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Abstract

Multirobot systems represent a major sub-field of mobile robotics whose

challenges have received a growing attention from researchers in the last few

years. Specifically, the problem of performing joint measurements recurs in

many robotic applications, like in constructing communication maps from

signal strength samples gathered on the field, and in localization and posi-

tioning systems.

In this work, we consider an environment represented by a metric graph

where a team of robots has to perform a given pre-specified set of joint

measurements, which represent the locations where information gathering is

needed. The aim of this thesis is to solve one fundamental problem emerg-

ing from this scenario: seeking joint paths for the robots to perform all the

required measurements at minimum cost.

We prove that the problem of jointly performing measurements from

given vertices is NP-hard when either the total traveled distance or the task

completion time has to be minimized. Given the difficulty of finding optimal

paths in an efficient way, we propose a greedy randomized approach able to

cope with both the optimization objectives. Extensive experiments show

that our algorithms perform well in practice, also when compared to an ad

hoc method taken from the literature.
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Sommario

I sistemi multirobot rappresentano un’importante area di ricerca nel campo

della robotica, e stanno ricevendo sempre maggiore attenzione dai ricerca-

tori. In particolare, il problema di eseguire misurazioni congiunte ricorre

in molte applicazioni, come nella costruzione di mappe di comunicazione

derivanti dal rilevamento di campioni di potenza del segnale, oppure nei sis-

temi di localizzazione e posizionamento.

In questo lavoro, consideriamo un ambiente rappresentato da un grafo

metrico in cui una squadra di robot deve eseguire un insieme pre-specificato

di misurazioni congiunte, rappresentate dai punti fra i quali è richiesta

l’acquisizione di informazioni. Lo scopo di questa tesi è risolvere uno dei

problemi fondamentali che emergono da questo scenario: trovare percorsi

congiunti per permettere ai robot di eseguire le misurazioni richieste a costo

minimo.

Proviamo che il problema di eseguire congiuntamente misurazioni su

insiemi di vertici dati è NP-difficile quando dobbiamo minimizzare il totale

della distanza percorsa oppure il tempo di completamento. Data la difficoltà

di trovare percorsi ottimali in maniera efficiente, proponiamo un approccio

greedy randomizzato capace di far fronte alla minimizzazione di entrambi

gli obiettivi. Numerosi esperimenti dimostrano che i nostri algoritmi hanno

buone prestazioni, anche quando confrontati con metodi ad hoc proposti in

letteratura.
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di condividere la mia vita è più difficile che scrivere lo script Python su cui

ho lavorato per mesi, ma ci proverò.
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Chapter 1

Introduction

“We shall not cease from exploration, and the end of all our exploring will

be to arrive where we started and know the place for the first time.”

Thomas Stearns Eliot

Multirobot systems (MRSs) represent a major sub-field of mobile robotics

whose challenges have received a growing attention from researchers in the

last few years [21]. Sensing-constrained planning is central to MRSs. It

can be described as the problem of planning the optimal execution of a

task where some constraints, like limited range, affect or are imposed to

the robot’s sensing capabilities. For example, consider the coverage task,

where robots are required to sense all the free area of the environment, or

patrolling, where robots need to check for the presence of threats at some

locations with a given frequency. Although a single-robot system might have

a reliable performance, some tasks may be too complex or even impossible

for it to accomplish. One of the major challenges for MRSs is to design

appropriate coordination strategies between the robots that enable them

to perform operations efficiently in terms of time and space. Exploration,

surveillance, and target search are domains that exhibit the need for robots

to take coordinated decisions accounting for sensing requirements. In these

settings, robots typically take sequences of measurements from locations

that are determined in order to optimize some objective function related to

the traveled distance or to the time taken to complete the task.

In all the cited application domains, robots often need to possess knowl-

edge about the possibility of communicating between pairs of locations of the

environment in which they are. For robots that need to cooperate in some

tasks, communication is fundamental for exchanging information. Finding



pairs of locations where robots can interact and exchange data has there-

fore primary importance. In order to fulfill this goal, robots often integrate

some conservative prior knowledge about communication capabilities (e.g.,

it is safe to assume full communication within a small distance from a team-

mate, or if in line-of-sight). An alternative is to build communication models

starting from joint signal strength measurements gathered on the field. This

task falls within the more general framework of information gathering.

Information gathering tasks involve robots taking measurements with

the aim of maximizing some cumulative discounted observation value over

time [20]. Here, observation value is an abstract measure of reward, which

encodes the properties of the robots’ sensors, and the spatial and tempo-

ral properties of the measured phenomena. Concrete instantiations of this

class of problems include monitoring environmental phenomena, disaster re-

sponse, and patrolling environments to prevent intrusions from attackers.

In this work, we consider a scenario where a team of robots has to per-

form a given pre-specified set of joint measurements, which represent the

locations where information gathering is needed.

The aim of this thesis is to solve one fundamental problem emerging

from this scenario: seeking joint paths for robots to perform all the required

measurements at minimum cost. The environment is discretized as a graph.

Vertices correspond to locations of interest that can be occupied by a single

robot, while the weighted edges represent the shortest paths between such

locations. On this graph, a subset of edges defines the measurements to be

performed. A measure is performed when, at a given time, two robots are

placed in the two vertices representing the edge. A tour plan encodes a joint

walk for the robots to perform all the required measurements. The team

of robots starts the tour from a common location of the environment, the

depot.

Optimally planning pairwise joint measurements poses additional diffi-

culties with respect to the case in which measurements are performed by

single robots. This sensing-constrained planning formulation has received

much less attention in the literature than its single-sensing counterpart,

even if it can properly comply to many real-world multirobot planning ap-

plications. Indeed, optimal solutions might exhibit intricate synchronization

patterns, which can be difficult to capture in a systematic algorithmic frame-

work. The problem is approached with the developement of two typologies

of algorithms, applicable in the optimization of two different objectives and

proposing a feasible solution for the most efficient tour. A solution is feasi-

ble if the tour planned visits every pair of locations of the input set.
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The efficiency of the tour can be evaluated according to two aspects:

distance and time. Therefore the most efficient tour can be computed as

the one which minimizes the mission completion time or the one which min-

imizes the the total cumulative distance the robots travelled.

Previous works reduced this problem to a multirobot graph exploration

problem, which was solved for teams of 2 and 3 robots [11]. Minimum cost

path computations performed by this approach are known to be extremely

inefficient since the complexity is exponential in the number of vertices,

and thus heuristic approaches need to be pursued. However, adaptations of

standard approaches from the scheduling and sequencing literature [7] do

not seem applicable without prohibitive scaling problems. This is the main

motivation for studying how to plan optimally pairwise joint measurements

from a complexity and approximation point of view, with the objective of

identifying and testing a practical resolution approach.

The thesis is structured as follows. Chapter 2 presents an overview of the

researches made in the field of multirobot systems which were of inspiration

for this study. In Chapter 3 the formalization and detailed description of

the problem we address is discussed, with hints on its complexity. Chapter

4 contains the description of the solving methodologies and the explanation

of the developed algorithms. Chapter 5 describes the whole system architec-

ture implemented. In Chapter 6 the experiments run to test our framework

and compare the performance of the algorithms are shown, along with the

obtained results. In Chapter 7, we conclude by summarizing the final eval-

uations of this thesis and presenting some suggestions for future works.
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Chapter 2

State of the Art

This chapter gives an overview about the relevant works in the field of

multirobot systems employed in information gathering tasks, underlining

their importance. In particular, we focus on joint measurements and on

their application in the area of communication maps construction.

Multirobot Systems

In the field of mobile robotics, the study of multirobot systems (MRSs)

has grown significantly in size and importance in recent years. Having

made great progress in the developement of single-robot control systems,

researchers focused their studies on multirobot coordination. One of the

major challenges for MRSs is to design appropriate coordination strategies

between the robots that enable them to perform operations efficiently in

terms of time and working space. Although a single-robot system might

display a reliable performance, some tasks (such as spatially separate tasks)

may be too complex or even impossible for it to accomplish. As a reference,

consider the survey by Yan et al.[21]. Here, several major advantages of

using MRSs over single-robot systems are pointed out:

• A MRS has a better spatial distribution.

• A MRS can achieve better overall system performance. The perfor-

mance metrics could be the total time required to complete a task or

the energy consumption of the robots.

• A MRS introduces robustness that can benefit from information shar-

ing among the robots, and fault-tolerance that can benefit from infor-

mation redundancy.



• A MRS can have a lower cost. Using a number of simple robots can

be simpler (to program) and cheaper (to build) than using a single

powerful robot (that is complex and expensive) to accomplish a task.

MRSs can be homogeneous (the capabilities of the individual robots are

identical) or heterogeneous (the capabilities are different). [21] identified

nine primary research topics within the MRS: biological inspiration, commu-

nication, architectures, localization, information gathering (including, e.g.,

exploration and mapping), object transport and manipulation, motion co-

ordination, reconfigurable robots and task allocation.

Among these research topics, the primary focus of this thesis is on em-

ploying multirobot systems for a particular type of information gathering

task in which the information to be collected is the signal strength between

pairs of locations of a known environment, performing a specified set of

joint-measurements at minimum cost.

