
POLITECNICO DI MILANO
MSc in Computer Science and Engineering

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

AN EXPERIMENT IN AUTONOMOUS

NAVIGATION FOR A SECURITY

ROBOT

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Supervisor: Prof. Matteo Matteucci

Co-supervisor: Ing. Gianluca Bardaro

Master Graduation Thesis by:

Fabio Santi Venuto,

Student ID 837644

Academic Year 2016-2017

Alla mia famiglia...

Abstract

One of the most useful purpose in autonomous robots is to substitute for

human activity in the so called Dirty, Dangerous, Dull (DDD) tasks. The

Ra.Ro platform, developed by NuZoo, is designed to work as a security

robot, able to patrol, detect anomalies, and eventually send alarms to a cen-

tralized station. This platform is has to be adapted to different purposes and

customized for each client, but in most of cases an autonomous navigation

is required. The aim of this thesis is to propose a mapping and localization

system to avoid the well-known odometry drifting problem and allow for

long term autonomous navigation the Ra.Ro. platform. In particular, the

robot moves in an indoor environment, challenging because of the lack of

any global positioning sensor such as GPS in outdoor. The odometry system

provided by the wheel encoders is not precise enough and very sensitive to

errors, thus it is important to fuse the information retrieved by multiple sen-

sors such as IMU, LIDAR and a camera used to recognize specific markers

in order to compensate for odometry drifting.

The final results, testing the robot in real world scenarios, are quite sat-

isfying, allowing finally the robot to move autonomously in an environment

previously mapped.

5

Sommario

I robot autonomi nel ruolo di guardia di sicurezza non sono ancora comuni.

Una guardia efficiente deve essere abile nell’individuare persone non autor-

izzate o qualsiasi altra cosa che non vada bene. Deve essere reattiva, veloce

e ovviamente difficile da battere. Probabilmente la tecnologia attuale è pre-

matura, ma la piattaforma Ra.Ro. è molto semplice da adattare a scenari

differenti, a seconda delle richieste dei clienti. Essendo un robot basato su

una meccanica Skid-steering, ha senza dubbio l’abilità di muoversi autono-

mamente nell’ambiente, a prescindere dalla sua finalità.

La navigazione “autonoma” del Ra.Ro. commercializzato finora con-

siste nel seguire delle linee colorate incollate o dipinte sul pavimento e/o

seguire delle indicazioni date da dei marker appartenenti ad uno specifico

set e riconosciuti dalle telecamere installate. I problemi di questi approcci

sono faclimente individuabili. Prima di tutto, in determinati luoghi, non è

desiderabile avere il pavimento rovinato da linee incollate o dipinte, mentre

all’aperto è praticamente impossibile disegnarle o incollarle. Inoltre diverse

condizioni luminose possono condizionare il riconoscimento del colore delle

linee. Possiamo avere problemi simili quando abbiamo a che fare con i

marker, che hanno bisogno di essere appesi su muri o altri tipi di strutture

stabili. Se il robot usa le linee e i marker per pattugliare un edificio per ra-

gioni di sicurezza, sarebbe facile per un malintenzionato coprire, cancellare

o staccarli, facendo perdere il robot in pochi secondi.

7

Ringraziamenti

Poche parole, anche perché di più non me ne verrebbero. Sicuramente i miei

genitori sono le persone a cui vanno i miei più sentiti ringraziamenti. Sarà

banale dirlo, ma senza di loro e il loro supporto non sarei qui. Mio padre

dice sempre che “La libertà è avere le possibilità” e loro sono stati in grado

di darmi la libertà necessaria e sono sicuro che continueranno a farlo. Grazie

a mia sorella, Valeria, che mi sa capire e che nel momento del bisogno c’è

sempre.

Un ringraziamento speciale alla mia ragazza, Desy, che mi ha accompa-

gnato durante questo lungo percorso, dal primo giorno di università, fino

all’ultimo, aggiungendo un pizzico di amore che ha reso la strada da percor-

rere più piacevole.

Grazie agli amici di una vita, i miei amici pievesi (ed ex pievesi); Ori,

Andre, Mane e Gabry, e i nuotatori in pensione; Paolo, Giò, Andreino e Teo.

Di cuore a tutti un abbraccio. Insostituibili.

Grazie a mio cugino, Alessandro, che da quando è tornato in Italia mi

ha riavvicinato ad un pezzo di cultura: i videogiochi :) Forse ora avremo

più tempo per giocare a Overwatch con Alberto.

Grazie agli amici incontrati in università, in particolare ai ragazzi

dell’AirLab, Ewerton, Enrico, Davide e Dave, Teo e Luca e tutti coloro

che sono passati da l̀ı. Hanno reso l’ambiente di lavoro davvero speciale e il

loro supporto morale e tecnico è stato fondamentale.

Infine, ma non ultimi, grazie ai professori, in particolare il mio relatore,

Matteucci, una persona che mille ne pensa e duemila ne fa -letteralmente-

e Gianluca che mi hanno fatto capire un po’ di più cosa vuol dire essere un

ingegnere informatico.

Grazie,

Fabio

9

Contents

Abstract 5

Sommario 7

Ringraziamenti 9

1 Introduction 15

1.1 Thesis contribution . 16

1.2 Structure of the thesis . 16

2 The Ra.Ro. platform 19

2.1 Ra. Ro. Hardware . 19

2.2 Ra.Ro. Software . 20

2.2.1 ROS topics . 21

2.2.2 Built-in navigation . 23

3 Background knowledge 25

3.1 State estimation . 25

3.1.1 Baysian state estimation 26

3.1.2 Graph-based State Estimation 28

3.2 Odometry estimation . 29

3.2.1 Generic odometry . 29

3.2.2 Differential drive odometry 31

3.2.3 Skid-steering odometry 34

3.3 Sensor fusion framework . 38

3.3.1 ROAMFREE . 38

3.4 Simultaneous Localization and Mapping 43

3.4.1 Gmapping . 46

3.4.2 Cartographer . 47

3.5 Localization . 48

3.5.1 Adaptive Monte Carlo Localization (AMCL) 50

11

3.6 A note on ROS reference system 50

4 A new navigation system for the Ra.Ro. 53

4.1 Navigation system overview 53

4.2 Sensor fusion and odmetry estimation 55

4.2.1 Custom odometry . 56

4.2.2 ROAMFREE module 59

4.3 SLAM module . 64

4.4 Autonomous navigation module 65

5 Experiments 67

5.1 Setup description . 67

5.2 Odometry experiments . 69

5.2.1 Custom odometry . 70

5.2.2 ROAMFREE odometry 71

5.2.3 ROAMFREE with markers odometry 72

5.3 Mapping experiments . 74

5.3.1 Mapping with custom odometry 74

5.3.2 Mapping with ROAMFREE odometry 75

5.3.3 Mapping with ROAMFREE odometry and markers . 76

5.4 Navigation experiments . 76

6 Conclusion and Future Work 79

A About ROS and the TF library 81

A.1 ROS Filesystem Level . 82

A.2 ROS Computation Graph Level 82

A.3 The TF library . 84

B Sensors specifications 87

B.1 LSM303D

Ultra compact high performance e-compass: 3D accelerome-

ter and 3D magnetometer module 88

B.2 L3GD20H

MEMS motion sensor: three-axis digital output gyroscope . . 89

B.3 Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder 90

Bibliografy 91

List of Figures

2.1 Three Ra.Ro. views . 20

2.2 NuZoo web interface. The recognized marker is orange bor-

dered. 21

2.3 Ra.Ro. photograph from NuZoo website 23

3.1 A factor-graph for the product fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5).

28

3.2 Different integration methods results 30

3.3 Commercial differential drive robots 32

3.4 Differential drive kinematics 33

3.5 Differential drive robot motion from pose (x, y, θ) to (x′, y′, θ′) 34

3.6 Ra.Ro. wheels . 35

3.7 Skid-steering platform . 36

3.8 Geometric equivalence between the wheeled skid-steering robot

and the ideal differential drive robot 37

3.9 An instance of the pose tracking factor graph with four pose

vertices ΓWO (t) (circles), odometry edges eODO (triangles), two

shared calibration parameters vertices kθ and kv (squares),

two GPS edges eGPS and the GPS displacement parameter

S
(O)
GPS . 40

3.10 ROAMFREE estimation schema 42

3.11 The image represents the topics subscribed and published by

the mapping node, independently of the exact mapping sys-

tem used . 45

3.12 The tree frame representation. 51

4.1 The ROS standard navigation stack schema 54

13

4.2 Gyroscope measurement during two different time spans. The

time difference is about 550 seconds and we can se how the

bias change from an image to another. The represented mea-

surements are raw data from gyroscope. We can see from

the images comparison a difference of about 75. Considering

that the LSB represents 17.5 mdps, this difference means that

exists a bias variation of 75× 17.5mdps= 1.275dps. 58

4.3 An OptiTrack marker . 61

4.4 Different marker frame measurement passed to ROAMFREE.

The ones blue highlated are the tranformation required and

composed, the orange ones are the resulting transforamations 62

4.5 The tree frame representation, with node explanations 65

5.1 An approximate hand drown ground truth of the path made

by the robot . 69

5.2 The resulting path generated with the custom odometry . . . 70

5.3 The resulting path generated with the ROAMFREE odome-

try, without markers . 71

5.4 The resulting path generated with ROAMFREE odometry

and markers . 73

5.5 Map generated using Cartographer. The long corridors result

to be too short and the borders does not match properly. . . 74

5.6 The resulting map generated with the custom odometry . . . 75

5.7 The resulting map generated with the ROAMFREE odome-

try without markers . 76

5.8 The resulting map generated with the ROAMFREE odome-

try with markers . 77

5.9 The rviz visualization of the local and global costmaps . . . 78

A.1 The ROS Computations Graph 84

A.2 A representation of a robot with several frames. 85

B.1 LSM303D module . 88

B.2 L3GD20H module . 89

B.3 Hokuyo URG-04LX-UG01 . 90

Chapter 1

Introduction

“Narrator: Deep in the Caribbean, Scabb Island.

Guybrush: ...So I bust into the church and say, “Now you’re in for it, you

bilious bag of barnacle bait!”... and then LeChuck cries, “Guybruysh! Have

mercy! I can’t take it anymore!”

Fink: I think how he must have felt.

Bart: Yeah, if I hear this story one more time, I’m gonna be crying myself.”

Monkey Island 2: LeChuck’s revenge

Autonomous robots as security guardian are not yet common. An efficient

guard must be very smart in detecting unauthorized people or anything else

wrong. It must be reactive, fast and of course hard to be defeated. Probably

the current technology is premature to perform this task, but the Ra.Ro.

platform is very easy to be adapted to different scenarios, according to the

customers’ requests. Being a skid-steering based robot, it has certainly the

ability to move autonomously in the environment, regardless of its high-level

purpose.

Until now, the “autonomous” navigation of the commercialized Ra.Ro.s

consists in following colored lines sticked or painted on the floor and/or

following indications given by markers belonging to a specific set and rec-

ognized by the installed cameras. The issues of these approaches are easy

to identify. First of all, in some locations it is not desirable to have the

floor ruined by sticked or painted lines while in outdoor environments it is

almost impossible to draw or stick them. Moreover, different light condi-

tions can affect the line color detection. We can have a similar issue when

dealing with markers, which need to be hanged on walls or on similar stable

structures. If the robot uses the lines and markers to patrol a building for

security reasons, it will be quite easy for an malitious person to cover, delete

or detach them, getting the robot lost in seconds.

1.1 Thesis contribution

The Ra.Ro. platform is already equipped with different sensors such as IMU

(gyroscope, accelerometer and magnetometer), cameras and a LIDAR, but

they were not used as much as they could be potentially done, especially

these are not used for navigation.

This thesis proposes a multi-sensor navigation system based on the ROAM-

FREE framework, a system that provides a multi-sensor fusion tools to im-

prove the odometry estimation using the information provided by different

sensors. We used the wheel encoders, gyroscope, accelerometer and, for

a better result, visual markers as landmarks. Then, using the improved

odometries, we generated and compared different maps using mostly the

gmapping framework. Subsequently we set up the autonomous navigation

system using the move base framework with AMCL and we tested the whole

navigation stack in our indoor environments.

1.2 Structure of the thesis

The thesis is structured as follows:

• In Chapter 2 we describe the Ra.Ro. platform. In particular in Section

2.1 we introduce the hardware components which include the sensors

provided with the robot. In Section 2.2 we introduce the robot built

in software environment. In particular we describe the ROS topics

used by the robot and the built in navigation systems in the following

subsections.

• In Chapter 3 we provide the background knowledge needed to deeply

understand in what our project consists. In particular, Section 3.1

introduces the most common state estimation approaches. Then, in

Section 3.2, we focus on odometry estimation methods. Subsequently,

in Section 3.3 we introduce the sensor fusion approaches we applied in

this thesis, in particular we will introduce a custom odometry genera-

tion method and the ROAMFREE framework. The following Section

3.4 is about SLAM, simultaneous localization and mapping, and two

of the most popular ROS mapping systems. In Section 3.5 we describe

the AMCL localization algorithm. We conclude with a note about the

ROS reference system convention, in Section 3.6

• In Chapter 4 we describe our contribution, starting with the navigation

system overview in Section 4.1. Then, in Section 4.2 we describe the

16

detail about the odometry estimation implementation and the sensor

fusion framework applied. In Section 4.3 we explain how we used the

mapping module.

• In Chapter 5, after a brief set up introduction in Section 5.1, we de-

scribe the most significant experiment we make and the resulting out-

put. In particular, we describe experiments about odometry estima-

tion, in section 5.2, about mapping, in Section 5.3, and we provide

a brief discussion about localization and autonomous navigation in

section 5.4

• Finally in Chapter 6 we write about our conclusion, the main chal-

lenges we had to deal with, and our suggestion about future works on

this topic.

17

18

Chapter 2

The Ra.Ro. platform

“Guybrush: My name’s Guybrush Threepwood. I’m new in town

Pirate: Guybrush Threepwood? That’s the stupidest name I’ve ever heard!

Guybrush: Well, what’s YOUR name?

Pirate: My name is Mancomb Seepgood.”

The Secret of Monkey Island

In this chapter we introduce the Ra.Ro. platform. Ra.Ro. stands for Ranger

Robot, that is to say that its main purpose is to work as a security guard,

able to patrol parkings, supermarkets and so on. However, the producer

company, NuZoo offers the possibility of customizing the platform to meet

different requests. It has already been adapted by the producer company

for other different purposes, usually starting from its simpler version, code

name Geko, which is very similar to Ra.Ro. except for the cameras, which

are attached directly to the robot basis.

