
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

A Hybrid Autotuning Framework for

Performance Optimization of

Heterogeneous Systems

Advisor:
Prof. Cristina Silvano

Co-Advisor:
Prof. Gianluca Palermo
Dr. Amir H. Ashouri

Master Thesis of:
Mahdi Fani-Disfani (841258)

Puya Amiri (835886)

Academic Year 2016-2017

To all those who supported us...

Abstract in English

The increasing complexity of modern multi and manycore hardware design
makes performance tuning of the applications a difficult task. While the
aid of the successful past automatic tuning has been the execution time
minimization, the new performance objectives have emerged comprise of
energy consumption, computational cost, and area.

Automatic Tuning approaches range from the relatively non-intrusive
(e.g., by using compiler options) to extensive code modifications that at-
tempt to exploit specific architectural features. Intrusive techniques often
result in code changes that are not easily reversible, which can negatively
impact readability, maintainability, and performance on different architec-
tures.

Therefore, more sophisticated methods capable of exploiting and identi-
fying the trade-offs among these goals are required. We introduce a Hybrid
Optimization framework to optimize the code for two main mutually com-
peting criteria, e.g., execution time and resource usage in several layers
starting from the original source code to a high-level synthesis level. Several
effective tools and optimizations are involved, i.e., OpenTuner framework for
building domain-specific multi-objective program autotuners, Annotation-
based empirical tuning system called Orio, and a high-level synthesis tool
named LegUp are the optimization components of our framework. The
framework aims at improving both performance and productivity over a
semi-automated procedure.

Our chain supports both architecture-independent and architecture-specific
code optimization and can be adapted to any hardware platform architec-
ture. After identifying the application’s optimization parameters through
OpenTuner, we pass the annotated code as input to Orio which generates
many tuned versions and returns the version with the best performance.
Furthermore, LLVM performs a number of optimization passes according to
the Orio’s result and finally, LegUp will use the LLVM output to synthesis
for a particular target platform adding its optimizations.

We show that our automated approach can improve the execution time
and resource usage on HLS through different optimization levels.

Key Words: Optimization, Performance, Autotuning, HLS, Compiler

I

Sommario

La crescente complessità del moderno design hardware multi e manycore
rende l’ottimizzazione delle prestazioni delle applicazioni un compito diffi-
cile. Mentre l’aiuto della sintonizzazione automatica conclusa con successo
è stata la riduzione dei tempi di esecuzione, sono emersi i nuovi obiettivi di
prestazione che comprendono il consumo di energia, il costo computazionale
e l’area.

Gli approcci di ottimizzazione automatica spaziano dal relativamente
non intrusivo (ad esempio, utilizzando le opzioni del compilatore) alle es-
tese modifiche del codice che tentano di sfruttare specifiche caratteristiche
architettoniche. Le tecniche intrusive spesso portano a modifiche del codice
che non sono facilmente reversibili, il che può avere un impatto negativo sulla
leggibilitÃ , sulla manutenibilità e sulle prestazioni su diverse architetture.

Pertanto, sono necessari metodi più sofisticati in grado di sfruttare e
identificare i trade-off tra questi obiettivi. Introduciamo una struttura di
ottimizzazione ibrida per ottimizzare il codice per due criteri principali che
si confrontano reciprocamente, ad es. Tempo di esecuzione e utilizzo delle
risorse in diversi livelli, a partire dal codice sorgente originale fino ad un liv-
ello di sintesi di alto livello. Sono coinvolti diversi strumenti e ottimizzazioni
efficaci, ovvero il framework OpenTuner per la creazione di autotuner di
programmi multi-obiettivo specifici del dominio, il sistema di ottimizzazione
empirica basato su Annotation chiamato Orio e uno strumento di sintesi
di alto livello denominato LegUp sono i componenti di ottimizzazione del
nostro framework . Il framework mira a migliorare sia le prestazioni che la
produttività attraverso una procedura semi-automatica.

La nostra catena supporta l’ottimizzazione del codice indipendente dall’
architettura e l’architettura specifica e può essere adattata a qualsiasi ar-
chitettura di piattaforma hardware. Dopo aver identificato i parametri di
ottimizzazione dell’applicazione tramite OpenTuner, passiamo il codice an-
notato come input a Orio che genera molte versioni ottimizzate e restituisce
la versione con le migliori prestazioni. Inoltre, LLVM esegue un numero di
passaggi di ottimizzazione in base al risultato di Orio e, infine, LegUp uti-
lizzerà l’output LLVM per la sintesi di una determinata piattaforma target
aggiungendo le sue ottimizzazioni.

Dimostriamo che il nostro approccio automatizzato può migliorare i

III

tempi di esecuzione e l’utilizzo delle risorse su HLS attraverso diversi livelli
di ottimizzazione.

Parole chiave: Ottimizzazione, prestazioni, autotuning, HLS, compilatore

Acknowledgement

This Master of Science thesis has been carried out at the Department of
Electronics and Computer (DEIB) at Politecnico di Milano University. The
work has been performed within the HEAP laboratory of professors Cristina
Silvano and Gianluca Palermo.

Being part of HEAP was a great and an invaluable experience. We take
many memorable and enjoyable moments we spent with our colleagues while
investigating the state-of-the-art problems. We thrived from all the moments
and would like to appreciate all our teammates there.

First and foremost, we would very much like to thank our supervisors at
Politecnico di Milano, Cristina Silvano and Gianluca Palermo who always
had the answer to our questions and guided us towards the right way. Their
constant encouragement and support throughout the project made it possi-
ble for us to complete the work.

We would also like to thank Dr. Amir H. Ashouri, a former Ph.D. student
of HEAP and a current postdoctoral researcher at University of Toronto,
Canada; It was a pleasure having his advice and excellent experiences in the
field of computer architecture especially, compiler field.

Moreover, we would like to appreciate lifetime support of our perfect fami-
lies whom always been there for us during the hard-times and good-times.
Thank you so much for stop-less giving us the positive energy to carry-on
and thanks for urging us to choose this path for our life.

Finally, we would like to thank everyone in Politecnico di Milano University
circle, from our colleagues, secretaries to the professors, who got involved in
such a way to let this checkpoint of our life happens.

Thank you all,

V

Contents

Abstract in English I

Abstract in Italian III

Acknowledgement V

List of Figures IX

List of Tables XIV

Listings XVI

1 Introduction 3

1.1 Motivation . 3

1.2 Contribution . 5

1.3 Thesis Outline . 6

2 Background 9

2.1 High Level Synthesis . 10

2.2 HLS Optimizations . 10

2.2.1 Simple Loop Architecture Variations 11

2.2.2 Optimization: Merging Loops 12

2.2.3 Nested Loops . 13

2.2.4 Optimization: Flattening Loops 14

2.2.5 Pipelining Loops . 15

2.3 External Tools and Frameworks 17

2.3.1 Profiling Tools . 17

2.3.2 Orio . 18

2.3.3 OpenTuner . 20

2.3.4 LegUp . 22

2.4 Target Architectures . 27

2.4.1 MIPS . 27

2.4.2 Emulation Environments 29

2.4.3 Development Board 29

VII

3 State of the Art 33

3.1 Related Works . 37

4 Proposed Methodology 41

4.1 Hybrid Optimization Framework details 42

4.1.1 Tool chain and platforms 42

4.1.2 Code/Application Autotuning 42

4.1.3 HLS Tuning . 47

5 Experimental Results 51

5.1 Introduction . 51

5.1.1 Preliminary Definitions 55

5.2 Block-Wise Matrix Multiply Benchmark 57

5.2.1 Code Annotation . 59

5.2.2 Result Tables . 64

5.2.3 Performance Diagrams 66

5.3 AXPY Benchmark . 72

5.3.1 Result Tables . 72

5.3.2 Performance Diagrams 73

5.4 Matrix Multiply Benchmark 75

5.4.1 Result Tables . 75

5.4.2 Performance Diagrams 76

5.5 DFMUL Benchmark . 78

5.5.1 Result Tables . 79

5.5.2 Performance Diagrams 79

5.6 GSM Benchmark . 82

5.6.1 Result Tables . 83

5.6.2 Performance Diagrams 83

5.7 DFADD Benchmark . 86

5.7.1 Result Tables . 86

5.7.2 Performance Diagrams 88

5.8 ADPCM Benchmark . 90

5.8.1 Result Tables . 91

5.8.2 Performance Diagrams 91

5.9 MIPS Benchmark . 94

5.9.1 Result Tables . 94

5.9.2 Performance Diagrams 95

5.10 DFDIV Benchmark . 97

5.10.1 Result Tables . 97

5.10.2 Performance Diagrams 100

5.11 DFSIN Benchmark . 102

5.11.1 Result Tables . 102

5.11.2 Performance Diagrams 103

5.12 JPEG Benchmark . 105

5.12.1 Result Tables . 105
5.12.2 Performance Diagrams 107

6 Conclusion and Future Works 111
6.1 Conclusion . 111
6.2 Future Works . 112

Bibliography 115

A Mandelbrot 121

B Loop Transformation Modeling 141
B.1 Source to Source Transformation 141
B.2 Theory of code transformation 142

B.2.1 Polyhedral Model for nested loops 142
B.3 Loop Transformation . 144

C Codes 147
C.1 AXPY . 147
C.2 ADPCM . 149
C.3 DFADD . 151
C.4 DFMUL . 156
C.5 DFSIN . 159
C.6 DFDIV . 163
C.7 GSM . 167
C.8 MIPS . 168
C.9 JPEG . 170
C.10 Matrix Multiplication . 173
C.11 Bash Scripts . 175
C.12 LLVM-opt Recipes for HLS 181

List of Figures

1.1 Mandelbrot Area Delay on different HLS approaches 4

1.2 Hybrid Optimization Framework Overview 6

2.1 Extraction of addition loop into datapath and control logi-
chow transformations affect the hardware implementation. . 11

2.2 Consecutive loops for addition and multiplication within a
function . 13

2.3 Merged addition and multiplication loops 14

2.4 Example code for nested loops adding the elements of two
dimensional arrays . 14

2.5 Control flow through the matrix addition, without flattening
(clock cycles in circles) . 16

2.6 Overview of Orio’s code generation and empirical tuning pro-
cess. 18

2.7 Integration of Pluto and Orio 19

2.8 OpenTuner structure . 21

2.9 OpenTuner components . 21

2.10 LegUp Design Flow . 24

2.11 Target System Architecture 24

2.12 Design flow with legup . 26

2.13 MIPS datapath with control unit. 28

2.14 Terasic , DE1 SoC . 30

2.15 Altera’s Cyclon V SoC Architecture 31

3.1 ASV triangles for the conventional and auto-tuned approaches
to programming. 34

3.2 High-level discretization of the autotuning optimization space. 34

3.3 Visualization of three different strategies for exploring the
optimization space: (a) Exhaustive search, (b) Heuristically-
pruned search, and (c) hill-climbing. Note, curves denote
combinations of constant performance. The gold star repre-
sents the best possible performance. 35

XI

3.4 Comparison of traditional compiler and autotuning capabil-
ities. Low-level optimizations include loop transformations
and code generation.†only via OpenMP pragmas. 36

4.1 Methodology Diagram . 43

4.2 HOF Tool Chain . 44

4.3 Methodology Diagram, first section 46

4.4 Methodology Diagram, second section 48

5.1 Brief description and source of the CHStone benchmark pro-
grams [1]. 53

5.2 Source-level characteristics [1]. 54

5.3 The number of states and resource utilization in RTL descrip-
tion [1]. 55

5.4 Pareto Curve . 56

5.5 Graphical interpretation of blocked matrix multiply The in-
nermost (j, k) loop pair multiplies a 1 ∗ bsize sliver of A by a
bsize∗ bsize block of B and accumulates into a 1∗ bsize sliver
of C . 58

5.6 The BWMM Wall-Clock Time diagram of the original code
vs. different optimization levels 66

5.7 BWMM Speedup w.r.t baseline 67

5.8 BWMM Logic Utilization Efficiency w.r.t baseline 67

5.9 Area Delay of baseline vs. HOF 68

5.10 BWMM cache miss rate w.r.t baseline 69

5.11 BWMM different phases speedup 70

5.12 BWMM different phases logic utilization efficiency 71

5.13 BWMM different phases Area Delay 71

5.14 AXPY Speedup diagram . 73

5.15 AXPY logic utilization efficiency diagram 74

5.16 AXPY Area Delay diagram 74

5.17 Matrix Multiply Speedup diagram 76

5.18 Matrix Multiply Utilization diagram 77

5.19 Matrix Multiply Area Delay diagram 77

5.20 DFMUL Profiling. The Call-graph depicting calling relation-
ships and computational needs of each function 78

5.21 DFMUL Speedup diagram . 80

5.22 DFMUL Utilization diagram 81

5.23 DFMUL Area Delay diagram 81

5.24 GSM Profiling. The Call-graph depicting calling relationships
and computational needs of each function 82

5.25 GSM Speedup diagram . 84

5.26 GSM Utilization diagram . 85

5.27 GSM Area Delay diagram . 85

5.28 DFADD Profiling. The Call-graph depicting calling relation-
ships and computational needs of each function. 86

5.29 DFADD Speedup diagram . 88

5.30 DFADD Utilization diagram 89

5.31 DFADD Area Delay diagram 89

5.32 ADPCM Profiling, ADPCM Call-graph depicting calling re-
lationships and computational needs of each function 90

5.33 ADPCM Speedup diagram . 92

5.34 ADPCM Utilization diagram 93

5.35 ADPCM Area Delay diagram 93

5.36 MIPS Profiling, the Call-graph depicting calling relationships
and computational needs of each function 94

5.37 MIPS Speedup diagram . 96

5.38 MIPS Utilization diagram . 96

5.39 MIPS Area Delay diagram . 97

5.40 DFDIV Profiling, The Call-graph depicting calling relation-
ships and computational needs of each function 98

5.41 DFDIV Speedup diagram . 100

5.42 DFDIV Utilization diagram 101

5.43 DFDIV Area Delay diagram 101

5.44 DFSIN Profiling. The call-graph depicting calling relation-
ships and computational needs of each function 102

5.45 DFSIN Speedup diagram . 104

5.46 DFSIN Utilization diagram 104

5.47 DFSIN Area Delay diagram 105

5.48 JPEG Profiling. The Call-graph depicting calling relation-
ships and computational needs of each function 106

5.49 JPEG Speedup diagram . 108

5.50 JPEG Utilization diagram . 108

5.51 JPEG Area Delay diagram 109

6.1 Normalized Execution Time of All Benchmarks w.r.t Baseline 112

6.2 Speedup of all benchmarks besides their corresponding logic
utilization efficiency w.r.t original 113

A.1 Pareto Curve . 124

A.2 Mandelbrot call graph . 126

A.3 Mandelbrot scheduling details 127

A.4 Loop Pipelining . 127

A.5 Loop Pipelining Scheduling 129

A.6 Schedule for loop lp1 in the transformed Mandelbrot code. . . 133

A.7 Mandelbrot Fmax on different HLS approaches 136

A.8 Mandelbrot Wall Clock Time on different HLS approaches . . 137

A.9 Mandelbrot Clock Period on different HLS approaches 137

A.10 Mandelbrot Clock cycles on different HLS approaches 138
A.11 Mandelbrot DSP blocks on different HLS approaches 139
A.12 Mandelbrot Area*Delay on different HLS approaches 139
A.13 Mandelbrot ALMs on different HLS approaches 140

B.1 An Example of Array Access Pattern 143
B.2 An An example of column access pattern. There are 4 pat-

terns with different traverse directions. 143
B.3 An example of diagonal access pattern with slope = 1. There

are 4 patterns with different traverse directions. 145

List of Tables

3.1 Summary of selected related projects using autotuning 37

5.1 OpenTuner in HLS Framework 65

5.2 Pure Hardware AXPY HLS Analysis 72

5.3 Pure Software AXPY HLS Analysis 72

5.4 Hardware/Software AXPY HLS Analysis 73

5.5 Pure Hardware Matrix Multiply HLS Analysis 75

5.6 Pure Software Matrix Multiply HLS Analysis 75

5.7 Hardware/Software Matrix Multiply HLS analysis 76

5.8 Pure Hardware DFMUL HLS Analysis 79

5.9 Pure Software DFMUL HLS Analysis 79

5.10 Hardware/Software DFMUL HLS Analysis 80

5.11 Pure Hardware GSM HLS Analysis 83

5.12 Pure Software GSM HLS Analysis 83

5.13 Hardware/Software GSM HLS Analysis 84

5.14 Pure Hardware DFADD HLS Analysis 87

5.15 Pure Software DFADD HLS Analysis 87

5.16 Hardware/Software DFADD HLS Analysis 87

5.17 Pure Hardware ADPCM HLS Analysis 91

5.18 Pure Software ADPCM HLS Analysis 91

5.19 Hardware/Software ADPCM HLS Analysis 92

5.20 Pure Hardware MIPS HLS Analysis 95

5.21 Pure Software MIPS HLS Analysis 95

5.22 Pure Hardware DFDIV HLS Analysis 99

5.23 Pure Software DFDIV HLS Analysis 99

5.24 Hardware/Software DFDIV HLS Analysis 100

5.25 Pure Hardware DFSIN HLS Analysis 103

5.26 Pure Software DFSIN HLS Analysis 103

5.27 Pure Hardware JPEG HLS Analysis 107

5.28 Pure Software JPEG HLS Analysis 107

A.1 Mandelbrot HLS Analysis . 122

C.1 Three sets of favourable LLVM-opt flags for adpcm 182

XV

C.2 Three sets of favourable LLVM-opt flags for blowfish 183
C.3 Three sets of favourable LLVM-opt flags for dfadd 184

Listings

2.1 Example code for a loop adding the elements of two arrays . 11
5.1 BWMM original code . 58
5.2 Autotuner program for OpenTuner to find optimum parame-

ters for BWMM . 59
5.3 Annotated BWMM . 60
5.4 BWMM Orio transformation specification 61
5.5 BWMM tuned and transformed code 62
A.1 Mandelbrot Kernel . 123
A.2 Transformed Mandelbrot Kernel 130
A.3 Threaded Mandelbrot Kernel 132
C.1 Annotated AXPY code . 147
C.2 AXPY Orio specification code to use for S2S transformation . 147
C.3 Tuned and transformed AXPY code after S2S transformation

by Orio . 148
C.4 Annotated ADPCM code . 149
C.5 ADPCM Orio specification code to use for S2S transformation 149
C.6 Tuned and transformed ADPCM code after S2S transforma-

tion by Orio . 150
C.7 Annotated DFADD code . 151
C.8 DFADD Orio specification code to use for S2S transformation 151
C.9 Tuned and transformed DFADD code after S2S transforma-

tion by Orio . 152
C.10 Annotated DFMUL code . 156
C.11 DFMUL Orio specification code to use for S2S transformation 156
C.12 Tuned and transformed DFMUL code after S2S transforma-

tion by Orio . 157
C.13 Annotated DFSIN code . 159
C.14 DFSIN Orio specification code to use for S2S transformation 160
C.15 Tuned and transformed DFSIN code after S2S transformation

by Orio . 160
C.16 Annotated DFDIV code . 163
C.17 DFDIV Orio specification code to use for S2S transformation 163
C.18 Tuned and transformed DFDIV code after S2S transforma-

tion by Orio . 164

XVII

C.19 Annotated GSM code . 167
C.20 GSM Orio specification code to use for S2S transformation . 167
C.21 Tuned and transformed GSM code after S2S transformation

by Orio . 168
C.22 Annotated MIPS code . 169
C.23 MIPS Orio specification code to use for S2S transformation . 169
C.24 Tuned and transformed MIPS code after S2S transformation

by Orio . 169
C.25 Annotated JPEG code . 170
C.26 JPEG Orio specification code to use for S2S transformation . 171
C.27 Tuned and transformed JPEG code after S2S transformation

by Orio . 171
C.28 Annotated Matrix Multiplication code 173
C.29 Matrix Multiplication Orio specification code to use for S2S

transformation . 173
C.30 Tuned and transformed Matrix Multiplication code after S2S

transformation by Orio . 174
C.31 GUI and command line tool for the main chain tests 175
C.32 GProf profiler . 178
C.33 Perf profiler . 179
C.34 Valgrind profiler . 180

1

2

Chapter 1

Introduction

The performance of a software application crucially depends on the quality
of its source code. The increasing complexity and multi/many-core nature of
hardware design have transformed code generation, whether done manually
or by a compiler, into a complex, time-consuming, and error-prone task
which additionally suffers from a lack of performance portability [2].

To mitigate these issues, a new research field, known as autotuning,
has gained increasing attention. Autotuners are an effective approach to
generate high-quality portable code. They produce highly efficient code
versions of libraries or applications by generating many code variants which
are evaluated on the target platform, often delivering high-performance code
configurations which are unusual or not intuitive [2].

1.1 Motivation

Earlier autotuning approaches were mainly targeted at improving the exe-
cution time of a code [3]. However, recently other optimization criteria such
as energy consumption or computing costs are gaining interest. In this new
scenario, a code configuration that is found to be optimal for low execution
time might not be optimal for another criterion or vice-versa.

Therefore, there is no single solution to this problem that can be con-
sidered optimal, but a set, namely the Pareto set, of solutions (i.e., code
configurations) representing the optimal trade-off among the different opti-
mization criteria. Solutions within this set are said to be non-dominated:
any solution within it is not better than the others for all the considered
criteria.

This multi-criteria scenario requires a further development of autotuners,
which must be able to capture these trade-offs and offer them using either the
whole Pareto set or a solution within it. Although there is a growing amount
of related work considering the optimization of several criteria [4, 5, 6, 7, 8],
most of them consider two criteria simultaneously at most, and many fail in

capturing the trade-off among the objectives.
There is two factor in common to most of these autotuning methods

and frameworks, first is that they focus exclusively on a single optimization
technique and objective such as execution time, memory behavior or resource
consumption. Only little support exists for code optimizers that deal with
trade-offs between multiple, conflicting goals. Second, they do not consider
the effect of optimization mixture in different application execution levels
from software code to hardware synthesis; in particular, the effect of loop
transformation on HLS which has been highlighted as the most effective
optimization in Mandelbrot set [9] benchmark. The Mandelbrot set and the
result of performance evaluation of different possible HLS optimizations is
extensively described in Appendix A.

Figure A.12 shows a key plot that motivates the proposed framework
in this thesis. Taking into account the importance of Area-Delay (indicat-
ing the combination of execution time an resource consumption), the figure
shows that Loop Transformations or generally Code Transformations yields
the best Area-delay product meaning that the concept of source to source
compilation to reform the programming structure not only affects in the
context of sequential software but also extremely impacts on High-Level
Synthesis and subsequent circuitries in terms of area and speed.

Figure 1.1: Mandelbrot Area Delay on different HLS approaches

In this thesis, we introduce a novel multi-objective hybrid optimization
framework to optimize two different criteria: execution time, resource usage.
The basic idea is to integrate different tools and semi-automatically find an
effective set of optimizations with proper parameter settings (e.g., tile sizes

4

and unrolling factors) for individual code regions. It is based on the ap-
plication parameter tuning, Source-to-Source transformation, compiler and
High-Level Synthesis optimizations. We examine the obtained results in
detail by analyzing and illustrating the interaction between software opti-
mizations and hardware synthesis. Our approach is generic and can be ap-
plied to arbitrary transformations and parameter settings. We demonstrate
our implementation by exploring the trade-off between execution time and
resource efficiency when tuning loop transformations applied.

1.2 Contribution

Our method, which is based on a combination of software level optimizations
and hardware level optimization techniques, is described in chapter 3. In
this section, we illustrate an overview of our solution, highlighting the five
main components: the code analyzer and profiler, application parameter
autotuning, source-to-source code transformation, compiler Optimizations
and the HLS optimization techniques. Each of them can be individually
customized or exchanged by alternative implementations.

The labels in Figure 1.2 follow the processing of a program within our
framework. An input code will be loaded by our Profiler Valgrind, analyzed
and autotuned by application parameter autotuner. Then annotated by S2S
coded transformer Orio, transformed and passed to our compiler LLVM to
optimize and used as the input of the HLS with further optimization before
synthesis.

For the region of the hot function which is the most time intensive part
of the application found by the profiler, the application parameter autotuner
determines the best value for the candidate parameters. The autotuned code
will be annotated and transformed by the source-to-source code transformer
which describes generic sequences of code transformations using unbound
parameters for tunable properties (e.g., tile sizes, unrolling factors or vec-
torization). The associated transformation skeletons and some (optional)
parameter constraints, will be evaluated (executed) on the target system
automatically by the transformer and the best transformation with chosen
parameter configuration is passed on to the compiler. At this point, the com-
piler conducts code optimization by using efficient compiler flags iteratively
selecting standard sets of flags. After the compilation flow, corresponding to
the target architecture for synthesis, some High-Level Synthesis optimiza-
tions will be applied to the code through synthesis tool.

In the end, our framework will generate the report including details
regarding the represented trade-off between execution time and resource us-
age of the input application with the optimized code and its optimization
configuration in each step which is application specific and architectural-
dependent. However, the ultimate method to utilize automatically all the

5

Figure 1.2: Hybrid Optimization Framework Overview

steps of the framework and gained the opportunity of dynamically customiz-
ing attributes and using better strategy to choose compiler flags like machine
learning is beyond the scope of this thesis and left for future research.

The major contributions of this work include:

• The design of a novel hybrid optimization framework facilitating the
consideration of multiple conflicting criteria simultaneously by passing
through a multi-objective optimization chain

• The combination of the application parameter tuning and the search
for optimal loop transformation to minimize execution time and re-
source usage efficiency

• The development of a hybrid optimization framework capable of solv-
ing the combined problem using an effective number of optimization
steps

1.3 Thesis Outline

The thesis is structured as follows:

6

• In Chapter 2 there is the description of the background and the exter-
nal tools and frameworks on which this work is based on. It introduces
related concepts and works, and target architecture of this thesis.

• Chapter 3 gives an overview of the state-of-the-art regarding method-
ologies and techniques developed in this thesis, focusing on the de-
scription of the OpenTuner autotuner, Orio S2S transformer, and the
LegUp HLS framework.

• In Chapter 4 there is the detailed description of the framework im-
plemented, in terms of components and behavior. We describe the
methodology proposed step by step and the logic structure developed
for building Hybrid Optimization Framework.

• In Chapter 5 contains all the experiments we made to validate our
proposed methodology and to gather information on the framework
behavior.

• Chapter 6 contains the conclusions of this work, with the description
of both benefits and limitations, and the list of possible future works
that can be done in order to improve and expand this thesis.

• Appendix A elaborates Mandelbrot algorithm and evaluates the per-
formance of different synthesis approaches. The results explain the
main motivation behind proposing the framework.

• Appendix B is about modeling the transformations. As the PluTo
integrated into Orio implements loop transformations based on poly-
hedral modeling, also taking into account various loop optimizations
that can be enabled by LLVM opt command, in this appendix we
describe the theory of source code optimization techniques.

• Appendix C covers almost all the codes used for experiments, exclud-
ing the unmodified baselines1. There you can find annotated codes,
specifications, Tuned codes and framework scripts.

Finally, there is the bibliography.

1Original unmodified codes

7

8

Chapter 2

Background

The size and complexity of scientific computations are increasing at least
as fast as the improvements in processor technology. Programming such
scientific applications are hard, and optimizing them for high performance
is even harder. This situation results in a potentially large gap between the
achieved performance of applications and the available peak performance,
with many applications achieving 10 percent or less of the peak. A greater
concern is the inability of existing languages, compilers, and systems to de-
liver the available performance for the application through fully automated
code optimizations.

Delivering performance without degrading productivity is crucial to the
success of scientific computing. Scientific code developers generally attempt
to improve performance by applying one or more of the following three
approaches: manually optimizing code fragments; using tuned libraries for
key numerical algorithms; and, less frequently, using compiler-based source
transformation tools for loop-level optimizations. Manual tuning is time-
consuming and impedes readability and performance portability.

Tuned libraries often deliver great performance without requiring signif-
icant programming effort, but then can provide only limited functionality.
General-purpose source transformation tools for performance optimizations
are few and have not yet gained popularity among computational scientists,
at least in part because of poor portability and steep learning curves.

Profiling could be an alternative solution to fill those gaps and is achieved
by instrumenting either the program source code or its binary executable
form using a tool called a profiler (or code profiler). Profilers may use a num-
ber of different techniques, such as event-based, statistical, instrumented,
and simulation methods.