Information Gathering

Multirobot systems have made tremendous improvements in exploration and

surveillance. In this kind of problems, robots are required to gather as much

information as possible. The system needs to create a complete and accu-

rate view of the situation, which may be used afterwards by some robots to

make decisions and perform actions. Therefore, the information gathering

system must be able to identify lacking information and take the necessary

steps to collect it. As stated in [16], “developing methods to allow robots

to decide how to act and what to communicate is a decision problem under

uncertainty”. Such a system can have many real-world applications. For

example, in the aftermath of an earthquake, a team of unmanned aerial

vehicles (UAVs) can support first responders by patrolling the skies over-

head. By working together, they can supply real-time area monitoring on

the movements of crowds and the spread of fires and floods. Teams of UAVs

can also be used to track and predict the path of hurricanes [20].

The problem of correctly scheduling information gathering tasks has been

approached in different ways. [19] investigates on the need for efficient mon-

itoring of spatio-temporal dynamics in large environmental applications. In

this system, robots are the entities in charge of gathering significant infor-

mation, hence careful coordination of their paths is required in order to

maximize the amount of information collected. In this work, a Gaussian

Process is used to model the problem of planning informative paths. The

amount of information collected between the visited locations and remain-

16



der of the space is quantified exploiting the mutual information criterion,

defined as the mutual dependence between the entropies of the two variables.

The challenge of vehicles coordinated environment patrolling is addressed

in [20]. A near-optimal multirobot algorithm for continuously patrolling

such environments is developed deriving a single-robot divide and conquer

algorithm which recursively decomposes the graph, until a high-quality path

can be computed by a greedy algorithm. It then constructs a patrol by con-

catenating these paths using dynamic programming.

A game-theoretic attitude about information gathering tasks can be

found in [16] where a multirobot model for active information gathering is

presented. In this model, robots explore, assess the relevance, update their

beliefs, and communicate the appropriate information to relevant robots.

To do so, it is proposed a distributed decision process where a robot main-

tains a belief matrix representing its beliefs and beliefs about the beliefs of

the other robots. The decision process uses entropy in a reward function

to assess the relevance of their beliefs and the divergence with each other.

In doing so, the model allows the derivation of a policy for gathering infor-

mation to make the entropy low and a communication policy to reduce the

divergence.

The contribution of [3] is a fleet of UAVs that must cyclically patrol an

environment represented as an unidirect graph where vertices are locations

of the environment and edges represents their physical connections. Vertices

are divided into two classes: m-type vertices, that robots need to monitor

and report, and c-type vertices, from which robots can communicate with

the mission control center. Information gathering is performed by defining

the delays between successive inspections at locations of interest (m-type

vertices), measuring their average latency as the performance metric for a

tour, and reporting the information collected to the mission control cen-

ter. The goal is to compute a joint patrolling strategy that minimizes the

communication latencies.

Joint Measurements

In the situations presented above, robots typically take sequences of mea-

surements from locations that are determined in order to optimize some

objective function related to the traveled distance or to the time taken to

complete the information gathering task. In this thesis, we consider a sce-

nario where a team of robots has to perform a given predefined set of joint

measurements in a graph-represented environment. While a measurement is

usually defined as a data-acquisition operation performed by a single robot
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at some location, in this work we consider a joint measurement as a pairwise

operation performed by two robots that occupy two different locations at

the same time.

A straightforward application of the techniques developed in this thesis is

the computation of an optimal schedule for performing joint measurements

in the construction of communication maps (see next section). In such a set-

ting, a measurement is performed by two robots at two different locations

that exchange some polling data to acquire a signal strength sample.

Localization and positioning systems represent another application do-

main where joint measurements performed by robots are employed. Robot-

to-robot mutual pose estimation can allow robots to estimate their global

positions from mutual distance measurements. [22]

Analogous problems can be encountered in the Wireless Sensor Networks

(WSNs) field, especially when nodes are mobile units [12]. Examples can

be found in multilateration-based settings [8] where optimal sequencing of

pairwise measurements can speedup the localization of an external entity, a

feature particularly critical when such an entity does not exhibit a cooper-

ative behavior.

Communication and Communication Maps

Communication is a fundamental activity for multirobot systems, as it lies at

the basis for the completion of a variety of tasks. Applications like surveil-

lance or search and rescue [5], exploration and environmental monitoring

[15], cooperative manipulation, multirobot motion planning, collaborative

mapping and formation control [11], heavily rely on sharing knowledge

among robots in order to enable informed autonomous decision making.

Communication is a central requirement for teams of autonomous mobile

robots operating in the real world. In real situations, global communication

between robots could be a far too optimistic assumption: that’s why robots

must build an ad hoc communication network in order to share information

and must know about possibility of establishing wireless communication

links between arbitrary pairs of locations before moving there [5].

In the literature, this knowledge is called communication map. Commu-

nication maps provide estimates of the radio signal strength between differ-

ent locations of the environment and so, they can also be used to predict the

presence of communication links. With a reliable communication map, we

can “develop a networks of sensors and robots that can perceive the environ-

ment and respond to it, anticipating information needs of the network users,
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repositioning and self-organizing themselves to best acquire and deliver the

information” [11] and plan for multirobot tasks. Thus, the developement

of solid communication maps could have a deep impact in many real-world

scenarios and this is why many researchers have studied the problem with

different approaches.

A first methodology is to estimate if communication between two lo-

cations is possible exploiting mathematical formulas. In this case it is not

performed any map construction. On the other hand, the strategies adopted

so far for building communication maps can be divided in two macro areas:

• Online construction: robots do not assume to know the environment

in which they are. Therefore they build such maps autonomously

with a strategy that guides them during their exploration and data

acquisition.

• Offline construction: the environment is known; an exploration is not

needed and so it can be a priori decided where to send a pair of robots

to gather the signal strength between two locations.

Dividing the relevant literature according to the two categories and pre-

senting the main features differentiating one from the other evidences the

original contributions of this thesis.

Online Communication Maps Construction

Robotic exploration for communication map building is a fundamental task

in which autonomous mobile robots use their onboard sensors to incremen-

tally discover the physical structure of initially unknown environments, be-

fore moving to locations where signal samples are gathered. The mainstream

approach follows a Next Best View (NBV) process, a repeated greedy se-

lection of the next best observation location, according to an exploration

strategy [14]. At each step, a NBV system considers a number of candidate

locations between the known free space and the unexplored part of the en-

vironment, evaluates them using a utility function, and selects the best one.

In [5] a team of mobile robots has to build such maps autonomously in

a robot-to-robot communication setting. The proposed solution models the

signal’s distribution with a Gaussian Process and exploits different online

sensing strategies to coordinate and guide the robots during their data ac-

quisition. These strategies privilege data acquisition in locations that are

expected to induce high reductions in the map’s uncertainty.

In the online construction, robot teams might have non-homogeneous

computational capabilities, a sensitive issue for the computationally-expensive
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GP parameter estimation process. This is why two different settings are

considered in [5]. In homogeneous settings each robot is equipped with suffi-

cient computational power to construct the GP model; in non-homogeneous

setting only an elite of robots has enough computational power. Both strate-

gies are based on a leader-follower paradigm. Leaders are robots in charge

of maintaining a communication map by iteratively estimating the GP pa-

rameters that best fit the data acquired so far. They are also in charge

of selecting the best locations to be visited in coordination with the corre-

sponding followers.

The previous work is the basis of the approach presented by [15], which

proposes a system for a more efficient construction of online communication

maps. Here, the number of candidate locations where robots can take mea-

surements is limited by the introduction of a priori communication models

that can be built out of the physical map of an environment. In this way the

number of candidate locations can be minimized to those that provide some

distinctiveness. Also, measurements can be filtered to reduce the Gaussian

Process computational complexity, which is O(n3).

A common problem of [5] and [15] is that a recovery mechanism needs

to be adopted if any connection between robots is lost. In order to minimize

the eventuality of this risk, [10] studies the problem introducing the concept

of periodic connectivity. Specifically, the case in which a mobile network of

robots cover an environment while remaining connected is considered. The

continual connectivity requirement is relaxed with the introduction of the

idea of periodic connectivity, where the network must regain connectivity at

a fixed interval. This problem is reduced to the well-studied NP-hard multi-

robot informative path planning (MIPP) problem, in which robots must plan

paths that best observe the environment, maximizing an objective function

that relates to how much information is gained by the robots’ paths. Then,

is proposed an online algorithm that scales linearly in the number of robots

and allows for arbitrary periodic connectivity constraints.

Offline Communication Maps Construction

In an offline setting, the map of the environment is known and therefore an

exploration strategy is not needed. The measurements of the radio signal

strength between pairs of locations can be executed after having computed

which is the most efficient way to perform such measurements. This means

planning the shortest tour such that each pair of locations is visited.

The most common approach is representing the map of the environment

as a graph. Graph representation is a central point in [11], where the problem
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of exploration of an environment with known geometry but unknown radio

transmission characteristics is formulated as a graph exploration problem.

This work presents algorithms allowing small teams of robots to explore two-

dimensional workspaces with obstacles in order to obtain a communication

map. The proposed implementation reduces the exploration problem to a

multirobot graph exploration problem, but algorithmic solutions are only

presented for teams of two and three robots.

Heuristic Optimization

In this thesis, the environment is represented by a metric graph and it is

proved that the problem is NP-hard when either the total traveled distance

or the task completion time has to be minimized. Experiments run on an

extensive set of instances show that our algorithms developed to tackle the

problem perform well in practice, also when compared against an ad hoc

method taken from the literature. The algorithms presented in [11] are not

analyzed for what concerns computational complexity. We propose instead

a polynomial complexity algorithm which can encompass up to n robots,

without specifications on the cardinality limit of the team. The algorithm

is developed around the concept of heuristic optimization (HO). HO meth-

ods start off with an initial solution, iteratively produce and evaluate new

solutions by some generation rule, and eventually report the best solution

found during the search process. Heuristic algorithms are designed to solve a

problem in a faster and more efficient way than traditional methods by sacri-

ficing optimality, accuracy, precision, or completeness for speed. “Heuristic

algorithms are often used to solve NP-complete problems, a class of decision

problems. In these problems, there is no known efficient way to find a so-

lution quickly and accurately although solutions can be verified when given.

