
POLITECNICO DI MILANO
Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Reliably achieving and efficiently

preventing Rowhammer attacks.

Relatore: Prof. Alessandro BARENGHI

Relatore: Prof. Gerardo PELOSI

Tesi di Laurea di:

Niccolò IZZO, Matr. 852226

Anno Accademico 2017-2018

To my other half.

Author’s thanks

Exploring the unknown is always difficult. It is also a daily occurrence

when doing scientific research. During my work, I have lost my way and

motivation several times, but I have never been alone. I would like to

thank some of the people whichmademy journey possible:

My advisor Alessandro Barenghi for helping me solve even the most

difficult problems always in elegant ways.

My second advisor Gerardo Pelosi for showing me how to do serious

and reliable research and always questionmy previous knowledge.

DavideZoni for his helpful advices onhow to implementmyhardware

countermeasure.

My girlfriend, my brother, friends and family who stood next to me in

this long path.

Prefazione

Lo scopo di questo lavoro di tesi è un’analisi approfondita del fenomeno

denominato Rowhammer, esso si manifesta con una corruzione selettiva

dei dati contenuti in unamemoria SDRAM, a seguito dell’esecuzione di un

determinato pattern di accessi alla memoria stessa. Rowhammer si ver-

ifica anche con accessi in sola lettura, di conseguenza il fenomeno può

causare lamodifica dei dati all’interno di zone dimemoriamarcate come

read-only. Questa eventualità è in grado di minare la solidità di un gran

numero dimeccanismi di sicurezza che si affidano a permessi di sola let-

tura, come la separazione userspace-kernelspace, le azioni di sandboxing o

l’impiego di coppie di chiavi crittografiche asimmetriche.

Perpoter riprodurre il fenomenodiRowhammer suunsistemasuscettibile

all’attacco è necessario conoscere approfonditamente come gli indirizzi

virtuali dei processi in esecuzione nel sistema si mappano sulle strut-

ture interne dei moduli DRAM del sistema stesso. In questa tesi si de-

scrive unmetodo completo e corretto per ricavare la funzione di map-

ping del sistema su cui un processo è in esecuzione.

Infinesi espongonoduecontromisure, una softwaree l’altrahardware

permitigare il fenomeno di Rowhammer fino a renderlo inoffensivo.

Il Rowhammering si verifica solo su righe di memoria fisicamente adi-

acenti, la funzione di mapping determina quali indirizzi virtuali sono

geometricamente adiacenti in un determinato chip di memoria DRAM.

Lacontromisurasoftwareconsistenelmodificare l’allocatoredimemo-

ria del sistema operativo, per far si che le varie entità (singoli processi e

kernel) sianofisicamente isolatenella loro allocazione inmemoria daun

numero sufficiente di row. Di conseguenza ogni processo, se anche rius-

cisse a causare errori di disturbo, essi avrebbero effetto solo sulle sue

strutture dati, impedendo qualsiasi tipo di privilege escalation.

Invece dal lato hardware si propone unamodifica dell’architettura dei

moduliDRAM, dimodocheadogni inizializzazionedelmodulo, sia gener-

ata una permutazione casuale dei row index. In questomodo la funzione

dimapping cambierà ad ogni avvio dellamacchina , riducendo drastica-

mente la fattibilità di un attacco basato su Rowhammer.

Preface

Thepurposeof this thesiswork isan in-depthanalysisof thephenomenon

named Rowhammer. Rowhammer manifests itself as a selective corrup-

tion of data inside SDRAM memories, following the execution of a par-

ticular access pattern to that same memory. Rowhammer manifests it-

self evenwith read-only accesses, therefore the phenomenonmay cause

modification of data inside read-only memory regions. This eventuality

can undermine the solidity of a large number of security mechanisms

which rely on read-only permissions, such as userspace-kernelspace sepa-

ration, sandboxingprocessesor theuseof asymmetric cryptographickeys.

To reproduce theRowhammer phenomenonona systemsusceptible to

this attack, it isnecessary tohaveadeepknowledgeofhowprocesses’virtual

addressesmap onto the internal structures of the DRAMmodules in use

on the system.

In this thesis a complete and correctmethod for obtaining themapping

function of the system on which a process is executed is described.

Finally two countermeasures are shown: a software one and a hard-

wareone, tomitigate theRowhammerphenomenonuntil it becomesharm-

less.

Rowhammering happens only on physically adjacent rows of mem-

ory, a mapping function determines which virtual addresses are geo-

metrically adjacent in a DRAM chip.

Thesoftwarecountermeasureconsistsof amodificationof theOS’memory

allocator tomake it so that the various entities (individual processes and

the kernel), be physically isolated by a sufficient number of rows. Con-

sequently, even if a process caused disturbance errors, the latter would

affect only the data structures of said process. Hence impeding any type

of privilege escalation.

On thehardwareside,weproposeaDRAMmodulesarchitecturalmod-

ification, such that everytime the module is initialized, a random per-

mutation of row index is generated. This way, themapping function will

change at every machine boot, drastically reducing the feasibility of a

Rowhammer-based attack.

Contents

Introduction 1

1 Origins of the phenomenon 5

1.1 Memory structure . 5

1.2 Why does Rowhammer happen 8

1.3 Single vs Double Rowhammer 9

2 State of the Art 11

2.1 Attack primitives . 11

2.1.1 Uncached accesses . 11

2.1.2 Fast accesses . 13

2.1.3 Targeted accesses . 13

2.2 Exploiting the vulnerability . 14

2.3 Proposed countermeasures 16

2.3.1 Doubling DRAM Refresh Rate 16

2.3.2 B-CATT and G-CATT . 17

2.3.3 Pseudo Target Row Refresh 17

2.3.4 Probabilistic Adjacent Row Activation 18

2.3.5 ECCmodules . 18

2.4 Finding the virtual→ geometrical addresses mapping function 18

2.4.1 Random approach . 19

2.4.2 Huge pages . 19

i

2.4.3 Pagemap . 20

2.4.4 Timing . 20

3 Assessing the reliability of known Rowhammeringmethods 22

3.1 Memtest86 timings measurements 23

3.2 Memory mapping model . 24

3.3 First bit flips . 26

3.4 Successful attack on Sandy Bridge 27

4 Characterizing physical-to-geometrical mappings 29

4.1 The Bit-Diff test . 29

4.2 Reliable timing measurements 30

4.3 Mapping functions addressing fields 31

4.3.1 Intel Sandy Bridge microarchitecture mapping . . . 33

4.3.2 Intel Ivy Bridge microarchitecture mapping 35

4.3.3 Intel Skylake microarchitecture mapping 36

4.4 Page Heatmap test . 38

5 Systematically deriving geometrical mapping 40

5.1 Scan the memory and verify geometrical characteristics . . 41

5.2 Deriving row addressing bits 41

5.3 Bins clustering . 42

5.4 Splitting bins into sets . 43

5.5 Identifying the sets . 43

5.6 Bruteforcing functions . 43

5.7 Functions Deduplication . 47

6 Experimental validation 48

6.1 Intel Sandy Bridge Geometrical Characteristics 48

6.2 Intel Skylake Geometrical Characteristics 49

6.3 Deriving Row Addressing Bits on Intel Skylake 51

ii

6.4 Noise reduction . 52

6.5 Bins Clustering on Intel Skylake 53

6.6 Set Partitioning on Intel Skylake 53

6.7 Set Partitioning Interpretation 56

6.8 Missing Sandy Bridge Comparison 57

6.9 Bruteforcing Application on Intel Skylake 58

7 Proposed countermeasures 62

7.1 Air-Gap . 62

7.1.1 Performance cost . 65

7.1.2 Comparison with G-CATT 66

7.2 Row-Mix . 67

7.2.1 Performance cost . 69

7.2.2 Security . 70

7.2.3 Comparison with PARA 71

8 Conclusion 73

iii

List of Figures

1 DisturbanceErrorsNumberoverDRAMRefresh Interval. Graph

rebuilt from Kim, Yoongu et al. “Flipping Bits in Memory

Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors” [1]. 3

1.1 DDR3 SO-DIMM Module . 6

1.2 SO-DIMMModules Organization 6

1.3 Storage Cell Scheme and Die-Shot of a DRAM Bank, Photo

from Chipworks. ”DRAM Process Report, Sample Report.”

URL:https://www.chipworks.com/TOC/DRAM_Process_Report-Sample.

pdf. 7

1.4 Rowhammer Bit-Flip Logical Scheme. 9

2.1 DisturbanceErrorsNumberoverDRAMRefresh Interval. Graph

rebuilt from Kim, Yoongu et al. “Flipping Bits in Memory

Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors” [1]. 16

2.2 UncachedMemoryAccessTimes toRandomDRAM Addresses 20

3.1 First Latency Test Output on Sandy Bridge Microarchitec-

ture . 23

3.2 Uncached Memory Access Latencies Histogram 24

3.3 Flip Offset Histogram on Sandy Bridge 28

iv

4.1 Sandy Bridge Bit-Diff Test Result 34

4.2 Ivy Bridge Bit-Diff Test in Dual Channel configuration . . . 36

4.3 Skylake Bit-Diff Test in Dual Channel configuration 37

4.4 2D Memory Latency Heatmap on a LG Nexus 5. Graph re-

built fromVanDerVeen“Drammer: DeterministicRowham-

mer attacks onmobile platforms” [2]. 38

4.5 Sandy Bridge Heatmap . 39

4.6 Ivy Bridge Heatmap . 39

4.7 Skylake Heatmap . 39

6.1 Sandy Bridge Latency Histogram for Uncached Accesses . . 49

6.2 Sandybridge LatencyHistogramwith SBDR Latencies High-

lighted in Red . 50

6.3 Functional Diagram of Kingston KHX2133C14/8GModules.

As shown in the chip datasheet [3]. 51

6.4 Skylake Uncached Accesses Latency Histogram with SBDR

Latencies Highlighted in Red 52

6.5 MemoryRefreshNoise, Detail taken from theUncachedAc-

cesses Latency Histogram . 53

6.6 SkylakeUncachedAccessesLatencyHistogram,Filtered,with

Highlighted Clusters Partitioning 54

6.7 Skylake High-Latency Sets Partitioning 54

6.8 Skylake Sets Features Analysis on High-Latency Sets 55

6.9 Sandy Bridge Filtered Uncached Accesses Histogram . . . 57

6.10 Sandy Bridge High-Latency Sets Partitioning 58

6.11 Drama Paper Function Graphical Representation 59

6.12 Skylake Small Sets Function Graphical Representation . . 60

6.13 Skylake Large Sets Function Graphical Representation . . 60

7.1 Page Distribution Across DRAM Structure 64

v

7.2 ReachofDisturbanceErrorsGeneratedbyaSingleRow. Graph

rebuilt from Kim, Yoongu et al. “Flipping Bits in Memory

Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors” [1]. 64

7.3 Air-Gap Policy Representation 66

7.4 Row-Mix Countermeasure Functional Scheme 70

vi

List of Tables

4.1 Most commonmapping functionsas shown inDavidWang’s

PhD thesis [4] . 33

4.2 Mapping parameters characterization for Sandy Bridge ar-

chitecture . 34

4.3 Mapping parameters characterization for Ivy Bridge archi-

tecture . 36

4.4 Mappingparameters characterization for Skylake architec-

ture . 37

vii

List of Algorithms

1 Bit-Diff . 30

2 SBDR Sets Subdivision . 44

3 RankFunctions . 46

4 Functions Deduplication . 47

viii

Introduction

All the research efforts of memory manufacturers for the last ten years,

have been focused on increasing cell density on silicon. This brought us

extremelydensememorychips, andnowadays it is commontofindDRAM

chipswith 2GB capacity each, soldered in groups ontomemorymodules.

This increasing density however amplifies all the disturbance effects

that hit the DRAM circuits: subthreshold leakage, gate-induced drain

leakage and row to row coupling. These disturbance effects have been

known to the DRAM manufacturers for a long time [5], even so, they were

always considered as a mere reliability concern, not a security one.

The ability to induce and use these disturbance effects to selectively

corrupt read-onlymemory content is dangerous, because it takes away

one of the cornerstones of any security mechanism: the separation of

privileges.

In fact with a base knowledge of the victim system, andwith some key

elements i.e. a fast access to DRAM memory, even an unprivileged or a

sandboxed process can trigger the vulnerability and exploit it.

TheRowhammer [6] vulnerabilityhasbeenexploitedeven fromjavascript

code, running inside a webpage loaded by a browser [7]. This gives an

idea of the subtlety of such an attack, which can be triggered even from

high-level sandboxed code and leverage a hardware vulnerability.

When an attacker is able to alter data marked as read-only, a whole

1

2

group of attacks becomes feasible. All the Operative Systems which fea-

ture memory virtualization keep some data structures called page table

entries (PTEs) in memory. These entries keep track of the mapping be-

tween virtual addresses andphysical addresses, and information about

whether the page is writable or accessible from userspace [8].

Bydefinition,PTEs are read-only, otherwiseaprocess couldchange the

physical address atwhich its virtual pages aremapped and thus gain ar-

bitrary writes over the whole memory of the execution environment. By

leveraging the Rowhammer vulnerability, an attacker can corrupt a PTE,

by changing the mapping of one of its virtual page to another of its own

PTE. After that, the second PTE can be edited freely, for example making

it point to one of the kernel data structures, to modify them and gain

root privileges over the machine. This attack has been implemented by

Google’s Project Zero [9].

