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Abstract

The path towards economically viable controlled thermonuclear fusion is very long,
even after decades of cutting edge research. Fusion power might not be deployed in
time to contribute to the solution of the ongoing climate change crisis. Nevertheless,
a clean, almost limitless and non-intermittent energy source will be a revolutionary
achievement for human civilization.

Multiple reactor designs have been proposed in the past seven decades. Among
these, the tokamak is the most studied one because of its superior performance.
Its successful development allowed the achievement of stable operation at near-
reactor conditions. This means that tokamaks have almost met all requirements for
burning plasmas sustain. ITER is the next iteration of this technology. Its aim is
to demonstrate the viability of tokamak reactors by achieving the physics power
gain Q = 10. In order to do so, it is designed to be almost an order of magnitude
larger than the largest currently operating tokamak in the world, JET. ITER’s first
plasma operation is planned for 2025.

One of the current major issues regards transport phenomena. Neoclassical
transport theory underestimates experimental parameters by one order of magnitude.
This enhanced behavior is due to anomalous transport, which is turbulence driven.
To deal with this discrepancy, empirical scaling laws are used to obtain new
parameters from the available databases. The validity of the procedure is weakened
as it is performed very far away from the available data. This is a problem for
DEMO’s design, the next iteration after ITER.

To improve transport models, a better understanding of turbulence is needed.
The aim of this work is the development of a statistical analysis toolbox for the
study of edge magnetic field turbulence inside TCV. This device is the best choice to
perform this study, since its fast magnetic acquisition system was recently upgraded
to handle more than 200 signals. The code is validated with real experimental data.
The main results of this work are: a different scaling behavior from theoretical
references, the detection of dissipation during the energy cascade, and the fact that
turbulence follows fBm functions.
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Sommario

Nonostante più di mezzo secolo di ricerca, il traguardo della fusione termonucleare
controllata ed economicamente sfruttabile è ancora lontano. L’energia da fusione
nucleare, infatti, potrebbe non essere parte della soluzione all’attuale crisi climatica.
Ciononostante, ottenere accesso a una fonte energetica pulita, quasi inesauribile e
non intermittente sarebbe una rivoluzione per il genere umano.

Molte tipologie di reattore a fusione sono state proposte nel tempo. Fra questi,
il tokamak è quello più studiato, grazie alle sue migliori prestazioni. Infatti,
condizioni di operatività a livello reattore sono raggiunte con questa configurazione.
ITER, progetto che rappresenta la prossima iterazione di questa tecnologia, dovrà
dimostrare la fattibilità di utilizzo di un tokamak come reattore, producendo il
guadagno fisico Q = 10. Per soddisfare questo obiettivo ITER è dieci volte la
dimensione del più grande tokamak ora in funzione, JET. Il primo plasma di ITER
è pianificato per il 2025.

Uno dei problemi dei tokamak riguarda il trasporto nel plasma. La teoria del
trasporto neoclassico sottostima di un ordine di grandezza i coefficienti di trasporto
del plasma. Ciò è dovuto al cosiddetto trasporto anomalo, generato dalla turbolenza.
A causa di ciò, per ottenere nuovi parametri si utilizzano delle leggi semi-empiriche.
La validità dell’estrapolazione è indebolita quando è effettuata a diversi ordini di
grandezza dai dati a disposizione. Questo è il caso della progettazione di DEMO, il
successore di ITER.

Una conoscenza più profonda dei fenomeni turbolenti è necessaria per migliorare
gli attuali modelli di trasporto. Lo scopo di questa tesi è lo sviluppo di un codice
in grado di effettuare un’analisi statistica del campo magnetico di bordo in TCV.
Vista la recente installazione di oltre 200 sonde magnetiche dentro tale macchina,
TCV è la migliore scelta per effettuare questo tipo di analisi. Il codice è validato
con dati sperimentali reali e i principali risultati ottenuti sono: osservazione di una
legge di scala differente da quelle di riferimento, presenza di dissipazione durante la
cascata energetica e descrizione dei segnali acquisiti come fBm.
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Estratto

In questo lavoro di tesi viene affrontato uno studio sperimentale della statistica
della turbolenza magnetica di bordo in un plasma in configurazione tokamak.
In particolare, lo scopo è quello di sviluppare un pacchetto software in grado
di effettuare tale tipo di studio in maniera semi-automatizzata e affidabile. Il
codice sviluppato servirà come base per lo sviluppo di algoritmi più avanzati, in
grado di caratterizzare statisticamente la turbolenza magnetica di bordo all’interno
del Tokamak à Configuration Variable, il tokamak dello Swiss Plasma Center,
laboratorio ospitato dall’École Polytechnique Fédérale de Lausanne in Svizzera.

Il problema del cambiamento climatico necessita lo sviluppo di soluzioni ener-
getiche innovative, in modo da creare un vantaggio economico diretto nell’investire
su energie pulite rispetto a energie da fonti fossili. La transizione verso fonti
energetiche pulite accelererà drammaticamente solo quando queste saranno più
economiche di quelle tradizionali. Nonostante ciò, un’economia di mercato avanzata
non potrà essere totalmente supportata da fonti rinnovabili intermittenti. Con
questa qualifica si intendono quelle fonti che non sono in grado di fornire alla rete
un livello di potenza constante lungo intervalli temporali giornalieri e stagionali;
tra di esse si annoverano l’energia solare e quella eolica.

L’energia nucleare è in grado di fornire un profilo di carico di base affidabile
senza produrre gas serra. Sopra questo profilo si potrebbero aggiungere quelli forniti
dalle rinnovabili, così da ottenere un generazione elettrica totalmente pulita. Anche
se il nucleare non gode, generalmente, del favore dell’opinione pubblica, i progetti
della cosiddetta Generazione IV si profilano come soluzioni nucleari innovative, in
grado di sopperire ad alcuni dei punti deboli dei reattori ad acqua tradizionali.

La soluzione dell’energia da fusione termonucleare controllata è auspicabile,
ma ancora lontana. Infatti, il fronte della ricerca sulla fusione è rappresentato da
ITER, un reattore sperimentale attualmente in costruzione nel sud della Francia.
L’obiettivo di tale progetto è quello di dimostrare che la tipologia di reattore
tokamak è in grado di produrre un guadagno fisico Q = 10, cioè che la macchina è
in grado di produrre una potenza termica netta dieci volte superiore a quella fornita
al sistema. Il primo plasma di ITER è pianificato per il 2025, ma questo progetto
non rappresenta ancora lo sviluppo di un vero e proprio impianto di potenza basato
su energia da fusione termonucleare. Questo obiettivo dovrà essere raggiunto da
progetti successivi a ITER, come potrebbe essere DEMO, di ideazione europea. Le
prime operazioni di tale progetto, comunque, non sono previste prima del 2050. In
questo senso l’energia da fusione potrebbe non essere in grado di far parte di un
buon mix energetico strategico per la risoluzione del problema del riscaldamento
globale. Ciononostante, lo sviluppo di una fonte energetica pulita, quasi inesauribile
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e non intermittente sarà potenzialmente una rivoluzione per il genere umano.
La reazione di fusione termonucleare avviene quando due nuclei leggeri si urtano

con energia cinetica sufficiente a superare la barriera coulombiana che è presente
tra di loro. Quando ciò avviene, la reazione dà vita a uno o più nuclei la cui
massa totale è in difetto rispetto a quella di partenza. Questo difetto è l’origine del
rilascio di energia, sotto forma di energia cinetica dei prodotti di reazione. Questa
energia può essere parzialmente trasformata in energia elettrica attraverso un ciclo
termodinamico, o direttamente nel caso di alcune reazioni. La reazione di maggiore
interesse scientifico è quella tra due isotopi dell’idrogeno: deuterio (D) e trizio (T).
Questo perché è quella che offre la più alta probabilità di avvenire a temperature
considerate accessibili. Infatti, per poter superare la barriera coulombiana la
temperatura del sistema deve essere molto alta, dell’ordine di T ∼ 10 keV. A queste
temperature la materia sopravvive solo allo stato di plasma. Dato che non esistono
materiali che possano sopravvivere a tali condizioni, un plasma termonucleare deve
essere confinato. Due metodi di confinamento sono possibili: magnetico e inerziale.
Entrambi prevedono l’utilizzo di una pressione esterna al plasma, infatti nel primo
caso questa è di origine magnetica, mentre nel secondo è di origine cinetica.

Un tokamak è una macchina di forma toroidale in grado di confinare magnetica-
mente un plasma. Le caratteristiche principali di un tokamak sono la presenza di
un intenso campo magnetico e di una corrente, entrambi toroidali. Tale tipologia
di macchina è storicamente quella più studiata in quanto è quella che permette di
raggiungere le più elevate prestazioni. Per un plasma a confinamento magnetico
le prestazioni sono misurate dal prodotto tra pressione cinetica e tempo di confi-
namento dell’energia, pτE. La condizione di ignizione, cioè di auto-sostentamento
della temperatura del plasma, è data in termini del minimo prodotto pτE al variare
della temperatura del sistema.

τE è un parametro sperimentale utilizzato per evitare il problema di dover trovare
una descrizione analitica dei flussi di calore alla superficie esterna del plasma. Infatti,
le teorie di trasporto classica e neoclassica, la quale tiene conto degli effetti della
geometria toroidale del sistema, sottostimano da uno a tre ordini di grandezza
i coefficienti di trasporto delle tre grandezze considerate: densità di particelle,
pressione cinetica, campo magnetico. Ciò è dovuto al cosiddetto trasporto anomalo
di origine turbolenta. Infatti, la turbolenza ha la caratteristica di aumentare la
diffusività del sistema. Per calcolare il tempo di confinamento dell’energia di un
nuovo reattore si procedere con l’utilizzo di una formula semi-empirica basata sui
dati raccolti da esperimenti attuali. Questa estrapolazione è valida nell’intorno dei
dati presenti nei database, ma è indebolita a ordini di grandezza di distanza. Questo
problema è tipico della progettazione di macchine tipo DEMO, la cui dimensioni
saranno due ordini di grandezza superiori a quelle di JET, il tokamak più grande
attualmente in funzione al mondo.

Per poter migliorare i modelli di trasporto attuali è necessario approfondire le
conoscenza sulla turbolenza del plasma. Generalmente gli studi sui flussi turbolenti
sono di tipo statistico, infatti questa è la strategia seguita anche per questo lavoro.
Molti strumenti statistici posso essere utilizzati per l’analisi della turbolenza, per
questo lavoro i seguenti sono stati scelti: calcolo del tempo di de-correlazione, calcolo
dello spettro di densità di potenza, calcolo della funzione di densità di probabilità
degli incrementi temporali, calcolo delle funzioni di struttura temporale, calcolo
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degli esponenti di Hurst e calcolo della caratteristiche di entropia e complessità
delle permutazioni del segnale.

Il segnale analizzato è l’intensità del campo magnetico turbolento di bordo del
plasma dentro TCV. Questo segnale è acquisito grazie a un sistema di oltre 200
solenoidi ad alta frequenza installati sulle pareti interne della camera di vuoto
di TCV. I solenoidi sono orientati in modo da acquisire la componente poloidale
del segnale, ritenuta quella di maggior intensità fuori dal plasma. Le sonde sono
organizzate in gruppi, chiamati array, in modo tale da poter acquisire il segnale
secondo schemi toroidali e poloidali, o entrambi contemporaneamente.

Il primo strumento prevede il calcolo della funzione di auto-correlazione dei
segnali analizzati e il successivo calcolo del tempo di de-correlazione. Questo
parametro indica dopo quanto tempo il segnale “perde memoria di sé stesso” e
indica una scala temporale importante per i fenomeni di turbolenza.

Lo spettro di densità di potenza indica il contenuto energetico delle varie
armoniche che compongono il segnale. Un andamento lineare decrescente dello
spettro indica la presenza di un intervallo inerziale della turbolenza, durante il quale
l’energia delle strutture turbolente è trasmessa a quelle di minore dimensione. Al
termine di questo intervallo iniziano i fenomeni di dissipazione della turbolenza. La
pendenza dell’intervallo inerziale è prevista teoricamente da alcuni modelli, i quali
sono presi come riferimento per questo lavoro: teoria K41, teoria IK ed esponente
di Hall.

Per garantire che il segnale non abbia un contenuto puramente casule, sia cioè
rumore, il calcolo della funzione di densità di probabilità degli incrementi temporali
è effettuato. Grazie a questa analisi la distribuzione degli incrementi temporali del
segnale è confrontata qualitativamente e quantitativamente con quella del segnale
rumore.

La funzione di struttura temporale è utile per indicare la presenza di dissi-
pazioni durante il supposto intervallo inerziale. Inoltre è utilizzata per il calcolo
dell’esponente di Hurst del segnale. Questo parametro è importante perché qualifica
la correlazione a lunghi tempi del segnale. Un segnale, infatti, può essere persistente,
anti-correlato, stazionario o ad incrementi indipendenti.

L’ultima analisi permette di disegnare il grafico CH del segnale. Grazie a
questo grafico è possibile comparare le caratteristiche di entropia e complessità
delle possibili permutazioni degli schemi d’ordine del segnale. Questi analizzano
le posizioni relative tra i punti di un segnale. Questa analisi è molto importante
perché permette di associare una funzione matematica a un segnale nel caso le due
avessero le stesse caratteristiche di entropia e complessità.

Il codice è stato testato effettuando l’analisi su 27 esperimenti effettuati in TCV.
Questi sono stati scelti da due missioni sperimentali i cui obiettivi erano molto
diversi, ma che hanno dato la possibilità a questo codice di essere provato su plasmi
con caratteristiche differenti, come diversi modi di confinamento e triangolarità.

I risultati delle analisi su singoli segnali sono molto sparpagliati. Ciò è probabil-
mente dovuto al basso rapporto segnale-rumore dei segnali stessi. Per sopperire a
questo problema la strategia delle medie globali è stata adottata. Questa prevede il
calcolo delle medie dei risultati su tutte le sonde utilizzate, andando ad escludere
eventuali valori considerati anomali.

I risultati principali delle analisi sono tre. Il primo riguarda lo spettro di densità
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di potenza del segnale. È stato trovato che nessuno dei segnali sembra seguire
chiaramente uno degli esponenti prescritti dalle teorie sulla turbolenza nell’intervallo
di frequenze considerato. Il secondo è che sembrano essere presenti delle iniezioni (o
dissipazioni) di energia appena prima della cascata inerziale, dovute a strutture di
cui non è stata studiata la natura. Il risultato più sorprendente, però, è ricavato dai
grafici CH. Grazie a questa analisi, infatti, è stato osservato che i segnali analizzati
seguono le proprietà statistiche delle funzioni fBm. Questo significa che i segnali
possono essere descritti matematicamente da fBm aventi il corretto esponente di
Hurst.

Questo lavoro di tesi è stato effettuato durante un periodo di otto mesi presso
lo Swiss Plasma Center, Svizzera.



Chapter 1

The energy problem and the quest for
fusion power

Human civilization is requested to tackle the most difficult issue it has probably
ever faced, that is the climate change crisis. The drivers of the global rise in
temperatures, which is the cause of climate change, are greenhouse gasses, among
which the main contributor is CO2. The production of this air pollutant is mostly
due to electricity production, transportation and human industrial activities.

There are multiple options that need to be considered in order to deal with
this problem, but the most effective strategy would have to comprehend the best
mix of solutions. Energy efficiency is quite important and, being the easiest option
to apply in developed Countries, it has already extensively been explored and
implemented.(1 ) However, efficiency will give a little contribution to the solution,
also considering that energy demands are globally increasing, as shown in Fig. 1.1.
This is mostly due to developing Countries, where the economy is largely expanding
and the population is rapidly rising its living standards. Consider that the Chinese
and Indian populations alone make up more than 2 billions people and, taking
into account all of Asia and Africa, half of the world’s population is expected to
gain access to higher living standards in the next decades. Even though poverty
decline is a good achievement from a social point of view, the problem of supplying
energy to these power-hungry populations remains. To sustain this growth the
Governments of such Countries are seeking cheap means of energy production, that
are heavily relying on fossil fuels; see Fig. 1.2. Subsidies to renewable energies
are a widespread solution in the developed Countries, and these helped increase
the adoption rate of cleaner energy sources. However, this approach may not be
feasible in those Nations that are now leaving poverty, since huge debts are related
to subsidies. As a matter of fact, this solution is debatable even in the case of rich
Countries since relevant economic resources are given to subsidize the deployment
of expensive solutions, whereas these might have been spent on research.

In fact, the largest contribution to the solution needs to come form innovation.
Developing new energy sources, or refining the clean existing ones, would play
a huge role in shaping worldwide energy policies. The adoption of clean energy
production technologies would be faster if the related generation costs were lower

1
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Figure 1.1: World total primary energy supply by region in Mtoe.(1 )
1 Does not include China. 2 Includes international aviation and international marine bunkers.
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than those of fossil fuels sources. In order to do so expenditure for energy research
needs to get higher, also considering that the reduction of CO2 production levels
has to take place in the least amount of time possible.(2 )

A complete transition to intermittent energy resources is, however, not feasible
with current technologies.(3 ) These types of energy resources are those that are
not capable of offering both daily and seasonal reliable power output. Among
these, solar and wind energy are two examples. The argument of poor energy
storage technologies is usually provided to prove this conclusion.(3 ) Nevertheless,
a maximization of intermittent energy production is foreseeable, but even in this
scenario the need of an energy source capable of providing a stable and reliable
base load has to be fulfilled. This role can be taken by nuclear power, which is a
mean of producing greenhouse-gasses-free base load electricity.

Even though in the near future many innovations are going to be achieved by
new nuclear fission technologies, in the frame of the Generation IV projects(4 ),
the commercialization of nuclear fusion reactors is quite appealing, at least from
the public opinion’s point of view. This is because fusion reactors are inherently
safe by design since the nuclear fuel is not stored inside the device, but it is
continuously added to the reaction chamber. In case of an accident the fuel supply
stops and the reaction dies out on its own. Moreover, as a first approximation,
fusion energy does not produce nuclear waste. In fact, since neutrons are produced
during the chosen reaction (see Sec. 1.1), the structure of the machine is going to
be activated, therefore becoming the only waste to be disposed of. However, plant’s
decommissioning is also a problem that conventional nuclear facilities have to deal
with.

In the course of the second part of the 20th century fusion research has produced
important advancements, as it is shown in Fig. 1.3, but a commercial technology still
seems distant into the future, at least to join the solution to the climate change crisis.
At the end of an arduous negotiation and design path, in November 2006 the ITER
project finally kicked off.(5 ) On the 21st day of that month the final commitment
of China, the European Union, India, Japan, Russia, South Korea and the United
States gave start to the construction of the largest fusion experimental reactor that
has ever been built. The ITER acronym stays for International Thermonuclear
Experimental Reactor and it is also the Latin word for ‘the way’. In fact, this
device is going to demonstrate the feasibility of the most studied nuclear fusion
reactor design, namely the tokamak.

This project represents the forefront of fusion research and its facilities are under
construction in southern France.(6 ) Its first plasma operations are planned to begin
in 2025.(6 ) However, a commercial tokamak-based power plant is expected to be
constructed only after ITER will reach an advanced operational status, meaning
that such energy resource is still a long way in the future. The European ITER’s
next iteration is expected to be a power plant demonstrator called DEMO.(7 )

Nevertheless, the characteristics of clean, almost inexhaustible and non-intermittent
source qualify nuclear fusion energy as a possibly revolutionizing technology for
humankind. In the next Section an overview of fusion reactor basics is given.
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Figure 1. Since the mid 1970s, following ‘Moore’s law’, the number of transistors in a microprocessor has doubled every two years. In the
same period, the ‘triple product’ of density, temperature and confinement time, which measures the performance of a fusion plasma, has
doubled every 1.8 years.

Figure 2. Overview of the development of tokamaks during the past 50 years in terms of their size, poloidal shape, power and particle
exhaust concept, magnet technology and mode of plasma operation.

collaboration [2]. Using Thomson scattering to measure
the electron temperature, the group reported observations of
electron temperatures approaching 1 keV. Many of the world’s
leading fusion research laboratories turned their attention
to tokamaks as a result, and the gradual increase in size
and additional heating led to gradually improving plasma
parameters, exemplified by the achievement in neutral beam
heated discharges of ion temperatures of 7 keV in the PLT
tokamak in Princeton in 1978 [3].

While tokamaks with predominantly circular cross-
sections were making the headlines experimentally during the
1970s, two new generations of devices were not only on the
drawing board, but were under construction. The first gener-
ation was not much different in size from the largest of the
1970s devices, but had an increased level of sophistication,

including features such as a poloidal divertor. Soon after one
of the first of these devices, the ASDEX tokamak in Garching,
commenced operation, one of the most fundamental discover-
ies in fusion research was announced: operating in a ‘diverted’
configuration with neutral beam injection heating, the ASDEX
group reported [4] in 1982 that an unexpected transition in the
plasma confinement properties had occurred, approximately
doubling the plasma energy confinement time. In the course of
the 1980s, much tokamak research time was devoted to exploit-
ing and understanding this new ‘H-mode’ operating regime.

The second generation of new devices consisted of
the group of large tokamaks, TFTR in Princeton, JET in
Culham, JT-60U in Naka and T-15 in Moscow. It was this
generation of devices that led the way towards the brink
of DT fusion power production in the 1980s, a promise

2

Figure 1.3: Comparison of performances among different technology fields. Notice how
fusion performance has been steeper than Moore’s law.(5 )

1.1 Nuclear fusion reactor basics

The idea of extracting useful energy from a nuclear reaction arises from the study
of the plot of binding energy per nucleon as function of A, the nuclear mass number.
This is shown in Fig. 1.4, where it is possible to see that the most stable nuclei are
those having largest binding energy per nucleon, that is at A ∼ 60. Any reaction
that increases the binding energy of a system is exoenergetic and, therefore, those
that are able to move A towards the maximum of the curve will release net energy.
At the two extremes of the curve two types of such reactions are possible: nuclear
fission and fusion. The former relies on the splitting of a heavy nucleus following
the absorption of a neutron. The latter is obtained through the reaction of two
light nuclei forming an heavier one. The major drawback of nuclear fusion, with
respect to fission, is that the Coulomb repulsive potential has to be overcome since
both light nuclei necessarily have the same net charge sign. In order to do so a
large amount of kinetic energy is supplied to the nuclei via the increase of internal
energy of the system. This translates into increasing the temperature of the reacting
medium, hence the name thermonuclear fusion. At the temperature levels needed
for the reaction to occur the only surviving state of matter is plasma. This is why
plasma physics is strictly involved in the study of nuclear fusion.

The main fusion fuels are deuterium (D or 2H), tritium (T or 3H) and helium.(8 )
These are involved in the following fusion reactions:

D + D −−→ 3He + n + 3.27 MeV,

D + D −−→ T + p + 4.03 MeV,

D + 3He −−→ 4He + p + 18.3 MeV,

D + T −−→ 4He + n + 17.6 MeV.
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Figure 2.2 Binding energy per nucleon vs. mass number for the dominant form of each chemical
element.

the shape it does. It is shown that the shape arises from a geometric competition between
the strong short-range nuclear force and the weak long-range Coulomb force.

2.5.1 The binding energy curve

Consider a primary chemical element whose nucleus contains N neutrons and Z protons.
Note that the integer sum N + Z is very nearly, but not exactly, equal to the actual experi-
mentally measured mass number A: N + Z ≈ A, where m A = A u is the nuclear mass. A
comparison of the actual nuclear mass with the total mass of the isolated individual particles
making up the nucleus shows that

Nmn + Zmp > m A. (2.18)

The difference in mass can be thought of as being converted into binding energy to hold
the nucleus together. Specifically, the binding energy is defined as

EB ≡ (Nmn + Zmp −m A)c2. (2.19)

An amount of energy equal to EB would have to be added to the nucleus to break it apart
into its separate components. A somewhat more convenient quantity is the binding energy
per nucleon, defined as EB/A. This quantity is a measure of the average energy binding
each nucleon to the nucleus.

As an example one can calculate the binding energy per nucleon for fluorine which has
N = 10, Z = 9, and A = 18.998 40 ≈ 19. The relevant masses are mn = 1.008 66 u,
mp = 1.007 28 u, and m A = 18.998 40 u. This corresponds to a mass differential Nmn +
Zmp −m A = 0.154 u. Substituting into Eq. (2.19) yields EB = 143 MeV and EB/A = 7.5
MeV/nucleon. Observe that the energies binding the particles together in the nucleus are
quite large.

This calculation can be repeated for all the elements. The results are plotted as a curve of
binding energy per nucleon vs. mass number as shown in Fig. 2.2 for the dominant form of
each element. Note that EB/A is small for both light and heavy elements and is maximized
at an intermediate value corresponding to iron (i.e., A ≈ 56). The conclusion is that relative

Figure 1.4: Binding energy per nucleus as function of A.(8 )

The total fusion power generated by one of these reactions, Sf is function of both
the energy released during a single event, Ef, and the reaction rate, R12:

Sf = EfR12, (1.1)

where the reaction rate is given by the following:

R12 = n1n2 〈σv〉 . (1.2)

In the last equation the two particles densities are the ones of the reacting species, σ
is the cross section of the reaction and v is the relative speed between two reagents.
The product σv is averaged over the spectrum of possible relative speeds, since
the cross section is actually function of v. In Fig. 1.5 the velocity-averaged cross
section is shown as function of the system’s temperature.

From Fig. 1.5 the interest for the D-T reaction is easily understood as it is
the one with the highest 〈σv〉 at all temperatures. This is, in fact, the reaction
chosen for the first iteration of a fusion reactor. Notice that the velocity-averaged
cross section peaks at T ≈ 70 keV for this reaction. The D-T fuel mixture that
maximizes Sf is the 50%-50% one, for which the total fusion power output is:

Sf =
1

4
Efne

2 〈σv〉 , (1.3)

where nD + nT = ne is exploited and ne is the total electrons density of the system.
Sf is divided between the neutron and the alpha particle, i.e. the 4He nucleus,
according to their mass. In fact Eα = Ef/5, for which:

Sα =
1

4
Eαne

2 〈σv〉 . (1.4)

The steady state zero-dimensional power balance of a plasma in a generic fusion
reactor is given by the following:(8 )

Sα + Sh = SB + Sκ, (1.5)
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Figure 3.11 Velocity averaged cross section (i.e., ⟨σv⟩ = Ri j/ni n j ) for the D–T, D–He3, and D–D
fusion reactions as a function of temperature.

Equation (3.24) represents the dominant source of power in the overall power balance of a
fusion system.

Some closing comments on fusion power generation

A further point of interest concerns the fact that one can obtain an analytic approximation
to the evaluation of ⟨σv⟩ by using an analytic model for σ , which is valid for low energies.
This derivation is not essential to the present discussion since accurate curves of ⟨σv⟩ have
been presented in Fig. 3.11. However, readers may find it of interest to see how a ⟨σv⟩
calculation can be carried out from beginning to end. Also, the derivation is helpful for
some of the problems at the end of the chapter. Since the derivation is lengthy and not
essential for the continuity of the discussion it is presented in Appendix A.

There are two additional points to be made. First, the particle energies required to initiate
fusion reactions are on the order of 70 keV. This exceeds the ionization potential by a factor
of more than 1000. The conclusion is that a burning D–T fuel is a fully ionized gas, hereafter
referred to as a plasma. The second point is that, as is shown shortly, Coulomb collisions
combined with power balance requirements result in an optimum operating temperature on
the order of 15 keV, well below the 70 keV maximum of the ⟨σv⟩ curve. The implication is
that for a Coulomb-induced Maxwellian distribution function, most of the fusion reactions
occur for particles on the tail of the distribution function.

3.5 Radiation losses

3.5.1 Overview of radiation losses

An important, although usually not dominant energy loss mechanism affecting power bal-
ance in a fusion reactor is that due to radiation. There are in fact several types of radiation
losses that can occur: line radiation due to impurities, cyclotron radiation due to particle

Figure 1.5: Velocity-averaged cross section as function of the system’s temperature for
the fusion reactions of interest.(8 )

where Sh is the external heating, SB is the power lost because of Bremsstrahlung,
and Sκ is the power loss due to heat fluxes. The first term is the fraction of fusion
power generated in the plasma that remains in the system. In fact, fusion neutrons,
which carry most of the generated energy, are lost from the plasma because they
cannot be magnetically confined. Nevertheless, the energy carried away by the
neutrons is the one that can be converted to electrical output.

The external heating is supplied through different means. The first is ohmic
heating, which is due to the resistivity of the plasma, that generates heat through
the Joule effect. The second major contribution to external heating can be supplied
through microwave heating, which exploits electromagnetic waves to excite charac-
teristic plasma modes. The last major contribution can be given by a neutrals beam
injection system. This involves the injection of highly energetic neutral hydrogen
atoms inside the plasma. Thanks to collisions the injected particles loose their
electron, increasing the temperature of the ion population.

Bremsstrahlung losses are caused by charged particles that accelerate in an
electromagnetic field. This means of energy loss is unavoidable in plasmas, and
needs to be taken into account for the power balance in Eq. 1.5.

Heat fluxes give the last contribution to the 0-D power balance. These are
difficult to model since the plasma thermal conductivity is complicated to express
analytically. Sκ is given by the following:

Sκ =
1

V

∫
A

q · dA, (1.6)

where V and A are, respectively, the volume and external surface of the plasma,
and q is the heat flux. In the case of a cylinder, and assuming a constant thermal
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conductivity, the following is obtained:

1

V

∫
A

q · dA = −2
κ

r

∂T

∂r

∣∣∣∣
r=a

, (1.7)

where a is the radius of the cylinder. However, in order to circumvent the problem
of transport coefficients, in plasma physics heat fluxes are generally expressed as
follows:

Sκ =
3

2

p

τE
, (1.8)

where p is the volume-averaged plasma kinetic pressure and τE is the energy
confinement time. The latter is defined as the plasma energy relaxation time due
to heat conduction.

Eq. 1.5 for the D-T optimal mixture can be expressed in terms of the volume-
averaged p and T , as follows:(8 )

Sα + Sh = SB + Sκ

Eα
16
p2
〈σv〉
T 2

+ Sh =
CB

4

p2

T 3/2
+

3

3

p

τE
,

(1.9)

where CB is a constant factor. This simple balance is very useful since it allows to
set constraints on p, T and τE.

The condition of ideal ignition is achieved when the α heating of the plasma
is capable of sustaining radiation losses when no heat fluxes are established. This
means that:

Sα = SB, (1.10)

from which a requirement on the minimum plasma temperature is set. For the
optimal D-T mixture this is:

T ≥ 4.4 keV.

The ignition condition assumes that α heating sustains both radiation losses
and heat fluxes, that is:

Sα = SB + Sκ, (1.11)

from which a minimum on the pτE product is set as follows:

pτE ≥
KκT

2

Kα 〈σv〉 −KBT 1/2
≈ KκT

2

Kα 〈σv〉
. (1.12)

The last term is the approximation for negligible Bremsstrahlung effects. In Fig.
1.6 both cases are shown. For the 50%-50% D-T mixture the minimum of the curve
is at the following coordinates:

T = 15 keV,

pτE = 8.3 atm s.