Heuristic algorithms are most often employed when approximate solutions

are sufficient and exact solutions are necessarily computationally expensive”.

[13]

The main algorithm’s implementation idea derives from the HO method

called Heuristic Biased Stochastic Sampling (HBSS). HBSS was designed

to solve scheduling and constraint-optimization problems. “The underlying

assumption behind the HBSS approach is that strictly adhering to a search

heuristic often does not yield the best solution. Within the HBSS approach,

the balance between heuristic adherence and exploration can be controlled

according to the confidence one has in the heuristic. By varying this bal-

ance, encoded as a bias function, the HBSS approach encompasses a family

of search algorithms of which greedy search and completely random search
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are extreme members” [6]. The HBSS algorithm encompasses a wide spec-

trum of search techniques that incorporate some mixture of heuristic search

and stochastic sampling.

These computational approaches enclose noteworthy concepts better defined

in the following chapters.
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Chapter 3

Formalization and

Complexity of the Problem

3.1 Problem Statement

LetG = (V,E) be a complete graph defined on n vertices. Let c : E → Z
+ be

an edge cost function satisfying the triangle inequality. A team of m robotic

agents1 A = {a1, a2, . . . , am} is deployed on G. They have homogeneous

locomotion capabilities and can move between the vertices of G by traveling

along its edges at uniform speed, implying that costs c(·) can represent either

distances or traveling times between vertices.

The agents have to perform joint measurements on selected pairs of ver-

tices M ⊆ E. A single measurement is considered completed as soon as two

agents occupy the pair of vertices at the same time (one agent in each ver-

tex). All the agents start from a common depot d ∈ V and must come back

to it once all measurements have been performed. Since G is a complete

metric graph, it can be assumed without loss of generality that each vertex

in V \ {d} will always be part of at least one measurement in M .

The execution of a measurement-gathering task is represented with an

ordered sequence S = [s1, . . . , s|M |] where each element sk is called assign-

ment and associates a pair of agents to a pair of target vertices from which

the measurement is performed. During the execution of S, each agent ai ∈ A

remains still on its current position, until a new vertex is scheduled to ai
by means an assignment. Given S, let us define ai

S
k as the vertex position

of the agent ai ∈ A after the ordered execution of all the assignments up

1Agent : autonomous entity which observes through sensors and acts upon an environ-

ment, directing its activity towards achieving goals. This word is used as general and

formal term for indicating robots.



to (and including) the k-th one. These agent positions, initially set to d,

capture the evolution of the system while running through S. In accordance

with that, the cost of an assignment sk ∈ S can be defined as:

c(sk) =
∑

ai∈A

c(ai
S
k−1, ai

S
k ) (3.1)

3.1.1 Constraints

The computation of a solution is subject to the following constraints:

1. We denote with tSj (k) the time accumulated by an agent aj executing

the assignments up to (and including) the k-th one. Such a value can

be defined recursively. In particular, if the assignment sk does not

schedule any vertex to the agent aj , then tSj (k) remains unchanged

and equal to the value assumed in the previous step. Otherwise, the

baseline value is increased by:

t(sk) = max
ai∈A

c(ai
S
k−1, ai

S
k ).

The above condition captures the presence of waiting times occurring

when a robot already occupying a vertex assigned by sk may be re-

quired to wait for a teammate to actually perform the measurement

given the previous history of measurements s1, . . . , sk−1.

2. The final configuration must be equal to the initial one. After visiting

all the pairs specified by the M set the agents go back to their starting

positions.

3.1.2 Objective Functions

We define a first objective function capturing the distance cumulatively trav-

eled by the team of robots and we denote it as SUMDIST(·):

SUMDIST(S) =
∑

sk∈S

c(sk) +
∑

ai∈A

c(ai
S
|M |, d). (3.2)

A second objective function can be defined as the mission completion time,

the latest time at which a robot ends its duty arriving at the depot. We call

it MAXTIME(·):

MAXTIME(S) = max
ai∈A

{

tSi (|M |) + c(ai
S
|M |, d)

}

. (3.3)
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A solution encoded as a sequence of assignments may contain some elements

whose contribution in the objective function is zero. These zero-cost assign-

ments occur whenever a pair of vertices is measured without changing the

positions of the agents on the graph solution.

Incompatibiliy of the two Objectives

The presentation of a simple example can show in practice how the solution

encoding works. In doing so, the following will be proved:

Proposition 3.1.2.1. The SUMDIST(·) and MAXTIME(·) objectives can-

not always be simultaneously optimized, even when m = 2.

Consider the simple graph in Figure 3.1 with V = {d, u, v}.

Two agents a1 and a2 initially placed at the depot d have to perform two

d

2

3

u v

2

a2

a2

d

2

3

u v

2

a2 a1

Figure 3.1: Instances of the problem in which the SUMDIST(·) objective (left) and

the MAXTIME(·) objective (right) cannot be optimized simultaneously.

joint measurements defined by the set M = {(d, u), (d, v)}. By inspection,

we can see that a solution S∗
D minimizing the SUMDIST(·) objective is

S∗
D = [〈a1 → d, a2 → u〉, 〈a1 → d, a2 → v〉],

with SUMDIST(S∗
D) = 7. Here, agent a1 remains fixed at d while a2 moves

to both u and v, eventually returning at d, with MAXTIME(S∗
D) = 7. Fo-

cusing on the MAXTIME(·) objective, instead, we see (again by inspection)

that an optimal solution S∗
T is

S∗
T = [〈a1 → d, a2 → u〉, 〈a1 → v, a2 → d〉],

with MAXTIME(S∗
T ) = 6 and SUMDIST(S∗

T ) = 8. To optimize the latter

objective, no agent remains fixed at the depot, at the expenses of an increase

in the total traveled distance.
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3.2 Complexity

NP-Hardness

The previous section defined the two optimization problems we are willing

to solve. To prove that they are NP-hard, we use a reduction argument.

Reducing problem A to another problem B means describing an algorithm

to solve problem A under the assumption that an algorithm for problem

B already exists. In order to show that our problem is hard, we need to

describe an algorithm to solve a different problem, which we already know

is hard, using it as a subroutine for our problem. The reduction implies that

if problem A was easy, then problem B would be easy too. Equivalently, if

problem B is hard, problem A must also be hard. Following this reasoning,

if we demonstrate that the decision problems associated to our problems

are NP-complete, we prove that the optimization version of our problems is

NP-hard.

Suppose to have a solution S. The existence of two values D and T such

that SUMDIST(S) ≤ D and MAXTIME(S) ≤ T can be verified in polyno-

mial time by the algorithms2 (these two problems are named SUMDIST-D

and MAXTIME-T from now on), therefore NP-membership is satisfied. In

order to affirm that the two optimization problems related to the minimiza-

tion of the SUMDIST(·) and the MAXTIME(·) objectives are NP-hard, we

need to show that the SUMDIST-D and MAXTIME-T are NP-complete.

This can be done by providing a reduction from the metric Traveling Sales-

man Problem (TSP) which is known to be NP-complete [9].

B B
d

v1 v2

G1 G2

Figure 3.2: A reduction from a metric TSP instance with five vertices.

2See Chapter 4.
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Let us consider first SUMDIST-D. From a generic instance of metric TSP,

we construct a particular instance of SUMDIST-D with 2 robots and a graph

G = (V,E) obtained as the metric closure of the graph shown in Figure 3.2.

The metric closure of a weighted graph is a complete graph with the same

vertices and in which edges are weighted by the shortest path distances be-

tween corresponding vertices in the original graph.

In the figure, the original metric TSP graph is replicated twice in two

subgraphs G1 and G2 which are connected to a depot d through the same

vertex copy with an edge with cost B. B is defined as the total distance of

the Hamiltonian Cycle3 in G. We denote by v1, v2 the two vertices obtained

by replicating twice a generic vertex v ∈ V . The set of measurements is

defined as M = {(v1, v2) ∀v ∈ V }, meaning that is composed by all the

pairs of vertices copies. Then we set D = 6B.

Consider a solution S of SUMDIST-D with SUMDIST(S) ≤ 6B in which

two robots a1 and a2 starting from the depot d need to visit all the vertices

of a subgraph. The two robots initially reach G1 and G2, respectively spend-

ing B + B, then visit the vertices copies in the order defined by the metric

TSP solution spending at most B +B, and finally travel back to the depot

spending B +B. The total cost is not greater than 6B.

Consider now any solution S in which the measurement associated with

the pair of vertices attached to the depot by means of the edge with cost

B is not the first one performed. Since G (and hence G) is metric, S can

always be turned into a solution in which such a measurement is the first

one performed without increasing the total solution cost. Therefore, from

such a solution, we can immediately derive the existence of a metric TSP

solution with total distance at most B by examining the order in which the

measurements are made.

The reasoning for the MAXTIME-T problem is the same, but we need

to set the initial value of T to 3B. In this case we need to consider a solution

S of MAXTIME-T with MAXTIME(S) ≤ 3B where two robots a1 and a2,

starting from d, firstly reach G1 and G2 spending B. Then they perform

time joint measurements visiting the vertices copies spending at most B,

and return to the depot d spending B again. The total cost cannot exceed

3B.

