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A B S T R A C T

Reinforcement Learning (RL) is one of the most prominent frame-
works for designing artificial agents when the only source of know-
ledge is the interaction with an environment. Special difficulties arise
when the state and action spaces are continuous since the classical RL
algorithms are no longer feasible or ensured to converge. Actor-critic
approaches emerge as a solution for these issues by combining the
proven convergence of policy-gradient methods with the representa-
tion power of function approximators, all in a low variance estima-
tion.
Transfer Learning (TL) is the paradigm that addresses the problem of
transferring past experience from different tasks when the agent is
facing a new, unknown one. Its purpose is to develop algorithms that
speed-up the new learning process by leveraging the past knowledge.
Various advances concerning TL in RL have been developed in the
recent years, but most of the proposals focus on transfer higher level
information like value functions, policies or feature maps.
The Lipschitz continuity property, a stronger notion of continuity that
concerns the elements of the task, can provide enough information
to create sample-level transfer mechanisms to extend the Actor-Critic
methods. This thesis introduces two such mechanisms based on weig-
hted estimators: one performs an optimistic selection of the weig-
hts and the other goes for a pessimistic perspective. Both techniques
are compared with a transfer mechanism based on Importance Sam-
pling (IS) estimators. The optimistic approach produces good results
in most of the experimental cases, showing that it is a promising alter-
native over the IS-based one and the no transfer scenario. The pessi-
mistic approach, instead, tends to be too conservative on the selection
of the weights, and offers no special improvements with respect to the
no transfer scenario.
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E S T R AT T O

L’Apprendimento per rinforzo (reinforcement learning) è uno dei più
noti paradigmi per la progettazione di agenti intelligenti in contesti
dove l‘unica fonte di informazione è l’interazione con l’ambiente. Par-
ticolari difficoltà emergono quando gli spazi di stato e azione sono
continui, dato che gli algoritmi classici di RL non sono più applicabili
o non hanno nessuna garanzia di convergenza. Gli approcci Actor-
Critic nascono come una soluzione a questi problema, combinando la
convergenza dei metodi policy-gradient con le abilità rappresentative
dei function approximators, avendo come risultato uno stimatore a
bassa varianza.
L’Apprendimento per trasferimento d’informazione (transfer learning)
è il paradigma che studia il problema della trasmissione dell’esperienza
ottenuta dall’interazione con diversi ambienti nell’apprendimento di
un nuovo compito. Il principale obiettivo è lo sviluppo di algoritmi
che velocizzino il nuovo processo d’apprendimento utilizzando le co-
noscenze passate. Varie proposte nell’ambito di TL in RL sono state
presentate negli anni recenti, ma quasi tutte si concentrano sul trasfe-
rimento d’informazioni di alto livello come value functions, policies
o feature maps.
La proprietà di continuità Lipschitziana, una nozione più forte di con-
tinuità che riguarda gli elementi dell’ambiente, può dare sufficiente
informazione per creare meccanismi di trasferimento a livello di sin-
goli campioni per i metodi Actor-Critic. Questa tesi propone due di
tali meccanismi basati su stimatori pesati: uno fa una selezione otti-
mistica dei pesi mentre l’altro sceglie una prospettiva pessimistica. I
due metodi sono confrontati con un meccanismo di trasferimento ba-
sato su stima tramite Importance Sampling. L’approccio ottimistico
produce buoni risultati in quasi tutti gli scenari sperimentali, rive-
landosi un’alternativa promettente ad IS e all’apprendimento senza
trasferimento. L’approccio pessimistico risulta invece essere troppo
conservativo nella scelta dei pesi, e non offre speciali vantaggi ris-
petto all’apprendimento classico.
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1
I N T R O D U C T I O N

The purpose of Artificial Intelligence is to develop techniques that
make computers to resemble human’s mind as close as possible. While
trying to clear the fuzziness of this goal, various different paradigms
have been proposed. One of the most popular ones is based on the
concept of goal-oriented artificial agents existing within a specific envi-
ronment (Russell and Norvig, 2003). This paradigm is based on three
important elements:

– The agent, the human-like behaving entity. It relies on actions
that can be executed on trying to reach the goal;

– The environment, the world the agent exists in. It refers to every-
thing that is not part of the agent and that is, therefore, out of its
control. The state of the environment describes the conditions of
the relevant elements of the world;

– The goal of the agent, a description of the situation(s) involving
the agent and the environment that the agent expects to reach.

The agent is supposed to find the appropriate way to behave such
that the interaction with the environment leads to the fulfillment of
the goal.
The interaction between the agent and the environment is governed
by the following mechanism: the agent executes an action on the en-
vironment, the environment reacts to the action by possibly changing
its state, the agent observes the new state and executes a new action,
and so on; this produces a chain of states and actions that represents
an instance of the interaction process. When the states observed by
the agent along the process coincide entirely with the real states of
the environment, there is full observability; if the state observed by the
agent contains only a fraction of the information of the state of the
environment, there is partial observability. In order to achieve the goal,
the agent will try to find a strategy that tells it what actions are to be
performed based on the previous history of interaction and the cur-
rent observed state of the environment, so that such goal is reached.
Figure 1.1 shows a graphical representation of this process.
This strategy-finding problem (referred to as the agent problem from
now on) has been approached from several different perspectives al-
ong time (Russell and Norvig, 2003). Most of them rely on having
prior knowledge about the environment that can help in designing
the agent. However, there is a number of real-life problems in which
such knowledge is insufficient or even absent at all, making those ap-
proaches unsuitable. Within this context, the Reinforcement Learning

1



2 introduction

Figure 1.1: The agent-environment interaction model. Through actions, the
agent produces changes in the environment’s state, which are
can be observed either fully or partially (adapted from (Kael-
bling, Littman, and Moore, 1996)).

(RL) (Sutton and Barto, 1998) framework has emerged as a successful
attempt to solve the agent problem by leveraging the data coming
from experience as the only source of knowledge.

RL solves the agent problem by adding assumptions to simplify the
modeling of the environment and the agent, and by leveraging the
idea of utility function as the modeling tool for the agent’s goal. As
a consequence, the problem acquires a recursive optimal structure
which allows to develop particularly interesting solutions. A family
of them, the value based techniques (Kober, Bagnell, and Peters, 2013),
strongly exploits this property and derives the optimal policy (stra-
tegy) directly from the utility functions; the core of these techniques
is the policy evaluation step, which consists of assessing the current
strategy of the agent. On the other hand, policy based methods (Dei-
senroth, Neumann, and Peters, 2013) directly search the space of po-
licies when trying to find a solution; the most widely spread sub-
family of these is the policy gradient methods (Peters and Schaal,
2008b), which assume a parametric family of policies and optimize
the utility by following its gradient with respect to those parameters.
Actor-critic methods (Konda and Tsitsiklis, 2003) are yet another fa-
mily of approaches that try to merge value based and policy based
algorithms on an attempt to overcome their drawbacks; their power
lies on the separation of the policy assessment (performed by the so
called critic) and the policy optimization (performed by the so called
actor) steps.

Various real-life contexts where the agent problem arises have yet
another particular source of complexity regarding implementation de-
tails: the set of states of the environment and the set of actions of the
agent have a continuous nature. RL tackles this issue by resorting to
function approximation for the utility functions and parametric spa-
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ces of functions for the policies. Under these conditions, actor-critic
approaches result in a very suitable solution.

While pursuing the goal of building human-behaving computers, the
agent problem can be further extended to scenarios in which there
is more than one environment to interact with. In these cases, the
agent is not only expected to learn how to behave optimally in all the
environments, but also to identify how they are related so that the
experience can be leveraged across them.
Within the RL framework, these types of problems are classified as
Transfer Learning (TL) problems (Taylor and Stone, 2009). An impor-
tant instance of TL-RL problems considers an agent that has deeply
interacted with a set of environments (called source tasks) and is now
facing a new unknown environment (called target task). Under the
assumption that all the tasks share some similarities, the goal of the
agent is to transfer relevant knowledge from the sources to speed-up
learning in the target.
The field of robotics is an example that can find TL-RL solutions to
be particularly useful. Actor-critic algorithms with policy-gradient ac-
tors and function-approximators based critics are suitable due to the
inherent continuous nature of these problems; in fact, successful re-
sults have been obtained in practice (Grondman et al., 2012). Because
of the costs related to the collection of experience in these environ-
ments, TL-based techniques raise as a promising alternative to obtain
highly performing agents at lower interaction requirements, so that
there is no need to redo all the training when the environment chan-
ges.

1.1 motivation

The design and implementation of the different TL-RL techniques
is strongly influenced by the assumptions regarding the task similari-
ties; these dictate what type of knowledge can be transferred (e. g.utility
functions, policy parameters, feature maps, etc.) and how it is trans-
ferred. An important example is the family of continuous tasks that
satisfy stronger smoothness properties, namely the Lipschitz continuity,
not only within the task elements but also across different tasks. Such
similarity property is a good source of information for the agent du-
ring the transfer process.
One of the most important open issues in TL is negative transfer, i. e.,
the negative impact on the learning process caused by the transfer
of useless source knowledge into the target task. Most techniques do
not directly address this issue because they consider sufficiently safe
similarity assumptions. The Lipschitz continuity property, however,
might offer sufficient information to the agent not only for transfer-
ring but also for adequately selecting what to transfer.
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1.2 goal

This thesis considers a Transfer Learning-Reinforcement Learning sce-
nario where the transition and rewards models of the tasks satisfy the
Lipschitz continuity property. The purpose is to deeply exploit this
property for the design of a transfer mechanism that provides not
only a speed-up for learning in the target task, but also robustness to
negative transfer. Furthermore, the continuity nature of the problem
and the local similarity information provided by the Lipschitz condi-
tions justify mechanisms that extend actor-critic algorithms based on
the transfer of the most basic pieces of experience, i. e., on samples.

1.3 contribution

The result of the work developed along this thesis is an algorithm
that implements an actor-critic approach based on weighted estima-
tors for the transfer scenario. The purpose of the weights is to correct
the source samples’ contribution to the target so that they indeed re-
present an improvement in the estimation.
Two alternatives are proposed for the selection of the weights: an op-
timistic one, which aims to reduce the estimated error induced by
the transfer, and a pessimistic one, which aims to reduce an overes-
timation of the estimated error. Both approaches are compared to a
well-known family of weighted estimators, the IS estimators, which
are known to be unbiased, but suffer from a high variance.
The pessimistic approach offers no significant improvements for the
transfer scenario, and can be easily affected by negative transfer. The
optimistic approach, instead, happens to offer the same performance
than the IS-based one, while reducing its variance and dropping the
need for the target task model.

1.4 outline

The work in this thesis is organized along well-defined chapters.
Chapter 2 formally introduces the RL framework and the most im-
portant theoretical elements that it is based on. It also emphasizes
actor-critic techniques for the continuous scenario, by presenting part
of the state-of-the-art algorithms for policy evaluation and policy gra-
dient. At last, it formalizes the Lipschitz continuity property within
the element of a single task.
Chapter 3 concerns TL in the RL context. It presents the specific issues
that transfer algorithms must face when dealing with RL problems,
like the precise definition of the similarity assumptions, the type of
knowledge that is transferred, or the metric that is supposed to be
optimized. Some previous works on transfer of samples are also des-
cribed in this chapter.
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Chapter 4 introduces a proposal for modeling the Lipschitz continuity
across different task, formalizes the problem tackled by this thesis,
and uses them both to introduce the three considered estimators: IS-
based, optimistic, and pessimistic.
Chapter 5 presents the experimental setting that the estimators have
been evaluated on, as well as the obtained results and a discussion
about them.
Chapter 6 finishes this work by presenting the conclusions that can
be derived from the obtained results, and discusses future work to
further improve them.





2
R E I N F O R C E M E N T L E A R N I N G

The purpose of this chapter is to introduce the RL framework. Section
2.1 starts with the formalization of the agent problem formulation
within this framework, and then Section 2.2 gives a brief taxonomy
concerning the algorithms that intend to solve it. The chapter goes on
with more detailed descriptions of important families of algorithms:
policy gradient, in Section 2.3, and policy evaluation, in Section 2.4.
Section 2.5 continues by presenting the actor-critic approach, a po-
pular paradigm that combines policy gradient and policy evaluation
into a more powerful technique. Finally, Section 2.6 introduces a for-
mal approach for modeling the Lipschitz continuity properties within
the elements of a single environment.

2.1 theoretical framework : markov decision processes

Reinforcement Learning is the subarea of Machine Learning that stu-
dies the strategy-finding problem related to goal-oriented artificial
agents from an experience-based perspective (Sutton and Barto, 1998).
The agent is assumed to have zero (or very poor) prior knowledge
about the dynamics of the environment it will act upon in, so the
only source of information that can be leveraged is the experience
coming from interaction with it.
On its most general form, the problem tackled by RL is too complex;
hence, there are a couple of assumptions that are usually accepted in
order to simplify it and make it easier to be solved (Sutton and Barto,
1998).

Definition 2.1 (Reinforcement Learning Assumptions). The RL pa-
radigm strengthens the agent-environment paradigm (Chapter 1) by
adding the following assumptions:

– Discrete time transitions: the interaction between the agent and
the environment happens at discrete time steps. Thus, any in-
stance of such an interaction process can be expressed by a se-
quence

s0
a0−→ s1

a1−→ s2
a2−→ ... ,

where si are the states and ai are the actions;

– Markovian transitions: given the current state of the environment
and the action just executed by the agent, the transition to the
next state (or set of candidate next states) does not depend on

7



8 reinforcement learning

Figure 2.1: In addition to the resulting state, the agent also observes a re-
ward inherent to the just performed transition (Sutton and Barto,
1998).

the history of previously visited states and actions, but only on
the current state and action;

– Stationary transition model: the model that describes the transi-
tion between states does not depend on the current time step, it
is invariant along the whole interaction between the agent and
the environment;

– Reward-based assessed transitions: each transition produces a sca-
lar reward for the agent to assess the goodness of executing the
just applied action while being in the just abandoned state. The
interaction instance is thus enriched to account for the rewards
ri:

s0
a0−→
r0
s1

a1−→
r1
s2

a2−→
r2

... .

Figure 2.1 shows the enriched interaction process between the agent
and the environment under the RL framework.
Thanks to these assumptions, RL can resort to well-defined mathe-
matical entities to model and study the agent problem. In fact, the
whole framework is based on the concept of Markov Decision Pro-
cess (MDP).
MDPs are the corner stone of RL. They are used to formalize the envi-
ronment, making it easier to model later on the agent, the goal and
the corresponding strategy-finding problem. Although they are all
founded on the same rationale, different formal definitions of MDPs
exist. This thesis focuses on the case in which both the set of actions of
the agent and the set of states of the environment are continuous, and
the reward observed by the agent on each transition is deterministic.

Definition 2.2 (Markov Decision Process). An MDP is a 6-tuple M =

(S,A,P, r, γ, µ) composed of:

– The set of the states the environment, called state space, denoted
by S. It is a measurable space with its Borel σ-algebra B(S), and
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a Polish space with metric dS; furthermore, S ⊂ RnS . The space
∆(S) is composed of all the measures defined on B(S);

– The set of actions available to the agent for applying to the en-
vironment, called action space, denoted by A. It is a measurable
space with its Borel σ-algebra B(A), and a Polish space with
metric dA; furthermore, A ⊂ RnA . The space ∆(A) is composed
of all the measures defined on B(A);

– The transition model, that defines the dynamics of the transition
between different states of the environment induced through
an action applied by the agent. It is modeled with a function
P : S×A× S → R, (s, a, s ′) 7→ P(s ′|s, a), such that P(·|s, a) is a
distribution for a probability measure on B(S) with respect to
the Lebesgue measure; abusing notation, P(·|s, a) is used both
for the density function and the corresponding probability me-
asure. P defines the dynamics of the environment in the sense
that P(·|s, a) is the distribution over the states that can be rea-
ched by the environment given that it was in state s and the
agent performed action a;

– The reward model, that defines the reward obtained by the agent
after executing a certain action in a certain state. It is modeled
by a function r : S×A× S → [R1, R2] ⊂ R, where r(s, a, s ′) is
the reward for the transition from s to s ′ as caused by action a.
The expected immediate reward R : S×A → [R1, R2] is the ex-
pected value of the reward function r with respect to the distri-
bution P(·|s, a) induced by the corresponding state and action:

R(s, a) =

∫
S

r(s, a, s ′)P(s ′|s, a)ds ′;

– The discount factor, that measures the interest of the agent in
longer term rewards. It is represented by a real number γ ∈
[0, 1];

– The initial state distribution, that defines the initial condition of
the environment with respect to the state space. It is modeled
by function µ : S → R that is a distribution for a probability
measure on B(S) with respect to the Lebesgue measure; abu-
sing notation, µ is used both for the density function and the
probability measure. µ defines the initial conditions of the en-
vironment in the sense that it is the distribution over the states
in which the environment can be found at the beginning of the
interaction process.

MDPs can be enriched to account for partial observability (Chapter
1) by extending this formulation and producing Partially Observable
Markov Decision Processes (POMDPs). For the scope of this thesis, full
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observability is assumed and, therefore, the above presented MDPs
are enough.
The instances of the agent-environment interaction process i. e.the
chains of state-action-rewards produced by such interaction are given
a special name in the RL framework.

Definition 2.3 (Trajectory). Any sequence of states, actions and re-
wards produced by the interaction between the agent and the envi-
ronment is called trajectory. A trajectory is denoted by

τ = 〈s0, a0, r0〉, 〈s1, a1, r1〉, 〈s2, a2, r2〉...
= (〈si, ai, ri〉)∞i=0.

The resulting state from the transition at each time step can be expli-
citly specified:

τ = 〈s0, a0, r0, s ′0〉, 〈s1, a1, r1, s ′1〉, 〈s2, a2, r2, s ′2〉...
= (〈si, ai, ri, s ′i〉)∞i=0,

where s ′i = si+1 for all i ∈ N. The set of all possible trajectories for
an MDP is denoted by T.

2.1.1 The agent: Policies and Markov Reward Processes

In the Reinforcement Learning framework, the agent (or, better, its
strategy) is modeled by the concept of policy (Vlassis, 2007). Intui-
tively, a policy is a mechanism that, given the current state of the
environment, produces an action (or set of actions) to be performed
by the agent; the policy requires to know only the current state in
order to select an action because of the Markov property assumption
(see Definition 2.1). In addition, policies are usually assumed to be
stationary: the output for a given state does not depend on the cur-
rent time step, it is invariant along the whole interaction process for
the same policy. All in all, the formalization of the concept of policy
can be provided.

Definition 2.4 (Policy). A policy is any function π : S × A → R,
(s, a) 7→ π(a|s), such that π(·|s) is a distribution for a probability
measure on B(A) with respect to the Lebesgue measure; abusing no-
tation, π(·|s) refers both to the density function and the probability
measure. π defines the agent’s strategy in the sense that π(·|s) is the
distribution over the actions that can be taken by the agent given
that the environment’s state is s. The space of all policies (as density
functions) is denoted by Π.

Observation 2.5. Thanks to full observability, it is possible to use the same
state space for the environment and the agent.
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A policy π defines entirely the behavior of the agent and, conse-
quently, the complete dynamics of the interaction process. In particu-
lar, the policy induces a well defined behavior on the rewards that
the MDP is now producing (Szepesvari, 2010). This phenomenom is
formalized by means of a Markov Reward Process (MRP):

Definition 2.6 (Markov Reward Process). Given an MDP M and a po-
licy π, the MRP induced on M by π is a 5-tuple Mπ = (S,Pπ,Rπ, γ, µ)

where

– Pπ is the state-to-state transition model induced by the policy
and represents a distribution obtained by

Pπ(s ′|s) =

∫
A

P(s ′|s, a)π(a|s)da;

– Rπ is the expected immediate reward function induced by the
policy, obtained by

Rπ(s) =

∫
A

R(s, a)π(a|s)da.

Observation 2.7. The concept of action somehow disappears within an
MRP. In fact, it is just a Markov Chain augmented with rewards related
to the transitions (Szepesvari, 2010).

A policy also induces a probability distribution over the trajectory
space T of the MDP; such distribution is denoted by ρπµ.
Starting from the distribution over trajectories, it is possible to define
a distribution over states that accounts for the probability of finding
each state along the trajectory, discounting the occurrences according
to the time step in which they are observed. This is the so called
discounted future state distribution (Sutton et al., 1999).

Definition 2.8 (Discounted future state distribution). Let M be an
MDP and π be a policy. The discounted future state distribution is
defined as

δπµ(s0) = (1− γ)
(
µ(s0) + γ

∫
S

Pπ
(1)(s0|s)µ(s)ds

+ γ2
∫
S

Pπ
(2)(s0|s)µ(s)ds+ ...

)
where Pπ(t)(·|s) is the distribution over states obtained by following
the dynamics of the (reward) process for t time steps when starting
from state s. For t = 1, Pπ(1)(·|s) = Pπ(·|s). The coefficient 1− γ is a
normalization factor. The distribution has a recursive form:

δπµ(s0) = (1− γ)µ(s0) + γ

∫
S

Pπ(s0|s)δ
π
µ(s)ds.
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Starting from the future state distribution, the idea can be extended
to define a future state-action distribution too (Pirotta, Restelli, and
Bascetta, 2015).

Definition 2.9 (Discounted future state-action distribution). Let M be
an MDP and π be a policy. The discounted future state distribution is
defined as

ζ(s, a)πµ = δπµ(s)π(a|s).

Further distributions over the transitions can be introduced by fol-
lowing the same idea (these are handy for simplifying notation later
on).

Definition 2.10 (Transition tuples distribution). Let M be an MDP
and π be a policy. The transition tuples distribution is defined by

dπµ(s, a, s
′) = δπµ(s)π(a|s)P(s

′|s, a).

Definition 2.11 (Extended transition tuples distribution). Let M be an
MDP and π be a policy. The extended transition tuples distribution is
defined by

d
π
µ(s, a, s

′, a ′) = δπµ(s)π(a|s)P(s
′|s, a)π(a ′|s ′).

2.1.2 The goal: Cumulative rewards

The goal of a RL agent is to maximize the cumulative reward obtai-
ned along the whole interaction process with the environment by
selecting an appropriate policy (Sutton and Barto, 1998). In order to
guide the selection of the best policy, a utility function can be used
to assess each one of them with respect to the cumulative reward
it produces. There are various options for such function proposed by
the RL framework (see e. g.Kaelbling, Littman, and Moore (1996)); the
work on this thesis uses the expected discounted reward.

Definition 2.12 (Expected discounted reward). Given an MDP M and
a policy π, the expected discounted reward is defined as

Jπµ = E
τ∼ρπµ

[ ∞∑
i=0

γiri

]
.

The utility value of a policy is referred to as its performance. Inspired
by the above definition, trajectories can be given associated a return
value.

Definition 2.13 (Return of a trajectory). Given a trajectory τ, its (dis-
counted) return is given by

R(τ) =

∞∑
i=0

γiri.
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The discount factor γ gets now a mathematical motivation: provi-
ded that γ < 1, it ensures that the cumulative reward always conver-
ges and makes the utility function to be well-defined. It is also clear
now how its value expresses the interest of the agent in shorter or
longer term rewards.

Infinite or finite but unbounded length trajectories are studied to get
insights on the theoretical properties of MDPs, but they are rather
uncommon in practice. What usually happens is that the length is
large enough to consider the expected discounted reward as utility
function, but it is still taken as finite to ensure that the trajectory dis-
tribution is well-defined.

Definition 2.14 (Distribution over trajectories). The distribution over
finite-length trajectories is given by

ρπµ(τ) = µ(s0)π(a0|s0)P(s1|s0, a0)π(a1|s1)P(s2|s1, a1)...

π(aT−1|sT−1)P(sT |sT−1, aT−1)

= µ(s0)

T−1∏
t=0

π(at|st)P(st+1|st, at),

where T is the length of the trajectories.

Under these definitions, the goal of the agent formally consists on
searching the policy space to find a policy that is optimal with re-
spect to the expected discounted reward, i. e., the policy with the best
performance.

Definition 2.15 (Optimal policy). Given an MDP M, an optimal policy
π∗ is any policy such that

π∗ ∈ argmax
π∈Π

Jπµ.

2.1.3 Value functions

The expected discounted reward (Definition 2.12) is good for intui-
tively understanding the goal of the agent, but using it to solve the
agent problem can be quite complex. One alternative is to take the
performance of the policy and break it down to utility values associa-
ted to states and state-action pairs. The functions giving such values
are known as value functions (Sutton and Barto, 1998).

Definition 2.16 (Value functions). Given an MDP M and a policy π,
the state value function Vπ : S → R outputs, for each state s, the
expected discounted reward obtained by starting at such state and
following π along the rest of the trajectory. That is,

Vπ(s) = E
τ∈T

[ ∞∑
i=0

γiri|s0 = s

]
.
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The state value function is usually referred to as just the value function.
Similarly, the state-action value functionQπ : S→ R outputs, for each
state-action pair (s, a), the expected discounted reward obtained by
starting at such state, applying such action and following π during
the rest of the trajectory. That is,

Qπ(s, a) = E
τ∈T

[ ∞∑
i=0

γiri|s0 = s, a0 = a

]
.

Observation 2.17. The performance of a policy π can be written in terms
of the state value function:

Jπµ = E
s∼µ

[Vπ(s)] (2.1)

The state value function and the state-action value function are also
referred to as V-function and Q-function, respectively. An important
feature of the value functions is their recursive nature. In fact,

Vπ(s) =

∫
A

(
R(s, a) + γ

∫
S

Vπ(s ′)P(s ′|s, a)ds ′
)
π(a|s)da;

Qπ(s, a) = R(s, a) + γ

∫
S

∫
A

Qπ(s ′, a ′)P(s ′|s, a)π(a ′|s ′)da ′ ds ′.
(2.2)

The advantage function is also used to understand the utility value of
the policy (Baird, 1994).

Definition 2.18 (Advantage function). Let M be an MDP and π be
a policy. Given a state s ∈ S and an action a ∈ A, the advantage
function measures how much utility is obtained by applying action a
and then following π with respect to the average utility produced by
immediately following π in the state s:

Aπ(s, a) = Qπ(s, a) − Vπ(s).

The optimal value functions are those that, at each point, have the
maximum possible value attainable by any policy in the policy space
at such point.

Definition 2.19 (Optimal value functions). Given an MDP M, the op-
timal state value function is defined as:

V∗(s) = max
π∈Π

Vπ(s);

similarly, the optimal state-action value function is defined as:

Q∗(s, a) = max
π∈Π

Qπ(s, a).

The optimal value functions provide a simpler perspective of the
optimality criteria for the policies: a policy that realizes the optimal
value functions is also optimal with respect to the performance. An
important result ensures the existence of policies that realize such
optimal value functions (Puterman, 1994).
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Theorem 2.1. For any MDP there exists a policy π∗ ∈ Π such that
Vπ = V∗ and Qπ = Q∗.

The optimal value functions have a recursive form too:

V∗(s) = max
a∈A

(
R(s, a) + γ

∫
S

V∗(s ′)P(s ′|s, a)ds ′
)

;

Q∗(s, a) = R(s, a) + γ

∫
S

(
max
a ′∈A

Q∗(s ′, a ′)

)
P(s ′|s, a)ds ′

(2.3)

2.1.4 Bellman operators and Bellman equations

The recursive form of the value functions (Equation (2.2)) inspired
the formulation of the Bellman expectation operators.

Definition 2.20 (Bellman expectation operators). Given an MDP M

and a policy π, the Bellman expectation operator for state functions
is an operator that maps state functions (real-valued functions of the
state space) into state functions, TπS : RS → RS, defined by:

(TπS V)(s) =

∫
A

(
R(s, a) + γ

∫
S

V(s ′)P(s ′|s, a)ds ′
)
π(a|s)da.