In the following paragraphs we focus on the version we have worked on,

introducing its hardware and software suite. [1]

2.1 Ra. Ro. Hardware

Ra.Ro. is a skid steer drive robot. The basis is 460 mm x 540 mm and it

is 270 mm tall. The robot reaches 750 mm including the cameras support.

It is equipped with four wheels driven by two 50W DC motors, set in the

middle of the two sides of the robot. Each motor drives a front and a rear

wheel connected with two transmission belts.

The robot is equipped with a 9 axis IMU composed by a LSM303D

module (3 axis magnetometer and 3 axis accelerometer) and a L3GD20H (3

axis gyroscope). The IMU is managed by a R2P board by Nova Labs [2]. A

Figure 2.1: Three Ra.Ro. views

Hokuyo Laser Scanner is included inside the robot body and allows a 170◦

view by projecting rays trough a 160 mm wide and 20 mm high body slit.

Inside the “head” of the Ra.Ro. are two HD cameras: a surveillance

camera, which rotates according to the head itself and a navigation camera,

which can, in addition, rotate around a horizontal axis. Vision into the

darkness is guaranteed by two led flashlights. We can see in Figure 2.1 three

Ra.Ro. views in which is possible to notice the two cameras, one flashlight

inside the head, one near the basis and the body slit at the bottom, from

which infrared laser rays are projected.

The core of the robot is an INTEL NUC built with an i5-5250U 64bit

CPU, DDR3 4 GB RAM and SSD 60GB as a hard drive support. A Wi-Fi

module is used to connect the robot to wireless nets or to convert it into

an access point, in case of accessible net unavailability or first net setup.

Ra.Ro. is able to recharge itself in a semi-autonomous way through a wide

contacts-pins matching with its recharging station. In case of needs, a wired

connection is also available to recharge the robot.

2.2 Ra.Ro. Software

The operative system currently installed on the NUC is Ubuntu 14.04 LTS,

and all the robot features are managed by ROS Indigo. The provided ROS

workspace includes most of the nodes and topics needed to start our work.

In particular, we have nodes responsible for publishing sensors data, such as

20

Figure 2.2: NuZoo web interface. The recognized marker is orange bordered.

encoders, IMU, camera vision, laser scans and markers. Moreover, we have

the nodes used to control the robot through the command velocity topics,

via joy-pad or via browser interface. The browser interface itself is also a

useful piece of software, which allows the user to see the images provided by

the two cameras, the recognized marker, and to manage the various minor

functionalities such as speakers, lights and so on. In Figure 2.2 we can see

the camera view form the browser interface. When a marker is recognized,

like in this case, an orange border is overlapped around the marker, in the

camera view.

2.2.1 ROS topics

In this section we describe the most relevant, to our purposes, ROS topics

published and/or subscribed by the previously implemented nodes. They

allow the ROS system to communicate both with sensors and actuators,

by reading outputs and sending commands respectively. The topics are

introduced with the name and the message type used.

• /r2p/encoder l and /r2p/encoder r, [std msgs/Float32]:

These topics, and all of the following ones which have a name starting

with r2p/, are published by the r2p board, which manages most of the

sensors. In particular, these topics publish as messages the number of

ticks per second done by the left wheels (r2p/encoder l) and the right

ones (r2p/encoder r). Every tick corresponds to a portion of spun

wheel.

21

• /r2p/imu raw, [r2p msgs/ImuRaw]:

This topic contains the raw messages from the IMU, including gy-

roscope, accelerometer and magnetometer. The r2p msgs/ImuRaw

is a custom message type built by three tridimensional vectors:

angular velocity, linear acceleration and magnetic field. The

names are self-explanatory enough and every vector has one compo-

nent per axis: x, y, z. The values published represent the MEMS

sensor register copy. In particular, the gyroscope has a 16 bit reading,

covering a range from -500 dps to +500 degrees per second (dps), with

a sensitivity of 17.50 millidegree per second (mdps) per least signifi-

cant bit (LBS) and the accelerometer has a 12 bit reading, covering

the range from −2g to +2g, that is about 1mg per LSB. The g here

stands for gravitational acceleration which measures about 9.81 m/s2

• /r2p/odom, [geometry msgs/Vector3]:

The r2p board system publishes in this topic a very raw odometry.

It is retrieved only by encoders data elaborations and is published as

a vector of three elements in which the first and the second elements

represent the position variation in meters (x and y) and the third

element represents the orientation angle variation in radians.

• /nav cam/markers, [nav cam/MsgMarkers]:

The nav cam node publish in this topic the list of markers recog-

nized by the robot, in real time. Each marker is represented as a

nav cam/MsgMarker message, which includes a numerical id of the

marker (id), the name of the published marker frame (frame id) and

its transform with the respect of the camera frame (pose), divided in

position, as a tridimensional vector, and orientation, as a quater-

nion.

• /odom, [nav msgs/Odometry]:

The autonomous nav node publishes the odometry built using

the messages from /r2p/odom. We have improved this odom-

etry for this project, as we will explain in Chapter 4. The

nav msgs/Odometry message contains pose information, divided in

position and orientation, and twist information, i.e. velocity,

which is divided in linear and angular, both with the respective

covariance matrices.

• /scanf, [sensor msgs/LaserScan]:

The autonomous nav node also publishes messages from the

Hokuyo laser scanner, after being filtered by some outliers. The

22

Figure 2.3: Ra.Ro. photograph from NuZoo website

sensor msgs/LaserScan messages represent the collection of the dis-

tances at which an infrared ray beamed by the laser scanner is inter-

cepted by an obstacle.

2.2.2 Built-in navigation

The provided workspace includes different ways to teleoperate the robot. All

of them always use the so called “laser bumper” which basically interrupts

all forward movements in case of obstacle detected by laser scanner in a

very close range. The teleoperation system operates in three ways: manual,

assisted and semi-autonomous.

Manual teleoperation : The manual teleoperation is managed through

the web application using a remote controller being plugged into a computer

and connected to the robot via network. It is the simplest way and it relies

completely on human control.

Assisted teleoperation : The assisted teleoperation is managed via the

web application interface which in this case can be run even on mobile de-

vices. It is Google street view inspired and allows to move the robot towards

a specific spot by clicking or touching on the correspondent on-screen spot

in the map besides its basic movements such as forward, backward and left

and right rotation. The system cannot manage obstacles in the trajectory.

We can also consider as assisted teleoperation the one with the particular

follow me marker. The operator can show the marker to the robot’s naviga-

tion camera and the robot tries to keep the marker into the camera frame,

following the person is holding it.

23

Semi-autonomous teleoperation : The most advanced navigation sys-

tems built into the robot consist in line following and in marker indication

following. The first one consists in following colored line sticked or painted

on the floor. It is possible to switch from one color to another. The second

one consists in executing simple navigation tasks according to the recognition

of a specific marker, which can be attached in sequence on walls creating, if

needed, a patrol path. Examples of a marker command can be to turn left

90◦, turn 180◦, keep the wall on your right. Moreover, a special marker is

set on the recharging station and the robot can, under proper conditions,

autonomously connect itself to the station after recognizing the marker.

None of these system implements a proper obstacle avoidance algorithm,

nor a good odometry calculation. There is no mapping system, thus no

localization is possible.

24

Chapter 3

Background knowledge

“Smirk : I like your spirit. I’ll do what I can. Of course... it’ll cost you.

What have you got?

Guybrush : All I have is this dead chicken.

Smirk : That isn’t one of those rubber chickens with a pulley in the middle

is it? I’ve already got one. What ELSE have you got?

Guybrush : I’ve got 30 pieces of eight.

Smirk : Say no more, say no more. Let’s see your sword.

Guybrush : I do have this deadly-looking chicken.

Smirk : Yes, swinging a rubber chicken with big metal pulley in it can be

quite dangerous... BUT IT’S NOT A SWORD!!! Let’s see your sword.”

The Secret of Monkey Island

3.1 State estimation

For a robot interacting with the environment it is important to retrieve in-

formation about the state of the environment around it and its own state.

This knowledge cannot be summarized into a unique hypothesis, in fact it

is crucial to also have a characterization of the uncertainty of this knowl-

edge [3].

We define the state of a robot as the values of specific variables needed

to identify the robot and/or parts of it in a specific state space, for exam-

ple, velocity, position or orientation of a particular component. Most of the

contemporary autonomous robots represent the possible states using prob-

ability distributions in order to not rely only on a single “best guess”, but

to have the possibility to take decisions under uncertain conditions.

A well designed robot should be able to retrieve heterogeneous informa-

tion given by different kind of sensors, in order to make the update of the

possible states depending on complementary information.

This is basically the definition of sensor fusion and in the following

paragraph we are going to introduce the most used probabilistic techniques

for state estimation. These techniques are employed in different fields but

on this essay we will focus only on the robotic field.

3.1.1 Baysian state estimation

We define the belief of a state with the following formula:

bel(xt) = p(xt|z1:t, u1:t) , (3.1)

the belief of a state at time t is defined as the probability to be in that state

given the measurements z from the sensors and the known input values u

until the time t.

To update the state and retrieve the measurement of the sensor at the t

time is not very practical; Indeed, the formula

bel(xt) = p(xt|z1:t−1, u1:t)

is more often used, in wich a posterior distribution represents the probability

of each state given its prior, i.e. sensor readings and the controls until time

t − 1. Hence, this distribution is called prediction. From bel(xt) we can

obtain bel(xt) in a recursive fashion, considering the first term as prior and

the second one as posterior. The most general form of the recursive state

estimation is the Bayes filter, which is here reported in Algorithm 1.

For each state variable we can divide its estimation into two steps. In the

first one, prediction, we estimate the state variable at time t given the ut and

xt−1. In the second one, update, the sensor readings zt are used, combined

with the previously calculated prediction. The mathematical formulation of

the Bayes filter is given by

bel(xt) = ηp(zt|xt)
∫
x
p(xt|xt−1, ut)p(xt)dxt−1

which can be obtained:

• from the Bayes rule: P (B|A)P (A)
P (B) , together with the law of total prob-

ability:

P (A) =

∫
P (A|B)P (B)dB

• assuming that the states follow a first-order Markow process, i.e. past

and future data are independent if the current state is known:

p(xt|x0:t−1) = p(xt|xn−1)

26

Algorithm 1 Bayesian filtering

1: function BayesFilter(bel(xt−1), ut, zt)

2: for all x do

3: bel(xt)←
∫
x p(xt|xt−1, ut)p(xt)dx

4: bel(xt)← ηp(zt|xt)bel(xt)
5: end for

6: return bel(xt)

7: end function

• assuming that the observations are independent of the given states,

i.e.

p(zt|x0:t, z1:t.u1:t) = p(zt|xt)

The generic Bayes filter algorithm is almost impossible to use since the

analytical representation of the multivariate posterior is usually difficult to

compute. Moreover, the integrals involved in the prediction represent a very

high computational effort.

The first practical implementation of the Bayesian filter for continuous

domains was made by Rudolph E. Kalman, in 1960. The original formulation

assumes that the belief distribution and the measurements noise follow a

Gaussian distribution and that system and observation models are linear [4].

Under these assumptions, the Kalman update equation yields the optimal

state estimator, in terms of mean squared-error. The so called Kalman Filter

(KF) is very important and it is still considered the state of the art in state

estimation, especially its more generic version, the Extended Kalman Filters

(EKFs), which admit the non-linearity of the system. The EKF solution lies

in a Taylor series expansion applied to linearize the requested functions.

These solutions i.e. KF and EKF, are still widely employed today and are

often the first choice in recursive state estimation. However, none of them

KFs holds in the non-linear case. In particular, the EKFs can suffer from a

poor approximation caused by the linearization of highly non-linear models

affected by the propagation of the Gaussian noise. In 1997, Simon Julier and

Jeffery Uhlmann proposed the Unscented Kalman Filter (UKF) [5] which,

using the unscented transform for the linearization, can obtain better results

in terms of accuracy, keeping the error characterization as a Gaussian noise,

which is usually reliable enough, and above all, easy to represent since the

mean and the covariance give the full description of the distribution.

An alternative to the Kalman Filters is given by non-parametric filters.

These do not rely on an analytic representation of the posterior probability

distribution, nor on parametric distributions. A well-known non parametric

27

Figure 3.1: A factor-graph for the product

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5).

approach is the particle filter, proposed by Gordon et Al. in 1993 [6]. The

idea is to describe the posterior distribution in a Monte Carlo fashion, rep-

resenting a possible state with a particle. The more particles are present in

a certain region of the state space, the more that state is likely to be the real

state. The advantage of this approach is that any kind of distribution can

be represented in this way, but there are still some issues. In particular, we

have to deal with a possible high dimension of the state space which carries

the exponential growth of the number of particles needed to represent the

probability distribution of the belief.

3.1.2 Graph-based State Estimation

In 1997, Lu and Milios developed and proposed a graph-based approach [7]

to solve the Simultaneous Localization and Mapping (SLAM) problem. We

discuss about SLAM in Section 3.4. Here we want to focus about the pro-

posed graph based approach. In their formulation, the nodes in the graph

represent poses and landmark parameterizations. If a landmark is visible

from a certain pose, then an edge linking the two poses is added. The state

estimation problem consists in a global maxi-likelihood optimization. Since

every node and edge represents respectively poses and landmarks, the aim is

to maximize the observations joint likelihood. This requires to solve a large

non-linear, least-squares, optimization problem.

Graph-based approaches are considered to be superior to conventional

EKF solutions [8], even though a more accurate research from the point of

view of computational complexity is required in order to make them faster

and thus more usable in on-line state estimation [9]. The graph technique

implies that not only the latest state can be estimated, but also the previous

ones, making it possible to continuously estimate the full robot trajectory.

An even wider generalization of the graph approach is the factor-graph,

28

which is a hypergraph in which edges do not incide only between two nodes,

but can possibly affect many of them [10]. We can see an example of factor

graph in Figure 3.1. In this example the xi , i ∈ {1, . . . , 5} represent the

state variables and fj , j ∈ {A, . . . , E} are the functions having as argument a

subset of {x1, . . . , x5}. The function that has to be optimized, in this case, is

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5). This

comes up to be a powerful tool in multi-sensor fusion problems, in particular

it is appreciated the possibility to represent heterogeneous measurement, in

the sense of number of poses effected, maintaining a quite explicit design of

the graph [11].

