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Abstract  
 

 

The detection of the onset of a degradation process and the identification of the 

degradation level are fundamental tasks for the development of condition-based 

maintenance approaches in industrial systems, which are expected to increase their 

availability and safety, and, at the same time, reduce maintenance costs. The scope of the 

present thesis work is the development of fault detection and diagnostic methods for 

industrial systems. We consider the very common case in which, given the unavailability 

of reliable physics-based models of the degradation process, data-driven methods should 

be adopted. The detection and diagnostic models have typically to deal with non-

stationary time series, characterized by the fact that the frequency content of the signals 

changes over time. This is due to the modifications of the environment in which the 

industrial components operate and the effects of the degradation process on the measured 

signals. The problem of properly treating these nonstationary time series for extracting 

indicators of the equipment health state is also complicated by the presence of large noise 

levels, which may mask the effects of the degradation. To tackle this issue, in this thesis 

work, we propose a novel method which combines the use of Continuous Wavelet 

Transform (CWT) with image analysis techniques. CWTs have been used due to their 

ability to construct a time-frequency representation of a signal able to identify non-

stationary components with good time and frequency localization. The main steps of the 

proposed method are: i) performing the CWT of the test signal, ii) building the 

corresponding scalogram image and iii) comparing it with scalogram images obtained 

from historical data collected from similar equipment in nominal conditions by means of 

a properly defined similarity measure based on a pixel by pixel comparison. The 

developed approach is applied with success to two experimental datasets concerning 

sensor validation and bearing fault detection. The industrial problems of detecting 

malfunctions of the sensors of an energy production plant  and detecting anomalous  

behaviors of the bearings  of an engine.   

 

 



 

 

 

 

 

 

  



Estratto 
 

La detection del principio di deterioramento e l’identificazione della sua gravità sono dei 

compiti fondamentali per lo sviluppo di approcci di manutenzione condition based i quali 

mirano ad aumentare l'affidabilità e la sicurezza dell'intero sistema, e a ridurre i costi di 

manutenzione. L’obiettivo di questa tesi è sviluppare un metodo di fault detection e 

diagnostica per sistemi industriali. Consideriamo lo scenario comune nel quale, data 

l’indisponibilità di modelli fisici affidabili per il processo di deterioramento, gli approcci 

data-driver sono più efficaci. I modelli di detection e di diagnostica in genere devono 

trattare time-series non stazionarie, cioè segnali la cui frequenza cambia nel tempo. Ciò 

è dovuto alle modifiche dell’ambiente nel quale i componenti industriali operano e agli 

effetti del processo di deterioramento sul segnale misurato. Il problema di trattare in 

maniera adeguata time-series non stazionarie per estrarre indicatori sullo stato dei 

componenti è anche complicato dalla presenza di rumore che può mascherare gli effetti 

del deterioramento. Per affrontare il problema, in questa tesi, proponiamo un nuovo 

metodo che unisce la Continuous Wavelet Transform (CWT) con l’analisi di immagine. 

Le CWTs sono state già usate per la loro capacità di costruire una rappresentazione 

tempo-frequenza di un segnale in grado di evidenziare le componenti non stazionarie. I 

principali step del metodo sono: i) fare la CWT del segnale test, ii) ottenere la 

corrispettiva immagine di scalogramma e iii) confrontarla con le immagini di 

scalogrammi ottenute da dati storici di componenti simili in condizioni nominali mediante 

una appropriata misura di similarità basata su un confronto pixel-pixel. Il metodo 

sviluppato è stato applicato con successo a 2 dataset sperimentali, utilizzati 

rispettivamente per la sensor data validation e la fault detection di cuscinetti. 

 

  



  



1 Introduction 
 

Prognostics and Health Management (PHM) is a field of research and application which 

aims at making use of past, present and future information on the environmental, 

operational and usage conditions of an equipment in order to achieve system reliability, 

safety, maintainability, availability, supportability, and economic affordability (Zio, 

2013). The main features of PHM include fault detection, isolation, degradation level 

assessment, prognostics and maintenance decision (Pecht & Kang, 2010). In details, 

prognostics predicts when (detection) and where (isolation) failure will occur letting the 

users be able to mitigate system-level risks. The modern acquisition tools allow 

continuously monitoring the equipment, recording in real-time signal values of the 

physical parameters of interest (e.g., pressure, temperature, flow and vibration) (Jardine 

et al, 2015), (Teng et al. 2016). In situations in which developing physics-based models 

of the degradation and failure behavior of an equipment is not possible or favorable and 

when sufficient historical data are available, data-driven PHM approach are typically 

exploited (Schwabacher, 2005). Indeed, in contrast to model-based approaches which 

require a priori knowledge of the process and equipment behavior, data-driven 

approaches are developed on the basis of historical data (Hines & al, 2008). The acquired 

signals are typically non-stationary, i.e., its frequency content changes over time, and 

then, classical frequency analysis techniques based on Fourier Transform (FT) fail to 

detect changes of the signal frequency content over time (Jaber & Bicker, 2014). In fact, 

since FT does not provide any information about the time localization of important events, 

it does not allow to properly detecting imminent faults or changes in the health state of 

the component. For this reason, in this work will consider the development and 

application of Time-Frequency methods (TF) which can reveal time variant features at 

both high and low-frequency bands of nonstationary signal. The TF transform adopted in 

this work is the Continuous Wavelet Transform (CWT). CWT is performed on the test 

signal and a scalogram image is extracted. Following this, a pixel comparison is 

performed between the extracted scalogram and scalograms which represent normal 

operation of the monitored component and the test signal is then classified as anomalous 

or non-anomalous. The practical industrial benefit of the technique is a visual 

representation of fault detection.  



In this work the proposed method is firstly applied to a real industrial case study 

concerning the identification of anomalous signals recorded by a sensor, which we will 

refer to sensor data validation. In fact, modern industrial plants are complex systems, 

equipped with hundreds of sensors to measure physical parameters, such as pressures, 

temperatures and flows for operation control and diagnostic purposes. In practice, sensors 

may malfunction, i.e. they can provide inaccurate readings of the monitored physical 

parameters. The most common types of sensor malfunctions are: freezing (or constant), 

noise, spike (or short) quantization (Sharma et al., 2010) (Tolle et al., 2005). They can 

lead to the incorrect intervention of plant operators and automatic control systems, 

causing undesirable consequences, such as unnecessary component downtimes, or even 

plant shutdowns with associated large financial losses. Thus, the task of promptly 

detecting the occurrence of a sensor malfunction is of paramount importance. In particular 

in our case the sensor data validation involves the following steps: 𝑖) performing the CWT 

of the test signal,𝑖𝑖) computing the corresponding scalogram image and 𝑖𝑖𝑖) comparing 

this scalogram with those obtained from historical data of the signals collected by the 

sensor. With respect to the last step, the comparison between scalogram images is 

performed by defining a proper measure of similarity between images based on a pixel 

by pixel comparison. The same technique is then applied to the detection of the bearing 

degradation onset through the analysis of its vibrational signal. Bearings in fact are the 

most critical component in all rotating machineries and are the main cause of failure of 

those machineries (Singleton et al. 2013). For this reason they are monitored through 

several vibration sensors in order to acquire significant information about their health 

state. We decided to apply the method also to the bearing degradation onset due to the 

similarity with the sensor data validation task. In fact in both cases the signals are non-

stationary, due to the rapid changes of working conditions, in both cases the anomaly 

alters the frequency content and in both cases a sufficient amount of historical data are 

available to develop a data-driven model. 

  



2 Sensor data validation 

 

2.1 Introduction 

 

 Modern energy production plants are complex systems, equipped with hundreds of 

sensors to measure, at relative high frequency, physical parameters, such as pressures, 

temperatures and flows for operation control and diagnostic purposes. In practice, sensors 

may malfunction, i.e. they can provide inaccurate readings of the monitored physical 

parameters. The most common types of sensor malfunctions are: freezing (or constant), 

noise, spike (or short) and quantization (Sharma et al., 2010) (Tolle et al., 2005). They 

can lead to the incorrect intervention of plant operators and automatic control systems, 

causing undesirable consequences, such as unnecessary component downtimes, or even 

plant shutdowns with associated large financial losses. Thus, the task of promptly 

detecting the occurrence of a sensor malfunction, which is often referred to as sensor data 

validation, is of paramount importance. It has been addressed by a variety of methods 

including Auto Associative Neural Network (AANN) (Wrest et al., 1996) (Hines et al., 

1998), Nonlinear Partial Least Squares Modeling (NLPLS) (Rasmussen et al., 2000), 

Principal Component Analysis (PCA) (Penha & Hines, 2001) (Baraldi et al., 2011), Auto 

Associative Kernel Regression (Baraldi et al., 2015) (Garvey et al., 2007), and 

Multivariate State Estimation Technique (MSET) (Gross et al., 1997) (Zavaljevski & 

Gross, 2000) (Coble et al., 2012).  

A limitation of these approaches is that they only detect the abnormal behavior of the 

measured signals, which, however, can be due to several causes, such as a sensor 

malfunction, a process anomaly, a failure of a plant component. The subsequent 

identification of the cause of the abnormal behavior is typically a time-consuming task, 

which requires an intervention of the plant personnel or the use of other dedicated 

diagnostic systems. Furthermore, data validation approaches typically detect the 

anomalous behavior of a sensor using information provided by other sensors. The basic 

idea is that a sensor malfunction causes a modification of the functional relationships 

among the measured signal values. The use of data collected from other sensors may 

cause difficulties from a practical point of view. For example, when hundreds of signals 

are monitored in a plant, it is necessary to group them into several subsets, since it has 

been shown in (Roverso et al., 2007), (Baraldi et al., 2011) that a single model based on 



all (hundreds) signals is not able to provide satisfactory performances. Although the 

problem of sensor grouping has been successfully addressed in (Baraldi et al., 2011) and 

(Baraldi et al., 2014) by using ensemble of models dedicated to detection of sensor 

malfunctions in a specific group of sensors, the proposed solutions have still some 

practical limitations: 

1. the necessity of periodically updating the models and the corresponding signal 

grouping to take into account possible modifications of the signal relationships 

(Roverso et al., 2007);  

2. the fact that these models are not easily scalable to a fleet of plants (Baraldi et al. 

2011). Since each plant has its own characteristics and, therefore, it requires a 

dedicated grouping of the signals.  

To overtake these limitations, we aim at developing a completely different approach for 

detecting sensor malfunctions. The idea is to develop a dedicated data validation model 

for each sensor, based on historical data collected from the sensor itself when it was 

healthy. Since the approach does not consider relationships among different signals, it 

can be systematically applied to a fleet of plants without requiring sensor grouping.  

The proposed sensor data validation method builds up from the idea that a sensor fault 

alters the regularity of a signal, i.e., its degree of smoothness. Continuous Wavelet 

Transforms (CWT) are able to characterize and quantify the local regularity of a signal 

(Mallat, 2008), and have been employed in many engineering applications. For example, 

the Lipshitz-exponent, which can be estimated from CWT by using the Wavelet Modulus 

Maxima (WMM) (Mallat & Hwang, 1992), has been used for bearing faults diagnostics 

(Li, 2010), machinery health monitoring (Miao et al., 2007) and signal denoising (Mallat 

& Hwang, 1992). A limitation of WMM is that it is sensible only to signal irregularities, 

whereas it does not allow detecting types of sensor malfunctions which add regularity to 

a signal, such as freezing. For this reason, in this work, we propose a novel method based 

on the use of CWT scalograms, which are two-dimensional images representing the time 

evolution of the squared magnitude (or power) of the CWT at different frequencies 

(Mallat, 2008).  