It is also referred to just as Bellman state operator.
Similarly, the Bellman expectation operator for state-action functions
is an operator that maps state-action functions into state-action functi-
ons, TπSA : RS×A → RS×A, defined by:

(TπSAQ)(s, a) = R(s, a) +γ

∫
S

∫
A

Q(s ′, a ′)P(s ′|s, a)π(a ′|s ′)da ′ ds ′.

It is also referred to just as Bellman state-action operator.

For the policy π, the value functions Vπ and Qπ are a fixed point
of its Bellman state operator and its Bellman state-action operator,
respectively. If 0 < γ < 1, the operators are a contraction (with respect
to the maximum norm) and, therefore, Vπ and Qπ are the unique
fixed points of the respective operators (Szepesvari, 2010).
By using the Bellman operators, it is possible to formulate the so
called Bellman expectation equations:

TπS V = V ;

TπSAQ = Q.
(2.4)

These equations aim to find functions that have the same recursive
structure of the value functions. Having 0 < γ < 1 implies that the
value functions are the unique solutions of the Bellman expectation
equations.
The recursive form of the optimal value functions (Equation (2.3))
inspired the formulation of the Bellman optimality operators.
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Definition 2.21 (Bellman optimality operators). Given an MDP M, the
Bellman optimality operator for state functions is an operator that
maps state functions into state functions, T∗S : RS → RS, defined by:

(T∗SV)(s) = max
a∈A

(
R(s, a) + γ

∫
S

V(s ′)P(s ′|s, a)ds ′
)

.

It is also referred to just as Bellman optimality state operator.
Similarly, the Bellman optimality operator for sate-action functions is
an operator that maps state-action functions into state-action functi-
ons, T∗SA : RS×A → RS×A, defined by:

(T∗SAQ)(s, a) = R(s, a) + γ

∫
S

(
max
a ′∈A

Q(s ′, a ′)

)
P(s ′|s, a)ds ′.

It is also referred to just as Bellman optimality state-action operator.

The optimal value functions V∗ and Q∗ are a fixed point of the Bell-
man optimality state operator and the Bellman optimality state-action
operator, respectively. If 0 < γ < 1, the operators are a contraction
(with respect to the maximum norm) and, therefore, V∗ and Q∗ are
the unique fixed points of the respective operators (Szepesvari, 2010).
By using the Bellman optimality operators, it is possible to formulate
the so called Bellman optimality equations:

T∗SV = V ;

T∗SAQ = Q.
(2.5)

These equations aim to find functions that have the same recursive
structure of the optimal value functions. Having 0 < γ < 1 implies
that the optimal value functions are the unique solutions of the Bell-
man optimality equations.

2.2 brief taxonomy of reinforcement learning algorithms

Based on the formulation of the agent problem (Chapter 1) propo-
sed by the RL framework (Section 2.1.3 and Section 2.1.2), many al-
gorithms have come out with possible solutions using different ap-
proaches along time (some examples can be found in Kaelbling, Litt-
man, and Moore (1996), Sutton and Barto (1998), Bertsekas (2007)).
This section intends to provide a brief taxonomy that allows to bet-
ter understand the rationale motivating each solution. For such mat-
ter, four different dimensions are considered: model requirements
(Section 2.2.1), policy-based sampling strategy (Section 2.2.2), solu-
tion strategy (Section 2.2.3), and sample usage (Section 2.2.4).

2.2.1 Model requirements: Model-based vs. Model-free

The first dimension refers to the requirements of the algorithm with
respect to the model of the MDP. The two extreme points along this
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model-free model-based

Q-learning (Watkins, 1989),
SARSA (Rummery and Niranjan,
1994), REINFORCE (Williams,
1992)

RL-DT (Hester and Stone, 2009),
DYNA (Sutton, 1991), Contex-
tual policy search (Kupcsik et al.,
2017)

Table 2.1: Some examples of model-free and model-based algorithms.

dimension are model-based algorithms and model-free algorithms (Ka-
elbling, Littman, and Moore, 1996).
Model-based algorithms are those that require an explicit approxima-
tion of the model of the MDP. Not every model-based algorithm is
equally demanding on this matter: some of them might need infor-
mation about every element of the MDP (transition model, reward
model, initial state distribution, etc.) while others might require ap-
proximations only for a fraction of them (e. g.the reward model only).
On the other hand, model-free algorithms are those that do not re-
quire any explicit approximation of the model of the MDP in their
implementation.
Model-free algorithms usually have low computational demands but
require lots of data in order to get good results; they are well-suited
for problems in which computation is costly but sampling is cheap.
Instead, model-based algorithms usually have a higher time complex-
ity but a lower data complexity, so they fit well in contexts where
computation is cheap but gathering data is costly. In addition, they
provide the benefit of producing an approximation of the model of
the environment which can be useful for studying its behavior (Kael-
bling, Littman, and Moore (1996), Atkeson and Santamaria (1997)).
Table 2.1 lists some examples of both model-free and model-based
algorithms.

2.2.2 Policy-based sampling strategy: On-policy vs. Off-policy

The second dimension of the taxonomy refers to the relation between
the policy that is being used to interact with the environment (beha-
vioral policy) and the policy that is being learned by the agent (target
policy). The two extreme points along this dimension are on-policy al-
gorithms and off-policy algorithms (Sutton and Barto, 1998).
On-policy algorithms are those that need the behavioral and the tar-
get policies to be the same. Off-policy algorithms, on the contrary,
admit a behavioral policy that is different from the target one (alt-
hough it is permitted that they coincide).
Given that the only source of knowledge in RL is the interaction expe-
rience, the agent is constantly facing a dilemma while searching the
optimal policy: stick to the current safe but possibly sub-optimal po-
licy, or try novel actions to try to improve the policy although without
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on-policy off-policy

SARSA (Rummery and Niranjan,
1994), TD(λ) (Sutton, 1988), eNAC
(Peters and Schaal, 2008a)

Q-learning (Watkins, 1989), Off-
policy FPKF(λ) (Geist and Scher-
rer, 2014), Off-policy actor-critic
(Degris, White, and Sutton, 2012)

Table 2.2: Some examples of on-policy and off-policy algorithms.

any guarantee about it. This issue is referred to as the exploration-
exploitation dilemma (Kober, Bagnell, and Peters, 2013). It is closely
related to the trade-off between on-policy and off-policy algorithms:
an on-line algorithm will converge to a solution if and only if it is no
longer exploring the policy space.
On-policy algorithms are intuitively easier to understand so that stu-
dying their theoretical properties (e. g.convergence) is usually a sim-
pler task; however, they have problems overcoming the exploration-
exploitation dilemma. Off-policy algorithms, instead, easily deal with
such dilemma, but their theoretical properties are more difficult to
study; in fact, they usually require to modify the standard assump-
tions so that resulting model is compatible with the approach. Off-
policy is also useful when exploring new policies is costly, because it
allows the agent to learn multiple policies while actually executing
only one (Degris, White, and Sutton, 2012).
Table 2.2 lists some examples of on-policy and off-policy algorithms.

2.2.3 Solution strategy: Policy-based vs. Value-based

The third dimension of the taxonomy has to do with the nature of
the strategy that the algorithm adopts with respect to elements of the
model that it exploits. In particular, the considered elements are the
policy and the value functions. The two extreme points along this
dimension are policy-based algorithms and value-based algorithms (Ko-
ber, Bagnell, and Peters, 2013).
Policy-based algorithms are those that explicitly exploit the policy
but do not use the value functions (at least in a direct way); hence,
they need to maintain an explicit representation for it. Value-based
algorithms, on the opposite, explicitly exploit the value functions but
do not do so with the policy; therefore, an explicit representation of
them is to be kept.
Large state and action spaces represent a potential issue for both
policy-based and value-based algorithms, as storing the complete va-
lue function or policy is unfeasible or even impossible. Function ap-
proximators can be used in order to overcome this problem.
Value-based techniques have good convergence properties under small
state and action spaces and turn out very suitable when there is in-
sufficient or none prior knowledge about the problem; however, the
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policy-based value-based

REINFORCE (Williams, 1992),
G(PO)MDP (Baxter and Bartlett,
2001)

Value-iteration (Sutton and Barto,
1998), FQI (Antos, Munos, and
Szepesvári, 2007)

Table 2.3: Some examples of policy-based and value-based algorithms.

changes to the underlying policy during the learning process can be
unstable, and the convergence properties disappear when large state
and action spaces demand the use of function approximators. Policy-
based methods are well-suited for large state or action spaces, pro-
duce smooth changes in the policy during the learning process, and
allow to introduce prior expert knowledge in the policy; unfortuna-
tely, they suffer from a high variance and have issues with local mi-
nima (Kober, Bagnell, and Peters (2013), Beitelspacher et al. (2006)).
Unlike the other dimensions of the taxonomy, this has a rather fuzzy
nature. The reason for this is that combining techniques from both ex-
tremes has overcome their individual issues and has produced very
successful approaches (like actor-critic algorithms, Section 2.5).
Table 2.3 lists some examples of (pure) policy-based and value-based
algorithms.

2.2.4 Sample usage: Online vs. Offline

The fourth dimension of the taxonomy refers to the frequency with
which the agent commits the effects of the knowledge acquired from
the collected samples. The two extreme points along this dimension
are online algorithms and offline algorithms (Lange, Gabel, and Ried-
miller, 2012).
Online algorithms are those that take the knowledge from new sam-
ples and use it to update whatever information is kept about the
problem right in the moment when the samples are observed; the
sampling and the learning processes are carried out simultaneously.
Instead, offline algorithms accumulate the knowledge from a number
of samples and apply the update with some given periodicity; the
sampling and the update processes are executed sequentially, one af-
ter the other, and each one stops while the other is taking place.
Online algorithms are the best choice for agents that are constantly
interacting with the environment for long periods of time; they have
low storage requirements but might be slower to converge because of
the frequent updates. Offline algorithms are good for agents that have
short interactions with their environment; their memory complexity
is higher but the stability of the learning process is improved.
Lange, Gabel, and Riedmiller (2012), although presenting a finer clas-
sification of this dimension, remark that the distinctions between the
categories depend on the implementation rather than on the actual
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formulation; thus, almost any algorithm can be classified as online
and offline. Because of this, instead of giving a list of examples in
each class, the reader is referred there for some insights on how the
algorithms can be implemented in either way.

2.3 policy gradient

Among the alternatives offered by policy-based methods (Section 2.2.3,
Deisenroth, Neumann, and Peters, 2013), the work presented in this
thesis focuses on those implementing the concept of policy gradient.
Policy gradient assumes a parametric policy space so that each one
of the considered policies is identified by a parameter taken from a
parameter space. Formally,

ΠΘ = {πθ | θ ∈ Θ ⊂ Rd}.

This assumption restricts the search of the optimal policy only to
those belonging to the selected parametric space; depending on the
nature of the problem and of this space, such optimal policy might
or not be actually contained in there. Thus, the goal of the agent is
to maximize the performance of the policy but constrained to the set
ΠΘ, which is equivalent to finding the parameter that realizes the
maximum performance:

θ∗ = argmax
θ∈Θ

Jπθµ .

To simplify the notation along this section, dependence on the policy
πθ is expressed by specifying only the parameter θ; thus, for exam-
ple, Jπθµ is simply denoted by Jθµ. Policy gradient proposes to solve this
optimization problem with a gradient ascent approach: the gradient of
the performance with respect to the parameter space is followed until
a maximum is reached (Peters, Vijayakumar, and Schaal, 2003). When
the actual direction of the gradient is followed, the method is said to
be "vanilla" or standard gradient; if it follows a direction that results
from linearly transforming the gradient according to the underlying
topological structure of the policy space, the approach is known as
natural gradient (Peters and Schaal, 2008b).
Three alternatives for calculating the gradient are presented in Section
2.3.1, Section 2.3.2 and Section 2.3.3. Natural gradient is detailed in
Section 2.3.4.

2.3.1 Finite differences

Finite differences methods aim to approximate the gradient of the
performance at some point in the parameter space based on the va-
lues of the performance given by policies whose parameters lie close
to it (Deisenroth, Neumann, and Peters, 2013). This idea is justified by
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the Taylor theorem which states that, in small neighborhoods of a gi-
ven point, a (smooth enough) function behaves almost as a linear one
with the same gradient as the original function at such point. That is,
given a continuously differentiable function f : X ⊂ Rn → R, a point
x ∈ X and a neighborhood U 3 x, it holds that, for every y ∈ U,

f(y) ≈ fref +∇xf(x)> · (x− y),

where fref is an appropriate value. This can be rewritten into

∇xf(x)> ·∆x ≈ f(x+∆x) − fref (2.6)

where ∆x represents a small change in X.
One way to approximate the gradient is to evaluate the function at
points x + ∆(1)x, ..., x + ∆(n)x, where ∆(i)x is zero in all but the i-
th component, so that the values f(x+∆(1)x), ..., f(x+∆(n)x) can be
used to solve for ∇xif(x) at each dimension. Common choices for
fref are f(x), which produce forward-difference estimators, and f(x−
∆x), which produce central-difference estimators (Peters and Schaal,
2008b).
A more general approach comes from writing Equation (2.6) as a
regression problem

∇xf(x)> ·∆x+ fref ≈ f(x+∆x)

where the input is ∆x, the output is f(x+∆x) and the weights corre-
spond to the values of the gradient and the reference value fref. The
estimation is performed by collecting the values f(x+∆(1)x), ..., f(x+
∆(n)x), m > n, and solving the regression problem with any suitable
technique. In this approach, the changes ∆(i)x are no longer constrai-
ned to be null in all but one dimension (Peters and Schaal, 2008b).

In the context of policy gradient estimation, the parameter θ is slig-
htly perturbed to produce the ∆(i)θ changes and the corresponding
performance values Jθ+∆

(i)θ
µ are estimated with samples produced

using each one of the policies (Kohl and Stone, 2004).

2.3.2 Trajectory-based policy gradient

Starting directly from the definition of the performance of a policy
(Section 2.1.2), it is possible to express the gradient in terms of the dis-
tribution over trajectories and their observed return (Definition 2.13).
Doing so gives place to another group of approaches.

Definition 2.22 (Policy gradient). Let M be an MDP and ΠΘ a parame-
tric family of policies. The gradient of the performance of a policy πθ
with respect to the parameters of the policy is given by (Deisenroth,
Neumann, and Peters, 2013)

∇θJθµ = E
τ∼ρθµ

[∇θ log ρθµ(τ)R(τ)].
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Observation 2.23. The gradient of the logarithm of the distribution over
trajectories does not depend on the transition model of the MDP:

∇θ log ρθµ(τ) = ∇θ log
(
µ(s0)

T−1∏
t=0

π(at|st)P(st+1|st, at)

)

=

T−1∑
t=0

∇θ logπ(at|st).

(2.7)

so the gradient can be written as:

∇θJθµ = E
τ∼ρθµ

[( T−1∑
t=0

∇θ logπ(at|st)
)
R(τ)

]

= E
τ∼ρθµ

[( T−1∑
t=0

∇θ logπ(at|st)
)( T−1∑

t=0

γtrt

)]
.

(2.8)

Observation 2.24 (REINFORCE policy gradient). For any b ∈ R, the
gradient can also be written as (Williams, 1992)

∇θJθµ = E
τ∼ρθµ

[( T−1∑
t=0

∇θ logπ(at|st)
)
(R(τ) − b)

]

= E
τ∼ρθµ

[( T−1∑
t=0

∇θ logπ(at|st)
)( T−1∑

t=0

γtrt − b

)]
.

The constant b is then called a baseline.

Observation 2.25 (PGT/G(PO)MD). For any sequence (bt)
T−1
t=0 ⊂ R,

the gradient can also be written as (Peters and Schaal, 2008b)

∇θJθµ = E
τ∼ρθµ

[
T−1∑
t=0

γt∇θ logπθ(at|st)
( T−1∑
l=t

γl−trl − bt

)]
,

or, equivalently (Baxter and Bartlett, 2001),

∇θJθµ = E
τ∼ρθµ

[
T−1∑
t=0

(
t∑
l=0

∇θ logπθ(al|sl)

)
(γtrt − bt)

]
.

The constants (bt)T−1t=0 are called baselines.

The gradient can then be approximated by doing a Monte Carlo
(MC) estimate using samples drawn according to ρθµ, either with the
simplified form of the gradient proposed by Equation (2.8) or some
of the modified ones that introduce a baseline (Observation 2.24 or
Observation 2.25).
Using the original form of the gradient for the estimate produces an
estimator with a huge variance that can be decreased with an appro-
priate baseline. It is actually possible to find a value that is optimal
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with respect to the variance reduction for either of the two baseline
alternatives (Peters and Schaal, 2008b).
The REINFORCE formulation admits a different baseline for each
component of the gradient. The optimal values can be proven to be

bk =

E
τ∼ρθµ

[(∑T−1
t=0 ∇θk logπθ(at|st)

)2∑T−1
t=0 γ

trt

]
E
τ∼ρθµ

[(∑T−1
t=0 ∇θk logπθ(at|st)

)2] ;

in practice, they are approximated by MC estimation.
The PGT/G(PO)MD formulations actually correspond to equivalent
results that were produced independently. They are equivalent in the
sense that their MC estimates produce the same result. Like REIN-
FORCE, they admit a different baseline for each component of the
gradient. The optimal baseline values in this case are

btk =

E
τ∼ρθµ

[(∑t
l=0∇θk logπθ(al|sl)

)2
γtrt

]
E
τ∼ρθµ

[(∑t
l=0∇θk logπθ(al|sl)

)2] ;

again, they can be approximated in practice by means of MC estima-
tes.
The PGT/G(PO)MD formulation can be more efficient than REIN-
FORCE when it comes to variance reduction. This is caused by the
fact that the former exploits the Markovian property (Definition 2.1)
to make future actions independent of past rewards. Of course, in
non-Markovian environments, such formulation is no longer valid
(Peters and Schaal, 2008b).

2.3.3 State-action-based policy gradient

Yet another group of policy gradient methods is based on the policy
gradient theorem.

Theorem 2.2 (Policy gradient theorem). (Sutton et al., 1999) Let M be
an MDP and ΠΘ a parametric family of policies. The gradient of the
performance of a policy πθ with respect to its parameters is given by

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[Qθ(s, a)∇θ logπθ(a|s)].

Observation 2.26. For any b : S→ R, the gradient can also be written as

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[(Qθ(s, a) − b(s))∇θ logπθ(a|s)].

The function b is then called a baseline.
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The gradient can then be approximated by doing a MC estimate
using samples drawn according to ζθµ, either with the original form
of the gradient proposed by the theorem or the modified one with a
baseline.
When using the theorem directly, i. e., the estimate is done by avera-
ging only over the values Qθ(s, a)∇θ logπθ(a|s), the Q-function (or
a good estimate of it) is required for the calculation; in addition,
the resulting estimate is known to suffer from high variance. This
can be overcome by choosing an appropriate baseline that reduces
the variance while keeping a zero bias. Inspired by the definition of
the advantage function (Definition 2.18), a common choice for such
baseline is the V-function (Bhatnagar et al. (2009), Grondman et al.
(2012)). This results in an estimator that averages values of the form
Aθ(s, a)∇θ logπθ(a|s). In this case, it is necessary to know either the
advantage function or both the Q-function and the V-function.
When unknown, the value functions can be approximated with policy
evaluation techniques (Section 2.4), usually supported with function
approximators (Section 2.4.3). If the feature space is not selected pro-
perly, it can introduce a bias that might harm the gradient estimation.
Sutton et al. (1999) and Konda and Tsitsiklis (2003) give conditions
under which the gradient estimation with function approximation is
actually unbiased.

Theorem 2.3 (Policy gradient with compatible function approxima-
tion). Let M be an MDP, FW = {fw : S×A→ R | w ∈W} a parametric
family of linear function approximators and ΠΘ a parametric family
of policies. If w∗ is optimal in the sense that:

E
(s,a)∼ζθµ

[
(Q̂θµ(s, a) − fw∗(s, a))∇wfw∗(s, a)

]
= 0,

being Q̂θµ an unbiased estimator of Qθµ, and fw is compatible with the
policy parametrization in the sense that:

∇wfw(s, a) =
∇θπθ(a|s)
πθ(a|s)

= ∇θ logπθ(a|s),

then

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[fw∗(s, a)∇θ logπθ(a|s)].

Observation 2.27. The fact that the function approximators for the Q-
function are linear with respect to their parameters implies that actually

fw(s, a) = ∇θ logπθ(a|s)>w,

i. e., the feature map for the Q-function is given by the log-gradient of the
policy. From this it follows that (Peters, Vijayakumar, and Schaal, 2003)

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[∇θ logπθ(a|s)∇θ logπθ(a|s)>]w∗

=
1

1− γ
F(θ)w∗,
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where F(θ) is the Fisher Information Matrix (FIM) of the probability distri-
bution over trajectories ρθµ with respect to the parameter θ. This matrix can
also be obtained by

F(θ) = E
s∼δθµ

[F(θ, s)] =

∫
S

δθµ(s)F(θ, s)ds,

where F(θ, s) is the FIM of the distribution over actions defined by πθ:

F(θ, s) = E
a∼πθ(·|s)

[
∇θ logπθ(a|s)∇θ logπθ(a|s)>

]
=

∫
A

∇θ logπθ(a|s)∇θ logπθ(a|s)>π(a|s)da.

2.3.4 Natural gradient

Following the standard gradient direction while trying to find the
optimal policy in the policy space can lead to sub-optimal or even un-
feasible solutions (Peters and Schaal, 2008a). This can occur when the
shape of the parameter space does not capture properly that of the
subset of policies defined by the parametric family in the complete
policy space. Natural gradient methods intend to overcome this by
appropriately modifying the gradient to get the "right" direction.
When being at the point θ, gradient ascent approaches select as as-
cent direction the steepest one with respect to some metric, i. e., the
direction ∆θ which maximizes Jθ+∆θµ while keeping ‖∆θ‖2G(θ) equal
to a small constant value; the metric is defined through a positive-
definite matrix G(θ) by the expression ‖θ0‖2G(θ) = θ>0 G(θ)θ0. The
(approximate) solution of such maximization problem gives as ascent
direction G(θ)−1∇θJθµ (Kakade, 2001).
Vanilla gradient methods (Section 2.3) select as metric the Euclidean
norm defined by the matrix G(θ) = I, which results in taking the gra-
dient as ascent direction. Natural gradient, instead, defines the metric
through a Riemannian tensor that relates the topology of the manifold
defined by the parametric family of policies and the topology of the
parameter space (Amari, 1998). The resulting Riemannian metric is
desired to be covariant, i. e., it gives the same direction in the policy
space regardless of the parameter space used to parametrize the poli-
cies.
The FIM (Observation 2.27) is proved (Peters and Schaal, 2008a) to de-
fine a covariant metric suitable for the space of parametric policies.
Hence, the natural gradient direction is obtained through

∇̃θJθµ = F(θ)−1∇θJθµ.

The FIM produces a linear transformation that rotates vectors with an
angle of no more that π/2; thus, the performance is still ensured to
improve and convergence to a maximum can be guaranteed. If com-
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patible function approximators (Theorem 2.3) are used, the natural
gradient of the performance reduces to

∇̃θJθµ =
1

1− γ
w∗,

where w∗ is the optimal parameter as defined by Theorem 2.3.

2.4 policy evaluation

Value-based algorithms (Section 2.2.3) keep an explicit representation
of the value functions relative to the current policy of the agent and,
therefore, require the ability to calculate such functions. The process
of finding the V-function and Q-function of a policy is called policy
evaluation.
Among the large number of policy evaluation methods (see e. g.Polydoros
and Nalpantidis (2017)), the work presented in this thesis is based on
Temporal difference approaches; the scope of this section is to introduce
the most widely spread ones. It starts presenting the naïve Monte
Carlo algorithms in Section 2.4.1, to motivate and present basic TD al-
gorithms in Section 2.4.2, and concludes with the more sophisticated
alternatives in Section 2.4.3.

2.4.1 Monte Carlo estimation

Starting from the very definition of the value functions (Section 2.16),
Monte Carlo methods propose to estimate the value functions by sam-
pling trajectories and averaging the corresponding obtained returns
(Definition 2.13) (Sutton and Barto, 1998).
For the state value function, a separate average V̂πµ (s) is calculated
for each state s by using the return of the observed trajectories (or
portions of them) that start at s. This idea raises two alternatives for
the estimation of the utility value of the state s: the first visit option
accounts for the returns obtained by starting only from the first occur-
rence of s in each observed trajectory, while every visit will average
over the returns obtained by starting at any occurrence of s in the
observed trajectories (Singh and Sutton, 1996).
First visit Monte Carlo is clearly unbiased but has a large variance
produced by the cumulative randomness of all the transitions in the
trajectory. Every visit reduces the variance by using more data in the
estimation although such data introduce a bias.
To prevent the need for storing all the observed trajectories when
updating the estimation V̂πµ (s) upon arrival of a new sample, these
approaches resort to an incremental mean that allows a recursive form
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for the calculation (Sutton and Barto, 1998). That is, when a new tra-
jectory is observed, the estimate of the state st is updated by

V̂π(st)← V̂π(st) +
1

N

(
T−1∑
l=t

γl−trl − V̂π(st)

)
,

whereN−1 is the number of updates that had been performed on the
estimate. Given that the older estimates are less reliable (as they were
calculated on less data), the above formula is modified to reduce the
contribution of such samples in the estimation as new observations
are obtained

V̂π(st)← V̂π(st) +αN

(
T−1∑
l=t

γl−trl − V̂π(st)

)
,

where the learning rate αN is a value between 0 and 1 that measures
exactly such contribution at the N-th observation. This estimator of
the mean is known as the exponential average, which turns out to be
consistent provided that

∑∞
i=1 αi =∞ and

∑∞
i=1 α

2
i <∞.

The term
∑T−1
l=t γ

l−trl is called the state MC target and
∑T−1
l=t γ

l−trl−

V̂π(st) is the state MC error.
The formulation of the method for the Q-function is analogous (Sut-
ton and Barto, 1998): separate estimates Q̂π(s, a) are maintained for
each state-action pair and, upon arrival of a new trajectory, updated
according to the expression

Q̂π(st, at)← Q̂π(st, at) +α

( T−1∑
l=t

γl−trl − Q̂π(st, at)

)
.

The term
∑T−1
l=t γ

l−trl is the state-action MC target and
∑T−1
l=t γ

l−trl−

Q̂π(st, at) is the state-action MC error.

2.4.2 Temporal Difference estimation

Temporal difference (TD) methods (Sutton, 1988) are inspired by the
recursive form of the value functions (Equation (2.2)). For the state
value function, given that

Vπ(s) =

∫
A

(
R(s, a) + γ

∫
S

Vπ(s ′)P(s ′|s, a)ds ′
)
π(a|s)da

= E
a∼π(·|s)
s ′∼P(·|s,a)

[R(s, a) + γVπ(s ′)],

the proposal of TD is not to use a simple MC estimate but to itera-
tively update the estimation of the utility of each state towards the
fixed point defined by the above equation. That is, when the transi-
tion 〈st, at, st+1, rt〉 is observed, the value is updated by:

V̂πµ (st)← V̂πµ (st) +α(rt + γV̂
π
µ (st+1) − V̂

π
µ (st)).
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The quantity rt + γV̂πµ (st+1) is known as state TD target, and rt +

γV̂πµ (st+1) − V̂
π
µ (st) is the state TD error. Samples can be taken from

trajectories distributed as ρπµ or transitions drawn from dπµ.
The equivalent version of this method for the state-action value function
is the SARSA algorithm (Rummery and Niranjan, 1994). Based on the
fact that (Equation (2.2))

Qπ(s, a) = R(s, a) + γ

∫
S

∫
A

Qπ(s ′, a ′)P(s ′|s, a)π(a ′|s ′)da ′ ds ′

= E
s ′∼P(·|s,a)
a ′∼π(·|s ′)

[R(s, a) + γQπ(s ′, a ′)],

the update rule for the estimate Q̂πµ(st, at) proposed by SARSA upon
observation of the transition 〈st, at, st+1, , at+1, rt〉 is

Q̂πµ(st, at)← Q̂πµ(st, at) +α(rt + γQ̂
π
µ(st+1, at+1) − Q̂

π
µ(st, at)).