3.2 Odometry estimation

Odometry measures the distance traveled by a robot, or any kind of movable

system, from an initial point, into the space in which it operates. It is

crucial to have a good odometry estimation for many reasons, in particular

for autonomous navigation. A good odometry estimation can be done only

by retrieving and combining different sensor measurements, but certainly

the information given by the wheels rotation is the basis for thee estimation

for every wheeled mobile robot.

3.2.1 Generic odometry

As mentioned before, the wheels rotation usually gives the majority of the

information about odometry, especially in the case in which an absolute pose

measurement is not available, e.g., the GPS sensor is not present in indoor

environment.

As we are dealing with wheeled robots we can collapse our working space

in a 2D plane, to estimate its odometry means indeed to estimate the po-

sition and the orientation of the robot in a 2D space. It follows that a

three element vector (x, y, θ) is enough to represent this information. More

precisely, the x and the y represent the two coordinates on the plane, con-

sidering the origin (0, 0) the initial position, and θ the rotation of the robot

around its vertical axis, with the respect of the initial orientation.

In order to be able to move on a plane, each wheeled mobile robot

(WMR) must have a single point around which all wheels follow a circular

course. This point is known as the instantaneous center of curvature (ICC)

or the instantaneous center of rotation (ICR). In practice, it is quite simple

to identify because it must lie on a line coincident with the rotation axis of

each wheel that is in contact with the ground. Thus, when a robot turns,

29

(a) Euler method (b) Runge-Kutta method (c) Exact reconstruction

Figure 3.2: Different integration methods results

the orientation of the wheels must be consistent and a ICC must be present

otherwise the robot cannot move.

If we could retrieve the sequence of the exact position variation of the

robot (∆x,∆y,∆θ) at a good rate, the odometry would be simply the inte-

gration of these measurement. These delta positions could be, if necessary,

derived from the velocity along the axis.

Defined as v(t) the linear velocity at a t instant of time and ω(t) the an-

gular velocity at the same time, we can retrieve the position and orientation

of the robot at time t1 as follows

x(t1) =

∫ t1

0
v(t)cos(θ(t))dt ,

y(t1) =

∫ t1

0
v(t)sin(θ(t))dt ,

θ(t1) =

∫ t1

0
ω(t)dt .

(3.2)

In order to deal with concrete cases, namely discrete time, different

integration methods exist. We will present three among the most com-

mon ones: Euler method, II order Runge-Kutta method and the exact re-

construction [12]. For these explanation we will use the relaxed notation

xk = x(tk), vk = v(tk) and so on, and we will define Ts = tk+1 − tk, namely

the sampling period.

Euler method 
xk+1 = xk + vkTscosθk

xk+1 = yk + vkTssinθk

θk+1 = θk + ωkTs

(3.3)

30

Euler method is the simplest integration method, but also the most

subject to error in xk+1 and yk+1. θk+1 is exact and it will be used also for

all the other integration methods, indeed. The whole system is correct for

straight path. In general, the error decreases as Ts gets smaller.

II order Runge-Kutta method

xk+1 = xk + vkTscos(θk +
ωkTs

2
)

xk+1 = yk + vkTssin(θk +
ωkTs

2
)

θk+1 = θk + ωkTs

(3.4)

Compared with the Euler method, the II order Runge-Kutta decreases

the error in computation of xk+1 and yk+1 using the mean value of θk. Even

in this case, the smaller is the sampling period Ts, the smaller is the error.

Exact reconstruction
xk+1 = xk +

vk
ωk

(sinθk+1 − sinθk)

xk+1 = yk −
vk
ωk

(cosθk+1 − cosθk)

θk+1 = θk + ωkTs

(3.5)

With the exact reconstruction we can retrieve the actual arc of circum-

ference that the robot traveled. It is computed using the instantaneous

radius of curvature R = vk
ωk

. Note that for ωk = 0 → R = ∞ the equation

degenerates, matching the Euler and Runge-Kutta algorithms.

3.2.2 Differential drive odometry

The differential drive kinematics consists in two active wheels, rotating on

a common axis, driven by two different motors. In addition, one or more

passive castor wheel(s) can support the robot stability without interfering

with the robot kinematic. Many commercial robots adopt this kind of mech-

anism due to the simplicity of implementation, the relative low cost and the

compactness of the system. We can find it in TurtleBot [13], Khepera [14]

or Robuter [15], represented respectively in Figure 3.3(a), Figure 3.3(b) and

Figure 3.3(c)

The whole robot motion is based on the difference in rotation velocity

of the two active wheels. The ICC lies, as expected, on the wheels rotation

31

(a) TurtleBot (b) Khepera

(c) Robuter

Figure 3.3: Commercial differential drive robots

axis and the curve that the robot will follow depends on the position of

this point with the respect of the middle point between the two wheels, as

shown in Figure 3.4. The relationship between the wheels velocity vr and

vl, the distance between the ICC and the midpoint of the wheels R, and the

angular velocity of the robot ω are given by the following

ω(R+
l

2
) = vr ,

ω(R− l

2
) = vl ,

(3.6)

where l is the distance between the 2 wheels.

We are actually interested in retrieving R and ω′′ from the velocities,

which are usually the available data given by the encoders, and l which is a

fixed parameter. So the formulas are:

R =
l(vr + vl)

2(vr − vl)
,

ω =
vr − vl
l

.

(3.7)

It is interesting to analyze a couple of special cases. When vr = vl then

R = ∞, which means that the robot is moving in a straight line. When

32

Figure 3.4: Differential drive kinematics

vl = −vr then R = 0, which means that the robot is only rotating around

the vertical axis passing through the midpoint between the wheels.

Since the differential drive structure is non-holonomic, the robot is not

able, for example, to perform a lateral movement or any other kind of dis-

placement not represented by the previous equations. The position (x′, y′, θ′)

at a particular instant of time is given by the computation on the previous

(x, y, θ) and the time span ∆t between the two positionsx′y′
θ′

 =

cos(ω∆t) −sin(ω∆t) 0

sin(ω∆t) cos(ω∆t) 0

0 0 1


x− ICCxy − ICCy

θ

 +

ICCxICCy
ω∆t

 , (3.8)

where ICCx and ICCy are the coordinates computed as it follows:

ICC = (x−Rsin(θ), y +Rcos(θ))

The specific case for the odometry calculation in differential drive, according

with 3.2 is

x(t1) =
1

2

∫ t

0
(vr(t) + vl(t))cos(θ(t))dt

y(t1) =
1

2

∫ t

0
(vr(t) + vl(t))sin(θ(t))dt

θ(t) =
1

l

∫ t

0
(vr(t)− vl(t))dt

(3.9)

33

Figure 3.5: Differential drive robot motion from pose (x, y, θ) to (x′, y′, θ′)

3.2.3 Skid-steering odometry

The skid-steering mechanics tries to maintain the simplicity and compact-

ness of the differential drive model, improving in the meantime its robust-

ness. It consists in four wheels that we can consider separately as a pair on

the left, front and rear, and a pair on the right, again front and rear. Each

couple of wheels is driven by one motor, located in the middle of the front

and rear wheel. These two wheels are usually connected by a transmission

belt or a chain. Each motor allows to rotate the pair of wheels connected at

with the same velocity.

Skid-steering compactness and the high maneuverability [16][17], in ad-

dition to the higher robustness, with the respect of the differential drive,

make this kind of mechanic an optimal choice for different purposes [18][19].

This mechanics, indeed, offers a good mobility on different terrains, not only

indoor, but also outdoor ones, because one of its advantages is the possibil-

ity of installing tracks for the terrains that require them, without changing

the whole mechanic.

Unfortunately, the drawback is a more complex kinematics because the

pure rolling and no-slip assumption - which was possible to use for the differ-

ential drive case - is no more an option: the wheels must slip during a curve.

This implies a hard-to-predict motion, given the velocity input. Other dis-

advantages are an energy inefficient motion and a fast tires’ consumption,

caused by the slippage needed for curving [20].

Wang et al. [21] help to partially resolve the problem of the complex

skid-steering kinematic proposing an approximation to the differential drive

34

Figure 3.6: Ra.Ro. wheels

kinematic based on three assumptions:

(i) the mass center of the robot is located at the geometric center of the

body frame

(ii) the two wheels of each side rotate at the same speed (wfr = wrr and

wfl = wrl)

(iii) the robot is moving on a firm ground surface, and all the four wheels

are always in contact with the ground surface

Then, considering the Figure 3.7 and the deriving the Equations 3.9 we

obtain vxvy
wz

 = f

[
wlr

wrr

]
(3.10)

where v = (vx, vy) represents the vehicle’s translational velocity with

respect to its local frame, wz represents its angular velocity, r represents

the radius of the wheels and wl and wr represent respectively the angular

velocity of the left and right wheels.

While the robot is curving there are different ICR: ICRl, ICRr and

ICRG, that belongs respectively of the left-side tread, right-side tread, and

the robot center of mass, as shown in Figure 3.5. We define the coordinates

of the ICRs respect to the local frame as (xl, yl), (xr, yr) and (xG, yG). All

of the treads share the same angular velocity ωz, so these equations follows

yG =
vx
wz

, (3.11)

35

Figure 3.7: Skid-steering platform

yl =
vx − wlr
wz

, (3.12)

yr =
vx − wrr

wz
, (3.13)

xG = xl = xr = − vy
wz

. (3.14)

From (3.9) to (3.14) the generic odometry kinematic (3.2) can be repre-

sented as: vxvy
wz

 = Jw

[
wlr

wrr

]
. (3.15)

where Jw depends on IRCs coordinates and is defined as follows:

Jw =
1

yl − yr

−yr yl
xG −xG
−1 1

 . (3.16)

When the robot is symmetrical, then the ICRs lies symmetrically on

the x-axis, and we have xG = 0 and y0 = yl = −yr. The Jw matrix can be

rewritten as:

36

Figure 3.8: Geometric equivalence between the wheeled skid-steering robot and the

ideal differential drive robot

Jw =
1

2y0

 y0 y0

0 0

−1 1

 . (3.17)

So the velocities defined in Equations 3.15 can be defined, for the sym-

metrical model, as follows: 
vx =

vl + vr
2

vy = 0

wz =
−vl + vr

2y0

(3.18)

and from Equation 3.7 we can get the instantaneous radius of the path

curvature:

R =
vG
wz

=
vl + vr
−vl + vr

y0 . (3.19)

The ratio between the sum and difference of left and right wheels linear

velocities [22] can be defined as a variable λ:

λ =
vl + vr
−vl + vr

, (3.20)

and Equation 3.19 becomes:

R = λy0 . (3.21)

37

A similar approach is used in Mandow’s work [23], in which an IRC

coefficient χ is defined as:

χ =
yl − yr
B

=
2y0

B
, χ ≥ 1 (3.22)

χ represents the approximation from the differential drive kinematic.

We can notice that when χ is equal to 1 there is no slippage and the

skid-steering model coincides with the differential drive. It implies that

we can approximate the skid-steering model as a differential drive model,

working on the χ variable. In particular, the skid-steering coincides with

a differential drive with a larger span between the left and right wheels as

shown in Figure 3.8. This is a very useful method and it will be very useful

for our work.

3.3 Sensor fusion framework

As mentioned before, pure kinematics equations are actually just an ap-

proximation of the real world, they are not sufficient to retrieve the correct

odometry of a robot with enough precision. This is why multi-sensor fusion

is required. Here we introduce the framework used to make this process in

a way possible to set up.

3.3.1 ROAMFREE

The acronym ROAMFREE stands for Robust Odometry Applying Multi-

sensor Fusion to Reduce Estimation Errors. The main aim of the frame-

work is to offer a set of mathematical techniques and to perform sensor

fusion in mobile robotics, focusing on pose tracking and parameter self-

calibration [24]. The main goals of the ROAMFREE project include ensur-

ing that the resulting software framework can be employed on very different

robotic platforms and hardware sensor configurations and easily tuning to

specific user needs by replacing or extending its main components.

In ROAMFREE the information fusion problem is formulated as a fixed-

lag smoother whose goal is to track not only the most recent pose, but all

the positions and attitudes of the mobile robot in a fixed time window: short

lags allow real time pose tracking, still enhancing robustness with respect

to measurement outliers; longer lags allow for online calibration, where the

goal is to refine the available sensor parameters estimation.

The system is based on a graph-based approach. In particular, a factor

graph is generated; this graph keeps the probabilistic representation of the

38

pose retrieved by the sensor fusion measurements, the estimated sensor pa-

rameters and the sensor error models. All the modules interact in some way

with this graph, for example to update it with new measurements or new

estimated poses. The factor graph is designed to allow an arbitrary number

of sensors, even if they work at different rates, without a predictable rate or

producing obsolete data.

The framework implements a set of logical sensors, which are indepen-

dent from the actual hardware that produces the measurement. For ex-

ample, an odometry measurement can be retrieved from a laser scanner

elaboration or a wheels’ encoders one, but both can be properly setted up

as a logical GenericOdometer sensor. Each logical sensor is characterized

by a parametric error model specific to its domain. This means that we

must initialize the sensors passing the specific parameters for that sensor.

For example, a DifferentialDriveOdometer requires the wheels radii and the

wheels distance, expressed in meters. Another required parameter to prop-

erly set up a sensor is its position and orientation with the respect to the

tracked base frame. For example, the camera sensor, possibly used to re-

trieve markers positions, must be properly set in order to calculate the exact

transformation between the marker seen and the base frame.

ROAMFREE’s modularity and its ROS implementation make it a very

powerful tool for sensor fusion purposes. Unfortunately we had to deal with

a lack of documentation which made the development of a stable ROS node

quite hard.

Factor graph filter As mentioned before, the core of ROAMFREE lies

in the factor graph filter. We have already written about the important fea-

tures of graph-based approaches in Subsection 3.1.2 in a general way. The

most relevant advantage is the possibility of manage high-dimensional prob-

lems in a relatively short time. The graph holds the full joint probability

of sensor readings given the current estimate of state variables, representing

its factorization in terms of single measurement likelihoods. Each node of

the graph contains a the pose of the robot and the sensors’ calibration pa-

rameters, i.e. gains, biases, displacement or misalignments. The nodes are

generated by new measurements, represented as hyper-edges (factors) con-

necting one or more nodes, depending on their order. For example, a velocity

measurement connects two nodes since it needs one integration to retrieve

a position; an acceleration needs three nodes because two integrations are

required.