2.1 High Level Synthesis

” High-level synthesis raises the design abstraction level and allows rapid
generation of optimized RTL hardware for performance, area, and power
requirements ...”

Tim Cheng

High-level synthesis (HLS), sometimes referred to as C synthesis, electronic
system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis,
is an automated design process that interprets an algorithmic description
of a desired behavior and creates digital hardware that implements that
behavior

High-level synthesis (HLS) raises the level of abstraction for hardware
design by allowing software programs written in a standard language to be
automatically compiled into hardware. First proposed in the 1980s, HLS
has received renewed interest in recent years, notably as a design methodol-
ogy for field-programmable gate arrays (FPGAs). Although FPGA circuit
design historically has been the realm of hardware engineers, HLS offers
a path toward making FPGA technology accessible to software engineers,
where the focus is on using FPGAs to implement accelerators that perform
computations with higher throughput and energy efficiency relative to stan-
dard processors. We believe, in fact, that FPGAs (rather than ASICs) will
be the vehicle through which HLS enters the mainstream of IC design, ow-
ing to their reconfigurable nature. With custom ASICs, the silicon area gap
between human-designed and HLS-generated RTL leads directly to (poten-
tially) unacceptably higher IC manufacturing costs, whereas with FPGAs,
this is not the case, as long as the generated hardware fits within the avail-
able target device.

2.2 HLS Optimizations

How code transformations affect the hardware implementation?

Loops are used extensively in software programming, and constitute a
very succinct and natural method of expressing operations that are repet-
itive in some way. They are also used in a similar manner in HDLs, for
example, to iteratively instantiate and connect circuit components. How-
ever, an important difference is that the designer can prompt the loop(s)
to be synthesized in different ways. This contrasts with the use of loops
in HDL, where code expressing loops is directly converted into hardware,
usually resulting in prescribed and fixed architectures.

Usually, the repetitive operations described by the loop are realized by a
single piece of hardware implementing the body of the loop. To take a simple

10

illustrative example, if a loop was designed to add the individual elements
of two, 12 element arrays, then conceptually the implementation would in-
volve a single adder (the body of the loop), shared 12 times according to
the number of loop iterations.There is some latency associated with each
iteration of the loop, and in this case, the latency is affected by interactions
with the memory interfaces at the inputs and output of the function.

Additional clock cycles are also required for entering and exiting the
loop. Code for this example is provided in 2.1. Analysis of HLS synthesis
with default settings shows that the overall latency is 26 clock cycles: 2
cycles each for 12 iterations (including reading the inputs from memory,
adding, and writing the output to memory), and a further two clock cycles
for entering and exiting the loop. Execution is illustrated in Figure 2.1.

Listing 2.1: Example code for a loop adding the elements of two arrays

void add_array (short c[12], short a[12], short b[12])
{

short j;
// loop variable

add_loop: for (j=0;j<12;j++) {
c[j] = a[j] + b[j];

}
}

Figure 2.1: Extraction of addition loop into datapath and control logichow transforma-
tions affect the hardware implementation.

2.2.1 Simple Loop Architecture Variations

The default, rolled loop implementation may not always be desirable, but
there are alternatives for implementing a loop

11

• Unrolled: In a rolled implementation, a single instance of the hard-
ware is inferred from the loop body and shared to the maximum extent.
Unrolling a loop means that instead the hardware inferred from the
loop body is created up to N times, where N is the number of loop
iterations. In practice, the number of instances may be lower than N
if other limiting factors are identified in the design, such as memory
operations. The clear disadvantage of the unrolled version is that it
consumes much larger area on the device than the rolled design, but
the advantage is increased throughput.

• Partially unrolled This constitutes a compromise between rolled and
unrolled and is typically used when a rolled implementation does not
provide high enough throughput. If a rolled architecture represents
minimal hardware cost but maximal time sharing (lowest through-
put), and an unrolled architecture represents maximal hardware cost
but minimal sharing (highest throughput), then we may try to find a
different balance between the two. Control is exerted by the use of
directives, and a number of different positions in the trade-off may be
possible.

With reference to the upper section of 2.1, which depicts a rolled ar-
chitecture, fully or partially unrolling the loop would cause the number of
datapath resources (adders) to increase, but to be shared to a lesser extent.
Meanwhile, in the lower section of the diagram, the large, central state con-
stituting the addition of array elements would require fewer clock cycles to
complete. When fully unrolled, the implementation effectively does not con-
tain a loop, and as a result, the loop entry and exit clock cycles are saved,
too.

With these observations in mind, the decision to select a rolled, unrolled,
or partially unrolled implementation for the loop will be based on the specific
requirements of the application, particularly in terms of the target through-
put and any constraint on area utilization that may apply.

2.2.2 Optimization: Merging Loops

In some cases, there might be two loops occurring one after the other in the
code. For instance, the addition loop in the example of 2.1 might be followed
by a similar loop which multiplies the elements of the two arrays. Assuming
that the loops are both rolled (according to the default mode), a possible
optimization, in this case, would be to merge the two loops, such that there
is only one loop, with both the addition and multiplication operations being
conducted within the single loop body.

The advantage of merging loops may not be immediately obvious, but
in fact, it relates to the control aspect of the design. Control is realized in
the form of a Finite State Machine (FSM), with each loop corresponding

12

Figure 2.2: Consecutive loops for addition and multiplication within a function

to at least one state; thus the FSM can be simplified due to the merging
of loops, as this results in fewer loops overall, and thus fewer FSM states.
This is demonstrated by the code examples in Figures 2.2 and 2.3. The first
example shows two separate loops, one each for addition and multiplication
of the arrays, while the second shows the effect of merging the loops to create
a single loop.

The add loop represents 12 iterations of an addition operation (which
takes 2 clock cycles), while the mult loop represents 12 iterations of a mul-
tiplication operation (which takes 4 clock cycles). Therefore, the overall
latencies of the two loops are 24 and 48 clock cycles, respectively. Merging
the loops has the effect that the latency of the new, combined loop reduces
the length of the original two loops, i.e. 48 clock cycles. One further clock
cycle is saved due to the removed loop transition, i.e. the ’exit/enter’ state
in Figure 2.2.

2.2.3 Nested Loops

Another common configuration is to nest loops, i.e., place one loop inside
another. There may even be multiple levels of nesting. To give an example
of a 2-level nested loop, suppose we extend our array addition example from
linear arrays to 2-dimensional arrays. Mathematically, this is equivalent to
adding two matrices, as shown in 2.1.f00 f01 f02 f03

f10 f11 f12 f13
f20 f21 f22 f23

 =

d00 d01 d02 d03
d10 d11 d12 d13
d20 d21 d22 d23

+

e00 e01 e02 e03
e10 e11 e12 e13
e20 e21 e22 e23

(2.1)

13

Figure 2.3: Merged addition and multiplication loops

Figure 2.4: Example code for nested loops adding the elements of two dimensional
arrays

Now, in order to add the arrays, we must iterate through the rows, and
for each row, iterate through the columns, adding together the two values
for each array element. Coding the matrix addition operation requires an
outer and an inner loop to cycle through the rows and columns, respectively,
as shown by the code example in 2.4. According to 2.1, there are 3 rows
and 4 columns, and this determines the limits of the nested loops (note that
indexing starts as zero, as per the usual convention). Extending this idea,
it would be possible to work with three dimensional arrays, or even higher
dimensions, by increasing the levels of nesting in the loop structure.

2.2.4 Optimization: Flattening Loops

In the case of nested loops, there is an option to perform ’flattening’. This
means that the loop hierarchy is effectively removed during high-level syn-
thesis while preserving the algorithm, i.e. all of the operations performed

14

by the loop(s). The advantage of flattening is similar to merging: the ad-
ditional clock cycles associated with transitioning into or out of a loop are
avoided, meaning that the overall duration of algorithm execution reduces,
thus improving the achievable throughput.

In order to explain flattening in further detail, it is necessary to clarify
the terms loop and loop body. By loop, we refer to an entire code structure
of a set of statements repeated a defined number of times. The statements
inside the loop, i.e. the statements that are repeated, are the loop body.
For instance, column loop is a loop, and the statements contained within
column loop correspond to the loop body.

When loops are nested, and again taking the example of a 2-level nested
structure, the outer loop body contains another loop, i.e. the inner loop.
The outer loop body (including the inner loop) is executed a certain number
of times; for instance, row loop has 3 repetitions in the example of Figure
2.4, and hence there are 3 executions of the inner loop, column loop. Each
execution of the inner loop involves repeating the inner loop body a specified
number of times, as well: in our example, a statement to calculate the matrix
element f [j][k] is executed 4 times, where j is the row index and k is the
column index.

The overhead of loop transitioning means that two additional clock cycles
are required each time the inner loop is executed, i.e. one to enter the inner
loop, and one to exit from it.

To clarify this point, a diagram depicting the control flow for our ma-
trix addition example, and associated clock cycles, is provided in 2.5. This
represents the original loop structure. The process of flattening ’unrolls’ the
inner loop, and as a consequence, reduces the number of clock cycles asso-
ciated with transitioning into and out of loops; specifically, the ’enter inner’
and ’exit inner’ states in 2.5 are removed. These would have been repeated
3 times, hence 6 clock cycles are saved in total in this case.

In our simple 3 × 4 matrix addition example, the saving equates to 6
clock cycles, but in other examples, this could be considerably higher (in
particular where the outer loop iterates many times, or there are several
layers of nesting), and thus there is a clear motivation to flatten loops.
Similar to merging of loops, flattening can be achieved by a directive and
does not involve explicit unrolling of the loop by manually changing the code.
However, depending on its initial form, some manual restructuring may also
be required in order to achieve a loop structure optimal for flattening.

2.2.5 Pipelining Loops

The direct interpretation of a loop written in C code is that executions of
the loop occur consecutively, i.e. each loop iteration cannot begin until the
previous one has completed. In hardware terms, this translates to a single
set of hardware (as inferred from the loop body) that is capable of executing

15

Figure 2.5: Control flow through the matrix addition, without flattening (clock cycles
in circles)

the operations of only one loop iteration at any particular instant, and which
is shared over time according to the number of loop iterations. Throughput
is limited when a set of operations are grouped together into a processing
stage. In the case of loops, the loop body (i.e. the set of repeated operations)
forms such a stage, and without pipelining, this would result in all stages
operating in a sequential manner, and within them, all operations executing
in a sequential manner. In effect, all operations from all iterations of the
loop body would occur one after the other. The total number of clock cycles
to complete the execution of a loop, N loop, would therefore be:

Nloop = (J ×Nbody) + Ncontrol (2.2)

where J is the number of loop iterations, N+body is the number of clock
cycles to execute all operations in the loop body, and N control represents
the overhead of transitioning into and out of the loop.

The insertion of pipelining into the loop means that registers separate
the implemented operators within the loop body. Given that the loop body
is repeated several times, this carries the implication that operations within
loop iteration j + 1 can commence before those of the loop iteration j have
completed. In fact, at any instant, operations corresponding to several dif-
ferent iterations of the loop may be active.

As a consequence of pipelining the loop, the hardware required to imple-
ment the loop body is more fully utilized, and loop performance is improved
in terms of both throughput and latency. The effect of adding a pipelining
directive can, therefore, be considerable, especially where there are multiple

16

operations within the loop body, and many iterations of the loop are per-
formed. When working with nested loops, it is useful to consider at which
level of hierarchy pipelining should be applied. Pipelining at a certain level of
the hierarchy will cause all levels below (i.e. all nested loops) to be unrolled,
which may produce a more costly implementation than intended. There-
fore, a good balance between performance and resource utilization may be
achieved by pipelining only at the level of the innermost loop (for instance,
column loop in Figure 2.5).

For more information about theoretical and mathematical fundamentals of
loop transformations, based on the polyhedral model, refer to Appendix B.

2.3 External Tools and Frameworks

2.3.1 Profiling Tools

As indicated in chapter 4, to find the critical section of the code which is
considered as computational or memory intensive should be identified before
applying any optimizations. it is crucial to tune, transform and modify the
section of the code which impacts critically on computations, CPU inter-
rupts, and memory accesses.

Throughout this research different profiling tools got tested to obtain
required performance metrics. Amongst them three candidates were Perf,
GProf and Valgrind. As Perf and GProf were unable to measure perfor-
mance metrics for small programs and also due to compatibility problems,
we selected Valgrind as the main profiling tool in the framework. We also
wrote three scripts to automate profiling via different tools. To pinpoint
the critical section of the code, three execution features are taken into ac-
count, the execution time of a particular function,the number of the times a
function is called and (Execution time×#function call). Alongside these
performance measurements, we also investigate call graphs, generated by
Callgrind to decide about the hot function of the code.

Framework’s high-level Profiler

Kcachegrind is the highest level profiler integrated into the framework which
is actually a profile data visualization. Callgrind uses runtime instrumen-
tation via the Valgrind framework for its cache simulation and call-graph
generation. This way even shared libraries and dynamically opened plug-
ins can be profiled. The data files generated by Callgrind can be loaded
into Kcachegrind for browsing the performance results. All experiments
and benchmarks in this thesis are profiled by Kcachegrind. For each code
the above-mentioned performance measurements were captured, meaning
that we had at most three candidates function to apply software optimiza-

17

tions, code transformation and hardware accelerator selection for HW/SW
designs(Co-designs).

“In software engineering, profiling (”program profiling”, ”software profiling”)
is a form of dynamic program analysis that measures, for example, the space
(memory) or time complexity of a program, the usage of particular instruc-
tions, or the frequency and duration of function calls. Most commonly, pro-
filing information serves to aid program optimization”

2.3.2 Orio

Orio [10] is an empirical performance-tuning system that takes annotated
C source code as input, generates many optimized code variants of the an-
notated code, and empirically evaluates the performance of the generated
codes, ultimately selecting the best-performing version to use for production
runs. Orio also supports automated validation by comparing the numerical
results of the multiple transformed versions.

The Orio annotation approach differs from existing annotation- and
compiler-based systems in the following significant ways. First, through de-
signing an extensible annotation parsing architecture, it is not committing to
a single general-purpose language. Thus, Orio can define annotation gram-
mars that restrict the original syntax, enabling more effective performance
transformations (e.g., disallowing pointer arithmetic in a C-like annotation
language); furthermore, it enables the definition of new high-level languages
that retain domain-specific information normally lost in low-level C or For-
tran implementations. This feature, in turn, expands the range of possible
performance-improving transformations.

Figure 2.6: Overview of Orio’s code generation and empirical tuning process.

Second, Orio was conceived and designed with the following requirements
in mind: portability (which precludes extensive dependencies on external
packages), extensibility (new functionality must require little or no change

18

to the existing Orio implementation, and interfaces that enable integration
with other source transformation tools must be defined), and automation
(ultimately Orio should provide tools that manage all the steps of the per-
formance tuning process, automating each step as much as possible). Third,
Orio is usable in real scientific applications without requiring reimplemen-
tation. This ensures that the significant investment in the development of
complex scientific codes is leveraged to the greatest extent possible.

Figure 2.6 shows a high-level graphical depiction of the code generation
and tuning process implemented in Orio. Orio can be used to improve per-
formance by source-to-source transformations such as loop unrolling, loop
tiling, and loop permutation. The input to Orio is C code containing struc-
tured comments that include a simplified expression of the computation, as
well as various performance-tuning directives. Orio scans the marked-up
input code and extracts all annotation regions. Each annotation region is
then processed by transformation modules. The code generator produces
the final C code with various optimizations that correspond to the specified
annotations. Unlike compiler approaches, we do not implement a full-blown
C compiler; rather, we use a pre-compiler that parses only the language-
independent annotations.

Figure 2.7: Integration of Pluto and Orio

Orio can also be used as an automatic performance-tuning tool. The code
transformation modules and code generator produce an optimized code ver-
sion for each distinct combination of performance parameter values. Then
each optimized code version is executed and its performance evaluated. Af-
ter iteratively evaluating all code variants, the best-performing code is picked
as the final output of Orio. Because the search space of all possible opti-
mized code versions can be huge, a brute-force search strategy is not always
feasible. Hence, Orio provides various search heuristics for reducing the size
of the search space and thus the empirical testing time.

19

A number of source-to-source transformation tools for performance opti-
mization exist. Using these tools to achieve (near) optimal performance on
different architectures, however, is still a nontrivial task that requires sig-
nificant architectural and compiler expertise. Orio has been extended with
an external transformation program, called Pluto [11]. This integration also
demonstrates the easy extensibility of Orio and the ability to leverage other
source transformation approaches.

Pluto is a source-to-source automatic transformation tool aimed at op-
timizing a sequence of nested loops for data locality and coarse-grained par-
allelism simultaneously. Pluto employs a polyhedral model of arbitrary loop
nests, where the dynamic instance (iteration) of each statement is viewed as
an integer point in a well-defined space called the statement’s polyhedron.

This statement representation and a precise characterization of data de-
pendencies enable Pluto to construct mathematically correct complex loop
transformations. Pluto’s polyhedral-based transformations result in im-
proved cache locality and loops parallelized for multi-core architecture. Fig-
ure 2.7 outlines the overall structure of the Pluto-Orio integrated system,
which is implemented as a new optimization module in Orio.

2.3.3 OpenTuner

OpenTuner [12] is a framework for building domain-specific program au-
totuners. OpenTuner features an extensible configuration and technique
representation able to support complex and user-defined data types and
custom search heuristics. It contains a library of predefined data types and
search techniques to make it easy to setup a new project. Thus, OpenTuner
solves the custom configuration problem by providing not only a library of
data types that will be sufficient for most projects, but also extensible data
types that can be used to support more complex domain specific represen-
tations when needed. A core concept in OpenTuner is the use of ensembles
of search techniques. Figure 2.8 illustrates the structure of OpenTuner.

Many search techniques (both built-in and user-defined) are run at the
same time, each testing candidate configurations. Techniques which perform
well by finding better configurations are allocated larger budgets of tests
to run, while techniques which perform poorly are allocated fewer tests or
disabled entirely. Techniques are able to share results using a common
results database to constructively help each other in finding an optimal
solution.

Algorithms add results from other techniques as new members of their
population. To allocate tests between techniques we use an optimal solution
to the multi-armed bandit problem using the area under the curve credit
assignment. Ensembles of techniques solve the large and complex search
space problem by providing both robust solutions to many types of large
search spaces and a way to seamlessly incorporate domain-specific search

20

Figure 2.8: OpenTuner structure

techniques.

Figure 2.9: OpenTuner components

Figure 2.9 provides an overview of the major components in OpenTuner.
The search process includes techniques, which use the user-defined configu-
ration manipulator in order to read and write configurations. The measure-
ment processes evaluate candidate configurations using a user-defined mea-
surement function. These two components communicate exclusively through
a results database used to record all results collected during the tuning pro-
cess, as well as providing the ability to perform multiple measurements in
parallel.

21

OpenTuner and HLS

As already mentioned in methodology description, the two-step code mod-
ifications impact positively on different design methodologies. Application
auto-tuning increase the multiplication block size which makes the corre-
sponding synthesized hardware make use of LEs more efficiently. Depending
on the type of FPGA this size approaches to an optimum value which makes
the multiplication outperform both in HW and SW.

It is important to understand the differences between Orio and Open-
Tuner. Orio is a source to source compiler which also reports some opti-
mum compiler flags. But OpenTuner use application parameter tuning, it
can tune some algorithmic parameters embedded inside the code and it is
independent of the source to source compilation flow.

2.3.4 LegUp

LegUp [13] is an open-source high-level synthesis (HLS) tool that accepts a
C program as input and automatically synthesizes it into a hybrid system.
The hybrid system comprises an embedded processor and custom accel-
erators that realize user-designated compute-intensive parts of the program
with improved throughput and energy efficiency.Embedded system designers
can achieve energy and performance benefits by using dedicated hardware
accelerators.

However, implementing custom hardware accelerators for an application
can be difficult and time intensive. LegUp is an open-source high-level syn-
thesis framework that simplifies the hardware accelerator design process.
With LegUp, a designer can start from an embedded application running on
a processor and incrementally migrate portions of the program to hardware
accelerators implemented on an FPGA. The final application then executes
on an automatically-generated software/hardware co-processor system.

LegUp includes a soft processor because not all program segments are
appropriate for hardware implementation. Inherently sequential computa-
tions are well-suited for software (e.g. traversing a linked list); whereas,
other computations are ideally suited for hardware (e.g. addition of integer
arrays). Incorporating a processor also offers the advantage of increased
high-level language coverage.

Program segments that use restricted C language constructs can execute
on the processor (e.g. recursion). LegUp is written in modular C++ to
permit easy experimentation with new HLS algorithms. It leverages the
state-of-the-art LLVM (low-level virtual machine) compiler framework for
high-level language parsing and its standard compiler optimizations [14].

22

LegUp Design flow

The LegUp design flow comprises first compiling and running a program on
a standard processor, profiling its execution, selecting program segments to
target to hardware, and then re-compiling the program to a hybrid hard-
ware/software system.

Figure 2.10 illustrates the detailed flow. Referring to the labels in the fig-
ure, at step 1, the user compiles a standard C program to a binary executable
using the LLVM compiler. At 2, the executable is run on an FPGA-based
MIPS processor. It makes use of Tiger MIPS processor from the Univer-
sity of Cambridge [University of Cambridge 2010], but it is also possible to
migrate to other processors such as ARM core.

The MIPS processor has been augmented with extra circuitry to profile
its own execution. Using its profiling ability, the processor is able to identify
sections of program code that would benefit from hardware implementation,
improving program throughput and power. Specifically, the profiling results
drive the selection of program code segments to be re-targeted to custom
hardware from the C source. Having chosen program segments to target
custom hardware, at step 3 LegUp is invoked to compile these segments to
synthesizable Verilog RTL.

Presently, LegUp HLS operates at the function level: entire functions are
synthesized to hardware from the C source. Moreover, if a hardware function
calls other functions, such called functions are also synthesized to hardware.
In other words, we do not allow a hardware-accelerated function to call a
software function. The RTL produced by LegUp is synthesized to an FPGA
implementation using standard commercial tools at step 4. As illustrated in
the figure, LegUp’s hardware synthesis and software compilation are part of
the same LLVM-based compiler framework.

In step 5, the C source is modified such that the functions implemented
as hardware accelerators are replaced by wrapper functions that call the
accelerators (instead of doing computations in software). This new modified
source is compiled to a MIPS binary executable. Finally, in step 6 the hybrid
processor/accelerator system executes on the FPGA.

Figure 2.11 elaborates on the target system architecture. The processor
connects to one or more custom hardware accelerators through a standard
on-chip interface. As our initial hardware platform is based on Cyclone II
FPGA, the Altera Avalon interface for processor/accelerator communication
is used. A shared memory architecture is used, with the processor and ac-
celerators sharing an on FPGA data cache and off-chip main memory. The
on-chip cache memory is implemented using block RAMs within the FPGA
fabric (M4K blocks on Cyclone II). Access to memory is handled by a mem-
ory controller. The architecture in Figure 2.11 allows processor/accelerator
communication across the Avalon interface or through memory.

23

Figure 2.10: LegUp Design Flow

Figure 2.11: Target System Architecture

24

LegUp High-Level Hardware Synthesis

High-level synthesis has traditionally been divided into three steps:

• allocation

• scheduling

• binding

Allocation determines the amount of hardware available for use (e.g., the
number of adder functional units), and also manages other hardware con-
straints (e.g., speed, area, and power). Scheduling assigns each operation
in the program being synthesized to a particular clock cycle (state) and
generates a finite state machine.

Binding assigns an application operation to specific hardware units. The
decisions made by binding may imply sharing functional units between op-
erations, and share registers/memories between variables. All the above-
mentioned stages are integrated into LegUp procedures.

The LegUp open-source HLS tool is implemented within the LLVM com-
piler framework, which is used in both industry and academia. LLVM’s
front-end, clang, parses the input C source and translates it into LLVM’s
intermediate representation (IR). The IR is essentially machine-independent
assembly code in static-single assignment (SSA) form, composed of simple
computational instructions (e.g., add, shift, multiply) and control-flow in-
structions (e.g., branch). LLVM’s opt tool performs a sequence of compiler
optimization passes on the program’s IR, each such pass directly manipu-
lates the IR, accepting an IR as input and producing a new/optimized IR
as output.

A high-level diagram of the LegUp Hardware synthesis flow is shown in
Figure 2.12. The LegUp HLS tool is implemented as back-end passes of
LLVM that are invoked after the standard compiler passes. LegUp accepts
a program’s optimized IR as input and goes through the four stages shown
in Figure 2.12 (1) Allocation, (2) Scheduling, (3) Binding, and (4) RTL
generation) to produce a circuit in the form of synthesizable Verilog HDL
code.

The allocation stage allows the user to provide constraints to the HLS
algorithms, as well as data that characterizes the target hardware. Examples
of constraints are limits on the number of hardware units of a given type that
may be used, the target circuit critical path delay, and directives pertaining
to loop pipelining and resource sharing. The hardware characterization data
specifies the speed (critical path delay) and area estimates (number of FPGA
logic elements) for each hardware operator (e.g., adder, multiplier) for each
supported bandwidth (typically 8, 16, 32, and 64 bit). The characterization
data is collected only once for each FPGA target family using automated

25

Figure 2.12: Design flow with legup

scripts. The scripts synthesize each operation in isolation for the target
FPGA family to determine their speed and area.

At the scheduling stage, each operation in the program (in the LLVM
IR) is assigned to a particular clock cycle (state) and an FSM is generated.
The LegUp scheduler, based on the SDC formulation, operates at the basic
block level, exploiting the available parallelism between instructions in a
basic block. A basic block is a sequence of instructions that has a single
entry and exit point.

The scheduler performs operation chaining between dependent combina-
tional operations when the combined path delay does not exceed the clock
period constraint-chaining refers to the scheduling of dependent operations
into a single clock cycle. Chaining can reduce hardware latency (number
of cycles for execution) and save registers without impacting the final clock
period.

The binding stage assigns operations in the program to specific hardware
units. When multiple operators are assigned to the same hardware unit,
multiplexers are generated to facilitate the sharing. Multiplexers require a
significant amount of area when implemented in an FPGA logic fabric.

Consequently, there is no advantage to sharing all but the largest func-
tional units, namely multipliers, dividers, and recurring patterns of smaller
operators. Multiplexers also contribute to circuit delay, and thus they are
used judiciously by the HLS algorithms. LegUp also recognizes cases where
there are shared inputs between operations, which allows hardware units to
be shared without creating multiplexers. Last, if two operations with non-
overlapping lifetime intervals are bound to the same functional unit, then a

26

single output register is used for both operations. This optimization saves
a register as well as a multiplexer.

The RTL generation stage produces synthesizable Verilog HDL regis-
ter transfer level code. One Verilog module is generated for each function
in the C source program. Results show that LegUp produces solutions of
comparable quality to a commercial

2.4 Target Architectures

MIPS architecture is the main target that we followed due to the compatibil-
ity of the Orio and LegUp with the architecture and also, using the common
reference architecture in computer science.

2.4.1 MIPS

As the MIPS processor is part of the framework to implement software exe-
cution and also code tuning is applied based on this architecture, we roughly
illustrate the processor organization. Figure 2.13 shows the datapath fellow
with the control unit of MIPS architecture. The key concepts of the original
MIPS architecture are:

• Five-stage execution pipeline: fetch, decode, execute, memory-access,
write-result

• Regular instruction set, all instructions are 32-bit

• Three-operand arithmetical and logical instructions

• 32 general-purpose registers of 32-bits each

• No status register or instruction side-effects

• No complex instructions (like stack management, string operations,
etc.)

• Optional coprocessors for system management and floating-point

• Only the load and store instruction access memory

• Flat address space of 4 GBytes of main memory (232 bytes)

• Memory-management unit (MMU) maps virtual to actual physical
addresses

• Optimizing C compiler replaces hand-written assembly code

• Hardware structure does not check dependencies - not ”foolproof”

27

• But software toolchain knows about hardware and generates correct
code

Figure 2.13: MIPS datapath with control unit.

One of the key features of the MIPS architecture is the regular register
set. It consists of the 32-bit wide program counter (PC), and a bank of
32 general-purpose registers called r0..r31, each of which is 32-bit wide. All
general-purpose registers can be used as the target registers and data sources
for all logical, arithmetical, memory access, and control-flow instructions.
Only r0 is special because it is internally hardwired to zero. Reading r0

28

always returns the value 0x00000000, and a value written to r0 is ignored
and lost.

