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Sommario

L’approccio comune a molti modelli matematici usati per studiare la fase
avascolare dello sviluppo di un tumore solido è la descrizione del sistema
mediante equazioni differenziali a derivate parziali. Lo studio di questi
problemi comprende la ricerca di soluzioni di tipo onda viaggiante e la
risoluzione numerica delle equazioni corrispondenti in una o più dimensioni
spaziali.
Nella fase avascolare, la massa tumorale è formata da un nucleo interno
di cellule necrotiche e quiescenti e da uno strato più esterno di cellule
proliferanti; un buon modello matematico dovrebbe essere in grado di
riprodurre questa semplice struttura. Queste osservazioni hanno ispirato
il presente lavoro di tesi, il cui obiettivo è elaborare e analizzare un
modello che studi la dinamica delle cellule proliferanti e quiescenti, della
matrice extracellulare e dell’ossigeno in fase avascolare, rappresentando in
modo biologicamente accurato fenomeni importanti, come la chemotassi
e l’aptotassi. Il modello sviluppato è un sistema di quattro equazioni
differenziali alle derivate parziali.
L’analisi matematica mostra che in assenza di chemotassi e aptotassi
esistono due possibili forme di soluzioni di tipo onda viaggiante. Nella
seconda parte della tesi vengono presentate diverse simulazioni numeriche
del modello con o senza aptotassi e chemotassi, utilizzando il metodo delle
differenze finite centrate in spazio e BDF in tempo.
In conclusione, questo lavoro conferma l’esistenza di soluzioni di tipo onda
viaggiante in un modello tumorale nuovo semplice, che tuttavia cattura
gli elementi principali del sistema, e sviluppa simulazioni numeriche per il
modello completo.

Parole chiave: Evoluzione del tumore, Aptotassi, Chemotassi, Onde
viaggianti, Simulazioni numeriche
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Abstract

A common approach to many mathematical models of the avascular
phase of solid tumour growth and dynamics is the description of the system
using partial differential equations. This includes studying the existence of
travelling wave solutions and developing numerical simulations in one or
more spatial dimensions. At this stage of its growth, the tumour mass is
composed of an inner section of necrotic and quiescent cells and an outer
thin rim of proliferating cells, and a good mathematical model should
be able to reproduce this basic structure. Inspired by this, the present
study aims to study the dynamic of proliferating and quiescent cells, of
extracellular matrix and oxygen in the avascular phase, including some
important phenomena, such as chemotaxis and haptotaxis. The model
reads as a system of four partial differential equations.
From the mathematical analysis carried out, we show that travelling wave
solutions exist for the model without haptotaxis and chemotaxis, and
there are two possible shapes of travelling waves. Furthermore, we present
some numerical simulations of the model with and without haptotaxis and
chemotaxis, employing the centered finite difference scheme in space and
BDF in time.
To conclude, this work proposes a simple model for the tumour system,
we prove the existence of travelling wave solutions in a simplified form,
depicting their main properties, and we perform numerical simulations for
the whole system.

Keywords: Tumour growth, Haptotaxis, Chemotaxis, Travelling wave,
Numerical simulations
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Chapter 1

Introduction

For over a decade there has been a growing amount of biological data
concerning cancer growth and development (at many different spatial and
temporal scales) that has to be analysed in a critical way. Quantitative
multidisciplinary approaches have the ability to synthesize these data and
bring them together in a coherent manner. Consequently, quantitative
cancer models are entering the mainstream of cancer biology publications.
Mathematical modelling can be useful to give scientists a deeper insight into
tumour evolution as well as to predict a patient’s prognosis and support
optimal treatment regimens. The power of modern applied mathematics
and nonlinear models is to go beyond what human intuition and linear
thinking can take us.

1.1 Key aspects of biology of cancer

Most of the steps of tumour formation are nowadays understood in
considerable details. In contrast, the late steps of tumour progression
involve still unresolved problems of cancer pathogenesis. Tumour progres-
sion is the evolution of normal cells into cells with increasingly neoplastic
phenotypes. The initialization of cancer can be tracked back from a single
normal cell which, due to external factors or random mutations, undergoes
a genetic modification that gives it the characteristics of a cancer cell. In
particular, mutations can arise by random errors in DNA replication, by
carcinogens (such as tobacco, chemicals, benzene, possibly acrylamide), by
some food additives, X-rays, or ultraviolet light, by specific viruses, such as
papilloma virus, or some inherited mutated genes (BRCA1 e BRCA2) [11].
According to research findings from the Cancer Genome Project, most
cancer cells possess 60 or more mutations. In 2000 Douglas Hanahan and
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Robert Weinberg [23] proposed a heterotypic model that defines tumours
as complex tissues, according to six hallmarks:

• Immortality: Continuous cell division and limitless replication;

• Produce ‘Go’ signals (growth factors from oncogenes)

• Override ‘Stop’ signals (anti-growth signals from tumour suppressor
genes);

• Resistance to cell death (apoptosis);

• Angiogenesis: Induction of new blood vessel growth;

• Metastasis: Spread to other sites.

In Figure 1.1 there is a scheme of those hallmarks.
Almost all cancer cells share some or all of the 6 traits described above,

Figure 1.1: The six hallmarks of cancer identified by Hanahan and Weinberg
[8]. Reprinted from: Cell, vol. 144 (5), D. Hanahan and R. A.
Weinberg, "Hallmarks of Cancer: The Next Generation" pp. 646-
74, Mar 2011, Copyright 2011, with permission from Elsevier.

depending on the type. Some tumours may have all of these characteristics
because of mutations in one key gene (e.g. the p53 gene regulates at least
4 of the traits) whereas other tumours may need more than 1 mutation for
progression.
In 2011 Hanahan and Weinberg [8] added another four hallmarks. These
were defined as “emerging hallmarks” possessed by tumour cells:

• Deregulating cellular energetics;

• Avoiding immune destruction;
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• Tumour-promoting inflammation;

• Genome instability and mutation.

In Figure 1.2 there is a scheme of those last hallmarks.

Figure 1.2: The four hallmarks of cancer identified in 2011 [8]. Reprinted from:
Cell, vol. 144 (5), D. Hanahan and R. A. Weinberg, "Hallmarks of
Cancer: The Next Generation" pp. 646-74, Mar 2011, Copyright
2011, with permission from Elsevier.

Using the most recent imaging techniques, it is possible to detect a
tumour mass containing around 109 cancer cells, corresponding to a volume
of a few cubic millimetres. Before we can observe it, the tumour mass
is still benign. The order of magnitude leading to death is around 1012

cancer cells, so there is a huge gap between these two scales.

1.1.1 Aspects of solid tumour growth

The great majority (>80%) of life-threatening cancers occur in epithe-
lial tissues, yielding carcinomas[15]. The epithelial tissues are generally
made bof thin sheets of epithelial cells sitting on the top of deep, complex
layers of stroma. The two layers are separated by a specialized type of
extracellular matrix (ECM), known as the basement membrane (BM).
This proteinaceous meshwork is constructed collaboratively by proteins
secreted by both epithelial and stromal cells. It is on the epithelial side
of the basement membrane that the carcinomas begin to develop and are
said to be benign as long as the cells forming them remain on this side.
The initial phase growth is called in situ and the cells have a proliferating
phenotype, but not worse. These cells may entirely replace the normal
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epithelial cells over considerable distances, but they do not pass the bar-
rier of the basement membrane (BM) and invade underlying tissues; they
duplicate and the tumour mass increases because of the pressure caused
by the volume they have to occupy. However, the cells are still close one
to the other due to adhesion forces. By definition, carcinomas born on the
epithelial side of the basement membrane are said to be benign as long as
the cells forming them remain on this side.
The cells of this solid tumour, arising from epithelial cells, can break away
from the primary tumour and attach to and degrade the protein structures
that make up the surrounding extracellular matrix (ECM). The cancer
cells begin to invade the nearby stroma individually or in groups, so this
mass of neoplastic cells is now reclassified as malignant.
Breaching the basement membrane is the first step in the transition from
in situ carcinoma to invasive, potentially metastatic cancer.
The basement membrane is composed of a complex of structural pro-
teins. Interactions of tumour cells with basement membranes and ECM
components comprise two critical phases: adhesion and matrix dissolution.

Adhesion Epithelial cells are normally polarized and attached to each
other via different types of cell-to-cell junctions, as well as through inter-
cellular adhesion molecules such as E-Cadherin. Initiation of metastasis
requires releasing cells from cell-to-cell contacts that keep them in their
proper place in the epithelium. Thus, cancer cells usually demonstrate mul-
tiple changes in the expression of cell adhesion components. E-Cadherin,
in particular, is a frequent target for genetic or epigenetic alterations that
down-regulate its function, which may be considered as a tumour suppres-
sor gene.
Epithelial cells entertain contacts with the basal membranes and with the
ECM through many classes of molecules. Among them, integrins are impor-
tant: changes in their expression patterns may have a profound influence
on enabling cancer cells to adapt to changes in their microenvironment, a
pre-requisite for a successful migration. Integrins are cell surface receptors
that mediate a dual, signalling and adhesion function.
Integrins couple the ECM outside the cell to the intracellular cytoskeleton.
This bond ensures that the cell can tightly adhere to ECM components
without being sheared and ripped away by ECM movements. Carter has
defined haptotaxis to be the movement of cells on an adhesion gradient, in
the direction of increasing substrate adhesion [38], that is, in the direction
of increasing density of bound integrin-ligand complexes.
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Matrix dissolution One important group of enzymes is the matrix
metalloproteinases (MMP). MMPs are more active in cancer cells and/or in
surrounding normal stromal cells, indicating that cancer cells can somehow
induce stromal cells to secrete factors that facilitate migration, invasion
and, ultimately, metastasis.
MMPs have not only a direct role in degrading ECM components, but
also indirectly are involved in promoting metastasis through their roles in
angiogenesis. The formation of capillary sprouts is a physiological process
that requires localised proteolysis of the stroma.

Metastatic dissemination Dissemination starts when aggressive tu-
mour cells enter the bloodstream through the newly formed vasculature
that they have attracted. This process is facilitated by the particular,
incomplete and leaky structure of the blood vessels.
Once they have intravasated into the lumen of a blood or lymphatic vessel,
individual cancer cells may travel with the blood or lymphatic fluid to other
areas in the body. These long-range migrations are very dangerous. Like
normal cells, the cancer cells may continue to depend on anchorage to solid
substrates; without such attachment, the migrating cells may die rapidly
from anoikis to escape recognition and destruction by the immune system
and to recruit partners that facilitate their circulation and extravasation.
Disseminating cancer cells avoid immunosurveillance through two mech-
anisms: the outgrowth of poorly immunogenic tumour-cell variants (im-
munoselection) and the subversion of the immune system (immunosubver-
sion). The first includes a series of mechanisms by which disseminating
cancer cells conceal or down-regulate antigens and recognise molecular
complexes at their surface. The second mechanism includes the production
of sets of cytokines that down-regulate immune responses. Briefly, metas-
tasis appears to correlate with changes in the immunogenic properties of
tumour cells.

