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Abstract

A revolution is bound to happen in space in the near future as focus is shift-
ing on colonization and commercialization of the Earth sphere and beyond.
The Revolution takes the name of On Orbit Servicing (OOS) and is an old
concept revived by the new spur of commercial endeavours in the space in-
dustry. Research on related topics like economics, liability, property rights,
international cooperation and of course engineering is catching up again.
Technical issues in OOS are not show-stoppers but can hinder the growth
of the sector incredibly. Reliability, safety and costs of proximity opera-
tions are central in the development of OOS and the key aspects are related
to robotics and GNC. In this thesis all topics related to Guidance Navi-
gation Control & Robotics (GNCR) are covered simultaneously as disjoint
analysis might prove to be inadequate to guarantee the proper synthesis
of the control systems. Special focus is given to closed loop performance
with camera images in the loop through high fidelity simulations of rele-
vant OOS scenarios. Moreover, an adaptive control for both attitude and
robotics operations is developed in order to track the desired performances
under uncertain or time varying parameters like geometry or masses. Fi-
nally, after closed loop simulations of the proposed GNCR subsystem ver-
ify the expected performance, simple guidelines for future OOS mission
are presented.
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Nomenclature

GNC Guidance Navigation & Control

GNCR Guidance Navigation Control & Robotics

OOS On Orbit Servicing

OOF On Orbit Refuelling
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EVA Extra Vehicular Activity
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RANSAC Random Sample Consensus
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LQR Linear Quadratic Regulator

NCC Normalized Cross Correlation

GPS Lobal Positioning System

ADI Adaptive Dynamic Inversion

PWM Pulse Width Modulation

SDM Sigma Delta Modulation

OR Orbital Robot

SISO Single Input Single Output

FOV Field of View

FFT Fast Fourier Transform

ADR Active Debris Removal

ETS-VII Engineering Test Satellite VII

LTI Linear time Invariant

ISS International Space Station

s/c Spacecraft

TRL Tecnology Readiness Level

DCM Direction Cosines Matrix

SD Steepest Descent

NG Newton-Gauss

fps frames per second

FPGA Field Programmable Gate Array

MRAC Model Reference Adaptive Control
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CHAPTER1
Introduction to On Orbit servicing

OOS is a hot topic in the space community and source of continuous re-
search. Recently contracts have been signed by interested parties and some
providers, others (Airbus for example) are starting to display the intent to
bring OOS to life in the next couple of years.

Since the first OOS was achieved by astronaut’s Extra Vehicular Activity
(EVA) on Intelsat VI and the Hubble space telescope during the STS-49 and
STS-61 missions there has been widespread research on how to expand the
concept without EVAs. In the years the concept of automated resupply to
the International Space Station (ISS) has been perfected (especially by ATV
missions), however the ISS is one of a kind and commercial OOS involving
civilian and non civilian endeavours requires a different perspective. Space
industry is bound to be mostly driven by military and private companies and
economic exploitation of OOS is the main concern, hence any OOS mission
shall be sustainable in a market perspective without relying continuously on
governmental agencies founds.

Earth observation, positioning systems and telecommunications are the
main operators fields of interest and thus most of possible customers satel-
lite orbits are in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO)
with the exception of GPS/Galileo orbits that are characterized by higher
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eccentricity and pericenter than usual LEO missions, namely Medium Earth
Orbit (MEO). The most lucrative area is probably GEO but any mission
there has to pass through LEO area, thus many possibilities arise.

There are many technological challenges on the road to achieve robotic/au-
tomated OOS, which have sparked various research programs in the last
decades. For example the DARPA funded Orbital Express mission suc-
cessfully demonstrated autonomous rendezvous and docking [1–3] and re-
fueling operations [4]. During the mission also berthing and servicing
functionality have been accomplished [5]. Robotic manipulators can be
used to grab, un-dock and replace Orbit Replacement Unit (ORU) and this
capability has been also demonstrated by the Engineering Test Satellite
VII (ETS-VII) of NASDA where autonomous rendezvous and berthing, vi-
sual servoing, ORU exchange and refueling have been accomplished [6–9].
Such feats were accomplished also thanks to previous missions like the
STS-72 with the retrieval of the Space Flyer Unit [8].

1.1 The framework of OOS

In general, OOS sees an unmanned servicing satellite approaching a cus-
tomer satellite in order to apply a somehow permanent modification that
will increase the target lifetime, revenue, restore or increase functionali-
ties or modify the target orbit. The natural appeal of increasing a satellite
lifetime is that the customer does not have to build/buy and launch a new
Spacecraft (s/c) to maintain its services, however servicing might not al-
ways be the best solution from the customer point of view.

Even if the cost of servicing is lower then replacement other factors
might reduce the impact of servicing, for example obsolescence. Obsoles-
cence of payload or subsystems as well as the risk connected to servicing
operations are factors that may induce a cautious spacecraft owner to launch
a new satellite, a practice that has always been implemented in the commer-
cial space sector. Reference [10–12] analysed serviceability requests with
focus on the customer needs and long term strategies.

Servicing might be the only solution for those satellite that have been
inserted in the wrong orbit, since it could help achieve the mission at a
lower cost compared to the launch of a new satellite. Since these events are
not planned it is unlikely to constitute the core business of any company,
rather is more believable that such emergency operations might be carried
out by satellite with different main mission profile that have possibility to
engage. The same reasoning can be applied to repairing a subsystem after
a failure: programmed maintenance can be a good compromise. A more
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comprehensive review of spacecraft failures and serviceability can be found
in references [13, 14].

Nevertheless spacecraft servicing will be of importance in the space sec-
tor due to direct and collateral gains from the sustainability point of view.
Increasing the lifetime of a spacecraft could reduce the risk of space debris
proliferation if, and only if, the servicing companies are able to contain the
risks of their own activities. Moreover, from Active Debris Removal (ADR)
perspective, increasing OOS operation allows to increase the Tecnology
Readiness Level (TRL) of grabbing and moving spacecraft in orbit and
through heritage this could lead to the establishment of ADR technologies
and endeavours in the common practice.

1.2 Orbital servicing scenarios

In this section the presentation of many OOS scenarios is carried out to
establish the base of the subsequent technical analysis. Since OOS enables
many different possible new perspective and innovative ideas the following
list will not be extensive and will be limited to the main scenario currently
pursued. As will be clear, many scenarios can also be solved with other
scenario solutions.

1.2.1 Refueling

In the case of GEO satellites, the main lifetime limiting factor is the pro-
pellant mass needed for station keeping. Refueling allows the operator to
extend control over the s/c for a longer duration postponing the need of a
new launch. Also, refueling might enable the launch of satellites with next
to empty fuel tanks as propellant can be fed to them on orbit as needed.
The extension to exploration missions is straightforward and also seen as
mandatory if one looks at the recent SpaceX claims [15].

As a matter of fact, fuel depletion is one of the major limiting factor of
satellite lifespan and probably the less problematic to solve if a satellite is
designed to be serviced. Retro compatibility on the fuel feed system can
be very challenging and probably not worthily from a business perspective,
however lifetime extension can be achieved by other means w.r.t. On Orbit
Refuelling (OOF). A typical OOF mission requires a physical connection
to be performed and maintained as fuel is passed from one satellite to the
other.

A common practice among telecom operators is to sell nearly end-of-
life GEO satellites to newcomers (such as developing countries) when a
more performing satellite replacement is manufactured. In this case, an
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OOF would greatly increase the market value of the old satellite providing
benefits both to the operator (which would sell the satellite for a higher
price) and/or to the buyer which would have a satellite with more lifetime
ahead.

Since refueling operations do not require complex part substitution, all
that is needed is to have a fuel storage line designed to accept external mass
transfer. In any case a proper interface on the exterior part of the satellite
is required for the link with the servicing satellite. Some companies are
aiming to solve this problem with a different approach.

1.2.2 Payload Upgrade

Telecommunication satellites operator revenue is directly related to their
transponders and payloads. This means that replacing or increasing the
payload capabilities of a GEO telecom platform might increase the overall
revenue. An already flying platform that is upgraded might have a shorter
lifespan compared to a new platform altogether and the costs of service-
able design and performing the upgrade need to be considered to make a
decision.

The first paradigm to be actually tested is the ORU handling, however
such paradigm would lead to a very complex customer design architecture.
Following reference [16] the concept of a Plug and Stay module could be
preferred with respect to the Remove and Replace paradigm since it offers
a more simple and safe approach.

1.2.3 Orbit re-insertion

Events where a s/c is put into the wrong orbit are not infrequent in the
commercial space sector as pointed out in [13, 14] and by recent events
connected to few Galileo satellites on 22/07/14 [17]. If this happens the
satellite might see its lifetime decreased or its mission completely lost if it
does not have enough propellant to correct the orbit.

Normally in such cases another spacecraft is prepared and launched, but
this generates great economical loss both in terms of gross cost of the new
spacecraft and in terms of loss revenue due to the delayed start of opera-
tions. Instead of launching a new spacecraft it might be more financially
viable to ask a servicing company to intervene by catching the satellite and
bringing it in the right orbit. This requires a satellite with increased docking
capabilities, sufficiently close to reach the target and with enough propul-
sive ability to drag it to the correct orbit. Or, if feasible, use its propellant
for the orbit change and then ask for refueling which is a more schedula-
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ble operation. The operations are different and require a shorter interaction
between spacecraft with respect to the nominal re-insertion case.

1.2.4 Repair

Repair scenarios where a robotic system repairs a pre-existing equipment
on the serviced satellite is quite hard to realize. Substitution or integration
of a new part is commonly recognized as a better strategy [16]. Only in
few minor cases the use of repairs might prove the only viable solution to
service a module, meaning that the concerned subsystem is not removable
or bypassable. Such complicated operations are probably less appealing
for both the customer and servicer, since the involved risk is high with low
economical advantages.

If the customer satellite has a modular architecture it might as well be
repairable. Some subsystem are easier to be replaced since they are usually
positioned in the outer shell of the s/c. For example a star tracker can be re-
placed since it needs to have exposure to the outside and their small volume
and power connections might allow for replacement if a proper connection
mechanism is implemented. On the other hand, replacing a whole tank
is much more difficult. Even the replacement of a solar array may prove
challenging due to moving parts, rigid connection, power linkage and high
rotational inertia variations.

1.2.5 Orbit inspection for insurance companies

Due to the increase in the number of spacecraft and space debris population
a spur of insurance debates is expected: assessing damage due to collisions
or orbit failures are of high interest to insurance companies in order to solve
disputes. Assessing the damage on a satellite requires another satellite to
orbit close by and able to take pictures or other measures with precision.
This can also be applied to non-damaged satellite for a routine check, data
that might be invaluable for satellite manufacturers as external measures are
never available for commercial satellites. The concept of planned inspec-
tions has already been used during Shuttle missions for ablative protection
checks prior to re-entry manoeuvre following the Columbia disaster.

Orbit inspection becomes appealing if not necessary in cases where the
telemetry of the involved satellite is not available or might not help in dis-
cerning the reasons behind a failure [14]. Since no physical connection is
required ant the amount of propellant used for the operation is not higher
than that of other scenarios, it might be seen as a bonus in the servicing
bundle proposed by a company.
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1.2.6 On orbit transport

On orbit transport can be seen as the generalization of orbit insertion ma-
noeuvres and is a service that some upper stages can already provide to
some customers and up to some extent. A servicer that can dock and drag
a misplaced satellite can be exploited also to transport satellites from the
launcher injection orbit up to their target orbit, reducing substantially the
weight of the customer satellite and the launch costs connected. The main
issue is to reach a stage where the servicing companies is able to perform
tugging in a profitable way, as high costs are involved. This could require
several refueling operations of the tug which falls again on the OOF sce-
nario and also shows that although the increase in OOS could reduce the
number of launches of normal operators it will substantially increase the
number of servicing launches as fuel is still prepared on ground. Hence, no
sensible losses can be predicted for launch providers.

1.3 How to achieve OOS scenarios

Extending the lifetime of current orbiting satellite is not easy task and rea-
sonably the only answer that has been proposed by industry is to attach a
module to a satellite exploiting the adapter ring and perform station keep-
ing and attitude control: there are several technical challenges even in this
case. While seems reasonable to build new satellite with serviceability in
mind, manufacturers still needs to be convinced to do so. Regardless, look-
ing at the scenarios presented before, the main capabilities required for a
servicing satellites are:

• rendezvous,

• formation flying with customer,

• repeated docking,

• target pointing,

• superior attitude control authority,

• intersatellite communication,

• robotic manipulation,

• fuel feeding system.

which require a dedicated Guidance Navigation & Control (GNC) subsys-
tem as well as handling robotics arm and similar hardware. This will be the
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main focus of this thesis and as will be shown later it might be appropri-
ate to extend the acronym to GNCR as all aspects (GNC and robotics) are
intertwined to achieve the performances needed for OOS.