Note that the MIPS architecture has no separate status register. Instead,
the conditional jump instructions test the contents of the general-purpose
registers, and error conditions are handled by the interrupt/trap mechanism.
Two separate 32-bit registers called HI and LO are provided with the integer
multiplication and division instructions.

2.4.2 Emulation Environments

The proposed methodology needs a MIPS/ARM processor to optimize ar-
chitectural dependent parameters and to find the best-transformed version
of the code which outperforms among others. To find a versatile and appli-
cable clue, we considered several approaches including using an actual MIP-
S/ARM processor, Open Virtual Platform(OVP), and QEMU. To tackle
compatibility issues with other elements of the framework such as Orio and
OpenTuner, and also the potential to access the emulator remotely using a
virtual private network and a secure shell, QEMU was chosen to emulate
our MIPS environment. In case of ARM platform, we used our DE1-SoC
development board which provides an embedded arm processor (Hard-core)
on a Cyclon V FPGA.

QEMU is a generic and open source machine emulator and virtualizer.
When used as a machine emulator, QEMU can run OSes and programs made
for one machine (e.g. an ARM board) on a different machine (e.g. your own
PC). By using dynamic translation, it achieves very good performance.

When used as a virtualizer, QEMU achieves near native performance
by executing the guest code directly on the host CPU. QEMU supports
virtualization when executing under the Xen hypervisor or using the KVM
kernel module in Linux. When using KVM, QEMU can virtualize x86, server
and embedded PowerPC, 64-bit POWER, S390, 32-bit and 64-bit ARM, and
MIPS guests.

2.4.3 Development Board

At the end of compilation and synthesis process, binary and SRAM object
files are downloaded on an FPGA. we used DE1-SoC evaluation board to
implement the designs. Figure 2.14 shows the structure of the board. Figure
2.15 shows the architecture of Cyclon V which consist of the logic part,
namely FPGA, and a hard Processing System called HPS which is actually
an ARM core.

29

Figure 2.14: Terasic , DE1 SoC

30

Figure 2.15: Altera’s Cyclon V SoC Architecture

31

32

Chapter 3

State of the Art

Automatic Performance Tuning or ”Auto-tuning”, is an empirical, feedback-
driven performance optimization technique designed to maximize perfor-
mance across a wide variety of architectures without sacrificing portabil-
ity or productivity. Over the years, autotuning has expanded from sim-
ple loop tiling and unroll-and-jam to encompass transformations to data
structures, parallelization, and algorithmic parameters. Automated tun-
ing or autotuning has become a commonly accepted technique used to find
the best implementation for a given kernel on a given single-core machine
[15, 16, 17, 18, 19]. Figure 3.1 compares the traditional and autotuning ap-
proaches to programming. 3.1(a) shows the common Alberto Sangiovanni-
Vincentelli (ASV) triangle [20]. A programmer starts with a high-level op-
eration or kernel he wishes to implement. There is a large design space of
possible implementations that all deliver the same functionality.

However, he prunes them to a single C program representation. In do-
ing so, all high-level knowledge is withheld from the compiler which in turn
takes the C representation and explores a variety of safe transformations
given the little knowledge available to it. The result is a single binary rep-
resentation. Figure 3.1(b) presents the autotuning approach. The program-
mer implements an autotuner that rather than generating a single C-level
representation, generates hundreds or thousands. The hope is that in gen-
erating these variants some high-level knowledge is retained when the set
is examined collectively. The compiler then individually optimizes these C
kernels producing hundreds or machine language representations.

The autotuner then explores these binaries in the context of the actual
data set and machine. There are three major concepts with respect to au-
totuning: the optimization space, code generation, and exploration. First, a
large optimization space is enumerated. Then, a code generator produces C
code for those optimized kernels. Finally, the autotuner proper explores the
optimization space by benchmarking some or all of the generated kernels
searching for the best performing implementation. The resultant configura-

Figure 3.1: ASV triangles for the conventional and auto-tuned approaches to program-
ming.

Figure 3.2: High-level discretization of the autotuning optimization space.

34

tion is an autotuned kernel.

Figure 3.2 on the next page shows the high-level discretization of the op-
timization space. The simplest autotuners only explore low-level optimiza-
tions like unrolling, reordering, restructuring loops, eliminating branches,
explicit SIMDization or using cache bypass instructions. These are all opti-
mizations compilers claim to be capable of performing, but often cannot due
to the lack of information conveyed in a C program. More advanced auto-
tuners will also explore different data types, data layouts, or data structures.
Compilers have no hope of performing these optimizations.

Finally, the most advanced autotuners also explore different algorithms
that produce the same solution for the high-level problem being solved.
For example, an auto-tuner might implement a Barnes-Hut-like particle-
tree method instead of a full N2 particle interaction. The second aspect
of autotuning is code generation. The simplest strategy is for an expert to
write a Perl or similar script to generate all possible kernels as enumerated
by the optimization space. A more advanced code generator could inspect
C or FORTRAN code, and in the context of a specific motif generate all
valid optimizations through a regimented set of transformations [21].

Another aspect of autotuning is the exploration of the optimization
space. There are several strategies designed to cope with the ever-increasing
search space such as ReSPIR [22], DeSpErate++ [23] and OSCAR [24]. The
most basic approach is an exhaustive search of all parameters for all opti-
mizations and for each optimization, an appropriate parameter is selected.

Figure 3.3: Visualization of three different strategies for exploring the optimization
space: (a) Exhaustive search, (b) Heuristically-pruned search, and (c) hill-climbing.
Note, curves denote combinations of constant performance. The gold star represents
the best possible performance.

Finally, in a hill-climbing approach, optimizations are examined in iso-
lation. An optimization is selected. Performance is benchmarked for all pa-
rameters for that optimization and the best-known parameter for all other
optimizations. The best configuration for that optimization is determined.
The process continues until all optimizations have been explored once.

35

Unfortunately, this approach may still require thousands of trials. Fig-
ure 3.3 visualizes the three different strategies for exploring the optimization
space. For clarity, we have restricted the optimizations space to two opti-
mizations, each with their own independent range of parameters. In Figure
3.3(a), an exhaustive approach searches every combination of every possi-
ble parameter for all optimizations. Clearly, this approach is a very time
consuming, but is guaranteed to find the best possible performance for the
implemented optimizations.

Figure 3.3(b) heuristically-prunes the search space, and exhaustively
searches the resultant region. Clearly, this will reduce the tuning time,
but might not find the best performance as evidenced by the fact that the
resultant performance (green circle) is close but not equal to the best per-
formance (gold star).

Figure 3.3 uses a one-pass hill-climbing approach. Starting from the ori-
gin, the parameter space for optimization A is explored. The local maximum
performance is found (red diamond). Then, using the best-known parame-
ter for optimization A, the parameter space for optimization B is explored.
The result (green circle) is far from the best performance (gold star), but
the time required for tuning is very low. Perhaps the most important aspect
of an autotuner’s exploration of the parameter space is that it is often done
in conjunction with real data sets. That is, one provides either a training
set or the real data to ensure the resultant optimization configuration will
be ideal for real problems.

Figure 3.4: Comparison of traditional compiler and autotuning capabilities. Low-
level optimizations include loop transformations and code generation.†only via OpenMP
pragmas.

Figure 3.4 provides a comparison of the capabilities of compilers and au-
totuners. Traditional compilers can only perform the most basic optimiza-
tion and choose the parameters in a data-oblivious fashion. Nevertheless,
these compilers are limited by the input C program and are oblivious to the
actual data set. As a result, even yesterday’s traditional autotuner is more
capable. Today, some autotuners explore alternate data structures and use
heuristics to make exploration of the search space tractable. Tomorrow’s au-

36

totuners will likely also explore algorithmic changes. In doing so, they may
trade vastly improved computational complexity for slightly worse efficiency.
As a result, the time to the solution will be significantly improved.

Broadly speaking, autotuning is premised on three fundamental research
topics:

• creating novel application- and architecture-relevant optimizations and
their associated parameter space

• creating novel application- and architecture-relevant optimizations and
their associated parameter space

• automating the generation of code for this optimization space effi-
ciently searching this optimization space (a mathematical optimization
problem)

3.1 Related Works

Table 3.1: Summary of selected related projects using autotuning

Package Domain Search Method

Active Harmony [25] Runtime System Nelder-Mead

ATLAS [26] Dense Linear Algebra Exhaustive

FFTW [27] Fast Fourier Transform Exhaustive/Dynamic Prog.

Insieme [28] Compiler Differential Evolution

OSKI [29] Sparse Linear Algebra Exhaustive+Heuristic

PATUS [30] Stencil Computations Nelder-Mead or Evolutionary

PetaBricks [31] Programming Language Bottom-up Evolutionary

Sepya [32] Stencil Computations Random-Restart Gradient Ascent

SPIRAL [33] DSP Algorithms Pareto Active Learning

A number of offline empirical autotuning frameworks have been devel-
oped for building efficient, portable libraries in specific domains; selected
projects and techniques used are summarized in Table 3.1. ATLAS [26]
utilizes empirical autotuning to produce an optimized matrix multiply rou-
tine. FFTW [27] uses empirical autotuning to combine solvers for FFTs.
Other autotuning systems include SPIRAL [33] for digital signal process-
ing PATUS [30] and Sepya [32] for stencil computations, and OSKI [29] for
sparse matrix kernels and recent application parameter autotuner Open-
Tuner [12] investigating the best parameter values for the desired param-
eters. The area of iterative compilation contains many projects that use
different machine learning techniques to optimize lower level compiler opti-
mizations [34, 35, 36, 37, 38, 39, 40].

37

These projects change both the order that compiler passes are applied
and the types of passes that are applied. In the dynamic autotuning space,
there have been a number of systems developed [41, 42, 43, 44, 45, 46]
that focus on creating applications that can monitor and automatically tune
themselves to optimize a particular objective. Many of these systems em-
ploy control systems based autotuner that operates on a linear model of the
application being tuned. For example, PowerDial [41] converts static con-
figuration parameters that already exist in a program into dynamic knobs
that can be tuned at runtime, with the goal of trading QoS guarantees for
meeting performance and power usage goals.

The system uses an offline learning stage to construct a linear model
of the choice configuration space which can be subsequently tuned using a
linear control system. The system employs the heartbeat framework [47]
to provide feedback to the control system. A similar technique is employed
in [42], where a simpler heuristic-based controller dynamically adjusts the
degree of loop perforation performed on a target application to trade QoS
for performance.

These automatic or hand-tuned approaches can deliver performance that
can be five times as fast as that produced by many optimizing compilers.
The library approach, however, is limited by the fact that optimizations
are highly problem- and machine-dependent. Furthermore, at this time, the
functionality of the automated tuning systems is quite limited.

General-purpose tools for optimizing loop performance are also available.
Loop Tool supports annotation-based loop fusion, unroll/jamming, skewing,
and tiling. The Matrix Template Library uses template meta-programs to
tile at both the register and cache levels. A new tool, POET, also supports
a number of loop transformations.

Other research efforts whose goal, at least in part, is to enable opti-
mizations of source code to be augmented with performance-related infor-
mation include the X language (a macro C-like language for annotating C
code), the Broadway compiler, and telescoping languages, and various meta-
programming techniques.

Emerging annotation-based tools like Orio [10] are normally designed by
compiler researchers and thus the interfaces are not necessarily based on
concepts accessible to computational scientists. The complexity of existing
annotation languages and lack of common syntax for transformations (e.g.,
loop unrolling) result in steep learning curves and the inability to take ad-
vantage of more than one approach at a time. Furthermore, at present, there
is no good way for users to learn about the tools available and compare their
capabilities and performance.

Other research efforts whose goal, at least in part, is to enable optimiza-
tions of source code to be augmented with performance-related information
include the X language (a macro C-like language for annotating C code),
the Broadway compiler, and telescoping languages.

38

Besides, improving the execution time and resource consumption through
optimizing HLS SPIRIT [48], LegUp [13] using compiler optimizations [49]
is broadly interesting.

Compilers in HLS

Modern HLS tools are implemented within software compiler frameworks.
For example, Altera’s OpenCL compiler for FPGAs[50], Xilinx’s Vivado
HLS tool[51], ROCCC HLS from the University of California at Riverside,
and LegUp from the University of Toronto [13] are implemented within the
LLVM framework [14]. Similarly, GAUT[52] from the Universite de Bretange
Sud is implemented within GCC.

39

40

Chapter 4

Proposed Methodology

This chapter describes the components of our hybrid optimization frame-
work. We provide an abstract view of the whole framework then tend into
fine-grained details.

In general, the framework optimizes the performance of input code in
different design methods which includes software, hardware, hybrid, and
parallel. In case of software implementation, it acts as an application/-
code/compiler tuning framework. In case of hardware, it acts as a high
performance HLS framework. Also, it normally finds the best-transformed
code for all types of design methods.

In our framework, we make use of two other autotuning frameworks:
Orio [10] and OpenTuner [12]. They are extensible and portable frame-
works for empirical performance tuning. Orio takes as input an annotated
C code specifying potential code transformations (see Table I for the trans-
formations used in our experiments), their possible parameter values, and
a search strategy. The search algorithm in Orio generates multiple versions
of the source code based on the different code transformations and runs the
resulting configurations on a target machine in order to find the one with the
best run time. We refer the reader to [10] for details about the annotation
parsing and code-generation schemes in Orio. OpenTuner is a framework for
building domain-specific program autotuners. It provides extensible infras-
tructure to support complex and user-defined data types and custom search
heuristics. It runs a number of search techniques at the same time; those
that perform well are allocated larger budgets systematically using opti-
mal budget allocation methods. Unlike Orio, it does not provide automatic
code transformation recipes; typically the user has to write the code-specific
transformation modules. Nonetheless, it is well suited for tuning compiler
and command line parameters for full applications.

4.1 Hybrid Optimization Framework details

The main input to the Hybrid Optimization Framework (HOF) is a C code,
testing the correctness of the input through compiling by GCC is the start
point of the chain. C is the popular programming language among HLS
developers, also the most famous benchmarks in the field of computer archi-
tecture and HLS are written in C.Our framework contains two main parts,
Code/Application Autotuning which is related to all the optimizations in the
software section and HLS tuning which is related to the hardware aspects of
the framework and subsequent different design methods. The final output
of HOF is a binary file to program MIPS/ARM, or/and an SRAM object
file to program FPGA. Beside necessary files for actual Board-level imple-
mentation, it is also possible to simulate the whole design using generated
files. Moreover, some performance measurements are reported accordingly.
Figure 4.1 illustrates the complete flowchart and details.

4.1.1 Tool chain and platforms

The framework is made from several stacked platforms. It is accessible
through online through VPN. due to consistency and architectural depen-
dent optimizations, there are levels of data transfer between different plat-
forms. Figure 4.2 show the order the platforms are stacked, it also illustrates
the location of each component of the framework. As the processors embed-
ded inside the HOF are either MIPS or ARM, most of the code transfor-
mation and tuning processes are executed on MIPS/ARM platforms. These
platforms run Debian as the os and reside on DE1-SoC board or emulated
MIPS on QEMU. Following sections will provide further explanation of the
tool interactions.

4.1.2 Code/Application Autotuning

In this section, we explain all the software section optimizations of the frame-
work.

Profiler The profiler is playing a vital role in our framework and after
testing several candidates, the Valgrind profiler has been chosen as the best
appropriate profiler for our framework. At the first step, the original code
will be evaluated by the Valgrind to investigate the hot function of the
application to be considered as an assumption in the next steps. The hot
function is important for three stages:

• First, we consider it when OpenTuner autotuner is tuning the pa-
rameter of the application in which we will search the best value for
the parameters in hot function of the application instead of the whole
application.

42

OpenTuner

Parametrization

creating AutoTuner

to use OpenTuner

OpenTuner

C

Orio Code

Annotation

Optimized

C Code

Profiling

PLUTO

Tuning

Specs

ORIO

Optimized

C Code

Legup

Configuration

Legup

Annotation

HW/SW

Splitter

MIPS/ARM

Simulator

Simulation

result
SW

LLVM

Compiler
Wrapper

Quartus II

DE1 SoC

Board

(HW/SW)

HW

Parallel

"0"

(HW/SW)(0)

HW(1)

Parallel (1)

Parallel

Processing

0

1

Making Threads via

Pthreads lib

Yes

No

Simulation &

Synthesis

Reports

Modelsim

Legup

Hot Functions

Phase-Orderring

Debian on MIPS on QEMU

Figure 4.1: Methodology Diagram

43

Figure 4.2: HOF Tool Chain

44

• Second, when we prepare the code for S2S1 transformation by Orio,
we annotate the most important part of the application which is the
hot function in order to have the highest performance improvement.

• Third, in hybrid2 test, and synthesis, we use this prior knowledge for
picking the part of the code to be executed on the accelerator to result
in a better performance.

This section is automatically executed by Valgrind and we manually pass
its result to OpenTuner by focusing on the explored hot function.

OpenTuner After finding the hot function as the most important part
of the application to be parametrized by OpenTuner, it tunes the critical
parameter of the hot function with the best value to increase the execution
performance of the code. In our experimental result, we used OpenTuner
to find the best value for nested loop iterations in Block-Wise Matrix Mul-
tiplication3 benchmark. Choosing the parameter to be tuned is carried out
manually and the autotuning phase is done automatically by OpenTuner.

Orio After the parameterization phase, we write the specification code for
the hot function and annotate it in the original code according to the Orio
style. The specification code is written by us according to the original code.
Despite it seems a time-consuming task to write specification file for all the
codes but, we have written a template specification file that one needs to
change the input parameter of the code and the target parameter besides
choosing the desired search algorithm. However, the annotation of the hot
function code must be manually carried out according to the valid Orio
style. After determining the specification file and code annotation, we run
the Orio framework by using the following command:

$ orcc -v -s test.spec test-nospec.c

The output of the above command is the best-transformed code with
the best loop-unroll factor, it also provides the optimum GCC compiler
optimization flag, but due to clang integration issues in Orio framework, we
cannot get the corresponding Clang/LLVM flag for our LLVM-based HLS
framework. Figure 4.3 illustrates the described procedure.

1Source to source
2Hardware/Software Co-design method,
3from here on we call it BWMM

45

Figure 4.3: Methodology Diagram, first section

46

4.1.3 HLS Tuning

The second part of the framework flow as depicted in 4.4 is about different
design methodologies. LegUp supports parallel processing exploiting POSIX
threads. It converts each thread to a standalone accelerator which implies
data-parallel type of parallel processing. Obviously, if we decide to have a
parallel design, the selected code should be modified and rewritten using
Pthreads, the number of threads is another tunable parameter. If we choose
to run the optimized code on a processor a MIPS/ARM compiler make the
binary file the MIPS simulator is invoked and the binary code is executed
and some simulation results like the number of clock cycles are reported.
In case of ARM processor, the binary code is executed on the actual ARM
core on DE1-SoC board. As the Tiger-MIPS is synthesizable there is a
possibility to synthesize the CPU on the FPGA and measure required are
and maximum frequency, the same measurements are applicable for ARM
processor.

If we decide on Pure hardware or HW/SW implementation, we annotate
the code with some labels to signal pure hardware design method such as
labels for loop pipelining or accelerator selections. Also, there is a config file
named config.tcl which defines HLS optimizations, scheduling, binding, re-
source constraints, such multipliers latency, and data-path refactorizations,
such as changing division unit.

Then several layers of makefiles are modified, optionally, to apply LLVM
compiler optimization. These optimizations are applied on Intermediate
Representations4 and as investigated by [Jason Anderson et al. 2016][49]
can drastically impact the HLS performance. we also observed the same
similar behavior on your hybrid HLS tool, but the fine-grained exploration
was not conducted in this research. Therefore the default -O3 flag applied
to the experiment. There is the possibility to benefit from phase-ordering,
further explanation is available in 6.Then the modified IRs are processed
by LegUp according to the selected design methodology it includes adding
a wrapper for CPU and accelerators for HW/SW method. The result of
this step is binary and HDL codes which feed Quartus II, there interfacing
modules, called AVALON are added to project and ModelSim in invoked for
Simulation. It also can synthesize the whole project for Cyclon V FPGA to
generate SRAM Object File to program the FPGA on DE1-SoC develop-
ment board. The simulation and synthesis reports are used for performance
improvement.

Compiler Optimization Component

Compilers perform their optimizations in passes, where each pass is responsi-
ble for a specific code transformation. Examples of passes include dead-code

4IR

47

Figure 4.4: Methodology Diagram, second section

48

elimination, constant propagation, loop unrolling, and loop rotation. LLVM
contains 56 such optimization (transform) passes that may alter the pro-
gram, as well as many other passes that analyze the code to provide decision-
making data for transform passes (see http://llvm.org/docs/Passes.html).
The familiar command-line optimization levels (e.g., -O3) correspond to a
particular set and sequence of compiler passes. The compiler passes within
LLVM were intended to optimize software programs that run on a micro-
processor.

Compilers such as LLVM and GCC provide standard optimization levels
that can be selected by the user. Higher optimization levels typically cause
the compiler to perform more passes in an attempt to better optimize the
generated result. The level is normally set by a compiler parameter, as in
-O1, -O2, and -O3. The particular optimizations applied at each level are
chosen to benefit the average results for a collection of benchmark programs.
However, it is not guaranteed that a higher optimization level will give a
better result for a specific program. This has led the (software) compiler
community to consider selecting a particular set of compiler optimization
passes on a per-program (or even per code segment) basis. An example of
this code-specific passes is available in Appendix C.

Despite the conventional compiler passes which are usually applied on
IR5, we also used code transformation on a higher level abstraction, meaning
that the framework tries to tune the code for different design method via
different code transformation in different levels of abstractions.

5Intermediate Representation

49

50

Chapter 5

Experimental Results

5.1 Introduction

In this section, we discuss the several experiments’ performance results of
Hybrid Optimization Framework in different design methods, Pure Hard-
ware, Pure Software and Hardware/Software. High-Level Synthesis, or
behavioral synthesis, is the technology which automatically translates be-
havioral level design descriptions or C software, into register-transfer level
(RTL) counterpart.

In this experiments, our target platform for optimizations is an emu-
lated MIPS machine implemented on QEMU as explained in Chapter 2,
Target Architecture section. Our testing data-set is some well-known pieces
of codes and CHStone benchmark suite which includes several well-known
algorithms. All selected codes are widely used in the field of computer archi-
tectures, but as Hybrid Optimization Framework is based on both software
autotuning and HLS optimizations we selected a mixture benchmarks per-
taining to both domains.

All codes were compiled with the LLVM compiler using the -O3 opti-
mization flag to enable auto-vectorization and other advanced optimizations
while the vectorization of LLVM is not supported by current LegUp free ver-
sion, and they are synthesized by default LegUp options.

In the following sections, we refer to the input application code as ”Orig-
inal”1, the Hybrid Optimization Framework as ”HOF” and High-Level Syn-
thesis as ”HLS”. The code tuned by OpenTuner and OpenTuner plus Orio
are referred to as ”OT-Tuned” and ”OT-OR-Tuned”, respectively. Apart
from the first benchmark, you can find all the annotated and specification
codes of all the benchmarks in Appendix C.

• Block-wise Matrix Multiply It is possible to use a block partitioned
matrix product that involves only algebra on sub-matrices of the fac-

1In some research papers, it is known as the baseline.

tors. The partitioning of the factors is not arbitrary, however, and
requires ”conformable partitions” between two matrices A and B such
that all sub-matrix products that will be used are defined. A detailed
explanation is available in 5.2.

• AXPY Basic Linear Algebra Subprograms is a specification that pre-
scribes a set of low-level routines for performing common linear algebra
operations such as vector addition, scalar multiplication, dot products
and linear combinations.

• Matrix Multiply Matrix multiplication (MM) of two matrices is one of
the most fundamental operations in linear algebra. The algorithm for
MM is very simple, it could be easily implemented in any programming
language, and its performance significantly improves when different
optimization techniques are applied.

• ADPCM ADPCM (Adaptive Differential Pulse Code Modulation) im-
plements the CCITT G.722 ADPCM algorithm for voice compres-
sion. It includes both encoding and decoding functions, which can be
pipelined. The two functions can be also used as independent bench-
mark programs.

• DFADD DFADD implements IEC/IEEE-standard double-precision floating-
point addition using 64-bit integer numbers. A number of the control
statements such as if and goto statements are used. No loop exists
except one for statement used as a testbench which is added by the
authors. This program can be pipelined.

• DFDIV DFDIV implements IEC/IEEE-standard double-precision floating-
point division using 64-bit integer numbers. A number of the control
statements such as if and goto statements are used. DFDIV has sev-
eral common functions with DFADD. DFDIV contains data-dependent
loops, which make it difficult to be pipelined.

• DFMUL DFMUL implements IEC/IEEE-standard double-precision floating-
point multiplication using 64-bit integer numbers. A number of the
control statements such as if and goto statements are used. No loop
exists except one for statement, used as a testbench, which is added
by the authors. DFMUL has several common sub-functions which are
also used in DFADD and DFDIV. This program can be pipelined.

• DFSIN DFSIN implements double-precision floating-point sine function
using 64-bit integer numbers. A number of the control statements such
as if and goto statements are used. It calls DFADD, DFMUL, and
DFDIV, which are also included in CHStone.

52

• GSM This is a program for LPC (Linear Predictive Coding) analysis of
GSM (Global System for Mobile Communications), which is a com-
munication protocol for mobile phones. Only lossy sound compression
GSM is implemented.

• MIPS This program describes instruction-level behaviors of a simplified
MIPS processor which has 30 types of instructions. A sorting program
is served as test vectors. Depending on synthesis options, HLS tools
may synthesize a sequential processor or a pipelined one from the
program.

• JPEG JPEG (Joint Photographic Experts Group) transforms a JPEG
image into a bit-mapped image. This program is mainly composed of
three parts: huffman, idct, and inverse quantization. An intelligent be-
havioral synthesis tool may pipeline the three functions. Alternatively,
the three functions can be used as individual benchmark programs.

In Figure 5.1, the CHStone benchmark suite programs have been briefly
described. Figure 5.2 and Figure 5.3 illustrate the characteristics of each
program and resource utilization in RTL, respectively.

Figure 5.1: Brief description and source of the CHStone benchmark programs [1].

53

F
igu

re
5.2:

S
ou

rce-level
ch

aracteristics
[1].

54

Figure 5.3: The number of states and resource utilization in RTL description [1].

5.1.1 Preliminary Definitions

In our experimental result, the performance metrics are the following:

• Cycle Latency: number of clock cycles for execution

• FMax: Maximum possible hardware clock frequency to run the circuit

• Clock Period: The inverse of clock Fmax, 1
Fmax

• Wall-Clock Time: It is the key performance metric for HLS, com-
puted as the product of cycle latency and the clock period.cyclelatency×
clockperiod

• ALMs:The number of used Adaptive Logic Module (ALM) which
indicates the area consumed on the FPGA

• DSP Block: The number of used Digital Signal Processing units on
the FPGA

• Area Delay: HLS projects are considered as multi-objective opti-
mization problems in which a trade-off among several metrics is taken
into account. Delay and Area are two prominent performance cri-
teria that are related inversely, meaning that, assuming a reason-
able design, the design space,mathematically called feasible region,
includes solutions which introduce faster circuits but bulkier and vice
versa. Evidently it is designers’ decision to select between differ-
ent optimum extremes according to desired specifications.Whenever
there is a multi-objective problem there is not a unique optimum so-
lution.But,evidently, there is a point in the space of contrasting op-
timum solutions where both metrics can have a minimum value, rel-
atively. In theory the curve of different optimums is called Pareto

55

front. In the context of HLS problem we are interested in smaller but
faster solutions, hence considering different design approach we calcu-
late AREA×DELAY to find our desired optimum which is actually
the minimum value of this metric. figure A.1 shows the Pareto front
for two conflicting objective function. In this context axis are labeled
by Area and Cycle latency.

Figure 5.4: Pareto Curve

56

5.2 Block-Wise Matrix Multiply Benchmark

Since the Block-Wise Matrix Multiplication (BWMM) has only one main
function and we know a priori the hot function thereby we skip the profiler
step and directly apply OpenTuner to find the optimal value of the block size
parameter, making sure to take the block size as a compile-time constant to
the program.

