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Abstract

The definition of flight control laws is one of the most demanding activities
in the process of designing remote-controlled multirotor systems. Usually,
the controller is synthesised by means of techniques that rely on a prior
modelling activity on the real plant, which however frequently neglects
some significant dynamic effects. In order to overcome all these limita-
tions, the data-driven control approach emerges as a valuable solution to
obtain the specific controller. Since the main feature of these methods is the
ability to obtain or tune a controller directly from experimental input-output
plant data, they have been proposed to avoid the problem of under-modeling
and to facilitate the design of fixed-order controllers. Different linear data-
driven methods available in literature have been compared and applied. The
Virtual Reference Feedback Tuning (VRFT) method is first adopted be-
cause it represents the most promising algorithm. In order to overcome
the problem of VRFT with noisy data, the Correlation based Tuning (CbT)
method is considered. The lack of an accurate plant model makes it impos-
sible to guarantee the stability of the closed-loop system before implement-
ing and testing the controller on the real system. In order to overcome this
critical limitation of data-driven methods, an interesting controller design
technique, called Controller Unfalsification, is implemented. Different ex-
tensions has been proposed in this thesis to apply the data-driven methods
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to tune the controllers of multirotor systems. These extensions consider
closed-loop data obtained in flight, cascade control systems and controller
architecture based on advanced PID implementation. In this work, all the
data-driven algorithms and their extensions are applied to tune the attitude
and the position controllers of three multirotor systems. The considered
Unmanned Aerial Vehicles (UAVs) are all quadrotors and they differ from
size, actuation and control architectures. Exploiting the different features
of each UAV and the chance to execute specific tests, different analysis
have been performed. The experimental tests have shown that data-driven
methods can be successfully applied to tune the considered controllers and
they provide performance comparable to model-based methods.
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CHAPTER1
Introduction

ONE of the main objectives of control theory is to design a specific
controller that drives the output of a plant to track a defined set-
point signal or to satisfy a design target.

In the model-based approach a mathematical model of the plant is re-
quired in order to obtain the specific controller. Modelling the plant is nec-
essary for this type of methods and it represents one of the most delicate
and difficult steps in model-based methods. As described in [42,46], model
identification can be adopted to obtain the plant model exploiting measured
data from experimental tests on the true system. Different identification
techniques can be use to get the model of the plant: in the black-box frame-
work the model is obtained directly and solely from the measured input-
output data, whereas exploiting grey-box algorithms a physically-motivated
model is first derived from first principle considerations and then the model
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Chapter 1. Introduction

parameters are calibrated with the measured experimental data. However,
even if the most advanced identification method is employed, the model
always represents an approximation of the real system and some errors are
inevitable. Consequently, since the model-based approach is based on the
assumption that the plant model represents the true system, these methods
are inherently less safe and less robust due to the unmodeled dynamics.
Robust control theory was born to deal with this kind of problems includ-
ing additive and multiplicative descriptions and the assumption of bounds
on noise or model uncertainties. Furthermore, even if the model is accurate
but the assumptions on the system are not correct, the results on the stability
and robustness of the closed-loop system are not always valuable.

Since in this work control theory is applied to UAVs, the state of the
art of system identification for UAVs must be considered. System identi-
fication is now a well established approach for the development of control
oriented models in the rotorcraft field (see, e.g., [24, 29, 49] and the ref-
erences therein). Though the application to full scale rotorcraft is by now
fairly mature, less experience has been gathered on small-scale vehicles. In
particular, it is apparent from the literature that mathematical models for
UAV dynamics are easy to establish as far the kinematics and dynamics
of linear and angular motion are concerned, so that a large portion of the
available works dealing with UAV control is based on such models. Unfor-
tunately, characterising aerodynamic effects and additional dynamics such
as, e.g., due to actuators and sensors, is far from trivial, and has led to
an increasing interest in the experimental characterisation of the dynamic
response of UAVs.

Usually, trying to characterise difficult effects produces a complex model
that cannot be used for controller design. Indeed, a model with an high or-
der or a high level of nonlinearity leads to controllers with high order and
high nonlinearity. Thus, a controller reduction procedure is inevitable since
controllers that are too complex could be difficult or costly to design, use
and maintain. This step is generally problematic since any stability guar-
antees that were formulated for the full-order controller may not transfer
to the reduced-order controller. Furthermore, whilst the optimality of the
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full-order controller can be guaranteed, that is not the case for the reduced-
controller.

In many applications the structure of the controller is predetermined.
Many industrial processes, for example, use predefined PID controllers and
the procedure is limited to tuning the PID gains. Tuning only the controller
gains starting from a full-order controller is far from trivial. For this reason,
the full-order controller cannot be employed and structured model-based
control techniques have been developed.

Typical linear control system design methodologies that belong to the
model-based approaches are: LQR design [8] and robust control [44]. For
non linear system the most employed methods are: Lyapunov-based design
methodologies, backstepping method [9] and dynamic inversion [16].

In order to overcome all these limitations, the data-driven control ap-
proach emerges as a valuable solution to obtain the specific controller.
Since the main feature of these methods is the ability to obtain or tune a con-
troller directly from experimental input-output plant data, they have been
proposed to avoid the problem of under-modeling and to facilitate the de-
sign of fixed-order controllers. Data-driven algorithms skip the modelling
phase almost entirely and instead reformulate the controller identification
procedure as a parameter optimisation problem in which the optimisation is
carried out directly on the controller parameters. Furthermore, the achieved
performance of the controllers is not linked to the techniques used to model
the plant or the order of the identified plant model. It emerges that the main
difference between model-based and data-driven approaches is whether the
plant model is involved in the controller design. From this point of view,
the data-driven class includes also methods that are not strictly related to
the control community such as: neural network based control methods or
fuzzy control methods (see [27]). Several data-driven control design algo-
rithms have been proposed recently. Compared to the work in [1] which
was focused on PID controllers and exploited simple empirical rules, the
new data-driven methods are based on a rigorous mathematical analysis
and under, certain reasonable assumptions, they can guarantee also the sta-
bility of the closed-loop system. The data-driven algorithms considered

3
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Chapter 1. Introduction

in this work are also computational efficient: this allows a fast re-tuning
of the controller when the plant performance is reduced (e.g., components
ageing) or when the operating conditions change (e.g., different payload or
environment).

As other control strategies, data-driven methods are not omnipotent.
Certain assumptions must be made before applying these algorithms and,
considering the data-driven methods employed in this work, some of these
assumptions involve the system to control (such as, e.g., achievable closed-
loop bandwidth, dominant dynamics, presence of time-delays). Without
this information, obtaining a satisfactory tuning can be challenging, as the
choice of an unattainable closed-loop reference model can lead to poor per-
formance (not unlike erroneous structure selection in model identification
problems). The reader must not be surprised by this statement. Indeed, the
amount of required plant information is less than in the model-based frame-
work and, as will be explained in the next section and in the following chap-
ters, this information is usually available from the plant manufacturer or can
be obtained with simple open-loop or closed-loop tests. Furthermore, some
new definitions must be coined for these methods such as robustness. In-
deed, since these algorithms do not involve directly the plant model and
neither the unmodeled dynamics, the traditional definition of robustness is
no longer valid.

At this point where the data-driven framework is introduced, the reader
could ask if data-driven methods perform better than model-based methods.
Recalling the results in [21], if the evaluation criterion is the variance of
the controller parameters then the model-based approach achieves better
results since it has been shown that an approach based on two optimisation
steps is statistically efficient (see again [21] and the references therein).
Nevertheless, the previous criterion represents only an intermediate step
toward the evaluation of the methods. As it will be explained in the next
section, where model reference control and the cost criterion are presented,
if the control cost achieved by the designed controller is taken into account,
the following considerations are valid:

• if the model structure is perfectly known and the model order is low,

4
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1.1. Model reference control

the model-based approach is theoretically always the best approach.

• If the model structure is not completely known and/or a high order
model is identified, the data-driven approach can statistically outper-
form the model-based solution in terms of the control cost, even if the
variance of the parameters remains larger.

• Because in the real world the model structure is never perfectly known
and under-modeling can not be avoided with a low-order model, the
data-driven approach may give better results in many real applications.

The previous considerations are the conclusion of [21] and they are here
reported for the sake of clarity. Furthermore, in order to achieve a statisti-
cally efficient estimate, the model-based approach requires both the system
and the noise model to be correctly parameterized. Finally, the data-driven
approach requires a convex optimisation problem if the controller is lin-
early parameterized whereas the model-based approach requires that both
the controller and the plant model are linearly parameterized.

The applicability of data-driven methods to the tuning of control laws
for multirotor UAVs has been verified with reference to three different plat-
forms which cover a wide range of Take-Off Weights (TOWs) correspond-
ing to:

• a large platform (5 kg TOW), representative of a multirotor for profes-
sional industrial applications (see, e.g., the DJI Matrice 200 platform);

• a medium platform (1.5 kg TOW), representative of a multirotor for
recreational personal use (see, e.g., the DJI Phantom 4 platform);

• a small platform (200 g TOW), representative of the class of "harm-
less" multirotors according to the Federal Aviation Authority (< 250 grams,
see [2]) or the Ente Nazionale per l’Aviazione Civile - ENAC (< 300 grams,
see [18]).

1.1 Model reference control

Usually, the requirements on the closed-loop behaviour of the system are
expressed as simple conditions on e.g., the bandwidth of the closed-loop

5
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Chapter 1. Introduction

C(z, θ) P (z)
uȳ e y

−

Figure 1.1: The control system.

system or its disturbance rejection properties. In addition some robustness
requirements may be considered such as requiring a certain gain and phase
margin.

The model reference approach represents a different way to define the
design target. It differs from traditional methods in how the requirements
for the controller are specified: instead of providing explicit limits on over-
shoot, bandwidth or response time, the requirements are provided in the
form of a reference model for the closed-loop behaviour of the system. The
objective is to design a controller such that the difference between the ref-
erence model and the actual closed-loop behaviour of the system is as small
as possible.

Consider the closed-loop system shown in Figure 1.1 with the unknown
stable linear Single Input Single Output (SISO) plant P (z) and the con-
troller C(z; θ) where θ is the n-dimension vector of controller parameters.
The objective of minimising the difference between the reference model
and actual closed-loop transfer functions is formulated with the control cost
criterion in the following:

JMR(θ) =

∥∥∥∥∥
(

P (z)C(z, θ)

1 + P (z)C(z, θ)
−M(z)

)
W (z)

∥∥∥∥∥
2

2

(1.1)

where M(z) is the closed-loop reference model and W (z) is a weighting
function chosen by the user to focus the model matching problem in the
desired frequency range. The optimal controller that minimises the control
cost in (1.1) exists and is given by:

C̄(z) =
M(z)

P (z) (1−M(z))
. (1.2)

6
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1.2. Structure of the thesis

In order to obtain the optimal controller in (1.2), two approaches can be
adopted:

The model-based approach assumes that a detailed and reliable model of
the plant P (z) is available in order to directly compute the ideal con-
troller.

The data-driven approach attempts to minimise the control objective in (1.1)
by solving a parameter optimisation problem without first estimating
a model of the plant.

The model-based approach solves the model reference control problem as-
suming that a model of the plant is available. As explained in the first part
of this chapter, this model may be derived exploiting different identifica-
tion techniques but unmodeled dynamics always exist. Note that the choice
of a high order model is not the solution. Indeed, the order of the ideal
controller in (1.2) depends on the order of the plant model.

As declared before, even if data-driven methods do not require accurate
knowledge of the process, at least some prior information on the plant is re-
quired. Considering the model reference control problem, this information
is employed to select a proper reference models M(z).

1.2 Structure of the thesis

This thesis is organised as follows:

• Chapter 2 provides a general overview of data-driven methods. A first
classification of these methods is presented and the most promising
algorithms are illustrated in detail.

• In Chapter 3 the control architecture to tune is presented. In this chap-
ter the reader understands how a multirotor UAV works and which are
the control architectures. For each control architecture the unknown
controller parameters to tune are described.

• Chapter 4 provides all the extensions of the methods presented in
Chapter 2 to deal with the control problem illustrated in Chapter 3.

7
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Chapter 1. Introduction

In particular, the main extension involves the possibility to tune the
controller with experimental data obtained with flight tests.

• In Chapter 5 all the multirotor platforms employed in this work are
presented in detail. They are all quadrotors and they differ from size,
actuation architecture and control structure.

• All the results are displayed in Chapter 6 where different analysis are
illustrated, exploiting the different features of each UAV and the pos-
sibility to execute specific tests.

• In Chapter 7 some conclusions on the results presented in this work
are drawn.

8
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CHAPTER2
Overview of data-driven tuning methods

SINCE data-driven methods are still in their infancy, different names
are used in the literature to describe this kind of algorithms: data-
driven, data-based, model-free,. . . The term data-driven was first

proposed in computer science but recently it entered also the vocabulary of
several researchers in the control community. As was presented in Chap-
ter 1, these methods were born to overcome the limitations of model-based
methods and this goal can be accomplished in different ways.

The first classification of the data-driven methods considers the structure
of the controller: some data-driven algorithms are able to tune only the un-
known parameters of a fixed-structured controller, others involve the plant
model structure implicitly and lead to a controller structure that a-priori
is unfixed (see [27]). The first class of data-driven methods is considered
in this work since the main goal is to tune controllers with a fixed struc-

9
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Chapter 2. Overview of data-driven tuning methods

ture. Indeed, in most practical cases, changing the controller structure is
not feasible (e.g., the controller source code is not available). Furthermore,
in all the UAVs considered in this work, the controllers were already tuned
with model-based or manual methods and the new data-driven tuning will
be compared with the existing tuning without changing the controller archi-
tecture. The determination of the control structure goes beyond the scope
of this work and the controller architecture was already implemented on all
the considered UAVs.

The data-driven algorithms can be classified also on how they obtain the
optimal tuning. Some methods employ an iterative procedure. The Iterative
Feedback Tuning (IFT) method, that was first proposed in [25, 26] belongs
to this class and it was considered at the beginning of this work. It involves
an iterative optimisation of the parameters of the structured controller ac-
cording to an estimated gradient of a control performance criterion. It is
comparatively slow and requires several experiments on the plant at each
iteration. Moreover it can only guarantee that the result is close to the local
minimum of the cost function. The IFT method was not considered in this
thesis due to these drawbacks and because the required experiments cannot
be performed on the first UAV that is employed in this work.

Beside iterative algorithms, the class of non-iterative methods proposes
a more attractive perspective to tune the controller parameters. Instead of
performing multiple experiment on the process, the non-iterative methods
are computationally efficient: they can be called also one-shot algorithms
in the sense that a single batch of experimental data is used to solve the op-
timisation problem. Thus they allow also a fast re-tuning of the controller
when the plant performance is reduced (e.g., components ageing) or operat-
ing conditions change (e.g., different payloads or environment). VRFT and
CbT belong to this class and they are presented in detail in the next sections.
Furthermore, in [19], VRFT was already extended to tune a cascade con-
trol system with data from a single experiment and this makes VRFT the
best candidate to solve the tuning problem since all UAVs exploit cascade
control architectures, as will be illustrated in Chapter 3.

Since the data-driven methods do not explicitly involve the plant model,

10
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2.1. Virtual Reference Feedback Tuning

it is far from straightforward to ensure stability constraints on the closed-
loop system. Indeed, the VRFT method considers only the performance
of the closed-loop system, minimising the discrepancy between the desired
an the actual input-output behaviour. CbT, as presented in [52], allows
to consider also the stability constraint exploiting the small-gain theorem.
The stability condition in the CbT algorithm involves the discrepancy be-
tween the actual controller and a stabilising controller previously defined
(see again [52] for more details). Usually this controller is used to collect
the data in a closed-loop experiment. With stable but non-minimum phase
plant, this approach provides only a refinement of the already available con-
troller and the initial stabilising controller must be known. To overcome
this limitation, a recent method called controller unfalsification has been
proposed (see [3]). It is a non-iterative data-driven control design approach
that incorporates stability tests originally introduced for the unfalsified con-
trol framework (see again [3]). This method is applied in this work to show
its capability to deal with a real tuning problem and to compare it with the
other data-driven methods.

2.1 Virtual Reference Feedback Tuning

In this section the VRFT is introduced. This method was presented in [10,
23] and, as the method name suggests, it exploits the idea of a virtual ref-
erence signal. The key concept underlying VRFT is that if the input and
the output of the controller are known then the model matching problem
in (1.1) can be reformulated as a parameter identification problem on the
controller.

The main features of VRFT are that the model-reference problem (1.1)
is solved without any knowledge of the system and using only a set of
available open-loop measurements DN = {u(t), y(t)}t=1..N , where N is
the length of the dataset. The only requirement for this experiment is that it
must excite the system over the entirety of the frequency range of interest.

Consider the reference signal r(t) that would feed the system in closed-
loop operation when the closed-loop model is M(z) and the output is the
measured y(t). Such a signal is called virtual reference because it is not

11
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Chapter 2. Overview of data-driven tuning methods

used to generate y(t) and it can be computed from the output data as

r(t) = M(z)−1y(t).

The signal r(t) can be computed offline and it represents the setpoint that
generates the output y(t) when the closed-loop is optimal, that is the closed-
loop transfer function is M(z). Starting from the signal r(t), the input of
the controller can be computed as

e(t) = r(t)− y(t).

Since the input and the output of the controller are now known, the model
matching problem can be considered as an identification problem: a good
controller (making the closed-loop as close as possible to M(z)) is then the
one that produces the input sequence of the experiment u(t) when it is fed
by the error signal e(t). The information about the reference closed-loop
model is embedded in the input signal e(t).

Formally, the cost criterion minimised by the VRFT algorithm is the
following:

JNV R(θ) =
1

N

N∑
t=1

(uL(t)− C(z, θ)eL(t))2 , (2.1)

where uL(t) and eL(t) are suitably filtered versions of u(t) and e(t) such
that the cost function (2.1) is a local approximation of the criterion (1.1) in
the neighbourhood of the minimum point. As explained in [10], the optimal
choice of the filter L(z) is

|L|2 = |1−M |2|M |2|W |2 1

Φu

, (2.2)

where Φu is the spectral density of u(t). L(z) is not needed if the considered
controller class contains the optimal controller which exactly solves the

12
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2.1. Virtual Reference Feedback Tuning

C(z, θ) P (z)
uȳ e + ỹ

−

ν

+

Figure 2.1: The control system with measurement noise.

model matching problem (this controller is defined in (1.2)).
Note that if the user considers a linearly parameterised controller class

C(θ) =
{
C(z, θ) = βT (z)θ , θ ∈ Rn

}
, the criterion in (2.1) can be rewrit-

ten as

JNV R(θ) =
1

N

N∑
t=1

(
uL(t)− ϕTL(t)θ

)2
, (2.3)

where ϕL(t) = β(z)eL(t) and the optimal parameters are:

θ̂N = arg min
θ
JNV R(θ). (2.4)

The closed form solution of the problem in (2.4) exists and it is:

θ̂N =

[
N∑
t=1

ϕL(t)ϕTL(t)

]−1 N∑
t=1

ϕL(t)uL(t). (2.5)

Obviously the input of the plant has to be a persistently exiting signal in
order to apply (2.5) as described in [36].

Since VRFT exploits a Prediction Error Method (PEM) identification
procedure to tune the controller, it has to deal with the problem related to
these class of methods. In particular, suppose that the output of the plant is
affected by an additive noise ν(t) (Figure 2.1):

ỹ(t) = P (z)u(t) + ν(t),

with the assumption that u(t) and ν(t) are uncorrelated. In this case the

13
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Chapter 2. Overview of data-driven tuning methods

PEM procedure is not adequate for this problem because the input of the
controller is affected by the noise ν(t) and this results in a biased parameter
vector estimate. As described in [10], an instrumental variable method can
be employed to counteract the effect of noise. The instrumental variable
can be built in different ways and it must be correlated with the regression
variable and uncorrelated with the noise ν(t). To satisfy these requirements,
the instrumental variable can be chosen in two ways:

Repeated experiments. Assuming that different realisations of the noise
affect different experiments, the user has to perform a second exper-
iment with the same input u(t) obtaining a new noisy output signal
ỹ′(t). Building the instrumental variable as

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ỹ′(t),

VRFT leads to the same results as in the noiseless case.

Plant identification. In some situations a second experiment with the same
input signal can not be performed. Thus, a way to build the instrumen-
tal variable passes through the identification of the plant in order to get
a model P̂ (z). The model can be exploited to build the noiseless out-
put as:

ŷ(t) = P̂ (z)u(t)

and the instrumental variable is

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷ(t).

This approach guarantees a consistent estimate but its variance de-
pends on the quality of the model P̂ (z). Furthermore, the plant iden-
tification procedure clashes with the data-driven idea of the VRFT
method. Nevertheless the reader should notice that P̂ (z) is not di-
rectly involved in the design of the controller but it is employed only
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Algorithm 1 The VRFT algorithm.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = (1−M(z))M(z)W (z)U−1(z).
3: Compute uL(t) as uL(t) = L(z)u(t).
4: Compute ϕ(t) = β(z)L(z)

(
M(z)−1 − 1

)
ỹ(t).

5: Identify the plant model P̂ (z).
6: Compute ŷ(t) = P̂ (z)u(t).
7: Compute the instrumental variable ζ(t) = β(z)L(z)

(
M(z)−1 − 1

)
ŷ(t).

8: Compute θ̂IVN =
[∑N

t=1 ζ(t)ϕTL(t)
]−1∑N

t=1 ζ(t)uL(t).

in the creation of the instrumental variable.

When the instrumental variable is selected, it can be used to solve the prob-
lem in (2.3) and the optimal solution is:

θ̂IVN =

[
N∑
t=1

ζ(t)ϕTL(t)

]−1 N∑
t=1

ζ(t)uL(t). (2.6)

The VRFT procedure is summarised in Algorithm 1.
Originally in [10], the VRFT method was presented to design a SISO

control system. The reader should notice that Algorithm 1 does not limit
this data-driven method to SISO control system. Indeed, in [41] VRFT
is applied to a Multiple Input Multiple Output (MIMO) process control
system following the same steps defined in Algorithm 1. Although, in this
work, VRFT will be mainly applied to SISO controllers, an application to
a MIMO control system is presented in Section 6.3.3.

2.1.1 Cascade control systems

It has been shown in [19] that the VRFT rationale can be extended to mul-
tiple nested loops, by still relying on a single experiment.

Consider the cascade control scheme in Figure 2.2 where only two loops
are shown without loss of generality and a noiseless environment is consid-
ered (see [19] for a deeper presentation of the methodology). Given two
reference models Mi(z) and Mo(z), for the inner loop and the outer loop
respectively, consider two families of linear proper controllers Ci(θi) =

15
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Co Ci Pi Po
u yiȳo eo ȳi ei yo

−−

Figure 2.2: Cascade control scheme with two nested loops.