Anotherpossibleuseof theRowhammer vulnerability is to corruptasym-

metric cryptographic keys. It has been demonstrated by Razavi et al. [10]

that it is possible to use Rowhammer to corrupt an OpenSSH public key.

Therefore the resulting corrupted key might become easily factorizable,

and thus a corresponding private key can be easily derived and used to

gain remote access to the system.

Avulnerability thatoriginatesdirectly fromtheDRAM suchasRowham-

mer is particularly critical, becausenowadays there are countlessdevices

whichrunuser-controllable codeandrelyonDDR3orDDR4SDRAM.Among

those devices are smartphones, that constitute particularly sensitive tar-

gets because they carry our most personal data and are equipped with

microphones and cameras. As if this were not enough they are directly

connected to the internet and we keep them always close to ourselves.

Researchers from VUSec have shown practical examples of Rowham-

mer attacks on Android devices [2], by using a deterministic method to

3

0 16 32 48 64 80 96 112 128

Refresh Interval (ms)

0

100

101

102

103

104

105

106

107

108

A B C

yA= 4.39e-6×x6.23

yB = 1.23e-8×x7.3

yC = 8.11e-10×x7.3

Er
ro

rs

Figure 1: Disturbance Errors Number over DRAM Refresh Interval. Graph
rebuilt from Kim, Yoongu et al. “Flipping Bits in Memory Without Ac-
cessing Them: An Experimental Study of DRAM Disturbance Errors” [1].

control the Androidmemory allocator.

Since the problem is widespread on so many different platforms it is

important to createmachine-independent solutions which are flexible

enough to be ported to the most diverse systems.

The one between security and performance has always been a tough

battle, and even in this case, securing our systems does mean giving up

on performance or energy consumption.

As shown in the original Rowhammer paper [1], incrementing the Row

RefreshRateunder the16ms threshold reduces thenumberofdisturbance

errors greatly, as can be seen in figure 1. Apple introduced an EFI patch

tobring theRowRefreshPeriod fromthe standard64ms to32ms [11]. When

using the normal 64ms Refresh Period theDRAM is unavailable 2.2% of the

time; halving the period makes the DRAM unavailable for 4.4% of the to-

tal time thus degrading performance. Furthermore more frequent re-

freshes consumemore power, and 32ms are not enough to reduce signi-

ficatively the number of disturbance errors.

Our aim is providing a solution which greatly reduces the feasibility

4

of aRowhammer-based attackwithout surrendering to heavy performance

costs. Such kind of solutions will be easily portable even to less capable

devices, without degrading the overall user experience, and at the same

time keeping those systems reasonably secure.

Chapter 1

Origins of the phenomenon

1.1 Memory structure

ModernDRAMmodulesall share thesameorganizationcriterion for their

internal components. For our analysis we will be considering the DIMM

form factor, which has been the most commonly used on desktop com-

puters, workstations and servers in the last decade.

A single DIMM stick is called a module, it is composed by a printed

circuit board with chips soldered on its surface and electrical contacts

on both sides of one edge of the board (figure 1.1).

DifferentDIMM socketsmaybe connected to different channels; a chan-

nel is an independent bus from thememory controller to amodule (figure

1.2).

Every module can be either one-sided or two-sided, depending on

how many sides of the board have been populated with memory chips.

Amodule presentsmany chips on its surface, and always features a con-

trol logic called chip selectwhich allows to interconnect all the chips to the

same bus. A set of DRAM chips connected with the same chip select logic

is called a rank (figure 1.2). Usually, in two-sided modules, there is one

5

CHAPTER 1. ORIGINS OF THE PHENOMENON 6

Figure 1.1: DDR3 SO-DIMM Module

(a) Single-bit Storage Cell (b) Bank Die-Shot

Figure 1.2: SO-DIMMModules Organization

rank per side.

Every DRAM chip contains one ormore banks, each bank is a large col-

lection of rows, with one row-buffer (figure 1.2).

Rows represent the smallest granularity of storage which can be read

or written inside a DRAM chip. Each row is several bytes long (8192B tipi-

cally), but to read even a single byte, the whole row must be read. The

samehappens forwriting. Furthermore theDDR3 standardrequiresburst

reads to hide the memory latency, therefore the memory controller will

always issue an 8 bytes consecutive read, even to read a single byte. The

same happens also for writes.

CHAPTER 1. ORIGINS OF THE PHENOMENON 7

Address Line

Access Transistor

Bit Capacitor

Bit Line

(a) Single-bit Storage Cell

bitlines

wordlines

sense amplifier

(b) Bank Die-Shot

Figure 1.3: Storage Cell Scheme and Die-Shot of a DRAM Bank, Photo
from Chipworks. ”DRAM Process Report, Sample Report.” URL: https:
//www.chipworks.com/TOC/DRAM_Process_Report-Sample.pdf.

In a DRAM module every bit is represented by a little capacitor, con-

nected toanaccess transistor (figure1.3). Awire calledaddress lineconnects

all the gates of the transistors of each bit in a row together. Furthermore

there are as many bit lines as memory cells in every row.

The row buffer is an array of latch-amplifier pairs and it has the same

length of a row. Every amplifier (sense amplifier) is connected to a different

bit line (figure 1.3).

When a memory word has to be read, the corresponding address line

is activated, switching-on all the transistor of the row in which the word

resides. Thechargesof all thecapacitorsof the row are sensedby the sense

amplifiers, which save them in the corresponding latches. In this process,

termed row activation, all the capacitors of the row are discharged. As a

consequence they will have to be replenished with the same values (in

case of memory read) or with updated values (in case of memory write).

If more words are read or written in the same row, only a single row

activation is issued and the following reads and writes are made directly

on the row buffer’s registers. Furthermore, all the charges in the capaci-

tors tend to fade naturally due to subthreshold leakage [12] and gate-induced

drain leakage [13].

https://www.chipworks.com/TOC/DRAM_Process_Report-Sample.pdf
https://www.chipworks.com/TOC/DRAM_Process_Report-Sample.pdf

CHAPTER 1. ORIGINS OF THE PHENOMENON 8

As a consequence, rows have to be continuously read and rewritten,

this process is called refresh. In all modern DRAM modules, a refresh is

issued with a mean period of 64ms.

1.2 Why does Rowhammer happen

TheRowhammer phenomenonmanifests itself as a bit corruption inside a

particular row thathappenswhen theadjacentaddress linesare repeatedly

activated and deactivated with a frequency much higher than the refresh

frequency.

Kim et al.’s paper [1] gives a physical explanation of the Rowhammer

phenomenon and poses some necessary conditions to make it happen:

When the voltage of an address line is commuted repeatedly, i.e. the cell is

hammered, the transistors of the bit-storage cells of the adjacent rows are ac-

tivateddue togate-induceddrain leakageand rowto rowcoupling. This

causes the cells of the rows adjacent to the hammered one to lose charge

at a faster speed. If a cell drops below the logic level threshold before the

next row refresh, then its value changes and the next refresh will confirm

the corrupted value (figure 1.4).

This example of assembler code, provided some conditions hold on

the two addresses X and Y, can trigger a disturbance error on other ad-

dresses in memory.

rowhammer_clflush :

mov (X) , %eax

mov (Y) , %ebx

clflush (X)

clflush (Y)

jmp rowhammer_clflush

Tofinddisturbanceerrorson theneighbouring rows, the twoaddresses

CHAPTER 1. ORIGINS OF THE PHENOMENON 9

Figure 1.4: Rowhammer Bit-Flip Logical Scheme.

X and Y must belong to the same bank and to different row. We will later

on refer to this condition as the Same Bank Different Row Condition or SBDR

Condition.

This happens because every bank has a single row buffer and when a

byte is requested in a row different from the current open row, the current

row has to be closed and the next row has to be opened.

Differently, if the two addresses belong to different banks, their access

can happen in parallel, without the need of repeatedly opening and clos-

ing two rows. Furthermore, if the two addresses belong to the same row,

all the reads andwrites will happen to the row bufferwithout causing new

address line commutations.

1.3 Single vs Double Rowhammer

To trigger the Rowhammer vulnerability we need at least two addresses

that satisfy the SBDR condition, this way we can access them repeatedly

and cause the rows to open and close at each access. If the two rows are far

away from each other they will trigger the faults in two different zones of

CHAPTER 1. ORIGINS OF THE PHENOMENON 10

the target bank. This kind of attack can be defined Single Rowhammer, be-

cause each fault is causedbya single row repeatedly opening andclosing.

If wemove the two rows to be at one row of distance fromone another, like

in figure 1.4, we will cause amore powerful attack that we can call Double

Rowhammer. This attack ismuchmore dangerous because the victim row

(the one between the two attacking rows) is suffering from the cumulative

disturbance effects of the two rows simultaneously. However triggering a

Double Rowhammer attack ismuchmore difficult than a Single Rowhammer,

in fact finding two addresses in the same bank is relatively easy, while in

order to find two adjacent rows, we need a deep knowledge of themem-

orymapping function that maps virtual addresses to geometrical parts of

each DRAM module.

Chapter 2

State of the Art

In this chapter we will review the current state of the art for the realiza-

tion andmitigation of Rowhammer attacks.

2.1 Attack primitives

To achieve a successfult Rowhammer attack, memory accessesmust have

three characteristics: they have to be uncached, fast and targeted.

2.1.1 Uncached accesses

If memory accesses hit one of the cache levels, they will never reach the

DRAM and thus never cause any address linemodification. Several tech-

niques that generate uncached access to memory have been described

in the literature. They mainly rely on four types of mechanisms: flush-

ing caches, using non-temporal instructions, evicting caches and using

uncachedmemoryprimitives. Thefirst canbe achieved in the x86-64 ar-

chitecture by using the clflush instruction ([1]). This kind of instruction

flushes all the levels of caches, and thus guarantees subsequentmemory

operations tobeperformeddirectly on theDRAM. As a consequenceof the

11

CHAPTER 2. STATE OF THE ART 12

usefulness of the clflush instruction for performing Rowhammer attacks,

it has been removed from the allowed instructions in the NaCl sanbox

(the sandbox used by the Chromebrowser) [9]. Anotherway to obtain un-

cached accesses is to use non-temporal instructions [14], such asmovnti

or movntdq on a x86_64 architecture. These instructions define a non-

temporal hint, so the CPU avoids caching data. However, it is to be noted

that thememory used by these instructions is treated asWrite Combining

type. Consequently, non-temporal writes to the same address are always

combined at WC buffer, and only the last write goes through towards the

DRAM chips. This will make any naive implementation with these two

primitives ineffective. TheWrite Combining cache can be flushed by issu-

ing a cached memory access, thus the following assembly loop is able to

trigger the vulnerability:

rowhammer_movnti :

movnti %eax , (X)

movnti %eax , (Y)

mov %eax , (X)

mov %eax , (Y)

jmp rowhammer_movnti

A third way to issue uncached reads is to perform a cache eviction.

This method was used to create rowhammer.js since the clflush instruc-

tion is not available in javascript [7]. The cache eviction is performed by

reverse-engineering the cache mapping function and eviction policies,

and trying to issue a set of writes targeted to fill up the caches quickly

and perform uncached reads.

A fourth and last way to generate uncached reads is to use different

forms of uncached memory i.e. the ION Android memory allocator [2].

From Android 4.0 on, the IONmemory manager was introduced [15], al-

lowing developers to use unified DMABufferManagement APIs. This en-

CHAPTER 2. STATE OF THE ART 13

ables even userland apps to obtain fast, uncached, access to physically

contiguous memory.

2.1.2 Fast accesses

Rowhammer can be considered as a race against the rows refresh. In order

towin this race, a fastmemory primitive is needed, neither slowmemory

controllers nor slow access primitives could achieve a sufficiently high

frequency to beat the rows refresh.

2.1.3 Targeted accesses

For an attack to be successful, the attacking process has to know how to

reach individual rows to build up an attack pattern. There are two map-

ping layers to be crossed: virtual address→ physical address, physical address

→ memory geometry. The virtual to physical address mapping is described

in the /proc/self/pagemap pseudo-filesystem, but to make Rowhammer-

ingmoredifficult, fromkernel4.0on, only theuserswithCAP_SYS_ADMIN

capability can read page framenumbers (PFN) from the pagemap interface

[16]. and the CAP_SYS_ADMIN capability is equivalent to root permis-

sions [17]. Another way to infer the virtual→ physicalmapping is to lever-

age kernelHugePages [18] (Super Pages onBSD, Large Pages onWindows).

This functionality, if enabled on the kernel, allows userspace processes

to allocate pages which have a size of 2048KB or 1024MB depending on

the CPU support. Since the addresses in an allocated huge page are con-

tiguous, the process has sufficient knowledge to obtain a relative row ad-

dressing [2]. NeverthelessHuge Pages [18] support is turned off by default

in Linux, most Android smartphones andWindows.

Getting trough thephysical address→memorygeometry though isaharder

task: the mapping function is hardwired inside the memory controller,

it is undocumented but it has been reverse engineered for Intel Sandy

CHAPTER 2. STATE OF THE ART 14

Bridge [19] and IvyBridge, Haswell andSkylake [20]. Whichever themap-

ping is, it changes with the amount of installedmemory, and some of the

mappings reported in previous works prove to be wrong on our test ma-

chines with the same Intel processor generation.