Blocking a matrix multiply routine works by partitioning the matrices
into sub-matrices and then exploiting the mathematical fact that these sub-
matrices can be manipulated just like scalars. For example, suppose we want
to compute C = A∗B, where A, B, and C are each 8∗8 matrices. As shown
in equation 5.1,we can partition each matrix into four 4 ∗ 4 sub-matrices,
Figure 5.5 demonstrate the process graphically and Listing 5.1 indicates
the BWMM original code written in C++.It shows one version of blocked
matrix multiplication which we call the bijk version. The basic idea behind
this code is to partition A and C into 1× bsize row slivers and to partition
B into bsize×bsize blocks. The innermost (j, k) loop pair multiplies a sliver
of A by a block of B and accumulates the result into a sliver of C. The i
loop iterates through n row slivers of A and C, using the same block in B.[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

C11 = A11B11 + A12B21

C11 = A11B11 + A12B21

C11 = A11B11 + A12B21

C11 = A11B11 + A12B21

(5.1)

57

Figure 5.5: Graphical interpretation of blocked matrix multiply The innermost (j, k)
loop pair multiplies a 1∗bsize sliver of A by a bsize∗bsize block of B and accumulates
into a 1 ∗ bsize sliver of C

Listing 5.1: BWMM original code

#include <stdio.h>
#include <cstdlib>
#define N 100

int main(int argc, const char** argv)
{
int n = BLOCK_SIZE * (N/BLOCK_SIZE);
int a[N][N];
int b[N][N];
int c[N][N];
int sum=0;
for(int k1=0;k1<n;k1+=BLOCK_SIZE)
{

for(int j1=0;j1<n;j1+=BLOCK_SIZE)
{

for(int k1=0;k1<n;k1+=BLOCK_SIZE)
{

for(int i=0;i<n;i++)
{

for(int j=j1;j<j1+BLOCK_SIZE;j++)
{

sum = c[i][j];
for(int k=k1;k<k1+BLOCK_SIZE;k++)
{

sum += a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

}
}

}
return 0;

58

}

5.2.1 Code Annotation

Listing 5.2 shows the program written for tuning BWMM. This code consists
of several components, it creates an instance of class GccFlagsTuner, which
tunes specified parameters using opentuner.class GccFlagsTuner (Measure-
mentInterface). The manipulator method defines the variable search space
by specifying parameters that should be tuned by this instance of Gc-
cFlagsTuner.

The run method actually runs OpenTuner under the given configuration
and returns the calculated performance under this configuration. In this
example, the BLOCK SIZE parameter to be tuned is input as a compile-
time constant that takes on a value within the specified range each time
it is run. However, OpenTuner also supports other methods of specifying
these parameters that may be preferred in different use cases. The manipu-
lator method defines the variable search space by specifying parameters that
should be tuned by this instance of GccFlagsTuner.

Listing 5.2: Autotuner program for OpenTuner to find optimum parameters for BWMM

#!/usr/bin/env python

import adddeps
import opentuner
from opentuner import ConfigurationManipulator
from opentuner import IntegerParameter
from opentuner import MeasurementInterface
from opentuner import Result

class GccFlagsTuner(MeasurementInterface):

def manipulator(self):
"""
Define the search space by creating a
ConfigurationManipulator
"""
manipulator = ConfigurationManipulator()
manipulator.add_parameter(
IntegerParameter(’blockSize’, 1, 10))

return manipulator

def run(self, desired_result, input, limit):
"""
Compile and run a given configuration then
return performance
"""
cfg = desired_result.configuration.data

gcc_cmd = ’g++ mmm_block.cpp ’

59

gcc_cmd += ’-DBLOCK_SIZE=’+ cfg[’blockSize’]
gcc_cmd += ’ -o ./tmp.bin’

compile_result = self.call_program(gcc_cmd)
assert compile_result[’returncode’] == 0

run_cmd = ’./tmp.bin’

run_result = self.call_program(run_cmd)
assert run_result[’returncode’] == 0

return Result(time=run_result[’time’])

def save_final_config(self, configuration):
"""called at the end of tuning"""
print "Optimal block size written to mmm_final_config.json:",

configuration.data
self.manipulator().save_to_file(configuration.data,

’mmm_final_config.json’)

if __name__ == ’__main__’:
argparser = opentuner.default_argparser()
GccFlagsTuner.main(argparser.parse_args())

Running the tunning program on the proposed platform, which is an
emulated MIPS, results in finding the BLOCK SIZE=10 as the best size
for BWMM code. This code then modified to be applicable for Orio tuning
which consists of code annotations and specification as shown in Listing 5.3
and Listing 5.4 respectively. The code has been modified a bit syntactically
to become adaptable for LegUp synthesis. Listing 5.5, you can find the final
tuned and transformed code by Orio.

Listing 5.3: Annotated BWMM

#include <stdio.h>
#define N 50
#define BLOCK_SIZE 10

int main()
{
int main_result;
int n = BLOCK_SIZE * (N/BLOCK_SIZE);
int a[N][N];
int b[N][N];
int c[N][N];
int sum=0;
int k1;
for(k1=0;k1<n;k1+=BLOCK_SIZE)
{
int j1;
for(j1=0;j1<n;j1+=BLOCK_SIZE)
{
int k1;

60

for(k1=0;k1<n;k1+=BLOCK_SIZE)
{
int i;
for(i=0;i<n;i++)
{
int j;
for(j=j1;j<j1+BLOCK_SIZE;j++)
{

sum = c[i][j];
int k;
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’]))

for(k=k1;k<=k1+BLOCK_SIZE-1;k=k+1)
{
sum = sum + a[i][k] * b[k][j];

}
) @*/

for(k=k1;k<k1+BLOCK_SIZE;k++)
{
sum += a[i][k] * b[k][j];

}
/*@ end @*/

c[i][j] = sum;
}

}
}

}
}

return main_result;
}

Listing 5.4: BWMM Orio transformation specification

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,10);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’,’-O1’,’-O2’,’-O3’];

}
def input_params {
param BLOCK_SIZE[] = [10];

61

param N[] = [50];
}
def input_vars {
decl dynamic int a[N][N] = random;
decl dynamic int b[N][N] = random;
decl int sum = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing 5.5: BWMM tuned and transformed code

/**-- (Generated by Orio)
Best performance cost:
[6.15e-07, 2.46e-07, 2.12e-07, 2.14e-07, 2.14e-07, 2.14e-07,

2.14e-07, 2.14e-07, 2.12e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.13e-07,
2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.13e-07, 2.14e-07,
2.13e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.13e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.12e-07, 2.14e-07, 2.13e-07, 2.12e-07, 2.13e-07,
2.12e-07, 2.13e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.13e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07,
2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.14e-07, 2.13e-07,
2.14e-07, 2.14e-07, 2.13e-07, 2.14e-07, 2.14e-07, 2.14e-07,
2.14e-07, 2.13e-07, 2.14e-07, 2.14e-07]

Tuned for specific problem sizes:
BLOCK_SIZE = 10
N = 50

Best performance parameters:
CFLAGS = -O2
UF = 3
VEC = True

--**/

#include <stdio.h>
#define N 50
#define BLOCK_SIZE 10

int main()
{
int main_result;
int n = BLOCK_SIZE * (N/BLOCK_SIZE);
int a[N][N];
int b[N][N];
int c[N][N];
int sum=0;

62

int k1;
for(k1=0;k1<n;k1+=BLOCK_SIZE)
{
int j1;
for(j1=0;j1<n;j1+=BLOCK_SIZE)
{
int k1;
for(k1=0;k1<n;k1+=BLOCK_SIZE)
{
int i;
for(i=0;i<n;i++)
{
int j;
for(j=j1;j<j1+BLOCK_SIZE;j++)
{
sum = c[i][j];
int k;
/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’]))

for(k=k1;k<=k1+BLOCK_SIZE-1;k=k+1)
{
sum = sum + a[i][k] * b[k][j];

}
) @*/

{
register int cbv_1;
cbv_1=(k1+BLOCK_SIZE)-2;

#pragma ivdep
#pragma vector always

for (k=k1; k<=cbv_1; k=k+2)
{
sum=sum+a[i][k]*b[k][j];
sum=sum+a[i][k+1]*b[k+1][j];

}
register int cbv_2, cbv_3;
cbv_2=(k1+BLOCK_SIZE)-((k1+BLOCK_SIZE-(0))%2);
cbv_3=(k1+BLOCK_SIZE)-1;

#pragma ivdep
#pragma vector always

for (k=cbv_2; k<=cbv_3; k=k+1)
{
sum+=a[i][k]*b[k][j];

}
}
/*@ end @*/
c[i][j] = sum;

}
}

}
}

}

63

return main_result;
}

5.2.2 Result Tables

After S2S transformation, the LLVM optimizations are applied. In the next
step, different LegUp synthesis options have been considered to observe their
effect over all the type of synthesis methods.

Table 5.1 indicates the result of applying different LegUp synthesis op-
tions on variant HLS methods, Pure Hardware, Pure Software and Hard-
ware/Software. The first column of the table shows the measured perfor-
mance indexes such as Cycles, FMax, Wall-Clock Time or execution time,
ALMS or the number of computational units, DSP Blocks, and Area De-
lay which is the production of the execution time multiply by number of
resource units as the main criterion.

The Second column is the result of original code without any optimiza-
tion synthesis as the baseline to determine HOF performance improvement.
For this benchmark and to have a better vision about our framework, we
added our optimization levels step by step. As you can see, the second and
third columns represent the synthesis result of original code after adding
OpenTuner and then adding Orio to it as the second and third HOF opti-
mization levels called OT-Tuned and OT-OR-Tuned respectively.

Each column contains three sub sections representing three different
LegUp synthesis options as the last level of tuning parameters. By activat-
ing Pipelining option, LegUp pipelines the labeled loop and by activating
Mul Lat=0 option, we assigned the multiplication latency to zero.

Since we used the free version of LegUp we had the constrains prevent-
ing us to have the pipelining for OT-OR-Tuned case and consequently, its
result is Not Available on the table. Wall-Clock Time and Area-Delay are
highlighted as the most important rows.

FMax is generally affected by circuit critical path, the longer critical
path which is the result of a more complex combinational circuit needs a
longer clock period to finish the computations, hence fewer cycles in the
time steps. Usually, multipliers play a significant role in prolonging clock
period thereby synthesizing a complex multiplier needing fewer clock cycles
makes the FMax less too.

64

T
ab

le
5.

1:
O

p
en

T
u

n
er

in
H

L
S

F
ra

m
ew

or
k

O
ri

g
in

al
O

T
-T

u
n

ed
O

T
-O

R
-T

u
n

ed
P

u
re

H
W

P
ip

el
in

in
g

M
u
l

la
ta

=
0

P
u

re
H

W
P

ip
el

in
in

g
M

u
l

la
t=

0
P

u
re

H
W

P
ip

el
in

in
g

M
u

l
la

t=
0

C
y
cl

es
6
3
53

3
2
2

3
35

3
3
22

31
02

22
2

28
25

46
2

11
37

96
2

10
75

31
2

15
75

46
2

N
/
A

12
62

81
2

F
M

ax
1
1
6

11
6

79
.8

2
11

3
97

.4
6

84
.4

6
12

5.
6
4

N
/
A

10
2.

0
7

C
lo

ck
P

er
io

d
8
.6

2
8.

62
12

.5
3

8.
85

10
.2

11
.8

7.
9
6

N
/A

9
.8

0
W

a
ll

-C
lo

ck
T

im
e

5
4
77

0
.0

2
28

9
0
7.

95
38

86
5.

22
25

00
4.

09
11

60
7.

21
12

68
8.

6
8

12
53

9.
4
9

N
/A

12
37

2.
0
2

A
L

M
s

3
7
4

37
4

37
8

36
8

38
3

3
71

33
5

N
/A

3
25

D
S

P
B

lo
ck

s
4

4
4

4
4

4
2

N
/
A

4
A

re
a
*
D

el
ay

2
0
48

3
9
86

10
8
1
15

7
3

14
69

10
54

92
01

50
5

44
45

56
2

47
07

50
1

42
00

73
0

N
/A

40
20

90
6

a
M

u
lt

ip
li
ca

ti
o
n

la
te

n
cy

65

5.2.3 Performance Diagrams

In this section, we evaluate the performance improvement of HOF with re-
spect to the baseline from different aspects in variant diagrams. Considering
the trend on 5.6 shows the fact that a more parallel design decreases the
wall clock time. As the clock frequencies in different design approaches are
different, other metrics such as clock cycles and clock periods cannot re-
veal the aggregated speedup of the synthesized circuit. Clock Period is the
inverse of frequency as mentioned before, decreasing the multiply latency
results in longer clock period. By the way, the clock period alone is not a
good performance measurement metric.

Figure 5.6: The BWMM Wall-Clock Time diagram of the original code vs. different
optimization levels

The speedup result in Figure 5.7 shows that optimizations using LegUp
options, loop pipelining and multiplication latency=0, besides OpenTuner
and Orio tuning achieve much better performance than original code.

Reviewing 5.1 shows that there is a definite decrease on the number of
clock cycles as moving form pure hardware to other synthesis optimizations.
There is five times improvement but as the clock frequencies on different
approached are not the same, this performance improvement is biased. The
actual performance improvement is visible on 5.7. But, all in all, a more
parallel hardware design is considered as a spatial decomposition and par-
allelization which always reduces the number of clock cycles.

The logic utilization efficiency for both OT-Tuned and OT-OR-Tuned
versions is shown in Figure 5.8 that indicates the closer we are to the HOF

66

Figure 5.7: BWMM Speedup w.r.t baseline

Figure 5.8: BWMM Logic Utilization Efficiency w.r.t baseline

67

full design the better we consume the computational resources.

Figure 5.9 contains the Area-Delay result, which shows that applying
both OT-Tuned and OT-OR-Tuned or complete HOF toolchain on the orig-
inal code always delivers performance boosts especially the latter one, which
ranges from 100 percent to 387 percent. Furthermore, the performance of
the OT-tuned2 code and OT-OR-Tuned3 are almost equivalent in some cases
but the performance difference between them becomes more significant as
more optimizations per phase are applied to facilitate the toolchain.

Figure 5.9: Area Delay of baseline vs. HOF

Not even the execution time but also the cache missing rate is enhanced
as we applied the HOF on the original code illustrated in Figure 5.10. Ex-
ploiting the concept of the cache which increases the temporal and spatial
localities in CPUs, we can explain the effect of code transformation on HLS.
In the BWMM experiment, larger block size decreases the cache miss rate
resulting larger parallel data flows wherein the domain of HLS infrastruc-
ture, a larger data flow normally makes use of more parallel resources which
yields less execution time. Also, taking into account, the loop unrolling
as the main effect of Orio code transformations, we discovered that un-
rolled loops make more parallel computational units. Besides, using LegUp
pipeline option decreases the execution time as the code is executed in more
parallel manner.

2Tuned only by OpenTuner
3Tuned by OpenTuner and Orio

68

Figure 5.10: BWMM cache miss rate w.r.t baseline

Different Phases

After comparing different optimizations, we introduce different phases com-
pleting our toolchain levels. Figure 5.11 demonstrates the different phases
speedup w.r.t the baseline through adding HOF pieces in a cumulative man-
ner.

To demonstrate the HOF tuning effect on performance in details, in this
experiment, we ran the HOF in eight phases by adding optimization levels
incrementally as described below:

• Original: Original code without optimization

• Phase 1: Original code with multiplication latency=0 LegUp option

• Phase 2: Original code with pipelining LegUp option

• Phase 3: Original code with OpenTuner tuning

• Phase 4: Original code with OpenTuner tuning and multiplication
latency=0 LegUp option

• Phase 5: Original code with OpenTuner tuning and pipelining LegUp
option

• Phase 6: Original code with OpenTuner and Orio tuning

• Phase 7: Original code with OpenTuner and Orio tuning, and multi-
plication latency=0 LegUp option

69

Figure 5.11: BWMM different phases speedup

The code is tuned in each optimization stage, it consistently outperforms
passing each phase in which the last phase representing the complete HOF
structure has the best performance among the others. Apart from having a
better speedup as we walk through the phases, Figure 5.12 reveals the logic
utilization efficiency compared to the original code where the HOF tuned
code in the last phase has the most efficient computational unit usage.

Figure 5.13 contains the Area-Delay result as the main metric, which
shows that applying complete HOF toolchain on the original code delivers
the best performance boost, around 400 percent.

70

Figure 5.12: BWMM different phases logic utilization efficiency

Figure 5.13: BWMM different phases Area Delay

71

5.3 AXPY Benchmark

In this experiment, we tuned the performance of the AXPY operation. Since
it has only one main function and does not have any parameter to be tuned
by OpenTuner so, we skipped the first two steps and used Orio directly. We
measured the performance of two scenarios: the original code without any
optimization and using HOF.

5.3.1 Result Tables

After S2S transformation, the LLVM optimization would be applied to the
code which is implemented internally inside the LegUp. The results are
shown in Tables 5.2, 5.3 and 5.4, representing Pure Hardware, Pure Software
and Hardware/Software synthesis result, respectively.

Metrics Original With FW

Cycles 404 164
FMax (MHz) 127.31 125.44
Clock Period (ns) 7.855 7.972
Wall-clock Time (us) 3.17 1.31
ALMs 368 766
Area*Delay (us) 1167 1001
DSP Blocks 0 0
RAM Blocks 1 2
Blocks Memory Bits 3200 3200
Registers 200 605

Table 5.2: Pure Hardware AXPY HLS Analysis

Metrics Original With FW

Cycles 14040 12860
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 195.33 178.91
ALMs 4735 4735
Area*Delay (us) 924866 847136
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.3: Pure Software AXPY HLS Analysis

72

Metrics Original With FW

Cycles 10958 10958
FMax (MHz) 72.66 74
Clock Period (ns) 13.76 13.51
Wall-clock Time (us) 150.81 148.08
ALMs 5156 6070
Area*Delay (us) 777587 898852
DSP Blocks 16 16
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 6410 7891

Table 5.4: Hardware/Software AXPY HLS Analysis

5.3.2 Performance Diagrams

The performance results are shown in Figure 5.14 indicate that the code
tuned by Orio consistently outperforms the original code without optimiza-
tion. We observed that even for a simple algebraic operation, such as the
composed AXPY routines, the compiler alone is unable to yield performance
comparable to the HOF tuned version.

Figure 5.14: AXPY Speedup diagram

73

Figure 5.15: AXPY logic utilization efficiency diagram

We observed that in Pure Hardware method the logic utilization became
doubled compare to the baseline Figure 5.15, on the other hand, it results in
2.5 times speedup and on aggregation 15% Area Delay improvement shown
in Figure 5.16.

Figure 5.16: AXPY Area Delay diagram

74

5.4 Matrix Multiply Benchmark

In this section, we examine the effectiveness of HOF in optimizing by semi-
automated tuning toolchain on one of heavily used benchmark Matrix Mul-
tiplication. Matrix Multiplication dominates the performance of various
scientific applications. We used Orio to automatically select the best loop-
unroll factor for only the loop that iterates over the matrices’ elements and
computes the production.

5.4.1 Result Tables

Respectively, tables 5.5, 5.6 and 5.7 indicate the results of variant HLS
synthesis methods Pure Hardware, Pure Software and Hardware/Software.

Metrics Original With FW

Cycles 33243 10907
FMax (MHz) 112.75 145.71
Clock Period (ns) 8.869 6.863
Wall-clock Time (us) 294.84 74.85
ALMs 375 2005
Area*Delay (us) 110564 150083
DSP Blocks 2 2
RAM Blocks 6 4
Blocks Memory Bits 38400 25600
Registers 599 3846

Table 5.5: Pure Hardware Matrix Multiply HLS Analysis

Metrics Original With FW

Cycles 231332 151698
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 3218.31 2110.43
ALMs 4735 4735
Area*Delay (us) 15238690 9992905
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.6: Pure Software Matrix Multiply HLS Analysis

75

Metrics Original With FW

Cycles 111847 110858
FMax (MHz) 73.38 73.39
Clock Period (ns) 13.63 13.63
Wall-clock Time (us) 1524.22 1510.53
ALMs 5060 5038
Area*Delay (us) 7712535 7610064
DSP Blocks 8 8
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 6236 6209

Table 5.7: Hardware/Software Matrix Multiply HLS analysis

5.4.2 Performance Diagrams

We tested the performance of all the synthesis methods HW, SW and HW/SW
includes Speedup, Logic Utilization Efficiency and Area Delay shown in Fig-
ure 5.17, Figure 5.18 and Figure 5.19, respectively.

Figure 5.17: Matrix Multiply Speedup diagram

76

Figure 5.18: Matrix Multiply Utilization diagram

Figure 5.19: Matrix Multiply Area Delay diagram

77

5.5 DFMUL Benchmark

This experiment discusses the effect of HOF on DFMUL benchmark. First,
the profiler performed the analysis over the original code and detected
float64 mul as the hot function for this benchmark. Then, we tuned the
hot function in the next step and used it for hybrid synthesis as the selected
part for accelerating transformation. Figure 5.20 graphically demonstrates
the result of Valgrind profiler.

Figure 5.20: DFMUL Profiling. The Call-graph depicting calling relationships and
computational needs of each function

78

5.5.1 Result Tables

Respectively, tables 5.8, 5.9 and 5.10 indicate the results of variant HLS
synthesis methods Pure Hardware, Pure Software and Hardware/Software.

Metrics Original With FW

Cycles 216 134
FMax (MHz) 100.86 127.49
Clock Period (ns) 9.915 7.844
Wall-clock Time (us) 2.14 1.05
ALMs 1043 951
Area*Delay (us) 2234 1000
DSP Blocks 32 32
RAM Blocks 1 0
Blocks Memory Bits 8192 0
Registers 1364 1707

Table 5.8: Pure Hardware DFMUL HLS Analysis

Metrics Original With FW

Cycles 96551 8699
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 1343.22 121.02
ALMs 4735 4735
Area*Delay (us) 6360170 573035
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.9: Pure Software DFMUL HLS Analysis

5.5.2 Performance Diagrams

This section discusses the performance evaluation of the DFMUL bench-
mark. We compare the performance of the code tuned by HOF with the
original code.

The speedup Figure 5.21 shows that optimizations using HOF achieve dra-
matically better performance than the original code, up to 15.45 times faster.

We have also logic utilization efficiency, Figure 5.22, where we used 10% less
computational units in Pure Hardware synthesis, improved the execution
time by more 2 times.

79

Metrics Original With FW

Cycles 98188 6458
FMax (MHz) 69.82 70.93
Clock Period (ns) 14.32 14.10
Wall-clock Time (us) 1406.30 91.05
ALMs 5744 5766
Area*Delay (us) 8077798 524980
DSP Blocks 6 6
RAM Blocks 24 24
Blocks Memory Bits 152768 152768
Registers 7077 7076

Table 5.10: Hardware/Software DFMUL HLS Analysis

Figure 5.21: DFMUL Speedup diagram

80

Figure 5.22: DFMUL Utilization diagram

Figure 5.23: DFMUL Area Delay diagram

81

HOF further improves the Area-Delay and the performance of the original
version by a factor of 2 to more than 15 times shown in Figure 5.23.

5.6 GSM Benchmark

In this experiment, we tuned the performance of the GSM benchmark by
HOF optimizations. Figure 5.24 shows the output of Valgrind profiler in-
dicating the possible hot functions Autocorrelation and gsm-mult-r in this
benchmark. By considering the number of calls of each candidate, we have
chosen the latter one as the selected function.

Figure 5.24: GSM Profiling. The Call-graph depicting calling relationships and compu-
tational needs of each function

82

5.6.1 Result Tables

Respectively, tables 5.11, 5.12 and 5.13 indicate the results of variant HLS
synthesis methods Pure Hardware, Pure Software and Hardware/Software.

Metrics Original With FW

Cycles 4763 4441
FMax (MHz) 98.09 96.84
Clock Period (ns) 10.195 10.326
Wall-clock Time (us) 48.56 45.86
ALMs 3236 3271
Area*Delay (us) 157132 150005
DSP Blocks 54 54
RAM Blocks 7 7
Blocks Memory Bits 10144 10144
Registers 5190 5225

Table 5.11: Pure Hardware GSM HLS Analysis

Metrics Original With FW

Cycles 47970 47143
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 667.36 655.86
ALMs 4735 4735
Area*Delay (us) 3159960 3105483
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.12: Pure Software GSM HLS Analysis

5.6.2 Performance Diagrams

We tested the performance of all the synthesis methods HW, SW and HW/SW
includes Speedup, Utilization Efficiency and Area Delay shown in Figure
5.25, Figure 5.26 and Figure 5.27, respectively.

83

Metrics Original With FW

Cycles 32059 30934
FMax (MHz) 72.47 72.47
Clock Period (ns) 13.80 13.80
Wall-clock Time (us) 442.38 426.85
ALMs 7095 7095
Area*Delay (us) 3138659 3028518
DSP Blocks 52 52
RAM Blocks 22 22
Blocks Memory Bits 156800 156800
Registers 9664 9664

Table 5.13: Hardware/Software GSM HLS Analysis

Figure 5.25: GSM Speedup diagram

84

Figure 5.26: GSM Utilization diagram

Figure 5.27: GSM Area Delay diagram

85

5.7 DFADD Benchmark

In this section we examine the effectiveness of HOF in optimizing DFADD
benchmark. Figure 5.28 illustrates the output of Valgrind profiler indicating
the possible hot functions main, addfloaf64sigs and extractFloat64Exp in this
benchmark. By considering the number of calls of each candidate, we have
chosen the last one as the selected function.

Figure 5.28: DFADD Profiling. The Call-graph depicting calling relationships and
computational needs of each function.

5.7.1 Result Tables

Table 5.14 indicates the result of the Pure Hardware HLS synthesis. Respec-
tively, Table 5.15 illustrates the DFADD HLS synthesis for pure software
compilation and Table 5.16 shows the result of hybrid one.

86

Metrics Original With FW

Cycles 643 337
FMax (MHz) 134.43 133.28
Clock Period (ns) 7.439 7.503
Wall-clock Time (us) 4.78 2.53
ALMs 1326 1328
Area*Delay (us) 6342 3358
DSP Blocks 0 0
RAM Blocks 1 1
Blocks Memory Bits 8192 8192
Registers 1822 1808

Table 5.14: Pure Hardware DFADD HLS Analysis

Metrics Original With FW

Cycles 19685 12914
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 273.86 179.66
ALMs 4735 4735
Area*Delay (us) 1296723 850693
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.15: Pure Software DFADD HLS Analysis

Metrics Original With FW

Cycles 16897 14534
FMax (MHz) 68.38 75.76
Clock Period (ns) 14.62 13.20
Wall-clock Time (us) 247.10 191.84
ALMs 7264 5767
Area*Delay (us) 1794966 1106357
DSP Blocks 6 6
RAM Blocks 32 24
Blocks Memory Bits 152896 152768
Registers 8917 7040

Table 5.16: Hardware/Software DFADD HLS Analysis

87

5.7.2 Performance Diagrams

To evaluate the performance of the tuned Matrix Multiplication, we con-
ducted the experiment on both the original and HOF-tuned codes. Figures
5.29, 5.30 and 5.31 illustrate the speedup, logic utilization efficiency and
Area Delay, in order.

Figure 5.29: DFADD Speedup diagram

88

Figure 5.30: DFADD Utilization diagram

Figure 5.31: DFADD Area Delay diagram

89

5.8 ADPCM Benchmark

This experiment discusses the effect of HOF on ADPCM benchmark. First,
the profiler performed the analysis over the original code and detected upzero
as the hot function for this benchmark. Then, we tuned the hot function
in the next step and used it for hybrid synthesis as the selected part for
accelerating transformation. Figure 5.32 graphically demonstrates the result
of Valgrind profiler.

Figure 5.32: ADPCM Profiling, ADPCM Call-graph depicting calling relationships and
computational needs of each function

90

5.8.1 Result Tables

Table 5.17 indicates the result of the Pure Hardware HLS synthesis. Respec-
tively, Table 5.18 illustrates the ADPCM HLS synthesis for pure software
compilation and Table 5.19 shows the result of hybrid one.

Metrics Original With FW

Cycles 13521 13421
FMax (MHz) 85.38 86.05
Clock Period (ns) 11.712 11.621
Wall-clock Time (us) 158.36 155.97
ALMs 5299 5330
Area*Delay (us) 839163 831307
DSP Blocks 87 87
RAM Blocks 7 7
Blocks Memory Bits 9152 9152
Registers 9133 9145

Table 5.17: Pure Hardware ADPCM HLS Analysis

Metrics Original With FW

Cycles 196607 197151
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 2735.21 2742.78
ALMs 4735 4735
Area*Delay (us) 12951226 12987062
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.18: Pure Software ADPCM HLS Analysis

5.8.2 Performance Diagrams

We tested the performance of all the synthesis methods HW, SW and HW/SW
includes Speedup, Utilization Efficiency and Area Delay shown in Figure
5.33, Figure 5.34 and Figure 5.35, respectively.