{Ci(z, θi) , θi ∈ Rn
i } and Co(θo) = {Co(z, θo) , θo ∈ Rn

o} and the set of
data DN = {u(t), yi(t), yo(t)}t=1,...,N being u(t) the control variable, yi(t)
the output of the inner loop, yo(t) the output of the outer loop. The inner
controller can be tuned by applying the standard VRFT as presented in Sec-
tion 2.1. For the outer controller, on the other hand, the approach needs to
be different, as the input of the system to control is the reference ȳi(t) (see
again Figure 2.2), that is not available in the dataset, since measurements
are collected during an open-loop experiment.

Nevertheless, in [19] it has been shown that the reference signal ȳi(t)
can be derived from the available data by exploiting the fact that the in-
ner controller is designed independently of the outer one. In detail, once
Ci(z, θi) is fixed, the input of the inner loop can be calculated as

ȳi(t) = ei(t) + yi(t),

where the tracking error comes from the result of the inner design as

ei(t) = C−1
i (z, θ̂i)u(t),

where θ̂i are the optimal parameters of the inner loop. With such a choice,
ȳi(t) is exactly the signal that would feed the inner loop in closed-loop
working conditions when the output is yi(t). Then, the outer controller can
be easily found as result of VRFT synthesis, by using the set of I/O data
Do
N = {ȳi(t), yo(t)}t=1,...,N . More specifically, θo comes as the minimizer

16
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Algorithm 2 The VRFT method for two nested cascade control loops with a single set of
experimental data.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: repeat
3: Compute Li(z) = (1−Mi(z))Mi(z)Wi(z)U

−1(z).
4: Compute uL(t) as uL(t) = Li(z)u(t).
5: Compute eiL(t) as eiL(t) = Li(z)

(
M−1
i (z)− 1

)
yi(t).

6: Compute θ̂i = arg min
θi

1

N

∑N
t=1 (uL(t)− Ci(z, θi)eiL(t))

2.

7: until Ci(z, θ̂i) is a minimum phase system, otherwise change Mi(z).
8: Compute ȳi(t) = C−1

i (z, θ̂i)u(t) + yi(t).
9: Compute Uo(z) such that

∣∣Uo (ejω)∣∣2 = Φȳi(ω) where Φȳi(ω) is the spectral density
of ȳi(t).

10: Compute Lo(z) = (1−Mo(z))Mo(z)Wo(z)U
−1
o (z).

11: Compute ȳiL(t) as ȳiL(t) = Lo(z)ȳi(t).
12: Compute eoL(t) as eoL(t) = Lo(z)

(
M−1
o (z)− 1

)
yo(t).

13: Compute θ̂o = arg min
θo

1

N

∑N
t=1 (ȳiL(t)− Co(z, θo)eoL(t))

2.

of

JV R(θo) =
1

N

N∑
t=1

(ȳiL(t)− Co(z, θo)eoL(t))2 (2.7)

where ȳiL(t) and eoL(t) are suitably filtered versions of ȳi(t) and eo(t), the
latter being the virtual error of the outer loop:

eo(t) = (M−1
o (z)− 1)yo(t).

The optimal filters for the inner and outer loop are discussed in [19],
following the rationale of [10].

The VRFT method for two nested cascade control loops with a single
set of experimental data is summarised in Algorithm 2.

17
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C(z, θ) P (z)
u

M(z)

ȳ e + ỹ −
−

ν

+

+

ε

Figure 2.3: The tuning scheme for the CbT method.

2.2 Correlation based Tuning

As explained in Section 2.1, VRFT leads to a specific identification prob-
lem and when experimental data i saffected by noise, the PEM procedure
is not consistent to solve this problem. In order to overcome this limitation
the CbT method is considered in this work (see [30, 51, 52]). It is a non-
iterative controller tuning algorithm that employs the correlation approach
to deal with noisy data. As in the VRFT method, the performance specifi-
cation is provided in terms of a closed-loop reference model and VRFT and
CbT share the same cost criterion to minimise as defined in (1.1). Further-
more, CbT incorporates a stability constraint for the closed-loop system:
it is implemented as a set of convex constraints leading the minimisation
problem in (1.1) to a constrained optimisation problem. CbT is also able to
deal with nonminimum-phase or unstable plants (see again [52]).

In the CbT approach, the optimal controller is computed exploiting the
error ε(t, θ) as depicted in Figure 2.3. Indeed, the minimisation of (1.1)
is equivalent to minimisation of the norm of the system given ε(t) as an
output when it is fed by a flat-spectrum input ȳ(t).

For a linearly parameterised controller, an approximation of the cost cri-
terion defined in (1.1) can be made in order to make it convex. In particular
the approximation considers the sensitivity function: the ideal sensitivity
function is given by

S̄(z) =
1

1 + C̄(z)P (z)
= 1−M(z)

18
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P 1−M C

M

ȳ +

ν

+ ỹ − ε

+

open-loop experiment

Figure 2.4: The approximate tuning scheme for CbT method.

where C̄(z) is the optimal controller that realises M(z) as defined in (1.2).
Assuming that the actual sensitivity function is equal to the ideal sensitivity
function, that is

S(z, θ) =
1

1 + C(z, θ)P (z)
= S̄(z),

the model matching problem in (1.1) becomes convex and the tuning scheme
for the CbT method can be redrawn as in Figure 2.4 (see [52] for a dis-
cussion on the approximation). Note that the same approximation is also
exploited in the VRFT algorithm to solve a convex optimisation problem
(see [10]).

Considering the Figure 2.4 and the data DN = {ȳ(t), ỹ(t)}t=1..N from
an open-loop test, where N is the length of the dataset. The error ε(t, θ)
depends on the exogenous signals ȳ(t) and ν(t):

ε(t, θ) = M(z)ȳ(t)− C(z, θ)(1−M(z))ỹ(t)

= (M(z)− C(z, θ)(1−M(z))G(z)) ȳ(t)

− C(z, θ)(1−M(z))ν(t).

(2.8)

If the optimal controller defined in (1.2) is considered, the error in (2.8)
becomes:

ε(t, θ) = −C̄(z) (1−M(z)) ν(t) (2.9)
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Chapter 2. Overview of data-driven tuning methods

and since ν(t) is not correlated with the reference ȳ(t), the error computed
with the ideal controller is not correlated with ȳ(t). Thus, the goal is to find
the optimal controller parameter θ such that the error ε(t, θ) is uncorrelated
with ȳ(t).

The implementation of the CbT method is now briefly illustrated (see [52]
for more details). To decorrelate ε(t, θ) and ȳ(t), an extended instrumental
variable ς(t) correlated only with ȳ(t) is introduced:

ς(t) =
[
ȳF (t+ l) . . . ȳF (t) . . . ȳF (t− l)

]T
(2.10)

where l is a sufficiently large integer and

ȳF (t) = F (z)ȳ(t).

The filter F (z) assumes here the same role of the filter L(z) in the VRFT
method and the optimal choice of F (z) is such that

|F |2 = |1−M |2|W |2 1

Φȳ

where Φȳ is the spectral density of the reference signal ȳ(t). See [52] for
discussion on the optimal filter. The correlation function is defined as

fN,l(θ) =
1

N

N∑
t=1

ς(t)ε(t, θ)

and the correlation criterion to minimise is

JN,l(θ) = fTN,l(θ)fN,l(θ).

Thus, the optimal controller parameters are

θ̂N = arg min
θ
JN,l(θ). (2.11)
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Algorithm 3 The CbT algorithm.

1: Compute Ȳ (z) such that
∣∣Ȳ (ejω)∣∣2 = Φȳ(ω).

2: Compute F (z) = (1−M(z))W (z)Ȳ −1(z).
3: Compute ȳF (t) as ȳF (t) = F (z)ȳ(t).
4: Choose l close to the impulse response of M(z).
5: Compute ς(t) =

[
ȳF (t+ l) . . . ȳF (t) . . . ȳF (t− l)

]T
.

6: Compute the error ε(t, θ) = M(z)ȳ(t)− C(z, θ)(1−M(z))ỹ(t).
7: Compute fN,l(θ) = 1

N

∑N
t=1 ς(t)ε(t, θ).

8: Compute JN,l(θ) = fTN,l(θ)fN,l(θ).
9: Compute θ̂N = arg min

θ
JN,l(θ).

The optimal parameters in (2.11) asymptotically converge to the optimiser
of (1.1) (the proof is provided in [52]).

The choice of the parameter l in (2.10) is now discussed. This parameter
represents a trade-off between accuracy and bias: l must be large enough
to minimise (1.1) using (2.11) but the bias due to noise increases with l

(see [52]). As proposed in [21], selecting l close to the impulse response of
the closed-loop reference model M(z) represents a good trade-off. Finally,
if the Signal to Noise Ratio (SNR) in the experimental data is high, different
choices of l can be made leading to better performance as will be illustrated
in Section 6.1. In particular, in this specific case, increasing the value of l
leads to a better minimisation of (1.1) and the bias due to noise is negligible
due to the high SNR.

The CbT method is summarised in Algorithm 3.

2.3 Controller unfalsification

As already discussed, data-driven methods are based on the assumption
that the model of the plant is not known. Typically, they only require the
identification of basic plant properties, generally inadequate for control de-
sign purposes but essential to define an achievable closed-loop dynamic
model. The lack of an accurate plant model makes it impossible to guaran-
tee the stability of the closed-loop system before implementing and testing
the controller on the real plant. In order to overcome this critical limitation
of data-driven methods, an interesting controller design technique, called
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Chapter 2. Overview of data-driven tuning methods

controller unfalsification, has been presented in [3]. The proposed method
is based on the unfalsified control theory. As suggested in [3], by exploiting
the concept of fictitious reference, one can define cost functions in terms
of discrepancy between desired input-output behaviour which allows the
derivation of a data-driven controller tuning procedure that includes an ef-
fective stability constraint.

2.3.1 Problem formulation

As in many other data-driven methods, the goal is the tuning of a con-
troller parameter vector θ based on an available dataset, properly gathered
by means of an experimental test. The controller unfalsification method
theoretically guarantees closed-loop stability, as well as providing adequate
output performance. According to the method proposed in [3], such a result
can be obtained by forcing input and complementary sensitivity functions
to be as close as possible to a-priori defined reference models (respectively
Q(z) and M(z)). By minimising the discrepancy between the complemen-
tary sensitivity function and the reference model M(z), one forces the out-
put behaviour to approximate the desired one. However, there is no guaran-
tee that the obtained controller actually stabilises the plant, even if the plant
is stable and non-minimum phase. Indeed, in such cases, instability can oc-
cur if the reference model is not achievable or the dataset is very limited or
strongly affected by noise. For this reason, it is necessary to define a second
reference model Q(z), which is the desired control sensitivity function. As
it will be shown below, one can ensure internal stability of the closed-loop
by minimising the discrepancy between control sensitivity and a properly
defined Q(z). Such controller tuning procedure leads to a multi-objective
minimisation problem and it is convenient to reformulate the problem ex-
ploiting the concept of Pareto optimal solution, as suggested in [3]. This
allows one to define a single objective problem based on the minimisation
of a cost function of the form

J(θ) = (1− δ)Jn(θ) + δJv(θ), (2.12)
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2.3. Controller unfalsification

where Jn and Jv are related to input and output discrepancies respec-
tively, while δ ∈ [0, 1] is a weighting factor which establishes a trade-off
between closed-loop stability and output performance.

Controller structure

The unfalsified control, as well as VRFT and CbT approaches, requires that
the controller structure is defined a priori by the designer. A smart choice
is to consider a parametric controller family of the form

C(z, θ) =
N̄(z, θ) N∗(z)

D̄(z, θ) D∗(z)
, (2.13)

where D∗(z) and N∗(z) are fixed polynomials with all unstable roots. Typ-
ically, D∗(z) is associated with the presence of the controller integral term.
Instead, N̄(z, θ) and D̄(z, θ) are polynomials whose coefficients form the
unknown parameter vector θ, N̄(z, θ) = n0 +n1z+ . . . niz

i and D̄(z, θ) =

1 + d1z + . . . djz
j , that is, θ = [n0 n1 . . . ni d1 . . . dj].

Reference models

Reference modelsQ(z) andM(z) have to be consistent with the prescribed
controller family in order to achieve a well-defined design problem. As
suggested in [3], the following conditions should be met:

• Q(z) factorised asQ(z) = N∗(z)Q̄(z) with Q̄(z) stable and minimum
phase.

• Roots of N∗(z) are zeros of M(z).

• Roots of D∗(z) are zeros of 1−M(z).

Although the definition of the closed-loop reference model M(z) re-
quired few information (see Chapter 1), the choice of the desired control
sensitivity function Q(z) is not trivial. Ideally, it should be defined as
Q(z) = M(z)/P (z) to guarantee the transfer functions to be consistent
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with each other, but due to the lack of an accurate plant model, this rela-
tionship is only imposed in static conditions, i.e., Q(1) = M(1)/P̂ (1) =

1/P̂ (1), so that

Q(z) =
1

P̂ (1)

NQ(z)

DQ(z)
. (2.14)

Regarding the choice of poles and zeros of Q(z), one must rely on the
estimated transfer function of the plant to roughly identify its frequency
response. More specifically, focus should be placed on the frequency in-
tervals where the magnitude of the plant is higher, so that Q(z)P̂ (z) ∼= 1

within the desired bandwidth and� 1 beyond this frequency.

2.3.2 Optimisation criterion

In the following subsection, the optimisation criterion will be explained in
detail.

First, it is essential to introduce the notion of fictitious reference rθ,
which consists of defining the setpoint signal by inverting the controller
transfer function as follows:

rθ(t) = C−1(z, θ)u(t) + ỹ(t), t = 0, 1, . . . , N. (2.15)

Care should be taken not to confuse the virtual reference concept intro-
duced by the VRFT approach with the aforementioned fictitious reference.
As a matter of fact, the VRFT virtual reference is obtained by inverting the
reference model M(z) rather than the potential controller C(z, θ). There-
fore, the approach outlined here is much more similar to the alternative
version of the VRFT suggested in [48], which is based on the inverse con-
troller identification.

The fictitious reference rθ(t) can be adopted as the input of the reference
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C(z, θ) P (z)
u
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Figure 2.5: The tuning scheme for the controller unfalsification method.

models to obtain the ideal control variable and the ideal output:

u0(t) = Q(z)rθ(t) (2.16)

y0(t) = M(z)rθ(t). (2.17)

Basically, the optimisation criterion consists in selecting the parameter vec-
tor θ to minimise the difference between the set of measured input-output
experimental data {u(t), ỹ(t)} and the signals u0(t) and y0(t), as schemati-
cally shown in Figure 2.5. By replacing the definition of fictitious reference
rθ(t) in equations (2.16) and (2.17), the input-output discrepancies can be
written as

u(t)− u0(t) = u(t)−Q(z)ỹ(t)− C−1(z, θ)Q(z)u(t) (2.18)

ỹ(t)− y0(t) = (1−M(z))ỹ(t)− C−1(z, θ)M(z)u(t). (2.19)

In general, the measured output ỹ(t) is affected by noise, so it can be
expressed as ỹ(t) = y(t) + ν(t) = P (z)u(t) + ν(t), where y(t) is the
noise-free component of the output. It follows that in (2.18) and (2.19) a
term related to the measurement noise appears. Nevertheless, under the
assumption that the input signal u(t) and the output disturbance ν(t) are
uncorrelated and the number of samples tends to infinity, the solution that
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minimises a cost function based on the discrepancies tends to the noise-free
one.

Hence, the two cost functions can be respectively defined as the squared
Euclidean norm of (2.18) and (2.19):

Jn = ‖(u− u0)‖2 (2.20)

Jv = ‖(ỹ − y0)‖2. (2.21)

In conclusion, to obtain a single objective minimisation problem, these
two cost functions have to be combined together, as previously disclosed
in (2.12), resulting in the following design criterion:

θ̂(δ) = arg min
θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)} (2.22)

where θ̂ is the optimal solution associated with the controller that simul-
taneously guarantees internal stability and the best possible closed-loop
performance, and ΘS is the set of all the parameter vectors θ such that
C−1(z)Q(z) is stable.

2.3.3 Stability constraint and implementation

In general, a controller that exactly achievesM(z) stabilises the plant if and
only if the unstable zeros of P (z) and M(z) are the same. Since the plant
model is unknown, the choice of an appropriate reference model M(z) is
not trivial. As already mentioned, the cost function Jn associated with
the control sensitivity reference model Q(z) is critical for considering the
stability requirement. Indeed, if the plant is stable, the controller CQ(z)

that exactly achieves the reference model

Q(z) =
CQ(z)

1 + P (z)CQ(z)
, (2.23)
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guarantees stability of the closed-loop system. Consequently, when δ = 0

the minimisation of criterion (2.22) ensures that the stability requirement is
met. However, the stability is preserved also in a neighbourhood of δ equal
to zero, in fact, the following theorem holds.

Theorem 1. Let θ̂(0) be the solution of the minimisation process of Jn, so
that the controller C(z, θ̂(0)) stabilises the plant. Then, there exists δ̄ > 0,
such that for any δ < δ̄ the controller C(z, θ̂(δ)) is stabilising.

Thanks to Theorem 1, it is possible to derive an effective tuning strategy
that takes into account the stability requirement, but before introducing the
practical implementation of the algorithm it is useful to specify what the
stability test consists of. The input discrepancy can be rewritten as function
of the inverse of CQ(z) and C(z) as suggested by Proposition 1.

Proposition 1. The input discrepancy can be written as

u(t)− u0(t) = ∆Q(z, θ)Q(z)u(t)−Q(z)n(t), (2.24)

where

∆Q = C−1
Q (z)− C−1(z, θ). (2.25)

By using Proposition 1 and relying on the small-gain theory, Theorem 2
can be proven, thus obtaining the stability test. In addition, Proposition 1
clarifies the existing relationship between input discrepancy and closed-
loop stability. Proofs of both theorems are widely discussed in [3].

Theorem 2. Let θ be the controller parameter vector. Then, if

‖Q(z)∆Q(z, θ)‖∞ < 1, (2.26)

the controller C(z, θ) stabilises the unknown plant P (z).
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Algorithm 4 Control unfalsification tuning method.
1: repeat
2: Compute θ̂(δ) = arg min

θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)}, with δ = 0.

3: Compute u− u0 and estimate ‖Q(z)∆Q(z, θ̂(0))‖∞.
4: until ‖Q(z)∆Q(z, θ̂(0))‖∞ < 1− α otherwise change M(z).
5: repeat
6: Set δ = 1/2iter−1.
7: Compute θ̂(δ) = arg min

θ∈ΘS

{(1− δ)Jn(θ) + δJv(θ)}, with θ̂(0) as initial guess;

8: Compute u− u0 and estimate ‖Q(z)∆Q(z, θ̂(δ))‖∞.
9: until ‖Q(z)∆Q(z, θ̂(0))‖∞ < 1− α.

Finally, as suggested in [3], the H∞ norm can be effectively estimated
relying only on the gathered dataset and input discrepancy. So, it can be
rewritten as

‖Q(z)∆Q(z, θ)‖∞ ' sup
|û(ω)− û0(ω)|
|û(ω)|

, (2.27)

where, û(ω) and û0(ω) are the discrete Fourier transforms of u(t) and u0(t),
respectively.

Algorithm implementation

As already mentioned, if the experimental data-test is sufficiently informa-
tive and the reference models are appropriately chosen, then minimisation
(2.22) leads to a stabilising controller when δ = 0. This solution can be
used as a first guess for a second minimisation process, but this time with
the aim of looking for the largest δ that guarantees stability. In fact, thanks
to Theorem 1, starting from δ = 1 and then gradually decreasing it, we
certainly find a value of δ, more or less close to zero, such that the minimi-
sation (2.22) leads to a stabilising controller. From a practical point of view,
the stability test is passed only if the estimate of ‖Q(z)∆Q(z, θ)‖∞ is less
than 1 − α. The scalar α is required for taking into account the estimating
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2.3. Controller unfalsification

error related to a finite dataset and the presence of the disturbance.
To sum up, the tuning procedure developed in [3] is shown the Algo-

rithm 4 in a synthetic way.
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CHAPTER3
UAV control architectures

IN this chapter, the control architectures of the multirotor systems em-
ployed in this work are presented. In particular two UAVs share the
same architecture whereas the third UAV exploits a more advanced

control structure. For each architecture the unknown controller parameters
are also illustrated. These parameters will be tuned with the methods pre-
sented in Chapter 2 and Chapter 4 and the results are provided in Chapter 6.

The chapter is organised as follows. Section 3.1 displays the overall con-
trol architecture that includes both the position and the attitude controllers.
The first control structure is then illustrated in Section 3.2. It contains SISO
PID controllers and for this type of architecture only the attitude controller
is provided. For the second control structure both the attitude and the posi-
tion controllers are presented in Section 3.3 and Section 3.4 respectively.
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Chapter 3. UAV control architectures

3.1 Overall control architecture

The control of UAVs and in particular of multirotors is a challenging prob-
lem mainly for two reasons: their dynamics are characterized by nonlineari-
ties and they are underactuated with respect to the six rigid body Degrees of
Freedom (DoFs). Quadrotor control synthesis has been studied extensively
in the literature. A classical PID architecture for both attitude and position
control remains one of the most common choices, see for example [43],
against the more modern LQ technique, as discussed in e.g., [8]. Indeed,
while for aggressive manoeuvring flight nonlinear models and nonlinear
control design methods are needed (see, e.g., [39] for a recent survey), if
one is mainly concerned with applications such as inspection, surveillance,
mapping, video and photography (which, incidentally, cover most of the
actual market for this type of vehicles) then linear modelling and control
design methods are more suitable, while on the other hand, the expected
performance level is significantly higher. The state-of-the-art in linear con-
trol for small scale helicopters is given by approaches such as, e.g., [31],
in which modern robust control design is coupled to identification of linear
rotorcraft models. A nonlinear control method with proven effectiveness
for underactuated system is the backstepping, see for example [9], where
it is compared with sliding-mode technique. More general approaches, on
the other hand, consider nonlinear trajectory planning and tracking tech-
niques. Many methods have been proposed, covering, e.g., control on non-
linear manifolds [33], adaptive control [11,38], dynamic inversion [17] and
feedback linearization [37]. Of particular interest are methods for planning
and tracking based on the flatness property of quadrotor dynamics (see,
e.g., [20, 40]) as well as procedures based on smoothing of a given trajec-
tory using motion primitives (see for example [7]).