We need to choose one, and only one, of the available sensors as an

architecture master sensor, and a good practice is to choose an odometry

39

Figure 3.9: An instance of the pose tracking factor graph with four pose vertices ΓWO (t)

(circles), odometry edges eODO (triangles), two shared calibration parameters vertices

kθ and kv (squares), two GPS edges eGPS and the GPS displacement parameter S
(O)
GPS

sensor to play this role, because it usually has a high rate and it is the one

that gives a hopefully good starting point for the optimization process. Once

the master sensor measurement is collected, an initial guess of the new pose

is made and then a non-linear optimization process begins, also using the

other measurements retrieved in the meantime. It can happen that sensor

readings are late for low rate, connection problems or in general are not

available. In these cases, if the available ones are not sufficient to generate a

pose, the measurement handling is delayed until enough data are available.

Node generation is based on a fixed-lag window. It means that only

the nodes contained in this time span are considered for the following pose.

Older nodes and factors, since are no more used, are deleted. In order to

avoid high loss of information older nodes and factors can be marginalized,

keeping the information they used to hold in a new generated factor.

We can resume the factor-graph advantages here:

• Flexible with respect to sensor nature and number. The modularity of

the system allows to manage all the inserted sensors in an independent

and uniform way, by means of the abstract hyper-edges interface, as

they are inserted into the graph.

• Sensors can be, if necessary, turned on and off during the process. The

factors management is asynchronous, so they can be added into the

graph as soon as new readings are available.

• It is possible to deal with out-of-order measurements. If an old infor-

40

mation is received, according to its time stamp, it is not discarded,

but an appropriate factor is created, connecting the nodes interested

by it and consequentially updating and refining them.

• The resulting estimation is higher in quality and, in certain circum-

stances, i.e., with many state variables faster than traditional filters,

such as EKFs [8].

• The high degree of sparsity of the considered information fusion prob-

lem is explicitly represented and it can be exploited by inference al-

gorithms. Indeed, in our case a factor may involve up to three robot

poses; moreover, it is difficult to imagine a robot employing much

more than ten sensors for pose estimation, implying that each pose is

incident to a limited number of factors.

Error models For each logical sensor model an error model definition is

needed. All of theme come a common definition

ei(t) = ẑ(t; x̂Si(t), ξ)− z + η , (3.23)

where x̂Si(t) represents the extended state for the sensor frame Si in which

the position and the orientation of the frame with the respect of the world

frame at time t; ξ represents the vector of the parameters relative to that

sensor and ẑ(t; x̂Si(t), ξ)) is a predictor measurement computed as a function

of the previously defined parameters and the incident nodes. z is the real

sensor output and η is a zero-mean Gaussian noise representing the mea-

surement uncertainty. It is evident that the more the prediction is accurate,

the more the error is near to 0, net of the Gaussian noise.

The equation that describes the actual error depends on the type of

measurement considered. We can identify five classes:

(i) absolute position and/or orientation (e.g., GPS)

(ii) linear and/or angular velocity in sensor frame (e.g., gyroscope)

(iii) acceleration in sensor frame (e.g., accelerometer)

(iv) vector field in sensor frame (e.g., magnetometer)

(v) landmark pose with respect to sensor (e.g., markers)

Moreover, the other thing that characterize the sensor in ROAMFREE

is the parameter’s vector ξ, which includes gain, bias and other specific

parameters according to the sensor class. These parameters sometimes are

41

Figure 3.10: ROAMFREE estimation schema

easy to retrieve from sensors specifications or from observation, but they

often need an accurate tuning to let everything work properly.

Every time a measurement is added to the factor-graph we need to pass

as parameter also the covariance matrix ,in addition to the measurement

itself and the sensor name.. Usually, in ROAMFREE, is used a diagonal

matrix, with the measurement variances on the diagonal, and zeros other-

wise. We must be careful in covariance matrix setup. Changing the value

of the variances means to change the reliability of a sensor. In other words,

if two measurements indicate two conflicting outputs, the system will trust

more the one with a lower covariance. The covariance matrix can be even

different according to the actual measurement, of course always being of the

right dimension.

A convenient feature is the outlier management made through the robust

kernel technique. It consists in setting a threshold in the measurement

domain. If this threshold is exceeded in module, the error model of the

sensor, for that measurement, becomes linear instead of quadratic, which

means that it is less involved in the subsequent computation. This is useful

to deal with errors that can sometimes occur in data retrieving.

Optimizations The optimization algorithms implemented in ROAMFREE

are Gauss-Newton and Levenberg-Marquardt. Both of them require a prob-

lem formulated as a non-linear, wighted and least-squares optimization and

here we will discuss about how this is done. Considering the error function

ei(xi, η) associated to the i-th edge of the hyper-graph and defined as (3.23).

We can approximate the error function as ei(xi) = ei(xi, η)|η=0 since ei is a

random vector. It can involve non-linear dependencies with respect to the

noise, so its covariance Ση is computed by means of linearization, i.e.:

42

Σei = Ji,ηΣηJ
T
i,η|xi=x̆i,η=0 (3.24)

where Ji,η is the Jacobian of ei with respect to η evaluated in η = 0 and in

the current estimate x̆i. The covariance matrix Ση is the one we mentioned

before and here is where it is involved in the optimization.

A negative log-likelihood function can be associated to each edge in the

graph, which stems from the assumption that zero-mean Gaussian, noise

corrupts the sensor readings. Omitting the terms which do not depend on

xi, for the i-th edge this function reads as:

Li(xi) = ei(xi)Ωeiei(xi) (3.25)

where Ωei = Σ−1
ei is the information matrix of the i-th edge. The solution

to the information fusion problem is given by the assignment for the state

variables such that the likelihood of the observations is maximum.

P = argmin
x

N∑
i=1

Li(xi) (3.26)

We can observe that this is a non-linear least-squares problem where the

weights are the information matrices associated to each factor. If a reason-

able initial guess for x is known, a numerical solution for P can be found by

means of the popular Gauss-Newton (GN) or Levenberg-Marquardt (LM)

algorithms. A complete schema of the interaction among the ROAMFREE

modules is represented in Figure 3.10.

3.4 Simultaneous Localization and Mapping

With simultaneous localization and mapping (SLAM) is meant the building

of a map while the robot locates itself into the map that is being created.

The SLAM can be considered as a preliminary phase in which the robot

creates the map which it will use for the autonomous navigation, or it can

be contextual to the autonomous navigation. It is important to point out

that it does not matter whether the robot, during the SLAM phase, is

human-controlled or not.

Although the first localization guess is given by the odometry, as men-

tioned in Section 3.2, it accumulates error as long as the robot moves. A

good odometry estimation is desirable for the SLAM problem, but the error

given by the odometry can be corrected by using world references observed

through laser scanner(s), camera(s) (Visual SLAM) or similar sensors. It

follows that the observation should be done in an environment as static as

43

possible, even if SLAM frameworks can deal with mobile objects. Moreover,

the localization makes sense if it is made with respect of a map, but if the

map is being made at the same time is evident the possible problem that

can occur. SLAM must be done in a recursive way and this is one of the

main reasons why it is such a complex task.

From a probabilistic point of view, there are two main forms of SLAM.

One is known as the online SLAM problem algorithm which involves esti-

mating the posterior over the momentary pose along with the map:

p(xt,m|z1:t, u1:t) , (3.27)

Here xt is the pose at time t, m is the map and z1:t and u1:t are the measure-

ments and controls, respectively. This problem only involves the estimation

of the variables that exist at time t. Algorithms for the online SLAM prob-

lem are incremental: they discard past measurements and controls once they

are processed. The second SLAM problem is called the full SLAM problem.

Here we want to calculate a posterior over the entire path x1:t along with

the map, instead of just the current pose xt:

p(x1:t,m|z1:t, u1:t) (3.28)

Instead of incrementally computing the state as in the online case, here the

sequence of states is computed once.

Regardless of the method used to implement a full or online SLAM, the

algorithm must follow these steps:

(i) Landmarks detection: the robot must recognize some features from

the environment, called landmarks. Considering a 2D map, horizontal

LIDAR are the most common sensor used for this kind of task. An-

gles, edges, particular shapes are good candidates to be detected as a

landmark.

(ii) Data association: once the landmark is been detected, it must be

matched with a possibly existing landmark into the map. It can be

a hard task because a single feature can match with many, growing

exponentially as long as the map grows.

(iii) State estimation. It uses observations and odometry to reduce errors.

The convergence, accuracy, and consistency of the state estimation are

the most important properties. Thus, the SLAM method must main-

tain the robot path and use the landmarks to extract metric constraints

to compensate the odometer error.

44

Figure 3.11: The image represents the topics subscribed and published by the mapping

node, independently of the exact mapping system used

The major difficulties of SLAM are the following:

• High dimensionality: since the map dimension constantly grows

when the robot explores the environment, the memory requirements

and time processing of the state estimation increase. Some submap-

ping techniques can be used to reduce these consumption, at the cost

of a worse performance.

• Loop closure: when the robot returns to a place it has been previ-

ously, the accumulated odometry error might be large. Then, the data

association and landmark detection must be effective in correcting the

odometry. Place recognition techniques are used to cope with the loop

closure problem.

• Dynamics in environment: state estimation and data association

can be confused by the inconsistent measurements in the dynamic

environment. There are some methods that try to deal with these

environments.

We will focus on 2D SLAM, using a laser scanner as a sensor and related

laser scans measurements. In general, the aim of a SLAM framework is to

collect the laser scans and try to associate them in one occupancy grid map.

Then, if following scans match with the memorized map, the position will

be corrected according to this match, hopefully improving the localization

estimation. The more various the environment is, the more the localization

is easy to make, because the probability to deal with a potential ambiguity

is lower.

45

Algorithm 2 Improved RBPF for map learning
Require:

St−1, the sample set of the previous time step

zt, the most recent laser scan

ut−1, the most recent odometry measurement

Ensure:

St, the new sample set

St = { }
for all s

(i)
t−1 ∈ St−1 do

〈x(i)t−1, w
(i)
t−1,m

(i)
t−1〉 = s

(i)
t−1

//Scan−matching

x
′(i)
t = x

(i)
t−1 ⊕ ut−1

x̂
(i)
t = argmaxx p(x|m

(i)
t−1, zt, x

′(i)
t)

if x̂
(i)
t = failure then

x
(i)
t ∼ p(xt|x

(i)
t−1, ut−1)

w
(i)
t = w

(i)
t−1 · p(zt|m

(i)
t−1, zt, x

′(i)
t)

else

//Sample around the mode

for all k = 1 to K do

xk ∼ {xj | |xj − x̂(i)| < ∆}
end for

//Compute Gaussian proposal

µ
(i)
t = (0, 0, 0)T

η(i) = 0

for all xj ∈ {x1, . . . , xK} do

µ
(i)
t = µ

(i)
t + xj · p(zt|m

(i)
t−1, xj) · p(xt|x

(i)
t−1, ut−1)

η(i) = η(i) + p(zt|m
(i)
t−1) · p(xt|x

(i)
t−1, ut−1)

end for

µ
(i)
t = µ

(i)
t /η(i)

Σ
(i)
t = 0

for all xj ∈ {x1, . . . , xK} do

Σ
(i)
t = Σ

(i)
t + (xj − µ

(i)
t)(xj − µ

(i)
t)T · p(zt|m

(i)
t−1 · p(xt|x

(i)
t−1, ut−1)

end for

Σ
(i)
t = Σ

(i)
t /η(i)

//Sample new pose

x
(i)
t ∼ N (µ

(i)
t ,Σ

(i)
t)

//Update importance weights

w
(i)
t = w

(i)
t−1 · η

(i)

end if

// Update map

m
(i)
t = integrateScan(m

(i)
t−1, x

(i)
t , zt)

// Update sample set

St = St ∪ {〈x
(i)
t , w

(i)
t ,m

(i)
t 〉}

end for

Neff =
1

ΣN
i=1(w̃(i))2

if Neff < T then

St = resample(St)

end if

3.4.1 Gmapping

gmapping is the most widely used laser-based SLAM package in robotic field,

worldwide. The algorithm was proposed by Grisetti et al. in 2007 and it is

a Rao-Blackwellized Particle Filter SLAM approach [25].

We mentioned the Particle Filter in Subsection 3.1.1 and here we will

describe RBPF, which is an optimized version for the SLAM problems. Let’s

start from (3.28) and factorize it as:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) , (3.29)

46

this factorization allows to first estimate only the trajectory of the robot and

then to compute the map given that trajectory. In particular, p(m|x1:t, z1:t)

can be easily computed using “mapping with known poses” since x1:t and

z1:t are known.

If new control data ut from the odometry and a new measurement zt
form the laser scanner is available; the RBPF occupancy grid SLAM works

as follows.

1. It determines the initial guess x
′(i)
t , based on ut and the pose, since the

last filter t update xt−1 has been estimated.

2. It performs a scan matching algorithm based on the map m
(i)
t−1 and x

′(i)
t .

If the scan matching fails, the pose x
(i)
t of particle i will be determined

according to a motion model, otherwise the next two steps will be per-

formed.

3. If the scan matching is successfully done, a set of sampling points around

the estimated pose x̂
(i)
t of the scan matching will be selected. Based on

this set of t poses, the proposal distribution will be estimated.

4. It draws pose x
(i)
t of particle i from the approximated Gaussian distribu-

tion of the improved proposal distribution.

5. It performs an update of the importance weights.

6. It updates map m(i) of particle i according to x(i) and zi.

The more detailed RBPF algorithm pseudo-code can be read in Algo-

rithm 2. The author proposes a way to compute an accurate distribution

by taking into account both the movement of the robot and the most re-

cent observations. This decreases the uncertainty about the robot’s pose in

the prediction step of the particle filter. As a consequence, the number of

particles required decreases since the uncertainty is lower, due to the scan

matching process, improving the performance.

3.4.2 Cartographer

Another possible approach to the SLAM problem is using graph-based meth-

ods. These methods use optimization techniques similar to the factor graph

previously introduced to transform the SLAM problem into a quadratic pro-

gramming problem. The historical development of this paradigm has been

focused on pose-only approaches using the landmark positions to obtain con-

straints for the robot path. The objective function to optimize is obtained

47

assuming Gaussianity. Since these methods are based on a factor graph,

they are able to better remember the previous sub-maps and the previous

localization and thus they prove to be more accurate with respect to other

approaches. On the other hand, their main disadvantage is the high compu-

tational time they take to solve the problem, for this reason they are usually

suitable to build maps off-line.