The method combines the use of CWT with image analysis techniques for the 

identification of the similarity among the test data and an archive of historical data. It 

involves the following steps:𝑖) performing the CWT of the test signal,𝑖𝑖) computing the 



corresponding scalogram image and 𝑖𝑖𝑖) comparing this scalogram with those obtained 

from historical data of the signals collected by the sensor. With respect to the last step, 

the comparison between scalogram images is performed by defining a proper measure of 

similarity between images based on a pixel by pixel comparison.  

The main contributions of this work are: 

• the use of CWT scalogram images to detect sensor malfunctions;  

• the development of a method which allows the detection of a sensor malfunction 

without using data measured by other sensors, is robust to different sensor 

malfunction types and intensities and able to graphically motivate the reasons of 

the detection through the use of scalograms.  

• an original analysis about the characteristics of the scalograms of the signals 

measured in case of different types of sensor malfunctions. 

The performance of the proposed method has been verified with respect to data taken 

from an energy production plant. Realistic examples of sensor malfunctions have been 

artificially injected in the data streams and the proposed method has been compared with 

a literature PCA-based approach from the point of view of the percentage of false and 

missed alarms. The remainder of the chapter is organized as follows. Section 2.2 and 2.3 

highlights the main issues associated to sensor data validation, provides a description of 

the most common sensor malfunction types, introduce the problem statement and the 

notation. In Section 2.4, some mathematical features of CWT at the basis of the proposed 

method are discussed. Section 2.5 provides an in-depth discussion of the proposed 

method. The case study and the application of the proposed method are shown in Section 

2.6. Finally, Section 2.7 concludes the chapter. 

 

 

2.2 Sensor data validation 
 

The objective of this chapter is the development of a sensor data validation method for 

online detecting sensor readings deviating from the ground truth values of the monitored 

physical parameters. Signal deviations can be triggered by a single sensor fault or by the 

failure of a node with attached several sensors, because of hardware failure or sensor 

internal malfunction (e.g., losing the connection with the sensor board). According to 



(Sharma et al., 2010), these types of malfunction are considered as non-functional faults 

since they only impact the fidelity of the reported data. The different types of sensor 

malfunctions are typically classified as (Ni et al., 2009) (Sharma et al., 2010):  

• Spike (or short): a sharp change in the measured value between two successive 

measurements. It produces a single isolated sensor reading with a value that is 

significantly far from the signal ground truth (Figure 1).  

•  Noise: the variance of the sensor readings increases and the data becomes highly 

uncorrelated with the true signal values (Figure 2).  

• Freezing (or constant): the sensor reports a constant value for a large number of 

successive samples. It may precede and/or follow an unexpected signal jump, with 

readings that may fall outside the range of the measured phenomenon. Figures 3 

and 4 show some examples of freezing without and with jump, respectively.  

• Quantization: a reduction of the analogue-to-digital resolution conversion. 

Quantization replaces signal ground truth values with their approximations into a 

finite set of discrete levels. In practice, the sensor reading is characterized by 

intervals with constant values followed by sharp changes (Figure 5).  

 

Figure 1. Example of sensor spike. Left: ground truth signal values; right: corresponding readings 

in case of sensor spike. 

 

Figure 2. Example of sensor malfunction due to noise. Left: ground truth signal values; right: 

corresponding readings in case with noise. 



 

Figure 3.  Example of sensor freezing. Left: ground truth signal values; right: corresponding 

readings in case of sensor freezing. 

 

Figure 4. Example of sensor freezing with jump. Left: ground truth signal value; right: 

corresponding readings in case of sensor freezing with jump 

 

Figure 5. Examples of sensor quantization. Left: ground truth signal value; right: corresponding 

readings in case of sensor quantization. 

 

2.3 Problem Statement and Notation  
 

Let 𝑥(𝑡) be the measurement of a generic plant sensor at time 𝑡. The objective of the 

present chapter is the development of a method for promptly detecting the occurrence of 

sensor malfunctions. We assume:  

i. to have available the historical measurements  𝑥(𝜏), 𝜏 < 𝑡, performed by the 

sensor itself when it was healthy;  



ii.  the data in 𝑥(𝜏) are representative of all the plant operating conditions.  

Although it is difficult to fully meet this latter assumption in real industrial applications, 

we observe that real sensor data collected for long periods of time (e.g. years) typically 

include a very large spectra of plant operating conditions, including the most common 

plant anomalies which do not involve sensor malfunctions.  

The detection of the sensor malfunction is based on the analysis of the measurements in 

the time window 𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1); 𝑥(𝑡)} made by the last 𝐿 collected 

measurements, which will be also referred to as test pattern. The historical measurements 

𝑥(𝜏) are organized into 𝑆 training vectors of length 𝐿 containing the measurements in the 

time windows 𝑥𝐿,𝑗 = {𝑥𝑗(1 + (𝑗 − 1)Δ), 𝑥𝑗((𝑗 − 1)Δ + 𝐿)}with 𝑗 = 1,… , 𝑆 and 0 ≤ Δ <

𝐿. 𝐿 − Δ represents the overlapping between two consecutive time windows, i.e. the last 

𝐿 − Δ measurements of the 𝑗 − 𝑡ℎ vector 𝑥𝐿,𝑗 coincide with the first 𝐿 − Δ measurements 

of the vector 𝑥𝐿,𝑗+1. 

 

2.4 Continuous Wavelet Transforms For Sensor malfunction Detection 
 

Signal measurements in energy production plants may show transients and non-stationary 

behaviors. Therefore, time or frequency-domain methods, which have been developed for 

stationary signals, cannot be applied with success to the sensor data validation task. Due 

to the time-varying frequency spectrum of the signals, suitable time–frequency 

decomposition tools are needed for real-time signal data validation. Time–frequency 

analysis can identify the signal frequency components and reveal their time-variant 

features. Various time–frequency analysis methods have been proposed and applied to 

fault detection, diagnostics and prognostics. Among these, short-time Fourier transform 

(STFT), wavelet transforms (WT), Hilbert–Huang transform (HHT), and Wigner–Ville 

distribution (WVD) are the most commonly used approaches.  

Wavelet transform is a mathematical tool that converts a signal into a different form (Gao 

& Yan, 2011). The objective of the conversion is twofold: i) to reveal signal 

characteristics that are hidden in the time domain and ii) to provide a more succinct 

representation of the original signal. A base wavelet function 𝜓(𝑡) is needed in order to 



perform the wavelet transform. A wavelet is a small wave that has an oscillating wavelike 

characteristic and has its energy concentrated in time. A wavelet is used as template for 

analyzing time-varying or nonstationary signals by decomposing the signal into a 2D, 

time-frequency domain representation (Gao & Yan, 2011) (Mallat, 2008). For any real 

signal 𝑥(𝑡) ∈ 𝐿2(ℝ), the Continuous Wavelet Transform (CWT) with scale parameter 

𝑠 > 0, translation parameter 𝑢 ∈  ℝ and wavelet function 𝜓(𝑡) is: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)

1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) 𝑑𝑡

+∞

−∞

 (1) 

The reader interested in more mathematical details about wavelet transform can refer to 

Appendix A.  

The translation parameter 𝑢 can be interpreted as the time instant around which the signal 

is analyzed. With respect to the scale parameter, at small 𝑠 values 𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) provides 

information on the details (i.e., the high frequency contents) of the signal in the 

neighborhood of time instant 𝑢, whereas at large 𝑠 values 𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) provides 

information on the trend (i.e., the low frequency contents) of the signal in the 

neighborhood of time instant 𝑢. A standard way of representing the CWT is to use a two-

dimensional image, called scalogram, graphically representing the square of the CWT, 

|𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)|

2
, as function of the translation parameter 𝑢 and scale parameter 𝑠. Since 

the signals considered are typically digital signals, a discrete approximation of Eq. (1) is 

typically computed (Torrence & Compo, 1998). The approximated scalogram is a matrix 

whose rows and columns correspond to different scales 𝑠 and translation parameters 𝑢, 

respectively. Figure 6 shows a cosine signal with a sudden change of frequency at time 

𝑡 = 25 and its corresponding scalogram image, which clearly allows graphically 

identifying the time at which the change of frequency occurs. 



 

Figure 6. Left: Signal 𝒙(𝒕); right: and corresponding scalogram |𝑪𝑾𝑻𝒙
𝝍(𝒖, 𝒔)|

𝟐
 

As mentioned earlier, a sensor malfunction alters the regularity of a signal, i.e., its degree 

of smoothness. For example: a sensor malfunction causing spikes adds irregularity to a 

signal, being a spike an approximation of a Dirac distribution, which is not differentiable 

(Mallat & Hwang, 1992); a sensor malfunction causing freezing of the sensor readings 

adds regularity to the signal, since a constant signal is differentiable infinite times. A 

measure of the local regularity of a signal is provided by the Lipshitz exponent 𝛼 (Mallat 

& Hwang, 1992) which is introduced, from a mathematical point of view, in Appendix 

B. Considering a function 𝑥(𝑡), it is possible to show that: 

• If 𝑥(𝑡) is uniformely Lipschitz 𝛼 > 𝑛 in the neighborhood of 𝑡0, this implies that 

𝑥(𝑡) is necessarily  𝑛 times continuously differentiable in this neighborhood 

(Mallat, 2008); 

• 𝛼 equal to 1 implies that 𝑥(𝑡) is a continuously and differentiable function at 𝑡0; 

• 𝛼 ∈ (0,1) implies that the function 𝑥(𝑡) is continuous at 𝑡0 but the first derivative 

of the function at that point is not continuous;  

• 𝛼 equal to 0 implies that the function is discontinuous at 𝑡0 but bounded in the 

neighborhood of 𝑡0. 

In (Struzik, 2001), the estimation of the Lipschitz-exponent at a given point 𝑡0 has been 

obtained through the use of the Wavelet Modulus Maxima (WMM). A WMM is defined 

as any point (𝑢0, 𝑠0) such that |𝐶𝑊𝑇𝑡
𝜓(𝑢, 𝑠0)| is a local maximum at 𝑢 = 𝑢0 and the 

maxima line consists of the points that are local maxima. The approximated estimation 

of 𝛼 is provided by: 



𝛼 = 2

1
𝑧−1

∑ 𝑙𝑜𝑔2(
𝑠=𝑧−1
𝑠=1

𝐶𝑊𝑇𝑥
𝜓(𝑢,𝑠+1)

𝐶𝑊𝑇𝑥
𝜓(𝑢,𝑠)

)

 
(2) 

where 𝑧 is the length of the maxima line that propagates from coarse scales to fine scales. 