Since we proved that the decision problems of SUMDIST-D and MAXTIME-

T are NP-complete, their optimization version is NP-hard. Also, note that

3A Hamiltonian Cycle is a closed loop in a graph that visits each vertex exactly once.

27



our proof shows that the problems remain NP-hard even on highly-restricted

instances, namely, where m = 2 and each v ∈ V appears at most once in M .

Notation and Definitions

Table 3.1 summarizes the relevant terms and definitions presented. Some of

them will be encountered in the following chapters.

M Set of the pairs of points in which a joint measurement is needed. It

is given as input for the problem.

Configuration

Given a graph G = (V,E), a configuration is an assignment of m

robots to m vertices on the graph.

Assignment

It is a tuple with: the robots that perform a measurement, the pair

of points of the M set measured, and the cost of the measurement

performed. E.g.: 〈(ai, aj); (vi, vj); c(·)〉

ai, aj ∈ A, vi, vj ∈ M , c(·) according to the objective function we are

minimizing.

Measurement Table

Table that stores the sequence of the assignment costs computed by

the algorithms. See Section 4.2.

Move

Calculation of the search strategy of the algorithms that brings from

a state to another. See Chapter 4.

Table 3.1: Notation and Definitions.
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Chapter 4

Algorithms

In order to tackle the problem introduced in the previous chapter, we im-

plemented four algorithms which can be divided in two classes: graph ex-

ploration algorithms, that we call K2 and K3, are those presented by [11],

and informed search algorithms (Greedy and HBSS 1) are instead two new

algorithms devised for solving our problem.

The first section of this chapter presents the theoretical concepts be-

hind the design of the informed search algorithms, the main contribution

of this thesis to the field of study. The second section of the chapter aims

at providing an exhaustive and precise explanation of the computations the

algorithms perform.

4.1 Problem Framework

The computation of the most efficient tour can be related to a common

process used in the field of Artificial Intelligence: state space search. The

problem is modelled as finding the best sequence of states the problem can be

in. Two states are connected if and only if an operation can be performed

for shifting from the previous state into the one it is linked to. A state

encodes the picture of the world (relevant to the problem) at a certain point

along the progression of the plan, while the state space is the universe of all

the possible states.

In a state only necessary information is encoded:

• Configuration of the team of robot: where each robot is located on the

map.

1This algorithm is based on the heuristic biased stochastic sampling technique intro-

duced in Chapter 2.



• Measurement table: a table that stores for each robot the measure-

ments performed up to that state. If we are minimizing time, it stores

the time needed for each robot to reach the current configuration. If

we are minimizing distance, it stores the sum of the distances each

robot travelled from the beginning of the tour.

• Points to visit: the list of the pairs of points of the M set not yet

visited.

The problem is formulated by specifying 5 elements:

• Initial state of the problem: in the initial configuration each robot is

located at the depot, the measurement table is set to 0 for all robots,

and the M set is complete. No measurement has been performed.

• Action(s): given the state s it returns the set of actions that are

applicable in s. This means each possible joint measurement actuable

from s, considering the pairs of points of M not yet visited.

• Result(s, a) = s′: is the function that returns the state reached per-

forming action a in state s. The state s′ is a successor of s, action a

belongs to Action(s). Hence, a successor state s′ is the state whose

configuration is obtained by the application of action a to s.

• GoalTest(s): it is a Boolean function returning true if s is a goal state.

A goal state corresponds to a state in which every pair of points of the

M set has been visited.

• Cost(s, a): is the cost of performing action a in state s. Section 4.2

explains how costs are determined.

A solution to a search problem is a sequence of actions which brings from

the initial state to one of the states that satisfy the goal test.

It is convenient to approach this search problem with a search tree. This

allows us to understand and visualize better the problem. The search tree

is a tree where the root corresponds to the initial state and the following

pattern is repeated:

• Choose a state to expand.

• Apply the goal test to the chosen state.

• If the goal test failed, expand the state.
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Search Strategy

The definition of the search tree is not enough. Now we need to institute a

procedure for the expansion of the states and search of the solution.

The first consideration to be made is that a complete expansion of the

tree is not feasible, because it would lead to an expansion of useless states

and, most importantly, taking into account the NP-hardness of the prob-

lem2, would boost the computational complexity of the algorithm. Then,

two other factors should be taken into account: completeness and optimal-

ity. A strategy is complete if it is always able to find a solution (if a solution

exists), and is optimal if it is guaranteed to find the minimum cost solution.

The type of search strategy applied in the resolution of the problem could

be linked to a typology of search strategy known in literature as uniform

cost : the possible moves a state s can apply are sorted according to the

cumulative costs up to s summed with the cost of the moves. The difference

with the traditional strategy is that once a state is chosen, we expand it and

consider the states that can be reached only from that state. In doing so,

we do not keep track of the previously expanded state and so we cannot go

back and see what the computation would have been if another action was

chosen. This choice is justified by the complexity required by a complete

expansion, which would require O(|M |!) steps.

Our search strategy is complete: we will always be able to find a solu-

tion because we keep expanding states until each pair of points of the tour

is visited.

Since after expanding a state we focus only on state space exploration

deriving from that state, this search strategy can’t be optimal. To be cer-

tain of the optimality of the solution, in fact, a complete search of the state

space is needed: this approach though is not feasible in practice, as explained

above.

Figure 4.1 shows in practice the behaviour of the Search Strategy adopted.

2See Chapter 3.
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Sgoal
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SN−1

SN depth 1
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...

depth N

· · ·
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Figure 4.1: Expansion of the search tree of the problem. Starting from the root S0,

the search strategy expands the state chosen until we reach a goal state. Notice that if

|M | = N , we perform the action of expanding a state N times. Also, the states among

which an expansion choice can be made depends on the depth level. Each expansion

means that a pair of points of the tour has been visited, so the cardinality of the M

set is reduced by 1 everytime a state is chosen. If the depth level is d (d ≥ 1) it means

that we need to consider an expansion among N − (d− 1) states.
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4.2 Algorithms

Input Data

Chapter 3 introduced the problem definition and formalization. Here, we

recall the elements received as input by the algorithms.

G = (V,E) is a completely connected metric graph defined on n vertices.

Each vertex v represents a location reachable by a robot. The team of m

robotic agents A = 〈a1, a2, ..., am〉 can move between the vertices of G by

traveling along edges at uniform speed. The cost of each edge c : E → Z
+

can represent either distances or traveling times between vertices. Since the

graph is metric, the triangular inequality holds. The agents have to perform

joint measurements on selected pairs of vertices M ⊆ E. With the term

configuration we define an assignment of the m robots to m vertices on the

graph. In the initial configuration each robot is assigned to the same starting

position, the depot d.

Cost of Moves

Before the description of the algorithms, it is essential to accurately define

how the cost of a move of the search strategy is calculated, since it is the

basis for evaluating which joint measurement to perform next. A move is an

action that brings from a state to another. The cost of a move represents the

cost for shifting from a state to another and, therefore, from a configuration

to another. In particular, the computation of the cost of a move for two

robots ai and aj travelling from vertices vi, vj to vertices vk, vl depends on

the objective function we are considering.

• For MAXTIME(·) the cost of a move is computed as:

t = max{ti + c(vi, vk), tj + c(vj , vl)}
3 (4.1)

• For SUMDIST(·) the cost of a move is computed as:

d = c(vi, vk) + c(vj , vl) (4.2)

In the MAXTIME(·) minimization the costs considered are the times needed

to reach the vertices, while in the SUMDIST(·) minimization the costs are

the distances between them. Equations 4.1 and 4.2 specify the notation

introduced by Equation 3.1.

3Recall that ti and tj are the costs of the time measurements performed by ai and aj

up to the state.
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As stated in Section 4.1, evaluating moves means taking into account the

smallest increase with respect to the objective functions. A practical exam-

ple will clarify this reasoning.

Suppose to have four robots that after n steps have performed the fol-

lowing measurements. Each value vi represents the cost incurred by robot

ai with respect to the objective function considered:

Obj. Function v1 v2 v3 v4

SUMDIST(·) 25 17 21 18

Obj. Function v1 v2 v3 v4

MAXTIME(·) 7 7 4 4

Suppose the moves that can be performed are the following (m1D and

m2D for the SUMDIST(·) objective function,m1T andm2T for the MAXTIME(·)):

Move Cost

m1D 5 0 7 0

m2D 0 6 0 8

Move Cost

m1T 3 0 2 0

m2T 0 0 1 5

The possible scenarios are:

• SUMDIST(·): m1D cost is 12, m2D cost is 14. Since the increase

brought by m1D in the objective function is lower, m1D is chosen. In

the SUMDIST(·) optimization evaluating moves is simple because the

cost depends only on the sum of distances of the considered move.

• MAXTIME(·): m1T choice results in [10, 7, 10, 4]. m2T choice results

in [7, 7, 9, 9]. As outlined in Chapter 3, recall that in pairwise time-

measurements a robot already occupying a vertex may be required to

wait for a teammate to actually perform the measurement, which is

the robot that induces the bottleneck time. That’s why in m1T robot

a3 timestamp is set to 10 and in m2T is set to 9.

Despite the bottleneck time of m2T (5) is higher than m1T (3), m2T is

chosen because it reflects a smaller increase in the objective function

whose value is 9. With m1T its value would have been 10. As we can

see, the evaluation of a move in the case of MAXTIME(·) optimiza-

tion is slightly more complex than SUMDIST(·) because we need to

consider the history of the measurements performed by means of the

measurement table.