Being the physical address→memory geometry mapping the condicio sine

qua non of every Rowhammer attack, this thesis work focuses mainly on

developing a complete and correct method for inferring the mapping on

every system, regardless of previousknowledgeabout theprocessor gen-

eration.

The final physical address → memory geometry mapping is actually the

composition of twomapping functions, one applied by thememory con-

troller and the other applied by the DRAM module internally. When de-

tecting the mapping with software methods such as in DRAMA’s work,

the perceived function is the composition of the two.

An interesting approach for reverse engineering only the DRAM in-

ternal addressing bit permutation is proposed by Matthias Jung in his

paper “Row Hammer with Crosshair” [21]. Since disturbance errors in

DRAM modules are directly proportional to the temperature, applying a

temperature gradient on the surface of the module will result in a dis-

turbance error pattern on the data contained in it. In a sequence of steps

withdifferent thermal gradients, the actualDRAMmapping canbe recon-

structed.

2.2 Exploiting the vulnerability

ThisProjectZeroblogpost (Google internal security team) represents the

first use of the Rowhammer phenomenon as a security vulnerability [9].

Google’s team presents two attacks: one based on page table entries

(PTEs) corruption to obtain a kernel exploit and the other performed on

CHAPTER 2. STATE OF THE ART 15

Google Chrome sandbox, obtaining arbitrary code execution.

This second vulnerability can be concatenated with the first to obtain

a kernel exploit directly from code running in Chrome, for example in a

malevolent extension.

This Chrome sandbox (NaCl) vulnerabilitywasmitigated by removing

clflush from the allowed x86 instructions (CVE-2015-0565). On the other

hand, as previously stated there are ways other than the clflush instruc-

tion to trigger a Rowhammer attack.

There are other interesting examples of Rowhammer vulnerability ex-

ploiting, in particular Flip Feng Shui [10] is a cross-vm setting attack.

The attack relies on a feature present in many hypervisors, called Mem-

ory Deduplication. Whenever duplicate pages are detected, even if they

belong to different Virtual Machines, this feature frees one of them and re-

places it with a Copy onWrite pointer to the other page. As a consequence,

a Rowhammer attack, corrupting a deduplicated memory page, will cor-

rupt other pages, potentially belonging to victimVirtualMachines, without

triggering the Copy onWrite and as a result keeping the two pagesmerged

and corrupted.

The Flip Feng Shui attack aims at obtaining an OpenSSH access to

a victim VM, contained in the same hypervisor environment of the at-

tacker VM. The attack is performed by reproducing a page memory in

the attacker VM, identical to the one containing the authorized_keys file

of the victim VM. A Rowhammer attack to the attacker VM’s own dupli-

cated page will corrupt the public SSH keys contained in the victim vir-

tual page. TheSSHpublic keys corrupted thisway, will bewithhighprob-

ability made vulnerable to a factorization attack.

CHAPTER 2. STATE OF THE ART 16

0 16 32 48 64 80 96 112 128

Refresh Interval (ms)

0

100

101

102

103

104

105

106

107

108

A B C

yA= 4.39e-6×x6.23

yB = 1.23e-8×x7.3

yC = 8.11e-10×x7.3

Er
ro

rs

Figure 2.1: DisturbanceErrorsNumber overDRAMRefresh Interval. Graph
rebuilt fromKim, Yoonguet al. “FlippingBits inMemoryWithoutAccess-
ing Them: An Experimental Study of DRAM Disturbance Errors” [1].

2.3 Proposed countermeasures

Several countermeasures [22]havebeenproposed toeliminate theRowham-

mer phenomenon, resulting in a more or less effective mitigation.

2.3.1 Doubling DRAM Refresh Rate

The most common countermeasure against the attack is the halving of

theRowRefreshPeriod ofDRAMmodules. Aswe can see fromfigure 2.1, be-

yond causing a considerable power consumption and accessing latency

penalties, it just reduces by someorders ofmagnitude thenumber of dis-

turbance errors, without eliminating them. During ordinary use, the re-

fresh process is responsible for 30% of the power consumption of each

DRAM module. In particular for laptops and smartphones where the en-

vironment is power-constrained, such countermeasures are not even to

be considered. To completely eliminate the phenomenon the Row Refresh

Period should be dropped below 16ms, but thiswould imply a huge power

and performance penalty.

CHAPTER 2. STATE OF THE ART 17

2.3.2 B-CATT and G-CATT

Ferdinand Brasser, in his recent research paper [23] introduced two in-

teresting software countermeasures, named B-CATT and G-CATT. The

first works by checking the memory regions which are more vulnerable

to the Rowhammer phenomenon and excluding themat boot time, yet this

countermeasure is likely to render systems unusable. Namely, on vul-

nerable machines, a significant portion of the memory (even more than

90%)may be subject to this phenomenon. Furthermore there is no guar-

antee that vulnerable memory regions would not change over time, so

this countermeasure is likely to be ineffective. G-CATT on the contrary

works at runtime by tweaking the Linux memory allocator to partition

the available memory into security domain. The countermeasure splits

the banks in two sets, separated by an empty row, and then assigns dif-

ferent processes to different isolated sets. This countermeasure has a

couple of weak spots: first, in a standard setup the number of banks is

limited (in our Skylake test machine we have 16 banks per modules and

2 modules) and therefore the number of isolated sets can be exhausted

easily. Secondly, the countermeasure is strictly dependend on themem-

ory addressing function of the system, and if that function is incomplete,

the whole countermeasure mitigates but does not eliminate the attack

surface. Thirdly, G-CATT only leaves a single row between the various

isolated regions, so it is not guaranteed that a finely tuned Rowhammer

attack would not cross the boundary.

2.3.3 Pseudo Target Row Refresh

Other countermeasures are hardware based and require a replacement

of existing DRAM modules, among those is the introduction of the Pseudo

TargetRowRefresh (pTRR) commandby JEDEC,which is used to selectively

refresh rows neighbouring to the one we just accessed. This primitive

CHAPTER 2. STATE OF THE ART 18

does not introduce any drawback on either performance or power con-

sumption.

2.3.4 Probabilistic Adjacent Row Activation

An interesting countermeasure proposed by Yoongu Kim in his paper

[1] consists in refreshing the neighbour rows after every memory access,

with a non-null probability. Hence, in case of multiple consecutive ac-

cesses, thevictim rowwouldbeupdatedmore frequently compared to the

normal Refresh Period, thus reducing or possibly eliminating the Rowham-

mer-related disturbance errors. This method, if finely tuned on a DRAM

module’s characteristics, canachievevery lowperformance impact, nonethe-

less, as any hardware countermeasure, it requires the DRAM OEM to in-

troduce it inmemorymodulesmanufactured in the future, so it does not

protect already deployed systems.

2.3.5 ECC modules

As the number of errors can go beyond the two in a single row, the use of

ECCmodules is not sufficient to neutralize the Rowhammer phenomenon,

in factECCmodulesareSingleErrorCorrectionDoubleErrorDetection (SECDED).

Somemanufacturers suggest to use ECCmemories as a countermeasure

[24], but as we have seen in the past, this countermeasure is ineffective.

2.4 Finding the virtual → geometrical addresses

mapping function

Most modern Operating Systems make use of memory virtualization. A

fragmented physical memory space with several holes, e.g. due to periph-

eral addressmappings, is translated intoacontiguous virtualaddress space,

CHAPTER 2. STATE OF THE ART 19

unique for each process. Consequently there is a mapping function that

translates virtual addresses to physical addresses.

Furthermore the function which maps physical addresses on channels,

ranks, banks, rows and columns is undocumented for Intel processors.

So how is it possible to find couples of addresses which satisfy the

Same Bank Different Row condition, necessary for a Rowhammer attack?

2.4.1 Random approach

Project Zero’s approach [9] is to extract random addresses from a large

addresses pool (~1GB). If we are attacking a single DDR3module of 4GB

size, it will contain 2 ranks, each composed by 8 banks. Therefore we will

have a probability of 1
16 of obtaining two addresses belonging to the same

bank. Oppositely, the probability of choosing two addresses belonging to

the same row is very low, since every bank contains a largenumber of rows

(215 in the aforementioned DDR3module).

This way though, it is only possible to obtain a Single Rowhammer at-

tack, because while it is easy to pick two address in the same bank, it is

very hard to pick three adjacent rows.

2.4.2 Huge pages

Another approach is based on having the huge pages feature active on the

target system. If this is the case, we can allocate pages greater than 4KB,

for example2MBor1GBaccording to theprocessorof the targetmachine.

Allocatedpages aremappedon physically contiguousmemory segments. This

allows to identify in a trivial way couples of addresses which satisfy the

SBDR conditionbut also to obtain three adjacent rows suitable for perfom-

ing the Double Rowhammer attack. This feature is present on most Oper-

ating Systems, though it is often turned off by default as on Linux and

Android AOSP.

CHAPTER 2. STATE OF THE ART 20

Figure2.2: UncachedMemoryAccessTimes toRandomDRAM Addresses

2.4.3 Pagemap

The Linux kernel exposes a list of themapped pages of each processwith

the corresponding physical addresses in the virtual file /proc/self/pagemap

[16]. Fromkernel version4.0 on, this information is zeroedout unless the

process user is root or has the CAP_SYS_ADMIN [17] capability.

2.4.4 Timing

Bymeasuring uncachedmemory access times to randomsampledDRAM

addresses we obtain a figure that can be coarsely approximated to a bi-

modal normal distribution. The figure presents additional noise due to

the interference of the Row Refresh process with the measurements.

The first mean represents access to addresses belonging to different

DIMM channels, different ranks or banks. Conversely, the second gaussian

meanwithanaveragevaluegreater than thefirst one representsaddresses

which satisfy the SBDR condition, together with address couples subject

to other kinds of conflicts i.e. DDR4 Bank Group Conflics. SBDR accesses

are slower than the first ones due to the time necessary to close the first

row and open the second row.

CHAPTER 2. STATE OF THE ART 21

It is possible to identify addresses belonging to this second set, choos-

ing them by their longer access times. This allows us to reverse engineer

themapping function of physical addresses to the geometrical characteris-

tics of the DRAM modules, as explained in the DRAMA paper [20].

Chapter 3

Assessing the reliability of

known Rowhammering

methods

The road towards achieving Rowhammer on a machine is a long one. As

a first step, Google’s extended-text [25] has been run on the the target ma-

chines for ten hours without obtaining results from any of the available

machines.

The test performs a Single Rowhammer attack by picking random ad-

dresses froma largemapped address space andperforms theCLFLUSH-

basedRowhammer loop. If by any chance the twopicked addresses belong

to the same bank, a Rowhammer fault could be triggered.

Theoutcomeof aSingleRowhammer attackdependssolely on theweak-

ness of the target modules. As Yoongu Kim showed in his paper [1], the

majority of modules produced after 2013 are vulnerable to Rowhammer.

Even so, there are some stronger modules which are immune to Single

Rowhammer attacks, in this case our only chance of performing an attack

22

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS23

140

160

180

200

220

240

260

280

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

base

base+i

Figure 3.1: First Latency Test Output on Sandy BridgeMicroarchitecture

is to build a Double Rowhammer.

A fundamental prerequisite of a Double Rowhammer attack is knowl-

edge of virtual addresses mapping on memory geometry. From now on we

will focus on finding a technique to reverse engineer the aforementioned

mapping.

3.1 Memtest86 timings measurements

A first concern about collecting data in order to find themapping func-

tion is to avoid the additional remapping done by the Operating Systems.

To this aima latencymeasurement toolhasbeenbuilt inside theMemtest86

utility, usually run directly as a bootloader payload without any Operat-

ing System in-between.

Afirst testmeasures the consecutive access timeof uncached reads to

two memory addresses, the first fixed and the second swept over all the

available addressing space (figure 3.1). Thefirst address access times are

colored in orange, while the second address access times are colored in

teal. Every value is the average of 200 samples.

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS24

Figure 3.2: Uncached Memory Access Latencies Histogram

The graph shows clearly thatwhile the first access latency is constant,

the second access latency depends on the relative position of the two ad-

dresses. The second address latency, divides into two latency classes.

The slower accesses are probably caused by the SBDR conflicts.

Nonetheless, this kind of data is too raw to be directly interpreted and

obtain a mapping function.

3.2 Memorymappingmodel

Some previous work has been carried out on reverse engineering the

mappingbetweenphysical addressesandmemory location, inparticular

the DRAMA [20] framework embeds an example code to detect mapping

functions in anymachine.

Their code is available online in a public GitHub repository [26]. The

code works on our Sandy Bridge setup, but it is extremely fragile and un-

able to produce any result on our Ivy Bridge test machine.

This code generates a histogram of uncached memory access times,

obtaining a graph similar to the one shown in figure 3.2.

As we can see, the access latencies can be divided in two normal dis-

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS25

tributions. The addresses belonging to the second gaussian satisfy the

SDBR condition and therefore belong to the same bank but to different

rows.

However, this is a snippet of the DRAMA codewhich separates the two

gaussians:

/ / f ind separat ion

int empty = 0 , found = 0;

for (int i = max; i >= min; i−−) {

i f (hist [i] <= 1)

empty++;

else

empty = 0;

i f (empty >= 5) {

found = i + empty ;

break ;

}

}

This implementation leads to faultymemorymapping function iden-

tification on some machines where the two gaussians are very close to

each other.