To take into account external heating the α fraction is introduced and defined by
the following:

fα =
Sα

Sα + Sh
. (1.13)
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Figure 4.2 Critical pτE for ignition as a function of temperature.

These definitions of power density are substituted into the ignition power balance con-
dition. After some simple algebra one obtains a condition on the product pτE as a function
of T:

pτE ≥ Kκ T 2
k

Kα⟨σv⟩ − KBT 1/2
k

≈ KI
T 2

k

⟨σv⟩
atm s. (4.19)

The quantity pτE = 2T (nτE), where nτE is known as the Lawson parameter. The approxi-
mate form follows from the reasonably good assumption of neglecting the Bremsstrahlung
losses in the regime of interest. In this case KI = Kκ/Kα = 0.11.

The exact and approximate forms of Eq. (4.19) are plotted in Fig. 4.2. Observe that T
must exceed the ideal ignition temperature in order for pτE to be positive. More importantly,
pτE must exceed a certain minimum value for ignition to occur. The minimizing value of
T and the corresponding value of pτE are given by

Tmin = 15 keV,

(pτE)min = 8.3 atm s. (4.20)

For pτE < (pτE)min ignition is not possible. For pτE > (pτE )min two solutions correspond-
ing to two different temperatures are possible. The significance of these two solutions is
discussed shortly and is related to the thermal stability of the system. Note that for a 15 keV
plasma with an energy confinement time of 1 s, a pressure of about 8 atm is required for
the plasma to be ignited; that is, it is sustained purely by the self-heating of the fusion alpha
particles.

The existence of a minimum pτE has very important practical implications. In general,
increasing either por τE requires an increase in either the size of the device or the magnetic
field, both of which lead to an increase in the capital cost of the reactor. Therefore, the
ease or difficulty of satisfying Eq. (4.20) is a crucial factor in distinguishing the relative
desirability of various proposed magnetic fusion configurations (e.g. tokamak, stellarator,
etc.).

Figure 1.6: Minimum pτE to establish ignition as function of temperature.(8 )

Then Eq. 1.12 is modified as follows:

pτE ≥
KκT

2

Kα

fα
〈σv〉 −KBT 1/2

≈ fα
KκT

2

Kα 〈σv〉
. (1.14)

Once plasma ignition is achieved, it is important to compare how much power the
reactor is producing with respect to the supplied one. To do so, two parameters are
computed, namely: physic and engineering energy gains. The former is calculated
as the ratio of the net thermal power output to the external heating power:

Q =
P out − P in

P in
=
Sf

Sh
. (1.15)

Neglecting Bremsstrahlung the following is obtained(8 ):

Q = 5
pτE

(pτE) I − pτE
, (1.16)

where (pτE) I is the product required for ignition.
The engineering gain factor is defined as the ratio of the net electric power

output to the electric power supply:

QE =
P (E)

out − P (E)
in

P (E)
in

, (1.17)

which for the optimal D-T mixture is demonstrated to be equal to the following(8 ):

QE =
(6.4ηtηeηa + 1− ηtηe) pτE − (1− ηtηe) (pτE) I

(pτE) I − pτE
, (1.18)

where ηt, ηe and ηa are the efficiencies of the steam turbine cycle, the heating power
generation and heat absorption in the plasma, respectively. In Fig. 1.7 both Q
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Figure 4.4 The physics gain factor Q and engineering gain factor QE as functions of (pτE)/(pτE)I.

indirect through heating of the plasma. It ultimately appears as output thermal power in the
form of radiation and heat conduction. A similar argument applies to the external heating
power.

On the basis of this reasoning, the output power is given by Pout = (Sn + SB + Sκ )V ,
where Sn = (En/Eα)Sα = 4Sα . Combining these results leads to the following definition
of Q:

Q = 4Sα + SB + Sκ − Sh

Sh
. (4.26)

The simplified form of Q can be obtained by substituting Sh from Eq. (4.23 ) into the
numerator of Eq. (4.26). This yields

Q = Sf

Sh
, (4.27)

where Sf = Sn + Sα = 5Sα . Equation (4.27) shows that Q is simply the ratio of the total
fusion power produced to the power input.

The desired relation giving Q = Q(pτE, T ) is obtained by eliminating Sh from the
denominator of Eq. (4.27), again by means of Eq. (4.23 ), and substituting for the sepa-
rate contributions. A short calculation, in which for simplicity Bremsstrahlung is neglected,
then leads to the following expression for Q:

Q = 5
pτE

(pτE)I − pτE
,

(pτE)I = KI
T 2

k

⟨σv⟩ atm s
(4.28)

Note that (pτE)I denotes the value of pτE required for ignition. The curve of Q vs. pτ is
illustrated in Fig. 4.4. As expected when pτ = (pτ )I, then Q = ∞. When some external
heating power is used, the required pτ < (pτ )I although the gain Q is lowered. For example,
if one desires ten times the fusion power as compared to the input power (i.e., Q = 10),
then pτE is smaller by a factor of 2

3 from the case of pure ignition.

Figure 1.7: Energy gains as function of (pτE) / (pτE) I.(8 )

and QE are plotted as functions of (pτE) / (pτE) I. Notice that to obtain electric
power breakeven, which is QE = 0, pτE needs to be greater than zero. Moreover,
the corresponding value of the physics gain is Q ≈ 2.9.

ITER is going to achieve Q = 10, dealing QE ≈ 1.8 which is quite low. Although
the efficiency coefficients can be improved, it will be necessary to increase the value
of pτE in order to achieve QE ≥ 10. This goal will be achieved by projects that
will follow ITER. As already mentioned, one of such projects is the Demonstration
Fusion Power Plant, i.e. DEMO.(7 ) This project will address the following issues:
resolve all power-plant-relevant physics and technological problems, demonstrate
production of several hundreds MW of electric power, and achieve closed fuel-cycle
operations.(7 , 8 ) In Fig. 1.8 a comparison of size and thermal power output of JET,
ITER and DEMO is visualized.

Many problems need to be resolved during the design process of a machine
like a tokamak. In the case of DEMO new challenges arise as the dimensions of
such a device are unexplored. This means that extrapolation of relevant plasma
and reactor parameters to the size of DEMO are weakened. This is because the
semi-empirical laws used to perform the extrapolation rely on databases built on
data coming from tokamaks that are two orders of magnitude lower. The most
relevant example of such parameters is τE, that is a transport-related quantity of
the utmost importance.(8 ) In order to improve future fusion reactor designs, a better
understanding of plasma transport properties is necessary. This means that further
plasma turbulence studies are needed, since the discrepancy between empirical data
and theoretical predictions are due to anomalous transport phenomena.

Turbulence is a phenomenon typical of fluid flows. For this reason a fluid-like
description of plasmas is introduced in the next Chapter.
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Figure 15. The growth in scale of tokamak devices from JET, which
produced the first DT fusion power, through ITER, aiming for
Q = 10 at 500 MW thermal, to a DEMO reactor producing ∼1 GW
electrical.

for a Prototype Power Plant (‘DEMO’) could begin in parallel
with the construction of ITER.

What is being built in Southern France is a scientific
experiment of an exceptional scale and ambition. ITER is an
opportunity to make a crucial impact on the history of science
and the future of our civilization. It is also a demonstration that
nations, when confronted with a global challenge, can establish
a completely new model for international collaboration.

ITER©2010.
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Figure 1.8: Size and thermal power output comparison among JET, ITER and DEMO.(5 )



Chapter 2

Magnetized plasmas and turbulence
phenomena

“Big whorls have little whorls
That feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.”
Lewis F. Richardson∗

Plasmas can be described with different degrees of approximation and detail,
going from an exact Newtonian model, to a single fluid description. Depending on
which phenomena have to be described, a suitable model is chosen. A fluid-like
model is a good option in order to describe the transport properties of a plasma.
In fact, transport coefficient are derived from such a model, as well as turbulent
phenomena, that are inherently present in the fluid equations.

In Sec. 2.1 the single-fluid description of a plasma, also known as magneto-
hydrodynamic model, is derived as a reduction of the multi-fluids model, which is
computed from the exact kinetic description of the system.

In Sec. 2.2 the issue of transport in a plasma is presented. Classical and
neoclassical transport theories give analytical results that, in the latter case, take
into account the toroidal geometry of a tokamak. However, both approaches fail in
the prediction of transport coefficients for the particle density, energy, and magnetic
fields inside the system. This is due to another contribution to transport, called
anomalous, which is caused by turbulent flows in the medium.

Finally, in Sec. 2.3, an introduction to turbulence is given. The main character-
istics of a turbulent behavior are presented, as well as turbulence theories that are
exploited as a reference for this thesis work.

∗English mathematician, physicist and meteorologist.
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2.1 Derivation of the MHD description of a plasma

The aim of this section is the introduction of the system of equations that make
up the so-called magneto-hydrodynamic model (MHD). This is a single-fluid-like
description that is exploited for the modelization of the macroscopic behavior of
conductive fluids, such as a plasma.

An exact description of any physical system is based on a Newtonian approach,
meaning that such a description is given by one Newton’s equation for each particle
that is part of the system. For a non-relativistic plasma, this is mathematically
given by the following, in SI units(9 ):

ma
d2xi,a
dt2

= qa

(
Emicr (xi,a, t) +

dxi,a
dt
×Bmicr (xi,a, t)

)
= Fa,micr, (2.1)

where ma and qa are, respectively, the mass and electric charge characteristic
of the generic a-th population, xi,a is the position vector of the i-th particle of
said population and the Lorentz ’s force that rules the dynamics is given by the
microscopic exact electric and magnetic field. These are the self consistent fields
that are given by both internal and external sources, i.e. internal and external
charge and current densities. Such a description is easy from a theoretical point of
view, however, it is quite complex from a computational one, since for macroscopic
systems the number of involved particles is noticeably high and, therefore, the
number of Newton’s equations that have to be solved is huge. Moreover, the self
consistent Maxwell ’s equations are added to the computational load. These are
solved in a self consistent fashion, as shown here:

∇ · Emicr =
ρmicr (xi,a, t)

ε0
∇ ·Bmicr = 0

∇× Emicr = −∂Bmicr

∂t

∇×Bmicr = µ0

(
jmicr + ε0

∂Emicr

∂t

) (2.2)

The charge density is computed both in terms of the system’s properties and of the
external sources:

ρmicr (xi,a, t) = ρext +
∑
a

ρa,micr = ρext +
∑
a

qa
∑
i

δ (x− xi,a) , (2.3)

where the Dirac’s delta distribution is exploited and the summations are performed
over all particles of a given population and over all the considered populations.
The current density is given in a similar way:

jmicr = jext +
∑
a

ja,micr = jext +
∑
a

qa
∑
i

vi,aδ (x− xi,a) . (2.4)

An equivalent description, i.e. still exact, is obtained exploiting an Eulerian
approach. The so-called kinetic model is based on the plasma’s distribution function,
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fa,micr (x,v, t). This is defined as follows(9 ):

fa,micr (x,v, t) =
∑
i

δ (x− xi,a) δ (v − vi,a) , (2.5)

where, again, the delta distribution is exploited and the summation is performed
over all particles of the chosen population. The distribution function is related to
the density of particles of the a-th population in phase space; in fact, the quantity

dn = fa,micr (x,v, t) d3xd3v (2.6)

is the number of particles in the arbitrarily infinitesimal phase space volume d3xd3v.
Under the assumption of no chemical, nor nuclear, reactions, the distribution
function is conserved in time(9 ):

dfa,micr

dt
=
∂fa,micr

∂t
+∇x · (vfa,micr) +∇v ·

(
Fmicr

ma

fa,micr

)
= 0; (2.7)

this is the Klimontovich’s equation. The middle term represents the change of the
distribution function because of position changes in length space, while the last
one describes alterations in momentum space caused by interactions among the
particles. As previously stated, the system formed by one such equation for each
population, and the Maxwell ’s equations (Eq. 2.2), provides an exact description
of the system. However, now the self consistency is guaranteed through another
definition for the internal microscopic charge and current densities:

ρa,micr = qa

∫
fa,micrd

3v,

ja,micr = qa

∫
vfa,micrd

3v.

(2.8)

The two models previously presented are discrete, in the sense that they are
based on the instantaneous positions in phase space of all the considered particles.
To obtain a smooth distribution function, an ensemble average operation is carried
out, and then fa,micr is defined in terms of the averaged one:

fa,micr (x,v, t) = 〈fa,micr〉+ f̃a,micr (x,v, t) = fa (x,v, t) + f̃a (x,v, t) , (2.9)

where the average part is smoothly changing through phase space and the other
addend represents the fluctuations around the mean value. On the rightmost side
the notation has been simplified for the sake of readability.
An analogous averaging procedure is carried out for the electric and magnetic fields:

Emicr = E + Ẽ,

Bmicr = B + B̃.
(2.10)

Inserting Eq. 2.9-2.10 in Eq. 2.7 and performing a proper averaging procedure the
Boltzmann’s equation is obtained:

∂fa
∂t

+ v · ∇xfa +
qa
ma

(E + v ×B) · ∇vfa = ca, (2.11)
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where ca is called collision integral, since it represents short range interactions
among particles, and it is defined as follows:

ca = − qa
ma

〈
Ẽ + v × B̃ · ∇vf̃a

〉
. (2.12)

Smooth long range interactions are represented by the last term on the left hand
side in Eq. 2.11. The average is computed over the chosen phase space scales. Eq.
2.6 still holds for this model; however, the infinitesimal phase space volume cannot
be arbitrarily small since now the average scale sets a lower limit.
Eq. 2.11 plus the properly averaged Maxwell ’s equations form the so-called
Boltzmann-Maxwell kinetic model.

From this, the first fluid-like model is derived through the computation of
characteristic fluid quantities.(10 ) The fundamental ones are the particles’ density,
na, and the fluid velocity, ua. Here these quantities are computed for one population:

na =

∫
fad

3v,

ua =
1

na

∫
vfad

3v.

(2.13)

Multiplying Eq. 2.11 by suitable scalar or vector quantities and then performing
the integration over the velocity space, the system of equations for a multi-fluid
description of a plasma is obtained:

dna
dt

+ na∇ · ua = 0

mana
dua
dt

= qana (E + ua ×B) +∇ · P
a

+R
a

3

2
na
dTa
dt

= −∇ · ha − P a
: ∇ua − ua ·Ra

+Qa

(2.14a)

(2.14b)

(2.14c)

For each population there exists one of such a system. Eq. 2.14a is the continuity
equation for the particles’ density of the given population, Eq. 2.14b is its momentum
balance and Eq. 2.14c is its energy balance. All total time derivative are to
considered as follows:

d

dt
=

∂

∂t
+ ua · ∇. (2.15)

R
a
is the momentum exchange rate between the for the a-th population and all the

others. P
a
is the pressure tensor for the same population, for which P

a
= PaI + Π

a
,

where the second addend is the anisotropic pressure tensor. ha is the heat flux
and Qa is the energy exchanged between the populations because of collisions.
The second and third terms on the right hand side of the energy equation are,
respectively, the power related to stresses and the dissipation caused by friction
among different populations.
Now the source terms of the coupled Maxwell ’s equations are given as functions of
the fluid quantities:

ρ (x, t) = ρext +
∑
a

ρa = ρext +
∑
a

qana,

j (x, t) = jext +
∑
a

ja = jext +
∑
a

qanaua.
(2.16)
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Notice that the system of equations given by the fluid relations and the Maxwell ’s
ones is not closed since pressure, heat flux and collision related quantities need to
be expressed in terms of the fluid unknowns.

To simplify the description, a single fluid model is developed: the MHDmodel.(10 )
This is derived from the multi-fluid one by taking into account some approximations.
For the sake of simplicity consider a two-fluid model for which the populations are
given by electrons and singly charged ions.
Dropping high frequency phenomena allows to neglect macroscopic charge separation
effects and displacements currents. This is done considering a characteristic MHD
frequency that is lower than the lowest one present in the plasma; this is usually the
ions’ cyclotron frequency, therefore for MHD to be valid the following is required
ωMHD � Ωi. Furthermore, over length scales larger than the Debye’s one, i.e.
λD � LMHD, microscopic charge separation is neglected as well. Under these
approximations the quasineutrality hypothesis holds true:

ne = ni = n. (2.17)

The MHD equations are obtained as the summation of all the multi-fluids ones and
are here shown: 

dρm
dt

+ ρm∇ · u = 0

ρm
du

dt
= j×B−∇ · P

3

2
n
dT

dt
= (E + u×B) j− P : ∇u−∇ ·Q

(2.18a)

(2.18b)

(2.18c)

The particles’ density is substituted by the mass density, ρm, and, in place of the
multiple-fluid velocities, the single-fluid one is given, u. Eq. 2.18c can be simplified
taking into account the so-called generalized Ohm’s law:

E + u×B =
1

ne

(
j× B−∇ · P

e

)
+ ηj, (2.19)

where the first and second terms on the right hand side represent, respectively, the
Hall ’s and Seedback ’s effects, while the last term describes the plasma’s resistivity.
Under the assumptions made for MHD validity only the last term is relevant and,
therefore, the resistive Ohm’s law is obtained. Then, the related MHD model is
called resistive MHD and a Joule’s effect term is present in the energy balance
equation

(
η |j|2

)
. The plasma resistivity is defined as follows:

η =
meνei
e2ne

, (2.20)

where νei is the velocity-averaged electrons-ions collision frequency. When η is
negligible the ideal Ohm’s law holds true and the related MHD model is called ideal
MHD.
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2.2 Transport in magnetized plasmas

The aim of this section is to give an insight on the reasons why a deeper understand-
ing of turbulence phenomena in plasmas is crucial to the future of thermonuclear
research and development. In fact, since there is no complete theory of energy
transport, the computation of the confinement time, τE, for new devices, is based
on semi-empirical scale laws obtained from data acquired from machines of the
same kind.

There is a discrepancy between the theoretical energy transport coefficients and
the experimental ones. The most important transport processes in a plasma are:
heat conduction, particles diffusion, and magnetic field diffusion. The first one is
the most severe in terms of effects on the overall energy losses from the system.
Two models are considered in order to compute these coefficients in a tokamak
system, namely: classical and neoclassical transport.(8 ) These descriptions take into
account just Coulomb collisions, neglecting the so-called anomalous transport due
to microscopic plasma instabilities. This fact, ultimately, leads to the discrepancy
between theoretical predictions and experimental results.

The former approach is based on the derivation of transport equations for
the three quantities stated previously, in a one dimensional system, which is the
rectified torus. Under this approximation, a large aspect ratio torus is modeled as
an equivalent cylinder. Thus, the MHD equations, exploited for the description of
this system, are symmetric around the cylinder’s axis; this means that the only
relevant space coordinate is the radial one. Assuming Q as a generic physical
variable, the final diffusion-like equations are of the form(8 ):

∂Q

∂t
=

1

r

∂

∂r

(
rD

∂Q

∂r

)
+ S (Q, r, t) , (2.21)

where D is the diffusion coefficient of interest and S is the source-sink term.
By neglecting viscosity and inertial effects, assuming a diffusive description of the
heat flux, and a low-β tokamak expansion, the equations are the following(8 ):

∂n

∂t
=

1

r

∂

∂r

[
rDn

(
∂n

∂r
+
n

T

∂T

∂n
+

2η‖
βpη⊥

n

rBθ

∂rBθ

∂r

)]
3n
∂T

∂t
=

1

r

∂

∂r

(
rnχ

∂T

∂r

)
+ S

∂rBθ

∂t
= r

∂

∂r

(
DB

r

∂rBθ

∂r

) (2.22)

Here, βp = 4µ0nT/B
2
θ ∼ 1, the electric resistivity is divided in components parallel

and perpendicular to the magnetic field, and χ is the thermal diffusivity of the
system. In S various contributions are taken into account: ohmic and external
heating, fusion alpha particle heating and radiation losses. The diffusion coefficients
are given by the following:

Dn =
2nTη⊥
B2

0

,

DB =
η‖
µ0

,
(2.23)
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where B0 is the on-axis magnetic field. The latter is not described by this model; in
fact, in order to compute it, a single particle random walk approach is exploited.(8 )
According to this method, the result of a series of random collisions is described by
a diffusion coefficient, which is defined in terms of the mean step size between two
collisions and the average time between them. Let ∆l and τ be these quantities,
then:

D =
(∆l)2

τ
. (2.24)

The thermal diffusivities for the ions and electrons population are computed and it
is found that the former is much larger than the latter, in fact χi ∼ (mi/me)

1/2 χe.
Since the value used in the transport equation is the sum of the two contributions,
as a first approximation the effective valued is solely given by the ions one: χ ≈ χi.
For a 50%-50% D-T plasma, the following is obtained(8 ):

χ
CL
i = 0.1

n20

B2
0T

1/2
k

m2s−1, (2.25)

where n20 is measured in 1020 m3, B0 in T, and Tk in keV. This approach, however,
largely underestimates the thermal diffusivity values, giving χCL

i ∼ 0.001 m2s−1,
that is up to three orders of magnitude lower than the experimental one.(8 )

A better description of the transport properties of a plasma in a tokamak
configuration is given by an approach that actually takes into account the toroidal
geometry of the system. The name of this method is neoclassical transport; this
applies the classical transport theory to a toroidal geometry. For large aspect ratio
tokamak, since the rectified torus approach is valid, the classical method is expected
to give results in accordance to the actual toroidal computation. However, values of
the thermal diffusivity up to order of magnitude greater are obtained. This is due
to the fact that particles, in a toroidal plasma, are divided in two groups: passing
particles or trapped particles. The second group is characterized by the fact that
its particles are affected by the mirroring effect. Because of it, these particles are
reflected at some point during their trajectory and are, therefore, trapped in closed
orbits, which are called banana orbits thanks to the projection of their shape on
the poloidal plane. Passing particles, on the other hand, can circulate around the
torus. Surprisingly, both types of particles contribute to the transport phenomena.
Moreover, the effects due to trapped particles dominate particle and heat losses from
the system. Again, exploiting a random walk computation, the thermal diffusivity
for the trapped particles is(8 ):

χi
NC = 0.68 · q2ε3/2χCL

i = 0.068 · q2ε3/2 n20

B2
0T

1/2
k

m2s−1, (2.26)

where q is the ions’ charge and ε is th inverse aspect ratio. Even though the
neoclassical thermal diffusivity is χiNC ∼ 0.1 m2s−1 for typical tokamak parameters,
it is still lower than the experimental one, which is χ ∼ 1 m2s−1.(8 ) Moreover, it is
experimentally found that both χe and Dn are lower than χi by just a factor of 3,
whereas theory gives a much larger reduction, namely (me/mi)

1/2.
It is obvious that even neoclassical theory is not suited for the prediction of

transport parameters upon which a new machine should be designed. Anomalous
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transport mechanisms are responsible for the previously presented discrepancies
and their role is even more prominent in driving electrons’ thermal conduction
and particles’ diffusion. These mechanisms are due to turbulence phenomena that
are driven by plasma micro-instabilities. No complete plasma turbulence theory
exists, up to the date of this work. Thus, it is possible to state that the problem
of creating a theoretical model for a complete transport behavior is undoubtedly
difficult.

Micro-instabilities are due to the fluctuating behavior of the fields that are
present inside the plasma. Since all of the fluid and electromagnetic fields are
interdependent, suitably coupled fluctuations of such fields are able to produce net
transport. Consider, for example, the fluctuation of the electric field perpendicular
to a magnetic field line. This leads to an E×B(8 ) drift that produces net advection
of particles when the particle density field is suitably fluctuating.(11 ) Multiple
mechanisms contribute to the overall anomalous transport in an interactive way.
Therefore, a diffusion-like approach to the description of anomalous fluxes is usually
not considered valid.(12 ) However, if a single mode is found to be dominant, then
the linked flux can be modeled as Γ̃ = (L2/τ)∇Q, where L and τ are the the
characteristic space and time scales of the considered turbulent structure and Q is
the advected physical quantity.

2.3 Turbulence

The aim of this section is the introduction of the concepts of turbulence.
Even though there is no universally accepted definition of turbulence, which

is also called turbulent flow, this is surely characterized by a number of peculiar
features(13–15 ):

1. Irregularity. Turbulent flows are highly irregular and chaotic. For these
reasons they are usually studied with a statistical approach, instead of a
deterministic one, even though these phenomena are described by the Navier-
Stokes ’ equation, which is deterministic. Notice that not all chaotic flows are
turbulent.

2. Dissipation. In a turbulent flow there are multiple motions taking place
over a spectrum of different space scales, which are the sizes of the eddies
that are generated in the process. The largest scales are of the order of the
geometrical boundaries of the flow. Smaller eddies receive their kinetic energy
from larger structures and these, in turn, receive it form even larger eddies.
This energy flux is called direct energy cascade, since energy flows towards
smaller structures. Eventually, the kinetic energy of the flow is dissipated
into internal energy thanks to action of viscous shear stresses. The largest
turbulent scales extract energy from the mean flow; therefore, a continuous
energy supply is needed in order to sustain a turbulent behavior.

3. Diffusivity. Turbulence increases the transport of mass, momentum, and
energy in a flow, accelerating the homogenization of fluid mixtures. This
enhanced behavior is referred to as turbulent diffusivity, even though a
diffusion-like description for this behavior is valid only as a first approximation.
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4. Three-Dimensional Behavior. Turbulent flows are inherently three dimen-
sional, even though a two-dimensional description is possible under suitable
averaging of the flow.

5. Continuum. The flow is treated as a continuum since even the smallest
turbulent scales are much larger than the molecular ones, meaning that the
mean step size of the molecules’ thermal motion is much shorter than the
shortest turbulent space scale.

6. Large Reynolds Numbers. The Reynolds number is an dimensionless
parameter that is defined as the ratio of inertial to viscous forces in a fluid
that is subjected to relative internal motion. Mathematically, this is given by:

Re =
uL

ν
, (2.27)

where u is the mean fluid speed, L is a characteristic length scale, and ν is
the kinematic viscosity of the fluid. The relative internal movements produce
friction in the fluid, increasing the probability of generating a turbulent
behavior. An increase of the viscosity of the system, on the other hand,
inhibits turbulence generation, since more kinetic energy is dissipated through
viscous mechanisms. Therefore, high values of Re are correlated to turbulent
flows.

A turbulent flow is characterized by a seemingly random fluctuation of the fields
describing the fluid; in the case of fluid velocity:

u = U + ũ, (2.28)

where U is the average flow velocity and ũ is the fluctuating part. The average
is either taken over a given space scale, or over a given time scale. The two
averaging operations are equivalent under the Taylor ’s hypothesis of fully developed
turbulence.(14 , 16 )

The largest turbulent scale, called injection range, I, is roughly given by the
the correlation length of the turbulent field.(14 ) This is computed from the trace of
the correlation tensor associated to the given turbulent field. Under the hypothesis
of homogeneous and isotropic turbulence,the correlation tensor for the turbulent
velocity is given by the following:

R (r) = 〈ũ (x) ũ (x + r)〉 ; (2.29)

notice that the tensor depends only on the relative distance between two points
in the fluid. The ensemble average is exploited to obtain the results; however, a
spatial or time average can be used when no ensemble is available, thanks to the
ergodic theorem.(17 , 18 ) Assuming that R (r) is the trace of the tensor, then the
correlation length is obtained:

λc =
1

R (0)

∫ +∞

0

R (r) dr ≈ I. (2.30)
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Kolmogorov, in his groundbreaking studies on turbulence, in addition to the
hypothesis of homogeneous, isotropic and incompressible turbulence, assumed that
no dissipation occurs during the energy cascade. This means that all the energy
that is injected at I arrives at the so-called dissipation range, η.(19–21 ) Kinetic
energy is rapidly dissipated at even smaller scales. The hypothesis of dissipationless
energy cascade means that turbulence is self-similar over the so-called inertial range.
Kolmogorov derived η purely on a dimensional analysis basis, assuming that this
physical quantity solely depends on the kinematic viscosity of the fluid and on the
energy dissipation rate, εd:

η =

(
ν3

εd

)1/4

. (2.31)

εd is defined from the overall energy content of the cascade. A wave-number is
associated to each space scale via a Fourier transform; in this way the energy density
of each harmonic is defined as E (k), which is called kinetic energy spectrum. This
quantity is rigorously defined from the Fourier transform of R (r), that is the
energy spectrum tensor, Φ (k).(14 ) The total turbulent kinetic energy per unit mass
is computed from the following:

1

2

〈
|ũ|2
〉

=

∫ +∞

0

E (k) dk. (2.32)

The energy dissipation rate is computed as follows:

εd = 2ν

∫ +∞

0

k2E (k) dk. (2.33)

However, the most important conclusion that is derived from Kolmogorov ’s theory,
often referred to as K41 theory, is that the spectral energy density is independent
of ν over the inertial range. The Russian scientist assumed that E ∝ εd

akb, so,
since the energy dissipation rate depends on the kinematic viscosity, it is obtained
that:

E (k) ∝ εd
2/3k−5/3. (2.34)

Eq. 2.34 is the most famous result of the K41 theory; it describes the energy
density content of turbulence in the inertial range as a power law function of the
wave-number. Kinetic energy is transferred in local manner, meaning that direct
energy flow between modes having large k ratio is negligible.(22 )

The K41 theory is a very good approximation, or an exact description in some
cases, for a very large variety of turbulent phenomena. However, since εd ∼ 〈ũ2〉 /τ ,
where τ is here the characteristic time scale of the turbulent structure, other power
laws are obtained as this second parameter changes.(17 ) As an example, consider
the turbulent magnetic field in a plasma and assume an expansion as the one in Eq.
2.28. Now the turbulent energy content of the magnetic field is given by Eq. 2.32,
in which the turbulent velocity is changed with b̃, and εd for the only magnetic
part depends, again, on b̃. If the crossing time of a typical turbulent length scale
depends on the Alfvén speed, ca, then:

τMHD =
l

ca
∼ 1

kb̃
. (2.35)
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Since Eb (k) ∝ b̃2/k, where the magnetic energy spectrum is considered, thanks to
dimensional analysis Eq. 2.34 is obtained.(17 ) If, however, the crossing time depends
on kinetic Alfvén waves or Whistler waves, then:

τHall ∼
1

k2b̃
, (2.36)

and then:
Eb (k) ∝ εd

2/3k−7/3. (2.37)

Another model, due to Iroshnikov and Kraichnan, predicts a different power
law for the energy spectrum.(22–25 ) This theory, as the ones before, starts from the
hypothesis of isotropic and incompressible turbulence. However, the phenomenon
that initiates the turbulent energy cascade is the collision of two opposite-traveling
Alfvén waves. The power law that results from this description is:

E (k) ∝ k−3/2. (2.38)

It is usually referred to this model as IK theory.

