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Abstract

The Restricted Two-Body Problem and the Circular Restricted Three-Body
Problem represent two agile models that allow to perform trajectory design.
The search for an increasing precision and accuracy in the problem pushes
towards the development of more re�ned models. The addition of N gravity
�elds in the problem formulation de�nes new challenges for trajectory design
and optimization. Besides, a constant technological progress opens to an
increasing exploitation of low-thrust propulsion, making the framework even
more challenging.

The adoption of Non-Keplerian orbits in the Earth-Moon system as a
forthcoming achievement outlines unique scenarios. Attitude-orbital cou-
pling represents one of these, encouraging to search for passive attitude con-
trol strategies.

In the �rst part of this work, dynamical models are presented. Particular
attention is placed on the formulation of the N-body problem with respect to
di�erent coordinate systems. Attitude dynamics and kinematics treatment
follows the orbital mechanics section. The coupled dynamics is the natural
and reasonable conclusion.

Then, numerical methods for dynamical system analysis are introduced.
The outlined tools steer towards the trajectory optimization problem. Two
di�erent methods (Sims-Flanagan Transcription method and an optimal
control-based approach) are presented to face a trajectory optimization in a
N-body framework. The described approaches are used and applied to real
mission scenario.

Finally, coupled attitude-orbital dynamics is analysed along Non-Keplerian
orbits of the Earth-Moon system, with particular focus on Near Retrograde
Orbits (NROs) and Distant Retrograde Orbits (DROs).

xv





Chapter 1

Introduction

Orbital mechanics and trajectory design are continuously improving. The
simplest case of spacecraft dynamics can be described by the Restricted
Two-Body Problem, characterized by an elegant formulation and a closed-
form analytical solution. A further improvement, the Restricted Three-Body
Problem, can be attained considering the dynamics of a man-made object
under the simultaneous in�uence of two massive bodies. Yet, this formula-
tion lacks accuracy when the outer space of system composed by the two
primaries is explored. An increased level of accuracy becomes desirable.
One of the most familiar environments, the Earth-Moon system, is, nowa-
days, characterized by an increasingly interest, in order to enhance human
presence within and beyond its boundaries. As a matter of fact, a perma-
nent human presence in the Earth-Moon regions and their exploitation as a
gateway towards the interplanetary space are current and actual goals. In
this sense, the above mentioned context involves exclusive and unique chal-
lenges, since higher-�delity solution design must deal with a highly sensitive
environment.

Besides, the recent success of missions employing low thrust propulsion
can open even wider mission scenarios and challenges. Low thrust high spe-
ci�c impulses translates in high e�ciencies, that can potentially reach strate-
gical destinations with a reduced fuel consumption. These performances are
counterbalanced by extended times of �ight and thrusting activity. Hence,
low thrust adds more complexity to the trajectory design and optimization
phase.

In order to meet future mission requirements in multi-body regimes, e�-
cient algorithms and an enhanced comprehension of the dynamical environ-
ments are required. In this sense, also the search for passive attitude control
strategies in the Earth-Moon system can outline a new direction of study, so



that active control along multi-body trajectories can be minimized.

1.1 State of Art

The basis for the description of multi-body dynamical regimes were put by
Isaac Newton in 1687, with his work Philosophiae Naturalis Principia Math-

ematica [35]. In 1772, Leonhard Euler developed the three body problem in a
more detailed way: by using some simplifying assumptions he formalized the
restricted version of the problem, introducing the description with respect to
the synodic frame and identifying the collinear equilibrium points. Shortly
after, Joseph-Louis Lagrange identi�ed the two remaining equilibrium points.
Carl Gustav Jacob Jacobi, George William Hill and Henri Poincaré o�ered
further insight into the problem, by identifying,respectively, the Jacobi Con-
stant, zero velocity surfaces and Poincaré maps [23, 41]. A global view of
the 3-body problem is o�ered by Szbehely [51] and Koon [28].

The N-body formulation (in particular, in the synodic frame of two pri-
maries) has been inspired by the work by Diogene Dei Tos [12]. Equally
important, concerning multi-body regimes and correction schemes, it is im-
portant to cite the work by Pavlak [38]. The work by Pritchett [43] o�ers a
general overview of low-thrust analysis.

Although optimal control originates with the calculus of variation and
the intriguing brachistochrone problem posed by Johann Bernoulli, within
this work particular focus is placed on direct methods. Direct optimization
reformulates an optimal control problem and translates it in a Nonlinear
Programming Problem. The discretization process of an optimal control is
also called transcription, a term coined by Canon [8]. A superb treatment
of trajectory optimization can be found in the work by Betts [4].

A detailed analysis of attitude-orbital coupling in the circular restricted
3-body problem and the study of periodic solution in Distant Retrograde
Orbits is given by Lorenzo Bucci [6].

1.2 Structure of the Thesis

The main focus of this work is the development of a high-�delity multi-body
dynamical model, along with low-thrust trajectory design and optimization
in N-body models. Besides, attitude-orbital coupling is analysed in Non-
Keplerian orbits, with particular reference to NROs and DROs.

• Chapter 2: A fast overview of the circular restricted 3-body problem
is given. Then, the description move towards high-�delity multi-body
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models. In particular, equations of motion of a spacecraft under the
in�uence of N gravitational �elds are described according to two di�er-
ent point of views: relative to a central mass with respect to an inertial
frame and, then, relative to the barycentre of the system composed of
two primaries with respect to their synodic frame.

• Chapter 3: A discussion on attitude dynamics is given. Acting exter-
nal torques are also included in the treatment and particular attention
is paid in modelling the gravity gradient perturbation. The knowledge
of spacecraft angular velocities from dynamics allows to step into the
attitude kinematics. Quaternions parametrization is, then, recalled.
The conclusion of the chapter aims to a general treatment of attitude-
orbital aspects.

• Chapter 4: Building blocks for the algorithms to be developed are
summarized. Validation of the presented models is outlined, along with
the assessment of their accuracy.

• Chapter 5: A general overview of numerical methods for dynamical
models is given. Particular focus is placed for di�erential correction
schemes. This anticipates the fundamentals of optimization problem.
Di�erential correction schemes are, then, applied to the computation
of periodic solution in multi-body regimes.

• Chapter 6: Trajectory optimization problem is introduced. With
particular reference to low thrust trajectory design in N-body regimes,
two optimization approaches are presented. The �rst one redesigns
a Sims-Flanagan Transcription method. The second one is based on
a shooting scheme for optimal control problems and it parametrizes
control variables as Chebyshev interpolating polynomials.

• Chapter 7: The presented algorithms are applied to a real case sce-
nario, o�ered by the Asteroid Redirect Mission (ARM) by NASA. This
mission was supposed to exploit the Earth-Moon system before reach-
ing a Near-Earth Asteroid. After the collection of a boulder from its
surface, the spacecraft was supposed to re-enter the Earth-Moon region
by using a NRO as a gateway and by leaving the collected material in
a �nal, stable DRO.

• Chapter 8: Considerations about attitude-orbital coupling in NROs
and DROs are explained. The main objective of this chapter aims to
�nd interesting passive attitude control strategies to be applied in the
above mentioned orbits.

3



• Chapter 9: A brief summary of the work is presented. Recommen-
dation for future work are proposed.

4



Chapter 2

Orbital Mechanics Models

An appropriate dynamical model must be adopted in order to describe the
motion of the spacecraft. The restricted two-body model is characterized
by a closed-form solution, but it has the drawback of considering only one
attractor. Including the gravitational �elds of several bodies leads to more
complex models that must be handled with a numerical approach. The
circular restricted three-body problem takes into account the e�ects of two
gravitational bodies and it can give useful insight of the problem, even though
some simplifying assumptions are considered. In need of a more general and
precise dynamics, a N-body model can be exploited.

2.1 The Circular Restricted Three-Body Problem

The restricted two-body problem cannot provide an accurate analytical so-
lution in regions that are in�uenced by the gravitational e�ects of several
bodies. Par excellence, this is the case of the Earth-Moon system, whose
gravitational �elds strongly and simultaneously a�ects the trajectory of a
spacecraft. In this sense the circular restricted three-body problem repre-
sents viable model within the context of multi-body regimes.

In order to derive the equations of motions for restricted three-body
problem, it should be remembered that the dynamics of a particle in a N-
body system is given by

mir
2
i � �G

Ņ

j�1
j�i

mimj

r3ji
rji (2.1)

where r2i � d2ri
dt2

represents the second derivative of the position vector with
respect to dimensional time and rji � ri � rj . Equation 2.1 corresponds to



Newton's second law of motion. The particle under consideration is char-
acterized by a concentrated mass mi and its location is described by the
position vector ri, expressed in an inertial reference frame X̂Ŷ Ẑ. Analo-
gously, the generic gravitating body has a mass mj and its position is given
by rj . Note that the position of the particle mi relative to a body mj is
denoted by rji, where rji � ri � rj . In the case that N � 3, equation (2.1)
can be adapted as follows:

m3r
2
3 � �Gm3m1

r313
r13 �G

m3m2

r323
r23 (2.2)

being the particle i � 3 the one of interest. The case N � 3 is sketched in
Figure 2.1.

Figure 2.1: Three-Body Problem in the Inertial Frame

In the general case, the particle under consideration has a non-negligible
mass, meaning that it can a�ects the motion of the other particles due to
gravitational interactions. In order to move towards the circular restricted
three-body problem (CRTBP), some simplifying assumptions must be as-
sumed. First of all, the mass of the third body is negligible compared to the
mass of the other two, that is m3 ! m1,m2. This assumption implies that
the mass of interest (m3) moves under the in�uence of the other two bodies,
without a�ecting their motion. This is quite reasonable since the particle
under consideration is usually a spacecraft. In addition, it is assumed that
the two larger bodies (m1 and m2, also called primaries) revolve around

6



their center of mass in circular orbits.

For the sake of convenience, the motion of the smaller particle is described
with reference to a non-inertial frame of reference x̂ŷẑ whose origin lies at
the center of mass B of the two primaries. This frame co-rotates with the
larger bodies according to their uniform circular motion around B. The
x̂-axis is parallel to the line connecting m1 and m2 and directed towards
m2 (let be m2   m1). The ẑ-axis is perpendicular to the orbital plane
of the primaries and directed as the their angular momentum. The ŷ-axis
completes the right-handed triad. Figuring that the frame of reference x̂ŷẑ
coincides with an inertial one X̂Ŷ Ẑ for some particular initial time t0, any
following angular mismatch between them is given by γ � Ωpt � t0q, where
Ω is the constant angular velocity that characterizes the circular motion of
the primaries. The geometry of the CRTBP is depicted in Figure 2.2. The
frame of reference x̂ŷẑ is also called synodic frame.

Figure 2.2: Geometry of the Circular Restricted Three-Body Problem

2.1.1 Equations of Motion

By simplifying equation (2.2), the acceleration of the body under examina-
tion is expressed as

r2 � �Gm1

r313
r13 �G

m2

r323
r23 (2.3)

The acceleration is relative to an inertial observer, but vectorial quantities
can be resolved into components along the frame x̂ŷẑ. So, in the synodic

7



frame the position vector r can be written, at any instant, as

r � rxî� ry ĵ� rzk̂ (2.4)

where î, ĵ and k̂ are the unit vectors of the synodic frame. It is possible to
obtain the acceleration by considering some kinematic expressions. The �rst
time derivative of the position vector r yields

r1 � dr

dt
� r1rel �Ω� r (2.5)

where r1
rel
� drx

dt î� dry
dt ĵ� drz

dt k̂ is the velocity as seen from the synodic frame
and Ω � Ωk̂ is the angular velocity of the rotating frame. The acceleration
is found by taking the time derivative of equation (2.5)

r2 � d2r

dt2
� r2rel �Ω� pΩ� rq � 2Ω� r1rel (2.6)

where r2
rel
� d2rx

dt2
î� d2ry

dt2
ĵ� d2rz

dt2
k̂ is the acceleration as seen from the synodic

frame. Expanding the terms in equation (2.6), it follows

r2 � �
r2x � 2Ωr1y � Ω2x

�
î� �r2y � 2Ωr1x � Ω2y

�
ĵ� r2z k̂ (2.7)

Comparing (2.3) and (2.7), the dimensional equation of motion for the
CRTBP is derived�
r2x � 2Ωr1y � Ω2rx

�
î� �r2y � 2Ωr1x � Ω2ry

�
ĵ� r2z k̂ � �Gm1

r313
r13 �G

m2

r323
r23

(2.8)
Writing the equations in dimensionless form has several advantages from

the numerical and practical point of view. For this purpose, some charac-

teristic quantities are introduced. The characteristic length, L, is de�ned as
the mean distance between the primaries

L � r1 � r2 (2.9)

The characteristic mass,M , is given as the sum of the masses of the primaries

M � m1 �m2 (2.10)

The characteristic time, T , is expressed as follows

T �
c

L3

GM
(2.11)

Note that the inverse of the characteristic time represents the mean motion,
Ω, of the primaries

Ω �
c
GM

L3
(2.12)
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Parameter Value Units

L 384400 km
G 6.67408 � 10�20 km3 kg�1 s�2

m1 5.9722 � 1024 kg
m2 7.3477 � 1022 kg
M 6.0457 � 1024 kg
µ 0.0121535990 nondimensional
T 375194.88048 s

Table 2.1: Parameters in the Earth-Moon System

Characteristic quantities for the Earth-Moon system are reported in Table
2.1. At this point, quantities that appear in equation (2.8) can be nondi-
mensionalized. The nondimensional mass, µ, and time, τ , are obtained by
considering

µ � m2

M
(2.13)

τ � t

T
(2.14)

The nondimensional positions of the two primaries are �xed with respect
to the synodic frame and are expressed by ρ1 and ρ2. By exploiting the
de�nition of center of mass, it follows

ρ1 �
r1
L
� �µî (2.15)

ρ2 �
r2
L
� p1� µq î (2.16)

Analogously, the position vectors of the spacecraft ρ (relative to the center of
mass B), ρ13 and ρ23 (relative to the primaries) are given (in dimensionless
coordinates) by

ρ � r

L
� x̂i� yĵ� zk̂ (2.17)

ρ13 �
r13
L

� px� µq î� yĵ� zk̂ (2.18)

ρ23 �
r23
L

� px� 1� µq î� yĵ� zk̂ (2.19)

So, the dimensionless form of equations (2.3) and (2.7) can be written, re-
spectively, as

:ρ � �p1� µq
ρ313

ρ13 �
µ

ρ323
ρ23 (2.20)

:ρ � p:x� 2 9y � xq î� p:y � 2 9x� yq ĵ� :zk̂ (2.21)
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where dots represents the second derivative with respect to the nondimen-
sional time. The comparison between (2.20) and (2.21) yields the three
scalar, second-order di�erential equations of motion for the CRTBP in the
dimensionless form

:x� 2 9y � x � �p1� µq px� µq
ρ313

� µ px� 1� µq
ρ323

(2.22)

:y � 2 9x� y � �p1� µq y
ρ313

� µy

ρ323
(2.23)

:z � �p1� µq z
ρ313

� µz

ρ323
(2.24)

Introducing a pseudo-potential function, U , de�ned as

Upx, y, zq � 1� µ

ρ13
� µ

ρ23
� 1

2

�
x2 � y2

�
(2.25)

the system of scalar equations (2.22)-(2.24) can be written as

:x� 2 9y � BU
Bx (2.26)

:y � 2 9x � BU
By (2.27)

:z � BU
Bz (2.28)

2.1.2 Equilibrium Points

Studying the equations of motion for the CRTBP in the synodic frame, it
is possible to �nd some equilibrium solutions. Equilibrium points are also
called libration or Lagrangian points. Their locations are �xed and these
points are characterized by null velocity and acceleration in the rotating
frame. This is equivalent to �nd the solutions where the gradient of the
pseudo-potenzial function is equal to zero

∇U � 0 (2.29)

that means

BU
Bx � �p1� µq pxeq � µq

ρ313,eq
� µ pxeq � 1� µq

ρ323,eq
� xeq � 0 (2.30)

BU
By � �p1� µq yeq

ρ313,eq
� µyeq
ρ323,eq

� yeq � 0 (2.31)

BU
Bz � �p1� µq zeq

ρ313,eq
� µzeq
ρ323,eq

� 0 (2.32)
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where xeq, yeq and zeq are the coordinates of the equilibrium points in the
synodic frame.

Equation (2.32) is satis�ed if and only if zeq � 0. This means that the
equilibrium points lie in the xy-plane. An option to verify equation (2.31)
is setting yeq � 0 as well. The coordinates are found solving the remaining
equation

� p1� µq pxeq � µq
|xeq � µ|3 � µ pxeq � 1� µq

|xeq � 1� µ|3 � xeq � 0 (2.33)

Equation (2.33) has three real solutions, that identify three equilibrium
points (L1, L2 and L3). Since they lie on the x-axis, these solutions de-
termine the so-called collinear points. The precise coordinates depend only
on the system under consideration (so, on the mass ratio µ).