Google’s Cartographer provides a real-time solution to indoor and out-

door mapping. The system generates submaps from the matching of the

most recent scans at the best estimation position, which is assumed to be ac-

curate enough for short periods of time. Since the scan matching only works

on submaps, the error of the pose estimation in the world frame eventually

increases. For this reason, the system runs periodically a pose optimization

algorithm. When a submap is considered to be finished, no more scans are

added to it and it takes part in scan matching for loop closure. If the robot

estimated pose is close enough to one or more processed submaps, the algo-

rithm runs the scan matching between the incoming laser scans and those

maps. If a good match is found, it is added as a loop closing constraint to

the optimization problem. By completing the optimization every few sec-

onds, the loops are closed immediately once a location is revisited. This

leads to the soft real-time constraint that the loop closure scan-matching

has to happen before the new scans are added, otherwise it will fall behind

noticeably. This has been achieved by using a branch-and-bound approach

and several precomputed grids per finished submap.

3.5 Localization

As mentioned before, robot localization is the problem of estimating a robot

pose relative to the map of the operational environment. It has been defined

as one of the most fundamental problems in mobile robotics [26].

We can recognize different levels of localization problems. The localiza-

tion tracking is the simplest one; the robot starts from a known position

and the localization aim is to correct the hopefully small odometry errors.

A more challenging problem is the global localization problem; the robot

must localize itself without a given initial position. An even more difficult

problem is the kidnapped robot problem [27]; it can happen when a localized

robot is moved, with no information about this transportation, to a different

location. It might seem a similar problem to the second one, but here we

can not trust a measurement as consistent with a previous one, because of

the loss of information during the unexpected movement.

48

Algorithm 3 Adaptive variant of Monte Carlo Localization

1: procedure AMCL(Xt−1, ut, zt,m)

2: X t = Xt = 0

3: for all m := 1 toM do

4: x
(m)
t = SampleMotionModelOdometry(ut, x

(m)
t−1)

5: w
(m)
t = MeasurementModel(zt, x

(m)
t ,m);

6: Xt = Xt − 〈x(m)
t , w

(m)
t 〉

7: wavg = wavg +
1

M
w

(m)
t

8: end for

9: wslow = wslow + αslow(wavg − wslow)

10: wfast = wfast + αfast(wavg − wfast)
11: for all m := 1 to M do

12: with probability max(0.0,1.0 -
wfast
wslow

) do

13: add random pose to Xt
14: else

15: draw i ∈ {1, . . . , N} with probability ∝ x(m)
t

16: add x
(i)
t to Xt

17: end with

18: end for

19: return Xt
20: end procedure

In other words, the localization problem consists in identifying an appro-

priate coordinate transformation between the global frame, which is fixed

and integral with the map, and the robot frame. Then, a detected object

from the robot’s point of view can be, in turn, transformed with the respect

of the global frame by coordinate transformation.

In robot localization the state xt of the system is the robot pose, which for

the two dimensional mapping, is typically represented as a three dimensional

vector xt = (x, y, θ) in which x and y indicate the position of the robot

in the map plane, and θ the angle formed by the robot orientation. The

state transition probability p(xt|xt−1, ut−1) describes how the robot position

changes given the previous position xt−1 and the new sensors’ measurements

ut−1. The perceptual model p(zt|xt) describes the likelihood of making the

observation zt given that the robot is at position xt.

49

3.5.1 Adaptive Monte Carlo Localization (AMCL)

The Adaptive Monte Carlo Localization (AMCL) is a method to localize

a robot in a given map. It is an improved implementation of a particle

filter. The word “adaptive” means that the number of particle used for the

Monte Carlo localization is not fixed, but changes according to the situation.

This number of particles is retrieved using the KLD-Sampling (Kulback-

Leibler-Divergence) [28] [29]. The AMCL pseudocode algorithm is reported

in Algorihm 3. It requires the set of particles of the last known state Xt−1

and the control data ut for the prediction; the measurement data zt and the

map m for the update.

The algorithm returns the new state estimation as a set of particles

Xt. This filter implementation is able to deal with the global localization

problem, the localization tracking and the kidnapping problem. The AMCL

is flexible with the respect of the resampling technique, that means that

an arbitrary one can be used. Another advantage is that AMCL is able to

recover from localization errors by adding some random particles to the Xt
set, after a specified decade (lines 15 and 16 of 3). An AMCL ROS package

is available [30] and a lot of robots use this package for the localization since

it provides a good configuration parameter suite.

3.6 A note on ROS reference system

Developers of drivers, models, and libraries need a share convention for co-

ordinate frames in order to better integrate and re-use software components.

Shared conventions for coordinate frames provide a specification for devel-

opers creating drivers and models for mobile bases. Similarly, developers

creating libraries and applications can more easily use their software with

a variety of mobile bases that are compatible with this specification. In

this chapter we will explain the reference frames that should be used for a

localization system, according to the ROS standard [31].

Coordinate frames

base link The coordinate frame called base link is rigidly attached to

the mobile robot base. The base link can be attached to the base in any

arbitrary position or orientation; for every hardware platform there will be

a different place on the base that provides an obvious reference point. A

right-handed chirality with x forward, y left and z up is preferred.

50

Figure 3.12: The tree frame representation.

odom The coordinate frame called odom is a world-fixed frame. The pose

of a mobile platform in the odom frame can drift over time, without any

bounds. This drift makes the odom frame useless as a long-term global

reference. However, the pose of a robot in the odom frame is guaranteed

to be continuous, meaning that the pose of a mobile platform in the odom

frame always evolves in a smooth way, without discrete jumps. In a typical

setup the odom frame is computed based on an odometry source, such as

wheel odometry, visual odometry or an inertial measurement unit. The

odom frame is useful as an accurate, short-term local reference.

map The coordinate frame called map is a world fixed frame, with its Z-axis

pointing upwards. The pose of a mobile platform, relative to the map frame,

should not significantly drift over time. The map frame is not continuous,

meaning the pose of a mobile platform in the map frame can change in

discrete jumps at any time. In a typical setup, a localization component

constantly re-computes the robot pose in the map frame based on sensor

observations, therefore eliminating drift, but causing discrete jumps when

new sensor information arrives. The map frame is useful as a long-term

global reference, but discrete jumps in position estimators make it a poor

reference frame for local sensing and acting.

earth The coordinate frame called earth is the origin of ECEF (earth-

centered, earth-fixed) [32]. This frame is designed to allow the interaction

of multiple robots in different map frames. If the application only needs one

map the earth coordinate frame is not expected to be present.

Relationship between Frames

The relationship between coordinate frames in a robot system can be rep-

resented as a tree since each coordinate frame can have a parent coordinate

frame and an arbitrary number of child coordinate frames. Thus, the frames

described before are attached as represented int Figure 3.12.

51

The map frame is the parent of odom, and odom is the parent of base link.

Although intuition would say that both map and odom should be attached to

base link, this is not allowed because each frame can only have one parent

in ROS implementation.

Frame Authorities

The transform from odom to base link is computed and broadcast by one of

the odometry sources, while the transform from map to base link is com-

puted by a localization component. However, the localization component

does not broadcast the transform from map to base link. Instead, it first

receives the transform from odom to base link, and uses this information

to broadcast the transform from map to odom.

The transform from earth to map is statically published and configured

by the choice of map frame. If not specifically configured a fallback position

is to use the initial position of the vehicle as the origin of the map frame.

If the map is not georeferenced so as to support a simple static transform

the localization module can follow the same procedure as for publishing the

estimated offset from the map to the odom frame to publish the transform

from earth to map frame.

52

Chapter 4

A new navigation system for

the Ra.Ro.

“Guybrush: Van Winslow, head to Isle of Ewe!

Van Winslow: Please, sir, I think we should hit land first!

Guybrush: Isle of Ewe... It sounds like ”I Love You”. Nice joke.

Van Winslow: [Disappointedly] Yes, sir, joke...”

Tales of Monkey Island - The Siege of Spinner Cay

4.1 Navigation system overview

As we mentioned before, Ra.Ro. has already a sort of “autonomous” nav-

igation mode. It is based on line following and visual markers indicating

“turn left”, “keep right”, “follow me” and so on. The system is quite reli-

able, if we accept the fact that we must attach in some way markers on walls

and/or lines on the floor, and we are sure that the robot will not deal with

movable or unpredicted obstacles, but it is very far from a real autonomous

navigation. It is not possible, for instance, to indicate any point on a map

and expect that the robot will reach that point.

Our aim was to propose an autonomous navigation solution at least

reliable as the previous one, but more powerful. Ra.Ro. is ROS based, so

the most logic approach was to base on the ROS navigation stack, and to

work around it. The best advantage from this approach is the modularity of

the system, which modules and their interactions are represented in Figure

4.1. Here follows the explanation of the modules we used in our project:

Figure 4.1: The ROS standard navigation stack schema

Odometry source The odometry source provides the estimated robot

position with respect to the starting pose. The easiest way to provide this

data is to use the wheel encoders, but it is usually very imprecise because of

wheels slippage, different floors friction, small obstacles that let the wheel

rotate without robot movement or imprecise sensor itself. To to have a better

odometry source is a common choice to use a multi-sensor fusion system,

and this has been the contribution of this thesis. We compared a custom

source developed integrating gyroscope and raw odometry provided by the

wheels encoders and two factor graph filters built using the ROAMFREE

framework; the first one using IMU sensor and encoders, and the second one

using, in addition, visual markers detected in the environment.

Sensor sources The sensor source is used by the navigation stack for

mapping and for localization inside the mapped environment. It must gen-

erate PointCloud or LaserScan messages. In our case, since we mount a

Hokuyo Laser scanner, we used this as sensor source. Future work on this

project could add as sensor source a module that can extrapolate point cloud

from cameras, but this was out of the scope of the work.

Sensor transforms For each sensor it is necessary to provide a transform

between the base frame and the sensor frame itself. The transformation must

be published as a tf message and, in our case, it is the static transform

between the base-frame and the laser-frame.

Amcl This module is optional. The Adaptive Monte Carlo Localization

approach uses a particle filter to track the pose of the robot against a known

map (see map server, the following module). It corrects the robot position,

54

estimated by the odometry system, moving the odom frame with the respect

of the map frame. The less is the error in odometry estimation, the less the

amcl module has to correct the position of the odom frame. During the

initial phase, in which the robot does not have to navigate autonomously,

the amcl module can be missing.

Map server For the amcl module, the map server is optional because it

is used in the autonomous navigation phase. It consists in a node which

publish a map previously collected or created.

Global Costmap and Global Planner The global costmap carries the

information about the obstacles in the map. It is possible to set up an

inflation radius which represents a security distance the robot must keep

from the walls and other objects. These pieces of information are associated

with a cost, and the global planner uses this cost information to find the

most efficient path to reach a goal trough the whole map.

Local Costmap and Local Planner The local costmap is similar to the

global one, but instead of dealing with the whole map, it is localized in a

scrolling window around the robot. It is used to modify the global path

according to unexpected obstacles, not included in the provided map. The

local planner generates a modified path that should not deviate too much

from the global one, according to the costs provided by the local costmap.

Base controller The Twist messages, i.e., the control signal output from

the local planner are sent to the base controller. These messages represent

the velocity that the robot should have to follow the generated path. The

base controller is the module that interpret these messages and convert them

into actual robot movement controlling the wheels’ speed.

4.2 Sensor fusion and odmetry estimation

The odometry estimation module is basically the most important for local-

ization, mapping and autonomous navigation, since it is involved in all of

these processes. In Chapter 3 we discuss about the importance in having a

good localization system and the theory behind it; here we discuss about its

logical structure.

As mentioned before, we are dealing with a Ra.Ro. version customized

for indoor environments, so we cannot count on the GPS, also because the

55

receiver module is not provided in this version. This implies that the odom-

etry system has to rely on sensors that inevitably accumulates errors.

4.2.1 Custom odometry

During the initial phase of the project we developed an ad hoc odometry by

modifying the already existing Ra.Ro. code producing the odometry from

wheels encoders. This modification consists in implementing the Runge-

Kutta integration method (3.4) and the exact reconstruction (3.5), instead

of the Euler method (3.3), already implemented. Since the exact reconstruc-

tion involves a ratio with angle variation θk as denominator, we can use this

integration method for |θk| > 0. Otherwise the Runge-Kutta integration is

used. This is a good solution because the approximation carries an error

directly proportional to the angle variation, thus if it used only with very

small angles, the subsequent error is small as well. Morover, instead of the

θk retrieved from the encoders ROS messages (/r2p/odom), we used the ones

from the gyroscope (/r2p/imu). Here follows the commented code snippet.

//

// msg.x : is the variation in forward displacement,

// retrieved from wheels’ encoders.

// msg.z : is the angle variation,

// retrieved from wheels’ encoders.

// imuDeltaZ : is the angle variation,

// retrieved from the gyroscope sensor.

// mSensValues.odom : the struct describing the computed odometry, where

// x and y represent the position into the plane expressed in meters,

// and z the orientation (yaw angle) expressed in radians.

//

//Euler method, the most simple, but error sensitive. No more used

//mSensValues.odom.x +=msg.x*cos(msg.z);

//mSensValues.odom.y +=msg.x*sin(msg.z);

//mSensValues.odom.z +=msg.z;

if (fabs(imuDeltaZ) < 0.0001)// To avoid zero division

{

//Runge-Kutta method, using angle from gyroscope

mSensValues.odom.x +=msg.x*cos(mSensValues.odom.z + imuDeltaZ/2);

mSensValues.odom.y +=msg.x*sin(mSensValues.odom.z + imuDeltaZ/2);

mSensValues.odom.z +=imuDeltaZ;

}

else

{

56

//Precise reconstruction, using angle from gyroscope

float ratio = msg.x/imuDeltaZ;

float old_mSensValue_z = mSensValues.odom.z;

mSensValues.odom.z += imuDeltaZ;

mSensValues.odom.x += ratio*(sin(mSensValues.odom.z) -

sin(old_mSensValue_z));

mSensValues.odom.y -= ratio*(cos(mSensValues.odom.z) -

cos(old_mSensValue_z));

}

The gyroscope sensor is subject to a bias, i.e. the quantitative term

describing the difference between the average of measurements made on the

same object and its true value. We must take into account this measurement

inaccuracy. Moreover our particular sensor bias is not constant, as shown i

Figure 4.2, and then we have to frequently update its estimation. A good

way to do that has been to implement an observer that correct the gyroscope

measurement. In particular our observer checks, using encoders sensor, if

the robot stays still, and, if this is true, it updates the gyroscope bias using

a low-pass filter, in order to zero it out. Here follows the commented code

snippet.