91

Metrics Original With FW

Cycles 99834 99362
FMax (MHz) 68.32 71.05
Clock Period (ns) 14.64 14.07
Wall-clock Time (us) 1461.27 1398.48
ALMs 11390 11544
Area*Delay (us) 16643871 16144052
DSP Blocks 76 76
RAM Blocks 34 34
Blocks Memory Bits 153334 153334
Registers 14616 14643

Table 5.19: Hardware/Software ADPCM HLS Analysis

Figure 5.33: ADPCM Speedup diagram

92

Figure 5.34: ADPCM Utilization diagram

Figure 5.35: ADPCM Area Delay diagram

93

5.9 MIPS Benchmark

This program describes instruction-level behaviors of a simplified MIPS pro-
cessor which has 30 types of instructions. A sorting program is served as
test vectors. Depending on synthesis options, HLS tools may synthesize a
sequential processor or a pipelined one from the program. Figure 5.36 in-
dicates the result of the Valgrind profiler in which the main function is the
hot function and most time-intensive part of the code.

Figure 5.36: MIPS Profiling, the Call-graph depicting calling relationships and com-
putational needs of each function

5.9.1 Result Tables

Respectively, tables 5.20 and 5.21 indicate the results of variant HLS syn-
thesis methods Pure Hardware and Pure Software.

94

Metrics Original With FW

Cycles 5121 5060
FMax (MHz) 84.78 86.18
Clock Period (ns) 11.795 11.604
Wall-clock Time (us) 60.40 58.71
ALMs 1102 1065
Area*Delay (us) 66565 62531
DSP Blocks 6 6
RAM Blocks 3 4
Blocks Memory Bits 3072 3072
Registers 1136 995

Table 5.20: Pure Hardware MIPS HLS Analysis

Metrics Original With FW

Cycles 50341 49898
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 700.35 694.18
ALMs 4735 4735
Area*Delay (us) 3316147 3286965
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.21: Pure Software MIPS HLS Analysis

5.9.2 Performance Diagrams

On MIPS architecture, the performance gap between the hardware and
the software synthesis is now larger than in the other experiment due to
MIPS division operation constraints. Figures 5.37, 5.38 and 5.39 indicate
the speedup, utilization efficiency and Area Delay, respectively.

95

Figure 5.37: MIPS Speedup diagram

Figure 5.38: MIPS Utilization diagram

96

Figure 5.39: MIPS Area Delay diagram

5.10 DFDIV Benchmark

This experiment discusses the effect of HOF on DFDIV benchmark. First,
the profiler performed the analysis over the original code and detected
float64div as the hot function for this benchmark. Then, we tuned the
hot function in the next step and used it for hybrid synthesis as the selected
part for accelerating transformation. Figure 5.32 graphically demonstrates
the result of Valgrind profiler.

5.10.1 Result Tables

Table 5.22 indicates the result of the Pure Hardware HLS synthesis. Re-
spectively, Table 5.23 illustrates the DFDIV HLS synthesis for pure software
compilation and Table 5.24 shows the result of hybrid one.

97

Figure 5.40: DFDIV Profiling, The Call-graph depicting calling relationships and com-
putational needs of each function

98

Metrics Original With FW

Cycles 1884 1846
FMax (MHz) 104.13 102.88
Clock Period (ns) 9.603 9.720
Wall-clock Time (us) 18.09 17.94
ALMs 3143 3422
Area*Delay (us) 56866 61402
DSP Blocks 48 48
RAM Blocks 2 2
Blocks Memory Bits 1535 1535
Registers 6698 7793

Table 5.22: Pure Hardware DFDIV HLS Analysis

Metrics Original With FW

Cycles 93988 93210
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 1307.57 1296.74
ALMs 4735 4735
Area*Delay (us) 6191335 6140086
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.23: Pure Software DFDIV HLS Analysis

99

Metrics Original With FW

Cycles 9730 11804
FMax (MHz) 61.5 64.99
Clock Period (ns) 16.26 15.39
Wall-clock Time (us) 158.21 181.63
ALMs 10939 10944
Area*Delay (us) 1730674 1987736
DSP Blocks 70 70
RAM Blocks 73 73
Blocks Memory Bits 171009 171009
Registers 16690 16730

Table 5.24: Hardware/Software DFDIV HLS Analysis

5.10.2 Performance Diagrams

We observed that loop unrolling for DFDIV can result in worse performance
than original code because the number of division operations can be higher
than MIPS capacity. We tested the performance of all the synthesis methods
HW, SW and HW/SW includes Speedup, Utilization Efficiency and Area
Delay shown in Figure 5.41, Figure 5.42 and Figure 5.43, respectively.

Figure 5.41: DFDIV Speedup diagram

100

Figure 5.42: DFDIV Utilization diagram

Figure 5.43: DFDIV Area Delay diagram

101

5.11 DFSIN Benchmark

In this section we examine the effectiveness of HOF in optimizing DFSIN
benchmark. Figure 5.44 illustrates the output of Valgrind profiler indicating
the possible hot functions roundAndPackFloat64 and extractFloat64EXP in
this benchmark. By considering the number of calls of each candidate, we
have chosen the latter one as the selected function.

Figure 5.44: DFSIN Profiling. The call-graph depicting calling relationships and com-
putational needs of each function

5.11.1 Result Tables

Table 5.25 indicates the result of the Pure Hardware HLS synthesis. Re-
spectively, Table 5.26 illustrates the DFSIN HLS synthesis for pure software
compilation.

102

Metrics Original With FW

Cycles 56739 56811
FMax (MHz) 95.7 97.05
Clock Period (ns) 10.449 10.304
Wall-clock Time (us) 592.88 585.38
ALMs 8392 9556
Area*Delay (us) 4975483 5593879
DSP Blocks 82 82
RAM Blocks 5 5
Blocks Memory Bits 9377 9377
Registers 13850 16762

Table 5.25: Pure Hardware DFSIN HLS Analysis

Metrics Original With FW

Cycles 4049788 3799757
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 56340.96 52862.51
ALMs 4735 4735
Area*Delay (us) 266774432 250303970
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.26: Pure Software DFSIN HLS Analysis

5.11.2 Performance Diagrams

This section discusses the performance evaluation of the DFMUL bench-
mark. We compare the performance of the code tuned by HOF with the
original code.

103

Figure 5.45: DFSIN Speedup diagram

Figure 5.46: DFSIN Utilization diagram

104

Figure 5.47: DFSIN Area Delay diagram

5.12 JPEG Benchmark

In this experiment, we tuned the performance of the JPEG benchmark as
the most complex application among all other benchmarks in this thesis
with the highest execution time in general. Figure 5.48 illustrates the out-
put of Valgrind profiler indicating the possible hot functions YuvToRgb and
buf getb in this benchmark. By considering the number of calls of each
candidate, we have chosen the latter one as the selected function.

5.12.1 Result Tables

Similarly to BWMM results, the HOF-optimized code is more efficient than
the original code when the input applications are more complex. For large
problem sizes, HOF enhances further with its toolchain optimizations, re-
sulting in performance consistently and significantly higher than the original
code, up to almost 8 times faster and more utilization efficiency for JPEG.
Table 5.27 indicates the result of the Pure Hardware HLS synthesis. Re-
spectively, Table 5.28 illustrates the JPEG HLS synthesis for pure software
compilation.

105

Figure 5.48: JPEG Profiling. The Call-graph depicting calling relationships and com-
putational needs of each function

106

Metrics Original With FW

Cycles 1301530 1296217
FMax (MHz) 9.15 71.62
Clock Period (ns) 109.290 13.963
Wall-clock Time (us) 142243.72 18098.53
ALMs 16665 16616
Area*Delay (us) 2370491525 300725240
DSP Blocks 87 87
RAM Blocks 83 83
Blocks Memory Bits 461176 461176
Registers 20233 20404

Table 5.27: Pure Hardware JPEG HLS Analysis

Metrics Original With FW

Cycles 5187081 5146408
FMax (MHz) 71.88 71.88
Clock Period (ns) 13.91 13.91
Wall-clock Time (us) 72163.06 71597.22
ALMs 4735 4735
Area*Delay (us) 341692105 339012825
DSP Blocks 6 6
RAM Blocks 20 20
Blocks Memory Bits 152704 152704
Registers 5556 5556

Table 5.28: Pure Software JPEG HLS Analysis

5.12.2 Performance Diagrams

We tested the performance of all the synthesis methods HW, SW and HW/SW
includes Speedup, Utilization Efficiency and Area Delay shown in Figure
5.49, Figure 5.50 and Figure 5.51, respectively.

107

Figure 5.49: JPEG Speedup diagram

Figure 5.50: JPEG Utilization diagram

108

Figure 5.51: JPEG Area Delay diagram

109

110

Chapter 6

Conclusion and Future
Works

6.1 Conclusion

In this work, we explored the effect of code autotuning, code transformation,
application autotuning, compiler optimization, HLS directives and HLS op-
timizations n different design method from software to parallel processing
systems. We showed that our framework outperforms on almost all de-
sign performance measurements and keeps the critical performance index
called, Area-Delay-Product lower than baseline. We experimentally showed
the benefits of our framework by optimizing CHStone benchmark on differ-
ent design methods. The results show that not only code transformations
such as loop unrolling benefits the software performance but also it impacts
positively on HLS and subsequent circuits.

We indicate that applying a combination of application autotuning and
optimization levels by our Hybrid Optimization Framework, for all the
benchmarks in which we conducted the experiments on both the original
and HOF-tuned codes, revealed performance improvement and resource us-
age efficiency. The results indicate that whereas LegUp is unable to use
LLVM vectorization, HOF successfully optimizes the codes and enhanced
the execution time and resource usage. This is also reflected in the best S2S
transformations found by HOF, where loop unrolling always turn out to be
better than other optimizations. The HOF-optimized code performs better
than the original version when the number of computations per iteration in-
creases and the number of branches decreases. The speedup result obtained
from tuning the original code with HOF is significant.

Application optimizations and source-to-source transformation by HOF
improved the execution time from 2% to 700% which leads up to a 7×
speedup factor w.r.t baseline as shown in Figure 6.1 in which we normalized
to one all the execution times. Moreover, we observe that because of MIPS

architecture limitations, the speedup of HOF w.r.t original code slightly
decreases when the number of division operation used is increasing. The
Figure 6.1 shows that semi-automated optimization HOF tuning produces
the best performance for all cases.

Figure 6.1: Normalized Execution Time of All Benchmarks w.r.t Baseline

Additionally, we observed that LegUp free version fails to pipeline the
code and run the HW/SW synthesis, whereas HOF is able to profile the hot
function of original code and improves the performance for other hardware
and software flows. The sequential performance results are shown in Figure
6.2 for all used benchmarks in this experiment contains the Area-Delay
result, which shows that applying HOF on the original code always delivers
logic utilization efficiency boosts, which range from 3 percent to 700 percent.

In certain cases, HOF did not have a significant performance improve-
ment; nevertheless, the HOF version noticed to perform better than the
original implementations in all instances. Also, the positive Logic Utiliza-
tion Efficiency was improved even for the cases that a significant execution
time improvement was not noticed. Thus, we optimized the two important
criterion meaning that having less execution time by using less computa-
tional units.

6.2 Future Works

Throughout developing the framework, we also worked on LLVM IR-level
optimizations. Although Orio reports the best compiler optimization flags
for the SW platform, we cannot always make use of them because:

112

Figure 6.2: Speedup of all benchmarks besides their corresponding logic utilization
efficiency w.r.t original

• Orio is integrated with GCC and still not fully adapted to exploit
clang, taking into account that compiler optimization parameters which
are wrapped in -O1 -O2 -O3 are different in GCC and Clang-LLVM,
therefore integrating -O flags reported by Orio are not always reliable

• The hybrid essence of our framework does not allow us to be always
versatile on compiler optimization flags. in the current version of the
framework, after many experiments, we realized that -O3 can outper-
form on different design methods.

Moreover as already investigated by other researchers in University of
Toronto [49], there are customized sets of LLVM flags which outperform
on pure hardware design method, meaning that compiling HLS by some
particular flags rather than conventional -O optimizations can achieve a
better result on HLS-based implementations.

Also, the order that those flags are applied on IRs can significantly
change the performance of final synthesized circuits. Our early experiments
on several codes show that there is the possibility to optimize them on dif-
ferent design methods by applying custom compiler flags. Evidently, the
best order to apply the optimizations is not unique and there is no a single
recipe for all codes but the customized recipe of flags can impact positively
on some performance metrics, this information helps to prune the vast de-
sign space of our framework regarding HLS on pure hardware method. For

113

the sake of completeness, three customized LLVM-Clang recipe, which we
believe can upgrade our framework are appended in appendix C. Also, the
complete list of flags is available at:

http://janders.eecg.toronto.edu/pdfs/fccm13/recipes_summary.
htm.

Regarding the HLS design space, considering the recent progress in Ar-
tificial Neural Network and the concept of Deep Neural Network and its
applicability using Google Tensorflow platform, we believe that fully au-
tomated approaches to selecting compiler optimizations on a per-program
basis are practical, and will be of keen interest to FPGA users seeking high
design performance. such approaches also appear to be a useful mecha-
nism for narrowing the gap between HLS-generated hardware and manually
designed hardware.

Last but not least, there are many different code transformations that
Orio provides. In this research, we managed to utilize some, mostly loop
unrolling. We wrote the tuning specifications in a way to guide Orio di-
rective generation algorithm to vectorizing for different segments of a code.
However, the free version of LegUp we used for this research was unable to
apply vectorization on compilation stage. Meaning that, by developing this
feature inside the tool-chain, the HOF is expected to achieve better results
in the future.

114

Bibliography

[1] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and
Katsuya Ishii. Chstone: A benchmark program suite for practical c-
based high-level synthesis. In 2008 IEEE International Symposium on
Circuits and Systems, pages 1192–1195, May 2008.

[2] Juan J. Durillo Philipp Gschwandtner and Thomas Fahringer. Multi-
objective auto-tuning with insieme: Optimization and trade-off analysis
for time, energy and resource usage. Euro-Par 2014: Parallel Process-
ing, 8632:87–98, 2014.

[3] Chung I. Hollingsworth J. Tapus, C. Active harmony: Towards au-
tomated performance tuning. IEEE Conference on Supercomputing,
2002.

[4] de Supinski B.R. Schulz M. et al. Li, D. Strategies for energy-efficient
resource management of hybrid programming models. Parallel and Dis-
tributed Systems, IEEE Transactions, 24(1):144–157, 2013.

[5] Laurenzano M. Carrington L. et al. Tiwari, A. Auto-tuning for energy
usage in scientific applications. Euro-Par 2011: Parallel Processing
Workshops, 2012.

[6] Eeckhout L.: Cole Hoste, K. compiler optimization level exploration.
Proc. of the 6th Intl. Symposium on Code generation and optimization,
2008.

[7] Guo J. Bhat A. et al. Rahman, S. Studying the impact of application-
level optimizations on the power consumption of multi-core architec-
tures. Proc. of the 9th conference on Computing Frontiers, 2012.

[8] Chen J. Yang X. etal. Dong, Y. Energy-oriented openmp parallel
loop scheduling. Parallel and Distributed Processing with Applications,
ISPA’08. International Symposium on, 2008.

[9] Mandelbrot set (http://mathworld.wolfram.com/mandelbrotset.html).

115

[10] Boyana Norris Albert Hartono and P. Sadayappan. Annotation-based
empirical performance tuning using orio. IEEE International Sympo-
sium on Parallel and Distributed Processing, pages 1–11, 2009.

[11] J. Ramanujam U. Bondhugula, A. Hartono and P. Sadayappan. A
practical automatic polyhedral program optimization system. ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Jun 2008.

[12] Kalyan Veeramachaneni Jonathan Ragan-Kelley Jeffrey Bosboom Una-
May O’Reilly Jason Ansel, Shoaib Kamil and Saman Amarasinghe.
Opentuner: An extensible framework for program autotuning. Pro-
ceedings of the 23rd international conference on Parallel architectures
and compilation, pages 303–316, August 2014.

[13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Tomasz Czajkowski, Stephen D Brown, and Jason H An-
derson. Legup: An open-source high-level synthesis tool for fpga-based
processor/accelerator systems. ACM Transactions on Embedded Com-
puting Systems (TECS), 13(2):24, 2013.

[14] Llvm compiler project (http://www.llvm.org), 2010.

[15] C.W. Chin J. Bilmes, K. Asanovi’c and J. Demmel. Optimizing matrix
multiply using phipac: a portable, high-performance, ansi c coding
methodology. the International Conference on Supercomputing, ACM
SIGARC, Vienna, Austria, July 1997.

[16] A. Petitet R. C. Whaley and J. Dongarra. Automated empirical opti-
mization of software and the atlas project. Parallel Computing, 27(1-
2):3–35, 2001.

[17] Matteo Frigo and Steven G. Johnson. Fftw: An adaptive software
architecture for the fft. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech
and Signal Processing, 3:1381–1384, 1998.

[18] J. Demmel R. Vuduc and K. Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Proc. of SciDAC 2005, J. of Physics:
Conference Series, June 2005.

[19] Eric Allen Brewer. Portable high-performance supercomputing: high-
level platform-dependent optimization. PhD thesis, Massachusetts In-
stitute of Technology, 1994.

[20] T.C. Meyerowitz. Single and multi-cpu performance modeling for em-
bedded systems. PhD thesis, University of California, Berkeley, Berke-
ley, CA, USA, April 2008.

116

[21] K. Datta S. Williams-J. Shalf L. Oliker S. Kamil, C. Chan
and K. Yelick. In-place auto-tuning of structured grid kernels.
http://www.cs.berkeley.edu/ skamil/stencilautotunerposter.ppt, Decem-
ber 2008.

[22] Cristina Silvano Gianluca Palermo and Vittorio Zaccaria. Respir: A re-
sponse surface-based pareto iterative refinement for application-specific
design space exploration. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 28(12):1816–1829, Dec. 2009.

[23] Vittorio Zaccaria Cristina Silvano Giovanni Mariani, Gianluca Palermo.
Desperate++: An enhanced design space exploration framework using
predictive simulation scheduling. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(2):293–306, Febru-
ary 2015.

[24] Vittorio Zaccaria Cristina Silvano Giovanni Mariani, Gianluca Palermo.
Oscar: an optimization methodology exploiting spatial correlation in
multi-core design space. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 31(5):740–753, May 2012.

[25] I.-H. Chung C. Tapus and J. K. Hollingsworth. Active harmony: To-
wards automated performance tuning. in In Proceedings from the Con-
ference on High Performance Networking and Computing, 2003.

[26] Top 500 supercomputer sites (http://www.top500.org/), 2010.

[27] M. Frigo and S. G. Johnson. The design and implementation of fftw3.
IEEE, 93(2), February 2005.

[28] J. J. Durillo S. Pellegrini P. Gschwandtner T. Fahringer H. Jordan,
P. Thoman and H. Moritsch. A multi-objective auto-tuning framework
for parallel codes. in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’12, 2012.

[29] J. W. Demmel R. Vuduc and K. A. Yelick. Oski: A library of auto-
matically tuned sparse matrix kernels. in Scientific Discovery through
Advanced Computing Conference, San Francisco, CA, June 2005.

[30] O. Schenk M. Christen and H. Burkhart. A code generation and auto-
tuning framework for parallel iterative stencil computations on modern
microarchitectures. in IPDPS. IEEE, 2011.

[31] S. Amarasinghe J. Ansel, M. Pacula and U.-M. O’Reilly. An efficient
evolutionary algorithm for solving bottom up problems. in Annual
Conference on Genetic and Evolutionary Computation, Dublin, Ireland,
July 2011.

117

[32] S. A. Kamil. Productive high performance parallel programming with
auto-tuned domain-specific embedded languages. Ph.D. dissertation,
EECS Department, University of California, Berkeley, Jan 2013.

[33] B. Singer J. Xiong J. R. Johnson D. A. Padua M. M. Veloso M. Puschel,
J. M. F. Moura and R. W. Johnson. Spiral: A generator for platform-
adapted libraries of signal processing algorithms. IJHPCA, 18(1), 2004.

[34] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung
Park, John Cavazos, and Cristina Silvano. Cobayn: Compiler autotun-
ing framework using bayesian networks. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 13(2):21, 2016.

[35] Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,
Sameer Kulkarni, and John Cavazos. Micomp: Mitigating the compiler
phase-ordering problem using optimization sub-sequences and machine
learning. ACM Transactions on Architecture and Code Optimization
(TACO), 14(3):29, 2017.

[36] Amir Hossein Ashouri. Compiler Autotuning Using Machine Learning
Techniques. PhD thesis, Politecnico di Milano, Italy, 2016. http:
//hdl.handle.net/10589/129561.

[37] A. Grosul T. J. Harvey S. W. Reeves D. Subramanian L. Torczon L. Al-
magor, K. D. Cooper and T. Waterman. Finding effective compilation
sequences. in LCTES’04, pages 231–239, 2004.

[38] O. Temam M. Namolaru E. Yom-Tov A. Zaks B. Mendelson E. Bonilla
J. Thomson H. Leather C. Williams M. O’Boyle P. Barnard E. Ash-
ton E. Courtois G. Fursin, C. Miranda and F. Bodin. Milepost gcc:
machine learning based research compiler. in Proceedings of the GCC
Developers’ Summit, Jul 2008.

[39] J. Cavazos A. Cohen E. Park, L.-N. Pouche and P. Sadayappan. Pre-
dictive modeling in a polyhedral optimization space. in CGO’11, pages
119–129.

[40] J. Cavazos B. Franke G. Fursin-M. F. P. O’boyle J. Thomson M. Tou-
ssaint F. Agakov, E. Bonilla and C. K. I. Williams. Using machine
learning to focus iterative optimization. in CGO’06, pages 295–305,
2006.

[41] M. Carbin S. Misailovic A. Agarwal H. Hoffmann, S. Sidiroglou and
M. Rinard. Power-aware computing with dynamic knobs. in ASPLOS,
2011.

118

[42] S. Sidiroglou A. Agarwal H. Hoffmann, S. Misailovic and M. Rinard. Us-
ing code perforation to improve performance, reduce energy consump-
tion, and respond to failures. Massachusetts Institute of Technology,
Tech. Rep. MIT-CSAIL-TR-2209-042, Sep 2009.

[43] J. Sztipanovits G. Peceli G. Simon G. Karsai, A. Ledeczi and T. Ko-
vacshazy. An approach to self-adaptive software based on supervisory
control. in International Workshop in Self-adaptive software, 2001.

[44] . Hua Liu M. Khandekar N. Kandasamy V. Bhat, M. Parashar and
S. Abdelwahed. Enabling self-managing applications using model based
online control strategies. in International Conference on Autonomic
Computing, Washington, DC, 2006.

[45] F. Chang and V. Karamcheti. A framework for automatic adaptation
of tunable distributed applications. Cluster Computing, 4, March 2001.

[46] W. Baek and T. Chilimbi. Green: A framework for supporting energy
conscious programming using controlled approximation. in PLDI, June
2010.

[47] M. D. Santambrogio J. E. Miller H. Hoffmann, J. Eastep and A. Agar-
wal. Application heartbeats: a generic interface for specifying pro-
gram performance and goals in autonomous computing environments.
in ICAC, New York, NY, 2010.

[48] Zaccaria Cristina Silvano Sotirios Xydis, Gianluca Palermo. Spirit:
Spectral-aware pareto iterative refinement optimization for supervised
high level synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 34(1):155–159, January 2015.

[49] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi,
Nazanin Calagar, Stephen Brown, and Jason Anderson. The effect
of compiler optimizations on high-level synthesis-generated hardware.
ACM Trans. Reconfigurable Technol. Syst., 8(3):14:1–14:26, May 2015.

[50] Altera(intel) fpgas (http://www.altera.com), 2017.

[51] Xilinx vivado (http://www.xilinx.com), 2017.

[52] E. Martin, O. Sentieys, H. Dubois, and J. L. Philippe. Gaut: An archi-
tectural synthesis tool for dedicated signal processors. In Proceedings
of EURO-DAC 93 and EURO-VHDL 93- European Design Automation
Conference, pages 14–19, Sep 1993.

[53] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason
Cong. Improving high level synthesis optimization opportunity through

119

120 Chapter 6. Conclusion and Future Works

polyhedral transformations. In Proceedings of the ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, FPGA ’13,
pages 9–18, New York, NY, USA, 2013. ACM.

Appendix A

Mandelbrot

””The Mandelbrot Set is the most complex object in mathematics, its ad-
mirers like to say. An eternity would not be enough time to see it all, its
disks studded with prickly thorns, its spirals and filaments curling outward
and around, bearing bulbous molecules that hang, infinitely variegated, like
grapes on God’s personal vine.””

[James Gleick, ”Chaos: Making a New Science”]

Mandelbrot set is a set of complex numbers defined in the following way:

M = {c ∈ C| lim
x→∞

Zn 6=∞}

Z0 = c

Zn+1 = Z2
n + c

(A.1)

That is, the Mandelbrot set is the set of all complex numbers which fulfill
the condition described above, that is, if the value of the (recursive) function
Zn for the value c is not infinite when n approaches infinity, then c belongs
to the set.

As with many other fractal functions, it is said that this function has an
attractor, which in this case is located at infinity.

Attractors are related to the ”orbit” of the function. This orbit is defined
by the path formed by the values of Z at each step n. The orbit of Z for
a certain value c either tends towards the attractor or not. In this type
of fractals a value c causing the orbit of Z to go to the attractor point is
considered to be outside the set.

The attractor of a fractal may not always be at infinity, and there even
may not be just one attractor. For example the so-called magnet1 fractal
has two attractors, one at infinity and the other at 1+0i.

122 Appendix A. Mandelbrot

Metrics Pure HW1 Pipelining Mul lat=0 Loop Trs2 Parallel

Cycles 759939 559235 354435 237710 108608
II3 N/A 2 1 1/1/1 2
FMax 111.77MHz 116 .35MHz 64.16MHz 83.73MHz 109.4MHz
Clock Period 8.9ns 8.5ns 15ns 11ns 9.1ns
W-C time4 6763us 4753us 5316us 2614us 988us
ALMs 828 832 812 115 2703
DSP blocks 18 18 18 18 68
Area×Delay 5599764 3954496 4316592 300610 2670564

Table A.1: Mandelbrot HLS Analysis

123

Performance Metrics:

cycle latency: number of clock cycles for execution
Fmax: Maximum possible hardware clock frequency to run the circuit
Clock Period: The inverse of clock Fmax, 1

Fmax
Wall-clock time: It is the key performance metric for HLS, computed as
the product of cycle latency and the clock period.cyclelatency×clockperiod
ALMs:The number of used Adaptive Logic Module (ALM) which indicates
the area consumed on the FPGA
DSP block: The number of used Digital Signal Processing units on the
FPGA
Area-Delay: HLS projects are considered as multi-objective optimiza-
tion problems in which a trade-off among several metrics is taken into ac-
count. Delay and Area are two prominent performance criteria that are
related inversely, meaning that, assuming a reasonable design, the design
space,mathematically called feasible region, includes solutions which intro-
duce faster circuits but bulkier and vice versa. Evidently it is designers’
decision to select between different optimum extremes according to desired
specifications.Whenever there is a multi-objective problem there is not a
unique optimum solution.But,evidently, there is a point in the space of con-
trasting optimum solutions where both metrics can have a minimum value,
relatively. In theory the curve of different optimums is called pareto front. In
the context of HLS problem we are interested in smaller but faster solutions,
hence considering different design approach we calculate AREA×DELAY
to find our desired optimum which is actually the minimum value of this
metric. figure A.1 shows the pareto front for two conflicting objective func-
tion. In this context axis are labeled by Area and Cycle latency.