As before, the state-action TD target is defined by rt+γQ̂πµ(st+1, at+1)
and the state-action TD error is rt + γQ̂πµ(st+1, at+1) − Q̂πµ(st, at).
Estimation of the Q-function needs "longer" samples than that of the
V-function in the sense that, for each transition, it requires not only
the arrival state but also an action performed in there. Thus, sam-
ples can be obtained from trajectories distributed as ρπµ or transitions
drawn from d

π
µ.

2.4.3 Policy evaluation with function approximators

MC (Section 2.4.1) and TD (Section 2.4.2) methods for policy evaluation
require to explicitly maintain separate estimates of the value functi-
ons for every state and state-action pair. This is unfeasible when the
state and action spaces are too big, and even impossible when they
are continuous. This issue can be overcome by resorting to linear
function approximators, but doing so makes it impossible to apply
MC and TD approaches as presented before. However, they serve as
a good inspiration for policy evaluation techniques with function ap-
proximators.
Although an important number of TD methods based on function
approximation has been proposed along time (see e. g.Geist and Pie-
tquin (2013), Dann, Neumann, and Peters (2014), Geist and Scherrer
(2014)), the majority can be reduced to an optimization problem defi-
ned on the parameter space; they differ on the objective function and
the mechanism used to optimize it. The most popular optimization
functions are presented in Section 2.4.3.1, and the most common op-
timization techniques in Section 2.4.3.2; Section 2.4.3.3 concludes by
presenting a specific example of a TD algorithm based on function
approximation. The content of this section is mostly based on (Dann,
Neumann, and Peters, 2014).
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2.4.3.1 The objective functions

For the sake of simplicity, the objective functions presented here con-
cern only the state value function; their equivalent versions for the
state-action value function are easily derived from these by accor-
dingly replacing the distributions in the expectations, and taking the
appropriate feature map ϕ for the state-action space.
Let VB

φ the space of the linear function approximators for the V-
function with feature map φ = (φ1, ..., φd)> and parameter space
B ⊂ Rd. Therefore, for any β ∈ B, the function Vβ ∈ VB

φ is such that
Vβ(s) = φ(s)>β, for all s ∈ S.
Given a function p : S → R∗, R∗ = R+ ∪ {0}, define the seminorm
‖·‖p on the space RS of real-valued functions with domain S by

‖V‖p =

√∫
S

V(s)2p(s)ds.

All the objective functions presented in this section are plugged into
a minimization problem for the purpose of policy evaluation.

Mean Squared Error
A first proposal for the objective function, based on the original moti-
vation of the function approximators, is the Mean Squared Error (MSE)
measured with respect to the discounted future state distribution (De-
finition 2.9):

MSE(β) = ‖Vπ − Vβ‖2δπµ (2.9)

The main problem with this proposal is that it requires to know the
real state value function, which is exactly what we want to approxi-
mate. A possible solution is to optimize towards Monte Carlo estima-
tions of the returns at some points, but they are known to suffer from
a high variance.

Mean Squared Bellman Error
In order to reduce this variance, the second objective function aims
to optimize towards the result of one application of the Bellman ope-
rator (Definition 2.20), inspired by the fact that true value function is
the unique fixed point of such operator. This gives the Mean Squared
Bellman Error (MSBE):

MSBE(β) = ‖Vβ − TπVβ‖2δπµ

= E
s∼δπµ

[
(Vβ(s) − E a∼π(·|s)

s ′∼P(·|s,a)
[r(s, a, s ′) + γVβ(s

′)])2
]

.

(2.10)
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By defining the state TD error δ(s, a, s ′) = r(s, a, s ′) + γVθ(s
′) −

Vθ(s) = r(s, a, s ′) + (γφ(s ′) −φ(s))>β, the MSBE can be rewritten
as:

MSBE(β) = E
s∼δπµ

[((
E a∼π(·|s)
s ′∼P(·|s,a)

[γφ(s ′)] −φ(s)
)>
β

+ E a∼π(·|s)
s ′∼P(·|s,a)

[r(s, a, s ′)]
)2]

.
(2.11)

This formula shows that optimizing the MSBE is equivalent to solving
a linear least-squares regression problem that has

– E a∼π(·|s)
s ′∼P(·|s,a)

[γφ(s ′)] −φ(s) as inputs,

– −E a∼π(·|s)
s ′∼P(·|s,a)

[r(s, a, s ′)] as outputs, and

– β as parameter.

However, the traditional formulation of the least-squares regression
accounts for noise only in the outputs, while here the observed input
is also affected by noise. The most problematic consequence of this
issue is that solving the optimization problem usually requires, for
the same sample starting at s, two independent observations of the
successor state s ′: one for the input term and one for the output term.
This is known as the double-sampling problem.

Mean Squared Temporal Difference Error
Ignoring the double-sampling problem and taking the same succes-
sor observation introduces a bias that results in optimizing the Mean
Squared Temporal Difference Error (MSTDE) instead of the MSBE. The
MSTDE is given by

MSTDE(β) = E
(s,a,s ′)∼dπµ

[δ(s, a, s ′)2] (2.12)

Mean Squared Projected Bellman Error
To avoid the difficulties related to the optimization of the MSBE, the
Mean Squared Projected Bellman Error (MSPBE) proposes to perform
the optimization towards the projection onto the space of representa-
ble functions VB

φ of one application of the Bellman operator:

MSPBE(β) = ‖Vβ −ΠTπVβ‖2δπµ , (2.13)

where Π is the projection operator that maps a state function to the
closest function in VB

φ. For linearly parametrized families of functions,
this has a closed-form solution

ΠV = argmin
Vβ∈VB

φ

‖Vβ − V‖2δπµ ⇒

ΠV(s) = φ(s)>( E
s0∼δπµ

[φ(s0)φ(s0)
>])−1 E

s ′∼δπµ
[φ(s ′)V(s ′)

]
ΠV(s) = φ(s)>(Mπ,φ

µ )−1 E
s ′∼δπµ

[φ(s ′)V(s ′)].

(2.14)
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Figure 2.2: The MSBE minimizes the distance from the function approxima-
tor to its Bellman-operator-image, while MSPBE minimizes the
distance to the Bellman-operator-image projected to the hypot-
hesis space. (Adapted from Dann, Neumann, and Peters (2014))

The original form of the MSPBE seems to lose the connection to the
MSE, which is the ideal objective function. However, Sutton et al.
(2009) showed that

MSPBE(β) = ‖Vβ − TπVβ‖2Uπ,φµ

=
∥∥∥ E
s∼δπµ

[φ(s)(Vβ(s) − T
πVβ(s))]

∥∥∥2
(Mπ,φ

µ )−1

=
∥∥∥ E
(s,a,s ′)∼dπµ

[φ(s)δ(s, a, s ′)]
∥∥∥2
(Mπ,φ

µ )−1
,

(2.15)

where the seminorm ‖·‖2
U
π,φ
µ

on RS is defined by (the subscript Uπ,φµ
is just for notation)

‖V‖2
U
π,φ
µ

= E
s∼δπµ

[φ(s)>V(s)](Mπ,φ
µ )−1 E

s∼δπµ
[φ(s)V(s)],

and ‖·‖2
(Mπ,φ

µ )−1
is a norm in Rd defined by

‖v‖2
(Mπ,φ

µ )−1
= v>(Mπ,φ

µ )−1v.

Thus, the MSPBE still measures the MSBE but does so with a different
metric.
The MSPBE is actually obtained by neglecting the component of the
MSBE that is orthogonal to the space VB

φ (Figure 2.2). In fact,

MSBE(β) = MSPBE(β) + ‖TπVβ −ΠTπVβ‖2δπµ .

Norm of Expected TD Update
The last line Equation (2.15) shows that the MSPBE is minimized if
and only if

E
(s,a,s ′)∼dπµ

[φ(s)δ(s, a, s ′)] = 0,
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which means that there is no correlation between the feature vector
and the state TD error. Inspired this, the Norm of Expected TD Up-
date (NEU) proposes to optimize

NEU(β) =
∥∥∥ E
s∼δπµ

[φ(s)(Vβ(s) − T
πVβ(s))]

∥∥∥2
2

. (2.16)

It has the same minimum of the MSPBE although the function might
have a different shape.

Operator Error and Fixed-Point Error
The MSPBE can be optimized by solving two nested optimization
problems, namely the Operator Error (OPE) and the Fixed-Point Er-
ror (FPE). They are defined by

OPE(β ′,ω) = E
s∼δπµ

[(Vβ ′(s) − T
πVω(s))2];

FPE(β,ω ′) = E
s∼δπµ

[(Vβ(s) − Vω ′(s))
2]

= E
s∼δπµ

[(φ(s)>(β−ω ′))2].

(2.17)

In the OPE, the parameter ω is fixed and the function is optimized
with respect to β ′; this intends to get the best approximation of the
application of the Bellman operator to the function Vω. In the FPE,
β is fixed and the optimization is performed with respect to ω ′; this
aims to bring the parameters ω and β as close as possible.

2.4.3.2 Optimization mechanisms

Most of TD algorithms that rely on function approximators and aim
to minimize one of the objective functions presented in Section 2.4.3.1
resort either to gradient-based, least-squares or probabilistic techni-
ques in order to perform the optimization.
Gradient-based methods follow a gradient descent approach: the gra-
dient of the selected objective function with respect to the approxima-
tor parameters is somehow estimated, and the parameters are upda-
ted towards the opposite direction of such gradient until some con-
vergence conditions are satisfied. In particular, Stochastic Gradient
Descent (SGD) is a very popular procedure for the calculation of the
(approximate) gradient because it can work online giving estimations
based on one sample at a time (Robbins and Monro, 1951).
Least-squares approaches tackle the optimization problem by formu-
lating it as a linear-regression problem. This is then solved either di-
rectly with the closed-form solution or iteratively by performing in-
cremental updates to the parameters. A special advantage of using
the closed form solution is that there is no need to tune the step size
used for the updates of the parameter.
Probabilistic techniques rely on a probabilistic perspective for solving
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algorithm objective

function

minimization

procedure

GTD (Sutton, Szepesvári,
and Maei, 2008)

MSPBE SGD on NEU

RG (Leemon, 1995) MSBE/MSTDE SGD on MSBE

LSTD (Bradtke, 1996) MSPBE Closed-form least-
squares

LSPE (Nedić and Bertse-
kas, 2003)

MSE Iterative least-squares

KTD (Geist and Pietquin,
2014)

MSPBE Probabilistic - Parameter
tracking by Kalman Filte-
ring

Table 2.4: Some examples of temporal difference algorithms based on
function approximation (based on Dann, Neumann, and Peters
(2014)).

the optimization problem: the most likely parameters for the available
data are selected as the optimal ones. The main advantage of these
approaches is that, in addition to the approximate minimum, they
provide a measure of the uncertainty related to the found solution.

2.4.3.3 Least Squares Temporal Difference

Most of TD algorithms compatible with function approximators re-
sult from combining one of the objective functions presented in Section
2.4.3.1 with one of the optimization mechanisms shown in Section
2.4.3.2 and defining a couple implementation details. Table 2.4 shows
some examples of such algorithms that have been proposed in the
literature, pointing out the selected objective function and optimiza-
tion procedure. This thesis focuses on the Least Squares Temporal
Difference (LSTD) algorithm, which is explained in this section. For de-
tails on the other algorithms, the reader might refer to the surveys by
Geist and Pietquin (2013), Dann, Neumann, and Peters (2014), Geist
and Scherrer (2014).

LSTD (Nedić and Bertsekas, 2003) takes as objective function the
MSPBE (Equation (2.13)) and tries to minimize it with the closed-
form of its least-squares formulation. For the state value function,
such formulation is evident in

MSPBE(β) =
∥∥∥ E
(s,a,s ′)∼dπµ

[φ(s)(φ(s) − γφ(s ′))>]β

− E
(s,a,s ′)∼dπµ

[φ(s)r(s, a, s ′)]
∥∥∥2
(MV

π,φ,µ)
−1

= ‖AVπ,φ,µβ− bVπ,φ,µ‖2(MV
π,φ,µ)

−1 ,

(2.18)



34 reinforcement learning

so that the optimal parameter is given by

β∗V = (AVπ,φ,µ)
−1bVπ,φ,µ.

Since the above expression cannot be exactly calculated in practice,
LSTD outputs an approximated value of β∗V based on approximations
of AVπ,φ,µ and bVπ,φ,µ. In fact, from a dataset D = (〈si, ai, s ′i, ri〉)ni=1
drawn according to dπµ, the algorithm calculates the estimates:

ÂVφ(D) =
1

n

n∑
i=1

φ(si)(φ(si) − γφ(s ′i))
>,

b̂Vφ(D) =
1

n

n∑
i=1

φ(si)ri,

which are used to calculate the (approximate) optimal parameter:

β̂∗V(D) = (ÂVφ(D))−1b̂Vφ(D).

Robust inversion e. g.with Singular Value Decomposition (SVD) is used

when inverting ÂVφ.
LSTD-Q (Lagoudakis and Parr, 2003) is the equivalent version of
LSTD for the action-value function. By defining the seminorm

‖Q‖2ζπµ = E
(s,a)∼ζπµ

[Q(s, a)2]

on the space RSA of real-valued functions with domain S×A, LSTD-
Q aims to minimize the MSPBE

MSPBE(β) = ‖Qβ −ΠTπQβ‖2ζπµ ,

where Π is the projection operator onto the space of linear function
approximators for the Q-function, QBQ

ϕ , and Tπ is the state-action Bel-
lman expectation operator (Definition 2.20). The least-squares linear
regression formulation of this problem is given by

MSPBE(β) =
∥∥∥ E
(s,a,s ′,a ′)∼d

π
µ

[ϕ(s, a)(ϕ(s, a) − γφ(s ′, a ′))>]β

− E
(s,a,s ′,a ′)∼d

π
µ

[ϕ(s, a)r(s, a, s ′)]
∥∥∥2
(MQ

π,ϕ,µ)−1

= ‖AQπ,ϕ,µβ− bQπ,ϕ,µ‖2(MQ
π,ϕ,µ)−1

,

(2.19)

so that the optimal parameter is

β∗Q = (AQπ,ϕ,µ)
−1bQπ,ϕ,µ.

From a dataset D = (〈si, ai, s ′i, a ′i, ri〉)ni=1 drawn according to dπµ, the
matrices are estimated through:

Â
Q
ϕ(D) =

1

n

n∑
i=1

ϕ(si, ai)(ϕ(si, ai) − γϕ(s
′
i, a
′
i))
>,

b̂
Q
ϕ(D) =

1

n

n∑
i=1

ϕ(si, ai)ri,



2.5 the actor-critic approach 35

leading to the approximate optimal parameter

β̂∗Q(D) = (ÂQϕ(D))−1b̂Qϕ(D).

Again, robust inversion is used when inverting ÂQϕ .

2.5 the actor-critic approach

Policy-based and value-based algorithms, as well as their advanta-
ges and drawbacks, were briefly discussed in Section 2.2.3. Several
attempts to combine the two techniques to leverage their benefits
while trying to mitigate their problems have been proposed along
time, being the actor-critic paradigm one of the most prominent ones
(Barto, Sutton, and Anderson (1983), Konda and Tsitsiklis (2003), Pe-
ters and Schaal (2008)). It is actually inspired by the policy iteration
algorithms (Howard, 1960) that greedily improve the policy based on
the information of the utility values that it produces. The most im-
portant advantage of actor-critic over policy iteration is the ability to
easily deal with continuous state and action spaces. It also provides
the possibility to introduce prior knowledge of both the policy space
and the value functions, and proceeds with smooth changes on the
policy along the learning process (Grondman et al. (2012), Beitelspa-
cher et al. (2006), Kober, Bagnell, and Peters (2013)).
In actor-critic algorithms, the search for the optimal policy is an itera-
tive process composed by two phases: the first one aims to estimate
the utility values produced by the current policy, and the second one
decides how to update such policy based on the just computed es-
timations. The iteration goes on until some convergence conditions
are met. Under this paradigm, the agent can be seen as the composi-
tion of two entities: the critic, in charge of executing the first phase,
and the actor, that implements the second phase (Konda and Tsitsiklis,
2003). Figure 2.3 shows a graphical description of a typical actor-critic
architecture.
Most of the actor-critic work is developed for agents that use para-
metric policies (Section 2.3) and function approximators for the value
functions (Section 2.2.3). The work of the critic is actually a policy eva-
luation task (Section 2.4), so it can be implemented with any of the
algorithms proposed in Section 2.4.3. The work of the actor is a policy
improvement task based on the utility values of the policy; the Policy
gradient theorem (Theorem 2.2) sets the justification and theoretical
foundations of this idea, hence the actor is usually implemented with
some policy gradient algorithm based on such result (see Section 2.3.3
or Section 2.3.2). Thus, actor-critic algorithms combine the good con-
vergence properties of actor-only methods (i. e.policy gradient) with
the low variance of value-based techniques (Grondman et al., 2012).
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Figure 2.3: The actor takes an action u to produce a new state x and reward
r. The critic then evaluates resulting in an update (dashed line)
of itself and the actor. The update of the actor depends as well
on the observed process’ response (Grondman et al., 2012).

Many different implementations of actor-critic algorithms can be found
in the literature.
Konda and Tsitsiklis (2003) selects an actor-critic implementation that
uses a gradient-based policy evaluation approach (Section 2.4.3.2) for
the critic to minimize the MSBE (Section 2.4.3.1) version with eligibi-
lity traces, and a state-action based policy gradient algorithm for the
actor (Section 2.3.3), while performing online updates of the parame-
ters of both the entities.
Another group of popular actor-critic implementations choose actors
that follow natural gradient approaches (Section 2.3.4). Peters and
Schaal (2008) used an LSTD-Q(λ)-based critic with compatible featu-
res (Theorem 2.3) so that the update rule of the actor turns out to be
very simple. Some implementations with other approximation archi-
tectures are proposed by Bhatnagar et al. (2009).
Grondman et al. (2012) present a survey on actor-critic algorithms
that perform online updates based on the observed TD error.

2.6 lipschitz markov decision processes

This thesis focuses on environments with nice continuity properties
that can be exploited during the design of the agent. The formal set-
ting that aims to capture such behavior is exposed along this section,
and serves as theoretical inspiration for the extension of the con-
tinuity properties across different MDPs proposed later on in this do-
cument.
The upcoming formulation has already been introduced by Pirotta,
Restelli, and Bascetta (2015), who used it to find a step size in policy-
gradient algorithms with improvement guarantees. They model the
continuous properties of these problems by resorting to the concept of
Lipschitz continuous functions and pointwise Lipschitz continuous functi-
ons.



2.6 lipschitz markov decision processes 37

Definition 2.28 (Lipschitz continuous function). A function f : X →
Y, where (X, dX) and (Y, dY) are metric spaces, is called Lipschitz
continuous whenever

∀x1, x2 ∈ X, dY(f(x1), f(x2)) 6 LfdX(x1, x2),

where Lf ∈ R is called Lipschitz constant. It is also said that f is
Lf-Lipschitz continuous, or Lf-LC for short.

Definition 2.29 (Pointwise Lipschitz continuous function). A function
f : X → Y, where (X, dX) and (Y, dY) are metric spaces, is called
pointiwse Lipschitz continuous whenever there exists a function Lf :
X→ R such that, for any x1 ∈ X, Lf(x1) satisfies

∀x2 ∈ X, dY(f(x1), f(x2)) 6 Lf(x1)dX(x1, x2).

The function Lf is required to be bounded, which implies that f is also
Lipschitz continuous. It is also said that f is Lf-pointwise Lipschitz
continuous, or Lf-PLC for short.

Euclidean spaces are given the metric structure with their natural
Euclidean norm. Product spaces (e. g.S × A) are endowed with the
taxicab norm composed of the sum of the metrics on each factor space
(e. g.dSA = dS+dA). Spaces of probability distributions are provided
with the Kantorovich or L1-Wasserstein distance (Dudley, 2002) as
the metric function.

Definition 2.30 (Kantorovich metric). If p and q are two probability
measures on a separable metric space X, the function

K(p, q) = sup
f

{∣∣∣∣ ∫ fd(p− q)
∣∣∣∣ | ‖f‖L 6 1}

is a metric on the space of probability measures on X. ‖·‖L is the

semi-norm defined by ‖f‖L = supx1 6=x2
{dY(f(x1),f(x2))

dX(x1,x2)

}
on the space

of real-valued functions whose domain is X.

With this in mind, it is possible to define Lipschitz MDPs.

Definition 2.31 (Lipschitz MDP). An MDP M is said to be Lipschitz
when its transition model and its reward model are Pointwise Lip-
schitz Continuous (PLC). For the transition model, it means that the
function P : S×A → ∆(S), (s, a) 7→ P(·|s, a) is LP−SA-PLC. For the
reward model, it means that the function R(·, ·) is LR−SA-PLC.

Policies can be similarly defined to be Lipschitz, although this time
the definition also includes the continuity with respect to the parame-
ter space.

Definition 2.32 (Lipschitz Policy). A parametric policy πθ is said Lip-
schitz if it is PLC with respect both to the state space and the parame-
ter space. For the state space, it means that when θ ∈ Θ is fixed, the
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function πθ : S → ∆(A), s 7→ πθ(·|s) is Lθπ−S-PLC. For the parameter
space, it means that when s ∈ S is fixed, for any a ∈ A, the function
π(·)(a|s) is Ls,aπ−Θ-PLC.

Note that the above definition differs from the one by Pirotta, Re-
stelli, and Bascetta (2015) when it comes to the continuity with respect
to the parameter space. The motivation for this is exposed in Section
4.1. However, under mild assumptions on the distribution πθ(·|s), it is
possible to show that this definition implies the original one (Section
D.1).
Pirotta, Restelli, and Bascetta (2015) also consider some assumptions
on the gradient of the log-policy.

Definition 2.33 (Lipschitz gradient of policy logarithm). A policy πθ,
θ ∈ Θ ⊂ Rd, is said to have a Lipschitz logarithm gradient if it satis-
fies the following conditions:

– It is uniformly bounded with respect to the state-action space.
That is, for fixed θ ∈ Θ and i = 1, ..., d, there exists a constant
Mi
θ such that, for any s ∈ S and a ∈ A

|∇θi logπθ(a|s)| 6Mi
θ.

– When θ ∈ Θ and i = 1, ..., d are fixed, for any a ∈ A, the function
∇θi logπθ(a|·) is Lθ,i,a∇ logπ−S-PLC.

– When s ∈ S and i = 1, ..., d are fixed, for any a ∈ A, the function
∇θi logπ(·)(a|s) is Ls,i,a∇ logπ−Θ-PLC.
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T R A N S F E R L E A R N I N G

Machine Learning emerged as a subarea of Artificial Intelligence with
the objective of studying and creating computer programs with the
ability of autonomously learning how to execute a given task (Mit-
chell, 1997); for such purpose, human learning theory itself has been
used as a source of inspiration for a couple of approaches. A parti-
cular example is the concept of TL, the ability of humans to enhance
learning on a new task by exploiting previously acquired knowledge
from similar tasks; the effectiveness of this approach has been demon-
strated in practice (see e. g.Brown and Kane (1988)).
In the context of Machine Learning, the purpose of TL is to develop
mechanisms that are able to produce knowledge that generalizes not
only within the task but also across tasks (Taylor and Stone, 2009). An
important number of TL algorithms for general Machine Learning al-
ready exist. For example, Caruana (1994) studies how backdrop neu-
ral networks can use the weights learned from one task as inductive
bias for improving generalization in a group in similar tasks. Thrun
and Pratt (1998) also present a detailed survey about transfer across
various Machine Learning tasks.
RL has also been target for the TL paradigm. The purpose of this
chapter is to describe how the general ideas of TL can be modified to
fit in a RL context. Section 3.1 presents a series of relevant concepts
that arise from bringing TL into RL, some of which allow to define a
taxonomy for TL-RL algorithms. Section 3.2 lists and briefly describes
some interesting TL-RL approaches.

3.1 transfer learning concepts for reinforcement le-
arning

The purpose of TL in the context of Machine Learning is to create algo-
rithms that are capable not only of learning how to execute a certain
task but to retain the acquired knowledge and to reuse it while lear-
ning new tasks, so that the performance therein is hopefully increased
(Taylor and Stone (2009), Lazaric (2012)). This definition, although in-
tuitively clear, is not enough to carefully study TL algorithms in the
RL framework. There are two key concepts that should be further
defined: the knowledge that is eligible to be reused, and the perfor-
mance measure that is expected to be enhanced.
This concepts are elaborated on throughout this section. Section 3.1.1
defines what is considered as transferable knowledge in RL, and pro-
vides a brief taxonomy for TL-RL algorithms that can be derived from
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such definition, while Section 3.1.2 presents the alternatives of metrics
that can be used to assess a TL-RL algorithm.
When introduced into a transfer scenario, RL agents are added a new
component in charge of implementing the transfer process, namely
the transfer algorithm. Thus, it is important to remark that the term
"agent" still refers to the collection of algorithms and procedures used
during the learning process, and that the transfer algorithm is just a
part of it. The work presented here focuses on the TL-RL scenario
in which the agent has already interacted with a set of tasks, called
source tasks, and expects to leverage such source experience to face
a new unknown task, referred to as target task. Naturally, tasks are
represented by MDPs within the TL-RL framework.

3.1.1 Transferable knowledge and a Transfer Learning-Reinforcement Lear-
ning taxonomy

The design of a TL algorithm for a RL problem needs to address the
matter of what is to be considered as transferable knowledge. Taylor
and Stone (2009) propose, in addition, to define

– the assumptions, if any, that are being made about the similarity
between the tasks;

– the actual mechanism that identifies and transfers knowledge
(source task selection);

– the specific way in which tasks are related (inter-task mappings);
and

– the restrictions, if any, of the specific RL algorithms that are
allowed.

These five items (including the type of transferable knowledge) corre-
spond to the five dimensions of the taxonomy for TL-RL approaches
that they present, and also define completely the transfer setting as-
sumed by the algorithm.

With respect to the assumed task differences, a TL algorithm might
encounter tasks that differ in any component of the MDP. When the
tasks share the same state and action spaces, the setting is referred to
as transfer of task with fixed domains; when the spaces are different, it
is called transfer of task with different domains (Lazaric, 2012).

The identification and transfer of source knowledge concerns the
selection of relevant source tasks and the subsequent transfer of kno-
wledge instances. Regarding the task selection, four scenarios can be
considered:

– a single source task has been selected by a human and thus the
algorithm can rely on such selection;
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– all the source tasks can be safely considered as relevant so that
there is no need for a selection procedure;

– the algorithm maintains a "library" of source tasks and has the
ability to select the most relevant ones when facing the target
task;

– the algorithm has the ability to modify a single source task so
to make its knowledge more useful on learning.

Concerning the specific knowledge that can be transferred, it can be
mainly classified by its specificity:

– Low-level knowledge, that refers to sets of samples (either sin-
gle transitions or complete trajectories), value functions, poli-
cies, full task models, or prior distributions. This can be directly
introduced to the agent before facing the target task.

– High-level knowledge, that refers to suggested actions to exe-
cute under some situations (in the form of subsets of the action
space), partial policies or options 1, rules or advices, important
feature maps, proto-value functions 2, shaping rewards 3, and
subtask definitions. These are harder to exploit directly to ini-
tialize the agent although knowing them can help the learning
process.

When the transfer setting establishes that the tasks differ in any of the
elements of the MDP, something else can be said about how they are
different. The entities capturing such information are called inter-task
mappings. In general, regarding inter-task mappings, the considered
scenarios are:

– no mappings are necessary because the MDPs coincide entirely
i. e.it is a fixed domain setting;

– the necessary mappings are provided by a human so the algo-
rithm does not have to learn them; and

– the algorithm can leverage some knowledge to learn the map-
pings.