// Initialize the angle variation as the difference between the incoming

// angle from gyroscope (msg.z) and the previously saved one

// (mSensValues.imuRaw.z)

double deltaZ = msg.z-mSensValues.imuRaw.z;

//If the encoders yelds that the robot stays still (not moving along the

// x axis, nor rotating around the z axis) and the computed difference is

// not very big (in order to not fit very noisy data, even they are

// filtered in the following line)

if(mSensValues.odomRaw.x == 0.0 && mSensValues.odomRaw.z == 0.0 &&

fabs(deltaZ) < 0.005)

{

//Update the bias estimation using a low-pass filter.

mGyroZBias = mGyroZBias * 0.9 + deltaZ * 0.1 ;

}

// Finally update the angle variation with the corrected value

imuDeltaZ = deltaZ-mGyroZBias;

57

(a) Gyoroscope measurement with the robot stands, from time 0s to time 400s

(b) Gyoroscope measurement with the robot stands, from time 950s to time 1150s

Figure 4.2: Gyroscope measurement during two different time spans. The time differ-

ence is about 550 seconds and we can se how the bias change from an image to another.

The represented measurements are raw data from gyroscope. We can see from the im-

ages comparison a difference of about 75. Considering that the LSB represents 17.5

mdps, this difference means that exists a bias variation of 75× 17.5mdps= 1.275dps.

58

4.2.2 ROAMFREE module

The most reliable result we had is based on the ROAMFREE framework,

introduced in Section 3.3.1. The final set up is based on measurement given

by the encoders, the gyroscope and the accelerometer. We also implemented

a version with markers as fixed feature position sensor. More details about

the set up will be explained in Chapter 5. The main developed ROS nodes

are the following:

• /raroam test node:

This node builds and manages a factor graph using the ROAMFREE

libraries.

The topic subscribed for measurement retrieving are /r2p/encoder l,

/r2p/encoder r and /r2p/imu raw.

The /nav cam/markers is used as well for markers improvement. The

resulting odom r frame is published in a /tf topic. This node repre-

sents the core of our sensor fusion and subsequent odometry estima-

tion. The parameters about the numbers of Gauss-Newton iterations,

the fixed window time and the marginalization time can be modified

in the launch file. These parameters heavily influence the quality of

the estimation, but are also hardware depending, intended as computa-

tional power availability. Another feature of this node is the possibility

of publishing the ROAMFREE estimated path as nav msgs/Path, in

order to be easily seen though rviz application.

• /msg stamper node:

It was necessary to develop this node which simply republishes mes-

sages read in r2p’s topics and modified adding a header containing,

beside the other header’s info, a time stamp. This is useful to synchro-

nize the left and right encoder messages and to let ROAMFREE deal

with possibly out-of-order messages. The messages are republished in

topics with the same name as the original ones, but with the /stamped

string before them. So /r2p/imu raw became /stamped/r2p/imu raw

and so on. The encoders messages are at first matched using the

ROS message filter and the republished with the added header in

stamped/r2p/encoders topic.

IMU and encoders setup

One of the most reliable configuration we finally designed is based on the

data received from gyroscope, accelerometer in addition to the wheels’ en-

coders one. ROAMFREE implementation does not includes the skid-steering

59

odometry implementation as logical sensor, but we could take advantage of

the Skid-steering to differential drive odometry conversion that we men-

tioned in 3.2.3. Thus, instead of passing the real distance between the

wheels as parameter we passed a value

L′ = L · λ , (4.1)

where λ has been experimentally calculated as

λ =
ωreal
ω̂diff

, (4.2)

where ωreal is the real angular velocity, and ω̂diff is the differential drive

estimated angular velocity. To retrieve the real angular velocity we used the

OptiTrack system installed in the AirLab. It is a motion capture system

based on a set of cameras installed around a room, able to filter infrared

light, provided with infrared leds rings. Using the leds they can light up

a particular marker, made of a rigid frame with reflective marbles, like the

one in Figure 4.3. Through the proper OptiTrack software it is possible to

retrieve with extreme precision the position and orientation of the marker

into the space covered by the cameras. We set a marker on the Ra.Ro. head

and we remotely rotated the robot around its vertical axis. We retrieved

its orientation, measured both with the OptiTrack and with the wheels

odometry, which was set with the real distance between the wheels i.e.,

as if it was a differential odometry mechanism, instead of a Skid-steering.

From these measurements we derived the mean angular velocities ωreal and

ω̂diff , using the positions and the delta times, and we computed the ratio,

retrieving λ = 1.353491248. Thus, since the real wheels distance was 0.5m,

the resulting equivalent distance was L′ = 0.5 · 1.353491248 = 0.676745624

which is significantly higher then the real one.

We used as AngularVelocity sensor the raw information given by the IMU

sensor, as copy of the MEMS memory, properly scaled. The raw values are 16

bit numbers, form -32768 to +32768 representing angular velocity from -500

dps (degree per second) to +500 dps, according to the sensor specifications

manual. It means that, we have to make the following conversion:

ωdeg = b · 500/32768 , (4.3)

where b is the raw value and ωdeg the angular velocity expressed in degrees.

Then ωdeg needs to be converted in radians, thus, finally we have:

ωrad = b · γ , (4.4)

60

Figure 4.3: An OptiTrack marker

Where γ = 500π
32768·180 = 2.66316 · 10(− 4). Since errors can happens in

sensor production phase, we wanted to estimate this factor experimentally,

using the OptiTrack system as well. We obtained a slightly different value,

γ′ = 3.06844 · 10(− 4), which has been used to describe more accurately the

real angular velocity.

We should had to retrieve experimentally also the accelerometer propor-

tional factor, but it implies two derivation, because the OptiTrack system

retrieve only the position. Since this computation is very error sensitive we

used the specification parameters for the LinearAcceleration sensor, setting

a higher variance.

Using markers for odometry estimation

In addition to the previously mentioned sensors, we introduced the detection

of visual markers to have a more accurate odometry estimation. As men-

tioned before, in Section 2.2, the Ra.Ro. software already provides the aruco

marker recognition, which can retrieve the visualized marker identification

number and the tf transform with the respect to the camera frame.

According to the ROAMFREE implementation, each marker must be set

up as a single sensor. We could choose to represent these sensors as Fixed-

FeaturePosition, which means we use only the retrieved marker position, or

FixedFeaturePose which includes, in addition, the marker orientation. Since

the retrieved orientation is not reliable enough, we decided to represent

61

(a) The transform required by ROAMFREE

(b) The transform passed to ROAMFREE, setting the base frame as sensor frame

(c) The transform passed to ROAMFREE, during the mapping and autonomous move-

ment phases

Figure 4.4: Different marker frame measurement passed to ROAMFREE. The ones

blue highlated are the tranformation required and composed, the orange ones are the

resulting transforamations

the marker sensors as FixedFeaturePosition in order not to introduce errors

and having the possibility to use a lower covariance in measurement addi-

tion. The measurement required is the observed transformation between the

marker and the camera frame.

62

The ROAMFREE FixedFeaturePosition sensor requires the camera frame

position, as sensor frame position, and the marker frame position with re-

spect to the camera frame position as measurement, as shown in Figure

4.4(a). The sensor frame position is supposed to be fixed with respect of the

base frame, but in our case we are able to rotate the camera according to the

robot head module or along its horizontal axis. For this reason we decided

to set up the sensor frame as coincident with the base frame and pass as

measurement the calculated transformation between the marker frame and

the base frame, maintaining the possibility to move the camera, as shown

in FIgure 4.4(b).

ROAMFREE requires the absolute marker position as constant param-

eter, for each FixedFeaturePosition sensor. The actual marker positions, in

very large buildings like the one we worked into, are not easy to retrieve. To

solve this problem we used a solution that introduces a desirable flexibility,

indeed. Instead of initialize all the marker set during ROAMFREE launch,

we decided to initialize a new marker sensor as soon as the first marker ob-

servation, for a specific marker id, is done. It implies that the first marker

observation should be done with an odometry error as small as possible, in

order not to introduce a wrong placed marker. This is the reason why we in-

troduced the marker sensors as the last feature, in order to have better state

estimation where long distance are covered. Indeed, the most desirable case

is to see the marker as soon as possible, with the odometry estimation error

hopefully small, set it up, and then use the marker to keep the odometry

estimation as correct as possible in the long run.

The marker sensors, as here presented, cannot be used if a node moves

the odom frame in order to improve the localization, as explained in Sec-

tion 3.6, because the ROAMFREE framework is an odometry source, so

it provides the transform between the odom frame and the base frame,

do not considering what happens between the map frame and the odom

frame. Thus, what happened if the we use the previous configuration is

that, as a marker is viewed, ROAMFREE tries to move the base frame in

order to reduce the error between the observed marker and the previously

fixed one. In case the odom frame has been moved by another authority,

the ROAMFREE correction attempt results as an unpredictable base frame

teleportation, which continues to happen as long as a marker measurement

is added.

We solve this problem in a way that can seems counterintuitive, but is

actually exact and experimentally confirmed. The idea is to pass as the

marker observation measurement the composition of the map-odom trans-

form and base-marker transform, as showed in Figure 4.4(c). In this way we

63

inform ROAMFREE about the transform behind the odom frame, and the

movement that it applies to the base frame happens to be consistent to the

error reduce desired.

4.3 SLAM module

At high level the mapping node does not depend on the algorithm used to

do the SLAM process. Both gmapping and Cartographer, the two mapping

systems used here, take as input the messages containing the transforms and

the ones containing the laser scans. The localization part of the SLAM node

has the aim of virtually move the robot frame in order to let it match the

localization estimation, retrieved by means the laser scans data, with the

odometry estimation. This movement is done by applying a rigid transfor-

mation to the odom frame. The Figure 4.5 can explain better the concept

of the relationships between the frames and the nodes that correct them.

We can see that the tranform between odom and base-frame is computed

and published by the ROAMFREE node. Basically this is the result of the

odometry estimation. AMCL, instead, estimate the base-frame position

with respect of map and correct the actual position moving the odom frame

with respect of the map frame. The AMCL node works between the same

nodes as the mapping nodes, as we will explanin in Section 4.4. As output

we have the map, periodically updated, and the odom transform, corrected

as explained before. Once the mapping phase is done, the final map is saved

in a appropriate file, used subsequently in the autonomous navigation phase.

In our definitive architecture we choose to use the gmapping framework

because we had better results, in particular in case of straight corridors. In-

deed, we were able to set up gmapping in order to trust more the estimated

odometry and the final results are good. We could not reach a so good final

map with the Cartographer module, so we present only an example of map

genarated by Cartografer in Chapter 5, but the most of our experiment was

made using gmapping generated maps. The best results we had with the

odometry estimation given by the ROAMFREE set up including gyroscope,

accelerometer, wheels’ encoders and markers recognition. Even if the re-

sulting map is not perfect, for example a slight corridor bend happens, the

robot can navigate into the map, only rarely losing the localization.

64

Figure 4.5: The tree frame representation, with node explanations

4.4 Autonomous navigation module

We decided to work with the most used autonomous navigation module in

ROS navigation stack. It is composed by three nodes:/map server, /amcl

and /move base. With the appropriate set up, the /amcl node, combined

with the /move base one, is possible to reach a great performance due

the high number of configuration parameters available. These modules are

highly supported and used by the ROS community, so the work around them

was just to setting it up and tune some parameter. We were not interested in

having a very fast performance, nor an optimal path planning. We accepted

a good solution, being aware that it can be still easily improved working on

the configuration parameters.

Here we report some details about the three nodes involved in the au-

tonomous navigation module:

• /map server: It loads a map previously build or drawn and publish it

in the /map topic.

• /amcl: This node wants as input the map, and the robot position in

tf fashion in order to estimate the position into the map environment.

The output is the transform between the map frame and the odometry

frame, similarly the gmapping approach.

• /move base:

This node is responsible for reading of a goal point, plan a path be-

65

tween that goal and the estimate position of the robot, and of sending

the actual velocity command for the robot movement. The path is

planned using the global and local costmaps, which give the infor-

mation about the obstacle into the environment, and the global and

local path planner which are responsible of plan the desired path to

reach the goal point, according to their set up and used algorithms, as

explained in Section 4.1

66

Chapter 5

Experiments

“ [Guybrush, tarred and feathered, enters Blondebeard’s restaurant.]

Captain Blondebeard: ¡Madre de Dios! ¡Es el Pollo Diablo!

Guybrush: ¡Śı! ¡He dejado en libertad los prisioneros y ahora vengo por ti!

Captain Blondebeard: Well, yer not takin’ me without a fight!

[Blondebeard bashes Guybrush over the head with a frying pan]”

The Curse of Monkey Island

In this chapter we illustrate the most significant cases in which we tested

our system first. We introduce the general environment setup for the exper-

iments and then we give more details about them.

5.1 Setup description

For practical reasons we used the rosbag system. It is a ROS package that

allows to record ROS data streams and then replay them as if they are

happening in real time. It is a good system, widely applied, for tests. We

recorder, for our experiments, the following topics:

– /nav cam/markers

– /odom

– /r2p/encoder l

– /r2p/encoder r

– /r2p/imu

– /r2p/imu raw

– /r2p/odom

– /scan

– /scanf

– /tf

to which we added system topics:

– /rosout

– /rosout agg

– /clock

We based our experiments on the rosbag system for several reasons. The

first one is for parameters calibration; indeed a careful parameters tuning

was needed for a good ROAMFREE setup, and it was important to have a

reference dataset in order to allow testing different configurations with the

same dataset. Not to causing overfitting, it was important to test the same

configuration with different datasets too. Thus, in our case, the datasets

were several rosbags. Once the ROAMFREE parameter calibration was

considered satisfiable, rosbag has been used to compare the different gen-

erated odometry, as shown in the following sections.

Another reason to use the rosbag system is given from the possibility of

replay a bag slower than normal. It is a useful feature because it allows to

run code that can require to much effort for real time usage. For instance, in

the mapping phase, the ROAMFREE system, with specific configurations,

can be computationally heavy, and a slower replay is appreciate. This can

be acceptable even in a production phase, since the robot can easily do the

exploration for mapping purposes, recording a rosbag, and then it just need

to wait some time more for the actual map building in the replay phase.

The experiments focusing on the mapping phase, reproducing the bags

at the 70% of the real time speed, however an adequate hardware, like

the one installed into the robot, can satisfy the required computing power,

without affect the final map result. Finally a practical reason to use the

rosbag system can be mentioned, i.e. because of it was not very handy to

let run the robot into the laboratory environment tens of times, both for

other people trouble, made or been made, and for save the robot from early

wear.