4.2.1 Exploration Graph Algorithms: K2 and K3

After having defined the costs and the relative auxiliary data structures,

we start with discussing two algorithms present in the literature [11]. We
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call these algorithms K2 and K3 after the last name of one of the authors

of [11]: Vijay Kumar. K2 stands for the 2-robot case, K3 for the 3-robot

case, as we will see in this chapter. The core idea behind K2 and K3 is to

compute the most efficient tour with the construction of an auxiliary data

structure: the exploration graph.

Given a graph G = (V,E) and the M set, an exploration graph Gk =

(Vk, Ek) is created such that every vertex in v ∈ Vk denotes a k-robot con-

figuration on G that measures a subset of M . An edge eijk ∈ Ek, exists

between two vertices vik, v
j
k ∈ Vk, if the configuration associated to vik is

reachable from the configuration associated to vjk. Being G a connected

graph, k robots can always move from one configuration to another, making

Gk complete. The cost assigned to every edge in Ek represents the minimum

cost for moving from one configuration to another.

We constructed an exploration graph only for the 2 and 3 robot cases

(G2 and G3) because for an increasing number of robots it is an approach

poorly scalable and performing, since such a procedure would increase the

complexity exponentially in the number of agents. The next sections will il-

lustrate how the exploration graph is built and how it is used for computing

a solution for the two scenarios.

K2 Algorithm

This algorithm can be used only if we have a team of 2 robots. In such case,

K2 finds the optimal solution. The first step of the algorithm is to compute

the vertex set V2 (Algorithm 1).

Algorithm 1 Vertex set V2 construction

input: environment graph G = (V,E), measurement set M

output: a new set of vertices V2

V2 = ∅

add v0
2
to V2 ⊲ v0

2
denotes the vertex associated with d

for each vertex vi in V do

for each vertex vj in V do

if (vi, vj) ∈ M then

V2 = V2 ∪ vx
2

⊲ vx
2
denotes the vertex associated to vij
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The main feature of constructing an exploration graph for the 2-robot

case is that each vertex vi2 ∈ V2 (v02 excluded) corresponds to one of the pair

of points of the M set where we want to perform a joint measurement. The

weight of each edge eij2 ∈ E2 connecting two vertices vi2, v
j
2 ∈ V2 is obtained

by computing the minimum cost for moving from one vertex to another,

which means the minimum cost for performing a measurement from one

configuration to another.

Once the exploration graph is obtained, since each vertex vi2 ∈ V2 cor-

responds to a measurement that has to be carried out and since each edge

eij2 ∈ E2 represents the minimum cost that matches the cost of moving

two agents in the respective original problem, we can compute the solu-

tion of a TSP4 on G2. The transformation outlined above is possible since

the presence of exactly two agents univocally identifies the optimal distance

functions of the corresponding TSP.

In doing so, we reach an optimal solution for the 2-robot case of the

problem.

K3 Algorithm

This algorithm can be used only if we have a team of 3 robots. [11] considered

only non-weighted graphs. We extend the approach to cope with weighted

graphs. The first step is the computation of the vertex set (Algorithm 2).

Algorithm 2 Vertex set V3 construction

input: environment graph G = (V,E), measurement set M

output: a new set of vertices V3

V3 = ∅

add v0
3
to V3 ⊲ v0

3
denotes the vertex associated to d

for each vertex vi in V do

for each vertex vj in V do

for each vertex vk in V do

if vi 6= vj 6= vk then

if (vi, vj) or (vj , vk) or (vi, vk) ∈ M then

V3 = V3 ∪ vx
3

⊲ vx
3
denotes the vertex associated to vijk

4Traveling Salesman Problem. See Chapter 3.
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The vertex set V3 represents all 3-robot configurations on the original

graph G = (V,E) that contain at least one pair of locations where a joint

measurement needs to be performed. This means that a pair vi, vj ∈ M

might be associated with more than one vertex in V3 and a TSP cannot be

computed. The weight of each edge eij3 ∈ E3 connecting two vertices vi3,

vj3 ∈ V3 is obtained by computing the minimum cost for moving from one

vertex to another, which means the minimum cost for performing a mea-

surement from one configuration to another.

It’s important now to clarify a particular situation that might happen

during the execution of K3. From the definition of the structure of the ex-

ploration graph G3 follows that in this algorithm robots can move singularly,

in pairs or even in triplets. In this way, a robot that moves from a vertex

to another might not perform any measurement. Therefore, the measure-

ment table needs to be updated carefully, especially for the MAXTIME(·)

optimization:

• SUMDIST(·): the measurement table is updated only considering the

distance costs resulting from the movement of the robots to their new

positions.

• MAXTIME(·): the measurement table is first updated with the time

costs resulting from the movement of the robots to their new position.

Then it is updated considering the previous update and the bottleneck

times of the robots performing the measurement.

The algorithm computation iterates over the following procedure: at each

step the possible configurations reachable from the current one are calcu-

lated and sorted. The sorting can be executed with respect to 3 different

heuristics:

• Heuristic O : moves are sorted according to the cost. Ties are broken

considering the minimum increase of the objective function.

• Heuristic C : moves are sorted according to how many measurements

could be performed. Indeed, the definition of V3 suggests that moving

between two vertices vi3 to vj3 implies that more than one measurement

might be completed. Ties are broken considering the Heuristic O.

• Heuristic H : moves are sorted according to the ratio between the cost

and the number of measurements that would be performed. Ties are

broken considering the minimum increase of the objective function.
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Algorithm 3 K3 Algorithm

input: G = (V,E), initial configuration v0
3
, heurisitic h, M set

compute G3 = (V3, E3)

v3 = v0
3

while M is not empty do

V3list = vertices reachable from v3

sort V3list according to h and pick the first element v3best

delete from M the pairs of points included in v3best ⊲ *

v3 = v3best

*: to make this instruction consistent, each heuristic considers only those moves

that visit at least one element of the M set.

After sorting, the algorithm performs a greedy choice5 at each step until the

M set is empty; the optimal plan for the 3-robot case results in a path over

a subset of the vertices in V3. Preliminary experiments showed that if we

want to minimize MAXTIME(·) the best heuristic to use is H. Instead, if

we want to minimize SUMDIST(·) the best heuristic is O.

4.2.2 Informed Search Algorithms: Greedy and HBSS

The theory behind the developement of these two algorithms is outlined in

Section 4.1: the search tree. When a state s is considered, starting from the

initial state, three functions are sequentially executed:

1. EXPAND : computation of all the possible moves (and their costs)

applicable from s.

2. CHOOSE : choice of the best move bm leading to the best assignment6,

which is selected according to the algorithm considered.

3. GENERATE : creation of the state s′, generable from s after applying

bm.

This procedure is repeated until every pair of points of the M set is visited.

In each state it is encoded only necessary knowledge7 for the accomplish-

ment of the operations described above.

5A greedy choice is the selection of the element with the smallest incremental increase

in the objective function according to the heuristic considered, with ties broken arbitrarily.
6See Table 3.1.
7See Section 4.1.
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These algorithms behave in the same way: in fact, Greedy is a special

case of HBSS. The difference between them is the implementation of the

CHOOSE function. The general algorithmic structure is described by Al-

gorithm 4.

Algorithm 4 Informed search algorithms

input: G = (V,E), initial state S0, objective function obj, M set

STATES = [S0]

S = S0

while M is not empty do

moves = EXPAND(S)

sort moves by minimum increase in obj

chosen = CHOOSE (moves)

Snew = GENERATE (S, chosen)

add Snew to STATES

delete from M the pair of points included in Snew

S = Snew

These algorithms can be run without restrictions on the number of robots

composing the team. The next sections delineate a deeper explanation of

the issues cited above.

Greedy Algorithm

In a greedy algorithm, the solution is progressively built from scratch. At

each iteration, a new element is incorporated into the partial solution under

construction, until a feasible solution is obtained and a goal is reached. The

selection of the next element to be incorporated is determined by the eval-

uation of all candidate elements according to a greedy evaluation function.

This greedy evaluation function represents the increment in the objective

function after adding this new element into the partial solution. In a greedy

setting, we select the element with the smallest incremental increase (re-

member that objective functions are costs, in our application), with ties

broken arbitrarily. Costs are evaluated as outlined in Section 4.2.

These properties are embodied within the Greedy Algorithm which it-

eratively expands a state (EXPAND) and, after sorting the moves by the

minimum increase in the objective function considered, chooses the first

element which corresponds to the best one according to the greediness cri-

terion (CHOOSE ) and generates the corresponding state (GENERATE ).
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The Greedy Algorithm is guaranteed to find a feasible solution, since,

for this problem, a greedy approach can easily be shown to be complete.

However, solutions obtained by greedy algorithms are not necessarily opti-

mal but their performance can boost if we allow the algorithm to explore

states in addition to those suggested by the greedy choice. This is the con-

cept behind the implementation of the next algorithm.

HBSS Algorithm

The HBSS Algorithm idea is designed around the sampling methodology

described in [6]. As mentioned before, a greedy choice throughout the ex-

pansions of states is highly probable that does not lead to optimal solutions.

A different exploration of the space state, instead, might tend to the discov-

ery of a better solution and, theoretically, even to the optimal one.

We can explore the state space in a more significant way with respect to

the greedy choice thanks to randomization. Randomization plays an impor-

tant role in algorithm design, especially when sampling the state space.