Once low-latency addresses have been separated from high-latency

ones, the code authors try to partition the high-latency addresses into

sets, whose members all satisfy the SBDR condition. In particular, their

method yields a set of functions that show which bits of the addressing

function are XORed to one another.

The mapping function depends on the CPU generation, on the pat-

tern to which the DRAMmodules are connected (howmany channels, how

many DIMMs) and on the particular memory modules.

For themachines fromwhich the DRAMA code gave us a plausible re-

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS26

sult, we set up a test sandbox, with the purpose of assigning the corre-

sponding set and row numbers to each address. This way, if the models

prove correct, mounting a Double Rowhammer attack will become trivial.

3.3 First bit flips

To test if the modules were vulnerable to Single Rowhammer attacks, and

validate themappingmodels obtained through the DRAMA [20] code, the

Project Zero extended-test [25] was run on the testing machines.

Only twoSO-DIMM 4GBmodules,manufacturedbySamsungwere found

vulnerable to this kind of attack.

The extended test codes were instrumented, thus yielding for each

flip the row and set numbers according to our model for that test ma-

chine. These are the results of the tests:

• Correct sets, wrong rows

– Attacking: 0x8a948000 belongs to set 28 and row 8869

– Attacking: 0x74e1d000 belongs to set 28 and row 7480

– Victim: 0x74e3fe08 belongs to set 28 and row 7480

• Wrong sets, correct rows

– Attacking: 0x5b2c1000 belongs to set 12 and row 5835

– Attacking: 0x78285000 belongs to set 12 and row 7690

– Victim: 0x5b2a66f0 belongs to set 13 and row 5834

• Wrong sets correct rows

– Attacking: 0x79e3b000 belongs to set 24 and row 7800

– Attacking: 0x72c7f000 belongs to set 24 and row 7345

– Victim: 0x79e5d960 belongs to set 25 and row 7801

• Correct sets and rows

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS27

– Attacking: 0x9391b000 belongs to set 10 and row 9444

– Attacking: 0x6d31a000 belongs to set 10 and row 6988

– Victim: 0x9397dfb0 belongs to set 10 and row 9445

• Correct sets and rows

– Attacking: 0x8502d000 belongs to set 14 and row 8512

– Attacking: 0x889d3000 belongs to set 14 and row 8743

– Victim: 0x8504be20 belongs to set 14 and row 8513

As it can be seen from the results, there is some misclassification on

both sets and rows; this can be related to inaccuracies in the mapping

model adopted. As one can imagine, such kind of inaccuracies under-

mine the possibility of performing a Double Rowhammer attack.

It follows that the model has to be corrected to implement a Double

Rowhamer attack in a deterministic way on our test machine. On some of

our test machines, the Single Rowhammer has proven to be ineffective, al-

though theymight still bevulnerable to themorepowerfulDoubleRowham-

mer attack.

Finally, obtainingamappingmodel for a targetmachine is fundamen-

tal to implement effective software countermeasures to all the Rowham-

mer attacks. As a matter of fact, for each sensitive memory address it

should be enough to avoid hammering on the two adjacent memory rows.

This, in the end, provides a chance to protect sensitive data structures

such as Kernel page table entries (PTEs), file permissions data structures

and asymmetric cryptographic keys, with a minimum space consump-

tion penalty and no performance penalty whatsoever.

3.4 Successful attack on Sandy Bridge

By using Google’s code as reference we were able to craft our own Double

Rowhammer attack. And by exploiting the known mapping function for

CHAPTER3. ASSESSINGTHERELIABILITYOFKNOWNROWHAMMERINGMETHODS28

Figure 3.3: Flip Offset Histogram on Sandy Bridge

Sandy Bridge, as shown in a blog post byMark Seaborn [19], wewere able

toperformdouble rowhammeronSandyBridge. Our attack yields a large

number of flips, few seconds after it is launched.

As a result of the attack we computed a flip offset histogram, shown in

figure 3.3, which shows for a single pair of attacking rows, the distribution

of disturbance errors. The flip offset histogram was obtained by perform-

ing a double Rowhammer attack, on a single victim row, and then observing

the count of errors of the neighbouring rows. The single victim row is rep-

resented as the row with offset 0, the two attacking rows are positioned at

offsets 1and -1. Due tobeingcontinuously refreshed toperformtheham-

mering, the two attacking rows will never show disturbance errors. This

observation is confirmed by the graph and can be used to build a use-

ful sanity check when performing Rowhammer tests. As we can see from

the flip offset histogram, in our setup, disturbance errors show up in rows

which are at most 2 rows away from the victim row.

Chapter 4

Characterizing

physical-to-geometrical

mappings

Sinceavailablemethods forperforming theRowhammer attackhaveproven

tobe ineffective onbothour IvyBridgeandSkylake testmachines, inpar-

ticular due to a low reliability of availablemapping detection algorithms.

In this chapter we pose the necessary theoretical and practical foun-

dations to build a reliable mapping detection method. We start by intro-

ducing our Bit-Diff test, which is useful to highlight the differences be-

tween the various addressing bits.

4.1 The Bit-Diff test

Inour testweallocateaphysically contiguous4GBwidesegmentofmem-

ory. For the purpose of having a large segment of contiguousmemorywe

activate and use huge pages [18]. By allocating hugepages with a kernel

29

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 30

CMDLINE parameter we obtain a non-fragmented memory segment of

custom size. The test performs the following steps:

Input: Physically contiguous 4GB segment of memory
Output: For each addressing bit b, get the timing measure of the

second access, when accessing consecutively a random
address Av1 and the same address with the b bit inverted.

foreach virtual addressAv1 sequentially taken with a step of 4KB do
foreach physical address bit b do

Get physical address Ap1 relative to Av1

Flip bth bit in Ap1 and get Ap2

Get virtual address Av2 relative to Ap2

Read sequentially Av1 and Av2

end
end

Algorithm 1: Bit-Diff

Av2 access times correspond to different relative physical locations

for the twoaddresses. The following tests areperformedwithN_SAMPLES =

100.

The function get_bounded_random_addr picks a safe address inside

themappedspace, that is anaddresswhich, even if incrementedby 2bitIndex

or decremented by 2bitIndex will still be in the mapped space.

In figure 4.1 we can see theAv2 times as the changed bit varies, for the

Sandy Bridge architecture.

4.2 Reliable timingmeasurements

Measuring uncached accesses in a reliable way is not trivial on Intel plat-

forms because Intel CPUs perform out-of-order execution [27]. Further-

more the timer functions may cause access to RAM and thus interpose

memory accesses between our twomemory accesses.

A solution to both problems is to use the rdtscp instruction, which

yields the value of the Time Stamp Counter [28] and being a serializing in-

struction, it cannot be reordered.

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 31

However, IntelCPUsolder thanHaswell, a similar result canbeachieved

by combining rdtsc non-serializing timerwith the cpuid instruction [27].

This instruction fills the CPU registers with information about the pro-

cessor and, as a side-effect, forces the serialization of previous instruc-

tions; consequently, no instructioncanbereorderedpast acpuid instruc-

tion and before the execution, the write buffers are emptied.

The following is a reliable and accurate latency measurement code:

sched_yield () ;

* f ;
asm volat i le (” c l f lush␣(%0)” : : ” r ” (f) : ”memory”) ;

asm volat i le (” c l f lush␣(%0)” : : ” r ” (s) : ”memory”) ;

asm volat i le (”mfence” : : : ”memory”) ;

uint64_t s tar t = rdtsc () ;

* f ;

*s ;
uint64_t end = rdtsc2 () ;

sched_yield () ;

return end − star t ;

If not otherwise specified, all the following tests and algorithms will

adopt this latency measuring procedure.

4.3 Mapping functions addressing fields

All the DDRmemory controllers have a characteristic addressing function,

which maps physical addresses to a precise geometrical position inside

a DRAM device. Every addressing function has as image several groups

of bits, each one addressing a specific geometrical dimension of all the

DRAMmodules. Wecall thesegroupofbitsaddressing groupsandweassign

for each of them a fixed nomenclature:

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 32

• K independent channels of memory

• L ranks per channel

• B banks per rank

• R rows per bank

• C columns per row

• V bytes per column

For convenience, the last two can be replaced by:

• N cachelines per row

• Z bytes per cacheline

WhereN can be computed asN = C·V
Z .

The size of each addressing group can be read on the datasheet of the

DIMM modules or the datasheet of the storage chip on the surface of the

module or even in the Serial Presence Detect data, which is a serial storage

chipon thesurfaceof eachmodule, used forautomatic configuration [29].

Thedimensions retrieved from thedatasheet should satisfy the following

condition, for eachmachine under test:

• Total installed memory size isK · L ·B ·R · C · V

• AlternativelyK · L ·B ·R ·N · Z

For every uppercase parameter, the lowercase letter denotes the ex-

ponent of the correspondingpowerof two,which represents the required

addressing bits.

Summingupwhat is expressed inDavidWang’s PhD thesis [4], in table

4.1 we see some examples of mapping functions.

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 33

Table 4.1: Most common mapping functions as shown in David Wang’s
PhD thesis [4]

Description Function

Trivial memory mapping is k:l:b:r:c:v, or equivalently k:l :b:r:n:z

Baseline memory mapping for open-row policy r: l :b:n:k:z

Baseline memory mapping for closed-row policy r:n:l :b:k:z

Extensible memory mapping for open-row policy k:l :r:b:n:z

Extensible memory mapping for open-row policy k:l :r:n:b:z

Bankaddressaliasing (seesection5.3.5, “BankAddressAliasing (stride

collision)” of David Wang’s thesis [4]) is a phenomenon where what the

process sees as interleaved accesses over two vectors, maps into access

on the same bank and different rows. This causes the target rows to be

opened and closed for everymemory read. This negative effect canbe al-

leviated by XORing the row number over the rank and bank number. This

way consecutive DRAM rows become mapped to different banks, so that

interleaved accesses to two arrays will never end up in the same bank.

In the following subsections we will provide the geometrical charac-

teristics of each platform under test, together with the results of the Bit-

Diff test.

4.3.1 Intel Sandy Bridgemicroarchitecture mapping

We first apply our Bit-Diff test on our Intel Sandy Bridge test machine;

thismachine haswell documentedmapping function, which has already

been confirmed by our tests.

Aswe can see from the graph in figure 4.1, the first 7 bits have the low-

est latency, this is exactly what we expected since reading two addresses

in the same cacheline will result in no row being opened or closed. All

thesekindsof reads aredirectly performedon the rowbuffersand thusare

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 34

Figure 4.1: Sandy Bridge Bit-Diff Test Result

very fast. Conversely, bits from the 23rd on are always slow because they

always cause one row to be closed and another to be opened. Further-

more, bits 14, 15 and 16 have the same latency profile of bits 18, 19, 20.

Therefore we can confirm that those bits are XORed together, as shown

in Mark Searbon’s work [19] and in the DRAMA paper [20].

Every module has a size of 4GB, 2 ranks, 8 banks.

Banks ·mboxRows ·mboxColumn ·mboxBits : 8 · 15 · 10 · 64

Table 4.2: Mapping parameters characterization for Sandy Bridge archi-
tecture

Parameter Single Channel Dual Channel

k 0 1

l 1 1

b 3 3

r 15 15

n 7 7

z 6 6

Total size 32 33

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 35

Parameter Single Channel Dual Channel

Mapping r: l :b:n:k:z r: l :b:n:k:z

The mapping found by Mark Searborn [19] is r: l :b:n:k:z, where the

least significant 3 row bits are XORed over b.

In the performed test, the variousmapping regions have different val-

ues and we clearly see that the channel selection bit (denoted as k, in the

sixth position) disappearswhenwe perform the test with a single channel

memory setup.

To sum up bit fields characteristics:

• z and n bits have high variance and high value

• k, b and l bit have low variance and low value

• r values have low variance andmixed value

4.3.2 Intel Ivy Bridgemicroarchitecture mapping

As a first step to obtain the unknown memory mapping function for the

Intel Ivy Bridge microarchitecture, we apply the Bit-Diff test to our Ivy

Bridge machine, the result can be seen in figure 4.2. Here the observa-

tion about the cacheline bits does not hold anymore, probably due to a

noisy sampling of the data. But still we can confirm that the row address-

ing bits are the most significant bits. But since we only see 10 of those

15 row addressing bits, 5 of them are XORed with other addressing bits,

which bring their latency down. This happens because if we consider a

row addressing bit which is XORed with a bank addressing bit, changing

the row bit will also change the bank, thus violating the SBDR condition

and causing low latencies.

Every module has a size of 4GB, 2 ranks, 8 banks.

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 36

Figure 4.2: Ivy Bridge Bit-Diff Test in Dual Channel configuration

Banks ·mboxRows ·mboxColumn ·mboxBits : 8 · 15 · 10 · 64

Table 4.3: Mapping parameters characterization for Ivy Bridge architec-
ture

Parameter Single Channel Dual Channel Single Ch 2x Dual Ch 2x

k 0 1 0 1

l 1 1 2 2

b 3 3 3 3

r 15 15 15 15

n 7 7 7 7

z 6 6 6 6

Total size 32 33 33 34

Mapping r:b(1): l :b(2):n:k:z r :?:?:?:?: z r :?:?:?:?: z r :?:?:?:?: z

4.3.3 Intel Skylakemicroarchitecture mapping

Here in figure 4.3 we see the application of our Bit-Diff test to our In-

tel Skylake test machine. Here we have a setting very similar to the Ivy

Bridge one, plus we see two bits (21, 22) which have a latency similar to

row selection bits bit not so high. These bits, could be related with the

Bank Groups addressing, which is necessary on DDR4modules [30].