Some technical issues concerning solely the servicing action are here
presented without considering the engineering connected with the autonomous
rendezvous, berthing, visual servoing, etc. The main issues are related to
the difficulty of back-compatibility and module replacement or attachment
as seen from the spacecraft system perspective.

1.3.1 Retro-compatibility difficulties

A major technical hurdle to servicing is the so called retro-compatibility:
servicing an already flying satellite that was not designed to be serviced.
The reason behind this general request from the market is the attempt to
capitalize money from services as early as possible, while for a more refined
version of OOS with new customers such revenues might be years in the
future. Funding a servicing company is not easy task and the possibility to
gain customers as well as proving capable is invaluable, although leads to
sub-optimal solutions.

Retro compatibility issues may include: drain and fill valves are nom-
inally sealed in orbit, non-return valve prevent ullage pressurant to flow
back, multi-layer thermal insulator cover many instrument bays and so on.
In order to service an old satellite a good understanding of the old design
and a many new technologies are needed, thus reducing the appeal for a
servicing company as development costs increase. Many tools, in fact, may
have to be designed ad hoc for the target and a servicing s/c will become
way more complex, heavy and less reliable. Hence the dilemma for new
players.

What has been proposed and studied, is to think of serviceability in the
design of new satellites with common international guidelines that would
allow a flourishing new market with self sustainability.

1.3.2 Module augmentation

As mentioned before, a proposed solution is to use a module/satellite that
can dock and increase capabilities of the old satellite. This increase the
overall serviced s/c mass and inertia in orbit, requiring more propellant
mass for station keeping and potentially for attitude control. Moreover, the
increased external surface may also increase the drag for LEO satellites and
gravity gradient related control issues. Since the mass of fuel needed for the
station keeping of a satellite has linear dependence on the overall satellite
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mass, increasing the mass of a satellite with the module requires more fuel.
And the mass of the module can be contained up to a certain point since
many subsystems are still needed. In case of an entire satellite clinging
to the customer the fuel expenses might be doubling. Other issues in this
regard are the connection and communication with the customer in order to
provide the correct attitude control over all nominal mission phases.

1.3.3 Looking at the future

The best course of action, provided funds are found, is to prepare next
generation of satellites to be serviceable. For example, the use of markers
on the satellite outer appearance can greatly increase the estimation per-
formances needed for close proximity operations. This road would lead
to a more sustainable market, however it will require more years to be ef-
fectively functioning, hence what is expected in the near future is some
activities carried out with module augmentation before the whole market
convinces itself that a sustainable OOS might increase the business oppor-
tunities and the revenues. Looking at the present day perspective, what is
clear is that the request for OOS is increasing and if not well inserted in the
larger picture we could have another “debris issue” after damage has been
done.

1.4 Peculiar mission phases of a standard OOS mission

A servicing mission can be divided in different phases that can differ based
on applications. Regardless, there are some general guidelines that can
help to understand why studying GNCR is mandatory. In this section the
focus is given on close proximity operations, meaning all the phases that
the servicing satellite is performing approximately within a hundred meter
range from the customer satellite.

1.4.1 Far Inspection

In this phase the servicer describe one or more relative elliptical orbit around
the customer satellite and spin in such a way that its cameras are pointing
to the target satellite. Scanning the satellite looking for damages, failures
or evidence of collision requires the servicer to be at a safe distance in or-
der to avoid collision. In this part narrow angle cameras can be exploited,
although for navigation purposes a wider camera is a better choice.

From the perspective of further phases, the far inspection can be used to
derive or refine a 3D model of the satellite to be later use for relative nav-
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igation purposes. In OOS scenario it is expected to have a good reference
model of the satellite, however, limitations due to contract terms, human er-
rors or failures could prevent the use of a good 3D reference model. More-
over, a wrong model can lead to possible inaccuracies or total divergence
of the navigation and pose hazards on the customer.

1.4.2 Rendezvous & close approach

From the far inspection orbit, or a similar relative parking orbit, the servicer
will move towards the target closing distances in the order of few meters.
This phase is common to all approaches where the mission requires direct
intervention or if a closer inspection is deemed necessary. The trajectory
shall be designed to require the minimum amount of fuel expense in terms
of position and attitude control as well as ensuring a safe abort in case of
particular occurrences. The latter should be the driving requirement. In
this phase the relative state control often has to place the servicer at the
right position and on the right side of the target satellite. Depending on the
distance from Earth, such phase might be more or less demanding in terms
of fuel expense, duration and attitude control effort.

1.4.3 Docking/berthing

In a docking operation the servicer push forward to meet the customer
rigidly linking itself to a docking port or ring adapter. At the completion of
this phase the two satellites are rigidly linked and every action the servicer
perform will affect the serviced satellite in terms of position and attitude
disturbs as center of mass location and inertia changes.

The berthing options requires a robotic arm to connect to the serviced
satellite and perform a softer docking or other operations. This is in general
more appealing than a direct docking since customers satellite were not
designed for direct docking operations and including that for future satellite
might be too demanding.

The third option sees the servicer not exploiting a rigid docking connec-
tion but only robotic arms to perform all the operations. With good relative
control and appropriately designed arms, this options permits to lower the
influence on the customer satellite while executing tasks. In principle this
options could burden less the nominal operations of the customer, however
a full control with the proper safety measures are necessary. Drawbacks of
this approach are higher costs related to fuel depletion and energy usage in
the attitude and position control.
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1.4.4 OOS operations

This phase is in general the riskier and thus it requires a special handling
in order to deliver the service with minimum interference and maximum
safety. During this phase all the servicing operations directly involving the
customer are performed: a fluidic link is established in case of refueling,
a module might be extracted and replaced in case of repair, a thrusting
maneuver might be performed in case of tugging/relocation.

1.4.5 Un-docking

After all the OOS operations have been completed the servicer disengage
the target. This includes un-docking and subsequent orbital manoeuvres to
distance from target. In fact, it can be seen as the reverse of the approach
phase where fuel expense and safety of the customer satellite are the main
concerns. A second far inspection is unlikely to be requested unless a fail-
ure caused the mission to abort.

1.5 Customer perspective

The relation between customer and servicer is very important in the up-
coming OOS revolution. Due to the rise of the new market and the risk
adverse space industry the servicers need to provide a service with appeal-
ing features. Assuming that servicing operations are feasible both in terms
of technology and costs, the issue here analysed is related to the possible
request a customer might ask to a servicing company from the perspective
of GNCR operations.

1.5.1 Customer satellite inactivity

The longer the inactivity period of a customer satellite is expected to be, the
higher the losses for the operators and the lower the appeal of the proposed
OOS is, hence diminishing such inactivity times can increase the potential
of a OOS provider. OOS proximity activities might require days to be ful-
filled and in some applications the customer satellite might be requested to
switch off its pointing or even perform slew manoeuvres. From the cus-
tomer perspective the ability to perform OOS operation while minimizing
the influence on nominal activities is certainly appealing.

From a broader point of view, in case of repairs or orbit re-insertion the
faster the servicing can rendezvous with the customer the better, however,
this is a discussion for general OOS mission architectures rather than prox-
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imity operations. Time optimization is negligible in the bigger picture with
respect to the economics of achieving a profitable business.

On scheduled activities, like periodic refueling, the customer might find
appealing the ability of the servicer to work without requiring the customer
satellite to change its attitude. This poses heavy requirements in terms of
flexibility of operations, meaning that more fuel needs to be carried on,
robotics must have higher reach and so on.

1.5.2 Risks

OOS operations come with inherent risks associated to activities like dock-
ing, berthing or in general interaction with a satellite. Such risks need to
be minimized as possible through a careful design of the servicer segment.
The systems to be used during OOS operations need to have enough re-
dundancy to allow operation in case of failures or at the very least to avoid
jeopardizing the safety of the customer satellite. Safe escape in case of any
potentially hazardous issue is also a good asset.

1.5.3 Restriction

Due to legal issues concerning patents or due to sensible equipment on the
customer, servicer might have to provide operations while not inspecting
certain parts of the satellite or avoiding the use of laser sensors (or other
active measurements) or even perform operations with non-nominal atti-
tude to avoid blocking radiators or similar equipment. This might impose
strict requirements on the sensor suite and request the GNCR system to
work with muted sensors or with special handling of the vision sensors,
for example. The general design of the GNCR subsystem should be flexi-
ble enough to account for unexpected request and able to work without the
need to re-design the sensor suite for each customer.

1.6 Research on GNCR

OOS scenarios require several operations to be performed, hence the devel-
opment of a subsystem able to cope with most of the tasks is a key feature in
the development of a servicer satellite. Although the “one for all” servicer
satellite is highly unlikely, it is extremely plausible the design of a servicer
satellite with more than one mission capability. Behind this reasoning there
is the full exploitation of the lifetime of the servicer as many task can be
planned beforehand and gaps of inactivity are expected.
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The attitude control system of the satellite shall be able to cope with
pointing accuracy needed for both inspection and proximity operations as
well as increase the output when controlling larger ensemble or during
phases with variable geometry. The control needs to adapt to changes and
be as much as reliable as possible in faces of unforeseen events.

Since docking or proximity station keeping is involved, the position con-
trol of the satellite must be ON for many phases and this might create prob-
lem when it is coupling with the motion of a robotic arm as unwanted torque
are generated due to shift in center of mass.

Also, when moving a robotic arm, the base position and attitude con-
trol needs to have precise performances and frequency influence, otherwise
the different control parts could enter in conflict and jeopardize the whole
mission.

Many operations require a precise pointing or pose determination, hence
cameras are exploited. Due to hardware limitations the frequency of esti-
mation using cameras might be quite low, hence proper filtering and prop-
agation might be necessary in order to have higher frequency estimation.

An important part of the analysis and research connected is thus the
study of closed loop performances to address the compatibility and limits of
each part of the subsystem. For example if the output of camera estimation
of the target direction is not well filtered for the attitude control it is very
likely that the servicer satellite would be unable to follow the target and
resulting in losing the target from the camera and switching mode to recover
the pointing.

Many of these aspects are also difficult to test and require very complex
experimental set-up like several robotic arms able to simulate the dynamics
of two satellite in close proximity. There are few laboratories able to repro-
duce most of the scenarios here presented, however looking at the complete
picture it is difficult to reproduce some effects caused by nominal rotation
of satellites or to the use of thrusters. On the other hand simulating images
takes way more time than using experimental equipment and more cumber-
some to tailor.

1.7 Structure of the thesis

Tackling the guidance, navigation and control issues separately is easier
but sometimes one loses the perspective and attachment to reality and ca-
pabilities. Study of the whole process are harder to find in literature due
to the increase complexity and difficulties to disjoint effects and pinpoint
problematic. Here the first chapters will deal with each part separately and
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on the last part focus will be given to joint effects in order to show the
performance of the elements introduced beforehand.

Chapter 2 will introduce all the modelling issues to provide a frame-
work with enough detail to simulate most of OOS operations. In particular
a multibody code used for simulations will be presented without going into
the detail of the formulation used for the kinematics representation. The
kinematic representation using dual quaternions will be presented in Ap-
pendix A as it is not the main focus of the research, rather a necessary and
elegant tool for most of subsequent applications.

Chapter 3 will deal with guidance problematic. Here the design of rela-
tive trajectories for inspection will be addressed, as well as basic guidance
laws for pointing or position control.

Chapter 4 focus on navigation in the sense of state determination. Here
some vision based navigation topics are analysed at higher level, without
entering in the details of computer vision as it is not the main focus of
research. Then the filtering required for precise attitude determination as
well as relative position is addressed and stress is put on the performance
variation based on mission requirements. Namely performances might vary
depending on pointing requirements, as faster moving references would
reduce the expected disturbance rejection.

Finally, Chapter 5 will present the attitude and position control of the
servicer satellite. Focus is given to Lyapunov stability and adaptation of the
developed controller. Robustness and adaptivity are then tested and results
shown in order to assure the capability of the attitude control to overcome
variable geometry configuration issues or other connected to some OOS
scenarios.

Chapter 6 is focused on the control of robotic arms. State determina-
tion, trajectory design and adaptive controller are studied together. In this
chapter ideas from previous chapters are used and translated into the robotic
framework without effort. Sometimes the point of view of robotics can give
useful hints to satellite control and vice versa. The use of the same kine-
matic representation for robot and satellite could also help in this regard.

The study carried out in each chapter is then mixed in Chapter 7 where
relevant simulation scenarios are presented. As hinted in the first chapter,
there exist many OOS scenarios and testing all combinations requires a lot
of time, however the key features to be analysed can be seen in few applica-
tion scenarios. Simulations will be limited but richer in content trying also
to show the coupling of effects (or the lack of, thanks to proper control) in
the most demanding conditions. Such simulation will be limited to LEO as
it is far more demanding in terms of control action, effort and higher fre-

13



quency of disturbs. The first of the two presented scenarios has been shown
before in [18] while preliminary results of the complete GNCR loop were
firstly presented in [19].

The final chapter, Conclusions, sums up what has been developed and
some general guidelines for the research on GNCR as well as OOS are
provided.