Metastatic colonisation When disseminating cancer cells leave the
blood stream to enter the parenchyma of another organ the extravasation
process begins. Metastatic cells extravasate by breaching the capillaries in
which they are embedded, either by vascular-remodelling events that allow
migration across the capillary wall or, as a result of mechanical disruption
of capillaries, by expanding tumour emboli. In another organ, tumour cells
live in a different microenvironment in which they must survive, develop,
and eventually expanding the same way as they did in their organ of origin.
To help them in the process of establishing a new “home” in their adoptive
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tissue, cancer cells recruit different cells that provide a permissive “niche”
for metastasis. Once metastatic cells are established, active colonisation
proceeds through the recruitment of organ-specific components of the
tumour microenvironment. Full metastatic colonisation can occur by the
immediate growth of cancer cells upon their extravasation, or after a
prolonged period of micrometastatic dormancy.

1.2 Modelling the avascular phase

This work focuses on the mathematical modelling of avascular tumour
growth, i.e., tumours without blood vessels. Avascular tumour growth is
simpler to model mathematically, and yet contains many of the phenomena
to be addressed in a general model of vascular tumour growth.
Nevertheless, the reproducibility of experiments with avascular tumours
makes for an improved quality and increased quantity of experimental
evidence that for vascular tumours, in which are often hard to isolate
individual effects. In addition, experiments on vascular and metastatic
tumours are much more time consuming and difficult as they have to be
performed in vivo. To overcome this difficulty, avascular tumour modelling
can be of use when making predictions and designing for those experiments.

1.2.1 Different regions within the tumour

When cancer cells have enough nutrient supplied by the micro-environ-
ment they proliferate, otherwise cell death (apoptosis) is triggered. In
intermediate nutrient levels the tumour cells stay quiescent. The different
of nutrient inside the tumour spheroid are determined by the diffusion and
consumption of nutrients within the tumour.
During the avascular stage of growth, the tumour receives nutrient supply
by diffusion from the surrounding tissue. In this phase, the tumour has
not yet developed a blood supply network, therefore available nutrients are
not sufficient to ensure continued exponential growth of the tumour cell
mass despite the continuous nutrient supply at the tumour surface. Thus,
avascular tumour undergoes a quasi-exponential growth phase followed
by a saturation phase in which the volume grows linearly. The restricted
supply of critical nutrients, such as oxygen and glucose, results in marked
gradients within the cell mass.
A descriptive model to explain the regulation of growth and viability in
spheroids, reproducing work like [32], postulates that, at early stages of
development, both growth promoters and viability promoters can reach
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all of the cells in the spheroid. During this early stage, the aggregate is
composed of proliferating, viable cells. As the spheroid grows in size, the
concentration of growth promoters decreases in the spheroid centre, which
eventually falls below a critical value such that cells undergo proliferation
arrest and become quiescent. Therefore, we have an inner part of quiescent
cells and an outer part of living cells, which continues to proliferate.
As a result, the size of tumour continues to increase, while the central
concentration of viability promoters continues to decrease. Once the latter
falls under a critical value, necrotic cell death occurs and the spheroids
acquire a necrotic centre. This state takes place when the tumour size
is ∼ 1mm, that is around 106 cells, and the phenomenon is necrosis.
These begin to die without control. Continued cellular metabolism and
the process of necrosis cause both growth and viability inhibitors to be
secreted and accumulate in the spheroid. As soon as the concentration
of growth inhibitors reaches a critical value in the outer spheroid region,
cell proliferation is further reduced. Eventually, the thickness of the
proliferating layer of cells is reduced to a point at which the number of
new cells is equal to the number of cells lost by cell shedding, causing
saturation in the spheroid growth.
Experimental data support the idea that simple molecules involved in
energy metabolism, such as oxygen and glucose, are the viability promoters
in spheroids [32].
The complexity of these processes should be taken into account by a
predictive model of avascular tumour growth. Important elements that
need to be incorporated in such a model include cell proliferation and
growth, nutrient consumption and diffusion, waste product production and
diffusion, effects of growth promoting and inhibitory factors, intercellular
adhesion, and cell-environment interactions, as well as the geometry of the
tumour and the cells.

1.3 State-of-art of tumour modelling

Mathematical modelling is an iterative process that should not end with
the first set of predictions and its success relies on continued collaboration
between experimentalists and theoreticians. The earliest spatio-temporal
models of avascular tumour growth describe how the size and structure
of three-dimensional multicellular spheroids (MCS) change when culture
conditions are manipulated [10].
In the present work, the aim is to describe some of the most widely used
mathematical models in the area of avascular tumour growth. Most models
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of avascular tumour fall into two categories: (1) continuum mathematical
models that assume the continuum assumption and thus consist of a
synthesis of partial differential equations; and (2) discrete cell population
models that consider processes occurring on the single cell scale and
introduce cell-cell interaction using cellular automata–type computational
machinery. We will discuss the main characteristics of the first approach.

1.3.1 Continuum Cell Population Models

Mathematical models describing continuum cell populations and their
evolution in time classically consider the interaction between the cell mass
density per unit volume and one or more chemical species that provide
nutrients or influence the cell cycle events of a tumour cell population. Thus
these models typically rewrite as reaction-diffusion-convection equations.
A usual modelling of tumour growth in the avascular phase exploits the
observation that the tumour contours sharp defined. This leads to consider
geometric models where the tumour is defined as an expanding set Ω (t),
which in the simplest case can be a “spheroid”. One assumes that the
tumour has a constant density of mass, to account for the incompressibility
of tissue. Then, the question is to describe the evolution of the dynamics
of free boundary ∂Ω (t).

Model I The first free boundary problem for tumour growth dates back
to H. Greenspan in 1972 [36]. He observed that in the typical steady state
configuration the tumour is a sphere, a few millimetres in diameter, which
histological examination shows to be made of three distinct concentric
annular shells. In the thin outermost shell, a layer several cells thick, cells
are observed to grow and divide as they do in the initial exponential phase.
In the adjoining shell, cells are alive and viable but exhibit almost no
mitosis and proliferation, so they are defined quiescent. The innermost
central core consists of necrotic debris in various stages of disintegration.
Greenspan proposed a radially symmetric model employing the Heaviside
function for modelling the necrotic part. Figure 1.3 shows the scheme of
tumoural spheroid.
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Figure 1.3: Cross-section of a nodular carcinoma showing the central necrotic
core, r ≤ Ri, the layer of viable non-proliferating cells,
Ri ≤ r ≤ Rg, and the outer shell where all mitosis occurs,
Rg ≤ r ≤ R0.

The avascular model considers a chemical inhibitor which is produced
in the necrotic core and inhibits the mitosis of cancer cells without causing
their death. The derivation of the model is obtained through conservation
of mass ad reaction-diffusion equations.
Many variants have been developed in later times. It is now a well-
established subject with many surveys available. In fact, this model was
studied further in detail by Greenspan in 1976 [35]. In this subsequent
paper, he explained the distribution of nutrients related to the growth
and movement of certain cell cultures and solid tumours. He investigated
the unstable development of tumours when the internal pressure forces
overcome surface tension and adhesion. This later work describes the
relationship between the nutrient concentration, the pressure on the sur-
face and the surface-tension force. He states that if the tumour reaches a
critical size beyond which surface tension is overcome by pressure forces,
the tumour becomes unstable. It is shown that in the necrotic core, the
propensity of the colony to distort by either growth or the elimination of
material can reverse the effect of stability on the surface tension and, on
the other hand, by controlling the distribution of nutrient, a steady state
equilibrium can be reached.

In the literature, the simplest geometrical model of tumour growth is
based on variation of intracellular pressure by cell division without refer-
ence to a nutrient which is supposed sufficient, so it’s a purely mechanical
model.
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Model II The model presented now is taken from Friedman in 2004 [19].
We suppose that the density of cells is a constant ρ within the tumour
that occupies the spatial domain Ω (t). The tumour still grows with the
normal velocity on its boundary

Ẋ (t) = v (X (t) , t) , X (t) ∈ ∂Ω (t) (1.1)

The growth rate G (p) is related to the pressure and it satisfies the following
equation:

∇ · v = G (p) . (1.2)

The pressure dependent growth term is supposed to satisfy for some K > 0,

G′ (·) < 0, G (K) = 0.

Then, the Darcy’s assumption allows us to relate the growth speed and
the pressure with

v (t, x) = −∇p (x, t) (1.3)

Substituting (1.3) in (1.2) we obtain{
−∇2p = G (p) x ∈ Ω (t)

p = 0 on ∂Ω (t) .
(1.4)

Model III We can enrich this model as explained by Byrne and Chaplain
[28], considering the tumour as a spheroid, that is a ball BR(t) of R3

centred in the origin and radius R (t), and the cell population density
is still constant inside this ball. The available nutrient is denoted by
c (x; t) for 0 ≤ |x|≤ R (t) and is provided from the boundary ∂BR(t) with a
concentration cb (blood concentration). Taking into account the fact that
nutrients diffuse and degrade in time [25], the system reads{

∂tc−∇2c+ λc = 0 x ∈ BR(t)

c = cb on ∂BR(t)

(1.5)

with the equation for R (t) found by integration of (1.2)

Ṙ (t) =
1

R2

∫ R(t)

0

G (c) r2 dr, R (0) = R0 > 0 (1.6)

In the equation on c the nutrient is consumed with rate λ. The function
G : [0, cb] → R determines the net growth rate of cells, depending upon
the available nutrient. We make the general assumption on G ∈ C1 that
there is c̄ > 0 such that it holds

G′ (·) > 0, G (c̄) = 0. (1.7)
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Model IV We can combine the latter two models in the following: a
pressure field equation is defined in the domain Ω (t){

−∇2p = G (c (x, t)) x ∈ Ω (t)

p = 0 on ∂Ω (t)
(1.8)

with the equation for nutrient (1.5); the domain moves with velocity
−∇p (x, t) · n, n being the outward unit normal to the boundary Ω (t):

Ẋ (t) = −∇p (X (t) , t) · n (X (t) , t)

Model V This geometric description can be extended to include more
biological ingredients in the model, as quiescent cells. A first simple
approach is to ignore the nutrients and introduce cell densities nP (x; t),
nQ(x; t) and nD(x; t) for proliferating, quiescent and dead cells. We recall
from the experimental observations most of the cells are in a quiescent
state and only a small amount is in proliferative state. Transitions between
these two states are controlled by various environmental conditions as
nutrients, space availability, TGF (Tumor Growth Factors). Following
the steps adopted by Friedman in 2004 [19], the cell movement of several
species is included as

∂tnP +∇ · (vnP ) = G (nP , nQ)− anP + bnQ x ∈ Ω (t) ,

∂tnQ +∇ · (vnQ) = anp − bnQ − dnQ,
∂tnD +∇ · (vnD) = dnQ − µnD.

(1.9)

This is coupled with the Darcy law for velocity

v (x, t) = −∇p (x, t) ,

and the pressure enforces the incompressibility condition

nP + nQ + nD = nmax, ∀x ∈ Ω (t) , t ≥ 0.