Every module has 8GB size, 1 rank, 2 bank groups, 8 banks.

Rows ·mboxColumns : 16 · 10

Our Skylake test machine uses DDR4 DRAM modules, these modules, un-

like previous DDR3 ones, employ a new technology called Bank Grouping

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 37

Figure 4.3: Skylake Bit-Diff Test in Dual Channel configuration

[30]. Consequently in every module we have 4 groups of 4 banks each.

Table 4.4: Mapping parameters characterization for Skylake architec-
ture

Parameter Single Channel Dual Channel Single Ch 2x Dual Ch 2x

k 0 1 0 1

l 0 0 1 1

b 4 4 4 4

r 16 16 16 16

n 7 7 7 7

z 6 6 6 6

Total size 33 34 34 35

Mapping ?:?:?:?:?: z ?:?:?:?:?: z ?:?:?:?:?: z ?:?:?:?:?: z

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 38

64

48

16

32

0
0 16 32

48

64
100

125

150

175
P

ag
e

2

Page 1

T
im

e
pe

r r
ea

d
(m

s)

Figure 4.4: 2D Memory Latency Heatmap on a LG Nexus 5. Graph re-
built from Van Der Veen “Drammer: Deterministic Rowhammer attacks
onmobile platforms” [2].

4.4 Page Heatmap test

The Drammer [2] paper describes an interesting technique for finding

the row length, term for which they identify the number of consecutive

4K pages which are needed to go back into the same bank, on the next or

previous row.

It suggests to build bidimensional heatmap with the access times of a

group of sequential pages, with increasing offsets from a base address.

In their results some dark diagonal lines are clearly visible, denoting

a fixed row length as visible in figure 4.4.

The results for the three architecturesunder examination canbe seen

in figure 4.7. As we can see, Ivy Bridge and Skylake heatmaps are sym-

metricalwith respect to their antidiagonal, thuswecanconfirmthatmap-

ping functions are deterministic, and the function that determines the

latency of a couple of addresses is symmetric. In neither of the three

heatmaps we can identify the row length since there are no secondary

antidiagonals at fixed offsets.

CHAPTER 4. CHARACTERIZING PHYSICAL-TO-GEOMETRICAL MAPPINGS 39

Figure 4.5: Sandy Bridge Heatmap

Figure 4.6: Ivy Bridge Heatmap

Figure 4.7: Skylake Heatmap

Chapter 5

Systematically deriving

geometrical mapping

Since themethods shown in previous literature [20] for finding themap-

ping functions have proven to be inaccurate and fragile, we started from

their work to build a more reliable and resilient algorithm, to be used as

a basis for the development of new and effective software countermea-

sures.

In particular, we were unable to obtain any bit-flip on our Skylake test

platformusing themapping functions provided in theDRAMA [20] paper.

Therefore, as a further step, it is necessary to build a reliable method for

finding mapping functions to be used in building attacks and counter-

measures using the Rowhammer technique.

We start by obtaining the exact geometrical characteristics of every

DRAM chip involved: row size, bank size rank number and bank groups.

We can obtain this information by looking into the technical datasheets

of the DRAM chips used in the test machines.

40

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 41

5.1 Scan thememoryandverifygeometrical char-

acteristics

As a second step, we have to fingerprint the installedmemory to retrieve

andconfirmsomeof its geometrical characteristics. Memory latency (ac-

cess time) is influenced mainly by the location of previous accesses. In

our study we consider only uncached accesses, and we obtain them by

flushing the caches via the CLFLUSH instruction.

We try to allocate via huge pages the largest amount of memory pos-

sible, then we perform couples of memory accesses, measuring only the

second access. The first address stays the same (first page of the entire

allocated block), while the second ranges over all the allocated memory,

with a span of 1 virtual page (4096B).

Thenwe collect the uncached accesses latency histogramof eachma-

chine under test andwe try to visually separate high-latency pairs to low-

latency pairs. The number of high-latency pairs should be in the same

magnitude order of the number of SBDR derived from the geometrical

characteristics. The theoretical number of SBDR pages in this setup is

given by the formula:

|SDBR| = (R− 1) · V · C
page size

Every uppercase letter represents the number of elements counted

by the lowercase letter bits.

5.2 Deriving row addressing bits

The number of row addressing bits is described in the datasheets of the

DRAM chips, we can find those bits in the set of all the bits that change

when comparing physical addresses of SBDR couples.

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 42

Wecando sobycomputing theor-collapseof theXORingof eachphys-

ical address couple for each bin in the histogram. All the bits involved

with addressing of banks should be set to 0 in each bin containing only

SBDR pairs.

5.3 Bins clustering

In order to capture all the different setswehave to randomly sample both

the first and the second address.

We have collected all the bins of the latency histogram, taking partic-

ular care in using a reliable measuring primitive, such as the one shown

in the previous chapter.

In our setup we implemented themeasuring function as a loop which

captures three access times to the same pair of addresses and yields the

result only when the three accesses are reasonably similar. In our case

weconsider acceptable sets of threemeasurementswhichare equal until

the 4th least significant bit.

We have to determine a latency threshold for SBDR pairs. First we

group up our bins into clusters i.e. contiguous sequences of non-empty

bins. Thenwefilter the clusters by keeping only the oneswith a binwidth

greater than an adjustable threshold.

Finally we can then estimate the approximate number of SBDR pairs

we should have found in our random sampling. For a random first ad-

dress, the number of second addresses which will end up in a SBDR pair

is fixed and depends only on the memory geometry. This probability,

that we name SBDRratio, is defined as follows:

SBDR ratio =
#SBDR bytes
mem size =

N · Z · (R− 1)

N · Z ·R ·B · L ·K
≈ 1

banks

Oncewehavepartitioned the sets into clusters andobtained thenum-

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 43

ber of SBDR pairs, we start from the highest latencies and begin adding

up clusters until we reach the required number of SBDR pairs.

With this technique we have obtained a coarse subdivision into SBDR

and non-SBDR bins.

5.4 Splitting bins into sets

Our SBDR cluster will contain pairs fromevery bank in the installedDRAM

modules, but we can partition those addresses into sets corresponding

to different banks. If we take two couples of SBDR addresses, they may or

maynot be in the same bank. If they are, their cross-latencywill be higher

than the SBDR threshold, otherwise it will be lower.

We propose a new algorithm for partitioning the SBDR pairs into sets

(algorithm 2).

5.5 Identifying the sets

In the previous steps wewere able to discriminate between slow and fast

access times. Using this difference we split our bins in sets. Addresses

belonging to the same set should always yield slow access times, when

accessed consecutively.

Someof the sets found in thiswayshouldcontainmostly addresspairs

satisfying theSBDRcondition. Once these setshavebeen isolated,wecan

leverage this information to obtain the mapping functions which best fit

those

5.6 Bruteforcing functions

Sincewe cannot be sure that our data is free of outliers, we adopt a rating

approach instead of an exclusion one. We test all the possible functions

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 44

Input: Histogram bins which have been classified as SBDR
Output: Subdivision of SBDR bins into high-latency sets
foreach bin in sbdr_bins do

foreach pair in bin do
found_set = false
Test the pair against the members of all the new sets
foreach set in sets do
foreach s_pair in set do

If it achieves high-latency, put the pair in that set
if measure(pair.first, s_pair.first) > threshold or
measure(pair.first, s_pair.second) > threshold or
measure(pair.second, s_pair.first) > threshold or
measure(pair.second, s_pair.second) > threshold then

found_set = true;
set.insert(bin)
break

end
end
if found_set then

break
end

end
If no set exists or no set achieves high latency,
create a new one
if not found_set then

sets.insert(get_new_set())
sets.back().insert(bin)

end
end

end
Algorithm 2: SBDR Sets Subdivision

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 45

on all the sets andwe assign thema score according to howwell they per-

form on each set. At the end of the process we select only the best func-

tions and perform a deduplication step to remove functions which are

the composition of others. The whole procedure description follows (al-

gorithm3). The algorithmhas to be executed separately for the twokinds

of sets. We represent efficiently each function as a bitmask, where each

bit is set if the corresponding input is to be XORed, or not set if otherwise.

In this way we can easily enumerate all the functions by counting from 0

to 2a where a are the available addressing bits. This allows us to com-

pute the result of the application of each function in two instructions: a

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 46

popcount and amodulo (%).
Input: Sets of physical addresses which produce high access

times

Output: Linear functions which perform best on all sets

foreach set in sets do

for counter in range(0, last_function) do

performance = 0;

mask = counter≪ sizebit;

foreach pair in set.pairs do
#We efficiently compute the result of each function

applied to each address by counting the parity of ones

of the AND of function mask and address

first_result = popcount(pair.first &mask) % 2;

second_result = popcount(pair.second &mask) % 2;

If the two parity values are the same, the function

is correctly classifying the current pair of addresses

if first_result == second_result then

performance+= 1;

end

setranking.append({mask, performance});

end

end

points = 101;

Convert fitness to points to be independent from set size

for top 100 functions in setranking do
Lower the points only when fitness gets lower

if function.fitness < savedfitness then

points−= 1;

savedfitness = function.fitness;

end

globalranking.append({mask, points});

end

end

return globalranking;
Algorithm 3: RankFunctions

CHAPTER 5. SYSTEMATICALLY DERIVING GEOMETRICAL MAPPING 47

5.7 Functions Deduplication

Since our test highlights constant bits e.g. bank selection, bank group se-

lection and channel selection bits, we cannot distinguish between func-

tions and their compositions. So we employ a simple greedy procedure

(algorithm 4) to select an equivalent smallest subset of all the functions

returnedby thebruteforcingalgorithm. Weperformthis step towrite our

functions in a more compact way and to compare our results with other

papers such as DRAMA [20].
Input: Top scoring mapping functions

Output: One of the minimal equivalent sets of functions

Sort functions by Hamming weight

sort(top_functions, hamming_compare);

Compute all the bits set by at least one function

or_collapse = fold(top_functions, binary_or);

sel_mask = 0;

sel_popcount = 0;

foreach function in top_functions do

new_mask = sel_mask | function.mask;

new_popcount = popcount(new_mask);

If adding this function covers onemore bit, add it

if new_popcount > sel_popcount then

sel_mask = new_mask;

sel_popcount = new_popcount;

sel_functions.append(function);

end

end

return sel_functions;
Algorithm 4: Functions Deduplication

Chapter 6

Experimental validation

In this chapter we’ll show the results of the application of our detection

method, to our test machines.

6.1 Intel Sandy Bridge Geometrical Character-

istics

Our method started by retrieving the geometrical characteristics of the

DRAM chips involved. OurSkylakemachinehas twoKingstonKHX2133C14/8G

DDR4 modules installed. Those modules use Micron DRAM chips inter-

nally, whose datasheet is available online [3].

Secondly, we verified the obtained geometrical characteristics by try-

ing to count the SBDR addresses.

We first performed ourmeasurements on thewell-known Intel Sandy

Bridge microarchitecture, the result is visible is figure 6.1:

Our sandybridge machine has two Hynix HMT325S6CFR8C-H9mod-

ules, in dual-channel setup. The modules have the following addressing

characteristics:

• 1 channel bits (k)

48

CHAPTER 6. EXPERIMENTAL VALIDATION 49

Figure 6.1: Sandy Bridge Latency Histogram for Uncached Accesses

• 0 rank bits (l)

• 3 bank bits (b)

• 15 row bits (r)

• 10 column bits (c)

• 3 byte bits (hidden, span of each burst) (v)

Its row size is thus 8192B, so each row fits two 4096B virtual pages.

In our setup, |SBDR| = 65534. So we can highlight on the graph the

probable threshold of SBDR latencies. The pages highlighted in red in

figure 6.2 sumup to 62809 pages, which is pretty close to the actual num-

ber of pages. In addition to this, our test has been run in just 3.25GB of

the 4GB of DRAM.

6.2 Intel Skylake Geometrical Characteristics

Ourskylakemachine is equippedwith twoKingstonKHX2133C14/8Gmod-

ules, in a dual channel setup, each one with 8 DRAM chips. Since the bus

width is 64 bits, each chip is X8. The technical datasheet [3] reports the

following measures:

CHAPTER 6. EXPERIMENTAL VALIDATION 50

Figure 6.2: Sandybridge Latency Histogram with SBDR Latencies High-
lighted in Red

• single rank

• 16 internal banks

• 4 bank groups

• 4 banks per bank group

• 16 bit row addressing

• 10 bit column addressing

• 128x64 byte selection in row

• 1KB page size

Which can also be seen in the functional diagram of the DRAM mod-

ules (figure 6.3).