When yeq � 0, equations (2.30) and (2.31) allow for other two solutions
if and only if ρ13 � ρ23 � 1. This means that the remaining equilibrium
points form equilateral triangles with the two primaries. This points (L4

and L5) are the so-called equilateral points. Libration points in the Earth-
Moon system are depicted in Figure 2.3 (points are numbered according to
the typical NASA convention) and their coordinates are reported in Table
2.2.

Figure 2.3: Lagrangian Points in the Earth-Moon System pµ � 0.012154q
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Lagrangian Point Coordinates [nondimensional]

xeq yeq zeq
L1 0.836900 0 0
L2 1.155693 0 0
L3 -1.00506 0 0
L4 0.487846 0.866025 0
L5 0.487846 -0.866025 0

Table 2.2: Lagrangian Points in the Earth-Moon System pµ � 0.012154q

2.2 N-Body Model

The dynamical model circular restricted three-body problem is relatively
simple since only two gravitational �elds are considered. In any case, it is
suitable for a preliminary trajectory design in many systems. In presence of
additional gravitational masses, the model of the CRTBP can be no more
precise in terms of accuracy. A solution is proposed by the N-body model.
In addition, this model takes into account the actual motion of the gravita-
tional bodies, relaxing the assumptions of the CRTBP. Within the context
of this thesis, accurate state vectors of celestial bodies are given Jet Propul-
sion Laboratory DE431 ephemerides. They are included in MATLABR© by
exploiting the SPICE Toolkit [1]. First, equations of motion for the N-body
model will be derived with reference to an inertial frame of reference and
relative to a gravitational body. Then, they will be expressed with reference
to a rotating frame.

2.2.1 Equations of Motion relative to a central mass

Equation (2.1) expresses the dynamics of a particle under the in�uence of
other N � 1 bodies and it is written with reference to an inertial frame of
reference (as it can be the one centered on the Solar System barycenter).
Usually, it is more convenient to write the equations of motion of a particle
of interest (denoted with subscript i) relative to a central body (denoted with
subscript q). The geometry of the considered problem is depicted in Figure
2.4. Particularizing equation (2.1) for the studied particle (for example, a
spacecraft), it follows

mir
2
i � �Gmimq

r3qi
rqi �G

Ņ

j�1
j�i,q

mimj

r3ji
rji (2.34)
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Figure 2.4: Geometry of the N-Body Problem relative to a central mass

where the gravitational force due to the central body has been �pulled" out
of the summation. Analogously, the same equation for the central body is
given by

mqr
2
q � �Gmqmi

r3iq
riq �G

Ņ

j�1
j�i,q

mqmj

r3jq
rjq (2.35)

Simplifying the masses and, then, subtracting equation (2.35) from (2.34),
it follows

r2qi � �G pmi �mqq rqi
r3qi

�G
Ņ

j�1
j�i,q

mj

�
rij
r3ij

� rqj
r3qj

�
(2.36)

where the relationship rrs � �rsr (being r and s arbitrary indexes) has been
used. The position vector rqj can be easily found by consulting the planetary
ephemerides and, then, rij � rqj � rqi.

Within the context of this thesis, the equation of motion for a spacecraft
in the Sun-Earth-Moon system (relatively to the Earth) has been extensively
exploited

r2 � �G pmsc �mCq r

r3
�Gm@

�
rscÑ@

r3scÑ@

� rC@
r3
C@



�GmK

�
rscÑK

r3scÑK

� rCK
r3
CK



(2.37)
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Parameter Value Units

mC 5.9722 � 1024 kg
mK 7.3477 � 1022 kg
m@ 1.9885 � 1030 kg
M 6.0457 � 1024 kg
πC 0.9878464009 nondimensional
πK 0.0121535990 nondimensional
π@ 328920.99404 nondimensional

Table 2.3: Mass parameters for the Sun-Earth-Moon System

For practical reasons, equation (2.37) can be nondimensionalized by using
the same characteristic quantities already introduced for the Earth-Moon
system in the CRTBP (see Table 2.1), leading to

:ρ � �πC ρ
ρ3

� π@

�
ρscÑ@

ρ3scÑ@

� ρC@
ρ3
C@



� πK

�
ρscÑK

ρ3scÑK

� ρCK
ρ3
CK



(2.38)

Note that the second order derivative of ρ is, now, with respect to the nondi-
mensional time. Nondimensional position vectors are found dividing the di-
mensional counterparts by the characteristic length L, while the division by
the characteristic massM � mC�mK yields to the de�nition of πC, π@ and
πK

πC � msc �mC

M
� mC

M
(2.39)

π@ � m@

M
(2.40)

πK � mK

M
(2.41)

Mass parameters for the Sun-Earth-Moon system are listed in Table 2.3.

2.2.2 Equations of Motion in the Synodic Frame

Within the context of the N-Body problem, it can be interesting to select two
gravitating bodies and write the equations of motion for a spacecraft with
respect to their synodic frame (relative to the barycentre of the selected
two-body system). For example, an option can be o�ered by expressing the
dynamics of the spacecraft relatively to the barycentre of the Earth-Moon
system and projecting the equations onto the axes of its synodic frame. What
changes from the CRTBP is that, now, the actual motion of the N-bodies is
considered. This is true also for the selected primaries, m1 and m2, that are
no longer revolving according to a perfect, uniform, circular motion. As a
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convention, it will be still valid that m1 ¡ m2. The geometry of the problem
is illustrated in Figure 2.5.

Figure 2.5: Geometry of the N-Body Problem relative to the barycentre of two primaries

pm1 and m2q

In order to derive the equations of motion in the synodic frame of the
masses m1 and m2, with reference to Figure 2.5 it follows that

r2 � G
Ņ

j�1

mj

r3scÑj

rscÑj (2.42)

where rscÑj � rj � r. As already noted, equation (2.42) expresses the ac-
celeration of a particle i in an inertial frame of reference. For the sake of
convenience, this frame can be thought to coincide with the J2000 coordi-
nate system, with origin at the barycentre of the Solar System. The J2000
coordinate system is such that the X̂-axis is aligned with the mean equinox,
the Ẑ-axis is aligned with the Earth's spin axis (or celestial North Pole)
and the Ŷ -axis completes the right-handed triad. Di�erently, the mentioned
synodic frame of the system m1 � m2 is centred on its barycentre B and
the coordinate system is such that the x̂-axis is aligned with the instanta-
neous relative distance between the two primaries (direction towards the less
massive primary m2), the ẑ-axis is perpendicular to the osculating plane
containing their motion and directed as the relative angular momentum and
the ŷ-axis completes the right-handed triad. Similarly to what has been
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done for the derivation of the equations of motion for the CRTBP, by us-
ing kinematic relationships it is possible to write the inertial acceleration r2

following another way. Indeed, it is valid that

r � b� rsyn (2.43)

where b is the position vector of the center of mass of the system m1 �m2

and rsyn de�nes the location of the spacecraft relative to B. It is convenient
to express rsyn � kRρ, so equation (2.43) is rewritten as

r � b� kRρ (2.44)

where ρ is the nondimensional position vector of the spacecraft whose com-
ponents are expressed in the synodic frame and relative its origin. The
dimensional part is embedded in the time dependent factor k. Since equa-
tion (2.44) has to be read and projected onto the X̂Ŷ Ẑ, coherency is granted
thanks to the rotation matrix R. Indeed, it is applied to the vector ρ, allow-
ing the transformation from the synodic to the inertial frame. Taking the
time derivative of equation (2.44), it follows

r1 � b1 � k1Rρ� kR1ρ� kRρ1 (2.45)

Iterating the procedure to �nd the second derivative, it is possible to write

r2 � b2 � k2Rρ� 2k1R1ρ� kR2ρ� 2k1Rρ1 � 2kR1ρ1 � kRρ2 (2.46)

The comparison between equations (2.42) and (2.46) yields the following
relationship

b2 � �k2R� 2k1R1 � kR2
�
ρ� 2

�
k1R� kR1

�
ρ1 � kRρ2 � G

Ņ

j�1

mj
rscÑj

r3scÑj

(2.47)
Note that it is true that

rscÑj � rBÑj � rsyn � rBÑj � kRρ (2.48)

where rBÑj is the position vector of the mass mj measured from the origin
B of the synodic frame. Expressing equation (2.47) in terms of ρ2, it follows

ρ2 � �
�
k2

k
I� 2

k1

k
RTR1 �RTR2



ρ� 2

�
k1

k
I�RTR1



ρ1

�1

k
RT

�
b2 �G

Ņ

j�1

mj
rscÑj

r3scÑj

�
(2.49)

16



where I is the identity matrix. The inversion of the matrix R is legit: in-
deed, the transformation matrix R is orthonormal and its inverse coincides
with the transpose matrix

�
R�1 � RT

�
. Equation (2.49) is a second-order

di�erential equation with respect to the dimensional time. In order to write
the dimensionless form, it has to be remembered that the nondimensional
time τ is de�ned (see equation (2.14)) as

τ � t

T

being T the characteristic time of the selected primaries. So, in an N-body
environment the dimensionless form of the second-order di�erential equation
that describes the dynamics of a particle with respect to the synodic frame
of the system m1 �m2 is the following:

:ρ � � 1

n2

�
k2

k
I� 2

k1

k
RTR1 �RTR2



ρ� 2

n

�
k1

k
I�RTR1



ρ1

� 1

n2k
RT

�
b2 �G

Ņ

j�1

mj
rscÑj

r3scÑj

�
(2.50)

where n � 1
T is the mean motion of the selected primaries.

For the sake of completeness, it is important to express some terms that
appear in equation (2.50) (in particular, k and R), along with their time
derivatives. First, vectorial quantities of the less massive body (m2) with
respect to the main primary (m1) are denoted by ��" symbol. So it possible
to write $'''''&

'''''%

r̃ � r2 � r1

ṽ � v2 � v1

ã � a2 � a1

j̃ � j2 � j1

(2.51)

Position and velocity vectors, ri and vi, are known from the ephemeris model.
Regarding the acceleration ai of the primaries, it is known that

ai � �G
Ņ

j�1
j�i

mj

r3ji
rji � �G

Ņ

j�1

mj
ri � rj

||ri � rj ||3 (2.52)

The jerk is the rate of change of the acceleration. For each primary, the jerk
ji can be found by taking the time derivative of equation (2.52)

ji � G
Ņ

j�1
j�i

mj

"
vi � vj

||ri � rj ||3 � 3 rpri � rjq � pvi � vjqs ri � rj
||ri � rj ||5

*
(2.53)
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Equations (2.52) and (2.53) must be evaluated separately, once for the main
body (i � 1) and once for the less massive primary (i � 2). The factor k co-
incides with the value of instantaneous distance between the two primaries.
To be clear, it behaves as time dependent factor that is used to nondimen-
sionalize length quantities. The factor k and its time derivatives are written
as follows

k � ||r̃|| (2.54)

k1 � r̃ � ṽ
k

(2.55)

k2 � k
�
ṽ2 � r̃ � ã�� k1 pr̃ � ṽq

k2
(2.56)

The columns of the transformation matrix R coincide with the unit vectors
ei of the synodic frame of the system m1�m2. Recalling that at any time in
the synodic frame the x̂-axis is parallel to the line connecting the primaries,
the ẑ-axis is directed as their relative angular momentum and the ŷ-axis
completes the right-handed triad, it is possible to write

R � re1 e2 e3s where

$''''&
''''%

e1 � r̃

k

e2 � e3 ^ e1

e3 � r̃^ ṽ

h

(2.57)

The �rst time derivative of R is R1 � re11 e12 e13s where$''''&
''''%

e11 � kṽ � k1r̃

k2

e12 � e13 ^ e1 � e3 ^ e11

e13 � h pr̃^ ãq � h1 pr̃^ ṽq
h2

(2.58)

The second derivative of R is R2 � re21 e22 e23s where$''''''&
''''''%

e21 �
�
2pk1q2 � kk2

�
r̃� 2kk1ṽ � k2ã

k3

e22 � e23 ^ e1 � 2e13 ^ e11 � e3 ^ e21

e23 �
h2
�
ṽ ^ ã� r̃^ j̃

	
� 2hh1 pr̃^ ãq � �2ph1q2 � hh2

� pr̃^ ṽq
h3

(2.59)
In equations (2.57)-(2.59) the magnitude of the relative angular momentum
of the primaries (h) and its time derivatives (h1 and h2) appear several time.
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Their values are expressed here below:$''''&
''''%

h � ||r̃^ ṽ||

h1 � pr̃^ ṽq � pr̃^ ãq
h

h2 � r̃^ ṽ

h

(2.60)

2.2.3 Coordinate Transformations

Often it is very useful to perform coordinate system transformations in order
to express state vectors in suitable frames of reference and to design space
trajectories under di�erent viewpoints. In particular, it would be desirable
to dispose of a transformation that allows to transit between the two systems
of reference where the N-body problem equations have been written, that is
to say

• Equations of motions relative to a main body with reference to an
inertial frame of reference (as the J2000 frame can be);

• Equations of motion relative to the barycentre of the m1 �m2 system
with reference to their synodic frame.

For the sake of convenience, let us assume that the main body (m1 � mE)
is the Earth and that the second primary (m2 � mM ) is the Moon. With
reference to Figure 2.6, it is possible write the following relationship:

r � �rE � rsyn (2.61)

where rE is the position vector of the Earth relative to the barycentre B of
the Earth-Moon system. Remembering that rsyn � kRρ, it follows

r � �rE � kRρ (2.62)

Recalling that for the nondimensional time it is true that

τ � t

T
ñ dt � Tdτ (2.63)

and taking the time derivative of equation (2.62), it is possible to write

r1 � �r1E � k1Rρ� kR1ρ� k

T
R 9ρ (2.64)

Joining equations (2.62) and (2.64), it follows�
r

r1

�
� �

�
rE
r1E

�
�
�

kR 03�3

k1R� kR1 k
T R

��
ρ

9ρ

�
(2.65)
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Figure 2.6: Geometry of the N-Body Problem for the coordinate system transformation

where the position and velocity vectors of the Earth relative to the barycentre
B (rE and r1E) are known from the planetary ephemerides. Setting

M �
�

kR 03�3

k1R� kR1 k
T R

�
(2.66)

equation (2.65) can be written more compactly as�
r

r1

�
� �

�
rE
r1E

�
�M

�
ρ

9ρ

�
(2.67)

Equation (2.67) allows the transformation of a nondimensional state (ρ, 9ρ)
expressed in the synodic frame to a dimensional state (r, r1) relative to the
Earth and with respect to inertial axes. In the case that the latter has to
be nondimensionalized as well, usual characteristic quantities L and T are
used. Reversing equation (2.67), it follows�

ρ

9ρ

�
� M�1

�
r� rE
r1 � r1E

�
(2.68)

allowing for the inverse transformation: given the dimensional state (r, r1),
it is possible to get the corresponding nondimensional (ρ, 9ρ). Similarly to
the previous case, if the Earth-relative state (projected along inertial axes)
is known in a dimensionless form, dimensionalisation has to be considered
before applying equation (2.68).
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Chapter 3

Attitude Model

In addition to the motion of the center of mass, another important element is
represented by the motion of the spacecraft about its center of mass, also de-
noted as attitude. Orbital mechanics and attitude can be considered coupled:
the coupling, here considered, is one-way, in the sense that the trajectory
of the spacecraft in�uences the attitude motion, but the orientation of the
spacecraft does not a�ect the orbital dynamics. The �rst part of the previous
sentence is adequate: as a matter of fact, orbital mechanics considerations
de�ne perturbations that enter in the attitude dynamics. The second part of
the previous sentence is less tolerable, and it is accepted with reservations:
indeed, solar radiation pressure results in di�erent orbital perturbations de-
pending on the attitude of the spacecraft. Within the context of this study,
the e�ects of solar radiation pressure are neglected and the one-way coupling
can be justi�ed.

3.1 Dynamics

The rotational dynamics of a spacecraft can be studied considering the mo-
tion of a co-moving frame, rigidly attached to the spacecraft itself. This
frame is called body frame and it is de�ned by its axes xb � yb � zb, de-
�ned as the principal axes of inertia of the spacecraft. This means that
the inertia matrix of the spacecraft cab be written as a diagonal matrix
(J � diagpJx, Jy, Jzqq with respect to these axis. Time variations of the
spacecraft inertia are not considered.