In the end Appendix A, Appendix B and Appendix C are included to
address kinematic modelling, adaptive control and minimization algorithms
that have been used though the development of the GNCR research.
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CHAPTER2
Orbital robot model

In this chapter a review of classical celestial mechanics, attitude dynamics
and space robotics modelling will be presented. The purpose of this re-
view and presentation of the theoretical background of the solver used is
to indicate the characteristics of the dynamical system on which the GNCR
is built on. The simulation of an orbital robots require special care and is
the core base on which the control can be tested and implemented. Since
the central aspect of the research is the closed loop performance of the
whole system, the characterization of the iteration of each element is vital
to provide a physical connection between all the subsystem involved. The
decision of developing a new orbital robotics simulator using dual quater-
nions as kinematic core pays off in terms of capability, expandability and
of course development of all features involved.

2.1 Review of Orbital & Attitude mechanics

2.1.1 Keplerian motion

The dynamics of the Center of Mass (CG) of a rigid body is given by New-
ton equation of motion stating that the variation in time of the linear mo-
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mentum is equal to the external forces applied to the body, with respect to
an inertial reference frame. Thus

d

dt
(mv) =

∑
i

f i (2.1)

where m is the mass of the body, v its velocity and f i the forces applied
to the system. Then, for a rigid body orbiting around a single massive
body, the main force to take into account is the gravitational pull that can
be modelled accordingly to Newton law of gravitation as follows

mr̈ = − µm

‖r‖3r + f (2.2)

where µ is the gravitational constant of the main attractor, r the position
vector of the orbiting body computed from the main attractor CG and f the
sum of other forces applied to the system. The underlying assumption is to
consider the main attractor to be still or moving in linear constant motion,
which is never the case. Such assumptions holds well enough for many
problem of interest. Considering null or negligible other forces it follows
that the system motion is central, thus the angular momentum is conserved.
Such quantity, for this system, is defined as follows

h = r × v (2.3)

where × denotes the cross or vector product and v is of course the ve-
locity, derivative of the position vector r expressed in the said reference
frame. Angular momentum conservation can be proven easily by differen-
tiating Eq. (2.3) and substituting Eq. (2.2) with null f .

From this consideration, previous assumptions, crossing Eq. (2.2) with
the angular momentum and considering that the gravitational field is con-
servative, it is possible to determine the position of the orbiting body in
time through six parameters that represent the analytical solution of the re-
stricted two body problem. For this research the influence of other massive
bodies is not taken into account as for many of the applications here con-
sidered can be analysed considering satellites to be small bodies close to
the planet.

The most used set of parameters are often referred to as Keplerian pa-
rameters, however different parametrization are possible. Of these six con-
stant two represent the shape of the orbit, which must be a conic according
to Kepler’s studies and Newton’s formulation, three identify the orientation
of the orbit in a 3D space and the last one links the position along the orbit
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with time. The shape is identified by the semi-major axis a of the conic and
the eccentricity e, restricted to be between zero and one for closed orbits,
being zero for circular orbits. In the reference frame with z axis aligned
with angular momentum and x axis aligned with the minimum orbital dis-
tance (eccentricity vector) the position vector can be written as follows

rorb =
‖h‖2/µ

1 + e cosϑ


cosϑ

sinϑ

0

 =
a (1− e2)

1 + e cosϑ


cosϑ

sinϑ

0

 (2.4)

Then the position vector rorb in this frame can be translated back into
the inertial r by using three sequential rotations in the order z − x− z ac-
cording to the values of the other three parameters: argument of pericenter
ω , inclination i and right ascension of the ascending node Ω.

Looking at OOS applications we have GEO orbits that are almost cir-
cular and planar, LEO orbits often circular but inclined1 and MEO orbit
characterized by higher eccentricity. For many applications circular orbits
are the only orbits involved, hence the main focus of subsequent analysis
will be focused on circular orbits, however the software that implements the
orbital motion shall not be restricted in any way to analyse circular orbits
only.

2.1.2 Linearized orbit relative motion

In OOS robotics problems the relative motion between two satellite is of
extreme importance and being able to obtain analytical or semi-analytical
models can give very useful insights. The Chloessy-Wilthshire (or Hill)
model [20] for circular orbits describe the position of a body with respect
to a particular moving reference frame with a Linear time Invariant (LTI)
system. The frame considered is fixed to a circular orbital motion, meaning
that it has a nominal angular velocity equal to the orbital angular velocity
with axes fixed to the orbital position and velocity vectors. The center of
this frame is a geometrical point that is travelling trough space following
a circular orbit, thus can be used to study the relative motion of objects in
close proximity. The model holds for orbits with near zero eccentricity and
in close proximity, as the linearity properties is lost if the axis aligned with
the velocity is not adherent to the orbital track.

The Cartesian rotating reference frame has x as the outgoing radial di-
rection, y directed as the orbital velocity and z parallel to the orbital angular

1Ex: polar orbits for Earth Observation
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Figure 2.1: Local vertical local horizontal reference frame

momentum vector as shown in Figure 2.1. This frame is often referred to
as Local Vertical Local Horizontal (LVLH) frame. The frame itself can be
generalized for non circular orbits. Without considering forces other than
the gravitational pull the result is the following

ẍ = 2nẏ + 3n2x

ÿ = −2nẋ

z̈ = −n2z

(2.5)

Since it is a LTI the system admits an analytical solution in terms of
velocity and position. Closed orbits and analytical paths are exploitable
for rendezvous, inspection and other close proximity operations. It is also
possible to add extra forces acting on the system of Eq. (2.5) in terms of
accelerations in the LVLH frame.

This model is valid for almost circular orbits and can be seen as the lin-
earisation of a more complete expansion of the relative equation of motion:


ẍ = n2ρ3 (3 + e cos (ϑ))x+ 2nρ2ẏ − 2nρe sin (ϑ) y

ÿ = n2ρ3e cos (ϑ) y − 2nρ2ẋ+ 2nρe sin (ϑ)x

z̈ = −n2ρ3z

(2.6)

with ρ = 1+e cos (ϑ). Assuming e ' 0 leads to Eq. (2.5). With respect
to (2.5) this model is no longer LTI but a state transition matrix can still be
found, although in terms of true anomaly (for example in [21]); literature in
this regard is rather broad. In the above models it has been used a constant
n, that represent the mean angular velocity of the rotating frame and can be
written as
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n =
µ2

‖h‖3 (2.7)

which is related to the medium orbital motion. This can be put in relation
to the true anomaly variation in time as

ϑ̇ = nρ2 = n (1 + e cos (ϑ))2 (2.8)

Integrating such relation with some manipulation leads to the implicit
time of flight equation{

tan
(

∆ϑ
2

)
=
√

1+e
1−e tan

(
E
2

)
n∆t = E − e sin (E)

(2.9)

Also, a direct integration of (2.8) is possible but cumbersome.

2.1.3 Euler equations

The attitude dynamics of a rigid body in space can be easily represented by
the Euler equation, having in mind that such equation is expressed in a non-
inertial reference frame attached to the body itself in its CG. This allows
to consider the inertia tensor constant and derive a non linear model with
constant parameters. Moreover, there is a special reference frame where the
inertia tensor becomes diagonal: the principal axes of inertia. The model
does not require to use such a reference frame maintaining generality under
the previous hypothesis.

Ibω̇b = −ωb × (Ibωb) + τ (2.10)

Eq. (5.1) present the Euler equations in vector form where Ib is the in-
ertia tensor, ωb the angular velocity of the body expressed in that reference
frame and τ the external torques.

For a non rigid body, meaning also an ensemble of rigid bodies with
relative motion allowed, the model would become

Ibω̇b = −İbωb − ωb × (Ibωb) + τ (2.11)

where the new term İbωb is present due to the variation of the system
inertia. This can be caused either by adding or removing mass or by internal
movement: it can be caused by flexibility of parts of the satellite like solar
panels, by internal fluid motion (sloshing) or by the motion of a robotic
arm. It is clear that if the body is still, then such term would not have any
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meaningful effect per se, however couplings are indeed possible. From the
practical point of view, though, Eq. (2.11) is rarely used and a multibody
representations is often preferred.

2.1.4 Perturbation in orbital mechanics and attitude dynamics

In Eqs. (2.2) and (5.1) have been inserted external forces and torques that
influence the dynamics of the CG and the attitude. For the CG the disturb-
ing actions can be due to a non uniform gravitational field, atmospheric
drag, solar radiation pressure or third massive bodies gravitational pulls.
Attitude can be influenced also by the satellite non uniform mass distribu-
tion and the coupling of magnetic field and residual internal currents. In
these terms were included also control actions that are used to control the
satellite attitude and position.

2.2 Multibody satellite model

Robotic manipulators in space are dynamically different from their coun-
terparts on ground for several aspects. First of all the base they are mounted
on is not fixed an unmovable, therefore the base motion influences the in-
ertial forces of the arm and vice versa. As a matter of fact if the base is
not attitude controlled any motion of the arm joints will produce a rotation
of the base, causing it to tumble and preventing the end effector to reach
the intended position with regular control paradigms. Another aspect is
that the structure itself of the arms is much lighter due to the micro-gravity
environment lesser influence causing flexibility to be an issue.

For this reasons there have been effort in the past to find a good model
to represent the dynamics of a floating robot (in general a multibody space-
craft). In order to represent accurately the dynamics two conditions must
be satisfied:

• the relative motion of all the bodies connected must be coherent with
the CG position following the first law of dynamics;

• the CG must act as the center of rotation of the whole system.

Under these conditions it is possible to decouple the orbital motion, i.e. the
CG motion, from the attitude motion. This means that a multibody satel-
lite attitude can be described separately using a reference frame fixed with
the CG. There are few methods to approach the problem, one is described
in [22] , another in [23] where it makes extensive use of center of rotation
for each limb and augmented body definition to reduce the problem on just
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Figure 2.2: Representation of a multibody satellite

angular velocities. Should be noted that for robotic arm control there ex-
ist also a virtual reference control where an equivalent arm with base fixed
with the CG is used to represent the end effector motion [24]. In the lat-
ter approach, as well as in the others, the focus is on revolute joints, while
neglecting for the formulation prismatic joints. This can be a good approxi-
mation for robotic arms but certain linear mass motions can be encountered
especially when dealing with refueling equivalent mass exchange.

For this reason the model from [22] has been further taken to include
several constraints and with a Lagrangian approach it is possible to include
all external forces acting on the bodies so that only the forces and torques
that have an influence of rotation around the CG are included in the dynam-
ics. All net forces that would modify the CG position do not have influence
on the rotational motion and can be taken into account separately.

Given an ensemble of nb open chained connected rigid bodies orbiting
around a main attractor, the constraints of CG motion and center of rota-
tions must hold. Let us consider a reference frame fixed with the CG of the
multibody satellite.The CG constraints can be written as follows

nb∑
i=1

midi = 03×1 (2.12)

where mi is body i mass, di the Cartesian position of the body with
respect to the CG. It follows that the derivative of Eq. (2.12) must hold as
well.

nb∑
i=1

mivi = 03×1 (2.13)

21



(a) CG from the base body (b) Bodies position in the CG frame

Figure 2.3: Procedure to compute state in the center of mass frame

where vi is body i linear velocity. Thus we have formally 6 equations
in a Cartesian representation of the linear position and velocities. Then it
follows directly that the origin of the system is the instantaneous center of
rotation of the system and all bodies can rotate around it and/or translate
alongside the radial direction.

To enforce such constraint it is needed to compute the relative positions,
attitude and velocities of all the bodies. It is possible to use the method
from [22] in case of a single chain and taking care to consider the relative
degrees of freedom regardless of their nature. In general it is possible to
compute all the bodies position and attitude in a reference frame fixed with
the base and then translate once the fictitious CG is computed. The rotation
computed with this procedure are equal in both cases since the CG con-
straint does not involve rotations of frames. On the other hand the positions
of all components with respect to the frame must be changed by adding a
contribution due to all other elements. As a matter of fact, in free floating
devices like space robots all the bodies influences each others.

Considering d̃i the positions computed from the frame fixed with the
base 2 then using Eq. (2.12) it gets that

di = − 1

mtot

nb∑
j = 1

j 6= i

mj

(
d̃j − d̃i

)

leading to

2or any other points, the choice of the base is for easiness
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

di =
(

1− mi
mtot

)
d̃i − 1

mtot

∑nb

j = 1

j 6= i

mjd̃j

d
dt
di =

(
1− mi

mtot

)
d
dt
d̃i − 1

mtot

∑nb

j = 1

j 6= i

mj
d
dt
d̃j

(2.14)

This generalization of the procedure seen in [22] is obtained by con-
structing a fictitious reference frame. In [22] it is highlighted the use of
relative positions computed in such a way that the position vectors always
points towards each body. In fact, in a straight chain where relative posi-
tions are computed from the base to the end effector the sign of each con-
tribution depends on the order of the elements. Strictly generalizing this
approach leads to complex programming, while the approach here adopted
is quite straightforward.