In the particular case that the algorithm is to learn the task mappings,
a nested dimension can emerge depending on the knowledge used
for such purpose. The authors consider three specific examples:

– the algorithm exploits source and target experience for learning
the mappings;

1 Refer to (Sutton, Precup, and Singh, 1999) for a definition of option.
2 Refer to (Mahadevan, 2005) for a definition of proto-value functions.
3 Refer to (Ng, Harada, and Russell, 1999) for a definition of reward shaping.
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– the algorithm is provided a qualitative description of the transi-
tion model of the MDPs so that the mappings can be inferred
from there; and

– the algorithm counts with mappings for some of the differing
components and will use them to learn the missing ones.

The type of knowledge that is being transferred directly restricts the
specific RL algorithms that the agent can implement if it wants to le-
verage the source information. For instance, if the transfer algorithm
tells the agent to reuse a source policy, the agent cannot implement a
pure value-based method (Section 2.2.3).

Note that these dimensions are applicable to the transfer algorithm
only and thus do not define the complete RL agent. In fact, a TL-RL
agent is completely defined both when it decides how to implement
the transfer and how to execute the learning process in the target task.

Lazaric (2012) provides another simpler taxonomy for TL-RL algo-
rithms, which is mostly a coarser version of the one presented above.
The most noteworthy difference concerns the categories in which the
transferred knowledge is classified, for which he identifies three ap-
proaches: instance transfer, where samples (either trajectories or tran-
sitions) are the transferred elements; representation transfer, in which
the transferred information is some higher level representation of the
task components (e. g.the basis functions for the value functions); and
parameter transfer, that transfer the parameters the target RL algorithm
needs as inputs (e. g.steps size or starting point of a gradient-based
algorithm).
Another important contribution is that the introduction of a formal
framework for the transfer scenario in RL. Let T be a space of tasks
(i. e.MDPs) and Ω a probability distribution on such space. A (trans-
fer) task environment is then defined by the tuple E = 〈T,Ω〉. The
idea inspiring transfer in RL (and in Machine Learning in general) is
that a learner will probably perform well on a target task sampled
from Ω, provided that it has an average good performance on an
already known set of souce tasks sampled from there too. Transfer
algorithms are hence designed to try to achieve such goal.
A TL-RL agent is then composed by two main components: the trans-
fer algorithm and the RL algorithm. The first one can be seen as a
function that takes knowledge from source and target tasks, as sam-
pled from Ω, to produce transferred knowledge; the second one will
then be a function with inputs the transferred and target knowledge
and output a solution in the hypothesis space. It is possible, however,
that the transfer algorithm does not have actual access to any target
knowledge. Anyway, this shows again how the design of the transfer
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Figure 3.1: A TL-RL agent relies on the transfer algorithm to create the trans-
fer knowledge based on source knowledge to improve the lear-
ning algorithm (Lazaric, 2012).

algorithm is closely related to the RL algorithm. Figure 3.1 depicts
this scenario.

3.1.2 Performance measures for Transfer Learning-Reinforcement Learning
algorithms

The design of the transfer algorithm is strongly driven by the perfor-
mance measure that the agent wants to optimize. Taylor and Stone
(2009) consider five different metrics:

– Jumpstart: given by the difference between the agent’s initial per-
formance in the target task with and without transfer. It provi-
des information about the initial effect of the transfer algorithm
but does not really capture the learning behavior produced later
on.

– Asymptotic performance: given by the difference between the final
performance of the agent in the target task with and without
transfer. It gives a good insight on how transfer can affect lear-
ning on the long term, although it says nothing about the actual
sample requirements necessary to get there.

– Total reward: given by the difference between the total reward
accumulated by the agent during the learning process with and
without transfer. It accounts both for benefit in the learning rate
(sample demands) and in the asymptotic performance induced
by transfer on the learning process.

– Transfer ratio: given by the ratio of the area below the learning
curve when transfer takes place to that obtained when no trans-
fer is performed. It can be calculated through

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer
.

This measures the relative improvement of transfer with respect
to standard learning, and is more appropriate when both sce-
narios have the same final performance. The value is strictly
related to the reward structure of the tasks; in fact, it is scale
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Figure 3.2: The graph shows a case in which learning with transfer outper-
forms standard learning with respect to jumpstart, asymptotic
performance, time to threshold, and total reward (area below
each curve) (Taylor and Stone, 2009).

invariant (the value is the same if the reward is multiplied by a
constant factor) but not translation invariant (the value changes
if the reward is added a constant term).

– Time to threshold: given by the difference between the time (in
number of samples) required for the agent to achieve a given
performance value with and without transfer. The main dra-
wback of this metric is that the threshold is mainly arbitrarily
chosen and so will be the perceived benefit of transfer. The thres-
hold value is actually domain dependent and thus there are no
standard methods to define it; nonetheless, in (Taylor, Stone,
and Liu, 2007), there are a couple of suggested techniques for
the selection of such value.

Figure 3.2 shows a graphical explanation for the metrics.

Lazaric (2012) refers all of these metrics in his work (with exception
of the total reward) although presented in different categories. He
considers that a transfer algorithm can set three types of objectives:

– Learning speed improvement, that refers to the reduction in the
knowledge demands of the agent induced by the transfer algo-
rithm. It can be measured with the time to threshold, the area
ratio (transfer ratio), and with a finite-sample analysis. The lat-
ter, not considered in the above presented metrics, has a rather
formal motivation with respect to the others (which are more
empirically inspired); it aims to bound the error between the
produced solution and the optimal one as a function of (among
others) the number of samples needed to find it. The idea is that
a good transfer algorithm will be able to get tighter bounds for
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the same number of target samples with respect to the no trans-
fer scenario.
Regardless of how it is measured, this objective is usually pur-
sued by instance transfer-based algorithms.

– Asymptotic improvement, that refers to the gain in the perfor-
mance of the found optimal policy caused by introducing trans-
fer. It can be measured by comparing the respective asymptotic
performances of the standard and transfer learning scenarios. A
finite-sample analysis can take place here as well, by doing the
bound on the error a function of the bias of the agent. The idea
is that a good transfer algorithm will bias the agent towards a
better hypothesis space with respect to the no transfer scenario.
This objective is usually pursued by representation transfer-based
algorithms.

– Jumpstart improvement, that refers to the gain in the initial perfor-
mance caused by the initialization suggested by the transfer al-
gorithm. It can be measured by comparing the respective initial
performances of the standard and transfer learning scenarios.
This objective is usually pursued by parameter transfer-based
algorithms.

All the previously described metrics care only about the relative im-
provement caused by the transfer algorithm, but ignore the cost of
acquiring the knowledge in the source tasks. Taylor and Stone (2009)
talk about two different scenarios in this regard:

– Total time scenario, where the objective is to reduce the overall
time necessary both for creating the source knowledge and reu-
sing it in the target task. It is more suitable for evaluating a
human-guided agent that is presented a sequence of tasks to le-
arn from, expecting that it leverages on previous experience for
learning each new task. The value of such an agent is in being
able to optimize the complete learning process.

– Target task time scenario, where the objective is to reduce the le-
arning time in the target task only. It is more appropriate for
evaluating a fully autonomous agent that is already provided
with source knowledge, and that must have the ability to select
the most convenient source for a given target task, understand
how they are related, and use it for learning. The power of such
an agent can be summarized by its ability of effectively reusing
past experience.

Figure 3.3 introduces these two scenarios in a graphical way.
In the ideal case, all the just described metrics should give results that
demonstrate the benefit of transfer for the learning process; however,
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Figure 3.3: The figure shows the difference of measuring improvement in
each time scenario. Which one to select depends on the assump-
tions about the agent and the specific objective of the problem
(Taylor and Stone, 2009).

this might not always be the case. One of the most important open
issues of TL in RL is the so called negative transfer, i. e., the negative im-
pact on the learning process provoked by the introduction of useless
source knowledge, which is reflected in negative results as suggested
by the metrics. An important step towards fully autonomous TL-RL
agents is for them to have the ability not only of identifying relevant
source knowledge, but of recognizing and ignoring the information
that could harm the learning process.

3.2 transfer learning algorithms in reinforcement le-
arning

The area of TL in RL has been quite active during the last years. Many
different works trying various approaches have been published, each
one providing novel and interesting insights on this field. This section
briefly recalls some of those proposals that are relevant for the scope
of this thesis.
Lazaric, Restelli, and Bonarini (2008) present an algorithm that se-
lectively transfers samples (transitions) from the source tasks with
the goal of augmenting the dataset to be given to a Fitted Q Itera-
tion algorithm (Antos, Munos, and Szepesvári, 2007). The selection
is based on some metrics that account for the local similarity of the
transition and reward models of each source task with respect to the
target task. Source tasks are sorted according to their compliance with
the target task, and samples from each one are drawn according to
their relevance; the number of samples taken from each task is propor-
tional to their rank after the previous sorting process.
Lazaric and Restelli (2011) introduce three algorithms whose objective
is to use transfer to augment a dataset for a Fitted Q Iteration algo-
rithm as well. However, this approach relies on the minimization of
some approximation error for creating the sampling strategy rather
than on the per-sample similarity of the tasks. The three algorithms
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are based on the proportion used to draw samples from each source
task, but they differ on the way such proportion is obtained: the first
one, All Samples Transfer, assumes that the proportion is fixed so that
the algorithm only has to perform the sampling; the second one, Best
Average Transfer, finds the proportion that minimizes the estimated
transfer error; the third one, Best Trade-off Transfer, finds the propor-
tion that optimizes the trade-off between the transfer error and the
estimation error.
Laroche and Barlier (2017) give another example of sample transfer
for Fitted Q Iteration algorithms. They assume that the tasks differ
only in the reward models (so it is a shared dynamics transfer setting),
which implies that the transferred samples introduce uncertainty only
on the reward and not on the transition model. Thus, the algorithm
estimates the reward model on the target samples only and uses it
to cast the source samples directly into the dataset. Exploration is
guided with optimism in the face of uncertainty heuristic, based on con-
fidence intervals from UCRL.
The algorithm proposed by Barrett, Taylor, and Stone (2010) transfers
the Q-function from the source task for executing SARSA(λ). They
assume a transfer setting within different domains where the inter-
task mapping for the state-action spaces are given to the agent. Thus,
the target value function is modeled as the sum of the source value
function (appropriately composed with the task mappings) and some
function approximator whose parameters are learned by means of the
SARSA updates.
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T R A N S F E R L E A R N I N G A P P R O A C H E S F O R
A C T O R - C R I T I C A L G O R I T H M S

The goal of this section is to present the novel approach for transfer in
Lipschitz continuous task environments proposed by this thesis. The
algorithm solves an optimization problem for the transfer part whose
output are the weights to be used by the actor and the critic on calcu-
lating their estimates. The idea of weighted estimates was inspired by
IS approaches and attempts to overcome the variance issues inherent
to them (the reader who is not familiar with Importance Sampling
can refer to Chapter A for a review). Section 4.1 introduces the for-
mal setting of Lipschitz task environments that sets the theoretical
basis for the design of the transfer algorithm. Section 4.3 describes
the details of the implementation of the actor-critic approach used
by RL component of the agent. Section 4.4 presents an IS-based ap-
proach for transfer into this actor-critic algorithm. Finally, Section 4.5
and Section 4.6 describe the optimistic and pessimistic approaches
proposed by this thesis for transferring, both inspired by the ideas of
the IS formulation.

4.1 the setting : lipschitz continuous task environments

Section 2.6 already introduced how smooth continuous properties
within the elements of a single task can be appropriately modeled.
For the purpose of designing TL algorithms in this context, such no-
tion has to be extended to elements between different tasks.
Unlike in the formulation for a single MDP, the Kantorovich distance
can no longer be used here for measuring distance between probabi-
lity distributions. Although frequently used in the context of MDPs
(Ferns, Panangaden, and Precup (2005), Hinderer (2005), Rachelson
and Lagoudakis (2010)), this metric provides a rather global infor-
mation about the similarity of the distributions which is not suitable
for the purpose of the approach presented in this thesis (Appendix
B). Thus, Lipschitz continuity across tasks is modeled with stronger
conditions that explicitly account for the pointwise similarity of the
distributions.

The space of tasks has to be given a metric structure before introdu-
cing any Lipschitz condition. This can be achieved by modeling such
space as a parametric one, and directly inheriting the metric nature
provided by the parameter space. Hence, the concept of parametric
task environment is born.
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Definition 4.1 (Parametric task environment). A parametric task en-
vironment is a task environment E = 〈T,Ω〉 such that all the tasks
in the task space are identified by a parameter vector, T = {Tυ | υ ∈
Υ ⊂ RnT}. In particular, the tasks are parametrized by 2-dimensional
vectors υ = (ε, ξ)> where ε is the parameter of the initial state dis-
tribution and the transition model of the task, and ξ is that of the
reward model.
The parameter space of the initial state distribution and of the tran-
sition model is denoted by E ⊂ R, and that of the reward model
by Ξ ⊂ R. Therefore, the task space will be of the form T = {Tε,ξ |

(ε, ξ) ∈ E× Ξ}.

With this in mind, and using the same terminology of the frame-
work by Lazaric (2012), the formal setting can be finally described.

Definition 4.2 (Lipschitz task environment). A parametric task envi-
ronment E = 〈T,Ω〉 is said to be Lipschitz if each task is Lipschitz in
the sense of Definition 2.31, and if the initial state distribution, tran-
sition model and reward model are Lipschitz with respect to their
parameter spaces. For the initial state distribution, it means that for
any s ∈ S, the function µ(·)(s) is Lsµ−E-PLC. For the transition model,
it means that when s ∈ S and a ∈ A are fixed, for any s ′ ∈ S, the
function P(·)(s

′|s, a) is Ls,a,s
′

P−E -PLC. For the reward model, it means
that when s ∈ S and a ∈ A are fixed, for any s ′ ∈ S, the function
r(·)(s, a, s

′) is Ls,a,s
′

r−Ξ -PLC.

4.2 the problem

This section formalizes the transfer problem tackled by this thesis.
Let E = 〈T,Ω〉 be a Lipschitz task environment in the sense of Defi-
nition 4.2, and (Tj)

m
j=1 be tasks with parameters (εj, ξj)

m
j=1 sampled

from such environment. Let ΠΘ be a parametric policy space whose
policies are Lipschitz in the sense of Definition 2.32 and whose lo-
garithm gradients are Lipschitz in the sense of Definition 2.33. Let
(πj)

m
j=2 be fixed policies from ΠΘ with parameters (θj)

m
j=2.

Taking T1 as the target task, and assuming that the agent has access
to experience from the source tasks (Tj)mj=2 obtained through the poli-
cies (πj)

m
j=2 and to the Lipschitz constants that govern the continuity

across tasks, the goal of the TL-RL agent is to leverage such know-
ledge so to possibly speed-up the learning process in T1.
The agent is assumed to have very few knowledge about the target
task: it only knows the parameters and has access to some experience
from there. In addition to the source experience, the agent is assu-
med to know the source tasks’ models and parameters. Nothing is
said about the source policies, but, as shown in Chapter 5, the trans-
fer gives better results when they correspond to the source optimal
policies.
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Note that the assumption of knowing the target parameters is essen-
tial to be able to use the Lipschitz conditions, because otherwise the
agent lacks of information about the similarity between the tasks.
The fact that knowing the target parameters does not mean knowing
the actual models is an abstraction for the cases in which the models
are too complex for really knowing how the parameters define them.
In the case of the source tasks, it would mean that they have some
black-box mechanism that can reliably replicate the model.
In the remaining of this chapter, to make notation simpler, scripts de-
noting dependence on the task parameters (εj, ξj) and on the policy
parameters θj are replaced by just the index j.

4.3 the actor-critic implementation

The TL-RL problem formalized in Section 4.2 is approached in this
thesis from an actor-critic perspective (Section 2.5). This section des-
cribes the specific implementation of such technique that is used by
the agent in its RL component; therefore, only one task is considered
here.
The continuous nature of the problem makes function approximation
based critics and policy-gradient based actors a reasonable choice. In
particular, the critic implements LSTD (Section 2.4.3.3) as the policy
evaluation mechanism for both the V-function and the Q-function,
and the actor calculates the gradient based on the Policy Gradient
Theorem (Theorem 2.2) with baselines for a lower-variance estimate.
Thus, the learning process of the RL agent is performed according
to the following outline: starting from an initial randomly selected
policy πθ0 , the agent collects experience by interaction with the task
through πθ0 , that is used by the critic to execute LSTD; based on
the resulting evaluation of the policy, the actor applies the Policy Gra-
dient Theorem to find the gradient of the performance with respect to
the parameter of the policy, and updates such parameter accordingly;
then, new experience is collected by executing the new policy, and
the process is iterated until some convergence conditions are met. A
pseudo-code describing this is given in Algorithm 4.1. The critic and
the actor are described with more details in the remaining of the
section.

4.3.1 The critic

Regarding the critic, the case of the V-function is explained first and
the one of the Q-function is described right after that.
Let VBV

φ be the space of parametric linear function approximators for
the V-function assumed by the critic, where φ is the feature map and
BV is the parameter space. Recall that, when evaluating a policy πθ,
the purpose of LSTD is to minimize the MSPBE (Equation (2.18)); such
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Algorithm 4.1 Actor-critic algorithm in the no-transfer scenario

function Actor-Critic(T ) . T is task to be learned
θ← randomly chosen initial policy parameter
while has not converged do

D← experience from T with πθ
Vθ, Qθ ← LSTD(D)

∇θJ← calculate-gradient(D, πθ, V
θ, Qθ)

θ← θ+α∇θJ
end while

end function

minimum is attained at (note that the dependence on πθ is denoted
by just writing θ)

β∗(V) = (A
(V)
µ,θ,φ)

−1b
(V)
µ,θ,φ,

where

A
(V)
µ,θ,φ = E

(s,a,s ′)∼dθµ

[φ(s)(φ(s) − γφ(s ′))>]

= E
(s,a,s ′)∼dθµ

[∆φ(s, a, s
′)],

b
(V)
µ,θ,φ = E

(s,a,s ′)∼dθµ

[φ(s)r(s, a, s ′)]

= E
(s,a,s ′)∼dθµ

[ρφ(s, a, s
′)].

(4.1)

Given the experience D = (〈si, ai, s ′i, ri〉)ni=1 sampled from dθµ, the
above matrices are approximated with

Â
(V)
φ (D) =

1

n

n∑
i=1

∆φ(si, ai, s
′
i),

b̂
(V)
φ (D) =

1

n

n∑
i=1

ρφ(si, ai, s
′
i),

(4.2)

leading to the approximate optimal parameter for the V-function ap-
proximator

β̂∗(V)(D) = (Â
(V)
φ (D))−1b̂

(V)
φ (D).

Let QBQ
ϕ be the space of parametric linear function approximators for

the Q-function assumed by the critic, where ϕ is the feature map and
BQ is the parameter space. Recall that, when evaluating a policy πθ,
the purpose of LSTD is to minimize the MSPBE (Equation (2.19)); such
minimum is attained by (note that the dependence on πθ is denoted
by just writing θ)

β∗(Q) = (A
(Q)
µ,θ,ϕ)

−1b
(Q)
µ,θ,ϕ,
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Algorithm 4.2 LSTD in the no-transfer scenario

function LSTD(D)
AV ← 1

n

∑
(s,a,s ′)∈Dφ(s)(φ(s) − γφ(s ′))>

bV ← 1
n

∑
(s,a,s ′)∈Dφ(s)r(s, a, s ′)

βV ← (AV)−1bV

AQ ← 1
n

∑
(s,a,s ′,a ′)∈Dϕ(s, a)(ϕ(s, a) − γϕ(s

′, a ′))>

bQ ← 1
n

∑
(s,a,s ′,a ′)∈Dϕ(s, a)r(s, a, s

′)

βQ ← (AQ)−1bQ

return VβV , QβQ . Structures for value function evaluation
end function

where

A
(Q)
µ,θ,ϕ = E

(s,a,s ′,a ′)∼d
θ
µ

[ϕ(s, a)(ϕ(s, a) − γϕ(s ′, a ′))>]

= E
(s,a,s ′,a ′)∼d

θ
µ

[∆ϕ(s, a, s
′, a ′)],

b
(Q)
µ,θ,ϕ = E

(s,a,s ′,a ′)∼d
θ
µ

[ϕ(s, a)r(s, a, s ′)]

= E
(s,a,s ′,a ′)∼d

θ
µ

[ρϕ(s, a, s
′, a ′)].

(4.3)

Given the experience D = (〈si, ai, s ′i, a ′i, ri〉)ni=1 sampled from d
θ
µ, the

above matrices are approximated with

Â
(Q)
ϕ (D) =

1

n

n∑
i=1

∆ϕ(si, ai, s
′
i, a
′
i),

b̂
(Q)
ϕ (D) =

1

n

n∑
i=1

ρϕ(si, ai, s
′
i, a
′
i),

(4.4)

leading to the approximate optimal parameter for the Q-function ap-
proximator

β̂∗(Q)(D) = (Â
(Q)
ϕ (D))−1b̂

(Q)
ϕ (D).

The whole critic is summarized in Algorithm 4.2. Note that the output
is not the complete representation of the value functions but rather
any object that can evaluate such functions (e. g.a wrapped procedure
with the feature map and the parameter vector).

4.3.2 The actor

Let ΠΘ be the parametric family of policies assumed by the actor.
Recall that the Policy Gradient Theorem with baseline (Theorem 2.2)
states that the gradient of the performance with respect to the para-
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Algorithm 4.3 Gradient estimation in the no-transfer scenario

function calculate-gradient(D, πθ, Vθ, Qθ)
∇θJ← 1

n(1−γ)

∑
(s,a)∈D(Qθ(s, a) − Vθ(s))∇θ logπθ(a|s)

return ∇θJ
end function

meters at the policy πθ is given by (note that the dependence on πθ
is denoted by just writing θ):

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[(Qθ(s, a) − b(s))∇θ logπθ(a|s)],

where b is any real-valued function of the state space. In particular,
the actor is allowed to use the V-function as a baseline, which leads
to the expression

∇θJθµ =
1

1− γ
E

(s,a)∼ζθµ

[(Qθ(s, a) − Vθ(s))∇θ logπθ(a|s)]

=
1

1− γ
E

(s,a)∼ζθµ

[ηθ(s, a)].
(4.5)

Thus, given the experience D = (〈si, ai, Qθ(si, ai), Vθ(si)〉)ni=1 sam-
pled from ζθµ, the actor can estimate the gradient through

∇̂θJ(D) =
1

n(1− γ)

n∑
i=1

ηθ(si, ai).

However, the actor does not have access to the actual value functions
but only to the approximates provided by the critic. Therefore, it is
given experience in the form D = (〈si, ai, Q̂θ(si, ai), V̂θ(si)〉)ni=1 so
that the resulting estimator is

∇̂θJ(D) =
1

n(1− γ)

n∑
i=1

∇θ logπθ(ai|si)(Q̂θ(si, ai) − V̂θ(si))

=
1

n(1− γ)

n∑
i=1

η̂θ(si, ai).

(4.6)

The actor is summarized in Algorithm 4.3.

4.4 transfer with importance sampling

Having in mind the TL-RL problem presented in Section 4.2 and the
actor-critic implementation proposed in Section 4.3, an IS based met-
hod for approaching such problem is introduced in this section (the
reader can refer to Chapter A for a review of IS). The estimators used
by the critic and the actor are extended to consider the IS scenario.
Those of the critic is studied first, and they are followed by those of
the actor.
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4.4.1 The critic

For the case of the V-function’s critic, from Equation (4.1) it follows
that

A
(V)
1,φ = E

(s,a,s ′)∼d1
[∆φ(s, a, s

′)]

= E
(s,a,s ′)∼dj

[
∆φ(s, a, s

′)
d1(s, a, s

′)

dj(s, a, s ′)

]
and that

b
(V)
1,φ = E

(s,a,s ′)∼d1
[ρ1,φ(s, a, s

′)]

= E
(s,a,s ′)∼dj

[
ρ1,φ(s, a, s

′)
d1(s, a, s

′)

dj(s, a, s ′)

]
for any source task Tj; therefore, given the experience D = (Dj)

m
j=1 =

(〈sij, aij, s ′ij, rij〉)
m nj
j=1 i=1, n =

∑m
j=1 nj, where each Dj is sampled

according to dj, the estimates for the matrices in Equation (4.2) can
be extended to:

Â
(V)
φ (D) =

1

n

m∑
j=1

nj∑
i=1

wVij∆φ(sij, aij, s
′
ij),

b̂
(V)
φ (D) =

1

n

m∑
j=1

nj∑
i=1

wVijρ1,φ(sij, aij, a
′
ij),

(4.7)

where

wVij =
d1(sij, aij, s

′
ij)

dj(sij, aij, s
′
ij)

.

This leads to the approximate optimal parameter for the V-function
approximator

β̂∗(V)(D) = (Â
(V)
φ (D))−1b̂

(V)
φ (D).

For the case of the Q-function’s critic, from Equation (4.3) it follows
that

A
(Q)
1,ϕ = E

(s,a,s ′,a ′)∼d1

[∆ϕ(s, a, s
′, a ′)]

= E
(s,a,s ′,a ′)∼dj

[
∆ϕ(s, a, s

′, a ′)
d1(s, a, s

′, a ′)

dj(s, a, s ′, a ′)

]
and that

b
(Q)
1,ϕ = E

(s,a,s ′,a ′)∼d1

[ρ1,ϕ(s, a, s
′, a ′)]

= E
(s,a,s ′,a ′)∼dj

[
ρ1,ϕ(s, a, s

′, a ′)
d1(s, a, s

′, a ′)

dj(s, a, s ′, a ′)

]
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Algorithm 4.4 LSTD in the Importance Sampling scenario

function weighted-LSTD(D, wQ, wV )
AV ← 1

n

∑
(s,a,s ′)∈Dw

V(s, a, s ′)φ(s)(φ(s) − γφ(s ′))>

bV ← 1
n

∑
(s,a,s ′)∈Dw

V(s, a, s ′)φ(s)r1(s, a, s
′)

βV ← (AV)−1bV

AQ ← 1
n

∑
(s,a,s ′,a ′)∈Dw

Q(s, a, s ′, a ′)ϕ(s, a)(ϕ(s, a) −

γϕ(s ′, a ′))>

bQ ← 1
n

∑
(s,a,s ′,a ′)∈Dw

Q(s, a, s ′, a ′)ϕ(s, a)r1(s, a, s
′)

βQ ← (AQ)−1bQ

return VβV , QβQ
end function

for any source task Tj; therefore, given the experience D = (Dj)
m
j=1 =

(〈sij, aij, s ′ij, a ′ij, rij〉)
m nj
j=1 i=1, n =

∑m
j=1 nj, where each Dj is sampled

according to dj, the estimates for the matrices in Equation (4.4) can
be extended to:

Â
(Q)
ϕ (D) =

1

n

m∑
j=1

nj∑
i=1

w
Q
ij∆ϕ(sij, aij, s

′
ij, a

′
ij),

b̂
(Q)
ϕ (D) =

1

n

m∑
j=1

nj∑
i=1

w
Q
ijρ1,ϕ(sij, aij, s

′
ij, a

′
ij),

(4.8)

where

w
Q
ij =

d1(sij, aij, s
′
ij, a

′
ij)

dj(sij, aij, s
′
ij, a

′
ij)

.

This leads to the approximate optimal parameter for the Q-function
approximator

β̂∗(Q)(D) = (Â
(Q)
ϕ (D))−1b̂

(Q)
ϕ (D).

Algorithm 4.4 extends Algorithm 4.2 to the IS-based scenario.

