of UAVs and in particular of multirotors is a challenging problem mainly

for two reasons: their dynamics are characterized by strong nonlinearities and they

are underactuated with respect to the six rigid-body Degrees of Freedom (DoFs).

Quadrotor control synthesis has been studied extensively in the literature. A classi-

cal PID architecture for both attitude and position control remains one of the most
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common choices, see for example [22], against the more modern LQ technique, as

discussed in, e.g., [23]. The state-of-the-art in linear control for small scale heli-

copters is given by approaches such as, e.g., [24], in which modern robust control

design is coupled with identification of linear rotorcraft models. A nonlinear control

method with proven effectiveness for underactuated system is the backstepping, see

for example [25], where it is compared with sliding-mode technique. More general

approaches, on the other hand, consider nonlinear trajectory planning and tracking

techniques. Many methods have been proposed, covering, e.g., control on nonlinear

manifolds [26], adaptive control [27, 28], dynamic inversion [29] and feedback lin-

earisation [30]. Of particular interest are methods for planning and tracking based

on the flatness property of quadrotor dynamics (see, e.g., [31, 32]) as well as pro-

cedures based on smoothing of a given trajectory using motion primitives (see for

example [33]).

With regard to the design criteria of multirotor platforms, the most common

architecture adopts variable rotor angular rate as control input (with fixed rotors

blade pitch): this choice is primarily due to rotors hub mechanical simplicity and

weight considerations. This solution is adopted on the considered quadrotor (see

Chapter 5), whose very small size does not allow to rely on the more complex and

uncommon solution which consists in variable rotor blade collective pitch and fixed

rotors angular rates. This latter design scheme allows extremely fast changes in

thrust, even though the larger weight and complexity makes it a viable solution only

for large multirotors. For this reason, almost all Micro Aerial Vehicles (MAVs) adopt

a fixed-pitch solution so, from here on, only this design scheme will be considered.

The overall control architecture of the UAV considered in this work consists of

a hierarchical control approach with an outer loop that controls the position of the

UAV and generates the attitude setpoint for an inner loop, which is responsible for

the attitude control of the quadrotor (see Figure 3.1). The position and the attitude

controllers are not independent of each other because the system is underactuated,

which means for example that, to move the UAV forward, a pitch attitude change

has to take place. Furthermore, the position and the attitude measurements come

from a Kalman-based estimator already implemented in the Flight Control Unint

(FCU) installed on board.

The position controller is fed with the position reference signals (x̄(t), ȳ(t) and

z̄(t)) and the measurements that comes from the estimator, in particular the infor-

mation about the position

X(t) =
[
x(t) y(t) z(t)

]T
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Figure 3.1: The overall control architecture for a fixed-pitch multirotor system.

where x(t), y(t) and z(t) are the longitudinal, lateral and vertical positions respec-

tively. The controller exploits also the information about the UAV linear velocity

V (t) =
[
vx(t) vy(t) vz(t)

]T
where vx(t), vy(t) and vz(t) are the longitudinal, lateral and vertical linear velocities

respectively. The position controller generates the total trust T (t) and the reference

signal for the roll (φ̄(t)) and pitch (ϑ̄(t)) angles. The yaw angle setpoint ψ̄(t) is

provided by the user. Exploiting the attitude setpoints, the inner attitude controller

generates the required roll (L(t)), pitch (M(t)) and yaw (N (t)) moments. The inner

controller employs also the information about the attitude

Θ(t) =
[
φ(t) ϑ(t) ψ(t)

]T
where φ(t), ϑ(t) and ψ(t) are the roll, pitch and yaw angles respectively and the

measured angular rates

ω(t) =
[
p(t) q(t) r(t)

]T
where p(t), q(t) and r(t) are the roll, pitch and yaw angular rates respectively. The

measured attitude angles and angular rates come from the UAV state estimator.

The total thrust and the moments generated by position and attitude controllers

feed the mixer matrix block. This is a matrix that relates the required thrust and

moments about each axis to the control inputs of the UAV. In case of fixed blade

pitch multirotors, the outputs of this block, so the control inputs, consist of the four

rotational speeds of the propellers (Ωi, i = 1, . . . , 4). Whereas, in variable-pitch

UAVs, the control inputs consist of the collective pitch angles of each propeller.

The control architecture was already implemented in the FCU of the tested UAV.
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Figure 3.2: The controller architecture for the longitudinal/pitch DoFs.

The structure of the controllers was designed assuming decoupled dynamics between

the DoFs. This assumption is valid only if the UAV is considered in near-hovering

conditions, and falls progressively as the translational speed increases. This means

that the longitudinal/pitch, lateral/roll, vertical and yaw attitude DoFs are con-

trolled independently. As was discussed previously, the longitudinal and pitch DoFs

and the lateral and roll DoFs are coupled because, in order to obtain a longitudinal

movement, the quadrotor must have a pitch angle different from zero and in the

same way a roll angle different from zero implies a lateral movement. All the data-

driven methods have been applied to the longitudinal/pitch DoFs (see Figure 3.2

where the mixer matrix block is omitted for the sake of simplicity). This must not

be considered a simplification of tuning the entire control architecture presented in

Figure 3.1. Indeed, the same results can be applied for lateral/roll DoFs, considering

the geometrical symmetry of the quadrotor, and can be extended to yaw and vertical

dynamics since also these controllers have a similar structure. In the following, only

the scheme in Figure 3.2 is considered.

3.2 MISO pitch attitude controller

The pitch attitude controller implemented on the FCU of the tested UAV is not a

simple SISO PID controller, but rather it is an alternative architecture more com-

monly adopted in the industrial field. The standard VRFT algorithm, described in

Section 2.2, is not intended to tune multiple-input controllers. Nevertheless, instead

of simplifying the control structure in order to match the architecture presented in

Section 3.4, the VRFT method has been extended (see Section 4.2) to deal with

the pre-existing MISO control structure. By doing so, the dynamic response of

the system tuned with the VRFT method can be directly compared with that of

pre-existing manual and H∞ tunings. Hereafter, the control architecture actually

implemented on the UAV is illustrated.

The attitude control architecture is based on two cascaded PID loops. The
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Figure 3.3: The pitch attitude controller with a feed-forward gain and a derivative action
based on plant measurements.

outer loop on the pitch attitude feedback is a classical proportional controller, while

the inner controller is a complete PID with an additional feed-forward term. More

specifically, the feed-forward gain is directly computed on the pitch angle setpoint

and the derivative action of the inner loop is computed starting from the plant

output q(t) and not from the pitch angular rate error (see Figure 3.3). This last

expedient avoids to generate an impulse on the control action M(t) when a step is

applied to the reference signal q̄(t) of the inner loop.

The output of the outer controller can be computed as:

q̄(t) = KPo

(
ϑ̄(t)− ϑ(t)

)
while the control input is computed by the inner controller as:

M(t) = KFFi q̄(t) +

(
KPi +KIi

Ts
z − 1

)
(q̄(t)− q(t))−KDi

z − 1

zTs
q(t),

where Ts is the sampling time and M(t) is the pitching moment. The unknown

controller parameters that will be tuned with the data-driven approach are:

θ =
[
KPo KFFi KPi KDi KIi

]T
. (3.1)
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Figure 3.4: The longitudinal position controller with a feed-forward gain and a derivative
action based on plant measurements.

3.3 MISO longitudinal position controller

As will be explained in Chapter 5, where the considered UAV is introduced, the

very small size of the quadrotor as well as the high flexibility and customisation of

its FCU allow to perform in-flight identification experiments. This feature opens

the data-driven approach to the design of the position controller. As displayed in

Figure 3.1 the position controller is located in an higher level than the attitude

controller. It generates the reference signal for the attitude regulator starting from

position setpoint and position measurements. In this work only the longitudinal

position controller is considered, which is indeed coupled with the pitch attitude

regulator, but independent from the controllers of other DoFs, at least if small

deviations from hover are considered.

The control architecture is analogous to that of the attitude controller shown in

Figure 3.3. In this case, however, the proportional controller on the outer loop is

based on the longitudinal position, receiving the position error as input and return-

ing the longitudinal linear velocity reference as output. Instead, the inner loop is

associated with the longitudinal velocity and presents a derivative term computed

on the plant output vx(t), while a proportional and an integral term are calculated

on the velocity error (see Figure 3.4). The inner controller computes the pitch angle

setpoint that feeds the attitude controller schematically shown in Figure 3.3.

Since the control architecture is the same as for the attitude regulator described

in Section 3.2, the number of the unknown controller parameters are the same and
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they are:

θ =
[
kPo kFFi kPi kDi kIi

]T
.

The unknown controller parameters are expressed with lower case letters in order to

remark the difference with the unknown parameters in (3.1) although the position

and the attitude controllers share the same structure.

3.4 SISO pitch attitude controller

As already mentioned, the CbT method as well as the controller unfalsification

algorithm cannot be used to tune the MISO controllers described in the previous

sections. For this reason, a simplified controller structure has been implemented on

the quadrotor FCU, ultimately allowing all the data-driven algorithms described in

Chapter 2 to be compared (see Section 6.1). For simplicity, the modified control

structure and the related data-driven tunings have been implemented and assessed

only for the attitude controller.

The new control architecture is based on cascaded SISO PID loops and it is

schematically shown in Figure 3.5. Just as in the previous case, the outer regulator

Co(z) is defined as a simple proportional gain based on attitude feedback (estimated

angle ϑ(t) and setpoint ϑ̄(t)). On the contrary, the inner regulator Ci(z) presents

a different architecture with respect to that defined in Section 3.2. Specifically, it

is a PID controller with SISO structure, thus having only the angular rate feedback

(measured angular velocity q(t) and setpoint q̄(t)) as input. The output of the outer

controller is defined exactly as in the MISO case, while the control input provided

by the inner controller can be computed as:

M(t) =

(
KPi +KIi

Ts
z − 1

+KDi

z − 1

zTs

)
(q̄(t)− q(t)) .

Co(z) Ci(z)
UAV pitch
dynamics

Mϑ̄ q̄
ϑ

q
−−

Figure 3.5: The pitch attitude controller based on SISO PID architecture.
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Therefore, the transfer functions of the outer and the inner controllers are defined

as:

Co(z) = KPo

Ci(z) = KPi +KIi

Ts
z − 1

+KDi

z − 1

zTs

Eventually, the unknown controller parameters that will be tuned with the data-

driven approaches are:

θ =
[
KPo KPi KDi KIi

]T
.



Chapter 4

Data-driven algorithms for

multirotor systems

In this chapter the extensions of the data-driven methods presented in Chapter 2

are outlined. In particular, the VRFT and the CbT methods are extended to solve

specific tuning problems related to UAVs and to the controller architectures depicted

in Chapter 3.

This chapter is organised as follows. In Section 4.1 the VRFT method is adapted

to deal with experimental data gathered by means of closed-loop flight tests. Subse-

quently, Section 4.2 provides an extension to the standard VRFT method in order

to tune a controller with a feed-forward term and a derivative action related to the

measured output (for further details on control structure see Chapter 3). Finally, in

order to compare the VRFT and the CbT algorithms, the CbT method is extended

in Section 4.3 to tune a cascade control system with a single experimental dataset.

4.1 Closed-loop experiment

The standard VRFT algorithm presented in Section 2.2 exploits experimental data

that come from an open-loop test. Performing such a test is not always possible,

for obvious reasons. Some of the potential applications are indeed unstable by

nature, and thus have to operate in closed-loop conditions. Sometimes, also stable

systems must operate in closed-loop during the experiment to satisfy some conditions

related to the experiment itself, or due to safety reasons. In this work the VRFT

method is employed to tune the controllers of a small quadrotor. When the test

to collect data is performed in flight, the UAV could collide on some obstacles or

exceed the test area. In all these situations the data must be collected in closed-loop
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allowing the user to control the system also when the experiment is been conducting.

Furthermore, closed-loop tests allow to perform the experiment to collect the data

without exploiting a test-bed and without performing changes on the system to

control.

Obviously, in order to perform the closed-loop test, an initial controller that

stabilise the system must be available. The discussion on how to get this controller

goes beyond the scope of this work, but, since this preliminary controller is only used

to collect closed-circuit data, the reader should focus on the fastest way to obtain it,

as no closed-loop performance requirement is demanded except for system stability.

As illustrated in Figure 4.1, the excitation signal ū(t) is added to the output

of the controller Cd(z). Cd(z) is the initial controller that stabilises the system.

The user can act on ȳ(t) to control the behaviour of the system also during the

experiment.