This equation has been successfully applied in many engineering problems, like bearing 

faults diagnostics (Li, 2010), machinery health monitoring problems (Miao et al., 2007) 

and signal denoising (Mallat & Hwang, 1992). These works typically rely on the fact that 

any irregularity can be detected by finding the translation parameter 𝑢 at which WMM 

converge at fine scales (Mallat & Hwang, 1992). Notice, however, that methods for 𝛼 

estimation based on WMM are only able to provide a rough approximation, since they 

exploit only the information carried out by the first and last points of the maxima line 

(Miao et al., 2007). A common problem of WMM-based techniques for the estimation of 

𝛼 is that the limited resolution of a discrete signal implies that the scale 𝑠 cannot be 

arbitrarily small, causing approximations which can lead to inaccurate Lipschitz exponent 

estimation (Tu et al., 2005). Therefore, the use of WMM for sensor data validation is 

applicable to detect only those types of sensor malfunctions adding irregularity to a signal, 

such as spike and noise, whereas those adding regularity to a signal, such as freezing, 

cannot be properly detected since none of the maxima lines converge to the 𝑢 

corresponding to the freezing (Mallat & Hwang, 1992).  

To overcome these limitations of the use of WMM for sensor data validation, in this work 

we propose to directly work on scalogram images. This original approach is motivated 

also by the possibility of taking full advantage of the redundancy provided by the CWT, 

which allows avoiding loss of information (Kovačević & Chebira, 2007a) and has been 

shown useful in many applications such as feature extraction (Sengüler, 2016).  

With respect to the choice of the type of wavelet transform notice that different sensor 

malfunctions influence the 𝐶𝑊𝑇 coefficients in specific and different scale ranges, as it 

will be shown in Section 2.4.1 and Appendix B. For this reason, an efficient sensor 

validation tool should be based on a wavelet transform able to provide an accurate scale 

localization such Morlet wavelet: 

𝜓(𝑡) =
1

𝜋1/4
  𝑒𝑖𝜋𝑓0𝑡 𝑒−𝑡

2/2 (3) 

which has been shown to provide more accurate scale localization than other types of 

wavelet transforms (Karacan & Olea, 2014). 



 

2.4.1 Analysis of the scalogram characteristics in correspondence of different 

types of sensor malfunction 

 

In this Section, we discuss the characteristics of the scalograms of the signals measured 

in case of different types of sensor malfunctions. 

 

2.4.1.1 Spike 

Figure 7 shows the scalograms obtained from a signal acquired by a healthy sensor (Figure 7a) 

and the same signal to which a spike has been artificially injected at time 𝑡 = 50 (Figure 7b). 

 

Figure 7. Top: scalogram of the signal of Figure 1(a) acquired by a healthy sensor; bottom: 

scalogram of the signal of Figure 1(b) corresponding to the same signal with a spike at 𝒕 = 𝟓𝟎. 

 

As expected, the main difference between the two scalogram images is observed in the 

neighborhood of the time at which the spike has been injected and consists in the abrupt 

increasing of the wavelet coefficients at small scales. This result is coherent with the fact 

that, from a theoretical point of view, a spike can be seen as an approximation of a Dirac 

distribution which is characterized by a Lipschitz exponent equal to -1 (Mallat & Hwang, 

1992). Thus, the wavelet transform modulus maxima increase proportionally to 1𝑠 over a 



large range of scales in the corresponding neighborhood (Mallat & Hwang, 1992). In 

conclusion, a spike can be recognized for its large coefficients in the scalogram at small 

scales. 

 

2.4.1.2 Noise 

Figure 8 shows the scalograms obtained from a signal acquired by a healthy sensor 

(Figure 8a) and the same signal to which noise has been artificially injected (Figure 8b). 

The scalogram image shows larger CWT coefficients at all times in the case of presence 

of noise. According to (Qiu et al., 2006), this is due to the fact that noise adds irregularity 

to the signal in every sample, increasing its variance. In practice, a noisy signal shows 

sharper changes than the nominal one, which can be seen as a combination of many low 

intensity spikes. This implies CWT coefficients larger than in the case of a healthy sensor, 

but smaller than those observed in correspondence of the spike. 

 

Figure 8. Top: scalogram of the signal of Figure 2(a) acquired by a healthy sensor; bottom: 

scalogram of the signal of Figure 2(b) corresponding to the same signal after artificially injecting a 

noise malfunction. 

 

2.4.1.3 Freezing 

Figure 9 shows the scalograms obtained from a signal acquired by a healthy sensor 

(Figure 3a) and the same signal to which a freezing has been artificially injected (Figure 



3b). The scalogram obtained from the frozen signal is characterized by a large region with 

zero CWT coefficients at small scale. The zero CWT coefficients are due to the fact that 

when the wavelet atom 𝜓𝑢,𝑠(𝑡) support includes that of a constant signal 𝑥(𝑡) = 𝑐0, Eq. 

(1) becomes: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)

+∞

−∞

𝜓∗
𝑢,𝑠
(𝑡)𝑑𝑡 = ∫ 𝑐0𝜓

∗
𝑢,𝑠
(𝑡)𝑑𝑡

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝜓𝑢,𝑠 

= 0 (4) 

where the last equality holds for the vanishing moment property (Eq. (33) in Appendix 

B). Notice that, since the smaller is 𝑠, the smaller is the support of 𝜓𝑢,𝑠(𝑡), we can 

conclude that for a fixed value of the translation parameter 𝑢, the support of the atom 

𝜓𝑢,𝑎(𝑡) is included in that of the atom 𝜓𝑢,𝑏(𝑡) provided that 𝑎 < 𝑏. Thus, if the support 

of  𝜓𝑢,𝑏(𝑡) includes the frozen signal interval, then also the support of 𝜓𝑢,𝑎(𝑡) includes 

the same interval and, consequently, has a zero CWT coefficient. For this reason, the 

region with zero CWT coefficient values becomes larger when 𝑠 decreases to zero and 

tends to show a triangular shape (Figure 9). 

 

Figure 9. Top: scalogram of the signal of the Figure 3(a) acquired by a healthy sensor; bottom: 

scalogram of the signal of Figure 3(b) corresponding to the same signal after artificially injecting a 

freeze without jump malfunction. 

2.4.1.4 Quantization 

Figure 10 shows the scalograms obtained from a signal acquired by a healthy sensor 

(Figure 5a) and the same signal to which a quantization has been artificially injected 



(Figure 5b). The comparison of these two Figures shows that the CWT coefficients at 

large scales are very similar whereas there are differences at small scales. In detail, the 

effect of the quantization is twofold: 

• when the quantized signal is constant for several successive samples, the CWT 

coefficients become smaller with respect to the same case without quantization 

(dashed region in Figure 10b). This is due to the fact that the quantized signal 

behaves like a frozen signal in this time interval; 

• when quantization induces sudden jumps, the CWT coefficients become larger 

than those of the same case without quantization. This is due to the fact that a 

quantized signal behaves like a low intensity spike in these time intervals. 

Thus, a quantized signal can be viewed as a signal in which short periods of freezing are 

alternated to low intensity spikes. 

 

Figure 10. Signal in nominal condition (left) corresponding to the same signal after artificially 

injecting a quantization malfunction (right). 

 

 



 

Figure 11. Top: scalogram of the signal of the Figure 5(a) acquired by a healthy sensor; bottom: 

scalogram of the signal of Figure 5(b) corresponding to the same signal after artificially injecting a 

quantization malfunction. 

 

 

2.5 Sensor Malfunction Detection Method 
 

The method proposed in this work is based on the idea of comparing the scalogram 

obtained from the test vector 𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1),… , 𝑥(𝑡)} to the scalograms obtained 

from the training vectors 𝑥𝐿,𝑗 = {𝑥𝑗(1 + (𝑗 − Δ)), 𝑥𝑗((𝑗 − 1)Δ + 𝐿)}, 𝑗 = 1,… , 𝑆 ,    0 ≤

Δ < 𝐿. First of all, each one of the training vector𝑥𝐿,𝑗 = 1,… 𝑆  is transformed in the 

corresponding scalogram by applying the following procedure: 

Step 1: Compute the CWT 𝐶𝑊𝑇
𝑥𝐿
𝝍 (𝑢, 𝑠) of the test vector 𝑥𝐿(t) and the corresponding 

scalogram image 𝐼(𝑡). The scalogram 𝐼(𝑡) is a matrix of size 𝑁𝑥𝑀, where 𝑁 and 𝑀 

depend on the discretization of the translation parameter 𝑢 (typically 𝑀 = 𝐿) and scale 

parameter 𝑠. According to the results of the analysis of Section 2.4, large scale values do 

not provide useful information for sensor malfunction detection and, consequently, the 

analysis focuses on scale values lower than a prefixed threshold, i.e. 𝑠 < �̃�; 

Step 2: Process the scalogram image to: 



a) enhance the differences at low scales, which have been shown to be 

relevant for the identification of a sensor malfunction caused by freezing 

or quantization (Section 2.3.3 and 2.3.4); 

b) normalize the intensities 𝐶𝑊𝑇
𝑥𝐿
𝝍 (𝑢, 𝑠) in the range    [0, 1]. 

 

Step a) transforms the scalogram image 𝐼(𝑡) into a new scalogram image: 

𝐼(𝑡)𝑝,𝑞 = {
𝐼(𝑡)𝑝,𝑞
𝑎𝑚𝑎𝑥

𝑖𝑓 𝐼(𝑡)𝑝,𝑞 ≤ 𝑎𝑚𝑎𝑥 

𝑖𝑓 𝐼(𝑡)𝑝,𝑞 > 𝑎𝑚𝑎𝑥
 (5) 

 

where 𝑎𝑚𝑎𝑥 is a threshold. Step b) converts the scalogram 𝐼𝑗(𝑡) into a 

greyscale image 𝐺𝑗(𝑡) by scaling its entries in the interval [0,1] as follows: 

𝐺(𝑡)𝑝,𝑞 = 
𝐼(𝑡)𝑝,𝑞 − 𝐼(𝑡)𝑚𝑖𝑛

𝐼(𝑡)𝑚𝑎𝑥 − 𝐼(𝑡)𝑚𝑖𝑛
 (6) 

 

where 𝐼(𝑡)𝑚𝑖𝑛 and 𝐼(𝑡)𝑚𝑎𝑥 are the minimum and the maximum values of the     

matrix 𝐼(𝑡) in all the training scalograms. 

Since two consecutive training vectors, 𝑥𝐿,𝑗 and 𝑥𝐿,𝑗+1,overlap of Δ − 𝐿 components 

(Section 2.3), i.e., the last 𝐿 − Δ measurements of the 𝑗𝑡ℎ vector 𝑥𝐿,𝑗 coincides with the 

first 𝐿 − Δ measurements of the vector 𝑥𝐿,𝑗+1, the effect on the scalogram of the 

occurrence of an event, such as a plant transient, will be visible at different times in 

different consecutive scalograms. This allows obtaining in the training scalograms an 

overall representation of the signal measured by healthy sensors that is invariant from the 

shift of the events. 

Then, for the test vector 𝑥𝐿 , we repeat Steps 1 and 2 to obtain its corresponding scalogram 

𝐼(𝑡). Notice that entries of matrix 𝐼(𝑡) (Eq. (5)) close to 𝑎𝑚𝑎𝑥 at low scales indicate sensor 

malfunctions which add irregularity (i.e., noise and spike) and entries lower than 𝑎𝑚𝑎𝑥 

indicate sensor malfunctions which add regularity (i.e., quantization and freezing). With 

respect to matrix 𝐺(𝑡) in Eq. (6), entries close to 1 at low scales are typically of noise and 

spike malfunctions, whereas entries close to 0 of quantization and freezing malfunctions. 