Regarding multirotor platforms, the most popular architecture adopts
variable rotor angular rate as control input (with fixed rotors blade pitch):
this choice is primarily due to rotors hub mechanical simplicity and weight
considerations, but, as it will be explained in Section 5.1, one UAV consid-
ered in this work adopts an alternative architecture with variable rotor blade
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Attitude
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ψ̄

Θ, ω

X , V

Figure 3.1: The overall control architecture for multirotor system.

collective pitch and fixed rotors angular rates.

The overall control architecture of all the UAVs exploited in this work
is the same: it is a hierarchical control approach with an outer loop that
controls the position of the UAV and generates the attitude setpoint for an
inner loop that control the attitude of the quadrotor (see Figure 3.1). The
position and the attitude controllers are not independent because the system
is underactuated and e.g., if the user want to move the UAV forward he has
to tilt it. Furthermore, the position and the attitude measurements come
from a Kalman-based estimator already implemented in the Flight Control
Unit (FCU).

The position controller is fed with the position reference signals (x̄(t),
ȳ(t) and z̄(t)) and the measurements that comes from the estimator, in par-
ticular the information about the position

X(t) =
[
x(t) y(t) z(t)

]T
where x(t), y(t) and z(t) are the longitudinal, lateral and vertical positions
respectively. The controller exploits also the information about the UAV
linear velocity

V (t) =
[
vx(t) vy(t) vz(t)

]T
33
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Chapter 3. UAV control architectures

where vx(t), vy(t) and vz(t) are the longitudinal, lateral and vertical linear
velocities respectively. The position controller generates the total trust T (t)

and the reference signal for the roll (φ̄(t)) and pitch (ϑ̄(t)) angles. The
yaw angle setpoint ψ̄(t) is provided by the user. Exploiting the attitude
setpoints, the inner attitude controller generates the required roll (L(t)),
pitch (M(t)) and yaw (N (t)) moments. The inner controller employs also
the information about the attitude

Θ(t) =
[
φ(t) ϑ(t) ψ(t)

]T
where φ(t), ϑ(t) and ψ(t) are the roll, pitch and yaw angles respectively
and the measured angular rates

ω(t) =
[
p(t) q(t) r(t)

]T
where p(t), q(t) and r(t) are the roll, pitch and yaw angular rates respec-
tively. The measured attitude angles and angular rates come from the UAV
state estimator.

The total thrust and the moments generated by position and attitude con-
trollers feed the mixer matrix block. This matrix relates the required thrust
and moments around each axis to the control inputs of the UAV. The num-
ber and the type of outputs of these block depend on the type of UAV: in
a quadrotor there are four control inputs and, if it adopts variable rotor an-
gular rates, it is related to the speed of the propellers. Whereas, if the UAV
exploits variable rotor blade collective pitch to generate the required thrust
and moments, the control inputs are the pitch angles of the rotor blades.

The control architecture was already implemented in the FCU of each
UAV. The structure of the controllers was designed assuming decoupled
dynamics between the Degree of Freedoms (DoFs). This assumption is
valid only if the UAV is considered in near-hovering conditions, and falls
progressively as the forward velocity increases. This means that the lon-
gitudinal/pitch, lateral/roll, vertical and yaw attitude DoFs are controlled
independently. As was discussed previously, the longitudinal and pitch
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Longitudinal
Controller

Pitch
Controller

UAV longi-
tudinal/pitch

dynamics

Mx̄ ϑ̄
x, vx

ϑ, q

Figure 3.2: The controller architecture for the longitudinal/pitch DoFs.

DoFs and the lateral and roll DoFs are coupled because, in order to obtain
a longitudinal movement, the quadrotor must have a pitch angle different
from zero and in the same way a roll angle different from zero implies a
lateral movement. All the data-driven methods are applied to the longitu-
dinal/pitch DoFs (see Figure 3.2 where the mixer matrix block is omitted
for the sake of simplicity). This must not be considered a simplification of
tuning the entire control architecture presented in Figure 3.1. Indeed, the
same results can be applied for lateral/roll DoFs, considering the geomet-
rical symmetry of the quadrotor, and can be extended to yaw and vertical
dynamics since also these controllers have a similar structure. In the fol-
lowing, only the scheme in Figure 3.2 is considered.

3.2 SISO pitch attitude controller

Two of the quadrotors considered in this work share the same pitch atti-
tude control architecture. It is based on cascaded SISO PID loops and it is
displayed in Figure 3.3. In detail, the outer regulator Co(z) is a PD con-

Co(z) Ci(z)
UAV pitch
dynamics

Mϑ̄ q̄
θ

q
−−

Figure 3.3: The pitch attitude controller based on SISO PID architecture.

troller based on attitude feedback (estimated angle ϑ(t), set-point ϑ̄(t)) and
the inner regulator Ci(z) is a PID controller based on angular rate feed-
back (measured angular velocity q(t), set-point q̄(t)). The inner controller
presents an integral term to reject load disturbances and to achieve zero
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Chapter 3. UAV control architectures

steady state tracking error whereas the outer loop does not provide an inte-
gral action because the disturbances are already rejected by the inner loop
and, in most of applications, as in our case, the outer variable is simply the
integral of the inner one, multiplied by a gain. Thus, considering the outer
loop, an integral term is already included in the loop transfer function. The
transfer functions of the outer and the inner controllers are:

Co(z) = KO
P +KO

D

z − 1

zTs

Ci(z) = KI
P +KI

I

Ts
z − 1

+KI
D

z − 1

zTs

where Ts is the sampling time. The unknown controller parameters that
will be tuned with the data-driven approach are:

θ =
[
KO
P KO

D KI
P KI

D KI
I

]T
.

The control variable considered as output of the inner regulator is the pitch-
ing momentM(t).

3.3 MISO pitch attitude controller

The previous section presents the pitch attitude controller that is imple-
mented on two of the three different UAVs considered in this work. As
will be explained in Chapter 5, a third UAV is considered and it employs a
different control architecture. Instead of changing the control structure in
order to match the architecture presented in Section 3.2, the new structure
is analysed and the data-driven methods are extended in Section 4.2 to deal
with this new controller. The new control architecture is now illustrated.

As the control structure presented in Section 3.2, the new control archi-
tecture is based on two cascaded PID loops. The outer loop on the pitch
attitude feedback is a classical proportional controller but the inner regula-
tor, based on the pitch angular rate, presents a different architecture respect
to the classical PID structure. It has a feed-forward gain directly computed
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θ
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Figure 3.4: The pitch attitude controller with feed-forward gain and derivative action on
plant measurements.

on the pitch angle setpoint and the derivative action is computed starting
from the plant output q(t) and not from the pitch angular rate error (see
Figure 3.4). This last expedient avoids to generate an impulse on the con-
trol action M(t) when there is a step in the reference signal q̄(t) of the
inner loop.

The output of the outer controller can be computed as:

q̄(t) = KO
P

(
ϑ̄(t)− ϑ(t)

)
while the control input is computed by the inner controller as:

M(t) = KI
FF q̄(t) +

(
KI
P +

KI
ITs

z − 1

)
(q̄(t)− q(t))− KI

D

Ts

z − 1

z
q(t).

The unknown controller parameters that will be tuned with the data-
driven approach are:

θ =
[
KO
P KI

FF KI
P KI

D KI
I

]T
. (3.1)
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kID
Ts
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+ −

x

vx
−−

ϑ̄+

Figure 3.5: The longitudinal position controller with feed-forward and derivative action
based on the plant measurements.

3.4 MISO longitudinal position controller

As will be explained in Section 5.3, where the third UAV is introduced, the
size of this quadrotor and the high flexibility and customisation of its FCU
allow to perform in-flight identification experiments. This feature opens the
data-driven approach to a different type of controllers: the position regula-
tor. As displayed in Figure 3.1 the position controller is located in an higher
level than the attitude controller. It generates the reference signal for the at-
titude regulator starting from position setpoint and position measurements.
In this work only the longitudinal position controller is considered since it
is coupled with the pitch attitude regulator and it is independent from the
controller of other DoFs.

The control architecture follows the structure of the attitude controller
shown in Figure 3.4: in this case there is a proportional controller on the
outer loop based on the longitudinal position that receives the position er-
ror as input and returns longitudinal linear velocity reference as output.
The inner loop is associated with the longitudinal velocity and presents a
derivative term computed on the plant output vx(t) and the proportional
and integral terms calculated on the velocity error (see Figure 3.5). The
inner controller computes the pitch angle setpoint that feeds the scheme in
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3.4. MISO longitudinal position controller

Figure 3.4.
Since the control architecture is the same as for the attitude regulator in

Section 3.3, the number of the unknown controller parameters are the same
and they are:

θ =
[
kOP kIFF kIP kID kII

]T
.

The unknown controller parameters are expressed with lower case letters
in order to remark the difference with the unknown parameters in (3.1)
although the position and the attitude controllers share the same structure.
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CHAPTER4
Data-driven algorithms for multirotor

systems

IN this chapter the extensions of the data-driven methods presented in
Chapter 2 are listed. In particular, the VRFT and the CbT are extended
to solve specific tuning problems related to UAVs and related to the

controller architectures depicted in Chapter 3.

This chapter is organised as follows. In Section 4.1 the VRFT method
considers experimental data from closed-loop flight tests. Subsequently,
Section 4.2 provides an extension to the standard VRFT method to deal
with the controller architecture with a feed-forward term and a derivative
action related to the measured output. Finally, in order to compare the
VRFT and the CbT algorithms, the CbT method is extended in Section 4.3
to tune a cascade control system with a single experimental dataset.
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Chapter 4. Data-driven algorithms for multirotor systems

Cd P
uȳ e + y+ ỹ

−

ū

+

ν

+

Figure 4.1: VRFT experiment in closed-loop operation.

4.1 Closed Loop Experiments

The standard VRFT algorithm presented in Section 2.1 exploits experimen-
tal data that come from an open-loop test. Performing such a test is not
always possible. Some of the applications are unstable by nature and have
to operate in closed-loop. Sometimes also a stable system must operate
in closed-loop during the experiment to satisfy some conditions related to
the experiment or due to safety reasons. In this work the VRFT method is
employed to tune the controllers of UAVs. When the test to collect data
is performed in flight, the UAV could collide on some obstacles or exceed
the test area. In all these situations the data must be collected in closed-
loop allowing the user to control the system also when the experiment is
been conducting. Furthermore, closed-loop tests allow us to perform the
experiment to collect the data without exploiting a test-bed and without
performing changes on the system to control.

Obviously, in order to perform the closed-loop test, an initial controller
that stabilise the system must be available. The discussion on how this
controller is obtained goes beyond the scope of this work but, if this ini-
tial controller is employed only to collect the closed-loop data, the reader
should consider the fast way to obtain the controller since it has not to reach
some closed-loop performance goal and it has only to stabilise the system.

As illustrated in Figure 4.1, the excitation signal ū(t) is added to the
output of the controller Cd(z). Cd(z) is the initial controller that stabilises
the system. The user can act on ȳ(t) to control the behaviour of the system
also during the experiment.

The standard VRFT method, as described in Section 2.1, cannot be
applied to obtain a new controller exploiting the measurements DN =
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4.1. Closed Loop Experiments

{u(t), ỹ(t)}t=1..N : specific problems arise when the instrumental variable
is created because u(t) and ν(t) are now correlated. Indeed, the user cannot
directly act on the input of the plant as in the standard VRFT but he can op-
erates on the signals ȳ(t) and ū(t) and the input of the plant is now affected
by this action:

u(t) =
1

1 + Cd(z)P (z)
ū(t) +

Cd(z)

1 + Cd(z)P (z)
(ȳ(t)− ν(t)) . (4.1)

For the sake of simplicity the assumption that the user does not provide a
setpoint during the experiment can be made (ȳ(t) = 0 ∀t) and (4.1) can
be rewritten as:

u(t) =
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t). (4.2)

When the experimental data is collected in closed-loop it is not always
possible to use a second experiment to build the instrumental variable. In-
deed, the user can select the same signal ū(t) in the repeated experiment
but this does not imply that the input of the plant u(t) will be the same in
the two experiments, violating the assumption made in Section 2.1. Since
VRFT is employed in this work to tune the controller of an UAV and VRFT
is extended in this section to perform the experiment in flight, a lot of en-
vironment uncertainties affect the experiment and it is impossible to ensure
that the input of the plant is the same in the two flight tests. Thus, the
instrumental variable must be build using the second choice presented in
Section 2.1: the identification of the plant. Using (4.2) to build the instru-
mental variable as described in Algorithm 1 leads to a biased controller
parameter vector since the instrumental variable is no longer uncorrelated
with the noise ν(t). Indeed, the instrumental variable is built as

ŷ(t) = P̂ (z)u(t) (4.3)

43



i
i

“thesis” — 2017/12/20 — 17:00 — page 44 — #50 i
i

i
i

i
i

Chapter 4. Data-driven algorithms for multirotor systems

and using (4.2):

ŷ(t) = P̂ (z)

(
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t)

)
. (4.4)

Following Algorithm 1, the instrumental variable is:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷ(t)

= β(z)L(z)
(
M(z)−1 − 1

)
P̂ (z)

(
1

1 + Cd(z)P (z)
ū(t)− Cd(z)

1 + Cd(z)P (z)
ν(t)

)
.

(4.5)

The previous equation clearly shows the correlation between ζ(t) and ν(t).
To solve this problem a different instrumental variable must be chosen in
order to ensure a correlation with the regression variable and an uncorre-
lation with the noise. Two choices for the instrumental variable are now
proposed. Let

ŷOLū (t) = P̂ (z)ū(t)

be the simulated output of the plant when it is fed only by the excitation
signal ū(t) in open-loop. The first proposed choice is as follows:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷOLū (t)

= β(z)L(z)
(
M(z)−1 − 1

)
P̂ (z)ū(t).

(4.6)

The second option for the instrumental variable is:

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷCLū (t) (4.7)

where

ŷCLū (t) =
P̂ (z)

1 + Cd(z)P̂ (z)
ū(t)
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4.1. Closed Loop Experiments

is the simulated output of the plant when it is fed only by the excitation sig-
nal ū(t) in closed-loop condition. The choices expressed in (4.6) and (4.7)
allow the instrumental variable to be uncorrelated with the noise ν(t) since
it depends from ū(t) and not from u(t). Note that if the instrumental
variable is built as in (4.6) the initial controller Cd(z) might be unknown
whereas with the second method the user must also know it.

Nevertheless the identification procedure exploited in (4.3) to obtain the
model of the plant could be very challenging and the identification method
must be selected accordingly since the data is collected in closed-loop and
classical identification methods fail with this type of data. Subspace Model
Identification (SMI) methods emerge as a viable approach to solve this task,
in particular the Predictor Based System Identification (PBSID) method
that it will be presented in the next subsection (see [50] for an overview of
closed-loop SMI methods).

4.1.1 The PBSID algorithm

As illustrated in [13], PBSID is an advanced and recent model identifica-
tion algorithm with the ability of dealing with data generated in closed-
loop. It belongs to the class of black-box methods: it allows to determine
dynamics model of a system using only the input-output data gathered in
the identification experiments. The obtained model is unstructured, namely
with a non-physically motivated state space. Furthermore, since PBSID is
a SMI algorithm, it is a non-iterative method: it can be implemented with
numerically stable and efficient tools from numerical linear algebra and it
has proved to be extremely successful in dealing with the estimation of
state-space models MIMO systems in a number of rotorcraft applications
(see [4, 5, 35, 53]).

The PBSID algorithm, which is briefly described in the following, con-
siders the finite dimensional, Linear Time Invariant (LTI) state space model
class

x(k + 1) = Ax(k) +Bu(k) + w(k)

ỹ(k) = Cx(k) +Du(k) + ν(k)
(4.8)
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Chapter 4. Data-driven algorithms for multirotor systems

where x(k) ∈ Rn, u(k) ∈ Rm, ỹ(k) ∈ Rp and {ν(k), w(k)} are ergodic
sequences of finite variance satisfying

E[

[
w(t)

ν(t)

] [
w(s)T ν(s)T

]
] =

[
Q S

ST R

]
δs,t,

with δs,t denoting the Kronecker delta function, possibly correlated with
the input u(k).

Let now

z(k) =
[
uT (k) yT (k)

]T
and

Ā = A−KC, B̄ = B −KD, B̃ =
[
B̄ K

]
,

where K is the Kalman gain associated with (4.8), and note that system
(4.8) can be written as

x(k + 1) = Āx(k) + B̃z(k)

ỹ(k) = Cx(k) +Du(k) + e(k), (4.9)

where e(·) is the innovation vector. The data equations for the PBSID al-
gorithm can be then derived by noting that propagating p− 1 steps forward
the first of equations (4.9), where p is the so-called past window length, one
gets

x(k + 2) = Ā2x(k) +
[
ĀB̃ B̃

] [ z(k)

z(k + 1)

]
... (4.10)

x(k + p) = Āpx(k) +KpZ0,p−1
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4.1. Closed Loop Experiments

where

Kp =
[
Āp−1B̃0 . . . B̃

]
(4.11)

is the extended controllability matrix of the system and

Z0,p−1 =


z(k)

...

z(k + p− 1)

 .
Under the considered assumptions, Ā represents the dynamics of the op-
timal one-step ahead predictor for the system and therefore it has all the
eigenvalues inside the open unit circle, so the term Āpx(k) is negligible for
sufficiently large values of p and we have that

x(k + p) ' KpZ0,p−1.

As a consequence, the input-output behavior of the system is approximately
given by

ỹ(k + p) ' CKpZ0,p−1 +Du(k + p) + e(k + p)

... (4.12)

ỹ(k + p+ f) ' CKpZf,p+f−1 +Du(k + p+ f)+

+ e(k + p+ f).
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Chapter 4. Data-driven algorithms for multirotor systems

Introducing the matrix notation defined as:

Z̄p,f =
[
Z0,p−1 Z0,p . . . Z0,p+f−1

]T
Xp,f =

[
x(k + p) x(k + p+ 1) . . . x(k + p+ f)

]T
Y p,f =

[
ỹ(k + p) ỹ(k + p+ 1) . . . ỹ(k + p+ f)

]T
Up,f =

[
u(k + p) u(k + p+ 1) . . . u(k + p+ f)

]T
Ep,f =

[
e(k + p) e(k + p+ 1) . . . e(k + p+ f)

]T
,

the data equations are given by

Xp,f ' KpZ̄p,f

Y p,f ' CKpZ̄p,f +DUp,f + Ep,f . (4.13)

Considering p = f (where f is the so-called future window length), esti-
mates for the matrices CKp and D are first computed by solving the least-
squares problem

min
CKp,D

‖Y p,p − CKpZ̄p,p −DUp,p‖F . (4.14)

Defining now the extended observability matrix Γp as

Γp =


C

CĀ

...

CĀp−1

 (4.15)
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4.1. Closed Loop Experiments

and noting that the product of Γp and Kp can be written as

ΓpKp '


CĀp−1B̃ . . . CB̃

0 . . . CĀB̃

... . . . ...

0 . . . CĀp−1B̃

 , (4.16)

such product can be computed using the estimate ĈKp of CKp obtained by
solving the least squares problem (4.14). Recalling now that

Xp,p ' KpZ̄p,p (4.17)

it also holds that

ΓpXp,p ' ΓpKpZ̄p,p. (4.18)

Therefore, computing the SVD

ΓpKpZ̄p,p = UΣV T (4.19)

an estimate of the state sequence can be obtained as

X̂p,p = Σ1/2
n V T

n = Σ−1/2
n UT

n ΓpKpZ̄p,p, (4.20)

from which, in turn, an estimate of C can be computed by solving the least
squares problem

min
C
‖Y p,p − D̂Up,p − CX̂p,p‖F . (4.21)
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Algorithm 5 The control system with closed-loop excitation data.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = (1−M(z))M(z)W (z)U−1(z).
3: Compute uL(t) as uL(t) = L(z)u(t).
4: Compute ϕ(t) = β(z)L(z)

(
M(z)−1 − 1

)
ỹ(t).

5: Identify the plant model P̂ (z) with the PBSID algorithm.
6: Compute ŷū(t) = P̂ (z)

1+Cd(z)P̂ (z)
ū(t).

7: Compute the instrumental variable ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ŷū(t).

8: Compute θ̂IVN =
[∑N

t=1 ζ(t)ϕTL(t)
]−1∑N

t=1 ζ(t)uL(t).

The final steps consist of the estimation of the innovation data matrix Ep,f
N

Ep,f
N = Y p,p − ĈX̂p,p − D̂Up,p (4.22)

and of the entire set of the state space matrices for the system, which can
be obtained by solving the least squares problem

min
A,B,K

‖X̂p+1,p − AX̂p,p−1 −BUp,p−1 −KEp,p−1‖F . (4.23)

In [28] a recursive real-time implementation of the PBSID method is
presented. These features allow to obtain a suitable online estimation ex-
ploiting open-loop or closed-loop data.

Algorithm 5 recaps all the steps needed to exploit VRFT to tune the
controller when the data is collected in closed-loop.

4.2 Controller with feed-forward and action on plant output

As the reader should already understand, the definition of a new controller
architecture goes beyond the scope of this work and the main goal is to
use data-driven methods to tune or re-tune a controller that is already im-
plemented. In particular, in this work the VRFT method will be apply to
different UAVs that exploit two controller architectures (see Chapter 3).
The first controller is a classical SISO PID controller and it can be rep-
resented by the Scheme 1.1 and it can be tuned with the classical VRFT
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algorithm, as presented in Section 2.1. The second controller architecture
is a modification of the first one: a feed-forward term is added and there is
an action that is computed on the plant output directly (see Figure 3.4 and
Figure 3.5). As shown in Chapter 3, where the controller architectures are
illustrated in details, this class of controllers includes a PID controller with
a feed-forward gain and with the derivative action computed on the plant
output instead on the error. This controller can be considered as a Multiple

Ce

Cȳ

Cy

P
ȳ e + +

−
y

−
u

Figure 4.2: Controller with feed forward term and action on plant measurements.

Input Single Output (MISO) system with two inputs, the setpoint ȳ(t) and
the plant output ỹ(t), and one output, the control action u(t). The VRFT al-
gorithm, in this section, is extended to consider this controller architecture.

A generalisation of the scheme in Figure 3.4 and Figure 3.5 is now con-
sidered and it is represented in Figure 4.2 where a noiseless environment is
considered for simplicity. The output of the controller is:

u(t) = Cȳ (z, θȳ) ȳ(t) + Ce (z, θe) e(t)− Cy (z, θy) y(t). (4.24)

Considering the new controller architecture, also the criterion minimised
by the VRFT algorithm in (2.1) changes as:

JNV R(θe, θy, θȳ) =
1

N

N∑
t=1

L(z)
[
u(t)− Ce(z, θe)e(t)

− Cȳ(z, θȳ)ȳ(t) + Cy(z, θy)y(t)
]2

.