2.4 Thesis goal

The goal of this thesis work is the development of a set of MATLAB R© tools, which
allows to perform a statistical analysis of the edge magnetic turbulent field on the
TCV tokamak. This toolbox is here exploited for the analysis of multiple plasma
discharges. The studied data is chosen from two TCV experimental campaigns.
The first one is a research mission that focuses on the study of L-H transition
physics, while the second one studies core electron temperature turbulence. This
work is, therefore, the foundation of a greater experimental mission, that will study
the characteristics of magnetic turbulence phenomena taking place during different
phases of a plasma discharge. In the frame of a longer experimental mission, this
work gives a solid technical basis, from the point of view of code development and
usability. Moreover, it gives a first validation based on actual experimental data.
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Chapter 3

The Tokamak à Configuration
Variable and its fast magnetic
measurements system

In this chapter, the concept of tokamak is described more in detail. This is done
having in mind the goal of giving a brief, but exhaustive, description of the Tokamak
à Configuration Variable, which is the flagship device present at the Swiss Plasma
Center. This is one of the major European centers for plasma physics studies and it
is hosted by the École Polytechnique Fédérale de Lausanne, located in Switzerland.
The TCV tokamak is a very peculiar machine. In fact, thanks to the shape of its
vacuum vessel and to the advanced shaping coils system, it allows the study of a
large plethora of different plasma shapes and divertor configurations. Moreover,
the relatively limited dimensions of the device allow for faster maintenance and
upgrade operations with respect to other tokamaks.

The TCV fast magnetic acquisition system was recently upgraded. Its main
feature is the presence of 228 sensors, that are exploited for both MHD equilibrium
and fluctuations analysis. Moreover, in April 2015 three additional high-frequency
three-dimensional magnetic sensors have been installed. These are capable of
acquiring the magnetic signal along all three toroidal coordinates. However, even if
it is possible to use these signals for the analysis, the focus is set on the other ones
since the goal of this work is to obtain a reliable first iteration of the analyzing
code.

In Sec. 3.1, first a more detailed description of a tokamak is given, then the
main features of TCV are presented.

In Sec. 3.2 the fast magnetic measurement system installed in TCV is discussed.

23
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3.1 Tokamak concept and TCV description

The aim of this section is to present the main characteristics of the tokamak concept.
In the more general frame of tokamaks, TCV is introduced as an highly flexible
device.

The word tokamak is the Latin transliteration of the Cyrillic acronym that stands
for toroidal’naya kamera s magnitnymi katushkami, which is translated as toroidal
chamber with magnetic coils. A tokamak is an axisymmetric toroidal machine
capable of confining a plasma with the usage of a large toroidal magnetic field. The
plasma generated inside such a device is said to be in a tokamak configuration. This
is characterized by a large toroidal magnetic field and a significant toroidal direct
current.(8 ) The tokamak design is the leading candidate for the achievement of
economically viable fusion reactor status. This is because of its superior performance
with respect to other magnetic fusion concepts.

In Fig. 3.1 a schematic diagram of a tokamak is shown, where a poloidal slice
of a typical machine is drawn. A tokamak needs four magnetic coils systems in
order to operate. The first one is the toroidal field coils system, which generates
the large toroidal magnetic field inside the machine exploiting a set of multiple
poloidal currents. The second system is the ohmic transformer, which generates
the toroidal electrical current inside the tokamak. This is needed for equilibrium
and heating purposes. The third system is the vertical field one, which is required
to achieve toroidal force balance. The last set is the shaping coils system, exploited
to change the plasma poloidal shape. Cross sections different from the circular one
are useful in order to achieve better MHD equilibrium configurations.

An example of profiles for the main physical quantities of interest are plotted in
Fig. 3.2. These quantities are: toroidal and poloidal components of the magnetic
field, plasma pressure, toroidal current density, and safety factor. The latter, which
is denoted as q (r), is a very important figure of merit for a tokamak. In fact,
large values of q (r) are linked to stable MHD equilibrium configurations.(8 ) In
mathematical term this is given by the following:

q (r) ≈ rBφ

R0Bθ
, (3.1)

with R0 being the plasma major radius, which is defined as that R coordinate where
Bθ = 0. Specifically, q (r) > 1 for stability.

A typical tokamak discharge is carried out following: the toroidal magnetic
field is established in the device, next the neutral gas is injected inside the vacuum
chamber, and then the toroidal current is ramped up to a maximum and maintained
to a flat level until the end of the experiment. However, it is often possible to
change any of the said parameters during the discharge.

As anticipated, the major advantageous characteristic of a tokamak is its
better physics performance. This means that, thanks to large edge safety factor
values, good values of β are achievable even without a perfectly conducting first
wall.(8 ) This is the name usually given to the wall of the vacuum vessel. Moreover,
high τE are achieved in tokamaks, meaning that higher temperatures can be
obtained with less external heating power.(8 ) For example, typical values of the main
parameters reached in JET are: n (0) ≈ 4·1019m−3, T i (0) = 28 keV, T e (0) = 2T i (0)
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Figure 13.22 Schematic diagram of a tokamak.

A schematic diagram of a tokamak is shown in Fig. 13.22. Observe that there are four basic
magnet systems in the tokamak: (1) the toroidal field coils, which produce the large toroidal
field; (2) the ohmic transformer, which induces the toroidal plasma current required for
equilibrium and ohmic heating; (3) the vertical field system, which is required for toroidal
force balance; (4) shaping coils, which produce a non-circular cross section to improve
MHD stability limits and alleviate plasma–wall impurity problems.

Typical operation of a tokamak discharge starts with the establishment of a large, steady,
toroidal, magnetic field. Next, neutral gas is injected into the vacuum chamber and often
pre-ionized. The transformer induced toroidal current is then ramped up to its maximum
value and maintained for the “flat top” portion of the pulse. During flat top operation external
heating power in the form of RF or neutral beams is applied to the plasma. The magnitude
of the external power is usually substantially greater than that of the ohmic power. Most of
the interesting experimental plasma physics occurs during the flat top period.

The characteristic equilibrium profiles of a tokamak during flat top operation are illus-
trated in Fig. 13.23. Note that the toroidal magnetic field has a slight diamagnetic dip,
which is responsible for holding the plasma in radial pressure balance. A crucial feature
is the behavior of the safety factor q(r ) ≈ r Bφ/R0 Bθ . For a tokamak q(r ) is an increasing
function of radius and, most importantly, is always large: q(r ) > 1 over almost the entire
plasma, a consequence of the large toroidal magnetic field.

In terms of reactor desirability, the tokamak has a number of advantages and a few
problems. The main advantages are associated with good physics performance. The large
toroidal field and correspondingly large edge safety factor lead to finite values of MHD
stable β without a conducting wall and to reasonably high experimental values of the energy

Figure 3.1: Basic diagram of a tokamak.(8 )
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Figure 13.23 Typical profiles in a tokamak in the large-aspect-ratio limit R0/a → ∞.

confinement time τE. Good confinement allows the plasma to heat up to high temperatures
using only a moderate amount of external heating. In addition the resulting values of β lie
in the regime of reactor interest. As an example, consider a high performance D–T shot on
the Joint European Torus (JET) located near Oxford in the UK. At Bφ ∼ 3.6 T and external
heating power Ph = 25 MW, JET has achieved the following performance for a pulse lasting
several seconds: n(0) ≈ 0.4 × 1020 m−3, Ti(0) = 28 keV, Te(0) = 14 keV, ⟨β⟩ ≈ β(0)/3 ≈
0.018, and τE ≈ 0.9 s corresponding to ⟨p⟩τE ∼ 0.84 atm s. For comparison recall that a
value of pτE ∼ 8 atm s is required for ignition. Clearly, existing tokamak experimental
performance is starting to approach the regime of reactor interest.

There are several problems facing the tokamak. First, the need for a large toroidal magnetic
field increases the technological complexity and cost of the reactor. Most of the alternative
concepts, with the exception of the stellarator, have been designed to alleviate this problem
by utilizing a small external toroidal magnetic field, which in turn leads to a small edge
safety factor. Philosophically, these concepts are trading off more difficult plasma physics
for simpler reactor technology. Tokamak reactor designs have shown that high toroidal
magnetic fields are certainly achievable from a practical engineering point of view – it is
just that it would be technologically simpler and economically less expensive if such a large
field were not required.

The second main issue arises because a reactor will almost certainly need to operate
as a steady state device. This requirement is incompatible with an ohmic transformer,
which cannot inductively drive a DC current for an indefinite period of time. Some form of
external current drive is required. In general, the methods of external current drive involve
costly, high-technology power sources, such as microwaves or neutral beams. Furthermore,

Figure 3.2: Example of profiles for the main physical quantities inside a tokamak in the
large aspect ratio limit.(8 )
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〈β〉 ≈ 0.018, and τE ≈ 0.9 s.(8 ) These parameters give 〈p〉 τE ∼ 0.84 atm s, which
is one order of magnitude lower than the one required for plasma ignition. See
Chapter 1 for further details on the various plasma ignition conditions and power
balances.

Nevertheless, tokamaks are affected by various drawbacks. The first one is that
these machines would be significantly less expensive if the requirement of a large
toroidal magnetic field could be lessen. This prerequisite is set by the need of
achieving high values of the safety factor. In fact, other types of design trade a
lower value of the toroidal field with the possibility of having much more compact
and less expensive machines. This, however, poses the issue of finding intelligent
solutions to deal with lower safety factor values. Nevertheless, recent advancements
in the field of superconductors may allow the construction of smaller tokamaks,
thanks to much higher magnetic fields.(26 )

The second major problem is the achievement of steady state operations. All
currently operating tokamaks require an external transformer in order to drive
the toroidal current. Since an ohmic transformer cannot operate for indefinitely
long periods of time, other external current drives are needed. These are either
a microwave or a neutrals beam system, that are the same exploited for plasma
heating. However, the current-drive efficiency is not yet satisfactory.(8 ) Even taking
into account the phenomenon of bootstrap current, which is a neoclassical transport
effect, an external drive is still needed. Bootstrap current might be able to generate
up to 95% of the total toroidal current, and a required bootstrap fraction of at least
of 75% is agreed upon by the research community.(8 )

The TCV tokamak is a very interesting machine because of its versatility in the
control of plasma shape. This flexibility is made possible by sixteen independently-
powered poloidal field coils.(27 ) This allows to study the properties of many different
plasma shapes and divertor configurations. In Fig. 3.3 it is possible to see the
interiors of TCV, while in Fig. 3.4 its the cross section is shown.(28 ) Notice the
almost rectangular shape of the TCV vacuum chamber, which is formed by sixteen
toroidal sectors. Such a shape is essential in order to explore different plasma
cross sections. In fact, thanks to this design choice, large intervals of elongation
and triangularity are achievable in TCV, as well as somewhat exotic divertor
configurations, like the snowflake one.(29 ) In Fig. 3.4 it is also possible to see the
simulation of a snowflake configuration. Moreover, in TCV it is possible to obtain
plasma doublets, which are two simultaneous plasma discharges inside the same
chamber.(30 )

In Table 3.1 the main TCV parameters are shown, whereas in Table 3.2 the
possible plasma parameters are presented. Notice the compact dimension of the
device. This is a strength, in the sense that this permits to perform relatively fast
maintenance and upgrade operations. In fact, the fast magnetic measurements
system of TCV was recently upgraded. This is the acquisition system exploited for
this thesis work, and it is also the focus of Sec. 3.2.
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Figure 3.3: View of the interior of the TCV vacuum vessel.(28 )

Nucl. Fusion55 (2015) 043006 A. Fasoli, for the TCV Team

Figure 5. Layout of the upgrades EC X2–X3 system on TCV.

Figure 6. Left: photo of the TCV vessel in its present configuration. Right: example of internal structure creating a closed–pumped divertor
chamber in TCV, in the presence of a snowflake divertor. The elements protruding from the vessel at the left and at the right are the inner
and outer divertor apertures, respectively, while the red elements are the pumped divertor targets.

To achieve these conditions and maintain the flexibility
necessary for a comprehensive scientific investigation and
to optimize possible candidate configurations represents a
challenge that no magnetic fusion device in the world can tackle
at present. We propose to modify the TCV in-vessel structures
to make this possible on TCV (see figure 6). In particular, we
aim at developing a flexible divertor aperture with variable
closure and combined with an effective pumping system.

Solutions such as the insertion of a fixed aperture on the
outer wall of the machine and a movable aperture on the inner
wall to accommodate various magnetic divertor configurations
will be explored. Particle control will be achieved by adding
high capacity pumps such as cryogenic pumps in the divertor
chamber. In order to remain true to the TCV philosophy,
the pumping system must be effective for a wide range of
magnetic configurations and target locations. The possibility

5

Figure 3.4: Example of snowflake divertor configuration inside TCV. Notice the sixteen
poloidal shaping coils.(28 )
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Table 3.1: TCV tokamak main parameters.

vessel height 1.54 m vessel width 0.56 m
vessel elongation 2.9 wall thickness 10 mm

first wall graphite coverage >90% number of tiles 1692
toroidal field magnets 16 on-axis field 1.54 T

ohmic coils 7 maximal ohmic current 27 kA
shaping magnets 16 maximal shaping current 7 kA

vertical force balance coils 2 maximal vertical current 2 kA
ohmic heating <1 MW X2 ECH 3 MW

X3 ECH 1.5 MW neutrals beam heating 1 MW

Table 3.2: TCV plasma main parameters.

major plasma radius 0.89 m minor plasma radius 0.25 m
aspect ratio 3.5 plasma elongation 0.9÷ 2.8

plasma triangularity −0.8÷+0.9 maximal Ip 1.2 MA
max discharge duration 2.6÷ 4 s core ne 1019 ÷ 1020m−3

core T e (ohmic) <1 keV core T e (ECH) <15 keV
core T i (ohmic) <1 keV main ion H, D or He

3.2 The fast magnetic acquisition system installed
in TCV

The fast magnetic measurements system in TCV is quite advanced. More than two
hundreds magnetic probes are currently installed inside the TCV vacuum chamber.
Given the relative compactness of the device, this allows for an unprecedented
spatial precision in the pick-up of edge magnetic field inside a tokamak.

The majority of these probes are Mirnov coils. These consist of a 1 mm THER-
MOCOAX mineral insulated coaxial wire that is wound in one layer around a
ceramic body.(31 ) The layer is designed in order to minimize the effective area
perpendicular to the probe axis. This is done in order to obtain coils that pick-up
signals only along a single space direction. Given the absence of currents outside of
the plasma, the fluctuating poloidal component of the magnetic field is expected
to be much greater than the toroidal counterpart. For this reason, such Mirnov
coils are aligned along the poloidal direction. There are currently 203 coils of this
type installed inside the TCV vacuum chamber. In Fig. 3.5 a representation of two
Mirnov coils installed on the vacuum vessel is given. These probes are grouped in
toroidal and poloidal arrays. There are four poloidal arrays, having 38 probes each,
located every 90◦ along the toroidal coordinate. The toroidal arrays are located
at three different heights on both the internal and external sides of the chamber.
The former is called high-field side (HFS) and the latter low-field side (LFS). The
three possible heights are z = +0.345 m (TOP), z = 0 m (MID) and z = −0.345 m
(BOT). On the HFS eight probes form an array, whereas 17 probes are part of
a single LFS array. The sampling frequency of these probes can be as high as
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This leaves 12 mm in which to house the magnetic probes. 
3. The minimum required signal level implies an effective probe area of a few 

hundred cm2 . Details on the expected signal level can be found in section 

6.4. 

4. The signal cables of a 38 probe array has to fit in 4 signal feed-through. 

Thus the corresponding 20 cables torch had to be small enough to run 

behind the tiles. 

5. The frequency response of the probe should be adequate to allow the same 

probe to be used for MHD activity studies, that is a few 10 kHz. More on 

the probe frequency characteristics also to be found in section 5.3. 

The selected solution is a moulded ceramic core (figure 3) on which two 

layers of 20 turns each are wound. The wire is made of 0.5 mm diameter 

with a copper central conductor and an Inconel shield. The 

wire is continuous from the probe to outside the vessel so that no connection 

is required inside the vessel and the vacuum-tight shield does not need to be 

broken. Each probe is spring loaded against special fixation rails welded onto 

the vessel walls and protected by a graphite tile (figure 3). 

Fig. 3 Drawing of the moulded ceramic core and the magnetic probe assem-
bly on the vacuum vessel. 

5.2 Calibration 

The aimed precision of the measurement from the magnetic field probes 

is a fraction of 1%. To obtain this, each element must be calibrated with a pre-

- 12-

Figure 3.5: Drawing of the magnetic probe assembly on the vacuum vessel.(31 )

500 MHz. However, the cutoff frequency of these probes is located at 120 kHz. In
Fig. 3.6 an example of frequency response is shown.

Alongside the Mirnov coils, two other type of probes are installed. Three sets
of eight saddle loops are located at the three standard heights. The last type of
probes are the LTCC3D magnetic probes.(32 , 33 ) This are three-dimensional probes,
meaning that their pick-up is along the three toroidal directions. In fact, their aim
is the detection of high frequency fluctuation in the magnetic field in the toroidal,
poloidal and normal (to the last closed flux surface) directions. These probes can
operate at a sampling frequency as high as 2 MHz.

A coil is exploited in order to measure a time-varying magnetic flux. When the
effective area of the coil is constant, the variation of the magnetic flux is entirely
due to a changing magnetic field inside the coil. The effective area along the coil’s
axis is measured with an Helmholtz coil field apparatus.(34 ) In Fig. 3.7 the results
are shown as a function of the magnetic field frequency. In this situation the voltage
output at the end of the coil is expressed by the following:

V (t) = NA
∂B

∂t
, (3.2)

where N is the number of coil’s turns and A is the surface area enclosed by a single
one. Taking the Fourier transform of the previous equation, the output voltage is
expressed as a function of the magnetic field’s angular frequency:

V (ω) = ωNAB (ω) . (3.3)

The measured voltage, however, is not the one expressed in Eq. 3.3 because the
effects of the varying frequency on both the probe and the acquisition electronics
needs to be taken into account. The measured quantity is given by the following:

V meas (ω) = B (ω)Hprobe (ω)Helectr (ω) , (3.4)

where Hprobe (ω) and Helectr (ω) are, respectively, the probe’s and electronics’ trans-
fer functions.
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6. The transfer function between the magnetic field and the probe voltage is 
then given by 

(3) 

where the symbols correspond to those in the figure. The measured data 
points are consequently fitted to a transfer function of the form 

(4) 

using an algorithm described in [3] to extract the probe area AP, the probe cut-
offfrequencies 1/(21t't1) and l/(27t't2). Typical values for these frequencies are 
134kHz and 390 The statistical error on the estimation of the probe area 
by this fitting is typically 0.05%. 

Fig. 5 
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Figure 3.6: Frequency response for one the TCV Mirnov coils.(31 ) The star points are the
experimental measurements, the dashed line is the first order transfer function, and the
solid one is the second order transfer function.

Figure 3.7: Effective area measurements along the probe’s axis. Notice how the value is
almost constant in the 1÷ 10 kHz interval of frequencies.
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It is a well known result that the transfer function of the probe is related to
the impedance of the probe-cables side of the measurement apparatus.(35 ) Consider
this impedance as described by the ratio of two polynomials, such as:

Z (ω) =
N (ω)

D (ω)
, (3.5)

then the probe’s transfer function is given by:

Hprobe (ω) =
1

D (ω)
. (3.6)

The impedance measure is fitted with multiple rational functions of the angular
frequency. Generally, the higher the orders, the better is the fit of both |Z (ω)|
and ΦZ (ω). Typical orders are 3/2 when one resonance if found, and 5/3 for
two resonances. In Fig. 3.8 the impedance modulus and phase are shown for
one the Mirnov coils. This measurement is acquired with an Helmholtz coil field
apparatus.(34 ) The fitting is performed with a recursive algorithm and it is found
to be of orders 3/2.(35 ) In Fig. 3.9 the related transfer function is plotted. Notice
that this has the same resonance of Z (ω).

The acquisition system has a limit on the maximum peak-to-peak measurable
voltage. This is 20 V, meaning that −10 V < V meas < +10 V. Moreover, the D-
TACQ acquisition board divides the measurement interval in discrete steps, which
depend on the number of bits dedicated to the store the values. For the installed
system this is n = 14, meaning 214 − 1 possible steps. The system also reserves
some bits to set a noise threshold, which in this case is n = 3. This is important
because it determines the minimum magnetic field amplitude that the system can
detect.
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Figure 3.8: Impedance measurement and polynomial fitting for a Mirnov coil. Notice the
presence of a single resonance at 2.7MHz.

Figure 3.9: Transfer function of a Mirnov coil. Notice the presence the same resonance of
Z (ω) at 2.7MHz.



Chapter 4

Edge turbulent magnetic field
characterization : a statistical
approach

The aim of this chapter is to introduce the statistical analysis exploited to charac-
terize the time-variant part of the edge magnetic field during a TCV shot. This
physical quantity is denoted as δB (t) and it is defined as follows:

δB (t) = B (t)− 〈B〉 = B (t)− 1

t2 − t1

∫ t2

t1

B(t)dt, (4.1)

where the mean value is computed over the chosen time interval.
The statistical analysis described in this chapter can be performed on both

scalar and vector physical quantities. In fact, the following set of tools is absolutely
general, meaning that it can be used to analyze all sort of signals.(17 )

The analysis is going to be performed on the normalized time-varying part of
δB (t), which is bnorm (t) and it is computed starting form the following:

b (t) = δB (t)−B0 = δB (t)− 〈δB〉 , (4.2)

where B0 is the mean value of the time-varying field over a proper time window.
bnorm (t) is finally obtained through normalization:

bnorm (t) =
b (t)− µ

σ
, (4.3)

where µ and σ are, respectively, the mean value and standard deviation of b (t) over
the selected time period. The normalization is performed over σ in order to avoid
divergent values that a normalization over µ would produce in those cases when
the mean is very close, or is equal to, zero. In the rest of the document b (t) is used
in place of bnorm (t) for better readability.

The analysis is carried out exploiting the following statistical tools: auto-
correlation function, power spectrum density, probability density function of

33
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temporal increments, temporal structure functions, permutation entropy and
complexity.(17 ) All of these tools are used to analyze a time domain signal. However,
a space domain characterization is possible thanks to the Taylor ’s hypothesis.(16 , 17 )

This states that when turbulent structures are are convected with the plasma
flow, meaning that they do not move in the plasma frame of reference, a signal at
frequency f is related to a wave-vector k through the following:

f = u · k
2π
, (4.4)

where u is the characteristic advection speed. Another way of stating the validity
of Eq. 4.4 is that v/u � 1 needs to hold true, that is that the velocity of the
turbulent structures is much lower than the advection one.(17 ) Thanks to Eq. 4.4
an information encoded in a time series can be related to length space information,
and vice versa. To the phenomenon of advection of the magnetic field it is usually
referred to as magnetic filed lines freezing in the plasma flow.

While the first two methods are considered to be basic, or even ‘classical’, tools
for statistical analysis of turbulent flows, the temporal structure function and the
permutation entropy and complexity methods are considered to be more advanced
mathematical tools. All of the following analysis can be performed also on neutral
fluids turbulence studies.(36 )

In Sec. 4.1 further details on the auto-correlation function are given.
In Sec. 4.2 the power spectrum density analysis is discussed. The power

spectrum density is compared to the one predicted by three turbulence theories.
In Sec. 4.3 the concept of time increments is introduced. A record of time

increments is computed and this is exploited for the construction of a probability
density function, which is compared to the one obtained from a pure noise signal.

In Sec. 4.4 the temporal structure function is introduced as a generalization
of the record of time increments. This tool is useful to study the self-affinity of
the phenomenon that generates the signal, and to understand whether dissipation
processes take place over the chosen time scales.

In Sec. 4.5 the concept of Hurst ’s exponent and fractal dimension of the signal
are given. These are exploited in order to understand the long time correlation of a
signal.

In Sec. 4.6 the CH plot of a signal is constructed. This allows the quantification
of noise content of a signal and the identification of the mathematical function that
the signal follows.

Finally, some astrophysical results are presented in Section 4.7. Since no relevant
statistical analysis has been previously done on tokamak-level magnetic turbulence,
the solar wind results are taken as a reference for this work.
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4.1 Auto-correlation function

In this section an introduction to the auto-correlation function is given.
This tool allows the computation of the auto-correlation time of a signal, denoted

as τ c. This is the correlation time between the signal and itself or, in other words,
it is the time after which it becomes de-correlated. For this reason it is also called
de-correlation time. During a period of time of order τ c the signal shows a self-
similar wave-form and, therefore, it is commonly said that ‘it loses its memory’ on
larger time scales. The computation of this parameter is quite important since it
sets a characteristic time scale over which turbulent structures live.

In order to calculate τ c, the normalized auto-correlation function is obtained
multiplying the time series with a shifted copy of itself, as follows:

R(τ) =
〈b(t+ τ)b(t)〉
〈b(t)b(t)〉

, (4.5)

where R is the correlation tensor and τ is called time delay, or lag time. The
denominator serves as the normalization factor. Eq. 4.5 is the time analogous of Eq.
2.29. Taking into account only one component of the field, only one component of
the correlation tensor becomes relevant. In the frame of this work only the poloidal
component of the magnetic field is acquired, therefore just the Rφφ component of
the correlation tensor is analyzed. Form here on the subscript is dropped for better
readability.

R (τ) is an even dumped oscillating function that starts from unity and rapidly
converges toward zero. In Fig. 4.1 an example computed form one of the acquired
TCV signals is presented. On the left plot the whole function is shown, while on
the right only the portion for positive delays is shown. Notice that the function is
symmetric with respect to the vertical axis.

τ c is mathematically defined as that value of τ at which R (τ) drops under a
chosen value. This is usually set to be equal to e−1 or 1/2. Looking at Fig. 4.1 it is
easy to understand that there is a degree of freedom in the choice of τ c. In fact, the
function might cross the reference factor multiple times because of its oscillating
behavior. Eventually, the choice is made between two options: define τ c either as
the delay of the first or of the last crossing. The former one, however, allows the
writing of a more robust search algorithm for the crossing delay coordinate, meaning
that such an algorithm will always provide comparable de-correlation times. See
App. A for the the actual code.

The computation of the de-correlation factor is also useful in order to calculate
an estimate of an effective turbulent diffusion coefficient.(37 , 38 ) In fact, this can be
estimated using the following:

D⊥ =
λc

2

τ c
, (4.6)

where D⊥ is the coefficient perpendicular to a magnetic flux surface and λc is the
turbulent correlation length. Although the related algorithm has not been tested,
the computation of the diffusion coefficient is possible with the developed code.
The computation of both D⊥ and λc is one of the future feature that are going to
be developed in the frame of the toolbox project.
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Figure 4.1: Example of auto-correlation function b (t) measured by one of the Mirnov ’s coil
placed inside TCV. The signal is HFS-MID-003-001, acquired during TCV shot #55597.
On the left side the complete function is plotted, whereas on the right only the part fro
positive delays is shown. In red the e−1 factor is shown.

4.2 Power spectrum density

The aim of this section is to provide an introduction to the power spectrum density
(PSD) analysis.

The PSD is a representation of the spectral power content of a time series. With
PSD it is usually referred to the experimentally obtained energy spectrum, which is
introduced in Sec. 2.3. A turbulent signal is divided in harmonics, each having an
energy content. The PSD describes the power density content of all such harmonics.
Energy can flow among different frequencies, giving rise to flows usually called
energy cascades, or power cascades. These can either be direct or not, based on
energy flowing respectively from low towards high frequencies or vice versa. The
energy cascade related to turbulence phenomena is expected to be direct, since the
length scale of turbulent energy flows decreases as time evolves. When length scales
become smaller, the related wave-vector increase and, thanks to Eq. 4.4, the linked
frequencies increase as well. On a PSD vs frequency plot an higher energy content
is therefore shown at lower frequencies in the case of direct cascade.

For simplicity, and to achieve faster computation, the real power spectrum is
actually chosen as the tool for the analysis; this is defined as follows:

Eb (ω) =
1

t2 − t1

[∫ t1

t2

b (t) e−iωtdt

]2
. (4.7)
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Notice that the developed algorithm actually calculates Eb (f). However, frequencies
and angular frequencies are proportional physical quantities and then the two PSDs
present the same information content.

Over the frequency interval that corresponds to the magnetic turbulence’s
inertial range, the PSD shows a decreasing linear behavior on a log-log plot. In
fact, over this interval the PSD is described by a power law:

Eb (f) ∝ fa1 , (4.8)

where a1 is the above-mentioned slope and, therefore, a1 < 0. As written in Sec.
2.3, usually the energy spectrum is described as a function of wave-vector k:

Eb (k) ∝ ka2 . (4.9)

However, as previously stated, spatial information are encoded into a time series
when the Taylor ’s hypotheses holds true. In such cases the following equality holds
true: a1 = a2. In this way the slope computed from the PSD in frequency domain
is compared to the exponents obtained by the reference turbulence theories. Such
exponents are:

1. -5/3. In this case the power law is given by the well known K41 theory.
Turbulence is expected to be homogeneous, isotropic, incompressible and dis-
sipationless over the inertial range of frequencies. The underlying mechanism
is expected to be related to Alfvén waves.(17 )

2. -3/2. The power law that has this exponent is given by the IK theory. Turbu-
lence has the same characteristic as the previous case. However, the underlying
mechanism is the interaction of opposite-traveling MHD waves.(22 , 23 )

3. -7/3. In this last case turbulence is not guaranteed to be incompressible,
since the underlying mechanism can be related to either Whistler or kinetic
Alvfén waves.(17 ) In this work this exponent is referred to as Hall ’s exponent.

The computation of the slope in a linear section of the PSD log-log plot gives
an insight on the underlying process to which turbulent flow is linked. In Fig. 4.2,
an example of PSD plot is shown.

The energy spectra of pure noise signals are characterized by power laws analo-
gous to the ones expected from this analysis. Nevertheless, the exponents of these
functions are different. Here are some examples: a1 = 0 for a white noise signal,
−2 < a1 < 0 for pink noise, a1 = −2 for brown noise, a1 = +1 for blue noise and
a1 = +2 for violet noise.

4.3 Temporal increments analysis

In this section, an introduction to the temporal increments analysis is given.
The aim of this tool is the detection of the presence of coherent structures

in a time series. This is achieved through the computation of the probability
density function (PDF) of time increments. Thanks to this analysis an actual signal
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Figure 4.2: Example of PSD plot computed for eight signals acquired during TCV shot
#55597.

is discriminated form noise. In this way, signals are characterized as having an
information content, which noise does not have.

The foundation of the tool is the construction of the so-called record of time
increments. This is obtained taking the difference between the signal and its value
at a delayed time coordinate, for all instants of the chosen time interval:

∆b = b (t+ τ)− b (t) . (4.10)

The time increments are then normalized to their standard deviation. Thus, ∆b is
used to denote the normalized quantities. Notice that the exploited component of
the vector is the poloidal one.

The next step is the computation of the frequency of occurrence of all normalized
increments. This occurrence frequency is assumed to be the experimentally obtained
PDF for the analyzed time series. The results of the analysis are obtained through
the study of this PDF, which is compared to the one given by a noise signal.(17 , 39 )

The PDF of noise is Gaussian shaped, since after any delay upward and downward
changes are equally expected for a truly random signal. Such a PDF is not expected
to appear as result of the analysis of TCV signals.