Greedy randomized algorithms are based on the same principle guiding

pure greedy algorithms but they make use of randomization to build dif-

ferent solutions at different runs. At each iteration, the set of candidate

elements is formed by all elements that can be incorporated into the partial

solution under construction without violating feasibility. The selection of

the next element is determined by the evaluation of all candidate elements

according to a greedy evaluation function.

The evaluation function applied in the HBSS Algorithm derives from a

technique called heuristic biased stochastic sampling8. This methodology

doesn’t sample the state space randomly but it focuses its exploration using

a given heuristic, which in our case is the greedy one. The adherence to

the heuristic depends on another component, the bias function. The bias

function selection has consequences on the state space exploration depend-

ing on the confidence placed in the heuristic: the higher the confidence, the

stronger the bias, therefore fewer solutions different from the greedy one are

produced. On the other hand, a weaker bias implies a greater degree of

exploration since we are not attached to the heuristic; this leads to a higher

variety of solutions.

A complete solution is generated starting from the root node and se-

lecting at each step the node sampled by the HBSS state space exploration

procedure, until all pairs of points in the M set are visited, meaning that

8The acronym of the algorithm derives from this name.
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a goal node is reached. In order to select a node, the candidate elements

are sorted according to the heuristic (e.g., greedy) and a rank is assigned to

each candidate, based on the ordering - top rank is 1. The bias function is

used to assign a non-negative weight to each candidate based on its rank.

After normalization, the normalized weight represents the probability of the

candidate of being selected. Notice that each candidate has a non-zero prob-

ability of being chosen at each step.

Algorithm 5 shows the pseudocode relative to how the CHOOSE func-

tion changes with respect to the Greedy Algorithm. The general structure

regarding EXPAND and GENERATE functions still holds.

Algorithm 5 CHOOSE Function - HBSS Search

input: G = (V,E), heuristic function h, bias function b, state s, M set9

children = sorting based on h of moves

totalWeight = 0

for each child in children do

rank[child] = position in children ⊲ top rank is 1

weight[child] = b(rank[child])

totalWeight = totalWeight + weight[child]

end for

for each child in children do

probability[child] = weight[child]/totalWeight

end for

index = weighted random selection based on probability

chosen = children[index]

The HBSS Search algorithm will find a feasible solution sampling the state

space with the operations depicted above. Notice that the difference with

the Greedy Algorithm lies in the choice of the move to apply, which might

not be the first one in the sorted list (children). The given result might

be better or worse than the solution found by the greedy one, depending

on how we choose the bias function and also by how many outcomes are

calculated. In fact, another strength of the heuristic biased stochastic sam-

pling technique is that we can iterate over the number of times we compute

a solution through HBSS Search.

9Even if in this pseudocode some input data are not used, this list is consistent with

the function call actually made by the HBBS Algorithm - see Algorithm 6.
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HBSS Search runs until a feasible and complete solution is determined.

If this process is repeated N times we would obtain a wider exploration

of the state space because at each iteration, a complete HBSS Search pro-

cedure is carried out. With a proper tuning of the bias function, a wide

collection of different solutions is likely obtainable and, with an extended

range of solutions to consider we have higher probabilities to reach optimal-

ity (Algorithm 6).

Algorithm 6 HBSS Algorithm

input: G = (V,E), heuristic function h, bias function b, initial state S0, M set,

number of restarts N :

RESULTS = [ ]

HBSS(N,S0, h, b):

for i in range (0, N) do

res = HBSS-Search(S0, h, b)

add res to RESULTS

end for

In RESULTS is stored each of the N computations of a complete run of the

HBSS Search procedure. The minimum value over the instances of the list

is the best result calculated.

The iterative sampling performed by the HBSS approach depends on the

definition of the bias function, that might encompass greedy search and

completely random search as extreme members. The bias functions (r is the

rank) considered in this work are:

• logarithmic: bias(r) = log−1(r + 1)

• polynomial(τ): bias(r) = r−τ

• exponential : bias(r) = e−r

From preliminary experiments the best bias function typology is the poly-

nomial. Chapter 7 will focus on the analysis of the tuning of a proper

polynomial degree and of its performance.
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Computational Complexity

From the results of Chapter 3 it is clear that, unless P=NP, the existence of

polynomial-time optimal algorithms for any of the two objectives is improb-

able. However, for the special case of a team of two robots, there exist two

simple polynomial-time transformations from our optimization problems to

particular TSP instances, for which advanced solvers exist [1].

For what concerns the HBSS Algorithm, if we assume that an assign-

ment of the team of robots to a configuration can be evaluated in a constant

number of steps, each solution can be found in O(m2|M |2 logm|M |) steps,

implying that, if the number of runs is polynomial in the input size, the

whole algorithm has a polynomial running time. This complexity derives

from the fact that for each step in the evaluation of the assignments (the

total number of steps before algorithm completion is |M |), the cost of each

move is computed in O(m2|M |) and then sorted in O(logm|M |). Repeating

this process |M | times we obtain O(m2|M |2 logm|M |).

Approximation Factor

We now provide a result that could be useful in the study of an approxima-

tion factor for the Greedy Algorithm.

Let Algorithm 1D be the Greedy Algorithm in charge of SUMDIST(·)

optimization. We put in relation the maximum cost of a greedy assignment

and the cost of an optimal solution.

Let SD be a solution found by Algorithm 1D with M = E, and let OPTD

be the cost of an optimal solution minimizing the SUMDIST(·) objective

function. Then,

max
sk∈SD

c(sk) ≤ 2OPTD .

Proof. Consider a single depot multiple traveling salesmen problem (m-TSP)

on G, with m salesmen and a depot d. In this problem, the goal is to find a

set of m tours, each starting from d and visiting at least once every vertex in

G, such that the sum of the tour costs is minimized. Let Cmtsp be the cost

of the m-TSP optimal solution. Since in our problem each vertex must be

visited at least once, it follows that Cmtsp ≤ OPTD . Then, let Cmst be the

cost of a minimum spanning tree10 on G. We have Cmst ≤ Cmtsp, because

from any m-TSP solution a spanning tree can be obtained by removing the

last tour edges (the ones returning to the depot). Finally, the cost between

10A minimum spanning tree is a least cost tree covering all the vertices in a graph.
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any pair of vertices in G cannot be greater than Cmst, because of the triangle

inequality. Reconstructing the chain of inequalities we have that the sum of

the costs of the greedy assignment can never exceed twice OPTD .
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Chapter 5

System Architecture

5.1 Systems Involved

Computing efficiently multirobot paths for performing joint measurements

can be employed in several applications, as already discussed in Chapter

2. In this chapter we describe the system architecture developed for such

computation.

We start from a known environment, therefore a physical map is needed.

The pairs of points where we would like to perform joint measurements are

then chosen on that map and the algorithm, after receiving this information,

can start computing the most efficient tour providing the best solution ac-

cording to the selected objective. This is how the workflow is formed from an

abstract point of view; technically the process is more complex and the final

output of the algorithms (an m-robots tour) is obtained by the combination

of three systems:

• System 1: data acquisition.

• System 2: data processing and solution computation.

• System 3: analysis of the results and experiments on performance of

the algorithms.

Figure 5.1 depicts the workflow in which the three systems are involved.

The next sections will give a deep explanation of each system’s tasks.



Figure 5.1: Systems interactions.

5.1.1 System 1: Acquiring Data

In this system there are three main entities: environments, graph scripts,

and data. It all starts with a physical map of the environment which is

encoded as a 800x600 .png file. In this work the environments1 used were

two; from now on they will be referred to as office and open. These are also

the environments which will be used in the experiments of Chapter 6. In

the map representations shown in Figure 5.2, robots can move on the white

pixels, while black pixels represents obstacles or unacessible points.

(a) office (b) open

Figure 5.2: Environments - png files.

1The environment maps were downloaded from Radish, a robotics data set repository.

(radish.sourceforge.net)
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Then, the create graph from png.py script discretizes the .png files into

a grid of cells. Each vertex v of this grid can be seen as a vertex of a graph.

From each vertex v we can derive which are the other vertices it is directly

connected to: in a 4-connected grid discretization they are its neighbors

along the 4 main directions (at most four). The weight of an arc connecting

two vertices v1 and v2 is the distance of the shortest path between them.

Grid discretization is shown in Figure 5.3.

(a) office (b) open

Figure 5.3: Grid of the environments.

In this way, the environment is transformed into a graph. All information

about this data structure is stored in a .graphml file, which is a comprehen-

sive and easy-to-use file format for graphs. It consists of a language core

to describe the structural properties of a graph and of a flexible extension

mechanism to add application-specific data. GraphML is based on XML

and hence is suited for generating, archiving, or processing graphs.

Now the points of the map that might be visited by robots can be cho-

sen. This task is completed by the create ptexplore.py script, which, after

receiving as inputs the .png map of the environment and the underlying

graph related to it computed by create graph from png.py, allows us to de-

termine the points where a joint measurement might be performed. This

is achievable by simply drawing those points on the map: when a point is

drawn, it is associated to the closest vertex of the underlying graph.

This information is stored in an .exp file. More specifically, the blue

points in Figure 5.4 are the vertices of a completed connected graph where

the weights of the arcs represents the distances between vertices and are eas-

ily computable from a lookup on the .graphml file: it is sufficient to invoke

the shortest path dijkstra procedure between two vertices which is applica-

ble in the GraphML environment.
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(a) office (b) open

Figure 5.4: Environments graphs where joint measurements might be performed.