(4.25)
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Chapter 4. Data-driven algorithms for multirotor systems

If the controller class is linearly parameterised, the minimum of the crite-
rion (4.25) can be found exploiting the the closed form solution as in (2.5).
Indeed, in this case the controllers can be rewritten as:

Cȳ(z, θȳ) = βȳ(z)θȳ

Ce(z, θe) = βe(z)θe

Cy(z, θy) = βy(z)θy.

Defining

θ =


θȳ

θe

θy


and

ϕL(t) =


βȳ(z)M(z)−1

βe(z) (M(z)−1 − 1)

βy(z)

L(z)y(t),

the criterion in (4.25) can be rewritten as:

JNV R(θ) =
1

N

N∑
t=1

(
uL(t)− ϕTL(t)θ

)2
, (4.26)

and the optimal parameters are:

θ̂N = arg min
θ
JNV R(θ).

The closed-form solution of the problem in the previous equation exists and
it is equal to (2.5).

Considering the new controller architecture, a different selection of the
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4.2. Controller with feed-forward and action on plant output

filter L(z) must be made. The filter is shaped starting from the derivation
in [32] where the filter is built for a two degree of freedom controller.

Let

S(z) =
1

1 +
(
C̄e(z) + C̄y(z)

)
P (z)

be the reference model for the sensitivity function, that is the transfer func-
tion between ν(t) and y(t) and

M(z) =

(
C̄ȳ(z) + C̄e(z)

)
P (z)

1 +
(
C̄e(z) + C̄y(z)

)
P (z)

(4.27)

be the reference model for the closed-loop function: the transfer function
between ȳ(t) and y(t). C̄ȳ(z), C̄e(z) and C̄y(z) are the optimal transfer
functions that solve exactly the model matching problem.

Proposition 2. The filter L(z) is defined as

|L|2 = |M |2|S|2|W |2 1

Φu

, ∀ω ∈ [−π, π]. (4.28)

Proof. Note that the criterion defined in (1.1), for this controller architec-
ture is now defined as

JMR(θe, θy, θȳ) =

∥∥∥∥( P (z) (Ce(z, θe) + Cȳ(z, θȳ))

1 + P (z) (Ce(z, θe) + Cy(z, θy))
−M(z)

)
W (z)

∥∥∥∥2

2

and it can be written as

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣∣∣ P (ejω) (Ce(e
jω, θe) + Cȳ(e

jω, θȳ))

1 + P (ejω) (Ce(ejω, θe) + Cy(ejω, θy))

−M(ejω)
∣∣∣2 ∣∣W (ejω)

∣∣2 dω
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or, by dropping the argument ejω:

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣∣ P (Ce(θe) + Cȳ(θȳ))

1 + P (Ce(θe) + Cy(θy))
−M

∣∣∣∣2 |W |2 dω.
(4.29)

After some manipulations and exploiting the definition of M(z) in (4.27),
the criterion (4.29) can be rewritten as:

JMR(θe, θy, θȳ) =
1

2π

∫ π

−π

∣∣∣∣ P

1 + P (Ce(θe) + Cy(θy))

∣∣∣∣2∣∣∣∣ (Cȳ(θȳ) + Ce(θe))

−
(
C̄ȳ + C̄e

)
−M

[
(Ce(θe) + Cy(θy))

−
(
C̄e + C̄y

) ]∣∣∣∣2 |W |2 dω.
(4.30)

If the involved signals in (4.25) are realisations of stationary and ergodic
stochastic processes and N → ∞, the analysis of JNV R(θe, θy, θȳ) is based
on asymptotic results:

JNV R(θe, θy, θȳ)→ JV R(θe, θy, θȳ). (4.31)

Exploiting the definition ofM(z) in (4.27) and the Parseval theorem (see [36]),
the asymptotic criterion (4.31) is written as:

JV R(θe, θy, θȳ) = =
1

2π

∫ π

−π

|L|2 |P |2

|M |2

∣∣∣∣ (Cȳ(θȳ) + Ce(θe))

−
(
C̄ȳ + C̄e

)
−M

[
(Ce(θe) + Cy(θy))

−
(
C̄e + C̄y

) ]∣∣∣∣2Φudω.

(4.32)

In the following, JV R(θe, θy, θȳ) is used instead JNV R(θe, θy, θȳ). The main
idea of the VRFT algorithm is to minimise JV R(θe, θy, θȳ) instead of
JMR(θe, θy, θȳ) as described in Section 2.1. If the ideal controllers belong
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to the class of the available controllers, that is

(
C̄e(z), C̄y(z), C̄ȳ(z)

)
∈ {(Ce(z, θe), Cy(z, θy), Cȳ(z, θȳ)} ,

regardless of how the plant, the filters and the reference model are selected,
the VRFT method leads to the ideal controller (see [32]). On the other hand,
if the ideal controllers do not belong to the class of the available controllers,
in order to obtain JNV R(θe, θy, θȳ) = JMR(θe, θy, θȳ), a specific selection of
the filter L(z) must be made. Indeed, if

|L|2 =
|M |2|W |2

|1 + P (Ce(θe) + Cy(θy))|2
1

Φu

, ∀ω ∈ [−π, π], (4.33)

then JV R(θe, θy, θȳ) = JMR(θe, θy, θȳ) and minimising JV R(θe, θy, θȳ) is
the same as minimising JMR(θe, θy, θȳ).

Since the definition of L(z) in (4.33) depends on P (z), that is unknown,
the choice in (4.33) is not feasible. As described in [32] where an exhaus-
tive analysis is proposed, the following assumption can be made:

|1 + P (Ce(θe) + Cy(θy))|2 '
∣∣1 + P

(
C̄e + C̄y

)∣∣2
and the filter in (4.33) can be rewritten as in (4.28) that it is here proposed
again:

|L|2 = |M |2|S|2|W |2 1

Φu

, ∀ω ∈ [−π, π].

All the steps to exploit the VRFT method with the new controller ar-
chitecture and data collected in open-loop are summarised in Algorithm 6.
If the experimental data is collected in closed-loop, the improvements de-
scribed in Section 4.1 must be implemented in the same way also with this
architecture. Finally, if the plant output is affected by noise, an instrumental
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Algorithm 6 VRFT algorithm with the new controller architectures.

1: Compute U(z) such that
∣∣U (ejω)∣∣2 = Φu(ω).

2: Compute L(z) = M(z)S(z)W (z)U−1(z).
3: Compute uL(t) as uL(t) = L(z)u(t).

4: Compute ϕL(t) =

 βȳ(z)M(z)−1

βe(z)
(
M(z)−1 − 1

)
βy(z)

L(z)y(t).

5: if y(t) is affected by noise then
6: Identify the plant model P̂ (z).
7: Compute ŷ(t) = P̂ (z)u(t).

8: Compute the instrumental variable ζ(t) =

 βȳ(z)M(z)−1

βe(z)
(
M(z)−1 − 1

)
βy(z)

L(z)ŷ(t).

9: else
10: Compute ζ(t) = ϕL(t)
11: end if
12: Compute θ̂IVN =

[∑N
t=1 ζ(t)ϕTL(t)

]−1∑N
t=1 ζ(t)uL(t).

variable method must be implemented as in the standard VRFT algorithm
presented in Section 2.1.

4.3 Correlation based Tuning for cascade control systems

Although the VRFT algorithm was extended in [19] to deal with a cascade
control system with a single set of experimental data, the same extension
of the CbT method was not available in the literature. This makes the CbT
method inapplicable to tune the controllers presented in Chapter 3 and its
comparison with VRFT impossible. In this section this extension is pre-
sented also for the CbT method, following the rationale of Section 2.1.1.

Also in this case two loops are considered without loss of generality
(Figure 2.2). Let Mi(z) and Mo(z) be the reference models for the inner
and the outer loop respectively. Experimental data

DN = {u(t), ỹi(t), ỹo(t)}t=1,...,N

from an open-loop test is considered available, where u(t) is the control
variable, ỹi(t) is the output of the inner loop and ỹo(t) is the output of the
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outer loop. Consider two families of controllers for the inner and the outer
loops:

Ci(θi) = {Ci(z, θi) , θi ∈ Rn
i }

Co(θo) = {Co(z, θo) , θo ∈ Rn
o} .

The inner controller can be tuned by applying the standard CbT method as
presented in Section 2.2, setting ỹ(t) = ỹi(t) and ȳ(t) = u(t).

Considering the outer controller, the same problem of the VRFT ap-
proach arises: the input of the system to control is not available in the
data. This signal must be build starting from the available information. The
procedure to obtain this signal follows the same steps presented in Sec-
tion 2.1.1 and it is here proposed again for convenience.

Let ȳi(t) be the output signal of the outer controller. Since the inner and
the outer controllers are designed independently, it can be derived from the
available data. In detail, once the inner controller Ci(z, θi) is tuned, the
reference signal of the inner loop can be computed as

ȳi(t) = ei(t) + yi(t),

where the tracking error comes from the result of the inner design as

ei(t) = C−1
i (z, θ̂i)u(t),

where θ̂i are the optimal parameters of the inner loop. All the information
is now available and the outer loop can be tuned by means of the CbT
algorithm as presented in Section 2.2, imposing ỹ(t) = ỹo(t) and ȳ(t) =

ȳi(t). The steps of the tuning method are presented in Algorithm 7.
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Algorithm 7 The CbT method for two nested cascade control loops with a single set of
experimental data.

1: Compute Ui(z) such that
∣∣Ui (ejω)∣∣2 = Φu(ω).

2: repeat
3: Compute Fi(z) = (1−Mi(z))Wi(z)U

−1
i (z).

4: Compute ūF (t) as ūF (t) = Fi(z)u(t).
5: Choose li close to the impulse response of Mi(z).
6: Compute ςi(t) =

[
uF (t+ l) . . . uF (t) . . . uF (t− l)

]T
.

7: Compute the error εi(t, θi) = Mi(z)u(t)− Ci(z, θi)(1−Mi(z))ỹi(t).
8: Compute fi(θi) = 1

N

∑N
t=1 ςi(t)εi(t, θ).

9: Compute Ji(θi) = fTi (θ)fi(θi).
10: Compute θ̂i = arg min

θi
Ji(θi).

11: until Ci(z, θ̂i) is a minimum phase system, otherwise change Mi(z).
12: Compute ȳi(t) = C−1

i (z, θ̂i)u(t) + ỹi(t).
13: Compute Uo(z) such that

∣∣Uo (ejω)∣∣2 = Φȳi(ω) where Φȳi(ω) is the spectral density
of ȳi(t).

14: Compute Fo(z) = (1−Mo(z))Wo(z)U
−1
o (z).

15: Compute ȳiF (t) as ȳiF (t) = Fo(z)ȳi(t).
16: Choose lo close to the impulse response of Mo(z).
17: Compute ςo(t) =

[
ȳiF (t+ l) . . . ȳiF (t) . . . ȳiF (t− l)

]T
.

18: Compute the error εo(t, θo) = Mo(z)ȳi(t)− Co(z, θo)(1−Mo(z))ỹo(t).
19: Compute fo(θo) = 1

N

∑N
t=1 ςo(t)εo(t, θ).

20: Compute Jo(θo) = fTo (θ)fo(θo).
21: Compute θ̂o = arg min

θo
Jo(θo).
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CHAPTER5
Considered multirotor platforms

THREE different multirotor systems have been adopted in this work
to test the data-driven methods presented in the previous chapters.
All the multirotor systems considered here are quadrotors which

differ in dimensions, actuation and control architectures. Indeed, as it can
be more clear in the following sections where each quadrotor is presented
in details, the data-driven algorithms are applied to a large, a medium and
a micro quadrotor and to UAVs with variable and fixed blade pitch. This is
made both to test if the data-driven algorithms are flexible and to provide
a different way to tune the controllers for all the UAVs in our laboratory.
Exploiting the different features of each UAV and the chance to execute
specific tests, different analysis have been performed. The results will be
presented in Chapter 6.
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5.1 Aermatica P2-A1

The first quadrotor studied in this work is the Aermatica P2-A1 prototype
(see Figure 5.1), a platform having a maximum take-off weight of about
5 kg and an arm length of 0.415 m. The four rotors have a radius of 0.27 m
and a teetering articulation with flapping motion partially restrained by rub-
ber elastic elements. Unlike most quadrotors, which use variable rotor an-
gular rates as control inputs (with fixed rotors blade pitch), Aermatica P2-
A1’s rotors are operated at a fixed angular rate and use variable collective
pitch as control variables. While this choice leads to a more complex de-
sign of the rotor hub and a slight weight penalty, it has been shown (see,
e.g., [15,45]) that variable pitch control can overcome the limitations on the
achievable quadrotor performance associated with the bandwidth of motor
dynamics for rate-controlled configurations.

All the experiments considered in this work with this quadrotor have
been conducted operating the UAV on a single degree of freedom test-
bed (only pitch rotation allowed, see Figure 5.1): as discussed in [44], this
set-up guarantees safer, faster and more repeatable operations with respect
to flight while remaining representative of the pitch attitude dynamics in
flight for near hovering conditions. Indeed, the test bench brings the vehi-
cle rotors at a height from ground sufficient to assure Out of Ground Effect
(OGE) (see [34]) aerodynamic conditions. Also, aerodynamic interferences
on the rotors caused by the test-bed structure can be considered negligible.
Furthermore, identification experiments for the attitude dynamics of Aer-
matica P2-A1 have been carried out both on the test bench and in flight. The
models obtained from indoor data and flight data have the same structure
and nearly identical numerical values of the parameters (see, again [44] for
details).

As for the level of disturbances experienced by the platform on the test
bench, it is worth to remark that with respect to an outdoor flight condi-
tion, in which the rotor-induced wakes develop free from obstacles, work-
ing indoor in a closed volume with limited dimensions implies a complex
recirculation of rotor wakes. This, in turn, determines a non-negligible and
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Figure 5.1: Aermatica P2-A1 on laboratory test-bed.

non-deterministic disturbance on the vehicle during the test, with effects
assimilable to free air turbulence. As a result, the platform is subjected to a
significant level of aerodynamic disturbance also during indoor tests.

Concerning the control architecture, the Aermatica P2-A1 platform adopts
a classical attitude control scheme based on decoupled cascaded PID loops
for the pitch, roll and yaw axes (see the block diagram in Figure 3.3, where
the pitch control loop is represented). More precisely, an outer PD loop
based on attitude feedback and an inner PID loop on angular rate feed-
back. The overall delay of the control loop, from IMU measures, through
acquisition and processing, to servo actuation of blade collective pitch, is
estimated to be 0.06 s.

Due to the size of the quadrotor and the lack of customisation of the
firmware, only few data-driven methods have been considered. In partic-
ular, all the tests to collect the experimental data are performed in quasi
open-loop conditions: while the nominal attitude and position controllers
were disabled, a supervision task enforcing attitude limits during the experi-
ment was left active (maximum attitude excursion guaranteed from adopted
test-bed is±20◦). As it will be illustrated in Section 6.1, the excitation pro-
cedure was already implemented on the quadrotor and each time an excita-
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tion test is performed, a new Pseudo Random Binary Sequence (PRBS) is
built starting from some excitation signal parameters (e.g., amplitude and
min/max switching interval). The user can modify this signals parameters
but he can not impose a pre-computed excitation signal. Due to this limita-
tion the instrumental variable in the VRFT method can not be built starting
from a second experiment since the two experiments must share the same
excitation signal as described in Section 2.1.

VRFT and CbT algorithms have been tested on this UAV. In particular
both data-driven methods exploit a single experimental dataset to tune the
cascade attitude control system as described in Sections 2.1 and 4.3. The
results are then compared with a manual tuning and a model-based tuning
from a previous work on the Aermatica P2-A1 platform (reported in [47])
concerning the development of a dedicated design procedure for the attitude
control laws, combining a black-box model identification step, followed by
a robust control law design step. In particular a LTI state-space SISO model
for the dynamics of the pitch angular rate was obtained using a subspace
identification method (see [42, 46]). The model-based tuning of the Aer-
matica P2-A1 pitch attitude control law (see [47] for details) was carried
out using a structured H∞ synthesis approach: for the assigned controller
structure and the above-discussed back-box model for pitch dynamics, the
procedure finds the locally optimal parameters for the two PID controllers
so as to satisfy the imposed closed-loop stability and performance require-
ments (e.g., crossover frequency of each loop in a specified bandwidth, at-
titude angle set-point tracking behavior defined in terms of target response
time and maximum steady-state error, process noise disturbance rejection
capability specified assigning a maximum gain constraint profile as func-
tion of frequency). It is interesting to point out that the above requirements
for H∞ synthesis were defined in order to obtain an improvement in terms
of wind gust rejection compared to the standard tuning obtained through
the trial and error empirical procedure done manually, that presently does
not guarantee a fully satisfactory performance in flight. On the contrary,
as the actual quadrotor performance in terms of set-point tracking is con-
sidered adequate, the optimal tuning requirements were defined in order to
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replicate the standard tuning, as a benchmark. The standard tuning was also
used as starting guess for the optimisation procedure. Finally, changing the
SNR in the experimental data, a sensitivity analysis to SNR is performed
comparing the VRFT and the CbT algorithms.

5.2 Proto-1

The second quadcopter used in this work was entirely developed at Politec-
nico di Milano (see [22]) based on the following requirements:

• Frame configuration: X-quadrotor (this configuration allows future
upgrades such as an on board camera).

• Frame dimensions: medium size (450mm to 550 mm as distance be-
tween opposite motors).

• Overall weight: less than 2 kg.

• Flight time: about 10 minutes.

• Payload: at least 500 g.

Off-the-shelf components were selected to satisfy these requirements. The
assembled quadrotor helicopter is shown in Figure 5.2 and Figure 5.3.

The FCU, that manages the communication between the sensors and
the generated code in order to control the quadcopter, was implemented on
the Rapid Robot Prototyping (R2P) boards [6]. These boards are an open
source hardware and software framework that enables the rapid develop-
ment of robotic applications. These boards provide different functions, in
particular, the Inertial Measurement Unit (IMU) module provides the main
functions of attitude estimation and attitude control, the USB module pro-
vides serial communication with a computer or other serial devices and at
last the RC module allows the Pulse Width Modulation (PWM) commu-
nication with the motors controllers. The modules use a publish/subscribe
architecture to communicate between each others. The control portion is
implemented in Simulink and compiled to C++ code. The FCU implements
the same control architecture of the Aermatica P2-A1 UAV with decoupled
cascaded PID loops as it is illustrated in Figure 3.3.
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Chapter 5. Considered multirotor platforms

Figure 5.2: Proto-1 on its test-bed: front view.

Figure 5.3: Proto-1 on its test-bed: top view
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5.2. Proto-1

The quadcopter also holds a RaspberryPi 2 board used to interface the
R2P modules with a Robotic Operating System (ROS) network but this
functionality was unused for the tests. In addition a small ultrasonic sensor
has been mounted on the drone to measure the distance from the ground
when landing.

Unlike the Aermatica P2-A1 UAV, a fixed-pitch actuation scheme was
retained and it exploits variable rotor angular rates as control inputs.

All the tests on the quadrotor were performed on a test-bed that con-
strains all translational degrees of freedom as well as the roll and yaw mo-
tions. Only the pitch rotation is left unconstrained (see [14]). This ensures
that the tests are repeatable and safe and that an erroneous choice of the
controller parameters will not send the system crashing through the room.
The test-bed is built out of x-frame aluminium rods and weighted with sacks
of concrete. The upper part of the frame has a smooth rod resting on ball
bearings at each extremity for frictionless rotation. The quadrotor is then
securely fastened to this rod. In the current mounting scheme the rod passes
as close as possible to the centre of mass of the system in order to interfere
as little as possible with the dynamics of the quadrotor. Because of the
physical configuration of the system there is a small distance between the
rod and the actual centre of mass. In turn, this causes the system to act like a
very small pendulum and the test-bed adds some damping when the system
quadrotor achieves higher pitch angles. In practice this damping is negligi-
ble for small oscillations. The test-bed holds the quadcopter high enough
that ground effect disturbances are avoided however, since the test takes
place in a closed space some re-circulation of rotor wakes occurs. This rep-
resents a discrepancy when compared to outdoor flight conditions where
the rotor wakes develop free from obstacles. Even so, it has been shown
in [22] that such a test-bed is representative of actual attitude dynamics in
flight.

As will be illustrated in Section 6.2, only the VRFT method was con-
sidered with this UAV in order to show how the data-driven method is able
to operate also on a different test case. The results are compared with a
model-based structured H∞ approach developed in [22].
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Chapter 5. Considered multirotor platforms

5.3 ANT-1

As it was presented in Section 4.1, an extension for the VRFT method is
proposed to deal with closed-loop experimental data collected in flight.
This extension can not be tested with the previous UAVs due to their di-
mensions. Indeed the Italian Civil Aviation Authority (ENAC) allows the
outdoor flights without restriction only for remotely piloted vehicles that
weight less then 300 g (see [18]). Furthermore, the laboratory was recently
equipped with the motion capture technology that, using an array of infra-
red sensitive cameras, provides the position and the attitude of the UAV
inside an indoor flight arena.

Both to comply with the ENAC standard and to facilitate the indoor
flight, a new UAV has been developed. In particular, the new quadrotor,
called ANT-1, belongs to the class of Micro Aerial Vehicles (MAVs) and
respects the following requirements:

• Maximum take-off weight: less than 300 g.

• Flight time: at least 10 minutes.

• Reduced geometric dimension: an inter axis smaller than 200 mm.

As for the quadrotor presented in Section 5.2, off-the-shelf components are
employed to build the UAV after a preliminary analysis performed with
some optimisation methods. The assembled quadrotor is shown in Fig-
ure 5.4.

The development of a MAV opens the world of UAVs to some interest-
ing possibilities: the creation of aerial collective systems able to fly in clut-
tered environments such as cities or inside buildings. By working together,
multiple flying vehicles can perform a given task quicker and more effi-
ciently than a single system. In fact, multiple UAVs can share computing,
sensing and communication payload so that they result faster and quicker
than a unique, large UAV. Additionally, they can cover a wider area than a
single aerial vehicle when flying outdoors. Thus, it is clear that aerial col-
lective systems have a huge potential in terms of application as monitoring
of toxic clouds and meteorological conditions, security and artistic shows.
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5.3. ANT-1

Figure 5.4: The ANT-1 quadrotor.

A high level of customisation is required for the FCU because specific
tests must be performed. For this reason the Pixfalcon FCU has been
selected. It is a low cost and an open autopilot shield, suitable for re-
motely controlled vehicles such as quadrotors and fixed wing aircraft. It
is equipped with a 3 axes accelerometer, a 3 axes gyroscope, a magne-
tometer and a pressure sensor. Pixfalcon has 8 channels of PWM outputs.
Additionally GPS can be mounted extending the autopilot capabilities. The
firmware that runs on the Pixfalcon board is the PX4 Pro Autopilot: it is
an open-source software, fully compatible with the Pixfalcon board and
constantly under development. It is able to estimate the attitude and the
position of the UAV and it supports the information that comes from the
optical motion capture system. It contains also the controller code and, in
particular, it implements the scheme presented in Figure 3.4 and Figure 3.5.