An addressing scheme will be composed of the following bits:

• 1 bit channel selection (k)

• 0 bit rank in channel (r)

• 2 bit bank group in rank (g)

• 2 bit bank in bank group (b)

• 16 bit row in bank (r)

• 10 bit column in row (c)

• 3 bit byte in column (hidden when querying the DRAM) (v)

CHAPTER 6. EXPERIMENTAL VALIDATION 51

Figure 6.3: Functional Diagram of Kingston KHX2133C14/8G Modules.
As shown in the chip datasheet [3].

So a total of 31 bits will identify a sequence of 8 Bytes inside the DRAM

modules. Since DDR memory hides latency by transferring bursts of 8

Bytes at a time, every memory access will yield 64 bits. The 3 lsb will be

used to identify the correct byte, as a result, these 3 bits are never sent to

the memory modules.

In short, each row is 8192 Bytes long, each row contains 2 pages. Each

bank contains 65536 rows. In our setup the theoretical number of SDBR

pages is 131070.

Weallocate the largest amountofmemorypossiblebyusinghugepages,

in our setting this corresponds to 15GB over 16GB of total memory. On

that allocatedmemoryweperformcouplesofuncachedmemoryaccesses.

Figure 6.4 represents the latency histogram on skylake, where the can-

didate SBDR latencies are highlighted in red.

6.3 Deriving Row Addressing Bits on Intel Sky-

lake

As foundby thedatasheets thereare16 row addressingbits. Thereforewe

compute the or-collapse of the XORing of each physical address couple

CHAPTER 6. EXPERIMENTAL VALIDATION 52

Figure6.4: SkylakeUncachedAccessesLatencyHistogramwith SBDRLa-
tencies Highlighted in Red

for each bin in the histogram, to find bits that change in SBDR couples.

In the sandy bridge test we obtained all the bits to 1 except for the first

12 bytes which are the exact span of a virtual page.

Whatwewouldexpect is thefirst 14bits of theaddress, toneverchange

in SBDR address couples, but since the row identification bits are XORed

over to bank group, bank and channel selection bits, we see every bit to 1

except from the first 12. The first 12 bits are always set to 0 because we

test with granularity of a virtual page (212 = 4096).

6.4 Noise reduction

When measuring the latency histogram, we found an interesting form

of noise. As depicted in figure 6.5, it was displayed in the form of over-

lapped triangles, offixedwidthandfixedoffset, with the sameheightwith

respect to the number of accesses.

This form of noise is probably produced by the interference of the

DRAMRowRefresh refresh,which is theonlyperiodicevent inside theDRAM.

To eliminate it, we perform every measure three times and continue

CHAPTER 6. EXPERIMENTAL VALIDATION 53

Figure 6.5: Memory Refresh Noise, Detail taken from the Uncached Ac-
cesses Latency Histogram

sampling until the three samples are identical to the fourth bit.

6.5 Bins Clustering on Intel Skylake

The result of the application of our bins clustering algorithm, applied on

our Skylake setup can be seen in Figure 6.6. In that filtered histogram

we can see a clear subdivision between low-latency (colored in blue) and

high-latency accesses (colored in red), with no outliers in between. This

cleansubdivisionwill greatly improve theoutputof thesubsequent steps.

6.6 Set Partitioning on Intel Skylake

The result of the application of our SBDR sets subdivision (algorithm 2)

is shown in figure 6.7.

Our skylake test platform has 32 total banks, 16 for eachmodule, sub-

divided in 4 bank groups of 4 banks each. Running the tests on our setup

yields 16 big sets, with ~1000 pairs each and 32 small sets, with ~250

pairs each.

CHAPTER 6. EXPERIMENTAL VALIDATION 54

Figure 6.6: Skylake Uncached Accesses Latency Histogram, Filtered,
with Highlighted Clusters Partitioning

Figure 6.7: Skylake High-Latency Sets Partitioning

CHAPTER 6. EXPERIMENTAL VALIDATION 55

Figure 6.8: Skylake Sets Features Analysis on High-Latency Sets

We are probably seeing not only SBDR pairs (the 32 sets containing

less addresses) but also bank-conflict pairs, which are 3-times as many

as the SBDR pairs. This because if we consider a single bank group, com-

posed by 4 banks, and we pick an address inside the first bank, all the ad-

dress in the other rows of that bank will satisfy the SBDR condition, while

all the address in the other 3 banks (∼ 3 ·SBDR pairs) will satisfy the bank-

conflict condition.

As we can observe from 6.7, in our Skylake testing environment, after

sampling one million address pairs, and splitting the high-latency bins,

we have 48 total sets, 32 with ~200 address pairs each and 16 with ~1000

address pairs each.

To further refine our subdivision we tested every address of each set

against all the others of the same set, removing the addresses which lied

far higher or lower than the mean latency of the set. We call these ad-

dresses outlier pairs.

CHAPTER 6. EXPERIMENTAL VALIDATION 56

6.7 Set Partitioning Interpretation

To give a reasonable meaning to the two kinds of sets we sampled and

plotted two features, for each set:

• the number of outliers removed from the set

• the mean access latency for the members of each set

We can see those values plotted in figure 6.8. The number of outliers

is clearly directly proportional to the size of the set, so we can assume

that this feature is the consequence of a uniform noise applied on the

latencies of all address pairs. The latency, on the contrary is inversely

proportional to the pair count of each set. This makes large sets slightly

faster than small sets. We recall that the set partitioning on Sandy Bridge

(figure 6.10), apart from the added noise, showed only one kind of set.

This let us propose a possible interpretation for the origin of the two

sets. As it is known from previous literature [20], the formation of this

kind of slow-latency set is caused by the so-called Same Bank Different

Row conflicts. Furthermore, the only architectural change between DDR3

memories (used by Sandy Bridge) and DDR4memories (used by Skylake)

is the introduction of Bank Groups [30].

Bank Groups introduce and interesting behaviour to the memory ar-

chitecture, called bank conflict [3]; when two consecutive memory ac-

cesses fall into the same bank group, the second access is slowed down

considerably (6 clock cycles instead of 4 clock cycles on our Kingston

modules as ACTIVATE-to-ACTIVATE time).

We can consequently assume that one of the two kinds of set is related

to the SBDR conflict, while the other is due to bank group conflicts.

To assign the right kind of conflict to the right kind of set we can lever-

age our knowledge on the internal structure of ourDRAM chips. We know

that our banks groups are composedby4 banks, then for eachfirst address

CHAPTER 6. EXPERIMENTAL VALIDATION 57

Figure 6.9: Sandy Bridge Filtered Uncached Accesses Histogram

of a consecutive two-address sequence, there will beN addresses which

will cause a SBDR-conflict i.e. the second address will fall into the same

bank as the first, and 3N addresses which will cause a bank group conflict

i.e. the secondaddresswill fall into the same bankgroupas thefirst access,

but not in the same bank.

Sowe expect one of the sets generated by these particular conflicts, to

be three times bigger than the other. Accordingly we can assume that the

large sets we found are related to banks conflicts, while the small sets are

related to SBDR conflicts.

6.8 Missing Sandy Bridge Comparison

When running the same tests on SandyBridge architecture, we see a thin

to non-existent subdivision in clusters (figure 6.9). This weak subdivi-

sion leads to a high number of outlier pairs inside the bins classified as

SBDR.

Every outlier pair, since it is a combination of two address which do

not satisfy the SBDR condition, will never produce a SBDR latency, regard-

less of the set used for the measure. Thereupon every outlier pair will

CHAPTER 6. EXPERIMENTAL VALIDATION 58

Figure 6.10: Sandy Bridge High-Latency Sets Partitioning

produce a new set, that will likely remain empty. Since bins are scanned

from high latencies to low latencies, we can confirm this hypothesis by

noticing that all the empty sets are right-aligned in the sets partitioning

(figure 6.10), it follows that they are generated by low latency pairs, al-

most certainly outliers pairs that weremisclassified in our noisy latency

subdivision.

6.9 Bruteforcing Application on Intel Skylake

Wenow show the results of the application of the bruteforcing (algorithm

3) and deduplication (algorithm 4) procedures.

A simple way to represent a set of mapping functions is to put in each

row the indexes of the bits XORed together to form each function. The

following is the mapping function reported in the DRAMA [20] paper, to

better understant the notation, the reader can refer to a graphical repre-

sentation of the same function in figure 6.11.

19 18 13 12 9 8

22 18

CHAPTER 6. EXPERIMENTAL VALIDATION 59

Figure 6.11: Drama Paper Function Graphical Representation

21 17

20 16

19 15

14 7

The results of our test are expressed with a slightly different nota-

tion, on the left part of each arrow we have themapping functions, while

on the right part we have the fitness score of each function. Our fitness

score representhowwell that functionmaps toourhigh-latencysets. The

function from the DRAMA paper has the correct addressing fields asso-

ciated with each function; they were able to correctly name the different

functionsbecause theydirectlyprobed theSO-DIMMmodules connection

pins with an oscilloscope.

As a result of our whole test, we obtained the following functions for

the small sets (figure 6.12):

22 15 13 12 9 8 −> 3232

19 15 −> 3232

21 17 −> 3232

22 18 −> 3232

20 16 −> 3232

14 7 −> 3232

On the contrary, our mapping functions have no name and may be

CHAPTER 6. EXPERIMENTAL VALIDATION 60

Figure 6.12: Skylake Small Sets Function Graphical Representation

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 622... ...

?

?

?

?

?

Figure 6.13: Skylake Large Sets Function Graphical Representation

the result of the composition of other functions. We picked one of the

minimal sets of functions which cover all the addressing bits.

Our small sets functions (figure 6.12) are identical to what the DRAMA

[20] researchers found with their physical probing setup. The channel

function is different because we chose a combination of two mapping

functions, e.g. 8 9 12 13 18 19 ◦ 18 22= 8 9 12 13 19 22.

We also ran our test on the large sets found during the set partitioning

and the results are as follows (figure 6.13):

19 15 13 12 9 8 −> 1616

14 7 −> 1616

18 15 −> 1616

19 16 −> 1616

20 17 −> 1616

CHAPTER 6. EXPERIMENTAL VALIDATION 61

The small sets are ascribable to SBDR pairs, therefore among the con-

stant functions listed will be:

• channel

• bank group

• bank address.

The largesets areascribable toBankConflictPairs, soamong their func-

tions the following components will be constant:

• channel

• bank group.

The fact that the large set functions (figure 6.13) are not a strict subset

of the small set functions is rather baffling.

There is probablymore to be investigated in themeaning of the func-

tions derived from what we named “large sets”. This is probably caused

by the internal bit permutation performed by the DRAM modules. A per-

mutation probably similar to what Matthias Jung found in his paper [21].

However since knowing the SBDR mapping is enough for our purposes,

we conclude here our detection algorithm.

Chapter 7

Proposed countermeasures

With our detailed knowledge on the addressing mapping function, we

are now able to introduce two countermeasures to the Rowhammer at-

tack. They aim to have the lowest possible impact in terms of both per-

formance, memory usage, as well as power consumption.

Furthermore we propose both a software and a hardware coutermea-

sure:

The software one is effective in the short term, with low deploying

costs and also effective on already existent systems.

Thehardwareone is equally important for its lowerperformancecosts,

but also for thedeployment of newsystemswhich are already resistant to

all the attacks which depend on the knowledge of the memory mapping

function such as Rowhammer.

7.1 Air-Gap

Themain ideaofour softwarecountermeasure, namedAir-Gap, is tokeep

at least eight empty rows between the physically allocatedmemory of dif-

ferent processes.

62

CHAPTER 7. PROPOSED COUNTERMEASURES 63

We will consider Linux as an example kernel for applying our coun-

termeasure, but ourmethod has general value and can be applied also to

other kernels and Operating Systems.

In Linux, memory is allocated with a minimum granularity of virtual

pages of 4096B each (in x86 and ARM platforms). Each virtual page is

physically contiguouswith respect to physical addresses, hence address-

ing a virtual page uses bits from the twelfth on. As we can see from the

Skylake mapping function (figure 6.11), bits up to the twelfth are XORed

only with channel and bank group selection bits, the same happens even

in the other mapping functions obtained by the DRAMA [20] paper. This

happens for performance reasons: if no row selection bit is XORed on

the first twelve bits, a page is stored in at most one row per bank. If this

were not true, then accessing a single page would result in a row closing

and row opening inside a single bank, causing a massive latency issue.

The same happens with respect to bank addressing, at least on systems

where bank groups are employed, such as our Skylake platform. Bank ad-

dressing bits are never XORed into page bits, so that one page, resides at

most in one bank inside each bank group. This way we avoid bank group

conflicts by never reading sequentially from two banks in the same bank

group. Consequently a virtual page is distributed only through channels

and bank groups (figure 7.1), as well as ranks in the case of the Samsung

Exynos 7420 - LPDDR4 function, described by DRAMA [20]. This is a mi-

nor performance issue because only a small part of a DRAM’s infrastruc-

tures are shared between ranks.

According to Yoongu Kim’s paper [1], the maximum reach of distur-

bance errors generated by a row is eight rows as it can be seen in figure

7.2.

We introduce a policy to avoid interference between userland pro-

cesses andbetween userspace and kernelspace. The policy is that “different

CHAPTER 7. PROPOSED COUNTERMEASURES 64

bank groups

channel 1

channel 0 bank groups

Figure 7.1: Page Distribution Across DRAM Structure

≤-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8≤
0

100
101
102
103
104
105
106

A1240
23 B1146

11 C1223
19

Row Address Difference

C
ou

nt

Figure 7.2: Reach of Disturbance Errors Generated by a Single Row.
Graph rebuilt from Kim, Yoongu et al. “Flipping Bits in MemoryWithout
Accessing Them: An Experimental Study of DRAM Disturbance Errors”
[1].