By considering Newton's second law, the attitude dynamics can be writ-
ten as

9H � Mnet (3.1)

where H is the angular momentum of the spacecraft and Mnet represents



the net sum of the external acting torques. Writing equation (3.1) in the
body frame, the so-called Euler equations are derived:

9Hrel � ω �H � Mnet (3.2)

where 9Hrel represents the time derivative of the angular momentum relative
to the rotating body frame and ω � rωx ωy ωzsT is the angular velocity of the
body frame (so, of the spacecraft) expressed in the body frame. Expanding
equation (3.2), it follows$''''''&

''''''%

9ωx � Jy � Jz
Jx

ωyωz � Mx

Jx

9ωy � Jz � Jx
Jy

ωxωz � My

Jy

9ωz � Jx � Jy
Jz

ωxωy � Mz

Jz

(3.3)

Euler equations allow to determine the angular velocity of the spacecraft at
each instant. If the initial attitude of the spacecraft is known, it is possible to
rebuild its angular position pro�les. The term Mnet is used to model external
torques that act such to change spacecraft angular momentum and they are
represented, in general, by external perturbations (angular momentum vari-
ations due to active control is not considered here). The main perturbation,
under examination within this study, is the gravity gradient torque. Its val-
ues strongly depends on the orbital dynamics and it is in this circumstances
that attitude-orbital mechanics coupling arises.

For numerical purposes, also Euler equations are integrated in their di-
mensionless form: only a scaling, through the dimensionless time, is required.

3.1.1 Gravity Gradient

Gravity gradient torques are caused when a spacecraft center of gravity is
not aligned with its center of mass with respect to the local vertical. The
center of gravity is not, in general, the same as the center of mass. This
kind of disturbance tends to align the minimum principal axis with the local
vertical.

Gravity gradient torque provoked by a central body (denoted as �i�) can
be expressed as

Mgg,i � 3GMi

R5

�
��pJz � JyqRyRz
pJx � JzqRxRz
pJy � JxqRxRy

�
�� (3.4)

where G is the universal gravitational constant,Mi the mass of the attracting
body and R the norm of R � rRx Ry RzsT . In order to be coherent with the
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formulation, it is very important that R (spacecraft position vector relative
to the central body) is expressed in the body frame. If more attracting
bodies are present, the overall perturbing external torque is written as the
sum of the single gravity gradient torques, that is

Mnet �
Ņ

i�1

Mgg,i (3.5)

3.2 Kinematics

In order to complete the formulation about attitude, it is important to build
the angular con�guration of the spacecraft, or its kinematics. There are
di�erent way to describe spacecraft kinematics. One of the most e�cient
(but, maybe, less intuitive) ways to solve spacecraft kinematics is represented
by quaternions. The angular velocities w represent the information needed
to solve quaternion dynamics, that can be expressed as follows:

9q � 1

2
Ξq � 1

2

�
����

0 ωz �ωy ωx
�ωz 0 ωx ωy
ωy �ωx 0 ωz
�ωx �ωy �ωz 0

�
����q (3.6)

Once the quaternions are known in time, it is possible to convert their in-
formation in order to compute the direct cosine matrix AB{N that, in an
equivalent way, describes the attitude con�guration of the spacecraft. The
generic direct cosine matrix Ax{X is very important, since it represents the
transformation matrix that allow to express a vectorial quantity from the
�X" to the �x" coordinate system. So, the matrix AB{N is also used to
transform inertial quantities to the body frame coordinate system.

Observation If a direct cosine matrix pro�le Ax{X is known, it is possible
to recover its angular velocity pro�le ωx{X (that is, the angular velocities
expressed in the �x" frame relative to �X") by exploiting

9Ax{X � � �ωx{X�^ Ax{X (3.7)

where
�
ωx{X

�^
de�nes the skew-symmetric matrix obtained starting from

ωx{X .
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3.3 Coupled Model

In order to solve the attitude-orbital coupled dynamics, it is su�cient to
write a system of di�erential equations of the type

9x � f px, τ, ε,Jq (3.8)

The overall dynamics takes into consideration an augmented state x de�ned
as follows:

x �

�
����
ρ

9ρ

ω

q

�
���� (3.9)

Therefore, the whole dynamics is solved by integrating equations (2.38), (3.3)
and (3.6), simultaneously.
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Chapter 4

Validation

The aim of this chapter is to verify that the models presented in Chapters
2 and 3 are in agreement with some known results up to a certain degree
of precision and that they represent, in a correct way, the phenomena to be
studied. So, a reference solution will be compared with the one obtained
from numerical integration of the equations of motion, and the relative error
will be studied.

A fundamental element that is necessary in order to move on is the nu-
merical integrator. Within the context of this study, a Runge-Kutta scheme
is used for all the integrations.

4.1 Numerical Propagator

Since all the models presented so far are not characterized by a closed-form,
analytical solution, the only way to proceed in order to compute their solu-
tion is to numerically integrated the equations of motion. For this reason,
di�erent numerical integrators (or propagators) are known and can be ex-
ploited. Within this context an explicit Runge-Kutta method is exploited:
it integrates a system of ordinary di�erential equations using 8-7-th order
Dormand and Prince formulas [42]. This is a 8th-order accurate integrator
and, therefore, the local error normally expected is Oph9q. The propagator
requires 13 function evaluations per integration step. The used numerical
integration scheme is an already veri�ed version, thanks to the work of Gov-
orukhin V.N. [56].



4.2 SPICE

The SPICE tool-kit has been developed at the Jet Propulsion Laboratory
(JPL) by the Navigation and Ancillary Information Facility (NAIF), acting
under the directions of NASA's Planetary Science Division. This powerful
tool-kit allows to assist scientists and engineers in modelling, planning and
executing activities needed to conduct planetary exploration missions [1].

The primary SPICE data sets are often called kernels and they are com-
posed of navigation and other ancillary information that has been structured
and formatted for easy access. The SPICE tool-kit is available for di�erent
environments, including MATLABR©. Among the numerous functionalities
of SPICE, the retrieval of accurate state vectors of celestial bodies directly
enters the equations of motion for the N-body model. Within the context of
this study, Jet Propulsion Laboratory DE431 ephemerides kernel is used.

4.3 Validation of N-body Model

Once that the numerical propagator and the ephemerides database have
been introduced, it is possible to integrate the N-body models presented
in Chapter 2. The validation of the models is carried out comparing the
integrated trajectories with the ones coming from the ephemerides database
for di�erent Near-Earth asteroids. The celestial bodies used for this purpose
are listed in Table 4.1. The integrated trajectories are compared with the

Name SPK ID
Semi-Major
Axis [AU]

Orbit
Period
[years]

Eccentricity
Inclination

[deg]

2008 EV5 2341843 0.958 0.94 0.084 7.436
Bennu 2101955 1.126 1.20 0.203 6.035
1999 JU3 2162173 1.189 1.30 0.190 5.884
2007 UY1 3389197 0.951 0.93 0.175 1.019

Table 4.1: Considered Asteroids for Validation

ones coming from ephemerides evaluation over a period of 10 years (spanning
from ε0 � 1-Jan-2020 to εfin = 1-Jan-2030). For each one of the bodies in
Table 4.1, the veri�cation process evolves in three di�erent main steps:

• The celestial body initial state vector is retrieved from ephemerides
database at epoch ε0 � 1-Jan-2020.
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• The initial state vector is used as initial conditions for the numerical
integration for the trajectory of the considered body, over a 10 years
period. The propagation will give a series of state vectors, each related
at a di�erent instant.

• The body ephemerides are evaluated at the same instants of the prop-
agation, in order to obtain the reference trajectory. The di�erence (at
each instant) between the propagated and the reference trajectory al-
lows to de�ne a pro�le of the relative error (in position or velocity),
de�ned as

εrr pτq � ||x pτq � xref pτq ||
||x pτq || (4.1)

where x pτq and xref pτq represent the generic state of the propagated
and reference trajectory, respectively.

In Figure 4.1 a graphical comparison between the studied trajectory is
reported. The continuous blue line represents the integrated trajectories,

Figure 4.1: Integrated and Reference Trajectories

while orange dots follows the reference ones. The marked point represents
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the initial state of the propagation (at ε0 � 1-Jan-2020). Figure 4.2 reports
the pro�les of the relative errors (in position) of the two trajectories, for each
considered body. Apart from some cases (due to close approaches to central

Figure 4.2: Integrated and Reference Trajectories - Relative (Position) Error

bodies) in which a sudden increase in the relative error is observed, the order
of magnitude of the error is, usually (10�3 or below).

4.4 Validation of the Attitude Model

In order to infer the correctness of the attitude model, some unitary tests
have been performed. These tests are related to well known properties and
characteristic of spacecraft attitude dynamics, in particular:

• Constancy of angular momentum in the inertial space (if no external
torques are acting);

• Stability about major axis of inertia;

• Instability about intermediate axis of inertia;

• Stability regions for gravity gradient torque.

All the above mentioned tests have been performed successfully.
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Chapter 5

Numerical Analysis

In order to compute the solution of the CRTBP or N-body problem, the
equations of motion must be integrated numerically. Indeed, a closed-form
solution doesn't exist. Furthermore, in many circumstances the considered
dynamical systems exhibit a chaotic behaviour: slight changes in initial con-
ditions can correspond to large variations in the �nal conditions. It would be
fundamental to have some tools that allow the research of trajectories with
given and desired characteristics. Numerical methods, that are presented in
this chapter, are essential within the context of trajectory design.

5.1 Information on Derivatives

5.1.1 State Transition Matrix

Dynamical models introduced in the previous chapter can be expressed in a
generic way as

9x � fpx, τ, εq (5.1)

where the state vector x contains the position and velocity components

x �

�
��������

x

y

z

9x

9y

9z

�
��������
�
�
ρ

9ρ

�
(5.2)

and τ and ε represent the elapsed time and the reference epoch, respectively.
For the sake of convenience, it is possible to think that all the input quantities
are in a dimensionless form.



Once some initial conditions x0 � rx0 y0 z0 9x 9y 9zs and an initial epoch
ε0 are speci�ed, the equations in the form (5.1) can be integrated numer-
ically over a time span τspan � rτ0 τf s. Note that the propagation period
is τ � τf � τ0, where, in general, it will be τ0 � 0, so that the propaga-
tion period coincides with the elapsed time. The resulting trajectory will
be denoted as x px0, τ, ε0q. In order to achieve some desired properties, it
is important to understand how the trajectory varies if initial conditions
are slightly changed. If a small variation, δx0 (in position and velocity),
is considered, the resulting trajectory will be slightly di�erent as well. This
solution can be denoted as x px0 � δx0, τ, ε0q The initial variation δx0 repre-

Figure 5.1: Original and perturbed trajectories

sents the di�erence between the two trajectories when τ � τ0. This variation
evolves during the propagation and, at the generic time τ , it is true that

x px0 � δx0, τ, ε0q � x px0, τ, ε0q � δx pτ, ε0q (5.3)

Since the initial variation is small, it is possible to consider the Taylor series
of x px0 � δx0, τ, ε0q, yielding

x px0, τ, ε0q � Bx
Bx0

δx0 � � � � � x px0, τ, ε0q � δx pτ, ε0q
Bx
Bx0

δx0 � δx pτ, ε0q (5.4)

The derivative of x px0, τ, ε0q with respect to the initial state x0 gives rise
to the state transition matrix Φ pτ, τ0q

Φ pτ, τ0q � Bx
Bx0

(5.5)
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Also called sensitivity matrix, the state transition matrix expresses how vari-
ations in the initial state are related to variations in the �nal state of the
trajectory. Since the state vector x has 6 components, Φ pτ, τ0q is a 6 � 6

matrix and it can be written in expanded form as

Φ pτ, τ0q �

�
������������

Bx
Bx0

Bx
By0

Bx
Bz0

Bx
B 9x0

Bx
B 9y0

Bx
B 9z0

By
Bx0

By
By0

By
Bz0

By
B 9x0

By
B 9y0

By
B 9z0

Bz
Bx0

Bz
By0

Bz
Bz0

Bz
B 9x0

Bz
B 9y0

Bz
B 9z0

B 9x
Bx0

B 9x
By0

B 9x
Bz0

B 9x
B 9x0

B 9x
B 9y0

B 9x
B 9z0

B 9y
Bx0

B 9y
By0

B 9y
Bz0

B 9y
B 9x0

B 9y
B 9y0

B 9y
B 9z0

B 9z
Bx0

B 9z
By0

B 9z
Bz0

B 9z
B 9x0

B 9z
B 9y0

B 9z
B 9z0

�
������������

(5.6)

In order to obtain the elements that build up the state transition matrix,
its time derivative is considered, yielding

d

dτ

Bx
Bx0

� B
Bx0

dx

dτ
� B 9x
Bx0

� Bf px, τ, εq
Bx0

� Bf
Bx

Bx
Bx0

(5.7)

Denoting the derivative of the equations of motion with respect to the state
vector as the A matrix, equation (5.7) can be written as

9Φ pτ, τ0q � AΦ pτ, τ0q (5.8)

Equation (5.8) is called variational equation and it expresses how the com-
ponents of the state transition matrix varies during time. Its integration
leads to the knowledge of the state transition matrix, whereas the initial
conditions are de�ned by the identity matrix

Φ pτ0, τ0q � Bx0

Bx0
� I6�6 (5.9)

For the evaluation of the A matrix, numerical integration of the state tran-
sition matrix (36 di�erential equations) must be carried out along with the
integration of the equations of motion (5.1) (6 di�erential equations).

The A matrix depends on the considered dynamical models. If equations
of motion in an inertial aligned, Earth relative frame are considered (that is,
equation (2.38)), the A matrix can be written as

A �

�
����������

03�3 I3�3

B:x
Bx

B:x
By

B:x
Bz

B:y
Bx

B:y
By

B:y
Bz

B:z
Bx

B:z
By

B:z
Bz

03�3

�
����������

(5.10)
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where
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�πC
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(5.11)

In the case that equations of motion in a non-inertial, Earth-Moon synodic
frame are considered (that is, equation (2.50)), the A matrix will have the
following form:

A �

�
���������

03�3 I3�3

� 1
n2

�
k2

k I� 2k
1

k RTR1 �RTR2
	
� B

Bρ pagravq � 2
n

�
k1

k I�RTR1
	

�
���������

(5.12)
where B

Bρ pagravq represents the derivative of the gravitational acceleration
(due to all the considered bodies) with respect the position vector ρ, that is

B
Bρ pagravq �

B
Bρ

�
1

n2k
RTG

Ņ

j�1

mj
rj � kRρ

||rj � kRρ||

�

� 1

n2k
RTG

Ņ

j�1

mj
B
Bρ
�

rj � kRρ

||rj � kRρ||



(5.13)

5.1.2 Derivative with respect to Time

When a trajectory is propagated (given some initial conditions x0 and a
reference epoch ε0) for a propagation time T � τ , it is straightforward to
obtain information on the time derivative of the �nal state x. Indeed, by
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de�nition it follows
dx

dτ
� 9x � f px, τ, ε0q . (5.14)

where f represents the equations of the related dynamical system.

5.1.3 Derivative with respect to Epoch

In contrast to the CRTBP, in an ephemeris N-body model there is a strong
dependence on the reference epoch ε with respect to which the trajectory is
numerically integrated. This implies that in general the same initial condi-
tions x0 will evolve di�erently if the starting epoch is changed.

To study the variation of the �nal state x when the reference epoch is
changed, the derivative dx

dε is considered. As seen for the state transition
matrix, the idea is to obtain a �rst-order di�erential equation describing the
variation of dxdε as time moves along: its integration will lead to the knowledge
of dxdε . Taking its time derivative, it follows

d

dτ

�
dx

dε



� d

dε

�
dx

dτ



� df px, τ, εq

dε
� Bf
Bx

dx

dε
� Bf
Bε � A

dx

dε
� Bf
Bε (5.15)

If equations of motions in an inertial aligned frame (relative to a central
body) are considered, the only epoch-dependent terms in the dynamical sys-
tem f are the position vectors ρqj of the massive bodies mj relative to the
central body mq. So equation (5.15) can be particularized as

d

dτ

�
dx

dε



� A

dx

dε
�

Ņ

j�1
j�q

Bf
Bρqj

Bρqj
Bε � A

dx

dε
�

Ņ

j�1
j�q

Bf
Bρqj

9ρqj (5.16)

being 9ρqj the velocity of the massive body mj relative to the central one. In
particular, if equation (2.38) is considered, the epoch dependent terms are
ρC@ and ρCK (that appear also in ρscÑ@ � ρC@�ρ and ρscÑK � ρCK�ρ).
Equation (5.16) can be rewritten as

d

dτ

�
dx

dε



� A

dx

dε
� Bf
BρC@

9ρC@ �
Bf
BρCK

9ρCK (5.17)

The A matrix has been already derived and it can be found at equations
(5.10)-(5.11). Bf

BρCj
with j � @ or K is a 6 � 3 matrix having the following

33



structure:

Bf
BρCj

�

�
����������

03�3
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�
����������

(5.18)

where (for j � @ and K)

B:x
Bxj � πj

�
1

ρ3scÑj

� 3 pxj � xq2
ρ5scÑj

� 1

ρ3
Cj

� 3x2j
ρ5
Cj

�

B:x
Byj � πj

�
�3 pxj � xq pyj � yq

ρ5scÑj

� 3xjyj
ρ5
Cj

�

B:x
Bzj � πj

�
�3 pxj � xq pzj � zq

ρ5scÑj

� 3xjzj
ρ5
Cj

�

B:y
Bxj � πj

�
�3 pyj � yq pxj � xq

ρ5scÑj

� 3yjxj
ρ5
Cj

�

B:y
Byj � πj

�
1

ρ3scÑj

� 3 pyj � yq2
ρ5scÑj

� 1

ρ3
Cj

� 3y2j
ρ5
Cj

�

B:y
Bzj � πj

�
�3 pyj � yq pzj � zq

ρ5scÑj

� 3yjzj
ρ5
Cj

�

B:z
Bxj � πj

�
�3 pzj � zq pxj � xq

ρ5scÑj

� 3zjxj
ρ5
Cj

�

B:z
Byj � πj

�
�3 pzj � zq pyj � yq

ρ5scÑj

� 3zjyj
ρ5
Cj

�

B:z
Bzj � πj

�
1

ρ3scÑj

� 3 pzj � zq2
ρ5scÑj

� 1

ρ3
Cj

� 3z2j
ρ5
Cj

�
(5.19)

Integrating numerically to �nd the evolution of the components of dx
dε , the

initial conditions
dx

dε
pτ0q � 06�1 (5.20)

shall be considered.
If equations of motion in a non-inertial, Earth-Moon synodic frame are

considered (that is, (2.50)), equation (5.15) is still valid, but the term Bf
Bε

becomes very long and complicated to be expressed here (the reader shall
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consider that the R matrix, along with its time derivatives, is epoch depen-
dent). Finite di�erencing to evaluate dx

dε or Bf
Bε seems the most reasonable

solution.