Once the training and test grayscale images, 𝐺𝑗 and 𝐺, have been obtained, they are 

compared by applying the following procedure: 



a) Compute the dissimilarities 𝑑𝑗  between the greyscale image 𝐺(𝑡) and all the 

greyscale images 𝐺𝑗           obtained from the historical signals 𝑥𝐿,𝑗, preprocessed 

according to Steps 1-2:  

𝑑𝑗 = ‖𝐺(𝑡) − 𝐺𝑗‖    𝑗 = 1,… , 𝑆        (7) 

where the matrix norm of the scalogram is: 

‖𝐺(𝑡)‖ = ∑∑|𝐺(𝑡)𝑝,𝑞|

𝑀

𝑗=𝑞

𝑁

𝑝=1

 (8) 

 

b) Identify the scalogram of the training set most similar to the one currently tested, 

i.e. the one characterized by the minimum dissimilarity 𝑑∗: 

𝑑∗ = 𝑚𝑖𝑛
𝑗=1,…,𝑆

𝑑𝑗 (9) 

c) Compare 𝑑∗ with a fixed detection threshold 𝑇,  if 𝑑∗ is greater than 𝑇, then a 

sensor malfunction is detected. 

 

Parameters 𝑇, 𝑎𝑚𝑎𝑥, and �̃� are set by minimizing a weighted sum of the number of false 

and missed alarms, 𝑓𝑎 and 𝑚𝑎, on a validation set: 

�̃� = 𝑤1𝑓𝑎 + 𝑤2𝑚𝑎 (10) 

 

where the weights 𝑤1 and 𝑤2 are typically set by considering a proper trade off between 

missed and false alarms. The validation set is formed by: 

i. historical data collected when the sensor was healthy, different from those used 

for the model training. 

ii. Data representative of sensor malfunctions. If these latter data are not available, 

they can be simulated using the procedure described in Appendix C. 

Resorting to the big 𝑂 notation typically employed for evaluating algorithm complexity 

(Wegener, 2005), the computational complexity of the different steps of the proposed 

method is: 

• step 1: 𝑂(𝑁𝐿 log 𝐿) for computing the wavelet transform of the test signal 𝑥𝐿(𝑡), 

with 𝑂(𝐿 log 𝐿) representing the time complexity required per scale (Torrence & 

Compo, 1998); 



• step 2: 𝑂(𝑁𝐿) for scalogram preprocessing; 

• step 3: 𝑂(𝑁𝐿𝑆) for computing all distances 𝑑𝑗; 

• step 4: 𝑂(𝑆) 

• step 5: 𝑂(1). 

Notice that, in the worst case, i.e., when 𝐿 = 𝑁 = 𝑆, the computational complexity is 

𝑂(𝐿3).  

 

2.6 Case study 
 

We consider a dataset containing real temperature measurements recorded at a sampling 

frequency 𝑓𝑠 = 1 𝐻𝑧 from a component of an electricity production plant (Baraldi et al, 

2015). The temperature signal has been segmented using a fixed time window of length 

𝐿 = 120 samples (corresponding to 120 seconds), with overlapping of 20 samples. The 

overlapping of the training pattern has been introduced to deal with the fact that a 

malfunction can occur at any time of the test window. Therefore, in order to detect it, 

various shifted training vectors with an overlap of 𝐿 − Δ = 20 samples are considered 

in the training set. Since the available data have been collected by a healthy sensor, we 

have artificially simulated sensor malfunctions of different types and intensities, 

according to the procedure proposed in (Sharma et al., 2010) and reported in Appendix 

C. We also assume that the historical signal vectors 𝑥𝐿,𝑗 collected from the same sensor 

in healthy condition are representative of all the plant operational conditions. Figure 12 

shows an example of signal behavior and Figure 13 examples of simulated low-intensity 

sensor malfunctions. 

 

Figure 12.  Signal measurements obtained from a healthy sensor.  



 

Figure 13. Simulated sensor malfunctions: freezing (top-left), spike (top-right), noise (down-left), 

quantization (down-right). 

 

2.6.1 Dataset partitioning  

 

We have partitioned the available data into three subsets: 𝑖) a training set, 𝑖𝑖) a validation 

set, and 𝑖𝑖𝑖) a test set. The training set is formed by 67 signal segments measured from a 

healthy sensor and constitutes the set of vectors 𝑥𝐿,𝑗 from which the dissimilarity of the 

test segment is computed in Step 3 (Section 2.5). The validation and test sets are formed 

by 400 and 460 signal segments, respectively, and contain measurements from the healthy 

sensor and artificially injected sensor malfunctions of different types and intensities, 

according to the proportions of Tables 1 and 2. The validation set has been used to 

determine the values of the parameters of the method: wavelet coefficient threshold  𝑎𝑚𝑎𝑥 

(Step 2a), maximum scale �̃� (Step 1) and detection threshold 𝑇 (Step 5), whereas the test 

set has been used to evaluate the performance of the proposed methodology. To better 

mimic a real application, the signal segments of the training set temporally preceed those 

of the validation set, which preceed those of the test set. 

 

 



Type of sensor 

malfunction  

Number of signals in the 

validation set 

Freezing 100 

Spike 100 

Noise 100 

Quantization 50 

Healthy 50 

Table 1. Validation set partition. 

 

Sensor 

malfunctions 

Number of signals in the test 

set 

Freeze 100 

Spike 100 

Noise 100 

Quantization 80 

Healthy 80 

Table 2. Test set partition. 

 

 

2.6.2 Results 

 

Wavelet coefficient threshold 𝑎𝑚𝑎𝑥, scale �̃� and detection threshold 𝑇 have been set by 

minimizing the function �̃� Eq. (10) assuming 𝑤1 = 𝑤2 = 1, i.e., by giving same 

importance to the contributes. By setting 𝑎𝑚𝑎𝑥 = 0.06, �̃� = 2.8, and 𝑇 = 884, we have 

obtained the optimal trade off 1% of missed alarms and 4% of false alarms in the 

validation set. This choice of the scale parameter �̃� results in a reduction of the original 

scalogram dimensions from 591x120 to 50x120 with evident benefits in terms of 

computational burden. Figure 14 shows the variations of the false alarm rates and of 

different types of missed alarm rate with respect to variation of the detection threshold 𝑇. 

It is interesting to observe that if the threshold 𝑇 is progressively increased, the first types 

of missed alarms that occur are those caused by quantization and freezing malfunctions, 

whereas spike and noise malfunctions are correctly recognized. This is due to the fact that 

the scalograms corresponding to quantization and freezing malfunctions are more similar 

to those obtained from a healthy sensor than those corresponding to spike and noise 

malfunctions, as shown in Figures 7, 8, 9 and 11. Thus, the identification of quantization 



and freezing malfunctions is more sensible to the threshold value than that of the spike 

and noise malfunctions. 

 

Figure 14. Variations of the false alarm rate (cross-dotted black line) and of the missed alarm rates 

due to freezing (dashed blue curve), quantization malfunctions (dotted red curve), spike 

malfunctions (circle-dotted purple curve), noise malfunctions (continuous green curve). The total 

variation of the missed alarm rate is referred using the (dash-dot grey curve). 

 

Figure 15. Example of missed alarm: the quantized signal segment (Top) and the corresponding 

signal segment before the malfunction injection (Down). 



The application of the proposed method to the signal segments of the test set gives a 0% 

rate of false alarms and a 1.5% rate of missed alarms, caused by quantization, whereas 

freezing, spikes and noise are always correctly detected. Figure 15 shows an example of 

a missed alarm caused by a quantized signal segment incorrectly considered as healthy. 

Notice that the degree of quantization of this signal segment (intensity of the malfunction) 

is very small and the quantized signal segment appears very similar to the corresponding 

segment before the injection of the malfunction (Figure 15, Top). Table 3 compares the 

results with those obtained by applying a sensor data validation approach based on the 

use of Principal Component Analysis (PCA) (Penha & Hines, 2001). The approach relies 

on the following steps: 

• the extraction of 87 lumped features, such as statistical metrics (e.g., means, 

standard deviations, etc.) and analytics (e.g., derivatives, elongation, etc.), signal 

transforms in the frequency domain (e.g., Fourier Transform, Laplace Transform) 

and/or in the time-frequency domain (e.g., Short Time Fourier Transform (STFT). 

The considered set of features have been shown able to catch the dynamic 

behavior of the signals in prognostics and health management applications in 

(Baraldi et al., 2016) (Cannarile et al., 2017);  

• the application of PCA to the training data, which correspond to measurements 

obtained from a healthy sensor;  

 

• the identification of the number of principal components to be used for the signal 

reconstruction (Penha & Hines, 2001). This is performed by looking for the most 

satisfactory trade-off between false and missed alarm rates in the validation set;  

 

• the reconstruction of the test set data and the comparison of the Square Prediction 

Error (SPE) (Lee et al, 2004) (also referred to as Q-statistic or residual (Lee et al., 

2004)) with a fixed threshold (Lee et al., 2004).  

 

 

 

 

 

 



 

 

 

METHOD 

Percentage 

of Missed 

Alarm 

Percentage of 

False Alarm 

Proposed Method 0% 1.25% 

PCA-based Method               

(𝑃 = 90%) 
10.8% 

 

1.25% 

 

Table 3. Comparison of the performance of the proposed method with the PCA based approach. 

The PCA proposed approach is less accurate than the proposed method: the percentage 

of missed alarms increases from 0% to 10.8% (Table 3), with the same percentage of false 

alarms.  

We have evaluated the robustness of the proposed method with respect to different 

intensities of the malfunctions, simulated according to (Sharma et al., 2010) (see 

Appendix C). Table 4 reports the results in term of missed alarms for the different types 

of sensor malfunctions. We can conclude that the method provides satisfactory 

performances and, as expected, the overall percentage of missed alarms decreases as the 

malfunction intensity increases. 

 

Sensor 

malfunctions 

Low 

Intensity 

Medium 

intensity 

High 

intensity 

Freezing 0% 1% 0% 

Spike 0% 0% 0% 

Noise 0% 0% 0% 

Quantization 6% 2% 0% 

Table 4. Percentage of missed alarms considering sensor malfunctions of low, medium and high 

intensities. 

Furthermore, we have tested the proposed method on 100 signal segments characterized 

by the simultaneous presence of two sensor malfunctions, obtained by randomly sampling 

their times of occurrence and their intensities from the same probability distributions used 

for the sampling low intensity single sensor malfunctions. Table 5 reports the results in 



term of missed alarms for the different combinations of two sensor malfunctions. It is 

interesting to observe that the percentage of missed alarms in case of quantization 

malfunction decreases to 0% (it was 6% in case of single low intensity malfunction). This 

is due to the fact that scalogram modifications caused by spike or noise malfunctions 

(Figures 7 and 8) are easier to detect than those due to the quantization anomaly (Figure 

11), and, therefore, the detection of the quantization malfunction is facilitated by the 

simultaneous presence of spike and noise malfunctions 

 

Sensor malfunctions 
Number of 

segments 

Missed 

alarms 

Quantization+Spike 20 0% 

Quantization+Noise 20 0% 

Freezing+Spike 20 0% 

Noise+Spike 20 0% 

Noise+Freeze 20 0% 

Table 5. Percentage of missed alarms considering multiple sensor malfunctions. 

 

With respect to the computational time, testing a signal segments formed by 𝐿 = 120 

samples requires on average 0.052 seconds using an Intel Core i5-M430 @ 2.26 GHz 

processor with 4 Gb RAM in a MATLAB 2017b environment. Therefore, the proposed 

approach is suitable for being used in field operation. 