Pure Hardware Analysis:

Listing A.1: Mandelbrot Kernel

#define DECIMAL_PLACES 28
#define int2fixed(num) ((num) << DECIMAL_PLACES)
#define fixedmul(a, b) ((((long long)a) * \
((long long)b)) >> DECIMAL_PLACES)
#define fixed2int(num) ((num) >> DECIMAL_PLACES)

#define WIDTH 64
#define HEIGHT 64
#define MAX_ITER 50

int mandelbrot()
{
int i, j;
int count = 0;

124 Appendix A. Mandelbrot

Figure A.1: Pareto Curve

for (j = 0; j < HEIGHT; j++)
{
for (i = 0; i < WIDTH; i++)
{
int x_0 = int2fixed(-2) + (((((3 << 20) * i)/WIDTH)) << 8);
int y_0 = int2fixed(-1) + (((((2 << 20) * j)/HEIGHT)) << 8);
int x = 0;
int y = 0;
int xtmp;
unsigned char iter;
unsigned char fiter = 0;

loop: for (iter = 0; iter < MAX_ITER; iter++)
{
long long abs_squared = fixedmul(x,x) + fixedmul(y,y);
xtmp = fixedmul(x,x) - fixedmul(y,y) + x_0;
y = fixedmul(int2fixed(2), fixedmul(x,y)) + y_0;
x = xtmp;
fiter += abs_squared <= int2fixed(4);
}
unsigned char colour = (fiter >= MAX_ITER) ? 0 : 1;
count += colour;
}
}

return count;
}

In this experiment we compiled the Mandelbrot C code shown in A.1 to
hardware without any structual modifications. As this code is compiled by

125

llvm-clang in the legup hierarchy, a main() function to call and assert the
above-mentioned algorithm is added while applying the experiment. HLS ex-
ecutes and then produces two Verilog file named mandelbrot.v and main tb.v.
main tb module is called a testbench, and it is used for simulation of the
main Verilog module (called top) that implements Mandelbrot. The test-
bench is quite simple: it simulates the main Verilog module with a clock
(clk), as well as asserts start and reset signals, and waits for a finish signal
to become high when Mandelbrot has finished its work computing 64 × 64
pixels. A.2 shows the mandelbrot call graph, BB 12 (12th basic block) in-
dicates the inner-most loop which is computationally intensive. This loop
is scheduled into three clock cycles. On A.3 you can see the name of LLVM
instructions and the way they are scheduled on corresponding resultant hard-
ware.since we observe that the inner-most loop has been scheduled with 3
clock cycles, and since that loop body executes 64 × 64 × 50 = 204800
times, we expect the total number of cycles spent executing the hardware
to be roughly 204800 × 3 = 614400 cycles. Of course, this doesn’t count
some of the overhead operations outside of the inner-most loop. Simulat-
ing the hardware by ModelSim reveals the actual number of cycles which
is 759K cycles. The Simulation is done in Register Transfer level (RTL)
and called functional simulation. we make use of Altera Quartus II to map
the verilog code to Altera Cyclone V FPGA this procedure includes syn-
thesizing,placement,routing and timing analysis. Results of our interest are
reported in A.1.

Loop Pipelining Analysis:

The main concept of loop pipelining has been discussed in previous chap-
ters. here we roughly review the main idea to analyze the performance of
the mandelbrot exploiting loop pipelining. Loop pipelining allows a new
iteration of the loop to be started before the current iteration has finished.
By allowing the execution of the loop iterations to be overlapped, higher
throughput can be achieved. The amount of overlap is controlled by the
initiation interval. The initiation interval (II) indicates how many cycles
are taken before starting the next loop iteration. Thus an II of 1 means a
new loop iteration can be started every clock cycle, which is the best case.
The II needs to be larger than 1 in other cases, such as when there is a
resource contention (multiple loop iterations need the same resource in the
same clock cycle) or when there are loop-carried dependencies (the output
of a previous iteration is needed as an input to the subsequent iteration).
A.4 shows an example of loop pipelining . A.4(A) shows the sequential loop,
where the II=3, and it takes 8 clock cycles for the 3 loop iterations before
the final write is performed. A.4 (B) shows the pipelined loop. In this case,
there are no resource contentions or data dependencies. Hence the II=1, and
it takes 4 clock cycles before the final write is performed. You can see that

126 Appendix A. Mandelbrot

Figure A.2: Mandelbrot call graph

127

Figure A.3: Mandelbrot scheduling details

Figure A.4: Loop Pipelining

128 Appendix A. Mandelbrot

loop pipelining can significantly improve the performance of your circuit,
especially when there are no data dependencies or resource contentions. In
A.1 there is a loop nest, we can only pipeline the inner-most loop. In A.1
you can observe the performance measurements while pipelining the loop.An
II of 2 was achieved for the loop, and the pipeline length is 3. in A.5 a vi-
sual view for the pipelined schedule is available. we see that the II of the
loop is 2, and that the length of the pipeline is 3 cycles. The dark black
rectangle illustrates what the pipeline looks like in the steady state. In the
steady state, two iterations of the loop are ”inflight” at once. Since we ob-
serve that the loop II is 2, and the loop executes 64*64*50 = 204800times,
the total time spend in the inner-most loop is roughly 204800*2 = 409600
cycles. This is an approximation, as it doesn’t include the initial time to
fill the pipeline, nor does it include the time to flush the pipeline for each
pixel. ModelSim simulation of the design reveals that that loop pipelining
has dramatically improved the cycle latency for the design, reducing it from
759K cycles to 559K cycles in total. Invoking synthesis tool-chain shows the
other performance metrics available in A.1

Multipliers Latency:

Certain computations in hardware may take multiple clock cycles to com-
plete. For example, a load from memory takes two cycles, and a store to
memory takes one cycle. Other operations, however, are completely combi-
national - they take zero cycles to complete and may be chained together
with other zero-latency operations in a single clock cycle. In LegUp, for
example,add, subtract, and all logical operations are zero-latency opera-
tions. By default in LegUp, multiplication operations take a single cycle
to complete. The rationale for this default setting is to improve the FMax
of the circuits produced. We have observed with zero-latency multiplies,
that multiplies are often on the critical path of the resultant circuits. So,
setting the latency of multiplies to 1 is generally good for FMax. On the
other hand, non-zero-latency operations are generally worse for cycle la-
tency, as they cannot be chained with other operations in the same clock
cycle. In the Mandelbrot example, the inner loop is heavy on multiplies,
thereby lengthening the number of clock cycles needed for each inner loop
iteration. LegUp provides a mechanism to change the cycle latency of an op-
eration. In this case, we set the multiply latency to 0 cycles and synthesize
the design again (with loop pipelining),we see that an initiation interval of
1 has been achieved for the inner loop.looking at the loop pipeling schedule,
we observed an iteration of the loop starting each cycle but this lower II
impacts on cycle latency for the entire hardware execution, it is observed by
simulating and the synthesizing the project.As reported in A.1 lower II has
drastically reduced cycle latency in comparison to the prior steps.Also, the

129

Figure A.5: Loop Pipelining Scheduling

130 Appendix A. Mandelbrot

FMax has dropped to about 64MHz. By reducing the multiplier latency to
0, we reduced its cycle latency; however, the circuit’s critical path is consid-
erably worse. This is a key trade-off in high-level synthesis: cycle latency
can typically be traded-off with FMax - by lengthening the clock period
(worse FMax), we can normally reduce cycle latency by chaining operations
together in a clock cycle.

Loop Transformation:

The code for the Mandelbrot example contains a triply-nested loop. The
outer loop walks over the rows; the first inner loop walks over the columns;
the inner-most loop iterates through the iterations for a particular pixel. If
you look carefully at the inner-most loop, you can see it contains a loop-
carried dependency: the ith iteration of the loop depends on the i − 1th

iteration. Because of this dependency, loop pipelining could not achieve an
II of 1 without reducing the multiplier latency to 0, as you did in the prior
step of the lab. For this step, you will modify the C code to remove the
dependency entirely, by using an approach called loop interchange. The
basic idea is to interchange the first inner loop with the inner-most loop,
thereby producing an inner-most loop without any loop-carried dependency.
Conceptually, in the original version of the code, each pixel was considered
in turn. That is, the code computed whether a given pixel was in the
Mandelbrot set,and then moved onto determine whether the next pixel was
in the Mandelbrot set. With loop interchange,the order in which things are
computed will be changed fundamentally: the inner-most loop will compute
zi for an entire row of pixels. After this is completed, the next run of the
inner-most loop will compute zi + 1for the same row of pixels. In essence,
the Mandelbrot set computations for an entire row of pixels will be ”in
flight”. To make this work, we need to store the zi values for all such pixels
that are in flight: an entire row of pixels.In the code belowA.2, the first
few lines of the function declare arrays that allow us to store intermediate
data for an entire row of the image. Following these declarations, observe
that the outer loop is over the rows of the image (as before). Within the
outer loop, the original functionality has been split into three sections: In
the first section, labelled lp1, there is an inner loop that initializes all data
for a row of the image. The second section, has a doubly nested loop, where
the loop interchange has been implemented. The top-level loop of this nest
corresponds to the inner-most loop of the original code; the inner-most loop
here, labelled lp2, iterates over all the columns of a row. The third and final
section of the code below, labelled lp3, performs the accumulation to count
for all pixels in a row. The code below implements loop interchange, and
also loop fission (also sometimes called loop distribution), where the triply
nested loop in the original code has been split into multiple separate loops.

131

Listing A.2: Transformed Mandelbrot Kernel

#define DECIMAL_PLACES 28
#define int2fixed(num) ((num) << DECIMAL_PLACES)
#define fixedmul(a, b) ((((long long)a) *\
((long long)b)) >> DECIMAL_PLACES)
#define fixed2int(num) ((num) >> DECIMAL_PLACES)

#define WIDTH 64
#define HEIGHT 64
#define MAX_ITER 50

int mandelbrot() {
int i, j;
int count = 0;

int x_0 [WIDTH] = {0};
int y_0 [WIDTH] = {0};
int x [WIDTH] = {0};
int y [WIDTH] = {0};
unsigned char fiter[WIDTH] = {0};

for (j = 0; j < HEIGHT; j++) {

lp1:for (i = 0; i < WIDTH; i++)
{

x_0[i] = int2fixed(-2) +
(((((3 << 20) * i)/WIDTH)) << 8);

y_0[i] = int2fixed(-1) +
(((((2 << 20) * j)/HEIGHT)) << 8);

x[i]=0;
y[i]=0;
fiter[i]=0;

}

int xtmp;
unsigned char iter;
for (iter = 0; iter < MAX_ITER; iter++)
{

lp2:for (i=0; i < WIDTH; i++)
{
long long abs_squared = fixedmul(x[i],x[i]) +
fixedmul(y[i],y[i]);
xtmp = fixedmul(x[i],x[i]) -
fixedmul(y[i],y[i]) + x_0[i];
y[i] = fixedmul(int2fixed(2), fixedmul(x[i],y[i])) +
y_0[i];
x[i] = xtmp;
fiter[i] += abs_squared <= int2fixed(4);
}

}

132 Appendix A. Mandelbrot

lp3:for (i=0; i < WIDTH; i++)
{
unsigned char colour = (fiter[i] >= MAX_ITER) ? 0 : 1;
count += colour;
}
}

return count;
}

we apply loop pipelining to the loop where interchange has been applied:
that labelled lp2, then we take into account other possible pipelinings which
are labeled by lp1 and lp3. Also multiplier latency is set back to its orig-
inal value of 1. Simulating and synthesis results are reported in A.1. Ev-
idently, a significant reduction in cycle latency has been achieved. In A.6
loop pipeline scheduling is reported visually. three basic blocks with the
names:wait lp1 1,wait lp2 1,and wait lp3 1, corresponding to the three pipelined
loops. The schedule for lp1 is particularly interesting: the II of the loop is
1, however, the length of the pipeline is over 30 cycles long. The reason for
this is that lp1 contains a division operation, which itself is heavily pipelined
by LegUp to improve the FMax of the design.

Parallel Processing:

In the parallel processing approach, we exploit a key advantage of moving
computations into hardware: the ability to exploit spatial parallelism. We
parallelize the software code using Pthreads, and then synthesize the parallel
code into parallel hardware. At a high-level, the idea is to launch four
threads, each of which responsible for computing the pixel values for 1/4
of the rows of the image. The HLS tool then synthesize four Mandelbrot
”cores” in the hardware, that operate concurrently with one another. Since
each core is responsible for only 1/4 of the original work, the total cycle
latency is reduced to roughly 25% of the original latency. Naturally, the
resultant circuit takes up about 4x the area on the FPGA. In essence, we
are trading off area for time- an optimization approach that is very typical
in computer hardware design.

Listing A.3: Threaded Mandelbrot Kernel

#include <pthread.h>

#define DECIMAL_PLACES 28
#define int2fixed(num) ((num) << DECIMAL_PLACES)
#define fixedmul(a, b) ((((long long)a) *\
((long long)b)) >> DECIMAL_PLACES)
#define fixed2int(num) ((num) >> DECIMAL_PLACES)

#define WIDTH 64

133

Figure A.6: Schedule for loop lp1 in the transformed Mandelbrot code.

134 Appendix A. Mandelbrot

#define HEIGHT 64
#define MAX_ITER 50
#define NUM_ACCEL 4
#define OPS_PER_ACCEL HEIGHT/NUM_ACCEL
#define OMP_ACCEL 4

struct thread_data{
int startidx;
int maxidx;

};

volatile unsigned char img[WIDTH][HEIGHT];

void *mandelbrot(void *threadarg) {
int i, j, tid;

int count = 0;
struct thread_data* arg = (struct thread_data*) threadarg;
int startidx = arg->startidx;
int maxidx = arg->maxidx;

for (j = startidx; j < maxidx; j++)
{
for (i = 0; i < WIDTH; i++)
{

int x_0 = int2fixed(-2) + ((((3 << 20) * i/WIDTH)) << 8);
int y_0 = int2fixed(-1) + ((((2 << 20) * j/HEIGHT)) << 8);

int x = 0;
int y = 0;
int xtmp;
unsigned char iter;
unsigned char fiter = 0;

loop:for (iter = 0; iter < MAX_ITER; iter++) {
long long abs_squared = fixedmul(x,x) + fixedmul(y,y);
xtmp = fixedmul(x,x) - fixedmul(y,y) + x_0;
y = fixedmul(int2fixed(2), fixedmul(x,y)) + y_0;
x = xtmp;
fiter += abs_squared <= int2fixed(4);
}

unsigned char colour = (fiter >= MAX_ITER) ? 0 : 1;
count += colour;
img[i][j] = colour;

}
}

pthread_exit((void*)count);
}

int main() {
int final_result = 0;

135

int i, j;
int count[NUM_ACCEL];
pthread_t threads[NUM_ACCEL];
struct thread_data data[NUM_ACCEL];

//initialize structs to pass into accels
for (i=0; i<NUM_ACCEL; i++) {

data[i].startidx = i*OPS_PER_ACCEL;
if (i == NUM_ACCEL-1) {

data[i].maxidx = HEIGHT;
} else {

data[i].maxidx = (i+1)*OPS_PER_ACCEL;
}

}

//launch threads
for (i=0; i<NUM_ACCEL; i++)
{
pthread_create(&threads[i], NULL, mandelbrot, (void *)&data[i]);
}

//join the threads
for (i=0; i<NUM_ACCEL; i++)
{

pthread_join(threads[i], (void**)&count[i]);
}

//sum the results
for (i=0; i<NUM_ACCEL; i++)
{

final_result += count[i];
}

}

In A.3 you can find the same mandelbrot code that is written in threaded
structure using pthred library. A C structure is defined at the top of the
code with two fields: startidx and maxidx. For each thread, these integers
hold the starting row and ending row of the image that each thread is re-
sponsible for. The mandelbrot function is nearly identical to A.1 however,
in this case, the function parameter is a pointer to the structure (cast to
void*). The first thing the function does is to extract the starting and end-
ing rows from the structure. These are then the bounds of the outer loop
(for j).
Looking down in the code, within the main function, a code snippet, sets up
the work for each thread (the set of rows it is responsible for). Here,NUMACCEL
is the number of accelerators that should be synthesized (4 in this case).
Further down in the code, there are calls to pthread create and pthread join,
which create the threads and wait for them to complete, respectively. Exe-
cuting HLS then simulating and synthesizing the threaded code, results the

136 Appendix A. Mandelbrot

Figure A.7: Mandelbrot Fmax on different HLS approaches

measurements reported in A.1. It is observed that the parallel approach has
the least clock cycle and delay but the most area. There is no such thing as
free lunch!

A discussion on HLS strategies:

Fmax is generally affected by circuit critical path, the longer critical path
which is the result of a more complex combinational circuit needs a longer
clock period to finish the computations ,hence less cycles in the time steps.
Usually multipliers play a significant role in prolonging clock period thereby
synthesizing a complex multiplier needing less clock cycles makes the Fmax
less too.

Considering a trend line on A.8 shows the fact that a more parallel de-
sign decreases the wall clock time. There is a huge difference between Pure
hardware implementation and a parallel approach which indicates direct
hardware synthesis is not always optimally parallel hence an extra effort is
needed to re-design the system in data parallel to task parallel fashion ac-
cordingly. Moreover, as the clock frequencies in different design approaches
are different, other metrics such as clock cycles and clock periods cannot
reveal the aggregated speed up of the synthesized circuit

Clock Period is the inverse of frequency as mentioned before, decreasing
the multiply latency results in longer clock period. By the way the clock
period alone is not a good performance measurement metric.

Reviewing A.10 shows that there is a definite decrease on the number of

137

Figure A.8: Mandelbrot Wall Clock Time on different HLS approaches

Figure A.9: Mandelbrot Clock Period on different HLS approaches

138 Appendix A. Mandelbrot

Figure A.10: Mandelbrot Clock cycles on different HLS approaches

clock cycles as moving form pure hardware to other synthesis optimizations
and finally a parallel approach which indicates the smallest value. It is 85%
improvement but as the clock frequencies on different approached are not
the same, this performance improvement is biased. The actual performance
improvement is visible on A.8. But,all in all, a more parallel hardware
design is considered as a spatial decomposition and parallelization which
always reduces the number of clock cycles.

It is obvious in A.11 that only the parallel design increases the number
of DSP blocks consumed.

Figure A.12 shows a key plot that motivates the proposed framework
in this thesis. Taking into account the importance of Area*Delay, the fig-
ure shows that Loop Transformations or generally Code Transformations
yields the best Area-delay product meaning that the concept of source to
source compilation to reform the programming structure not only affects
in the context of sequential softwares but also extremely impacts on High
Level Synthesis and subsequent circuitries in terms of area and speed. In a
nutshell, code transformations normally result in a pareto optimum point.

A.13 shows that Code Transformation have conveys the best gain in
resource consumption while the parallel approach is the worst. It is obvious
that spatially replicating the hardware modules needs more logic elements.

139

Figure A.11: Mandelbrot DSP blocks on different HLS approaches

Figure A.12: Mandelbrot Area*Delay on different HLS approaches

140 Appendix A. Mandelbrot

Figure A.13: Mandelbrot ALMs on different HLS approaches

Appendix B

Loop Transformation
Modeling

B.1 Source to Source Transformation

As the PluTo integrated in Orio implements loop transformations based on
polyhedral modeling, also taking into account various loop optimizations
that can be enabled by LLVM opt command, in this appendix we describes
the theory of source code optimization techniques.

HLS has lifted the design abstraction from RTL to C/C++, but in prac-
tice extensive source code rewriting is often required to achieve a good design
using HLS especially when the design space is too large to determine the
proper design options in advance. In addition, this code rewriting requires
not only the knowledge of hardware microarchitecture design, but also fa-
miliarity with the coding style for the high-level synthesis tools. Automatic
source-to-source transformation techniques have been applied in software
compilation and optimization for a long time. They can also greatly ben-
efit the FPGA accelerator design in a high-level synthesis design flow. In
general, source-to-source optimization for FPGA will be much more com-
plex and challenging than that for CPU software because of the much larger
design space in microarchitecture choices combined with temporal/spatial
resource allocation. The goal of source-to-source transformation is to reduce
or eliminate the design abstraction gap between software/algorithm devel-
opment and existing HLS design flows. This will enable the fully automated
FPGA design flows for software developers, which is especially important
for deploying FPGAs in data centers, so that many software developers can
efficiently use FPGAs with minimal effort for acceleration.

142 Appendix B. Loop Transformation Modeling

B.2 Theory of code transformation

B.2.1 Polyhedral Model for nested loops

Polyhedral models can be used to represent execution information of a
program’s loop nests, such as the loop iteration domain, statement/iter-
ation dependencies, array access functions, and scheduling functions (exe-
cution order). Mathematical definitions of this model are described http:
//polyhedral.info/ and related articles.

Here,as a case study, we roughly introduce mathematical modeling of
loop transformations via polyhedral modeling [53]. To do so, first Array
Access Patterns are introduced.

Classification of Array Access Patterns

We model the array access patterns using the polyhedral model, thus we
assume that all array accesses are affine expressions of loop indices and
constants. The program inputs are composed of multiple data-dependent
blocks where each block contains a single multi-dimensional loop nest. Let
us consider a loop nest of dimensionality D that accesses an N-dimensional
array. The array access pattern is defined by matrix M whose size is N ×D,
where the rows (i) represent the data access pattern in dimension i of the
data array, and columns (j) represent the access pattern in the loop level
j. Given the array access pattern M, loop iteration vector ~i, and constant
offset vector ~o, the array access vector ~s is defined as

~s = M~i + ~o

~s is column vector of size N , where each row (i)represents array accesses in
dimension i, and the offset vector is a constant offset into that dimension.
Figure ?? shows an example of array access pattern and vector for the writes
to array B; similar access patterns and vectors could be derived for the reads
from array A. In the following, we demonstrate the data access patterns for
2-dimensional arrays and 2-dimensional loop-nests. For ease of illustration,
we classify the access patterns below.The polyhedral model can be easily
extended to handle a wide variety of additional access patterns, and our
work can use any additional access patterns to estimate the performance
benefit.Now we will describe how to define the array access patterns using
M. Let

M =

(
a1 b1
a2 b2

)
We classify the array access patterns based on the values of a1, a2, b1 and b2.
For array accesses with non-unit loop strides, we perform loop normalization
as a preprocessing step so that our analysis can assume unit loop stride.

B.2. Theory of code transformation 143

Figure B.1: An Example of Array Access Pattern

Column and Reverse Column.(
±1 0
0 ±1

)
The array access vector can be obtained by M~i. Figure 5 shows the four

patterns in this category, where the signs of a1 and b2 determine traversal
direction. For example, with outer loop index i and inner loop index j, if
a1 = 1 and b2 = 1, then the outer loop traverses increasing values of i, and
the inner loop traverses increasing values of j.

Row and Reverse Row(
0 ∓1
∓1 0

)
Similar to column and reverse column, there are four patterns in this cate-
gory, and the signs of b1and a2 determine the traversal directions.

Figure B.2: An An example of column access pattern. There are 4 patterns with
different traverse directions.

144 Appendix B. Loop Transformation Modeling

Diagonal Access

In this category, the loop traverses in a diagonal line fashion. We further
divide this into two cases based on the slopes of the diagonal lines.

• slope > 1. (
±1 N > b1 ≥ 1
0 ±1

)
The array access vector can be obtained by~i. The slope of the diagonal
line is determined by b1 , and the signs of a1 and b2 determine the
traversal directions.When b 1 ≥ N , the traversal order reduces to one
of the column access orders. Figure B.3 shows the four data access
patterns for slope = 1.

• slope < 1. (
N > a1 ≥ 1 ∓1
∓1 0

)
The slope of the diagonal line is determined by 1a1 , and the signs
of a2 and b1 determine the traversal directions. When a1 ≥ N ,the
traversal order reduces to one of the row access orders.

All of the array access patterns defined above are unimodular matrices where
‖a1 × b2 − a2 × b1‖ = 1. Thus, all of these access patterns can be achieved
by unimodular loop transformations of the block(s).

B.3 Loop Transformation

Loop transformations can change the schedule (e.g., execution order) of loop
iterations such that the data access pattern can be changed. Thus, here we
derive the loop transformation given a desired data access pattern.
THEOREM 3.1.The transformation function T required for the desired
data access pattern Mdes can be obtained by

T = M−1desMoriF
−1
ori

where Mori and Fori are the data access pattern and schedule function of the
source code without transformation.
PROOF. Let ~i′ be the loop iterator vector after transformation. Thus, the
desired array access vector after transformation is Mdes

~i′. Let us assume the
schedule function and data access pattern of the original code are Fori and
Mori,respectively. Thus, the schedule function after transformation is TFori

. Schedule function maps the original loop iterations to a new ordering of
the loop iterations. Thus,

TFori
~i = ~i′

B.3. Loop Transformation 145

Thus,
~i = F−1oriT

−1~i′

The data accessed by the iterations before and after transformation is the
same

MoriF
−1
oriT

−1~i′ = Mdes
~i′

Thus
T = M−1desMoriF

−1
ori

The data access pattern and loop transformations are all unimodular
matrix. For unimodular matrix, we can always derive its reverse matrix.

Figure B.3: An example of diagonal access pattern with slope = 1. There are 4 patterns
with different traverse directions.