In order quantitatively comparison two moments of the PDF are computed,
namely: kurtosis,K, and skewness, S. The former one is also called statistical metric
flatness and it is a measure of the distribution’s wideness. It is mathematically
defined as follows:

K (τ) =
〈∆b4〉
〈∆b2〉2

. (4.11)
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Figure 4.3: Example of PDF computed for eight signals acquired during TCV shot #55597.

For a Gaussian curve K = 3.
The skewness measures the symmetry of the PDF with respect to the most probable
increment, that is represented as the maximum of the curve. When S > 0 higher
variations are more frequent over the given time interval, whereas lower increments
are more frequent when S < 0. For this work the maximum of the curve is found at
zero normalized increments and, therefore, for S > 0 more positive variations are
found, while more negative ones are observed in the opposite case. For a symmetric
distribution, as the Gaussian one is, S = 0, meaning that over the selected time
interval the distribution of increments is perfectly symmetrical. The mathematical
definition of skewness is:

S (τ) =
〈∆b3〉
〈∆b2〉

3
2

. (4.12)

The comparison of the experimental K and S values with the ones of the Gaussian
distribution allows for the discrimination of the experimental signals from noise.

The presence of the non-Gaussian flat tails is related to large variations in
the signals, or even to discontinuities. These discontinuities are associated to the
presence of coherent structures in the flow, such as plasma flux tube and current
sheets.(17 )

A coherence check between the results of this tool and the previous one is
performed. In fact, a noise PDF is foreseen when a noise PSD is obtained, and vice
versa.
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4.4 Temporal structure functions

In this section, an introduction to the temporal structure function (TSF) is given.
The aim of this tool is the detection of dissipation processes acting over given

time scales. Moreover, thanks to the TSF it is possible to compute the Hurst ’s
exponents related to the signal. This topic, however, is covered in Sec. 4.5.

A TSF is computed as the average the record of time increments elevated at
some power; mathematically:

Spb = 〈(b (t+ τ)− b (t))p〉 . (4.13)

Again, in the frame of this analysis only scalar quantities are taken into account.
It easy to see that both kurtosis and skewness of a PDF are properly normalized
TSFs.

The computation is carried out for multiple time lags and multiple powers; the
latter are usually referred to as orders of the TSF. The results are then plotted on
a log-log plot, as in Fig. 4.4. For positive powers, the values of the TSF increases
with an increase in the order order. It is important to perform the calculation of
multiple powers because at higher orders the oscillations of the TSF are accentuated.
This allows a better observation of the results. Since energy injection is related
to local maxima of the TSF, whereas dissipation is linked to local minima, it is
easy to understand that higher powers accentuates these distortions of the TSF.
Multiple energy injections and/or dissipations can be found at different time scales.

If turbulence is fully developed, as seen in Sec. 2.3, an inertial range is established
over a proper time scale interval. This range correspond to a linear non-flat behavior
of the TSF on log-log plot. Over this range the TSF is expressed by a power law,
as follows:

Spb (∆s) ∼ ∆sζ(p). (4.14)

This result comes from hydrodynamic turbulence theories and it is expressed as
function of length space. However, thanks to Eq. 4.4, the same scaling is found in
time coordinates, i.e.:

Spb (τ) ∼ τ ζ(p). (4.15)

Multiple values of ζ (p) are predicted by the turbulence models discussed previ-
ously in Sec. 2.3. However, for this analysis two are taken as reference:

1. K41. In this case ζ (p) = p/3.

2. IK. In this other case ζ (p) = p/4.

Notice that both predictions are linear functions. This is due to the fact that no
dissipation is taken into account during the inertial range. Therefore, a departure
from linearity indicates the presence of coherent structures over the inertial range
hence allowing dissipation to take place. However, little information on the origin
of these structures is obtained from this analysis. In fact, characteristic time scales,
and therefore frequencies, are obtained. Form this piece of information a guess on
the nature of these structures might be performed.
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Figure 4.4: Example fo TSF plot computed from the HFS-MID-009-001 signal acquired
during TCV shot #55597. Multiple orders and time lags are explored.

Another coherence check is performed. The asymptotic behavior of ζ (p) at low
orders, typically p < 2, is compared with the theoretical references. For signals that
do not follow one of the PSD exponents of reference, a different linear behavior at
low orders is observed.

4.5 Hurst ’s exponents and fractal dimensions

In this section, an introduction to the Hurst ’s exponents and fractal dimensions
analysis is given.

The Hurst ’s exponent, also called self-similarity scale exponent, is a figure of
merit that is exploited for the evaluation of the time persistence of a signal.(40 ) This
characteristic is also called long-time correlation. This quantity is denoted as H
and there are multiple mathematical definitions for it. For this work the following
is adopted:

Hp =
ζ (p)

p
. (4.16)

It is now clear why the computation of the TSF is necessary for the calculation
of H in the frame of this work. However, other methods for the computation of
this exponent are exploited in literature. Among these, the most common is the
re-scaled range statistics method (R/S).(41–43 ) H is a quantity usually comprised
between 0 and 1. If Hp is an almost constant function of p, the signal is said to
be mono-fractal. Otherwise, the signal is characterized as being multi-fractal and
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a spectrum of Hp values is needed in order to describe it. See Sec. 4.4 for more
information on the temporal structure function.

It is easier to understand the nature ofH from the concept of fractional Brownian
motion (fBm) and the role that the exponent has in the definition of its underlying
function.(44 ) The fBm is a generalization of the Brownian motion function, which
is also called Wiener process. An fBm signal is characterized by two important
features:

1. Self-similarity. As already stated, this is the characteristic of shape retention
of a signal over different scales. Mathematically, for a fBm designated as
BH (at):

BH (at) ∼ |a|H BH (t) , (4.17)

where H is the Hurst ’s exponent and a is an arbitrary scaling factor.

2. Stationarity of increments. This means that the value of BH (t) translated
through time is given by the difference between the value in the two points:

BH (t2)−BH (t1) ∼ BH (t2 − t1) . (4.18)

Both fBm and Bm are computed on a step basis, meaning that the evolution
of their functions are computed step-by-step. The characteristic of a Bm signal is
that two subsequent variations of its value are uncorrelated. This means that each
variation is completely independent from all the others. For a fBm this is not the
case, meaning that two subsequent steps does not need to be uncorrelated. The
type of correlation is described by H1, that is the first Hurst ’s exponent. H1 is
computed form the firs order TSF, as it can be seen from Eq. 4.16.

For H1 < 0.5, the signal is said to be anti-correlated. This means that each
variation is likely to occur in the opposite direction that the the previous one had.
An anti-correlated signal tends to oscillate around its mean value. For H1 > 0.5
the signal is said to be correlated, or persistent. This mean that each variation is
likely to occur in the same direction that the previous one had. A persistent signal
diverges from its local average values. The third case is found for H1 = 0.5. This
is the exponent typical of Bm signals. Thus, fBms having this H1 value are Bm
signals, which are not correlated. The last case is for H1 = 0. These signals are
said to be stationary, since they present an oscillatory behavior around a global
mean value. In Fig. 4.5 five fBm signals are shown. It is interesting to notice the
various anti-correlation and persistence features of the plotted signals.

Through the computation of H it is possible to state that the analyzed signal
presents the same properties of a fBm that is defined form the very same exponent.

The Hurst ’s exponent is also exploited for the computation of the fractal
dimension of the signal, denoted as D.(45 ) Whereas H is a global property of the
signal, D is a local characteristic. In fact, the fractal dimension of a system describes
the local dimensions of the underlying structure. When the signal is self-similar,
the following holds true:(46 , 47 )

D +H1 = n+ 1, (4.19)
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Figure 4.5: Five examples of fBm signals having different H1 values. Notice how the first
signal oscillates around a mean value that is set around 2. The signal at H1 is actually a
Bm signal.

where n is the number of dimensions exploited for the description of the system.
Since H1 is generally bounded to the interval [0, 1], then D ∈ [n, n+ 1). Therefore,
the fractal dimension gives information about how many dimensions are needed for
the local description of turbulent structures. This is useful in order to construct
the equation describing such phenomena.

4.6 Permutation entropy and complexity

The aim of this section is the presentation of the last tool that is exploited for this
analysis of edge magnetic field turbulence.

The study of ordinal patterns of the values of a time series gives another level of
insight on the physics that generates a signal. Two figures of merit of time series are
computed as a result of the application of this tool, namely: permutation entropy,
H [P ], and complexity CJS [P ].(17 , 48 , 49 ) In order to compute these, a PDF of the
ordinal patterns of the signal need to be calculated. This is constructed as an
occurrence frequency, as in Sec. 4.3.

Taking into account N subsequent points of the time series, it is possible to
establish their ordinal pattern. This is the pattern of relative variations between the
two subsequent points among the chosen ones. For N points there are N ! possible
permutations of their relative order. In Fig. 4.6 three possible permutations
for N = 5 are shown.(17 ) Once N , called embedding dimension, is set, then the
occurrence frequency of each permutation is computed. Each frequency is designated
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slow compared to the rate at which structures are advected
by spacecraft, the prediction from Kolmogorov turbulence
theory is SpðsÞ / sp=3.2 In other words, a log-log plot of
Sp

BðsÞ for some power p should have a linear region corre-
sponding to the inertial range. Famously, the second order
structure function grows like s2=3 in numerous wind tunnel
experiments.2 Growth of the second order structure function
like s2=3 is closely connected with the frequency power spec-
trum (another second order statistical quantity) dropping like
f # 5=3 in Kolmogorov turbulence. Data from long time series
of the Voyager and Helios spacecraft show structure func-
tions with slopes much flatter than the Kolmogorov predic-
tion. In the Marsch and Tu review, data from structure
functions up to 20th order are shown. It is only above sixth
order that departures from the Kolmogorov prediction are
observed in that dataset.

In a recent series of observations using the Cluster
spacecraft and the FGM and STAFF-SC instruments dis-
cussed above, Kiyani et al.35 measured high order structure
functions in a stationary interval of fast solar wind. They
show in a log-log plot of Sp

BðsÞ vs s an increase in the slope
as the order increases from p¼ 1 to 5. An increase is
observed for both the inertial range (s > 10 s) as well as the
dissipation range (s < 1 s). Just as in the Marsch and Tu
review and our results here, the Kiyani et al. results show
structure functions with slopes flatter than the Kolmogorov
prediction at the higher orders due to intermittency.

E. Permutation entropy

Finally, we consider permutation entropy and complex-
ity of a turbulent waveform.36,37 The idea is to study the or-
dinal pattern of a sequence of values in a time series. If we
consider N¼ 5 sequential points in a waveform, we ask in
what order do they appear? One possibility is that they
appear in ascending order 1 # 2 # 3 # 4 # 5. Another is that
the largest value of the five appears first, followed by the
next highest value, then lowest, third, second. This ordinal
pattern would be represented 5 # 4 # 1 # 3 # 2. Some
examples are shown in Figure 8. There are N! ¼ 120 such
permutations if N¼ 5 (called the embedding dimension). We
are interested in the frequency each ordinal pattern appears
in a long time series.

We construct a probability distribution function P con-
sisting of all 120 frequencies of occurrence Pi of a given
length 5 ordinal pattern in all 5-value segments of the time
series. Following Bandt and Pompe,36 we define the
Shannon permutation entropy of the time series as

S½P& ¼ #
XN!

i¼1

PilnðPiÞ:

If the waveform is truly stochastic, then we expect all ordinal
patterns in a record of length n' N to be equally likely and
we find

Smax ¼ #
X 1

N!
ln

1

N!

! "
¼ ln N!ð Þ:

We will normalize permutation entropies to this value and
call the normalized entropy H½P& ¼ S½P&=Smax. Note that if
the waveform is particularly simple, for example, a gradual
linear ramp in time, then the only ordinal pattern that appears
is 1 # 2 # 3 # 4 # 5 and the permutation entropy of this
waveform is zero.

Rosso et al.37 added another metric to the study of time
series related to the embedded structure in the waveform and
based on the notion of the so-called “disequilibrium.” They
define a Jensen-Shannon complexity

CJS½P& (QJ ½P&H½P&;

where

QJ½P& ¼ S½ðPþ PeÞ=2& # S½P&=2 # S½Pe&=2

and Pe is the uniform probability distribution function that
admits the maximal entropy discussed above. QJ½P& is a

FIG. 7. Structure function slope. The structure function slope versus
moment (in black) fðpÞ with comparison to K41 theory in dashed green
measured by the Wind spacecraft.

FIG. 8. Permutations of ordinal pat-
terns. Some examples of ordinal pat-
terns that might appear in a turbulent
time series. There are N! ¼ 120 such
permutations if N¼ 5. Vertical scale is
arbitrary.
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Figure 4.6: Example of possible permutations for N = 5.(17 )

as Pi, while the complete PDF is indicated as P . The entropy of P is computed
following the Shannon’s approach and it is, therefore, called Shannon permutation
entropy. Mathematically it is computed as follows:

S [P ] = −
N !∑
i=1

Pi loge (Pi) , (4.20)

where the summation is performed over all possible permutations. A completely
stochastic time series ,for which the number of elements is much larger than
the embedding dimension, all occurrence frequencies are equal. This means that
P1 = 1/N !. In this case the permutation entropy is maximized and is given by:

Smax [P e] = loge (N !) , (4.21)

where P e is the PDF that has been just described. Since S has a theoretical
maximum value for each N , a normalized entropy value is introduced:

H [P ] =
S [P ]

Smax [P e]
. (4.22)

An example of null entropy signal is given by a linear ramp, whereas H = 1 is
obtained from a white noise signal.

The second parameter, that is the complexity, is computed from the normalized
entropy. The Jensen-Shannon complexity is given by:

CJS [P ] = H [P ]Q [P ] , (4.23)

where Q [P ] is a normalization factor that describes how far a PDF of ordinal
patterns is from the related P e. The factor is given by the following:

Q [P ] = S

[
P + P e

2

]
− S [P ]

2
+
S [P e]

2
. (4.24)

It is interesting to notice that both the examples previously used share the same
complexity value, which is null.
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Figure 4.7: Example of CH plot, computed for fifteen signals acquired with the LFS-MID
probes during TCV shot #55597. The dashed line is related to varying fBm signals, while
the star point is an example of solar wind data result. Two reference points, related to
the linear ramp and white noise, are also shown.

The complexity is a measure of the ‘non-triviality’of the distribution of the
ordinal patterns of time series. The more complicated is the function describing a
signal, the more complex this is.

These two quantities are exploited in order to build a plot, called CH plot.
On its plane a signal has solidly defined coordinates that are bound to an area
of theoretically allowed set, which is computed for each N value. In Fig. 4.7 an
example of CH plot is shown. The result of the analysis on fifteen signals is shown
in the plot. Alongside this, two reference points, located at the coordinates (0, 0)
and (1, 0) are plotted. These are, respectively, the linear ramp and white noise
entropy-complexity features. A solar wind data point is also shown, as well as the
line drawn by fBm signals having different H1. In Fig. 4.8 another CH plot is
shown. In this case the entropy and complexity features of various mathematical
functions are reported.

This analysis is particularly interesting because it allows to determine the
function that describes the signal. Since a known function gives a particular set
of coordinates then, if an experimental signal has the very same entropy and
complexity properties, the link between the two is legit. While, for example, the
Hurt ’s exponent analysis enables the comparison of long term correlation between
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the studied signal and a given fBm, the CH plot allows to infer that the signal is
described by the very same fBm.

4.7 An astrophysical reference: the solar wind tur-
bulence

In this section some results regarding the analysis of solar wind turbulence are
presented. The statistical analysis of magnetic turbulence regarding solar wind
data is a well establish practice. This is the reason why a brief introduction on this
topic is given. The article in reference (17 ) is used as the basic tutorial upon which
the developed analysis toolbox is created.

The solar wind is considered to probably be “the best studied turbulence
laboratory”.(15 , 17 ) The solar wind is an high velocity, low density hydrogen plasma.
In fact, typical values are u ≥ 400 km/s and n ∼ 10 cm−3.(17 ) At the distance of
1 AU from the Sun the characteristic magnetic field is B ∼ 10 nT.(17 ) The solar
wind’s plasma beta parameter is of order unity, indicating that neither kinetic nor
magnetic pressure dominate the dynamics.(17 ) Typical temperatures are of the order
of 10 keV, with T i ≥ T e.(17 ) The mean-free path for collisions between different
particles populations is of the order of 1 AU, thus the solar wind is considered
to be a collisionless system.(17 ) Turbulence in the the solar wind flow is fully
developed since a turbulent cascade is established for all MHD dynamical physical
quantities, such as u, n and B.(17 ) Solar wind turbulence is usually studied near
planet Earth, but studies that involved spacecraft sent at a distance of up to 120 AU
are available.(17 ) Both temporal and spatial statistical analysis are performed with
spacecraft acquired data. However, to perform the latter, an array of satellites
is necessary. One of such arrays is deployed in the frame of the Cluster II space
mission, jointly operated by ESA and NASA.∗ To have a more exhaustive picture
of solar wind MHD turbulence, please refer to (15 ).

In Fig. 4.9 an example of solar wind magnetic waveform is shown. This time
series, that is the sun-ward component of the magnetic field, is acquired by the
Wind satellite, located at the L1 Lagrangian point between the Sun an planet
Earth.(50 ) A period of very fast wind stream (≥ 600 km/s) is shown. The data
is acquired over multiple days, namely January 14-21 2008. These type of data
usually shows stationarity, meaning that any average quantity is independent of the
choice of time origin. Turbulent analysis is performed over stationary time periods
in order to exploit time averaging procedures in place of ensemble averaging, as
explained in Sec. 2.3.

In Fig. 4.10 a typical example of auto-correlation function for data coming
from the Wind satellite is shown. Considering a threshold value of e−1 for the
computation of τ c, the calculated value is τ c = 0.54 h.(17 ) Taking into account an
estimated value of the flow velocity of u = 600 km/s, this de-correlation time gives a
correlation length of about 1.17 · 106km, which is of the order of the values obtained
from actual two-point correlation length computations.(51 )

In Fig. 4.11 an example of PSD plot is given for other data acquired by the

∗See http://sci.esa.int/cluster/ for further information.

http://sci.esa.int/cluster/
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 xn!1 " xn ! xzn; Mod 1: (10)

In particular, results for z" 5=2, 2, and 3=2 are reported.
We considered the following two kinds of SP here:

(6) Noises with f#k PS generated as follows: (a) The
MATLAB©RAND function is used to produce pseudo ran-
dom numbers in the interval (# 0:5, 0.5) with an (i) almost
flat PS, (ii) uniform PDF, and (iii) zero mean value.
(b) Then, the fast Fourier transform (FFT) y1

k is obtained
and multiplied by f#k=2, yielding y2

k; (c) Now, y2
k is sym-

metrized so as to obtain a real function and then the
pertinent inverse FFT xi is obtained, after discarding the
small imaginary components produced by our numerical
approximations. The ensuing time series xi has the desired
PS and, by construction, is representative of non-Gaussian
noises.

(7) Fractional Brownian motion (FBM) and fractional
Gaussian noise (FGN): FBM is the only family of pro-
cesses which is (a) Gaussian, (b) self-similar, and
(c) endowed with stationary increments (see Ref. [16]
and references therein). The normalized family of these
Gaussian processes, fBH$t%; t > 0g, is endowed with these
properties: (i) BH$0% " 0 almost surely, i.e., with proba-
bility 1, (ii) E&BH$t%' " 0 (zero mean), and (iii) co-
variance given by

 E &BH$t%BH$s%' " $t2H ! s2H # jt# sj2H %=2 (11)

for s, t 2 R. Here E&(' refers to the average computed with
a Gaussian PDF. The power exponent 0<H < 1 is com-
monly known as the Hurst parameter (exponent). These
processes exhibit ‘‘memory’’ for any Hurst parameter ex-
cept for H " 1=2, as one realizes from Eq. (11). The
H " 1=2 case corresponds to classical Brownian motion
and successive motion increments are as likely to have the
same sign as the opposite (there is no correlation among
them). Thus, Hurst’s parameter defines two distinct regions
in the interval (0, 1). When H > 1=2, consecutive incre-
ments tend to have the same sign so that these processes are
persistent. For H < 1=2, on the other hand, consecutive
increments are more likely to have opposite signs, and we
say that they are antipersistent. Let us introduce the quan-
tity fWH$t%; t > 0g(FBM ‘‘increments’’)

 WH$t% " BH$t! 1% # BH$t%; (12)

so as to express our Gaussian noise in the fashion
 

!$k%"E&WH$t%WH$t!k%'

"1

2
&$k!1%2H #2k2H ! jk#1j2H '; k>0: (13)

Note that for H " 1=2 all correlations at nonzero lags
vanish and fW1=2$t%; t > 0gthus represents white noise.
The FBM and FGN processes are continuous but non-
differentiable processes (in the classical sense). As a non-
stationary process, they do not possess a spectrum defined
in the usual sense; however, it is possible to define a

generalized power spectrum of the form: ! / jfj#", with
" " 2H ! 1, 1< "< 3 for FBM and, " " 2H # 1,
#1< "< 1, for FGN. Because of their Gaussian nature,
and other characteristics above enumerated, the Bandt-
Pompe ideas are applicable to the FBN and FGN dynami-
cal process [18 ]. For evaluating the FBM and FGN time
series we adopt the Davies-Harte algorithm [19 ], as re-
cently improved by Wood and Chan [20], which is both
exact and fast.

For all the cases we studied here 10 time series of 215

data each were analyzed, each series starting at a different
initial condition. The concomitant mean values of both HS
and CJS are plotted in Fig. 1.

All the CS under scrutiny have entropies that, in our
causality plane, are seen to be (i) in the entropy region
lying between 0.45 and 0.7, (ii) located near to the maxi-
mumCJS. This entails that highCJS values are produced by
structures immersed in chaotic time series. Higher HS
values may be obtained using randomizing techniques to

FIG. 1 (color online). Continuous lines represent minimum
Cmin and maximum Cmax complexities. The area enclosed by
them is the CH plane. (a) Localization of different CS and SP in
the CH plane. (b) Enlargement near the ideal point HS " 1,
CJS " 0. D " 6 is used. The graph illustrates the fact that, in the
case of textbook models usually regarded as being of either
stochastic or deterministic nature [17], our numerical results
place them at clearly different planar locations.

PRL 99, 154102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
12 OCTOBER 2007

154102-3

Figure 4.8: In the plots the CH coordinates of multiple mathematical functions are drawn.
In b) the area around the maximum entropy area is enlarged.(49 )
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intervals of a fast wind stream (January 14! 21 2008) with
large scale magnetic fluctuations on the order of 10 nT.

In Figures 2(b)–2(d), we show shorter snippets from the
full record (one day, 1 h, and 4 min, respectively). We will
sometimes select an epoch of interest for study during a suit-
able period rather than analyzing the entire record. In addi-
tion, the epoch of interest should be during a period of

otherwise stationary turbulence. By stationary we mean that
average values are independent of the choice of time origin.
Finally, the time series should persist for several dynamical
times, in this case, several Alfv!en times tA ¼ L=vA, where
the Alfv!en speed is the characteristic velocity in a magne-
tized plasma: vA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffi
l0Mn
p

, where B is the local magnetic
field, M is the ion mass, and n is the number density. The
Alfv!en speed for this dataset is about 0.1 of the flow speed,
i.e., vA # 60 km/s.

Long records should be available for the computation of
higher order statistics such as structure functions and permu-
tation entropy. The types of tools naturally divide into time
domain and space domain, but we will focus on time domain
analysis since the Wind spacecraft samples only at one
spatial location. The extension of these tools to the space
domain is straightforward, but in the case of an experimental
measurement in the lab or in space (as opposed to a simula-
tion), multiple single-time spatial diagnostics are required. In
the solar wind, an armada of four synchronized spacecraft is
the current state of the art. As such, the focus in the solar
wind is on single spatial point time series. Five important
temporal statistical tools of turbulence for time series are
described below. We will illustrate each case with solar wind
data. All analysis and results come from this single wave-
form from the Wind satellite (Figure 2).

A. Autocorrelation function

It is useful to measure the correlation time of the turbu-
lence, i.e., the time it takes a time-series to “lose its memory”
or become de-correlated. Visual inspection of Figure 2(c)
shows that the waveform is self-similar for 10’s of minutes,
but clearly different at temporal separations of several hours
(Figure 2(b)). To determine the correlation time of the signal,
we multiply the time series by a copy of itself and introduce
a time lag

RðsÞ ¼ hbðtþ sÞbðtÞi:

The autocorrelation function is often normalized to unity by
dividing by hbðtÞbðtÞi. Strictly speaking, Rij is a tensor if we
consider correlations of different components of b, but we
will focus on single components (the diagonal elements of
the tensor), and just Rxx here.

If we had many solar wind realizations in an ensemble,
we would compute the correlation coefficient for a particular
s by averaging over a time interval during a stationary phase
of the turbulence, then averaging this result over several real-
izations of an ensemble. If the turbulence is truly stationary,
then the function RðsÞ should be independent of the choice
of the origin of t. This is a good functional check of statio-
narity. For a single waveform such as in Figure 2, we are
forced to invoke the ergodic theorem and employ time aver-
ages in place of true ensemble averages. Here, we compute
the correlation coefficients for the entire eight-day waveform
of Figure 2. Correlation coefficients are computed in
this way for a range of s’s in order to construct RðsÞ. RðsÞ is
an even function, i.e., RðþsÞ ¼ Rð!sÞ. We define the
de-correlation time sC as the time at which RðsÞ drops by
some factor: 1/2 or e!1. A more general definition involving

FIG. 2. Solar wind magnetic field waveforms. Samples from the Wind satel-
lite are shown. (a) Bx over an 8 day period. (b) The same for 24 h, (c) 1 h,
(d) 4 min. The data are digitized at a 3 s cadence, so the full dataset consists
of 230 000 points. Units are nanotesla. Bx is the sunward direction. Colors
indicate the region of data in the subsequent subplot.
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Figure 4.9: Magnetic field waveforms acquired by the Wind satellite. The signal is the
sunward component of the magnetic field measured in nT. The colors indicate the data
enlarged in the next plot. a) Eight days acquisition period. b) Twenty-four hours period.
c) One hour period. d) 4 minutes period.(17 )
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the function (normalized by R(0)) is sC ¼
Ð

RðsÞds. If we
perform time averages, we demand that averages are taken
over many de-correlation times. The stationary phase of the
turbulence should persist for many de-correlation times.

In Figure 3, we show an example of a temporal autocor-
relation function from the Wind solar wind dataset for bx.
Note that as we see from visual inspection of Figure 2, the
autocorrelation time is about 1/2 h, and fluctuations rapidly
de-correlate for times larger than one hour. We calculate a
similar range of autocorrelation times: s1=2 ¼ 0:32 h;
se ¼ 0:54 h; sC ¼ 0:59 h.

The temporal autocorrelation function in the solar wind
has been measured several times before. The notion of statio-
narity in the solar wind (i.e., that average properties of BðtÞ
do not depend on the origin of time) has also been tested. In
a classic set of papers, Matthaeus and Goldstein16,17 ana-
lyzed magnetometer data from Voyager, ISEE 3, and IMP
satellites and found correlation times as high as 50 000 s, but
can be an order of magnitude smaller depending on solar
wind speed and other parameters. Our sample of solar wind
magnetic fluctuations has a s over an order of magnitude
smaller than they report. A high degree of variability of
estimates of correlation time is expected, particularly if solar
rotation effects are included in a long sample.

Matthaeus and Goldstein also found that the solar wind
magnetic field is statistically time stationary, at least in the
“weak” sense. Weak stationarity suggests that the simple
two-time RðsÞ defined above (N¼ 2) should be independent
of the choice of the origin of t, while strict stationarity
requires that all higher order correlations (N $ 2) are inde-
pendent of time origin. The first proper two-point single time
measurements of the spatial correlation function in the
solar wind plasma were performed by Matthaeus et al.18 The
spatial correlation coefficients are computed exactly analo-
gously to the temporal correlation coefficients discussed
above. They used simultaneous magnetic field data from sev-
eral spacecraft, including the four Cluster spacecraft flying
in tetrahedral formation. Simultaneous measurements were

performed with separations as small as 150 km (using pairs
of Cluster satellites) to as large as 350 RE (2:2 % 106 km).
Matthaeus et al.18 find a spatial correlation length of 193RE

or 1:2 % 106 km. This is comparable to our measured auto-
correlation time sC ¼ 0:59 h multiplied by the wind speed of
600 km/s.

B. Frequency power spectrum EBðf Þ

The spectral content of the time series b(t) can be
obtained with a Fourier transform or wavelet transform.
Typically, we deal with the purely real power spectrum EBðf Þ
or EBðxÞ

EB xð Þ ¼
1

T

ðT

0

b tð Þe& ixtdt

" #2

;

where x ¼ 2pf . Strictly speaking, the definition of the spec-
trum is the Fourier transform of the autocorrelation function.
The formula above is an approximation. If the turbulence is
homogeneous, we should find the same spectrum for b(t) any-
where in the plasma. In a turbulent flow, the frequency power
spectrum is most useful if spatial structures are frozen into
the flow. This is the Taylor hypothesis,19 meaning that if a
structure of size d is convected by a spacecraft at velocity V,
then a frequency of order f ¼ V=d is registered in the power
spectrum. In this way, information on spatial fluctuations is
encoded in the time series (i.e., time derivatives can be con-
verted to spatial derivatives). The hypothesis pertains as long
as the magnetic field of the structure changes slowly during
the time the structure is advected across the spacecraft.
Another way to state it is that the fluctuation velocity v in the
moving plasma frame is small, v=V ' 1. This is a good
assumption for high flow speeds and small structures. It is an
especially important assumption in the turbulent analysis of
the solar wind (v=V (0:1 for the dataset studied here).

In Figure 4, we show the frequency power spectrum for
our Wind dataset. The full eight-day record was used. Note

FIG. 3. Autocorrelation function. A sample autocorrelation function from
the solar wind. Shown here is the temporal autocorrelation function for bx

component at the spacecraft location, for eight days of data. The autocorrela-
tion time is about 1=2 h.

FIG. 4. Frequency power spectrum. A wavelet analysis is used to construct
this power spectrum for the Bx component of the solar wind magnetic field
for eight days. Note the & 5=3 index in the inertial range.
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Figure 4.10: Auto-correlation function computed from a time series acquired with the
Wind satellite.(17 )

Wind spacecraft. Although a fast Fourier transform is usually exploited to compute
the power spectrum, here it is computed through a wavelet transform.(17 , 52 ) Notice
the inertial energy cascade, which follows the famous Kolmogorov ’s prediction.
This feature is found over twelve orders of magnitude of the considered scale,
either wave-numbers or frequencies, and it is sometimes referred to as “the Great
Power law in the Sky”.(53 ) Even though the −5/3 scaling is found in many research
publications, it is often found that MHD turbulence is actually anisotropic with
respect to the magnetic field, with perpendicular fluctuations having an higher
energy content.(53 , 54 )

In Fig. 4.12 multiple PDF plots are shown. Notice how the distribution regresses
towards the Gaussian one as the time delay used for the computation increases.
This means that coherent structures are revealed when the analysis is performed
only on short enough time scales, based on the actual de-correlation time. In other
words, any analysis performed with time delays that are much larger than τ c cannot
discriminate the signals from pure noise.