 

2.7 Chapter conclusions 
 

In this chapter, we have developed a novel method for sensor data validation, which 

combines the use of Continuous Wavelet Transform with an image analysis technique. 

Fault detection is performed by comparing the CWT scalogram obtained from the test 

signal with those obtained from historical data of the same signal. The performance of 

the method, measured in terms of false and missed alarm rates, is shown superior to that 

of a PCA-based approach for data validation. From a practical point of view, the method, 

differently from the traditional sensor data validation approaches which consider the 



correlations among plant signals, is easily applicable to all the sensors of a fleet of plants 

being the validation of the data measured from a sensor independent to that of other 

sensors. Furthermore, it has been shown that the analysis of the obtained scalograms 

allows distinguishing among the different types of sensor malfunction.  

In this chapter, we have not considered the possible influence of one sensor malfunction 

on the other sensor readings. In industrial complex systems characterized by many 

interconnected components and in which the readings of some sensors are used for system 

control, it can happen that one sensor malfunction causes anomalous behaviors in other 

signals. In this case, although the proposed method correctly identifies the sensor affected 

by the malfunction, it will also detect malfunctions in other sensors, which are correctly 

working, but whose measured signals have anomalous behaviors due to the consequences 

of the sensor malfunction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  



 

3 Bearing degradation onset detection  
 

3.1 Introduction  
 

According to both the IEEE large machine survey and the Norwegian offshore and 

petrochemical machines data, bearing-related defects are responsible of more than 40% 

of the failure in industrial machines.Then, in industrial practice it is of great interest to 

promptly detect the bearing degradation onset. At the earliest stage of bearing 

degradation, information on the bearing health state, and, eventually, on the type of 

degradation can be obtained by observing the machine vibrational behavior. In fact, 

vibrations are among the most widely used signals for the detection of faults in the bearing 

due to the defects in the inner race, outer race, or ball because these signals are an 

indicator for bearing defects, provided that a suitable processing procedure is applied 

(Bellini et al., 2008). Many studies have used vibration signals for bearing fault detection 

(Li et al., 2000), (Amar et al., 2000) (Yang & Tang, 2011). In general approaches to fault 

detection in bearings have been developed considering the vibrational signals in the 

frequency domain and in time-frequency domain. In frequency-domain approaches, the 

principal frequencies of the vibrational signals and their amplitudes are identified (Chebil 

et al., 2009), (Blodt et al., 2008). Most of the proposed approaches to fault detection for 

bearings in the frequency domain assume a priori knowledge of the principal frequencies 

associated to the bearings faults (Chebil et al., 2009), moreover frequency-domain 

method cannot localize the transients efficiently in time (Amar et al., 2015). This setting 

is not feasible in many real cases where the environmental and operational conditions 

modify the frequency spectra of the vibrational signals. Therefore, frequency-domain 

methods, which have been developed for stationary signals, cannot be applied with 

success to the bearing fault detection task. Due to the time-varying frequency spectrum 

of the signals, suitable time–frequency decomposition tools are needed for real-time 

bearing fault detection. Time–frequency analysis can identify the signal frequency 

components and reveal their time-variant features. Various time–frequency analysis 

methods have been proposed and applied to fault detection, diagnostics and prognostics. 

Among these, short-time Fourier transform (STFT), Wavelet Transforms (WT), Hilbert–



Huang transform (HHT), and Wigner–Ville distribution (WVD) are the most commonly 

used approaches. In (Gao et al., 2015) the STFT combined with non-negative matrix 

factorization is used to detect the bearing fault from its vibrational signal. However, 

accuracy of STFT might be a problem since constant-size windows are used in the 

analysis for all frequencies. A better accuracy may be obtained by reducing the window 

size, but inevitably increasing the computational burden (Jacop et al., 2017), moreover, 

the detection of incipient faults, in which measured signals are weak, nonstationary and 

masked with noises, requires a more flexible and effective approach (Jacop et al., 2017).  

Wavelet transform seems to be a promising approach to overcome the window-size 

problem as it provides a flexible window size for different frequencies (Jacod et al., 2017). 

This characteristic makes it possible to analyze the vibration signals and detect better the 

frequencies of the time-frequency varying signals. In (Li, 2010) an approach for detecting 

localized faults in the outer or the inner races of a rolling element bearing based on CWT 

is used. In (Jiang et al., 2014) an optimal lifting multiwavelet denoising method is 

developed for bearing fault detection. In (Zhao et al., 2013) in order to track the 

degradation trend of bearings a Morlet wavelet transform-based extraction method of is 

proposed. In (Boufenar & Rechak, 2013) Sparse Code Shrinkage (SCS) method based on 

maximum likelihood estimation for thresholding using an adapted wavelet is developed 

for bearing fault detection. In this work, we propose a novel method for bearing fault 

detection which combines the use of CWT with image analysis techniques for the 

identification of the similarity among the test data and an archive of historical vibrational 

data of healthy bearings. The CWT on the other hand uses a set of non-orthogonal wavelet 

frames to provide highly redundant information that is suitable for detection of various 

types of faults (Kovačević & Chebira, 2007 a). CWT is easier to interpret since its 

redundancy tends to reinforce the relevant features for fault detection (Kovačević & 

Chebira, 2007 b) and gains in “readability” and in representation, what it losses in terms 

of computational burden, which is surely an important problem to be accounted but of 

secondary importance when suitable feature extraction is the main objective. 

For these reasons, we resort to the CWT coupled with image analysis, in fact in this way 

all the information contained in the CWT are properly exploited and image processing 

gives the possibility to visualize and efficiently refine the spectral features by eliminating 



insignificant frequencies of incoherent noise, distributed over the entire spectral image 

using a threshold technique (Amar et al., 2012). 

 In details, our method involves the following steps:𝑖) performing the CWT of the test 

signal,𝑖𝑖) computing the corresponding scalogram image and 𝑖𝑖𝑖) comparing this 

scalogram with those obtained from historical data of the vibrational signals collected by 

healthy bearings. With respect to the last step, the comparison between scalogram images 

is performed by defining a proper measure of similarity between images based on a pixel 

by pixel comparison.  

The performance of the proposed method has been verified with respect to data generated 

by the NSF I/UCR Center for Intelligent Maintenance Systems (Qiu et al., 2006). 

The remainder of the paper is organized as follows. In Section 3.2, some mathematical 

features of CWT at the basis of the proposed method are discussed. Section 3.3 provides 

the problem assumptions. Section 3.4 provides an in-depth discussion of the proposed 

method. The case study and the application of the proposed method are shown in Section 

3.5. Finally, Section 3.6 concludes the chapter.  

3.2 Continuous Wavelet Transform for Bearing Fault Detection 
 

Continuous Wavelet transform is a mathematical tool that converts a signal into a 

different form (Gao & Yan, 2011). The objective of the conversion is twofold: i) to reveal 

signal characteristics that are hidden in the time domain and ii) to provide a more succinct 

representation of the original signal. A base wavelet function 𝜓(𝑡) is needed in order to 

realize the wavelet transform. The wavelet is a small wave that has an oscillating wavelike 

characteristic and has its energy concentrated in time. A wavelet is used as template for 

analyzing time-varying or nonstationary signals by decomposing the signal into a 2D, 

time-frequency domain (Gao & Yan, 2011) (Mallat, 2008). For any real signal 𝑥(𝑡) ∈

𝐿2(ℝ), the Continuous Wavelet Transform (CWT) with scale parameter 𝑠 > 0, 

translation parameter 𝑢 ∈  ℝ and wavelet function 𝜓(𝑡) is: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)

1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) 𝑑𝑡

+∞

−∞

 (11) 



The reader interested in more mathematical details about wavelet transform can refer to 

Appendix A. The translation parameter 𝑢 can be interpreted as the time instant around 

which the signal is analyzed. With respect to the scale parameter, at small 𝑠 values 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) provides information on the details (i.e., the high frequency contents) of the 

signal in the neighborhood of time instant 𝑢, whereas at large 𝑠 values 𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) 

provides information on the trend (i.e., the low frequency contents) of the signal in the 

neighborhood of time instant 𝑢. A standard way of representing the CWT is to use a two-

dimensional image, called scalogram, graphically representing the square of the CWT,  

|𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)|

2
, as function of the translation parameter 𝑢 and scale parameter 𝑠. Since 

the signals considered are typically digital signals, a discrete approximation of Eq. (11) 

is typically computed (Torrence & Compo, 1998). The approximated scalogram is a 

matrix whose rows and columns correspond to different scales 𝑠 and translation 

parameters 𝑢, respectively. Figure 16 shows a cosine signal with a sudden change of 

frequency at time 𝑡 = 25 and its corresponding scalogram image, which clearly allows 

graphically identifying the time at which the change of frequency occurs. 

 

Figure 16. Left: Signal 𝒙(𝒕); right: and corresponding    scalogram |𝑪𝑾𝑻𝒙
𝝍(𝒖, 𝒔)|

𝟐
with Morlet 

wavelet (Torrence & Compo, 1998). 

 With respect to the choice of the type of wavelet transform, we resort to the Morlet 

wavelet: 

𝜓(𝑡) =
1

𝜋1/4
  𝑒𝑖𝜋𝑓0𝑡 𝑒−𝑡

2/2 (12) 

In fact, Morlet wavelet has shown to provide satisfactory performance for bearing fault 

detection because of the large similarity with the impulse generated by the faulty bearing 

(Li, 2010), (Lin & Qu, 2000). Figure 17 shows the scalograms obtained from a signal 

acquired by a healthy bearing (Figure 17 left) and the signal acquired from the same 



bearing at the end of his life (Figure 17 right) when it was faulty. Both signals have been 

recorded at sampling frequency 𝑓𝑠=20000 𝐻𝑧.  

 

Figure 17. Left: scalogram of a signal acquired by a healthy bearing; Right: scalogram of the signal 

acquired from the same bearing at the end of his life 

 

The main differences between the two scalogram images in Figure 17 is observed at small 

scale, in particular at scales 100-200 corresponding to frequencies between 4-8kHz.   The 

increase of energy density at these frequencies is due to higher harmonics of the 

characteristic frequency of the signal related to a defect on the bearing (Jacop et al., 2017). 