The Pixfalcon board is connected to a Raspberry Pi Zero W board which
is a small and light single-board computer. It is responsible for the com-
munication to and from the UAV. It connects to the laboratory Local Area
Network (LAN) through WI-FI, allowing ANT-1 to be controlled from the
ground station. Moreover, due to its computational power, it is going to
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Chapter 5. Considered multirotor platforms

Figure 5.5: The ANT-1 quadrotor on the test-bed.

have a primary role in collaborative flight when ANT-1 will be involved in
MAV swarming.

The high flexibility of the ANT-1 platform allows to test all the data-
driven algorithms proposed in this work. First, the tests executed with the
other UAVs are repeated. The test-bed that was built for the quadrotor
presented in Section 5.2 is also exploited for ANT-1 (see Figure 5.5). Fur-
thermore, after the attitude controller is tuned, the position controller is also
considered for this quadrotor. As will be explained in Chapter 6, a specific
test is developed to reach this goal and it must be performed in flight. Fi-
nally, the VRFT algorithm is employed with data that come from a closed-
loop experiment in flight and the result is compared with the one obtained
with the same data-driven method but exploiting open-loop experimental
data.
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CHAPTER6
Results

IN this chapter the simulation and the experimental results obtained ap-
plying the data-driven methods are illustrated. In particular, Section 6.1
contains the results on the Aermatica P2-A1 quadrotor and two analy-

ses have been performed: first the VRFT tuning is compared with a model-
based and manual tuning, then the sensitivity of the VRFT and the CbT
methods to SNR is examined. In Section 6.2 the second quadrotor is con-
sidered. With this UAV only the VRFT algorithm is employed and it is
compared with a structured H∞ method. Finally, Section 6.3 contains the
results with the ANT-1 quadrotor. A complete analysis is accomplished
with this UAV and it includes both experimental and simulated results, both
for the position and the attitude controllers and using open-loop and closed-
loop experiments.
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Chapter 6. Results

6.1 Aermatica P2-A1

Considering the Aermatica P2-A1, only the pitch attitude controller is taken
into account and all the experiments have been conducted operating the
UAV on a single DoF test-bed as described in Section 5.1. To make the ob-
tained results as representative as possible, during the experiments all four
rotors are working, with a base collective pitch command of 60% that guar-
antees a total thrust equal to the vehicle weight (hovering), and only the
pitch attitude controller is enabled. The remaining 40% is shared between
the DoFs controllers for maneuvering as follows: 10% increment/decre-
ment equal on each rotor for climb/descent, 15% used differentially (plus
and minus) on opposite rotors for roll/pitch control and 15% used differ-
entially on clockwise and counterclockwise pairs of rotors for yaw control.
This determines that the nominal saturation limit for the pitch control vari-
able is equal to 30%.

As described in Section 5.1, the PRBS excitation signal is applied in
quasi open-loop conditions and during the tests the pitch angular veloc-
ity and the pitch angle, measured by the on-board IMU, are logged with
sampling time equal to 0.02 s, together with the control variable (see Fig-
ure 6.1). The measurement signals come from the Kalman-based estima-
tor implementes in the FCU that employs only on-board sensors (e.g., ac-
celerometer and gyroscope).

This UAV has been employed to perform two types of tests: the first one
compares the tuning obtained with the VRFT method with a model-based
tuning and a manual tuning, while in the second analysis the VRFT and the
CbT algorithms are compared and a discussion on how the noisy data affect
both the data-driven methods is provided.

6.1.1 VRFT setpoint tracking and load disturbance evaluation

The model-based tuning of the Aermatica P2-A1 pitch attitude control law
(see [44] for details) was carried out using a structured H∞ synthesis ap-
proach: for the assigned controller structure as presented in Figure 3.3, the
procedure finds the (locally) optimal parameters for the two PID controllers
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Figure 6.1: Aermatica P2-A1: open-loop experimental dataset used by VRFT and CbT.

so as to satisfy the imposed closed-loop stability and performance require-
ments (e.g., crossover frequency of each loop in a specified bandwidth,
attitude angle setpoint tracking behavior defined in terms of target response
time and maximum steady-state error, process noise disturbance rejection
capability specified assigning a maximum gain constraint profile as func-
tion of frequency). It is interesting to point out that the above requirements
for H∞ synthesis were defined in order to obtain an improvement in terms
of wind gust rejection compared to the standard tuning obtained through
the trial and error empirical procedure done manually, that presently does
not guarantee a fully satisfactory performance in flight. On the contrary,
as the actual quadrotor performance in terms of setpoint tracking is con-
sidered adequate, the optimal tuning requirements were defined in order to
replicate the standard tuning, as a benchmark. The standard tuning was also
used as starting guess for the optimisation procedure.

Two types of tests have been performed:
• setpoint tracking evaluation: a desired pitch angle command history

was assigned manually by the operator, with step amplitudes of 5 deg
and 10 deg;
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Chapter 6. Results

• load disturbance rejection evaluation: in order to simulate on the test-
bed the effect of a wind gust, a rope was fixed at the tip of the front (or
back) vehicle arm, with a weight of 0.7 kg at the end. The operator can
act manually on the weight in order to engage/disengage its effect, ap-
plying and maintaining the disturbance torque for about 10 s and then
suddenly releasing it. A null angular setpoint is required throughout
the operations.

As discussed in Section 2.1, the VRFT method is essentially a model-
reference approach, so from the user’s perspective the main degree of free-
dom in the design procedure is the selection of the reference model. As
explained in Chapter 1, the design of the inner reference model Mi(z) and
the outer reference model Mo(z) requires some prior knowledge about the
system to be controlled. In the present study, the results of previous work
on model identification for the Aermatica P2-A1 platform (see [44]) pro-
vided significant insight in the definition of the structure for the reference
models. In particular, the reference models Mi(z) and Mo(z) for, respec-
tively, the inner and the outer control loop, have been defined on the basis
of available requirements for the desired bandwidth and damping factor of
the inner and outer complementary sensitivity functions. More precisely,
the desired bandwidth of the inner loop is set to 25 rad/s while the one of
the ideal outer loop is of 20 rad/s. Mi(z) and Mo(z) have been defined
as second order systems with a damping ratio of 0.7 and a time delay of
3 samples (corresponding to 0.06 s and representing the overall delay of the
control loop, as mentioned in Section 5.1). The reference models of the two
control loops used to compute the virtual reference signals are:

Mi(z) =
0.09833z + 0.07778

z2 − 1.32z + 0.4966

1

z3

Mo(z) =
0.06609z + 0.05481

z2 − 1.45z + 0.5712

1

z3
.

In Figure 6.2 the Bode diagram of both the models is displayed. As for
the weighting functions Wi(z) and Wo(z) defining, respectively, the model
reference cost function (1.1) for the inner and the outer loops, they have
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Figure 6.2: Aermatica P2-A1: Bode diagram of the inner and the outer reference models.

been chosen as Wi(z) = 1 and Wo(z) = 1.

Since the experimental data is affected by noise, as already mentioned,
the VRFT algorithm used in this work implements an instrumental variable
method to counteract the effect of noise (see Section 2.1). The instrumental
variable is constructed through the identification of an ARX(15,15) model
for the inner and the outer loops.

In Table 6.1 the resulting parameters for both the outer loop PD and the
inner loop PID controllers are listed (see again Figure 3.3 that illustrates
the controller scheme), as obtained with the VRFT approach. The stan-
dard tuning obtained through the manual procedure and the one from struc-
tured H∞ synthesis are also reported. Figures 6.3, 6.4 and 6.5 show the
setpoint tracking test of the manual, the model-based H∞ and the VRFT
tuning. As can be seen from the figures, the H∞ approach provides the best
performance whereas the VRFT method performs better than the manual
approach. This confirms that the VRFT approach can lead to a satisfac-
tory closed-loop performance level starting from a limited prior knowledge
about the plant.
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Chapter 6. Results

Controller parameter Standard tuning H∞ tuning VRFT tuning

KO
P 9.26 4.7314 5.6364

KO
D 1.11 0.8453 0.3683

KI
P 0.257 0.3297 0.4979

KI
I 0.643 1.6186 2.0685

KI
D 0.0231 0.0079 0.0111

Table 6.1: Aermatica P2-A1: optimal controller parameters considering manual, VRFT
and H∞ methods.
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Figure 6.3: Aermatica P2-A1: setpoint tracking with manual tuning (experiment).
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Figure 6.4: Aermatica P2-A1: setpoint tracking with model-based H∞ tuning (experi-
ment).
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Figure 6.5: Aermatica P2-A1: setpoint tracking with VRFT tuning (experiment).

75



i
i

“thesis” — 2017/12/20 — 17:00 — page 76 — #82 i
i

i
i

i
i

Chapter 6. Results

0 10 20 30 40 50 60 70

t [s]

-5

0

5
P
it

ch
 a

n
g

le
 [

d
e
g

]

0 10 20 30 40 50 60 70

t [s]

-40

-20

0

20

C
tr

l 
v
a
r 

[%
]

Figure 6.6: Aermatica P2-A1: load disturbance rejection with manual tuning (experi-
ment).

When considering the load disturbance rejection test (Figures 6.6, 6.7
and 6.8), it is worth to observe that, for all the considered tuning set, the
control variable overcomes the saturation limit: the control allocation rou-
tine gives priority to roll/pitch attitude degrees of freedom, allowing an
enlarged margin on demand by subtracting it from the yaw and vertical
degrees of freedom (in this order). Hence the applied load disturbance is
representative of a heavy wind gust, testing the limit of vehicle capabilities.
The performance of the H∞ and VRFT controllers is similar and represents
a significant improvement with respect to the one of the manually tuned
controller. As can be seen from the figures, however, this comes with a cost
in terms of increased control effort with respect to the standard method.

In conclusion, it has been shown that the VRFT algorithm can be suc-
cessfully applied to tune a cascade control system and that the designed
controller provides a performance level comparable with the one of a model-
based H∞ controller. In particular, the data-driven controller presents good
tracking and disturbance rejection capabilities and therefore represents a
viable solution for the fast deployment of high performance attitude con-
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Figure 6.7: Aermatica P2-A1: load disturbance rejection with model-based H∞ tuning
(experiment).
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Figure 6.8: Aermatica P2-A1: load disturbance rejection with VRFT tuning (experiment).
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trollers for this platform.

6.1.2 CbT and sensitivity to SNR analysis

Since the VRFT method is successfully applied to the Aermatica P2-A1
quadrotor, also the CbT approach is considered. In particular, the extension
of the CbT presented in Section 4.3 to deal with cascade control systems is
used.

The reference models of the two loops have been modified with respect
to the previous section because the experimental setup slightly changed.
The reference models has been defined as second order systems with a
damping ratio of 0.7, a time delay of 3 samples and a desired bandwidth
of 24 rad/s (inner) and 16 rad/s (outer):

Mi(z) =
0.09151z + 0.07308

z2 − 1.346z + 0.5107

1

z3

Mo(z) =
0.04397z + 0.03786

z2 − 1.557z + 0.6389

1

z3
.

In Figure 6.9 the Bode diagram of both the models is displayed. For sim-
plicity the weighting functions are Wi(z) = 1 and Wo(z) = 1.

In order to apply the CbT approach, the parameter l in (2.10) has to be
selected. As explained in Section 2.2, this parameter should be close to
the length of the impulse response of the reference model (see Figure 6.10)
(li = 20, lo = 35).

For what concerns the VRFT approach, the order of the ARX model,
which provided satisfactory results, is p = 15, both for the inner and outer
loop.

First the VRFT and the CbT are compared. Both the setpoint tracking
and the load disturbance rejection evaluations are performed as explained
in the previous section. The CbT and the VRFT tunings are reported in
Table 6.2 both for the outer loop PD and the inner loop PID controller pa-
rameters. Figures 6.11 and 6.12 show the setpoint tracking tests of the CbT
and the VRFT tuning. As can be seen from the figures, both approaches
provide a satisfactory closed-loop performance level even starting from a
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Figure 6.9: Aermatica P2-A1: Bode diagram of the inner and the outer reference models.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t [s]

-2

0

2

4

6

8

10

12

Inner reference model
Outer reference model

Figure 6.10: Aermatica P2-A1: impulse response of the inner and the outer reference
models.
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Table 6.2: Aermatica P2-A1: optimal controller parameters considering VRFT and CbT.

Controller parameter CbT tuning VRFT tuning

KO
P 6.3194 5.5726

KO
D 0.1751 0.2775

KI
P 0.4786 0.5369

KI
I 1.79 1.9782

KI
D 0.0097 0.0094
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Figure 6.11: Aermatica P2-A1: setpoint tracking with CbT tuning (experiment).

limited prior knowledge about the plant.

When considering the load disturbance rejection test (Figures 6.13 and 6.14),
the performance of the methods is analogous both considering the perturbed
pitch angle and the control effort.

Now the behaviour of the VRFT and of the CbT approach are discussed
with respect to the influence of noisy data. When the SNR is low, the use
of instrumental variables through the identification procedure for the VRFT
can lead to destabilising controllers even if the order of the ARX model is
large. On the contrary, the CbT algorithm is more robust and the parameter
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Figure 6.12: Aermatica P2-A1: setpoint tracking with VRFT tuning (experiment).
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Figure 6.13: Aermatica P2-A1: load disturbance rejection with CbT tuning (experiment).
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Figure 6.14: Aermatica P2-A1: load disturbance rejection with VRFT tuning (experi-
ment).

Table 6.3: Aermatica P2-A1: MSE of CbT and VRFT considering three different datasets.

PRBS amplitude [%] [-13,13] [-11,11] [-9,9]

CbT 0.7978 0.8305 0.8349
VRFT 0.6759 0.6894 X

l represents a trade-off between accuracy and bias. These considerations
have been highlighted by running three tests where PRBS sequences of dif-
ferent amplitude are employed to tune the controller parameters with both
algorithms. In the following, li = 20, lo = 35 and p = 15 have been
considered. Since the statistical properties of the noise do not change over
the experiments, increasing the input amplitude is equivalent to raising the
SNR. Each test consists of ten realisations of the setpoint tracking exper-
iment shown in Figure 6.11. The mean values of the Mean Square Error
(MSE) (between setpoint and measured pitch angle) are reported in Ta-
ble 6.3. As can be seen in Table 6.3, the CbT algorithm gives similar results
in all the tests and it performs slightly worse than the VRFT method. The
differences between the methods are due to the use of different instrumental

82



i
i

“thesis” — 2017/12/20 — 17:00 — page 83 — #89 i
i

i
i

i
i

6.2. Proto-1

variables. In case the ARX model employed in VRFT perfectly identifies
the model dynamics, the basic instrument of such a method is known to
be the most statistically efficient choice. However, in case of overparam-
eterisation, overfitting could occur, thus leading to a performance worse
than that given by the extended instrument of the CbT method. This is
very likely when the SNR is particularly low, and in this case the VRFT
approach even yields a destabilizing controller. It should be noted that a
different choice of l can lead to better performance of the CbT algorithm.
For instance, as far as the dataset with the highest SNR is concerned, a
larger value of l (li = 200, lo = 350) can be reasonably employed and the
computed mean MSE is 0.5912.

In conclusion, the two methods lead to similar results in terms of set-
point tracking and disturbance rejection but CbT is more robust than VRFT
in the presence of a low level of SNR.

6.2 Proto-1

In order to understand if the VRFT method can be easily adopted to tune
a different platform, a second quadrotor is considered. It is smaller than
the Aermatica P2-A1 UAV and, furthermore, it has a different actuation
architecture. As described in Section 5.2, all the experiments are made with
a single DoF test-bed. Thus only the pitch attitude controller is considered.
The structure of this regulator is displayed in Figure 3.3.

The PRBS is selected also in this case as excitation signal and the exper-
iments are performed in open-loop conditions. The FCU works at 100 Hz.
Figure 6.15 shows the excitation signal, the measured pitch angular rate
and the measured pitch angle ϑ(t). The measurement signals come from
the Kalman-based estimator that employs only on-board sensors (e.g., ac-
celerometer and gyroscope).

For the VRFT method, the following closed-loop reference models for
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Figure 6.15: Proto-1: open-loop experimental dataset used by VRFT.

the inner and the outer control loop are considered:

Mi(z) =
0.1221z − 0.1162

z2 − 1.86z + 0.8659
(6.1)

Mo(z) = 10−4 7.81z + 7.625

z2 − 1.929z + 0.9305
. (6.2)

More precisely, Mi(z) and Mo(z) are second order systems with a desired
bandwidth of 8 rad/s and 4 rad/s respectively. The damping ratio of both
Mi(z) and Mo(z) is 0.9. As for the weighting functions Wi(z) and Wo(z)

defining, respectively, weights for the inner and the outer loops, they have
been chosen as Wi(z) = 1 and Wo(z) = 1. To deal with noisy data, an
instrumental variable is employed and it is built through the identification
of an ARX(7,17) model for the inner and the outer loops.

Running the VRFT procedure on both the inner and outer loops with
the input-output data shown in Figure 6.15 and the reference models (6.1)
and (6.2) leads to the controller parameters shown in Table 6.4. Also shown
are the parameters for the pre-existing H∞ controller (see [22] where both
stability constraints and performance requirements are discussed) to be
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Table 6.4: Proto-1: optimal controller parameters considering H∞ and VRFT methods.

Controller parameter H∞ tuning VRFT tuning

KO
P 2.0 1.6057

KO
D 0.00522 0.0

KI
P 0.298 0.2978

KI
I 0.304 0.514

KI
D 0.0499 0.0

Table 6.5: Proto-1: average MSE of H∞ and VRFT methods computed on 10 setpoint
tracking tests.

Tuning method MSE

VRFT 6.3384
H∞ 10.719

used as a point of reference.

6.2.1 Setpoint tracking evaluation

To validate the controllers, a test sequence with steps of increasing ampli-
tude was generated and this signal was fed as a set a pitch angle setpoint to
the quadcopter. The test was repeated 10 times using both the VRFT and
the H∞ tuned controllers and the average MSE, comparing the measured
pitch angle to the setpoint, was computed. Note that the average MSE gives
a valuation on the controller setpoint tracking performance but the VRFT
and the H∞ methods employ different cost functions to obtain the optimal
tunings. The values of the average MSE for the VRFT and H∞ tuned con-
trollers are shown in Table 6.5. The MSE of the VRFT controller is a little
smaller than that of the H∞ controller. It can be explained by the slightly
more oscillatory nature of the H∞-tuned controller.

The setpoint tracking performance of the quadcopter with, respectively,
the VRFT and H∞ controllers during one, randomly chosen, run is shown
in Figures 6.16 and 6.17.
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Figure 6.16: Proto-1: setpoint tracking performance with VRFT tuning (experiment).

Figure 6.17: Proto-1: setpoint tracking performance with H∞ tuning (experiment).
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Figure 6.18: Proto-1: load disturbance rejection with VRFT tuning (experiment).

6.2.2 Load disturbance rejection evaluation

The disturbance rejection property is tested using a similar method. The
firmware of the quadcopter provides a method to introduce a step distur-
bance on the speed of the motors. This was used to repeatedly reduce by
10% the lift generated by the motors on the front of the quadcopter. The test
was repeated 10 times with both the VRFT and H∞ tuned controllers and
the average of the MSE was computed. The disturbance rejection perfor-
mance of the quadcopter with, respectively, the VRFT and H∞ controllers
during one, randomly chosen test, are shown in Figures 6.18 and 6.19.

It is immediately apparent that the VRFT-tuned controller offers sig-
nificant improvements to the steady state error. The H∞ -tuned controller
settles with a steady state error of several degrees whereas the VRFT-tuned
controller achieves zero state error. In addition, the control effort required
by both controllers is quite similar even if the VRFT-tuned controller has
slightly higher peaks.

The improvement is reflected in the steady-state error of the two con-
trollers as shown in Table 6.6. The MSE of the VRFT-tuned controller is
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Figure 6.19: Proto-1: load disturbance rejection with H∞ tuning (experiment).

Table 6.6: Proto-1: average MSE of H∞ and VRFT methods computed on 10 load distur-
bance rejection tests.

Tuning method MSE

VRFT 4.7908
H∞ 5.5686

slightly lower than that of the H∞ controller.

6.3 Ant-1

The data-driven methods are applied also on a third UAV: the ANT-1 quadro-
tor (see Section 5.3). Thanks to its size and the high customisation of its
FCU, the data-driven algorithms have been employed to tune both the pitch
attitude controller and the longitudinal position controller. Furthermore,
in order to better understand the results also a simulation environment is
exploited where a plant model is exploited to better illustrate the results
obtained with the experimental data. In order to display the capability of
VRFT to tune a MIMO control system, roll and pitch controllers are tuned

88



i
i

“thesis” — 2017/12/20 — 17:00 — page 89 — #95 i
i

i
i

i
i

6.3. Ant-1

0 10 20 30 40 50 60
-0.01

0

0.01

C
tr

l 
v
a
r

0 10 20 30 40 50 60
-100

0

100

P
it

ch
 r

a
te

[d
e
g

/s
]

0 10 20 30 40 50 60

t [s]

-50

0

50

P
it

ch
 a

n
g

le
[d

e
g

]

Figure 6.20: ANT-1: open-loop experimental dataset used by data-driven methods.

at the same time in Section 6.3.3. Finally, closed-loop experimental data
collected in flight have been used to tune the pitch attitude controller.

6.3.1 Pitch attitude controller with open-loop experiments

In the following only the pitch attitude controller is considered with data
collected exploiting the test-bed setup that constrains all translational and
rotational degrees of freedom, except for pitch rotation. The excitation test
has been performed in open-loop. The same setup was used with the two
previous UAVs.

Figure 6.20 shows the input and output signals used for data-driven tun-
ing. The entire dataset has been obtained by combining three subsequent
open-loop tests of 20 seconds. The input signal is a PRBS pitching moment,
which has been applied in open-loop conditions, thus with the nominal at-
titude and position controllers deactivated. The control variable M(t) is
expressed as percentage of the maximum total thrust. The PRBS ampli-
tude and the time duration of the switching intervals were defined so as to
obtain a forcing spectrum large enough to excite the dominant pitch dy-
namics. The output signals, pitch rate and pitch angle, are measured by
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the on-board IMU and recorded on a memory card at a sampling rate of
250 Hz. The measurement signals come from the Kalman-based estimator
that employs only on-board sensors (e.g., accelerometer and gyroscope).