In Fig. 4.13 and example of TSF computation is shown. Here the function is
computed for multiple time lags and orders. In red the inertial range is highlighted;
notice the non-flat linear behavior. In Fig. 4.14 the evolution of the related slope
is shown. In this case the K41 behavior is lost at p ≈ 2, but other authors have
computed TSFs up to order 20, showing a departure only at p = 6.(55 )

In Fig. 4.15 an example of CH plot is shown. Notice the solid black lines that
define the area of allowed coordinates. In the plot some reference point are shown,
namely: chaotic skew tent, Henon, and logistic maps.(49 ) It is interesting to point
out how the experimental results drift toward the pure noise coordinates, that are
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the function (normalized by R(0)) is sC ¼
Ð

RðsÞds. If we
perform time averages, we demand that averages are taken
over many de-correlation times. The stationary phase of the
turbulence should persist for many de-correlation times.

In Figure 3, we show an example of a temporal autocor-
relation function from the Wind solar wind dataset for bx.
Note that as we see from visual inspection of Figure 2, the
autocorrelation time is about 1/2 h, and fluctuations rapidly
de-correlate for times larger than one hour. We calculate a
similar range of autocorrelation times: s1=2 ¼ 0:32 h;
se ¼ 0:54 h; sC ¼ 0:59 h.

The temporal autocorrelation function in the solar wind
has been measured several times before. The notion of statio-
narity in the solar wind (i.e., that average properties of BðtÞ
do not depend on the origin of time) has also been tested. In
a classic set of papers, Matthaeus and Goldstein16,17 ana-
lyzed magnetometer data from Voyager, ISEE 3, and IMP
satellites and found correlation times as high as 50 000 s, but
can be an order of magnitude smaller depending on solar
wind speed and other parameters. Our sample of solar wind
magnetic fluctuations has a s over an order of magnitude
smaller than they report. A high degree of variability of
estimates of correlation time is expected, particularly if solar
rotation effects are included in a long sample.

Matthaeus and Goldstein also found that the solar wind
magnetic field is statistically time stationary, at least in the
“weak” sense. Weak stationarity suggests that the simple
two-time RðsÞ defined above (N¼ 2) should be independent
of the choice of the origin of t, while strict stationarity
requires that all higher order correlations (N $ 2) are inde-
pendent of time origin. The first proper two-point single time
measurements of the spatial correlation function in the
solar wind plasma were performed by Matthaeus et al.18 The
spatial correlation coefficients are computed exactly analo-
gously to the temporal correlation coefficients discussed
above. They used simultaneous magnetic field data from sev-
eral spacecraft, including the four Cluster spacecraft flying
in tetrahedral formation. Simultaneous measurements were

performed with separations as small as 150 km (using pairs
of Cluster satellites) to as large as 350 RE (2:2 % 106 km).
Matthaeus et al.18 find a spatial correlation length of 193RE

or 1:2 % 106 km. This is comparable to our measured auto-
correlation time sC ¼ 0:59 h multiplied by the wind speed of
600 km/s.

B. Frequency power spectrum EBðf Þ

The spectral content of the time series b(t) can be
obtained with a Fourier transform or wavelet transform.
Typically, we deal with the purely real power spectrum EBðf Þ
or EBðxÞ

EB xð Þ ¼
1

T

ðT

0

b tð Þe& ixtdt

" #2

;

where x ¼ 2pf . Strictly speaking, the definition of the spec-
trum is the Fourier transform of the autocorrelation function.
The formula above is an approximation. If the turbulence is
homogeneous, we should find the same spectrum for b(t) any-
where in the plasma. In a turbulent flow, the frequency power
spectrum is most useful if spatial structures are frozen into
the flow. This is the Taylor hypothesis,19 meaning that if a
structure of size d is convected by a spacecraft at velocity V,
then a frequency of order f ¼ V=d is registered in the power
spectrum. In this way, information on spatial fluctuations is
encoded in the time series (i.e., time derivatives can be con-
verted to spatial derivatives). The hypothesis pertains as long
as the magnetic field of the structure changes slowly during
the time the structure is advected across the spacecraft.
Another way to state it is that the fluctuation velocity v in the
moving plasma frame is small, v=V ' 1. This is a good
assumption for high flow speeds and small structures. It is an
especially important assumption in the turbulent analysis of
the solar wind (v=V (0:1 for the dataset studied here).

In Figure 4, we show the frequency power spectrum for
our Wind dataset. The full eight-day record was used. Note

FIG. 3. Autocorrelation function. A sample autocorrelation function from
the solar wind. Shown here is the temporal autocorrelation function for bx

component at the spacecraft location, for eight days of data. The autocorrela-
tion time is about 1=2 h.

FIG. 4. Frequency power spectrum. A wavelet analysis is used to construct
this power spectrum for the Bx component of the solar wind magnetic field
for eight days. Note the & 5=3 index in the inertial range.
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Figure 4.11: PSD computed from a time series acquired with the Wind satellite.(17 ) Notice
the K41 scaling drawn as a dashed line.

(1, 0), as the selected embedding dimension increases. This is in accordance with
the PDF analysis, meaning that an higher embedding dimension translates in a
longer time delay for the computation of the PDF.
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D. Temporal structure function

Averages of powers of increments are called structure
functions

Sp
BðsÞ ¼ hðbðtþ sÞ % bðtÞÞpi:

Functionally, we generate a table of increments for some
time lag s. These are all raised to the power p (where p is
not necessarily an integer), and we compute the average.
Again, for a single waveform, we are forced to invoke the
ergodic theorem and employ time averages in place of true

ensemble averages. Here, we pick a value of s and construct
the table for the entire eight-day record. The process is
repeated for a series of s’s. Alternatively, the PDF of incre-
ments can be constructed for a range of time lags s and the
pth moment can be taken. Note that structure functions
have already been discussed above in computing the flat-
ness. Flatness can be viewed as fourth order structure func-
tion suitably normalized.

Hydrodynamic turbulence theory predicts that if the tur-
bulence is self-similar and fully developed, then higher order
structure functions should scale linearly with the order of the
structure function: Sp

BðDsÞ & Dsf, where s is typically a spa-
tial displacement but connected to a time series by the
Taylor hypothesis. The Kolmogorov 1941 (K41) prediction
for fluid turbulence is f ¼ p=3,2,3 while the Iroshnikov-
Kraichnan (IK) prediction for MHD is f ¼ p=4.32,33 The
extent to which there is intermittency and coherent structures
in the flow is manifest in departures from a linear relation-
ship of the scaling exponents. Dissipation is likely to occur
in these localized coherent structures whether they are
viscous vortex filaments or resistive current sheets. Indeed,
the dissipation need not be collisional but in the case of
magnetic dissipation, almost certainly involves collisionless
dissipation mechanisms at electron scales.

In Figure 6, we construct the temporal structure func-
tions from the solar wind time series of Figure 2. We plot the
structure function vs. time lag s for orders p ¼ 1% 6. Note
that the slope of the structure function increases with increas-
ing order p. In Figure 7, we plot the slope of the structure
function as determined in Figure 6 as a function of order, but
for orders up to p¼ 10. In addition, we can compute the
slope of the structure function for fractional orders p, so that
we can display fðpÞ as a continuous function. Note that at
low order, the slope of fðpÞ tracks the K41 theory well
(f ¼ p=3) but rapidly departs from that model for p ' 2.

Temporal structure functions have previously been stud-
ied in the solar wind (see the review by Marsch and Tu34 and
references therein, as well as35). Assuming again the Taylor
hypothesis that the rate of evolution in the plasma frame is

FIG. 5. Temporal increment. PDFs of the normalized temporal increment of
BxðtÞ from the Wind satellite, employing delays s of 3 s, 10 min, 1 h, and 10 h.

FIG. 6. Temporal structure function. Structure functions Sp
BðsÞ of order

p¼ 1 to 6 from magnetic fluctuations measured by the Wind spacecraft.
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Figure 4.12: PDFs of increments computed for multiple time lags. notice how the PDF is
much larger at low time lags, indicating the presence og coherent structures.(17 )
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D. Temporal structure function

Averages of powers of increments are called structure
functions

Sp
BðsÞ ¼ hðbðtþ sÞ % bðtÞÞpi:

Functionally, we generate a table of increments for some
time lag s. These are all raised to the power p (where p is
not necessarily an integer), and we compute the average.
Again, for a single waveform, we are forced to invoke the
ergodic theorem and employ time averages in place of true

ensemble averages. Here, we pick a value of s and construct
the table for the entire eight-day record. The process is
repeated for a series of s’s. Alternatively, the PDF of incre-
ments can be constructed for a range of time lags s and the
pth moment can be taken. Note that structure functions
have already been discussed above in computing the flat-
ness. Flatness can be viewed as fourth order structure func-
tion suitably normalized.

Hydrodynamic turbulence theory predicts that if the tur-
bulence is self-similar and fully developed, then higher order
structure functions should scale linearly with the order of the
structure function: Sp

BðDsÞ &Dsf, where s is typically a spa-
tial displacement but connected to a time series by the
Taylor hypothesis. The Kolmogorov 1941 (K41) prediction
for fluid turbulence is f ¼ p=3,2,3 while the Iroshnikov-
Kraichnan (IK) prediction for MHD is f ¼ p=4.32,33 The
extent to which there is intermittency and coherent structures
in the flow is manifest in departures from a linear relation-
ship of the scaling exponents. Dissipation is likely to occur
in these localized coherent structures whether they are
viscous vortex filaments or resistive current sheets. Indeed,
the dissipation need not be collisional but in the case of
magnetic dissipation, almost certainly involves collisionless
dissipation mechanisms at electron scales.

In Figure 6, we construct the temporal structure func-
tions from the solar wind time series of Figure 2. We plot the
structure function vs. time lag s for orders p ¼ 1 % 6. Note
that the slope of the structure function increases with increas-
ing order p. In Figure 7, we plot the slope of the structure
function as determined in Figure 6 as a function of order, but
for orders up to p¼ 10. In addition, we can compute the
slope of the structure function for fractional orders p, so that
we can display fðpÞ as a continuous function. Note that at
low order, the slope of fðpÞ tracks the K41 theory well
(f ¼ p=3) but rapidly departs from that model for p ' 2.

Temporal structure functions have previously been stud-
ied in the solar wind (see the review by Marsch and Tu34 and
references therein, as well as35). Assuming again the Taylor
hypothesis that the rate of evolution in the plasma frame is

FIG. 5. Temporal increment. PDFs of the normalized temporal increment of
BxðtÞ from the Wind satellite, employing delays s of 3 s, 10 min, 1 h, and 10 h.

FIG. 6. Temporal structure function. Structure functions Sp
BðsÞ of order

p¼ 1 to 6 from magnetic fluctuations measured by the Wind spacecraft.
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Figure 4.13: TSFs computed from a time series acquired with the Wind satellite.(17 )

Notice the inertial range highlighted in red.

slow compared to the rate at which structures are advected
by spacecraft, the prediction from Kolmogorov turbulence
theory is SpðsÞ / sp=3.2 In other words, a log-log plot of
Sp

BðsÞ for some power p should have a linear region corre-
sponding to the inertial range. Famously, the second order
structure function grows like s2=3 in numerous wind tunnel
experiments.2 Growth of the second order structure function
like s2=3 is closely connected with the frequency power spec-
trum (another second order statistical quantity) dropping like
f # 5=3 in Kolmogorov turbulence. Data from long time series
of the Voyager and Helios spacecraft show structure func-
tions with slopes much flatter than the Kolmogorov predic-
tion. In the Marsch and Tu review, data from structure
functions up to 20th order are shown. It is only above sixth
order that departures from the Kolmogorov prediction are
observed in that dataset.

In a recent series of observations using the Cluster
spacecraft and the FGM and STAFF-SC instruments dis-
cussed above, Kiyani et al.35 measured high order structure
functions in a stationary interval of fast solar wind. They
show in a log-log plot of Sp

BðsÞ vs s an increase in the slope
as the order increases from p¼ 1 to 5. An increase is
observed for both the inertial range (s > 10 s) as well as the
dissipation range (s < 1 s). Just as in the Marsch and Tu
review and our results here, the Kiyani et al. results show
structure functions with slopes flatter than the Kolmogorov
prediction at the higher orders due to intermittency.

E. Permutation entropy

Finally, we consider permutation entropy and complex-
ity of a turbulent waveform.36,37 The idea is to study the or-
dinal pattern of a sequence of values in a time series. If we
consider N¼ 5 sequential points in a waveform, we ask in
what order do they appear? One possibility is that they
appear in ascending order 1 # 2 # 3 # 4 # 5. Another is that
the largest value of the five appears first, followed by the
next highest value, then lowest, third, second. This ordinal
pattern would be represented 5 # 4 # 1 # 3 # 2. Some
examples are shown in Figure 8. There are N! ¼ 120 such
permutations if N¼ 5 (called the embedding dimension). We
are interested in the frequency each ordinal pattern appears
in a long time series.

We construct a probability distribution function P con-
sisting of all 120 frequencies of occurrence Pi of a given
length 5 ordinal pattern in all 5-value segments of the time
series. Following Bandt and Pompe,36 we define the
Shannon permutation entropy of the time series as

S½P& ¼ #
XN!

i¼1

PilnðPiÞ:

If the waveform is truly stochastic, then we expect all ordinal
patterns in a record of length n' N to be equally likely and
we find

Smax ¼ #
X 1

N!
ln

1

N!

! "
¼ ln N!ð Þ:

We will normalize permutation entropies to this value and
call the normalized entropy H½P& ¼ S½P&=Smax. Note that if
the waveform is particularly simple, for example, a gradual
linear ramp in time, then the only ordinal pattern that appears
is 1 # 2 # 3 # 4 # 5 and the permutation entropy of this
waveform is zero.

Rosso et al.37 added another metric to the study of time
series related to the embedded structure in the waveform and
based on the notion of the so-called “disequilibrium.” They
define a Jensen-Shannon complexity

CJS½P& (QJ ½P&H½P&;

where

QJ½P& ¼ S½ðPþ PeÞ=2& # S½P&=2 # S½Pe&=2

and Pe is the uniform probability distribution function that
admits the maximal entropy discussed above. QJ½P& is a

FIG. 7. Structure function slope. The structure function slope versus
moment (in black) fðpÞ with comparison to K41 theory in dashed green
measured by the Wind spacecraft.

FIG. 8. Permutations of ordinal pat-
terns. Some examples of ordinal pat-
terns that might appear in a turbulent
time series. There are N! ¼ 120 such
permutations if N¼ 5. Vertical scale is
arbitrary.
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Figure 4.14: The slope of the TSF over the inertial range are here shown.(17 ) Notice how
the experimental behavior deviates from the K41 prediction at p ≈ 2.
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normalized quantity, and it quantifies how different P is from
the uniform distribution Pe. We see immediately that CJS½P"
is zero when H½P" ¼ 0 (e.g., the linear ramp), and CJS½P" is
also zero when P¼Pe (the maximal entropy case).

If we plot CJS½P" versus H½P" (in the so-called CH-
plane), we see that for entropies between these extremes,
there is a range of possible complexities CJS½P", reflecting
the fact that there are often differing degrees of structure
which can exist in systems which appear equally random.
The complexity can be interpreted as a measure of the “non-
triviality” of the distribution of a systems ordinal patterns,
reflecting correlational structures neglected in the calculation
of the entropy. For example, while deterministic chaos is
highly unpredictable, reflected by moderately high entropies,
there are intricate structures embedded in chaotic dynamics,
reflected by near-maximal complexities on the CH-plane. It
can be shown that if CJS is plotted as function of H, the posi-
tion of any time series on the CH plane is constrained to fall
within a crescent-shaped area, outlined in black in Figure 9.

We can compute CJS½P" and H½P" for any time series
and plot it on a CH-plane. What do we see? For the two
extreme cases above, we find first that the linear ramp has
zero permutation entropy and zero complexity (lower-left
corner), while the uniform probability distribution Pe has
normalized entropy of unity and zero complexity (lower-
right corner). We can generate waveforms from deterministic
chaotic systems such as the logistic map, the skew tent map,
Henon map, and the Lorenz map (all defined in Rosso
et al.37), and we find that for these systems the normalized

entropy is about 0.5 but the complexity is maximal (also
about 0.5). Numerically generated fractional Brownian
motion waveforms (fBm)37 have close to maximal entropy
(and therefore C near zero).

Finally, we need not select our N¼ 5 points sequentially
in a time series, but rather, we can opt to select every other
point, or every 10th. The idea here is that the physics of in-
terest may well be slower than digitization rate of our instru-
ment. We call the number of points skipped the embedding
delay, and it allows us to study permutation entropy at longer
time scales, and therefore larger spatial scales. An interesting
future study would be to establish a connection between
coherent structures manifest in the “fat tails” in the PDF of
increments discussed above, and non-trivial ordinal patterns
in the time series manifest by finite complexity CJS.

For the solar wind data shown in Figure 2, we find that
the entropy is nearly maximal (and C near zero) so that solar
wind fluctuations are highly stochastic, even more stochastic
than fractional Brownian noise.38 In Figure 9(a), we plot the
entire CH plane, and show the CH locations for the solar
wind data of Figure 2 with a range of embedding delay times
from 3 s to 3 min. We also show the CH locations of chaotic
skew tent, Henon, and logistic maps, as well as fractional
Brownian motion. Figure 9(b) shows a zoom in of the same
data from the high entropy corner of the CH plane. We see
that as we increase the embedding delay, the solar wind data-
set has even higher permutation entropy (H¼ 0.97), and less
complexity (C¼ 0.05). It is remarkable that solar wind fluc-
tuations have higher entropy and are therefore more stochas-
tic than numerically generated fractional Brownian noise.

III. CONCLUSIONS

We have presented a tutorial on the paradigms and tools
of magnetohydrodynamic (MHD) turbulence. The principal
paradigm is that of a turbulent cascade from large scales to
small, resulting in power law behavior for the frequency
power spectrum for magnetic fluctuations. A single dataset
from the Wind satellite was used to illustrate five temporal
statistical tools. The five statistical tools for MHD turbulence
in the time domain include: the temporal autocorrelation
function, the frequency power spectrum, the PDF of tempo-
ral increments, the temporal structure function, and the
permutation entropy.

We have several findings that corroborate prior measure-
ments in the solar wind. These include an autocorrelation time
of about 1/2 h, and a power-law scaling of the frequency power
spectrum with a spectral index of 5/3. In addition, we corrobo-
rate that for our Wind satellite data set, the PDF of temporal
increments has fat tails at short lag times, indicating a popula-
tion of discontinuities in the magnetic field time series. We
note that for structure functions at low order, the slope of fðpÞ
tracks the Kolmogorov theory well (f ¼ p=3) but rapidly
departs from that model for p & 2. A new finding is that the
solar wind time series has particularly large normalized permu-
tation entropy, suggesting that the turbulent solar wind is
nearly maximally stochastic. We suggest that applying differ-
ent tools to the same dataset could illuminate new physics. For
example, coherent structures manifest in the “fat tails” in the

FIG. 9. CH plot for the solar wind. (a) CH plot with solar wind fast stream
Bx positions over a range of embedding delays, s¼ 3 s to 3 min. The dia-
mond, square, and triangular purple markers represent chaotic skew tent,
Henon, and logistic maps, respectively. The stochastic fBm points are shown
as a black dashed line. Crescent shaped curves show the maximum and mini-
mum possible CJS. Boxed region is depicted below. (b) The lower-right cor-
ner of the CH plot. The arrow indicates the direction of increasing s. The
color coding indicates increasing embedding delay times from 3 s to 3 min.
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Figure 4.15: In a) the whole CH plot is shown. The solid black lines delimits the area of
allowed coordinates, while the dashed one is related to fBm signals. The purple markers
are the chaotic skew tent (diamond), Henon (square), and logistic (triangle) maps. The
boxed region is enlarged in b). The arrow indicates the direction of increasing embedding
dimension, or time delay.(17 )
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Chapter 5

Magnetic turbulence analysis on TCV
plasma discharges

In this chapter the results of the application of the analysis tools presented in
Ch. 4 is given. The analyzed experimental data comes from multiple plasma
discharges, also referred to as shots. The chosen shots are part of two different TCV
experimental missions, which are mission #1531 and #1594. These missions have
different goals: the former focuses on L-H transition physics, while the latter studies
core electrons’ temperature turbulence.(56 , 57 ) The choice of these mission is made
because they offer a set of coherent experimental data that enables a proper test of
the developed algorithms. This means that plasmas having similar characteristic
are studied in the frame of a single mission. Therefore, consistent results are
obtained from different plasma discharges of a single mission. Twenty-seven plasma
discharges are taken into account in this work, amounting to several GB of data.
Notice that each computation is performed on the signals coming from all the
probes in a independent manner. This means that the analysis can be performed
on an arbitrary number of probes at the same time. For this work all the probes
are always taken into account; this is also the reason why the amount of analyzed
data is huge.

In Sec. 5.1 an explanation of the analysis strategy of the experimental data is
given. In particular, it is presented how the data is chosen and how it is processed
before the actual computation.

In Sec. 5.2 the first part of the results are presented. Here the more basic analysis
are taken into account, namely: auto-correlation, PSD and temporal increments.

In Sec. 5.3 the more advanced analysis are presented. In fact, the last three tools
are taken into account, namely: temporal structure functions ,Hurst ’s exponents,
and CH plot.

Please, for further information on the actual implementation of the code refer
to App. A.
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5.1 Data selection and processing

The aim of this section is to explain how the whole data relative to one plasma
discharge is divided into multiple subsets and how these are processed before the
actual analysis.

The shots of mission #1531 are characterized by multiple plasma current
plateaus, which are set in order to try achieve the L-H mode of confinement
transition. There are two possible mode of operation for a tokamak plasma. These
are the low confinement mode (L) and high confinement mode (H). Qualitatively,
the two differ in the established transport behavior, with τE in the H case being
as high as two times the one typical of L-mode plasmas.(8 ) This is, therefore, a
favorable situation towards the goal of sustaining burning plasma. However, the
H-mode of operation shows the presence of edge instabilities known as edge localized
instabilities (ELMs). Practically, these act as pressure relief valves, stabilizing the
edge plasma pressure. ELMs are driven by the edge pressure gradient; when this
becomes too large, one of such events is initiated. There are three types of ELM-y
H-mode of operation. These are characterized by different frequency of occurrence
and violence of ELM events. An ELM-free H-mode of operation is also possible.
Eight plasma discharges are taken from this mission. All these shots are located
in the center of the TCV vacuum vessel. The relative data is sliced in multiple
subsets, called time windows. These are chosen in order to perform the analysis
over a plasma current plateau, because a changing current leads to a change in the
poloidal magnetic field. Since this is the physical quantity of interest, this choice
guarantees to perform the acquisition in a close to steady-state situation. This is
important in order to perform unbiased averaging. A total of ten time windows
are selected, with up to eight . For the duration of a time window similar plasma
properties are shown

The shots of mission #1594 are peculiar for at least a couple of reasons: these are
performed at different vertical positions inside the vacuum vessel of TCV, and they
are characterized by different values of triangularity. Specifically, the triangularity
values are both positive and negative. The latter configuration is of particular
interest since such a divertor configuration would be characterized by a larger
divertor surface with respect to the positive case, because of the toroidal geometry.
Maintaining fixed plasma parameters, a larger area means lower heat power fluxes
on the divertor itself, which is a advantageous feature. Nineteen plasma discharges
are taken from this mission and only one time window is selected for each. This is
done in order to perform the analysis on multiple plasmas having similar density
values. This allows to search for any difference in the results, that can be due either
to a different plasma position or to a change in triangularity.

Once the data is selected, it is processed in order to prepare it for the analysis.
First, the acquired edge magnetic field is manipulated in order to obtain another
quantity, which is the normalized time-varying part of the signal. This procedure
is introduced at the beginning of Ch. 4. Then, any drift in the time series is
individuated and removed, through the computation of a polynomial fit. This is
done in order to remove any residual bias that there might be in the data set.(58 )
Finally, the signal is filtered using a Kaiser window filter. The default window
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Figure 5.1: Example of signal processing. Here eight signals acquired from the TCV shot
#55597. In the first plot the raw data is shown. Then, from the second plot to the last
one the signal is shown after: trends removal, normalization and filtering.

is designed for the exclusion of unwanted features, such as: low frequency MHD
coherent structures, power supply noise, and all those harmonics already distorted
by the cutoff frequency of the measurement system.

In Fig. 5.1, an example of signal processing is shown.

5.2 Basic results

In this section the results of the first three analysis tools are presented. An example
related to a single shot is given for each statistics. Then, global averages are taken
into account. With this concept an averaging procedure over all the probes is
intended. Thus, a global average parameter is obtained over a time window for
each analysis and for each shot. The estimate of this mean value is improved
via an outliers elimination procedure. This means that once the global average
is computed, all signals, related to a result that is farther than 3σ from it, are
excluded form the averaging procedure. Then a new global mean value is calculated.
This can be arbitrarily repeated; however, for this work such refinement procedure
is done twice. Notice that once a signal is found to be invalid for one analysis tool,
it is excluded also form the other ones that are computed during the same call of
the code.
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Figure 5.2: De-correlation times for all the signals for the L-mode current plateau of TCV
shot #55597.

5.2.1 Auto-correlation function

Since the measurements are relative to a single component of the magnetic field,
the computation of the auto-correlation function, as presented in Sec. 4.1, is
straightforward. In fact, only scalar quantities have to be dealt with.

As anticipated in Sec. 4.1, there is a degree of freedom in the choice of τ c,
which for this work is defined as shortest the time delay after which the value fo the
auto-correlation function drops below a selected threshold. This factor is chosen to
be e−1. In order to improve the robustness of the search algorithm, the choice of
τ c is bounded to the first section of R (τ), which is comprised between the global
maximum and the first local minimum of the function. Since R (τ) is symmetric
with respect to the vertical axis, the first local minimum is found restricting the
analysis to the positive lag times part of the function and imposing a control on the
value of the function’s derivative. Thanks to these restrictions, the first threshold
crossing is consistently found.

In Fig. 5.2 an example of computed de-correlation times is shown. The
underlying data comes form TCV shot #55597, which is part of the first considered
mission. The selected time window spans over a L-mode current plateau set at
Ip = 210 kA. This result is representative of all the analyzed shots and from this
figure a couple of interesting comments are obtained.

The first one is that the results show some degree of sparseness. This may be
due to various causes, however, the main one is a possibly poor signal to noise
ration. This is demonstrated with the last analysis tool, that is the CH plot. In Sec.
5.3.2 the CH plot of this very time series is presented and a comment regarding the
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Figure 5.3: Comparison of multiple de-correlation times computed during L-mode current
plateaus of different TCV shots.

hypothesis of poor signal to noise ratio is given.
The second comment deals with the possible origins of the noise content of the

signals. Such sources are hypothesized to be two. An intrinsic noise content is due
to the electronic acquisition chain system. Its calibration is date to the beginning
of year 2016 and it is therefore considered valid. however, some of electronic cards
and cabling are quite old. These, for sure, insert a noise component in the signal.
The second source is considered to be the relative position between the plasma and
each probe. In fact, from the figure it can be easily shown that the probes located
closest to the plasma have less scattered de-correlation times.

In order to eliminate as much as possible the contribution of noise, a global
averaging strategy is adopted. Computing a mean value from all of the results
minimizes the noise content of the final information. In Fig. 5.2 the global mean τ c
value is shown along side the one standard deviation interval. In Fig. 5.3 all of the
average de-correlation times, related to the same time window, are shown. Also this
figure is representative of all the other results, meaning that it is always possible to
find common results across similar time windows of different experiments.

τ c ∼ 10 µs is a result that is consistently found across all data. In particular,
considering the first mission, no relevant trend is seen as the plasma current is
changed, nor when the mode of confinement is varied. Regarding the second mission,
slightly longer de-correlation times are found for positive triangularity plasmas
with respect to their negative counterparts. From the point of view of an effective
turbulent diffusion coefficient this means that a positive triangularity plasma is
characterized by lower transport properties, which is desirable in order to achieve
the burning plasma condition.
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Figure 5.4: Example of PSD plot for a signal acquired during TCV shot #55597. The
computed PSD trend is shown.

5.2.2 Power spectrum density

As previously presented in Sec. 4.2, the purely real power spectrum is computed
for each acquired signal.

In Fig. 5.4 a representative example is shown. This is the PSD plot for one of
the signals acquired during the L-mode plateau of shot #55597. The frequency
interval over which the PSD is shown is determined by the filtering process that is
applied prior to the analysis. It is interesting to notice how the plot significantly
drops after about 100 kHz. This is due to the fact that the cut-off frequency of
the measurement system is located at 120 kHz. Therefore, signal attenuation is
considered relevant for frequencies over 100 kHz. This is also one of the two reasons
why the PSD slope is computed in the 1÷ 80 kHz interval. The other reason is that
the energy cascade often stops in the 80÷ 100 kHz interval, as shown in the figure.
This phenomenon is not explored in the frame of the present work and, therefore,
it is neglected from the computation of the slope.

Another feature that is found in all PSD plots is the presence of sudden peaks
in the energy cascade interval. These are due to high harmonics coherent MHD
phenomena that overlap to the underlying turbulent signal. In order to cancel their
contribution from the slope computation, an exclusion algorithm is developed. This
searches for local minima in the energy cascade interval and then calculates their
linear interpolation. Finally, the slope of the PSD is computed as the slope of the
interpolation. In Fig.5.4 both the local minima and the interpolation are shown.

Also for this analysis the results show some degree of scatter. It is therefore
more interesting to comment the comparison of global averages. Different behaviors
characterize the two missions.
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For the first mission, although a common slope is found for each time window, it
is difficult to find a trend as the current and mode of confinement change. Moreover,
such common slope cannot be correlated to any of the reference one, that are
presented in Sec. 4.2. On the other hand, it is much easier to exclude the K41 and
IK exponents, since the experimental ones are generally even more negative than
the Hall ’s one.

Regarding the second mission, it is always possible to exclude all three reference
exponents. This is because the experimental values are much more negative than
−7/2.

Both results are interesting, in the sense that it is found that the three theories
chosen as a reference are not adequate to describe edge magnetic filed turbulence in
a tokamak. This is of course in contrast with other MHD turbulence studies that
find the famous Kolmogorov scaling regarding solar wind data.(17 ) This conclusion,
however, is in accordance with the TSF analysis presented in 5.3.1.

5.2.3 Temporal increments

As stated in Sec. 4.3, this analysis is very important since it allows to state that the
chosen signals are not random noise and, therefore, all other analysis are performed
on time series that have actual information content.

In Fig. 5.5 the probability density function of a single signal is shown. This
comes from one the coils of the HFS-TOP array and it is acquired during plasma
discharge #55597. Its time window is the same as the previous two examples, that
is L-mode of confinement, Ip = 210 kA. In the figure the PDF computed for the
signal is compared to a Gaussian function having the same standard deviation
value. It is straightforward to notice that the experimental PDF is much broader
than the Gaussian curve. Alongside a qualitative comparison, a quantitative one is
performed. In fact, both kurtosis and skewness are computed. In this case K = 283
and S = 0.66. While the former value is much larger than then one of a Gaussian
function, for which K = 3, the latter is close to the reference value, that is S = 0.
K represents the broadness of the distribution, while S its symmetry with respect
to its maximum. It is easy to understand the reason why S is slightly greater than
zero in this case, since there are more variations on the positive side of the plot.