Note that wQij = w
V
ij

π1(a
′
ij|s
′
ij)

πj(a
′
ij|s
′
ij)

.
Furthermore, notice that the estimators in Equation (4.7) and in Equa-
tion (4.8) are using reward function from the target task even in the
state-action pairs taken from the source tasks. In practice, since the
reward function is usually selected by the designer of the agent, this
is not a problem; however, whenever it is not possible to access the
target reward function, any method can be used to approximate it
(possibly exploiting the source samples as well).
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Algorithm 4.5 Gradient estimation in the Importance Sampling sce-
nario

function weighted-calculate-gradient(D, π1, V1, Q1, w∇J)
∇θJ ← 1

n(1−γ)

∑
(s,a)∈Dw

∇J(s, a)(Q1(s, a) −

V1(s))∇θ logπ1(a|s)
return ∇θJ

end function

4.4.2 The actor

For the actor, from Equation (4.5) it follows that

∇θJ1 =
1

1− γ
E

(s,a)∼ζ1
[η1(s, a)]

=
1

1− γ
E

(s,a)∼ζj

[
η1(s, a)

ζ1(s, a)

ζj(s, a)

]
for any source task Tj; therefore, given the experience D = (Dj)

m
j=1 =

(〈sij, aij, η̂1(sij, aij)〉)
m nj
j=1 i=1, n =

∑m
j=1 nj, where each Dj is sam-

pled according to ζj, the estimate for the gradient in Equation (4.6)
can be extended to:

∇̂θJ1(D) =
1

n(1− γ)

m∑
j=1

nj∑
i=1

w∇Jij η̂1(si, ai), (4.9)

where

w∇Jij =
ζ1(sij, aij)

ζj(sij, aij)
.

Algorithm 4.5 extends Algorithm 4.3 to the IS-based scenario.

Algorithm 4.6 presents the extension of Algorithm 4.1 to the IS-based
transfer scenario. The IS-weights functions just calculate the impor-
tance sampling weights (for each part of the critic and for the actor)
based on the transition models of the tasks and on the policies; for
simplicity, their implementation is omitted. Note that, to reduce the
potential impact of the variance induced by the differences between
the densities, the target policy is actually initialized based on the pa-
rameters of the source policies.
With respect to the taxonomy presented in Section 2.2, the RL com-

ponent of the IS actor-critic algorithm is model-based, both policy
based and value based, and offline. It might be seen as off-policy in
the sense that information from a different policy is being used du-
ring the learning of the target one, although such an information is
actually sampled from a different task.
For what concerns the taxonomy presented in Section 3.1.1, the TL
component of the IS actor-critic algorithm satisfies:
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Algorithm 4.6 Actor-critic algorithm in the Importance Sampling sce-
nario

function IS-Actor-Critic((Tj)mj=1, (πj)
m
j=2)

D← ∅
for j = 2...m do

Dj ← experience from Tj with πj
D← D∪Dj

end for
θ1 ← initial policy parameter based on (πj)

m
j=2

while has not converged do
D1 ← experience from T1 with π1
wQ ← IS-weights-Q(D1 ∪D, (Tj)mj=1, (πj)mj=1)
wV ← IS-weights-V(D1 ∪D, (Tj)mj=1, (πj)mj=1)
V1, Q1 ← weighted-LSTD(D1 ∪D, wQ, wV)
w∇J ← IS-weights-gradient(D1 ∪D, (Tj)mj=1, (πj)mj=1)
∇θJ ← weighted-calculate-gradient(D1 ∪

D, π1, V1, Q1, w
∇J)

θ1 ← θ1 +α∇θJ
end while

end function

– Task similarity assumptions: defined in the formulation in Section
4.2 in terms of the Lipschitz continuity.

– Source task selection: the agent selects the relevant knowledge
not at task level, but at sample level by means of the importance
weights assigned to each one of them.

– Type of transferred knowledge: the algorithm transfers low-level
knowledge in the form of individual transition samples and po-
licy parameters for the initialization.

– Inter-task mappings: the state and action spaces coincide so that
no mappings for these components are necessary. Some infor-
mation about the mapping for the transition and reward models
and for the initial state distribution is given with the Lipschitz
conditions of the problem.

– Restrictions of RL algorithms: none, because the transferred
knowledge corresponds to individual samples that can be ex-
ploited by any algorithm.

Note that the transfer component of the IS actor-critic algorithm corre-
sponds to the calculation of the importance weights, and the RL com-
ponent corresponds to a weighted version of the standard actor-critic
approach. Therefore, the transfer algorithm is directly exploiting the
target knowledge to produce the transferred one as it uses the target
model for the calculation of the weights.
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4.5 transfer with an optimistic approach

The IS-based implementation of the actor-critic algorithm presented
in Section 4.4 is applicable when the transition models of target and
source tasks are known, but this is not the case for the formulation
presented in Section 4.2. This section introduces a proposal for sol-
ving such issue when the agent has access to some target samples.
The idea is to use a weighted estimator to introduce the source sam-
ples, and select the weights that minimize the error caused by the
transfer process. As usual, the critic and the actor are studied separa-
tely.

4.5.1 The critic

Consider first the critic for the V-function.
Let WV = {ω : [1, ...,m]× S×A× S→ R∗}, R∗ = R∪ {0}, be the space
of all weightening strategies, i. e., the space of all functions that assign
weights to samples when transferred into the target task. The IS weig-
htening strategy wVj (s, a, s

′) = d1(s, a, s
′)/dj(s, a, s

′) is a member of
WV .
Under the Lipschitz conditions of the problem in Section 4.2, it is
possible to prove that the tuples distribution d(·,·)(s, a, s ′) is Ls,a,s

′
d−ΘE-

PLC for every (s, a, s ′) ∈ S × A × S (Section C.1). Define, then, the
following functions:

Ldj(s, a, s
′) = max(0,dj(s, a, s ′)

− Ls,a,s
′

d−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj))),

Udj(s, a, s
′) = dj(s, a, s

′) + Ls,a,s
′

d−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj)),

ldj(s, a, s
′) =

Ldj(s, a, s
′)

dj(s, a, s ′)

= max
(
0, 1−

Ls,a,s
′

d−ΘE(θj, εj)

dj(s, a, s ′)
dΘE((θ1, ε1), (θj, εj))

)
,

udj(s, a, s
′) =

Udj(s, a, s
′)

dj(s, a, s ′)

= 1+
Ls,a,s

′
d−ΘE(θj, εj)

dj(s, a, s ′)
dΘE((θ1, ε1), (θj, εj)).

(4.10)

Thanks to the Lipschitz conditions, for any j = 1...m and (s, a, s ′) ∈
S×A× S, the target model satisfies:

Ldj(s, a, s
′) 6 d1(s, a, s

′) 6 Udj(s, a, s
′);

so a weightening strategy ω ∈ WV is said to be admissible when, for
any j = 1...m and (s, a, s ′) ∈ S×A× S, it satisfies:

ldj(s, a, s
′) 6 ωj(s, a, s

′) 6 udj(s, a, s
′).
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Denote by WV
1 the space of admissible weightening strategies. Of

course, any ω ∈ WV
1 satisfies ω1(s, a, s ′) = 1 for any (s, a, s ′) ∈

S×A× S; in particular, the IS strategy wV is a member of WV
1 .

Given a strategyω and a dataset D = (Dj)
m
j=1 = (〈sij, aij, s ′ij, rij〉)

m nj
j=1 i=1,

let

Â
(V)
ω (D) =

1

n

m∑
j=1

nj∑
i=1

ωj(sij, aij, sij)∆φ(sij, aij, s
′
ij),

b̂
(V)
ω (D) =

1

n

m∑
j=1

nj∑
i=1

ωj(sij, aij, sij)ρ1,φ(sij, aij, s
′
ij)

be the estimators for the matrices A(V)
1,φ, b(V)

1,φ induced by ω given D.
For a fixed strategy ω ∈WV

1 , define:

g(ω) = E
D

[
‖A(V)
1,φ − Â

(V)
ω (D)‖22

]
− E

D

[
‖A(V)
1,φ − Â

(V)
ω (D1)‖22

]
+ E

D

[
‖b(V)
1,φ − b̂

(V)
ω (D)‖22

]
− E

D

[
‖b(V)
1,φ − b̂

(V)
ω (D1)‖22

]
which represents the change in the expected square `2-norm loss of
the matrices estimation when using transfer with the strategy ω with
respect to not using transfer at all. The optimal strategy ω∗ is the arg-
solution of:

minimize
ω∈WV

1

g(ω),

which can be formulated as a constrained optimization problem:

minimize
ω∈WV

g(ω)

s. t. ldj(s, a, s
′) 6 ωj(s, a, s

′) 6 udj(s, a, s
′),

∀j = 1...m, (s, a, s ′) ∈ S×A× S.

To be solved in practice, g can be expressed as (Section D.2)

g(ω) =

dc∑
k=1

dc∑
l=1

(( 1
n

m∑
j=2

nj(A
(V)−(k,l)
1,φ

− E
(s,a,s ′)∼dj

[ωj(s, a, s
′)∆

(k,l)
φ (s, a, s ′)])

)2
+
1

n2

m∑
j=2

nj Var
(s,a,s ′)∼dj

[ωj(s, a, s
′)∆

(k,l)
φ (s, a, s ′)]

+
( 1
n2

−
1

n21

)
n1 Var

(s,a,s ′)∼d1
[∆

(k,l)
φ (s, a, s ′)]

)

+

dc∑
k=1

(( 1
n

m∑
j=2

nj(b
(V)−(k)
1,φ

− E
(s,a,s ′)∼dj

[ωj(s, a, s
′)ρ

(k)
1,φ(s, a, s

′)])
)2
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+
1

n2

m∑
j=2

nj Var
(s,a,s ′)∼dj

[ωj(s, a, s
′)ρ

(k)
1,φ(s, a, s

′)]

+
( 1
n2

−
1

n21

)
n1 Var

(s,a,s ′)∼d1
[ρ

(k)
1,φ(s, a, s

′)]

)
,

so that it can be estimated directly from a dataset. That is, the matri-
ces A(V)

1,φ, b(V)
1,φ are estimated from the available target samples, and

the terms with Var(s,a,s ′)∼d1 are dropped as they do not depend on
ω.

Consider now the critic for the Q-function.
LetWQ = {ω : [1, ...,m]×S×A×S×A→ R∗} be the space of all weig-
htening strategies, i. e., the space of all functions that assign weights to
samples when transferred into the target task. The IS weightening
strategy wQj (s, a, s

′, a ′) = d1(s, a, s
′, a ′)/dj(s, a, s

′, a ′) is a member
of WQ.
Under the Lipschitz conditions of the problem in Section 4.2, it is pos-
sible to prove that the extended tuples distribution d(·,·)(s, a, s ′, a ′)
is Ls,a,s

′,a ′
d−ΘE -PLC for every (s, a, s ′, a ′) ∈ S×A× S×A (Section C.1).

Define, then, the following functions:

Ldj(s, a, s
′, a ′) = max(0,dj(s, a, s ′, a ′)

− Ls,a,s
′,a ′

d−ΘE
(θj, εj)dΘE((θ1, ε1), (θj, εj))),

Udj(s, a, s
′, a ′) =dj(s, a, s

′, a ′)

+ Ls,a,s
′,a ′

d−ΘE
(θj, εj)dΘE((θ1, ε1), (θj, εj)),

ldj(s, a, s
′, a ′) =

Ldj(s, a, s
′, a ′)

dj(s, a, s ′, a ′)

= max
(
0, 1−

Ls,a,s
′,a ′

d−ΘE
(θj, εj)

dj(s, a, s ′, a ′)
dΘE((θ1, ε1), (θj, εj))

)
,

udj(s, a, s
′, a ′) =

Udj(s, a, s
′, a ′)

dj(s, a, s ′, a ′)

= 1+
Ls,a,s

′,a ′

d−ΘE
(θj, εj)

dj(s, a, s ′, a ′)
dΘE((θ1, ε1), (θj, εj)).

(4.11)

Thanks to the Lipschitz conditions, for any j = 1...m and (s, a, s ′, a ′) ∈
S×A× S×A, the target model satisfies:

Ldj(s, a, s
′, a ′) 6 d1(s, a, s

′, a ′) 6 Udj(s, a, s
′, a ′);

so a weightening strategy ω ∈ WQ is said to be admissible when, for
any j = 1...m and (s, a, s ′, a ′) ∈ S×A× S×A, it satisfies:

ldj(s, a, s
′, a ′) 6 ωj(s, a, s

′, a ′) 6 udj(s, a, s
′, a ′).
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Denote by W
Q
1 the space of admissible weightening strategies. Of

course, anyω ∈WQ
1 satisfiesω1(s, a, s ′, a ′) = 1 for any (s, a, s ′, a ′) ∈

S×A× S×A; in particular, the IS strategy wQ is a member of WQ
1 .

Given a strategyω and a dataset D = (Dj)
m
j=1 = (〈sij, aij, s ′ij, a ′ij, rij〉)

m nj
j=1 i=1,

let

Â
(Q)
ω (D) =

1

n

m∑
j=1

nj∑
i=1

ωj(sij, aij, sij, a
′
ij)∆ϕ(sij, aij, s

′
ij, a

′
ij),

b̂
(Q)
ω (D) =

1

n

m∑
j=1

nj∑
i=1

ωj(sij, aij, sij, a
′
ij)ρ1,ϕ(sij, aij, s

′
ij, a

′
ij)

be the estimators for the matrices A(Q)
1,ϕ, b(Q)

1,ϕ induced by ω given D.
For a fixed strategy ω ∈WQ

1 , define:

g(ω) = E
D

[
‖A(Q)
1,ϕ − Â

(Q)
ω (D)‖22

]
− E

D

[
‖A(Q)
1,ϕ − Â

(Q)
ω (D1)‖22

]
+ E

D

[
‖b(Q)
1,ϕ − b̂

(Q)
ω (D)‖22

]
− E

D

[
‖b(Q)
1,ϕ − b̂

(Q)
ω (D1)‖22

]
which represents the change in the expected square `2-norm loss of
the matrices estimation when using transfer with the strategy ω with
respect to not using transfer at all. The optimal strategy ω∗ is the arg-
solution of:

minimize
ω∈WQ

1

g(ω),

which can be formulated as a constrained optimization problem:

minimize
ω∈WQ

g(ω)

s. t. ldj(s, a, s
′, a ′) 6 ωj(s, a, s

′, a ′) 6 udj(s, a, s
′, a ′),

∀j = 1...m, (s, a, s ′, a ′) ∈ S×A× S×A.

To be solved in practice, g can be expressed as (Section D.2)

g(ω) =

dc∑
k=1

dc∑
l=1

(( 1
n

m∑
j=2

nj(A
(Q)−(k,l)
1,ϕ

− E
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)∆

(k,l)
ϕ (s, a, s ′, a ′)])

)2
+
1

n2

m∑
j=2

nj Var
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)∆

(k,l)
ϕ (s, a, s ′, a ′)]

+
( 1
n2

−
1

n21

)
n1 Var

(s,a,s ′,a ′)∼d1

[∆
(k,l)
ϕ (s, a, s ′, a ′)]

)
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+

dc∑
k=1

(( 1
n

m∑
j=2

nj(b
(Q)−(k)
1,ϕ

− E
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)ρ

(k)
1,φ(s, a, s

′, a ′)])
)2

+
1

n2

m∑
j=2

nj Var
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)ρ

(k)
1,φ(s, a, s

′, a ′)]

+
( 1
n2

−
1

n21

)
n1 Var

(s,a,s ′,a ′)∼d1

[ρ
(k)
1,φ(s, a, s

′, a ′)]

)
,

so that it can be estimated directly from a dataset. That is, the matri-
ces A(V)

1,ϕ, b(V)
1,ϕ are estimated from the available target samples, and

the terms with Var(s,a,s ′,a ′)∼d1 are dropped as they do not depend
on ω.

No pseudo-code for the optimistic critic is provided as it would mainly
consist on some minimization procedure for the above function, and
plugging the resulting optimal strategy in Algorithm 4.4.

4.5.2 The actor

LetW∇J = {ω : [1, ...,m]×S×A→ R∗} be the space of all weightening
strategies, i. e., the space of all functions that assign weights to samples
when transferred into the target task. The IS weightening strategy
w∇Jj (s, a) = ζ1(s, a)/ζj(s, a) is a member of W∇J.
Under the Lipschitz conditions of the problem in Section 4.2, it is
possible to prove that the state-action distribution ζ(·,·)(s, a) is Ls,aζ−ΘE-
PLC for every (s, a) ∈ S×A (Section C.1). Define, then, the following
functions:

Lζj(s, a) = max(0,ζj(s, a)

− Ls,aζ−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj))),

Uζj(s, a) = ζj(s, a) + L
s,a
ζ−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj)),

lζj(s, a) =
Lζj(s, a)

ζj(s, a)

= max
(
0, 1−

Ls,aζ−ΘE(θj, εj)

ζj(s, a)
dΘE((θ1, ε1), (θj, εj))

)
,

uζj(s, a) =
Uζj(s, a)

ζj(s, a)

= 1+
Ls,aζ−ΘE(θj, εj)

ζj(s, a)
dΘE((θ1, ε1), (θj, εj)).

(4.12)

Thanks to the Lipschitz conditions, for any j = 1...m and (s, a) ∈
S×A, the target model satisfies:

Lζj(s, a) 6 ζ1(s, a) 6 Uζj(s, a);
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so a weightening strategy ω ∈W∇J is said to be admissible when, for
any j = 1...m and (s, a) ∈ S×A, it satisfies:

lζj(s, a) 6 ωj(s, a) 6 uζj(s, a).

Denote by W∇J1 the space of admissible weightening strategies. Of
course, any ω ∈ W∇J1 satisfies ω1(s, a) = 1 for any (s, a) ∈ S×A; in
particular, the IS strategy w∇J is a member of W∇J1 .
Given a strategyω and a dataset D = (Dj)

m
j=1 = (〈sij, aij, η̂1(sij, aij)〉)

m nj
j=1 i=1,

let

∇̂θJω(D) =
1

n(1− γ)

m∑
j=1

nj∑
i=1

ωj(sij, aij)η̂1(sij, aij)

be the estimator for the gradient ∇θJ1 induced by ω given D.
For a fixed strategy ω ∈W∇J1 , define:

g(ω) = E
D

[
‖∇θJ1 − ∇̂θJω(D)‖22

]
− E

D

[
‖∇θJ1 − ∇̂θJω(D1)‖22

]
which represents the change in the expected square `2-norm loss of
the gradient estimation when using transfer with the strategy ω with
respect to not using transfer at all. The optimal strategy ω∗ is the arg-
solution of:

minimize
ω∈W∇J1

g(ω),

which can be formulated as a constrained optimization problem:

minimize
ω∈W∇J

g(ω)

s. t. lζj(s, a) 6 ωj(s, a) 6 uζj(s, a),

∀j = 1...m, (s, a) ∈ S×A.

To be solved in practice, g can be expressed as (Section D.2)

g(ω) =

da∑
k=1

(( 1
n

m∑
j=2

nj(∇θkJ1

−
1

1− γ
E

(s,a)∼ζj
[ωj(s, a)η̂

(k)
1 (s, a)])

)2
+

1

n2(1− γ)2

m∑
j=2

nj Var
(s,a)∼ζj

[ωj(s, a)η̂1
(k)(s, a)]

+
( 1
n2

−
1

n21

) n1
(1− γ)2

Var
(s,a)∼ζ1

[η̂1
(k)(s, a)]

)
so that it can be estimated directly from a dataset. That is, the gra-
dient ∇θkJ is estimated from the available target samples, and the
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term with Var(s,a)∼ζ1 are dropped as they do not depend on ω.

No pseudo-code for the optimistic actor is provided as it would mainly
consist on some minimization procedure for the above function, and
plugging the resulting optimal strategy in Algorithm 4.5.
The optimal strategies of the critics and the actor are used within the
optimistic actor-critic algorithm for defining the weighted estimators,
just like in the IS formulation. Thus, the only difference with respect
to Algorithm 4.6 would concern the calculation of the weights; that
is, the weights given to weighted-LSTD and weighted-calculate-
gradient are no longer calculated with the IS-weights procedures
but by solving the corresponding minimization problems. For this re-
ason, no pseudo-code is provided for the optimistic actor-critic trans-
fer algorithm as it would mostly be the same as the IS-based actor-
critic algorithm.

With respect to the taxonomy presented in Section 2.2, the RL compo-
nent of the optimistic actor-critic algorithm is model-free, both policy
based and value based, and offline. It might be seen as off-policy in
the sense that information from a different policy is being used du-
ring the learning of the target one, although such an information is
actually sampled from a different task.
For what concerns the taxonomy presented in Section 3.1.1, the TL
component of the optimistic actor-critic algorithm satisfies:

– Task similarity assumptions: defined in the formulation in Section
4.2 in terms of the Lipschitz continuity.

– Source task selection: the agent selects the relevant knowledge
not at task level, but at sample level by means of the importance
weights assigned to each one of them.

– Type of transferred knowledge: the algorithm transfers low-level
knowledge in the form of individual transition samples and po-
licy parameters for the initialization.

– Inter-task mappings: the state and action spaces coincide so that
no mappings for these components are necessary. Some infor-
mation about the mapping for the transition and reward models
and for the initial state distribution is given with the Lipschitz
conditions of the problem.

– Restrictions of RL algorithms: none, because the transferred
knowledge corresponds to individual samples that can be ex-
ploited by any algorithm.

Note that the transfer component of the optimistic actor-critic algo-
rithm corresponds to the calculation of the optimal strategy, and the
RL component corresponds to a weighted version of the standard
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actor-critic approach. Therefore, the transfer algorithm is directly ex-
ploiting the target knowledge to produce the transferred one as the
estimates of the matrices and the gradient, obtained with the target
samples for, are plugged into the objective functions.

4.6 transfer with a pessimistic approach

The optimistic approach presented in Section 4.5 for solving the pro-
blem formulated in Section 4.2 is applicable whenever there are at
least some target samples to obtain the initial estimates. This section
introduces a proposal for the scenario in which no target experience
is available. The idea is to use a weighted estimator to introduce the
source samples, and select the weights through an adversarial-like
approach, i. e., select the weights that work best in the worst case
scenario. As usual, the critic and the actor are studied separately.

4.6.1 The critic

Consider first the critic for the V-function.
Consider WV , the space of all weightening strategies, and WV

1 , the
space of admissible weightening strategies, as introduced in Section
4.5.1. Recalling the functions defined in Equation (4.10), define D1 as
the space of admissible target tuple distributions by

D1 = {d ∈ ∆(SAS) | Ldj(s, a, s
′) 6 d(s, a, s ′) 6 Udj(s, a, s

′)},

where ∆(SAS) is the space of probability distributions over S×A× S.
Given a strategyω and a dataset D = (Dj)

m
j=1 = (〈sij, aij, s ′ij, rij〉)

m nj
j=1 i=1,

recall from Section 4.5.1 the estimators Â(V)
ω (D) and b̂(V)

ω (D) for the
matrices A(V)

1,φ and b(V)
1,φ, respectively.

Under the Lipschitz conditions in Section 4.2, it is possible to prove
thatA(V)−(k,l)

(·),φ is Lk,lA−ΘE-PLC, and that b(V)−(k)
(·),φ is Lkb−ΘE-PLC (Section

C.2). Define A(V)
1,φ(d) and b(V)

1,φ(d) as the corresponding matrices if d
was the target tuples distribution.
For a fixed strategy ω ∈WV

1 , define:

gω(d) = E
D

[
‖A(V)
1,φ(d) − Â

(V)
ω (D)‖22

]
− E

D

[
‖A(V)
1,φ(d) − Â

(V)
ω (D1)‖22

]
+ E

D

[
‖b(V)
1,φ(d) − b̂

(V)
ω (D)‖22

]
− E

D

[
‖b(V)
1,φ(d) − b̂

(V)
ω (D1)‖22

]
,

where the expectations are taken over the datasets obtained from the
target task with d as tuple distribution, and the source tasks. The
function g represents the change in the expected square `2-norm loss
of the matrices estimation when using transfer with the strategy ω
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with respect to not using transfer at all, if d corresponded to the
target task. The optimal strategy ω∗ is the arg-solution of:

minimize
ω∈W(V)

1

maximize
d∈D1

gω(d),

which can be formulated as a constrained optimization problem:

minimize
ω∈W(V)

maximize
d∈∆(SAS)

gω(d)

s. t. Ldj(s, a, s
′) 6 d(s, a, s ′) 6 Udj(s, a, s

′),

ldj(s, a, s
′) 6 ωj(s, a, s

′) 6 udj(s, a, s
′),

∀j = 1...m, (s, a, s ′) ∈ S×A× S.

To be solved in practice, g can be upper bounded by the function g1
(Section D.2)

gω(d) 6 g1(ω) =

dc∑
k=1

dc∑
l=1

(( 1
n

m∑
j=2

njL
k,l
A−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj))

+
∣∣∣ 1
n

m∑
j=2

nj E
(s,a,s ′)∼dj

[(1−ωj(s, a, s
′))∆

(k,l)
φ (s, a, s ′)]

∣∣∣)2
+
1

n2

m∑
j=2

nj Var
(s,a,s ′)∼dj

[ωj(s, a, s
′)∆

(k,l)
φ (s, a, s ′)]

)

+

dc∑
k=1

(( 1
n

m∑
j=2

njL
k
b−ΘEΞ(θj, εj, ξj)dΘEΞ((θ1, ε1, ξ1), (θj, εj, ξj))

+
∣∣∣ 1
n

m∑
j=2

nj E
(s,a,s ′)∼dj

[ρ
(k)
j,φ(s, a, s

′)−

ωj(s, a, s
′)ρ

(k)
1,φ(s, a, s

′)]
∣∣∣)2

+
1

n2

m∑
j=2

nj Var
(s,a,s ′)∼dj

[ωj(s, a, s
′)ρ

(k)
1,φ(s, a, s

′)]

)
,

so that it can be estimated directly from a dataset and the problem
reduces to a minimization.

Consider now the critic for the Q-function.
Consider WQ, the space of all weightening strategies, and WQ

1 , the
space of admissible weightening strategies, as introduced in Section
4.5.1. Recalling the functions defined in Equation (4.10), define D1 as
the space of admissible target extended tuple distributions by

D1 = {d ∈ ∆(SASA) | Ldj(s, a, s
′, a ′) 6 d(s, a, s ′, a ′) 6 Udj(s, a, s

′, a ′)},

where ∆(SASA) is the space of probability distributions over S×A×
S×A.
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Given a strategyω and a dataset D = (Dj)
m
j=1 = (〈sij, aij, s ′ij, a ′ij, rij〉)

m nj
j=1 i=1,

recall from Section 4.5.1 the estimators Â(Q)
ω (D) and b̂(Q)

ω (D) for the
matrices A(Q)

1,ϕ and b(Q)
1,ϕ, respectively.

Under the Lipschitz conditions in Section 4.2, it is possible to prove
thatA(Q)−(k,l)

(·),ϕ is Lk,lA−ΘE-PLC, and that b(Q)−(k)
(·),ϕ is Lkb−ΘE-PLC (Section

C.2). Define A(Q)
1,ϕ(d) and b(Q)

1,ϕ(d) as the corresponding matrices if d
was the target extended tuples distribution.
For a fixed strategy ω ∈WQ

1 , define:

gω(d) = E
D

[
‖A(Q)
1,ϕ(d) − Â

(Q)
ω (D)‖22

]
− E

D

[
‖A(Q)
1,ϕ(d) − Â

(Q)
ω (D1)‖22

]
+ E

D

[
‖b(Q)
1,ϕ(d) − b̂

(Q)
ω (D)‖22

]
− E

D

[
‖b(Q)
1,ϕ(d) − b̂

(Q)
ω (D1)‖22

]
,

where the expectations are taken over the datasets obtained from the
target task with d as extended tuple distribution, and the source tasks.
The function g represents the change in the expected square `2-norm
loss of the matrices estimation when using transfer with the strategy
ω with respect to not using transfer at all, if d corresponded to the
target task. The optimal strategy ω∗ is the arg-solution of:

minimize
ω∈W(Q)

1

maximize
d∈D

gω(d),

which can be formulated as a constrained optimization problem:

minimize
ω∈W(Q)

maximize
d∈∆(SAS)

gω(d)

s. t. Ldj(s, a, s
′, a ′) 6 d(s, a, s ′, a ′) 6 Udj(s, a, s

′, a ′),

ldj(s, a, s
′, a ′) 6 ωj(s, a, s

′, a ′) 6 udj(s, a, s
′, a ′),

∀j = 1...m, (s, a, s ′, a ′) ∈ S×A× S×A.