CHAPTER 7. PROPOSED COUNTERMEASURES 65

entities e.g. processes or kernel structures, may reside at no less than

eight rows of distance from one another” as represented in figure 7.3.

Our Air-Gap countermeasure works by enforcing this policy inside the

memory allocator. For each page we can compute the row number, for

example on Skylake architecture by picking the most significant 16 bits,

andassigneachprocess to row numberswhosedifference is at least eight.

This row check has to be performend only if the outcome of the bank,

rank and bank group selection is the same on both pages, if those num-

bers diverge, the two pages are going to reside in different banks and thus

there would be no Rowhammer-related concerns. Checking the bank and

bank group numbers is entirely optional and aims at reducing the mem-

ory footprint of our countermeasure, but not applying this optimization

does not weaken the countermeasure in itself. To check those address-

ing fields we need the knowledge of themapping function, Even so, with-

out this optimization Air-Gap can be applied even to machines with un-

knownmapping functions.

7.1.1 Performance cost

Themost considerable cost of ourcountermeasure ismet in termsof con-

sumed space. The wasted space grows with memory fragmentation; for

each new process we have to consider 8 rows (~65KB per bank) of wasted

space. This is a relatively low cost but scales linearly with the number

of processes. If we consider a typical usage in a Linux environment we

will have around 100 entities to be isolated; in that environment our Air-

Gap countermeasure would consume ~200MB of RAM in a 32 bank setup,

which is a memory footprint similar to the one of most Linux daemons

i.e. colord. Since we trust our own kernel, we can avoid to isolate kernel

structures from each other, thus saving some space for higly fragmented

kernel data structures such as PTEs.

CHAPTER 7. PROPOSED COUNTERMEASURES 66

bank

8+ rows

8+ rows

process 1

process 0

page table entry

...

ro
w

s

Figure 7.3: Air-Gap Policy Representation

Althoughmemory fragmentationmight increase our space consump-

tion cost exponentially, several different solutionshavebeenproposed in

order to counteract it [31] andmany of themare alreadymerged inmain-

line Linux kernel. We leave a deeper analysis onmemory fragmentation

to future research.

7.1.2 Comparison with G-CATT

A suitable rival to compare our Air-Gap software countermeasure to, is

Ferdinand Brasser’s G-CATT [23]. This countermeasure acts in a very

similar way to Air-Gap, by partitioning the installed DRAM into security

domains. They form each security domain by splitting each bank in half,

keeping an empty row in between and assigning different entities to dif-

ferent halves of the available banks. A first advantage of Air-Gap over G-

CATT is the thickness of the boundaries between isolated domain; in G-

CATT the boundaries are only one row wide, while our countermeasure

CHAPTER 7. PROPOSED COUNTERMEASURES 67

keeps entities at eight rows of distance or more. Although on our Sandy

Bridge setup we were unable to observe flips at more than 1 row of dis-

tance from the attacking ones (figure 3.3), Yoongu Kim’s paper [1] shows

clearly that disturbance errors may propagate up to the eighth row in

both directions from the attacking rows (figure 7.2). Furthermore, every

DRAM setup has a limited number of banks. In our Skylake setup we have

32 banks for 16GBof installedmemory; ifweapplied theG-CATTcounter-

measure on our machine, we would have at most 64 different domains.

This makes it possible to separate kernel pages from user pages, but

does not allow to isolate every process from the others as Air-Gap does.

On the contrary, our countermeasure on the same setup would add up

only 2MB of space for each process, thus allowing to have even 512 sep-

arate security domains while consuming only 1
16 of installed memory.

Therefore our countermeasure is at the same timemore effective in con-

trasting the Rowhammer phenomenon while having a lower space con-

sumption penalty. The Air-Gap countermeasure is particularly useful in

low-medium size memory setups like smartphones and laptops, where

thenumberofprocesses tobe isolated is in thehundredsand thenumber

of banks is low.

7.2 Row-Mix

Themost important goal of the researchefforts inboth industryandacademia

is to release systemswhicharealreadycompliantwith securitymeasures

able to copewithknownvulnerabilities. Toachieve this goalwithRowham-

mer in the near future, we introduce a hardware countermeasure called

Row-Mix. This countermeasure can be deployed only in collaboration

with DRAM chip manufacturers, but once released, it will secure every

system on which the new modules are installed, regardless of the Oper-

CHAPTER 7. PROPOSED COUNTERMEASURES 68

ating System used.

Effective implementations of the Double Rowhammer attack are possi-

ble only by knowing the exact mapping function employed on the target

machine. Memory mapping functions are the result of the composition

of several functions:

• Kernel virtual addresses to physical addressesmapping

• CPUmemory controller physical addresses to addressing bits

• DRAM modules addressing bits permutation

The kernelmapping can be guessed by leveraging Huge Pages [18], or

by exploiting the known behaviour of the Linux buddy allocator as tested

in the Drammer paper [2]. The memory controller’s mapping depends

only on the installed memory configuration. It has been reverse engi-

neered in the past already, by Mark Seaborn [19] and Peter Pessl [26]. In

this thesiswedescribedextensively ourownmethodology for reverse en-

gineering this component of the global mapping function. The last part

ofmapping is performed inside eachDRAMmodule for performance rea-

sons; Matthias Jung has proposed an interesting technique for revealing

this mapping in unknown memory modules, provided we have physical

access to them and some equipment for having direct access to themod-

ule [21].

As ahardware countermeasurewepropose to shuffle the row address-

ing inside each memory module. Our countermeasure is made of three

parts:

• Apermutation generation logic: that leverages a true randomnumber

generator to obtain a unique permutation every time the module is

initialized.

• A state register, to save the selected permutation

• A combinatorial logic component, which permutes in real time the

addresses as they pass from the Row-address MUX towards the bank

CHAPTER 7. PROPOSED COUNTERMEASURES 69

groups. The structure of the countermeasure is depicted in figure

7.4. During themodule initialization, a randompermutation is gen-

erated and pushed to the state register. Care has to be taken when

sourcing the entropy necessary to generate a random permutation

from a true random number generation, otherwise the permuta-

tions could become predictable. The combinatorial logic may em-

ploy a pipelined scheme if its single-stage critical path is greater

that the one of a typical memory controller.

7.2.1 Performance cost

This countermeasure has two main performance drawbacks: The mod-

ule initialization takes slightly longer to allow the permutation to be gen-

erated and pushed to the state register. Even so, this would probably

cause little to no boot slowdowns because a considerable amount of time

passes from the DRAM modules being powered on and them being ac-

tually used for the first time. A series of checks are usually performed

during that time, such as:

• Intel ME initialization

• Authenticated Code Modules execution

• Intel Boot Guard enforcement

During all these operations the CPU runs in Cache as RAMmode and

this will hide the time required for the permutation components to be

initialized completely. The steps required to boot an Intel Architecture

Platform are described in a white paper by Intel [32].

We have only little runtime cost since our combinatorial logic struc-

turewill haveaslightly longer critical pathwith respect to anunprotected

implementation. If the latency will be particularly high, we could always

redesign our combinatorial part employing a pipelined structure; this

CHAPTER 7. PROPOSED COUNTERMEASURES 70

Row
permutation

combi-
natorial

logic

State
register

Permuation
generation
logic + RNG

Figure 7.4: Row-Mix Countermeasure Functional Scheme

way the throughput is the same of an unprotected DRAM module, only

the latency remains slightly higher. This latency will anyways be par-

tially hidden by the memory controller’s own typical latency.

7.2.2 Security

Since we generate true random permutations of row addressing bits, at

each inizialization, themappingschemebecomesone in r!possiblemap-

pings. This means 16! = 20922789888000 on a 16 bit row addressing setup,

a number far too high to be simply guessed. The Row-Mix countermea-

sure will make precise row addressing a very difficult task to achieve,

with little performance and silicon area consumption costs. The smallest

pieces of information we are required to know about the mapping func-

tion in order to perform a Double Rowhammer attack are the addresses of

three physically adjacent rows inside the same bank. Even if the attacker

resolved all the other two mapping functions i.e. Operating System and

memory controller mappings, picking three consecutive rows would be-

come hard. The attacker could try to pick only the two attacking rows and

scan all the other 2r − 2 rows to find bit flips, admitting that they have

access to a sequence of pages of memory which are spread over all the

available physicalmemory, but provided they had such access, the prob-

CHAPTER 7. PROPOSED COUNTERMEASURES 71

ability of randomly selecting two rows with a distance of one in between

is:

#Rows with a distance of 1
#Combination of two rows =

R− 2(
R
2

) =
65534(
65536

2

) =
65534

2147450880
= 3.05e−5

So it will take on average 1
3.05e−5 = 32769 attempts to find two rows

with distance equal to 1. Since the sufficient number of iterations for the

Rowhammer code loop to trigger the vulnerability is around one million,

and this takes tens of seconds on commodity hardware, it would take lit-

tle less than 4 days of continuous hammering to find a vulnerable couple

of adjacent rows. This optimistic estimate also relies on the assumption

that the attacker is able to allocate memory in a very precise way. If that

assumptionwerenot true, theprobability of picking randomly three con-

secutive rowswould be:

R− 2(
R
3

) =
65534(
65536

3

) =
65534

46910348656640
= 1.39e−9

This means an average of 1
1.39e−9 = 715816960 attempts to succeed. If

we consider just 1 second for each hammering attempt, it will takemore

than22years of hammering to obtain three consecutive rows. Thismakes

it very difficult to mount a successful Rowhammer attack. In addition to

that, the longer the time needed to find the correct rows, the higher the

probability that the attacker is discovered through some the detection

methods as the ones described in Marco Chiappetta’s paper [33].

7.2.3 Comparison with PARA

Kim Yoongu, in his first Rowhammer analysis paper [1], proposed an in-

teresting hardware countermeasure called Probabilitstic Adjacent Row Ac-

tivation. PARA is implemented in the memory controller and involves

refreshing the neighbor rows after each memory access with a non-null

CHAPTER 7. PROPOSED COUNTERMEASURES 72

probability. This is a smart countermeasure with respect to counter-

based ones; it being stateless, the complexity of the implementation is low.

Implementing thiskindof countermeasure in thememorycontrollermeans

that the controller itself needs knowledge on how the row addressing is

performed, although this assumption is highly impractical. Firstly, the

controllermanufacturer would have to ask everymemorymanufacturer

to disclose their row mapping function for each memory module pro-

duced in the past. Secondly, if we had to apply such countermeasure

on DDR3modules, we would have to include the mappings of 10 years of

memory manufacturing, and all this without even considering forward

compatibility. If we had to build a controller for DDR4 instead, we would

have to update our memory controller with new mapping functions as

new memory modules are released in the future. Since manufacturers

only usually provide 2 or 3 years of software updates, this would likely

leave old memory controllers equipped with newer DIMM modules un-

protected. Our countermeasure instead is implemented in the DRAM it-

self, so there is no dependence on the knowledge of the row mapping

since we are performing our countermeasure directly on the row bits. As

a result, our countermeasure will always be functional, even if the pro-

tected module is connected to a newly producedmemory controller.

Chapter 8

Conclusion

In thisworkof thesiswehavepresentedacompleteoverviewof theRowham-

mer phenomenon, starting from its physical causes, focusing on how to

reliably obtain amapping function tomake every attack possible, finish-

ing with the proposal of two novel countermeasures.

Our detection algorithm pushes forward the state of the art in detect-

ing addressmapping functions in unknown system, ourmethod is more

reliable thancurrent softwaremethodandachieves results thatuntil now

were only possible trough physical probing. This will be useful in future

research in the fields of side channel attacks and cache attacks.

The software countermeasure we proposed can be implemented and

applied in already deployed systemd. Our implementation is focused on

the Linux kernel, but the key concepts are general and can be ported eas-

ily to other Kernels and Operating Systems, protecting a great variety of

systems. Weoffer a high level of securitywith less severe drawbackswith

respect to the current best software countermeasures (G-CATT [23]).

Our hardware countermeasure will give manufacturers the ability to

produce memory modules which will be born resistant to this vulnera-

bility, and will be able to secure every system on which they will be in-

73

CHAPTER 8. CONCLUSION 74

stalled. In addition to this, our Row-Mix countermeasure, once imple-

mented, will work regardless of the machine on which the DRAM will be

installed.

But there ismorebehind this technical overview. Rowhammer is a phe-

nomenon of particular interest, differently from other kinds of attacks it

spans many different layers of the target system. It has its roots in the

physical hardware implementation of DRAM memories but its leaves are

as high-level as a javascript webpage code. This is what makes this at-

tack so dangerous and powerful. For example when we design a system

e.g. a browser sandbox we will hardly think about the consequences of

including an assembly instruction such as CLFLUSH to our allowed set.

This is exactly what happened for the Google NaCl sandbox (see Project

Zero’s paper [9]).

This phenomenon represents a very importantmessage for thewhole

engineeringcommunity: it isneverenough to lookonly inside thebound-

aries of ourmodels. Wework every day with complex, multi-layered sys-

tems; these machines mandate us to always keep an all-round vision of

the entire world.