The standard VRFT method, as described in Section 2.2, cannot be applied

to obtain a new controller exploiting the measurements DN = {u(t), ỹ(t)}t=1..N :

specific problems arise when the instrumental variable is created because u(t) and

ν(t) are now correlated. Indeed, the user cannot directly act on the input of the

plant as in the standard VRFT, but he can operate on the setpoints ȳ(t) and ū(t),

and the input of the plant is now affected by this action:

u(t) =
1

1 + Cd(z)P (z)
ū(t) +

Cd(z)

1 + Cd(z)P (z)
(ȳ(t)− ν(t)) . (4.1)

For the sake of simplicity, the assumption that the user does not provide a setpoint

during the experiment can be made (ȳ(t) = 0, ∀ t) and (4.1) can be rewritten as:

u(t) =
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t). (4.2)

When the experimental data is collected in closed-loop it is not always possible

to use a second experiment to build the instrumental variable. Indeed, the user can

select the same signal ū(t) in the repeated experiment but this does not imply that

Cd P
uȳ e + y + ỹ

−

ū
+

ν
+

Figure 4.1: VRFT experiment in closed-loop operation.
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the input of the plant u(t) will be the same in the two experiments, violating the

assumption made in Section 2.2. Recalling that the VRFT method is employed in

this work to tune the controller of an UAV and it has been here extended to perform

the tuning experiment in flight, it is obvious that a lot of environment uncertainties

arises and it is impossible to ensure that the input of the plant is the same in the

two flight tests. Thus, the instrumental variable must be built using the second

choice presented in Section 2.2: the identification of the plant. Using (4.2) to build

the instrumental variable as described in Algorithm 1 leads to a biased controller

parameter vector since the instrumental variable is no longer uncorrelated with the

noise ν(t). Indeed, the instrumental variable is built as

ŷ(t) = P̂ (z)u(t) (4.3)

and using (4.2):

ŷ(t) = P̂ (z)

(
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t)

)
.

Following Algorithm 1, the instrumental variable is:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷ(t)

= β(z)L(z)
(
M(z)−1 − 1

)
P̂ (z)

(
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t)

)
.

The previous equation clearly shows the correlation between ζ(t) and ν(t). To solve

this problem a different instrumental variable must be chosen in order to ensure a

correlation with the regression variable and an uncorrelation with the noise. Two

choices for the instrumental variable are now proposed. Let

ŷOLū (t) = P̂ (z)ū(t)

be the simulated output of the plant when it is fed only by the excitation signal ū(t)

in open-loop. The first proposed choice is as follows:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷOLū (t)

= β(z)L(z)
(
M(z)−1 − 1

)
P̂ (z)ū(t).

(4.4)

The second option for the instrumental variable is:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷCLū (t) (4.5)
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where

ŷCLū (t) =
P̂ (z)

1 + Cd(z)P̂ (z)
ū(t)

is the simulated output of the plant when it is fed only by the excitation signal

ū(t) in closed-loop conditions. The choices expressed in (4.4) and (4.5) allow the

instrumental variable to be uncorrelated with the noise ν(t) since it depends from

ū(t) and not from u(t). Note that if the instrumental variable is built as in (4.4)

the initial controller Cd(z) might be unknown whereas with the second method the

user must also know it.

Nevertheless, the identification procedure exploited in (4.3) to obtain the model

of the plant could be very challenging and the identification method must be se-

lected accordingly, since the data is collected in closed-loop conditions and classical

identification methods fail with this type of data. Subspace Model Identification

(SMI) methods emerge as a viable approach to solve this task, in particular the

Predictor Based System Identification (PBSID) method that will be presented in

the next subsection (see [34] for an overview of closed-loop SMI methods).

4.1.1 The PBSID algorithm

As illustrated in [35], PBSID is an advanced and recent model identification algo-

rithm with the ability of dealing with data generated in closed-loop. It belongs

to the class of black-box methods: it allows to determine dynamics model of the

system using only the input-output data gathered in the identification experiments.

The obtained model is unstructured, namely with a non-physically motivated state

space. Furthermore, since PBSID is a SMI algorithm, it is a non-iterative method: it

can be implemented with numerically stable and efficient tools from numerical linear

algebra and it has proved to be extremely successful in dealing with the estimation

of the state-space models of MIMO systems in a number of industrial applications.

The PBSID algorithm, which is briefly described in the following, considers the

finite dimensional, LTI state space model class

x(k + 1) = Ax(k) +Bu(k) + w(k)

ỹ(k) = Cx(k) +Du(k) + ν(k)
(4.6)

where x(k) ∈ Rn, u(k) ∈ Rm, ỹ(k) ∈ Rp and {ν(k), w(k)} are ergodic sequences of

finite variance satisfying

E[

[
w(t)

ν(t)

] [
w(s)T ν(s)T

]
] =

[
Q S

ST R

]
δs,t,
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with δs,t denoting the Kronecker delta function, possibly correlated with the input

u(k).

Let now

z(k) =
[
uT (k) yT (k)

]T
and

Ā = A−KC, B̄ = B −KD, B̃ =
[
B̄ K

]
,

where K is the Kalman gain associated with (4.6), and note that system (4.6) can

be written as

x(k + 1) = Āx(k) + B̃z(k)

ỹ(k) = Cx(k) +Du(k) + e(k), (4.7)

where e(·) is the innovation vector. The data equations for the PBSID algorithm can

be then derived by noting that propagating p−1 steps forward the first of equations

(4.7), where p is the so-called past window length, one gets

x(k + 2) = Ā2x(k) +
[
ĀB̃ B̃

] [ z(k)

z(k + 1)

]
...

x(k + p) = Āpx(k) +KpZ0,p−1

where

Kp =
[
Āp−1B̃0 . . . B̃

]
is the extended controllability matrix of the system and

Z0,p−1 =


z(k)

...

z(k + p− 1)

 .
Under the considered assumptions, Ā represents the dynamics of the optimal one-

step ahead predictor for the system and therefore it has all the eigenvalues inside

the open unit circle, so the term Āpx(k) is negligible for sufficiently large values of
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p and we have that

x(k + p) ' KpZ0,p−1.

As a consequence, the input-output behaviour of the system is approximately given

by

ỹ(k + p) ' CKpZ0,p−1 +Du(k + p) + e(k + p)

...

ỹ(k + p+ f) ' CKpZf,p+f−1 +Du(k + p+ f) + e(k + p+ f),

so that, introducing the matrix notation defined in the previous subsection, the data

equations are given by

Xp,f ' KpZ̄p,f

Y p,f ' CKpZ̄p,f +DUp,f + Ep,f .

Considering p = f (where f is the so-called future window length), estimates for the

matrices CKp and D are first computed by solving the least-squares problem

min
CKp,D

‖Y p,p − CKpZ̄p,p −DUp,p‖F . (4.8)

Defining now the extended observability matrix Γp as

Γp =


C

CĀ
...

CĀp−1


and noting that the product of Γp and Kp can be written as

ΓpKp '


CĀp−1B̃ . . . CB̃

0 . . . CĀB̃
...

. . .
...

0 . . . CĀp−1B̃

 ,

such product can be computed using the estimate ĈKp of CKp obtained by solving

the least squares problem (4.8). Recalling now that

Xp,p ' KpZ̄p,p
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it also holds that

ΓpXp,p ' ΓpKpZ̄p,p.

Therefore, computing the Singular-Value Decomposition (SVD)

ΓpKpZ̄p,p = UΣV T

an estimate of the state sequence can be obtained as

X̂p,p = Σ1/2
n V T

n = Σ−1/2
n UTn ΓpKpZ̄p,p,

from which, in turn, an estimate of C can be computed by solving the least squares

problem

min
C
‖Y p,p − D̂Up,p − CX̂p,p‖F .

The final steps consist of the estimation of the innovation data matrix Ep,fN

Ep,fN = Y p,p − ĈX̂p,p − D̂Up,p

and of the entire set of the state space matrices for the system, which can be obtained

by solving the least squares problem

min
A,B,K

‖X̂p+1,p −AX̂p,p−1 −BUp,p−1 −KEp,p−1‖F .

In [36] a recursive real-time implementation of the PBSID method is presented.

These features allow to obtain a suitable online estimation exploiting open-loop or

closed-loop data.

Algorithm 5 recaps all the steps needed to exploit VRFT to tune the controller

when the data is collected in closed-loop.

Algorithm 5 The control system with closed-loop excitation data.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = (1−M(z))M(z)W (z)U−1(z).

3: Compute uL(t) as uL(t) = L(z)u(t).

4: Compute ϕ(t) = β(z)L(z)
(
M−1(z)− 1

)
ỹ(t).

5: Identify the plant model P̂ (z) with the PBSID algorithm.

6: Compute ŷū(t) = P̂ (z)

1+Cd(z)P̂ (z)
ū(t).

7: Compute the instrumental variable ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷū(t).

8: Compute θ̂IVN =
[∑N

t=1 ζ(t)ϕTL(t)
]−1∑N

t=1 ζ(t)uL(t).
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4.2 Controller with feed-forward and action on plant

output

As the reader will have already understood, the design of a new controller archi-

tecture goes beyond the scope of this work, whose main goal is to use data-driven

methods to tune or re-tune a controller that is already implemented. Nevertheless,

the pre-existing control architecture of the considered UAV cannot be tuned with

the standard data-driven methods illustrated in Chapter 2, so two approaches have

been followed: the VRFT algorithm has been extended to deal with a multiple-input

control structure and, on the other hand, the control structure has been modified in

order to assess all the data-driven tunings and compare their results. In particular,

the new controller is a classical SISO PID controller (see Section 3.4) that can be

represented as in Scheme 2.1 and it can be tuned with the classical VRFT algorithm,

as presented in Section 2.2 as well as with the CbT and the controller unfalsifica-

tion methods. As regards the pre-existing control architecture, already described in

Chapter 3, it consists of a PID whose derivative action is computed on the plant

output, combined with a feed-forward gain (see Figure 3.3 and Figure 3.4). This

controller can be considered as a MISO system with two input, the setpoint ȳ(t)

and the plant output ỹ(t), and one output, the control action u(t). In this section,

the VRFT algorithm is extended in order to deal with this controller architecture,

which is more commonly adopted in industrial applications than the SISO version.

A generalisation of the scheme in Figure 3.3 and Figure 3.4 is now considered

and it is represented in Figure 4.2 where a noiseless environment is considered for

simplicity. The output of the controller is:

u(t) = Cȳ (z, θȳ) ȳ(t) + Ce (z, θe) e(t)− Cy (z, θy) y(t).

Ce

Cȳ

Cy

P
ȳ e + +

−
y

−
u

Figure 4.2: Controller with a feed-forward term and an action on plant measurements.
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Considering the new controller architecture, also the criterion minimised by the

VRFT algorithm in (2.3) changes as:

JNV R(θe, θy, θȳ) =
1

N

N∑
t=1

L(z)
[
u(t)− Ce(z, θe)e(t)

− Cȳ(z, θȳ)ȳ(t) + Cy(z, θy)y(t)
]2
.

(4.9)

If the controller class is linearly parametrised, the minimum of the criterion (4.9)

can be found exploiting the closed form solution as in (2.7). Indeed, in this case the

controllers can be rewritten as:

Cȳ(z, θȳ) = βȳ(z)θȳ,

Ce(z, θe) = βe(z)θe,

Cy(z, θy) = βy(z)θy.

Defining

θ =

θȳθe
θy


and

ϕL(t) =

 βȳ(z)M
−1(z)

βe(z)
(
M−1(z)− 1

)
βy(z)

L(z)y(t),

the criterion in (4.9) can be rewritten as:

JNV R(θ) =
1

N

N∑
t=1

(
uL(t)− ϕTL(t)θ

)2
,

and the optimal parameters are:

θ̂N = arg min
θ
JNV R(θ).

The closed-form solution of the problem in the previous equation exists and it is

equal to (2.7).

Considering the new controller architecture, a different selection of the filter L(z)

must be made. The filter is shaped starting from the derivation in [37] where the

filter is built for a two degree of freedom controller.
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Let

S(z) =
1

1 +
(
C̄e(z) + C̄y(z)

)
P (z)

be the reference model for the sensitivity function, that is the transfer function

between ν(t) and y(t), and

M(z) =

(
C̄ȳ(z) + C̄e(z)

)
P (z)

1 +
(
C̄e(z) + C̄y(z)

)
P (z)

(4.10)

be the reference model for the closed-loop function: the transfer function between

ȳ(t) and y(t). C̄ȳ(z), C̄e(z) and C̄y(z) are the optimal transfer functions that solve

exactly the model matching problem. The filter is defined as

|L|2 = |M |2|S|2|W |2 1

Φu
, ∀ω ∈ [−π, π]. (4.11)

Proof. Note that the criterion stated in (2.1), for this controller architecture is de-

fined as

JMR(θe, θy, θȳ) =

∥∥∥∥( P (z) (Ce(z, θe) + Cȳ(z, θȳ))

1 + P (z) (Ce(z, θe) + Cy(z, θy))
−M(z)

)
W (z)

∥∥∥∥2

2

and it can be written as

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣∣ P (ejω)
(
Ce(e

jω, θe) + Cȳ(e
jω, θȳ)

)
1 + P (ejω) (Ce(ejω, θe) + Cy(ejω, θy))

−M(ejω)
∣∣2 ∣∣W (ejω)

∣∣2 dω
or, by dropping the argument ejω:

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣∣ P (Ce(θe) + Cȳ(θȳ))

1 + P (Ce(θe) + Cy(θy))
−M

∣∣∣∣2 |W |2 dω. (4.12)

After some manipulations and exploiting the definition of M(z) in (4.10), the crite-

rion (4.12) can be rewritten as:

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣ P

1 + P (Ce(θe) + Cy(θy))

∣∣∣2∣∣∣ (Cȳ(θȳ) + Ce(θe))

−
(
C̄ȳ + C̄e

)
−M

[
(Ce(θe) + Cy(θy))−

(
C̄e + C̄y

) ]∣∣∣2 |W |2 dω.
If the involved signals in (4.9) are realisations of stationary and ergodic stochastic

processes and N →∞, the analysis of JNV R(θe, θy, θȳ) is based on asymptotic results:
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JNV R(θe, θy, θȳ)→ JV R(θe, θy, θȳ). (4.13)

Exploiting the definition of M(z) in (4.10) and the Parseval theorem (see [38]), the

asymptotic criterion (4.13) is written as:

JV R(θe, θy, θȳ) =
1

2π

∫ π

−π

|L|2 |P |2

|M |2
∣∣∣ (Cȳ(θȳ) + Ce(θe))

−
(
C̄ȳ + C̄e

)
−M

[
(Ce(θe) + Cy(θy))−

(
C̄e + C̄y

) ]∣∣∣2Φudω.