The main tf frames involved in all the experiments are: map, odom,

base-frame, base-frame-custom. In particular the base-frame is the one

68

Figure 5.1: An approximate hand drown ground truth of the path made by the robot

involved every time a ROAMFREE odometry is published, base-frame-custom

when the odometry is estimated by the custom odometry system.

5.2 Odometry experiments

In this section we focus on the experiments involving only the odometry

estimation. In particular we compare the three main configurations we think

are the most significant. We recorded a rosbag in which we drove the robot

in manual configuration. We can summarize the path followed in these steps:

A. Start at the black square into the AirLab.

B. Have a round into the room and then go out through the door.

C. Go right until the end of the corridor is reached.

D. Turn around an go back until the vertical corridor is reached.

E. Follow the corridor and back again.

F. Continue to the left corridor moving through big room and go inside the

small room connected to the big one.

G. Continue to the left corridor until the end is reached and then go back

following an almost straight line.

H. Go again through the vertical corridor for a little and then come back

to the AirLab.

I. Finish the ride in the same point we started.

69

Figure 5.2: The resulting path generated with the custom odometry

An idea of how the followed path should seems is in Figure 5.1. We ran the

same rosbag, each time setting a different odometry estimation method:

custom odometry, ROAMFREE odometry with IMU and encoders, ROAM-

FREE odometry with IMU, encoders and markers. We compare the result-

ing paths with a real floor plan of the building. Because we are focusing

only on the odometry part, the map frame will be the same as the odom

frame. We want to point out that none of these odometry estimation uses

the LIDAR sensor, which is usually the best sensor to rely on.

5.2.1 Custom odometry

For this experiment we used only the custom odometry; the one built in-

tegrating the gyroscope and the encoders data, described in Section 4.2.1.

We can see the resulting path in Figure 5.2 and we can compare it with the

supposed ground truth in Figure 5.1. We can notice that the initial part,

inside the AirLab is good enough, and the path that continues along the

corridors, from right to left, is almost straight. During the return part, from

left to right, we can see that, when we drove the robot inside the vertical

corridor again, the path are very close to match. Finally, the end point

diverges form the initial one for about 3 meters, according to the misuration

retrieved from rviz, out of the more than 160 meters traveled, according to

the measurement retrieved from the reference floor plan. As reference, the

black square in Figure 5.2 is 1m×1m wide.

70

Figure 5.3: The resulting path generated with the ROAMFREE odometry, without

markers

Therefore, we can say that the custom odometry diverge slowly, but

constantly. This kind of odometry has the limitation that is not possible

to improve, due the way in which it is implemented, i.e., without any kind

of modularity. However, since the error grows slowly, if needed, a periodic

reinitialization can correct the error occurred.

5.2.2 ROAMFREE odometry

For the second experiment we set the ROAMFREE parameters as presented

in Table 5.1. We set the DifferentialDriveOdometer as master sensor, set-

ting the 6 × 6 covariance matrix with 0.01 diagonal values. This implies a

quite high importance for the odometry retrieved from encoders. For the

AngularVelocity sensor, we decided to fix the angular velocity measure-

ment around the x and y axis to 0.0, being a differential drive mechanism, in

order to not introduce possible errors in estimation. For this reason we set

very low variance for these two component, and 0.02 for the z component,

i.e. the angular velocity around the vertical axis, which is the only one we

are interested on. About the LinearAccelerometer sensor we decided to

set the z component of the measurements as a fixed value, equal to -9.81,

which is the g acceleration. Thus, we set a low variance for this component

and a high variance for x and y components. We decided to use a high

variance for these component because the accelerometer sensor is not very

accurate and difficult to manage, due the two integration needed to retrieve

position information.

We can see that for more then half of the traveled path the result is good,

71

better then the one with the custom odometry. After the round into the

big room the path bends, probably due to a bad gyroscope bias estimation,

and this persists for all the following part of the ride, finishing far from the

initial point. We can notice that also during the last part of the ride, the

path remains straight and if we try to rotate this part -around the end of the

corridor on the left- we can see that the final path almost matches the real

one, taking into account the small error accumulated during the previous

part of the path.

It is necessary to point out that replaying the same bag we can occur

in slightly different results. This can happen because of the heavy mathe-

matical computations done by the framework, which sometimes need some

approximation which can became significant after various multiplications.

Similarly to the custom odmetry we have an odometry that works well

for the initial part and then starts to drift. We can notice that in this case

the error does not grow constantly, and it can happens that a bad angle

estimation leads the odometry to fail. For this reason a good solution could

be include the marker recognition as in the next experiment.

Table 5.1: ROAMFREE configuration parameters

Logical Sensor

(sensor)
Measurement covariance

DifferentialDriveOdometer

(Encoders)


0.01 0.0 · · · 0.0

0.0 0.01 · · · 0.0
...

...
. . .

...

0.0 0.0 · · · 0.01


AngularVelocity

(Gyroscope)

 0.0001 0.0 0.0

0.0 0.0001 0.0

0.0 0.0 0.02


LinearAcceleration

(Accelerometer)

 1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 0.0001



5.2.3 ROAMFREE with markers odometry

The ROAMFREE with markers odometry significantly improves the pre-

vious odometry. We set up the ROAMFREE environment as the previous

one, except for the addition of marker sensors as presented in Table 5.2. We

72

Figure 5.4: The resulting path generated with ROAMFREE odometry and markers

point out that the marker position was unknown at the beginning of the

ride. Each marker was added as new sensor as soon it has been seen for the

first time. This implies that a good odometry, without markers, is neces-

sary to initialize markers sensors properly. Indeed, markers are landmarks

which are memorized the first time they are seen, then, the following times,

their recognition adjust the odometry according to the position in which the

marker is seen again.

Since ROMAFREE basis is a factor graph, the marker measurements

improve and refine also the nodes before the incoming measurement. This

gives a better estimate of the gyroscope bias and improves the odometry

estimation itself. Markers add to the system the missing fixed point reference

that we needed because of GPS unavailability, leading a very good odometry

estimation, finally.

It is important to point out that we used markers as fixed points, but,

due the ROAMFREE modularity, it can be possible to substitute markers

with other kind of fixed features retrieved by cameras or other sensors. In

the Figure 5.4 we can also see the generated markers constellation.

Table 5.2: Markers in ROAMFREE configuration parameters

Logical Sensor

(sensor)
Measurement covariance

FixedFeaturePosition

(Markers)

 0.0001 0.0 0.0

0.0 0.0001 0.0

0.0 0.0 0.0001



73

Figure 5.5: Map generated using Cartographer. The long corridors result to be too

short and the borders does not match properly.

Markers addition as ROAMFREE sensor needs to be carefully weighted.

We used a very low covariance because working in a controlled environment.

Problems can occur if a marker is moved from its position to another one,

far from it, after the first recognition. If this risk exists, it should be a good

practice to increase the covariance in measurement adding.

5.3 Mapping experiments

In the final map experiments we decided to use only the gmapping tool,

because we could not properly set Goolge’s Cartographer in order to trust

more the odometry system, instead of rely only on laser measurement, caus-

ing a vary bad map creation in the long corridors we had to deal with. As

show in in Figure 5.5 both the long corridors results to be much more shorter

than real ones. Moreover the edges representing the obstacles happens to

not properly match. Both the issues make the Cartographer map difficult

to be properly navigated. We could set up gmapping for this purpose and

the most significant parameters are reported in 5.3. We decided to use a

different rosbag for the mapping phase in order to not generate overfitting.

5.3.1 Mapping with custom odometry

Using the custom odometry we retrieve a good map, slightly bended along

the long corridors, which is a typical error in mapping. The length of corri-

dors is very similar to the real ones, although we could expect another typical

problem in mapping long corridors: their shortening. The laser scans and

74

Figure 5.6: The resulting map generated with the custom odometry

the gmapping algorithms can compensate the error caused in odometry esti-

mation, seen before, creating a well navigable map. The resulting map can

be seen in Figure 5.6

For this set up we completely deactivated the ROAMFREE module

and we set a static transform between the base-frame-custom and the

base-frame in order to not be needed to change the gmapping reference

frame.

5.3.2 Mapping with ROAMFREE odometry

The resulting map, using the ROAMFREE odometry, without markers, is

slightly better then the custom odometry one, but very similar. In this

case we left both the custom odometry and ROAMFREE odometry run-

ning because of the poor modularity into the robot system, but we set the

Table 5.3: gmapping parameters

Parameter Default value Used Value Description

srr 0.1 0.01
Odometry error in translation as a func-

tion of translation (rho/rho)

srt 0.2 0.02
Odometry error in translation as a func-

tion of rotation (rho/theta)

str 0.1 0.01
Odometry error in rotation as a function

of translation (rho/rho)

stt 0.2 0.02
Odometry error in rotation as a function

of rotation (rho/rho)

75

Figure 5.7: The resulting map generated with the ROAMFREE odometry without

markers

gmapping system to run with the base-frame published by ROAMFREE.

The resutling map is represented in Figure 5.7.

5.3.3 Mapping with ROAMFREE odometry and markers

The map generated with the ROAMFREE odometry with markers is in a

way better, because the corridors results less bended, but on the other hand

they happens to be a little bit shorter than the real ones possibly, causing

poor scan matching were the corridor finishes into the big room. The TF

tree in this case includes the saved markers frames attached to the map

frame. The resulting map can be seen in Figure 5.8

5.4 Navigation experiments

We also tested the navigation system selecting the last map generated with

ROAMFREE which includes markers odometry, and switching among the

different estimation odometry systems in order to compare them in naviga-

tion phase. Due to the good map generated, in every case the error caused

by the odometry estimation can be well corrected by AMCL, which im-

proves the localization into the map using the laser scans. For this reason

we can conclude that all the odometry system, together with the move base

module, can let the robot navigate autonomously inside the generated map,

reaching a given goal without loosing its localization.

76

Figure 5.8: The resulting map generated with the ROAMFREE odometry with markers

The main problems inccurred during the navigation were caused by ob-

stacles invisible to the laser scanner because of the height lower then the

laser position, causing the robot crashing into them and getting stuck for

a while. In some situation, the recovery system, which consists basically in

turning the robot around its vertical axis looking for laser features to match,

was able to relocate the robot, no matter which odometry estimation system

was involved.

Another problem occurred probably because of the oldness of the plat-

form. Some of the wheels are no more perfectly aligned. This fact implies

that the trajectory must be continuously corrected. If the robot is manually

driven, this correction is done by the human almost subconsciously, but if

the robot is driven by the local planner it is more complex and the result is

a swinging trajectory.

77

Figure 5.9: The rviz visualization of the local and global costmaps

78

Chapter 6

Conclusion and Future Work

“Guybrush: At least I’ve learnt something from all of this.

Elaine: What’s that?

Guybrush: Never pay more than 20 bucks for a computer game.

Elaine: A what?

Guybrush: I don’t know. I have no idea why I said that.”

The Secret of Monkey Island

The main purpose of this thesis was to build an autonomous navigation

system for the provided Ra.Ro. platform, reliable at least as much as the

built-in semi-autonomous navigation, but more powerful, able to deal with

obstacles, flexible and non environment invasive. The focus was on the

sensor fusion in order to retrieve a good odometry, which is involved in

all the pieces of the navigation stack, both for the map building, and the

autonomous navigation system itself.

Both the ROAMFREE solutions, in particular the one with the marker,

can be considered a good solution for the sensor fusion problem, moreover

the custom odometry, even if is not a so flexible solution, is even more

reliable in some situations for our specific case. The final result, taking into

account the physical platform limitation, are satisfying from our point of

view and the NuZoo point of view, as well.

We had to deal with the most common problem in indoor environment:

the absence of a GPS measurements. The ROAMFREE library was mostly

used in outdoor environment and, when used in indoor ones, the markers

were heavily used. Another solution in indoor environment was to use a

pair of laser scanner, covering the whole range around the vehicle, and set

as ROAMFREE input the laser odometry generated. It was impossible in

our case because the poor laser scanner placement.

A ROAMFREE extension can be appreciated, in particular a future work

can include the development of a SLAM system integrated in the ROAM-

FREE framework, in order to include the use of the laser scanner as main

sensor, through the scan matching process. In the meanwhile, the creation

of the map should be an easy task, once the previous part is done. It will

avoid strange tricks, as the one we had to use to properly take advantages of

the marker as sensor. Moreover a system that integrates properly the sensor

fusion and a map generation using a factor graph can potentially be a good

solution for both the odometry estimation and SLAM problems.

80

Appendix A

About ROS and the TF

library

ROS stands for Robot Operating System and the official ROS introduction

web page introduce the system with these words: “ROS is an open-source,

meta-operating system for your robot. It provides the services you would

expect from an operating system, including hardware abstraction, low-level

device control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides tools

and libraries for obtaining, building, writing, and running code across mul-

tiple computers.” [33]. Thus, ROS is not a real operating system, but it

but instead works alongside a traditional operating system. It is designed

and optimized to work with Ubuntu, but beta versions for other operating

systems exist, e.g. Windows, OSX. ROS relies on a good and active com-

munity which makes it the standard de facto for robotics in research fields,

but also in hobby and professional fields.

One of the main ROS advantages is its modularity, and the modules are

called packages. Packages provide functionality such as controlling move-

ment of the robot, generating odometry information, reading and process-

ing sensor data from e.g. a Kinect, camera or laser scanner sensor, keeping

track of a robots joint configuration, etc. Packages can also provide more

high level functionality such as SLAM implementations, object recognition,

3D simulation, compatibility layers to enable the use projects like Point

Cloud Library (PCL) and Open Computer Vision (OpenCV). A common

set of packages is set up in the full-desktop installation, which allow to use

all the basic packages and includes other useful packages needed, for ex-

ample, for data visualization, simulation and so on. ROS can be run in a

distributed way on multiple computers and the communication among them

82 Appendix A. About ROS and the TF library

is done over TCP.

A.1 ROS Filesystem Level

ROS uses various concepts at local filesystem level, including:

Packages : At computer local filesystem, ROS organizes functionalities in

packages. They contains files that together give the package functionality,

such as executable (/nodes), source code, cmake files, ROS message type

definitions, ROS service type definitions, roslaunch files, configuration files

and so on. Packages are the most atomic build item and release item in

ROS. Meaning that the most granular thing you can build and release is a

package.

Metapackages : Metapackages are specialized Packages which only serve

to represent a group of related other packages. Most commonly metapack-

ages are used as a backwards compatible place holder for converted rosbuild

Stacks.