5.2 Towards the Optimization

5.2.1 Newton's Method

The state transition matrix and the derivative of the state with respect to
epoch represent the building blocks of gradient-based optimisation methods.
Indeed, by exploiting their components, it will be possible to compute the
gradient-information. But, before dealing with nonlinear programming, it is
possible to understand the basic working concepts by considering a prelimi-
nary case.

When dealing with trajectory design, it is often be desirable to �nd the
exact values of some variables such that the constraints of the problem are
satis�ed. This is actually a two-point boundary value problem and it can
be solved by using a shooting method based on Newton's algorithm. The
variables of the problem can be gathered in the X vector ( n� 1 vector )

X �

�
��
X1
...
Xn

�
�� (5.21)

where the elements of X can be, for example, components of state vectors,
times and epochs. The X must satisfy a series of m constraints, that can be
grouped in the F pXq vector ( m� 1 vector)

F pXq �

�
��
F1 pXq

...
Fm pXq

�
�� (5.22)

Newton's method allows to �nd the roots of real-valued functions and it
represents a suitable algorithm for the considered problem, allowing to �nd
X such that F pXq � 0, given that a solution exists. Imaging that X� is
close to the solution, it is possible to write (by exploiting a Taylor series)

0 � F pXq � F pX�q � BF pX�q
BX pX �X�q (5.23)

From equation (5.23) it is possible to extract an iterative routine to �nd the
solution of the problem. If n � m, the Jacobian of the constraint vector is
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squared and invertible and the iterative scheme can be written as

Xj�1 �Xj �
�BF pXjq

BX
��1

F j pXq (5.24)

If m   n, a common choice is to use the following scheme

Xj�1 �Xj �
�BF pXjq

BX

T ��BF pXjq

BX

�BF pXjq

BX

T��1

F j pXq
(5.25)

Iterations are performed till the output is a solutionXk such that it satis�es
the constraints to some acceptable tolerance

||F pXkq ||   tolerance (5.26)

Note that, in general, the obtained solution is not necessary optimal.
For the sake of clarity, Newton's method can be summarized with the

following steps:

1. Decide the variables X of the problem;

2. Decide the constraints F pXq of the problem;

3. Set an initial guess Xg;

4. Evaluate the constraints at the current iteration;

5. Evaluate the Jacobian of the constraints at the current iteration;

6. Estimate the new approximation of the solution (by using equation
(5.24) or (5.25));

7. Evaluate the constraints and the error by using the new approximation;

8. If the error is less than a decided tolerance, iterations are over; other-
wise, return to point 5.

5.2.2 Multiple Shooting

Multiple shooting represents a very e�ective and useful method for trajectory
design. It consists in discretizing the trajectory in n arcs and, then, imposing
suitable and desired constraints at the patch points (that is, between the end
of an arc and the beginning of the following one). Each arc is characterized
by a set of variables, that can be the initial state vector xi, the period of
propagation Ti and the reference epoch εi. After the propagation of the
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initial conditions is performed, for each arc the �nal state will be denoted as
xti.

Usually, a requirement for the trajectory is the continuity in position
and velocity at the patch points. If only continuity in position is imposed, in
general there will be a change (in magnitude and direction) of the velocity
vector at the patch points, meaning that a ∆vi is introduced. In general,
if all the arcs are propagated by using an initial guess of their variables,
the result will be a discontinuous trajectory with a mismatch at the patch
points, as it can be seen in Figure 5.2. It would be desirable to correct the

Figure 5.2: Multiple Shooting: discontinuous trajectory

values of the considered variables such that the continuity constraints (in
position and velocity) are satis�ed within a certain tolerance. The resulting
trajectory will be, then, similar to the one depicted in Figure 5.3. This is

Figure 5.3: Multiple Shooting: continuous trajectory

actually a problem that can be solved by using Newton's method. The free
variables of each arc are gathered in a unique X vector and F pXq contains
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the imposed constraints:

X �

�
�����������������������������

x1

x2
...
xn
xfin
T1

T2
...

Tn

ε1
ε2
...
εn
εfin

�
�����������������������������

F pXq �

�
���������������������

xt1 � x2

xt2 � x3
...

xtn�2 � xn�1

xtn�1 � xn
xtn � xfin
ε2 � ε1 � T1

ε3 � ε2 � T2
...

εn � εn�1 � Tn�1

εfin � εn � Tn

�
���������������������

� 0 (5.27)

where xfin and εfin represent, respectively, the state vector and the epoch
related to the �nal point of the trajectory (xfin and εfin can be known
quantities, in that case they must be removed from the variable vector X).
Note that the constraint vector also contains the conditions

εi�1 � εi � Ti (5.28)

stating that the temporal gap between two consecutive patch points is exactly
the propagation period of the arc connecting them.

In order to exploit Newton's algorithm, information on the Jacobian of
the constraint vector must be known. Derivatives of the �nal state vector
xti with respect to the initial state xi, time period Ti and reference epoch εi
can be easily found by using considerations expressed in Section 5.1. Note
that, of course, the derivative of a variable with respect to itself is equal to
the identity; on the contrary, the derivative with respect to another variable
is null. Thus, the Jacobian will result in a sparse, block matrix.

5.2.3 Inequality Constraints

Sometimes it is possible to come across some inequality constraints. The
generic inequality constraint Fi pXq can be expressed as

Fi,LB ¤ Fi pXq ¤ Fi,UB (5.29)

where Fi,LB and Fi,UB are the lower and upper bounds for the constraint,
respectively. In order to successfully include it within the context of Newton's
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method, the inequality must be reformulated as an equality. An inequality
constraint with upper boundary

Fi pXq ¤ Fi,UB (5.30)

can be rewritten as
Fi pXq � Fi,UB ¤ 0 (5.31)

By introducing a slack variable βi,UB, it is possible to reformulate equation
(5.31) as an equality:

Fi pXq � Fi,UB � β2i,UB � 0 (5.32)

Similarly, an inequality constraint with lower boundary

Fi,LB ¤ Fi pXq (5.33)

can be expressed as an equality by exploiting another slack variable βi,LB:

Fi pXq � Fi,LB � β2i,LB � 0 (5.34)

When using Newton's method, slack variables βi must be included in the
vector of free variablesX. Furthermore, when computing the Jacobian of the
constraint vector, the derivative of equation (5.32) (or (5.34)) with respect
to the slack variable βi will give rise to a term 2βi (or �2βi).

5.3 Computing Periodic Solutions

Within the context of the CRTBP and the N-body problem, it is possible
to �nd some particular kinds of periodic solutions. Their computation can
be performed considering a peculiar case of the multiple-shooting method,
where only one arc is taken in consideration (so, a single-shooting method
is obtained). Both for the CRTBP (by de�nition) and the N-body problem,
the description of these orbits has to be performed in the synodic frame.
Sometimes the N-body environment can reveal challenging convergence is-
sues. This is why periodic orbit computation is, at �rst, performed in the
CRTBP framework: the obtained solution will be re�ned in a real ephemeris
model.

5.3.1 Symmetric Periodic Solutions in CRTBP

For many (not all) periodic trajectories in the CRTBP it is possible to ex-
ploit their inherent symmetry across the xz-plane. This means that the
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computation can be limited to �nd half of the periodic trajectory, where
departure and arrival points are constrained to lay on the xz-plane, with
velocities perpendicular to it. In view of the above, the generic symmetric
periodic solution in the CRTBP is characterized by an initial state vector of
the following form:

x0 �

�
��������

x0
0

z0
0

9y0
0

�
��������

(5.35)

Setting up a single-shooting problem, the free variables will consist in the
non-null components of x0 and the half orbit period T, so

X �

�
����
x0
z0
9y0
T

�
���� (5.36)

In order to guarantee periodicity, symmetry is imposed: a perpendicular
arrival at the xz-plane is written as

F pXq �

�
��y

t

9xt

9zt

�
�� � 0 (5.37)

The derivative of the constraint vector with respect to the free variables leads
to the following Jacobian:

BF pxq
Bx �

�
��Φ21 Φ23 Φ25 9yt

Φ41 Φ43 Φ45 :xt

Φ61 Φ63 Φ65 :zt

�
�� (5.38)

If one component of the initial state vector is prescribed, it is possible to
add an appropriate element in the constraint vector. For example, if the x0
component of starting point is known, an additional term

x0 � x0,d � 0 (5.39)

(where x0,d is a constant that speci�es the desired initial value for x0) is
included in F pxq. In order to avoid degenerate orbits, another useful con-
sideration can be setting the half period T larger than a minimum value
Tmin, in that case a term

T� Tmin � β2 � 0 (5.40)
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is added to the constraint vector (and β is included among the free variables).
Newton's algorithm is then exploited to �nd the values of the variables that
identify the periodic solution.

Once the �rst orbit is obtained, the entire family of periodic solutions
can be computed by using pseudo-arclength continuation method (see Sub-
section 5.3.3). In this way, Halo orbits families (Northern and Southern) in
the vicinity of collinear points can be found (see Figure 5.4). Continuing to

Figure 5.4: L2 Halo Family (Northern)

propagate the L1 and L2 Halo families towards the bifurcation point (that
is, towards the Moon), computed periodic solutions will be referred as Near
Rectilinear Halo Orbits (NROs). In Figure 5.5 NRO families near L2 are
depicted. In the case that symmetric periodic solutions are required to lay
on the xy-plane, initial component z0 can be removed from the variable vec-
tor X (the column related to its derivative is removed from the Jacobian as
a consequence). Orbits of such a kind generates planar families. Lyapunov
orbits around the collinear points can be obtained. Another family of planar
periodic trajectories is represented by Distant Retrograde Orbits (DROs),
depicted in Figure 5.6. Distant Retrograde Orbits exist thanks to the intrin-
sic rotation of the synodic frame and they are characterized by a remarkable
stability.
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Figure 5.5: L2 Near Rectilinear Halo Orbits Families (Northern and Southern)

Figure 5.6: Distant Retrograde Orbits

5.3.2 Periodic Solution in the N-body framework

Unlike the CRTBP, the N-body problem is not characterized by intrinsic
symmetry. Besides, the problem is epoch dependent, meaning that the same
initial conditions usually result in di�erent trajectories if propagated at dis-
tinct epochs. This implies that particular initial conditions for a periodic
solutions in the N-body framework will be valid for a speci�c epoch: their
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propagation at a di�erent epoch will be very likely to produce an open tra-
jectory.

Periodic solutions computed in the CRTBP can be used as a �rst guess
for the computation of those in the N-body problem. The generic periodic
solution can be found setting up a single (or a multiple) shooting problem
where the free variables consist in the components of the initial state vector
x and the (entire) orbit period T at a speci�c reference epoch ε0

X �
�
x

T

�
(5.41)

The constraint vector has to impose the periodicity condition, that is the
�nal state of the trajectory must coincide with the initial one:

F pxq �
�
xt � x

�
� 0 (5.42)

In the considered case the Jacobian of the constraint vector is a 6�7 matrix
with the following form:

BF pXq
Bx �

�
�� rΦ� I6�6s 9x

�
�� (5.43)

As already noted, if one component of the initial state vector is known, it is
possible to add an appropriate element in the constraint vector. For example,
if the starting point is constrained to lay on the xz-plane, an additional term
y � yd � 0 (where yd is a constant that speci�es the desired initial value for
y, so in this case yd � 0) is included in F pxq. Similarly, slack variables and
connected constraints can be added, if necessary.

The outlined procedure has been used to compute periodic orbits in a
real ephemeris environment. Figure 5.7 represents a Near Rectilinear Halo
Orbit characterized by an aposelene ra � 78000 km (reference epoch set
on 13 February 2026). Figure 5.8 depicts a Distant Retrograde Orbit in a
real ephemeris model (reference epoch set on 15 October 2026). The orbit
is, then, propagated over one year period: even under the e�ects of several
gravitational �elds, the Distant Retrograde Orbit results e�ectively stable.

5.3.3 Pseudo-Arclength Continuation

Once a converged solution is available, it is possible to �nd the entire family
of orbits by exploiting a continuation method. In contrast to other sim-
pler continuation methods (for example, the single-parameter continuation
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(a) NRO - Projection on xz-plane (b) NRO

Figure 5.7: NRO in N-body framework (Epoch = 13 Feb 2026)

(a) DRO (b) DRO (propagated for 1 year)

Figure 5.8: DRO in N-body framework (Epoch = 15 Oct 2026)

method) that search for the next member of the family moving along a
prescribed direction (so, evolution of the family has to be known a priori

for a successful application of the method), pseudo-arclength continuation
schemes modify initial conditions taking a step ∆s in the direction tangent
to the family. Free variables of last converged solution are denoted as X�

i

and they satisfy the constraint vector F pX�
i q � 0. The tangential direction

∆X�
i is computed as the null space of the Jacobian of the constraint vector

(evaluated at X�
i )

∆X�
i � Null

�BF pX�
i q

BX



(5.44)

In order to move towards the next orbit of the family (identi�ed by free
variables Xi�1), a step along the tangential direction must be included in
the constraint vector. The augmented constraint vector, now denoted as
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G pXq, can be written as

G pXi�1q �
�

F pXi�1q
pXi�1 �X�

i qT ∆X�
i �∆s

�
� 0 (5.45)

The Jacobian of the augmented constraint vector yields

BG pXi�1q
BX �

�
�BF pXi�1q

BX

∆X�
i
T

�
� � 0 (5.46)

By exploiting Newton's method, it is possible to iterate and converge towards
the solution X�

i�1 (that identi�es the pi � 1qth orbit of the family). The
generic iteration for Newton's method can be written as

Xk�1 �Xk �
�BG pXkq

BX

�1

G pXkq (5.47)

The great advantage of pseudo-arclength continuation method is that the
information to compute next member of the family is intrinsically obtained,
without the need of its a priori knowledge.

5.3.4 Stability of CRTBP Periodic Solutions

In CRTBP, that is an autonomous problem, it is possible to exploit time-
invariant system theory to study the stability of periodic orbits. Once the
initial condition x�0 of a periodic solution is obtained through a correction
scheme, it is possible to obtain the monodromy matrix M by integrating the
variational equation (5.8) over one period of the orbit. Indeed, by de�nition,
the monodromy matrix is the state transition matrix after one period T

M � Φ pτ0 � T, τ0q (5.48)

By studying the eigenvalues λi of the monodromy matrix, it is possible to
obtain information on the stability of the considered periodic solution. For
periodic orbits in CRTBP, eigenvalues of the monodromy matrix occur in
reciprocal pair. Depending to the magnitude of the eigenvalues, it is possible
to note that:

• If |λi|   1, an asymptotically stable eigenstructure is associated to the
orbit;

• If |λi| ¤ 1, a marginally stable eigenstructure is associated to the orbit;

• If |λi| ¡ 1, an unstable eigenstructure is associated to the orbit.
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For orbits around collinear points, one asymptotically stable eigenstructure
and one unstable eigenstructure are always observed, producing a non-stable
(saddle) behaviour for the orbits. These one-dimensional stable and unstable
eigenstructures are also called manifolds and they can be obtained propagat-
ing the corrected initial condition x�0 of the orbit perturbed in the direction
of the eigenvector Y s px�0q (or Y u px�0q) associated to the stable (or unstable)
eigenvalue λi

Xs px�0q � x�0 � εY s px�0q (5.49)

Xu px�0q � x�0 � εY u px�0q (5.50)

whereXs px�0q represents the initial condition of the stable manifold arriving
to the orbit (and it has to be propagated backward), whileXu px�0q represents
the initial condition of the unstable manifold departing from the orbit (and
it has to be propagated forward). In equations (5.49) and (5.50), ε is the
magnitude of the perturbation.