In the following, JV R(θe, θy, θȳ) is used instead of JNV R(θe, θy, θȳ). The main idea of

the VRFT algorithm is to minimise JV R(θe, θy, θȳ) rather than JMR(θe, θy, θȳ), as

described in Section 2.2. If the ideal controllers belong to the class of the available

controllers, that is

(
C̄e(z), C̄y(z), C̄ȳ(z)

)
∈ {(Ce(z, θe), Cy(z, θy), Cȳ(z, θȳ)} ,

regardless of how the plant, the filters and the reference model are selected, the

VRFT method leads to the ideal controller (see [37]). On the other hand, if the

ideal controllers do not belong to the class of the available controllers, in order to

obtain JNV R(θe, θy, θȳ) = JMR(θe, θy, θȳ), a specific selection of the filter L(z) must

be made. As a matter of fact, if

|L|2 =
|M |2|W |2

|1 + P (Ce(θe) + Cy(θy))|2
1

Φu
, ∀ω ∈ [−π, π], (4.14)

then JV R(θe, θy, θȳ) = JMR(θe, θy, θȳ) and minimising JV R(θe, θy, θȳ) is the same as

minimising JMR(θe, θy, θȳ).

Since the definition of L(z) in (4.14) depends on P (z), that is unknown, the

choice in (4.14) is not feasible. As described in [37], where an exhaustive analysis is

proposed, the following assumption can be made:

|1 + P (Ce(θe) + Cy(θy))|2 '
∣∣1 + P

(
C̄e + C̄y

)∣∣2
and the filter in (4.14) can be rewritten as in (4.11) that it is here proposed again:

|L|2 = |M |2|S|2|W |2 1

Φu
, ∀ω ∈ [−π, π].
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All the steps to exploit the VRFT method with the new controller architecture

and data collected in open-loop are summarised in Algorithm 6. If the experimental

data is collected in closed-loop, the improvements described in Section 4.1 must be

implemented in the same way also with this architecture. Finally, if the plant output

is affected by noise, an instrumental variable method must be implemented as in the

standard VRFT algorithm presented in Section 2.2.

Algorithm 6 VRFT algorithm with the new controller architectures.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = M(z)S(z)W (z)U−1(z).

3: Compute uL(t) as uL(t) = L(z)u(t).

4: Compute ϕL(t) =


βȳ(z)M

−1(z)

βe(z)
(
M−1(z)− 1

)
βy(z)

L(z)y(t).

5: if y(t) is affected by noise then

6: Identify the plant model P̂ (z).

7: Compute ŷ(t) = P̂ (z)u(t).

8: Compute the instrumental variable ζ(t) =


βȳ(z)M

−1(z)

βe(z)
(
M−1(z)− 1

)
βy(z)

L(z)ŷ(t).

9: else

10: Compute ζ(t) = ϕL(t)

11: end if

12: Compute θ̂IVN =
[∑N

t=1 ζ(t)ϕTL(t)
]−1∑N

t=1 ζ(t)uL(t).
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4.3 Correlation-based Tuning for cascade control sys-

tems

Although the VRFT algorithm was already extended in [14] to deal with cascade

control systems with a single set of experimental data, the same extension was not

available in the literature for the CbT method. This makes the latter unsuitable

for tuning the controllers presented in Chapter 3 and its comparison with VRFT

impossible. In this section, this extension is presented also for the CbT method,

following the rationale of Section 2.2.1.

Also in this case two loops are considered without loss of generality (Figure 2.3).

Let Mi(z) and Mo(z) be the reference models for the inner and the outer loop

respectively. Experimental data

DN = {u(t), ỹi(t), ỹo(t)}t=1,...,N

from an open-loop test is considered available, where u(t) is the control variable, ỹi(t)

is the output of the inner loop and ỹo(t) is the output of the outer loop. Consider

two families of controllers for the inner and the outer loops:

Ci(θi) = {Ci(z, θi) , θi ∈ Rni }

Co(θo) = {Co(z, θo) , θo ∈ Rno} .

The inner controller can be tuned by applying the standard CbT method as pre-

sented in Section 2.3, setting ỹ(t) = ỹi(t) and ȳ(t) = u(t).

Considering the outer regulator, the same problem of the VRFT approach arises,

i.e. the input of the controlled system is not available in the data. This signal must

be built starting from the available information. The procedure to obtain this signal

follows the same steps presented in Section 2.2.1 and it is here proposed again for

convenience.

Let ȳi(t) be the output signal of the outer controller. Since the inner and the

outer controllers are designed independently, it can be derived from the available

data. In detail, once the inner controller Ci(z, θi) is tuned, the reference signal of

the inner loop can be computed as

ȳi(t) = ei(t) + yi(t),
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where the tracking error comes from the result of the inner design as

ei(t) = C−1
i (z, θ̂i)u(t),

where θ̂i are the optimal parameters of the inner loop. All the information is now

available and the outer loop can be tuned with the CbT algorithm as presented in

Section 2.3, imposing ỹ(t) = ỹo(t) and ȳ(t) = ȳi(t). The steps of the tuning method

are presented in Algorithm 7.

Algorithm 7 The CbT method for two nested cascade control loops with a single
set of experimental data.

1: Compute Ui(z) such that
∣∣Ui (ejω)∣∣2 = Φu(ω).

2: repeat

3: Compute Fi(z) = (1−Mi(z))Wi(z)U
−1
i (z).

4: Compute ūF (t) as ūF (t) = Fi(z)u(t).

5: Choose li close to the impulse response of Mi(z).

6: Compute ςi(t) =
[
uF (t+ l) . . . uF (t) . . . uF (t− l)

]T
.

7: Compute the error εi(t, θi) = Mi(z)u(t)− Ci(z, θi)(1−Mi(z))ỹi(t).

8: Compute fi(θi) = 1
N

∑N
t=1 ςi(t)εi(t, θ).

9: Compute Ji(θi) = fTi (θ)fi(θi).

10: Compute θ̂i = arg min
θi

Ji(θi).

11: until Ci(z, θ̂i) is a minimum phase system, otherwise change Mi(z).

12: Compute ȳi(t) = C−1
i (z, θ̂i)u(t) + ỹi(t).

13: Compute Uo(z) such that
∣∣Uo (ejω)∣∣2 = Φȳi(ω) where Φȳi(ω) is the spectral

density of ȳi(t).

14: Compute Fo(z) = (1−Mo(z))Wo(z)U
−1
o (z).

15: Compute ȳiF (t) as ȳiF (t) = Fo(z)ȳi(t).

16: Choose lo close to the impulse response of Mo(z).

17: Compute ςo(t) =
[
ȳiF (t+ l) . . . ȳiF (t) . . . ȳiF (t− l)

]T
.

18: Compute the error εo(t, θo) = Mo(z)ȳi(t)− Co(z, θo)(1−Mo(z))ỹo(t).

19: Compute fo(θo) = 1
N

∑N
t=1 ςo(t)εo(t, θ).

20: Compute Jo(θo) = fTo (θ)fo(θo).

21: Compute θ̂o = arg min
θo

Jo(θo).
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The ANT-1 MAV platform

The data-driven methods presented in the previous chapters have been used to design

attitude and position controllers of a pre-existing multirotor system.

The tested multirotor is a quadrotor belonging to the Micro Aerial Vehicle (MAV)

class, which includes all the Remotely Piloted Aerial Vehicles (RPAV) characterised

by limited size and weight. The definition of MAV is quite arbitrary, but referring

to the Italian Civil Aviation Authority (ENAC) regulation [39], the RPAVs are rig-

orously divided into different categories according to the Maximum Take-off Weight

(MTOW). More specifically, all the aerial platform weighting less than 300 g (250 g

according to the Federal Aviation Autorization (FAA), see [40]) are considered not

dangerous for persons or things and therefore exempted from most of the regula-

tions, including: the need for an RPAV flight license and restrictions on overflying of

persons. For simplicity, from here on, the flying vehicles belonging to this category

will be called MAV.

Over the last few years, these drones are becoming more and more widespread

thanks to permissive rules, as well as the great flexibility and thus the wide variety

of their uses. In particular, the development of MAVs opens the world of UAVs to

some interesting possibilities: the creation of aerial collective systems able to fly in

cluttered environments such as cities or the insides of buildings. By working to-

gether, multiple flying vehicles can perform a given task quicker and more efficiently

than a single system. In fact, multiple UAVs can share the computing, sensing and

communication workloads so that they become faster in completing a given task

than a unique, large UAV. Additionally, they can cover a wider area than a single

aerial vehicle when flying outdoors. Thus, it is clear that aerial collective systems

have a huge potential in terms of applications, such as monitoring of toxic clouds

and meteorological conditions, security and artistic shows.
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The small size of the considered UAV simplifies the execution of indoor flight

tests, easing the gathering of the in-flight data necessary to design the attitude

control system with closed-loop experiments (see Section 4.1), as well as to tune the

position controller. All the results related to attitude and position dynamics will be

presented in Chapter 6. Hereafter, in Section 5.1, the overall design of the considered

quadrotor platform, namely the ANT-1, will be presented and, in Section 5.2, its

main components will be briefly described. Finally, an overview of the performed

tests and a brief description of the test-bed will be discussed in Section 5.3.

5.1 ANT-1 design overview

The ANT-1 (Figure 5.1) is a small fixed pitch quadrotor developed as a part of a

previous master thesis work in [41]. It has been assembled with off-the-shelf com-

ponents, chosen with the help of a widely tested numerical simulation tool, namely

eCalc. This tool allows for an accurate estimation of the main quadrotor perfor-

mance characteristics by inserting component parameters available on manufacturer

data sheets. The goal was to design a MAV that would comply with the following

requirements:

• Maximum Take-Off Weight (MTOW): not exceeding 300 grams (to satisfy

ENAC standards for RPAVs [39]).

• Flight time: at least 10 minutes.

• Frame dimensions (footprint): within 200 mm (including rotors).

After simulating several different configurations, the choice of the components

has been the result of a compromise between hovering efficiency and overall dimen-

sions. The chosen components are listed in Table 5.1, while Table 5.2 summarizes

the main results provided by eCalc.

As can be seen, according to the online tool, all requirements have been met.

Better performance in terms of specific thrust, and thus flight time, could have been

obtained by choosing larger propellers. Indeed, the specific thrust provides an idea

of the hovering efficiency of a rotorcraft, being defined as the ratio between pro-

peller thrust and electric motor absorbed power. Nevertheless, rotors with a larger

diameter would have required a wider frame, eventually resulting in a significant

increase in the overall weight. For this reason, the propellers selected in [41] have

been considered the best compromise with respect to the initial design requirements.
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Component type Component name Weight [g]

FCU Pixfalcon 9
Companion Computer Raspberry Pi Zero W 15
Battery Turnigy Nano-tech 950 mAh Li-Po Pac 69
Motors QAV1306-3100KV brushless motor 12
ESC ZTW Spider Series 18A 5.6
Propeller Gemfan Bullnose 3035, 3 blades 4
Frame Self-made (150 mm excluding rotors) 80

Table 5.1: List of components.

Weight 233 g

Hovering flight time 11.9 min

Thrust-to-weight ratio 2.4

Specific thrust 5.35 g/W

Efficiency (in hovering) 85.3 %

Estimated rate of climb 16.7 m/s

Maximum speed 92 km/h

Table 5.2: eCalc results.

Figure 5.1: The ANT-1 quadrotor.
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5.2 Hardware description

In the following section the main components will be described in detail. For further

information on hardware choice and integration see [41].

5.2.1 Flight control unit and companion computer

Flight control unit

The Flight Control Unit (FCU) function is performed by the Pixfalcon board (Fig-

ure 5.2), which is a small and light autopilot kit commercially available off-the-shelf

and suitable for a wide variety of remote-controlled systems including, but not lim-

ited to, airplanes, multirotors and helicopters. The sensing unit includes:

• 3 orthogonally placed rate-gyroscopes;

• 3-axis linear accelerometer;

• 3-axis magnetometer;

• Barometric pressure sensor;

• GPS receiver (optional).

Information collected by the Inertial Measurement Unit (IMU) sensors provides

an accurate estimation of the state variables, while real-time processing through

the controller allow for the computation of the appropriate control action. More

specifically, the firmware chosen and installed on the ANT-1 is the PX4 Pro Autopi-

lot, which is an open-source software downloadable from GitHub. The Pixfalcon

is characterized by 8 PWM output channels that must be connected to the Elec-

tronic Speed Controls (ESCs), to allow for adjusting motors rotational speed and,

ultimately, controlling vehicle attitude.