Reference models

In order to define the closed-loop reference models, it is advisable to rely on
a second-order model characterised by properly chosen natural frequency
and damping ratio. Such choice allows to easily impose the value of the
desired bandwidth, the unit static gain and, at least roughly, the desired
damping of the closed-loop system. Nevertheless, such a simple model
often does not guarantee a sufficiently high-performance controller tuning.
Indeed, if some information on the plant dynamics is available, in addition
to the knowledge of the controller structure, it is possible to augment the
reference model so that it better matches the closed-loop behaviour of the
real plant. The simplest property to include is the delay, but sometimes it is
also necessary to change the numbers of poles and zeros, as will be shown
below.

Before presenting the reference models, it is convenient to better de-
scribe the chosen controller families because the structure of the reference
model depends also on the structure of the controller.

First, the controller architecture that was already implemented in the
ANT-1 FCU is considered (see Figure 3.4). In Section 4.2, VRFT was
extended to consider this control structure but the same extension is not
applicable to the CbT and to the controller unfalsification methods. The
extended VRFT algorithm is compared with the H∞ controller considering
the control architecture in Figure 3.4. The inner loop reference model is a
second order model with 5 samples of delay, a desired bandwidth of 56 rad/s
and a damping ratio of 0.33:

Mi(z) = z−5 0.0238z + 0.02265

z2 − 1.816z + 0.8626
. (6.3)

In this specific case no filtering action was needed, thus the weighting func-
tion has been defined as Wi(z) = 1.
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Unlike the inner loop, after a preliminary analysis, it is advisable to
increase the complexity of the reference model by adding a suitable pole.
Therefore, the resulting continuous time reference model is a second order
system with a desired bandwidth of 45 rad/s and a damping ratio of 0.52

with an additional pole in 45 rad/s:

Mo(z) = z−5 0.0008861z2 + 0.003231z + 0.0007374

z3 − 2.635z2 + 2.333z − 0.6927
. (6.4)

As before, a time delay of 5 samples has been added to the final discrete
time transfer function. Finally, unlike before, the use of a weighting func-
tion proved to be useful for improving the output performance obtained
through the VRFT tuning. In particular, Wo(z) has been defined as a ninth-
order lowpass digital Butterworth filter, with a cut-off frequency equal to
200 rad/s.

In order to compare VRFT, CbT and the controller unfalsification method,
the control architecture implemented in the FCU is modified. In particular,
the inner controller with the feedback action and the derivative term com-
puted on the plant output can not be exploited. The new inner controller
structure is based on SISO PID regulators as presented in Section 3.2 while
the outer controller remains the same as in Figure 3.4: it is a proportional
gain.

Since the controller architecture is changed, a new family of reference
models is considered. The new family relies on a second-order model char-
acterised by properly chosen natural frequency and damping ratio with ad-
ditional poles/zeros. Table 6.7 summarises the characteristics of all the
reference models designed for the VRFT, the CbT and the controller un-
falsification tuning algorithms. Obviously, reference models must include,
just like before, the time delay. It has been verified that the use of low-pass
filters as weighting functions ensures a closer match between actual and de-
sired behaviour within the frequency band of interest, ultimately leading to
a significant improvement in output performance. Ninth-order lowpass dig-
ital Butterworth filters with cut-off frequencies of 500 and 100 rad/s were
adopted for the inner and outer loop respectively. Notice that the controller
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ω
[rad/s] ξ

Added
poles/zeros

Weighting function
(Low-pass filter)

VRFT
Inner loop 56 0.6 Zero in

100 rad/s fc = 500 rad/s

Outer loop 43 0.6 Pole in
70 rad/s fc = 100 rad/s

CbT
Inner loop 56 0.6 Zero in

100 rad/s fc = 500 rad/s

Outer loop 36 0.8 Pole in
70 rad/s fc = 100 rad/s

Controller
Unfalsification

Inner loop 56 0.6 Zero in
100 rad/s -

Outer loop 52 0.3 Pole in
70 rad/s fc = 100 rad/s

Table 6.7: ANT-1: inner and outer reference models for VRFT, CbT and controller unfal-
sification algorithms.

unfalsification method does not require any weighting function.

Looking to Table 6.7, different outer reference models for different data-
driven methods should surprise the reader. It is easy to understand that the
outer reference model heavily depends on the inner closed-loop system. As
will be described below, where the results are presented, the performance
of the CbT tuning method is overall lower than that obtained by the VRFT
approach when the inner loop is considered. The outer reference model
employed with CbT must consider the inner loop performance. Indeed the
bandwidth of the outer reference model is lower than that one of the ref-
erence model of the VRFT method. Exploiting the VRFT outer reference
model also for the CbT method leads to the instability of the outer loop.

On the contrary, the controller unfalsification method leads to better per-
formance than VRFT in the inner loop. Thus, the bandwidth of the refer-
ence model is increased to allow better outer loop performances.

As described in Section 2.3, in order to apply the controller unfalsifica-
tion method, the user must defined the reference model also for the desired
control sensitivity function. This is mandatory to ensure the internal stabil-
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KI
FF KI

P KI
I KI

D KO
P

VRFT 0 0.09143 0.2067 0.0016 12.11
H∞ 0 0.0849 0.2138 0.0014 11.75
Manual tuning 0 0.06 0.1 0.0010 8

Table 6.8: ANT-1: optimal controller parameters considering manual, VRFT and
H∞ methods.

KI
P KI

I KI
D KO

P

VRFT 0.05146 0.1935 0.0012 12.78
CbT 0.04696 0.06792 0.00091 12.92
Controller
Unfalsification 0.06280 0.3303 0.0017 14.10

Table 6.9: ANT-1: optimal controller parameters considering VRFT, CbT and controller
unfalsification methods.

ity of the closed-loop system. Following the conditions in Section 2.3, the
model is defined as:

Q(z) =
1.481z2 − 2.943z + 1.462

17.8z2 − 31.77z + 13.97
.

Controller parameter values

The controller parameters obtained with the VRFT tuning applied to the
control architecture in Figure 3.4 are summarised in Table 6.8. Table 6.9
shows the tunings generated by VRFT, CbT and controller unfalsification
algorithms by adopting the SISO PID control architecture for the inner loop
and the proportional gain for the output regulator. To deal with noisy data,
an instrumental variable is employed and it is built through the identifica-
tion of an ARX(5,5) model for the inner and the outer loops.
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Simulation results

Before testing the controller on the real plant, some iterations in a simu-
lation environment have been performed in order to speed-up the tuning
process. It is straightforward that the more accurate the identified model is,
the closer the simulation results will be compared to the experimental ones.
Basically, the tuning process is intended to outperform the manual tuning
and, in principle, achieve performance comparable with the pre-existing
H∞ controller. The reader should notice that the plant model is employed
only to show the closed-loop results for both the inner and the outer loop
and not to tune the controllers.

An accurate ANT-1 pitch attitude model has been identified in [12] by
means of the black-box PBSID method. The resulting identified model
P (z) is a third-order dynamic system describing the relationship between
pitch moment M(t) and pitch rate q(t). Then, the pitch angle ϑ(t) is
obtained by integrating the output of the above-defined model. So, as
schematically shown in Figure 6.21, the attitude dynamics has been mod-

P (z) Ts
z−1

M ϑ

q

Figure 6.21: ANT-1: pitch attitude model.

elled by means of the cascade of two dynamic systems:

P (z) = z−5 0.2858z2 − 0.2068z − 0.0781

z3 − 2.82z2 + 2.643z − 0.8228
(6.5)

and an integrator block, allowing the cascade control to be actually imple-
mented in the simulation environment. The Bode diagram of the identified
model P (z) is shown in Figure 6.22.

Inner loop results. The main results achieved by closing the inner control
loop will be shown below. More specifically, frequency domain and time
domain results will be discussed.

First the tunings from the VRFT and the H∞ methods are compared
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Figure 6.22: ANT-1: Bode diagram of the identified pitch attitude model.

considering the control architecture in Figure 3.4. In this case the reference
models for the inner and the outer loops are selected as in (6.3) and (6.2)
respectively. Figure 6.23 shows the Bode diagram obtained by the manual,
the H∞ and the VRFT tunings of the inner controller. As can be seen, the
frequency response of the VRFT tuning is very close to that obtained with
the H∞ controller and approximates quite well the desired behaviour. The
same remarks can be made by comparing the step responses of the different
tunings (Figure 6.24). Furthermore, it is clearly visible that the the man-
ual tuning is significantly slower than both the VRFT and H∞ controller
tunings.

The VRFT, the CbT and the controller unfalsification methods are com-
pared in Figure 6.25 and Figure 6.26. It is clearly evident that the VRFT
tuning ensures a better performance than the CbT counterpart, as already
shown in Section 6.1. The CbT approach is highly recommended when-
ever the gathered data is rather noisy. In this condition, in fact, the use
of instrumental variables could be ineffective, therefore leading to an un-
stabilising controller. On the contrary, the CbT method maintains roughly
constant performance as data SNR decreases. As a drawback, for suffi-
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Figure 6.23: ANT-1: comparison of the inner loop Bode diagrams considering VRFT,
H∞ and manual tunings (simulation).

Figure 6.24: ANT-1: comparison of the inner loop step responses considering VRFT, H∞
and manual tunings (simulation)
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Figure 6.25: ANT-1: comparison of the inner loop Bode diagrams considering VRFT,
CbT and controller unfalsification tunings (simulation).
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Figure 6.26: ANT-1: comparison of the inner loop step responses considering VRFT, CbT
and controller unfalsification tunings (simulation).

97



i
i

“thesis” — 2017/12/20 — 17:00 — page 98 — #104 i
i

i
i

i
i

Chapter 6. Results

0 0.05 0.1 0.15 0.2 0.25

t [s]

-5

0

5

10

15

20

25

30

35

40

Inner reference model
Outer reference model

Figure 6.27: ANT-1: impulse response of the inner and the outer reference models.

ciently high SNR values the VRFT ensures quite better performance than
the CbT. In our case, the experimental datasets are characterised by a high
SNR, making it useless to rely on the most robust CbT algorithm. Due to
the high SNR the parameter l of the CbT algorithm, representing the trade-
off between accuracy and bias, has been set equal to ten times the length
of the impulse response of the reference model (Figure 6.27). In the inner
loop, l has been set equal to 500.

Considering the reference models for the inner loop in Table 6.7, the un-
falsification algorithm did not have to execute any iteration, because even
with δ = 1 a stabilising controller is obtained. In order to show how the sta-
bility constraint works, an undoubtedly unachievable reference model has
been imposed. Starting from the model defined in Table 6.7 a higher natural
frequency (ωn = 65 rad/s) has been required and it has been verified that
the VRFT algorithm yields a destabilising controller. To comply with the
stability constraint, the algorithm progressively reduces the δ value, which
means greater importance is given to control sensitivity with respect to the
output one, until the stability test has passed. Figure 6.28 shows the gradual
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Figure 6.28: ANT-1: infinity norm discrepancy.

reduction of the infinity norm discrepancy in (2.27) as δ is reduced. Ac-
cording to the small-gain theorem, stability is ensured if the infinity norm
in (2.26) is less than one. As suggested in [3], it is advisable to set a kind
of stability margin to take into account the infinity norm estimation error
in (2.27), that is why the stability test is passed only when the infinity norm
is less than 0.95 (dashed line). To conclude, while the performance of the
unfalsified controller with achievable reference model is very good both in
terms of rise time and settling time, the one obtained imposing an unachiev-
able reference is significantly slower (Figures 6.29 and 6.30). Nevertheless,
it has been proved that the yielded controller is actually stabilising, contrary
to what it would have been achieved with the VRFT algorithm.

Outer loop results. Once the controller parameters of the inner loop are de-
fined and the inner closed-loop performance has been suitably validated,
attention can be turned to the outer control loop. In particular, by tun-
ing the outer controller, the complete attitude dynamics can be analysed.
Unlike before, the tuning procedure is much simpler since the outer con-
troller consists of a simple proportional term. Indeed, unlike the inner loop,
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Figure 6.29: ANT-1: comparison of the inner loop Bode diagram considering the con-
troller unfalsification tuning with unachievable reference model (simulation).
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Figure 6.30: ANT-1: comparison of the inner loop step response considering the con-
troller unfalsification tuning with unachievable reference model (simulation).
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the same control architecture has been adopted for both the VRFT and the
CbT tuning algorithms, that is a proportional controller as illustrated in
Figure 3.4.

Note that, for simplicity, the controller unfalsification method has been
applied only in the inner loop and the corresponding outer loop has been
tuned through a simple VRFT algorithm. This is because the inner loop is
far more critical from the closed-loop stability point of view. Furthermore,
since the controller is defined only by the proportional term it is quite easy
to understand whether the system is stable or not by comparing the parame-
ter value with that of the manual tuning. Indeed, it has been verified that in-
stability occur with very high values ofKO

P (approximatelyKO
P ∈ [35, 40]),

but such values have never been obtained with any reference model.

As shown in Figures 6.31 and 6.32, the closed-loop performance guar-
anteed by the VRFT tuning is comparable if not better than that provided
by the H∞ tuning. More specifically, the rise time is similar in both cases
but the overshot associated with the VRFT tuning is slightly smaller. Fur-
thermore, the simulated system appears to be a bit slower than the reference
model but overall the two are in accordance.

The VRFT, the CbT and the controller unfalsification methods exploit
different reference models as illustrated in Table 6.7 and the results are
displayed in different figures for the sake of clarity. Figure 6.33 and Fig-
ure 6.34 show the closed-loop performance guaranteed by the VRFT tuning
considering the inner controller with the new SISO control architecture.
The same performance considering the CbT is displayed in Figures 6.35
and 6.36. The outer proportional gain, associated with the inner unfalsi-
fied controllers, has been derived by means of the VRFT algorithm (Fig-
ures 6.37 and 6.38). The three methods are compared in Figures 6.39
and 6.40 without displaying the reference models. The outer loop con-
firms what has already been outlined by analysing the results of the inner
loop: the performance ensured by the CbT tuning method is overall lower
than that obtained by the VRFT approach, while it can be noted that the
unfalsified controller has a very fast response with a minimal overshoot.
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Figure 6.31: ANT-1: comparison of the outer loop Bode diagrams considering manual,
VRFT and H∞ tunings (simulation).

Figure 6.32: ANT-1: comparison of the outer loop step responses considering manual,
VRFT and H∞ tunings (simulation).
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Figure 6.33: ANT-1: the outer loop Bode diagram considering the VRFT tuning (simula-
tion).
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Figure 6.34: ANT-1: the outer loop step response considering the VRFT tuning (simula-
tion).
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Figure 6.35: ANT-1: the outer loop Bode diagram considering the CbT tuning (simula-
tion).
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Figure 6.36: ANT-1: the outer loop step response considering the CbT tuning (simula-
tion).

104



i
i

“thesis” — 2017/12/20 — 17:00 — page 105 — #111 i
i

i
i

i
i

6.3. Ant-1

10-1 100 101 102 103
-100

-50

0
M

a
g
n
it

u
d
e
 [

d
B

]

10-1 100 101 102 103

Frequency [rad/s]

-1000

-500

0

P
h
a
se

 [
d
e
g
]

Reference model
Controller unfalsification tuning

Figure 6.37: ANT-1: the outer loop Bode diagram considering the controller unfalsifica-
tion tuning (simulation).
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Figure 6.38: ANT-1: the outer loop step response considering the controller unfalsifica-
tion tuning (simulation).

105



i
i

“thesis” — 2017/12/20 — 17:00 — page 106 — #112 i
i

i
i

i
i

Chapter 6. Results

10-1 100 101 102 103

-60

-40

-20

0
M

a
g
n
it

u
d
e
 [

d
B

]

10-1 100 101 102 103

Frequency [rad/s]

-1000

-500

0

P
h
a
se

 [
d
e
g
]

CbT tuning
VRFT tuning
Controller unfalsification

Figure 6.39: ANT-1: comparison of the outer loop Bode diagrams considering VRFT,
CbT and controller unfalsification tunings (simulation).
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Figure 6.40: ANT-1: comparison of the outer loop step responses considering VRFT, CbT
and controller unfalsification tunings (simulation).
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Experimental results

The reliability of the simulation results is closely related to the accuracy of
the identified model but, even if the model response has proved to be very
similar to the real one, experimental validating tests are essential. Indeed,
it is important to verify that the performance achieved in the simulation
environment is achievable even in practice without making the system un-
stable, which should not be taken for granted because of the unavoidable
approximations of the model.

The attitude tests have been performed on the test-bed that constrains
all translational and rotational degrees of freedom except the pitch rotation.
This ensures that the tests are repeatable and safe, preventing crashes due
to erroneous choice of the controller parameters or wrong test characterisa-
tion. Two different types of tests have been performed, the first one consists
of a sequence of steps of constant duration and increasing amplitude, while
the second one is a disturbance rejection test as for the previous UAVs.

The first test consist of assigning a desired pitch angle command his-
tory and recording the system response. The setpoint time history has been
defined as a sequence of steps with amplitudes of 5 deg and 10 deg. The
second test allows to assess the effect of a wind gust on the quadrotor. The
pitch angle setpoint has been set to zero for the whole test duration and
a pitch moment disturbance has been applied and maintained constant for
5 seconds. Both tests have been performed for all available controller tun-
ings, that is manual,H∞, CbT, controller unfalsification and VRFT tunings.

The performance obtained with the VRFT algorithm has been compared
with H∞ and manual tunings with the control architecture illustrated in Fig-
ure 3.4. Figure 6.41 shows the entire time history of the setpoint tracking
test, but the fast system response does not allow to perceive the differences
between the closed-loop responses. For this reason, an enlargement of a
single step response has been reported for both amplitudes, 5 deg (Fig-
ure 6.42) and 10 deg (Figure 6.43). As expected in simulation, VRFT and
H∞ tunings yield a similar dynamic response that is significantly faster
than that associated to the manually tuned controller. When considering
the disturbance rejection test (Figure 6.44) the performance of the VRFT
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Figure 6.41: ANT-1: setpoint tracking with manual, H∞ and VRFT tuning (experiment).

Figure 6.42: ANT-1: setpoint tracking (5 deg step) with manual, H∞ and VRFT tuning
(experiment).
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Figure 6.43: ANT-1: setpoint tracking (10 deg step) with manual, H∞ and VRFT tuning
(experiment).

Figure 6.44: ANT-1: load disturbance rejection with manual, H∞ and VRFT tuning (ex-
periment).
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Figure 6.45: ANT-1: setpoint tracking with VRFT, CbT and controller unfalsification
tuning (experiment).

method is slightly better than that of the H∞ tuning both considering the
pitch angle and the control effort. On the other hand, both methods ensure
a significantly better performance with respect to the manual tuning but, at
the same time, require an higher control effort.

As explained before, the control architecture implemented in the firmware
of the quadrotor has been modified to handle the tunings yielded by the CbT
and the controller unfalsification methods. Figures 6.45, 6.46 and 6.47
show the setpoint tracking tests of VRFT, CbT and the controller unfalsi-
fication tuning. As can be noted from the figures, there are no significant
differences in performance between the three methods. On the contrary, by
looking at the disturbance rejection test (Figure 6.48) the performance of
the CbT tuning turns out to be lower than that of the VRFT and the un-
falsified controller. In particular, the latter ensures the fastest disturbance
rejection, even though the control effort is slightly larger than the one re-
quested by VRFT and CbT tunings.
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Figure 6.46: ANT-1: setpoint tracking (5 deg step) with VRFT, CbT and controller unfal-
sification tuning (experiment).
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Figure 6.47: ANT-1: setpoint tracking (10 deg step) with VRFT, CbT and controller un-
falsification tuning (experiment).
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Figure 6.48: ANT-1: load disturbance rejection with VRFT, CbT and controller unfalsifi-
cation tuning (experiment).

6.3.2 Pitch attitude controller with closed-loop experiments

In Section 6.3.1 the data-driven methods employ experimental data that
come from open-loop experiment carried out on the test-bed setup. Also
in this section the pitch attitude controller is considered but the data is col-
lected in flight. In this situation, as explained in Section 4.1, the data must
be collected in closed-loop allowing the user to control the system also
when the experiment is been conducting.

For the sake of simplicity, only the VRFT method is considered and
the original control architecture displayed in Figure 3.4 is exploited. The
results will be compared with the VRFT tuning obtained with open-loop
experimental data as presented in Section 6.3.1.

As illustrated in Section 4.1, an initial controller Cd(z) that stabilises
the system must be available. This controller has the same structure and
the manual tuning as presented in Table 6.8 emerges as the most obvious
choice since it is the first controller that was obtained with a trial and error
procedure.
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Figure 6.49: ANT-1: closed-loop experimental dataset used by data-driven methods.

As illustrated in Figure 4.1, the excitation signal ū(t) is added to the
output of the controller Cd(z). All the involved signals in the data-driven
tuning procedure are illustrated in the Figure 6.49. In this case, the control
variable that is the pitch moment applied to the UAV (it is illustrated in
the second plot of Figure 6.49) does not clearly show the PRBS excitation
signal because in the closed-loop condition it is the sum of the excitation
signal and the output of the controller that tries to obtain a null pitch an-
gle. During the experiment, the user did not provide a pitch angle setpoint
(ȳ(t) = 0, see again Figure 4.1) because the UAV operated always in safe
conditions and it did not reach the limits of the test area.

Reference models

Comparing this section and Section 6.3.1, the only thing that changes is
how the experimental data is obtained. The system to be controlled and
the controller architecture do not change. Since the closed-loop reference
model depends implicitly from these two last systems, the reference model
both for the inner and the outer loops do no change. Thus the closed-loop
reference model for the inner loop is expressed in (6.3) and (6.4) is the
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Table 6.10: ANT-1: optimal controller parameters for outer and inner controllers consid-
ering the VRFT method with open-loop and closed-loop experimental data.

Controller parameter VRFT with open-loop data VRFT with closed-loop data

KO
P 12.11 12.4751

KI
FF 0 0

KI
P 0.09143 0.1359

KI
I 0.2067 0.1008

KI
D 0.0016 0.0019

reference model for the outer loop. Since the reference model are the same
in the open-loop and closed-loop frameworks, it is easy to compare the two
tunings obtained with the different data without performing another tuning
with the new reference model exploiting the data in Section 6.3.1.

Controller parameter values

Exploiting the reference models and closed-loop experimental data the VRFT
method leads to the parameter values reported in Table 6.10. Both the pa-
rameters for the inner and the outer controllers are displayed. Since this tun-
ing is compared with the one obtained with open-loop data in Section 6.3.1,
also this tuning is reported in the table. To deal with noisy data, an instru-
mental variable is employed and it is built through the identification of the
inner and the outer loops. For the inner loop, a third-order of the plant
model is identified with the PBSID algorithm with p = 40 and f = 40,
while for the outer loop, an ARX(5,5) model is employed.