The model is then re-written in terms of Dual Quaternions that have
great advantages in dealing with multiple reference frames and singulari-
ties handling, not to mention the appeal of using the same entities to repre-
sent attitude and position kinematics and dynamics. The interested reader
is suggested to use the Appendix A as reference for any dual quaternion
related issue. Eq. (2.12) can be written in dual quaternion form as follows.

2

nb∑
i=1

mi

[
qi
−
⊗
]
ti = 04×1 (2.15)

Then the system of Eq. (2.14) becomes

ti =

(
1− mi

mtot

)
t̃i −

1

mtot

[
qi
−
⊗
] nb∑
j = 1

j 6= i

mi

[
qj
−
⊗
]T
t̃j (2.16)

with derivatives easily obtained by differentiation as shown here after.
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

d
dt
ti =

(
1− mi

mtot

)
d
dt
t̃i − 1

mtot
(y1 + y2)

y1 = d
dt

[
qi
−
⊗
]∑nb

j = 1

j 6= i

mi

[
qj
−
⊗
]T
t̃j

y2 =
[
qi
−
⊗
]∑nb

j = 1

j 6= i

mi
d
dt

([
qj
−
⊗
]T
t̃j

) (2.17)

In this formulation is clearer the influence of relative attitude on the
position and velocities of the multibody satellite.

2.3 Multibody system solver

A multibody problem can be solved with many different numerical methods
and paradigm, some more suited than others to assess an orbital robot. The
equation of motion to be integrated can be computed using Lagrange equa-
tions, or through a Newton-Euler approach or even using a general purpose
multibody code where the orbital robot constraints are inserted in discrete
algebraic equations and solved. For the application in exams, the num-
ber of bodies to be considered is not very large and multiple chains with
forces applied to each body must be assessed slightly reducing the appeal
of the Newton-Euler approach. Moreover, in order to cope with the con-
straints seems reasonably more efficient to include the constraint directly
in the dynamical formulation with respect to applying constraints on the
bodies. A Lagrangian formulation, albeit less computationally efficient, is
the selected procedure to develop a multibody code for orbital robots. Dur-
ing the development it has been observed that separating the orbital motion
with respect to the local multibody attitude motion leads to less numerical
problems related to different order of magnitude in the mass matrix when
using a dual quaternion formulation. This is the price to pay for having a
formulation without singularities and with consistent dimensions.

2.3.1 Lagrange formulation

The Lagrangian formulation uses a set of equations derived by energetic
principles and the use of free coordinates/variable φ. For the mechanical
problem in exam the energy at the core of the formulation is the sum of
kinetic and potential energy. From the standpoint of using a somehow gen-
eral approach it has been chosen to describe the gravitational force as an
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external force without including it in the potential energy. This is due to
the easier extension to new gravitational model in the software (ex: three
bodies gravity influence, gravity gradient, etc.).

Hence, only the kinetic energy will be considered. For a body i the
kinetic energy Ek,i can be written in terms of Dual Quaternions as follows

Ek,i =
1

2
ȧi
TSTi MiSiȧi (2.18)

where it has been used the generalized mass matrix Mi , the derivative
of the dual quaternion mapping the body attitude and position with respect
to the CG reference ȧi and a mapping matrix Si that depends on the dual
quaternion ai and is used to translate the dual quaternion derivative into the
linear and angular velocities in the preferred reference frames. The frame
attached to each body is considered centred in its CG and aligned with body
axes. For the numerical implementation, to reduce the number of variables
effectively stored, it is a principal reference frame. The generalized mass
matrix is given by a composition of inertia tensor and mass

Mi =

 I i 03×1 03×4

01×3
1
2
trace (I i) 0

04×3 0 I4×4mi

 (2.19)

The extra term equal to the trace of the inertia, in this formulation is
unnecessary, but has been formally kept since it is a term arising from the
inertia tensor computation in R4 [25]. Should be noted that when the matrix
inversion is computed, there could be singularity issues regardless, hence it
is always advisable to append the quaternion normality constraints at accel-
eration level through double differentiation of the constraint itself. The ma-
trix Si depends on the frame position ai and attitude with respect the inertial
frame and is used to compute the body angular velocity from Eq. (A.18)
and the inertial linear velocity from Eq. (A.22). Since ai =

{
qTi tTi

}T .

Si = 2

[[
qi

+
⊗
]T

04×4[
ti
−T
⊗
] [

qi
−
⊗
]T
]

(2.20)

It is pointed out that it is possible to rewrite the product Siȧi to obtain a
form like Diai. In this case

Di = 2

[[
q̇i

+T
⊗
]

04×4[
ṫi
−T
⊗

] [
q̇i
−
⊗
]T] (2.21)
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then Eq. (2.18) can be written as

Ek,i =
1

2
aTi DT

i MiDiai (2.22)

Lagrange equations for the whole system of nb bodies are then written
in terms of the free variables φ describing the degrees of freedom of the
system

nb∑
i=1

(
d

dt

(
∂Ek,i

∂φ̇

)
− ∂Ek,i

∂φ

)
= f

′
(2.23)

where f
′
is the summation of all generalized forcing terms f

′

i. This term
is the product of the displacement induced by external forces and torques f
projected on the degrees of freedom.

f
′
=

nb∑
i=1

((
∂ai
∂φ

)T (
∂ (di,qi)

∂ai

)T
f i

)
(2.24)

where in f i are considered both forces and torques. The fourth compo-
nent for each one is put to 0. The term ∂(di,qi)

∂ai
takes into account the virtual

displacement with respect to the dual quaternion used for parametrization
of the body.

(
∂ (di,qi)

∂ai

)T
=



[[
qi
−
⊗
] [

ti
+T
⊗
]

04×4

[
qi
−
⊗
] ] inertial[[

qi
+
⊗
] [

ti
+T
⊗
] [

qi
+
⊗
] [

qi
−
⊗
]T

04×4

[
qi

+
⊗
] ]

body

(2.25)

To compute Eq. (2.23) two more objects must be computed: the Jaco-
bian J i and its derivative J̇ i.J i =

(
∂ai
∂φ

)
=
(
∂ȧi
∂φ̇

)
J̇ i = d

dt

(
∂ai
∂φ

)
=
(
∂ȧi
∂φ

) (2.26)

These terms are configuration dependent, meaning that depends on the
links connecting bodies and how these are mapped to the free variables φ.

JTi MiJ iφ̈ =− JTi MiJ̇ iφ̇ − JTi Ṁiȧi+ (2.27)

J i
TDT

i MiDiai + f
′

i
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with {
Mi = STi MiSi

Ṁi = Ṡa
TMaSa + STaMaṠa

(2.28)

The whole system then follows naturally

nb∑
i=1

(
JTi MiJ i

)
φ̈ =−

nb∑
i=1

(
JTi MiJ̇ i

)
φ̇ + f

′
+ (2.29)

nb∑
i=1

(
J i

TDT
i MiDiai − JTi Ṁiȧi

)
If we consider a generic orbital robot we would have that the base atti-

tude would need to be parametrized with quaternions, hence there will be
the need to include the unitary norm constraint in the Lagrange equations.
This can be solved by adding a Lagrange multiplier in Eq. (2.29) with the
second derivative of the constraint. This method is not sufficient to solve
the constraint issue and requires a constraint violation enforcing method
post integration.

2.3.2 Center of mass

The CG motion of a multibody satellite ensemble is solved by projecting all
the forces, gravity included, applied to the bodies to the CG. This permits
to solve easily Eq (2.2) in Cartesian coordinates without involving others
degrees of freedom for the solution of this. After several trial this has been
deemed the most effective solution, as the force translation is a simple task
and require less augmentation of the mass matrix. On the other hand the
use of Eq (2.2) is the least precise in terms of orbital dynamics integra-
tion, as tends to accumulate more error over time. The use of Variation
of Parameters is for sure a better strategy when longer time of simulations
are involved, however for many scenarios here simulated the problem does
not surface. Applications like on orbit assembly of large structures might
require such a formulation.

2.3.3 Gravity gradient

A very important disturb for space robots, especially in LEO, is the grav-
ity gradient. The term might result confusing since sometimes it might
refer to the non uniform gravity field of Earth due to its own shape and
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Figure 2.4: Gravity gradient due to mass distribution

mass distribution, however here is used with the intent of describing the
small variations in gravity force acting on an ensemble of bodies orbiting
in space. Intuitively we can recognize that in Eq (2.2) the gravity force
depends on the object mass and distance from the center of the main attrac-
tor. Hence, even assuming Earth as perfect sphere and the bodies as points,
all the bodies would experience a force slightly difference due to the small
position variation and mass differences. Such variations might be small but
the closer to the main attractor, the more influence may have on the bodies
dynamics. The phenomena is well known in satellite attitude control as the
reasoning here presented applies also to a single body due to its physical
dimensions. Hence for a orbital robot the distributed mass of each link as
well as its distribution in the link itself contributes to generate a small force
variation hence a disturbing torque on all objects. In robotics the problem-
atic of the gravity field is an open problem as constitutes a constant torque
to be supplied to the joints in order to maintain position, requiring an in-
tegrator in the control loop. The difference for an orbital robot is that on
Earth the gravity acceleration is so high that the gradient is negligible and
acceleration can be considered constant in direction and intensity, while in
space it all depends on the ensemble attitude. Of course the intensity of
such disturb is lower with respect to Earth but not negligible as was pointed
out in [6] looking at the Engineering Test Satellite VII robotics mission
results.
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Figure 2.5: Details of POV Ray based image rendering

2.4 Camera and sensors models

When dealing with closed loop GNC aided by vision sensor, it is manda-
tory to have a good model to represent the camera but this is rarely done
due to computational burden. For example in [26] images were not used in
the loop but rather points and lines were assumed almost-perfect. In cases
where images are generated, they might lack some realistic aspects. For ex-
ample, images in [27] were not rendered with Earth in sight, self-shadows
and shadows induced by servicer nor reflections, hence the quality of im-
ages is by far greater than in the real scenario. Increasing image sensor
accuracy means to make use of advanced rendering techniques that require
a lot of computation to be created, increasing notably by 5 or 10 times the
total simulation time of the feedback loop.

In this work the images are rendered using POV Ray, a software based
on ray-tracing. The photorealistic performance of POV Ray are testified
in [28] where the commercial software PANGU, approved by ESA, has
been validated using POV Ray itself.

The use of the software within Simulink is non trivial as POV Ray input
has to be updated run and post-processed each iteration and uses a frus-
trating left hand, clockwise positive convention for kinematics. Even the
simple image used in this work require about 5 seconds to be generated
using several cores, increasing the details in the model would increase the
rendering time by several factors.

The important features that a POV Ray generated image can make are
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realistic reflections and shadows cast by several objects. By adding an Earth
textured sphere one can include the disturbance for computer vision soft-
ware of a background. Should be noted that the texture used is by far not
high-definition, hence closeups might look poor. Enhancing the textures
would require more processing power, hence the compromise. Such fea-
tures can be seen directly in Figure 2.5.

Difficult aspects to include in POV Ray images are the sun in sight and
the image noise, hence they are added afterwards in the simulation. The
presence of the sun in direct view of the camera, when the Earth is not
shadowing it, saturates the image, and this is done artificially by analysing
at the sun position from the camera. Noise is added as a positive bias and
random integer addition for each pixel. This allows to create noise that
can reduce gradient based feature extraction performance of an otherwise
polished image and shift the histogram of the image as perfect blackness is
rarely found in navigation cameras.

2.4.1 Other Sensors

Aside from cameras, other sensors to be simulated that are relevant to the
GNCR are star trackers and gyroscopes. It is possible to model the star
tracker measurement using simulated images and a sat map, however this
would increase the computational load more than necessary. In the present
work star tracker are modelled using a simplified approach but with an ap-
proach close to reality. In practice the only part not simulated is the im-
age, as a map of stars is randomly generated and at each iteration perfectly
matched but noisy measurement are taken and analysed. Measurements are
generated from the map using a pinhole camera model and translated into
2D features. Then random noise, affected by angular velocity, is added and
vector measurements are finally generated. At the end a quaternion based
solver of the Wahba problem provides attitude estimation. The last stage
makes use of singular value decomposition and the quaternion estimated
can shift sign without warning, creating a more realistic measurement case.

Gyroscopes measures body mounted angular velocities and are usually
affected by static bias and random walk at low frequency. They are often
sensitive to temperature, although this depends on the type of gyroscope
considered. In simulations the noise is added as filtered band limited white
noises with different power for low and high frequency. Completely static
bias is finally added.