3.3 Problem Statement and Notation 
 

Let 𝑥(𝑡) be the measurement of the bearing vibration signal at time 𝑡. The objective of 

the present work is to develop a method for promptly detecting the onset of the bearing 

degradation. We assume that the historical measurements 𝑥(𝜏), 𝜏 < 𝑡, are available, taken 

by the bearing itself when it was healthy (at the beginning of its life). The detection of the 

bearing degradation onset is based on the analysis of the last 𝐿 measurements collected in 

the time window 𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1),… , 𝑥(𝑡)}, which will be also referred to as test 

pattern. The historical measurements 𝑥(𝜏) are organized into 𝑆 vectors of length 𝐿 

containing the measurements in the time windows 𝑥𝐿,𝑗 = {𝑥𝑗(1 + (𝑗 − 1)𝐿), 𝑗𝐿)} with 

𝑗 = 1,… , 𝑆 and will be referred to as training-set. In addition, we also assume to have 

available historical degradation trajectories from 𝑄 bearings similar to the one currently 

monitored. Among the available 𝑄 degradation trajectories 𝑄𝐹 < 𝑄 are run-to-failure 

degradation trajectories for which an onset of degradation has been detected and the 

remaining  𝑄𝐻 = 𝑄 − 𝑄𝐹 are right-censored degradation trajectories for which no onset 

of degradation has been detected. We will refer to these 𝑄 degradation trajectories as 

validation-set. The measurement collected from the 𝑞𝑡ℎ, 𝑞 = 1,… , 𝑄𝐹 , 𝑄𝐹 + 1,… , 𝑄, 



bearing in the validation set are organized into 𝐵𝑞 vectors of length 𝐿 containing the 

measurements in the time windows 𝑥𝐿,𝑗
𝑞,𝑞 = {𝑥𝑗

𝑞(1 + (𝑗𝑞 − 1)𝐿), 𝑗𝑞𝐿)} with 𝑗𝑞 =

1,… , 𝐵𝑞. The time windows of a faulty bearing corresponding to the onset of the 

degradation will be indexed as 𝑡𝑞. For the 𝑄𝐹 faulty bearings the 𝐵𝑞 time windows are 

further divided into two subsets 𝑆𝐻
𝑞
 and 𝑆𝐹

𝑞
 containing the first 𝑡𝑞 − 1 time windows and 

the remaining 𝐵𝑞 − 𝑡𝑞 + 1 time windows, respectively, i.e., 𝑆𝐻
𝑞
 contains time-windows 

before the onset of the degradation and 𝑆𝐹
𝑞
 those after the onset of the degradation. 

3.4 Bearing Fault Detection Method 
 

The method proposed in this work is based on the idea of comparing the scalogram 

obtained from the test vector 𝑥𝐿(𝑡) = {𝑥(𝑡 − 𝐿 + 1),… , 𝑥(𝑡)}, a signal segment, to the 

scalograms obtained from the training vectors 𝑥𝐿,𝑗 = {𝑥𝑗(1 + (𝑗 − 1)L), 𝑥𝑗(𝑗𝐿)}, 𝑗 =

1, … , 𝑆. 

First of all, each one of the training vector 𝑥𝐿,𝑗, = 1,… , 𝑆, is transformed in the 

corresponding scalogram by applying the following procedure:  

Step 1: Compute the Continuous Wavelet Transform (CWT) 𝐶𝑊𝑇
𝑥𝐿
𝝍 (𝑢, 𝑠) of the test 

vector 𝑥𝐿(𝑡) and the corresponding scalogram image 𝐼(𝑡). The scalogram 𝐼(𝑡) is a matrix 

of size 𝑁𝑥𝑀, where 𝑁 and 𝑀 depend on the discretization of the translation parameter 𝑢  

and scales parameters. We will focus our analysis only on scale values lower than a 

prefixed threshold, i.e. 𝑠 < �̃�. �̃� is an algorithm parameter that impact the number of rows 

considered in the matrix 𝐼(𝑡).  Considering only scale values 𝑠 < �̃� means considering 

only the first �̃� rows of the matrix 𝐼(𝑡). Our algorithm parameter from now will be the 

numbers of rows �̃� considered in the matric 𝐼(𝑡)  instead of �̃�  

Step 2: Process the scalogram image to:  

a) enhance the differences between the scalogram of signals from a healthy bearing and 

the scalogram of signals from a faulty bearing  

b) normalize the intensities 𝐶𝑊𝑇
𝑥𝐿,𝑗
𝝍 (𝑢, 𝑠) in the range [0, 1]. 

Step a) transforms the scalogram image 𝐼(𝑡) into a new scalogram image: 



𝐼𝑗(𝑡)𝑝,𝑞 = {
𝐼𝑗(𝑡)𝑝,𝑞
𝑎𝑚𝑎𝑥

𝑖𝑓 𝐼𝑗(𝑡)𝑝,𝑞 ≤ 𝑎𝑚𝑎𝑥 

𝑖𝑓 𝐼𝑗(𝑡)𝑝,𝑞 > 𝑎𝑚𝑎𝑥
 (13) 

  

where 𝑎𝑚𝑎𝑥 is a threshold.   

Step b) converts the scalogram 𝐼𝑗(𝑡) into a greyscale image 𝐺𝑗(𝑡) by scaling its 

entries in the interval [0,1] as follows: 

 

𝐺𝑗(𝑡)𝑝,𝑞 = 
𝐼𝑗(𝑡)𝑝,𝑞 − 𝐼

𝑗(𝑡)𝑚𝑖𝑛

𝐼𝑗(𝑡)𝑚𝑎𝑥 − 𝐼𝑗(𝑡)𝑚𝑖𝑛
 (14) 

where 𝐼𝑗(𝑡)𝑚𝑖𝑛 and 𝐼𝑗(𝑡)𝑚𝑎𝑥 are the minimum and the maximum values of the 

matrix  𝐼𝑗(𝑡) in all the training scalograms.  

Then, for the test vector 𝑥𝐿 , we repeat Steps 1 and 2 to obtain its corresponding scalogram 

𝐼(𝑡).  

Figure 18 shows the scalograms obtained before applying Step 2 from vibration signals 

corresponding to the bearing in healthy condition (Figure 18 left) and the vibration signal 

acquired from the same bearing at the end of its life (failure) (Figure 18 right). Figure 19 

shows the same scalograms shown in Figure 18 after the application of Step 2. 

 

Figure 18. Left: scalogram of a signal acquired by a healthy bearing before applying Step 2; Right: 

scalogram of the signal acquired from the same bearing at the end of its life before applying Step 2. 



 

Figure 19. Left: scalogram of a signal acquired by a healthy bearing after applying Step 2 with 

𝒂𝒎𝒂𝒙 = 𝟏; Right: scalogram of the signal acquired from the same bearing at the end of its life after 

applying Step 2 with 𝒂𝒎𝒂𝒙 = 𝟏. 

 

Once the training and test grayscale images, 𝐺𝑗 and 𝐺, have been obtained, they are 

compared by applying the following procedure:  

A1 Compute the dissimilarities 𝑑𝑗  between the greyscale image 𝐺(𝑡) and all the greyscale 

images 𝐺𝑗 obtained from the historical signals 𝑥𝐿,𝑗, pre-processed according to Steps 

1-2:  

𝑑𝑗 = ‖𝐺(𝑡) − 𝐺𝑗‖    𝑗 = 1,… , 𝑆        (15) 

       where the matrix norm of the scalogram is: 

‖𝐺(𝑡)‖ = ∑∑|𝐺(𝑡)𝑝,𝑞|

𝑀

𝑗=𝑞

�̃�

𝑝=1

 (16) 

A2 Identify the scalogram of the training set most similar to the one currently tested, i.e. 

the one characterized by the minimum dissimilarity 𝑑∗: 

𝑑∗ = 𝑚𝑖𝑛
𝑗=1,…,𝑆

𝑑𝑗

𝑑𝑛𝑜𝑟𝑚
 (17) 

     where 𝑑𝑛𝑜𝑟𝑚 is a normalizing constant which has been defined as: 

 



𝑑𝑛𝑜𝑟𝑚 = (
∑ (𝑑𝑗

∗)2𝑆
𝑧=1

𝑆
)

0.5

 
 

(18) 

 

𝑑𝑗
∗ = 𝑚𝑖𝑛

𝑗=1,…,𝑆\{𝑘}
𝑑𝑗,𝑘 

 

(19) 

In Eq. (19) 𝑑𝑗,𝑘 represents the dissimilarity between the scalogram of the 𝑗𝑡ℎ vibrational 

signal in the training set with the scalogram of the 𝑘𝑡ℎ vibrational signal in the training 

set, with 𝑗 ≠ 𝑘. Finally, the value 𝑑∗ is compared with a fixed detection threshold 𝑇∗:  if 

𝑑∗ is greater than 𝑇∗ for 𝑁∗ consecutive test vector then a degradation onset is detected. 

The reason behind the decision to detect an alarm only if 𝑑∗ is greater than 𝑇∗ for 𝑁∗ is 

to isolate the real degradation onset, an irreversible alteration that last for all the remaining 

bearing life, from other temporary perturbations; the latter in fact will influence some 

consecutive test signals but they won’t give an alarm if a proper 𝑁∗ is set. 

In details, 𝑎𝑚𝑎𝑥, and �̃� are set by maximizing the dissimilarities among the scalograms of 

the time-windows of the 𝑄𝐹 before the degradation onset with those after the degradation 

onset. To do so, given a candidate threshold �̇� and a candidate number of rows �̇�, for each 

of the 𝑄𝐹 faulty bearings we divide 𝑆𝐻
𝑞
  into two subsets 𝑇𝐻

𝑞
 and 𝐻𝐻

𝑞
. 𝑇𝐻

𝑞
 contains the first 

𝑟𝑞 time windows in 𝑆𝐻
𝑞
 and 𝐻𝐻

𝑞
 contains the remaining 𝑡𝑞 − 1 − 𝑟𝑞 time-windows. For 

each 𝑞 bearing of the 𝑄𝐹 faulty bearings we transform, doing the step 1 and 2 of the 

method in Section 3.4 with threshold �̇� and number of rows �̇�, all the time-windows in 

𝑇𝐻
𝑞
. Then we define 𝑑𝑞,𝑝

𝑗,𝐹
 the distance in Eq. (15) between the scalogram of the signal 

segment 𝑝 in 𝑆𝐹
𝑄

 and the scalogram of the signal segment 𝑗 in 𝑇𝐻
𝑞
, processed as step 1 and 

2 of the method in Section 3.4 with threshold �̇� and number of rows �̇�, and finally the 

distance  𝑑𝑞,𝑝
∗,𝐹

 is defined as:  

𝑑𝑞,𝑝
∗,𝐹 = 𝑚𝑖𝑛

𝑗=1,…,𝑟𝑞
𝑑𝑞,𝑝
𝑗,𝐹

 (20) 

In the same way, defining 𝑑𝑞,𝑝
𝑗,𝐻

 the distance in Eq. (15) between the scalogram of the 

signal segment 𝑝 in 𝐻𝐹
𝑄

 and the scalogram of the signal segment 𝑗 in 𝑇𝐻
𝑞
, processed as 



step 1 and 2 of the method in Section 3.4 with threshold �̇� and number of rows �̇�, then the 

distance 𝑑𝑞,𝑝
∗,𝐻

 is defined as: 

𝑑𝑞,𝑝
∗,𝐻 = 𝑚𝑖𝑛

𝑗=1,…,𝑟𝑞
𝑑𝑞,𝑝
𝑗,𝐻

 (21) 

 

 Defining 𝑀𝐹
𝑞
 as the mean of the distances {𝑑𝑞,𝑝

∗,𝐹 }
𝑝=1

𝐵𝑞−𝑡𝑞+1 
  and 𝑀𝐻

𝑞
 as the mean of the 

distance {𝑑𝑞,𝑝
∗,𝐻}

𝑝=1

𝑡𝑞−1−𝑟𝑞 
, then 𝑎𝑚𝑎𝑥 and �̃� are defined : 

 

(𝑎𝑚𝑎𝑥, �̃�) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑎,𝑟)∑(
𝑀𝐹
𝑞 −𝑀𝐻

𝑞

𝑀𝐻
𝑞 )

𝑄𝐹

𝑞=1

 (22) 

 

Once the hyperparameters 𝑎𝑚𝑎𝑥 and �̃� have been set, the detection threshold 𝑇∗ and the 

number 𝑁∗are set by minimizing two objective functions 𝑓1(�̇�, �̇�) and 𝑓2(�̇�, �̇�) using all 

degradation trajectories in the validation set, i.e.,  

(𝑁∗, 𝑇∗) = 𝑎𝑟𝑔𝑚𝑖𝑛(�̇�,�̇�)

{
  
 

  
 
𝑓1(�̇�, �̇�) = ∑|𝑡𝑞 − 𝑡𝑞

𝑑|

𝑄𝐹

𝑞=1

+∑|𝐵𝑞 − 𝑡𝑞
𝑑|

𝑄𝐻

𝑞=1

𝑓2(�̇�, �̇�)   = ∑𝑒𝑑,𝑞

𝑄

𝑞=1

        

    (23) 

where 

 

• 𝑡𝑞
𝑑  is the estimated time of the degradation onset for the 𝑞𝑡ℎ bearing; 

• |𝑡𝑞 − 𝑡𝑞
𝑑| represents the absolute error between the estimated time of the degradation 

onset and the ground truth time of the degradatio onset for the 𝑞𝑡ℎ  faulthy bearing; 

• If the bearing 𝑞 is a right-censored degradation trajectory then, the time detection 

error is defined as |𝐵𝑞 − 𝑡𝑞
𝑑|. In this way the objective function penalizes all the time 



detections  𝑡𝑞
𝑑  which aren’t near enough to the end of the run-to failure test, that is 

represented by the last time-window 𝐵𝑞 recorded for the right-censored bearing 𝑞  

 

• 𝑒𝑑,𝑞 is the number of events that the model detects for the 𝑞𝑡ℎ bearing where we define 

an event as follows: if there are 2 consecutive time windows of which one is classified 

as anomalous and the other as healthy, then we have an event. 