146 Appendix B. Loop Transformation Modeling

Appendix C

Codes

C.1 AXPY

Listing C.1: Annotated AXPY code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i=0; i<=N-1; i=i+1){
y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]+a5*x5[i];

}
) @*/

for (i=0; i<=N-1; i=i+1){
y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]+a5*x5[i];

}
/*@ end @*/

Listing C.2: AXPY Orio specification code to use for S2S transformation

PerfTuning (spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,100);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’,’-O1’,’-O2’,’-O3’];

}
def input_params {
param N[] = [100000];

}

148 Appendix C. Codes

def input_vars {
decl dynamic int x1[N] = random;
decl dynamic int x2[N] = random;
decl dynamic int x3[N] = random;
decl dynamic int x4[N] = random;
decl dynamic int x5[N] = random;
decl dynamic int y[N] = 0;
decl int a1 = random;
decl int a2 = random;
decl int a3 = random;
decl int a4 = random;
decl int a5 = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.3: Tuned and transformed AXPY code after S2S transformation by Orio

@*/
/**-- (Generated by Orio)
Tuned for specific problem sizes:
N = 100000

Best performance parameters:
CFLAGS = -O3
UF = 7
VEC = True

--**/

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i=0; i<=N-1; i=i+1){
y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]+a5*x5[i];

}
) @*/
{
int i;
register int cbv_1;
cbv_1=N-7;

#pragma ivdep
#pragma vector always
for (i=0; i<=cbv_1; i=i+7) {
y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]+a5*x5[i];
y[(i+1)]=y[(i+1)]+a1*x1[(i+1)]+a2*x2[(i+1)]+a3*x3[(i+1)]+a4*x4

[(i+1)]+a5*x5[(i+1)];
y[(i+2)]=y[(i+2)]+a1*x1[(i+2)]+a2*x2[(i+2)]+a3*x3[(i+2)]+a4*x4

[(i+2)]+a5*x5[(i+2)];
y[(i+3)]=y[(i+3)]+a1*x1[(i+3)]+a2*x2[(i+3)]+a3*x3[(i+3)]+a4*x4

[(i+3)]+a5*x5[(i+3)];
y[(i+4)]=y[(i+4)]+a1*x1[(i+4)]+a2*x2[(i+4)]+a3*x3[(i+4)]+a4*x4

C.2. ADPCM 149

[(i+4)]+a5*x5[(i+4)];
y[(i+5)]=y[(i+5)]+a1*x1[(i+5)]+a2*x2[(i+5)]+a3*x3[(i+5)]+a4*x4

[(i+5)]+a5*x5[(i+5)];
y[(i+6)]=y[(i+6)]+a1*x1[(i+6)]+a2*x2[(i+6)]+a3*x3[(i+6)]+a4*x4

[(i+6)]+a5*x5[(i+6)];
}
register int cbv_2, cbv_3;
cbv_2=N-((N-(0))%7);
cbv_3=N-1;

#pragma ivdep
#pragma vector always
for (i=cbv_2; i<=cbv_3; i=i+1)
y[i]=y[i]+a1*x1[i]+a2*x2[i]+a3*x3[i]+a4*x4[i]+a5*x5[i];

}
/*@ end @*/

C.2 ADPCM

Listing C.4: Annotated ADPCM code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i=0; i <= (IN_END-1); i=i+2)
{
j = i/2;
compressed[j] = encode (test_data[i], test_data[i + 1]);

}
) @*/

for (i = 0; i <= (IN_END-1); i=i+2)
{
j = i/2;
compressed[j] = encode (test_data[i], test_data[i + 1]);

}
/*@ end @*/

Listing C.5: ADPCM Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,2);
param VEC[] = [False,True];

150 Appendix C. Codes

param CFLAGS[] = [’-O0’,’-O1’,’-O2’,’-O3’];
}
def input_params {
param SIZE[] = [100];
param IN_END[] = [100];

}
def input_vars {
decl dynamic int accumc[11] = random;
decl dynamic int accumd[11] = random;
decl dynamic int tqmf[24] = random;
decl dynamic int delay_bpl[6] = random;
decl dynamic int delay_bph[6] = random;
decl dynamic int dec_del_bpl[6] = random;
decl dynamic int dec_del_bph[6] = random;
decl dynamic int delay_dltx[6] = random;
decl dynamic int delay_dhx[6] = random;
decl dynamic int dec_del_dltx[6] = random;
decl dynamic int dec_del_dhx[6] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.6: Tuned and transformed ADPCM code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[9.99e-07, 4.14e-07, 3.54e-07, 3.55e-07, 3.53e-07, 3.55e-07,

3.56e-07, 3.59e-07, 3.54e-07, 3.56e-07, 3.52e-07, 3.57e-07,
3.52e-07, 3.54e-07, 3.54e-07, 3.55e-07, 3.56e-07, 3.57e-07,
3.54e-07, 3.52e-07, 3.53e-07, 3.56e-07, 3.54e-07, 3.56e-07,
3.57e-07, 3.55e-07, 3.58e-07, 3.56e-07, 3.54e-07, 3.53e-07,
3.57e-07, 3.57e-07, 3.56e-07, 3.54e-07, 3.54e-07, 3.52e-07,
3.54e-07, 3.8e-07, 3.54e-07, 3.56e-07, 3.81e-07, 3.55e-07,
3.49e-07, 3.54e-07, 3.57e-07, 3.58e-07, 3.55e-07, 3.56e-07,
3.74e-07, 3.56e-07, 3.57e-07, 3.56e-07, 3.54e-07, 3.54e-07,
3.74e-07, 3.56e-07, 3.54e-07, 3.53e-07, 3.55e-07, 3.56e-07,
3.54e-07, 3.54e-07, 3.53e-07, 3.57e-07, 3.58e-07, 3.58e-07,
3.53e-07, 3.52e-07, 3.56e-07, 3.54e-07, 3.54e-07, 3.54e-07,
3.55e-07, 3.54e-07, 3.54e-07, 3.56e-07, 3.55e-07, 3.59e-07,
3.56e-07, 3.56e-07, 3.56e-07, 3.54e-07, 3.54e-07, 3.55e-07,
3.54e-07, 3.53e-07, 3.54e-07, 3.55e-07, 3.57e-07, 3.55e-07,
3.54e-07, 3.56e-07, 3.56e-07, 3.54e-07, 3.54e-07, 3.56e-07,
3.54e-07, 3.56e-07, 3.54e-07, 3.55e-07]

Tuned for specific problem sizes:
IN_END = 100
SIZE = 100

Best performance parameters:
CFLAGS = -O1
UF = 1
VEC = True

--**/

C.3. DFADD 151

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i=0; i <= (IN_END-1); i=i+2)
{
j = i/2;
compressed[j] = encode (test_data[i], test_data[i + 1]);

}
) @*/
{
register int cbv_1;
cbv_1=IN_END-1;

#pragma ivdep
#pragma vector always

for (i=0; i<=cbv_1; i=i+2) {
j=i/2;
compressed[j]=encode(test_data[i],test_data[i+1]);

}
}

C.3 DFADD

Listing C.7: Annotated DFADD code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)

{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_add (x1, x2);
main_result += (result == z_output[i]);

}
) @*/

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_add (x1, x2);
main_result += (result == z_output[i]);

}
/*@ end @*/

Listing C.8: DFADD Orio specification code to use for S2S transformation

spec unroll_vectorize {

152 Appendix C. Codes

def build {
arg build_command = ’gcc’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,32);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];
constraint divisible_by_two = (UF % 8 == 0);

}
def input_params {
param N[] = [46];

}
def input_vars {
decl static int a_input[46] = random;
decl static int b_input[46] = random;
decl static int z_input[46] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.9: Tuned and transformed DFADD code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[8.65e-07, 3.68e-07, 2.75e-07, 2.79e-07, 2.76e-07, 2.81e-07,

2.75e-07, 2.77e-07, 2.74e-07, 2.97e-07, 2.78e-07, 2.74e-07,
2.92e-07, 2.75e-07, 2.76e-07, 2.78e-07, 2.78e-07, 2.79e-07,
2.78e-07, 2.77e-07, 2.79e-07, 2.77e-07, 2.92e-07, 2.75e-07,
2.76e-07, 2.93e-07, 2.76e-07, 2.95e-07, 2.73e-07, 2.77e-07,
2.76e-07, 2.72e-07, 2.76e-07, 2.74e-07, 2.76e-07, 2.76e-07,
2.75e-07, 2.77e-07, 2.76e-07, 2.77e-07, 2.76e-07, 2.77e-07,
2.77e-07, 2.74e-07, 2.75e-07, 2.71e-07, 2.76e-07, 2.75e-07,
2.77e-07, 2.77e-07, 2.77e-07, 2.75e-07, 2.74e-07, 2.73e-07,
2.75e-07, 2.76e-07, 2.75e-07, 2.74e-07, 2.76e-07, 2.76e-07,
2.75e-07, 2.74e-07, 2.75e-07, 2.77e-07, 2.79e-07, 2.81e-07,
2.75e-07, 2.74e-07, 2.77e-07, 2.74e-07, 2.77e-07, 2.76e-07,
2.8e-07, 2.75e-07, 2.75e-07, 2.75e-07, 2.94e-07, 2.76e-07,
2.92e-07, 2.77e-07, 2.74e-07, 2.76e-07, 2.75e-07, 2.74e-07,
2.76e-07, 2.73e-07, 2.75e-07, 2.75e-07, 2.75e-07, 2.76e-07,
2.75e-07, 2.75e-07, 2.75e-07, 2.78e-07, 2.76e-07, 2.75e-07,
2.76e-07, 2.76e-07, 2.74e-07, 2.77e-07]

Tuned for specific problem sizes:
N = 46

Best performance parameters:
CFLAGS = -O1
UF = 24
VEC = True

C.3. DFADD 153

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)

{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_add (x1, x2);
main_result += (result == z_output[i]);

}
) @*/
{
int i;
register int cbv_1;
cbv_1=N-24;

#pragma ivdep
#pragma vector always

for (i=0; i<=cbv_1; i=i+24) {
float64 result;

;
x1=a_input[i];
x2=b_input[i];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[i]);
;
x1=a_input[(i+1)];
x2=b_input[(i+1)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+1)]);
;
x1=a_input[(i+2)];
x2=b_input[(i+2)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+2)]);
;
x1=a_input[(i+3)];
x2=b_input[(i+3)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+3)]);
;
x1=a_input[(i+4)];
x2=b_input[(i+4)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+4)]);
;
x1=a_input[(i+5)];
x2=b_input[(i+5)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+5)]);
;

154 Appendix C. Codes

x1=a_input[(i+6)];
x2=b_input[(i+6)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+6)]);
;
x1=a_input[(i+7)];
x2=b_input[(i+7)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+7)]);
;
x1=a_input[(i+8)];
x2=b_input[(i+8)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+8)]);
;
x1=a_input[(i+9)];
x2=b_input[(i+9)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+9)]);
;
x1=a_input[(i+10)];
x2=b_input[(i+10)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+10)]);
;
x1=a_input[(i+11)];
x2=b_input[(i+11)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+11)]);
;
x1=a_input[(i+12)];
x2=b_input[(i+12)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+12)]);
;
x1=a_input[(i+13)];
x2=b_input[(i+13)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+13)]);
;
x1=a_input[(i+14)];
x2=b_input[(i+14)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+14)]);
;
x1=a_input[(i+15)];
x2=b_input[(i+15)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+15)]);
;
x1=a_input[(i+16)];
x2=b_input[(i+16)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+16)]);

C.3. DFADD 155

;
x1=a_input[(i+17)];
x2=b_input[(i+17)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+17)]);
;
x1=a_input[(i+18)];
x2=b_input[(i+18)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+18)]);
;
x1=a_input[(i+19)];
x2=b_input[(i+19)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+19)]);
;
x1=a_input[(i+20)];
x2=b_input[(i+20)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+20)]);
;
x1=a_input[(i+21)];
x2=b_input[(i+21)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+21)]);
;
x1=a_input[(i+22)];
x2=b_input[(i+22)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+22)]);
;
x1=a_input[(i+23)];
x2=b_input[(i+23)];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[(i+23)]);

}
register int cbv_2, cbv_3;
cbv_2=N-((N-(0))%24);
cbv_3=N-1;

#pragma ivdep
#pragma vector always

for (i=cbv_2; i<=cbv_3; i=i+1) {
float64 result;

;
x1=a_input[i];
x2=b_input[i];
result=float64_add(x1,x2);
main_result=main_result+(result==z_output[i]);

}
}

/*@ end @*/

156 Appendix C. Codes

C.4 DFMUL

Listing C.10: Annotated DFMUL code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_mul (x1, x2);
main_result += (result == z_output[i]);

}
) @*/

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_mul (x1, x2);
main_result += (result == z_output[i]);

}
/*@ end @*/

Listing C.11: DFMUL Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,20);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];
constraint divisible_by_two = (UF % 8 == 0);

}
def input_params {
param N[] = [20];

}
def input_vars {
decl static int a_input[N] = random;
decl static int b_input[N] = random;
decl static int z_input[N] = random;

}

C.4. DFMUL 157

def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.12: Tuned and transformed DFMUL code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[6.41e-07, 2.77e-07, 2.5e-07, 2.49e-07, 2.48e-07, 2.49e-07, 2.53

e-07, 2.53e-07, 2.48e-07, 2.49e-07, 2.5e-07, 2.5e-07, 2.5e
-07, 2.49e-07, 2.47e-07, 2.52e-07, 2.5e-07, 2.51e-07, 2.5e
-07, 2.48e-07, 2.51e-07, 2.49e-07, 2.5e-07, 2.49e-07, 2.49e
-07, 2.48e-07, 2.46e-07, 2.5e-07, 2.48e-07, 2.48e-07, 2.49e
-07, 2.47e-07, 2.5e-07, 2.5e-07, 2.51e-07, 2.52e-07, 2.48e
-07, 2.48e-07, 2.5e-07, 2.48e-07, 2.48e-07, 2.52e-07, 2.49e
-07, 2.49e-07, 2.46e-07, 2.5e-07, 2.49e-07, 2.46e-07, 2.49e
-07, 2.46e-07, 2.52e-07, 2.51e-07, 2.5e-07, 2.51e-07, 2.5e
-07, 2.49e-07, 2.48e-07, 2.48e-07, 2.47e-07, 2.5e-07, 2.48e
-07, 2.47e-07, 2.5e-07, 2.49e-07, 2.52e-07, 2.49e-07, 2.5e
-07, 2.49e-07, 2.5e-07, 2.5e-07, 2.46e-07, 2.49e-07, 2.47e
-07, 2.51e-07, 2.49e-07, 2.5e-07, 2.49e-07, 2.5e-07, 2.48e
-07, 2.49e-07, 2.52e-07, 2.48e-07, 2.5e-07, 2.5e-07, 2.5e
-07, 2.48e-07, 2.49e-07, 2.5e-07, 2.49e-07, 2.5e-07, 2.5e
-07, 2.53e-07, 2.5e-07, 2.52e-07, 2.47e-07, 2.51e-07, 2.66e
-07, 2.44e-07, 2.52e-07, 2.49e-07]

Tuned for specific problem sizes:
N = 20

Best performance parameters:
CFLAGS = -O1
UF = 16
VEC = True

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_mul (x1, x2);
main_result += (result == z_output[i]);

}
) @*/
{
int i;
register int cbv_1;
cbv_1=N-16;

#pragma ivdep
#pragma vector always

for (i=0; i<=cbv_1; i=i+16) {

158 Appendix C. Codes

float64 result;
;

x1=a_input[i];
x2=b_input[i];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[i]);
;
x1=a_input[(i+1)];
x2=b_input[(i+1)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+1)]);
;
x1=a_input[(i+2)];
x2=b_input[(i+2)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+2)]);
;
x1=a_input[(i+3)];
x2=b_input[(i+3)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+3)]);
;
x1=a_input[(i+4)];
x2=b_input[(i+4)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+4)]);
;
x1=a_input[(i+5)];
x2=b_input[(i+5)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+5)]);
;
x1=a_input[(i+6)];
x2=b_input[(i+6)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+6)]);
;
x1=a_input[(i+7)];
x2=b_input[(i+7)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+7)]);
;
x1=a_input[(i+8)];
x2=b_input[(i+8)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+8)]);
;
x1=a_input[(i+9)];
x2=b_input[(i+9)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+9)]);
;
x1=a_input[(i+10)];
x2=b_input[(i+10)];

C.5. DFSIN 159

result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+10)]);
;
x1=a_input[(i+11)];
x2=b_input[(i+11)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+11)]);
;
x1=a_input[(i+12)];
x2=b_input[(i+12)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+12)]);
;
x1=a_input[(i+13)];
x2=b_input[(i+13)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+13)]);
;
x1=a_input[(i+14)];
x2=b_input[(i+14)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+14)]);
;
x1=a_input[(i+15)];
x2=b_input[(i+15)];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[(i+15)]);

}
register int cbv_2, cbv_3;
cbv_2=N-((N-(0))%16);
cbv_3=N-1;

#pragma ivdep
#pragma vector always

for (i=cbv_2; i<=cbv_3; i=i+1) {
float64 result;

;
x1=a_input[i];
x2=b_input[i];
result=float64_mul(x1,x2);
main_result=main_result+(result==z_output[i]);

}
}
/*@ end @*/

C.5 DFSIN

Listing C.13: Annotated DFSIN code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)

160 Appendix C. Codes

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
result = dfsin (test_in[i]);
main_result += (result == test_out[i]);

}
) @*/

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
result = dfsin (test_in[i]);
main_result += (result == test_out[i]);

}
/*@ end @*/

Listing C.14: DFSIN Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,36);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];
constraint divisible_by_two = (UF % 8 == 0);

}
def input_params {
param N[] = [36];

}
def input_vars {
decl static int test_in[36] = random;
decl static int test_out[36] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.15: Tuned and transformed DFSIN code after S2S transformation by Orio

@*/
/**-- (Generated by Orio)
Best performance cost:
[7.38e-07, 2.54e-07, 2.46e-07, 2.49e-07, 2.48e-07, 2.48e-07,

2.48e-07, 2.5e-07, 2.5e-07, 2.68e-07, 2.52e-07, 2.5e-07,
2.46e-07, 2.49e-07, 2.52e-07, 2.48e-07, 2.5e-07, 2.49e-07,
2.5e-07, 2.52e-07, 2.49e-07, 2.47e-07, 2.48e-07, 2.47e-07,
2.48e-07, 2.47e-07, 2.53e-07, 2.5e-07, 2.47e-07, 2.47e-07,

C.5. DFSIN 161

2.51e-07, 2.47e-07, 2.48e-07, 2.49e-07, 2.48e-07, 2.48e-07,
2.47e-07, 2.5e-07, 2.45e-07, 2.52e-07, 2.47e-07, 2.69e-07,
2.48e-07, 2.49e-07, 2.46e-07, 2.48e-07, 2.49e-07, 2.5e-07,
2.48e-07, 2.54e-07, 2.53e-07, 2.53e-07, 2.49e-07, 2.49e-07,
2.5e-07, 2.49e-07, 2.51e-07, 2.51e-07, 2.48e-07, 2.47e-07,
2.48e-07, 2.51e-07, 2.5e-07, 2.49e-07, 2.47e-07, 2.49e-07,
2.47e-07, 2.47e-07, 2.52e-07, 2.5e-07, 2.48e-07, 2.49e-07,
2.5e-07, 2.52e-07, 2.47e-07, 2.49e-07, 2.5e-07, 2.46e-07,
2.49e-07, 2.48e-07, 2.51e-07, 2.49e-07, 2.46e-07, 2.47e-07,
2.5e-07, 2.48e-07, 2.5e-07, 2.53e-07, 2.48e-07, 2.5e-07, 2.5
e-07, 2.5e-07, 2.5e-07, 2.47e-07, 2.49e-07, 2.47e-07, 2.5e
-07, 2.48e-07, 2.5e-07, 2.49e-07]

Tuned for specific problem sizes:
N = 36

Best performance parameters:
CFLAGS = -O3
UF = 24
VEC = True

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
float64 result;
result = dfsin (test_in[i]);
main_result += (result == test_out[i]);

}
) @*/
{
int i;
register int cbv_1;
cbv_1=N-24;

#pragma ivdep
#pragma vector always

for (i=0; i<=cbv_1; i=i+24) {
float64 result;

;
result=dfsin(test_in[i]);
main_result=main_result+(result==test_out[i]);
;
result=dfsin(test_in[(i+1)]);
main_result=main_result+(result==test_out[(i+1)]);
;
result=dfsin(test_in[(i+2)]);
main_result=main_result+(result==test_out[(i+2)]);
;
result=dfsin(test_in[(i+3)]);
main_result=main_result+(result==test_out[(i+3)]);
;
result=dfsin(test_in[(i+4)]);
main_result=main_result+(result==test_out[(i+4)]);

162 Appendix C. Codes

;
result=dfsin(test_in[(i+5)]);
main_result=main_result+(result==test_out[(i+5)]);
;
result=dfsin(test_in[(i+6)]);
main_result=main_result+(result==test_out[(i+6)]);
;
result=dfsin(test_in[(i+7)]);
main_result=main_result+(result==test_out[(i+7)]);
;
result=dfsin(test_in[(i+8)]);
main_result=main_result+(result==test_out[(i+8)]);
;
result=dfsin(test_in[(i+9)]);
main_result=main_result+(result==test_out[(i+9)]);
;
result=dfsin(test_in[(i+10)]);
main_result=main_result+(result==test_out[(i+10)]);
;
result=dfsin(test_in[(i+11)]);
main_result=main_result+(result==test_out[(i+11)]);
;
result=dfsin(test_in[(i+12)]);
main_result=main_result+(result==test_out[(i+12)]);
;
result=dfsin(test_in[(i+13)]);
main_result=main_result+(result==test_out[(i+13)]);
;
result=dfsin(test_in[(i+14)]);
main_result=main_result+(result==test_out[(i+14)]);
;
result=dfsin(test_in[(i+15)]);
main_result=main_result+(result==test_out[(i+15)]);
;
result=dfsin(test_in[(i+16)]);
main_result=main_result+(result==test_out[(i+16)]);
;
result=dfsin(test_in[(i+17)]);
main_result=main_result+(result==test_out[(i+17)]);
;
result=dfsin(test_in[(i+18)]);
main_result=main_result+(result==test_out[(i+18)]);
;
result=dfsin(test_in[(i+19)]);
main_result=main_result+(result==test_out[(i+19)]);
;
result=dfsin(test_in[(i+20)]);
main_result=main_result+(result==test_out[(i+20)]);
;
result=dfsin(test_in[(i+21)]);
main_result=main_result+(result==test_out[(i+21)]);
;
result=dfsin(test_in[(i+22)]);
main_result=main_result+(result==test_out[(i+22)]);

C.6. DFDIV 163

;
result=dfsin(test_in[(i+23)]);
main_result=main_result+(result==test_out[(i+23)]);

}
register int cbv_2, cbv_3;
cbv_2=N-((N-(0))%24);
cbv_3=N-1;

#pragma ivdep
#pragma vector always

for (i=cbv_2; i<=cbv_3; i=i+1) {
float64 result;

;
result=dfsin(test_in[i]);
main_result=main_result+(result==test_out[i]);

}
}
/*@ end @*/

C.6 DFDIV

Listing C.16: Annotated DFDIV code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_div (x1, x2);
main_result += (result == z_output[i]);

}
) @*/

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_div (x1, x2);
main_result += (result == z_output[i]);

}
/*@ end @*/

Listing C.17: DFDIV Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}

164 Appendix C. Codes

def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,22);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];
constraint divisible_by_two = (UF % 8 == 0);

}
def input_params {
param N[] = [22];

}
def input_vars {
decl static int a_input[N] = random;
decl static int b_input[N] = random;
decl static int z_input[N] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.18: Tuned and transformed DFDIV code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[6.76e-07, 2.66e-07, 2.54e-07, 2.54e-07, 2.52e-07, 2.51e-07,

2.53e-07, 2.53e-07, 2.52e-07, 2.53e-07, 2.51e-07, 2.56e-07,
2.5e-07, 2.54e-07, 2.53e-07, 2.5e-07, 2.53e-07, 2.5e-07,
2.51e-07, 2.52e-07, 2.53e-07, 2.52e-07, 2.52e-07, 2.5e-07,
2.49e-07, 2.52e-07, 2.52e-07, 2.53e-07, 2.5e-07, 2.52e-07,
2.5e-07, 2.47e-07, 2.55e-07, 2.54e-07, 2.52e-07, 2.52e-07,
2.54e-07, 2.52e-07, 2.49e-07, 2.5e-07, 2.5e-07, 2.5e-07,
2.52e-07, 2.48e-07, 2.51e-07, 2.49e-07, 2.52e-07, 2.5e-07,
2.5e-07, 2.51e-07, 2.51e-07, 2.85e-07, 2.52e-07, 2.51e-07,
2.51e-07, 2.5e-07, 2.54e-07, 2.49e-07, 2.51e-07, 2.58e-07,
2.53e-07, 2.53e-07, 2.54e-07, 2.53e-07, 2.5e-07, 2.5e-07,
2.53e-07, 2.53e-07, 2.49e-07, 2.5e-07, 2.53e-07, 2.53e-07,
2.51e-07, 2.54e-07, 2.5e-07, 2.5e-07, 2.5e-07, 2.51e-07,
2.55e-07, 2.53e-07, 2.53e-07, 2.53e-07, 2.54e-07, 2.54e-07,
2.52e-07, 2.51e-07, 2.51e-07, 2.51e-07, 2.53e-07, 2.54e-07,
2.5e-07, 2.5e-07, 2.5e-07, 2.52e-07, 2.48e-07, 2.5e-07, 2.48
e-07, 2.53e-07, 2.49e-07, 2.5e-07]

Tuned for specific problem sizes:
N = 22

Best performance parameters:
CFLAGS = -O2
UF = 16
VEC = True

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),

C.6. DFDIV 165

vector = (VEC, [’ivdep’,’vector always’])
)

for (i = 0; i <= N-1; i=i+1)
{
float64 result;
x1 = a_input[i];
x2 = b_input[i];
result = float64_div (x1, x2);
main_result += (result == z_output[i]);

}
) @*/
{
int i;
register int cbv_1;
cbv_1=N-16;

#pragma ivdep
#pragma vector always

for (i=0; i<=cbv_1; i=i+16) {
float64 result;

;
x1=a_input[i];
x2=b_input[i];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[i]);
;
x1=a_input[(i+1)];
x2=b_input[(i+1)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+1)]);
;
x1=a_input[(i+2)];
x2=b_input[(i+2)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+2)]);
;
x1=a_input[(i+3)];
x2=b_input[(i+3)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+3)]);
;
x1=a_input[(i+4)];
x2=b_input[(i+4)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+4)]);
;
x1=a_input[(i+5)];
x2=b_input[(i+5)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+5)]);
;
x1=a_input[(i+6)];
x2=b_input[(i+6)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+6)]);

166 Appendix C. Codes

;
x1=a_input[(i+7)];
x2=b_input[(i+7)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+7)]);
;
x1=a_input[(i+8)];
x2=b_input[(i+8)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+8)]);
;
x1=a_input[(i+9)];
x2=b_input[(i+9)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+9)]);
;
x1=a_input[(i+10)];
x2=b_input[(i+10)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+10)]);
;
x1=a_input[(i+11)];
x2=b_input[(i+11)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+11)]);
;
x1=a_input[(i+12)];
x2=b_input[(i+12)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+12)]);
;
x1=a_input[(i+13)];
x2=b_input[(i+13)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+13)]);
;
x1=a_input[(i+14)];
x2=b_input[(i+14)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+14)]);
;
x1=a_input[(i+15)];
x2=b_input[(i+15)];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[(i+15)]);

}
register int cbv_2, cbv_3;
cbv_2=N-((N-(0))%16);
cbv_3=N-1;

#pragma ivdep
#pragma vector always

for (i=cbv_2; i<=cbv_3; i=i+1) {
float64 result;

;

C.7. GSM 167

x1=a_input[i];
x2=b_input[i];
result=float64_div(x1,x2);
main_result=main_result+(result==z_output[i]);

}
}
/*@ end @*/

C.7 GSM

Listing C.19: Annotated GSM code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i++)
so[i] = inData[i];

) @*/

for (i = 0; i <= N-1; i++)
so[i] = inData[i];

/*@ end @*/

Listing C.20: GSM Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,10);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];

}
def input_params {
param N[] = [160];
param M[] = [8];

}
def input_vars {
decl dynamic int inData[160] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

168 Appendix C. Codes

Listing C.21: Tuned and transformed GSM code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[7.74e-07, 2.85e-07, 2.66e-07, 2.64e-07, 2.68e-07, 2.67e-07,

2.68e-07, 2.65e-07, 2.7e-07, 2.65e-07, 2.67e-07, 2.66e-07,
2.68e-07, 2.67e-07, 2.66e-07, 2.62e-07, 2.63e-07, 2.66e-07,
2.66e-07, 2.66e-07, 2.66e-07, 2.67e-07, 2.66e-07, 2.66e-07,
2.67e-07, 2.69e-07, 2.84e-07, 2.68e-07, 2.68e-07, 2.65e-07,
2.66e-07, 2.68e-07, 2.65e-07, 2.66e-07, 2.69e-07, 2.66e-07,
2.67e-07, 2.67e-07, 2.66e-07, 2.67e-07, 2.68e-07, 2.67e-07,
2.68e-07, 2.67e-07, 2.64e-07, 2.64e-07, 2.66e-07, 2.67e-07,
2.67e-07, 2.67e-07, 2.69e-07, 2.66e-07, 2.63e-07, 2.67e-07,
2.66e-07, 2.65e-07, 2.68e-07, 2.68e-07, 2.65e-07, 2.7e-07,
2.66e-07, 2.66e-07, 2.66e-07, 2.64e-07, 2.68e-07, 2.69e-07,
2.67e-07, 2.68e-07, 2.66e-07, 2.66e-07, 2.66e-07, 2.69e-07,
2.64e-07, 2.66e-07, 2.66e-07, 2.7e-07, 2.66e-07, 2.69e-07,
2.7e-07, 2.68e-07, 2.67e-07, 2.64e-07, 2.66e-07, 2.65e-07,
2.69e-07, 2.67e-07, 2.68e-07, 2.65e-07, 2.7e-07, 2.67e-07,
2.68e-07, 2.66e-07, 2.68e-07, 2.66e-07, 2.66e-07, 2.67e-07,
2.67e-07, 2.67e-07, 2.68e-07, 2.69e-07]

Tuned for specific problem sizes:
M = 8
N = 160

Best performance parameters:
CFLAGS = -O1
UF = 6
VEC = False

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i++)
so[i] = inData[i];

) @*/
{
int i;
for (i=0; i<=N-6; i=i+6) {
so[i]=inData[i];
so[(i+1)]=inData[(i+1)];
so[(i+2)]=inData[(i+2)];
so[(i+3)]=inData[(i+3)];
so[(i+4)]=inData[(i+4)];
so[(i+5)]=inData[(i+5)];

}
for (i=N-((N-(0))%6); i<=N-1; i=i+1)
so[i]=inData[i];

}
/*@ end @*/

C.8 MIPS

C.8. MIPS 169

Listing C.22: Annotated MIPS code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
reg[i] = 0;

}
) @*/

for (i = 0; i <= N-1; i=i+1)
{
reg[i] = 0;

}
/*@ end @*/

Listing C.23: MIPS Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,10);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];

}
def input_params {
param N[] = [32];

}
def input_vars {
decl dynamic int reg[32] = random;
decl dynamic int out_key[5200] = random;
decl int i;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.24: Tuned and transformed MIPS code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[0.004, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

170 Appendix C. Codes

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Tuned for specific problem sizes:
N = 32

Best performance parameters:
CFLAGS = -O0
UF = 8
VEC = False

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])

)
for (i = 0; i <= N-1; i=i+1)
{
reg[i] = 0;

}
) @*/
{
int i;
for (i=0; i<=N-8; i=i+8) {
reg[i]=0;
reg[(i+1)]=0;
reg[(i+2)]=0;
reg[(i+3)]=0;
reg[(i+4)]=0;
reg[(i+5)]=0;
reg[(i+6)]=0;
reg[(i+7)]=0;