It is also possible to �nd the initial conditions for stable and unstable
manifolds related to any point x ptq of the periodic solution, di�erent from
the corrected state x�0 at which the monodromy matrix has been computed.
In order to do this operation, it is su�cient to transport the eigenvectors
by multiplying them by the state transition matrix from τ0 to τ , that is
Φ pτ, τ0,x�0q. So, the initial conditions for the stable and unstable manifolds
related to the generic state x ptq of the orbit are given by

Xs pxptqq � xptq � ε
Φ pτ, τ0,x�0qY s px�0q

||Φ pτ, τ0,x�0qY s px�0q ||
(5.51)

Xu pxptqq � xptq � ε
Φ pτ, τ0,x�0qY u px�0q

||Φ pτ, τ0,x�0qY u px�0q ||
(5.52)

Manifolds are really e�ective in trajectory design, since they allows to
obtain low-cost transfers to leave or to reach the orbit.

5.3.5 Lagrangian Coherent Structures

The theory of time-invariant systems is non applicable to the N-body prob-
lem (that is non-autonomous) and the illustrated procedure for the compu-
tation of invariant manifolds does not hold anymore. Lagrangian Coherent
Structures (LCS) can be seen as the extension of invariant manifolds for the
N-body problem. It is possible to distinguish attracting (attractors) and
repulsing (repulsors) LCS, being the structures that attract or repulse the
neighbouring portions of the �ow the most. Heuristically, it is possible to
identify the LCS as the ridges of the �ow, being the structure through which
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the �ow �ux is null. One common way to identify LCS is to exploit the
Finite-time Lyapunov exponent (FTLE).

Finite-Time Lyapunov Exponent

FTLE can be used as a measure to identify LCS ([48]) and, in particular,
local high values of FTLE indicate LCS. Starting from a particular initial
condition, FTLE measures how much the neighbouring trajectories are at-
tracted or repulsed over a �xed propagation time. Denoting as Φ pτ, τ0,x0q
the state transition matrix computed evolving the initial condition x0 from
time τ0 to τ , FTLE is computed as the largest normalized eigenvalue ofb

ΦT pτ, τ0,x0qΦ pτ, τ0,x0q, so, more formally, it follows

FLTE � 1

τ � τ0
λ̃max

�b
ΦT pτ, τ0,x0qΦ pτ, τ0,x0q



(5.53)

where the operator λ̃maxpq is used to extract the largest eigenvalue of the
argument. This eigenvalue is then normalized by using the propagation
period τ�τ0. Given a prescribed initial conditions x0 (with ns components),
it is possible to map (in terms of FLTE) the neighbouring states of the design
space by considering a ns-dimensional mesh centred in x0. For attracting
LCS, propagations must be carried out backward.
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Chapter 6

Trajectory Optimization

In this chapter the bases of trajectory optimization are presented. The �-
nal goal is to apply them to a low-thrust trajectory design and optimization.
Low-thrust propulsion systems are very e�cient but produce a small amount
of thrust. As a consequence, electric propulsion systems have to operate for
an extended period of time, implying a more complex strategy for trajectory
optimization. One way to optimize low-thrust trajectories consists in using
indirect methods, based on calculus of variations. The main complication
of these methods is that they are very sensible to initial conditions and a
good guess is required solved. The presence of gravity-assists enhances the
sensitivity and the di�culty. Di�erently, strategies that are used within the
context of this work are direct methods and they are solved using Nonlinear
Programming (NLP). Once the NLP framework is presented, a low-medium
�delity Sims-Flanagan based method is explained. Then, a direct transcrip-
tion, shooting method (based on Chebyshev polynomials) is presented.

6.1 Nonlinear Programming (NLP)

6.1.1 Introduction

Multiple-shooting techniques exploit Newton's method in order to correct a
set of free variables such that some imposed constraints are veri�ed. When
dealing with trajectory design, it is usually desirable to achieve this conver-
gence while optimizing a scalar objective function. In practice, the problem
can be related to the minimisation of the ∆v or the time-of-�ight. The well-
known Newton's algorithm will help in understanding the new numerical
challenge and it will be, once again, at the base for its solution.



A Nonlinear Programming problem consists in �nding the n-dimensional
vector x such that it minimizes the scalar function

F pxq (6.1)

and subject to the m constraints

cL ¤ c pxq ¤ cU (6.2)

and bounds
xL ¤ x ¤ xU (6.3)

Equality constraints can be imposed by setting ci,L � ci,U .

6.1.2 Equality-Constrained Optimization

The �rst case consists in �nding the value of x while optimizing of the
objective function F pxq and satisfying a set of equality constraints c pxq � 0.
The variable vector x contains n elements, whereas the constraint vector c pxq
has m components (with m ¤ n). In order to move towards the solution,
the approach envisages the de�nition of the Lagrangian L px,λq

L px,λq � F pxq � λT c pxq � F pxq �
m̧

i�1

λici pxq (6.4)

where λ is the (m � 1) vector of Lagrangian multipliers. The necessary
condition for px�,λ�q to be an optimum point is that the gradient of the
Lagrangian (both with respect to x and to λ) is null:

∇L px�,λ�q �
�
�∇xL px�,λ�q
∇λL px�,λ�q

�
� � 0 (6.5)

The gradient of the Lagrangian with respect to x yields

∇xL px,λq � g �GTλ (6.6)

where g pxq � ∇xF pxq is the gradient of the objective function and G pxq �
∇xc pxq is the Jacobian of the constraint vector. The gradient of the La-
grangian with respect to λ leads to

∇λL px,λq � �c (6.7)

Assuming that px0,λ0q is a guess close to the solution, it is possible to
consider a Taylor series expansion of equations 6.6 and 6.7, yielding

g �GTλ�HL px� x0q �GT pλ� λ0q � 0 (6.8)

�c�G px� x0q � 0 (6.9)
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where HL is the Hessian of the Lagrangian

HL � ∇2
xxL px,λq � ∇2

xxF �
m̧

i�1

λi∇2
xxci (6.10)

Rewriting the linear system made up by equations 6.8 and 6.9 as�
�HL GT

G 0

�
�
�
� p

� λ

�
� �

�
��g

� c

�
� (6.11)

where p � x�x0, it is possible to apply Newton's method to �nd its solution,
that is the value of the (n � m)-dimensional vector px�,λ�q. The system
6.11 is called Karush-Kuhn-Tucker (KKT) system and it expresses necessary
conditions for px�,λ�q to be an optimum point of the nonlinear programming
problem.

6.1.3 Inequality Constraints

The general case envisages that inequality constraints are imposed as well.
So the problem consists now in �nding the n-dimensional vector x such
that it minimizes the scalar function F pxq and satis�es the m inequalities
constraints

c pxq ¥ 0 (6.12)

In this case, it can be thatm ¥ n. Imagining that the solution x� is available,
the constraints can be divided in two classes:

1. Constraints that are strictly veri�ed, that is

ci px�q ¡ 0 (6.13)

are called inactive;

2. Constraints that are veri�ed as equalities, that is

ci px�q � 0 (6.14)

are called active.

If the set of active constraints (also called active set) is known, it is possi-
ble to ignore the remaining constraints and to solve the problem by using
the strategy for equality-constrained optimization. Complex algorithms are
used to determine the active set. A common implementation is the sequen-
tial quadratic programming (SQP) approach, that can be found in many
packages, including MATLAB R© and SNOPT. The basic idea behind these
schemes is to solve a sequence of optimization sub-problems. Indeed, at each
iterate x, a quadratic programming sub-problem is solved in order to �nd
the search direction p, allowing to de�ne the next iterate xk�1.
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6.2 Sims-Flanagan Transcription Method

Sims-Flanagan algorithm represents a direct method that can be used for a
preliminary design of low-thrust trajectories ([55], [49], [15], [50] and [60]),
also in presence of gravity-assists. It is possible to refer to it as a transcription
method, since it envisages a discretization of the optimal control problem.

6.2.1 Trajectory Structure

Figure 6.1 represents a diagram explaining how a space mission can be struc-
tured, from the trajectory hierarchy point of view. First of all, a mission can

Figure 6.1: Trajectory Structure Diagram

be seen a set of journeys, each identifying an extended trajectory related
to the main events (namely, arrival and/or departure) at the target bodies.
For example, an asteroid sample return mission would be composed of two
journeys: the �rst leaving the Earth and arriving to the asteroid, the second
departing from the asteroid and coming back to the Earth. Usually, two
consecutive journeys are separated by a certain period of time, during which
some mission operations are carried out. Each journey can be represented
by a complex trajectory and this is the reason why journeys are studied
independently. In turn, a journey is identi�ed by control nodes, usually as-
sociated with planets or small bodies. So, for each journey, it is possible to
identify the following control nodes:

• Departure control node, where the journey starts;

• Arrival control node, where the journey ends;
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• Intermediate control nodes, associated with bodies where temporary
and relevant events occur (usually, gravity-assists and rendezvous, if
present).

Two consecutive control nodes specify a trajectory phase, which can be split
into two legs: a forward leg and a backward one. Indeed, in a phase, the
trajectory is propagated forward from the earlier control node and backward

from the later control node. Two di�erent propagations are preferred in
order to reduce the sensitivity to initial conditions. As a matter of fact, a
single forward branch could be characterized by propagation errors that grow
during time, yielding a more di�cult convergence. Final points (denoted as
match points) of forward and backward legs will have to converge to the
same value, in order to guarantee continuity in position, within a certain
tolerance. Looking more into the detail, Figure 6.2 depicts how a trajectory
phase is structured. A trajectory phase is made up of n segments: the

Figure 6.2: Phase Between Two Control Node (n = 6)

�rst n{2 segments have to be propagated forward in time (building up the
forward leg), while the remaining n{2 segments are propagated backward in
time (building up the backward leg). Each segment is speci�ed by initial
conditions xi and is propagated over a period Ti, being the periods positive
in the forward leg and negative in the backward one. The �nal state of the
segment is denoted as xti. The reference epoch at the start control node
is denoted as εk, while the one at the end control node will be εk�1. It is
important to ensure the continuity in position between the segments, but in
general there will be a velocity discontinuity (in magnitude and direction).
As a matter of fact, low-thrust is modelled as a series of impulses, whose
magnitude is limited by the amount ∆vi that can be accumulated during
the propagation period. Figure 6.3 illustrates a journey made up of two
trajectories phases (with a gravity-assist between them).
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Figure 6.3: Sims-Flanagan Transcription Method: Journey

6.2.2 Variables

Variables are de�ned for each journey, containing one or multiple phases
depending whether some gravity-assists are included. Juxtaposing the seg-
ments of all the phases in the journey, the �rst set of variables is given by
the initial conditions xi of each segment, starting from the departure con-
trol node to the arrival one. So, the generic vector xi contains the position
and velocity components of the i-th segment initial state vector. In presence
of an intermediate control node (joining two phases), two vectors of initial
conditions are speci�ed: the �rst one will originate the backward leg of the
previous phases, while the second one is related to the forward leg of the fol-
lowing leg. The second set of variables is given by the propagation periods Ti

of each segment. Finally, a variable for the reference epochs εk is associated
to each control node. In general, in presence of multiple trajectory phases,
there is no guarantee that all the phases contain an equal number of seg-
ments (this is a decision for the programmer). Assuming that a considered
journey consists of M trajectory phases (so, it is possible to identify M � 1

control nodes) with a total number N of segments, the variable vector for
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the NLP problem is written as

x �

�
�������������������������������

x1

x2
...

xN�1

xN
T1

T2
...

TN�1

TN

ε1
ε2
...
εM
εM�1

�
�������������������������������

(6.15)

In general, then it is possible to include all the slack variables βi arising
from the presence of inequality constraints (see Subsection 5.2.3). Although
SQP algorithms can deal with inequality constraints and the conversion from
inequality to equality constraints is not necessarily needed, the inclusion of
slack variables has been used successfully.

6.2.3 Objective Function

An objective function (also called cost function and denoted as J) must be
provided to the NLP solver. Within the context of the Sims-Flanagan tran-
scription method, the objective function J that has to be minimized is the
sum of all the ∆vi along the trajectory. Indeed, it is important to recall that
the e�ect of the low thrust is, here, modelled as a series of small impulses,
each occurring at the intersection between two consecutive segments. So, for
each journey of the trajectory, it is possible to de�ne the cost function as
follows

J �
Ņ

i�1

∆vi for i � 1, . . . , N (6.16)

Note that the generic ∆vi can be expressed as

∆vi �

$''&
''%
||xtv,i � xv,i�1|| for Forward Segments

||xtv,i � xtv,i�1|| for Match Points

||xv,i � xtv,i�1|| for Backward Segments

(6.17)
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In general, the last element of the sum in equation (6.16) (for i � N) is
present if a last impulse is required to match a target velocity (for example,
to match an asteroid velocity). If the �nal state of the journey is constrained
to be equal to a prescribed state vector (as it can be the case in which the
�nal state of the journey must be exactly equal to a NRO or DRO state),
the term ∆vi, for i � N , can be omitted (if present, it will turn out to be
null).

6.2.4 Constraints and Derivatives

In the spirit of multiple-shooting algorithms, it is important to understand
the most common constraints that will build up the constraint vector c

for the NLP problem. Also their derivatives with respect to the problem
variables are fundamental, since they build up the Jacobian that will be
supplied to the optimization solver. Since, depending on the case, it is
necessary to constrain the initial (and �nal) state vectors of the segments
with respect to position or velocity, it is useful to consider the following
partition:

xi �

�
��������

xi
yi
zi

9xi
9yi
9zi

�
��������
�
�
xr,i

xv,i

�
(6.18)

If the �nal state of the segments is considered, a �t" superscript is added.

Constraints on Position

One fundamental requirement for the trajectory journey is represented by the
continuity in position. At a phase level, this condition is written by imposing
the continuity in position between all the segments. The continuity between
segments �i" and �i� 1" is written as

cipxq �

$''&
''%
xtr,i � xr,i�1 � 0 for Forward Segments

xtr,i � xtr,i�1 � 0 for Match Points

xr,i � xtr,i�1 � 0 for Backward Segments

(6.19)

In general, it is important to set some conditions on the departure and arrival
control point of the journey

cipxq �
#
xr,1 � xr,in � 0 for Departure Control Node

xr,N � xr,fin � 0 for Arrival Control Node
(6.20)
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For instance, position vectors xr,in and xr,fin can be represented by a target
body location or the initial conditions for a Halo orbit. In that case, their de-
pendence on the reference epoch εk must be taken in consideration. Finally,
if some gravity-assists are included, the continuity in position is applied also
at the intermediate control nodes (each connecting consecutive phases) and
it is written as

cipxq � xr,i � xr,i�1 � 0 for Intermediate Control Node (6.21)

So, constraints with the form expressed in equations 6.19, 6.20 and 6.21 can
be included in the overall constraint vector c pxq. Considering their deriva-
tives with respect to the free variables, the di�erentiation is quite straight-
forward. Indeed, it is important to remember that

Bxtr,i
Bxi �

�
�� Φi rα, βs

�
�� �

�
��Φ11 Φ12 Φ13 Φ14 Φ15 Φ16

Φ21 Φ22 Φ23 Φ24 Φ25 Φ26

Φ31 Φ32 Φ33 Φ34 Φ35 Φ36

�
�� (6.22)

where α � t1, 2, 3u and β � t1, 2, 3, 4, 5, 6u. So, Φi rα, βs represents a sub-
matrix formed from the �rst three rows and all the columns of Φi. Besides,

Bxtr,i
BTi

� xtv,i and
Bxtr,i
Bεk �

�
����
Bxti
Bεk

Byti
Bεk

Bzti
Bεk

�
���� (6.23)

where εk is the reference epoch of the phase leg to which xtr,i belongs. If x
t
r,i is

not related to the �rst segment of a phase leg, in general it is characterized by
non-null derivatives with respect to the propagation periods of the antecedent
segments. For example, with reference to Figure 6.2, xtr,3 has a dependence
on T1 and T2, while xtr,4 on T5 and T6. Variations of these periods behave
like variations of the related reference epochs (ε1 and ε2, respectively). So,
if a phase has n segments, it is possible to write

Bxtr,i
BTj

�

$'''&
'''%
Bxtr,i
Bεk for j � 1, . . . , i� 1 for Forward Segment

Bxtr,i
Bεk�1

for j � i� 1, . . . , n for Backward Segment

(6.24)

Considering the initial position vector of the i-th segment, the only non-null
derivative is the one with respect to the state vector itself, yielding

Bxr,i
Bxi �

�
�� I3�3 03�3

�
�� (6.25)
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Constraints on Altitude

It is very useful to constraint the magnitude of the position vector relative
to a celestial body within a lower and an upper bound

di,min   di   di,max (6.26)

where di � ||xr,i � xr,body|| �
apxi � xbodyq2 � pyi � ybodyq2 � pzi � zbodyq2.