Finally, notice that 𝑓1 is a measure of the accuracy of the method, whereas 𝑓2 is a measure 

of the volatility of the estimated events provided by the methods. 

3.5 Case Study 

The proposed method described in the previous sections has been tested on a database of 

real vibrational data obtained from the National Science Foundation’s 

Industry/University Cooperative Research Center for Intelligent Maintenance Systems 

(IMS) through the NASA prognostic data repository (Qiu et al., 2007). The available 

dataset contains real vibrational signals recorded from two run-to-failure tests which were 

performed under normal load conditions on a specially designed test rig. The bearing test 

rig hosts four test bearings on one shaft. The shaft is driven by an AC motor and coupled 

by rub belts. The rotation speed was kept constant at 2000 rpm. A radial load of 6000 lbs. 

is added to the shaft and bearing by a spring mechanism (Qiu et al., 2006) and an 

accelerometer was installed on each bearing housing. A vibration time window of length 

𝐿 =20480 samples was collected every 20 minutes for each bearing at a sampling rate of 

20 kHz (Qiu et al., 2006), corresponding to one second of recording for each vibrational 

signal segment. Figure 20 shows the experimental test setup (Qiu et al., 2006). 

 

Figure 20. Experimental test setup. 



At the end of the first run-to-failure test, it was found that an inner race fault occurred in 

bearing 3 and a roller element defect fault in bearing 4, whereas at the end of the second 

run-to-failure test, it was found that an outer race failure occurred in bearing 1. Moreover, 

it is known from (Qiu et al., 2006) the time of the degradation onset for bearing 3 and 4 

in the first run-to-failure test, while this information is not available for faulty bearing 1 

in the second run-to-failure test. The total dataset is then composed by 5 trajectories: 

• 2 right-censored bearing degradation trajectories, which we refer to 𝐵1,1 and 𝐵1,2 

respectively.   

• 2 run-to-failure trajectories with known fault time which we refer to 𝐵1,3 and 𝐵1,4 

respectively  

• 1 run-to-failure trajectory with unknown fault time, which we refer to 𝐵2,1. 

Table 6 reports the main properties of the available bearing degradation trajectories. 

 

 

 

 

Trajectory Type of 

trajectory 

Number of 

signal segments 

(𝑩𝒒) 

Degradation 

onset segment 

(𝒕𝒒) 

𝐵1,1 Right-censored 

degradation 

2156 none 

𝐵1,2 Right-censored 

degradation 

2156 None 

𝐵1,3 Run-to-failure 2156 1636 

(Qiu et al., 2006) 

𝐵1,4 Run-to-failure 2156 1594 

(Qiu et al., 2006) 

𝐵2,1 Run-to-failure 984 Unknown 

Table 6. Description of the available bearing degradation trajectories. 



To test the performance of the proposed method, we have resorted to a 4-Fold-Cross-

Validation (4CVV). Table 7 reports how degradation trajectories have been partitioned 

within the 4CVV. 

Fold Validation Set  Test Set 

 

1 𝐵1,1, 𝐵1,3, 𝐵1,4 𝐵1,2,𝐵2,1 

2 𝐵1,2, 𝐵1,3, 𝐵1,4 𝐵1,1, 𝐵2,1 

3 𝐵1,1, 𝐵1,3, 𝐵1,2 𝐵1,4, 𝐵2,1 

4 𝐵1,1, 𝐵1,4, 𝐵1,2 𝐵1,3, 𝐵2,1 

Table 7. Data partitioning. 

Notice that, folds 1 and 2 the validation set comprises data from two faulty bearings, 

whereas for folds 3 and 4 only data from one faulty bearing are used.   

 

3.5.1 Results 

For each fold the maximization and minimization problems in Eq (12) and Eq (13), 

respectively, have been solved using a grid search with the discretization of parameters 

𝑎𝑚𝑎𝑥, �̃� 𝑁∗ 𝑇∗ as reported in Table 8. For each parameter we build an uniform grid from 

the 𝑚𝑖𝑛 value to the 𝑚𝑎𝑥 value with a 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒s steps. 

 

Parameter 

 

min 

 

max 

 

Number of 

values 

𝒂𝒎𝒂𝒙 0 3 240 

�̃� 1 1250 1250 

𝑻∗ 0 10 1000000 

𝑵∗ 1 2200 2200 

Table 8. Estimated hyperparameter set for each fold 

Table 9 reports, for each fold, the estimates of the hyperparameters 𝑎𝑚𝑎𝑥, �̃�, 𝑇
∗, 𝑁∗.  

 

Fold 

 

𝒂𝒎𝒂𝒙 

 

�̃� 

 

𝑻∗ 

 

𝑵∗ 

1 1 975 1.2360 326 



2 1 975 1.2576 300 

3 0.975 776 1.1765 42 

4 1.125 918 1.9151 77 

Table 9. Estimated hyperparameter set for each fold 

In fold 1 and 2 the estimation of the parameters 𝑎𝑚𝑎𝑥 and �̃� are identical because the run-

to-failure trajectories used to estimate the two parameters are the same, i.e. 𝐵1,3 and 𝐵1,4. 

In folds 3 and 4 we obtain a slight different estimation for the parameters 𝑎𝑚𝑎𝑥 and �̃� 

because in fold 3 the only available run-to-failure trajectory is of the bearing 𝐵1,3 and in 

fold 4 the only available run-to-failure trajectory is of the bearing 𝐵1,4 

Concerning hyperparameters 𝑇∗ and 𝑁∗, the estimates obtained for folds 1 and 2 are very 

similar, in fact, for fold 1 we have that 𝑇∗ is only 1.74% greater than for fold 2 and 𝑁∗ 

for fold 1 is 8% greater than for fold 2.  

The largest difference in the estimated hyperparameters between folds 1-2 and folds 3-4 

relies on the fact that in folds 3-4, we have used only one run-to-failure trajectories with 

known fault time instead of two as in folds 1-2, this results in more conservative estimates 

of  𝑇∗ and 𝑁∗ for folds 3-4. 

Table 10 reports the detection time provided by the methodology for all 4 fold-cross-

validation. 

 

Bearing 

 

Fold 

 

Detection time 

 

Qiu et al. results 

𝐵1,2 1 1950 This is right-censored degradation trajectory 

𝐵2,1 1 513 Not analyzed 

 𝐵1,1 2 1970 This is right-censored degradation trajectory 

𝐵2,1 2 538 Not analyzed 

𝐵1,4 3 1128 1594 

𝐵2,1 3 439 Not analyzed 

𝐵1,3 4 1930 1636 

𝐵2,1 4 762 Not analyzed 

Table 10. Results 



The bearing 𝐵2,1 has a stable detection in all the folds but the 4. This bearing is a run-to-

failure trajectory and we detects an alarm in all the folds. The bearings 𝐵1,2 and 𝐵1,1 is 

are right-censored degradation trajectories and we detect an alarm only at the end of the 

test, from segments 1950 and 1970 respectively. We consider these results for the 

bearings 𝐵1,2 and 𝐵1,1 to be reasonable, in fact, be taking into account the degradation 

process.  

For the bearing 𝐵1,4 we detect a stable alarm starting from the segments 1128, in (Qiu et 

al., 2006) the fault was detect only from the segments 1594. For the bearing 𝐵1,3 we detect 

the alarm only at the end of the test, at segment 1930, in (Qiu et al., 2006) the alarm is 

detected from the segments 1636.  The results for bearing 𝐵1,4 and 𝐵1,3 are obtanied 

having in the validation set only one run-to-failure trajectory, then a less favorable 

scenario than in folds 1 and 2 

3.6 Chapter conclusions 

In this chapter, we have developed a novel method for bearing fault detection, which 

combines the use of CWT with an image analysis technique. Fault detection is performed 

by comparing the CWT scalograms obtained from the test signal with those obtained from 

historical data of the same bearing in healthy condition. The proposed method has been 

tested using the data from real run-to-failure tests. The method has shown to give 

reasonable results for the right-censored degradation trajectories, giving the alarm only at 

the end of the run-to-failure test, and has shown to be able to detect the degradation onset 

for the run-to-failure trajectories before the occurrence of the fault. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4  Conclusions 

In this thesis work we have developed a fault detection method when the monitored 

signals are nonstationary. The developed method is based on the following three steps: 

1. performing the CWT of the test signal; 

2. computing the corresponding scalogram image; 

3. comparing this scalogram with those obtained from historical data; 

With respect to the choice of the type of wavelet transform, we resort to the Morlet, a 

wavelet that is well suited for our analysis. After the second step, the scalogram image of 

the test signal is processed processed order to: i) enhance the differences between the 

scalogram of signals recorded in nominal condition and the scalogram of signals that have 

anomalous behavior; ii) normalize the entries of the scalogram in the range [0, 1]. 

With respect to the step 3, the comparison between scalogram images is performed by 

defining a proper measure of similarity between images based on a pixel by pixel 

comparison and, finally, the test signal is then classified as anomalous or non-anomalous. 

The practical industrial benefit of the technique is a visual representation of fault 

detection.  

The proposed method was firstly applied to a real industrial case study concerning the 

identification of anomalous signals recorded by a sensor, i.e. sensor data validation. 

Several types of anomalies have been taken into consideration: freezing, noise, spike and 

quantization, and for each one we have analyzed the effects on the scalogram image. The 

underlying assumption for the sensor data validation problem are: 

i. have available the historical measurements performed by the sensor itself when it 

was healthy;  

ii.  the historical measurements are representative of all the plant operating 

conditions.  

The performance of the method, measured in terms of false and missed alarm rates, is 

shown superior to that of a PCA-based approach for data validation, with a good 

robustness considering different intensities of the malfunctions. Moreover, the method 

doesn’t take advantage of correlations among plant signals, making it easily applicable to 



all the sensors of a fleet of plants without requiring sensor grouping, being the validation 

of the data measured from a sensor independent to that of other sensors.  