}
for (i=N-((N-(0))%8); i<=N-1; i=i+1)
reg[i]=0;

}
/*@ end @*/

C.9 JPEG

Listing C.25: Annotated JPEG code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])
)
for(i=0; i<=RGB_NUM-1; i=i+1){
for(j=0; j<=BMP_OUT_SIZE-1; j=j+1){
if(OutData_comp_buf[i][j] == hana_bmp[i][j]){
sum(1);

}
}
}

) @*/

C.9. JPEG 171

for(i=0; i<=RGB_NUM-1; i=i+1){
for(j=0; j<=BMP_OUT_SIZE-1; j=j+1){

if(OutData_comp_buf[i][j] == hana_bmp[i][j
]){

sum(1);
}

}
}

/*@ end @*/

Listing C.26: JPEG Orio specification code to use for S2S transformation

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,10);
param VEC[] = [False,True];
param CFLAGS[] = [’-O0’, ’-O1’,’-O2’,’-O3’];

}
def input_params {
param BMP_OUT_SIZE[] = [5310];
param RGB_NUM[] = [3];

}
def input_vars {
decl static int OutData_comp_buf[RGB_NUM][BMP_OUT_SIZE] =

random;
decl static int hana_bmp[RGB_NUM][BMP_OUT_SIZE] = random;
decl int main_result = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

Listing C.27: Tuned and transformed JPEG code after S2S transformation by Orio

/**-- (Generated by Orio)
Best performance cost:
[1.6925e-05, 1.778e-06, 1.564e-06, 1.566e-06, 1.528e-06, 1.524e

-06, 1.531e-06, 1.483e-06, 1.479e-06, 1.473e-06, 1.47e-06,
1.481e-06, 1.473e-06, 1.499e-06, 1.489e-06, 1.487e-06, 1.474
e-06, 1.479e-06, 1.481e-06, 1.457e-06, 1.461e-06, 1.462e-06,
1.428e-06, 1.447e-06, 1.465e-06, 1.449e-06, 1.446e-06,

1.472e-06, 1.459e-06, 1.489e-06, 1.441e-06, 1.444e-06, 1.457
e-06, 1.432e-06, 1.513e-06, 1.455e-06, 1.433e-06, 1.454e-06,
1.433e-06, 1.442e-06, 1.459e-06, 1.482e-06, 1.456e-06, 1.45

172 Appendix C. Codes

e-06, 1.464e-06, 1.436e-06, 1.438e-06, 1.476e-06, 1.429e-06,
1.475e-06, 1.421e-06, 1.462e-06, 1.422e-06, 1.455e-06,

1.404e-06, 1.414e-06, 1.424e-06, 1.434e-06, 1.448e-06, 1.446
e-06, 1.449e-06, 1.433e-06, 1.426e-06, 1.41e-06, 1.396e-06,
1.463e-06, 1.431e-06, 1.418e-06, 1.399e-06, 1.439e-06, 1.427
e-06, 1.446e-06, 1.478e-06, 1.442e-06, 1.448e-06, 1.454e-06,
1.444e-06, 1.424e-06, 1.463e-06, 1.447e-06, 1.425e-06,

1.414e-06, 1.428e-06, 1.392e-06, 1.359e-06, 1.441e-06, 1.473
e-06, 1.454e-06, 1.389e-06, 1.444e-06, 1.413e-06, 1.421e-06,
1.431e-06, 1.4e-06, 1.41e-06, 1.441e-06, 1.462e-06, 1.428e

-06, 1.4e-06, 1.429e-06]
Tuned for specific problem sizes:
BMP_OUT_SIZE = 5310
RGB_NUM = 3

Best performance parameters:
CFLAGS = -O1
UF = 2
VEC = False

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])
)
for(i=0; i<=RGB_NUM-1; i=i+1){
for(j=0; j<=BMP_OUT_SIZE-1; j=j+1){
if(OutData_comp_buf[i][j] == hana_bmp[i][j]){
sum(1);

}
}

}
) @*/

{
int i;
for (i=0; i<=RGB_NUM-2; i=i+2) {
for (j=0; j<=BMP_OUT_SIZE-1; j=j+1) {

if (OutData_comp_buf[i][j]==hana_bmp[i][j]) {
sum(1);

}
if (OutData_comp_buf[(i+1)][j]==hana_bmp[(i+1)][j]) {
sum(1);

}
}

}
for (i=RGB_NUM-((RGB_NUM-(0))%2); i<=RGB_NUM-1; i=i+1)
for (j=0; j<=BMP_OUT_SIZE-1; j=j+1) {

if (OutData_comp_buf[i][j]==hana_bmp[i][j]) {
sum(1);

}
}

}
/*@ end @*/

C.10. Matrix Multiplication 173

C.10 Matrix Multiplication

Listing C.28: Annotated Matrix Multiplication code

/*@ begin Loop (
transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])
)
for(i = 0; i <= SIZE-1; i=i+1) {

for(j = 0; j <= SIZE-1; j=j+1) {
count = count + multiply(i,j);

}
}

)
@*/

for(i = 0; i <= SIZE-1; i=i+1) {
for(j = 0; j <= SIZE-1; j=j+1) {

count = count + multiply(i,j);
}

}
/*@ end @*/

Listing C.29: Matrix Multiplication Orio specification code to use for S2S transforma-
tion

spec unroll_vectorize {
def build {
arg build_command = ’gcc -O0’;
arg libs = ’-lrt’;

}
def performance_counter {
arg method = ’basic timer’;
arg repetitions = 100;

}
def performance_params {
param UF[] = range(1,20);
param VEC[] = [False,True];
param CFLAGS[] = [’O0’,’-O1’,’-O2’,’-O3’];

}
def input_params {
param SIZE[] = [20];

}
def input_vars {
decl dynamic int A1[SIZE][SIZE] = random;
decl dynamic int B1[SIZE][SIZE] = random;
decl dynamic int resultAB1[SIZE][SIZE] = random;

}
def search {
arg algorithm = ’Exhaustive’;

}
}

174 Appendix C. Codes

Listing C.30: Tuned and transformed Matrix Multiplication code after S2S transforma-
tion by Orio

/**-- (Generated by Orio)
Best performance cost:
[9.05e-07, 3.87e-07, 3.31e-07, 3.24e-07, 3.26e-07, 3.3e-07, 3.29

e-07, 3.27e-07, 3.3e-07, 3.31e-07, 3.28e-07, 3.34e-07, 3.3e
-07, 3.27e-07, 3.29e-07, 3.3e-07, 3.29e-07, 3.28e-07, 3.26e
-07, 3.26e-07, 3.3e-07, 3.29e-07, 3.28e-07, 3.3e-07, 3.3e
-07, 3.29e-07, 3.5e-07, 3.33e-07, 3.3e-07, 3.32e-07, 3.3e
-07, 3.31e-07, 3.28e-07, 3.33e-07, 3.29e-07, 3.27e-07, 3.26e
-07, 3.29e-07, 3.27e-07, 3.3e-07, 3.29e-07, 3.29e-07, 3.29e
-07, 3.31e-07, 3.27e-07, 3.28e-07, 3.3e-07, 3.25e-07, 3.28e
-07, 3.29e-07, 3.27e-07, 3.27e-07, 3.29e-07, 3.29e-07, 3.29e
-07, 3.28e-07, 3.31e-07, 3.29e-07, 3.32e-07, 3.27e-07, 3.29e
-07, 3.31e-07, 3.29e-07, 3.28e-07, 3.28e-07, 3.29e-07, 3.32e
-07, 3.29e-07, 3.29e-07, 3.3e-07, 3.32e-07, 3.31e-07, 3.29e
-07, 3.28e-07, 3.28e-07, 3.31e-07, 3.29e-07, 3.3e-07, 3.3e
-07, 3.3e-07, 3.28e-07, 3.29e-07, 3.29e-07, 3.31e-07, 3.31e
-07, 3.3e-07, 3.27e-07, 3.29e-07, 3.3e-07, 3.34e-07, 3.28e
-07, 3.31e-07, 3.3e-07, 3.29e-07, 3.27e-07, 3.27e-07, 3.26e
-07, 3.3e-07, 3.28e-07, 3.3e-07]

Tuned for specific problem sizes:
SIZE = 20

Best performance parameters:
CFLAGS = -O3
UF = 4
VEC = True

--**/
/*@ begin Loop (

transform Composite(
unrolljam = ([’i’],[UF]),
vector = (VEC, [’ivdep’,’vector always’])
)
for(i = 0; i <= SIZE-1; i=i+1) {

for(j = 0; j <= SIZE-1; j=j+1) {
count = count + multiply(i,j);

}
}

)
@*/

{
int i;
for (i=0; i<=SIZE-4; i=i+4) {

register int cbv_1;
cbv_1=SIZE-1;

#pragma ivdep
#pragma vector always

for (j=0; j<=cbv_1; j=j+1) {
count = count + multiply(i,j);
count = count + multiply((i+1),j);
count = count + multiply((i+2),j);
count = count + multiply((i+3),j);

}

C.11. Bash Scripts 175

}
for (i=SIZE-((SIZE-(0))%4); i<=SIZE-1; i=i+1) {
register int cbv_2;
cbv_2=SIZE-1;

#pragma ivdep
#pragma vector always

for (j=0; j<=cbv_2; j=j+1) {
count = count + multiply(i,j);

}
}

}
/*@ end @*/

C.11 Bash Scripts

In this section, you can find all our generated bash scripts to make for the
automated part of the framework and can be expanded to have the fully
automated framework as one of the future works.

Listing C.31: GUI and command line tool for the main chain tests

#!/bin/bash

RED=’\033[0;31m’
NC=’\033[0m’ # No Color

INPUT="$1"

if [-z $INPUT]; then

CODES="$(zenity --list --checklist --separator ", " --text
"Please select the code(s) that you want to test:" --

column "Select" --column "Code" FALSE adpcm FALSE aes
FALSE blowfish FALSE gsm FALSE dfadd FALSE dfdiv FALSE
dfmul FALSE dfsin FALSE jpeg FALSE mips FALSE motion

FALSE sha)"

if ["$?" -ne "0"]; then
echo -e "${RED}WARNING:${NC} You cannot run the

tool in graphical mode, please try again with
-c flag"

exit 1
fi

TESTS="$(zenity --list --checklist --separator ", " --text
"Please select the test(s) that you want to apply:"

--column "Select" --column "Test" FALSE Hardware FALSE
Software)"

IFS=’, ’ read -r -a NAMES <<< "$CODES"

case $TESTS in
Software)

176 Appendix C. Codes

TYPES="sw"
;;

Hardware)
TYPES="hw"
;;

Hardware*)
TYPES="swhw"
;;

*)
echo -e "${RED}WARNING:${NC} Test type is

wrong, please try again and choose the
correct one."

exit 1
;;

esac

elif [$INPUT = "-c"]; then
echo
echo "Please insert the name of the codes that you want to

test."
echo "(You can select single or multiple codes by using

’,’ separator like ’adpcm’ or ’adpcm,gsm,sha’)"
echo "Available Codes:"
echo " adpcm | aes | blowfish | dfadd | dfdiv | dfmul |

dfsin | gsm | jpeg | mips | motion | sha"
echo
read -p "Insert Code name(s): " input

echo
echo "Please insert the type of test:"
echo "(options: sw | hw | swhw)"
read -p "Insert test type: " types

IFS=’,’ read -r -a NAMES <<<"$input"

case $types in
sw)

TYPES="sw"
;;

hw)
TYPES="hw"
;;

swhw)
TYPES="swhw"
;;

*)
echo -e "${RED}WARNING:${NC} Test type is

wrong, please try again and choose the
correct one."

exit 1
;;

esac
else

echo "Please run the tool with the following option:"

C.11. Bash Scripts 177

echo " -c to run in command line mode"
fi

CLEAN="make clean"
MAKE="make"
MAKEV="make v"
MAKESW="make sw"
MAKESWSIM="make swsim"

if [${#NAMES[@]} -eq 0]; then
echo -e "${RED}WARNING:${NC} No code has been selected,

please try again and choose at least one code."
exit 1

fi

for NAME in "${NAMES[@]}"
do

if [$TYPES = "hw"] || [$TYPES = "swhw"]; then
Test Original Code HW Test
echo
echo "******************************* $NAME

Hardware Test

**********************************"
FOLDER="cd $NAME/"
echo "$(date)" >> $NAME/hardware_test_cycle.out
echo "Hardware test of $NAME code has been started

, please wait..."
$($FOLDER; $CLEAN; $MAKE; $MAKEV | grep "Cycle" >>

hardware_test_cycle.out; echo >>
hardware_test_cycle.out)

$($FOLDER; $CLEAN)
echo "------------------------------- OUTPUT HW

---------------------------------"
cat "${NAME}/hardware_test_cycle.out"
echo "******************************** END $NAME

HW **********************************"
echo

Test Annotated Code HW Test
echo "******************************* _$NAME

Hardware Test

**********************************"
FOLDER="cd _$NAME/"
echo "$(date)" >> _$NAME/hardware_test_cycle.out
echo "Hardware test of $NAME annotated code has

been started, please wait..."
$($FOLDER; $CLEAN; $MAKE; $MAKEV | grep "Cycle" >>

hardware_test_cycle.out; echo >>
hardware_test_cycle.out)

$($FOLDER; $CLEAN)
echo "------------------------------- OUTPUT HW

---------------------------------"
cat "_${NAME}/hardware_test_cycle.out"

178 Appendix C. Codes

echo "******************************** END _$NAME
HW **********************************"

echo
fi

if [$TYPES = "sw"] || [$TYPES = "swhw"]; then
Test Original Code SW Test
echo
echo "******************************* $NAME

Software Test

**********************************"
FOLDER="cd $NAME/"
echo "$(date)" >> $NAME/software_test_cycle.out
echo "Software test of $NAME code has been started

, please wait..."
$($FOLDER; $CLEAN; $MAKESW; $MAKESWSIM | grep "

counter =" >> software_test_cycle.out; echo >>
software_test_cycle.out)

$($FOLDER; $CLEAN)
echo "------------------------------- OUTPUT SW

---------------------------------"
cat "${NAME}/software_test_cycle.out"
echo "******************************** END $NAME

SW **********************************"
echo

Test Annotated Code HW Test
echo "******************************* _$NAME

Software Test

**********************************"
FOLDER="cd _$NAME/"
echo "$(date)" >> _$NAME/software_test_cycle.out
echo "Software test of $NAME annotated code has

been started, please wait..."
$($FOLDER; $CLEAN; $MAKESW; $MAKESWSIM | grep "

counter =" >> software_test_cycle.out; echo >>
software_test_cycle.out)

$($FOLDER; $CLEAN)
echo "------------------------------- OUTPUT SW

---------------------------------"
cat "_${NAME}/software_test_cycle.out"
echo "******************************** END _$NAME

SW **********************************"
echo

fi
done

#awk -F’ ’ ’NF > 1 {print $2}’ gsm/
hardware_test_cycle.out > hw_cycles.out

#awk -F’ ’ ’NF > 1 {print $2}’ gsm/
software_test_cycle.out > sw_cycles.out

Listing C.32: GProf profiler

C.11. Bash Scripts 179

#!/bin/bash
clear
echo "______.:: $1 Gprof Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm ${file}.c -o ${file}
echo "$file successfully compiled with debuging flag enabled"
chmod 755 $file
./$file
echo ""
echo "Profiling..."
gprof $file gmon.out > gprof_analysis.txt
echo "Generating call-graph in png"
gprof2dot gprof_analysis.txt > gprof_call_graph.dot
dot -Tgif gprof_call_graph.dot -o gprof_call_graph.png
echo "Done!"

Listing C.33: Perf profiler

#!/bin/bash
clear
echo "______.:: $1 Gprof Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm ${file}.c -o ${file}
echo "$file successfully compiled with debuging flag enabled"
chmod 755 $file
./$file
echo ""
echo "Profiling..."
gprof $file gmon.out > gprof_analysis.txt
echo "Generating call-graph in png"
gprof2dot gprof_analysis.txt > gprof_call_graph.dot
dot -Tgif gprof_call_graph.dot -o gprof_call_graph.png
echo "Done!"

legup@legup-vm:˜/legup-4.0/examples/chstone/orio$ cat perf_r.sh
#!/bin/bash
clear
echo "______.:: $1 Perf Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm $file.c -o $file
echo "$file successfully compiled with debuging flag enabled"
chmod 755 $file
./$file
#perf record ./$file
perf record -g -s -d ./$file

180 Appendix C. Codes

perf report --stdio --sort comm,dso
#perf report
#perf top
#perf annotate

Listing C.34: Valgrind profiler

#!/bin/bash
clear
echo "______.:: $1 Gprof Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm ${file}.c -o ${file}
echo "$file successfully compiled with debuging flag enabled"
chmod 755 $file
./$file
echo ""
echo "Profiling..."
gprof $file gmon.out > gprof_analysis.txt
echo "Generating call-graph in png"
gprof2dot gprof_analysis.txt > gprof_call_graph.dot
dot -Tgif gprof_call_graph.dot -o gprof_call_graph.png
echo "Done!"

legup@legup-vm:˜/legup-4.0/examples/chstone/orio$ cat perf_r.sh
#!/bin/bash
clear
echo "______.:: $1 Perf Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm $file.c -o $file
echo "$file successfully compiled with debuging flag enabled"
chmod 755 $file
./$file
#perf record ./$file
perf record -g -s -d ./$file
perf report --stdio --sort comm,dso
#perf report
#perf top
#perf annotate
legup@legup-vm:˜/legup-4.0/examples/chstone/orio$ cat valprof.sh
#!/bin/bash
clear
echo "______.:: $1 Valgrind Analysis ::.______"
cd $1
ls *.c *.h
read -p "Select the main source code (without suffix) to profile:"

file
gcc -Wall -pg -g -lm $file.c -o $file
echo "$file successfully compiled with debuging flag enabled"

C.12. LLVM-opt Recipes for HLS 181

chmod 755 $file
./$file
valgrind --tool=callgrind --dump-instr=yes --simulate-cache=yes --

collect-jumps=yes ./$file
kcachegrind

C.12 LLVM-opt Recipes for HLS

182 Appendix C. Codes

Table C.1: Three sets of favourable LLVM-opt flags for adpcm

adpcm

List1

-scalarrepl -instcombine -break-crit-edges -gvn -inline -lowerswitch
-loop-rotate -early-cse -simplifycfg -tailduplicate -partial-inliner -sink
-codegenprepare -jump-threading -indvars -licm -loop-unswitch -loop-simplify
-loop-unroll -loop-deletion -block-placement -strip-nondebug -strip
-simplify-libcalls -reassociate -lowerinvoke -lcssa -globalopt
-functionattrs -adce -constmerge -correlated-propagation -dse -globaldce
-loop-idiom -lower-expect -memcpyopt -scalarrepl-ssa -sccp
-tailcallelim -scalarrepl -instcombine -break-crit-edges -gvn -inline
-lowerswitch -early-cse -simplifycfg -tailduplicate
-partial-inliner -sink -codegenprepare -jump-threading -indvars
-licm -loop-unswitch -loop-simplify -loop-unroll

List 2

-loop-rotate -loop-reduce -scalarrepl -scalarrepl -scalarrepl-ssa
-scalarrepl-ssa -instcombine -functionattrs -simplify-libcalls
-inline -simplifycfg -globalopt -tailduplicate -sink -strip -sink
-partial-inliner -break-crit-edges -licm -early-cse -inline
-simplify-libcalls -globaldce -lowerinvoke -tailcallelim -functionattrs
-reassociate -jump-threading -loop-reduce -indvars -loop-unroll
-tailcallelim -simplify-libcalls -scalarrepl-ssa -functionattrs -inline
-partial-inliner -lowerswitch -constmerge -globaldce -lowerinvoke
-adce -dse -sccp -memcpyopt -strip-nondebug -globalopt -block-placement
-loop-deletion -loop-unswitch -lcssa -gvn -instcombine -reassociate
-instcombine -tailduplicate -simplifycfg -break-crit-edges -loop-simplify
-codegenprepare -block-placement -jump-threading -licm -strip-nondebug
-reassociate -loop-simplify -early-cse -loop-unroll -loop-deletion
-loop-idiom -loop-unswitch -loop-rotate -lcssa -correlated-propagation
-gvn -codegenprepare -break-crit-edges -licm -jump-threading -loop-simplify
-early-cse -loop-unswitch -indvars -loop-rotate -lcssa

List 3

-simplifycfg -simplify-libcalls -loop-rotate -partial-inliner
-break-crit-edges -loop-reduce -inline -constmerge -scalarrepl-ssa
-functionattrs -scalarrepl -instcombine -partial-inliner -inline
-sink -partial-inliner -scalarrepl-ssa -tailduplicate -scalarrepl
-simplifycfg -lcssa -constmerge -licm -functionattrs -loop-reduce
-sccp -loop-rotate -break-crit-edges -codegenprepare -early-cse
-inline -simplify-libcalls -globaldce -scalarrepl -lowerinvoke
-globaldce -lowerinvoke -tailcallelim -functionattrs -reassociate
-loop-unroll -loop-deletion -loop-unswitch -indvars -gvn -jump-threading
-sink -lcssa -correlated-propagation -loop-simplify -strip-nondebug
-indvars -loop-reduce -globaldce -lowerinvoke -globalopt -block-placement
-gvn -tailduplicate -simplifycfg -break-crit-edges -block-placement
-jump-threading -codegenprepare -early-cse -instcombine -licm
-block-placement -loop-deletion -memcpyopt -loop-unroll -sccp
-correlated-propagation -loop-unswitch -loop-simplify -reassociate
-strip-nondebug -instcombine -loop-idiom -reassociate -jump-threading
-loop-unswitch -lcssa -licm -early-cse -loop-unroll -loop-deletion
-loop-rotate -indvars -sink -gvn -strip-nondebug -loop-simplify
-codegenprepare

C.12. LLVM-opt Recipes for HLS 183

Table C.2: Three sets of favourable LLVM-opt flags for blowfish

blowfish

List1

-simplify-libcalls -functionattrs -constmerge -functionattrs -simplifycfg
-loop-unswitch -jump-threading -loop-simplify -early-cse -instcombine
-loop-reduce -break-crit-edges -inline -indvars -scalarrepl-ssa
-scalarrepl -scalarrepl-ssa -scalarrepl -loop-unroll -simplify-libcalls
-scalarrepl-ssa -sink -loop-idiom -licm -codegenprepare -lcssa
-reassociate -loop-reduce -break-crit-edges -loop-reduce -loop-rotate
-break-crit-edges -jump-threading -strip-nondebug -globalopt
-block-placement -loop-deletion -sink -globaldce -lowerinvoke
-globaldce -lowerinvoke -globaldce -lowerinvoke -gvn
-loop-unroll -tailduplicate -simplifycfg -sink -loop-unswitch -jump-threading
-tailduplicate -block-placement -reassociate -early-cse -loop-idiom
-instcombine -loop-deletion -reassociate -early-cse -strip-nondebug
-licm -loop-rotate -loop-simplify -functionattrs -lcssa
-gvn -loop-unroll -codegenprepare -loop-idiom -licm -instcombine -loop-unswitch
-simplifycfg -loop-rotate -tailduplicate -strip-nondebug -block-placement
-loop-simplify -codegenprepare -tailcallelim
-lcssa -gvn

List 2

-simplifycfg -functionattrs -early-cse -instcombine -reassociate
-reassociate -break-crit-edges -loop-unroll -loop-deletion -loop-idiom
-indvars -loop-unswitch -loop-rotate -loop-simplify -inline
-simplify-libcalls -jump-threading -dse -gvn -licm -functionattrs
-inline -partial-inliner -block-placement -constmerge -loop-reduce
-codegenprepare -simplifycfg -instcombine -tailduplicate
-simplify-libcalls -strip-nondebug -break-crit-edges -loop-simplify
-jump-threading -loop-rotate -loop-reduce -globalopt -globaldce
-lowerinvoke

List 3

-simplify-libcalls -functionattrs -constmerge -functionattrs -simplifycfg
-loop-unswitch -jump-threading -loop-simplify -early-cse -instcombine
-loop-reduce -break-crit-edges -inline -indvars -scalarrepl-ssa
-scalarrepl -scalarrepl-ssa -scalarrepl -loop-unroll -simplify-libcalls
-scalarrepl-ssa -sink -loop-idiom -licm -codegenprepare -lcssa
-reassociate -loop-reduce -break-crit-edges -loop-reduce -loop-rotate
-break-crit-edges -jump-threading -strip-nondebug -globalopt
-block-placement -loop-deletion -sink -globaldce -lowerinvoke
-globaldce -lowerinvoke -globaldce -lowerinvoke -gvn
-loop-unroll -tailduplicate -simplifycfg -sink -loop-unswitch -jump-threading
-tailduplicate -block-placement -reassociate -early-cse -loop-idiom
-instcombine -loop-deletion -reassociate -early-cse -strip-nondebug
-licm -loop-rotate -loop-simplify -functionattrs -lcssa
-gvn -loop-unroll -codegenprepare -loop-idiom -licm -instcombine
-loop-unswitch -simplifycfg -loop-rotate -tailduplicate -strip-nondebug
-block-placement -loop-simplify -codegenprepare -tailcallelim -lcssa -gvn

184 Appendix C. Codes

Table C.3: Three sets of favourable LLVM-opt flags for dfadd

dfadd

List1

-scalarrepl -instcombine -gvn -inline -lowerswitch -loop-rotate
-early-cse -tailduplicate -partial-inliner -sink -codegenprepare
-jump-threading -indvars -licm -loop-unswitch -loop-simplify -loop-unroll
-loop-deletion -block-placement -strip-nondebug -strip -simplify-libcalls
-reassociate -lowerinvoke -lcssa -globalopt -functionattrs -adce
-constmerge -correlated-propagation -dse -globaldce -loop-idiom
-lower-expect -memcpyopt -scalarrepl-ssa -sccp -tailcallelim -scalarrepl
-instcombine -gvn -inline -lowerswitch -loop-rotate -early-cse -simplifycfg
-tailduplicate -partial-inliner -sink -codegenprepare -jump-threading
-indvars -licm -loop-unswitch -loop-simplify -loop-unroll -loop-deletion
-block-placement -strip-nondebug -strip -simplify-libcalls -reassociate

List 2

-globalopt -scalarrepl -jump-threading -scalarrepl-ssa -loop-reduce
-scalarrepl-ssa -break-crit-edges -jump-threading -sccp -simplifycfg
-sccp -sccp -instcombine -correlated-propagation -early-cse
-functionattrs -simplify-libcalls -simplify-libcalls -simplify-libcalls
-inline -adce -tailcallelim -scalarrepl-ssa -scalarrepl -jump-threading
-tailduplicate -partial-inliner -strip -partial-inliner -constmerge
-lowerswitch -functionattrs -inline -reassociate
-correlated-propagation -sink -loop-rotate -loop-rotate -loop-rotate
-indvars -lcssa -loop-reduce -gvn -block-placement -strip -globalopt
-partial-inliner -constmerge -lowerswitch -strip-nondebug -block-placement
-tailduplicate -simplifycfg -break-crit-edges -codegenprepare -indvars
-early-cse -instcombine -sink -reassociate -strip-nondebug -indvars
-correlated-propagation -simplifycfg -tailduplicate
-block-placement -instcombine -reassociate -lcssa -gvn -codegenprepare
-early-cse -lcssa -gvn -lowerswitch -codegenprepare
-strip-nondebug -globaldce -lowerinvoke -globaldce -lowerinvoke
-globaldce -lowerinvoke

List 3

-loop-rotate -simplify-libcalls -scalarrepl -tailduplicate -globalopt
-scalarrepl -sccp -break-crit-edges -simplifycfg -instcombine
-loop-reduce -early-cse -inline -partial-inliner -scalarrepl-ssa
-functionattrs -lowerswitch -simplify-libcalls -inline -adce -tailcallelim
-scalarrepl-ssa -strip -globalopt -jump-threading -partial-inliner
-reassociate -constmerge -correlated-propagation -loop-rotate
-indvars -lcssa -gvn -adce -sink -lowerswitch -strip-nondebug
-block-placement -simplifycfg -break-crit-edges -codegenprepare
-indvars -early-cse -instcombine -tailduplicate -sink
-reassociate -strip-nondebug -correlated-propagation -lcssa -gvn
-codegenprepare -jump-threading -block-placement -globaldce
-lowerinvoke -globaldce -lowerinvoke