This condition can be included by adding two components to the constraint
vector:

ci pxq �
�
di � di,max
�di � di,min

�
  0 (6.27)

By introducing slack variables into the x vector, equation 6.27 can be written
as

ci pxq �
�
di � di,max � β2j
di � di,min � β2j�1

�
� 0 (6.28)

The magnitude di has non-null derivative with respect to xi, yielding

Bdi
Bxi �

1

di

�
x y z 0 0 0

�
(6.29)

It is important to consider the dependence of xr,body on its reference epoch
εk, so Bdi

Bεk �
1

di
pxr,i � xr,bodyq � p�xv,bodyq (6.30)

Finally, note that the di�erentiation with respect to the slack variables yield
the terms �2β.

Constraints on Velocity

In this case, the magnitude of the velocity vector relative to a celestial body
is constrained to remain between a lower and an upper limit

vi,min   vi   vi,max (6.31)

where vi � ||xv,i � xv,body|| �
ap 9x� 9xbodyq2 � p 9y � 9ybodyq2 � p 9z � 9zbodyq2.

Two components are added to the constraint vector:

ci pxq �
�
vi � vi,max
�vi � vi,min

�
  0 (6.32)

Equation 6.32 is equivalent to (by exploiting slack variables)

ci pxq �
�
vi � vi,max � β2j
vi � vi,min � β2j�1

�
� 0 (6.33)
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This kind of constraint can be applied to constraint the magnitude of the
relative velocity during a gravity-assist. In this case, a good estimation for
vi,min is represented by the two-body escape velocity

vesc,i �
c

2µ

di
(6.34)

where µ is the (nondimensionalized) gravitational parameter related to the
body around which the gravity-assist takes place and di � ||xr,i � xr,body||.
The derivatives of vi with respect to initial conditions xi and the reference
epoch εk are written as$''&

''%
Bvi
Bxi � 1

vi

�
0 0 0 9x 9y 9z

�
Bvi
Bεi � 1

vi
pxv,i � xv,bodyq � p�xa,bodyq

(6.35)

where xa,body is the acceleration of the celestial body. In the case that vesc,i
is included in the formulation, it is possible to write its derivatives as well:$'''&
'''%

Bvesc,i
Bxi � �

?
2µ

2

1

d
5{2
i

�
pxi � xbodyq pyi � ybodyq pzi � zbodyq 0 0 0

�
Bvesc,i
Bεi � �

?
2µ

2

1

d
5{2
i

pxr,i � xr,bodyq � p�xv,bodyq
(6.36)

Constraints on ∆v

In order to simulate the low-thrust trajectory as best as possible, it is very
important limit the magnitudes of the inserted impulses. Indeed, each ∆v is
limited by the amount of thrust that can be accumulated over the duration
of a segment. Denoting as ∆vi the impulse that occurs at the end of the i-th
segment, the constraint is expressed as

ci pxq �

$''&
''%

∆vi   D nthr Tmax
m0

Ti for Ti ¡ 0

∆vi   �D nthr Tmax
m0

Ti for Ti   0

(6.37)

where D is the thruster duty cycle, nthr is the number of thrusters, Tmax is
the maximum value of thrust deliverable by one single thruster and m0 is a
reference mass of the spacecraft. Inequality constraints equation 6.37 can be
transformed into equality ones by using slack variables, yielding

ci pxq �

$''&
''%

∆vi � D nthr Tmax
m0

Ti � β2j � 0 for Ti ¡ 0

∆vi � D nthr Tmax
m0

Ti � β2j � 0 for Ti   0

(6.38)
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The form of ∆vi changes depending on the point of the trajectory where it
takes place:

∆vi �

$''''&
''''%

||xv,i�1 � xtv,i|| in Forward Legs

||xtv,i�1 � xtv,i|| for Match Points

||xtv,i�1 � xv,i|| in Backward Legs

||xv,i�1 � xv,i|| for Control Nodes

(6.39)

Also the structure of its derivatives changes as a consequence. For illustrative
purposes, considering a

∆vi � ||xv,i�1 � xtv,i|| �
b
p 9xi�1 � 9xtiq2 � p 9yi�1 � 9ytiq � p 9zi�1 � 9ztiq

in a forward leg, it follows

B∆vi
Bxi � � 1

∆vi

�
�� Φi rα, βsT

�
��
�
�� 9xi�1 � 9xti
9yi�1 � 9yti
9zi�1 � 9zti

�
�� (6.40)

where α � t4, 5, 6u and β � t1, 2, 3, 4, 5, 6u. Then, the derivatives with
respect to propagation period Ti and reference epoch εk are written as

B∆vi
BTi

� 1

∆vi

�
xv,i�1 � xtv,i

� � ��xta,i� (6.41)

and
B∆vi
Bεk � 1

∆vi

�
xv,i�1 � xtv,i

� �
�
�Bx

t
v,i

Bεk

�
(6.42)

respectively. Equation 6.42 is valid also to �nd derivatives with respect to
antecedent propagation periods. When di�erentiating constraints in equa-
tion 6.38 with respect to the propagation period Ti, also the term

D nthr Tmax
m0

arises.

Constraints on Propagation Periods

Depending if propagation periods are referred to forward or backward seg-
ments, constraints of the kind

ci pxq �
#

Ti ¡ 0 for Forward Segments

Ti   0 for Backward Segments
(6.43)

must be considered. By exploiting slack variables, constraints in equation
6.43 are rewritten as

ci pxq �
#

Ti � β2j � 0 for Forward Segments

Ti � β2j � 0 for Backward Segments
(6.44)

Derivatives of constraints in equation 6.44 are straightforward.
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Constraints on Epochs and Propagation Periods

In order to ensure continuity in time within the segments, the sum of all the
propagation periods in a trajectory phase must equal the di�erence between
the reference epochs at the start and end points. So, considering a trajectory
phase with n segments, it follows that

cj pxq � εk�1 � εk �
n{2̧

i�1

Ti �
ņ

i�n
2
�1

Ti (6.45)

where summations are referred to forward and backward legs, respectively.
Also in this case, derivatives are straightforward.

Bounds on Epochs

It is very useful to constraint and limit the �eld of existence of reference
epochs. For each epoch, it is possible to specify a lower and an upper bound

εk,min   εk   εk,max (6.46)

By introducing slack variables into the x vector, equation 6.46 can be written
as

ci pxq �
�
εk � εk,max � β2j
εk � εk,min � β2j�1

�
� 0 (6.47)

Also in this case, derivatives are trivial and they exist only with respect to
the reference epoch itself and the related slack variable.

6.3 Optimal Control

6.3.1 Introduction

The introduced Sims-Flanagan method represents a low-medium �delity tool
for low-thrust trajectory design and optimization. The main problem related
to this method is that the overall dynamics is not perfectly considered. Al-
though each ∆v is constrained to be smaller than the accumulated thrust
on the considered segment, velocity changes are modelled as impulsive vari-
ations. In addition, the acceleration due to thrusters is not included in the
dynamical equations and the mass variations in the spacecraft are not stud-
ied.

The next step aims to consider the complete dynamics of the N-body
problem, including the e�ects of the thrust as well. Then, the optimization
process consists in �nding the optimal pro�les (magnitude and direction)
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of the thrust, such that it minimizes the propellant consumption and the
mission constraints are satis�ed. This outlines an optimal control problem.

6.3.2 Optimal Control Problem

The inclusion of a manoeuvrable action is re�ected by the introduction of
a control u ptq in the equations of motions. For many applications, even if
the problem can be seen as a series of phases, it is possible to focus on a
single k-th phase, de�ned in the region t0 ¤ t ¤ tf . In a general way, the
considered optimal control problem is characterized by a governing dynamics
of the kind

9x � f px,u,λ, ε, τq (6.48)

where x is the state vector (nx components), u is the control vector (nu
components), λ is a vector that contains np parameters, ε and τ are, respec-
tively, the reference epoch and time (that has been nondimensionalized).
Note that, in general, the parameters in λ are time independent (for exam-
ple, they can be used to describe the propulsive properties of the spacecraft).
Between two consecutive phases, it is not excluded to have changes in the
governing dynamics and discontinuities in some of the states (for example,
a mass discontinuity if a stage is released). Initial and �nal conditions (ψ0

and ψf respectively) for the considered phase are expressed as

ψ0l ¤ ψ rx pτ0q ,u pτ0q ,λ, ε, τ0s ¤ ψ0u (6.49)

ψfl ¤ ψ rx pτf q ,u pτf q ,λ, ε, τf s ¤ ψfu (6.50)

Besides, generally the solution of the problem has satisfy algebraic path
constraints of the form

gl ¤ g rx pτq ,u pτq ,λ, ε, τ s ¤ gu (6.51)

where the vector g has ng components. Finally, the components of the state
and control vectors are subject to the following bounds

xl ¤ x pτq ¤ xu (6.52)

ul ¤ u pτq ¤ uu (6.53)

Solving the optimal control problem corresponds to determine the nu dimen-
sional control vector u pτq that minimize the performance index J

J � Φ rx pτ0q , τ0,x pτf q , τf s �
» tf
t0

q rx pτq ,u pτq ,λ, ε, τ s dτ (6.54)
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If the cost function J contains the term Φ (evaluated at the ends of the
phase) and the integral of the function q, the presented formulation is also
referred as a problem of Bolza. If only the former term is present, it is called
problem of Mayer while, if only the latter is included, it is a problem of
Lagrange.

6.3.3 Low-Thrust Dynamical Model

Considering the actual dynamics of a low-thrust problem implies the addition
of a state variable related to the massm of the spacecraft. So, the augmented
state vector can be written as

x �

�
��ρ9ρ
m

�
�� (6.55)

The dynamics of the problem is then modi�ed by considering the acceleration
due to the thrusters and the mass evolution:

9x �

�
�� 9ρ

:ρ

9m

�
�� �

�
�� 9ρ

f px, ε, τq � Th
m û

� Th
Ispg0

�
�� (6.56)

where Th is the magnitude of the thrust, û is the unit vector de�ning the
direction of the thrust, Isp and g0 are, respectively, the speci�c impulse of
the propulsive system and the standard acceleration due to gravity near the
surface of the Earth (9.80665 m/s2). Note that the term f px, ε, τq can be
replaced by the the second term of equation (2.37) or (2.50), depending on
whether N-body equations are projected onto inertial axes (and relative to a
central mass) or onto an appropriate synodic frame. It is equally important
to note that the added terms have to be nondimensionalized in order to
obtain a coherent expression with the remaining quantities.

The new dynamics expressed in (6.56) has, actually, the form of equation
(6.48), where a control vector u is included. As a matter of fact, a desired
dynamics (within feasibility limits) can be achieved manoeuvring the value
of the thrust vector Th (magnitude and direction) in time. So, trivially, the
selection for the components of the control vector must allow guidance of the
magnitude Th and the direction û of the thrust. The choice of the control
vector is not unique, a suitable selection is represented by

u �

�
��αβ
P

�
�� (6.57)
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where α and β represent two angular spherical coordinates and P is the
provided power for the thrusters. The angles α and β allow to describe the
direction u (see Figure 6.4) as

û �

�
��cosα cosβ

sinα cosβ

sinβ

�
�� (6.58)

while the provided power P is linked to the thrust magnitude according to

Figure 6.4: Thrust Direction

Th � 2P

Ispg0
(6.59)

The �rst angular coordinate α must be bounded within the region 0 ¤ α ¤
2π, while for β it must be �π{2 ¤ β ¤ π{2. Similarly, the domain for the
power is 0 ¤ P ¤ Pmax and, as a consequence, the thrust magnitude will
be bounded as well. Such a selection of the control vector has the notable
advantage to automatically satisfy the condition (for the direction û)

û2x � û2y � û2z � 1 (6.60)

Usually, in low-thrust trajectory optimization the optimal control problem
aims at the de�nition of the control vector such that it minimizes a perfor-
mance index in the Mayer form

Min J � �mptf q (6.61)

Equation (6.61) corresponds to the maximization of the �nal mass and, so,
at the minimization of the fuel consumption.

Within the context of this study, a constant speci�c impulse (CSI) sce-
nario is considered, in contrast to a variable speci�c impulse (VSI) case.
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6.3.4 Direct Methods

In opposition to indirect methods, direct optimization aims to solve the
optimal control problem by discretizing it with a �nite set of variables and
converting it to a NLP problem. This allows to overcome the main di�culties
of indirect methods (in particular, sensitivity to initial conditions) and to
obtain robust tool in terms of convergence. The price to pay is that these
methods are usually more expensive in terms of computational speed. The
process of discretizing an optimal control problem is called transcription.
Usually, the idea behind discretization schemes is to write quantities that
appear in the considered dynamics as polynomial functions. If polynomials
of degree N are exploited, each particular quantity is described by its values
at N � 1 points, placed at suitable locations.

Depending on which quantities are parametrized, direct transcription
methods are divided into two main types (see Figure 6.5):

• If only control components are parametrized, shooting methods are
obtained. In this case, dynamics is satis�ed by integrating equations
of motions through a ODE solver (Runge-Kutta schemes, for instance).
Depending on the number of segments into which the considered phase
is subdivided, schemes can be single or multiple shooting methods.

• If state and control components are parametrized simultaneously, col-
location method are obtained. In this case, dynamics is imposed by
constraining the slope at nodes of polynomial functions. Depending
on the number of segments into which the considered phase is subdi-
vided, collocation schemes can be local or global.

Figure 6.5: Direct Methods for Optimal Control

Within the context of this study, a single shooting scheme is adopted and
parametrization is achieved by exploiting Chebyshev polynomials.
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Single Shooting

Focusing on a single phase (going from τ0 to τf ) of the optimal control
problem, the basic idea behind single shooting scheme is to write the control
vector upτq (nu components) as a polynomial function of order N

upτq �
Ņ

i�0

ciψipτq (6.62)

where ci is a column vector containing the coe�cients for appropriate base
functions ψi. In order to do that, its values at N�1 nodes, placed at suitable
locations, are exploited. First of all, time domain of the phase is normalized
in order to be r�1, 1s, according to

τ̃ � 2

τf � τ0
pτ � τ0q � 1 (6.63)

Then, the new time domain is meshed according to N � 1 increasing points

S � tτ̃0, τ̃1, . . . , τ̃i, . . . , τ̃N�1, τ̃Nu (6.64)

At each point of the set S, a corresponding value of the control vector is
associated

Z � tupτ̃0q, . . . ,upτ̃iq, . . . ,upτ̃N qu � tu0, . . . ,ui, . . . ,uNu (6.65)

Z will represent the set containing the variables of the problem (solved
through NLP). More compactly, it is possible to write

U � ru0,u1, . . . ,ui, . . . ,uN�1,uN s � CA (6.66)

where C is the (nu � pN � 1q) matrix containing the coe�cients ci

C � rc0, c1, . . . , ci, . . . , cN�1, cN s (6.67)

and the (pN � 1q � pN � 1q) matrix A contains the base functions

A �

�
�������

ψ0pτ̃0q ψ0pτ̃1q � � � ψ0pτ̃N�1q ψ0pτ̃N q
ψ1pτ̃0q ψ1pτ̃1q � � � ψ1pτ̃N�1q ψ1pτ̃N q

...
... � � � ...

...
ψN�1pτ̃0q ψN�1pτ̃1q � � � ψN�1pτ̃N�1q ψN�1pτ̃N q
ψN pτ̃0q ψN pτ̃1q � � � ψN pτ̃N�1q ψN pτ̃N q

�
�������

(6.68)

Once the values ui are known, it is possible to recover the coe�cients ci
thanks to

C � UA�1 (6.69)
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Then, it is possible to estimate the value of upτ̃q according to

upτ̃q � C

�
��������

ψ0pτ̃q
...

ψipτ̃q
...

ψN pτ̃q

�
��������

(6.70)

Thanks to equation 6.70, the control vector upτq, can be included into the
dynamics (paying attention to the passage from normalized time τ̃ to the
dimensionless one τ).

The values of ui at nodes are the variables of the NLP problem, aiming
to minimize the fuel consumption. The problem is, in general, associated to
some equality and inequality constraints. In particular, it is important to
constrain the �nal state of the propagation equal to a desired condition. For
the low-thrust problem, values of the provided power P (at each instant, not
only at nodes) must be positive. Similarly, it is possible to bound the rate
of change of control components, considering that

d

dτ̃
U � d

dτ̃
pCAq � C

d

dτ̃
pAq � CD (6.71)

where the (pN � 1q� pN � 1q) matrix D contains the derivatives of the base
functions ψi.

Within the context of this study, Chebyshev polynomials of the �rst kind
are used as base functions and the mesh S for the time domain is set accord-
ing to Chebyshev points (also called Chebyshev nodes).