To be solved in practice, g can be upper bounded by the function g1
(Section D.2)

gω(d) 6 g1(ω) =

dc∑
k=1

dc∑
l=1

(( 1
n

m∑
j=2

njL
k,l
A−ΘE(θj, εj)dΘE((θ1, ε1), (θj, εj))

+
∣∣∣ 1
n

m∑
j=2

nj E
(s,a,s ′,a ′)∼dj

[(1−ωj(s, a, s
′, a ′))∆

(k,l)
ϕ (s, a, s ′, a ′)]

∣∣∣)2
+
1

n2

m∑
j=2

nj Var
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)∆

(k,l)
ϕ (s, a, s ′, a ′)]

)
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+

dc∑
k=1

(( 1
n

m∑
j=2

njL
k
b−ΘEΞ(θj, εj, ξj)dΘEΞ((θ1, ε1, ξ1), (θj, εj, ξj))

+
∣∣∣ 1
n

m∑
j=2

nj E
(s,a,s ′,a ′)∼dj

[ρ
(k)
j,ϕ(s, a, s

′, a ′)−

ωj(s, a, s
′, a ′)ρ

(k)
1,ϕ(s, a, s

′, a ′)]
∣∣∣)2

+
1

n2

m∑
j=2

nj Var
(s,a,s ′,a ′)∼dj

[ωj(s, a, s
′, a ′)ρ

(k)
1,ϕ(s, a, s

′, a ′)]

)
,

so that it can be estimated directly from a dataset and the problem
reduces to a minimization.

No pseudo-code for the pessimistic critic is provided as it would
mainly consist on some minimization procedure for the above function,
and plugging the resulting optimal strategy in Algorithm 4.4.

4.6.2 The actor

Consider W∇J, the space of all weightening strategies, and W∇J1 , the
space of admissible weightening strategies, as introduced in Section
4.5.2. Recalling the functions defined in Equation (4.12), define Z1 as
the space of admissible target state-action distributions by

Z1 = {ζ ∈ ∆(SA) | Lζj(s, a) 6 ζ(s, a) 6 Uζj(s, a)},

where ∆(SA) is the space of probability distributions over S×A.
Given a strategyω and a dataset D = (Dj)

m
j=1 = (〈sij, aij, η̂1(sij, aij)〉)

m nj
j=1 i=1,

recall from Section 4.5.2 the estimator ∇̂θJω(D) for the gradient∇θJ1.
Under the Lipschitz conditions in Section 4.2, it is possible to prove
that ∇θkJ(·) is Lk∇J−ΘE-PLC. Define ∇θJ1(ζ) the corresponding gra-
dient if ζ was the target state-action distribution.
For a fixed strategy ω ∈W∇J1 , define:

gω(ζ) = E
D

[
‖∇θJ1(ζ) − ∇̂θJω(D)‖22

]
− E

D

[
‖∇θJ1(ζ) − ∇̂θJω(D1)‖22

]
,

where the expectations are taken over the datasets obtained from the
target task with ζ as state-action distribution, and the source tasks.
The function g represents the change in the expected square `2-norm
loss of the gradient estimation when using transfer with the strategy
ω with respect to not using transfer at all, if ζ corresponded to the
target task. The optimal strategy ω∗ is the arg-solution of:

minimize
ω∈W(∇J)

1

maximize
ζ∈Z1

gω(ζ),
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which can be formulated as a constrained optimization problem:

minimize
ω∈W(∇J)

maximize
ζ∈∆(SAS)

gω(ζ)

s. t. Lζj(s, a) 6 ζ(s, a) 6 Uζj(s, a),

ldj(s, a) 6 ωj(s, a) 6 udj(s, a),

∀j = 1...m, (s, a) ∈ S×A.

To be solved in practice, g can be upper bounded by the function g1
(Section D.2)

gω(d) 6 g1(ω) =

da∑
k=1

(( 1
n

m∑
j=2

njL
k
∇J−ΘEΞ(θj, εj, ξj)dΘEΞ((θ1, ε1, ξ1), (θj, εj, ξj))

+
∣∣∣ 1

n(1− γ)

m∑
j=2

nj E
(s,a)∼ζj

[η̂
(k)
j (s, a) −ωj(s, a)η̂

(k)
1 (s, a)]

∣∣∣)2
+

1

n2(1− γ)2

m∑
j=2

nj Var
(s,a)∼ζj

[ωj(s, a)η̂
(k)
1 (s, a)]

)
,

so that it can be estimated directly from a dataset and the problem
reduces to a minimization.

No pseudo-code for the pessimistic actor is provided as it would
mainly consist on some minimization procedure for the above function,
and plugging the resulting optimal strategy in Algorithm 4.5.
The optimal strategies of the critics and the actor are used within the
pessimistic actor-critic algorithm for defining the weighted estimators,
just like in the IS formulation. Thus, the only difference with respect
to Algorithm 4.6 would concern the calculation of the weights; that
is, the weights given to weighted-LSTD and weighted-calculate-
gradient are no longer calculated with the IS-weights procedures
but by solving the corresponding minimization problems. For this
reason, no pseudo-code is provided for the pessimistic actor-critic
transfer algorithm as it would mostly be the same as the IS-based
actor-critic algorithm.

With respect to the taxonomy presented in Section 2.2, the RL compo-
nent of the pessimistic actor-critic algorithm is model-free, both policy
based and value based, and offline. It might be seen as off-policy in
the sense that information from a different policy is being used du-
ring the learning of the target one, although such an information is
actually sampled from a different task.
For what concerns the taxonomy presented in Section 3.1.1, the TL
component of the pessimistic actor-critic algorithm satisfies:

– Task similarity assumptions: defined in the formulation in Section
4.2 in terms of the Lipschitz continuity.
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– Source task selection: the agent selects the relevant knowledge
not at task level, but at sample level by means of the importance
weights assigned to each one of them.

– Type of transferred knowledge: the algorithm transfers low-level
knowledge in the form of individual transition samples and po-
licy parameters for the initialization.

– Inter-task mappings: the state and action spaces coincide so that
no mappings for these components are necessary. Some infor-
mation about the mapping for the transition and reward models
and for the initial state distribution is given with the Lipschitz
conditions of the problem.

– Restrictions of RL algorithms: none, because the transferred
knowledge corresponds to individual samples that can be ex-
ploited by any algorithm.

Note that the transfer component of the pessimistic actor-critic algo-
rithm corresponds to the calculation of the optimal strategy, and the
RL component corresponds to a weighted version of the standard
actor-critic approach. Therefore, the transfer algorithm is directly ex-
ploiting the target knowledge to produce the transferred one as the
samples an be used for estimates into the objective functions.





5
E X P E R I M E N T S

This chapter presents the experimental environment the algorithms
introduced in Chapter 4 are tested in, as well as their results and
corresponding analysis. Section 5.1 describes with details the general
task environment that the agent is facing, and Section 5.2 talks about
the specific task instances and the experiments. Finally, Section 5.3
presents the obtained results and gives an analysis of such outcomes.

5.1 task environment : mountain car

The task environment selected to develop the experiments is Continu-
ous Mountain Car 1.
The agent is driving a car at a valley in the middle of two mountains,
and its goal is to reach the top of one of them as soon as possible
while using the least amount of energy. The car can apply force for-
ward or backward to gain or lose speed, but does not have enough
power to reach the top on single shot; thus, the agent has to learn
how to use the forces to complete the task. Figure 5.1 illustrates this
setting.
The state space is the set S = [−10, 10]× [−0.78, 0.78], where the first
component accounts for the horizontal position of the car and the se-
cond one for the speed; the goal position is at 8.34. The action space is
the interval A = [−1, 1], and it represents the force applied to the car
(positive means forward, negative means backward). The transition
model parameter space is the interval E = [0, 0.1], which represents
the power of the car; it does not affect the initial state distribution
though, only the transition dynamics. The reward model is the same
for all the tasks in the environment.
Denote by ε the power of the car, by p the horizontal position of the
car, by v the velocity of the car, and by a the action applied by the
agent. The transition model is given by

P(·|(p, v), a) ∼ N(sε(p, v, a), Σ
2),

where

sε(p, v, a) =

(
p+ v+ aε− 0.028 cos(0.27p+ 0.9)

v+ aε− 0.028 cos(0.27p+ 0.9),

)
and

Σ2 = diag(σ2p = 0.52, σ2v = 0.04
2)

1 Sutton and Barto (1998) introduce this example in a discrete version; the one presen-
ted in this chapter is a modified one for the continuous case
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Figure 5.1: The car is supposed to gain speed to reach the goal position,
marked with a flag (taken from the OpenAI 2 implementation).

Transitions out of the bounds of the state space are taken as tran-
sitions to the closest edge. The velocity is zeroed when a transition
results in the position on the left boundary with a negative velocity.
The initial state distribution defines the initial position of the car:

µ = U(−2.5,−1.95);

it starts always with zero speed. The reward model corresponds to

r((p, v), a, (p ′, v ′)) =


−0.1 · 24|a|, p < 8.34 and p ′ < 8.34

−0.1 · 24|a| + 10, p < 8.34 and p ′ > 8.34

0, p >= 8.34.

The policy parameter space is the set Θ = [0, 1]× [0, 1]. For a parame-
ter θ ∈ Θ, the associated policy is defined by

πθ(·|(p, v)) ∼ N(sθ(p, v), σ
2
a = 0.42),

where

sθ(p, v) =
(
1(v > 0)θ1 + 1(v < 0)θ2

)
v∗,

being v∗ = v/0.78 the signed normalized speed. Actions out of the
bounds of the action space are taken as the closest edge.

5.2 experimental instances

To satisfy the assumption of completely knowing the source models,
the tasks from the environment presented in Section 5.1 are discreti-
zed.
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Each component of the state space is evenly divided into 20 intervals
so that there are 20× 20 blocks, each one represented by its midpoint.
For the transition model, the probability of each discrete state is ta-
ken as the density covered by its associated block in the continuous
distribution.
Likewise, the action space is evenly divided into 10 intervals, each
one represented by its midpoint. The model of the policy is discreti-
zed in a similar way to the transition model.
The task and policy parameters are kept as continuous spaces though.

The target task corresponds to the parameter ε1 = 0.0222, and the
two source tasks to the parameters ε2 = 0.0278 and ε3 = 0.0778.
The formulation of the problem (Section 4.2) says nothing about the
source policies used to obtain the source samples. However, the Lip-
schitz assumptions allow to show that a local maximum for the target
task lies in a neighborhood of the source optimal parameter (Section
D.3); thus, it is reasonable to think that transferring from the optimal
source policies would give good results in practice.
With this configuration and the above observation in mind, the se-
lected experiments are listed in Table 5.1. The table is composed of
the following columns:

– Name, a shorthand identifier for the experiment.

– Used algorithm, the algorithm used during the experiment. SAC
stands for Standard Actor-Critic; it refers standard learning wit-
hout any transfer. ISAC stands for Importance Sampling Actor
Critic; it refers to the IS-based actor-critic algorithm presented
in Section 4.4. MinAC stands for Minimization Actor-Critic; it
refers to the optimistic approach introduced in Section 4.5. Min-
MaxAC stands for Min-Max Actor-Critic; it refers to the pessi-
mistic approach proposed in Section 4.6.

– Source tasks, the source tasks used for transfer. T2 refers to the
source task with parameter ε2 = 0.0278, and T3 refers to the
source task with parameter ε3 = 0.0778.

– Source policy, the nature of the source policy used to get the
source samples. o means the optimal source policy is used, and
r means that the policy with the highest distance from the opti-
mal target one is used (for the purpose of checking robustness
against negative transfer). When there is only one source task,
the initial target policy is made to coincide with the source po-
licy.

For the transfer scenarios, the source dataset consists of 25.000 sam-
ples.
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name used algorithm source tasks source policy

NoTransfer SAC N. A. N. A.

IS-2-os ISAC T2 o

IS-3-os ISAC T3 o

IS-2-rs ISAC T2 r

IS-3-rs ISAC T3 r

Min-2-os MinAC T2 o

Min-3-os MinAC T3 o

Min-2-rs MinAC T2 r

Min-3-rs MinAC T3 r

MinMax-2-
os

MinMaxAC T2 o

MinMax-3-
os

MinMaxAC T3 o

MinMax-2-
rs

MinMaxAC T2 r

MinMax-3-
rs

MinMaxAC T3 r

Table 5.1: The list of performed experiments, along with their name and
configuration.

5.3 anlysis of the results

Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 present the learning
curves of all the experiments. Each graph shows how the performance
of the obtained policy changes with respect to the size of the dataset
available for executing the actor-critic steps. The learning curve from
NoTransfer is replicated in the other graphs so that the impact of
transfer is easier to perceive.

Figure 5.2 shows the learning curve for the NoTransfer experiment.
This is used as the baseline for assessing the impact of the diffe-
rent transfer algorithms. Note that optimal policies are obtained with
around 3.000 samples, and that the variance is consequently decrea-
sed after this point.

Figure 5.3 shows the learning curves for the IS actor-critic algorithm
in the different configurations.
Figure 5.3a corresponds to transfer from the most similar task using
its optimal policy. The jumpstart, the asymptotic performance and
the variance of the learning process show all a positive impact due to
transfer.
Figure 5.3b corresponds to transfer from the most different task using
its optimal policy. The jumpstart and asymptotic performance reflect
the benefit of transfer, although the variance shows no significant im-
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Figure 5.2: Learning curve of the NoTransfer experiment

provement.
Figure 5.3c corresponds to transfer from the most similar task using
the most different policy. The jumpstart, the asymptotic performance
and the variance of the learning process show all a positive impact
due to transfer.
Figure 5.3d corresponds to transfer from the most different task using
the most different policy. The most evident benefit is given by the
jumpstart, while the variance and the asymptotic performance seem
to be negatively affected. This is an example of negative transfer.
The results of IS-os-2 are completely expected, given the similarity
between the tasks and the fact that the optimal source policy is being
used. The higher variance of IS-rs-2 is explained by the difference be-
tween the policies, but it still reflects robustness to negative transfer
at least in the case where the tasks’ dynamics are not very different.
As shown by IS-os-3 and IS-rs-3, the change in the task parameters
has a strong impact on the variance of the learning process, regard-
less of the nature of the source policy. However, the transfer of the
optimal policy in the case of IS-os-3 produces a good jumpstart and
asymptotic performance. This is not the case for IS-rs-3, where the
only benefit is in the jumpstart.
Note that, in all cases, the performance does not evolve significantly
along the learning process. The reason for this might be the propor-
tion of the sizes of the source and target datasets, that reduces the
contribution of the target samples to the estimation; however, decrea-
sing the number of source samples is not an option because it would
further increase the variance of the estimators.
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(a) IS-os-2 (b) IS-os-3

(c) IS-rs-2 (d) IS-rs-3

Figure 5.3: Learning curves for the IS experiments

Figure 5.4 shows the learning curves for the optimistic actor-critic al-
gorithm in the different configurations.
Figure 5.4a corresponds to transfer from the most similar task using
its optimal policy. The jumpstart, the asymptotic performance and
the variance of the learning process show all a positive impact due to
transfer.
Figure 5.4b corresponds to transfer from the most different task using
its optimal policy. The most evident benefit is given by the jumpstart,
while the asymptotic performance seem to be negatively affected. No
impact on the variance is clear in this case.
Figure 5.4c corresponds to transfer from the most similar task using
the most different policy. Besides a small reduction of variance asymp-
totically, no significant effects are observed as a consequence of trans-
fer.
Figure 5.4d corresponds to transfer from the most different task using
the most different policy. No significant effects are observed as a con-
sequence of transfer.
The results of Min-os-2 are very satisfactory and show the effective-
ness of the optimistic actor-critic algorithm at least in this configu-
ration. The results of Min-rs-2 are explained by the very nature of
the algorithm: it selects the weights that bring the final estimate as
close as possible to the estimations obtained directly from target sam-
ples only (which are very noisy in the early learning phases), while
keeping a low variance. The difference between the policies enlarges
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the range of values available for the weights, making it easier for
the algorithm to follow such noisy estimations with a lower variance.
An explanation for the results of Min-os-3 is presented later in this
section. A similar analysis to that of Min-rs-2 can be followed for Min-
rs-3. Note, however, that the variance is higher in this case because
the range of values for the weights is larger, which gives them more
freedom to follow the target-only estimations. Anyway, the algorithm
succeeds on avoiding the negative transfer by making the learning
process to at least behave as in the no transfer scenario.

(a) Min-os-2 (b) Min-os-3

(c) Min-rs-2 (d) Min-rs-3

Figure 5.4: Learning curves for the Min experiments

Figure 5.5 shows the learning curves for the pessimistic actor-critic
algorithm in the different configurations.
Figure 5.5a corresponds to transfer from the most similar task using
its optimal policy. No significant effects are observed as a conse-
quence of transfer.
Figure 5.5b corresponds to transfer from the most different task using
its optimal policy. Besides the negative impact on the asymptotic per-
formance, no other significant effects are observed as a consequence
of transfer.
Figure 5.5c corresponds to transfer from the most similar task using
the most different policy. Although there is a small jumpstart and a
significant variance reduction, the asymptotic performance is strongly
harmed.
Figure 5.5d corresponds to transfer from the most different task using
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the most different policy. Although there is a small jumpstart and a
significant variance reduction, the asymptotic performance is strongly
harmed.
The reason for these results is the overestimation of the bias intro-
duced by this algorithm, that results in a very pessimistic scenario.
Therefore, there are no clear insights on how the weights can affect
the estimation, making the selection of a good strategy very difficult.
In particular, for the MinMax-rs cases, the algorithm is so pessimistic
that it chooses the same strategy along the whole learning process.

(a) MinMax-os-2 (b) MinMax-os-3

(c) MinMax-rs-2 (d) MinMax-rs-3

Figure 5.5: Learning curves for the MinMax experiments

Figure 5.6 and Figure 5.7 present the Effective Sample Size (ESS) pro-
duced by all the experiments. Each graph shows its evolution with
respect to the size of the target dataset used to execute the actor-critic
steps.

Figure 5.6 shows the ESS for the cases where transfer is done from
the optimal source policy.
The IS actor-critic algorithm keeps a constant ESS along all the lear-
ning process for the critics and the actor. This is caused by the fact
that the weights depend only on the tasks’ models and these do not
change during the process.
The optimistic actor-critic algorithm shows a small growth on the ESS
during the beginning of the learning process, but it becomes constant
after some point. With exception of the actor for Min-os-2, it decides
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(a) ESS for the V-function critic (b) ESS for the Q-function critic

(c) ESS for the actor

Figure 5.6: Effective sample size for transfer from optimal policy

to introduce more samples than the IS algorithm.
The pessimistic actor-critic algorithm shows a constant ESS for the
critics, and a small growth that later stabilizes for the actor. It deci-
des to introduces more samples than the IS and optimistic algorithms.
This reflects the fact that it mainly focuses on reducing the variance
because the part of the effect of the weightening strategy on the bias
has been replaced by the constant upper-bound.

Figure 5.6 shows the ESS for the cases where transfer is done from
the most different policy.
The observed behavior is basically the same as that for transfer from
the optimal source policy. This time, the gap between the ESS of the IS
algorithm and of the optimistic and pessimistic ones is larger, which
means that these two algorithms are now focusing more on reducing
the variance.

The IS actor-critic algorithm gives the most solid jumpstart for all
of the studied settings. However, it requires the model of the target
task and has a slow convergence. In addition, suffers from a high va-
riance and lacks of a way to modify the impact of the source samples
in the estimation as the target dataset grows; this makes it prone to
negative transfer.
The optimistic actor-critic algorithm tries to overcome these issues
by finding a compromise between the bias and variance induced by
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(a) ESS for the V-function critic (b) ESS for the Q-function critic

(c) ESS for the actor

Figure 5.7: Effective sample size for transfer from worst policy

transfer. Although a jumpstart is not obtained in all scenarios, the
initial performance of the policies is not significantly harmed. It also
succeeds on not worsening the variance with respect to the IS algo-
rithm, and is able to modify the transfer strategy as more target sam-
ples are available. Note that it achieves all this without requiring a
model for the target task. Unfortunately, it is still vulnerable to ne-
gative transfer. The reason for this is that the bias and the variance
might not lie within the same numerical ranges, and it causes the
terms not to be given the appropriate relative relevance. For example,
the algorithm can decide to introduce many source samples to cause
a bias increase that is not significant with respect to the variance re-
duction, but that has a big effect in the bias space. Anyway, when
this does not represent a problem, the algorithm turns out to be more
resilient to negative transfer than IS actor-critic.
The pessimistic actor-critic algorithm turns out to be too conserva-
tive. Its decision of upper-bounding part of the bias is too dangerous
because the real effect of a high bias is not perceived correctly. It basi-
cally offers no benefit with respect to the no transfer scenario, if it is
not actually performing worse.
Note that all the algorithms decide to transfer less samples from the
most different task than from the most similar one, and to transfer
less samples from the most different policy than from the optimal
ones. Thus, they are all able to correctly identify informative tasks
and policies.
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C O N C L U S I O N S A N D F U T U R E W O R K

The Lipschitz continuity property, although very demanding with re-
spect to the smoothness of the changes across the task space, repre-
sents a very powerful source of information for the design of Transfer
Learning algorithms. In particular, when such information gets to des-
cribe pointwise similarity across tasks, it can be used for transferring
low level knowledge such as individual samples.
This thesis has focused on the extension of actor-critic algorithms to
transfer scenarios by studying how the Lipschitz conditions can be
leveraged for an effective sample-level transfer. In particular, policy-
gradient actors and function approximation based critics have been
considered.
Importance Sampling estimators come as the first idea for a transfer
mechanism. Although they are indeed unbiased and produce posi-
tive results in most cases, they suffer from high variance and are only
applicable when a model for the target task is available. However, the
idea of weighted estimators is taken from there and sets the basis of
the two approaches proposed in this thesis. Both of them select the
weights of their estimators by minimizing some approximation of the
error that would result from the weighted transfer.
The first approach goes for the minimization of an optimistic approx-
imation of the error calculated directly from the available target sam-
ples. As a result, it is capable of overcoming the variance and model
requirement issues of the Importance Sampling estimation, while still
producing good results in most cases. The main drawback of this ap-
proach is the unbalanced attention it pays to the bias and variance
terms while selecting the optimal set of weights, which might even
translate into negative transfer.
The second approach considers an overestimation of the approxima-
ted error for the minimization problem that defines the weights. The
consequence of such overestimation is a blurry perception of the ef-
fects of the weights in the estimation, which makes it difficult for the
algorithm to adequately select them. Thus, the transfer mechanism
of this approach offers no significant improvements with respect to
learning without transfer, and can even be easily affected by negative
transfer.

Even if the optimistic algorithm is still not completely robust to nega-
tive transfer, the results it has produced make it a promising alterna-
tive for sample-based transfer. The following alternatives can be used
as a starting point for later work trying to improve this approach:
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– The objective function can be modified to include coefficients
that correct the balance between the bias and variance terms.
Note that they would correspond to hyper-parameters that de-
pend on the specific task environment, so their selection can be
itself a difficult work.

– It is possible that, even with the optimal strategy, the transfer of
source samples represents a negative impact in the estimation.
Given that the objective function is supposed to detect exactly
this, the random nature of the estimation can be studied so that,
based on confidence intervals, the algorithm can decide whether
or not to perform transfer.

– The normalized versions of the Importance Sampling estima-
tors offer lower variance estimates even if they are not unbiased.
Thus, the approach can be rederived but based on normalized
weighted estimators.

– In terms of implementation, the approximation of the objective
function is linear in the size of the source dataset, linear in the
dimension of the policy parameter space, and quadratic in the
dimension of the feature space for the value function approxi-
mators. This calculation is performed several times at each sin-
gle step of the actor-critic loop while solving the minimization
problem, so that the full algorithm can be very slow. Any work
for speeding-up the algorithm in this regard can be very useful.
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A
I M P O RTA N C E S A M P L I N G

A recurrent problem found in applied statistics (and, in particular, in
RL) is the calculation of the expected value of a function with respect
to some probability distribution. Often, this value cannot be exactly
computed because it is analytically complex or because the distribu-
tion is unknown.
If it possible to access samples from the distribution, the target ex-
pectation can still be approximated with the empirical mean due to
the almost sure convergence of the empirical distribution to the real
one (Glivenko-Cantelli theorem, Glivenko (1933) and Cantelli (1933)).
This justifies the creation of MC-based estimations.
When sampling the target distribution is costly (or even impossible),
MC-based estimators are no longer applicable. However, IS techni-
ques provide a solution for this issue given that some information
about the target distribution is available and that sampling from anot-
her well-known distribution is still possible (Rubinstein, 1981). IS is
also a powerful tool when MC estimators have high variance issues.
The scope of this chapter is to introduce the IS paradigm for expec-
tation estimation and its role in the RL framework. Section A.1 des-
cribes the formal mathematical formulation of IS as well as some
interesting properties. Section A.2 is concerned with the specific case
of IS applied to RL.

a.1 mathematical formulation and properties

IS methods are very well suited to estimate the expectation of a function
when the original distribution is known and costly to sample from or
when it has an inherent high variance, but there is either way anot-
her well-known distribution available for cheap sampling. Along this
section, the function is referred to as target function, the original dis-
tribution as target distribution, and the cheap sampling distribution as
source distribution.
The IS paradigm is based on the following simple yet powerful ob-
servation (Tokdar and Kass, 2010). Let X ⊂ Rd and consider a real
valued function f : X→ R. For the probability distribution p : X→ R,
define

µf =

∫
X

f(x)p(x)dx = Ex∼p[f(x)] = Ep[f(x)],
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the expected value of f with respect to the distribution p. For any ot-
her probability distribution q such that q(x) > 0whenever f(x)p(x) 6=
0, it holds that

µf = Eq

[
p(x)

q(x)
f(x)

]
= Eq

[
w(x)f(x)

]
,

where w(x) = p(x)/q(x) is called importance weight. Taking f, p and
q as target function, target distribution and source distribution, re-
spectively, sets the rationale for the IS estimator.

Definition A.1 (Importance Sampling estimator). Let f be the target
function, p the target distribution and q any (compatible) source dis-
tribution. Given a set of i. i. d. samples (xi)

n
i=1 drawn from q, the

Importance Sampling estimator for µf is

µ̂f =
1

n

n∑
i=1

p(xi)

q(xi)
f(xi)

=
1

n

n∑
i=1

w(xi)f(xi),

where (w(xi))
n
i=1 are the importance weights.

This estimator happens to be both unbiased and consistent, and
its variance is given by (Zhao, Liu, and Gu (2013), Tokdar and Kass
(2010)):

Var[µ̂f] =
1

n
Ep[f(x)

2w(s)] − µf2

=
1

n

∫
X

(f(x)p(x) − µfq(x))
2

q(x)
dx

(A.1)

IS also works under the weaker scenario where the target distribution
is known only up to a constant factor. In this case, the normalized IS
estimator is to be used.