Other sensors modelled are encoders for angular velocity and position.
Here noises are added either using a constant distribution with width equal
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to bit dimension or with band limited white noises.
For all the sensors considered it is possible to derive a more accurate

model if a particular component is considered, otherwise the simplified ap-
proach can still hold as main features of the measurements, especially in
the frequency range, are maintained and characterized.
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CHAPTER3
Guidance

The term Guidance used here is intended broadly as a reference state or
trajectory that is meant to achieve a mission objective. It might assume
the form of orbital parameters, state space trajectory or even optimal path
in a feedback loop. Looking at the broad perspective, it gives the refer-
ence for any control system such that, if followed closely by the system,
the objective are reached. The methods to obtain such references might be
different, going from optimal control theory to kinematics and geometry,
using insights coming from applied computational mathematics or closed
form solutions derived by human analytical skills. The main topics of this
chapter are the study of relative trajectory for inspection and depot ren-
dezvous, quaternion based Lyapunov optimal velocity reference, pointing
for inspection and a general Dual Quaternion feedback velocity guidance.

Guidance for rendezvous of satellite literature is quite broad and rarely
focuses only on inspection, rather inspection-like manoeuvres are inserted
as an intermediate step. In many cases rendezvous is studied using vision
sensors, like in [26] or in [29, 30]. Here a step back is taken in order to
design inspection orbit with geometrical constraints. A brief analysis on
a possible depot refueling trajectory is proposed based on simple orbital
mechanics considerations.
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When dealing with attitude control, the guidance here considered gives
the reference velocity for the controller in order to follow a certain atti-
tude reference. Typically the two loops are grouped together, but in some
cases it might be wiser to divide the two. It is also straightforward to pass
from one form to the other so in this section we can consider for quaternion
based guidance past example like [31] where few form of quaternion guid-
ance are analysed or in [32,33]. The problem of unwinding is, however, not
addressed and stabilization might not occur for some or optimality might
be lost. In general the phenomena is regulated using a sign function, that
can cause chattering in some cases, the issue has been solved within cer-
tain boundaries in [34], although most of the discussion is about the global
attractivity property of quaternion based control laws. In [35] modified Ro-
drigues parameters are used instead, however no minimal representation
of SO3 (rotation group) is singularity free and thus arguably not globally
converging.

3.1 Inspection orbit

The inspection orbit has to be designed in such a way that important re-
quirements are satisfied and the safety of the customer satellite is ensured.

For circular orbits the model of Chapter 2 in the LVLH frame can be
exploited and an analytical solution for periodic orbits can be found. From
these solutions it is possible to design the proper trajectory to obtain the
wanted results. The degrees of freedom in this problem are in general 6,
usually position and velocities in time (initial, final or a mix), however if
the target is a closed orbit one parameter is unnecessary, thus the d.o.f. are
five. The goal is to determine at least five state conditions that allows the
servicer to describe a closed orbit around the target. These conditions are
determined as follows: 

ẋ0 = ±na
2

ẏ0 = 0

ż0 = −na
2

tan η

x0 = 0

y0 = yc ± a
z0 = 0

(3.1)

The relative trajectory here defined is an ellipse and the starting point is
one of the absidal points. Here yc is the geometrical center of the ellipse and
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a is the semi-major axis of the said ellipse that can be put in relation with
the minimum safety distance the servicer needs to keep from the serviced
center of mass dmin.

a = 2

√
d2
min +

y2
c

3
(3.2)

For practical inspection seems legit to suggest yc = 0 to have the cus-
tomer satellite at the center, however if particular hardware limitations for
the attitude control are present, then the strategy might be adjusted differ-
ently.

The angle η represents the inclination of the ellipse with respect the
main orbital plane and can be put in relation with customer requirements of
clearance in the nadir direction of the customer satellite. During inspection
it is possible to let the customer satellite to be operational, thus a proper
cone of semi-aperture δ in front of the satellite is required to be kept clear
from the servicing satellite. Since the proposed orbit is symmetric, the same
guaranteed aperture cone is free also in the zenith direction. Such angle η
is thus given by

η = ±arctan

(
sin δ +

2∆z

cos δ
√
a2 − y2

c

)
(3.3)

where the term ∆z takes into account the maximum size of the servicing
satellite. The sign ambiguity takes into account the two possible orbits that
satisfy the clearance requirement. If we want to consider ∆z as the maxi-
mum size of servicer and include it in the minimum distance requirement
also for inclined orbit, then Eq (3.2) should be modified as follows:

r

2

√
1 +

(
sin δ +

2∆z

r cos δ

)2

−∆z > dmin (3.4)

with

r =
√
a2 − y2

c (3.5)

and η should be computed once again. Figure 3.1 presents an example
for the trajectory here designed. In red the off-limits areas: a sphere from
the target and two cones in the radial direction representing the space to
be left clear for communication, observation and such activities. In green
the sphere ideally representing the space occupied by the servicer satellite.
Distances are respected according to the requirements and Eq.(3.4).
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Figure 3.1: Inspection trjectory example

Fuel Depot rendezvous

In many OOS scenarios two satellites need to physically interact with each
other through a connection. In order to achieve this feat the two have to
come close and establish a connection though a mechanism. Typically one
satellite is seen as a chaser and the other as a target but depending on the
OOS scenario considered the role of servicer and customer might be re-
versed. Thinking about a GEO refueling the servicer reaches the client and
provide the service, while for an early stage LEO refueling it is more likely
to see the customer reaching the refueling station. The last scenario can
also be applied in GEO in cases where a refueling satellites self-refuel at a
station, an attractive economical option.

In general, the case where the client rendezvous with the depot is prefer-
able to limit the amount of instruments and navigation tools the client satel-
lite has to have in order to perform the rendezvous. This means that the
depot should be equipped with all the sensors and communication systems
to be able to autonomously guide the client to a safe docking.

Figure (3.2) present two version of the same docking procedure. The
client approaches from the tangential direction and through simple phasing
approaches the station at safe distance. In point 1 the first manoeuvre is
performed, a simple burn in the orbital velocity direction moves the client
into a relative orbit around the station. This radial approach has been chosen
for safety: if the client is not able to manoeuvre due to unforeseen causes
the natural drift will avoid possible collisions. The minimum distance is
called xappr and has also been used as a scale factor in the plots. From the
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Figure 3.2: Trajectories to Depot Docking

relative orbits the station should have the possibility and time to refine the
state.

Step 2 and 3 are two radial burns that are used to reduce the size of the
relative orbit to the wanted dimensions. Should be noted that in case of
great difference between the outer and inner orbits a repetition of interme-
diate steps can be used to lower the effort.

The capture, by means of a Canadarm-size robotic arm is performed in
4. The customer satellites does not arrive at null speed, which would be
preferable, because that would require a V-bar final approach where the
possible drift in case of miss can be less predictable or observable. In 4
a non docking collision would more likely put the customer in a drifting
lower track. Moreover, once the refueling operations are finished a simple
detachment with minimum robotic arm motion can be performed and the
customer satellite can safely escape from any possible collisions. A V-bar
approach can still be implemented in the final part if the robotic arm has
not be designed or is unable to absorb the equivalent velocity variation of
the customer.

3.2 Attitude guidance

In order to control the attitude of a satellite it is necessary to know the cur-
rent satellite attitude, the reference attitude and a proper control law that
steers the satellite in the chosen direction. Let us divide the dynamical sys-
tem of the attitude in two loops, one for the attitude and one for the angular
velocity. The guidance control determines the velocity reference that, if fol-
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lowed perfectly, would set the attitude pointing error to zero. In this session
a Lyapunov based quaternion guidance is presented. Its goal is to determine
the reference angular velocity ωbr such that the attitude of the satellite fol-
lows a certain reference. Using quaternions for the attitude parametrization
means that the quaternion error qe, obtained from the satellite quaternion
qb and the reference attitude quaternion qr, should tend to the null rotation
quaternion. A brief reference on quaternions for attitude parametrization
can be found in Appendix A.

3.2.1 The attitude pointing error

Given the measured quaternion representing the attitude of the satellite with
respect a preferred inertial frame qb and the desired attitude quaternion qr,
the error can be easily expressed as

qe =
[
qb

+
⊗
]T

qr =
[
qr

+T
⊗
]
qb (3.6)

and its variation in time can be expressed in terms of angular velocities
as follows

q̇e =
1

2

[
qe

+
⊗
]{ωr

0

}
+

1

2

[
qe

+T
⊗
]{ωb

0

}
(3.7)

where it has been applied the derivative rule of quaternions and some
permutations. ωr is the reference angular velocity and ωb the angular ve-
locity of the satellite in body axes. Now let qe =

{
ηT ε

}T and express
the error quaternion in the two components. The unitarity condition must
hold and is expressed as ηTη + ε2 = 1. Eq. (3.7) can be written in terms
of η and ε as follows{

2η̇ = η × (ωb + ωr) + ε (ωr − ωb)
2ε̇ = ηT (ωb − ωr)

(3.8)

The system has two non-trivial equilibrium solution families:

• ωb = ωr with η = 0 and consequently ε = ±1;

• ωb = ωr ‖ η and ε = 0 (rather unstable).

For any solution there exist two specular equilibrium points as a result to
use quaternions for the attitude parametrization and without proper care this
can lead to unwanted phenomena leading to extra effort and delays.
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3.2.2 Reference velocity for static attitude reference

Let us first consider the case where ωr = 0. Eq. (3.8) simplifies to{
2η̇ = η × ωb + εωb

2ε̇ = ηTωb
(3.9)

Any condition withωb = 0 is an equilibrium point of the system regard-
less of the attitude orientation. To reach the target condition of η = 0 and
ε = ±1 the reference velocity should depend on η and |ε|.

Consider the following Lyapunov candidate function

L = ηTη = 1− ε2 (3.10)

that is null at the desired target condition and always positive otherwise.
Its derivative with respect to time is

d

dt
L = −2εε̇ = −εηTωb (3.11)

The simplest ωbr to drive the derivative of the Lyapunov candidate func-
tion to be negative definite would be

ωbr = Kη (3.12)

When ωb → ωbr the derivative assumes the following expression

d

dt
L = −εηTKη (3.13)

That is negative semi-definite only for εK positive definite. Then, and
only then, the system would be stable and tends toward the desired attitude
with exponential convergence rate; however, if K has no dependencies on
the sign of ε then there might be cases where the sign is reversed and sta-
bility is locally lost: the consequence is the phenomena called unwinding.
In [36] the problem is dealt with more insight and considerations are made
on the impossibility to have continuous global stabilization for rotations due
to topological limitations. Despite the theoretical relevance of the issue, in
practice no controller is actually continuous, hence in practice rougher so-
lutions are adopted. One potential solution to the issue is looking at hybrid
systems [34]. To solve this issue a common practice is to incorporate a
sign function in K. However, such sign function has to deal with the case
ε = 0, that represents a 180° angle error where both clockwise and counter
clockwise rotations can result in the same but opposite path. Then, since
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the attitude does not depend on any geometrical or dynamical variable, it
is safe to assume that using a scalar valued K would suffice. Hence the
simplest guidance law would be

ωbr = −βϕ (ε)η (3.14)

with β > 0 and the classical implementation of ϕ (ε) as a modified sign
function s (ε)

ϕ (ε) = s (ε) =

{
1 ε≥0

−1 ε<0
(3.15)

Then

d

dt
L = −εβs (ε)ηTη = −εβs (ε)

(
1− ε2

)
≤ 0 ∀ (η, ε) (3.16)

The parameter β can be chosen by looking at the closed loop linearised
system. Close to the equilibrium we have that the quaternion can be ap-
proximated as qb '

{
1
2
ϑT 1

}
and its derivative q̇b '

{
1
2
ϑ̇T 1

}
with

ϑ̇ ' ωb. Hence the closed loop system is a low pass filter for the reference
with a cutoff frequency equal to β.

Remarks on unwinding and chattering

It is important to notice that ϕ (ε) = s (ε) is not the only possibility, it is
just the first that has been developed and implemented capable of offering
Lyapunov stability and equilibrium at ε = ±1. One could use ϕ (ε) = ε
and attain the same stability with a gentler action when the error is high,
however the unwanted solution manifold ε = 0 is a reachable but unstable
solution, thus requiring an ad-hoc set-point insertion. The problem with the
presented solution is the possible chattering when starting with εe ' 0 as
error in the error estimation might lead to keep the error in that neighbour-
hood. This lead to the proposition in [34] of a switching discrete function
that alternates between -1 and 1

ϕ (·) = hk (3.17)

with update that depends on the product (εkhk)

hk+1 =

{
hk εkhk ≥ −δ
−hk εkhk < −δ

(3.18)
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with a threshold δ such that δ ∈ (0, 1) and with initial condition h0 = 1.
The parameter δ set the behaviour of the error as increasing the noise rejec-
tion would increase the chances and extent of unwinding phenomena. The
update law of [34] has been designed for hybrid systems and did not address
the full discrete controller design, but the adaptation is straightforward. The
premise of the work was based on a previous work about disconnected sets,
hence topological problem easily relatable to the redundancy of the quater-
nion and sign invariance. Peering more in the depths of the argument, one
might search for the relation between noise frequency spectrum and the
unwanted chattering of s (ε) as low frequency errors, with respect to the
controller sample time, are arguably able to produce chattering or keep the
system in the initial error state. The guidance law of [34] does provide bet-
ter convergence and noise rejection when εe ' 0 and the estimation of the
error quaternion has significant high frequency components, otherwise the
difference is negligible.