Again, the Darcy assumption provides the velocity fields:

−∇2p = ∇ · v = G (nP , nQ)− µnD
which we supplement with Dirichlet homogeneous boundary conditions:

p (x, t) = 0 for x ∈ ∂Ω (t)

The free boundary ∂Ω (t) moves with normal velocity −∇p

Ẋ (t) = −∇p (X (t) , t)

and this makes that there is no need of boundary conditions for the
hyperbolic equations in (1.9).
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Model VI We present an example of a mathematical diffusive model for
avascular tumour growth, explained by Anderson, Chaplain et al. in 2000
[24]. For sake of simplicity, we assume that the tumour solid mass is in the
avascular phase, so that cells receive oxygen only through diffusion. In the
model four time and space dependent variables are taken into account: the
tumour cells density n, the extracellular matrix degrading enzymes (MDEs)
m, the extracellular matrix density f and tumour angiogenic factors (TAF)
c. As well as making space into which tumour cells may move by simple
diffusion (random motility), we assume that this’ also results in a gradient
of these bound cell-adhesion molecules, such as fibronectin. By definition,
haptotaxis is the directed migratory response of cells to gradients of fixed
or bound chemicals. a response to gradients of bound macromolecules such
as fibronectin. To incorporate this phenomenon in this model, we define

vhapto := χ∇f, (1.10)

thus we take the haptotactic flux to be:

Jhapto = nvhapto = χn∇f, (1.11)

where χ is the (constant) haptotactic coefficient. To describe the random
motility of the tumour cells we assume a flux of the form

Jrandom = −D (f,m)∇n, (1.12)

where D (f,m) may be a constant or a function of either the MDE or ECM
concentration. Focussing entirely on the cell-matrix interactions and how
these interactions affect tumour cell migration, we do not consider any
proliferation of tumour cells in the partial differential equation model. The
conservation equation for the tumour cell density n is therefore given by

∂n

∂t
+∇ · (Jrandom + Jhapto) = 0,

and hence the partial differential equation governing tumour cell motion
(in the absence of cell proliferation) is

∂n

∂t
= ∇ · (D (f,m)∇n)− χ∇ · (n∇f) . (1.13)

We assume that the MDEs degrade ECM upon contact and hence the
degradation process is modelled by the following simple equation:

∂f

∂t
= −δ f m, (1.14)
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where δ is a positive constant.
Active MDEs are produced by the tumour cells, diffuse throughout the
tissue and undergo some form of decay. The equation governing the
evolution of MDE concentration is therefore given by

∂m

∂t
= Dm∇2m+ g (n,m)− h (n,m, f) (1.15)

where Dm is a positive constant, the MDE diffusion coefficient, g is a
function modelling the production of active MDEs by tumour cells and h
is a function modelling the MDE decay.

The existence of travelling wave solutions and patterns for the model
under study has been addressed in several works, see [5]. Travelling wave
solutions are of particular interest from the biological point as the diameter
of 2D monolayers, 3D multicellular spheroids and Xenografts, 3D tumours
emerging from cells injected into animals is found to increase for many
cell lines linearly in time, thus indicating a constant growth speed of the
tumour border [12].

Model VII In 2013 Tang et al. in [5] considered an aggregate of tumour
cells as an elastic fluid. Denoting by T and I the Cauchy stress tensor and
the identity tensor respectively, the following constitutive relation holds:
T = −p (ρ) I. In addition, denoting by v the velocity field and by ρ the cell
population density, we will make use of the following advection-diffusion
model

∂tρ+∇ · (ρv)−∇ · (ε∇ρ) = Φ (ρ,Σ)

In this equation, the third term in the left hand side describes the random
motility of cells with a nonnegative diffusion coefficient ε. The right hand
side Φ (ρ,Σ) is the growth term; it expresses that cells divide freely, thus
resulting in an exponential growth, as long as the elastic pressure Σ is less
than a threshold pressure denoted by Cp where the cell division is stopped
by contact inhibition (the term “homoeostatic pressure” has been used for
Cp). This critical threshold is determined by the compression that a cell
can experience [14]. The balance of forces acting on the cells lead, under
certain hypotheses, to the following relationship between the velocity field
v and the elastic pressure

−CS∇Σ (ρ) = −Cz∇2v + v

This is Darcy’s law which describes the tendency of cells to move down
pressure gradients, extended to a Brinkman model by a dissipative force
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density resulting from internal cell friction due to cell volume changes.
CS and Cz are parameters relating respectively the reference elastic and
bulk viscosity cell properties with the friction coefficient. The resulting
model is then the coupling of this elliptic equation for the velocity field,
a conservation equation for the population density of cells and a state
equation for the pressure law.

Besides the study of the factors on avascular tumour growth, like the
availability of nutrients such as glucose and oxygen, the work of Ambrosi
and Mollica [20] analysed what is the role of the stress on the process of
mitosis and apoptosis of tumour cells. As the role of mechanical stress in
the growth of a multicell spheroid is also not negligible, and this fact is
demonstrated by recent experimental results, Ambrosi and Mollica devel-
oped a mathematical model able to account for the volumetric growth of
soft tissue and they applied it to the specific problem of the growth of a
multicell spheroid, subjected to two growth conditions: free-suspension
and gel-embedded. Their model is able to reproduce the experimental data
with a satisfying qualitative agreement.

Ambrosi and Preziosi in [21] introduced a multiphase mechanical frame-
work as a background for the deduction of tumour growth models. Their
work is based on the main idea that multicell spheroids can be modelled
as ensembles of deformable balloons in contact, the extracellular space
being filled by the organic liquid and, in a more refined description, by
the extracellular matrix. A general theoretical framework was introduced
leading to a triphasic description including the extracellular matrix.

Objective of the Thesis

The main objective of this thesis is to work out formulate a model
which aims to study the dynamics of proliferating and quiescent cells,
interacting with the extracellular matrix and oxygen levels in the avascular
phase, including some important phenomena in avascular tumour growth,
like chemotaxis and haptotaxis. To do so, we will develop a model con-
sisting of a system of partial differential equations which can be studied
analytically and numerically, thus enabling the investigation of solutions
of this formulation.
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Outline

After the introduction, where we analysed the history of mathematical
models of tumour growth, the thesis is structured as follows:

In the second chapter we introduce the mathematical model of partial
differential equations and its non-dimensionalisation, using data from
the literature, when available;

In the third chapter we identify the stationary states of the system and
then we analyse the existence and characterisation of travelling wave
solutions;

In the fourth chapter we present the numerical solutions of the system
of equations in one dimension. In particular, we study the system
in the presence and absence of haptotaxis and chemotaxis. Finally,
we vary some key parameters to see how the solution is affected by
them.





Chapter 2

The Mathematical model

The model we are going to introduce aims to characterize the avascular
phase of the tumour. We consider the dynamics of the tumour cells, which
we distinguish between proliferating and quiescent, and the dynamics of
the extracellular tissue and the nutrient, for example oxygen. In our model,
we include also haptotaxis and chemotaxis, which has been a popular
phenomenon for mathematical modelling since the work of Keller and Segel
[37]. Models of chemotaxis are the basis for mathematical models of cells
populations that undergo haptotactic migration. These chemotaxis models
usually account for the chemotactic migration of cells using a cell flux
proportional to the gradient in concentration of some chemical species that
is considered to be an attractant for the cells under study. On the other
hand, Maini [31] developed a mechanochemical model of cell-haptotaxis to
investigate the generation of one-dimensional spatial and spatio-temporal
patterns. Maini’s model was used to investigate the changes in the cell
and ECM density and the displacement of a material point of matrix due
to haptotactic migration of cells. He modelled this migration introducing
the haptotactic cell flux, proportional to the gradient of the extracellular
matrix density.
In this way, the model we are going to introduce is quite new with respect
to the previous overview of mathematical models, because they focused
only in the dynamics of different populations of cells within the tumour
or the interaction of the cells one with the surrounding tissue and the
nutrient availability, while this model aims to describe all these dynamics
in a simple manner. The description of the dynamics of the proliferating
and quiescent cells is similar to Model V [19] and Model VI [24], the former
for the transition between the proliferating and quiescent states, the latter
for the dynamics of ECM.
We denote by p, q, m, n the concentration of invading proliferating cells,

17
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invading quiescent cells, the density of the extracellular matrix, the concen-
tration of the oxygen, respectively. We take into account oxygen production
from the ECM, uptake, decay [6], and we introduce the parameter γ, which
is the fraction of oxygen uptake by proliferating cells. The oxygen produc-
tion, uptake, and decay rate are β, γ KB (N), ζ, respectively.
We model the ECM with a time-dependent equation, including the degra-
dation, by proliferating tumour cells, and remodelling of ECM by the cells
present in the tissue ([9], [2]). In particular, the normal tissue is assumed
to have logistic growth in order to attain its healthy state in the absence
of cancer cells. Moreover, looking to previous works as [9], we omit any
diffusion or transport term since the ECM does not diffuse, while we add
a term of logistic growth, accordingly to [2]. The carrying capacity for the
extracellular matrix is represented by km, while the intrinsic growth rate
is η. The degradation rate by proliferating cells is denoted by α.
We model the motion of the proliferating cells including haptotaxis and
chemotaxis; ρ and χ are, respectively, the haptotactic and chemotactic
coefficient. The tendency of cells to move down pressure gradients is also
modelled relying on the definition of the cell velocity fields through Darcy’s
law, which provides the following definition:

Π := Kµ (p+ q)µ , (2.1)

kp being the equilibrium value of the local cell density p, q in the presence
of high oxygen concentrations, Kµ being a non-dimensional coefficient with

Kµ → 1 as µ→∞.

Moreover, we model the transition from proliferating into quiescent and vice-
versa [19] with functions depending on the nutrient availability, KPQ (n)
and KQP (n), respectively. We assume that proliferating cells divide at a
rate that is limited by crowding effects of the total cell population, and its
growth depends also on the nutrients. We model this latter dependence by
KB (n). The functions denoting the rates introduced before have to satisfy
the following hypothesis:

KB (·) ≥ 0, K ′B (·) > 0, (2.2)
KPQ (n) = K (n) , KQP (n) = ε−K (n) , (2.3)

ε ≥ K (·) ≥ 0, K ′ (·) ≤ 0, (2.4)

with ε > 0 a constant coefficient. In addition, K (n) should be a smooth
function; a possible example could be

K (n) = ε
1

2
(1− tanh (a n− b)) +

1

2
, a > 0.
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In this way, we want to model the fact that we could have in principle both
transition of the state of the cells from the proliferating to the quiescent
state and vice-versa. Another possibility could be

K (n) = εH (nk − n)

where H is the Heaviside function, i.e., H (n) = 1 for n > 0 and H (n) = 0
for n < 0. With an appropriate choice of the parameters a and b it is
possible to approximate the Heaviside function with the hyperbolic tangent
function: nk = b/a, a >> 0.
We indicate with ∇2 with Laplacian operator, while with ∂t the temporal
derivative. The system of the equations that governs the dynamics is:

∂tp+∇ · (vP p) =

[
KB (n)

(
1− p+ q

kp

)
−KPQ (n)

]
p

+KQP (n) q − ρ∇ · (p∇m)− χ∇ · (p∇n)

∂tq +∇ · (vQ q) = KPQ (n) p−KQP (n) q

∂tm = −α p m+ ηm

(
1− m

km

)
∂tn−DN∇2 (n) = β m− γ KB (n) p− ζ n

(2.5)

where we define 

νP :=
DP

kµp

νQ :=
DQ

kµp

vP := −νP∇Π (p, q)

vQ := −νQ∇Π (p, q)

(2.6)

In the first equation in (2.5), the terms KB(n)p
(

1− p+q
kp

)
, −KPQ(n)p,

KQP (n)p, −ρ∇ · (p∇m) and −∇ · (p∇n) are proliferation, transition from
proliferating to quiescent state, transition from quiescent to proliferating
state, haptotaxis and chemotaxis, respectively.
In the second equation in (2.5), the terms KPQ(n)p, −KQP (n)p, are tran-
sition from proliferating to quiescent state and transition from quiescent
to proliferating state, respectively.
In the third equation in (2.5), the terms −α pm and ηm

(
1− m

km

)
are

degradation from proliferating cells and logistic growth, respectively.
In the fourth equation in (2.5), the terms −DN∇2, −γ KB (n) p and −ζ n
are production form ECM, degradation form proliferating cells and decay,
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respectively.
We will assume the random motility coefficients DP , DQ constants. Hy-
pothesis on coefficients: we suppose that

βkm ≥ ζnk (2.7)

2.1 Non-dimensionalization of the model
Denoting dimensionless variables by carets, we adopt the following

rescalings:

t̂ =
t

t0
, x̂ =

x
x0

p̂
(
t̂, x̂
)

=
p (t,x)

kp
, q̂

(
t̂, x̂
)

=
q (t,x)

kp
, m̂

(
t̂, x̂
)

=
m (t,x)

km
,

n̂
(
t̂, x̂
)

=
n (t,x)

n0

, Π̂ = Kµ (p̂+ q̂)µ , K̂B (n̂) = t0KB (n̂ n0) ,

K̂PQ (n̂) = t0KPQ (n̂n0) , K̂QP (n̂) = t0KQP (n̂ n0) ,

D̂N =
DN t0
x20

, ρ̂ =
ρ t0 km
x20

, ν̂P (p̂, q̂) =
DP t0
x20

,

ν̂Q (p̂, q̂) =
DQ t0
x20

, α̂ = α t0 kp, η̂ = η t0 km,

β̂ =
t0 β km
n0

, γ̂ =
γ kp
n0

, ζ̂ = ζ t0, χ̂ =
χ t0 n0

x20
.