Definition A.2 (Normalized Importance Sampling estimator). Let f
be the target function, p the target distribution and q any (compa-
tible) source distribution. If (xi)

n
i=1 are i. i. d. samples from q, the

normalized Importance Sampling estimator for µf is

µ̃f =

∑n
i=1

p(xi)

q(xi)
f(xi)∑n

i=1
p(xi)

q(xi)

=

∑n
i=1w0(xi)f(xi)∑n
i=1w0(xi)

,

where (w(xi))
n
i=1 are the importance weights.

This estimator is consistent but biased (Theodoridis, 2015). Its va-
riance is harder to study analytically, so approximate expression are
often used. Kong (1992) proposed the formula

Var[µ̃f] ≈ Var[µ̇f](1+ Varp[w(x)]), (A.2)
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where µ̇f is the standard MC estimate for µf. Another alternative was
proposed by Owen (2013):

Var[µ̃f] ≈
1

n
Eq[w(x)

2(f(x) − µf)
2],

that he suggests to approximate in practice as:

V̂ar[µ̃f] ≈
n∑
i=1

w ′(xi)
2(f(xi) − µ̃f)

2,

where w ′(xi) = w(xi)/
∑n
i=1w(xi).

For variance reduction purposes, IS needs the source distribution to
be chosen properly (Rubinstein, 1981). In fact, for the case of the IS es-
timator, last line in Equation (A.1) implies that an optimal choice for
q is fp/µf as it would induce a zero-variance estimator. Although not
applicable in practice, this observation suggests that good source dis-
tributions are those that are nearly proportional to fp. More precisely,
the same equation leads to

Var[µ̇f] − Var[µ̂f] =
1

n
Ep[(1−w(x))f(x)

2].

Therefore, the variance of the standard MC estimate can be decreased
if q > p in the regions that are likely for the target distribution and
with high values of f, and q < p for the areas that are unlikely for the
target and with a low value of f (Owen, 2013).
For the case of the normalized IS estimator, studying the variance
reduction is a challenging task because its variance is analytically
complex itself. However, from Equation (A.2), Kong (1992) defined
the effective sample size

ESS =
n

1+ Varf[w(x)]

as a measure of how many samples, in average, have an effective
contribution to the estimation. Given the observed samples (xi)

n
i=1,

this value is usually approximated through

ESS ≈
‖w‖21
‖w‖22

,

where w = (w(x1), ..., w(xn))>. A high value for the effective sample
size means that more samples were actually taken into account for
the calculation, possibly resulting in a low variance for the estimator.

a.2 importance sampling in reinforcement learning

One of the first successful applications of the idea of IS was achieved
by Hammersley and Morton (1954), and Rosenbluth and Rosenbluth



96 Bibliography

(1955) in the field of physical statistics. Since then, it has been broadly
studied and applied into a variety of other areas, and RL has not been
the exception.
Among all the variants of IS methods that have been proposed along
time (see e. g.Rubinstein (1981), Tokdar and Kass (2010)), the one pre-
sented in Section A.1 is the most commonly applied in the RL area.
It is mainly introduced to derive algorithms that can reuse samples
coming from different policies along the learning process.
One group of IS-based algorithms in RL focuses on policy evalua-
tion (Section 2.4) within an off-policy context (Section 2.2.2). Precup,
Sutton, and Singh (2000) develop an off-policy variant of the TD(λ)
algorithm (Section 2.4.2) that introduces the importance weights in
a transition-by-transition fashion into the eligibility traces; they pro-
vide formulations based on both the standard and the normalized IS
estimators. Mahmood, Hasselt, and Sutton (2014) go one step further
and present an off-policy variant of LSTD(λ) by seeing the IS estima-
tors as solutions for weighted versions of linear-regression problems;
they focus in particular on the on the formulation for the normali-
zed IS estimator. Mahmood and Sutton (2015) go for a an approach
that enriches SGD with normalized IS and combines it with eligibility
traces to solve for the optimal parameters of the value function ap-
proximator; this algorithm provides linear complexity on the size of
the feature space.
IS has also been used for policy search purposes in RL. Levine and
Koltun (2013) apply Differential Dynamic Programming to build gui-
ding distributions that favor sampling from high reward regions, and
use samples from them to optimize a regularized version of the nor-
malized IS estimator for the policy performance. Peshkin and Shelton
(2002) work under POMDP and propose the concept of a proxy bet-
ween the agent and the environment that keeps samples from diffe-
rent policies and, when queried, provides normalized IS estimations
of both the performance and gradient of a new policy; this informa-
tion is directly used to search for the optimal policy.
Actor-critic approaches have also been modified to account for IS.
Wawrzynski and Pacut (2008), seeing actor-critic algorithm as an in-
stance of single-adjustment methods, combine experience replay with
truncated IS at each step of the iteration in order to create stochastic
gradient estimations that guide the parameter updates. They also pro-
vide a study of the bias introduced by the truncation and prove that
it vanishes asymptotically.



B
K A N T O R O V I C H D I S TA N C E A N D L O C A L
I N F O R M AT I O N

The Kantorovich metric for probability measures was introduced by
Leonid Vitálievich Kantoróvich as a result of his studies on the trans-
portation problem (Vershik, 2013).

Definition B.1 (Kantorovich metric). Let (X, r) be a metric compact
space, and p, q be two probability Borel measures on X. The function

K(p, q) = inf
γ

∫
r(x1, x2)dγ,

where the infimum is taken over all the probability Borel measures
on X× X such that it has p and q as marginals, defines a metric on
the space of probability measures on X.

The optimization problem that defines the metric is exactly the
transportation problem with cost is r. Kantoróvich proved later on
that

K(p, q) = sup
{∣∣∣∣ ∫ fd(p− q)

∣∣∣∣},
where the supremum is taken over all the 1-Lipschitz functions on X
with respect to the metric r.
Intuitively, from this result, the metric measures the maximum diffe-
rence between calculating the expected value of a Lipschitz function
with each one of the distributions. This justifies the decision of Pirotta,
Restelli, and Bascetta (2015) of modeling the continuity in robotic en-
vironments with this metric.
However, from the first definition, the intuitive meaning of the metric
is that it measures the optimal cost of moving the densities to turn
one distribution into the other, and, without any further assumptions,
this gives no information about how the distributions differ from each
other locally. Therefore, it is meaningless to build a transfer mecha-
nism that can work at a sample level based only on the pointwise
differences between the densities of the source and the target task.
To exemplify this, consider the two pairs of distributions in Figure
B.1, all defined on the same space X. The Kantorovich metric bet-
ween the pair of distributions in Figure B.1b can be made to coincide
with that between the distributions in Figure B.1a: even if almost all
the density has to be moved, c can be adjusted such that the over-
all cost of moving it coincides with the desired value. However, the
pointwise distance between the pairs of distributions is completely
different. Thus, the fact that two distributions are away from each
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other by some value according to the Kantorovich distance gives no
information of how the change locally.

(a) Locally similar

(b) Locally different

Figure B.1: The two pairs of probability distributions can have the same
Kantorovich metric but the pointwise distances are very diffe-
rent.



C
L I P S C H I T Z C O N T I N U I T Y

This chapter details the proofs regarding Lipschitz continuity that
were not presented along the document. Section C.1 presents the
proof for the extended tuples distribution, as well as the intermediate
results on the continuity of the other distributions that are used later
during the chapter. Section C.2 proves the continuity regarding the
matrices used by the LSTD algorithm, both for the V-function and the
Q-function. Section C.3 introduces the proofs for the continuity of the
policy performance, which includes results on the continuity of the
immediate reward. Section C.4 proves the continuity of the gradient
of the policy performance, together with the intermediate results on
the continuity of the V-function and the Q-function.
Most of the proofs can be redone by proving Lipschitz continuity with
respect to the task parameters only, and then resorting to the results
by Pirotta, Restelli, and Bascetta (2015) on the continuity with respect
to the policy parameters to complete.

c.1 lispchitz continuity of the tuples distribution

This section presents the proof of the Lipschitz continuity of the tu-
ples distributions with respect to the task and policy parameters. It
proceeds by stating the necessary assumptions and incrementally pro-
ving the result in a sequence of lemmata.

Assumption C.1. The Lipschitz constant of the transition model with
respect to the task parameter space is bounded with respect to the
action space. That is,

Ls,s
′

P−E(ε) = sup
a∈A

Ls,a,s
′

P−E (ε) <∞,
for any ε ∈ E. Further more, Ls,s

′
P−E(·) is also bounded.

Assumption C.2. The Lipschitz constant of the policy with respect to
the parameter space is bounded with respect to the action space. That
is,

Lsπ−Θ(θ) = sup
a∈A

Ls,aπ−Θ(θ) <∞,
for any θ ∈ Θ. Furthermore, Lsπ−Θ(·) is also bounded.

Lemma C.1 (Lipschitz continuity of state-to-state distribution). Let
〈T,Ω〉 be a Lipschitz task environment (Definition 4.2), and ΠΘ be a para-
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metric space of Lipschitz policies (Definition 2.32). For any (s, s ′) ∈ S× S,
the function P(·,·)(s

′|s) is Ls,s
′

P−ΘE-PLC, with

Ls,s
′

P−ΘE(θ, ε) =M
s,s ′
P−EL

s
π−Θ(θ)λ(A) + Ls,s

′
P−E(ε),

where λ(A) is the volume of A.

Proof. Let (s, s ′) ∈ S × S be fixed, T1, T2 be tasks with parameters
(ε1, ξ1), (ε2, ξ2) ∈ E× Ξ, respectively, and π1, π2 be policies with pa-
rameters θ1, θ2 ∈ Θ, respectively, for such tasks. Thus,

|P1(s
′|s) −P2(s

′|s)| =
∣∣∣ ∫

A

(P1(s
′|s, a)π1(a|s) −P2(s

′|s, a)π2(a|s))da
∣∣∣

6
∫
A

P1(s
′|s, a)|π1(a|s) − π2(a|s)|da

+

∫
A

π2(a|s)|P1(s
′|s, a) −P2(s

′|s, a)|da

6
∫
A

P1(s
′|s, a)Ls,aπ−Θ(θ1)dΘ(θ1, θ2)da

+

∫
A

π2(a|s)L
s,a,s ′
P−E (ε1)dE(ε1, ε2)da

6 Ms,s ′
P−EL

s
π−Θ(θ1)dΘ(θ1, θ2)λ(A)

+ Ls,s
′

P−E(ε1)dE(ε1, ε2)

6
(
Ms,s ′

P−EL
s
π−Θ(θ1)λ(A)+

Ls,s
′

P−E(ε1)
)
dΘE((θ1, ε1), (θ1, ε2))

= Ls,s
′

P−ΘE(θ1, ε1)dΘE((θ1, ε1), (θ1, ε2)).

�

Assumption C.3. The Lipschitz constant of the state-to-state distribu-
tion with respect to the parameter space is bounded with respect to
the starting state. That is,

Ls
′

P−ΘE(θ, ε) = sup
s∈A

Ls,s
′

P−ΘE(θ, ε) <∞,
for any (θ, ε) ∈ Θ× E. Furthermore, Ls

′
P−ΘE(·, ·) is also bounded.

Assumption C.4. The function

Ls0δ−ΘE(θ, ε) = Ks0(θ, ε) + γ

∫
S

P1(s0|s1)K
s1(θ, ε)ds1

+ γ2
∫
S2

P1(s0|s1)P1(s1|s2) K
s2(θ, ε) + . . . ,

where

Ks(θ, ε) = (1− γ)Lsµ−E(ε) + γL
s
P−ΘE(θ, ε),

is well-defined for every s0 ∈ S, θ ∈ Θ and ε ∈ E.
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Lemma C.2 (Lipschitz continuity of the future state distribution). Let
〈T,Ω〉 be a Lipschitz task environment (Definition 4.2), and ΠΘ be a pa-
rametric space of Lipschitz policies (Definition 2.32). For any s ∈ S, the
function δ(·,·)(s) is Lsδ−ΘE-PLC, where Lsδ−ΘE is the function defined in
Assumption C.4.

Proof. Let s ∈ S be fixed, T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈
E× Ξ, respectively, and π1, π2 be policies with parameters θ1, θ2 ∈ Θ,
respectively, for such tasks. Thus,

|δ1(s0) − δ2(s0)|

=
∣∣∣(1− γ)µ1(s0) + γ ∫

S

P1(s0|s1)δ1(s1)ds1

− (1− γ)µ2(s0) − γ

∫
S

P2(s0|s1)δ2(s1)ds1
∣∣∣

6 (1− γ)|µ1(s0) − µ2(s0)|

+ γ

∫
S

|P1(s0|s1)δ1(s1) −P2(s0|s1)δ2(s1))|ds1

6 (1− γ)Ls0µ−E(ε1)dE(ε1, ε2)

+ γ

∫
S

δ2(s1)|P1(s0|s1) −P2(s0|s1)|ds1

+ γ

∫
S

P1(s0|s1)|δ1(s1) − δ2(s1)|ds1

6 (1− γ)Ls0µ−E(ε1)dE(ε1, ε2)

+ γLs0P−ΘE(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))

+ γ

∫
S

P1(s0|s1)|δ1(s1) − δ2(s1)|ds1

6
(
(1− γ)Ls0µ−E(ε1) + γL

s0
P−ΘE(θ1, ε1)

)
dΘE((θ1, ε1), (θ2, ε2))

+ γ

∫
S

P1(s0|s1)|δ1(s1) − δ2(s1)|ds1

= Ks0(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))

+ γ

∫
S

P1(s0|s1)|δ1(s1) − δ2(s1)|ds1

6 Ks0(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))

+ γ

∫
S

P1(s0|s1) K
s1(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))ds1

+ γ2
∫
S2

P1(s0|s1)P1(s1, s2)|δ(ε1, s2) − δ(ε2, s2)|ds2 ds1

6 Ks0(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))

+ γ

∫
S

P1(s0|s1)K
s1(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))ds1

+ γ2
∫
S2

P1(s0|s1)P1(s1|s2) K
s2(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))ds2 ds1

+ . . .

= Ls0δΘE(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2)).
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�

Lemma C.3. Let (X, dX), (Y, dY) be metric spaces, and make X×Y a metric
space with the metric dXY = dX + dY).
Let g : X× Y → R be a Lg-PLC function and h : Y → R be a Lh-PLC
function. Assume that |g| is bounded by Mg and that |h| is bounded by Mh.
Then the function f : X× Y → R, f(x, y) = g(x, y)h(y) is Lf-PLC, where

Lf(x, y) =MgLf(y) +MfLg(x, y).

Proof. Let (x1, y1), (x2, y2) ∈ X× Y. Thus,

|f(x1, y1) − f(x2, y2)|

= |g(x1, y1)h(y1) − g(x2, y2)h(y2)|

6 |g(x1, y1)| |h(y1) − h(y2)|

+ |h(y2)| |g(x1, y1) − g(x2, y2)|

6 MgLh(y1)dY(y1, y2)

+MhLg(x1, y1)dXY((x1, y1), (x2, y2))

6
(
MgLh(y1)

+MhLg(x1, y1)
)
dXY((x1, y1), (x2, y2))

= Lf(x1, y1)dXY((x1, y1), (x2, y2)).

�

Assumption C.5. Policy is uniformly bounded with respect to the
parameter space. That is, for every (s, a) ∈ S×A, the constant Ms,a

π−Θ

satisfies

πθ(a|s) 6M
s,a
π−Θ,

for all θ ∈ Θ.

Assumption C.6. Future state distribution if uniformly bounded with
respect to the parameter space. That is, for every s ∈ S, the constant
Ms
δ−ΘE satisfies

δθ,ε(s) 6M
s
δ−ΘE,

for all (θ, ε) ∈ Θ× E.

Corollary C.4 (Lipschitz continuity of state-action distribution). Let
〈T,Ω〉 be a Lipschitz task environment (Definition 4.2), and ΠΘ be a para-
metric space of Lipschitz policies (Definition 2.32). For any (s, a) ∈ S×A,
the function ζ(·,·)(s, a) is Ls,aζ−ΘE-Pointwise-Lipschitz-Continuous, where

Ls,aζ−ΘE(θ1, ε1) =M
s
δ−ΘEL

s,a
π−Θ(θ1, ε1) +M

s,a
π−ΘL

s
δ−ΘE(θ1, ε1).

Proof. Since ζθ,ε(s, a) = δθ,ε(s)πθ(a|s), the proof follows from Lemma
C.3, Lemma C.2, Assumption C.6, and Assumption C.5. �
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Assumption C.7. Transition model is uniformly bounded with re-
spect to the parameter space. That is, for every (s, a, s ′) ∈ S×A× S,
the constant Ms,a,s ′

P−E satisfies

Pε(s
′|s, a) 6Ms,a,s ′

P−E ,

for all ε ∈ E. It also holds that Ms,s ′
π−E = supa∈AM

s,a,s ′
π−E is finite.

Assumption C.8. State-action distribution is uniformly bounded with
respect to the parameter space. That is, for every (s, a) ∈ S×A, the
constant Ms,a

ζ−ΘE satisfies

ζθ,ε(s, a) 6M
s,a
ζ−ΘE,

for all (θ, ε) ∈ Θ× E.

Corollary C.5 (Lipschitz continuity of tuples distribution). Let 〈T,Ω〉
be a Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric
space of Lipschitz policies (Definition 2.32). For any (s, a, s ′) ∈ S×A×
S, the function d(·,·)(s, a, s

′) is Ls,a,s
′

d−ΘE-Pointwise-Lipschitz-Continuous,
where

Ls,a,s
′

d−ΘE(θ, ε) =M
s,a
ζ−ΘEL

s,a,s ′
P−E (ε) +Ms,a,s ′

P−E Ls,aζ−ΘE(θ, ε).

Proof. Since dθ,ε(s, a, s ′) = ζθ,ε(s, a)Pε(s
′|s, a), the proof follows

from Lemma C.3, Corollary C.4, Assumption C.8, and Assumption
C.7. �

Assumption C.9. Tuples distribution is uniformly bounded with re-
spect to the parameter space. That is, for every (s, a, s ′) ∈ S×A× S,
the constant Ms,a,s ′

d−ΘE satisfies

dθ,ε(a|s) 6M
s,a,s ′
d−ΘE,

for all (θ, ε) ∈ Θ× E.

Corollary C.6 (Lipschitz continuity of extended tuples distribution).
Let 〈T,Ω〉 be a Lipschitz task environment (Definition 4.2), and ΠΘ be a pa-
rametric space of Lipschitz policies (Definition 2.32). For any (s, a, s ′, a ′) ∈
S×A×S×A, the function d(·,·)(s, a, s ′, a ′) is Ls,a,s

′,a ′

d−ΘE
-Pointwise-Lipschitz-

Continuous, where

Ls,a,s
′,a ′

d−ΘE
(θ1, ε1) =M

s ′,a ′
π−ΘL

s,a,s ′
d−ΘE(θ1, ε1) +M

s,a,s ′
d−ΘEL

s ′,a ′
π−Θ(θ1).

Proof. Since dθ,ε(s, a, s ′, a ′) = dθ,ε(s, a, s
′)πθ(a

′|s ′), the proof fol-
lows from Lemma C.3, Corollary C.5, Assumption C.9, and Assump-
tion C.5. �

Observation C.1. The above defined functions representing the Lipschitz
constants are bounded with respect to the parameter spaces. This detail actu-
ally completes the proofs.
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c.2 lipschitz continuity of the matrices

This section provides a proof for the Lipschitz continuity of the ma-
trices used by the LSTD algorithm with respect to the task and policy
parameters. It proceeds by stating the necessary assumptions and pro-
ving the corresponding results.
Only the case of the V-function is proved; the results for the Q-function
are easily obtained based on these ones.

Assumption C.10. The Lipschitz constant of the tuple distribution
with respect to the task parameter space is bounded with respect to
the state-action-sate space. That is,

Ld−ΘE(θ, ε) = sup
(s,a,s ′)∈S×A×S

Ls,a,s
′

d−ΘE(θ, ε) <∞,
for any (θ, ε) ∈ Θ× E. Furthermore, Ld−ΘE(·, ·) is bounded.

Assumption C.11. The feature map φ satisfies∫
SAS

|φk(s)(φl(s) − γφl(s
′))dsas ′ <∞

and ∫
S

|φk(s)|(δθ,ε(s) + 1)ds <∞
for every k, l = 1, ..., dc and (θ, ε) ∈ Θ× E.

Assumption C.12. The Lipschitz constant of the reward model with
respect to the task parameter space is bounded with respect to the
state-action-sate space. That is,

Lr−Ξ(ξ) = sup
(s,a,s ′)∈S×A×S

Ls,a,s
′

d−Ξ (ξ) <∞,
for any ξ ∈ Ξ. Furthermore, Lr−Ξ(·) is bounded.

Lemma C.7 (Lipschitz continuity of the matrix A(V)
(·),φ). Let 〈T,Ω〉 be

a Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any k, l = 1, ..., dc, the function
A

(V)−(k,l)
(·),φ is Lk,lA−ΘE-Pointwise-Lipschitz-Continuous, where

Lk,lA−ΘE(ε, θ) = Ld−ΘE(ε, θ)

∫
SAS

|φk(s)(φl(s) − γφl(s
′))|dsas ′.

Proof. Let k, l = 1, ..., dc be fixed, T1, T2 be tasks with parameters
(ε1, ξ1), (ε2, ξ2) ∈ E× Ξ, respectively, and π1, π2 be policies with pa-
rameters θ1, θ2 ∈ Θ, respectively, for such tasks. Thus,∣∣A(V)−(k,l)

1,φ −A
(V)−(k,l)
2,φ

∣∣
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=
∣∣∣ ∫

SAS

(φk(s)(φl(s) − γφl(s
′))d1(s, a, s

′)

−φk(s)(φl(s) − γφl(s
′))d2(s, a, s

′))dsas ′
∣∣∣

=
∣∣∣ ∫

SAS

φk(s)(φl(s) − γφl(s
′))(d1(s, a, s

′) − d2(s, a, s
′))dsas ′

∣∣∣
6
∫
SAS

|φk(s)(φl(s) − γφl(s
′))| |d1(s, a, s

′) − d2(s, a, s
′)|dsas ′

6
∫
SAS

|φk(s)(φl(s) − γφl(s
′))|Ls,a,s

′
d−ΘE(ε1, θ1)dΘ,E((ε1, θ1), (ε2, θ2))dsas ′

6 Ld−ΘE(ε1, θ1)dΘ,E((ε1, θ1), (ε2, θ2))

∫
SAS

|φk(s)(φl(s) − γφl(s
′))|dsas ′

= Lk,lA−ΘE(ε1, θ1)dΘ,E((ε1, θ1), (ε2, θ2)).

�

Lemma C.8 (Lipschitz continuity of the vector b(V)
(·),φ). Let 〈T,Ω〉 be a

Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any k = 1, ..., dc, the function
b
(V)−(k)
(·),φ is Lkb−ΘE-Pointwise-Lipschitz-Continuous, with

Lkb−Θ,E,Ξ(ε, θ, ξ) =

(
R Ld−ΘE(θ1, ε1)λ(A)λ(S)

+ Lr−ξ(ξ1)

) ∫
S

|φk(s)|(δ2(s) + 1)ds,

where R = max{|R1|, |R2|} is a bound for the reward, and λ(S), λ(A) are the
volumes of S, A, respectively.

Proof. Let k = 1, ..., dc be fixed, T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈
E× Ξ, respectively, and π1, π2 be policies with parameters θ1, θ2 ∈ Θ,
respectively, for such tasks. Thus,∣∣b(V)−(k)

1,φ − b
(V)−(k)
2,φ

∣∣
=
∣∣∣ ∫

SAS

(φk(s)r1(s, a, s
′)d1(s, a, s

′) −φk(s)r2(s, a, s
′)d2(s, a, s

′))dsas ′
∣∣∣

6
∫
SAS

|φk(s)| |r1(s, a, s
′)d1(s, a, s

′) − r2(s, a, s
′)d2(s, a, s

′)|dsas ′

6
∫
SAS

|φk(s)| |r1(s, a, s
′)| |d1(s, a, s

′) − d2(s, a, s
′)|dsas ′

+

∫
SAS

|φk(s)|d2(s, a, s
′)|r1(s, a, s

′) − r2(s, a, s
′)|dsas ′

6 R Ld−ΘE(θ1, ε1)dΘ,E((θ1, ε1), (θ2, ε2))

∫
SAS

|φk(s)|dsas ′

+

∫
SAS

|φk(s)|d2(s, a, s
′)Ls,a,s

′
r−ξ (ξ1)dΞ(ξ1, ξ2)dsas ′

6 R Ld−ΘE(θ1, ε1)dΘ,E((θ1, ε1), (θ2, ε2))λ(A)λ(S)

∫
S

|φk(s)|ds
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+ Lr−ξ(ξ1)dΞ(ξ1, ξ2)

∫
SAS

|φk(s)|d2(s, a, s
′)dsas ′

6

(
R Ld−ΘE(θ1, ε1)λ(A)λ(S)

+ Lr−ξ(ξ1)

) ∫
S

|φk(s)|(δ2(s) + 1)dsdΘ,E,Ξ((θ1, ε1, ξ1), (θ2, ε2, ξ1))

= Lkb−Θ,E,Ξ(θ1, ε1, ξ1)dΘ,E,Ξ((θ1, ε1, ξ1), (θ2, ε2, ξ1)).

�

Assumption C.13. The Lipschitz constant of the extended tuple dis-
tribution with respect to the task parameter space is bounded with
respect to the state-action-sate-action space. That is,

Ld−ΘE(θ, ε) = sup
(s,a,s ′,a ′)∈S×A×S×A

Ls,a,s
′,a ′

d−ΘE
(θ, ε) <∞,

for any (θ, ε) ∈ Θ× E. Furthermore, Ld−ΘE(·, ·) is bounded.

Assumption C.14. The feature map ϕ satisfies∫
SASA

|ϕk(s, a)(φl(s, a) − γϕl(s
′, a ′))dsas ′a ′ <∞

and ∫
SA

|ϕk(s, a)|(ζθ,ε(s, a) + 1)dsa <∞
for every k, l = 1, ..., dc and (θ, ε) ∈ Θ× E.

Lemma C.9 (Lipschitz continuity of the matrix A(Q)
(·),ϕ). Let 〈T,Ω〉 be a

Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any k, l = 1, ..., dc, the function
A

(Q)−(k,l)
(·),ϕ is Lk,lA−ΘE-Pointwise-Lipschitz-Continuous, where

Lk,lA−ΘE(ε, θ) = Ld−ΘE(ε, θ)

∫
SASA

|ϕk(s, a)(ϕl(s, a)−γϕl(s
′, a ′))|dsas ′.

Lemma C.10 (Lipschitz continuity of the vector b(Q)
(·),ϕ). Let 〈T,Ω〉 be

a Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any k = 1, ..., dc, the function
b
(Q)−(k)
(·),ϕ is Lkb−ΘE-Pointwise-Lipschitz-Continuous, with

Lkb−Θ,E,Ξ(ε, θ, ξ) =

(
R Ld−ΘE(θ1, ε1)λ(S)λ(A)

+ Lr−ξ(ξ1)

) ∫
SA

|ϕk(s, a)|(ζ2(s, a) + 1)dsa,

where R = max{|R1|, |R2|} is a bound for the rewrad, and λ(S), λ(A) are the
volumes of S, A, respectively.

Observation C.2. The above defined functions representing the Lipschitz
constants are bounded with respect to the parameter spaces. This detail actu-
ally completes the proofs.
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c.3 lipschitz continuity of the policy performance

This section presents the proof of the Lipschitz continuity of the po-
licy performance with respect to the task and policy parameters. It
proceeds by stating the necessary assumptions and then proving the
result.

Assumption C.15. The Lipschitz constant of the transition model
with respect to the parameter space is bounded with respect to the
ending state. That is,

Ls,aP−E(ε) = sup
s ′S

LP−E(ε)
s,a,s ′ <∞,

for any ε ∈ E. Furthermore, LP−E()̇
s,a

is bounded.