Figure 5.2: Pixfalcon.
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Companion computer

Pixfalcon is connected to a Raspberry Pi Zero W (Figure 5.3), which is a small

single-board computer equipped with a 1 GHz single-core ARM processor and 512

MB of SDRAM. This companion computer has the main function of communicating

with the laboratory LAN through a Wi-Fi connection, enabling the drone to be

controlled by a ground station that provides input commands to the quadrotor via a

MATLAB interface. Moreover, due to its computational power, it is going to have a

primary role in collaborative flight when ANT-1 will be involved in MAV swarming.

Figure 5.3: Raspberry Pi Zero W.

5.2.2 Frame

Although several off-the-shelf frames were readily available, a self-designed one has

been preferred. Indeed, a customized frame ensures compatibility with the chosen

components, such as battery, motors and logic cards. In this way, the frame does

not represent a constraint in terms of components selection except for geometric

dimensions, since the frame itself is limited in size by design requirements. Indeed,

to meet the size and weight requirements a carbon fiber cross plate of 160 mm has

been manufactured (Figure 5.4a). The choice of a composite material provides both

lightness (only 30 gr) and high stiffness to the vehicle structure. Finally, a specific

support plate has been built and assembled onto the upper part of the frame to

accommodate the FCU and the companion computer (Figure 5.4b). These two

elements are joined together through damping balls which are intended to mitigate

the effects of rotors vibrations on the IMU sensors.
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(a) Cross plate. (b) FCU and Raspberry support.

Figure 5.4: ANT-1 frame.

5.2.3 Battery, motors and propellers

Battery

A 950 mAh Li-Po battery (Figure 5.5) is located underneath the quadrotor and

powers all the on-board devices through a suitable power module. Battery capacity

suggested by eCalc has been the result of an inherent compromise between weight

and flight time. According to eCalc the maximum current required by the four

motors operating at maximum power is equal to 16.8 A, which is compatible with

the continuous discharge rate ensured by the chosen battery (950 mAh capacity

with 25C continuous discharge rate means the battery can supply up to 23.75 A

continuously).

Figure 5.5: 950 mAh Li-Po battery.
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Motors and ESCs

The battery powers the four motors via their respective ESCs (Figure 5.6a). These

devices have the basic task of converting DC voltage provided by the battery into a

three-phase alternating current suitable for synchronous motors. This supply voltage

depends on the Pulse Width Modulation (PWM) servo signal generated by the FCU,

which is proportionally related to the desired rotational speed of the motors. As

mentioned, ANT-1 is powered by four synchronous Brushless DC motors (Figure

5.6b) that ensure high power-to-weight ratio. The selected motors are characterized

by a KV parameter equal to 3100 rpm/V. This parameter represents the number

of revolutions per minute for each Volt applied to the motor (e.g., if the battery

guarantees 11.1 V, KV = 3100 rpm/V means a speed of 34410 rpm is ideally reached

with no external loads applied).

Propellers

Finally, each motor drives a three-blade propeller to generate the aerodynamic thrust

(Figure 5.6c). The chosen propellers are characterized by a diameter of 76 mm

and a (fixed) pitch of 88 mm. As already mentioned, the small diameter of the

propellers represents a mandatory choice due to the reduced overall size of the

quadrotor. The required thrust being fixed, smaller propeller generates lower air

flow rate and consequently higher variation in air velocity is needed. This results

in higher rotational speed and therefore higher blade pitch. As a negative aspect,

this solution leads to reduced hovering efficiency due to a higher disc loading (ratio

between gross weight and thrust area), but ensures faster motor dynamics in terms

of rpm variations and, consequently, enhanced responsiveness of the closed-loop

attitude dynamics of the whole quadrotor.

(a) ESC. (b) Brushless DC motor. (c) Propellers.

Figure 5.6: ANT-1 propulsion system.
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Figure 5.7: The ANT-1 quadrotor on the test-bed.

5.3 Test-bed and flight tests overview

The highly customised design and the wise selection of the FCU ensure high flexibil-

ity in terms of flight control law implementations, allowing the experimental testing

of all the data-driven algorithms proposed in this work. Some experiments required

the use of a test-bed (see Figure 5.7), such as the open-loop tuning experiment and

the attitude validation experiments. The test-bed is built out of x-frame aluminium

rods and weighted with sacks of concrete. The upper part of the frame carries a

beam with circular cross section, resting on ball bearings at both ends for friction-

less rotation. The quadrotor is then securely fastened to this shaft. In the current

mounting scheme, the shaft axis passes as close as possible to the centre of mass of

the system in order to interfere as little as possible with the rotational dynamics of

the quadrotor. Nevertheless, because of the physical configuration of the system,

a small distance between the shaft and the actual centre of mass is still present.

In turn, this causes the system to act like a pendulum, adding a small damping
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effect that is negligible for small oscillations. Furthermore, the test-bed holds the

quadrotor high enough to prevent any ground effect disturbance. However, small

interferences still occur as a consequence of the interaction between rotor wakes and

the test-bed frame. This represents an additional discrepancy with respect to the

real in-flight behaviour, where the rotor wakes develop free from obstacles. Despite

these non-idealities, it has been shown in [42] that such a test-bed is representative

of the actual attitude dynamics in flight.

First, the attitude controller has been tuned with all the data-driven methods

presented in the previous chapters; i.e. VRFT (with open-loop and closed-loop gath-

ered data), CbT and controller unfalsification. For each one, a validating experiment

has been carried out on the test-bed, and all the results are shown in Section 6.1

and 6.2. After that, the position controller has been considered, so flight tests have

been performed either for collecting the tuning data and for validating the position

dynamic response, as will be widely discussed in Section 6.3.





Chapter 6

Results

In this chapter the simulation and the experimental results obtained applying the

data-driven methods to the ANT-1 quadrotor is illustrated. Section 6.1 contains

the results obtained by tuning the controllers with open-loop experimental data; in

particular, VRFT is compared with the H∞ and manual controllers and with the

results provided by the CbT and controller unfalsification methods. In Section 6.2,

the VRFT method applied to closed-loop gathered data is compared with that based

on open-loop experiments. Finally, in Section 6.3 the results related to the position

controller tuned with the VRFT algorithm are discussed.

6.1 Pitch attitude controller with open-loop experiments

In the following sections, the results of the attitude controller tuning is discussed

in detail. In particular, in Subsection 6.1.1 an overview of the tuning experiment is

provided. Then, the reference models of inner and outer loops is outlined in Sub-

section 6.1.2 and all the simulated MATLAB results are shown in Subsection 6.1.3.

Finally, the experimental results obtained through suitable tests, carried out on the

laboratory test-bed, are discussed in the last Subsection (6.1.4).

6.1.1 Tuning experiment

One of the key element of any data-driven algorithms is the so-called tuning experi-

ment. That is, the collection of a sufficiently long input-output dataset that excites

the dominant system dynamics. The tuning experiment has been carried out with

the quadrotor mounted on the test-bed since only the pitch dynamics have to be

excited. Figure 6.1 shows the input and output signals used for data-driven tuning.

The entire dataset has been obtained by combining three subsequent open-loop tests
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Figure 6.1: Open-loop experimental dataset used by data-driven methods. Dotted pitch
rate represents the simulated open-loop response of the quadrotor.

of 20 seconds. The input signal is a PRBS pitching moment, which has been applied

in open-loop conditions, thus with the nominal attitude and position controllers de-

activated. The PRBS amplitude and the time duration of the switching intervals

were defined so as to obtain a forcing spectrum large enough to excite the dominant

pitch dynamics. The output signals, pitch rate and pitch angle, are measured by the

on-board IMU and recorded on a memory card at a sampling rate of 250 Hz. The

measurement signals come from the Kalman-based estimator using only on-board

sensors (i.e. accelerometer and gyroscope).

6.1.2 Reference models

In all data-driven algorithms, a wise choice of the reference model is an essential

step in achieving satisfactory closed-loop performance. In principle, the reference

model should have the highest possible cut-off frequency to ensure a sufficiently fast

dynamic response, but without being physically unachievable. In order to better

understand which is the physical behaviour we are asking for, it is advisable to rely

on a simple second-order model characterized by properly chosen natural frequency

and damping ratio. Such choice allows to easily impose the value of the desired

bandwidth, the unit static gain and, at least roughly, the desired damping of the
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closed-loop system. Nevertheless, such a simple model often does not guarantee

a sufficiently high-performance controller tuning. Indeed, if some information on

the plant is available, in addition to the knowledge of the controller structure, it is

possible to augment the reference model so that it better matches the closed-loop

behaviour of the real plant. The simplest property to include is the time delay, but

sometimes it is also necessary to change the numbers of poles and zeros, as will be

shown below.

Furthermore, both the VRFT and the CbT methods provide for user-defined

weighting functionW (z), which allows forcing the matching problem within a certain

frequency range. Typically, one wants the closed-loop behaviour to be as close as

possible to the desired one at least at low frequency, so the weighting functions will

be of low-pass filter type.

MISO PID controller

As already mentioned, we always start from a second order model characterized by

two complex poles. In order to verify the suitability of a simple second order reference

model, consider the controller structure defined in Section 3.2 and approximate the

quadrotor attitude dynamics with a second order transfer function. The latter is a

fairly strong assumption but allows for a significant simplification of the analytical

calculations that will follow, without undermining the generality of the discussion.

Hence, by assuming a simple non-filtered derivative term,

CPI(s) =
KPis+KIi

s
and CD(s) = KDis ,

and the simplified pitch rate dynamics of the form

Pi(s) =
a

bs2 + cs+ d
,

the closed-loop transfer function can be computed as follow:

Fi(s) =
CPI(s)Pi(s)

1 + CD(s)Pi(s) + CPI(s)Pi(s)
=

=

aKPis+ aKIi

bs3 + cs2 + ds

1 +
aKDis

bs2 + cs+ d
+
aKPis+ aKIi

bs3 + cs2 + ds

=

=
aKPis+ aKIi

bs3 + (c+ aKDi)s
2 + (d+ aKPi)s+ aKIi

. (6.1)
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As can be seen from (6.1), the closed-loop transfer function has one real zero and

three poles, which roughly results in a -40 dB/decade gradient of the Bode diagram.

For this reason, the choice of a second order reference model for the inner loop might

well approximate the actual behaviour of the closed-loop system, at least within the

desired bandwidth.

The resulting continuous-time inner loop reference model is of the form

Mi(s) =
ω2
ni

s2 + 2ξiωnis+ ω2
ni

,

where ωni is the desired natural frequency and ξi is the damping ratio.

So, the system dynamics will not be changed apart from adding the 5 samples

time delay of the plant. As far as the choice of ωni and ξi is concerned, the maximi-

sation of the closed-loop performance has been pursued, taking as goal a pre-existing

H∞ controller. The selected parameters are collected in Table 6.1 and the resulting

discrete time transfer function is the following:

Mi(z) = z−5 0.0238z + 0.02265

z2 − 1.816z + 0.8626
. (6.2)

In this specific case no filtering action was needed, thus the weighting function

has been defined as Wi(z) = 1.

The reference model of the outer control loop can be defined in a similar fashion.

Recall that the outer controller consists of a simple proportional term, Co(s) = KPo ,

while the system to be controlled will be given by the multiplication of the inner

loop and an integrator, that is

Po(s) =
aKPis+ aKIi

bs3 + (c+ aKDi)s
2 + (d+ aKPi)s+ aKIi

· 1

s
.

Hence, the closed-loop transfer function is the following.

Fo(s) =
Co(s)Po(s)

1 + Co(s)Po(s)
=

=
aKPiKPos+ aKIiKPo

bs4 + (c+ aKDi)s
3 + (d+ aKPi)s

2 + a(KIi +KPiKPo)s+ aKIiKPo

Unlike the inner loop, an additional root of the denominator has now appeared,

which means it is advisable to augment the complexity of the reference model by

adding a suitable pole. Therefore, the resulting continuous time reference model is
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of the form

Mo(s) =
ω2
no

s2 + 2ξoωnos+ ω2
no

po
s+ po

,

where ωno and ξo respectively are the natural frequency and the damping ratio of

the outer reference model and po is the position of the additional pole. As before, a

time delay of 5 samples has been added to the final discrete time transfer function,

Mo(z) = z−5 0.0008861z2 + 0.003231z + 0.0007374

z3 − 2.635z2 + 2.333z − 0.6927
. (6.3)

Finally, in this case, the use of a weighting function proved to be useful for im-

proving the output performance obtained through the VRFT tuning. In particular,

Wo(z) has been defined as a lowpass digital ninth-order Butterworth filter, with a

cut-off frequency equal to 200 rad/s. All the characteristics of the outer reference

model are summarized in Table 6.1

ω
[rad/s]

ξ
Added

poles/zeros
Weighting function

Inner loop 56 0.33 - -

Outer loop 45 0.52
Pole in

45 rad/s
Low-pass filter

(200 rad/s)

Table 6.1: Inner and outer reference models for the VRFT algorithm (MISO PID control
structure).