In the Table 2.1 there are all the parameters used for the non-dimensionalization
of the problem. The state in the non-dimensional form reads:

∂t̂p̂+∇x̂ · (v̂P p̂) =

[
K̂B (n̂)

(
1− p̂+ q̂

k̂p

)
− K̂PQ (n̂)

]
p̂

+ K̃QP (n̂) q̂ − ρ̂∇x̂ · (p̂∇x̂m̂)

− χ̂∇x̂ · (p̂∇x̂n̂)

∂t̂q̂ +∇x̂ · (v̂Q q̂) = K̃PQ (n̂) p̂− K̂QP (n̂) q̂

∂t̂m̂ = −α̂ p̂ m̂+ η̂m̂

(
1− m̂

k̂m

)
∂t̂n̂− D̂N∇2

x̂ (n̂) = β̂ m̂− γ̂ K̂B (n̂) p̂ − ζ̂ n̂

(2.8)

where we define {
v̂P := −ν̂P∇x̂Π̂ (p̂, q̂)

v̂Q := −ν̂Q∇x̂Π̂ (p̂, q̂)
(2.9)
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The symbol ∇x̂·, ∇x̂ and ∇2
x̂ stand, respectively, for the divergence, the

gradient, and the Laplacian operators with respect to x̂.

Table 2.1: Parameters values used to perform numerical simulations; Assum.,
Dim., Non.dim. and M.M stand for assumed, dimensional, non-
dimensional, Michaelis-Menten respectively

Symbol Meaning Dim. Non-
dim.

Source

x0 Typical length
scale of tumour

2 mm [1]
(end of
avas-
cular
phase)

t0 Typical time
scale of tumour

50 days [22]
(end of
avas-
cular
phase)

n0 Reference value
of oxygen

5× 10−2 mM [7]

kp Reference value
of cells

1.25 × 106 cells
cm−3

[22]

km Reference value
of ECM

10−10 M [34]

ρ Haptotactic coef-
ficient

0.05 Assum.

χ Chemotactic co-
efficient

0.05 Assum.

η ECM regenerat-
ing rate

0.15− 10 [17],
[16], [3]

DP Diffusion coeffi-
cient of prolifer-
ating cells

10−9 cm2 s−1 0.0014 [18] (in
case
of con-
stant
diffu-
sion)

Continued on next page
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Table 2.1 – Continued from previous page
Symbol Meaning Dim. Non-

dim.
Source

DQ Diffusion coeffi-
cient of prolifer-
ating cells

2×10−9 cm2 s−1 0.0028 [4](in
case
of con-
stant
diffu-
sion)

DN Diffusion coeffi-
cient for oxygen

2×10−5 cm2 s−1 2.16 ×
103

[33]

α ECM consump-
tion rate

10 [13]

β Oxygen regenera-
tion rate

1.296 ×
106

Assum.

γ Fraction of oxy-
gen uptake

6.25 × 10−17

mmol cell−1
3.9062 ×
10−6

[27]

ζ Decay rate of
oxygen

6.48 ×
105

Assum.

vmax Maximum rate of
oxygen uptake

1× 10−5 s−1 43.2 [29],
[27]

cm M.M. constant of
oxygen uptake

1.83× 10−6 M 0.2344 [29],
[27]

KB should satisfy 2.2. The first, simplest, choice is to adopt a linear
function. However, this is not really correct from a biological view point
since it is well-known that there is a threshold for the uptake rate of
nutrients upon the cells. Therefore, we should change this function into,
for example, a Michaelis-Menten type, i.e.:

v̂max = vmax t0, ĉm =
cm
n0

, K̂B (n̂) = v̂max
n̂

ĉm + n̂
.

In particular, cm is the Michaelis-Menten constant which shows the con-
centration of the nutrient when the oxygen rate uptake is equal to one
half of the maximal rate of consumption, which we denote with vmax. The
parameters vmax, cm have been chosen in agreement with the consideration
made by [27] and the experimental results reported by [29].
Moreover, since some parameters are difficult to obtain because of the
non-availability of experiments that can track specific phenomena, we
choose some non-dimensional values which had been adopted in other
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works, like β, ζ, α, η, χ, ρ. All the other values will be specified in the
section of the numerical analysis accordingly to the cases.





Chapter 3

Mathematical analysis

In this chapter we will go through the analysis of the mathematical
model. First, we begin looking for relations to be satisfied under equilibrium.
These lead us to choose the appropriate boundary conditions to adopt in
the next section dedicated to the research for travelling wave solutions
for the model without haptotaxis and chemotaxis. We make this choice
because the flux terms related to these phenomena make the analysis more
difficult. We will adopt some hypothesis on the functions to look for and,
after observations, we will subdivide the analysis in two regions.

3.1 Preliminary considerations
In this section we will explore what are the relations that have to be

satisfied under equilibrium. In this framework, we introduce the following
K function:

K (n) = εH (nk − n)

where H is the Heaviside function, i.e., H (n) = 1 for n > 0 and H (n) = 0
for n < 0, and ε > 0 a constant coefficient. This choice satisfies the
conditions (2.2). We take

KPQ (n) = K (n) , KQP (n) = ε−K (n) . (3.1)

In Figure 3.1 there are the plots of KPQ and KQP functions.
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Figure 3.1: Plots of KPQ(N) and KQP (N) functions.

We can rewrite the system ((2.5)-(2.6)) under the assumption of sta-
tionary conditions as follows:

0 =

[
KB (n̄)

(
1− p̄+ q̄

kp

)
−KPQ (n̄)

]
p̄+KQP (n̄) q̄

0 = KPQ (n̄) p̄−KQP (n̄) q̄

0 = −α p̄ m̄+ ηm̄

(
1− m̄

km

)
0 = β m̄− γ KB (n̄) p̄ − ζ n̄

(3.2)

3.1.1 Inside the tumour

First, we look for stationary states such that n̄ < nk, which is, in a
biological perspective, inside the tumour. Thus, the system (3.2) rewrites:

0 =

[
KB (n̄)

(
1− p̄+ q̄

kp

)
− ε
]
p̄

0 = ε p̄

0 = −α p̄ m̄+ ηm̄

(
1− m̄

km

)
0 = β m̄− γ KB (n̄) p̄ − ζ n̄

(3.3)

As a result, from the second equation we deduce that p̄ = 0. Therefore,
the value q̄ is not determined. From the last equation we deduce that

n̄ =
β

ζ
m̄ < nk. (3.4)
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Moreover, the third equation leads to

0 = η m̄

(
1− m̄

km

)
. (3.5)

As a result, we obtain
m̄ = 0 ∨ m̄ = km. (3.6)

Inside the tumour we expect that the ECM is not at the reference value
km, so we have

m̄ = 0, n̄ = 0 from (3.4). (3.7)

The value of q̄ is still not determined. We choose q̄ = kp. To sum up, we
have obtained

p̄ = 0, q̄ = kp, m̄ = 0, n̄ = 0. (3.8)

3.1.2 Outside the tumour

We look for stationary states such that n̄ ≥ nk, which is, in a biological
perspective, outside the tumour. Thus, the system becomes:

0 =

[
KB (n̄)

(
1− p̄+ q̄

kp

)]
p̄+ ε q̄

0 = −ε q̄

0 = −α p̄ m̄+ ηm̄

(
1− m̄

km

)
0 = β m̄− γ KB (n̄) p̄ − ζ n̄

(3.9)

As a result, from the second equation we deduce that q̄ = 0. The first
equation simplifies in

0 =

[
KB (n̄)

(
1− p̄

kp

)]
p̄. (3.10)

Since we are outside the tumour, we discard n̄ = 0,∨p̄ = kp and we choose
the biological solution is p̄ = 0. Moreover, the third equation leads to

0 = η m̄

(
1− m̄

km

)
. (3.11)

There are two possible solutions: m̄ = 0, m̄ = km. If m̄ = 0, then from the
fourth equation we have n̄ = 0, which is incompatible with the condition
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we adopted at the beginning of this subsection n̄ > nk > 0. As a result,
we have

m̄ = 0, n̄ =
β

ζ
km > nk. (3.12)

From the last equation we deduce that

n̄ =
β

ζ
m̄ ≥ nk. (3.13)

Therefore, if we suppose that m̄ = 0, we can’t satisfy the condition assumed
in this subsection n̄ ≥ nk > 0, so we discard the solution m̄ = 0. As a
result, we obtain:

p̄ = 0, q̄ = 0, m̄ = km, n̄ =
β

ζ
km. (3.14)

Having in mind the hypothesis on the coefficients (2.7), these equilibria
exist and make biologically sense, because in this subsection we are outside
the tumour and the nutrient concentration and ECM are not affected in
the avascular phase of tumour growth.

3.2 Travelling wave solutions

We want to construct travelling wave solutions of the form p (x, t) =
P (z), q (x, t) = Q (z), m (x, t) = M (z), n (x, t) = N (z), z = x−at, where
a > 0 is the wave speed. Substituting these ansatzs forms into (2.5) gives
the ODEs:

−aP ′ − [P νPΠ′]
′
=

[
KB (N)

(
1− P +Q

kp

)
−KPQ (N)]P +KQP (N)Q

− ρ (PM ′)
′ − χ (PN ′)

′

−aQ′ − [QνQΠ′]
′
= KPQ (N) P −KQP (N) Q

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.15)
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We put ρ = χ = 0. The system to analyse is the following:

−aP ′ − [P νPΠ′]
′
=

[
KB (N)

(
1− P +Q

kp

)
−KPQ (N)]P +KQP (N)Q

−aQ′ − [QνQΠ′]
′
= KPQ (N) P −KQP (N) Q

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.16)

We note that the third equation in (3.16) is an equation where the in-
dependent variable is z = t and x is a parameter which is present only
through P . Therefore, we construct travelling wave solutions of the form
p (x, t) = P (z), q (x, t) = Q (z), m (x, t) = M (t;x), n (x, t) = N (z),
z = x− at, where a > 0 is the wave speed.
We search for solutions that satisfy the following properties:

Supp(Q) ⊆ (−∞, 0], P (+∞) = 0, (3.17)
P (−∞) = 0, Q (−∞) = kp, (3.18)

P (0) = kp, Q (0) = 0, (3.19)
M(0;x) = km (initial condition for M) (3.20)

N (−∞) = 0, N (+∞) =
β

ζ
km > nk (3.21)

In this framework, we introduce the following K function:

K (n) = εH (nk − n)

where H is the Heaviside function, i.e., H (n) = 1 for n > 0 and H (n) = 0
for n < 0, and ε > 0 a constant coefficient. This choice satisfy the
conditions (2.2). We take

KPQ (n) = K (n) , KQP (n) = ε−K (n) . (3.22)

3.2.1 M equation

First of all, let’s consider the third equation in (3.16). It can be
rewritten as follows:

aM ′ = η

[
M

km
−
(

1− αP

η

)]
M. (3.23)
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For a given x, if we suppose that M attains a maximum greater than km
in t∗, then M ′ (t∗;x) = 0, M (t∗;x) = M∗ > km > 0, and

0 = −αPM∗ + ηM∗
(

1− M∗

km

)
.