Simulation results

Also in this case the plant model in (6.5) and the scheme in Figure 6.21 are
exploited to better show the results.

First the inner loop on the pitch angular rate is considered.
As can be seen, the frequency response of the VRFT tuning is very close

to that obtained with the H∞ controller and approximates quite well the
desired behaviour. The same remarks can be made by comparing the step
responses of the different tunings (Figure 6.24).
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Figure 6.50: ANT-1: comparison of the inner loop Bode diagrams considering VRFT with
closed-loop data and VRFT with open-loop data (simulation).

Figure 6.50 shows the Bode diagram obtained by the VRFT tuning con-
sidering experimental data from a closed-loop test. Comparing this tuning
with the one obtained with the VRFT method using open-loop data, the
frequency responses of the closed-loop systems are quite similar. Never-
theless considering the step responses of the two VRFT tunings, the VRFT
method that employed closed-loop experimental data leads to a more oscil-
lating behaviour (see Figure 6.51).

Now the attention is moved to the outer proportional controller that acts
on the pitch angle setpoint and pitch angle measurements generating the
setpoint signal for the inner controller (see again Figure 3.4).

As illustrated in Figures 6.52 and 6.53, the closed-loop performance
guaranteed by the VRFT tuning obtained with closed-loop data is compa-
rable with the one provided by the VRFT tuning with open-loop data. The
rise times are the same and the step response with the closed-loop data
VRFT methods is slightly more oscillating.
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Figure 6.51: ANT-1: comparison of the inner loop step responses considering VRFT with
closed-loop data and VRFT with open-loop data (simulation).
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Figure 6.52: ANT-1: comparison of the outer loop Bode diagrams considering VRFT with
closed-loop data and VRFT with open-loop data (simulation).
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Figure 6.53: ANT-1: comparison of the outer loop step responses considering VRFT with
closed-loop data and VRFT with open-loop data (simulation).

Experimental results

As explained in Section 6.3.1, the performance achieved in the simulation
environment must be validated also in practice, operating on the real sys-
tem. The attitude tests have been performed with the test-bed setup and
also in this case two different types of tests have been performed as in Sec-
tion 6.3.1: a setpoint tracking and a disturbance rejection load disturbance
evaluation.

As in the simulation environment, the VRFT method exploiting closed-
loop experimental data is compared with the VRFT algorithm that instead
exploits open-loop data. Figure 6.54 shows the entire time history of the
setpoint tracking test and an enlargement of a single step response has been
reported for both amplitudes, 5 deg and 10 deg in Figure 6.55 and in Fig-
ure 6.56 respectively. As expected in simulation, the VRFT tuning ob-
tained with closed-loop experimental data leads to a more oscillating re-
sponse but the rise time is the same of the response of the VRFT tuning
that exploits open-loop data.
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Figure 6.54: ANT-1: setpoint tracking comparing VRFT with closed-loop data and VRFT
with open-loop data (experiment).
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Figure 6.55: ANT-1: setpoint tracking (5 deg step) comparing VRFT with closed-loop
data and VRFT with open-loop data (experiment).
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Figure 6.56: ANT-1: setpoint tracking (10 deg step) comparing VRFT with closed-loop
data and VRFT with open-loop data (experiment).

When considering the disturbance rejection test (Figure 6.57) the per-
formance of VRFT method obtained with open-loop data is slightly better
than that of the same data-driven method but obtained with closed-loop ex-
perimental data.

6.3.3 Pitch-roll attitude controllers with closed-loop experiments

Until now only the pitch attitude controller was considered. As explained
in Section 3.1, the roll DoF are controlled with the same regulator scheme
in Figures 3.4 thanks to the geometrical symmetry of the quadrotor. Ob-
viously, the involved signals are different: the user provides the roll angle
setpoint φ̄(t) and the proportional outer controller generates the roll angu-
lar rate reference signal. The inner regulator, starting from this information,
computes the roll pitch moment L(t).

As illustrated in Section 3.1, when the quadrotor is in near-hovering
conditions, the roll and pitch DoFs could be assumed decoupled. In this
case the pitch and the roll can be tuned independently. If, for any reason,
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Figure 6.57: ANT-1: load disturbance rejection comparing VRFT with closed-loop data
and VRFT with open-loop data (experiment).

the system to control does not have a decoupled dynamics between the
DoFs, the different DoF controllers must be tuned at the same.

For the sake of simplicity, only the VRFT method is considered. As
described in Section 2.1, the Algorithm 1 is not limited to SISO control
systems and VRFT can deal also with MIMO regulators.

In this section only the inner loop controllers, based on the roll and
pitch angular feedbacks, are taken into account. In particular the considered
controller has four inputs (pitch and roll angular setpoints, and pitch and
roll angular rate measurements) and two outputs (pitch and roll moments).
Internally it has four independent regulators as displayed in Figure 3.4: one
for the pitch DoF, one for the roll DoF and two for the coupled dynamics. In
this case the controller parameters are not scalar but they are 2x2 matrices:
on the main diagonal there are the parameters for the pitch and the roll DoF
controllers and on the secondary diagonal the parameters of the coupled
dynamics controllers.

The experimental data are collected in closed-loop. Two PRBS exci-
tation signals, one for the pitch moment and one for the roll moment, are
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Table 6.11: ANT-1: parameters for the initial controller exploited in the test to collect
data for the MIMO controller tuning procedure.

Controller parameter

KO
P

[
8 0

0 8

]

KI
FF

[
0 0

0 0

]

KI
P

[
0.06 0

0 0.06

]

KI
I

[
0.1 0

0 0.1

]

KI
D

[
0.001 0

0 0.001

]

applied at the same time. The two signals are different but they share the
same PRBS parameters (signal amplitude and min/max switching interval).

As illustrated in Section 4.1, an initial controller Cd(z) that stabilises
the system must be available. In this case the parameters of this initial
controller are illustrated in Table 6.11.

Figure 6.58 and Figure 6.59 show the involved signal in the data-driven
tuning procedure. For the sake of clarity, the signals are represented in two
figures but all the signals feeds the data-driven procedure at the same time.

Reference models

Comparing this section and Section 6.3.2, now the reference models are 2x2
matrices of transfer functions. In particular, since only the inner controller
is considered, the reference model is a 2x2 matrix with the transfer function
defined in (6.3) on the main diagonal and zeros on the secondary diagonal.

Controller parameter values

Exploiting the reference models and closed-loop experimental data the VRFT
method leads to the parameter values reported in Table 6.12. To deal with
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Figure 6.58: ANT-1: closed-loop pitch experimental dataset used by MIMO data-driven
method.
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Figure 6.59: ANT-1: closed-loop roll experimental dataset used by MIMO data-driven
methods.
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Table 6.12: ANT-1: optimal controller parameters for outer and inner controllers consid-
ering the VRFT MIMO method with closed-loop experimental data.

Controller parameter

KI
FF

[
0 0

0 0

]

KI
P

[
0.0896 0

0 0.0901

]

KI
I

[
0.1854 0

0.0001 0.1873

]

KI
D

[
0.0015 0

0 0.0015

]

noisy data, an instrumental variable is employed and it is built through the
identification of the plant model with the PBSID algorithm with p = 40,
f = 40 and model order equal to 10.

Since the experiments are conducting in near-hovering conditions, the
secondary diagonal of the parameters in Table 6.12 is almost always equal
to zero confirming decoupled dynamics between the DoFs in the quadrotor
platform. Furthermore, the results for the the pitch controller (first element
of the matrices) are similar to those obtained exciting only the pitch DoF in
Table 6.10.

6.3.4 Position controller

In this section, the results of the position controller tuning, considering the
ANT-1 quadrotor, will be discussed.

For the sake of simplicity, only the VRFT method is considered and the
original control architecture displayed in Figure 3.5 is exploited. Just for
recall, the inner controller is a PID with derivative action applied on the
measurement and supplemented with a feedforward term, while the exter-
nal controller consists of a simple proportional gain. Since this controller
was never previously tuned, the closed-loop results will be compared with
the closed-loop reference model.
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The FCU of the ANT-1 quadrotor is modified to perform the required
excitation test. Furthermore, thanks to the small size of the UAV the test
has been performed indoor in the flying arena. In the initial part of the test,
the quadrotor is manually controlled in attitude via a remote controller. The
excitation test begins as soon as the drone is approximately stable in mid-
air position. The thrust required in hovering conditions is kept constant
throughout the test. In this situation, a PRBS pitch reference is applied
as input in open-loop conditions. The reader should notice that, consider-
ing the position controller, an open-loop experiment means that the attitude
controllers are enabled and the position controllers are disabled (see Sec-
tion 3.4). Although the excitation test is performed in safe conditions since
the system is stabilised by the attitude controller, each test duration does not
exceed 5 seconds because, during the test, the drone tends to move away
from the initial position and could potentially collide with the walls of the
cage.

The input and output time histories used for the data-driven controller
design are shown in Figure 6.60. The input signal is the demanded pitch and
it is defined as a PRBS signal switching from −5 deg and 5 deg. Whereas,
the output signals are the longitudinal linear velocity vx(t) and the lon-
gitudinal position x(t). Two excitation tests are concatenated. The mea-
surement signals come from the Kalman-based estimator that employs both
on-board sensors (e.g., accelerometer and gyroscope) and the information
from the motion capture system that, using an array of infra-red sensitive
cameras, provides the position of the UAV inside an indoor flight arena.

Reference models

As with the tuning of the attitude controller, a second-order system, defined
by the natural frequency and the damping ratio, has been adopted as a base-
line reference model. By doing so, the desired bandwidth and damping of
the closed-loop system can be assigned.

As already mentioned for the attitude controller design, if the dynamic
response of the system is roughly known, it is possible to augment the de-
sired model so that it better matches the closed-loop behaviour of the real
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Figure 6.60: ANT-1: open-loop experimental dataset used by data-driven methods.

plant. This allows the VRFT method to achieve a controller tuning that en-
sures better closed-loop performance. Exactly as in the reference model of
the attitude dynamics, a time delay of 5 samples. The inner loop reference
model is a second order model with desired bandwidth of 1.3 rad/s and a
damping ratio of 0.7 with an additional zero in 1.8 rad/s:

Mi(z) = z−5 0.003755z − 0.003728

z2 − 1.993z + 0.9927
.

In this specific case no filtering action was needed, thus the weighting func-
tion has been defined as Wi(z) = 1.

In a similar way, the outer loop reference model is defined: it is a second
order model with desired bandwidth of 1.1 rad/s and a damping ratio of 0.6

and it does not contain additional poles or zeros:

Mo(z) = z−5 9.663 · 10−6z + 9.646 · 10−6

z2 − 1.995z + 0.9947
.
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Table 6.13: ANT-1: optimal controller parameters for outer and inner position controllers
considering the VRFT method.

Controller parameter VRFT with open-loop data

kOP 0.77

kIFF 0

kIP 0.1806

kII 0.05906

kID 0.02172

Finally, unlike the inner loop, the use of a weighting function in the outer
controller design has improved the matching between closed-loop response
and reference model. In particular, Wo(z) has been defined as a ninth-order
lowpass digital Butterworth filter, with a cut-off frequency equal to 80 rad/s.

Controller parameter values

The VRFT algorithm is fed with the two reference models and the experi-
mental data in Figure 6.60. The optimal values of the controller parameters
computed by this data-driven method are reported in Table 6.13 where both
the parameters for the inner and the outer controllers are displayed. To deal
with noisy data, an instrumental variable is employed and it is built through
the identification of an ARX(5,5) model for the inner and the outer loops.

Simulation results

The controller tunings obtained with the VRFT algorithm have been tested
in a simulation environment. Unlike the attitude control loop, no previously
identified position dynamics model was available. In particular, it should
be defined as the dynamic relationship between the pitch angle ϑ(t) and the
linear longitudinal velocity vx(t) . Without carrying out any identification
tests, it is possible to obtain a very basic model by means of a simple forces
equilibrium in hovering conditions.

The discrete time transfer function between the pitch angle ϑ(t) and the
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linear longitudinal velocity vx(t) is the following:

Po(z) = −g Ts
z − 1

(6.6)

where g is the gravitational acceleration. As schematically shown in Fig-
ure 6.61, to obtain the position a second integrator block is needed. Obvi-

Attitude
dynamics Po(z)

Ts
z−1

ϑ̄ ϑ x

vx

Figure 6.61: ANT-1: longitudinal position plant model.

ously, this model is characterised by significant approximations. In partic-
ular, all the aerodynamic effects are completely neglected. Both the aero-
dynamic drag and the inflow effect on the rotors yield a damping term in
the dynamic equation that becomes more and more important moving away
from hovering conditions.

Figure 6.62 and Figure 6.63 respectively represent the Bode diagram and
the step response of the inner control loop. The simulated system appears
to be slightly faster than the reference model but with larger overshooting,
nevertheless, the two curves are very similar.

Regarding the position dynamics (Figure 6.64 and Figure 6.65), the sim-
ulated system with the VRFT tuned controller almost perfectly match the
desired closed-loop behaviour.

Experimental results

As already stated before, the adoption of a very basic model for the plant
does not ensure that good simulation results lead to the closed-loop stability
considering the real system. Therefore, validation experiments conducted
on the real plant are essential.

During the validation experiments both attitude and position controllers
were enabled. To evaluate the closed-loop performance, a setpoint tracking
test has been performed. More specifically, a desired position command
history with respect to the centre of the testing cage has been provided as
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Figure 6.62: ANT-1: comparison of the position inner loop Bode diagram considering the
VRFT tuning (simulation).
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Figure 6.63: ANT-1: comparison of the position inner loop step response considering the
VRFT tuning (simulation).
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Figure 6.64: ANT-1: comparison of the position outer loop Bode diagram considering the
VRFT tuning (simulation).
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Figure 6.65: ANT-1: comparison of the position outer loop step response considering the
VRFT tuning (simulation).
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Figure 6.66: ANT-1: position setpoint tracking with VRFT tuning and ideal reference
model response (experiment).
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Figure 6.67: ANT-1: setpoint tracking (1 m step) with VRFT tuning and ideal reference
model response (experiment).
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input to the quadrotor. The chosen setpoint time history is a sequence of
steps with amplitudes of 0.5 m and 1 m and duration equal to 10 seconds.
Figure 6.66 shows the complete setpoint tracking test obtained operating
the quadrotor with VRFT tuned attitude and position controllers. On the
same figure, the ideal dynamic response of the reference model has been
plotted. Figure 6.67 shows a zoomed-in view of a single step. As can
be seen, recalling that the simulated step response was very similar to the
reference model one, the real plant is significantly more damped than the
simulated model due to the neglected aerodynamic effects.
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CHAPTER7
Conclusions

IN this thesis, data-driven methods have been applied to tune the attitude
and the position controllers of UAVs. After a detailed classification
of these methods, the more promising algorithms are presented. From

this analysis, they emerge as a valuable approach to tune the UAV con-
trollers. Indeed, these methods exploit only experimental input-output data
and basic information on the plant, thus avoiding the requirement of an
accurate plant model. Furthermore, since the considered data-driven meth-
ods are computationally efficient, they allow also a fast re-tuning of the
controller when the plant performance is reduced or operating conditions
change.

Three data-driven algorithms have been selected. The first is the VRFT
method and it is also chosen because it was already extended in [19] to tune
a cascade control system with data from a single experiment. This makes
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VRFT the best candidate to solve the tuning problem since all the consid-
ered UAVs exploit a cascade control architecture. In order to overcome
the limitation of the VRFT method when the data are affected by noise,
the CbT algorithm is adopted. Finally, the lack of an accurate plant model
makes it impossible to guarantee the stability of the closed-loop system be-
fore implementing and testing the controller on the real plant. Recently,
a new data-driven method, called controller unfalsification, has been pro-
posed and it includes an effective stability constraint. In this work also this
latter algorithm is tested.

Currently, the problem of tuning the attitude control system of a rotor-
craft through data-driven methods is not yet fully explored in the literature,
mainly due to the complexity of performing open-loop experiments to col-
lect the required data. To deal with this problem, in Chapter 4 some exten-
sions to the standard data-driven methods are presented. In particular, the
extensions allow to apply the algorithms on the classical control architec-
ture of UAVs (presented in Chapter 3) and to consider data obtained with
closed-loop tests performed in flight.

Three different multirotor systems have been analysed in this work: they
are all quadrotors and they differ from size, actuation and control architec-
tures. The same UAVs were previously employed in several different works
both from the control and the system identification point of view. These
previous works are exploited here to better tune the parameters of the data-
driven methods (e.g., the reference models) and to compare the new tunings
obtained with the data-driven algorithms with those already implemented
on the UAVs. In particular, the reference model represents the main DoF
in the design procedure of all the considered data-driven methods. As ex-
plained before, the selection of the model parameters in our cases exploits
the information of previous works but the required information is usually
available from the plant manufacturer. Without this information, obtaining
a satisfactory tuning can be challenging but, since the proposed data-driven
methods are computational efficient, the selection of the reference model
could be made also in an iterative way.

Exploiting the different features of each UAV and the chance to execute
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specific tests, different analyses have been performed. With the first UAV,
VRFT and CbT are employed and compared with a model-based and a man-
ual tuning. The customisation of the UAV firmware was not possible but it
allows us to perform an analysis with different SNR showing that CbT is
more robust than VRFT. In order to show how the VRFT method is able to
adapt to a different platform, VRFT has been applied to a smaller quadrotor
than the first one. Also in this case the results are compared with a model-
based tuning. The high level of FCU customisation and the small size of the
third UAV allows us to test all the considered data-driven methods and to
perform different analyses. In particular, VRFT is applied with both open-
loop and closed-loop experimental data and compared with a model-based
tuning. Furthermore, changing the controller architecture, VRFT has been
compared with CbT and the controller unfalsification method. Finally, also
the position controller of this UAV is considered.

The three quadrotors lead to similar results: the data-driven methods are
successfully applied to tune a cascade control system and the designed con-
troller provides a performance level comparable with the one of a model-
based controller. In particular, the data-driven controller presents good
tracking and disturbance rejection capabilities and therefore represents a
viable solution for the fast deployment of high performance controllers for
UAVs.

135



i
i

“thesis” — 2017/12/20 — 17:00 — page 136 — #142 i
i

i
i

i
i



i
i

“thesis” — 2017/12/20 — 17:00 — page 137 — #143 i
i

i
i

i
i

List of Figures

1.1 The control system. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The control system with measurement noise. . . . . . . . . 13
2.2 Cascade control scheme with two nested loops. . . . . . . . 16
2.3 The tuning scheme for the CbT method. . . . . . . . . . . . 18
2.4 The approximate tuning scheme for CbT method. . . . . . . 19
2.5 The tuning scheme for the controller unfalsification method. 25

3.1 The overall control architecture for multirotor system. . . . 33
3.2 The controller architecture for the longitudinal/pitch DoFs. . 35
3.3 The pitch attitude controller based on SISO PID architecture. 35
3.4 The pitch attitude controller with feed-forward gain and deriva-

tive action on plant measurements. . . . . . . . . . . . . . . 37
3.5 The longitudinal position controller with feed-forward and

derivative action based on the plant measurements. . . . . . 38

4.1 VRFT experiment in closed-loop operation. . . . . . . . . . 42
4.2 Controller with feed forward term and action on plant mea-

surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Aermatica P2-A1 on laboratory test-bed. . . . . . . . . . . . 61

137



i
i

“thesis” — 2017/12/20 — 17:00 — page 138 — #144 i
i

i
i

i
i

List of Figures

5.2 Proto-1 on its test-bed: front view. . . . . . . . . . . . . . . 64
5.3 Proto-1 on its test-bed: top view . . . . . . . . . . . . . . . 64
5.4 The ANT-1 quadrotor. . . . . . . . . . . . . . . . . . . . . 67
5.5 The ANT-1 quadrotor on the test-bed. . . . . . . . . . . . . 68

6.1 Aermatica P2-A1: open-loop experimental dataset used by
VRFT and CbT. . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Aermatica P2-A1: Bode diagram of the inner and the outer
reference models. . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Aermatica P2-A1: setpoint tracking with manual tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Aermatica P2-A1: setpoint tracking with model-based H∞
tuning (experiment). . . . . . . . . . . . . . . . . . . . . . 75

6.5 Aermatica P2-A1: setpoint tracking with VRFT tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Aermatica P2-A1: load disturbance rejection with manual
tuning (experiment). . . . . . . . . . . . . . . . . . . . . . 76

6.7 Aermatica P2-A1: load disturbance rejection with model-
based H∞ tuning (experiment). . . . . . . . . . . . . . . . . 77

6.8 Aermatica P2-A1: load disturbance rejection with VRFT
tuning (experiment). . . . . . . . . . . . . . . . . . . . . . 77

6.9 Aermatica P2-A1: Bode diagram of the inner and the outer
reference models. . . . . . . . . . . . . . . . . . . . . . . . 79

6.10 Aermatica P2-A1: impulse response of the inner and the
outer reference models. . . . . . . . . . . . . . . . . . . . . 79

6.11 Aermatica P2-A1: setpoint tracking with CbT tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.12 Aermatica P2-A1: setpoint tracking with VRFT tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.13 Aermatica P2-A1: load disturbance rejection with CbT tun-
ing (experiment). . . . . . . . . . . . . . . . . . . . . . . . 81

6.14 Aermatica P2-A1: load disturbance rejection with VRFT
tuning (experiment). . . . . . . . . . . . . . . . . . . . . . 82

6.15 Proto-1: open-loop experimental dataset used by VRFT. . . 84

138



i
i

“thesis” — 2017/12/20 — 17:00 — page 139 — #145 i
i

i
i

i
i

List of Figures

6.16 Proto-1: setpoint tracking performance with VRFT tuning
(experiment). . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.17 Proto-1: setpoint tracking performance with H∞ tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.18 Proto-1: load disturbance rejection with VRFT tuning (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.19 Proto-1: load disturbance rejection with H∞ tuning (experi-
ment). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.20 ANT-1: open-loop experimental dataset used by data-driven
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.21 ANT-1: pitch attitude model. . . . . . . . . . . . . . . . . . 94
6.22 ANT-1: Bode diagram of the identified pitch attitude model. 95
6.23 ANT-1: comparison of the inner loop Bode diagrams con-

sidering VRFT, H∞ and manual tunings (simulation). . . . . 96
6.24 ANT-1: comparison of the inner loop step responses consid-

ering VRFT, H∞ and manual tunings (simulation) . . . . . 96
6.25 ANT-1: comparison of the inner loop Bode diagrams con-

sidering VRFT, CbT and controller unfalsification tunings
(simulation). . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.26 ANT-1: comparison of the inner loop step responses con-
sidering VRFT, CbT and controller unfalsification tunings
(simulation). . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.27 ANT-1: impulse response of the inner and the outer refer-
ence models. . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.28 ANT-1: infinity norm discrepancy. . . . . . . . . . . . . . . 99
6.29 ANT-1: comparison of the inner loop Bode diagram consid-

ering the controller unfalsification tuning with unachievable
reference model (simulation). . . . . . . . . . . . . . . . . 100