SISO PID controller

If a SISO PID architecture is taken into account, i.e. a control structure in which

the derivative action is applied to the error (see Section 3.4), the reference models

just defined are no longer suitable. Indeed, by considering the ideal PID controller

of the form

CPID(s) =
KDis

2 +KPis+KIi

s
,

it is straightforward to show that the inner loop transfer function is the following:

Fi(s) =
aKDis

2 + aKPis+ aKIi

bs3 + (c+ aKDi)s
2 + (d+ aKPi)s+ aKIi

. (6.4)

It should be noted that the controller transfer function written above is not feasible

in practice, but since a merely preliminary analysis is being carried out, this sim-
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plification does not affect its validity. As in the previous case, it can be shown that

the transfer function of the outer loop turns out to be:

Fo(s) =

=
aKDiKPos

2 + aKPiKPos+ aKIiKPo

bs4 + (c+ aKDi)s
3 + (d+ a(KPi +KDiKPo))s2 + a(KIi +KPiKPo)s+ aKIiKPo

.

As can be seen from equation (6.4), a second order model will probably not ac-

curately represent the behaviour of the inner closed-loop system. For this reason a

zero has been added, resulting in an actual improvement of such designed control

systems. Table 6.2 summarizes the characteristics of all the reference models de-

signed for the VRFT, the CbT and the controller unfalsification tuning algorithms.

Obviously, reference models must include, just like before, the 5 time delay samples.

It has been verified that the use of low-pass filters as weighting functions ensures

a closer match between actual and desired behaviour within the frequency band

of interest, ultimately leading to a significant improvement in output performance.

Ninth-order lowpass digital Butterworth filters with cut-off frequencies of 500 and

100 rad/s were adopted for the inner and outer loop respectively. Notice that the

controller unfalsification method does not provide any weighting function.

ω
[rad/s]

ξ
Added

poles/zeros
Weighting function

(Low-pass filter)

VRFT

Inner loop 56 0.6
Zero in

100 rad/s
fc = 500 rad/s

Outer loop 43 0.6
Pole in

70 rad/s
fc = 100 rad/s

CbT

Inner loop 56 0.6
Zero in

100 rad/s
fc = 500 rad/s

Outer loop 36 0.8
Pole in

70 rad/s
fc = 100 rad/s

Controller
Unfalsification

Inner loop 56 0.6
Zero in

100 rad/s
-

Outer loop 52 0.3
Pole in

70 rad/s
fc = 100 rad/s

Table 6.2: Inner and outer reference models for VRFT, CbT and controller unfalsification
algorithms (SISO PID control structure).
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Looking to Table 6.2, different outer reference models for different data-driven

methods should surprise the reader. It is straightforward that the outer reference

model heavily depends on the inner closed-loop system. As will be described below,

where the results are presented, the performance of the CbT tuning method is

overall lower than that obtained by the VRFT approach when the inner loop is

considered. The outer reference model employed with CbT must consider the inner

loop performance. Indeed the bandwidth of the outer reference model is lower than

that one of the reference model of the VRFT method. Exploiting the VRFT outer

reference model also for the CbT method leads to the instability of the outer loop.

On the contrary, the controller unfalsification method leads to better perfor-

mance than VRFT in the inner loop. Thus, the bandwidth of the reference model

is increased to allow better outer loop performances.

As described in Section 2.4, in order to apply the controller unfalsification

method, the user must define the reference model also for the desired input sensi-

tivity function. This is mandatory to ensure the internal stability of the closed-loop

system. Following the conditions in Section 2.4, the model is defined as:

Q(z) =
1.481z2 − 2.943z + 1.462

17.8z2 − 31.77z + 13.97
.

6.1.3 Simulation results

Before testing the controller on the real plant, some iterations in a simulation envi-

ronment have been performed in order to speed-up the tuning process. It is straight-

forward that the more accurate the identified model is, the closer the simulation

results will be compared to the experimental ones.

Basically, the tuning process, i.e. the choice of the reference models, is intended

to significantly outperform the manual tuning and, in principle, achieve performance

comparable with the pre-existing H∞ controller.

Plant model

The major advantage of data-driven methods (i.e., not to require an accurate knowl-

edge of the plant model) turns out to be, at the same time, a drawback of such ap-

proaches. Indeed, the choice of an adequate reference model that guarantees good

closed-loop performance is not so trivial. For this reason, the lack of an identified

model involves the need for some experimental tests in order to achieve the desired

behaviour. By contrast, if a sufficiently detailed mathematical model is available,
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P (z) Ts
z−1

M ϑ

q

Figure 6.2: Quadrotor attitude dynamics model.

the controller tuning procedure can be considerably speeded up, ultimately achiev-

ing better output performance. Nevertheless, the tuning method is still model-free,

but faster iterations between controller tunings allows one to more rapidly define

an optimal model reference. The resulting data-driven tuning will be eventually

validated on the real plant.

An accurate ANT-1 pitch attitude model has been identified in [41] by means

of the black-box PBSID method. The resulting identified model P (z) is a third-

order dynamic system describing the relationship between pitch moment M(t) and

pitch rate q(t). Then, the pitch angle ϑ(t) is obtained by integrating the output

of the above-defined model. So, as schematically shown in Figure 6.2, the attitude

dynamics has been modelled by means of the cascade of two dynamic systems:

P (z) = z−5 0.2858z2 − 0.2068z − 0.0781

z3 − 2.82z2 + 2.643z − 0.8228
(6.5)

and an integrator block, allowing the cascade control to be actually implemented

in the simulation environment. The Bode diagram of the identified model P (z) is

shown in Figure 6.3.

Since the quadrotor is inherently non-linear, the validity of the identified model

is necessarily restricted to the vicinity of the hovering conditions. Furthermore,

the identified model completely neglects the electrical dynamics as well as the rotor

dynamics. Basically, it is as if the dynamics of the electric motors had been statically

approximated, which means that a direct relationship exists between demanded

pitching moment and applied rotational speed. This approximation is reasonable

as the natural frequencies of the rigid modes are much smaller than those of the

electric motors and the rotors.

In order to validate the model, the experimental results can be compared with

numerical simulation based on the identified transfer function. In particular, the

same input signal used for the open-loop test can be exploited as input signal for

the identified model, so that simulated and experimental output data can be com-

pared. For further details about the open-loop test and input and output signals,
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see Subsection 6.1.1. As can be seen from Figure 6.1, the identified system re-

sponse (pitch rate) accurately reproduces that of the real one. Therefore, due to

the proven reliability of the identified model, it is expected that the tuning achieved

via numerical simulations will provide comparable performance on the test-bed (see

Subsection 6.1.4).
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Figure 6.3: Bode diagram of the identified pitch attitude model.

Inner loop results

The main results achieved by closing the inner control loop will be shown below.

More specifically, both frequency domain and time domain results will be discussed.

The inner control loop is characterized by a PID controller that has been imple-

mented with two different control architectures in order to validate the VRFT as

well as the CbT and the controller unfalsification methods. Furthermore, besides

being compared with each other, the data-driven tuning results will be compared

with the manual tuning and the H∞ controller. All the results that will follow have

been obtained with the reference models widely discussed in Subsection 6.1.2. Be-

fore presenting the results of the inner loop, it is convenient to recall the controller

transfer functions mentioned in Chapter 3.
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Controller transfer functions. As already said, two different PID control struc-

tures have been implemented for the inner control loop. The first applies the deriva-

tive action on the measurement, as typically happens in industrial controllers, and

also includes a feedforward term (see Figure 3.3). On the other hand, a second

control structure has been implemented to allow the controller design via the CbT

and the controller unfalsification algorithms (see Figure 3.5). Indeed, unlike the

VRFT that has been suitably modified to adapt to the new control structure, these

tuning methods necessarily require a simple SISO PID controller, or more generally

a controller defined with a single transfer function.

In the former case, in fact, the following three different controller transfer func-

tion vectors are defined:

βȳ(z) = 1 , βe(z) =

[
1

Ts
z − 1

]T
, βy(z) =

[
1− z
zTs

]
. (6.6)

Where Ts is the sampling time, equal to 0.004 s. Hence, from (6.6), the linear

controllers respectively depending only on the reference signal, the error and the

plant output can be derived.

Cȳ(z) = βTȳ (z) θȳ = KFFi

Ce(z) = βTe (z) θe = KPi +KIi

Ts
z − 1

Cy(z) = βTy (z) θy = KDi

1− z
zTs

Where the parameter vector is a four elements vector defined as θ = [θȳ θTe θy]
T .

Note that the VRFT requirement to rely on linear controller families is still met.

In the latter case, the controller linearly dependent on parameters is of the form

C(z, θ) = βT (z) θ , (6.7)

where β is the vector of linear discrete time transfer functions defined as

β(z) =

[
1

Ts
z − 1

z − 1

zTs

]T
.

In this case, since the vector β is unique, both the standard VRFT and the CbT

algorithms can be applied. Regarding the controller unfalsification method, the con-

troller transfer function must be reformulated in order to define a different parameter

vector.
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In particular, by rewriting the PID transfer function (6.7) in an extended form

one obtains:

C(z, θ) = KPi +KIi

Ts
z − 1

+KDi

1− z
zTs

=
z2(KPiTs +KDi) + z(KIiT

2
s − 2KDi −KPiTs) +KDi

(z − 1)Tsz
.

Then, by recalling the parametric controller family (2.12) defined in Section 2.4, one

obtains

D∗(z) = Tsz
2 + Tsz

N̄(z, θ) = z2(KPiTs +KDi) + z(KIiT
2
s − 2KDi −KPiTs) +KDi

where D∗(z) is the denominator polynomial with fixed coefficients and characterized

by an unstable root, while N̄(z, θ) is the polynomial whose coefficients form the

unknown parameter vector. So, the controller unfalsification parameter vector is

defined as

ρ = [KPiTs +KDi , KIiT
2
s − 2KDi −KPiTs , KDi ]

T .

Finally, the PID parameters θ are related to the parameter vector ρ by means of the

following relationship:

θ =

 Ts 0 1

−Ts T 2
s −2

0 0 1


−1

ρ .

VRFT tuning results with MISO PID controller. Figure 6.4 shows the Bode

diagram obtained by the manual, the H∞ and the VRFT tunings of the inner con-

troller. As can be seen, the frequency response of the VRFT tuning is very close

to that obtained with the H∞ controller and approximates quite well the desired

behaviour. The same remarks can be made by comparing the step responses of the

different tunings (Figure 6.5). Furthermore, it is clearly visible that the the manual

tuning is significantly slower than both data-driven and H∞ controller tunings.
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Figure 6.4: Comparison of the inner loop Bode diagrams considering VRFT, H∞ and man-
ual tunings (simulation).
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Figure 6.6: Comparison of the inner loop Bode diagrams considering VRFT, CbT and
controller unfalsification tunings (simulation).

VRFT, CbT and controller unfalsification tunings results with SISO PID

controller. Moving on the simplest control architecture, i.e. the SISO PID, the

internal controller tuning has been carried out using CbT algorithm and the unfal-

sification method. For completeness, a VRFT tuning has been also implemented, so

that it can be compared with the other two tunings. By analysing Figure 6.6 and

Figure 6.7, it is clearly evident that the VRFT tuning ensures better performance

than the CbT counterpart, as already shown in [9].

The CbT approach is highly recommended whenever the gathered data is rather

noisy. In this condition, in fact, the use of instrumental variables could be ineffective,

therefore leading to a destabilising controller. On the contrary, the CbT method

maintains roughly constant performance as data SNR decreases. As a drawback,

for sufficiently high SNR values the VRFT ensures quite better performance than

the CbT. In our case, the experimental datasets are characterised by a high SNR,

making it useless to rely on the most robust CbT algorithm. Due to the high SNR

the parameter l of the CbT algorithm, representing the trade-off between accuracy

and bias, has been set equal to ten times the length of the impulse response of

the reference model. Indeed, in [9] it has been shown that a good choice for the

l parameter is represented by the length of the reference model impulse response

(Figure 6.8), and it can be increased the more the SNR value is large. Both for the
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Figure 6.7: Comparison of the inner loop step responses considering VRFT, CbT and
controller unfalsification tunings (simulation).

inner and outer loop, l has been set equal to 500.

Regarding the controller unfalsification, the results reported in Figure 6.6 and

Figure 6.7 have been obtained by solving the optimisation problem (2.17) considering

the reference model reported in Table 6.2. Thanks to the wise choice of the reference

model the unfalsification algorithm did not have to execute any iteration, because

even with δ = 1 a stabilising controller is obtained.