Simplifying the equation gives

P =
η

α

(
1− M∗

km

)
< 0

which does not make biologically sense.This argument is valid for every x;
therefore,

M ≤ km. (3.24)

The analysis of the M equation is quite involved, therefore we go through
the other equations.

3.2.2 N equation

Then, let’s consider the last equation in (3.16) in the region of Supp(P ).
Supposing that N has a maximum point in z∗ such that N (z∗) > N̄ =
β
ζ
km > 0, we have N ′ (z∗) = 0, N ′′ (z∗) < 0; moreover, if we fix x, then we

define

t∗ =
x− z∗

a
, M∗ = M (t∗;x) , N∗ = N (z∗) ,

P ∗ = P (z∗) > 0.

We have M∗ ≤ km from (3.24), due to the argument done in the previous
paragraph for the M equation, and KB (N∗)P ∗ > 0 since P ∗ > 0 and the
KB function is non-negative. As a result, we deduce that

DN N
′′ (z∗) = −βM∗ + γKB (N∗)P ∗ + ζN∗

> −βkm + γKB (N∗)P ∗ + βkm = γKB (N∗)P ∗ > 0.
(3.25)

Thus, there is an absurd, since

0 > DN N
′′ (z∗) > γKB (N∗)P ∗ > 0

This argument is valid for every x. The solutions of (3.15), coupled with
boundary conditions for N (3.21), is monotonically increasing from 0 to
β
ζ
km
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3.2.3 Regions of analysis: case I

We analyse the travelling wave in two cases: Case I and Case II.
Denoting by z0 where N = nk, in Case I we assume z0 < 0, while in
Case II z0 > 0. In this subsection we consider Case I. Thus, we can split
the analysis in three regions, as depicted in Fig. 3.2, Region I, II and
III. Denoting by z0 where N = nk, these regions are characterized in the
following way:

• Region I: z ∈ (−∞, 0] , with N < nk;

• Region II: z ∈ [z0, 0], with N > nk for z > z0;

• Region III: z ∈ [0,+∞), with N > nk.

Figure 3.2: Travelling wave regions: p in blue, q in red

From the sum of the first two equations of (3.15) we have

−a (P +Q)′ − (νP P Π′)
′− (νQQΠ′)

′
=

KB (N)P

(
1− P +Q

kp

)
.

(3.26)
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Multiplying this equation for µΠ, after some calculations, we obtain:

−aΠ′ (P +Q) = µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′

+KB (N)P

(
1− P +Q

kp

)]
(3.27)

We can use the maximum principle on the interval (−∞, 0) applied to
(3.26) to recover that, since we have Π (−∞) = Π (0) = Kµ k

µ
p , Π ≡ kp on

(−∞, 0). In fact, if we suppose that z∗ = argmaxz∈(−∞,0) Π, Π(z∗) > Kµ k
µ
p ,

then we have that

Π (z∗) > kµp , (P +Q) (z∗) > kp, Π′ = 0,

(P +Q)′ = 0, Π′′ < 0, (P +Q)′′ < 0.

It follows that we have an absurd, because the right hand side in (3.27)
will be negative

µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′+

KB (N)P

(
1− P +Q

kp

)]
< µΠ [(νP P + νQQ) Π′′] < 0,

and the left hand side of the same equation will be zero. Therefore,
Π ≤ Kµ k

µ
p so P +Q ≤ kp. This implies P ≤ kp, Q ≤ kp. Moreover, if we

suppose there is a local minimum for P +Q in (−∞, 0) greater than kp,
then

Π′ = 0, (P +Q)′ = 0, Π′′ > 0, (P +Q)′′ > 0,

but this is impossible since the right hand side in (3.27) will be positive

µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′+

KB (N)P

(
1− P +Q

kp

)]
> µΠ [(νP P + νQQ) Π′′] > 0,

and the left hand side of the same equation will be zero. As a consequence,
we deduce that on (−∞, 0]

P ′ +Q′ = 0, (3.28)

and from the boundary conditions we have that on (−∞, 0]

P +Q = kp. (3.29)

We start from the Region II to obtain a result useful for the computations
in Region I, and then we will proceed in Region III.
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Region II Recalling that P +Q = kp, Π′ = 0, P ′ +Q′ = 0, the system
(3.16) can be written as follows:

aP ′ = −εQ
aQ′ = εQ

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.30)

Integrating the first equation in (3.30), this system has the following
solutions:

P (z) = kp − k e
ε
a
zQ (z) = k e

ε
a
z, (3.31)

with k a constant to be defined with a proper boundary condition. Recalling
that P (0) = kp, P + Q = kp, we deduce that Q (0) = 0. Then, the
differential equation for Q has only the null solution Q ≡ 0, so k = 0. As
a result, we have

P ≡ kp, Q ≡ 0. (3.32)

Region I Recalling that P + Q = kp, Π′ = 0, P ′ + Q′ = 0, the system
(3.15) can be written as follows:

aP ′ = εP

aQ′ = −ε P

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.33)

with boundary conditions (3.20), (3.18). Integrating the first equation in
(3.33), this system has the following solutions:

P (z) = k e
ε
a
z, Q (z) = kp − k e

ε
a
z (3.34)

with k a constant to be defined with a proper boundary condition. To this
purpose, we can obtain the analytical expression for P and Q in Region I
starting from (3.34) and using the boundary conditions of P and Q in z0
deduced from the analysis in Region II P (z0) = kp, Q (z0) = 0:

P (z) = kp e
ε
a
(z−z0), Q (z) = kp

(
1− e

ε
a
(z−z0)

)
(3.35)
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Region III Recalling that Supp(Q) ⊆ (−∞, 0], in this region Q = 0,
and Π = P µ. Therefore, the system (3.15) can be written as follows:

−aP ′ − [P νP (P µ)′]
′
=

[
KB (N)

(
1− P

kp

)]
P

Q = 0

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.36)

We consider now the first equation of the system on [0,+∞) (3.36):

−aP ′ − [P νPΠ′]
′
=

[
KB (N)

(
1− P

kp

)]
P (3.37)

P (0) = kp, P (+∞) = 0, P ′(0) = 0, P ′(+∞) = 0. (3.38)

Using the maximum principle on (3.37), Π is monotonically decreasing.
Multiplying both sides of (3.37) by Π and using the fact that

Π [νPPΠ′]
′
= [ΠP νPΠ′]

′ − νP P (Π′)2

we obtain:

−aP ′Π− [ΠP νPΠ′]
′
+ νP P (Π′)2 = KB (N)

(
1− P

kp

)
P Π (3.39)

P (0) = kp, P (+∞) = 0. (3.40)

For every r1 ≥ 0, r2 > r1, integrating over [r1, r2] and estimating from
above using the fact that

Π, P are positive and bounded on (0,+∞) ;

P (+∞) = 0, Π (+∞) = 0;

Π′ < 0, P ′ < 0 and bounded on (0,+∞) ;

P ′(0) = 0, Π′ (0) = 0, c > 0,

and defining

f (P,N) := KB (N)

(
1− P

kp

)
,

we find∫ r2

r1

(νP P ) Π′
2
dx ≤

∫ r2

r1

f (P,N)P Π dx+ [Π νPPΠ′]
r2
r1
<∞ (3.41)

Hence, Π′ ∈ L2 [(r1, r2)], so Π′ ∈ L2
loc ((0,+∞)) and, therefore, Π is con-

tinuous on [0,+∞]; as a consequence, P +Q is continuous as well. This
implies also P is continuous as well.
Furthermore, on [0,+∞), Q ≡ 0.
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3.2.4 Regions of analysis: Case II

In this subsection we consider Case II. Thus, we can split the analysis
in two regions, as depicted in Fig. 3.3, Region I and II. Denoting by z0
where N = nk, these regions are characterized in the following way:

• Region I: z ∈ (−∞, 0];

• Region II: z ∈ [0,+∞).

Figure 3.3: Travelling wave regions: p in blue, q in red

We will follow the initial steps illustrated before in the Case I.

Region I From the sum of the first two equations of (3.15) we have

−a (P +Q)′ − (νP P Π′)
′− (νQQΠ′)

′
=

KB (N)P

(
1− P +Q

kp

)
.

(3.42)

Multiplying this equation for µΠ, after some calculations, we obtain:

−aΠ′ (P +Q) = µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′

+KB (N)P

(
1− P +Q

kp

)]
(3.43)

We can use the maximum principle on the interval (−∞, 0) applied to
(3.42) to recover that, since we have Π (−∞) = Π (0) = Kµ k

µ
p , Π ≡ kp on

(−∞, 0). In fact, if we suppose that z∗ = argmaxz∈(−∞,0) Π, Π(z∗) > Kµ k
µ
p ,

then we have that
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Π (z∗) > kµp , (P +Q) (z∗) > kp, Π′ = 0,

(P +Q)′ = 0, Π′′ < 0, (P +Q)′′ < 0.

It follows that we have an absurd, because the right hand side in (3.43)
will be negative

µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′+

KB (N)P

(
1− P +Q

kp

)]
< µΠ [(νP P + νQQ) Π′′] < 0,

and the left hand side of the same equation will be zero. Therefore,
Π ≤ Kµ k

µ
p so P +Q ≤ kp. This implies P ≤ kp, Q ≤ kp. Moreover, if we

suppose there is a local minimum in (−∞, 0) for P +Q greater than kp,
then

Π′ = 0, (P +Q)′ = 0, Π′′ > 0, (P +Q)′′ > 0,

but this is impossible since the right hand side in (3.43) will be positive

µΠ [(νP P + νQQ) Π′′ + (νP P
′ + νQQ

′) Π′+

KB (N)P

(
1− P +Q

kp

)]
> µΠ [(νP P + νQQ) Π′′] > 0,

and the left hand side of the same equation will be zero. As a consequence,
we deduce that on (−∞, 0]

P ′ +Q′ = 0, (3.44)

and from the boundary conditions we have that on (−∞, 0]

P +Q = kp. (3.45)

We can recover the analytical expression of P and Q in Region I, since
their equations reduce to: {

−aP ′ = −εP
−aQ′ = εP.