Package Manifests : Manifests (package.xml) provide metadata about

a package, including its name, version, description, license information, de-

pendencies, and other meta information like exported packages.

Repositories : A collection of packages which share a common Version

Control System (VCS). Packages which share a VCS share the same version

and can be released together using the catkin release automation tool bloom.

Often these repositories will map to converted rosbuild Stacks. Repositories

can also contain only one package.

Message (msg) types : Message descriptions define the data structures

for messages sent in ROS.

Service (srv) types : Service descriptions define the request and re-

sponse data structures for services in ROS.

A.2 ROS Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes that

are processing data together. The basic Computation Graph concepts of

A.2. ROS Computation Graph Level 83

ROS are nodes, Master, Parameter Server, messages, services, topics, and

bags, all of which provide data to the Graph in different ways.

Nodes : Nodes are processes that perform computation. ROS is designed

to be modular at a fine-grained scale; a robot control system usually com-

prises many nodes. For example, one node controls a laser range-finder, one

node controls the wheel motors, one node performs localization, one node

performs path planning, one Node provides a graphical view of the system,

and so on. A ROS node is written with the use of a ROS client library, such

as roscpp or rospy.

Master : The ROS Master provides name registration and lookup to the

rest of the Computation Graph. Without the Master, nodes would not be

able to find each other, exchange messages, or invoke services.

Parameter Server : The Parameter Server allows data to be stored by

key in a central location. It is currently part of the Master.

Messages : Nodes communicate with each other by passing messages.

A message is simply a data structure, comprising typed fields. Standard

primitive types (integer, floating point, boolean, etc.) are supported, as are

arrays of primitive types. Messages can include arbitrarily nested structures

and arrays (much like C structs).

Topics : Messages are routed via a transport system with publish / sub-

scribe semantics. A node sends out a message by publishing it to a given

topic. The topic is a name that is used to identify the content of the mes-

sage. A node that is interested in a certain kind of data will subscribe to the

appropriate topic. There may be multiple concurrent publishers and sub-

scribers for a single topic, and a single node may publish and/or subscribe

to multiple topics. In general, publishers and subscribers are not aware of

each others’ existence. The idea is to decouple the production of information

from its consumption.

Services : The publish / subscribe model is a very flexible communication

paradigm, but its many-to-many, one-way transport is not appropriate for

request / reply interactions, which are often required in a distributed system.

Request / reply is done via services, which are defined by a pair of message

structures: one for the request and one for the reply. A providing node offers

a service under a name and a client uses the service by sending the request

84 Appendix A. About ROS and the TF library

Figure A.1: The ROS Computations Graph

message and awaiting the reply. ROS client libraries generally present this

interaction to the programmer as if it were a remote procedure call.

Bags : Bags are a format for saving and playing back ROS message data.

Bags are an important mechanism for storing data, such as sensor data,

that can be difficult to collect but is necessary for developing and testing

algorithms.

The image A.1 gives a rough idea about the connection among nodes,

topics and services.

A.3 The TF library

tf is one of the most used and useful package in the ROS system. It is

responsible for keeping track of multiple coordinate frames over time. tf

maintains the relationship between coordinate frames in a tree structure

buffered in time, and lets the user transform points, vectors, etc between

any two coordinate frames at any desired point in time [34].

A robotic system typically has many 3D coordinate frames that change

over time, such as a world frame, base frame, gripper frame, head frame, etc.

tf keeps track of all these frames over time, and allows you to ask questions

like:

• Where was the head frame relative to the world frame, 5 seconds ago?

• What is the pose of the object in my gripper relative to my base?

• What is the current pose of the base frame in the map frame?

tf can operate in a distributed system. This means all the information

about the coordinate frames of a robot is available to all ROS components

A.3. The TF library 85

Figure A.2: A representation of a robot with several frames.

on any computer in the system. There is no central server of transform

information.

There are essentially two tasks that any user would use tf for, listening

for transforms and broadcasting transforms.

• Listening for transforms - Receive and buffer all coordinate frames

that are broadcasted in the system, and query for specific transforms

between frames.

• Broadcasting transforms - Send out the relative pose of coordinate

frames to the rest of the system. A system can have many broadcasters

that each provide information about a different part of the robot.

86 Appendix A. About ROS and the TF library

Appendix B

Sensors specifications

In this section we will show a detailed list of sensors specifications built into

the Ra.Ro. platform.

88 Appendix B. Sensors specifications

B.1 LSM303D

Ultra compact high performance e-compass:

3D accelerometer and 3D magnetometer mod-

ule

This module is built into the r2p board. The r2p board receives the data

form this module and made some low level elaboration. The data computed

are sent to the NUC connected to them. The LSM303D module includes

a 3D accelerometer and 3D magnetometer. We will show the table about

both the sensors, even if in our project the magnetometer was not eventually

used.

Figure B.1: LSM303D module

Parameter Test conditions Min. Typ. Max. Unit

Linear acceleration measure-

ment range

±2 g

Magnetic measurement range ±2 gauss

Linear acceleration sensitivity Linear acceleration FS = ±2g 0.061 mg/LSB

Magnetic sensitivity Magnetic FS = ±2 gauss 0.080 mgauss/LSB

Linear acceleration sensitivity

change vs. temperature

±0.01 %/◦C

Magnetic sensitivity change vs.

temperature

±0.05 %/◦C

Linear acceleration typical

zero-g level offset accuracy

±60 mg

Linear acceleration zero-g level

change vs. temperature

Max delta from 25◦C ±0.5 mg/◦C

Linear acceleration noise den-

sity

Linear acceleration FS = 2g;

ODR = 100 Hz

150 ug/(
√
Hz)

Magnetic acceleration noise

density

Magnetic FS = 2 gauss;

LR setting CTRL5

(M RES[1,0]) = 00b

5 mgauss/RMS

Magnetic cross-axis sensitivity Cross field = 0.5 gauss

Applied = ±3 gauss

±1 % FS/gauss

Maximum exposed field No permanent effect on sensor

performance

10000 gauss

Magnetic disturbance field Sensitivity starts to degrade.

Automatic S/R pule restores

the sensitivity

20 gauss

Operating temperature range -40 +85 ◦C

B.2. L3GD20H
MEMS motion sensor: three-axis digital output gyroscope 89

B.2 L3GD20H

MEMS motion sensor: three-axis digital out-

put gyroscope

This module is built in the r2p board as well. It is the gyroscope sensor,

able to provide angular velocity information.

Figure B.2: L3GD20H module

Parameter Test conditions Min. Typ. Max. Unit

Measurement range User selectable ±245

±500

±2000

dps

Sensitivity 8.75

17.50

70.00

mdps/digit

Sensitivity change vs.

temperature

From -40◦C to +85◦C

Delta form T = 25◦
±2 %

Digital Zero-rate level FS = 2000 dps ±25 dps

Zero-rate level change vs.

temperature

FS = 2000 dps ±0.04 dps/◦C

Non linearity Best fit straight line 0.2 %FS

Rate noise density BW = 50 Hz 0.011 dps/ (
√
Hz)

Digital output data rate 11.9/

23.7/

47.3/

94.7

/189.4

/378.8

/757.6

Hz

Magnetic disturbance field Sensitivity starts to de-

grade. Automatic S/R

pule restores the sensitiv-

ity

20 gauss

Operating temperature

range

-40 +85 ◦C

90 Appendix B. Sensors specifications

B.3 Hokuyo URG-04LX-UG01 Scanning Laser Rangefinder

The Hokuyo URG-04LX-UG01 is a Laser Scanner. It is used in our project

for the scan matching by gmapping, for map generation, and by AMCL for

the localization and autonomous navigation.

Figure B.3: Hokuyo URG-04LX-UG01

Parameter Value

Light source Semiconductor laser diode (λ = 785nm),

Laser safety Class 1

Laser power: 0.8mW or less (Class 1 compliant by

scanning)

Power source 5V DC ±5% (Supplied by USB bus power)

Current consumption 500mA or less (Rush current 800mA)

Detection distance and standard ob-

ject

Accuracy: 60-4.095mm (white paper 70mm × 70 mm

or bigger)

Detectable range: 20-5.600mm

Accuracy 0.06-1m: ±30mm , 1-4m: 3% of the detected distance

Resolution 1mm

Scan angle 240◦

Angular resolution Approx. 0.36◦ (360◦/1024)

Scan Time 100msec/scan

Interface USB Version 2.0 FS mode (12Mbps) SCIP2.0

Ambient (Temperature/Humidity) -10 ∼ 50◦C / 85% or less (without dew and frost)

Preservation temperature -25 ∼ 75◦C

Ambient Light Resistance 10000Lx or less (Sunlight)

Vibration Resistance Double amplitude 1.5mm 10 ∼ 55Hz, 2 hours each in

X, Y and Z direction, and 98m/s2 55Hz ∼ 150Hz in 2

minutes sweep, 1 hour each in X, Y and Z direction

Impact Resistance 196 m/s2, 10 times each in X, Y and Z direction

Protective Structure Optics : IP64

Case : IP40

Insulation Resistance 10MΩ for DC 500Vmegger

Weight Approx. 160g

Case Polycarbonate

External dimension (W×D×H) 50×50×70mm

Bibliography

[1] Nuzoo website - ra.ro. Accessed: Dec 2016.

[2] Novalab website. Accessed: Jan 2017.

[3] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

robotics (intelligent robotics and autonomous agents). 2005.

[4] Rudolph Emil Kalman et al. A new approach to linear filtering and

prediction problems. Journal of basic Engineering, 82(1):35–45, 1960.

[5] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and non-

linear estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[6] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel ap-

proach to nonlinear/non-gaussian bayesian state estimation. In IEE

Proceedings F (Radar and Signal Processing), volume 140, pages 107–

113. IET, 1993.

[7] Feng Lu and Evangelos Milios. Globally consistent range scan alignment

for environment mapping. Autonomous robots, 4(4):333–349, 1997.

[8] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Real-time

monocular slam: Why filter? In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 2657–2664. IEEE, 2010.

[9] Timothy A Davis. Direct methods for sparse linear systems. SIAM,

2006.

[10] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs

and the sum-product algorithm. IEEE Transactions on information

theory, 47(2):498–519, 2001.

[11] Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Del-

laert. Eliminating conditionally independent sets in factor graphs: A

91

92 BIBLIOGRAPHY

unifying perspective based on smart factors. In Robotics and Automa-

tion (ICRA), 2014 IEEE International Conference on, pages 4290–

4297. IEEE, 2014.

[12] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Ori-

olo. Robotics: Modelling, Planning and Control. Springer Publishing

Company, Incorporated, 1st edition, 2008.

[13] Turtlebot robot. Accessed: Oct 2017.

[14] Robert M Harlan, David B Levine, and Shelley McClarigan. The khep-

era robot and the krobot class: a platform for introducing robotics in

the undergraduate curriculum. ACM SIGCSE Bulletin, 33(1):105–109,

2001.

[15] Emmanuel Lomba and Mário Alves. On the hardware and software ar-

chitecture of the robuter mobile platform: a hands-on approach. Techni-

cal report, CISTER-Research Centre in Realtime and Embedded Com-

puting Systems, 2005.

[16] Luca Caracciolo, Alessandro De Luca, and Stefano Iannitti. Trajectory

tracking control of a four-wheel differentially driven mobile robot. In

Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, volume 4, pages 2632–2638. IEEE, 1999.

[17] Jingang Yi, Dezhen Song, Junjie Zhang, and Zane Goodwin. Adaptive

trajectory tracking control of skid-steered mobile robots. In Robotics

and Automation, 2007 IEEE International Conference on, pages 2605–

2610. IEEE, 2007.

[18] Jingang Yi, Junjie Zhang, Dezhen Song, and Suhada Jayasuriya. Imu-

based localization and slip estimation for skid-steered mobile robots. In

Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-

tional Conference on, pages 2845–2850. IEEE, 2007.

[19] Krzysztof Koz lowski and Dariusz Pazderski. Modeling and control of

a 4-wheel skid-steering mobile robot. International journal of applied

mathematics and computer science, 14:477–496, 2004.

[20] Jorge L Mart́ınez, Anthony Mandow, Jesús Morales, Salvador Pe-

draza, and Alfonso Garćıa-Cerezo. Approximating kinematics for

tracked mobile robots. The International Journal of Robotics Research,

24(10):867–878, 2005.

BIBLIOGRAPHY 93

[21] Tianmiao Wang, Yao Wu, Jianhong Liang, Chenhao Han, Jiao Chen,

and Qiteng Zhao. Analysis and experimental kinematics of a skid-

steering wheeled robot based on a laser scanner sensor. Sensors,

15(5):9681–9702, 2015.

[22] Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Suhada Jaya-

suriya, and Jingtai Liu. Kinematic modeling and analysis of skid-steered

mobile robots with applications to low-cost inertial-measurement-unit-

based motion estimation. IEEE transactions on robotics, 25(5):1087–

1097, 2009.

[23] Anthony Mandow, Jorge L Martinez, Jesús Morales, José L Blanco,

Alfonso Garcia-Cerezo, and Javier Gonzalez. Experimental kinematics

for wheeled skid-steer mobile robots. In Intelligent Robots and Systems,

2007. IROS 2007. IEEE/RSJ International Conference on, pages 1222–

1227. IEEE, 2007.

[24] Davide Antonio Cucci and Matteo Matteucci. A flexible framework

for mobile robot pose estimation and multi-sensor self-calibration. In

ICINCO (2), pages 361–368, 2013.

[25] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved

techniques for grid mapping with rao-blackwellized particle filters.

IEEE transactions on Robotics, 23(1):34–46, 2007.

[26] Ingemar J Cox. Blanche: Position estimation for an autonomous robot

vehicle. In Autonomous robot vehicles, pages 221–228. Springer, 1990.

[27] Sean P Engelson and Drew V McDermott. Error correction in mobile

robot map learning. In Robotics and Automation, 1992. Proceedings.,

1992 IEEE International Conference on, pages 2555–2560. IEEE, 1992.

[28] N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate

distributions. Number v. 2 in Wiley series in probability and math-

ematical statistics: Applied probability and statistics. Wiley & Sons,

1995.

[29] J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury ad-

vanced series. Thompson/Brooks/Cole, 2007.

[30] Amcl documentation. Accessed: Jan 2017.

[31] Ros rep 105. Accessed: Jan 2017.

[32] Ecef wikipedia. Accessed: Oct 2017.

94 BIBLIOGRAPHY

[33] Ros wiki. Accessed: Oct 2017.

[34] Tf wikiros. Accessed: Nov 2016.