In order to show how the stability constraint works, an undoubtedly unachievable

reference model has been imposed. Starting from the model defined in Table 6.2 an

higher natural frequency (ωn = 65 rad/s) has been required and it has been verified

that the VRFT algorithm yields a destabilising controller. To comply with the

stability constraint, the algorithm progressively reduces the δ value, which means

greater importance is given to input sensitivity with respect to the output one, until

the stability test has passed. Figure 6.9 shows the gradual reduction of the infinity

norm discrepancy in (2.18) as δ is reduced. According to the small-gain theorem,

the stability is ensured if the infinity norm is less than one. As suggested in [16],

it is advisable to set a minimum stability margin to take into account the infinity

norm estimation error in (2.18), that is why the stability test is passed only when

the infinity norm is less than 0.95 (dotted line).
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Figure 6.10: Inner loop Bode diagram considering the controller unfalsification tuning with
unachievable reference model and the stabiliser controller (δ = 0) (simulation).
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The Bode diagram and the step response obtained with this reference model are

shown in Figure 6.10 and Figure 6.11. On the same graph, the curves associated to

the stabilising controller have been plotted. This controller has been obtained by

minimising the cost function (2.11) with δ = 0. By doing so, the input sensitivity

function is forced to be as close as possible to the desired one and thus the closed-

loop stability is guaranteed (see Section 2.4). To conclude, while the performance of

the unfalsified controller with achievable reference model is very good both in terms

of rise time and settling time, the one obtained imposing an unachievable reference

is significantly slower. Nevertheless, it has been proved that the yielded controller is

actually stabilising, contrary to what it would have been achieved with the VRFT.

Controller parameter values. The controller parameters obtained with the

VRFT tuning applied to the MISO PID architecture are summarized in Table 6.3.

Table 6.4 shows the tunings generated by VRFT, CbT and controller unfalsification

algorithms by adopting the SISO PID control architecture. In particular, regarding

the controller unfalsification method, the results of all three tunings described above

have been reported.

KFFi KPi KIi KDi

VRFT 0 0.09143 0.2067 0.0016

H∞ 0 0.0849 0.2138 0.0014

Table 6.3: Inner controller parameters considering VRFT with MISO PID architecture.

KPi KIi KDi

VRFT 0.05146 0.1935 0.0012

CbT 0.04696 0.06792 0.00091

Controller
Unfalsification (δ = 0)

0.02936 0.1763 0.0010

Controller Unfalsification 0.06280 0.3303 0.0017

Controller Unfalsification
(ωn = 65 rad/s)

0.06940 0.2741 0.0010

Table 6.4: Inner controller parameters considering VRFT, CbT and controller unfalsification
methods with SISO PID architecture.
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Outer loop results

Once the controller parameters of the inner loop are defined and the inner closed-

loop performance is suitably validated, attention can be turned to the outer control

loop. In particular, by tuning the outer loop the complete attitude dynamics can

be analysed. Unlike before, the tuning procedure is much simpler since the outer

controller consists of a simple proportional term.

As with the inner loop, the Bode diagrams and the step responses of all the

tunings will be shown in the following pages and the results are summarized in

Table 6.5 at the end of this subsection.

Controller transfer function. The outer loop control structure is trivial because

it consists only of a proportional controller. Therefore, the vector of linear transfer

functions β(z) is reduced to a simple unit transfer function and the parameter vector

θ is simply KPo , as illustrated in Figure 3.3. Unlike the inner loop, the same control

architecture has been adopted for both the VRFT and the CbT tuning algorithms.

Note that, for simplicity, the controller unfalsification method has been applied

only in the inner loop, the corresponding outer loop has been tuned through a

simple VRFT algorithm. This is because the inner loop is far more critical from

the closed-loop stability point of view. Indeed, if the inner loop is stable and the

bandwidth of the outer reference model is realistic, then the closed-loop stability

is almost certainly achieved. Furthermore, since the controller is defined only by

the proportional term it is quite easy to understand whether the system is stable or

not by comparing the parameter value with that of the manual tuning. Indeed, it

has been verified that instability occur with very high values of KPo (approximately

KPo = 35÷40), but such values have never been obtained with any reference model.

VRFT tuning results with MISO PID controller. As shown in Figure 6.12

and 6.13, the closed-loop performance guaranteed by the VRFT tuning is comparable

if not better than that provided by the H∞ tuning. More specifically, the rise time is

similar in both cases, but the overshot associated with the VRFT tuning is slightly

smaller. Furthermore, the simulated system appears to be a bit slower than the

reference model but overall the two are in accordance.
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Figure 6.12: Comparison of the outer loop Bode diagrams considering manual, VRFT and
H∞ tunings (simulation).
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Figure 6.13: Comparison of the outer loop step responses considering manual, VRFT and
H∞ tunings (simulation).
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Figure 6.14: The outer loop Bode diagram considering the VRFT tuning (simulation).

VRFT, CbT and controller unfalsification tunings results with SISO PID

controller. The VRFT, the CbT and the controller unfalsification methods exploit

different reference models as illustrated in Table 6.2, so the results are displayed in

separate figures for the sake of clarity. Figure 6.14 and Figure 6.15 show the closed-

loop performance guaranteed by the VRFT tuning, while the CbT tuning results

are displayed in Figures 6.16 and 6.17. The outer proportional gain, associated

with the inner unfalsified controller, has been derived by means of the VRFT algo-

rithm (Figures 6.18 and 6.19). The three methods are compared in Figures 6.20

and 6.21 without displaying the reference models. For comparison purposes, the

results obtained by means of controller unfalsification tuning of the inner loop with

unachievable reference model have been reported on the same graphs.

The outer loop confirms what has already been outlined by analysing the results

of the inner loop. That is, the performance ensured by the CbT tuning method is

overall lower than that obtained by the VRFT approach. Furthermore, by looking

at the Figure 6.21 it can be noted that the unfalsified controller obtained assigning

an achievable reference model has a very fast response with a minimal overshoot.

On the contrary, assigning an unachievable reference model the closed-loop response

tends to oscillate resulting in a long settling time. Nevertheless, thanks to the

stability test, the resulting controller is stable.
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Figure 6.15: The outer loop step response considering the VRFT tuning (simulation).
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Figure 6.16: The outer loop Bode diagram considering the CbT tuning (simulation).
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Figure 6.17: The outer loop step response considering the CbT tuning (simulation).
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Figure 6.18: The outer loop Bode diagram considering the controller unfalsification tuning
(simulation).
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Figure 6.19: The outer loop step response considering the controller unfalsification tuning
(simulation).

-60

-40

-20

0

M
a

g
n

it
u

d
e

 [
d

B
]

10-1 100 101 102 103

Frequency [rad/s]

-1000

-500

0

P
h

a
s
e

 [
d

e
g

]

CbT tuning

VRFT tuning

Controller unfalsification

Controller unfalsification (unachievable reference)

Figure 6.20: Comparison of the outer loop Bode diagrams considering VRFT and CbT tun-
ings and controller unfalsification tunings both with achievable and unachievable reference
model (simulation).
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Figure 6.21: Comparison of the outer loop step responses considering VRFT and CbT tun-
ings and controller unfalsification tunings both with achievable and unachievable reference
model (simulation).

Controller parameter values. Table 6.5 summarises all the outer loop propor-

tional gains associated with the different tunings. The parameter value associated

with the unfalsification method is related to the inner loop tuned with achievable

reference model.

H∞
VRFT

(MISO PID)
VRFT

(SISO PID)
CbT

VRFT
(Unfalsification)

KPo 11.75 12.11 12.78 12.92 14.10

Table 6.5: Proportional gains of the outer controller considering VRFT, CbT and H∞ meth-
ods.
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6.1.4 Experimental results

As already stated in Subsection 6.1.3 the controllers design have been performed on

a simulated system to have much faster iterations between the different reference

models and thus between subsequent controller tunings. The reliability of the simu-

lation results is closely related to the accuracy of the identified model but, even if the

model response has proved to be very similar to the real one, experimental validating

tests are essential. Indeed, it is important to verify that the performance achieved

in the simulation environment is achievable even in practice without making the

system unstable, which should not be taken for granted because of the unavoidable

approximations of the model.

The attitude tests have been performed on a test-bed that constrains all trans-

lational and rotational degrees of freedom except the pitch rotation. This ensures

that the tests are repeatable and safe, preventing crashes due to erroneous choice

of the controller parameters or wrong test characterization. Two different types of

tests have been performed, the first one consists of a sequence of steps of constant

duration and increasing amplitude, while the second one is a disturbance rejection

test.

The first test consist of assigning a desired pitch angle command history and

recording the system response. The setpoint time history has been defined as a

sequence of steps with amplitudes of 5 deg and 10 deg. The second test allows to

assess the effect of a wind gust on the quadrotor. The pitch angle setpoint has been

set to zero for the whole test duration and a pitch moment disturbance has been

applied and maintained constant for 5 seconds. Both tests have been performed for

all available controller tunings, that is manual, H∞, CbT, controller unfalsification

and VRFT tunings. The tested data-driven controllers have been obtained with the

reference models described in Tables 6.2 and 6.1.
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Setpoint tracking and disturbance rejection with VRFT tuning (MISO

PID controller)

The performance obtained with the VRFT algorithm has been compared with H∞

and manual tunings. Figure 6.22 shows the entire time history of the setpoint

tracking test, but the fast system response does not allow to perceive the differences

between the closed-loop responses. For this reason, an enlargement of a single step

response has been reported for both amplitudes, 5 deg (Figure 6.23) and 10 deg

(Figure 6.24). As expected in simulation, VRFT and H∞ tunings yield a similar

dynamic response that is significantly faster than that associated to the manually

tuned controller. When considering the disturbance rejection test (Figures 6.25 and

6.26) the performance of the VRFT method is slightly better than that of the H∞

tuning both considering the pitch angle and the control effort. On the other hand,

both methods ensures significantly better performance with respect to the manual

tuning but, at the same time, require an higher control effort.
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Figure 6.22: Setpoint tracking with manual, H∞ and VRFT tunings (experiment).
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Figure 6.23: Setpoint tracking (5 deg step) with manual, H∞ and VRFT tunings (experi-
ment).
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Figure 6.24: Setpoint tracking (10 deg step) with manual, H∞ and VRFT tunings (experi-
ment).
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Figure 6.25: Load disturbance rejection with manual, H∞ and VRFT tunings. (experiment)

1 2 3

Time [s]

-2

0

2

4

6

8

10

P
it
c
h

 a
n

g
le

 [
d

e
g

]

5.8 5.9 6 6.1 6.2

Time [s]

-0.1

-0.05

0

0.05

0.1

C
o

n
tr

o
l 
v
a

ri
a

b
le

Figure 6.26: Zoomed-in view of the load disturbance rejection with manual, H∞ and VRFT
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Setpoint tracking and disturbance rejection with VRFT, CbT and con-

troller unfalsification methods (SISO PID controller)

As explained before, the control architecture implemented in the firmware of the

quadrotor has been modified to handle the tunings yielded by the CbT and the

controller unfalsification methods. Figures 6.27, 6.28 and 6.29 show the setpoint

tracking tests of VRFT, CbT and the controller unfalsification tunings.

As can be noted from the figures, there are no significant differences in perfor-

mance between the three methods. On the contrary, by looking at the disturbance

rejection test (Figures 6.30 and 6.31) the performance of the CbT tuning turns out

to be lower than that of the VRFT and the unfalsified controller. In particular,

the latter ensures the fastest disturbance rejection, even though the control effort is

slightly larger than the one requested by VRFT and CbT tunings.
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Figure 6.27: Setpoint tracking with VRFT, CbT and controller unfalsification tunings (exper-
iment).
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Figure 6.28: Setpoint tracking (5 deg step) with VRFT, CbT and controller unfalsification
tunings (experiment).
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Figure 6.29: Setpoint tracking (10 deg step) with VRFT, CbT and controller unfalsification
tunings (experiment).
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Figure 6.30: Load disturbance rejection with VRFT, CbT and controller unfalsification tun-
ings (experiment).
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Controller parameter values

To conclude, the parameters of all the tested controllers are summarised in Tables 6.6

and 6.7. The VRFT results described above, and the related controller parameters

shown in the table, have been obtained by building the instrumental variable through

the identification of an ARX(5,5) model for the inner and the outer loops. As al-

ready stated in Section 2.2, this is a fundamental step in order to deal with noisy

experimental data.

Kffi KPi KIi KDi KPo

VRFT 0 0.09143 0.2067 0.0016 12.11

H∞ 0 0.0849 0.2138 0.0014 11.75

Manual tuning 0 0.06 0.1 0.0010 8

Table 6.6: Optimal controller parameters for MISO PID control architecture.

KPi KIi KDi KPo

VRFT 0.05146 0.1935 0.0012 12.78

CbT 0.04696 0.06792 0.00091 12.92

Controller
Unfalsification

0.06280 0.3303 0.0017 14.10

Table 6.7: Optimal controller parameters for SISO PID control architecture.
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6.2 Pitch attitude controller with closed-loop experi-

ments

In Section 6.1 the data-driven methods employ experimental data that come from

open-loop experiment carried out on the test-bed setup. Also in this section the pitch

attitude controller is considered but the data is collected in-flight. In this situation,

as explained in Section 4.1, the data must be collected in closed-loop, allowing the

user to control the system also when the experiment is been conducting.

For the sake of simplicity, only the VRFT method is considered and the original

control architecture displayed in Figure 3.3 is exploited. The results will be compared

with the VRFT tuning obtained with open-loop experimental data as presented in

Section 6.1.

6.2.1 Tuning experiment

As illustrated in Section 4.1, an initial controller Cd(z) that stabilises the system

must be available, in order to conduct the tuning experiment in closed-loop. This

controller has the same structure of the one to be tuned and the manual tuning,

as presented in Table 6.6, emerges as the most obvious choice, since it is the first

available controller and it was obtained with a simple trial and error procedure.