Assumption C.16. The Lipschitz constant of the reward model with
respect to the parameter space is bounded with respect to the ending
state. That is,

Ls,ar−Ξ(ξ) = sup
s ′S

Lr−Ξ(ξ)
s,a,s ′ <∞,

for any ξ ∈ Ξ. Furthermore, Lr−Ξ(·)s,a is bounded.

Lemma C.11 (Lipschitz continuity of the immediate reward). Let 〈T,Ω〉
be a Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric
space of Lipschitz policies (Definition 2.32). Then the function R(·,·)(s, a) is
Ls,aR−EΞ-PLC, where

Ls,aR−EΞ(ε, ξ) = R L
s,a
P−E(ε)λ(S) + L

s,a
r−Ξ(ξ).

Proof. Let T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈ E× Ξ,
respectively. Let (s, a) ∈ S×A be fixed. Thus,

|R1(s, a) −R2(s, a)|

=
∣∣∣ ∫

S

(r1(s, a, s
′)P1(s

′|s, a) − r2(s, a, s
′)P2(s

′|s, a))ds ′
∣∣∣

6
∫
S

|r1(s, a, s
′)| |P1(s

′|s, a) −P2(s
′|s, a)|ds ′

+

∫
S

P2(s
′|s, a)|r1(s, a, s

′) − r2(s, a, s
′)|ds ′

6 R
∫
S

Ls,a,s
′

P−E (ε1)dE(ε1, ε2)ds ′

+

∫
S

|P2(s
′|s, a)Ls,a,s

′
r−Ξ (ξ1)dΞ(ξ1, ξ2)ds ′

6 R Ls,aP−E(ε1)dE(ε1, ε2)λ(S)

+ Ls,ar−Ξ(ξ1)dΞ(ξ1, ξ2)

6 Ls,aR−EΞ(ε1, ξ1)dE,Ξ((ε1, ξ1), (ε2, ξ2)).

�
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Assumption C.17. The Lipschitz constant of the state-actions distri-
bution with respect to the parameter space is bounded with respect
to the state-action space. That is,

Lζ−ΘE(θ, ε) = sup
(s,a)∈S×A

Ls,aζ−ΘE(θ, ε) <∞,
for any (θ, ε) ∈ (Θ× E). Furthermore, Lζ−ΘE(·, ·) is bounded.

Assumption C.18. The Lipschitz constant of the expected immediate
reward with respect to the parameter space is bounded with respect
to the state-action space. That is,

LR−EΞ(ε, ξ) = sup
(s,a)∈S×A

Ls,aR−EΞ(ε, ξ) <∞,
for any (ε, ξ) ∈ E× Ξ. Furthermore, LR−EΞ(·, ·) is bounded.

Lemma C.12 (Lipschitz continuity of the policy performance). Let
〈T,Ω〉 be a Lipschitz task environment (Definition 4.2), and ΠΘ be a para-
metric space of Lipschitz policies (Definition 2.32). Then for every the policy
performance J(·,·,·) is LJ−ΘEΞ-PLC, with

LJ−ΘEΞ(θ, ε, ξ) =
1

1− γ
R Lζ−ΘE(θ, ε)λ(S)λ(A)

+
1

1− γ
LR−EΞ(ε, ξ),

where R = max{|R1|, |R2|}, and λ(S), λ(A) are the volumes of S,A, respecti-
vely.

Proof. Let T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈ E× Ξ,
respectively, and π1, π2 be policies with parameters θ1, θ2 ∈ Θ, re-
spectively, for such tasks. Thus,∣∣J1 − J2∣∣

=
∣∣∣ 1

1− γ

∫
SA

(
R1(s, a)ζ1(s, a) −R2(s, a)ζ2(s, a)

)
dsa

∣∣∣
6

1

1− γ

∫
SA

|R1(s, a)| |ζ1(s, a) − ζ2(s, a)|dsa

+
1

1− γ

∫
SA

ζ2(s, a) |R1(s, a) −R2(s, a)|dsa

6
1

1− γ
R

∫
SA

Ls,aζ−ΘE(θ, ε1)dΘE((θ1, ε1), (θ2, ε2))dsa

+
1

1− γ

∫
SA

ζ1(s, a)L
s,a
R−EΞ(ε1, ξ1)dEΞ((ε1, ξ1), (ε2, ξ2))dsa

6
1

1− γ
R Lζ−ΘE(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))λ(S)λ(A)

+
1

1− γ
LR−EΞ(ε1, ξ1)dEΞ((ε1, ξ1), (ε2, ξ2))

6 LJ−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2)).

�
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Observation C.3. The above defined functions representing the Lipschitz
constants are bounded with respect to the parameter spaces. This detail actu-
ally completes the proofs.

c.4 lipschitz continuity of the performance gradient

This section presents the proof of the Lipschitz continuity of the gra-
dient with respect to the task and policy parameters. It proceeds by
stating the necessary assumptions and incrementally proving the re-
sult in a sequence of lemmata.
Recall Assumption C.2, and further assume:

Assumption C.19. The Lipschitz constant of the expected immediate
reward with respect to the parameter space is bounded with respect
to the action space. That is,

LsR−EΞ(ε, ξ) = sup
a∈A

Ls,aR−EΞ(ε, ξ) <∞,
for any (ε, ξ) ∈ E× Ξ. Furthermore, LsR−EΞ(·, ·) is bounded.

Assumption C.20. The Lipschitz constant of the state-to-state distri-
bution with respect to the parameter space is bounded with respect
to the ending state. That is,

LsP−ΘE(θ, ε) = sup
s ′∈A

Ls,s
′

P−ΘE(θ, ε) <∞,
for any (θ, ε) ∈ Θ× E. Furthermore, LsP−ΘE(·, ·) is also bounded.

Assumption C.21. The function

LsV−ΘEΞ(θ, ε, ξ) = Ks(θ, ε) + γ

∫
S

P1(s
′|s)Ks(θ, ε, ξ)ds

+ γ2
∫
S2

P1(s
′|s)P1(s

′′|s ′) Ks
′
(θ, ε, ξ) + . . . ,

where

Ks(θ, ε, ξ) =R Lsπ−Θ(θ)λ(A) + LsR−EΞ(ε, ξ)

+ γ
R

1− γ
LsP−ΘE(θ, ε),

is well-defined for every s ∈ S, θ ∈ Θ, ε ∈ E and ξ ∈ Ξ.

Lemma C.13 (Lipschitz continuity of the V-function). Let 〈T,Ω〉 be a
Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any s ∈ S, the function V(·)(s) is
LsV−ΘEΞ-Pointwise-Lipschitz-Continuous, where LsV−ΘEΞ is the function
defined in Assumption C.21.
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Proof. Let s ∈ S×A be fixed, T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈
E× Ξ, respectively, and π1, π2 be policies with parameters θ1, θ2 ∈ Θ,
respectively, for such tasks. Thus,

|V1(s) − V2(s)|

=
∣∣∣ ∫

A

R1(s, a)π1(a|s)da+ γ
∫
S

V1(s
′)P1(s

′|s)ds ′

−

∫
A

R2(s, a)π2(a|s)da− γ
∫
S

V2(s
′)P2(s

′|s)ds ′
∣∣∣

6
∫
A

|R1(s, a)π1(a|s) −R2(s, a)π2(a|s)|da

+ γ

∫
S

|V1(s
′)P1(s

′|s) − V2(s
′)P2(s

′|s)|ds ′

6
∫
A

|R1(s, a)| |π1(a|s) − π2(a|s)|da

+

∫
A

π2(a|s)|R1(s, a) −R2(s, a)|da

+ γ

∫
S

|V1(s
′)| |P1(s

′|s) −P2(s
′|s)|ds ′

+ γ

∫
S

P2(s
′|s)|V1(s

′) − V2(s
′)|ds ′

6 R Lsπ−Θ(θ1)dΘ(θ1, θ2)λ(A)

+ LsR−EΞ(ε1, ξ1)dEΞ((ε1, ξ1), (ε2, ξ2))

+ γ
R

1− γ
LsP−ΘE(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))λ(S)

+ γ

∫
S

P2(s
′|s)|V1(s

′) − V2(s
′)|ds ′

6 Ks(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))

+ γ

∫
S

P2(s
′|s)|V1(s

′) − V2(s
′)|ds ′

6 Ks(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))

+ γ

∫
S

P2(s
′|s)Ks

′
(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))ds ′

+ γ2
∫
S2

P2(s
′|s)P2(s

′′|s ′)Ks
′′
(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))ds ′′

+ . . .

= LV−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2)).

�

Recall Assumption C.15, and further assume:

Assumption C.22. The Lipschitz constant of the V-function with re-
spect to the task parameter space is bounded with respect to the state
space. That is,

LV−ΘEΞ(θ, ε, ξ) = sup
s∈S

LsV−ΘEΞ(θ, ε, ξ) <∞,
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for any (θ, ε, ξ) ∈ (Θ× E× Ξ). Further more, LV−ΘEΞ(·, ·, ·) is also
bounded.

Lemma C.14 (Lipschitz continuity of the Q-function). Let 〈T,Ω〉 be a
Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any (s, a) ∈ S×A, the function
Q(·)(s, a) is Ls,aQ−ΘEΞ-Pointwise-Lipschitz-Continuous, where

Ls,aQ−ΘEΞ(θ, ε, ξ) =L
s,a
R−EΞ(ε, ξ) + γ

R

1− γ
Ls,aP−E(ε)

+ γLV−ΘEΞ(θ, ε, ξ).

Proof. Let (s, a) ∈ S × A be fixed, T1, T2 be tasks with parameters
(ε1, ξ1), (ε2, ξ2) ∈ E× Ξ, respectively, and π1, π2 be policies with pa-
rameters θ1, θ2 ∈ Θ, respectively, for such tasks. Thus,

|Q1(s, a) −Q2(s, a)|

=
∣∣∣R1(s, a) + γ ∫

S

V1(s
′)P1(s

′|s, a)ds ′

−R2(s, a) − γ

∫
S

V2(s
′)P2(s

′|s, a)ds ′
∣∣∣

6 |R1(s, a) −R2(s, a)|

+ γ

∫
S

|V1(s
′)P1(s

′|s, a) − V2(s
′)P2(s

′|s, a)|ds ′

6 Ls,aR−EΞ(ε1, ξ1)dEΞ((ε1, ξ1), (ε2, ξ2))

+ γ

∫
S

|V1(s
′)| |P1(s

′|s, a) −P2(s
′|s, a)|ds ′

+ γ

∫
S

P2(s
′|s, a)|V1(s

′) − V2(s
′)|ds ′

6 Ls,aR−EΞ(ε1, ξ1)dEΞ((ε1, ξ1), (ε2, ξ2))

+ γ
R

1− γ
Ls,aP−E(ε1)dE(ε1, ε2)λ(S)

+ γLV−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))

6 Ls,aQ−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2)).

�

Assumption C.23. The log-policy gradient is uniformly bounded with
respect to the parameter space. That is, for every k = 1, ..., da and
(s, a) ∈ S×A, the constant Mk,s,a

∇ logπ satisfies

∇θk logπθ(a|s) 6M∇ logπk, s, a,

for any θ ∈ Θ. It also holds thatM∇ logπk = sup(s,a)∈S×AM∇ logπk, s, a

is finite.

Assumption C.24. The log-policy gradient is PLC. This means that,
whenever k = 1, ..., na and (s, a) ∈ S × A are fixed, the function
∇θk logπ(·)(a|s) is Lk,s,a∇ logπ-PLC.
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Lemma C.15 (Lipschitz continuity of Q(·)∇ logπ(·)). Let 〈T,Ω〉 be a
Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric space
of Lipschitz policies (Definition 2.32). For any k = 1, ..., da and (s, a) ∈ S×
A, the function Q(·)(s, a)∇θk logπ(·)(a|s) is Lk,s,aQ∇ logπ−ΘEΞ-Pointwise-
Lipschitz-Continuous, where

Lk,s,aQ∇ logπ−ΘEΞ(θ, ε, ξ) =
1

1− γ
R Lk,s,a∇π−Θ(θ)

+Mk,s,a
∇ logπL

s,a
Q−ΘEΞ(θ, ε, ξ).

Proof. It follows directly from Lemma C.3, Assumption C.23, Assump-
tion C.24, and Lemma C.14. �

Assumption C.25. The Lipschitz constant of the state-action distribu-
tion with respect to the parameter space is bounded with respect to
the state-action space. That is,

Lζ−ΘE(θ, ε) = sup
(s,a)∈S×A

Ls,aζ−ΘE(θ, ε) <∞,
for any (θ, ε) ∈ (Θ× E). Furthermore, Lζ−ΘE(·, ·) is bounded.

Assumption C.26. The Lipschitz constant of the Q-function times log-
policy gradient is bounded with respect to the state-action space. That
is,

LkQ∇ logπ−ΘEΞ(θ, ε, ξ) = sup
(s,a)∈S×A

Lk,s,aQ∇ logπ−ΘEΞ(θ, ε, ξ) <∞,
for any (θ, ε, ξ) ∈ (Θ× E× Ξ). Furthermore, LkQ∇ logπ−ΘEΞ(·, ·, ·) is
bounded.

Lemma C.16 (Lipschitz continuity of the gradient ∇θJ(·)). Let 〈T,Ω〉
be a Lipschitz task environment (Definition 4.2), and ΠΘ be a parametric
space of Lipschitz policies (Definition 2.32). For any k = 1, ..., da, the
function ∇θJ(·) is Lk∇J−ΘEΞ-Pointwise-Lipschitz-Continuous, with

L∇J−ΘEΞ(θ, ε, ξ) =
R

(1− γ)2
Mk
∇ logπLζ−ΘE(θ, ε)λ(S)λ(A)

+
1

1− γ
LkQ∇ logπ−ΘEΞ(θ, ε, ξ),

where λ(S), λ(A) are the volumes of S,A, respectively.

Proof. Let k = 1, ..., da be fixed, T1, T2 be tasks with parameters (ε1, ξ1), (ε2, ξ2) ∈
E× Ξ, respectively, and π1, π2 be policies with parameters θ1, θ2 ∈ Θ,
respectively, for such tasks. Thus,∣∣∇θkJ1 −∇θkJ2∣∣

=
∣∣ 1

1− γ

∫
SA

(Q1(s, a)∇θk logπ1(a|s)ζ1(s, a)−

Q2(s, a)∇θk logπ2(a|s)ζ2(s, a))
∣∣
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6
1

1− γ

∫
SA

|Q1(s, a)∇θk logπ1(a|s)| |ζ1(s, a) − ζ2(s, a)|dsa

+
1

1− γ

∫
SA

ζ2(s, a)|Q1(s, a)∇θk logπ1(a|s)−

Q2(s, a)∇θk logπ2(a|s)|dsa

6
1

1− γ

R

1− γ
Mk
∇ logπLζ−ΘE(θ1, ε1)dΘE((θ1, ε1), (θ2, ε2))λ(S)λ(A)

+
1

1− γ
LkQ∇ logπ−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2))

6 Lk∇J−ΘEΞ(θ1, ε1, ξ1)dΘEΞ((θ1, ε1, ξ1), (θ2, ε2, ξ2)).

�

Observation C.4. The above defined functions representing the Lipschitz
constants are bounded with respect to the parameter spaces. This detail actu-
ally completes the proofs.





D
O T H E R D E R I VAT I O N S

This chapter presents the remaining important derivations omitted
along the document.

d.1 local lipschitz continuity and kantorovich lipschitz

continuity

This section shows that the stronger notion of Lipschitz continuity for
MDPs presented here (Definition 2.31) implies the one presented in
Pirotta, Restelli, and Bascetta (2015). It suffices to proof the following
lemma:

Lemma D.1. Let X ⊂ Rn be a bounded metric space with the Euclidean
distance and a measurable space with its Borel σ-algebra.
Let (P(·|α,β))α∈A β∈B be a parametric family of probability distributions
on X, where A and B are the parameter spaces. Assume that, whenever
β ∈ B is fixed, for every x ∈ X, the function P(x|·, β) is Lβ,xA -Pointwise-
Lipschitz-Continuous. Furthermore, assume that LβA(α) = supx∈X L

β,x
A (α)

if finite for every α.
Then, for p ∼ P(·|α1, β) and q ∼ P(·|α2, β), it holds that

K(p, q) 6 L
β
A(α1)dA(α1, α2),

where LβA(α1) =
1
2diam(X)LβAλ(X) and λ(X) is the volume of X.

Proof. Let TV be the total variation distance. Thus,

K(p, q) 6 diam(X)TV(p, q)

= diam(X) · 1
2

max
|h|61

∣∣∣ ∫
S

h(x)(p(x|α1, β) − q(x|α2, β))dx
∣∣∣

6
1

2
diam(X) max

|h|61

∫
S

|h(x)| · |p(x|α1, β) − q(x|α2, β)|dx

6
1

2
diam(X) max

|h|61

∫
S

|h(x)|Lβ,xA (α1)dA(α1, α2)dx

6
1

2
diam(X)dA(α1, α2) max

|h|61

∫
S

|h(x)|LβA(α1)dx

6
1

2
diam(X)dA(α1, α2)L

β
A(α1) max

|h|61

∫
S

|h(x)|dx

6
1

2
diam(X)dA(α1, α2)L

β
A(α1)λ(X)

= L
β
A(α1)dA(α1, α2).

A proof for the first inequality can be found in (Gibbs and Su, 2002).
�
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This result can be applied, for example, to the transition model, by
fixing the parameter model ε and taking A as SA, resulting in

K(P(·|s1, a1),P(·|s2, a2)) 6 LSA(s1, a1)dSA((s1, a1), (s2, a2)).

d.2 on the objective functions

This section presents the derivation of the alternative forms of the
objective function considered by the optimistic (Section 4.5) and the
min-max (Section 4.6) approaches. Without loss of generality, only
the cases of the actor are proved; the proofs for the critic can be easily
derived based on these.

Lemma D.2. For the optimistic implementation of the actor, the objective
function can be rewritten as

g(ω) =

da∑
k=1

(( 1
n

m∑
j=2

nj(∇θkJ1

−
1

1− γ
E

(s,a)∼ζj
[ωj(s, a)η̂

(k)
1 (s, a)])

)2
+

1

n2(1− γ)2

m∑
j=2

nj Var
(s,a)∼ζj

[ωj(s, a)η̂1
(k)(s, a)]

+
( 1
n2

−
1

n21

) n1
(1− γ)2

Var
(s,a)∼ζ1

[η̂1
(k)(s, a)]

)
.

Proof.

g(ω)

= E
D

[
‖∇θJ1 − ∇̂θJω(D)‖22

]
− E

D

[
‖∇θJ1 − ∇̂θJω(D1)‖22

]
= E

D

[ dc∑
k=1

(
∇θkJ1 − ∇̂

(k)
θ Jω(D)

)2]

− E
D

[ dc∑
k=1

(
∇θkJ1 − ∇̂

(k)
θ Jω(D1)

)2]

=

dc∑
k=1

(
E
D

[
(∇θkJ1)

2 − 2∇θkJ1∇̂
(k)
θ Jω(D) + (∇̂(k)

θ Jω(D))2
]

− E
D

[
(∇θkJ1)

2 − 2∇θkJ1∇̂
(k)
θ Jω(D1) + (∇̂(k)

θ Jω(D1))
2
])

=

dc∑
k=1

(
(∇θkJ1)

2 + E
D

[
(∇̂(k)
θ Jω(D))2

]
±E

D

[
∇̂(k)
θ Jω(D)

]2
− 2∇θkJ1E

D

[
∇̂(k)
θ Jω(D)

]
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− (∇θkJ1)
2 − E

D

[
(∇̂(k)
θ Jω(D1))

2
]
∓E

D

[
∇̂(k)
θ Jω(D1)

]2
+ 2∇θkJ1E

D

[
∇̂(k)
θ Jω(D1)

])
=

dc∑
k=1

((
∇θkJ1 − E

D

[
∇̂(k)
θ Jω(D)

])2
+ Var

D

[
∇̂(k)
θ Jω(D)

]
− Var

D

[
∇̂(k)
θ Jω(D1)

])
=

dc∑
k=1

((
∇θkJ1 −

1

n(1− γ)

m∑
j=1

nj E
(s,a)∼ζj

[ωj(s, a)η̂
(k)
1 (s, a)]

)2
+

1

n2(1− γ)2

m∑
j=1

nj Var
(s,a)∼ζj

[ωj(s, a)η̂1
(k)(s, a)]

−
1

n1(1− γ)2
Var

(s,a)∼ζ1
[η̂1

(k)(s, a)]

=

dc∑
k=1

(( 1
n

m∑
j=2

nj(∇θkJ1 −
1

1− γ
E

(s,a)∼ζj
[ωj(s, a)η̂

(k)
1 (s, a)])

)2
+

1

n2(1− γ)2

m∑
j=2

nj Var
(s,a)∼ζj

[ωj(s, a)η̂1
(k)(s, a)]

+
( 1
n2

−
1

n21

) n1
(1− γ)2

Var
(s,a)∼ζ1

[η̂1
(k)(s, a)]

)
.

�

Lemma D.3. For the optimistic implementation of the V-function critic, the
objective function can be rewritten as

g(ω) =

dc∑
k=1

dc∑
l=1

(( 1
n

m∑
j=2

nj(A
(V)−(k,l)
1,φ

− E
(s,a,s ′)∼dj

[ωj(s, a, s
′)∆

(k,l)
φ (s, a, s ′)])

)2
+
1

n2

m∑
j=2

nj Var
(s,a,s ′)∼dj

[ωj(s, a, s
′)∆

(k,l)
φ (s, a, s ′)]

+
( 1
n2

−
1

n21

)
n1 Var

(s,a,s ′)∼d1
[∆

(k,l)
φ (s, a, s ′)]

)

+

dc∑
k=1

(( 1
n

m∑
j=2

nj(b
(V)−(k)
1,φ

− E
(s,a,s ′)∼dj

[ωj(s, a, s
′)ρ

(k)
1,φ(s, a, s

′)])
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.

Lemma D.4. For the optimistic implementation of the Q-function critic, the
objective function can be rewritten as

g(ω) =
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dc∑
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.

Lemma D.5. For the min-max implementation of the actor, the objective
function can be overstimated by

g1(ω) =

da∑
k=1

(( 1
n

m∑
j=2

njL
k
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(k)
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)
.

Proof. By following a process similar to the one above and recalling
that the expectations are taken assuming that the target has ζ as state-
action distribution, it is possible to derive

gω(ζ)
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�

Lemma D.6. For the min-max implementation of the V-function critic, the
objective function can be overstimated by
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Lemma D.7. For the min-max implementation of the V-function critic, the
objective function can be overstimated by
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d.3 on the proximity of the optimal parameters

This section presents a result that explains why transfer from the
optimal source policies gives a better performance than transfer from
a randomly selected source policy.

Lemma D.8. Let X, Y ⊂ Rn be metric spaces with metrics dX, dY , respecti-
vely. Let f : X× Y → R be a continuously differentiable function such that
f(x, ·) is Lf-LC, and let y0, y1 ∈ Y be two points. If x0 ∈ X is such that
∂f
∂x(x0, y0) = 0 then there exists a bounded connected neighborhood U of x0
and a point x ′ ∈ U such that ∂f∂x(x

′, y1) = 0.

Proof. If ∂f∂x(x0, y1) = 0 then the proof over.
Assume then that ∂f∂x(x0, y1) 6= 0. Let U0 be a block containing x0
such that f(x0, y0) > f(x, y0) for any x ∈ U0. Define fM(x) = f(x, y0)+

Lfdy(y0, y1) and fm(x) = f(x, y0) − Lfdy(y0, y1); note that fm(x) 6
f(x, y1) 6 fM(x), for any x ∈ X, i. e., the functions model the maxi-
mum increase or decrease of f along the space Y.
Let

U1 = {x ∈ U0 | fM(x) > fm(x0)}

= {x ∈ U0 | f(x, y0) − f(x0, y0) > −2LfdY(y0, y1)}

= (f(·, y0))−1([f(x0, y0) − 2LfdY(y0, y1), f(x0, y0)]),



Bibliography 121

which is a compact set due to the continuity of f. Note that f(x, y1) <
f(x0, y1) for any x in some neighborhood containing U1. Let U2 be
the connected component in the space U1 containing x0, which will
be a compact set too as U0 ⊃ U1 is bounded. Thus, f(·, y1) restricted
to U2 will have a maximum at some point in there, namely x ′. Given
that ∂f∂x(x0, y1) 6= 0, it holds that f(x ′, y1) > f(x0, y1). Note, however,
that x ′ is in the interior of U2:
Assume that x ′ is not in the interior of U2. It is then possible to have
a sequence (xi)

∞
i=1 of points outside U2 that converge to x ′. This will

create a sequence of points (zi = f(xi, y1))
∞
i=1 whose limit is f(x ′, y1).

But this is a contradiction as f(x ′, y1) > f(x0, y1) > zi.
Hence, the maximum x ′ is in the interior of U2, and this implies that
∂f
∂x(x1, y1) = 0. �

Joining this result with Lemma C.12 ensures that a local maximum
in the target task will lie in a neighborhood of the source local maxi-
mum.


	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Abstract
	Abstract

	Estratto
	Estratto

	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Contribution
	1.4 Outline

	2 Reinforcement Learning
	2.1 Theoretical framework: Markov Decision Processes
	2.1.1 The agent: Policies and Markov Reward Processes
	2.1.2 The goal: Cumulative rewards
	2.1.3 Value functions
	2.1.4 Bellman operators and Bellman equations

	2.2 Brief taxonomy of Reinforcement Learning algorithms
	2.2.1 Model requirements: Model-based vs. Model-free
	2.2.2 Policy-based sampling strategy: On-policy vs. Off-policy
	2.2.3 Solution strategy: Policy-based vs. Value-based
	2.2.4 Sample usage: Online vs. Offline

	2.3 Policy gradient
	2.3.1 Finite differences
	2.3.2 Trajectory-based policy gradient
	2.3.3 State-action-based policy gradient
	2.3.4 Natural gradient

	2.4 Policy evaluation
	2.4.1 Monte Carlo estimation
	2.4.2 Temporal Difference estimation
	2.4.3 Policy evaluation with function approximators
	2.4.3.1 The objective functions
	2.4.3.2 Optimization mechanisms
	2.4.3.3 Least Squares Temporal Difference


	2.5 The actor-critic approach
	2.6 Lipschitz Markov Decision Processes

	3 Transfer Learning
	3.1 Transfer Learning concepts for Reinforcement Learning
	3.1.1 Transferable knowledge and a Transfer Learning-Reinforcement Learning taxonomy
	3.1.2 Performance measures for Transfer Learning-Reinforcement Learning algorithms

	3.2 Transfer Learning algorithms in Reinforcement Learning

	4 Transfer Learning approaches for Actor-Critic algorithms
	4.1 The setting: Lipschitz continuous task environments
	4.2 The problem
	4.3 The actor-critic implementation
	4.3.1 The critic
	4.3.2 The actor

	4.4 Transfer with Importance Sampling
	4.4.1 The critic
	4.4.2 The actor

	4.5 Transfer with an optimistic approach
	4.5.1 The critic
	4.5.2 The actor

	4.6 Transfer with a pessimistic approach
	4.6.1 The critic
	4.6.2 The actor


	5 Experiments
	5.1 Task environment: Mountain Car
	5.2 Experimental instances
	5.3 Anlysis of the results

	6 Conclusions and Future work
	Bibliography
	A Importance Sampling
	A.1 Mathematical formulation and properties
	A.2 Importance Sampling in Reinforcement Learning

	B Kantorovich distance and local information
	C Lipschitz continuity
	C.1 Lispchitz continuity of the tuples distribution
	C.2 Lipschitz continuity of the matrices
	C.3 Lipschitz continuity of the policy performance
	C.4 Lipschitz continuity of the performance gradient

	D Other derivations
	D.1 Local Lipschitz continuity and Kantorovich Lipschitz continuity
	D.2 On the objective functions
	D.3 On the proximity of the optimal parameters