(3.46)

This system has the following solutions:

P (z) = k e
ε
a
z, Q (z) = kp − k e

ε
a
z (3.47)

with k a positive constant to be defined with a proper boundary condition.
To this purpose, we can obtain the analytical expression for P and Q in
Region I starting from (3.47) and using the boundary conditions of P and
Q in 0:

P (z) = kp e
ε
a
z, Q (z) = kp

(
1− e

ε
a
z
)

(3.48)
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Region II Recalling that Supp(Q) ⊆ (−∞, 0], in this region Q = 0, and
Π = P µ. Therefore, the system (3.15) can be written as follows:

−aP ′ − [P νP (P µ)′]
′
=

[
KB (N)

(
1− P

kp

)]
P

Q = 0

−aM ′ = −αP M + ηM

(
1− M

km

)
−aN ′ −DNN

′′ = β M − γ KB (N) P − ζ N

(3.49)

We consider now the first equation of the system on [0,+∞) (3.49):

−aP ′ − [P νPΠ′]
′
=

[
KB (N)

(
1− P

kp

)]
P (3.50)

P (0) = kp, P (+∞) = 0, P ′(0) = 0, P ′(+∞) = 0. (3.51)

Using the maximum principle on (3.50), Π is monotonically decreasing.
Multiplying both sides of (3.50) by Π and using the fact that

Π [νPPΠ′]
′
= [ΠP νPΠ′]

′ − νP P (Π′)2

we obtain:

−aP ′Π− [ΠP νPΠ′]
′
+ νP P (Π′)2 = KB (N)

(
1− P

kp

)
P Π (3.52)

P (0) = kp, P (+∞) = 0. (3.53)

For every r1 ≥ 0, r2 > r1, integrating over [r1, r2] and estimating from
above using the fact that

Π, P are positive and bounded on (0,+∞) ;

P (+∞) = 0, Π (+∞) = 0;

Π′ < 0, P ′ < 0 and bounded on (0,+∞) ;

P ′(0) = 0, Π′ (0) = 0, c > 0,

and defining

f (P,N) := KB (N)

(
1− P

kp

)
,

we find∫ r2

r1

(νP P ) Π′
2
dx ≤

∫ r2

r1

f (P,N)P Π dx+ [Π νPPΠ′]
r2
r1
<∞ (3.54)

Hence, Π′ ∈ L2 [(r1, r2)], so Π′ ∈ L2
loc ((0,+∞)) and, therefore, Π is con-

tinuous on [0,+∞]; as a consequence, P +Q is continuous as well. This
implies also P is continuous as well.
Furthermore, on [0,+∞), Q ≡ 0.
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Numerical simulations

The code employed to approximate numerically the travelling wave
solutions is written in
MATLAB R©. We use the function pdepe [30] to compute the numerical
solution of the complete system (2.5). The code solves initial-boundary
value problems for systems of parabolic and elliptic PDEs in the one space
variable x and time t. The standard call of the function is:

1 sol = pdepe(m,pdefun ,icfun ,bcfun ,xmesh ,tspan)

where pdefun, icfun, bcfun are function handles. The ordinary differential
equations (ODEs) resulting from discretization in space are integrated to
obtain approximate solutions at time intervals specified in tspan. The
pdepe function returns values of the solution on a mesh provided in xmesh.
pdepe solves PDEs of the form:

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m

∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+s

(
x, t, u,

∂u

∂x

)
.

(4.1)

The PDEs hold for t0 ≤ t ≤ tf and a ≤ x ≤ b. The interval [a, b] must be
finite. The integer m can be 0, 1, or 2, corresponding to slab, cylindrical,
or spherical symmetry, respectively. If m > 0, then a must be nonnegative.
We choose to set m = 0 at the beginning of our code. For t = t0, the
solution components takes the initial conditions of the form

u (x, t0) = u0 (x)

The boundary conditions, for all t and at x = a or x = b are of the following
form

p (x, t, u) + q (x, t) f

(
x, t, u,

∂u

∂x

)
= 0 (4.2)

39
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Note that the boundary conditions are expressed in terms of the flux f
rather than ∂u/∂x. Moreover, only p can depend on u.

4.1 Structure of the code

In the file Tumor1D.m there are the lines that will call two files. The
former call sets the value of the parameters, the latter calls the function
pdex which computes the solution of the full problem in 1D. The equations
to be passed to the solver will be in the non-dimensional form, so the
solutions that will be calculated and plotted in the following figures will
be non-dimensional.

1 clear all
2 parameters;
3 pdex17 ();

In the file parameters.m we define all the parameters and their own
values. We prefer to define the variables as global in order to share them
between the calls to the functions which will be used afterwards.

Listing 4.1: File parameters.m

1 global Dn1 Dn n0 t0 x0 psi Dp0 Dq0 gamma0 q0 p0
eta beta gamma eps alpha kp khatp chi Dp Dq per
ro m0 km khatm cm vmax

2 t0 = 57600;
3 x0 = 0.2;
4

5 p0 = 10^9 * x0^3; %[cells]
6 q0 = p0;
7 n0 = 5* 10^ -2*10^ -3; %[M]
8

9 Dp0 = 10^ -9;
10 Dq0 = Dp0 *2;
11 Dn0 = 2 * 10^-5;
12

13 Dp = Dp0*t0/x0^2;
14 Dq = Dq0*t0/x0^2;
15 Dn = Dn0*t0/x0^2;
16

17 kp = 1.*p0;
18 khatp = kp/p0;
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19 chi =0.34*0;
20 ro = 0.38*0;
21

22 m0 = 1;
23 km = m0;
24 khatm= km/m0;
25 alpha = 10;
26 eta = 0.15;
27

28 beta = 0.3*t0;
29 gamma = gamma0*p0/n0;
30 psi = 0.15*t0;
31 gamma0 = 2 * 10^ -12/32; %[M/cell]
32 gamma = gamma0*p0/n0;
33

34 gammas = 1e-5;
35

36 vmax = gammas*t0;
37

38 cm = 1.5e -7/32*1000/ n0;
39

40

41 % The value of eps tunes the reference value for
the quiescent cells;

42 % per tunes the difference between the
proliferating and quiescent cells;

43

44 eps = 70;
45 per = 0.05;

The function pdex defines the 1D mesh and the time interval, with its
discretization to be employed, with the following commands:

1 %% Matlab code
2 % This file compute the solution for the whole

system
3 % with every component; it uses a linear function

for K_B , tanh function for K_{PQ}
4 %close all
5 m = 0;
6 x =linspace (0,1,150);
7 t = linspace (0,1,200);
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8 options = odeset(’RelTol ’,1e-6,’AbsTol ’,1e-7,’BDF’
,’on’,’MaxOrder ’ ,5);

9 sol = pdepe(m,@pdex4pde ,@pdex4ic ,@pdex4bc ,x,t,
options);

In x and in t we store the discretization of the space and time interval,
respectively. In the variable options, which can be passed as input to
pdepe, one can set the values for the relative and absolute tolerance of
the solver, to use the Backward Difference Formula (BDF), and eventually
its maximum order. The spatial dependence is approximated with Finite
Difference Method, while time stepping is adaptive. For time integration,
the pdepe command uses a variable order multistep solver, based on Gear’s
method [26]. In the following lines we store the results in 4 different
variables, respectively, for p(x, t), q(x, t),m(x, t), n(x, t). Then, we plot a
3-D coloured surface with the command surf for every variable.

1 u1 = sol(:,:,1);
2 u2 = sol(:,:,2);
3 u3 = sol(:,:,3);
4 u4 = sol(:,:,4);
5 figure
6 s1=surf(x,t,u1)
7 title(’p(x,t)’)
8 xlabel(’Distance x’)
9 ylabel(’Time t’)

10 s1.EdgeColor = ’none’;

At the end, we compare the profiles of the fields p, q,m, n and of p+ q at
time t = 1, in order to point out the possible profiles of travelling waves
with 1D plots.

1 figure
2 hold on
3 plot(x,u1(end ,:,1))
4 plot(x,u2(end ,:,1))
5 plot(x,u1(end ,:,1)+u2(end ,:,1))
6 plot(x,u3(end ,:,1))
7 plot(x,u4(end ,:,1))

The function pdepe uses the function pdex4bc, pdexic, and pdex4pde.
First, let’s look at the first one:

Listing 4.2: Function pdex4bc
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1 function [pl ,ql,pr,qr] = pdex4bc(xl ,ul,xr ,ur,t)
2 pl = [0;0;0;0];
3 ql = [1; 1; 1; 1];
4 pr = [0; 0; 0; 0 ];
5 qr = [1; 1; 1; 1];

In our simulations, we will adopt the choice of zero flux on the boundary
for all the four equations, respectively of p̂, q̂, m̂, n̂. Therefore, we have to
define four vectors of length four for the values of the function p (x, t, u)
and q (x, t) of 4.2.

pl = p (xl, t, u) , pr = p (xr, t, u) , ql = q (xl, t) , qr = q (xr, t) ,

x = (xl, xr)

In our simulations they are, respectively, 0 and 1 on the left and right
border of the interval x. After that, we define the initial condition in the
function pdexic:

Listing 4.3: Function pdex4ic

1 function u0 = pdex4ic(x);
2 u0 = [ 0.0015* exp (-0.2*x)*(x<=1); 0; 1; 2];

Here, we define the vector u0 of length four to store the initial values of
p (x, 0) , q (x, 0) ,m (x, 0) , n (x, 0). Finally, we provide the definition of the
functions and equations:

Listing 4.4: Function pdex4pde

1 function [c,f,s] = pdex4pde(x,t,u,DuDx)
2 global Dn1 Dn n0 t0 x0 psi kB Dp0 Dq0 gamma0 q0 p0

eta beta gamma eps alpha kp khatp chi Dp Dq per
ro m0 km khatm mu cm vmax

3

4 k1 = vmax *(u(4)/(cm+u(4)))*(1-(u(1)+u(2))/khatp
);

5 k2 = vmax *(u(4)/(cm+u(4)));
6

7 kPQ = eps*0.5*( - tanh (50*(u(4) -0.5)) + 1) ;
8

9 kQP = (eps - kPQ);
10

11 mu= 200;
12 c = [1; 1;1;1];
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13 f = [Dp*mu*(mu+1)/mu*(u(1)+u(2))^(mu -1)*u(1),Dp*
mu*(mu+1)/mu*(u(1)+u(2))^(mu -1)*u(1) ,-ro*u(1)
,-chi*u(1) ; Dq*mu*(mu+1)/mu*(u(1)+u(2))^(mu
-1)*u(2),Dq*mu*(mu+1)/mu*(u(1)+u(2))^(mu -1)*u
(2) ,0,0;0,0,0,0;0,0,0,Dn] * DuDx;

14 s = [(k1 - kPQ )*u(1)+ q0/p0*kQP *u(2) ;
kPQ*u(1)*p0/q0 - kQP *u(2) ;-alpha*u(1)*u(3)+
eta * u(3)*(1-u(3)/khatm) ;beta* u(3)-gamma*u

(1)*k2-psi*u(4) ];

First, we define the logistic term
(

1− p̂+q̂

k̂p

)
with the K̂B function, in k1,

then K̂B with k2. After that, we define the function KPQ and KQP , the
value of mu used for the power law of Π, the vector c which stores the
coefficient of the values of c

(
x, t, u, ∂u

∂x

)
of 4.1. Lastly, we define two vector

f and s which are the fluxes and source term in 4.1. Therefore, we have to
write in term of the fluxes and sources the terms present in the equations
that we want to solve, in this case 2.5.