In Fig. 5.6 and 5.7 the comparison among various global averages is shown.
Huge values of K are computed, in fact, up to two orders of magnitude higher than
the Gaussian reference. The standard deviations are very large as well. This is due
to particularly high or low values that are not excluded by the outliers elimination
algorithm. In some cases several values, that seem to be invalid, are actually found
to be closer than the chosen 3σ limit. Moreover, the intrinsic variability of the
acquisition system, that comes from the multiple positions in which the coils are
placed, adds up to the scatter of the analysis of this result. In other words, coils
placed particularly far from the plasma suffer from a poorer signal pickup. This
means that higher fluctuations are expected from such coils as a results of a poorer
signal to noise ratio. Regarding skewness, a value close to zero means that positive
and negative variations of the signal are equally likely to occur, and. S ≈ 0 is a
consistent feature across all data sets.

The kurtosis of the signals related to the first mission are about two orders of
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Figure 5.5: Comparison between a experimental PDF and the normal distribution that
has same mean and standard deviation values.

magnitude higher than the reference of noise. Moreover, K generally increases as
the plasma current grows, while staying in L-mode. On the other hand, it decreases
when an L-H transition occurs. In the case of the second mission, values of K up
to three orders of magnitude are computed. As anticipated, all signals show almost
symmetrical PDFs since S ≈ 0 is always found.

In conclusion, the characteristic of the experimental data clearly cannot be
associated to the ones of pure noise. This guarantees that the acquired signals have
a physics information content.
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Figure 5.6: Comparison of multiple K values computed during L-mode current plateaus
of different TCV shots.

Figure 5.7: Comparison of multiple S values computed during L-mode current plateaus of
different TCV shots.
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5.3 Advanced Analysis

In this section the results of the last three analysis tools are presented. As for the
previous section, for each tool an example is given. Then the discussion is made on
the comparison of the global averages.

5.3.1 Temporal structure functions and Hurst ’s exponents

The temporal structure function analysis is the most complex of all the implemented
analysis. Not for the involved computation, but instead for what regards the
interpretation of the results.

In Fig. 4.4 the temporal structure function for one signal is shown. Seven orders
are computed, as explained in Sec. 4.4, for a very large number of time lags. The
chosen signal is, again, acquired during the L-mode current plateau of TCV shot
#5597. At order zero the TSF is a straight line. This is expected and this order is
actually computed in order to check the validity of the algorithm. As expected, the
value of the TSF increases as the order is increased over the value p = 1.

The plot is usually read either going from long to short time lags, or vice versa.
The former approach is chosen here. At very long time scales, higher than 0.1 s, the
TSF shows a drop in value with respect to the flat behavior found at subsequent
time lags. This is due to the fact that, at these time scales, τ is of the order of
magnitude of the chosen time window. Thus, the computation of the TSF value
does not take into account all the values of the signal, since for some of these the
correlated shifted value is not found in the time series. Hence, this part of the plot
is considered not to be valid. In the next interval, that is for 0.5 ms < τ < 100 ms,
the TSF shows a flat feature. Over these time scales the turbulent structures
average out their contributions. Thus, turbulence is said to be stationary over these
time scales. Over shorter time lags the TSF shows an oscillatory behavior, which
is more difficult to explain in terms of underlying physical phenomena. This is
because energy injections are related to peaks in the TSF, whereas local minima are
related to energy dissipation. Even though the underlying physics is not explored,
it is possible to state that there might be multiple phenomena competing over
these time scales. The choice of computing the TSF over multiple orders allows
to catch this feature, since the TSF values are increased at higher orders. The
last interval, for 4 µs < τ < 40 µs, shows the inertial cascade. In fact, as stated
in Sec. 4.4, a linear non-flat part of the TSF is correlated to the inertial energy
cascade. The computation of the TSF is stopped at 5 µs because of a limit imposed
by the sampling frequency of the acquisition system. In fact, the selection of a time
lag close to the inverse of the sampling frequency leads to the creation of artifacts
similar to the one present a long time scales. However, this time the artifact is due
to the choice of performing a computation that requires an higher precision of the
acquisition system.

An interesting characteristic, that is consistently found with this analysis, is the
presence of the peak at τ ≈ 30 µs. The start of the inertial cascade is located at an
higher value, with respect to the stationary flat portion of the TSF. This can be
explained in two ways. Reading the plot from the right, it is possible to state that
the overall contribution of the oscillatory feature is, in fact, an energy injection in
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Figure 5.8: Slope of the TSF of one signal acquired during TCV shot #55597. Both slopes
at short and long time delays are shown.

the system. On the other hand, reading from the left, it is possible to state that
the net contribution is the one of an energy dissipation. Further investigation is
here needed.

In FIg. 5.8 the evolution of the slope of the TSF, that is ζ (p), is shown. Two
experimental curves are plotted: one for short and one for long time lags. In the
former case the experimental slopes are located at ζ (p) ≈ 0 for all orders. This
is expected since the TSF is flat over this region. For the short time lags case an
asymptotic linear behavior is found at low orders. Again, this is expected, but this
linear feature does not follow the reference ones. However, this is in accordance
with the PSD analysis presented in Sec. 5.2.2. At orders higher than p ≈ 2.5
the experimental trend deviates from linearity, showing the presence of dissipative
processes acting over the inertial cascade.

Also for this analysis global averages are computed. The plot shown in Fig.
5.8 is representative of all the performed analysis. In fact, the main features of
the slope of the TSF are consistently found through all data. At short time scales
these are: linear behavior, for low orders, that is different form the reference ones,
and departure from linearity at higher orders. For the experiments of the first
mission linearity is followed up to p ≈ 1, while for the shots of the second one
this characteristic holds until p ≈ 2. However, while for mission #1594 the plots
of ζ (p) present saturation at high order, for the ones of mission #1531 drops are
sometimes observed. In the case of long time lags, the TSF is consistently flat,
showing stationarity over long time periods.

As explained in Sec. 4.4 and 4.5, the TSF is exploited for the computation of
the Hurst ’s exponents. Hp are computed for both the short and long time lags
intervals. As expected, Hp ≈ 0 for long time scales. This means that the signal
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Figure 5.9: Comparison of multiple H values computed during L-mode current plateaus
of different TCV shots.

is stationary over these time periods, result that is also found form the previous
analysis. Moreover, the signal is said to be mono-fractal over such scales. Regarding
short time lags, a multi-fractal behavior is observed. This originates from the
departure of ζ (p) from linearity. In Fig. 5.9 an example of globally averaged Hp for
multiple experiments is shown for both time intervals. The multi-fractal behavior
is clearly visible in the short time lags case.

A further comment is needed for H1. This is, in fact, the exponent used to
establish both the time persistence of the signal and its fractal dimension. It is
interesting to point out that all the analysis performed on the shots of mission
#1531 show H1 < 0.5. This means that these signals are anti-correlated, regardless
of the actual plasma behavior. An anti-correlated signal tends to regress to its
local mean value, as it is shown in Fig. 5.10. The related fractal dimension is,
therefore, D ≈ 3. This is because the acquisition system enables a two dimensional
description, that is along the toroidal and poloidal coordinates, hence setting n = 2
in Eq. 4.19. In the case of the shots of the other mission, the majority of the signals
present a persistent behavior, meaning that, even though Hp ≈ 0.5, this value is
often found to be slightly lover the threshold. Therefore, for the majority of these
signals D ≈ 2.5.

5.3.2 CH plot

This last analysis is the one that probably gives the most interesting results.
In Fig. 5.11 and example of occurrence frequencies is shown. For this work

the embedding dimension is chosen to be N = 5. In fact, in the plot all possible
permutations are shown along the horizontal axis. These are sorted in order to have



5.3 Advanced Analysis 67

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
time [s]

-0.274

-0.272

-0.27

-0.268

-0.266

-0.264

-0.262

-0.26

-0.258

-0.256

B 
[T

]
#55597: HFS-MID-003-001

0.14 0.145 0.15 0.155 0.16
time [s]

-0.272

-0.27

-0.268

-0.266

-0.264

-0.262

-0.26

B 
[T

]

#55597: HFS-MID-003-001

0.14 0.141 0.142 0.143 0.144 0.145
time [s]

-0.272

-0.27

-0.268

-0.266

-0.264

-0.262

-0.26

B 
[T

]

#55597: HFS-MID-003-001

Figure 5.10: Comparison the waveform of a signal over different time scales. Notice how
the signal tend to oscillate around a local mean value instead of diverging.

Figure 5.11: Occurrence frequencies of the 120 possible permutations for 8 signals acquired
during the L-mode plateau of TCV shot #55597.

an always increasing plot, for better readability. Multiple lines are shown as there
is one for each considered signal. The time series taken into account are coming
from the HFS-MID probes and are acquired during the L-mode current plateau of
TCV shot #55597. A pure noise signal would show a flat distribution so, at first
sight it is possible to state that the analyzed signals are not pure noise.

In Fig. 5.12 the permutation entropy and complexity characteristic of the
previous signals are shown on the CH plot. In order to give some reference, the
characteristics of a linear ramp function, a pure noise signal, and an example from
solar wind analysis(17 ) are plotted. Moreover, the dashed line shows the coordinates
of fBm signals as their defining Hurst ’s exponent changes. The entropy content of
the signals is quite relevant, being over H [P ] > 0.7.

In Fig. 5.13 a comparison between two different time windows is shown. All
of the selected shot come from the first mission, so the difference in the two plots
is that the first one shows the results for an L-mode Ip = 315 kA plateau, while
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Figure 5.12: CH plot of the signals of Fig. 5.11.

for the second one the related plasmas are in ELM-free H-mode at the same
current. This comparison is representative of the behavior of all the shots of the
first mission, which is characterized by a decrease in complexity when the L-H
transition occurs. This drops is explained by the establishment of the pressure
pedestal during the H-mode of operation. When the pedestal is established, the
turbulent flow is dominated by the critical balance dynamics. This states that the
turbulent cascade is generated when critical values of the gradients of the involved
physical quantities are reached. During the L-mode of operation, instead, there
are multiple contributions that compete in order to establish the overall dynamics.
An higher complexity is, therefore, correlated to this competition among different
mechanisms.

In Fig. 5.14 all of the results for the second mission are shown. The division is
between positive and negative triangularities. Higher complexity values are observed
for the latter case. As a matter of fact, negative triangularity configurations are
characterized by more important transport properties. In this sense, this result is
expected. The light-blue points are related to two plasmas centered at z = 0 m,
their presence is useful to easily track the trend in complexity change.
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Figure 5.13: Comparison of global CH characteristics for multiple shots during two time
windows: L-mode (left) and ELM-free H-mode (right). Notice how the complexity feature
decreases as the plasma undergoes the L-H transition.

Figure 5.14: Comparison of global CH characteristics for all the shot of the second mission;
negative triangularity on the left and positive on the right. Notice how the complexity
values lower for positive triangularities.
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Chapter 6

Conclusions

In this Chapter the results of the presented thesis are summarized, and some ideas
for future works are presented.

The need of a robust algorithm to characterize the edge magnetic field turbulence
in a statistical fashion has been fulfilled. The developed code, reported in Appendix
A, offers a standardized, but flexible, way of invoking multiple statistical tools on
the measurements acquired with the fast magnetic acquisition system installed in
the TCV tokamak.

The code is able of performing the following list of analysis: computation of
the auto-correlation function and de-correlation time, computation of the power
spectrum density, computation of the probability density function of time increments,
computation of multiple orders of the temporal structure function, computation of
the Hurst ’s exponent of the time series, computation of the permutation entropy
and complexity features of the signal.

The code was validated through the analysis of actual TCV magnetic data. In
fact, the analysis of 27 plasma discharges was performed. These were chosen from
a pool of two different TCV experimental missions that aims to study the L-H
transition physics and core electrons temperature turbulence, respectively.

De-correlation times of the order of 10 µs are consistently computed across all
data and the obtained PSD spectra do not follow the theoretical scaling laws of
reference over the analyzed frequency interval.
The results of the PDF analysis clearly show that the analyzed signals are not
random noise, but instead they have a physical information content.
The TSF analysis showed the presence of dissipation during the energy cascade, as
well as the presence of competing phenomena, prior to the cascade, that can either
give a net energy injection or dissipation contribution.
The computed Hurst ’s exponents showed that the signals are generally anti-
correlated, even though in some cases H is about 0.5 or even slightly larger.
The permutation entropy and complexity analysis showed that the acquired signal
follow the properties of fBm functions. This means that the experimental data can
be described by these functions. Moreover, the entropy content of the time series
is generally large, meaning that the signals have a high noise contribution. This
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means that the signal to noise ratio is generally poor, which, in turn, causes a high
degree of scattering in the results of the single signals.

The strategy of performing global averages is a successful solution towards
this scattering issue. This is because the contribution of noise is canceled when
averaging is carried out. Thus, having more than 200 signals is a strength of this
analysis procedure.

Nevertheless, other strategies are valid as well. As a matter of fact, there might
be more meaningful ways to deal with the high noise content of the signals. An
example is to adopt a strategy that considers as not valid all signals having a
normalized entropy greater than a chosen threshold. More investigation in this
sense could improve the robustness of the analysis.

Given the modular nature of the code, it is possible to modify and upgrade it
with relatively little effort. This means that multiple analysis strategy could be
easily implemented and then compared.

An higher degree of automation of the code is for sure an interesting feature.
Regarding this point, an automatic detection of the intervals over which perform
the analysis would be much appreciated. For example, an automatic energy cascade
range-detection algorithm for the PSD and TSF analysis could be implemented.

Some analysis tools were not considered during the development of the code,
but it might be useful to take these into account. Some examples are: the spatial
and cross-correlation analysis among all the probes, the wavelet analysis and the
R/S method for the computation of the Hurst ’s exponents.

The frequency interval of the analysis can be widened exploiting other types
of probes, such as the LTCC3D ones, that have a sampling frequency that is one
order of magnitude higher than the one of the Mirnov coils. However, the number
of these very high frequency probes is quite low with respect to the one used for
this work. This means that the statistical characteristic of such analysis would be
diminished with the LTCC3D.
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Implemented code

The developed code is organized in multiple files. The analysis is called either
invoking the StatComp function or the MultiExecution one. The latter is designed
to perform multiple analysis with the same parameters with one call. The code is
very flexible; in fact it relies on an variable input arguments call, which allows to
modify any computation parameter from the command line. The execution of the
code relies on other functions that are part of a MATLAB R© toolbox that contains
all the validated code developed at the Swiss Plasma Center. The execution is also
very demanding on the machine it is performed on. This is because the code is
highly parallelized in order to take advantage of multi-core, multi-thread systems.
However, the parallelization dramatically lowers the total run time of the code.

All of the plotting functions are not reported in this documents since their
purpose is to give to the user a quick look at the results. The outputs are given
in a sort of raw state, in order to allow maximum customization of their handling.
Scripts used for start up and shut down of the computation procedure are also not
reported here.

The version of the reported code is the one of the end of May 2017. The code is
extensively commented. However, to obtain further information, or to have access
to the whole package, please send an email to alessandrotolio@hotmail.com.
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1 function [StatStruct,DataMHD]=StatComp(varargin)
2 %% STATCOMP Performs statistical operations on magnetic data for turbulence analysis.
3 % author: Aylwin Iantchenko, 17.11.2015.
4 % Last update: Alessandro Tolio, Apr. 10 2017
5 %
6 % CALL: [StatStruct,DataMHD]=StatComp(varargin);
7 % varargin is of type:
8 % 1) list of type: ..., ’param_name’,param_value, ...;
9 %

10 % REQUIRED INPUT PARAMETERS:
11 % Shot : shot(s) number on which the analysis is to be performed,
12 % can take multiple values, use a number value format. example: ..., ’shot

’,[54000,51000,47565], ...
13 % Array : array of probes to be analysed, can take multiple values, use a cell

format.
14 % example: ..., ’Array’,{’LFS-MID’,’HFS-BOT’,’SAD-TOP’}, ...
15 % NOTE: if multiple arrays are provided as input, then all selected shots

will be analysed using all these arrays.
16 %
17 % Stat : which statistic should be computed, use a cell array as before.
18 % ’Stat’ name should correspond to one or more of the following function

name:
19 % -) AutoCorr : results from the auto-correlation analysis ==> this is

the default value!
20 % -) PSD : results from power spectral density analysis.
21 % -) TempFun : results from temporal structure function analysis.
22 % -) TempInc : results from temporal increment analysis.
23 % -) PermEntr : results from Permutation entropy analysis.
24 %
25 % OPTIONAL INPUT PARAMETERS: see ParamStruct below for the complete list of possible

parameters;
26 % each one has a brief description on the side
27 %
28 % Output Parameters:
29 % StatStruct : structure containing the parameters used for computation (ParamStruct)
30 % and all results from computation; each analysis has its
31 % field, that is a cell array of output structures
32 % DataMHD : MHD data, useful to avoid reloading and save some time
33

34 tic %start timer
35 %% initialise variables
36 % checks for active parallel pool, if there is none it creates one
37 [~]=gcp;
38

39 % default processing structure
40 ProcStructDEF=struct( ...
41 ’TimeInt’,[.5,.6], ... %selects time interval used for computation, unit =[sec]
42 ’MaxVal’,.2, ... %selects value for the maximum of turbulent magnetic field,

unit =[T]
43 ’TrendPol’,5 ... %selects degree of polynomial used for removing trends in

turbulent magnetic field data
44 );
45

46 % default input parameter structure
47 ParamStruct=struct( ...
48 ’Shot’,[], ... %shot(s) selected for the statistical

analysis of turbulence data, use a number value format
49 ...
50 ’Array’,{’’}, ... %array(s) to be analysed, use a cell

format, can take multiple values {array1, ..., arrayNN}
51 ... %it is possible to call multiple array

with one input:
52 ... % - HFS, LFS : all arrays on the given

side of the vessel
53 ... % - BOT, MID, TOP : all arrays at the

given height
54 ... % - TOROIDAL, POLOIDAL : all probes of

the toroidal or poloidal arrays
55 ... % - ALL : all arrays (from 191 to 224

probes)
56 ’Stat’,{’’},... %type of statistics that will be
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computed, as the one above
57 ... %it is possible to call all statistics

at once
58 ’ProcParam’,ProcStructDEF, ... %structure containing parameters for

processing
59 ’BBunits’,[], ... %unit of turbulent magnetic field,

default =[T]
60 ’fs’,[], ... %sampling frequency for the selected

set of data to be processed [Hz]
61 ’TimeDisr’,[], ... %disruption time in each shot, from

FMPloader [s]
62 ’StrCode’,’StatComp: ’, ... %string used to mark messages from the

statComp function
63 ’ProbeName’,[], ... %probenames required to create legends
64 ’ProbeNameAvg’,[], ... %legend lines to be used when when

averaging is performed
65 ...
66 ’Average’,true, ... %set to true to compute array averaging
67 ’Plot’,true, ... %set to true to plot results
68 ’Save’,false, ... %set to true to save results
69 ’CloseAll’,false,... %set to true to automatically close all

figures
70 ’FilterSignal’,true,... %set to true to bandpass filter the

signal after processing
71 ’FilterFreq’,[],... %frequency intervals used in bandpass

filtering
72 ’ExcludeOutliers’,true,... %exclude outliers from analysis, based

on each array-mean results
73 ’SaveSpace’,true,... %if true it cancels some data to save

space on disk
74 ...
75 ’nsig’,[],... %number of signals for each shot
76 ...
77 ’AutoTimeLimit’,0.1,... %limit used for computation in

autocorrelation analysis [s]
78 ’AutoFactorTau’,exp(-1),... %scaling factor used to determine the

auto-correlation time scale
79 ...
80 ’TauTempInc’,8e-6,... %delay used for time increments

analysis [s]
81 ’nbins’,500, ... %accuracy of time increments

computation (number of bins used in the estimation of the PDF)
82 ...
83 ’PSDSlopeRange’,1e4*[1,8],... %range used for estimation of slope in

PSD analysis [kHz]
84 ’NoPeaks’,true,... %if true then computes PSD slope

excluding coherent peaks
85 ...
86 ’TempExp’,[0,.5,1,2,3,4,5], ... %exponents used in the computation
87 ’TempTau’,10.^[-6,-2], ... %range of delays used for computation
88 ’TempSlopeRange’,[5e-6,5e-5;5e-4,1e-2], ... %range used for estimation of slope
89 ...
90 ’PermEntrN’,5,... %embedding dimension
91 ’PermEntrTau’,8e-6... %delay as input
92 );
93

94 % turning off useless warnings
95 warning(’off’,’MATLAB:Axes:NegativeDataInLogAxis’)
96 warning(’off’,’MATLAB:elementsNowStruc’)
97 warning(’off’,’MATLAB:legend:IgnoringExtraEntries’)
98 warning(’off’,’MATLAB:MKDIR:DirectoryExists’)
99

100 %% read input
101 % read and store input variables: convert list of input parameters to structure and

replace default by custom
102 if ~isempty(varargin)
103 param_names=fieldnames(ParamStruct);
104 for j=1:2:length(varargin)-1
105 if (any(strcmp(param_names,varargin{j}))) % if field exists in varargin save

corresponding value
106 ParamStruct.(varargin{j})=varargin{j+1};
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107 end
108 end
109 end
110 clear param_names
111

112 % substitutes missing ProcParam values with default ones
113 if ~isfield(ParamStruct.ProcParam,’TimeInt’)
114 ParamStruct.ProcParam.TimeInt=ProcStructDEF.TimeInt;
115 end
116 if ~isfield(ParamStruct.ProcParam,’MaxVal’)
117 ParamStruct.ProcParam.MaxVal=ProcStructDEF.MaxVal;
118 end
119 if ~isfield(ParamStruct.ProcParam,’TrendPol’)
120 ParamStruct.ProcParam.TrendPol=ProcStructDEF.TrendPol;
121 end
122 clear ProcStructDEF j
123

124 % perform some checks on input variables: if no shot, array or statistics provided as
input, aborts process

125 if isempty(ParamStruct.Shot)
126 disp([ParamStruct.StrCode,’please provide choice of shot, aborting analysis ...’]);
127 return
128 end
129 if numel(ParamStruct.ProcParam.TimeInt)<2 || ParamStruct.ProcParam.TimeInt(2)<

ParamStruct.ProcParam.TimeInt(1)
130 disp([ParamStruct.StrCode,’please provide a valid choice for the time window,

aborting analysis...’])
131 return
132 end
133 if iscell(ParamStruct.Array) %check also for cell array format
134 if isempty(ParamStruct.Array)
135 disp([ParamStruct.StrCode,’please provide choice of array, aborting analysis

...’]);
136 return
137 end
138 else
139 disp([ParamStruct.StrCode,’please provide choice of array in a cell format, e.g.: {

’’HFS-MID’’}, aborting analysis ...’]);
140 return
141 end
142 if iscell(ParamStruct.Stat) %check also for cell array format
143 if isempty(ParamStruct.Stat{1})
144 disp([ParamStruct.StrCode,’please provide choice of statistics, aborting

analysis ...’]);
145 return
146 end
147 else
148 disp([ParamStruct.StrCode,’please provide choice of statistics in a cell format, e.

g.:{’’AutoCorr’’}, aborting analysis ...’]);
149 return
150 end
151

152 % search for the the following array calls; if present, it uses all avaible array with
the given position,

153 % e.g. ’HFS’ calls ’HFS-BOT’,’HFS-MID’ and ’HFS-TOP’
154 Check={’HFS’,’LFS’,’BOT’,’MID’,’TOP’,’TOROIDAL’,’POLOIDAL’,’ALL’};
155 for i=1:length(Check)
156 ParamStruct.Array=ModifyArray(Check{i},ParamStruct.Array,i);
157 end
158 clear Check i
159

160 % sets all methods if requested
161 if (ismember(’ALL’,ParamStruct.Stat) || ismember(’all’,ParamStruct.Stat) || ismember(’

All’,ParamStruct.Stat))
162 for i=1:length(ParamStruct.Stat)
163 ParamStruct.Stat(i)=[];
164 end
165 ParamStruct.Stat={’AutoCorr’,’PSD’,’TempInc’,’TempFun’,’PermEntr’};
166 end
167

168 % check to close all open figures
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169 if ~ParamStruct.CloseAll
170 control=input(’Function ready to load data. Do you want to close previous figures?

(yes/no, default==yes) \n’,’s’);
171 if strcmp(control,’yes’) || isempty(control)
172 close all
173 end
174 else close all
175 end
176 clear control
177

178 SizeLoop=length(ParamStruct.Shot)*length(ParamStruct.Array); %size of the loop on "
shots * arrays" used for the analysis

179

180 % read input data, if provided
181 idx=find(strcmp(’Data’,varargin));
182 if idx
183 DataMHD=varargin{idx+1};
184 disp([ParamStruct.StrCode,’input (magnetic) data provided as input ...’]);
185 else %or fetch them using FMPloader
186 DataMHD=cell(1,SizeLoop);
187 disp([ParamStruct.StrCode,’input (magnetic) data NOT provided as input, must fetch

them from tcvdata server...’]);
188 end
189 clear idx varargin
190

191 % initialization of some data containers
192 fs=zeros(1,SizeLoop);
193 nsig=fs;
194 TimeDisr=fs;
195 BBunits=cell(1,SizeLoop);
196 ProbeName=BBunits;
197 ProbeNameAvg=BBunits;
198 Signal=cell(1,SizeLoop);
199 Time=Signal;
200

201 % initialize structure to save the output data for the diffusion coefficients
202 % Lc estimated value for the magnetic field connection length at the plasma edge, Lc=(

Rq)_edge~(0.88+0.25)*5~6m
203 DiffArray=cell(1,SizeLoop);
204 DiffStruct=struct( ...
205 ’btorAxis’,0, ... %equilibrium toroidal magnetic field on the magnetic

axis (unit =[T])
206 ’btorEdge’,0, ... %equilibrium toroidal magnetic field at the plasma edge

(unit =[T])
207 ’BmeanRaw’,0, ... %computed average raw magnetic field (turbulent, not

equilibrium) (unit =[T])
208 ’BstdRaw’,0, ... %standard deviation on raw magnetic field (turbulent,

not equilibrium) (unit =[T])
209 ’BmeanProc’,0, ... %computed average processed magnetic field (turbulent,

not equilibrium) (unit =[T])
210 ’BstdProc’,0, ... %standard deviation on processed magnetic field (

turbulent, not equilibrium) (unit =[T])
211 ’BBunits’,[], ... %unit of magnetic field, default =[T]
212 ’neEdge’,0, ... %computed volume and time averaged density at the

plasma edge (unit =[m^-3])
213 ’LneEdge’,0, ... %computed density scale length at the plasma edge (unit

=[m])
214 ’teEdge’,0, ... %computed volume and time averaged temperature at the

plasma edge (unit =[eV])
215 ’LteEdge’,0, ... %computed temperature scale length at the plasma edge (

unit =[m])
216 ’vA’,0, ... %estimated Alfven speed at the plasma edge (unit =[m/

sec])
217 ’vS’,0, ... %estimated sound speed at the plasma edge (unit =[m/sec

])
218 ’vD’,0, ... %estimated ion/electron drift velocity at the plasma

edge (unit =[m/sec])
219 ’Lc’,6, ... %estimated connection length of the magnetic field at

the plasma edge (unit =[m])
220 ’DiffCoeff’,zeros(2,2) ... %estimated value of the EM turbulent diffusion

coefficient (unit =[m^2/sec])
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221 );
222 DiffArray(1,:)={DiffStruct};
223 clear DiffStruct
224

225 disp([ParamStruct.StrCode,’loading data from server or input parameters...’])
226 Shot=ParamStruct.Shot;
227 Array=ParamStruct.Array;
228 % loop for all signals: number of shots times selected set of arrays
229 parfor k=1:SizeLoop
230 ShotIdx=ceil(k/length(Array)); %save index of shot, used

for plotting purposes
231 ArrayIdx=k-length(Array)*(ShotIdx-1); %save index of shot, used

for plotting purposes
232

233 %if data not provided in input, fetch new data
234 if isempty(DataMHD{k}) && ~strcmp(ParamStruct.Array{k},’LTCC3D’)
235 DataMHD{k}=FMPloader(’shot’,Shot(ShotIdx),’array’,Array{ArrayIdx}); %#ok<*PFBNS

>
236 elseif isempty(DataMHD{k}) && strcmp(ParamStruct.Array{k},’LTCC3D’)
237 DataMHD{k}=ReadDtacqLTCC3D(’shot’,Shot(ShotIdx),’array’,Array{ArrayIdx});
238 end
239

240 % read selected input from acquired tdi object
241 Signal{k}=DataMHD{k}.tdi.data; %read

signal values
242 fs(k)=DataMHD{k}.fs; %read

sampling frequency for shot
243 Time{k}=DataMHD{k}.TimeFull(1):1/fs(k):DataMHD{k}.TimeFull(2); %create

time vector
244 nsig(k)=size(DataMHD{k}.tdi.dim{2},2); %save

number of signals acquired
245 TimeDisr(k)=DataMHD{k}.TimeDisr; %save

disruption time
246 BBunits{k}=DataMHD{k}.tdi.units; %save unit

of measured turbulent magnetic field
247 DiffArray{k}.BBunits=DataMHD{k}.tdi.units;
248

249 % save name of probes, used for plotting purposes
250 hh=char(DataMHD{k}.signalNames);
251 ProbeName{k}=strcat([’#’,int2str(Shot(ShotIdx)),’: ’,Array{ArrayIdx},’-’],cellstr([

hh(:,7:9) repmat(’-’,[size(hh,1) 1]) hh(:,11:13)])’);
252 ProbeNameAvg{k}=strcat(’#’,[int2str(Shot(ShotIdx)),’: ’, Array{ArrayIdx}]);
253 end
254

255 % filling of paramStruct and emptying of containers
256 ParamStruct.fs=fs;
257 ParamStruct.nsig=nsig;
258 ParamStruct.TimeDisr=TimeDisr;
259 ParamStruct.BBunits=BBunits;
260 ParamStruct.ProbeName=ProbeName;
261 ParamStruct.ProbeNameAvg=ProbeNameAvg;
262 clear fs nsig TimeDisr BBunits ProbeName ProbeNameAvg Array i k
263 disp([ParamStruct.StrCode,’signals from ’,num2str(sum(ParamStruct.nsig)),’ probes

successfully acquired!’])
264

265 %% reorganization of data in order to process it faster
266 disp([ParamStruct.StrCode,’preparing computation structures...’])
267 ComputationArray=DataOrganizer(ParamStruct,Signal,Time,SizeLoop);
268 clear Signal Time
269

270 % performs some checks on some input parameters
271 ParamStruct.AutoTimeLimit=min(ParamStruct.AutoTimeLimit,diff(ParamStruct.ProcParam.