3.2.3 Time varying attitude reference

In many circumstances for OOS scenarios the servicing satellite has to fol-
low a target that is moving, hence the set-point guidance is no longer sat-
isfactory as a zero tracking error is never reached. Using Lyapunov theory
again we can determine the modification to the set-point control. Let us
consider the same Lyapunov candidate function (3.10) and consider (3.8)
for the derivative of the candidate function.

d

dt
L = −2εε̇ = −εηT (ωb − ωr) (3.19)

Then for the same reasoning applied before we can achieve exponential
stability with a velocity reference such as

ωbr = βs (ε)η + ωr (3.20)

In fact if we impose the body velocity ωb to be equal to ωbr we get the
derivative of the Lyapunov function to be again

d

dt
L = −βs (ε) εηTη ≤ 0 ∀ (η, ε) (3.21)

The derivative of the Lyapunov function can be null for the equilibrium
point or on the manifold of uncertainty with ε = 0. In the latter case the
derivative would be null, but can be shown that the second derivative in that
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neighbourhood is negative and non zero. In conclusion, to achieve expo-
nential global asymptotically stability1 the velocity reference to be tracked
by the controller of the velocity loop is composed by a term proportional to
the attitude error and a derivative term on the reference signal. Should be
noted that such term should not be computed with a mere numerical deriva-
tive of the reference since a set-point input, assimilable to a step function,
would cause an undesired impulse.

3.3 Relative pointing control

During an inspection manoeuvre the servicing satellite should be able to
keep the serviced satellite in view of its instruments while performing a rel-
ative orbit. On the attitude control this translates to a single vector pointing,
thus allowing virtually one single degree of freedom that can be exploited
for solar panel pointing, communication or other tasks. In order to keep the
controller structure unchanged from the previous case a proper reference
signal has to be derived in terms of quaternions. Given the target vector
in body reference frame vb,r and the measured vector vb,m in the same
reference frame, the quaternion error can be written using the following
procedure ϑ = 1

2
acos

(
vTb,rvb,m

)
e =

vb,r×vb,m
‖vb,r×vb,m‖

(3.22)

Then the error quaternion is{
ηe = e sin

(
ϑ
2

)
εe = cos

(
ϑ
2

) (3.23)

then, since this quaternion is expressed in body reference frame, the
actual quaternion reference shall be computed as

qr =

[{
ηe
εe

}−
⊗

]
qb (3.24)

Should be noted that the reference quaternion needs to have frequency
content below the reference tracking cutoff frequency of the controller to
be fully tracked.

1In [34] issues regarding the global properties have been exposed. Theoretically speaking the above guidance
law is not global due to topological restrictions, however in practical applications such restrictions do not hinder
the controller
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3.3.1 Pointing

Assuming a planar inspection orbit with yc = 0 it can be shown that the
deputy satellite on that orbit, to point always at the serviced satellite needs
to have the following angular velocity

ω = − 4n

(3 cos (2nt) + 5)
+ n (3.25)

That is the composition of the nominal orbital motion and the LVLH
relative angular velocity tailored on the inspection orbit. It is important to
notice that the angular velocity does not depend on the inspection orbit size
but only on the altitude of the serviced orbit. Integrating directly Eq. (3.25)
gives

ϑ (t) = nt+ atan (2 cot (nt)) + ϑ0

Eq. (3.25) gives the angular accelerations

ω̇ = − 24n2 sin (2nt)

(3 cos (2nt) + 5)2 (3.26)

this allows to estimate the maximum torque required for the inspection
pointing, located at cos (2nt∗) = ±5−

√
97

6

τmax ' 2.1In2 (3.27)

That is usually a small amount of torque required, however the criti-
cal part is the frequency spectrum of the reference signal. Looking at the
spectrum of the term atan (2 cot (nt)) it is possible to notice that has some
relatively high frequency content that is not easily followed by any attitude
control. Hence, some pointing error is to be expected in any case and the
magnitude depends on the altitude of the serviced orbit, the higher the lower
such error would be.

3.3.2 Considerations on Inspection angular velocities

Here an inspection manoeuvre has been implemented with focus on the
pointing demand on actuators. The goal is to observe the customer satellite
with one or more cameras in a elliptical relative orbit, thus allowing for
mapping and damage inspection. A view of angular velocities in time is
presented in order to appreciate the torques required to maintain pointing.

Figure 3.3a shows that no constant torques need to be provided thus no
wheel saturation is foreseen. The maximum torque requested is function
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(a) Theoretical torques for optimal pointing at different or-
bits

(b) Pointing in inertial frame

Figure 3.3: Pointing and angular velocities for inspection

of the nominal orbital angular velocity, thus for GEO satellite inspection,
the torque requested is minimal with respect to LEO inspection. On the
other hand the duration of a single orbit is much higher, thus the inspection
operations might take several days. This also hints that for LEO a more
agile satellite is preferred and that is unlikely to use the same servicing
satellite class for both missions.

Figure 3.3b presents the pointing direction of the servicer for a planar
circular orbit in a Earth centred inertial frame. This shows the nature of
the attitude motion for inspection with several swing in opposite directions.
This helps to understand the variation of attitude during a single orbit, thus
permitting to assess the possible light variation during the inspection. In
the worst case for GEO inspection the variation of light direction in the
Earth centred frame is one degree, thus almost negligible. The variation
in attitude of the servicer is bounded thus no risk of abrupt light changes.
Changes will be present due to the main rotation, however the effect can be
minimized.

3.4 Dual Quaternion velocity guidance

Finally, consider the problem of positioning a body with respect to another
body or frame. Let the kinematics be represented by dual quaternions,
where ab represent position and attitude of the body, ar the reference posi-
tion and attitude and the error ae is defined through the following relation
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ar =
[
ae
−
ε×
]
ab (3.28)

Of course form this relation is clear that ae is the error expressed in
the body reference frame, while with ar =

[
ae

+
ε×
]
ab would have been

expressed in the inertial frame. A guidance law would need to define the
linear and angular velocities required to reduce the error dual quaternion to
the identity. Consider the following Lyapunov function

L =
(
1− ε2

)
+

1

2
dTe de (3.29)

where ε is the error quaternion scalar component and de = dr − db the
position error in the inertial frame. Should be noted that considering de
the displacement of ae would have lead to the same L as the scalar valued
function does not depend on the attitude of the two reference frames, being
the norm of a 3D vector symmetric to pure rotations.

By differentiating one obtains

d

dt
L = −

{
εηT dTe

}{ωr
vr

}
(3.30)

Thus with the desired velocities{
ωr = Kωs (ε)η

vr = Kdde
(3.31)

exponential convergence should be guaranteed. A discontinuous s (ε)
would theoretically pose problems to draw global stability claims as stated
before.
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CHAPTER4
Navigation

In this chapter solutions to the determination of a satellite attitude as well
as the relative state of a target satellite are proposed. First, some technique
used for vision based estimation will be addressed. A lot of research is in-
volved in developing a vision based algorithm that is capable of determin-
ing the relative pose of a satellite. This is crucial for ADR implementations.

Vision based angle only navigation for rendezvous using Kalman filter-
ing has been used in [30] although observability using only angles is an
issue that has been lifted by the same author few years later in [37], not
to mention the general difficulties of dealing with quaternions in a Kalman
filter [38].

Computer vision algorithm for navigation can assume in general three
different forms: image stream, template/map/model matching or target iden-
tification.

An image stream has the drawback that diverges over time, but this can
be contained using model based filtering or other sensors. The use of com-
plementary sensors for vision based navigation has been seen by many as a
possible solution to increase old sensor suite performance, however the pre-
cision attainable by vision based system might be higher. Anyway, camera
aided Inertial Navigation System (INS) have become a popular topic in the
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recent years [39–45]. One effective way to correct INS is to use an Indirect
Kalman Filter [46], tailored on the INS error, and exploiting the rigid trans-
formation between two camera views [43]. Looking at the results obtained
in [43] it is speculated that the camera alone reconstruction might prove
lighter while slightly less precise w.r.t. the INS filtered version. Most of
Camera aided INS method augment the state with measured features, that
is always computationally expensive. In ego motion about one hundred of
tracked points are enough, therefore the already high dimension state is of-
ten augmented with twice or three times the number of feature found in
the images [42, 47–49] getting few hundreds of variables. Given recent ad-
vancement in vision based navigation the most relevant issue to be solved
are robustness to light variation and enhancing the estimation data-rate to be
able to reach required control frequency to compensate expected disturbs.
Another time-related issue is possible delays between image acquisition
and information utilization, some research on this issue with experimental
activities can be found in [50].

Template matching for proximity operations using cameras has been
studied in the past. For example [26] has implemented a 3D matching using
non linear minimizers to solve the pose (see Appendix C), although images
were not simulated and the computer vision part has been neglected. A
more recent and comprehensive reference with experimental validation can
be found in [51] where 3D model matching flourish within a visual ser-
voing approach. Further development on exploiting the maximum return
from images can be found in [52] while the basis for 3D matching have
been posed more than two decades ago, the interested reader should refer
to [53].

In earth robot navigation in an unknown environment the Simultaneous
Localization And Mapping (SLAM in short) [54,55] is often employed and
in this approach the map is formed through repeated observations. In this
case convergence is attained through multiple view of the same zone. Par-
tial mapping exploited through high framerate might still be effective but a
proper assessment of hardware impact has to be performed, in fact this ap-
proach should not be able to attain the same convergence of a 3D reference
map/model. When mapping approaches are considered another important
tool is Bundle Adjustment [56] where also cameras intrinsic parameters are
updated through time. This will become increasingly necessary in OOS
applications due to the long lifetime and harsh environment foreseen for
cameras on servicing satellites that also require good precision.

Some research groups are working on the use of vision based relative
state estimation based on known features on the target satellite, for example
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in [57, 58] matching is done with a rectangular shape, while in [27] the
adapter ring is exploited. A more sophisticated and robust implementation
of similar principles is found in [59]. The latter approach is promising
enough to be partially adopted here.

4.1 Vision based navigation

Given two consecutive images from the same camera there are two possible
way of computing the relative movement: feature tracking and optical flow.
The first method requires similar feature points to be extracted from both
images and then matched to determine the rigid transformation between
the two views. The quality of the estimation increases with the number
of features and matching accuracy process and this procedure is capable
of addressing wide motion. Optical flow is based on the images intensity
differentiation to be able to determine the motion. The great limitation of
the latter is the weakness to large displacement.

Feature tracking requires to detect features of the same kind in two im-
ages and then apply a matching procedure, typically a Normalized Cross
Correlation (NCC) [60] between the neighbourhood areas of the feature
points in both images [60, 61]. The pairs are then fed to an algorithm that
determines the rigid transformation. Some methods, like RANdom SAm-
ple Consensus (RANSAC) [62] or eight point algorithm [63], make use of
the epipolar constraint [63–65] determining a combination of rotation and
translation direction, however they can be computationally expensive and
give multiple and/or inaccurate results.

Feature selection and matching is a costly operation and a proper anal-
ysis has to be carried out to decide which features provide enough points
and in the shortest time available. Features can be divided roughly in low
level (edges, corners) and high level (ex: landmarks). High level feature are
usually detected starting from low level feature, making the process com-
putationally more expensive and requiring a priori knowledge of the terrain.
In the last decade the new concept of region based feature has been stud-
ied. Scale Invariant Feature Transform (SIFT in short) [66] and Speeded
Up Robust Features (SURF) [67, 68] lie within this category. Basically the
principle is to take interesting points such as corners and identifying those
with better probability to be traced in the other image.

4.1.1 Stereo relative positioning

With a single camera it is possible to identify an object in space and extrap-
olate its direction. For inspection purposes this might be enough, but some
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problem arise. First of all with only angle measurement is in general not
possible to obtain the full state [37] and some additional image process-
ing must be considered, since other object might be seen by the camera,
like Earth in LEO scenarios. On the other hand it might be wise to have
a redundancy, thus two camera on board for proximity operations. Hence
considering a relative positioning with a stereo camera pair might be a wise
solution.

When a stereo pair is considered two possible implementations might be
enforced: consider the two camera as one sensor and perform a calibration
or consider them separately and perform matching operations between the
two views. The second possibility might be computationally heavier but
permits to easily filter out objects that are outside the considered range.
Here this approach is followed. The images of the stereo pair are passed
through a SURF [67,68] detector and extractor, then matched through NCC
[60]. The outlier matches are filtered out in two stages, first applying a
RANSAC [62] run, then through baseline (akin to epipolar constraint) and
finally through triangulation a small point cloud is obtained.