The second industrial case concerns the application of the method to the bearings 

degradation onset detection. The detection of the bearing degradation onset is based on 

the analysis of the test pattern and comparing it with the historical measurements of the 

same bearing when it was healthy. For setting the hyperparameters we assume to have 

available historical degradation trajectories from bearings similar to the one currently 

monitored. The method has shown to give reasonable results for the right-censored 

degradation trajectories, giving the alarm only at the end of the run-to-failure test, and has 

shown to be able to detect the degradation onset for the run-to-failure trajectories before 

the occurrence of the fault. 

Other possible future works would involve the extension of the method to other anomaly 

detection problems such as: fault detections, system health monitoring, event detection in 

sensor networks, intrusion detection and so on. Furthermore, the Morlet wavelet remained 

the mother wavelet throughout the analysis, it would be interesting to optimize its shape 

factor or to vary the mother wavelet itself. Finally, as an extension of the performed work, 

the CWT could be used in the classification of the different abnormalities present. The 

classification could be based on dictionary learning algorithm or artificial neural 

networks, state of the art for image classification.   
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6 Appendices A: Continuous Wavelet Transform 

In mathematical terms, a wavelet is a function 𝜓(𝑡) ∈ 𝐿2(ℝ)satisfying the admissibility 

condition (Mallat & Hwang, 1992): 

∫
|𝜉(𝜔)|2

𝜔
𝑑𝜔 = ∫

|𝜉(𝜔)|2

|𝜔|
𝑑𝜔 = 𝐶

0

−∞

< ∞
+∞

0

 (24) 

where 𝐿2(ℝ)  denotes the space of square-integrable functions and 𝜉(𝜔) the Fourier 

transform of the wavelet function 𝜓(𝑡). The admissibility condition implies that the 

Fourier transform of the function 𝜓(𝑡) vanishes at zero frequency: 

|𝜉(𝜔)|𝜔=0
2
= 0 (25) 

and that the average value of the wavelet 𝜓(𝑡)  is zero (Mallat & Hwang, 1992): 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞

 (26) 

A dictionary of time-frequency atoms is defined from the wavelet function 𝜓(𝑡) by 

scaling 𝜓(𝑡) by 𝑠 (referred to as the scale parameter) and translating it by 𝑢 (referred to 

as translation parameter): 

𝜓𝑢,𝑠(𝑡): =
1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
)    𝑢 ∈  ℝ,    𝑠 > 0 (27) 

For any real signal 𝑥(𝑡) ∈ 𝐿2(ℝ), the Continuous Wavelet Transform (CWT) with scale 

parameter 𝑠 and translation parameter 𝑢 is: 

𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠) = ∫ 𝑥(𝑡)𝜓𝑢,𝑠(𝑡)𝑑𝑡

+∞

−∞

 (28) 

The factor 
1

√𝑠
 in Eq. (27) guarantees that the wavelet transform in Eq. (1) and Eq.(11) is 

directly comparable at different scales. 

7 Appendix B: Lipschitz exponent 

A function 𝑥(𝑡) is pointwise Lipschitz 𝛼 ≥ 0 at 𝑡0, if there exist 𝐴 > 0 and a polynomial 

𝑃𝑡0 of degree 𝑛𝛼 = ⌊𝛼⌋ , the greatest integer less than or equal to 𝛼, such that (Mallat, 

2008): 

 |𝑥(𝑡) − 𝑃𝑡0  (𝑡)| ≤ 𝐴|𝑡 − 𝑡0|
𝛼   ∀𝑡𝜖ℝ   (29) 



• The function 𝑥(𝑡) is uniformly Lipschitz 𝛼 over the interval [𝑎, 𝑏] if it satisfies Eq. 

(29) for all 𝑡0𝜖[𝑎, 𝑏], with a constant 𝐴 that is independent of 𝑡0 (Mallat, 2008). 

• The Lipschitz regularity of 𝑥(𝑡) at 𝑡0 or over [𝑎, 𝑏] is the greatest value of 𝛼 such that 

𝑥(𝑡) is Lipschitz-𝛼, i.e. the least real number that is greater than or equal to all 𝛼 

(Mallat 2008). 

The Lipshitz coefficient can be interpreted by considering the Taylor formula. Suppose 

that 𝑥(𝑡) is 𝑚 times differentiable in the interval [𝑡0 − 𝛿,𝑡0 +  𝛿]. Let 𝑃𝑡0 be the Taylor 

polynomial in the neighborhood of 𝑡0: 

 

𝑃𝑡0(𝑡) = ∑
𝑥(𝑘)(𝑡0)

𝑘!
(𝑡 − 𝑡0)

𝑘

𝑚−1

𝑘=0

 (30) 

The approximation error: 

 

휀𝑡0 = 𝑥(𝑡) − 𝑃𝑡0(𝑡) (31) 

satisfies: 

∀𝑡𝜖[𝑡0 − 𝛿, 𝑡0 + 𝛿], 

  |휀𝑡0| ≤
|𝑡 − 𝑡0|

𝑚

𝑚!
  𝑠𝑢𝑝
𝑤𝜖[𝑡0−𝛿,𝑡0+𝛿]

|𝑥(𝑚)(𝑤)|  
(32) 

Since the Taylor formula relates the differentiability of a signal to local polynomial 

approximations (Mallat, 2008), the 𝑚𝑡ℎorder differentiability of 𝑥(𝑡) in the neighborhood 

of 𝑡0 yields an upper bound of the error 휀𝑡𝑜 when 𝑡 tends to 𝑡0. The Lipschitz regularity 

refines this upper bound with non-integer exponents and, thus, it provides uniform 

regularity measurements over time intervals and at specific points 𝑡0. If 𝑥(𝑡) has a 

singularity at 𝑡0 then, the Lipschitz exponent at 𝑡0 characterizes the singularity behavior 

(Mallat, 2008). CWT have been used to estimate the Lipschitz exponent, and, thus, to 

characterize the local regularity of functions (Mallat & Hwang, 1992). According to 

(Holschneider & Tchamitchian, 1989), the asymptotic decay of the wavelet transform at 

small scales is related to the local Lipschitz regularity through the following theorem: 



Theorem 1: 

Let 𝑥(𝑡)  ∈ 𝐿2(ℝ) and [𝑎, 𝑏] an interval of ℝ. Let 0 < 𝛼 < 1. For any 𝜖 > 0, a function 

𝑥(𝑡) is uniformly Lipschitz 𝛼 over intervals (𝑎 + 𝜖, 𝑏 − 𝜖), if and only if for any 𝜖 > 0 

there exists a constant 𝐴  such that for any 𝑢 ∈ (𝑎 + 𝜖, 𝑏 − 𝜖) and scale 𝑠: 

|𝐶𝑊𝑇𝑥
𝜓(𝑢, 𝑠)| ≤ 𝐴 𝑠𝛼 (33) 

In order to extend Theorem 1 to Lipschitz exponents 𝛼 larger than 1, it is necessary to 

impose that the wavelet 𝜓(𝑡) has enough vanishing moments (Mallat & Hwang, 1992). 

A wavelet 𝜓(𝑡) is said to have 𝑛 vanishing moments if and only if for all positive integers 

𝛽 < 𝑛 it satisfies (Mallat, 2008): 

∫ 𝑡𝛽
+∞

−∞

 𝜓(𝑡) 𝑑𝑡 = 0 (34) 

If the wavelet 𝜓(𝑡) has 𝑛 vanishing moments, then, Theorem 1 remains valid for any non-

integer value 𝛼 such that 0 <  𝛼 < 𝑛  (Mallat & Hwang, 1992).  

8 Appendix C: Sensor malfunctions simulation 

Different sensor malfunction intensities have been simulated according to (Sharma et al., 

2010), using fixed time window 𝑥𝐿 = {𝑥(1), … , 𝑥(𝐿)} of 𝐿 samples. According to 

(Sharma et al., 2010), we distinguish among low, medium and high intensity 

malfunctions, where low intensity malfunctions are harder to detect since faulty samples 

do not differ significantly from normal sensor readings. Low intensity sensor 

malfunctions have been simulated by setting the parameters 𝑓, 𝑔, ℎ, �̃� and 𝑄 in Eq. (35), 

Eq. (36), Eq. (37) and Eq. (38) to the values used in (Sharma et al., 2010) and reported in 

Table 11. 

Parameter Coefficient 

ℎ 1 

�̃� 19 

𝑓 1.5 

𝑔 0.5 

𝑄 8 

Table 11. Parameters values used to simulate low intensity sensor malfunctions 



To simulate medium and high intensity malfunctions the parameters 𝑓, 𝑔, ℎ and 𝑄 in Eq. 

(35), Eq. (36), Eq. (37) and Eq. (38), have been set as in (Sharma et al., 2010) and are 

reported in Table 12. 

Parameters 
Coefficient for medium 

intensity 

Coefficient for 

high intensity 

ℎ 1 1 

�̃� 40 80 

𝑓 5 10 

𝑔 1.5 3 

𝑄 6 3 

Table 12. Parameters values used to simulate low intensity sensor malfunctions 

 

• Spike 

Spike malfunctions have been simulated by randomly drawing a sample 𝑟 and 

replacing  the reported value 𝑥(𝑘) with 

�̃�(𝑟) = 𝑥(𝑟) + 𝑓𝑥(𝑟) (35) 

where the multiplicative factor 𝑓 determines the intensity of the spike faults.  

• Noise 

Noise malfunctions have been simulated selecting a set of successive samples 

𝑊and added a random draw from a normal distribution, 𝑁(0, 𝑔2𝜎2), to each 

sample 𝑥(𝑟) in 𝑊, i.e., 

�̃�(𝑟) = 𝑥(𝑟) + √𝑔2𝜎2𝑁(0,1) (36) 

where 𝜎2 is the variance of the signal in nominal condition and 𝑔 is a 

multiplicative factor, which allows controlling the intensity of noise malfunctions. 

• Freezing 

Freezing malfunctions have been simulated selecting the time length  �̃� < 𝐿 for 

which the signal measurement is affected by freezing, randomly drawing the time 

of occurrence of the malfunction �̃� = 1,… , 𝐿 − �̃�, and replacing the sensor 

reading with 



�̃�(𝑟) = 𝑥(�̃�) + ℎ        𝑟 = �̃�, … , �̃� + �̃� − 1 (37) 

where ℎ indicates the size of the sudden jump at the beginning of the freezing. 

• Quantization 

To inject quantization faults, we have firstly computed the minimum 𝑚𝑖𝑛 and the 

maximum 𝑚𝑎𝑥 values within the time window 𝑥𝐿; then, we have selected the 

number 𝑄 of discrete levels, so that the possible values that the quantized signal 

can assume are  

𝑦𝑙 = (𝑙 − 1) (
𝑚𝑎𝑥 −𝑚𝑖𝑛

𝑄
) +𝑚𝑖𝑛    𝑙 = 1,… , 𝑄 (38) 

Finally, the reported value 𝑥(𝑟) is replaced with 𝑦𝑞∗(𝑟), where the index 𝑞∗(𝑟) 

satisfies 

𝑞∗(𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞=1,…,𝑄|𝑦𝑙 − 𝑥(𝑟)| (39) 
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