4.2 Test cases

In this section, we illustrate some numerical examples to investigate how
the solution is affected by the parameters and of the functions employed.
In particular, in order to see if the profile of the travelling wave is affected,
we will see the simulations for:

• no chemotaxis and chemotaxis;

• only chemotaxis;

• only haptotaxis;

• both chemotaxis and haptotaxis.

Then, we will compare the profile of the proliferating and the quiescent
cells to see the difference in terms of speed of the travelling waves. In order
to do so, we chose a proper time interval to fit all the simulations.
The initial conditions are the following:

p̂ (x, 0) = 0.0015 e−0.20x Ix≤0.1, q̂ (x, 0) = 0,

m̂ (x, 0) = 1, n̂ (x, 0) = 2.
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We impose zero flux boundary condition at the border of the one dimen-
sional space domain x = (0, L). When no further information is provided
in the following tests, it is understood that the coefficients introduced in
2.1 and the functions defined in 4.2.1 are used.

4.2.1 No haptotaxis and chemotaxis

We start the analysis considering the following set of function and
parameters adopted:

K̂PQ (n̂) = ε× 0.5 [1− tanh ((n̂− nk))] , (4.3)

K̂QP (n̂) = ε− K̂PQ (n̂) = ε× 0.5 [1 + tanh ((n̂− nk))] , (4.4)

K̂B (n̂) = vmax
n̂

cm + n̂
, ε = 70, nk = 0.1, µ = 200, (4.5)

Π = Kµ (p+ q)µ , Kµ =
µ+ 1

µ
. (4.6)

In this subsection we are addressing the problem without chemotaxis
and haptotaxis, therefore we put ρ̂ = χ̂ = 0. The other parameters are
taken into account the nondimensionalisation of the problem 2.1. We
use the space interval x = (0, L), with L = 1, subdivided into nx = 150
subintervals of the same length, while the time interval is t = (0, T ), with
T = 1.5, subdivided into nt = 1500 subintervals. Therefore, we have
∆x = L

nx
= 0.0067, ∆t = T

nt
= 0.001. In Figure 4.1 are reported the

numerical solutions of the system. We see that on the left p̂+ q̂ is equal
to 1; moreover, p reaches 1 and it decays to 0 at approximately x = 0.5.
The numerical solutions are more similar to the travelling wave solution
of Case I rather than Case II, because, we observe that the position of
z = 0 in the framework of the travelling wave, where P starts to decrease,
is ahead of z0, where N = 0.1. However, Q does not vanish in z0 in the
numerical solution, as it should be from the analysis. Nevertheless, the
other characteristics of the solution match.
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Figure 4.1: Travelling wave without haptotaxis and chemotaxis: p̂ in blue, q̂
in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1.5

In Figure 4.2 there are four pictures showing the travelling wave profiles
of the variables overlapped for different time instants.

Remark If P ≡ 0 on [r,+∞), then the equation for M simplifies in

M ′ = −η
a
M

(
1− M

km

)
with M(+∞) = 0. (4.7)

If we suppose that M(r) < km), then the right hand size of equation (4.7)
will be negative, and this implies that M ′ < 0 on [r,+∞), which leads
to an absurd because there is no possibility to match iwth the boundary
condition M(+∞) = km. As a result, the only solution that can fulfil the
boundary condition at +∞ (3.20) is

M ≡ km on [r,+∞) . (4.8)
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(a) (b)

(c) (d)

Figure 4.2: Travelling wave profiles of the numerical solutions at t = 0.7,
t = 0.85, t = 1 without chemotaxis and haptotaxis: p̂ on the top
left, q̂ on the top right, m̂ on the bottom left, n̂ on the bottom
right. The solutions at t = 1.2, t = 1.35, t = 1.5 are plotted with
dashed red line, dotted blue line and solid black line respectively.

4.2.2 Chemotaxis activated

In this case, we keep all the same parameters used in 4.2.1, adding
the dimensionless coefficient for the chemotaxis χ̂ = 0.05. We choose
x = (0, L), with L = 1, nx = 150, t = (0, T ), with T = 1, nt = 1000, so
that we have the same ∆x, ∆t used in 4.2.1.
The system to solve is the following: In Figure 4.3 are reported the
numerical solutions. We see that on the left p̂+ q̂ is approximately to 0.9,
sufficiently far from the border x = 0; moreover, p̂ does not have the same
profile of 4.2.1 because, starting from approximately 0 at x = 0, it increases,
decreases and increases to 1. Finally, it decays to 0 at approximately
x = 0.58. q̂ and p̂ have some little oscillations before x = 0.3. The profiles
of m̂, n̂ are smoother than 4.2.1.
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Figure 4.3: Travelling wave with chemotaxis: p̂ in blue, q̂ in red, p̂+ q̂ in yellow,
m̂ in purple, n̂ in green at time t = 1

In Figure 4.4 there are four pictures showing the travelling wave profiles
of the variables overlapped for different time instants.
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(a) (b)

(c) (d)

Figure 4.4: Travelling wave profiles of the numerical solutions at t = 0.7,
t = 0.85, t = 1 with chemotaxis: p̂ on the top left, q̂ on the top
right, m̂ on the bottom left, n̂ on the bottom right. The solutions
at t = 0.7, t = 0.85, t = 1 are plotted with dashed red line, dotted
blue line and solid black line respectively.

4.2.3 Haptotaxis activated

In this case, we keep all the same parameters used in 4.2.1, adding the
dimensionless coefficient for the chemotaxis ρ̂ = 0.05. We use the same
L,∆x, T,∆t of 4.2.2 for the space and time discretization. In Figure 4.5
are reported the numerical solutions. We see that on the left p̂ + q̂ is
approximately to 0.96; moreover, p̂ does not have the same profile of 4.2.1
because, starting from approximately 0 at x = 0, it increases, decreases
and increases to 1. Finally, it decays to 0 at approximately x = 0.62. q̂
and p̂ have some little oscillations before x = 0.3. The profiles of m̂, n̂ are
smoother than 4.2.1.
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Figure 4.5: Travelling wave with haptotaxis: p̂ in blue, q̂ in red, p̂+ q̂ in yellow,
m̂ in purple, n̂ in green at time t = 1

In Figure 4.6 there are four pictures showing the travelling wave profiles
of the variables overlapped for different time instants.
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(a) (b)

(c) (d)

Figure 4.6: Travelling wave profiles of the numerical solutions at t = 0.7,
t = 0.85, t = 1 with haptotaxis: p̂ on the top left, q̂ on the top
right, m̂ on the bottom left, n̂ on the bottom right. The solutions
at t = 0.7, t = 0.85, t = 1 are plotted with dashed red line, dotted
blue line and solid black line respectively.

4.2.4 Chemotaxis and Haptotaxis activated

In this case, we keep all the same parameters used in 4.2.1, adding the
dimensionless coefficient for the chemotaxis ρ̂ = 0.05, χ̂ = 0.05. We use the
same L,∆x, T,∆t of 4.2.2, 4.2.3 for the space and time discretization. In
Figure 4.7 are reported the numerical solutions. We see that on the left p̂+q̂
is approximately to 0.9; moreover, p̂ does not have the same profile of 4.2.1
because, starting from approximately 0 at x = 0, it increases, decreases
and increases to 1. Finally, it decays to 0 at approximately x = 0.62. q̂
and p̂ have some little oscillations before x = 0.8. The profiles of m̂, n̂ are
smoother than 4.2.1. This solution takes into account all the effects of the
haptotaxis and chemotaxis, as a result the front of the travelling wave is
more ahead than in 4.2.2, 4.2.3.
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Figure 4.7: Travelling wave with haptotaxis and chemotaxis: p̂ in blue, q̂ in
red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1

In Figure 4.8 there are four pictures showing the travelling wave profiles
of the variables overlapped for different time instants.
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(a) (b)

(c) (d)

Figure 4.8: Travelling wave profiles of the numerical solutions at t = 0.7,
t = 0.85, t = 1 with chemotaxis and haptotaxis: p̂ on the top left,
q̂ on the top right, m̂ on the bottom left, n̂ on the bottom right.
The solutions at t = 0.7, t = 0.85, t = 1 are plotted with dashed
red line, dotted blue line and solid black line respectively.

4.2.5 Comparison of profiles

We want to see the differences between the profiles of p̂ and q̂ in the
cases examined before. Only the numerical simulation without chemotaxis
and haptotaxi preserves the monotonicity of p̂, while all the other present
numerical oscillations, which are more enhanced in the case of only hapto-
taxis. If we combine both the effects of chemotaxis and haptotaxis, the
numerical solution is more regular, but still not monotone and with some
oscillations in the q̂ profile.
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Figure 4.9: p̂ at time t = 1

Figure 4.10: q̂ at time t = 1

4.2.6 Simulations with increased νP and νQ

In this subsection we repeat the numerical simulation with the same
set of parameters used above, except for the random motility coefficients
νP , νQ, which are now 1000 times bigger than in 4.2.1. The following tests
investigate if it is possible to recover the monotonicity for p, where q = 0.

No haptotaxis and chemotaxis

In the Figure 4.11 we can see that the numerical solution profile without
chemotaxis and haptotaxis. In particular, we choose to use x = (0, L),
with L = 1, nx = 150, t = (0, T ), with T = 1, nt = 1000, so that we have
the same ∆x, ∆t used in 4.2.1.
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Figure 4.11: Travelling wave without haptotaxis and chemotaxis: p̂ in blue, q̂
in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1.5

The only small noticeable difference between this result and 4.2.1 is a
little shift to the right of p̂+ q̂ front peak.

Haptotaxis activated

In the Figure 4.12 we can see that the numerical solution profile with
haptotaxis. In particular, we choose to use x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 1.5, nt = 1500, so that we have the same
∆x, ∆t used in 4.2.1.

Figure 4.12: Travelling wave with haptotaxis: p̂ in blue, q̂ in red at time t = 1.5

In this case we appreciate a remarkable difference to 4.2.3. In fact, now
the sum of proliferating and quiescent cells is constant at the tail of the
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wave, while in 4.2.3 it was affected by some oscillations. Moreover, the
monotonicity of p̂ is not recovered, instead there is local minimum and
then a local maximum near the wavefront.

Chemotaxis activated

In the Figure 4.13 we can see that the numerical solution profile with
chemotaxis. In particular, we choose to use x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 1.5, nt = 1500, so that we have the same
∆x, ∆t used in 4.2.1.

Figure 4.13: Travelling wave with chemotaxis: p̂ in blue, q̂ in red at time
t = 1.5

In this case we appreciate a remarkable difference to 4.2.2. In fact,
now the sum of proliferating and quiescent cells is no more affected by
oscillations at the tail of the wave with respect to 4.2.3. Moreover, the
monotonicity of p̂ is recovered because there is a smoothing effect near the
wavefront due to the increased random motility.

Chemotaxis and Haptotaxis activated

In the Figure 4.14 we can see that the numerical solution profile with
haptotaxis and chemotaxis. In particular, we choose to use x = (0, L),
with L = 1, nx = 150, t = (0, T ), with T = 1.5, nt = 1500, so that we have
the same ∆x, ∆t used in 4.2.1.
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Figure 4.14: Travelling wave with chemotaxis and haptotaxis: p̂ in blue, q̂ in
red at time t = 1.5

In this case we can observe both the effects of chemotaxis and haptotaxis.
In particular, the numerical oscillations are smoothened, yet the p̂ profile
is not yet recovered, since there is a local minimum near the wavefront.