As illustrated in Figure 4.1, the excitation signal ū(t) is added to the output of

the controller Cd(z). The time histories of all the involved signals in the data-driven

tuning procedure are illustrated in the Figure 6.32. In this case, the control variable

that is the pitch moment applied to the UAV (it is illustrated in the second plot

of Figure 6.32) does not clearly show the PRBS excitation signal because in the

closed-loop condition it is the sum of the excitation signal and the output of the

controller that tries to obtain a null pitch angle. During the experiment, the user

did not provide a pitch angle setpoint (ȳ(t) = 0, see again Figure 4.1) because the

UAV operated always in safe conditions and it did not reach the limits of the test

area.

6.2.2 Reference models

Comparing this section and Section 6.1, the only thing that changes is how the

experimental data is obtained. The system to be controlled and the controller ar-

chitecture do not change. Since the closed-loop reference model depends implicitly

from these two last systems, the reference model both for the inner and the outer

loops do no change. Thus the closed-loop reference models for the inner and outer
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Figure 6.32: Closed-loop experimental dataset used by data-driven method.

loop are expressed in (6.2) and (6.3) respectively. Since the reference model are the

same in the open-loop and closed-loop frameworks, it is easy to compare the two

tunings obtained with the different data without performing another tuning with

the new reference model exploiting the data in Section 6.1.

6.2.3 Controller parameter values

Exploiting the reference models and closed-loop experimental data the VRFT method

leads to the parameter values reported in Table 6.8. Both the parameters for the

inner and the outer controllers are displayed. For comparative purposes also the

tuning obtained with open-loop data (see Section 6.1) is reported in the table.

To deal with noisy data, an instrumental variable is employed and it is built

through the identification of the inner and the outer loops. For the inner loop, a

third-order of the plant model is identified with the PBSID algorithm with p = 40

and f = 40, while for the outer loop, an ARX(5,5) model is employed.

6.2.4 Simulation results

Also in this case the plant model in (6.5) and the scheme in Figure 6.2 are exploited

to better show the results.
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KFFi KPi KIi KDi KPo

VRFT with
open-loop data

0 0.09143 0.2067 0.0016 12.11

VRFT with
closed-loop data

0 0.1359 0.1008 0.0019 12.47

Table 6.8: Optimal controller parameters for outer and inner controllers considering the
VRFT method with open-loop and closed-loop experimental data.

First the inner loop acting on the pitch angular rate is considered.

Just to recall, in Section 6.1 it has been shown that the frequency response

of the VRFT tuning is very close to that obtained with the H∞ controller and

approximates quite well the desired behaviour. The same remarks have been done

on the step responses of the two tunings (Figure 6.5).

Concerning the VRFT tuning obtained with closed-loop gathered data, the fre-

quency response is quite similar to that the VRFT based on open-loop data, as

shown in the Bode diagram in Figure 6.33. Nevertheless, considering the step re-

sponses of the two VRFT tunings, the VRFT method that employed closed-loop

experimental data leads to a more oscillating behaviour (see Figure 6.34).

Now the attention is moved to the outer proportional controller that acts on the

pitch angle setpoint and pitch angle measurements, generating the setpoint signal for

the inner controller as output (see again Figure 3.3). As illustrated in Figures 6.35

and 6.36, the closed-loop performance guaranteed by the VRFT tuning obtained

with closed-loop data is comparable with the one provided by the VRFT tuning

with open-loop data. The rise times are the same and the step response with the

closed-loop data VRFT method is slightly more oscillating.

6.2.5 Experimental results

As explained in Section 6.1, the performance achieved in the simulation environment

must be validated also in practice, operating on the real system. The attitude tests

have been performed with the test-bed setup and also in this case two different types

of tests have been performed as in Section 6.1: a setpoint tracking and a disturbance

rejection load disturbance evaluation.

As in the simulation environment, the VRFT method exploiting closed-loop ex-

perimental data is compared with the VRFT algorithm that instead exploits open-

loop data. Figure 6.37 shows the entire time history of the setpoint tracking test
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Figure 6.33: Comparison of the inner loop Bode diagrams considering VRFT with closed-
loop data and VRFT with open-loop data (simulation).
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Figure 6.34: Comparison of the inner loop step responses considering VRFT with closed-
loop data and VRFT with open-loop data (simulation).
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Figure 6.35: Comparison of the outer loop Bode diagrams considering VRFT with closed-
loop data and VRFT with open-loop data (simulation).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time [s]

0

2

4

6

8

10

12

P
it
c
h

 a
n

g
le

 [
d

e
g

]

Reference model

Closed-loop data

Open-loop data

Figure 6.36: Comparison of the outer loop step responses considering VRFT with closed-
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Figure 6.37: Setpoint tracking comparing VRFT with closed-loop data and VRFT with
open-loop data (experiment).

and an enlargement of a single step response has been reported for both amplitudes,

5 deg and 10 deg in Figure 6.38 and in Figure 6.39 respectively. As expected in sim-

ulation, the VRFT tuning obtained with closed-loop experimental data leads to a

more oscillating response, but the rise time is analogous to that of the VRFT tuning

that exploits open-loop data.

When considering the disturbance rejection test (Figures 6.40 and 6.41) the

performance of VRFT method obtained with open-loop data is slightly better than

that of the same data-driven method but obtained with closed-loop experimental

data.
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Figure 6.38: Setpoint tracking (5 deg step) comparing VRFT with closed-loop data and
VRFT with open-loop data (experiment).
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Figure 6.39: Setpoint tracking (10 deg step) comparing VRFT with closed-loop data and
VRFT with open-loop data (experiment).
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Figure 6.40: Load disturbance rejection comparing VRFT with closed-loop data and VRFT
with open-loop data (experiment).
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6.3 Position controller

In this section, the results of the position controller tuning will be discussed in de-

tail. In particular, an overview of the tuning experiment will be provided in Subsec-

tion 6.3.1. Then, after defining the reference models of inner and outer loops (Sub-

section 6.3.2), all the simulated MATLAB results will be shown in Subsection 6.3.3.

Finally, the results of the validating experiments, which consist of in-flight tests, will

be provided (Subsection 6.1.4).

For the sake of simplicity, only the VRFT method is considered and the original

control architecture displayed in Figure 3.4 is exploited. Since this controller was

never previously tuned, the closed-loop results will be compared with the closed-loop

reference model.

6.3.1 Tuning experiment

The FCU of the ANT-1 quadrotor has been modified to perform the required ex-

citation test. Furthermore, thanks to the small size of the UAV the test has been

performed indoor in the flight arena.

In the initial part of the test, the quadrotor is manually controlled in attitude via

a remote controller. The excitation test begins as soon as the drone is approximately

stable in mid-air position and aligned with the north reference in the centre of the

arena. The thrust required in hovering conditions is kept constant throughout the

test. In this situation, a PRBS pitch reference has been applied as input in open-

loop conditions. The reader should notice that, considering the position controller,

an open-loop experiment means that the attitude controllers are enabled, while the

position controllers are disabled (see Section 3.3). Although the excitation test is

performed in safe conditions since the system is stabilised by the attitude controller,

each test duration does not exceed 5 seconds because, during the test, the drone

tends to move away from the initial position and could potentially collide with the

walls of the cage. Furthermore, as an additional safety measure, the test could be

aborted at any time by using the remote controller.

The input and output time histories used for the data-driven controller design

are shown in Figure 6.42. The input signal is the demanded pitch and it is defined as

a PRBS signal switching from −5 deg and 5 deg. Whereas, the output signals are the

longitudinal linear velocity vx(t) and the longitudinal position x(t). Two 5 seconds

excitation tests have been concatenated. The measurement signals come from the

Kalman-based estimator that employs both on-board sensors (e.g., accelerometer

and gyroscope) and the information from the motion capture system that, using
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Figure 6.42: Open-loop experimental dataset used by data-driven method.

an array of infra-red sensitive cameras, provides the position of the UAV inside an

indoor flight arena.

6.3.2 Reference models

As with the tuning of the attitude controller, a second-order system, defined by the

natural frequency and the damping ratio, has been adopted as a baseline reference

model. By doing so, the desired bandwidth and damping of the closed-loop system

can be assigned.

As already mentioned for the attitude controller design, if the dynamic response

of the system is roughly known, it is possible to augment the desired model so that

it better matches the closed-loop behaviour of the real plant. This allows the VRFT

method to achieve a controller tuning that ensures better closed-loop performance.

Exactly as in the reference model of the attitude dynamics, a time delay of 5

samples has been added and a check of the number of poles and zeros of the system

has been carried out. By approximating the position dynamics model with a first-

order transfer function of the form

Pi(s) =
g

s
, (6.8)

where g is gravitational constant (see Subsection 6.3.3 for further details on plant
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model), and assuming the PID control architecture displayed in Figure 3.4, whose

transfer functions are defined as

CPI(s) =
kPis+ kIi

s
and CD(s) = kDis ,

the closed-loop transfer function can be computed as follow:

Fi(s) =
CPI(s)Pi(s)

1 + CD(s)Pi(s) + CPI(s)Pi(s)
=

=

gkPis+ gkIi
s2

1 + gkDis+
gkPis+ gkIi

s2

=
gkPis+ gkIi

(1 + gkDi)s
2 + gkPis+ gkIi

. (6.9)

Looking at the Equation (6.9) it is clear that a second-order transfer function

does not provide a good approximation of the actual closed-loop behaviour. More

specifically, the reference model should include an additional zero, resulting in a

continuous time transfer function of the form

Mi(s) =
ω2
ni

s2 + 2ξiωnis+ ω2
ni

s+ ζi
ζi

,

where ωni and ξi respectively are the natural frequency and the damping ratio of the

inner reference model and ζi is the position of the additional zero. By choosing the

reference model parameters stated in Table 6.9, the discrete time transfer function

is

Mi(z) = z−5 0.003755z − 0.003728

z2 − 1.993z + 0.9927
.

Note that the approximated position dynamics model in (6.8) does not include

the attitude closed-loop system because this dynamic is much faster than the trans-

lational one.

Furthermore, in this specific case, no filtering action was needed, thus the weight-

ing function has been defined as Wi(z) = 1.

In a similar way, the structure of the outer reference model can be defined.

As in the attitude control loop, the outer controller transfer function is a simple

proportional gain, Co(s) = kPo , and the outer model is an integrator that takes the

speed as input and returns the horizontal displacement as output. Therefore, the to

be controlled system is given by

Po(s) = Fi(s) ·
1

s
=

gkPis+ gkIi
(1 + gkDi)s

3 + gkPis
2 + gkIis

,
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thus, the following closed-loop transfer function can be derived:

Fo(s) =
Co(s)Po(s)

1 + Co(s)Po(s)
=

=
gkPikPos+ gkIikPo

(1 + gkDi)s
3 + gkPis

2 + g(kIi + kPikPo)s+ kIikPo

.

Unlike the inner loop, no additional poles or zeros are required. Therefore, the

resulting continuous time reference model is of the form

Mo(s) =
ω2
no

s2 + 2ξoωnos+ ω2
no

,

where ωno and ξo respectively are the natural frequency and the damping ratio

of the outer reference model. The values of the parameters ωno and ξo reported in

Table 6.9 yield the following discrete time transfer function:

Mo(z) = z−5 9.663 · 10−6z + 9.646 · 10−6

z2 − 1.995z + 0.9947
.

Finally, unlike the inner loop, the use of a weighting function in the outer con-

troller design has improved the matching between closed-loop response and reference

model. In particular, Wo(z) has been defined as a ninth-order lowpass digital But-

terworth filter, with a cut-off frequency equal to 80 rad/s.

All the characteristics of the inner and outer reference models are summarized

in Table 6.9. The desired bandwidths reported in the table has been chosen so as

maximise the matching problem between reference model and closed-loop behaviour

of the real plant. As will be explained in Subsection 6.3.4, if simulated performance

maximisation had been pursued, real-world stability would not be achieved.

ω
[rad/s]

ξ
Added

poles/zeros
Weighting function

(Low-pass filter)

Inner loop 1.3 0.7
Zero in

1.8 rad/s
-

Outer loop 1.1 0.6 - fc = 80 rad/s

Table 6.9: Inner and outer VRFT reference models.
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6.3.3 Simulation results

The controller tunings obtained with the VRFT algorithm have been tested in a

simulation environment, similarly to what was done in the attitude controller design.

To do this, an outer plant model that transform pitch angle into linear speed has

been defined. So, the performance of the controller has been tested before executing

the in-flight tests, thus saving time. Nevertheless, due to more or less significant

approximations of the plant model, good simulation results guarantee neither good

performance of the real system nor closed-loop stability. For this reason, some

experimental iterations could be required to define the reference models yielding

controllers that provide good performance.

Plant model

As already stated, the knowledge of some model information is essential to correctly

define the reference model. At the same time, the more accurate the model is, the

faster the tuning process will be. Indeed, with a detailed model, more reliance can

be placed on simulation results, thus minimising experimental testing. Nevertheless,

the lack of a plant model does not jeopardise the possibility to tune the controller,

since the VRFT is a model-free method by definition.