Due to parallax and limited baseline, Earth would appear equally placed
in the two images, thus the displacement of features in the stereo cameras
would be null with almost perfect matching. Figure 4.1 exemplifies the
fact that background features can be easily spotted and subtracted from the
computation as they appear in the same place for both cameras. In prox-
imity operations, say between 100 and 20 meters, there is no need to use
pose estimation to determine attitude and absolute relative positioning, thus
a simple centroid estimation would suffice. Figure 4.2 presents the estima-
tion from the simulated image example. It is possible to appreciate that
a good estimation of the centroid is possible. Due to the several combi-
nations of parameters for feature extraction, matching and filtering, it is
clear that sometimes the estimation may be off if some features are not
extracted. Looking at the image will be clear that if a feature on the so-
lar panels is detected then the centroid would move off from the center of
mass. The resulting measure is thus affected by high frequency noise as
from frame to frame it is not recovered the same centroid position but in
lower frequency this shift has less importance. One might argue that using
feature based matching it is possible to match also across subsequent shots
and it is absolutely true, however this can create a problem as two subse-
quent measurement would be connected and error accumulation impose a
drift in the estimation, leading to target loss. Keeping the measurements
completely uncorrelated allows to have a more robust estimation as errors
do not accumulate over time.
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Figure 4.1: Stereo matching

Of course, it might be requested a filter in order to reduce the noise and
limit high frequency oscillations for the pointing guidance.

4.1.2 Dual quaternion estimation from camera views

Dual quaternions can be used also to estimate the relative pose between two
subsequent image frames [69]. The algorithm is based on the solution of
the Wahba problem with quaternions, then the position quaternion is recov-
ered afterwards. Should be noted that the algorithm requires one particular
configuration of dual quaternions in order to exploit properties of the dual
quaternion matrix forms. Regardless, it is always possible to revert to any
formulation. Using stereo camera is always possible to match a 3D point
cloud between two subsequent time instants and estimate the relative dis-
placement. However, this procedure does not guarantee a good matching
or estimation, as errors would still increase over time. In other words it is
pretty much similar to a velocity estimator affected by noise.

The naive implementation of the process exhibits random walk that may
be dangerous for operations, hence a mapping approach is often enforced
to be able to reduce the drift. The problem of mapping and memory are rel-
evant and well addressed in literature with some solution found satisfactory
in some applications.
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Figure 4.2: Filtering and centroid estimation

4.1.3 Reference matching

In many OOS scenarios that requires close proximity operations it is pos-
sible to exploit inter-satellite communication to at least receive an estima-
tion of the target attitude in order to use template matching or shape based
matching techniques that are able to eliminate the drifting problem. As a
matter of fact the matching from a template and a model, intended as an
ensemble of points or lines, gives back a punctual estimation of the relative
position and attitude with a un-correlated error with respect previous esti-
mates, which avoids the drift in the visual odometry. The estimation error
in this framework can be of few millimetres at about 3 meters of distance
and using very few points. See Chapter 7 for application results.

When markers of any kind are available on the target, especially if the
target port has been designed for servicing purposes, it is possible to esti-
mate precisely the port location with respect the currently computed relative
pose as some inaccuracies might be possible. The focus of this thesis is not
on visual navigation but rather the combination of visual navigation with
other GNCR subsystems, hence the registration of images and the use of
templates is rather simple.
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(a) Original image (b) Processed image with found markers

Figure 4.3: Marker detection

Robotic arm docking port

Since camera mounted on a robotic arm tip cannot provide measures up-
close the camera is instead used to refine the relative port displacement
from the estimated target satellite pose. Through chain of transformation
the measures can be used to estimate the port location on the target satellite.

The markers used are four circles of two different colors (white and
black) on an intermediate background. Using Hough transform and a ini-
tially estimated distance from the target it will find circles in a neighbour-
hood of the estimated circle diameter. Figure 4.3 presents the original sim-
ulated image and the processed image. In the latter the image histogram has
been adjusted adaptively and in red the circles match perfectly the marker.

The search conducted without pre-estimation will be more cumbersome
and prone to error, so robustness of the estimate relies on the constraint
given to the error of previously estimated poses. Once all four circle posi-
tion are computed in camera frame, the relative attitude is computed using
four directions of the markers with respect to their center and the normal of
the plane identified by the 3D positions of the markers in the model refer-
ence of the target satellite. The 3D position of the markers is recovered by
using the radius of the circle found in the images as scale factor, thus the
estimation becomes really fast.

Figure 4.4 shows the robustness of the method to occlusion, meaning
that if part of the marker is not seen by the camera or is covered it can still
be found by the algorithm. On the other hand Figure 4.5 shows that with
high error in depth estimation leads to a difficulties in finding the circles of
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Figure 4.4: Robustness to occlusion

(a) Wrong depth (b) Wide range of radius search

Figure 4.5: Mismatch
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the correct size, and that using a wide range of radius search might lead to
inaccuracies.

The final estimation is performed by a weighted mean on the minimal
representation of the estimated dual quaternions. The weights are computed
as the overall fitting error of the four markers while the minimal representa-
tion links the dual quaternion to the Cartesian position vector and the Euler
axis and angle. To reduce potential errors in the estimated dual quaternions,
the attitude estimation is computed with respect the first port estimate of the
batch as in some cases the Euler angle can be 180 degrees. The finalization
of the port location requires the port to be visible, hence the expected error
is small and any simplification made in the final estimation is justified.

Satellite relative state

On the other hand, for the pose estimation of the whole satellite relative
position and attitude it has been used a slightly different approach. Know-
ing the rough outer appearance of the target, a Hough transform has been
used to determine lines and edges of the target satellite. First the image
is processed with a Sobel edge detector becoming a binary image where
lines are easily found with the Hough transform. In Figure 4.6 the whole
process and the results are displayed. From the Hough transform four lines
are extracted, two vertical and two horizontal, within a ±5° domain. When
dealing with outer edges detection and Hough transform with space object,
light issues and shadows might reduce the robustness. Even in [59] the
issue is addressed and tracked lines are found in a subspace of the whole
search space. The simplified idea of tracking a relatively known rectangular
shape has also been applied experimentally with compatible results in [70]
although with different premises and finite reliability.

From the four lines tracked in this implementation are then computed
the four corner points in the image. Using a non linear minimizer the depth
of the features is determined minimizing the projection error. Displace-
ment and attitude are computed using a combination of the dual quaternion
estimation of [69] and the slightly older [71] used for points sets. The es-
timation of the relative dual quaternion is direct and analytical when depth
are estimated, thus for each iteration of the minimizer the depths are used
to construct the 3D projection of the features found in the image and from
there the error.

The limits of search for lines, as well as the search for maxima in the
Hough space, needs to be tailored as many disturbs might be added. For
instance consider Fig 4.6a where the shadow of the robotic arm projects
a straight line on the serviced satellite face, in Figure 4.7 a possible bad
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(a) Original Image (b) Processed image and corners found

Figure 4.6: Satellite corner determination

Figure 4.7: Example of mismatch due to shadows
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interpretation of the image due to shadows is presented. Even with those
precautions the estimation might fail, for example if the line that has been
found is on the solar panel instead of the base or if some other line with
stronger image gradient is found. Hence, as safety factor, the previous line
estimation is used when the criteria are not found in the image without
having to change the parameters, as this might happen just in few images.

Light variation issues

Light variations can have dramatic impact on the cameras, as it is possible
to see from Figure 4.8. When in eclipse the servicer should switch on lights
in order to see the other satellite and although this burdens batteries, it is
not the worst situation as no shadows are cast and the background is almost
black. On the other hand, having the sun behind the servicer satellite cast
shadows on the serviced satellite, altering the image histogram and creating
troubles in the segmentation process. It is indeed possible to adjust param-
eters ad hoc for the situation when operations are really performed in orbit.
Another approach could be simply to schedule the operations when the sun
is in favourite directions, including the variations due to the rotation of the
two satellites if nadir pointing. Another source of errors, as shown before,
is the presence of other objects, like a robotic arm, casting shadows that
can be interpreted wrongly by the software. Moreover, on highly inclined
orbits the sun could generate some self shadows on the servicer satellite
that covers important areas for the segmentation if not a docking port itself.
It is not difficult to predict such behaviour as to some extent it is possible to
simulate images, as done in the development of this research, but creating a
truly robust vision based relative state estimation capable of adjusting itself
without much effort from the ground is still an issue.

Hardware limitations

Image processing involves heavy computations and this can hinder the use
of vision sensors in space where space proven hardware are generally few
generations back with respect to Earth-borne applications. Even more so,
the use of cameras in a closed loop control requires a steady sample time
that cannot be lower than a minimum threshold. However, recent devel-
opment in space hardware for lunar landing, planetary exploration and
satellite to satellite applications permits to state that such concerns are no
longer relevant. Many of the computer vision applications like feature ex-
traction and matching can be implemented using Field Programmable Gate
Array (FPGA) and run in parallel at medium/high sampling time. In [72] is
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(a) (b)

(c) (d)

Figure 4.8: Relative sun direction impact on images
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Figure 4.9: Quaternion Complementary filter scheme

presented a chip for monocular vision with lunar landing applications ca-
pable of reaching 20 fps with included feature extraction and matching (up
to 200) of a 1024 x 1024 pixels image. Looking at Italian development in
the field we can cite [73] and the subsequent [74] with both monocular and
stereo applications. Here the achievable framerate ranges from 10 to 30 fps
and all equipment is space qualified and available from the supplier. The
image processing applications for the GNCR here proposed can be hard
coded in FPGA, but to be conservative the framerate here considered is
bounded to 1 fps. This ensures that the required computations are expected
to be delivered to the control system with real time constraints.

4.2 Complementary filtering

A complementary filter is a filter that weights in frequency two or more
sensors information to refine a state estimate [75]. The simplicity and ele-
gance of the approach can be used also for satellite attitude determination,
for example fusing information from a gyroscope and a star tracker. In [75]
proof is given for the convergence of the estimate and locally for gyro bias
estimation (as Lyapunov theory cannot assure absolute convergence of the
bias estimate) also using quaternions. In Fig 4.9 a block scheme of this ap-
proach for a simple satellite attitude control is presented. Here qst and ωgy
are respectively the measured quaternion from the star tracker and the gyro
measured angular velocity. With q̂ and ω̂ are indicated the filter estimated
outputs and the quaternion error qe is computed and fed to the filtering
function C with sign consistency.

This filter has some interesting features:

• it is able to fuse measurement from two sensors at different data rates,
providing an accurate estimation at high sampling frequency. Should
be noted that some high frequency noise might be introduced with
the straight implementation of the filter if the data rate difference is
too high. Up-sampling might introduce excessive delay and down-
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sampling would reduce the benefits of high frequency estimation;

• it uses a gyro measure to integrate the attitude that can give estimate
even when other attitude sensors are switched off or unable to provide
measurements (ex: eclipses);

• can have good gyro bias rejection (theoretically demonstrable only on
linearised case);

• with respect to a full state Kalman filter it is much simpler and easily
tunable with the proper sensor suite;

• provides a quaternion estimation with no sign jump since it is obtained
from integration if C takes into account possible jumps in qe;

• Attitude measurement can be provided by quaternion or vector mea-
surements.

In some aspects this attitude filter is not much different from an indirect
Kalman filter [46] since the core principle is the same, but the tuning and
updates may differ. If one wants to compare the two approaches, it should
be clearer that the complementary filter of [75] has fewer parameters to be
determined and the computations needed are way lower than those for a
Kalman filter with iterative formulation. Of course, the drawback is that it
requires good complementarity of the sensor suite. It can be demonstrated
that a proportional gain in C gives convergence to the filter while adding
an integrative action can compensate for low frequency errors in the gy-
roscope measurement, thus locally estimating its bias and random walk.
The proportional term drives the cutoff frequency of the filter: below such
frequency the star tracker measurements are weighted more while the low
frequency component of the gyro integration are almost not considered.

The filter estimated values are used for attitude control, hence an higher
sampling rate allows for higher control gain and possibility to track attitude
reference with low frequency content. High frequency noise in q̂ or ω̂
translates in higher control effort but if limited it is not going to jeopardize
the attitude control robustness. If the star sensor measure is highly accurate,
then the estimated quaternion of the filter might not reduce the error but
the signal will have higher data-rate useful to track relatively fast signals,
operation that can be impossible for a more slower estimation. This is even
more true if an up-sampling procedure is implemented, since a delay in the
signal will be incorporated.
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Figure 4.10: Closed loop performance

4.2.1 Closed loop

Another important issue to be addressed is the closed loop performances of
such non linear estimator. Let us use an example to clarify the importance
of such problem.

In Figure 4.10 are shown the results from a simulation where it has been
set the control closed loop frequency to 0.1 rad/s and with a dynamical
loop control frequency set to 1 rad/s. The satellite is requested to spin of
an angular velocity equal to 0.001 rad/s around the z axis. From the FFT
of the gyro it is clear that the dynamical loop control frequency is the most
relevant in the true signal and that the modelled gyroscope has higher lower
frequency error that is rejected by the complementary filter. In this case the
cutoff frequency of the filter is set to 1 rad/s. Just by switching the filter
frequency we have two different behaviour, in one case there is a resonance
phenomena occurring between closed loop and dynamical frequency. For
further insight, results can be found in application scenario in Chapter 7.