4.2.7 Simulations with νP = νQ

In this subsection we repeat the numerical simulation with the same
set of parameters used above, except for the random motility coefficients
νP , νQ, which are now equal each other to 10−9 cm2 s−1. In this case, we
investigate if the profiles of proliferating and quiescent cells is independent
on the relationship between νP and νQ.

No haptotaxis nor chemotaxis

In the Figure 4.15 we can see that the numerical solution profile without
chemotaxis and haptotaxis. In particular, we choose to use x = (0, L),
with L = 1, nx = 150, t = (0, T ), with T = 1.5, nt = 1500, so that we have
the same ∆x, ∆t used in 4.2.1.
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Figure 4.15: Travelling wave without haptotaxis and chemotaxis: p̂ in blue, q̂
in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1.5

In this test we can’t appreciate any difference in the profiles with respect
to 4.2.1.

Haptotaxis activated

In the Figure 4.16 we can see that the numerical solution profile with
haptotaxis. In particular, we choose to use x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 1, nt = 1000, so that we have the same ∆x,
∆t used in 4.2.1.

Figure 4.16: Travelling wave with haptotaxis: p̂ in blue, q̂ in red, p̂ + q̂ in
yellow, m̂ in purple, n̂ in green at time t = 1

Again, we can’t appreciate any difference in the profiles with respect
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to 4.2.3.

Chemotaxis activated

In the Figure 4.17 we can see that the numerical solution profile with
haptotaxis. In particular, we choose to use x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 1, nt = 1000, so that we have the same ∆x,
∆t used in 4.2.1.

Figure 4.17: Travelling wave with chemotaxis: p̂ in blue, q̂ in red, p̂ + q̂ in
yellow, m̂ in purple, n̂ in green at time t = 0.7

In this case, the travelling wave profile of the numerical solutions are
remarkably different from 4.2.2. In fact, the normalized oxygen concentra-
tion reaches a not null steady state at the tail of the wave; the normalized
ECM concentration does not reach the steady state since the we are not
able to clearly identify the steady state. Moreover, p̂, p̂+ q̂, q̂ do not reach
the unit value.

Chemotaxis and Haptotaxis activated

In the Figure 4.18 we can see that the numerical solution profile with
haptotaxis. In particular, we choose to use x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 0.9, nt = 900, so that we have the same
∆x, ∆t used in 4.2.1. In Figure 4.18 there is the numerical solutions of
this test.
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Figure 4.18: Travelling wave with haptotaxis and chemotaxis: p̂ in blue, q̂ in
red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 0.6

We can observe a combination of the effects of chemotaxis and hapto-
taxis on the travelling wave profiles, which are different with respect to
4.2.4. Moreover, the monotonicity of p̂ is not recovered, instead there is
local minimum and then a local maximum near the wavefront.

4.2.8 Simulations with different ρ̂ and χ̂

In this framework, we investigate the dependence on the chemotactic
and haptotactic rates. We’ll adopt two values that are different for many
orders of magnitude in the case of only haptotaxis and only chemotaxis.

Haptotaxis activated

First, we choose to examine the solutions for ρ̂ = 0.005, 0.1. In addition,
we choose x = (0, L), with L = 1, nx = 150, t = (0, T ), with T = 1.5,
nt = 1500, so that we have the same ∆x, ∆t used in 4.2.1.
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(a) (b)

Figure 4.19: Travelling wave profiles of the numerical solutions with haptotaxis:
p̂ in blue, q̂ in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green. On
the left, there is the case with ρ̂ = 0.005 at t = 1.5, whereas on
the right ρ̂ = 0.1 at t = 1

From Figure 4.19, we can observe that the solution with lower value of
ρ̂ looks like the case without haptotaxis and chemotaxis. Moreover, the
only small difference can be tracked in a little drop of p̂ at the wavefront.
On the other hand, the solution with higher value of ρ̂ have a bigger region
where p̂ is closer to 1, but there are more numericals oscillations affecting
p̂, q̂ with respect to 4.2.3.

Chemotaxis activated

The second test we want to carry on is to examine the solutions for
χ̂ = 0.013, 0.1. In addition, we choose x = (0, L), with L = 1, nx = 150,
t = (0, T ), with T = 1.5, nt = 1500, so that we have the same ∆x, ∆t used
in 4.2.1.
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(a) (b)

Figure 4.20: Travelling wave profiles of the numerical solutions with haptotaxis:
p̂ in blue, q̂ in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green. On
the left, there is the case with χ̂ = 0.013 at t = 1.5, whereas on
the right χ̂ = 0.1 at t = 1

From Figure 4.20, we can observe that the solution with a lower value
of χ̂ looks like the case without haptotaxis and chemotaxis. Moreover, the
only small difference can be tracked in the region of interface of p̂, q̂, since
the sum of the two increases a bit, remaining smaller than 1.
On the other hand, the solution with higher value of χ̂ have a bigger region
where p̂ is closer to 1, but the numerical oscillations affecting p̂, q̂ are a bit
more enhanced with respect to 4.2.2.

4.2.9 Rates of oxygen

In this framework, we are interested in the rates related to the oxygen.
In particular, we change the value of the decay and consumption rates
ζ̂ , γ̂ of oxygen, respectively, only for the case without chemotaxis and
haptotaxis.

Decay rate

We choose ζ̂ = β̂ = 0.3 × t0, x = (0, L), with L = 1, nx = 150,
t = (0, T ), with T = 1.7, nt = 1700, so that we have the same ∆x, ∆t used
in 4.2.1.
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Figure 4.21: Travelling wave without haptotaxis and chemotaxis: p̂ in blue, q̂
in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1.7

In Figure 4.21 there are the numerical solutions. In particular, we
can observe that the equilibrium state of the oxygen near the wavefront
is different from 4.2.1, because we recall N̄ = β

ζ
km, and so now we have

N̄ = 1. Furthermore, the region where p̂ is approximately 1 is smaller than
in 4.2.1. Finally, the profile of q̂ + p̂ can’t be approximated with q̂ at the
tail of the wave, because now p̂ is no more negligible.

Consumption rate

We choose to increase sensibly the consumption rate, because in 4.2.1
it was smaller for many orders of magnitude with respect to the decay
and production rates ζ̂ , β̂. So, we choose to increase the consumption rate
by a factor of 2× 1010, so now γ̂ = 7.8124× 104, x = (0, L), with L = 1,
nx = 150, t = (0, T ), with T = 1.5, nt = 1500, so that we have the same
∆x, ∆t used in 4.2.1.
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Figure 4.22: Travelling wave without haptotaxis and chemotaxis: p̂ in blue, q̂
in red, p̂+ q̂ in yellow, m̂ in purple, n̂ in green at time t = 1.5

In Figure 4.22 there are the numerical solutions. The steady state at
the tail of the wave of the wave is not fully developed. Thus, M̂, N̂ , P̂ are
not paltry. Furthermore, the region where p̂ is approximately 1 is smaller
than in 4.2.1, and p̂ profile is more abrupt near the wavefront. Finally, we
can’t approximate the profile of q̂ + p̂ with only q̂ at the tail of the wave,
because now p̂ is no more negligible.



Conclusions and Future Work

In this work we have developed and analysed a model for avascular
tumour growth. The model reads as system of four nonlinear coupled
partial differential equations for four species: the proliferating and quiescent
tumour cells, the extracellular matrix and the oxygen concentration. We
have found that a travelling wave may exist with appropriate boundary
conditions. The numerical simulations are in agreement with the theoretical
result about the existence of a travelling wave solution of the system. In
particular, the travelling wave solution is characterized by the following
properties, depicted in the theoretical analysis (Case I, under the hypothesis
z0 < 0):

• Q is a continuous function, exponentially decreasing for z < z0, with
lim

z→−∞
Q(z) = kp, and null for z > z0;

• P is a continuous function, exponentially increasing for z < z0, with
maximum value kp; it takes the constant value kp for z0 < z < 0 and
it is a monotone decreasing function for z > z0;

• P + Q is a continuous function; it takes the constant value kp for
z < z0, and it is equal to P for z > z0;

• N is a continuous monotone increasing function from 0 to N̄ = β
ζ
km.

In Case II, under the hypothesis z0 > 0, instead, the system is characterized
by the following properties, as pointed out in the theoretical analysis:

• Q is a continuous function, exponentially decreasing for z < 0, with
lim

z→−∞
Q(z) = kp, and null for z > 0;

• P is a continuous function, exponentially increasing for z < 0, it takes
the maximum value kp and it is monotonically decreasing function
for z > 0;
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• P + Q is a continuous function, it takes the constant value kp for
z < 0, and it is equal to P for z > 0;

• N is a continuous monotone increasing function from 0 to N̄ = β
ζ
km.

The numerical simulations are performed in MATLAB using finite differ-
ence scheme in space and BDF in time through the pdepe solver. The
numerical solution in the test case without chemotaxis and haptotaxis
approximate to the travelling wave solution of Case I. However, Q does
not vanish in z0 (see Fig 4.1) in the numerical solution, as it is expected
from the analysis. Thus, the numerical support of Q is larger than the
theoretical one. Nevertheless, the other characteristics of the solution
match.
Using the biological parameters available for the parameters relative to the
model equations, the tumour growth in the avascular phase asymptotically
reaches approximately the diameter of 2 mm in 50 days.
In particular, we can observe that the proliferating cells mainly occupy
the outer section of the tumour, while the quiescent cells the inner part.
In our case, we don’t handle a three population model for tumour cells,
i.e. necrotic, quiescent and proliferating cells, but a two population model
for tumour cells. In our study the biological and experimentally observ-
able necrotic core and the nearby annular region of quiescent cells are
occupied only by quiescent cells. However, the dynamics and the profile
of the numerical simulations depend on the presence of haptotaxis and
chemotaxis. In fact, the numerical profile of the proliferating and quiescent
cells can lose regularity because the problem, with a sufficiently high value
of the chemotactic and haptotactic coefficient, is dominated by advection
terms. This phenomenon could be avoided employing a more advanced
numerical scheme which is able to handle problem dominated by advection.
In addition, we can notice that the travelling wave speed is increased with
haptotaxis and chemotaxis since their effect is to model the movement of
cells towards higher values of ECM and oxygen concentration.
The increase of the coefficients νP , νQ leads to a regularising effect on the
profile of proliferating and quiescent cells in the numerical simulations.
Moreover, the simulations with chemotaxis activated depend on the dis-
crepancy between the two random motility coefficients. In fact, only the
numerical solutions, reported in Figures 4.17, 4.18, show evidence of the
discrepancy from the profiles where the diffusion coefficients are different
each other.
The increase in the values of the chemotactic and haptotactic coefficients
yields a bigger rim of proliferating cells in the outer region of the tumour.
The variation of the rates related to the oxygen leads to a different profile
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for the oxygen concentration, because its equilibrium state depends on the
production and decay rates β, ζ. Moreover, if we increase the consumption
rate, the numerical solution can’t be exactly viewed as a travelling wave
in the theoretical framework depicted in 3.2, because the ECM, oxygen
concentration and proliferating cells are not negligible at the tail of the
wave.
The analysis carried out in this work can be further extended in several
ways:

• study the existence and characterization of travelling wave solutions
in the presence of chemotaxis and haptotaxis;

• improve the accuracy of the numerical scheme adopted to solve the
system of equations, to remove the instabilities that appear in the
case of strong advection;

• develop numerical simulations in two dimensions, which are much
closer to experimental results in terms of pattern formation and
evolution.
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