TimeInt)); %check on the time lags for the auto-correlation analysis
272 a=log10(max(ParamStruct.TempTau(1),1/min(ParamStruct.fs)));
273 b=log10(ParamStruct.ProcParam.TimeInt(2)-ParamStruct.ProcParam.TimeInt(1));
274 ParamStruct.TempTau=logspace(a,b,1e3);

%check on the time lags
for the temporal structure analysis

275 clear a b
276

277 %data container preallocation
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278 AutoCorrArray=cell(1,SizeLoop);
279 XCorrPlotArray=AutoCorrArray;
280 AutoCorrPlotArray=AutoCorrArray;
281 PSDArray=AutoCorrArray;
282 PSDPlotArray=AutoCorrArray;
283 TempIncArray=AutoCorrArray;
284 TempIncPlotArray=AutoCorrArray;
285 TempStructArray=AutoCorrArray;
286 TempStructPlotArray=AutoCorrArray;
287 PermArray=AutoCorrArray;
288 PermPlotArray=AutoCorrArray;
289 Outliers=AutoCorrArray;
290

291 % temporary parameter containers
292 AutoParam=struct(... %auto-correlation parameters
293 ’TimeLimit’,ParamStruct.AutoTimeLimit,...
294 ’FactorTau’,ParamStruct.AutoFactorTau,...
295 ’Plot’,ParamStruct.Plot,... %used with SaveSpace to decide

whether cancel some unwanted data right away
296 ’SaveSpace’,ParamStruct.SaveSpace...
297 );
298

299 PSDParam=struct(... %PSD parameter
300 ’SlopeRange’,ParamStruct.PSDSlopeRange,...
301 ’NoPeaks’,ParamStruct.NoPeaks,...
302 ’Plot’,ParamStruct.Plot,... %used with SaveSpace to decide

whether cancel some unwanted data right away
303 ’SaveSpace’,ParamStruct.SaveSpace...
304 );
305

306 IncParam=struct(... %time increments parameters
307 ’TauTempInc’,ParamStruct.TauTempInc,...
308 ’nbins’,ParamStruct.nbins,...
309 ’Plot’,ParamStruct.Plot,... %used with SaveSpace to decide

whether cancel some unwanted data right away
310 ’SaveSpace’,ParamStruct.SaveSpace...
311 );
312

313 TempParam=struct(... %temporal function parameters
314 ’TempExp’,sort(ParamStruct.TempExp),...
315 ’TempTau’,ParamStruct.TempTau,...
316 ’TempSlopeRange’,ParamStruct.TempSlopeRange,...
317 ’Plot’,ParamStruct.Plot,... %used with SaveSpace to decide

whether cancel some unwanted data right away
318 ’SaveSpace’,ParamStruct.SaveSpace...
319 );
320

321 PermParam=struct(... %permutation entropy parameters
322 ’N’,ParamStruct.PermEntrN,...
323 ’Tau’,ParamStruct.PermEntrTau,...
324 ’Plot’,ParamStruct.Plot,... %used with SaveSpace to decide

whether cancel some unwanted data right away
325 ’SaveSpace’,ParamStruct.SaveSpace...
326 );
327

328 %% perform computation of statistics on selected signals, loop over all signals
329 disp([ParamStruct.StrCode,’starting computation...’])
330 disp([ParamStruct.StrCode,’now computing...’])
331

332 % display some warnings
333 if sum(ParamStruct.nsig)>30
334 disp([ParamStruct.StrCode,num2str(sum(ParamStruct.nsig)),’ signals are quite a lot

... This may take a while: just wait for it!’])
335 t=clock;
336 if t(4)>=12 && t(4)<14
337 disp([ParamStruct.StrCode,’you may want to have your lunch in the meantime :-)’

])
338 else
339 disp([ParamStruct.StrCode,’you may want to go grab a coffee in the meantime :-)

’])
340 end
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341 end
342

343 parfor i=1:SizeLoop
344 ComputationArray{i}.SignalIdx=i;
345

346 % process the data and compute the Alfven speed, the sound speed and the ion/
electron drift velocity, which are needed to calculate

347 % the turbulent diffusion coefficients in the approximation of a large mean guide
field.

348 [ComputationArray{i},DiffArray{i}]=ProcessSignal(ComputationArray{i},DiffArray{i});
349

350 % compute the desired statistics
351 % auto-correlation analysis
352 if ismember(’AutoCorr’,ComputationArray{i}.Stat)
353 [AutoCorrArray{i},DiffArray{i}]=AutoCorr(ComputationArray{i},AutoParam,

DiffArray{i});
354

355 % creates plotting structure
356 if AutoParam.Plot
357 AutoCorrPlotTemp=AutoCorrArray{i};
358 AutoCorrPlotTemp.Average=ComputationArray{i}.Average;
359 AutoCorrPlotTemp.PlotStr=ComputationArray{i}.PlotStr;
360 AutoCorrPlotTemp.ProbeNameAvg=ComputationArray{i}.ProbeNameAvg;
361 AutoCorrPlotTemp.Factor=AutoParam.FactorTau;
362 AutoCorrPlotArray{i}=AutoCorrPlotTemp;
363 end
364 end
365

366 % power spectral density analysis
367 if ismember(’PSD’,ComputationArray{i}.Stat)
368 PSDArray{i}=PSD(ComputationArray{i},PSDParam);
369

370 % creates plotting structure
371 if PSDParam.Plot
372 PSDPlotStruct=PSDArray{i};
373 PSDPlotStruct.Average=ComputationArray{i}.Average;
374 PSDPlotStruct.PlotStr=ComputationArray{i}.PlotStr;
375 PSDPlotStruct.ProbeNameAvg=ComputationArray{i}.ProbeNameAvg;
376 PSDPlotStruct.SlopeRange=[num2str(PSDParam.SlopeRange(1)*10^-3),’-’,num2str

(PSDParam.SlopeRange(2)*10^-3),’kHz’];
377 PSDPlotArray{i}=PSDPlotStruct;
378 end
379 end
380

381 % temporal increment analysis
382 if ismember(’TempInc’,ComputationArray{i}.Stat)
383 TempIncArray{i}=TempInc(ComputationArray{i},IncParam);
384

385 % creates plotting structure
386 if IncParam.Plot
387 TempIncPlotStruct=TempIncArray{i};
388 TempIncPlotStruct.Average=ComputationArray{i}.Average;
389 TempIncPlotStruct.PlotStr=ComputationArray{i}.PlotStr;
390 TempIncPlotStruct.ProbeNameAvg=ComputationArray{i}.ProbeNameAvg;
391 TempIncPlotArray{i}=TempIncPlotStruct;
392 end
393 end
394

395 % temporal structure functions
396 if ismember(’TempFun’,ComputationArray{i}.Stat)
397 TempStructArray{i}=TempStruct(ComputationArray{i},TempParam);
398

399 % creates plotting structure
400 if TempParam.Plot
401 TempPlot=TempStructArray{i};
402 TempPlot.Average=ComputationArray{i}.Average;
403 TempPlot.PlotStr=ComputationArray{i}.PlotStr;
404 TempPlot.ProbeNameAvg=ComputationArray{i}.ProbeNameAvg;
405 TempPlot.StrLegend=cell(size(TempStructArray{i}.p));
406 for j=1:length(TempStructArray{i}.p)
407 TempPlot.StrLegend(j)={[’p=’,num2str(TempStructArray{i}.p(j))]};
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408 end
409 TempStructPlotArray{i}=TempPlot;
410 end
411 end
412

413 % permutation entropy and complexity analysis
414 if ismember(’PermEntr’,ComputationArray{i}.Stat)
415 PermArray{i}=PermEntropy(ComputationArray{i},PermParam);
416

417 % creates plotting structure
418 if PermParam.Plot
419 PermPlotStruct=PermArray{i};
420 PermPlotStruct.PlotStr=ComputationArray{i}.PlotStr;
421 PermPlotStruct.Average=ComputationArray{i}.Average;
422 PermPlotStruct.ProbeNameAvg=ComputationArray{i}.ProbeNameAvg;
423 PermPlotArray{i}=PermPlotStruct;
424 end
425 end
426

427 % recompute means and std if requested
428 if ComputationArray{i}.Average && ComputationArray{i}.ExcludeOutliers
429 [AutoCorrArray{i},PSDArray{i},TempIncArray{i},TempStructArray{i},PermArray{i},

Outliers{i}]=ComputeNewAverages(AutoCorrArray{i},PSDArray{i},TempIncArray{i
},TempStructArray{i},PermArray{i});

430 end
431 end
432 clear Average AutoParam XParam IncParam PSDSlopeRange TempParam PermParam Coordinates i

j
433

434 %% plots, if requested
435 if ParamStruct.Plot
436

437 % plot of raw and processed deltaB signals
438 disp([ParamStruct.StrCode,’plotting raw and processed data...’])
439 ProcessPlot(ComputationArray,SizeLoop)
440

441 % plots of the results of computations
442 disp([ParamStruct.StrCode,’plotting results of computation...’])
443 if ~isempty(AutoCorrPlotArray{1})
444 AutoCorrPlot(AutoCorrPlotArray)
445 end
446 if ~isempty(XCorrPlotArray{1})
447 XCorrPlot(XCorrPlotArray)
448 end
449 if ~isempty(PSDPlotArray{1})
450 PSDPlot(PSDPlotArray)
451 end
452 if ~isempty(TempIncPlotArray{1})
453 TempIncPlot(TempIncPlotArray)
454 end
455 if ~isempty(TempStructPlotArray{1})
456 TempStructPlot(TempStructPlotArray)
457 end
458 if ~isempty(PermPlotArray{1})
459 PermPlot(PermPlotArray)
460 end
461

462 % setting uniform plots appearance
463 FigHandles=findobj(’Type’,’figure’); %

gets all figures’ handles
464 AxesHandles=findobj(’Type’,’axes’); %

gets all axes’ handles
465 set(AxesHandles,’XGrid’,’on’,’YGrid’,’on’,’Box’,’on’) %

sets all grids and boxes
466 set(FigHandles,’color’,’w’,’units’,’normalized’,’position’,[0.1,0.1,0.8,0.8]) %

sets color and positions
467 end
468 clear ComputationArray sizeLoop AutoCorrPlotArray PSDPlotArray TempIncPlotArray...
469 TempStructPlotArray XCorrPlotArray PermPlotArray
470

471 %% fill output structure
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472 disp([ParamStruct.StrCode,’filling output data containers...’])
473 StatStruct.Parameters=ParamStruct; %all parameters used in the

statistical computation
474 StatStruct.Diffusion=DiffArray; %output structure for the

calculated diffusion coefficients
475 if ismember(’AutoCorr’,ParamStruct.Stat)
476

477 StatStruct.AutoCorr=AutoCorrArray; %output structure for the auto-
correlation analysis

478 end
479 if ismember(’PSD’,ParamStruct.Stat)
480 StatStruct.PSD=PSDArray; %Computed PSD
481 end
482 if ismember(’TempInc’,ParamStruct.Stat)
483 StatStruct.TempInc=TempIncArray; %Computed temporal increment
484 end
485 if ismember(’TempFun’,ParamStruct.Stat)
486 StatStruct.TempFun=TempStructArray; %temporal structure
487 end
488 if ismember(’PermEntr’,ParamStruct.Stat)
489 StatStruct.PermEntr=PermArray; %permutation entropy
490 end
491 StatStruct.Outliers=Outliers; %outliers for each array
492 clear AutoCorrArray DiffArray PSDArray TempIncArray TempIncArray XCorrArray...
493 TempStructArray PermArray Outliers
494

495 %% saving, if requested
496 if ParamStruct.Save
497 disp([ParamStruct.StrCode,’saving...’])
498

499 % create folders to save results, foldere name format: current date/number of shot
500 if ~(exist([’~/TurbAnalysisResults/Data/’,date],’dir’) && exist([’~/

TurbAnalysisResults/Plots/’,date],’dir’))
501 mkdir(’~/TurbAnalysisResults/Data’,date)
502 mkdir(’~/TurbAnalysisResults/Plots’,date)
503 end
504 for i=1:length(Shot)
505 SignalString=[num2str(ParamStruct.ProcParam.TimeInt(1)),’_’,num2str(ParamStruct

.ProcParam.TimeInt(2)),’_’];
506 SignalString(SignalString==’.’)=[];
507 % cheks for shot directory
508 if ~(exist([’~/TurbAnalysisResults/Data/’,date,’/’,num2str(Shot(i))],’dir’) &&

exist([’~/TurbAnalysisResults/Plots/’,date,’/’,num2str(Shot(i))],’dir’))
509 mkdir([’~/TurbAnalysisResults/Data/’,date,’/’,num2str(Shot(i))])
510 mkdir([’~/TurbAnalysisResults/Plots/’,date,’/’,num2str(Shot(i))])
511 end
512 % save data
513 save([’~/TurbAnalysisResults/Data/’,date,’/’,num2str(Shot(i)),’/’,[SignalString

,datestr(now,’HH:MM:SS’)]],’StatStruct’,’-v7.3’)
514

515 % save figures
516 if ParamStruct.Plot
517 savefig(FigHandles,[’~/TurbAnalysisResults/Plots/’,date,’/’,num2str(Shot(i)

),’/’,[SignalString,datestr(now,’HH:MM:SS’)]])
518 end
519 end
520 else disp([ParamStruct.StrCode,’not saving data on user private file system (should

have set ’’Save’’=true at input)’])
521 end
522

523 % opens figures
524 if ParamStruct.Plot
525 set(FigHandles,’visible’,’on’)
526 end
527 disp([ParamStruct.StrCode,’code successfully executed, now showing plots (if requested)

and ending.’])
528 toc %stop timer and display execution time
529 end
530

531 %% Local Functions
532 % ModifyArray enables the call to multiple probe arrays with one instance
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533 function ArrayList=ModifyArray(Call,ArrayList,Index)
534 [Present,Location]=ismember(Call,ArrayList);
535 if Present
536 switch Index
537 case 1
538 Append={’HFS-BOT’,’HFS-MID’,’HFS-TOP’};
539 case 2
540 Append={’LFS-BOT’,’LFS-MID’,’LFS-TOP’};
541 case 3
542 Append={’HFS-BOT’,’LFS-BOT’};
543 case 4
544 Append={’HFS-MID’,’LFS-MID’};
545 case 5
546 Append={’HFS-TOP’,’LFS-TOP’};
547 case 6
548 Append={’HFS-BOT’,’HFS-MID’,’HFS-TOP’,’LFS-BOT’,’LFS-MID’,’LFS-TOP’};
549 case 7
550 Append={’POL-003’,’POL-007’,’POL-011’,’POL-015’};
551 case 8
552 Append={’HFS-BOT’,’HFS-MID’,’HFS-TOP’,’LFS-BOT’,’LFS-MID’,’LFS-TOP’,’POL

-003’,’POL-007’,’POL-011’,’POL-015’};
553 end
554 ArrayList=[ArrayList,Append];
555 ArrayList(Location)=[];
556 while ismember(Call,ArrayList)
557 [~,Location]=ismember(Call,ArrayList);
558 ArrayList(Location)=[];
559 end
560 end
561 end
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1 function MultiExecution(shot,time)
2 %MULTI_EXECUTION Calls StatComp on multiple time windows for a given shot.
3 % CALL: inputs are shot number and matrix of time slices; eg:
4 % time=[t1,t2], with t1, t2 being column vectors
5 %
6 % ATTENTION: this function calls StatComp with saving option set to true,
7 % ie it saves data each time; no plots produced nor saved.
8

9 length=size(time,1);
10 disp([’MultiExecution: ’,num2str(length),’ time windows selected for analysis on shot #

’,num2str(shot),’.’])
11 disp(’MultiExecution: WARNING: this may take a while, wait for it! Don’’t warry, each

result is going to be saved.’)
12

13 for i=1:length
14 proc.TimeInt=time(i,:); %sets current time window
15 disp([’MultiExecution: starting ’,num2str(i),’ of ’,num2str(length),’ iterations...

’])
16 [~,~]=StatComp(’Shot’,shot,’Array’,{’ALL’},’Stat’,{’ALL’},’Plot’,false,’Save’,true,

’CloseAll’,true,’ProcParam’,proc,’SaveSpace’,true);
17 end
18 end
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1 function [AutoCorrStruct,DiffStruct]=AutoCorr(ComputationStruct,AutoParam,DiffStruct)
2 % AUTOCORR Computes the auto-correlation of the input signal and estimates the ensuing

diffusion coefficients.
3 %
4 % Author: Aylwin Iantchenko
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ComputationStruct : structures that contains all the data used for
9 % computation. See DataOrganizer.m for further details

10 % - AutoParam : structure that contains the parameters used for computation
11 % - DiffStruct : structure used to pass and save the required parameters
12 % and calculated diffusion coefficients
13 %
14 % Output parameters:
15 % - AutoCorrStruct : structure that contains all the results of the
16 % analysis
17 % - DiffStruct : structure that contains the results of the
18 % diffusion parameteres computation
19 %
20 % DiffCoeff : estimated values of the diffusion coefficients, using the formulation

DperpEMturb=(deltaB/Bphi0)^2*Lc^2/tauGrowth, with
21 % deltaB the EM fluctuation level at the the plasma edge, Bphi0 the

toroidal magnetic field on the magnetic axis, Lc~Rq is
22 % the connection length of the magnetic field, and tauGrowth=mean(tauCorr)

+/-std(tauCorr) is an estimate of the most
23 % efficient process in limiting the growth of EM turbulent fields, using

the auto-correlation coefficient obtained from
24 % this analysis and averaged over all probes.
25 % NOTE1: DiffCoeff(1,:) uses the raw turbulent Bfield data and mean(tauCorr

), DiffCoeff(:,2,:) used the processed (ie:
26 % temppral trends removed) turbulent Bfield data and mean(tauCorr).
27 % NOTE2: DiffCoeff(:,1) is the estimated value using mean quantities,

DiffCoeff(:,:,2) is the standard deviation using a
28 % Gaussian propagation of uncertainties in deltaBturb and tauCorr.
29 % NOTE3: the connection length of the magnetic field Lc~Rq is estimated

using q at the plasma edge, ie Lc~6m typically.
30

31 %% define and initialise variables
32 data=ComputationStruct.dataProc;
33 fs=ComputationStruct.fs;
34 maxLag=round(AutoParam.TimeLimit*fs); %maximum lag time
35 tauCorr=zeros([1,size(data,2)]); %estimated correlation time
36 corrCoeff=zeros([2*maxLag+1,size(data,2)]); %correlation coefficients
37 tauDelay=zeros([2*maxLag+1,size(data,2)]); %de-correlation (=delay) times
38 limit=AutoParam.TimeLimit;
39

40 %% auto-correlation computation
41 factor=AutoParam.FactorTau; %factor used to compute the auto-

correlation time
42 x=linspace(0,limit,10^6); %time lags used to compute a fitting

function
43 parfor k=1:size(ComputationStruct.Data,2)
44 signal=data(:,k);
45

46 % compute the auto-correlation using a maximum lag time
47 [CorrVal,tauVal]=xcorr(signal,maxLag,’unbiased’); %auto-correlation computation
48 tauVal=(tauVal/fs)’; %convert the lag indices to

time coordinates
49

50 % compute the auto-correlation time through a fit done on results of xcorr
51 f=fit(tauVal,CorrVal,’pchipinterp’);
52 y=feval(f,x);
53

54 % searching for f first minimum
55 d=differentiate(f,x);
56 x1=x(d>0);
57 x1=x1(1);
58

59 % search for time lag x that gives minimum distance from f(x)=factor
60 [~,i]=min(abs(y(x<x1)-factor));



86 A. Implemented code

61 tauCorr(k)=x(i);
62 corrCoeff(:,k)=CorrVal;
63 tauDelay(:,k)=tauVal;
64 end
65

66 %% diffusion coefficients computation
67 DiffCoeff(1,1)=(DiffStruct.BmeanRaw*DiffStruct.Lc/DiffStruct.btorAxis)^2/mean(tauCorr);
68 DiffCoeff(1,2)=DiffCoeff(1,1)*sqrt(4*(DiffStruct.BstdRaw/DiffStruct.BmeanRaw)^2 +(std(

tauCorr)/mean(tauCorr))^2);
69 DiffCoeff(2,1)=(DiffStruct.BmeanProc*DiffStruct.Lc/DiffStruct.btorAxis)^2/mean(tauCorr)

;
70 DiffCoeff(2,2)=DiffCoeff(2,1)*sqrt(4*(DiffStruct.BstdProc/DiffStruct.BmeanProc)^2 +(std

(tauCorr)/mean(tauCorr))^2);
71

72 %% fill output structures.
73 AutoCorrStruct.TauCorr=tauCorr;
74 AutoCorrStruct.MeanTau=mean(tauCorr);
75 AutoCorrStruct.STDTauC=std(tauCorr);
76 DiffStruct.DiffCoeff=DiffCoeff;
77 if ComputationStruct.Average %if Averge, then saves related

data
78 AutoCorrStruct.CMean=mean(corrCoeff,2);
79 AutoCorrStruct.TMean=mean(tauDelay,2);
80 AutoCorrStruct.STDCorr=std(corrCoeff,0,2);
81 AutoCorrStruct.STDTauD=std(tauDelay,0,2);
82 if ComputationStruct.ExcludeOutliers %if outliers have to be

excluded, then do it
83 AutoCorrStruct.Outliers=[];
84 for i=1:length(tauCorr)
85 if abs(tauCorr(i)-AutoCorrStruct.MeanTau)>3*AutoCorrStruct.STDTauC %

exclusion is done for points further than 3*std from mean value
86 AutoCorrStruct.Outliers=[AutoCorrStruct.Outliers,i];
87 end
88 end
89 end
90 end
91 if ~(~AutoParam.Plot && AutoParam.SaveSpace) %carries some data over to StatComp

only if needed for plottting purposes, or if SaveSpace is false
92 AutoCorrStruct.CorrCoeff=corrCoeff;
93 AutoCorrStruct.TauDelay=tauDelay;
94 end
95 end
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1 function PSDStruct=PSD(ComputationStruct,PSDParam)
2 % PSD Computes the frequency power spectrum by applying the PSD analysis.
3 %
4 % Author: Aylwin Iantchenko
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ComputationStruct : structures that contains all the data used for
9 % computation. See DataOrganizer.m for further details

10 % - PSDParam : structure that contains the parameters used for computation
11 %
12 % Output parameters:
13 % - PSDStruct : structure that contains all the results of the analysis
14

15 %% Initializes variables and loads parameters
16 % input parameters to pwelch
17 windowSize=2^8;
18 overlap=round(windowSize/2);
19

20 % variables where each computation will be locally stored
21 power=zeros(windowSize/2 + 1,size(ComputationStruct.Data,2));
22 f=zeros(windowSize/2 + 1,size(ComputationStruct.Data,2));
23 slope=zeros(1,size(ComputationStruct.Data,2));
24

25 %% PSD computation
26 for k=1:size(ComputationStruct.Data,2)
27 [power(:,k),f(:,k)] = pwelch(ComputationStruct.dataProc(:,k),hamming(windowSize),

overlap,[],ComputationStruct.fs);
28 end
29

30 % Convert to k using Taylors’ hypotheses
31 % wave_k=(2*pi*f/DiffStruct.vA); % 4e-03 very rough estimate of the larmor radius
32

33 %% if requested, computes slopes without coherent peaks
34 if ~PSDParam.NoPeaks
35 % computes slope for specified range by fitting with a straight line and taking the

slope of this last one
36 for k=1:size(ComputationStruct.dataProc,2)
37 P=interp1(f(:,k),power(:,k),PSDParam.SlopeRange);
38 linearApprox=polyfit(log10([(PSDParam.SlopeRange(1)),(PSDParam.SlopeRange(2))])

,log10([P(1),P(2)]),1);
39 slope(k)=linearApprox(1);
40 end
41 else
42 % or computes the same but fitting the spectrum through its local minima
43 for i=1:size(f,2)
44 [~,x]=findpeaks(-power(:,i)); %finds local minima
45 F=f(x,i);
46 P=power(x,i);
47 k=1;
48 while k<length(P)
49 if F(k)<PSDParam.SlopeRange(1) || F(k)>PSDParam.SlopeRange(2) %excludes

points outside of computation range
50 F(k)=[];
51 P(k)=[];
52 else
53 if P(k)<P(k+1) %excludes points that are higher than the previous one
54 F(k+1)=[];
55 P(k+1)=[];
56 else
57 k=k+1;
58 end
59 end
60 end
61 try
62 linearfit=fit(log10(F),log10(P),’poly1’); %tries to compute the fit, if

not enough points remains, than computes the slope with the original
algorithm

63 catch
64 warning([’PSD (’,ComputationStruct.ProbeName{k},’): error using the peaks

elimination algorithm (at leat two points needed in x and y variables
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to compute fit).’])
65 disp([’PSD (’,ComputationStruct.ProbeName{k},’): proceeding with normal

computation of the slope...’])
66 P=interp1(f(:,i),power(:,i),PSDParam.SlopeRange);
67 linearfit=fit(log10([(PSDParam.SlopeRange(1));(PSDParam.SlopeRange(2))]),

log10([P(1),P(2)])’,’poly1’);
68 end
69 slope(i)=linearfit.p1;
70 end
71 end
72

73 %% invalid data removal, to be coherent with data filter
74 f(1,:)=[];
75 power(1,:)=[];
76 f1=[];
77 p1=[];
78 for k=1:size(f,2)
79 fl=f(:,k);
80 pl=power(:,k);
81 pl(fl<ComputationStruct.FilterFreq(2)-ComputationStruct.FilterFreq(2)/10 | fl>

ComputationStruct.FilterFreq(3))=[];
82 fl(fl<ComputationStruct.FilterFreq(2)-ComputationStruct.FilterFreq(2)/10 | fl>

ComputationStruct.FilterFreq(3))=[];
83 f1=[f1,fl]; %#ok<*AGROW>
84 p1=[p1,pl];
85 end
86 f=f1;
87 power=p1;
88

89 %% fill output structure
90 PSDStruct.Slope=slope;
91 if ComputationStruct.Average %if Averge, then saves related data
92 PSDStruct.SMean=mean(slope);
93 PSDStruct.STDS=std(slope);
94 PSDStruct.PMean=mean(power,2);
95 PSDStruct.STDP=std(power,0,2);
96 PSDStruct.FMean=mean(f,2);
97 PSDStruct.STDF=std(f,0,2);
98 if ComputationStruct.ExcludeOutliers %if outliers have to be excluded, then do

it
99 PSDStruct.Outliers=[];

100 for i=1:length(slope)
101 if abs(slope(i)-PSDStruct.SMean)>3*PSDStruct.STDS %exclusion is done for

points further than 3*std from mean value
102 PSDStruct.Outliers=[PSDStruct.Outliers,i];
103 end
104 end
105 end
106 end
107 if ~(~PSDParam.Plot && PSDParam.SaveSpace) %carries some data over to StatComp only if

needed for plottting purposes, or if SaveSpace is false
108 PSDStruct.F=f;
109 PSDStruct.Power=power;
110 end
111 end
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1 function TempIncStruct=TempInc(ComputationStruct,IncParam)
2 %TEMPINC Performs the temporal increments analysis.
3 %
4 % Author: Aylwin Iantchenko
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ComputationStruct : structures that contains all the data used for
9 % computation. See DataOrganizer.m for further details

10 % - IncParam : structure that contains the parameters used for computation
11 %
12 % Output parameters:
13 % - TempIncTemp : structure that contains all the results of the analysis
14

15 %% compute statistics
16 % compute the increments for specified delay tau. All signals and time points are

treated directly
17 dval=interp1(ComputationStruct.Time,ComputationStruct.dataProc,ComputationStruct.Time(

ComputationStruct.Time<ComputationStruct.Time(end)-IncParam.TauTempInc)+IncParam.
TauTempInc)-...

18 ComputationStruct.dataProc((ComputationStruct.Time<ComputationStruct.Time(end)-
IncParam.TauTempInc),:);

19

20 dval=bsxfun(@minus,dval,mean(dval)); %remove mean
21 dval=bsxfun(@rdivide,dval,std(dval)); %divide by standard deviation;
22

23 % compute PDF of record
24 [counts,inc]=hist(dval,IncParam.nbins); %get counts of occurence
25 p=counts./sum(counts(:,1)); %compute probability of occurence, same number

of occurencies for each column
26

27 kurt=kurtosis(dval); %measure of width
28 skew=skewness(dval); %measure of asymmetry
29

30 %% Fill output structure
31 TempIncStruct.kurtosis=kurt;
32 TempIncStruct.skewness=skew;
33 if ComputationStruct.Average %if Averge, then saves related data
34 Pmean=mean(p,2);
35 Pmean=Pmean/sum(Pmean); %normalization of mean probability of occurrence
36 TempIncStruct.Pmean=Pmean;
37 TempIncStruct.KMean=mean(kurt,2);
38 TempIncStruct.SMean=mean(skew,2);
39 TempIncStruct.STDP=std(p,0,2);
40 TempIncStruct.STDS=std(skew);
41 TempIncStruct.STDK=std(kurt);
42 if ComputationStruct.ExcludeOutliers %if outliers have to be excluded, then do

it
43 TempIncStruct.Outliers=[];
44 for i=1:length(kurt)
45 if abs(kurt(i)-TempIncStruct.KMean)>3*TempIncStruct.STDK %exclusion is

done for points further than 3*std from mean value
46 TempIncStruct.Outliers=[TempIncStruct.Outliers,i];
47 end
48 end
49 for i=1:length(skew)
50 if abs(skew(i)-TempIncStruct.SMean)>3*TempIncStruct.STDS %exclusion is

done for points further than 3*std from mean value
51 TempIncStruct.Outliers=[TempIncStruct.Outliers,i];
52 end
53 end
54 end
55 end
56 if ~(~IncParam.Plot && IncParam.SaveSpace) %carries some data over to StatComp only if

needed for plottting purposes, or if SaveSpace is false
57 TempIncStruct.p=p;
58 TempIncStruct.inc=inc;
59 end
60 end
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1 function TempStructTemp=TempStruct(ComputationStruct,TempParam)
2 % TEMPSTRUCT Computes the temporal structure function, and the associated slopetogether

with the Hurst exponent.
3 %
4 % Author: Aylwin Iantchenko
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ComputationStruct : structures that contains all the data used for
9 % computation. See DataOrganizer.m for further details

10 % - TempParam : structure that contains the parameters used for computation
11 %
12 % Output parameters:
13 % - TempStructTemp : structure that contains all the results of the analysis
14

15 %% load provided paramaters and preallocation
16 tau=TempParam.TempTau’; %delay used in computation
17 range=TempParam.TempSlopeRange; %specified ranges for slope computation
18 p=TempParam.TempExp; %exponents used in computation
19 Data=ComputationStruct.dataProc;
20 Time=ComputationStruct.Time;
21

22 % preallocation
23 S=zeros(length(tau),size(Data,2));
24 Slope_temp=zeros(length(p),size(Data,2));
25 Hurst=cell(1,size(range,1));
26 Slope=Hurst;
27 for i=1:size(range,1)
28 Slope{i}=Slope_temp;
29 end
30 temp=cell(1,length(p));
31 tempmean=zeros(length(tau),length(p));
32

33 %% computation
34 for i=1:length(p) %loop over all exponents for all exponents
35 for a=1:size(range,1) %loop over all lag intervals
36 localp=p(i);
37 % compute the increments for specified delay tau. All signals and time points

are treated directly
38 parfor j=1:length(tau)
39 dval=interp1(Time,Data,Time(Time<Time(end)-tau(j))+tau(j))-Data((Time<Time(

end)-tau(j)),:);
40 S(j,:)=mean(abs(dval).^localp); %compute temporal structure

function
41 end
42 % compute slope for specified range
43 localrange=range(a,:);
44 P=interp1(tau,S,localrange);
45 for k=1:size(Data,2)
46 linearApprox=polyfit(log([localrange(1),localrange(2)]),log([P(1,k),P(2,k)

]),1);
47 Slope{a}(i,k)=linearApprox(1);
48 end
49 end
50 temp{i}=S;
51 tempmean(:,i)=mean(S,2);
52 end
53

54 % Hurst’s exponent computation
55 for i=1:length(Slope)
56 for k=1:size(Slope{i},2)
57 Slope_temp(:,k)=Slope{i}(:,k)./p’;
58 end
59 Hurst{i}=Slope_temp(2:end,:);
60 end
61

62 %% output
63 TempStructTemp.Slope=Slope;
64 TempStructTemp.Hurst=Hurst;
65 TempStructTemp.p=p;
66 if ComputationStruct.Average %if Averge, then saves related data
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67 TempStructTemp.SMean=tempmean;
68 for i=1:length(Slope)
69 TempStructTemp.SlopeMean(:,i)=mean(Slope{i},2);
70 TempStructTemp.HMean(:,i)=mean(Hurst{i},2);
71 TempStructTemp.STDH(:,i)=std(Hurst{i},0,2);
72 TempStructTemp.STDSlope(:,i)=std(Slope{i},0,2);
73 end
74 if ComputationStruct.ExcludeOutliers %if outliers have to be excluded, then do

it
75 TempStructTemp.Outliers=[];
76 for k=1:length(Slope)
77 for i=1:size(Slope{k},2)
78 if abs(Slope{k}(:,i)-TempStructTemp.SlopeMean(:,k))>3*TempStructTemp.