Notice that we have not yet chosen which are the joint measurements

to be done. This is done by the parsingData.py script. The elements that

belongs to the M set might be picked manually if desired. However, in this

work the selection of the elements is done in an automatic way to privi-

lege an exploration whose solution is more significant for a computational

evaluation, varying the number of elements in the M set. Recall that the

elements belonging to the M set are pairs of locations.

For each environment, 3 different M sets are defined, based on 3 ranges

specified in pixels: 250, 500, 1000. The sets are derived in this way: for

each vertex v of the graph G specified by the .exp file, add to the M set all

the pairs formed by v and the other vertices of G whose distance from v is

not larger than the range (disregarding obstacles), if the pair has not been

already added. This property is summarized by the following equation:

∀vi, vj in V, vj 6= vi :

if d(vi, vj) ≤ range and (vi, vj) /∈ M → add (vi, vj) to M (5.1)

Since the .png map pixel measures are 800x600, with range 1000 all the

possible pairs of vertices of the graph need to be visited. This means that

with n vertices the maximum cardinality of the M set is:

|M | = |E| =
n(n− 1)

2
(5.2)

All the interactions between environments files, scripts and data are

summarized by Figure 5.5.
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Figure 5.5: Interactions between System 1 entities.

The parsingData.py script is the final part of the process of the first

system: it creates a .dat file which will be the input of the algorithms

presented in Chapter 4. The .dat file contains all the relevant information

needed for a correct computation of the solution. This means:

• RANGE : range adopted for the computation of the M set.

• N ROBOT : number of robots of the exploration team.

• START POS : the depot. From here the robots start exploring and

here is where they head to after having completed the tour.

The starting positions chosen for the two environments are depicted

in Figure 5.6.

Figure 5.6: Depots in red.

• N VERTICES : number of vertices of the exploring graph. This infor-

mation eases the parsing process.
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• POINTS TO EXPLORE : the M set.

• DISTANCE MATRIX : this matrix stores, for each vertex v, the dis-

tances between v and the other vertices of the graph.

• VELOCITY : robots travelling velocity. This data is needed to derive

the time matrix (the matrix that stores, for each vertex v, the time

needed to reach the other vertices of the graph from v) by dividing

each element of the DISTANCE MATRIX by this value. In this work

VELOCITY is always set to 1 m/s to highlight the difference between

the computations of the solution according to the two objective func-

tions2. Indeed, if VELOCITY = 1 m/s, time and distance matrices

are equal.

5.1.2 System 2: Processing the Data and Computing a So-

lution

The parsing of the .dat file is the first step in the computation of the al-

gorithm. In this phase all the significant information and data are saved

in proper data structures that will be used to calculate the solution as ex-

plained in depth in Chapter 4. The results of the computations made by

the algorithms are written in the solution file with a layout easy to parse

for future analysis. The complete and detailed structure of the output data

and other significant information is:

• DATFILE: name of input file with the relevant data needed by the

algorithms for the computation of solution.

• ENVIRONMENT: environment considered.

• ALGORITHM: algorithm used for the computation of the solution.

• RANGE: range considered for the creation of the M set.

• STARTING POS: vertex id of the depot d.

• N ROBOTS: number of robots of the team.

• SOLUTION: value of the objective function taken into account by the

algorithm. It is either the SUMDIST(·) or the MAXTIME(·) of the

solution.

2Chapter 4 explains the difference in the computations of the two objectives. That’s

why the same matrix leads to different calculations.
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• SECONDARY SOLUTION3 : value of the other objective function.

This value is computed updating this secondary objective with the

assignments calculated for minimizing the primary objective.

• COMPUTATIONS4 : sequence of the solution values computed by the

different runs of the HBSS Algorithm.

• CONFIGURATIONS: sequence of the configurations in which the robots

should be throughout the measurement-collecting task.

• ROBOT MEASURING: sequence of the id of robots performing a joint

measurement. (e.g., 〈(a2, a7); (a3, a5); ...〉, if m ≥ 7)

• MEASUREMENT TABLE: sequence of assignment costs for each robot.

• EXECUTION TIME: execution time (in seconds) of the algorithm.

5.1.3 System 3: Analysis of the Results and Experiments on

Performance of the Algorithms

System 3 is in charge to analyze the results saved in the solution files, com-

paring the algorithms’ performance and the solutions obtained.

Before running the experiments, the solution files are parsed by the anal-

ysis scripts and the valuable data for empirical settings5 are extracted and

stored in a nested python dictionary : this specific data structure is an un-

ordered collection of items. While other compound data types have only

value as an element, a dictionary has a 〈key, value〉 pair. Keys are unique

and python dictionaries are optimized to retrieve values when the key is

known. In this way, accessing values is really simple. The structure of the

developed dictionary and related keys is:

[environment] → [algorithm] → [range] → [robot number] → [objective] → [tau]

The tau key was defined only for the HBSS Algorithm. The arrows specify

the order of data access of the dictionary: at first, we can retrieve the data

related to a specific environment. Then, we can retrieve data related to the

computations made by a specific algorithm in that environment. Then, we

can filter those data by range, and so on.

3Only for Greedy Algorithm.
4Only for HBSS Algorithm.
5These data are: environment, algorithm, range, number of robots, objective, tau

degree (only for HBSS).
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After parsing the solution files, the significant data stored in the dictionary

are extracted and used to plot different diagrams for assessing considerations

on the algorithms’ performance. The structures of the diagrams has been

implemented ad hoc thanks to matplotlib6, a Python plotting 2D library

which can produce plots, histograms, scatterplots, etc. Implementation and

results of such diagrams are covered in depth in Chapter 6.

6https://matplotlib.org
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Chapter 6

Experiments

In order to evaluate the performance of the proposed algorithms in practical

settings, we consider the environments office and open illustrated in Chapter

5. As depicted in that chapter, vertices on positions of interest (e.g., rooms

in the office) were manually created over the bitmaps and edge costs were

obtained as shortest paths among pairs of vertices. The number of robots

composing the team can vary from 2 to 10 throughout the experiments.

The set of target measurements M is populated according to the distance-

based criterion outlined in Equation (5.1). The cardinalities of M are re-

ported in Table 6.1.:

px range open office

250 97 382

500 280 881

1000 378 946

Table 6.1: The cardinalities of the M set.

Three sets of experiments were run to analyze the performance of the algo-

rithms and relative solutions under different points of view:

1. τ tuning : investigation on the impact of the choice of the τ parameter

of the bias function used in HBSS 1.

2. Algorithms comparison: examination of the different performance of

the algorithms.

3. Greedy objective comparison: observation on the results of the Greedy

Algorithm computation in the minimization of both objectives.
1polynomial(τ): bias(r) = r

−τ



6.1 Tuning of the τ Parameter

In the first set of experiments, we investigate the impact of the choice of

the polynomial degree of the bias function in the solutions found by the

HBSS Algorithm. The value of this parameter influences the quality of the

outcomes computed, because the bias function relies on it when assigning a

weight (and hence a probability) to the elements among which an expansion

of the state space should be considered.

For fulfilling this purpose, we fix the number of robots and the range to

intermediate values: 5 robots and 500 px. Figure 6.1 shows the distributions

of the solution costs, obtained in both the environments, for τ ∈ {3, 5, 7, 9}

and over 200 restarts. Each curve represents the probability of finding a solu-

tion cost less than or equal to a certain value, at each run of the correspond-

ing algorithm. For example, in the open environment, the probability that

the algorithm for τ = 5 finds a solution S, such that SUMDIST(S) ≤ 2600,

is between 0.4 and 0.5 at each run. Although the set of tested values is

limited, it is fairly easy to infer the general trend of the curves with respect

to the τ parameter: increasing τ the distribution tends to fit the step distri-

bution of a pure greedy algorithm. This is quite predictable, thinking about

the parameter meaning: the Greedy Algorithm can be seen as a special case

of HBSS with τ = ∞.

Using the pure greedy performance as reference, the results highlight

that the curves of τ = 3 and τ = 7 are dominated in all the four scenarios.

In particular, τ = 5 achieves overall good performance, while τ = 9 behaves

generally bad.

Figure 6.2 depicts the empirical distributions of the solution costs found

by HBSS w.r.t. SUMDIST(·) and MAXTIME(·) minimization, in the open

environment, with 250 px range. The number of robots m is set to 5 and 8,

and again, τ = 5 dominates τ = 3 and τ = 7 in all the scenarios, with τ = 9

being the worst.

In Figure 6.3 we show the results of two different environments with two

different ranges, because the cardinalities of their respective M set is almost

equal (see Table 6.1). The performance is similar even with a large number

of robots, confirming the considerations made.
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Figure 6.1: Empirical distributions of the solution costs found by HBSS w.r.t.

SUMDIST(·) and MAXTIME(·) minimization with 5 robots and 500 px range.

(a) open (b) open

(c) office (d) office
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Figure 6.2: Empirical distributions of the solution costs found by HBSS w.r.t.

SUMDIST(·) and MAXTIME(·) minimization, open environment, 250 px range.

(a) 5 robots (b) 5 robots

(c) 8 robots (d) 8 robots
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Figure 6.3: Empirical distributions of the solution costs found by HBSS w.r.t.

SUMDIST(·) and MAXTIME(·) minimization. The number of robots is m = 10.

(a) open - range 1000. (b) open - range 1000.

(c) office - range 250. (d) office - range 250.
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6.2 Algorithms Comparison

In the second set of experiments, we vary the number of robots and we

compare the results obtained by the Greedy Algorithm (τ = ∞) to those

obtained by HBSS. The previous set of experiments pointed out that, in

general, a good value for the parameter τ of the bias function of the HBSS

Algorithm is τ = 5. The number of restarts for each setting was fixed to

50. The optimal solution cost is computed only for m = 2 robots with K2,

exploiting the transformation described in Chapter 3. With m = 3 robots,

the algorithm K3 is also used.