Chebyshev Polynomials

Chebyshev polynomials are largely appreciated in approximation theory and
they represent a sequence of orthogonal polynomials. Chebyshev polynomi-
als of the �rst kind are denoted as Tk and they are de�ned by the following
recurrence relation: $''&

''%
T0pxq � 1

T1pxq � x

Tn�1pxq � 2xTnpxq � Tn�1pxq
(6.72)

For the sake of convenience, they are de�ned over the domain r�1, 1s, where
they satisfy �1 ¤ Tkpxq ¤ 1. Chebyshev nodes are the extrema of Tn within
the range r�1, 1s and they are located according to

xk � cos

�
k

n
π



, for k � 0, 1, . . . , n (6.73)
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At the Chebyshev nodes, the polynomial Tk has value 1 or �1. In Figure
6.6, Chebyshev polynomials Tn, up to n � 5, are depicted.
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Figure 6.6: Chebyshev Polynomials (n � 0, 1, . . . , 5)

In the theory of approximation, using Chebyshev nodes as points in
polynomial interpolation has admirable advantages, since this minimizes the
problem of Runge's phenomenon and leads to greater accuracy. Supposing
fpxq is a Lipschitz continuous function on r1, 1s, a good approximation of
fpxq is the polynomial pnpxq obtained by interpolation at Chebyshev nodes

pnpxq �
ņ

k�0

ckTkpxq (6.74)

Since every Lipschitz continuous function fpxq on r1, 1s is characterized by
a unique representation as an absolutely and uniformly convergent series

fpxq �
8̧

k�0

akTkpxq (6.75)

and since Chebyshev coe�cients ak are related to interpolating ones ck (see
[52]), it is possible to understand that large values of n leads to higher
precisions.

Derivatives of Chebyshev polynomials of the �rst kind can be handles
easily as well. Indeed, it is true that

dTn
dx

� nUn�1 (6.76)

where the generic Uk represents Chebyshev polynomial of the second kind.
The recurrence relation that de�nes Chebyshev polynomials of the second
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kind is $''&
''%
U0pxq � 1

U1pxq � 2x

Un�1pxq � 2xUnpxq � Un�1pxq
(6.77)
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Chapter 7

Simulation

In this chapter simulations and results, exploiting numerical methods for
trajectory optimization introduced in Chapter 4, are presented. Simulations
have been performed taking inspiration from Asteroid Redirect Robotic Mis-

sion (ARRM), part of the more extended Asteroid Redirect Mission (ARM).
This mission was proposed by NASA and it was supposed to be achieved in
the near future, in order test some deep space exploration capabilities and
to be preparatory for other missions. The main objective of the mission is
the exploration of a Near-Earth Asteroid and the retrieval of a boulder from
its surface. The above mentioned boulder is, then, supposed to be place on
a stable DRO around the Moon, exploiting a NRO as a gateway.

7.1 Trajectory Structure

In terms of trajectory design, the presented mission has been divided into
three di�erent journeys:

1. Earth-to-Asteroid Trajectory. This trajectory is expected to be
characterized by a double lunar gravity assist (LGAs or double lunar

swing-by) to leave the Earth-Moon system. Placing two intermediate
control nodes (one for each gravity assist), in turn this trajectory can
be subdivided into three phases:

(a) A �rst phase, from the launch from the Earth to the �rst LGA;

(b) A second phase, from the �rst to the second LGA;

(c) A third phase, from the second LGA to the arrival at the asteroid.

2. Asteroid-to-NRO Trajectory. This trajectory represents the return
into the Earth-Moon region and it exploits an Earth gravity assist



Asteroid
Asteroid
Estimated

Diameter [m]

Semi-Major
Axis [AU]

Orbit
Period
[years]

Eccentricity
Inclination

[deg]

2008 EV5 400 0.958 0.94 0.084 7.436
Bennu 500 1.126 1.20 0.203 6.035
2014 YD 24-107 1.070 1.11 0.087 1.735
2000 SG344 20-89 0.978 0.97 0.067 0.112
2013 BS45 11-51 0.993 0.99 0.084 0.772
2001 QJ142 33-142 1.060 1.09 0.086 3.103
2012 UV136 14-62 1.010 1.01 0.138 2.211
1999 JU3 251-1124 1.189 1.30 0.190 5.884
2001 CQ36 55-246 0.938 0.91 0.178 1.258
2006 FH36 46-205 0.955 0.93 0.198 1.586
2007 UY1 46-205 0.951 0.93 0.175 1.019

Table 7.1: Possible Targets

(EGA) in order to enter a NRO. So, this journey can be divided into
two phases:

(a) A �rst phase, from the asteroid departure to the EGA;

(b) A second phase, from the EGA to the arrival at NRO.

3. NRO-to-DRO Trajectory. Since NRO is a non-stable orbit, this
single-phase journey is scheduled in order to move the boulder into a
DRO, a stable periodic solution within the Earth-Moon region (where
it can be reached more easily to carried out on-site studies).

Several asteroids have been identi�ed as possible targets for the mission.
The most important options are listed in Table 7.1. Asteroid 2008 EV5
results to be one of the most interesting because of its scienti�c attractive-
ness, composition and size. Within the context of this study, asteroid 2008
EV5 has been selected as the target for the mission analysis. The diagram
inherent to the trajectory structure of the mission is reported in Figure 7.1.

7.1.1 Earth-to-Asteroid Trajectory

Sims-Flanagan Transcription Method

The initial step of trajectory design for the considered mission consists on
applying the Sims-Flanagan transcription method to the �rst journey. All
the variables related to the journey are de�ned for the NLP problem. Surely,
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Figure 7.1: Trajectory Structure

the total number of variables takes into consideration 6n components of
the state vectors xi (related to the n segments into which the journey is
discretized), other n variables concerning the propagation period Ti for each
segment and k epoch variables εj , where k is equal to the number of control
nodes of the journey (in this case, k � 4, being εj the generic variable
related to the epoch of the departure, �rst LGA, second LGA or arrival to
the asteroid). In addition, some slacks variables β are considered:

• For each gravity assist in the journey (p denotes the number of GAs in
the journey), slack variables related to altitude and velocity constraints
(equations (6.28) and (6.33)) are included, for a total of p2� 2qp � 4p

additional slack variables;

• For each ∆vi (one at the end of each segment), conditions expressed in
equation (6.38) must be included, resulting in other n slack variables;

• For each propagation period Ti, conditions of the kind (6.44) must be
included, this results in other n slack variables;

• For each epoch variable, bounds are imposed by using equation (6.47),
giving other 2k additional variables.

As a consequence, the total amount of variables Nv can be expressed as

Nv � 6n� n� k � 4p� n� n� 2k � 9n� 3k � 4p (7.1)
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Within the proposed study, n � 26 segments are considered in the �rst
journey. The �rst phase is modelled by 2 segments, the second one by 16
segments and the third one by 8. In each phase, the �rst half of the seg-
ments is propagated forward (from the phase start control node), while the
second half is propagated backward (from the phase end control node). The
considered journey results in 254 components for the variable vector x.

Concerning the constraints, it is important to impose the continuity
(3pn � 1q) conditions in terms of position for consecutive segments (equa-
tion (6.19)) and 3 conditions to ensure continuity at the journey �nal point
(equation (6.20)); then there are k � 1 conditions for continuity between
propagation periods and epochs (equation (6.45)), p2� 2qp � 4p constraints
for altitude and velocity at GAs (equations (6.28) and (6.33)), n conditions
to bound the magnitude of ∆vs (equation (6.38)), other n equations to dis-
criminate forward and backward propagation periods (equation (6.44)) and,
�nally, 2k conditions to set bounds on epochs (equation (6.47)). So, the total
number of constraint Nc for the considered journey is

Nc � 3n� pk � 1q � 4p� n� n� 2k � 5n� 4p� 3k � 1 (7.2)

For n � 26 segments, it means a total of 149 constraints. Since, in the
�rst phase, also continuity in velocity is considered between the 2 (only)
segments (3 additional constraints), one ∆v cancels out (one slack variable
and one constraint are eliminated). Besides, the journey start point is con-
strained to have a �xed magnitude d0 � 7000 km (one additional equality
constraint). So, at the end, this translates into a problem with Nv � 253

variables and Nc � 152 constraints. The simulation is performed by using
the SQP fmincon algorithm in MATLAB R©. Propagations are carried out by
using a Runge-Kutta 78 scheme.

The solution of the �rst journey by using the proposed Sims-Flanagan
transcription method is presented in Figure 7.2. Trajectory is depicted in
the inertial frame. Zooming at the center of Figure 7.2, a more detailed
image related to the �rst two phases of the journey is obtained (Figure 7.3).
Recalling equation (6.37), some propulsive parameters are required to solve
the problem. In particular, the initial mass of the spacecraft has been set
to m0 � 5000 kg, the duty cycle has been �xed to D � 0.9 and the number
of thrusters to nthr � 3. The maximum deliverable thrust can be computed
exploiting the relation

Th,max � 2Pmax
Ispg0

(7.3)

Setting the maximum provided power (per thruster) equal to P � 13 kW and
the speci�c impulse Isp � 4000 s, a value of Th,max � 0.6625 N is obtained.
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Figure 7.2: Earth-to-2008 EV5 Journey

Event Date

Earth Departure 18 February 2021
LGA1 23 February 2021
LGA2 7 June 2021
2008 EV8 Arrival 9 February 2023

Table 7.2: Journey 1: Epochs

The �rst Lunar Gravity Assist (LGA1) is constrained to have an altitude in
the range 100km ¤ hLGA1 ¤ 3000km, while fort the second one (LGA2) the
considered relation is 100km ¤ hLGA1 ¤ 10000km. The presented method
is quite robust, but in order to deal with the most sensitive variables (in
particular, the epochs εk), multiple runs are performed, changing the com-
ponents of the initial guess randomly, within reasonable bounds. The best
obtained solution is characterized by a ∆v � 4.511 km/s. In Table 7.2, the
epochs related to the control nodes are reported.

Sims-Flanagan transcription method is a quite e�ective to �nd a low-
medium �delity optimized trajectory and the epochs of multiple gravity as-
sists. Nevertheless, discontinuities in velocities are present in the low thrust
modelling. The next step is the re�nement of the found trajectory consid-
ering the complete low thrust dynamics and the referred optimal control
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Figure 7.3: Earth-to-2008 EV5 Journey, in detail

problem.

Optimal Control: Shooting

The optimal control problem for the �rst journey from the Earth to the 2008
EV5 asteroid is subdivided into a series of 3 sub-problems, in which each
di�erent phase is analysed and solved through simple shooting. So, for each
phase, the control vector is represented by

upτq �

�
��αpτqβpτq
P pτq

�
�� (7.4)

whose components are, then, discretized and transcripted into a polynomial
of degree q by using Chebyshev interpolation. So, the variables for the
related NLP problem are the values of the controls at q�1 points, distributed
according to Chebyshev points. In total, the number of variables is nupq �
1q � 3pq�1q. As constraints, �rst of all the shooting method has to connect
the last state vector of the previous phase to the �nal state vector of the
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current phase. These values have been retrieved from the Sims-Flanagan
method, as well as the reference epochs. Regarding to inequality constraints,
the interpolating polynomials have to respect the bounds of their interval of
existence (not only at nodes, but for every τ). If necessary, also conditions
on the slopes can be includes (in particular, to limit the rate of variations of
the control angles).

Phase 1: Earth-LGA1 This arc has been modelled as a continuous tra-
jectory, in terms of position and velocity, by using Sims-Flanagan method.
Once the spacecraft has been inserted in the right orbit, a coasting will lead
to the next phase.

Phase 2: LGA1-LGA2 Knowing the epochs of the Lunar Gravity As-
sists, an optimal problem through single shooting is solved to connect the
positions of the spacecraft at the two LGAs. Sims-Flanagan solution is used
to obtain the starting state vector. Chebyshev interpolation of degree q � 13

is used. Figure 7.4 depicts the obtained solution, while Figure 7.5 illustrates
the optimal pro�le for the control variables.

Figure 7.4: LGA1-LGA2 Phase
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Figure 7.5: Journey 1: LGA1-LGA2 Phase - Control Variables, q = 13

Phase 3: LGA2-2008 EV5 The last phase of the �rst journey connects
the second Lunar Gravity Assist to the target, the asteroid 2008 EV5. The
optimal control problem is solved in order to have a rendezvous with the
asteroid. Also in this case, control variables are modelled as interpolating
polynomials of degree q � 13. Figure 7.6 illustrates the continuous trajec-

Figure 7.6: LGA2-2008 EV5 Phase

tory, together with the thrust vector. Figure 7.7 completes the obtained
results.
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Figure 7.7: Journey 1: LGA2-2008 EV5 Phase - Control Variables, q = 13

7.1.2 Asteroid-to-NRO Trajectory

Sims-Flanagan Transcription Method

After the exploration of the asteroid and the collection of a small boulder
from its surface, the spacecraft can proceed to come back into the Earth-
Moon region. While the double lunar swing-by is a viable and known strategy
that can be exploited to reach Near-Earth Asteroids, the structure of the way
back has not been imposed a priori. Indeed, the structure including an Earth
Gravity Assist has been after a preliminary run of Sims-Flanagan method
(with 8 segments), in which the conditions for a gravity assist have not been
imposed (equations (6.28) and (6.33)). After that, the solution has been
re�ned including directly the above mentioned gravity assist.

Particularizing equation (7.1) for n � 12 segments, k � 3 control nodes
and p � 1 gravity assist, it follows that the number of variables for the second
journey isNv � 121. Since the last point of the trajectory (at NRO insertion)
is constrained to be equal to the state vector related to the attractive LCS
departing from the aposelene of the NRO, a last ∆v is not imposed (it would
be null) and a slack variable can be removed. As a consequence, the number
of considered variables is Nv � 120.

Regarding the constraints, in this case it is important to match a pre-
scribed state vector at the beginning (departure from the asteroid) and at the
end (NRO insertion) of the trajectory. So, equation (7.2) can be rewritten
as

Nc � 6p1�1q�3pn�1q�pk�1q�4p�n�n�2k � 5n�4p�3k�8 (7.5)

Particularizing for n � 12 (and considering that a last ∆v is omitted), it
follows Nc � 80. It is important to note that, during this and the following
journey, the spacecraft mass is increased by the collected boulder: an addi-
tional estimated mass of mboulder � 15 tons is included in the computation.
The solution obtained by applying Sims-Flanagan transcription method is
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Figure 7.8: 2008 EV5-to-NRO Journey

Event Date

2008 EV8 Departure 19 June 2024
EGA 23 June 2025
NRO Arrival 28 December 2025

Table 7.3: Journey 2: Epochs

presented in Figure 7.8. The NRO insertion phase (after the EGA) is pre-
sented with a higher level of detail in Figure (7.9). The sum of all the
impulses within the second journey of the mission leads to a ∆v � 2.450

km/s. Control nodes epochs, that are obtained by the optimization process,
are summarized in Table 7.3.

Observation It is fundamental that all the quantities that enter in the
NLP problem have derivative information. In general, it is true that, re-
ferring to equation (6.20), the quantities xr ,in and xr ,fin are dependent on
epochs of the �rst and last control nodes of the journey, so xr ,in pε1q and
xr ,fin pεkq. While asteroid states (along with their derivatives) are known
from the ephemeris database, particular attention must be paid for states
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Figure 7.9: 2008 EV5-to-NRO Journey, in detail

related to periodic solutions. Indeed, since periodic solutions are epoch de-
pendent within the N-body framework and xr ,fin pεkq represents the state (it
must be propagated backward) of the attracting LCS that leads to the NRO
at epoch ε � εk, a smooth xr ,fin pεkq pro�le must be considered. This is
why a reference NRO (aposelene ra � 78000 km) has been corrected within
the N-body model over a large period (year 2025 and 2026) with a discrete
time-step. The corrected initial states, along with the related states char-
acterizing the attracting LCS, have been used to create a smooth database
(by performing a piecewise cubic regression). Thanks to this information,
the state at the �nal control node (and its derivative with respect to εk) can
be known for every instant over the considered period.

Optimal Control

Also in this case, the overall journey is divided into its phases and a series
of two sub-problems is solved.

Phase 1: 2008 EV5-EGA Within this phase, the control vector u pτq,
including the provided power and the angular spherical coordinates for the
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direction, are written as interpolating polynomials of degree q � 13 by ex-
ploiting Chebyshev functions. Figure 7.10 depicts the optimal trajectory

Figure 7.10: 2008 EV5-EGA Phase

departing from the asteroid and aiming to the EGA. Optimal control solu-
tion is completed by power and direction angles pro�les, reported in Figure
7.11.

Phase 2: EGA-NRO For this phase of the journey, the degree of the
interpolating polynomials has been increased to q � 21 in order to have
more �exibility in the convergence. Besides, the single shooting takes place
such that to reach the state at the middle of the last segment1 (according to
the Sims-Flanagan discretization), in order to have a period of coasting that
drives the spacecraft into the NRO automatically. The solution is reported
in Figure 7.12. The related pro�les for α pτq, β pτq and P pτq are illustrated
in Figure (7.13).