STDSlope(:,k) %exclusion is done for points further than 3*std
from mean value

79 TempStructTemp.Outliers=[TempStructTemp.Outliers,i];
80 end
81 end
82 for i=1:size(Hurst{k},2)
83 if abs(Hurst{k}(:,i)-TempStructTemp.HMean(:,k))>3*TempStructTemp.STDH

(:,k) %exclusion is done for points further than 3*std
from mean value

84 TempStructTemp.Outliers=[TempStructTemp.Outliers,i];
85 end
86 end
87 end
88 end
89 end
90 if ~(~TempParam.Plot && TempParam.SaveSpace) %carries some data over to StatComp

only if needed for plottting purposes, or if SaveSpace is false
91 TempStructTemp.S=temp;
92 TempStructTemp.TempTau=TempParam.TempTau;
93 end
94 end
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1 function PermEntropyStruct=PermEntropy(ComputationStruct,PermParam)
2 % PERMENTROPY Computes the permutation entropy of a time series, using precomputed

tables for efficiency.
3 %
4 % Author: Aylwin Iantchenko
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ComputationStruct : structures that contains all the data used for
9 % computation. See DataOrganizer.m for further details

10 % - PermParam : structure that contains the parameters used for computation
11 %
12 % Output parameters:
13 % - PermEntropyStruct : structure that contains all the results of the analysis
14

15 %% initiate internal variables, where computed values will be stored
16 Size=size(ComputationStruct.dataProc,2);
17 N=PermParam.N;
18 fact=factorial(N);
19 C=zeros(1,Size);
20 H=zeros(1,Size);
21 P=zeros(fact,Size);
22

23 %% compute PDF of the Shannon’s permutation entropy
24 Tau=round(PermParam.Tau*ComputationStruct.fs);
25 Data=ComputationStruct.dataProc;
26 for j=1:Size;
27 Pe=zeros(fact,1);
28 Pe(:)=1/fact; %uniform

probability distribution
29 P(:,j)=OrdinalCount(N-1,Tau,Data(:,j)); %probability

for ordinal patterns
30

31 % Compute Smax and C
32 factor=-2/(log2(fact+1)*(fact+1)/fact-2*log2(2*fact)+log2(fact));
33 Smax=log2(fact);
34 Q=factor*(Shannon((P(:,j)+Pe)/2)-Shannon(P(:,j))/2-Shannon(Pe)/2); %* factor if

normalised or not
35 H(j)=Shannon(P(:,j))/Smax; %compute and

save normalized entropy
36 C(j)=Q*H(j); %compute and

save Jensen-Shannon complexity
37 end
38

39 %% output
40 PermEntropyStruct.C=C;
41 PermEntropyStruct.H=H;
42 PermEntropyStruct.tauFactored=PermParam.Tau;
43 if ComputationStruct.Average %if Averge, then saves related data
44 Pmean=mean(P,2); %ensemble average
45 Pmean=Pmean/sum(Pmean); %normalization of ensemble average
46 PermEntropyStruct.PMean=Pmean;
47 PermEntropyStruct.CMean=mean(C);
48 PermEntropyStruct.HMean=mean(H);
49 PermEntropyStruct.STDH=std(H);
50 PermEntropyStruct.STDC=std(C);
51 PermEntropyStruct.STDP=std(P,0,2);
52 if ComputationStruct.ExcludeOutliers %if outliers have to be excluded, then do

it
53 PermEntropyStruct.Outliers=[];
54 for i=1:length(C)
55 if abs(C(i)-PermEntropyStruct.CMean)>3*PermEntropyStruct.STDC %exclusion

is done for points further than 3*std from mean value
56 PermEntropyStruct.Outliers=[PermEntropyStruct.Outliers,i];
57 end
58 end
59 for i=1:length(H)
60 if abs(H(i)-PermEntropyStruct.HMean)>3*PermEntropyStruct.STDH %exclusion

is done for points further than 3*std from mean value
61 PermEntropyStruct.Outliers=[PermEntropyStruct.Outliers,i];
62 end
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63 end
64 end
65 end
66 if ~(~PermParam.Plot && PermParam.SaveSpace) %carries some data over to StatComp

only if needed for plottting purposes, or if SaveSpace is false
67 PermEntropyStruct.P=P;
68 end
69 end
70

71 %% Local functions
72 function S=Shannon(p)
73 % SHANNON Compute Shannon permutation (if P=0, should return zero)
74 p(p==0)=1;
75 S=-sum(log2(p).*p);
76 end
77

78 function PDF=OrdinalCount(D,Tau,X)
79 % ORDINALCOUNT Computes probability for ordinal patterns
80 % initiate internal variables
81 counts=zeros(1,factorial(D+1));
82 k=zeros(1,D);
83 load([’/private/table’,num2str(D),’.mat’]) %load precomputed table
84 table=eval([’table’,num2str(D)]);
85

86 % compute nd for first d+1 elements in time series X
87 for start=1:Tau
88 for l=1:D
89 idx=D*Tau+1+(start-1);
90 k(l)=sum(X(idx-l*Tau)>=X(idx:-Tau:idx-(l-1)*Tau)); %compute i:s required to

calculate nd
91 end
92

93 n=sum(k*factorial(D+1)./factorial(2:D+1)); %compute label of current ordinal
pattern

94 counts(n+1)=counts(n+1)+1; %add count to ordinal pattern labelled with nd, +1 as we
start to count from index 1 (not 0).

95

96 % compute nd for rest
97 for idx=idx:Tau:length(X)-Tau-(start-1)
98 l=sum(X(idx+Tau)<=X(idx:-Tau:idx-D*Tau+1));
99 n=table(n*(D+1)+l+1);

100 counts(n+1)=counts(n+1)+1;
101 end
102 end
103 PDF=counts/sum(counts);
104 end
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1 function [ComputationStruct,DiffStruct]=ProcessSignal(ComputationStruct,DiffStruct)
2 % PROCESSSIGNAL Processes the magnetics signals used for turbulence analysis by

StatComp:
3 % cuts the data according to thespecified time interval, then removes

trends
4 % and data values above the specified limit.
5 %
6 % Author: Aylwin Iantchenko
7 % Last update: Alessandro Tolio, Apr. 10 2017
8 %
9 % Input parameters:

10 % - ComputationStruct : data structure containing all the data needed for
11 % computation purposes (see organizer.m)
12 % - DiffStruct : data structure containing various diffusion parameters
13 % computed inside this function
14 %
15 %
16 % Output parameters:
17 % - ComputationStruct : data structure now filled with only the
18 % time-varying part of the original dataset
19 % - DiffStruct : this is now filled with some diffusion parameters
20

21 %% signal processing
22 % manually given time values encapsulating interval of interest
23 idx=(ComputationStruct.Time>ComputationStruct.TimeInt(1) & ComputationStruct.Time<

ComputationStruct.TimeInt(2));
24

25 % check that time interval does not extend beyond the disruption time point.
26 if ComputationStruct.TimeInt(2)>=ComputationStruct.TimeDisr
27 disp([’StatComp: #’ int2str(ComputationStruct.Shot) ’: processSignal: WARNING: the

requested time interval extends beyond the ’ , ...
28 ’disruption time point!’]);
29 disp([’StatComp: #’ int2str(ComputationStruct.Shot) ’: processSignal: now cutting

the requested time interval to TimeDisr-5msec!’]);
30 idx=(ComputationStruct.Time>ComputationStruct.TimeInt(1) & ComputationStruct.Time<

ComputationStruct.TimeDisr-5e-3);
31 end
32

33 % remove points outside the specified interval
34 ComputationStruct.Data=ComputationStruct.Data(idx,:);
35 ComputationStruct.Time=ComputationStruct.Time(idx);
36

37 % remove drifts in the input dataset: if the selected TrendPol=0, only the mean value
will be removed!

38 dataProc=zeros(size(ComputationStruct.Data));
39 for i=1:size(ComputationStruct.Data,2)
40 [pp,~,mu]=polyfit(ComputationStruct.Time’,ComputationStruct.Data(:,i),

ComputationStruct.TrendPol);
41 xp=polyval(pp,ComputationStruct.Time’,[],mu);
42 dataProc(:,i)=ComputationStruct.Data(:,i)-xp;
43 end
44 clear pp mu xp i
45

46 % replace peaks above specified limit with mean value of signal (calculated without
these peaks),

47 % so as to keep the same signal length for simplicity.
48 dataLoc=dataProc; %local variable for simplicity
49 dataLoc(abs(dataLoc)>ComputationStruct.MaxVal)=0; %set values

above range to zero, to correctly calculate the mean in the next step below
50 dataProc(abs(dataProc)>ComputationStruct.MaxVal)=mean(abs(dataLoc(:))); %replace too

large values with mean of all probes
51 ComputationStruct.Data(abs(dataLoc)>ComputationStruct.MaxVal)=0; %set values

above range to zero, for data with drifts, used in diffusion calculation below
52 clear dataLoc
53

54 % process turbulent Bfield data: remove mean value and divide by standard deviation,
deltaBproc=(deltaB-mean(deltaB))/sigma(deltaB).

55 dataProc=bsxfun(@minus,dataProc,mean(dataProc)); %remove mean
56 dataProc=bsxfun(@rdivide,dataProc,std(dataProc)); %divide by standard deviation
57

58 %% signal filtering, if requested
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59 if ComputationStruct.FilterSignal
60 % design of the FIR bandpass filter.
61 if isempty(ComputationStruct.FilterFreq)
62 fcuts=[5e3,10e3,ComputationStruct.fs/2-10e3,ComputationStruct.fs/2-5e3];
63 ComputationStruct.FilterFreq=fcuts;
64 else
65 fcuts=ComputationStruct.FilterFreq;
66 end
67 mags=[0,1,0];
68 devs=[1e-5,1e-5,1e-5];
69 [n,Wn,beta,ftype]=kaiserord(fcuts,mags,devs,ComputationStruct.fs);
70 b=fir1(n,Wn,ftype,kaiser(n+1,beta),’noscale’);
71 clear fcuts mags devs n Wn beta ftype
72 parfor i=1:size(dataProc,2)
73 % apply the bandpass FIR filter to the input data.
74 dataProc(:,i)=filter(b,1,dataProc(:,i));
75

76 % subtract the mean value and divide by the standard deviation, has to be re-
done here due to the FIR filtering.

77 dataProc(:,i)=(dataProc(:,i)-mean(dataProc(:,i)))/std(dataProc(:,i));
78 end
79 end
80

81 %% compute diffusion related parameters.
82 % get time averaged electron density and temperature using the raw Thomson measurements

.
83 % check that the specified time interval range does not extend beyond the time range

for which the Thomson measurements are performed.
84 % if this is the case, use only the start end end values of the latter.
85 mdsopen(ComputationStruct.Shot);
86 nepr=tdi(’\results::thomson:ne’); %get electron density (unit =[m^-3])
87 tepr=tdi(’\results::thomson:te’); %get electron temperature (unit =[eV])
88 bphi=tdi(’\magnetics::iphi’); %current in the toroidal field coils (

unit =[A])
89 mdsclose;
90 timeNeTe=nepr.dim{1}; %get time vector of Thomson data (unit

=[sec])
91 zCoords=nepr.dim{2}; %get Z-coordinates of measurements

points (unit =[m])
92 timeBtor=bphi.dim{1}; %get time vector of the toroidal Bfield

data (unit =[sec])
93 btorAxis=192.e-7*abs(bphi.data)/0.88; %toroidal field on the magnetic axis (

unit =[T])
94 btorEdge=192.e-7*abs(bphi.data)/(0.88+0.25); %toroidal field at the plasma edge (

unit =[T])
95

96 % select only the data in the correct time window.
97 if (timeNeTe(1)>ComputationStruct.TimeInt(1))
98 MeasVal=[timeNeTe(1),0];
99 else MeasVal=[ComputationStruct.TimeInt(1),0];

100 end
101 if (timeNeTe(end)<ComputationStruct.TimeInt(2))
102 MeasVal(2)= timeNeTe(end);
103 else MeasVal(2)=ComputationStruct.TimeInt(2);
104 end
105 idx=(timeNeTe>MeasVal(1) & timeNeTe<MeasVal(2));
106 ne=mean(nepr.data(idx,:));
107 Te=mean(tepr.data(idx,:));
108 idx=(timeBtor>MeasVal(1) & timeBtor<MeasVal(2));
109 btorEdge=mean(btorEdge(idx));
110 btorAxis=mean(btorAxis(idx));
111

112 % get the values of the electron density and temperature at the edge
113 neEdge=ne(1);
114 teEdge=Te(1);
115

116 % get an estimate for the turbulent magnetic field averaged over all probes and time
points.

117 BmeanRaw=mean(abs(ComputationStruct.Data(:)-mean(ComputationStruct.Data(:)))); %mean
value of raw deltaB data

118 BstdRaw=std(abs(ComputationStruct.Data(:)-mean(ComputationStruct.Data(:))));
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119 BmeanProc=mean(abs(dataProc(:))); %mean value of processed deltaB data
120 BstdProc=std(abs(dataProc(:)));
121

122 % estimate the Alfven speed, the ion sound speed at the plasma edge for a deuterium
plasma

123 % (AA=2, ZZ=1) with gamma=5/3.
124 vA=2.18e16*btorEdge/sqrt(2*neEdge); %Alfven speed, unit =[m/s]
125 vS=9.79e3*sqrt((5/3)*teEdge/2); %ion sound speed, unit =[m/s]
126

127 % computes some diffusion-related data only if more than 1 elemtes are retrieved form
TS system

128 if numel(ne)>1
129 % remove values outside the plasma, associated to a very low density.
130 Te(ne<100)=[];
131 zCoords(ne<100)=[];
132 ne(ne<100)=[];
133

134 % estimate the local density and temperature gradients.
135 grad_ne=abs((ne(2)-ne(1))/(zCoords(2)-zCoords(1)));
136 grad_Te=abs((Te(2)-Te(1))/(zCoords(2)-zCoords(1)));
137

138 % estimate the ion (and electron) drift velocity
139 % NOTE: assuming ne=ni and Te=Ti at the plasma edge, the ion and electron drift

velocities are the same for ZZ=1!
140 vD=1e3*grad_ne/neEdge; %ion (and electron) drift velocity, unit =[

m/s]
141

142 % partially fill the output structure
143 DiffStruct.vD=vD; %estimated ion/electron drift velocity at

the plasma edge (unit =[m/sec])
144 DiffStruct.LneEdge=neEdge/grad_ne; %computed density scale length at the

plasma edge (unit =[m])
145 DiffStruct.LteEdge=teEdge/grad_Te; %computed temperature scale length at the

plasma edge (unit =[m])
146 else
147 disp(’ProcessSignal: less than two Thomson points in the selected time slice:

cannot compute gradient of ne, Te.’)
148 end
149

150 %% save the output structure with the diffusion coefficients for the current signal (
shot and array).

151 DiffStruct.btorAxis=btorAxis;
152 DiffStruct.btorEdge=btorEdge;
153 DiffStruct.BmeanRaw=BmeanRaw;
154 DiffStruct.BstdRaw=BstdRaw;
155 DiffStruct.BmeanProc=BmeanProc;
156 DiffStruct.BstdProv=BstdProc;
157 DiffStruct.vA=vA; %estimated Alfven speed at the plasma edge (

unit =[m/sec])
158 DiffStruct.vS=vS; %estimated sound speed at the plasma edge (unit

=[m/sec])
159 DiffStruct.neEdge=neEdge; %computed volume and time averaged density at

the plasma edge (unit =[m^-3])
160 DiffStruct.teEdge=teEdge; %computed volume and time averaged temperature

at the plasma edge (unit =[eV])
161

162 ComputationStruct.dataProc=dataProc;
163 end
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1 function ComputationArray=DataOrganizer(ParamStruct,Signal,Time,SizeLoop)
2 % DATAORGANIZER Fucntions that constructs the cell array containing all the data

structures needed for computation.
3 %
4 % Author: Alessandro Tolio, Nov. 8 2016
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters:
8 % - ParamStruct: this is the data structures containing all the parameters
9 % used for computation. I am planning to either change

10 % this structure or even getting rid of it
11 % - Signal: cell array containing all the data points related to the
12 % probes’ array. It is obtained from FMPloader
13 % - Time: as the above one, but containing the time points of the
14 % measurements
15 % - SizeLoop: total number of interations of the computation
16 %
17 % Output paramter:
18 % - ComputationArray: cell array containing computationStruct, which is a
19 % data structure that contains the relevant data for
20 % each combinantion of shot and probes’ array
21

22

23

24 %% initialization; preallocation and shortcuts are made in order to optimize the parfor
loop

25 ComputationStruct=struct(...
26 ’Shot’,[],... %shot’s number
27 ’ShotIdx’,[],... %shot’s index
28 ’ArrayIdx’,[],... %array’s index
29 ’SignalIdx’,[],... %signal’s index
30 ’Data’,[],... %data related to the given array
31 ’BBunits’,[],... %unit of measurement for data points
32 ’Time’,[],... %vector of time related to data [s]
33 ’TimeDisr’,[],... %disruption time [s]
34 ’fs’,[],... %sampling frequency
35 ’Stat’,[],... %statistics for current shot/array combination
36 ’TimeInt’,[],... %time interval index, used to select the correct time

interval afterwards
37 ’MaxVal’,[],... %index of the maximum value
38 ’TrendPol’,[],... %index for the polynomial trend
39 ’PlotStr’,[],... %string used for plotting purposes
40 ’ProbeName’,[],... %string containing the probe name, used for plotting

purposes
41 ’Average’,[],... %compute average values
42 ’ProbeNameAvg’,[],... %as above, but used if blnAverage==true
43 ’FilterSignal’,[],... %used to filter the signal
44 ’FilterFreq’,[],... %filter’s frequency
45 ’ExcludeOutliers’,[]... %to exclude outliers from results
46 );
47 ComputationArray=cell(1,SizeLoop);
48 ComputationArray(1,:)={ComputationStruct};
49 shot=ParamStruct.Shot;
50 Array=ParamStruct.Array;
51 Stat=ParamStruct.Stat;
52 Disr=ParamStruct.TimeDisr;
53 TimeInt=ParamStruct.ProcParam.TimeInt;
54 MaxVal=ParamStruct.ProcParam.MaxVal;
55 TrendPol=ParamStruct.ProcParam.TrendPol;
56 BBunits=ParamStruct.BBunits;
57 fs=ParamStruct.fs;
58 ProbeName=ParamStruct.ProbeName;
59 ProbeNameAvg=ParamStruct.ProbeNameAvg;
60 Average=ParamStruct.Average;
61 FilterSignal=ParamStruct.FilterSignal;
62 FilterFreq=ParamStruct.FilterFreq;
63 ExcludeOutliers=ParamStruct.ExcludeOutliers;
64

65 %% selection of the processing values
66 % this is done because the calling function is said to be able to manage some

processing parameters in a certain way
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67 if (size(TimeInt,2)~=2) && ~mod(size(TimeInt,2),2)
68 TimeInterval=size(TimeInt,2)/2;
69 else TimeInterval=1;
70 end
71

72 if (size(MaxVal,2)~=2) && ~mod(size(MaxVal,2),2)
73 MaxValValue=size(MaxVal,2)/2;
74 else MaxValValue=1;
75 end
76

77 if (size(TrendPol,2)~=2) && ~mod(size(TrendPol,2),2)
78 TrendVal=size(TrendPol,2)/2;
79 else TrendVal=1;
80 end
81

82 llArray=length(ParamStruct.Array);
83 llShot=length(ParamStruct.Shot);
84

85 %% filling of the output cell array
86 parfor i=1:SizeLoop
87 k=ceil(i/llArray); %shot index
88 h=i-llArray*(k-1); %array index
89 ComputationArray{i}.Shot=shot(k); %#ok<*PFBNS>
90 ComputationArray{i}.ShotIdx=k;
91 ComputationArray{i}.Array=Array(h);
92 ComputationArray{i}.ArrayIdx=h;
93 ComputationArray{i}.Data=Signal{i};
94 ComputationArray{i}.Time=Time{i};
95 ComputationArray{i}.TimeDisr=Disr(k);
96 ComputationArray{i}.Stat=Stat;
97 ComputationArray{i}.BBunits=BBunits{i};
98 ComputationArray{i}.fs=fs(i);
99 ComputationArray{i}.ProbeName=ProbeName{h};

100 ComputationArray{i}.ProbeNameAvg=ProbeNameAvg{i};
101 ComputationArray{i}.Average=Average;
102 ComputationArray{i}.FilterSignal=FilterSignal;
103 ComputationArray{i}.FilterFreq=FilterFreq;
104 ComputationArray{i}.ExcludeOutliers=ExcludeOutliers;
105 if TimeInterval==SizeLoop
106 ComputationArray{i}.TimeInt=TimeInt([2*i-1,2*i]);
107 elseif TimeInterval==llShot
108 ComputationArray{i}.TimeInt=TimeInt([2*k-1,2*k]);
109 else ComputationArray{i}.TimeInt=TimeInt([1,2]);
110 end
111 if (MaxValValue==SizeLoop) && (MaxValValue~=1)
112 ComputationArray{i}.MaxVal=MaxVal(i);
113 elseif MaxValValue==llShot
114 ComputationArray{i}.MaxVal=MaxVal(2*k-1);
115 else ComputationArray{i}.MaxVal=MaxVal;
116 end
117 if TrendVal==SizeLoop && (MaxValValue~=1)
118 ComputationArray{i}.TrendPol=TrenPol(i);
119 elseif TrendVal==llShot
120 ComputationArray{i}.TrendPol=TrendPol(2*k-1);
121 else ComputationArray{i}.TrendPol=TrendPol;
122 end
123 ComputationArray{i}.PlotStr=[’(’ num2str(ComputationArray{i}.TimeInt(1),’%6.4f’) ’-

’ num2str(ComputationArray{i}.TimeInt(2),’%6.4f’) ’[s])’];
124 end
125 end



99

1 function [AutoStruct,PSDStruct,IncStruct,FunStruct,PermStruct,Outliers] =
ComputeNewAverages(AutoStruct,PSDStruct,IncStruct,FunStruct,PermStruct)

2 % COMPUTENEWAVERAGES Computes new mean and std values if outliners are found.
3 %
4 % Author: Alessandro Tolio, March 2016
5 % Last update: Alessandro Tolio, Apr. 10 2017
6 %
7 % Input parameters: all results structures
8 %
9 % Output parameters:

10 % - same structures with new mean and std values
11 % - Outliers : contains all found outliers
12

13 %% computation
14 % computation is done twice in order to exclude some more outliers
15 for k=1:2
16 idx=[];
17

18 % save all outliers from each computation
19 if ~isempty(AutoStruct)
20 idx=[idx,AutoStruct.Outliers];
21 end
22 if ~isempty(PSDStruct)
23 idx=[idx,PSDStruct.Outliers];
24 end
25 if ~isempty(IncStruct)
26 idx=[idx,IncStruct.Outliers];
27 end
28 if ~isempty(FunStruct)
29 idx=[idx,FunStruct.Outliers];
30 end
31 if ~isempty(PermStruct)
32 idx=[idx,PermStruct.Outliers];
33 end
34

35 if ~isempty(idx) %skips all computation if not outliesr are found
36

37 % computation on AutoCorr results
38 if ~isempty(AutoStruct)
39 temp=[];
40 for i=1:length(AutoStruct.TauCorr)
41 if ~ismember(i,idx)
42 temp=[temp,AutoStruct.TauCorr(i)]; %#ok<*AGROW>
43 end
44 end
45 AutoStruct.MeanTau=mean(temp);
46 AutoStruct.STDTauC=std(temp);
47 if k==1 %if first iteration searches for new outliers
48 AutoStruct.Outliers=[];
49 for i=1:length(AutoStruct.TauCorr)
50 if abs(AutoStruct.TauCorr(i)-AutoStruct.MeanTau)>3*AutoStruct.

STDTauC
51 AutoStruct.Outliers=[AutoStruct.Outliers,i];
52 end
53 end
54 end
55 end
56

57 % computation on PSD results
58 if ~isempty(PSDStruct)
59 temp=[];
60 for i=1:length(PSDStruct.Slope)
61 if ~ismember(i,idx)
62 temp=[temp,PSDStruct.Slope(i)];
63 end
64 end
65 PSDStruct.SMean=mean(temp);
66 PSDStruct.STDS=std(temp);
67 if k==1 %if first iteration searches for new outliers
68 for i=1:length(PSDStruct.Slope)
69 PSDStruct.Outliers=[];
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70 if abs(PSDStruct.Slope(i)-PSDStruct.SMean)>3*PSDStruct.STDS
71 PSDStruct.Outliers=[PSDStruct.Outliers,i];
72 end
73 end
74 end
75 end
76

77 % computation on TimeInc results
78 if ~isempty(IncStruct)
79 temp=[];
80 for i=1:length(IncStruct.kurtosis)
81 if ~ismember(i,idx)
82 temp=[temp,IncStruct.kurtosis(i)];
83 end
84 end
85 temp1=[];
86 for i=1:length(IncStruct.skewness)
87 if ~ismember(i,idx)
88 temp1=[temp1,IncStruct.skewness(i)];
89 end
90 end
91 IncStruct.KMean=mean(temp);
92 IncStruct.SMean=mean(temp1);
93 IncStruct.STDK=std(temp);
94 IncStruct.STDS=std(temp1);
95 if k==1 %if first iteration searches for new outliers
96 IncStruct.Outliers=[];
97 for i=1:length(IncStruct.kurtosis)
98 if abs(IncStruct.kurtosis(i)-IncStruct.KMean)>3*IncStruct.STDK
99 IncStruct.Outliers=[IncStruct.Outliers,i];

100 end
101 end
102 for i=1:length(IncStruct.skewness)
103 if abs(IncStruct.skewness(i)-IncStruct.SMean)>3*IncStruct.STDS
104 IncStruct.Outliers=[IncStruct.Outliers,i];
105 end
106 end
107 end
108 end
109

110 % computation on TempStruct results
111 if ~isempty(FunStruct)
112 for j=1:length(FunStruct.Slope)
113 temp=[];
114 for i=1:size(FunStruct.Slope{j},2)
115 if ~ismember(i,idx)
116 temp=[temp,FunStruct.Slope{j}(:,i)];
117 end
118 end
119 temp1=[];
120 for i=1:size(FunStruct.Hurst{j},2)
121 if ~ismember(i,idx)
122 temp1=[temp1,FunStruct.Hurst{j}(:,i)];
123 end
124 end
125 FunStruct.SlopeMean(:,j)=mean(temp,2);
126 FunStruct.HMean(:,j)=mean(temp1,2);
127 FunStruct.STDSlope(:,j)=std(temp,0,2);
128 FunStruct.STDH(:,j)=std(temp1,0,2);
129 if k==1 %if first iteration searches for new outliers
130 FunStruct.Outliers=[];
131 for i=1:size(FunStruct.Slope{j},2)
132 if abs(FunStruct.Slope{j}(:,i)-FunStruct.SlopeMean(:,j))>3*

FunStruct.STDSlope(:,j)
133 FunStruct.Outliers=[FunStruct.Outliers,i];
134 end
135 end
136 for i=1:size(FunStruct.Hurst{j},2)
137 if abs(FunStruct.Hurst{j}(:,i)-FunStruct.HMean(:,j))>3*

FunStruct.STDH(:,j)
138 FunStruct.Outliers=[FunStruct.Outliers,i];
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139 end
140 end
141 end
142 end
143 end
144

145 % computation on PermEntr resuslts
146 if ~isempty(PermStruct)
147 temp=[];
148 for i=1:length(PermStruct.C)
149 if ~ismember(i,idx)
150 temp=[temp,PermStruct.C(i)];
151 end
152 end
153 temp1=[];
154 for i=1:length(PermStruct.H)
155 if ~ismember(i,idx)
156 temp1=[temp1,PermStruct.H(i)];
157 end
158 end
159 PermStruct.CMean=mean(temp);
160 PermStruct.HMean=mean(temp1);
161 PermStruct.STDC=std(temp);
162 PermStruct.STDH=std(temp1);
163 if k==1 %if first iteration searches for new outliers
164 PermStruct.Outliers=[];
165 for i=1:length(PermStruct.C)
166 if abs(PermStruct.C(i)-PermStruct.CMean)>3*PermStruct.STDC
167 PermStruct.Outliers=[PermStruct.Outliers,i];
168 end
169 end
170 for i=1:length(PermStruct.H)
171 if abs(PermStruct.H(i)-PermStruct.HMean)>3*PermStruct.STDH
172 PermStruct.Outliers=[PermStruct.Outliers,i];
173 end
174 end
175 end
176 end
177 end
178 end
179

180 %% outliers saving
181 if~isempty(idx)
182 idx=sort(idx);
183 i=1;
184 while i<length(idx) %getting rid of repeated numbers
185 j=find(idx==idx(i));
186 idx(j(2:end))=[];
187 i=i+1;
188 end
189 end
190 Outliers=idx;
191 end
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