In Table 6.2, the costs of the solutions found by all the algorithms are

shown for the open environment. The HBSS with τ = 5 outperforms the

pure greedy version in all the problem instances. This, of course, comes at

the expense of greater computational times. The results obtained by HBSS

are comparable even with those obtained by the optimal algorithm K2 for

m = 2. The gap could be further reduced by increasing the number of

restarts. In case of m = 3 robots, the solution costs obtained by τ = ∞ are

very similar to those of solutions obtained by K3, since they both operate

greedy choices. However, it is outperformed by HBSS with τ = 5 in all the

considered instances.

For the SUMDIST(·) objective and for range 250 px it is interesting to

notice that the solution cost does not always decrease, as the number of

robots increases. This is due to the greedy nature of the algorithm, which

does not take into account the final returns to the depot. The same behavior

seems to appear for range 500 px and large numbers of robots, suggesting

the presence of a local minimum. As a consequence, the minimization of the

total traveled distance by means of greedy algorithms requires additional

attention in the selection of the number of robots.

In Table 6.3, we show the costs of the solutions found by all the algo-

rithms in the office environment. Again, HBSS with τ = 5 outperforms the

pure greedy version in all the problem instances considered. Some data are

missing, due to the following reasons:

• With range 500 px, we focused only on m = 5 for tuning the τ param-

eter. Results with m = 2 and m = 3 were computed for a comparison

with K2 and K3.

• With range 1000 px, some calculations were stopped because they ex-

ceeded the timeout threshold. This is a consequence of the cardinality

of the M set given as input (see Table 6.1).
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• With ranges 500 and 1000 px, K2 was not computed for both ob-

jectives because the python library2 in charge of calculating the TSP

could not perform computations on such input sizes (881 and 946

points for 500 and 1000 px respectively - see Table 6.1).

Robots (m)

2

3

4

5

6

7

8

9

10

2

3

HBSS Algorithm for SUMDIST(·)

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

1710 1458 3970 3902 5074 5020

1658 1362 3284 3264 4418 4138

1520 1296 3108 2714 3444 3274

1488 1278 2626 2356 2892 2840

1398 1344 2274 2036 2636 2516

1400 1360 2168 1932 2430 2328

1666 1452 2124 1928 2326 2188

1600 1542 2078 1950 2300 2166

1686 1596 2014 1902 2346 2148

Optimal Algorithm K2 for SUMDIST(·)

1346 3498 4546

K3 Algorithm for SUMDIST(·)

1552 3524 4358

HBSS Algorithm for MAXTIME(·)

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

1368 1350 3745 3656 4793 4760

814 729 1922 1865 2491 2416

589 544 1298 1224 1662 1598

472 394 983 924 1228 1159

380 339 791 712 914 871

379 318 656 593 857 739

317 287 568 524 729 653

311 285 475 465 634 565

286 278 467 424 584 525

Optimal Algorithm K2 for MAXTIME(·)

1263 3433 4506

K3 Algorithm for MAXTIME(·)

1022 1897 2484

Table 6.2: Costs of solutions found by the algorithms in the open environment. Bold indicates the best results.

2Gurobi.py, the TSP solver coming with each GUROBI installation. GUROBI is an

optimization solver for mathematical optimization and operations research.
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Robots (m)

2

3

4

5

6

7

8

9

10

2

3

HBSS Algorithm for SUMDIST(·)

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

4472 4160 9038 9009 9532 9455

4268 3706 8078 7960 8684 8422

3780 3278 6888 - 7552 7036

3342 2876 6516 5664 6618 6088

3220 2704 5528 - 5682 5258

2696 2380 5090 - 5042 4628

2668 2310 4234 - 4252 4190

2742 2362 4266 - 4500 -

2638 2370 4116 - 4136 -

Optimal Algorithm K2 for SUMDIST(·)

3626 - -

K3 Algorithm for SUMDIST(·)

4002 8292 8872

HBSS Algorithm for MAXTIME(·)

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

3966 3902 8632 8504 9369 9276

2214 2112 4613 4477 4909 4784

1569 1426 3082 - 3260 3123

1138 1041 2180 2110 2276 2250

875 810 1710 - 1922 -

790 699 1370 - 1561 -

630 607 1274 - 1359 -

593 532 1176 - 1087 -

568 493 904 - 985 -

Optimal Algorithm K2 for MAXTIME(·)

3498 - -

K3 Algorithm for MAXTIME(·)

2242 4698 4941

Table 6.3: Costs of solutions found by the algorithms in the office environment. Bold indicates the best results.
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6.3 Greedy Objective Comparison

In the last set of experiments, we investigate the practical dependency be-

tween the optimization of our objectives, after having established, with

Proposition 3.1.2.1, that in general both the objectives cannot be optimized

at the same time. Figures 6.4, 6.5, and 6.6 show the solutions found by the

greedy algorithms, evaluated according to the same objective. Specifically,

we run the Greedy Algorithm and measure the quality of the solutions pro-

duced according to both SUMDIST(·) and MAXTIME(·) objectives in the

open and office environments. In the legend, Agorithm 1D is the Greedy Al-

gorithm that computes the solution minimizing SUMDIST(·), Agorithm 1T
is the one which minimizes MAXTIME(·). A comparison is possible thanks

to the way the Greedy Algorithm has been implemented. Recall that, at

each step, when the algorithm updates the value of the objective function it

is minimizing, it also updates the value of the other objective function with

the configurations computed according to the minimization of the former

one.

Even if the algorithms perform generally better in their respective objectives

(as largely expected), the difference is relatively small. In particular, in case

of the MAXTIME(·) objective the gap remains limited even when increasing

the number of robots. This suggests that, in general, it may be possible to

obtain good solutions with respect to both the objectives.
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Figure 6.4: Solutions found by the pure greedy algorithms, evaluated according to both

the objectives, with 500 px range.
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Figure 6.5: Solutions found by the pure greedy algorithms, evaluated according to both

the objectives, with 1000 px range.
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Figure 6.6: Solutions found by the pure greedy algorithms, evaluated according to both

the objectives, with 250 px range.
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Chapter 7

Conclusions

This thesis investigated a multirobot information gathering task in which

robots must efficiently visit pairs of locations of a known environment. We

focused on the developement of proper methods for calculating the most

efficient tours for the robots to visit a set of pairs of locations given as input

for the problem.

Specifically, this thesis proposed a systematic study of a graph-theoretical

approach for computing a set of robot paths allowing to efficiently perform

pairwise joint measurements, an open issue in the multirobot systems lit-

erature. After the formalization of the problem and the proof of its NP-

hardness complexity, a resolution methodology based on state space search

was presented and then implemented providing efficient algorithms suitable

for practical settings. Given the difficulty of finding optimal paths, we pro-

posed a greedy algorithm, together with its randomized version, able to deal

with the optimization of both objectives: minimization of the total travelled

distance and minimization of the task completion time.

Extensive experiments, including a significant phase devoted to parame-

ter tuning, were run on two environments in order to assess the characteris-

tics of the algorithms. A wide number of observations on these experiments

and a deep analysis of the results confirmed the overall good performance

of the solving strategies implemented.

From a practical standpoint, in future it could be worth focusing on a

particular robotic application requiring to perform joint measurements and

studying the relationship between online approaches and the proposed offline

resolution scheme. For example, in a context of communication map build-

ing where the environment is fully known in advance, it would be interesting

to compare the quality of the maps obtained with the online approach of



[5] and [15] to the quality of those obtained with the help of the algorithms

presented in this thesis. It is often difficult to assess how much room for

improvement online exploration strategies have [14]. A complete evaluation

should include a comparison between online and offline performance, based

on the competitive ratio. The competitive ratio of an online algorithm a is
Pon

Poff
, where Pon is the performance of a in an environment and Poff is the

performance of the optimal offline algorithm that knows the environment

in advance. While modelling the signal’s distribution with a Gaussian Pro-

cess [5], a priori communication model usage [15], and periodic-connectivity

network implementation [10] have been addressed using online strategies,

for offline communication maps construction a theory supporting efficient

algorithms has not been yet developed and ad hoc methods are usually em-

ployed. Focusing on the developement of appropriate strategies is the first

step to assess such comparison and it was one of the central motivations of

this work.
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Appendix A

User Manual

This is a practical and quick guide for a correct usage of the implemented

system and functionalities already described.

• Prepare a 800x600 .png bitmap file of the environment env.

• Launch: python create graph from png.py. It saves the .graphml file

related to env.

• Launch: python create ptexplore.py. Allows to draw the points which

robots might visit. Saves the file in env.exp.

• Launch: parsingData.py. After specifying in the script the number of

robots and the range, it creates the .dat file.

Example: bwopen 5r 500.dat

• Launch: python algorithm datfile obj fun >outputFile. Computes a

solution and save the results in the output file.

Example:

python HBSS5.py bwopen 5r 500.dat time >resultsT hbss bwopen 500 tau5 5r.txt

• For analyzing the results and launch experiments, gather different so-

lution files and create a folder.

Then, in that folder, launch: python parsingRes.py.



70 Appendix A. User Manual

Tools

• Python: coding language used to implement the scripts.

• Gurobi : Python library computing TSPs.

• Matplotlib: Python library for the creation of plots and diagrams.