1Last segment corresponds to the attracting LCS.
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Figure 7.11: Journey 2: 2008 EV5-EGA Phase - Control Variables, q = 13

Figure 7.12: EGA-NRO Phase
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Figure 7.13: Journey 2: EGA-NRO Phase - Control Variables, q = 13
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7.1.3 NRO-to-DRO Trajectory

Sims-Flanagan Transcription Method

The achieved NRO is unstable and it is used as a temporary location and
as a gateway to move the collected boulder to a stable DRO. The journey
under consideration is, actually, a single phase journey, since no intermediate
gravity assists are necessary (so p � 0). Particularizing equation (7.5) for
n � 8 segments and k � 2, it follows that the number of variables under
consideration is Nv � 53 (a last ∆v is omitted). In this case, it is more
suitable to study the considered trajectory in the synodic frame by using the
related equations of motions. The obtained solution (in the synodic frame)
is presented in Figure 7.14. The departure from the NRO and the arrival

Figure 7.14: NRO-to-DRO Journey (Synodic Frame)

to the DRO can be appreciated in Figure 7.15. The obtained solution is
characterized by a total ∆v � 0.550 km/s; the departing and the arrival
dates of the journey are presented in Table 7.4.
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Figure 7.15: NRO-to-DRO Journey, in detail (Synodic Frame)

Event Date

NRO Departure 13 February 2026
DRO Arrival 15 October 2026

Table 7.4: Journey 3: Epochs

Observation Derivative information with respect to epochs is computed
numerically when N-body equations of motions are expressed in the synodic
frame. As already seen for the second journey, also in this case it is very
important to rely on a smooth database describing the states of the NRO
repulsive LCS and of the arriving DRO. For this reason, NRO initial condi-
tions (along with associated repulsive LCS) are corrected over the �rst half of
year 2026. Similarly, initial conditions of a resonant 2:1 DRO are computed
over the period from 1-Jul-2026 to 1-Mar-2027.

Optimal Control

In order to solve the optimal control problem, the trajectory has been studied
by using equations of motion with respect to an inertial frame an relative to
the Earth (as all the other optimal controls problem). So, the shooting for
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the optimal control problem has been carried out by converting the initial
guess (found by using Sims-Flanagan method) to the inertial frame and
by connecting the repulsing LCS (related to the NRO departure) to the
�nal DRO. To have a more precise convergence, the single shooting has
been split and an intermediate node (equal to the initial state of the �fth
segment, according to Sims-Flanagan transcription) has been considered,
de�ning, hence, a multiple shooting scheme where control variables have
been described as polynomials of degree q � 13 within each of the two
segments. Figure 7.16 depicts the obtained solution (in the inertial frame).
For the sake of completeness, pro�les of the provided power and of angular

Figure 7.16: NRO-DRO Phase

coordinates of the thrust direction are reported in Figure 7.17

7.2 Conclusions on Results

All the simulations are performed with a view to minimize the cost in terms
of propellant, hence to maximize the �nal mass of the spacecraft. Table
7.5 reports the most important �gures obtained from the simulation. As
already noted, it is important to stress the fact that an additional boulder
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Figure 7.17: Journey 3: NRO-DRO Phase - Control Variables, q = 13

Sims-Flanagan
Optimal

Control

Journey ∆v [km/s] mfin{m0 mfin{m0 Phase

Earth-to-2008 EV5 4.511 0.891
1 Earth-LGA1

0.960 LGA1-LGA2
0.852 LGA2-2008 EV5

2008 EV5-to-NRO 2.450 0.656
0.756 2008 EV5-EGA
0.678 EGA-NRO

NRO-to-DRO 0.550 0.605 0.621 NRO-DRO

Table 7.5: Results

mass (mboulder � 15 tons) is considered in the computation of the trajec-
tories. What it is possible to note is that the mass ratios computed by
using a Sims-Flanagan method or an optimal control-based approach are
pmfin{m0qS�F � 0.605 and pmfin{m0qOC � 0.621, respectively. The two
values are quite in agreement, with the optimal control �gure that is slightly
less that the Sims-Flanagan counterpart. This is reasonable considering the
fact that no mass variation is taken into account within the Sims-Flanagan
framework (it could be included in the formulation). The results are quite
coherent with the ones reported in a preliminary Mission Design Description
of ARM mission (obtained by using MALTO, Mission Analysis Low-Thrust

Optimizer, a NASA software based on Sims-Flanagan approach).
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Chapter 8

Attitude Strategies

In this chapter some attitude considerations, coupled with orbital mechanics
aspects in multi-body regimes, are discussed. The focus about this topic
arises directly from the analysis of the Asteroid Redirect Mission (ARM)
scenario, simulated in Chapter 7. Indeed, the NRO and DRO environments
are extensively exploited within the context of the mission. It could be inter-
esting to study the behaviour of attitude dynamics in these Non-Keplerian
orbits.

The main aim of this analysis is to leverage the free natural attitude
dynamics (under the perturbation of Earth and Moon gravity gradient dis-
turbance torques) along these periodic solutions in order to minimize the
active control. First, the NRO environment is considered, trying to search
for initial con�gurations that allow to maintain a bounded mismatch with
the LVLH frame of the orbit. Then, DRO environment is analysed and some
period attitude-orbit solutions in multi-body regimes are presented.

8.1 Attitude in NRO

The �rst coupled analysis involves the study of the spacecraft attitude in a
NRO. Referring to the ARM simulation carried out in Chapter 7, NROs have
a signi�cant role, since one orbit of this family is used as an intermediate
stage and as a gateway before the �nal transfer that drives the spacecraft to
a DRO. From the simulation, it clearly appears that the waiting time to be
spent in the NRO is a little more than one month. The target NRO has been
�xed throughout the simulation: it corresponds to a NRO with aposelene
ra � 78000 km and it is, actually, a 4 : 1 resonant NRO, meaning that
the NRO orbital period is 1{4 of the synodic period of the Moon (that is,
approximately, 29.53 days). Between the moments of arrival and of departure



within the ARM simulation framework, the spacecraft can orbit the targeted
NRO without remarkable station-keeping issues (in practice, some corrective
manoeuvres are likely to be performed). Figure 8.1 depicts the targeted
NRO.

Figure 8.1: 4:1 Resonant NRO

8.1.1 The LVLH Frame

In general, a NRO is characterized by a complicated three-dimensional shape
and this increases the complexity in the search for some interesting periodic
patterns from the attitude point of view. A con�guration that is worth
to be studied is the one dictated by the NRO LVLH frame. The Local
Vertical-Local Horizon coordinate system (denoted as x̆y̆z̆) for a NRO is
de�ned (for every time τ) such that the x̆-axis is directed as the spacecraft
position vector relative to the Moon (therefore, outgoing and radial), the
z̆-axis points towards the instantaneous orbital angular momentum and the
y̆-axis completed the right-handed triad.

It would be interesting to search for con�gurations that grant the space-
craft attitude to follow the LVLH kinematics or that, at worst, have a
bounded mismatch with the LVLH frame. This would translate into a space-
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craft that, from the attitude point of view, moves in accordance with the
LVLH. Such an attitude would be very interesting in particular if pointing
requirements towards the Moon are asked.

By building up the pro�le in time of the LVLH frame direct cosine ma-
trix (that corresponds to the transformation matrix ALV LH{Syn, allowing
the passage from the synodic frame to the LVLH frame), it is possible to re-
cover the angular velocity pro�le ωLV LH{Syn that satis�es the LVLH frame
kinematics, by exploiting:

9ALV LH{Syn � � �ωLV LH{Syn�^ ALV LH{Syn (8.1)

where ωLV LH{Syn represents the angular velocity (expressed in the LVLH
frame) of the LVLH frame with respect the synodic frame. Surely, it would
be more interesting to recover the angular velocity of the LVLH frame with
respect to the inertial space. In order to do so, also the pro�le in time of
the synodic frame direct cosine matrix is required: the matrix ASyn{N can
be reconstructed from ephemerides evaluation. Thanks to this, the direct
cosine matrix of the LVLH frame with respect to the inertial space can be
recovered: simply applying transformation matrices properties, it follows

ALV LH{N � ALV LH{SynASyn{N (8.2)

By applying the analogous version of equation (8.1), the pro�le of the angular
velocity (expressed in the LVLH frame) of the LVLH frame with respect the
inertial frame (that is, ωLV LH{N ) can be recovered. The value of ωLV LH{N
is reported in Figure 8.2 over an entire synodic period of the 4:1 resonant
NRO. In order to follow perfectly the LVLH frame kinematics, a spacecraft
must have the angular velocity pro�le shown in Figure 8.2. To see if this is
possible in the NRO environment, di�erent initial con�gurations have been
considered.

8.1.2 Parametric Analysis

Di�erent inertia conditions for the spacecraft have been considered in order
to analyse the response in attitude. The performed parametric study has
been characterized by the following elements:

• Varying inertia properties about each one of the main axes of iner-
tia. For each axis, a range going from Jmin � 104 kgm2 to Jmax �
4 � 104 kgm2 has been considered, allowing to obtain di�erent combi-
nations of the Kx, Ky and Kz values, where

Kx � Jz � Jy
Jx

, Ky � Jz � Jx
Jy

, Kz � Jy � Jx
Jz

.
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Figure 8.2: NRO LVLH Angular Velocity, with respect inertial space

• Prescribed initial condition for attitude kinematics, dictated by the
perfect alignment with the LVLH frame.

• Prescribed initial condition for attitude dynamics, dictated by the ini-
tial values of the LVLH frame angular velocity (with respect to the
inertial space).

The simulation suggests that there are not con�gurations of inertia prop-
erties that allows to follow the LVLH frame kinematics, given the prescribed
initial velocity and orientation. Indeed, by using a classical Pitch-Roll-Yaw
1 Euler sequence, it is possible to note that there are always two angles that
are characterized by a drift, making impossible a synchronous rotation of
the spacecraft with the LVLH frame. As a representative selection, Figure
8.3 shows the results for the case Kx � 0.666, Ky � 0.8 and Kz � 0.285.
The explanation of the phenomenon is quite simple and it is due to the en-
hanced gravity gradient torque at the periselene of the NRO: indeed, near
this point the gravity gradient due to the Moon becomes suddenly three order
of magnitude larger and it is able to destabilize irretrievably the spacecraft
attitude.

1The angular orientation of a xyz frame can be described with reference to a XY Z

frame through the pitch(φ), roll(θ) and yaw(ψ) angles. The Pitch-Roll-Yaw sequence is

characterized by the �rst rotation is around the Z (� z1) axis through the pitch angle φ.

This takes X into x1 and Y into y1. The second rotation is around the y2 (� y1) axis

through the roll angle θ. This carries x1 and z1 into x2 and z2, respectively. The third

and �nal rotation is around the x (� x2) axis through the yaw angle ψ, which takes y2
into y and z2 into z.
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Figure 8.3: Attitude in NRO (Kx � 0.666, Ky � 0.8 and Kz � 0.285)

The only case in which one single angle drift is observed is for completely
symmetric spacecraft. In this case, the spacecraft is not a�ected gravity
gradient torque (it cancels out) and the angular velocity remains constant.
Figure 8.4 depicts this case.
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Figure 8.4: Attitude in NRO (Symmetric Spacecraft)

Concluding, the simulations suggest that some active control is desirable
if the motion of the NRO LVLH frame has to be followed. The magnitude of
the control is not very large: the order of magnitude of the angular momen-
tum can be seen in Figure 8.5 (inertial components). In the same Figure,
also the components of the perturbing angular accelerations are depicted.
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Figure 8.5: Angolar Momentum and Disturbance Torque Accelerations in NRO (Kx �

0.666, Ky � 0.8 and Kz � 0.285)
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8.2 Attitude in DRO

The starting point for the attitude analysis in DRO is o�ered by the targeted
�nal orbit coming from the ARM simulation. It consists in a 2:1 resonant
DRO, meaning that the orbital period is 1{2 of the synodic period of the
Moon. In Figure 8.6 the considered orbital path is illustrated. It is important
to note how the periodicity is recovered after a synodic period.

Figure 8.6: 2:1 Resonant DRO

The geometry of the problem is, in this case, less complex than the NRO
counterpart. The motion in a DRO can be considered planar (out-of-plane
motion is, actually, present when multi-body regime and the actual motion
of the Moon are considered) and it suggests to search for attitude-orbital
periodic solutions. Assuming a spacecraft oriented as the DRO LVLH frame
at the initial instant, it could be interesting to identify for which conditions
the spacecraft performs an integer number of rotations (with reference to
the synodic frame) about its z-axis per orbital period. Actually, this is the
same path that has been developed in [6], with the study of attitude-orbital
periodic solutions in the CR3BP environment. It clearly appears that such
a problem is governed by the inertia ration pJx� Jyq{Jz that appears in the
z-projection of Euler equations.
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8.2.1 Attitude-Orbital Periodic Solutions

In this case, a parametric study has been adopted in order to �nd, when Kz

is varied, di�erent values of the z-component of spacecraft angular velocity
(relative to the synodic frame) ωb{Syn such that it grants an integer number
of rotations per orbital period (with respect the synodic frame). The main
considered elements for the analysis are:

• Varying inertia properties through a variation of the Kz term. A range
going from Kz,min � 0.1 to Kzmax � 1 is considered.

• Prescribed initial condition for attitude kinematics, dictated by perfect
alignment with the DRO LVLH frame.

The value of the z-component of spacecraft angular velocity (relative to
the synodic frame) ωb{Syn is found via correction scheme, imposing that a
number N (where N � �2,�1, 0, 1 or 2) of rotations are performed per
orbital period.

The analysis has led to the de�nition of Figure 8.7. It is possible to
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Figure 8.7: Attitude-Orbital Periodic Solutions for 2:1 Resonant DRO

note that, for 0.1 ¤ Kz ¤ 0.3, one single initial angular velocity exists such
that it implies a speci�c number N of spacecraft rotations (with respect the
synodic frame) per orbital period. For Kz ¡ 0.3, a bifurcation for the branch
N � 1 appears, meaning that multiple values of the initial angular velocity
can grant that number of spacecraft rotations. Similarly, a bifurcation for
N � 0 is observed for Kz ¡ 0.7.

It is interesting to note how solutions characterized by low gyroscopic
sti�ness are more likely to be destabilized in a long run propagation, due
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to the rise of out-of-plane DRO segments and, therefore, of all the three
components of the gravity gradient torque. Figures 8.8 and 8.9 are a example
of this situation, valid for Kz � 0.8 and characterized by an initial angular
velocity that should grant N � 1.
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Chapter 9

Conclusions

The main objective of the present work is the search for a higher level of
accuracy in mission analysis design at an academic level. For this reason, an
improvement of classical orbital mechanics models - RTBP and CRTBP - is
presented: the e�ects of multiple gravity �elds are included in the dynamical
formulation to describe the equations of motion of a particle characterized
by negligible mass. The N-body model equations of motion are presented
with respect two di�erent coordinate systems. Some basic notions about
spacecraft attitude dynamics are recalled and the attitude-orbital mechanics
coupling is clari�ed. The main steps of the validation process for the models
are presented.

The discussion about numerical methods for dynamical models is pre-
sented, leading directly to the presentation of corrections schemes and basic
concepts of optimization problems. Trajectory design is discussed in detail,
with particular reference to low thrust trajectory model. Low thrust trajec-
tory optimization is handled by presenting two direct optimization schemes:
a low-medium �delity tool, inspired to a classical Sims-Flanagan transcrip-
tion method, and a high �delity tool, considering the entire actual dynamics
of the problem and based on an optimal control approach exploiting Cheby-
shev interpolation. The two presented methods are applied to a real mission
scenario, o�ering coherent results.

The increasing interest for the Earth-Moon system and the exploita-
tion of its Non-Keplerian orbits pushes towards the design of viable attitude
strategies, capable of minimizing the active control. Attitude-orbital cou-
pling is faced in NRO and DRO environments. While complex challenges
seem to suggest that active control is required for the former, interesting
attitude-orbital periodic solutions are computed for the latter.



9.1 Future Work

Multi-body regimes fundamentals are presented throughout this work. All
the simulations have been carried out considering the gravity �elds of the
Earth, the Moon and the Sun. Higher level of accuracy can be attained
including additional bodies of the Solar System, introducing, yet, new chal-
lenges in the numerical methods formulation. In order to count on a more
and more precise model, also the e�ects of the solar radiation pressure could
be considered. This aspect involves not only the orbital mechanics section,
but also the attitude one.

Regarding the optimization processes, due to convergence challenges (that
have been solved increasing gradually the size of the problems), it could be
nice to create a global optimization algorithm before the application of Sims-
Flanagan transcription method. The main aim of this passage would be a
preliminary detection of a good candidate initial guess.

Concerning the attitude-orbital coupled study, even if the behaviour of
the N-body models can be hardly predictable, it would be nice to extend the
presented analysis to a wider range of periodic solution of the same families,
and not only.
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