Unlike the attitude control loop, no previously identified position dynamics

model was available. In particular, it should be defined a dynamic relationship

between the pitch angle ϑ(t) and the linear speed vx(t). Without carrying out any

identification tests, it is possible to obtain a very basic model by means of a sim-

ple forces equilibrium in hovering conditions. More specifically, by linearising the

equation mv̇x(t) = −mgtgϑ(t) for ϑ = 0, the horizontal speed and position can be

defined as

vx(t) = −
∫
g ϑ(τ) dτ and x(t) = −

∫∫
g ϑ(τ) dτ .

Hence, the discrete time transfer function taking the pitch angle as input and

returning the linear speed as output is the following:

Pϑ→vx(z) = −g Ts
z − 1

.

As schematically shown in Figure 6.43, to obtain the position a second integrator

block is needed. Obviously, such a defined model is characterised by significant

approximations. In particular, all the aerodynamic effects are completely neglected.

Both the aerodynamic drag and the inflow effect on the rotors yield a damping term
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Figure 6.43: Longitudinal position dynamics model.

in the dynamic equation that becomes more and more important moving away from

hovering conditions. These approximations result in a significantly less damped

dynamic response of the simulated closed-loop system than that of the real one, as

shown in Figure 6.44. Furthermore, the validity of the model is restricted to the

vicinity of the hovering conditions also due to the linearisation of the translational

dynamic equation.
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Figure 6.44: Comparison between simulated and real step response.
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Inner and outer loop simulation results

The results of the speed control loop as well as the position control loop will be

shown below both in frequency domain and time domain. All the results that will

follow have been obtained by tuning the controller with the VRFT algorithm and

imposing as reference models those described in Subsection 6.3.2.

The control architecture is identical to that implemented for the attitude con-

trol loop and it has been already described in Chapter 3. Just to recall, the inner

controller is a PID with derivative action applied on the measurement and supple-

mented with a feedforward term. While, the external controller consists of a simple

proportional gain.

Bode diagram and step response. Figure 6.45 and Figure 6.46 respectively

represent the Bode diagram and the step response of the inner control loop. The

simulated system appears to be slightly faster than the reference model but with

larger overshooting, nevertheless, the two curves are very similar.

Regarding the position dynamics (Figure 6.47 and Figure 6.48), the simulated

system with the VRFT tuned controller almost perfectly match the desired closed-

loop behaviour.

By looking at the Bode diagrams, it can be seen a change in the slope of the

magnitude at approximately 40 rad/s, which results in a significant discrepancy

between reference model and simulated system. This dynamics, not included in

the reference model, is related to the attitude loop that is nested in the speed

control loop. Although the VRFT algorithm has proved to be not so affected by

such discrepancy, better performance has been achieved by considering a weighting

function filtering over 80 rad/s.

Controller parameter values

To conclude, the controller parameters associated to the inner PID and the outer

proportional gain are summarized in Table 6.10.

kFFi kPi kIi kDi kPo

VRFT 0 0.1806 0.05906 0.02172 0.77

Table 6.10: Inner and outer controller parameters considering the VRFT algorithm.
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Figure 6.45: Comparison of the position inner loop Bode diagram considering the VRFT
tuning (simulation).
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Figure 6.46: Comparison of the position inner loop step response considering the VRFT
tuning (simulation).
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Figure 6.47: Comparison of the position outer loop Bode diagram considering the VRFT
tuning (simulation).
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Figure 6.48: Comparison of the position outer loop step response considering the VRFT
tuning (simulation).
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6.3.4 Experimental results

As already stated in Subsection 6.3.3, the adoption of a very basic model of the

to be controlled system does not ensure that good simulation results lead to the

closed-loop stability considering the real system. Therefore, validation experiments

conducted on the real plant are essential. In this case, the simulated results have

been used only as a starting point for the controller design, while the final tuning

has been obtained by means of experimental tests.

Before performing the actual experimental test, closed-loop stability must be

checked. To do this, the drone is manually controlled and kept close to the ground to

prevent damages if instability occurs. Once stability has been assessed, the ground

station can take control of the quadrotor, and the setpoint tracking test, which

consists of a sequence of constant demanded positions, can be started.

Setpoint tracking test

During the validation experiments both attitude and position controllers were en-

abled. To evaluate the closed-loop performance, a setpoint tracking test has been

performed. More specifically, a desired position command history with respect to

the centre of the testing cage has been provided as input to the quadrotor. The

chosen setpoint time history is a sequence of steps with amplitudes of 0.5 m and 1

m and duration equal to 10 seconds.

Figure 6.49 shows the complete setpoint tracking test obtained by operating the

quadrotor with VRFT tuned attitude and position controllers. On the same figure,

the ideal dynamic response of the reference model has been plotted. Figure 6.50

shows a zoomed-in view of a single step.

As can be seen, the rise time as well as the settling time of the real system

and of the reference model are quite similar. On the other hand, the real system

results to be more damped than the desired closed-loop model and, as a consequence,

more damped than the expected behaviour from the simulations. Indeed, as shown

before, the simulated step response is very similar to that of the reference model.

The observed discrepancy between real and simulated closed-loop behaviour is the

results of neglecting aerodynamic effects in the simulation environment.
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Figure 6.49: Position setpoint tracking with VRFT tuning and ideal reference model re-
sponse (experiment).
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Controller parameter values

Table 6.11 summarises all the controller tunings tested on the real plant. The

first designed controller (third row of the table) has been obtained with the VRFT

method by imposing as desired bandwidths 1.6 rad/s and 1.5 rad/s on the inner

and outer reference models respectively. This tuning results in a stable closed-loop

behaviour in the simulation environment, but turned out to be destabilising when

applied to the real plant.

Therefore, it has been necessary to relax the reference models, thus, as a second

attempt, it has been imposed desired bandwidths equal to 1.3 rad/s and 1 rad/s.

These reference models yielded smaller controller parameter values (first row of the

table) and thus a slower dynamic response, but ensuring the closed-loop stability.

Finally, an intermediate tuning was carried out in order to make the system

faster without compromising the stability (second row of the table). Note that all

the simulated and experimental results discussed so far have been obtained with

these latter controller parameters. The reference models used to obtain this tuning

are described in Subsection 6.3.2. Just to recall, the inner and outer models has a

desired bandwidth equal to 1.3 rad/s and 1.1 rad/s respectively. The damping ratio

as well as the additional zero and the weighting function are the same for all the

three tunings presented here and are shown in Table 6.9.

As for the attitude VRFT controller tuning, an instrumental variable has been

adopted to deal with noisy data. Specifically, it has been built through the identifi-

cation of an ARX(5,5) model for both the inner and the outer loops.

kFFi kPi kIi kDi kPo

Stability

Sim. Exp.

0 0.1213 0.08951 0 0.68 3 3

0 0.1806 0.05906 0.02172 0.77 3 3

0 0.2583 0.1231 0.03564 0.96 3 7

Table 6.11: Optimal speed and position controller parameters for three different tunings.



Chapter 7

Conclusions and future

developments

Below is a brief summary of the purpose of this thesis, the observations made and

the results obtained. Furthermore, the aspects that are considered worthy of further

study and possible future developments are discussed.

Thesis overview and conclusions

The main purpose of this thesis was to exploit data-driven approaches to tune the

PID controllers gains of a cascade attitude and position flight control system, as well

as assess their applicability to Micro Aerial Vehicles.

After a detailed classification of these methods, the three most promising al-

gorithms have been presented. From this preliminary analysis, they emerge as a

valuable approach to tune the UAV controllers. Indeed, these methods require only

experimental input-output data and basic information on the plant, thus avoiding

the requirement of an accurate plant model. Furthermore, since the considered data-

driven methods are also computationally efficient, they allow a fast re-tuning of the

controllers in case of plant performance reduction or operating conditions change.

The three data-driven algorithms selected and exploited in this thesis are the

VRFT, the CbT and the controller unfalsification methods. The VRFT has been an

obvious choice, both because it was already extended in [14] to tune a cascade pitch

controller, and because of the excellent performance showed in previous works, e.g.,

[10, 11]. In order to overcome the limitations of the VRFT method in dealing with

data heavily affected by noise, the CbT has been considered as a wise alternative

in view of the possible noisier measurements of the MAV with respect to previously
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tested UAVs. The noise robustness of the CbT makes it essential in many prac-

tical applications and this added value has been deemed worthy to be studied in

this thesis. On the other hand, the lack of an accurate plant model leads to the

impossibility for both VRFT and CbT methods to guarantee the stability of the

closed-loop system, at least before implementing and testing the controllers on the

real plant. This drawback could be unacceptable in the case of larger and more ex-

pensive multirotor platforms, and, even more so, if manned aircraft are considered.

For this reason, a recently developed data-driven algorithm that includes an effective

stability constraint, i.e. the controller unfalsification method, has been tested.

Currently, the problem of tuning the attitude control system of a rotorcraft

through data-driven methods is not yet fully explored in the literature, mainly be-

cause of the complexity of performing open-loop experiments to collect the required

data. To deal with this problem, some extensions to the standard data-driven al-

gorithms are presented. In particular, these extensions allow the application of

data-driven approaches to the classical control system architecture of UAVs and

also the exploitation of closed-loop flight test data.

All the experimental activities have been performed with a small-scale fixed-pitch

quadrotor developed as part of a previous master thesis [41], eventually proving the

adaptability of data-driven approaches also to MAV applications. The high flexibility

of the on-board firmware allowed the implementation of two control architectures in

order to validate all the data-driven algorithms proposed in this work. Furthermore,

the limited size of the quadrotor facilitated the execution of the flight tests in open-

loop conditions, paving the way for the position controller tuning.

All the tested data-driven algorithms have been proven successful in tuning a

cascade PID flight control system. The experimental tests, as well as the results

from numerical simulations, showed that comparable performance can be achieved

using data-driven and model-based control tunings. In particular, as expected, the

CbT tuning provided slightly lower performance than the VRFT tuning due to the

high SNR value of the gathered data. Furthermore, the controller unfalsification

method demonstrated to be effective in preventing closed-loop instability of the real

plant. Concerning the VRFT tuning obtained by means of closed-loop, in-flight ex-

periments, the behaviour is only slightly more oscillating than that achieved with the

open-loop testing performed on the test-bed. Lastly, the VRFT algorithm has been

selected, and successfully deployed, for the position controller tuning (outermost

loop of the flight control system).

In conclusion, the data-driven PID tunings herein proposed showed excellent

tracking and disturbance rejection capabilities and, thus, can represent a worthwhile
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solution for the fast deployment of high performance attitude and position controllers

for UAV applications.

Future developments

Leveraging the promising results of the VRFT tuning obtained with data collected

in closed-loop conditions, it is possible to abandon the assumption of an attitude

control system based on individual SISO loops (pitch and roll DoFs), and to deploy

a MIMO control architecture whose gains can be tuned simultaneously through a

suitable excitation of the vehicle dynamics. For this purpose, a flight test is manda-

tory to gather the data-set for the data-driven method, and the input signals must

be designed to excite both pitch and roll dynamics. Obviously, a MIMO attitude

controller is useless for practical purposes, because of the almost-perfect decoupling

of the quadrotor pitch and roll DoFs, especially in near-hovering conditions. Never-

theless, the design of a MIMO controller for an UAV is an intermediate preparatory

step, which should be envisaged before extending data-driven approaches to the de-

sign of the MIMO attitude control system of a helicopter. Indeed, the pitch-roll and

the heave-yaw DoFs of a helicopter are strongly coupled with each other, making

this kind of controller more valuable than individual SISO loops. In particular, two

experimental tests could be sufficient to tune the entire attitude control system, in-

cluding the coupled dynamics controllers: one should excite the pitch-roll dynamics,

while the other the heave-yaw dynamics. In principle, it should be possible to de-

rive two MIMO controllers for the inner loop. The first one takes as input variable

the pitch and roll rates, while the second one the heave and yaw rates, respectively

returning as outputs the longitudinal and lateral cyclic pitches, and the main and

tail rotors collective pitches.

The two most important obstacles in the diffusion of data-driven methods in the

aeronautical field, namely the execution of closed-loop tuning experiments and the

a-priori guaranteed stability, have been addressed in this thesis. Therefore, unac-

ceptable safety risks can effectively be avoided in the case of a manned helicopter.

In conclusion, it is advisable to proceed as follows to extend the application of

data-driven tuning methods from multirotors to rotorcraft:

• Tune a MIMO controller for the pitch-roll dynamics of a quadrotor (note that

the VRFT algorithm (see Algorithm 1) is currently not limited to SISO sys-

tems).

• Tune the control system of a small or a full-scale helicopter in hovering con-

ditions by assuming decoupled dynamics. This means tuning the control loop
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of each DoF independently, by relying on a different input-output data-set for

each loop.

• Tune the control system of a small or a full-scale helicopter in hovering con-

ditions by modelling the control structure with two MIMO controllers for the

inner loops (pitch-roll and heave-yaw) and one for the outer loop (longitudinal-

lateral positions). By doing so, the coupled plant dynamics is taken into ac-

count and ideally better performance should be achieved than in the previous

case. The hovering helicopter dynamics is still weakly coupled if compared to

translational flight conditions.

• Extend the previous studies to the translational flight, repeating the tuning

procedure for increasing airspeed values and implementing a gain scheduling

approach to cope with the variations in the helicopter dynamics, as well as in

the controls cross-couplings, with the airspeed.
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