But not onlymenaces lie in the boundaries between disciplines, tech-

nological breakthroughs and innovation are often achieved by contami-

nation andmixture of knowledges.

Finally, a vulnerability likeRowhammerwill becomerelevantmore than

everwith theadventof thenextgenerationofnon-volatilememories (NVMs),

most importantly if these new kinds of memories will be used as per-

manent cache for volatile DRAMs. Some of the current countermeasures

could be defeated in such a setting, for example in counter-based coun-

termeasures, if the charge depletionwill persist across reboots, then just

rebootingmultiple times themachinemight reset the counters andelude

the countermeasure.

Bibliography

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C.Wilkerson, K. Lai,

and O. Mutlu, “Flipping bits in memory without accessing them:

An experimental study of dram disturbance errors,” in Proceeding

of the 41st Annual International Symposium on Computer Architecuture,

ser. ISCA ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 361–372.

[Online]. Available: https://users.ece.cmu.edu/~yoonguk/papers/

kim-isca14.pdf

[2] V. Van Der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,

C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuf-

frida, Drammer: Deterministic Rowhammer attacks on mobile plat-

forms. Association for Computing Machinery (ACM), 10 2016,

vol. 24-28-October-2016, pp. 1675–1689. [Online]. Available:

https://vvdveen.com/publications/drammer.pdf

[3] 8Gb: x4, x8, x16 DDR4 SDRAM, Micron Technology, Inc., 2015, rev.

K 7/17 EN. [Online]. Available: https://www.micron.com/~/media/

documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf

[4] D. T. Wang, “Modern dram memory systems: Performance

analysis and scheduling algorithm,” Ph.D. dissertation, Univer-

sity of Maryland, College Park, MD 20742-7011 (301)314-1328.,

2005. [Online]. Available: https://www.ece.umd.edu/~blj/papers/

thesis-PhD-wang--DRAM.pdf

75

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://vvdveen.com/publications/drammer.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.ece.umd.edu/~blj/papers/thesis-PhD-wang--DRAM.pdf
https://www.ece.umd.edu/~blj/papers/thesis-PhD-wang--DRAM.pdf

BIBLIOGRAPHY 76

[5] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experi-

mental study of data retention behavior in modern dram devices:

Implications for retention time profiling mechanisms,” SIGARCH

Comput. Archit. News, vol. 41, no. 3, pp. 60–71, Jun. 2013. [Online].

Available: http://doi.acm.org/10.1145/2508148.2485928

[6] Wikipedia. (2017) Row hammer — wikipedia, the free encyclope-

dia. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Row_hammer&oldid=802794809

[7] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A re-

mote software-induced fault attack in javascript,” CoRR, vol.

abs/1507.06955, 2015. [Online]. Available: http://arxiv.org/abs/

1507.06955

[8] T. L. Foundation. Page table entries description. [Online].

Available: https://www.kernel.org/doc/gorman/html/understand/

understand006.html

[9] T. D. Mark Seaborn. (2015) Exploiting the dram

rowhammer bug to gain kernel privileges. [On-

line]. Available: https://googleprojectzero.blogspot.it/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html

[10] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and

H. Bos, “Flip feng shui: Hammering a needle in the soft-

ware stack,” in 25th USENIX Security Symposium (USENIX Security

16). Austin, TX: USENIX Association, 2016, pp. 1–18. [Online].

Available: https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/razavi

[11] Apple. (2017) About the security content of mac efi security update

2015-001. [Online]. Available: https://support.apple.com/en-us/

HT204934

http://doi.acm.org/10.1145/2508148.2485928
https://en.wikipedia.org/w/index.php?title=Row_hammer&oldid=802794809
https://en.wikipedia.org/w/index.php?title=Row_hammer&oldid=802794809
http://arxiv.org/abs/1507.06955
http://arxiv.org/abs/1507.06955
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://googleprojectzero.blogspot.it/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.it/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://support.apple.com/en-us/HT204934
https://support.apple.com/en-us/HT204934

BIBLIOGRAPHY 77

[12] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand,

“Leakage current mechanisms and leakage reduction tech-

niques in deep-submicrometer cmos circuits,” Proceed-

ings of the IEEE, vol. 91, no. 2, pp. 305–327, 02

2003. [Online]. Available: https://pdfs.semanticscholar.org/13a1/

32025a76e35280022bff23e6fd0f0f2e9658.pdf

[13] K. Saino, S. Horiba, S. Uchiyama, Y. Takaishi, M. Takenaka,

T. Uchida, Y. Takada, K. Koyama, H. Miyake, and C. Hu, “Impact

of gate-induced drain leakage current on the tail distribution of

dram data retention time,” in International Electron Devices Meeting

2000. Technical Digest. IEDM (Cat. No.00CH37138), 12 2000, pp. 837–

840. [Online]. Available: https://pdfs.semanticscholar.org/8963/

230958477fd760ac060d5d2eb66d310f78c6.pdf

[14] R. Qiao and M. Seaborn, “A new approach for rowhammer attacks,”

in 2016 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), 6 2016, pp. 161–166. [Online]. Available: http:

//www.seclab.cs.stonybrook.edu/seclab/pubs/host16.pdf

[15] LWN. (2012) The android ion memory allocator. [Online]. Available:

https://lwn.net/Articles/480055/

[16] T. L. Foundation. (2016) pagemap, from the userspace perspective.

[Online]. Available: https://www.kernel.org/doc/Documentation/

vm/pagemap.txt

[17] LWN. (2012) Cap_sys_admin: the new root. [Online]. Available:

https://lwn.net/Articles/486306/

[18] T. L. Foundation.Hugetlbpagesupport summary. [Online].Available:

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

https://pdfs.semanticscholar.org/13a1/32025a76e35280022bff23e6fd0f0f2e9658.pdf
https://pdfs.semanticscholar.org/13a1/32025a76e35280022bff23e6fd0f0f2e9658.pdf
https://pdfs.semanticscholar.org/8963/230958477fd760ac060d5d2eb66d310f78c6.pdf
https://pdfs.semanticscholar.org/8963/230958477fd760ac060d5d2eb66d310f78c6.pdf
http://www.seclab.cs.stonybrook.edu/seclab/pubs/host16.pdf
http://www.seclab.cs.stonybrook.edu/seclab/pubs/host16.pdf
https://lwn.net/Articles/480055/
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://lwn.net/Articles/486306/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

BIBLIOGRAPHY 78

[19] M. Seaborn. (2015) How physical addresses map to rows and

banks in dram. [Online]. Available: http://lackingrhoticity.blogspot.

it/2015/05/how-physical-addresses-map-to-rows-and-banks.html

[20] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Man-

gard, “DRAMA: Exploiting DRAM addressing for cross-cpu at-

tacks,” in 25th USENIX Security Symposium (USENIX Security 16).

Austin, TX: USENIX Association, 2016, pp. 565–581. [Online].

Available: https://www.usenix.org/conference/usenixsecurity16/

technical-sessions/presentation/pessl

[21] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn, “Reverse

engineering of drams: Row hammer with crosshair,” in Proceedings

of the Second International Symposium on Memory Systems, ser. MEMSYS

’16. NewYork,NY,USA:ACM,2016, pp. 471–476. [Online].Available:

https://ems.eit.uni-kl.de/fileadmin/ems/pdf/38-final-acm.pdf

[22] M. Seaborn. (2015) Vendor responses to the rowhammer bug.

[Online]. Available: https://github.com/google/Rowhammer-test/

blob/master/docs/vendor_responses.md

[23] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,

“Can’t touch this: Software-only mitigation against rowhammer

attacks targeting kernelmemory,” in 26th USENIX Security Symposium

(USENIX Security 17). Vancouver, BC: USENIX Association, 2017, pp.

117–130. [Online]. Available: https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/brasser

[24] O. Santos. (2015) Mitigations available for the dram row hammer

vulnerability. [Online]. Available: https://blogs.cisco.com/security/

mitigations-available-for-the-dram-row-hammer-vulnerability

http://lackingrhoticity.blogspot.it/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.it/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://ems.eit.uni-kl.de/fileadmin/ems/pdf/38-final-acm.pdf
https://github.com/google/Rowhammer-test/blob/master/docs/vendor_responses.md
https://github.com/google/Rowhammer-test/blob/master/docs/vendor_responses.md
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
https://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability

BIBLIOGRAPHY 79

[25] M. Seaborn. (2017) rowhammer_test_ext: Extended version of

rowhammer_test. [Online]. Available: https://github.com/google/

Rowhammer-test/tree/master/extended_test

[26] P. Pessl, D. Gruss, C. Maurice, and M. Schwarz. (2017) Drama

reverse-engineering tool and side-channel tools. [Online]. Available:

https://github.com/IAIK/drama

[27] “How to benchmark code execution times on intel® ia-32 and ia-64

instruction set architectures,” Tech. Rep.

[28] Wikipedia, “Time stamp counter — wikipedia, the free encyclo-

pedia,” 2017. [Online]. Available: https://en.wikipedia.org/w/index.

php?title=Time_Stamp_Counter&oldid=800977564

[29] ——. (2017) Serial presence detect — wikipedia, the free encyclope-

dia. [Online]. Available: https://en.wikipedia.org/w/index.php?title=

Serial_presence_detect&oldid=782127854

[30] G. Allan. (2013) Ddr4 bank groups in embedded applications.

[Online]. Available: https://www.synopsys.com/designware-ip/

technical-bulletin/ddr4-bank-groups.html

[31] ——. (2013) Internal fragmentation in slab allocators: a simple com-

parison. [Online]. Available: https://elinux.org/Kernel_dynamic_

memory_analysis#Internal_fragmentation_in_SLAB_allocators:

_a_simple_comparison

[32] J. A. P. Jenny M Pelner, “Minimum steps necessary

to boot an intel® architecture platform,” Intel Corpo-

ration, Tech. Rep., 2010. [Online]. Available: https:

//www.intel.com/content/dam/www/public/us/en/documents/

white-papers/minimal-intel-architecture-boot-loader-paper.pdf

https://github.com/google/Rowhammer-test/tree/master/extended_test
https://github.com/google/Rowhammer-test/tree/master/extended_test
https://github.com/IAIK/drama
https://en.wikipedia.org/w/index.php?title=Time_Stamp_Counter&oldid=800977564
https://en.wikipedia.org/w/index.php?title=Time_Stamp_Counter&oldid=800977564
https://en.wikipedia.org/w/index.php?title=Serial_presence_detect&oldid=782127854
https://en.wikipedia.org/w/index.php?title=Serial_presence_detect&oldid=782127854
https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html
https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html
https://elinux.org/Kernel_dynamic_memory_analysis#Internal_fragmentation_in_SLAB_allocators:_a_simple_comparison
https://elinux.org/Kernel_dynamic_memory_analysis#Internal_fragmentation_in_SLAB_allocators:_a_simple_comparison
https://elinux.org/Kernel_dynamic_memory_analysis#Internal_fragmentation_in_SLAB_allocators:_a_simple_comparison
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/minimal-intel-architecture-boot-loader-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/minimal-intel-architecture-boot-loader-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/minimal-intel-architecture-boot-loader-paper.pdf

BIBLIOGRAPHY 80

[33] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection

of cache-based side-channel attacks using hardware performance

counters,” Appl. Soft Comput., vol. 49, no. C, pp. 1162–1174, Dec. 2016.

[Online]. Available: https://doi.org/10.1016/j.asoc.2016.09.014

https://doi.org/10.1016/j.asoc.2016.09.014

	Introduction
	Origins of the phenomenon
	Memory structure
	Why does Rowhammer happen
	Single vs Double Rowhammer

	State of the Art
	Attack primitives
	Uncached accesses
	Fast accesses
	Targeted accesses

	Exploiting the vulnerability
	Proposed countermeasures
	Doubling DRAM Refresh Rate
	B-CATT and G-CATT
	Pseudo Target Row Refresh
	Probabilistic Adjacent Row Activation
	ECC modules

	Finding the virtual → geometrical addresses mapping function
	Random approach
	Huge pages
	Pagemap
	Timing

	Assessing the reliability of known Rowhammering methods
	Memtest86 timings measurements
	Memory mapping model
	First bit flips
	Successful attack on Sandy Bridge

	Characterizing physical-to-geometrical mappings
	The Bit-Diff test
	Reliable timing measurements
	Mapping functions addressing fields
	Intel Sandy Bridge microarchitecture mapping
	Intel Ivy Bridge microarchitecture mapping
	Intel Skylake microarchitecture mapping

	Page Heatmap test

	Systematically deriving geometrical mapping
	Scan the memory and verify geometrical characteristics
	Deriving row addressing bits
	Bins clustering
	Splitting bins into sets
	Identifying the sets
	Bruteforcing functions
	Functions Deduplication

	Experimental validation
	Intel Sandy Bridge Geometrical Characteristics
	Intel Skylake Geometrical Characteristics
	Deriving Row Addressing Bits on Intel Skylake
	Noise reduction
	Bins Clustering on Intel Skylake
	Set Partitioning on Intel Skylake
	Set Partitioning Interpretation
	Missing Sandy Bridge Comparison
	Bruteforcing Application on Intel Skylake

	Proposed countermeasures
	Air-Gap
	Performance cost
	Comparison with G-CATT

	Row-Mix
	Performance cost
	Security
	Comparison with PARA

	Conclusion