6.30 ANT-1: comparison of the inner loop step response consid-
ering the controller unfalsification tuning with unachievable
reference model (simulation). . . . . . . . . . . . . . . . . 100

6.31 ANT-1: comparison of the outer loop Bode diagrams con-
sidering manual, VRFT and H∞ tunings (simulation). . . . . 102

139



i
i

“thesis” — 2017/12/20 — 17:00 — page 140 — #146 i
i

i
i

i
i

List of Figures

6.32 ANT-1: comparison of the outer loop step responses consid-
ering manual, VRFT and H∞ tunings (simulation). . . . . . 102

6.33 ANT-1: the outer loop Bode diagram considering the VRFT
tuning (simulation). . . . . . . . . . . . . . . . . . . . . . . 103

6.34 ANT-1: the outer loop step response considering the VRFT
tuning (simulation). . . . . . . . . . . . . . . . . . . . . . . 103

6.35 ANT-1: the outer loop Bode diagram considering the CbT
tuning (simulation). . . . . . . . . . . . . . . . . . . . . . . 104

6.36 ANT-1: the outer loop step response considering the CbT
tuning (simulation). . . . . . . . . . . . . . . . . . . . . . . 104

6.37 ANT-1: the outer loop Bode diagram considering the con-
troller unfalsification tuning (simulation). . . . . . . . . . . 105

6.38 ANT-1: the outer loop step response considering the con-
troller unfalsification tuning (simulation). . . . . . . . . . . 105

6.39 ANT-1: comparison of the outer loop Bode diagrams con-
sidering VRFT, CbT and controller unfalsification tunings
(simulation). . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.40 ANT-1: comparison of the outer loop step responses con-
sidering VRFT, CbT and controller unfalsification tunings
(simulation). . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.41 ANT-1: setpoint tracking with manual, H∞ and VRFT tun-
ing (experiment). . . . . . . . . . . . . . . . . . . . . . . . 108

6.42 ANT-1: setpoint tracking (5 deg step) with manual, H∞ and
VRFT tuning (experiment). . . . . . . . . . . . . . . . . . . 108

6.43 ANT-1: setpoint tracking (10 deg step) with manual, H∞ and
VRFT tuning (experiment). . . . . . . . . . . . . . . . . . . 109

6.44 ANT-1: load disturbance rejection with manual, H∞ and
VRFT tuning (experiment). . . . . . . . . . . . . . . . . . . 109

6.45 ANT-1: setpoint tracking with VRFT, CbT and controller
unfalsification tuning (experiment). . . . . . . . . . . . . . 110

6.46 ANT-1: setpoint tracking (5 deg step) with VRFT, CbT and
controller unfalsification tuning (experiment). . . . . . . . . 111

140



i
i

“thesis” — 2017/12/20 — 17:00 — page 141 — #147 i
i

i
i

i
i

List of Figures

6.47 ANT-1: setpoint tracking (10 deg step) with VRFT, CbT and
controller unfalsification tuning (experiment). . . . . . . . . 111

6.48 ANT-1: load disturbance rejection with VRFT, CbT and
controller unfalsification tuning (experiment). . . . . . . . . 112

6.49 ANT-1: closed-loop experimental dataset used by data-driven
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.50 ANT-1: comparison of the inner loop Bode diagrams con-
sidering VRFT with closed-loop data and VRFT with open-
loop data (simulation). . . . . . . . . . . . . . . . . . . . . 115

6.51 ANT-1: comparison of the inner loop step responses con-
sidering VRFT with closed-loop data and VRFT with open-
loop data (simulation). . . . . . . . . . . . . . . . . . . . . 116

6.52 ANT-1: comparison of the outer loop Bode diagrams con-
sidering VRFT with closed-loop data and VRFT with open-
loop data (simulation). . . . . . . . . . . . . . . . . . . . . 116

6.53 ANT-1: comparison of the outer loop step responses con-
sidering VRFT with closed-loop data and VRFT with open-
loop data (simulation). . . . . . . . . . . . . . . . . . . . . 117

6.54 ANT-1: setpoint tracking comparing VRFT with closed-loop
data and VRFT with open-loop data (experiment). . . . . . . 118

6.55 ANT-1: setpoint tracking (5 deg step) comparing VRFT with
closed-loop data and VRFT with open-loop data (experiment). 118

6.56 ANT-1: setpoint tracking (10 deg step) comparing VRFT
with closed-loop data and VRFT with open-loop data (ex-
periment). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.57 ANT-1: load disturbance rejection comparing VRFT with
closed-loop data and VRFT with open-loop data (experiment). 120

6.58 ANT-1: closed-loop pitch experimental dataset used by MIMO
data-driven method. . . . . . . . . . . . . . . . . . . . . . . 122

6.59 ANT-1: closed-loop roll experimental dataset used by MIMO
data-driven methods. . . . . . . . . . . . . . . . . . . . . . 122

6.60 ANT-1: open-loop experimental dataset used by data-driven
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

141



i
i

“thesis” — 2017/12/20 — 17:00 — page 142 — #148 i
i

i
i

i
i

List of Figures

6.61 ANT-1: longitudinal position plant model. . . . . . . . . . . 127
6.62 ANT-1: comparison of the position inner loop Bode diagram

considering the VRFT tuning (simulation). . . . . . . . . . 128
6.63 ANT-1: comparison of the position inner loop step response

considering the VRFT tuning (simulation). . . . . . . . . . 128
6.64 ANT-1: comparison of the position outer loop Bode diagram

considering the VRFT tuning (simulation). . . . . . . . . . 129
6.65 ANT-1: comparison of the position outer loop step response

considering the VRFT tuning (simulation). . . . . . . . . . 129
6.66 ANT-1: position setpoint tracking with VRFT tuning and

ideal reference model response (experiment). . . . . . . . . 130
6.67 ANT-1: setpoint tracking (1 m step) with VRFT tuning and

ideal reference model response (experiment). . . . . . . . . 130

142



i
i

“thesis” — 2017/12/20 — 17:00 — page 143 — #149 i
i

i
i

i
i

List of Tables

6.1 Aermatica P2-A1: optimal controller parameters consider-
ing manual, VRFT and H∞ methods. . . . . . . . . . . . . . 74

6.2 Aermatica P2-A1: optimal controller parameters consider-
ing VRFT and CbT. . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Aermatica P2-A1: MSE of CbT and VRFT considering three
different datasets. . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Proto-1: optimal controller parameters considering H∞ and
VRFT methods. . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Proto-1: average MSE of H∞ and VRFT methods computed
on 10 setpoint tracking tests. . . . . . . . . . . . . . . . . . 85

6.6 Proto-1: average MSE of H∞ and VRFT methods computed
on 10 load disturbance rejection tests. . . . . . . . . . . . . 88

6.7 ANT-1: inner and outer reference models for VRFT, CbT
and controller unfalsification algorithms. . . . . . . . . . . . 92

6.8 ANT-1: optimal controller parameters considering manual,
VRFT and H∞ methods. . . . . . . . . . . . . . . . . . . . 93

6.9 ANT-1: optimal controller parameters considering VRFT,
CbT and controller unfalsification methods. . . . . . . . . . 93

143



i
i

“thesis” — 2017/12/20 — 17:00 — page 144 — #150 i
i

i
i

i
i

List of Tables

6.10 ANT-1: optimal controller parameters for outer and inner
controllers considering the VRFT method with open-loop
and closed-loop experimental data. . . . . . . . . . . . . . . 114

6.11 ANT-1: parameters for the initial controller exploited in the
test to collect data for the MIMO controller tuning procedure. 121

6.12 ANT-1: optimal controller parameters for outer and inner
controllers considering the VRFT MIMO method with closed-
loop experimental data. . . . . . . . . . . . . . . . . . . . . 123

6.13 ANT-1: optimal controller parameters for outer and inner
position controllers considering the VRFT method. . . . . . 126

144



i
i

“thesis” — 2017/12/20 — 17:00 — page 145 — #151 i
i

i
i

i
i

List of Algorithms

1 The VRFT algorithm. . . . . . . . . . . . . . . . . . . . . 15
2 The VRFT method for cascade control systems. . . . . . . 17
3 The CbT algorithm. . . . . . . . . . . . . . . . . . . . . . 21
4 Control unfalsification tuning method. . . . . . . . . . . . 28
5 The control system with closed-loop excitation data. . . . 50
6 VRFT algorithm with the new controller architectures. . . 56
7 The CbT method for cascade control systems. . . . . . . . 58

145



i
i

“thesis” — 2017/12/20 — 17:00 — page 146 — #152 i
i

i
i

i
i



i
i

“thesis” — 2017/12/20 — 17:00 — page 147 — #153 i
i

i
i

i
i

Glossary

CbT Correlation based Tuning. 10, 11, 17–19,
21, 23, 39, 54, 55, 60, 61, 67–69, 76,
78–81, 89–92, 94–96, 101–106, 108–110,
132–137, 139, 141

DoF Degree of Freedom. 32, 33, 36, 68, 81, 118,
119, 121, 133

FCU Flight Control Unit. 31, 32, 35, 61, 65, 68,
81, 87, 89, 122

IFT Iterative Feedback Tuning. 10
IMU Inertial Measurement Unit. 61, 68, 87

LAN Local Area Network. 65
LTI Linear Time Invariant. 43

MAV Micro Aerial Vehicle. 64, 66

147



i
i

“thesis” — 2017/12/20 — 17:00 — page 148 — #154 i
i

i
i

i
i

Glossary

MIMO Multiple Input Multiple Output. 15, 43, 87,
119, 120, 140

MISO Multiple Input Single Output. 48
MSE Mean Square Error. 80, 81, 83, 85, 86, 139

OGE Out of Ground Effect. 58

PBSID Predictor Based System Identification. 43,
44, 47, 48, 92, 112

PEM Prediction Error Method. 13, 17
PRBS Pseudo Random Binary Sequence. 60, 68,

80, 81, 87, 111, 119, 122, 123
PWM Pulse Width Modulation. 61

R2P Rapid Robot Prototyping. 61, 63
ROS Robotic Operating System. 63

SISO Single Input Single Output. 6, 15, 29, 33,
48, 89, 91, 101, 119

SMI Subspace Model Identification. 43
SNR Signal to Noise Ratio. 21, 61, 67, 78, 80,

81, 94

TOW Take-Off Weight. 5

UAV Unmanned Aerial Vehicle. I, 2, 5, 7, 8, 10,
29–32, 34, 35, 39–41, 48, 57, 58, 60, 61,
63–68, 81, 87, 105, 111, 122, 123, 131, 132

148



i
i

“thesis” — 2017/12/20 — 17:00 — page 149 — #155 i
i

i
i

i
i

Glossary

VRFT Virtual Reference Feedback Tuning. 10–
15, 17–20, 23, 24, 39–41, 47–49, 52–54,
60, 61, 63, 64, 66–72, 74–76, 78–87, 89–
97, 99–102, 104–116, 118, 119, 121, 122,
124–129, 131–141

149



i
i

“thesis” — 2017/12/20 — 17:00 — page 150 — #156 i
i

i
i

i
i



i
i

“thesis” — 2017/12/20 — 17:00 — page 151 — #157 i
i

i
i

i
i

Bibliography

[1] Karl Johan Åström and Tore Hägglund. PID controllers: theory, design, and tuning, volume 2.
Isa Research Triangle Park, NC, 1995.

[2] Federal Aviation Authority. https://registermyuas.faa.gov/.

[3] G. Battistelli, D. Mari, D. Selvi, and P. Tesi. Direct control design via controller unfalsification.
International Journal of Robust and Nonlinear Control, 2017. rnc.3778.

[4] M. Bergamasco and M. Lovera. Continuous-time predictor-based subspace identification using
Laguerre filters. IET Control Theory and Applications, 5(7):856–867, 2011. Special issue on
Continuous-time Model Identification.

[5] M. Bergamasco and M. Lovera. Identification of linear models for the dynamics of a hovering
quadrotor. IEEE Transactions on Control Systems Technology, 22(5):1696–1707, Sept 2014.

[6] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi. R2p: An open source hardware
and software modular approach to robot prototyping. Robotics and Autonomous Systems,
62(7):1073 – 1084, 2014. Reconfigurable Modular Robotics.

[7] C. L. Bottasso, D. Leonello, and B. Savini. Path planning for autonomous vehicles by trajec-
tory smoothing using motion primitives. IEEE Transactions on Control Systems Technology,
16(6):1152–1168, 2008.

[8] S. Bouabdallah, A. Noth, and R. Siegwart. Pid vs lq control techniques applied to an indoor
micro quadrotor. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 3, pages 2451–2456. IEEE, 2004.

[9] S. Bouabdallah and R. Siegwart. Backstepping and sliding-mode techniques applied to an
indoor micro quadrotor. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, pages 2247–2252. IEEE, 2005.

151

https://registermyuas.faa.gov/


i
i

“thesis” — 2017/12/20 — 17:00 — page 152 — #158 i
i

i
i

i
i

Bibliography

[10] M.C. Campi, A. Lecchini, and S.M. Savaresi. Virtual reference feedback tuning: a direct
method for the design of feedback controllers. Automatica, 38(8):1337 – 1346, 2002.

[11] E. Capello, A. Scola, G. Guglieri, and F. Quagliotti. Mini quadrotor uav: design and experi-
ment. Journal of Aerospace Engineering, 25(4):559–573, 2012.

[12] D. Chevallard. Design, identification and control of a micro aerial vehicle. Master’s thesis,
Politecnico di Milano, 2017.

[13] A. Chiuso. The role of vector autoregressive modeling in predictor-based subspace identifica-
tion. Automatica, 43(6):1034 – 1048, 2007.

[14] T. Chupin. Data-driven attitude control design for multirotor uavs. Master’s thesis, Politecnico
di Milano, 2017.

[15] M. Cutler, N. Kemal Ure, B. Michini, and P. How. Comparison of fixed and variable pitch
actuators for agile quadrotors. In AIAA Guidance, Navigation, and Control Conference (GNC),
volume 2, 2011.

[16] A. Das, K. Subbarao, and F. Lewis. Dynamic inversion with zero-dynamics stabilisation for
quadrotor control. IET Control Theory Applications, 3(3):303–314, March 2009.

[17] L. Derafa, T. Madani, and A. Benallegue. Dynamic modelling and experimental identifica-
tion of four rotors helicopter parameters. In Industrial Technology, 2006. ICIT 2006. IEEE
International Conference on, pages 1834–1839. IEEE, 2006.

[18] ENAC. Remotely piloted aerial vehicle regulation. https://www.enac.gov.it/la_

normativa/normativa_enac/.

[19] S. Formentin, A. Cologni, D. Belloli, F. Previdi, and S. M. Savaresi. Fast tuning of cascade
control systems. IFAC Proceedings Volumes, 44(1):10243–10248, 2011.

[20] S. Formentin and M. Lovera. Flatness-based control of a quadrotor helicopter via feedforward
linearization. In Decision and Control and European Control Conference (CDC-ECC), 2011
50th IEEE Conference on, pages 6171–6176. IEEE, 2011.

[21] S. Formentin, K. Van Heusden, and A. Karimi. A comparison of model-based and data-
driven controller tuning. International Journal of Adaptive Control and Signal Processing,
28(10):882–897, 2014.

[22] M. Giurato. Design, integration and control of a multirotor uav platform. Master’s thesis,
Politecnico di Milano, 2015.

[23] G. O. Guardabassi and S. M. Savaresi. Virtual reference direct design method: an off-line
approach to data-based control system design. IEEE Transactions on Automatic Control,
45(5):954–959, May 2000.

[24] P. G. Hamel and J. Kaletka. Advances in rotorcraft system identification. Progress in Aerospace
Sciences, 33(3):259 – 284, 1997.

[25] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin. Iterative feedback tuning: theory
and applications. IEEE Control Systems, 18(4):26–41, Aug 1998.

152

https://www.enac.gov.it/la_normativa/normativa_enac/
https://www.enac.gov.it/la_normativa/normativa_enac/


i
i

“thesis” — 2017/12/20 — 17:00 — page 153 — #159 i
i

i
i

i
i

Bibliography

[26] H. Hjalmarsson, S. Gunnarsson, and M. Gevers. A convergent iterative restricted complex-
ity control design scheme. In Decision and Control, 1994., Proceedings of the 33rd IEEE
Conference on, volume 2, pages 1735–1740. IEEE, 1994.

[27] Z. S. Hou and Z. Wang. From model-based control to data-driven control: Survey, classification
and perspective. Information Sciences, 235(Supplement C):3 – 35, 2013. Data-based Control,
Decision, Scheduling and Fault Diagnostics.

[28] I. Houtzager, J. W. van Wingerden, and M. Verhaegen. Recursive predictor-based subspace
identification with application to the real-time closed-loop tracking of flutter. IEEE Transac-
tions on Control Systems Technology, 20(4):934–949, 2012.

[29] R. Jategaonkar. Flight vehicle system identification: a time domain methodology, volume 216.
AIAA, Reston, VA, USA, 2006.

[30] A. Karimi, K. Van Heusden, and D. Bonvin. Non-iterative data-driven controller tuning using
the correlation approach. In Control Conference (ECC), 2007 European, pages 5189–5195.
IEEE, 2007.

[31] M. La Civita. Integrated Modeling and Robust Control for Full-Envelope Flight of Robotic
Helicopters. PhD thesis, Carnegie Mellon University, 2003.

[32] A. Lecchini, M. Campi, and S. M. Savaresi. Virtual reference feedback tuning for two degree
of freedom controllers. 16:355 – 371, 06 2002.

[33] T. Lee, M. Leoky, and H. McClamroch. Geometric tracking control of a quadrotor uav on se
(3). In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 5420–5425. IEEE,
2010.

[34] Leishman, J. G. Principles of Helicopter Aerodynamics, 2nd ed. Cambridge University Press,
New York, NY, 2006.

[35] P. Li, I. Postlethwaite, and M. C. Turner. Subspace-based system identification for helicopter
dynamic modelling. 3, 01 2007.

[36] L. Ljung. System Identification: Theory for the User. Prentice Hall information and system
sciences series. Prentice Hall PTR, 1999.

[37] M.A. Lotufo, L. Colangelo, C. Perez-Montenegro, C. Novara, and E. Canuto. Embedded model
control for uav quadrotor via feedback linearization. IFAC-PapersOnLine, 49(17):266 – 271,
2016. 20th IFAC Symposium on Automatic Control in Aerospace ACA 2016.

[38] R. Lozano, P. Castillo, and A. Dzul. Modeling and control of mini-flying machines, 2005.

[39] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial vehicles: Modeling, estimation, and
control of quadrotor. IEEE Robotics Automation Magazine, 19(3):20–32, Sept 2012.

[40] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 2520–2525.
IEEE, 2011.

[41] M. Nakamoto. An application of the virtual reference feedback tuning for an mimo process.
In SICE 2004 Annual Conference, volume 3, pages 2208–2213 vol. 3, Aug 2004.

153



i
i

“thesis” — 2017/12/20 — 17:00 — page 154 — #160 i
i

i
i

i
i

Bibliography

[42] P. Panizza, F. Riccardi, and M. Lovera. Black-box and grey-box identification of the attitude
dynamics for a variable-pitch quadrotor. In 1st IFAC Workshop on Advanced Control and
Navigation for Autonomous Aerospace Vehicles ACNAAV, 2015.

[43] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor robot. Control
Engineering Practice, 18(7):691–699, 2010.

[44] F. Riccardi. Model Identification and Control of Variable Pitch Quadrotor UAVs. PhD thesis,
Politecnico di Milano, 2015.

[45] F. Riccardi, M. F. Haydar, S. Formentin, and M. Lovera. Control of variable-pitch quadrotors.
IFAC Proceedings Volumes, 46(19):206–211, 2013.

[46] F. Riccardi, P. Panizza, and M. Lovera. Identification of the attitude dynamics for a variable-
pitch quadrotor uav. In 40th European Rotorcraft Forum, Southampton, UK, 2014.

[47] Riccardi, F. and Lovera, M. Robust attitude control for a variable-pitch quadrotor. In IEEE
Conference on Control Applications, Antibes, France, pages 730–735, 2014.

[48] A. Sala and A. Esparza. Extensions to virtual reference feedback tuning: A direct method for
the design of feedback controllersâ. Automatica, 41(8):1473–1476, 2005.

[49] M. B. Tischler and R. K. Remple. Aircraft and rotorcraft system identification. AIAA education
series, 2006.

[50] G. van der Veen, J. W. van Wingerden, Bergamasco M., Lovera M., and M. Verhaegen. Closed-
loop subspace identification methods: an overview. IET Control Theory and Applications,
7(10):1339–1358, 2013.

[51] K. Van Heusden, A. Karimi, and D. Bonvin. Data-driven controller tuning with integrated
stability constraint. In 2008 47th IEEE Conference on Decision and Control, pages 2612–
2617, Dec 2008.

[52] K. Van Heusden, A. Karimi, and D. Bonvin. Data-driven model reference control with asymp-
totically guaranteed stability. International Journal of Adaptive Control and Signal Processing,
25(4):331–351, 2011.

[53] J. Wartmann and S. Seher-Weiss. Application of the predictor-based subspace identification
method to rotorcraft system identification. In 39th European Rotorcraft Forum (ERF), Septem-
ber 2013.

154


	Introduction
	Model reference control
	Structure of the thesis

	Overview of data-driven tuning methods
	Virtual Reference Feedback Tuning
	Cascade control systems

	Correlation based Tuning
	Controller unfalsification
	Problem formulation
	Optimisation criterion
	Stability constraint and implementation


	UAV control architectures
	Overall control architecture
	SISO pitch attitude controller
	MISO pitch attitude controller
	MISO longitudinal position controller

	Data-driven algorithms for multirotor systems
	Closed Loop Experiments
	The PBSID algorithm

	Controller with feed-forward and action on plant output
	Correlation based Tuning for cascade control systems

	Considered multirotor platforms
	Aermatica P2-A1
	Proto-1
	ANT-1

	Results
	Aermatica P2-A1
	VRFT setpoint tracking and load disturbance evaluation
	CbT and sensitivity to SNR analysis

	Proto-1
	Setpoint tracking evaluation
	Load disturbance rejection evaluation

	Ant-1
	Pitch attitude controller with open-loop experiments
	Pitch attitude controller with closed-loop experiments
	Pitch-roll attitude controllers with closed-loop experiments
	Position controller


	Conclusions
	Glossary
	Bibliography