61



4.3 Relative position estimation

Relative position estimation is of utmost importance for any OOS opera-
tion, hence it is requested to use all possible sensors, based on the relative
distance, to obtain the best estimation possible. Possible sensors are

• relative Lobal Positioning System (GPS), that requires an inter-satellite
communication link to share the inertial position estimation from GPS;

• cameras and stereo cameras, that works only when the sun is not in
the Field of View (FOV) and the subject is inside the FOV, and might
work in eclipses in close distance with an artificial light;

• ranging sensors (radar/lidar) that are able to obtain relative distances
and in rare case a 3D position is obtainable.

The relative dynamics of two satellite in a Keplerian orbit is quite well
understood and state transition matrices are obtainable for the circular orbit
case and for the elliptical orbit case, albeit the latter is more cumbersome
to compute due to the dependency on Kepler time equation. To exploit
such solutions the linear position and velocity need to be expressed in the
LVLH frame and then can be transformed in any reference frame needed
for control or other operations. For any orbit the discrete system is linear
and potentially time dependent and can be expressed as follows

{
vk+1

xk+1

}
= Φk+1,k

{
vk

xk

}
+Bkuk (4.1)

yk = Ck

{
vk

xk

}
(4.2)

where k is the discrete index of the discrete time, Φk+1,k is the state
transition matrix evaluated at the discrete system sample time that connects
the state to its next value. The state is composed by velocity v and position
x, while uk are the control forces and yk the measures.Bk and Ck are the
matrices connecting the control and measures to the state and its derivatives.
Considering only Gaussian noise acting on measures and control forces we
can develop a steady state Kalman Filter whose update is{

vk+1,k+1

xk+1,k+1

}
=

{
vk+1,k

xk+1,k

}
+K∞

(
yk − ˆyk,k

)
(4.3)
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which is an update on the foreseen projection of the state based on pre-
vious information by a constant matrix K∞ weighting the residual of esti-
mated measures versus actual input registered measures yk. As long as the
system sample time is consistent, the matrices are constant (circular case)
matrixK∞ is constant. The constant Kalman gainK∞ is of course the re-
sult of a Riccati matrix equation weighting the model uncertainties in form
of covariance of white noises and the measures error covariance. Since the
procedure is well known in literature here will be reported only few aspects
connected to the issue in exam.

In yk we consider relative GPS measurements and camera position es-
timation. As mentioned before there are some conditions where cameras
might not work properly, hence the filter that is requested to estimate the
state needs to operate even when camera measures are not available. Since
the gain are considered constant it is possible to partition matrix K∞ and
add the contribution of cameras only when it is available. A test case of this
principle is available in Chapter 7.
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CHAPTER5
Control

Here the word control will be used to represent the algorithms that de-
termine the command to physical actuators in order to act on dynamical
variables representing part of a mechanical system state. For example, in
case of satellite attitude control the actions are torques and the dynamical
variables are the angular velocities of the satellite. Usually the outer loop
in position or attitude and the inner loop on velocities are grouped together,
here the distinction has been made for explanatory purposes. In this chap-
ter it will be derived an adaptive control law such that is able to track a
reference velocity with uncertain or variable inertia parameters.

When dealing with control laws we can divide application from con-
trol schemes as framework can be used, although adapted, to different sys-
tems. Satellite attitude control goes back from the dawn of space era and
in many cases a simple Proportional Integrative Derivative (PID) architec-
ture on Euler angles was enough to achieve the required performance [76].
Later on, alongside new kinematic representations, the field flourished with
research on more modern paradigm, although in industrial application PID
control is often favoured for its simplicity and consequent robustness. In
general, the more parameters have to be tuned, the brittle is the consis-
tency of the controller and performance greatly change with minimal gain
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variation. Regardless, in literature several other paradigms have been stud-
ied and applied, at least theoretically, to the problem of attitude control of
satellites and similar vehicles.

Among these paradigm we can list Linear Quadratic Regulators (LQR)
[77], Input-Output Feedback Linearization, Backstepping [78], Adaptive
controls,H∞/µ controls [79], Model Predictive Controls [80], Sliding mode
controls [81, 82], soft computing control (neural networks, fuzzy systems,
etc) and all their variations and combinations. LQR coupled with Kalman
filters have been popular in the field, however in practical applications the
strife was to bring back the LQR to a PID like control and in some ex-
tent it is another way to determine the PID weights. In that regard also
structured H∞control can be used to derive robust weights of a PID and
has more success in the field with respect to the non-structured version.
Sliding mode controllers have found more applications in controls where
small thrusters are involved, as the actuators output cannot be modulated
in amplitude but the chattering they induce might create problems in at-
titude control where higher precision is required. Input-Output Feedback
Linearization techniques have been popular in the field as they provide a
framework to eliminate nonlinearities and adopt stabilizing simple linear
control laws through a non linear transformation of the system state. How-
ever, such controllers are heavily dependent on the accuracy of the system
model and might be less robust to uncertainties.

An adaptive control has been derived in [83] and incorporates in the
control the estimation of the full inertia matrix that may result in exces-
sive computations, especially since in the adaptive framework the conver-
gence to true values is not guaranteed unless persistent excitation is exerted.
Moreover the estimation might be corrupted by measurement noises [84].

5.1 Quaternion based attitude control

OOS operations require a robust attitude control in order to guarantee the
safety of all requested operations. Hence, a control law that guarantees
stability under uncertainties and in different phases is mandatory. Among
many possibilities here it has been chosen to derive an attitude control law
using quaternions to avoid singularities and simplifying as much as possible
the controller. The latter is due to the axiom “the simpler the robust” that
has been chosen as guidelines for many application cases. PD-like con-
trollers even with quaternions have been studied in the past decades [33]
but some aspects have been overlooked and some other issues have been
re-opened with respect to convergence properties.
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Let us divide the attitude control in two parts: a kinematic part and a
dynamic part or inner and outer loop if one prefers. The distinction comes
handy since the kinematic loop has no uncertainties with respect to the dy-
namic loop that has uncertainties connected to the inertia of the satellite and
the nature of disturbances acting on it. Then, let us focus on the dynamical
loop and assume a general reference velocity ωbr for the reference input.
Later, such angular velocity will be equal to the reference guidance studied
in Chapter 3.

The equation of motion for a satellite can be expressed by the introduced
Euler equations rewritten as follows

Ibω̇b = −ωb × (Iωb) + τd + τu (5.1)

where Ib is the 3 by 3 inertia tensor of the satellite expressed in body
frame, τd is the vector of disturbing torques and τu is the vector of control
torques. In absence of disturbs and control torques there are some cases
where the system has no dynamical equilibrium thanks to the non linear
term ωb × (Ibωb).

Analysing Eq. (5.1) permits to derive the control law such that the angu-
lar velocity of the satellite ωb follows a reference angular velocity ωbr that
can assume a constant value, a null value or a time varying value depending
on the attitude control mode of the satellite.

5.1.1 Null velocity reference

In satellite attitude control a null angular velocity reference corresponds
usually to the de-spin case, an operation often performed after launcher de-
tachment or in safe modes. Assuming no disturbances the simplest control
law to drive angular velocity to zero is

τu = −Kωb (5.2)

Substituting Eq. (5.2) in Eq. (5.1) and considering no disturbs it is
straightforward to see that the only possible equilibrium point isωb = 0. To
assess the stability of such point let us take as Lyapunov function candidate
the following:

L =
1

2
ωTb Ibωb (5.3)

The function is positive for any ωb, zero for null velocity and it is un-
bounded in ωb. The time derivative of L is
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d

dt
L = ωTb τu (5.4)

Substituting Eq. (5.2) leads to

d

dt
L = −ωTb Kωb (5.5)

that is always negative for any positive definite K, regardless of ωb.
Using Barbalat lemma we can conclude that, under the disturb-less case
hypothesis, the simple proportional feedback of Eq. (5.2) is globally stabi-
lizing.

The simplest value of K would be K = αI3×3 with α a positive scalar.
However, the inertia tensor of a satellite is rarely equivalent to a sphere,
hence it might be wise to use instead K = diag {α}. The choice of α can
be computed easily looking at the linearised version of Eq. (5.1) that holds
for small angular velocities (or tri-symmetric bodies)

Ibω̇b ' −Kωb (5.6)

ω̇b ' −I−1
b Kωb (5.7)

Such equation exhibits no couplings if K = diag {α}, therefore each
axis can be considered separately. The equivalent SISO system is straight-
forward and can give useful insights.

Let ωbr be the reference angular velocity of the axis under exam and ωbj
the actual angular velocity of axis j, then the closed loop transfer function
is

ωbj
ωbr

=
αj

Ijs+ αj
(5.8)

where s is the Laplace variable. Taking αj = Ijλj is equivalent to assign
the cutoff frequency of the closed loop system to be λj . The system behaves
like a low pass filter for the reference ωbr. Another interesting insights is
looking at the disturbance to output transfer function

ωbj
τdj

=
1

Ijs+ αj
(5.9)

Figure (5.1) presents its bode diagram, showing that all disturbances are
reduced at least by a factor 1

αj
. Interesting to note that constant disturbances

are not entirely rejected, hence this hints that for static τd the controller
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Figure 5.1: Bode diagram of disturbance rejection

of Eq. (5.2) is not capable of reaching zero error. To solve this issue a
proportional and integrative controller should be devised. The disturbance
attenuation factor is 1

αj
in the lower frequencies.

5.1.2 Velocity tracking

In case the reference velocity is not null, then the controller of Eq. (5.2) is
not guaranteed to achieve global stability. Let us denote the angular velocity
error as

ωe = ωb − ωbr (5.10)
ω̇e = ω̇b − ω̇br (5.11)

Then the candidate Lyapunov function will be

L =
1

2
ωTe Ibωe (5.12)

whose derivative is given by adding Eq. (5.1) with τd = 03×1.

d

dt
L = ωTe (−ωb × (Ibωb) + τu − Ibω̇br) (5.13)

Then the control law to achieve Lyapunov stability should be

τu = −Kωe + ωb × (Ibωb) + Ibω̇br (5.14)

whose block scheme is shown in Figure 5.2.
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Figure 5.2: Block scheme of Lyapunov based controller

Integral action

The controller presented above is not capable of completely rejecting con-
stant disturbs and the rejection capabilities can only be proven in a lin-
earised setting, as will be shown in Section 5.1.4. From linear theory we
do know that the addition of an integral action can reduce disturb influence
on the output and reject the static component. From the non linear point of
view should be investigated if the presence of an integral action alters the
stability properties of the controlled system.

Let us modify the control law and the Lyapunov function as follows{
L = 1

2
ωTe Ibωe + 1

2
ξTκ−1ξ

τu = −Kωe + ωb × (Ibωb) + Ibω̇br + ξ
(5.15)

Then the time derivative of L is

d

dt
L = −ωTe Kωe + ξT

(
ωe + κ−1ξ̇

)
(5.16)

Hence for any κ > 0 if we set ξ̇ = −κωe the stability of the system is
not altered. If the system is not well known, has disturbs or the derivative
of the reference is not available, then a simplified feedback law could be
used {

τu = −Kωe + ξ

ξ̇ = −κωe
(5.17)

Then ξ will not tend to zero but would be required to tend to a specific
function of reference and angular velocity. Let us assume that a final ξ will
be reached, then a proper candidate Lyapunov function could be

L =
1

2
ωTe Ibωe +

1

2

(
ξ − ξ

)T
κ−1

(
ξ − ξ

)
(5.18)

Differentiating Eq. (5.18) and substituting Eq. (5.17) with the assump-
tion d

dt
ξ = 0 leads to
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d

dt
L = ωTe

(
−Kωe − ωb × (Ibωb)− Ibω̇br + ξ

)
(5.19)

Stability holds if

ξ = ωb × (Ibωb) + Ibω̇br (5.20)

At convergence ξ will be equal to the desired reference angular momen-
tum. If d

dt
ξ 6= 0 then the term

(
ξ−ξ

)T
κ−1 d

dt
ξ will appear in the derivative

of Eq. (5.18) and stability will be achieved only if ξ = ξ.
Taking the second row of Eq. (5.17) and differentiating leads to

ξ̈ = −κω̇e = −κ (ω̇b − ω̇br) (5.21)

κ−1Ibξ̈ = −ξ − κ−1Kξ̇ + (ωb × (Ibωb) + Ibω̇br) (5.22)

That is a damped harmonic oscillator excited by the term in brackets. If
resonances are avoided, as time tends to infinity ξ will tend to ξ, that is the
requested value for stability. The damped oscillator system can be written
as

ξ̈ + λξ̇ + κI−1
b ξ = κI−1

b (ωb × (Ibωb) + Ibω̇br) (5.23)

the frequencies of the oscillator are
√
κI−1

ii , hence the reference angular
momentum time derivative frequency content can be managed thanks to κ.

Should be noted that even if the integral term will eventually converge
to the disturbing terms if the frequency content of such disturbs is below
the critical frequency of the integral update, this does not assures that the
derivative of the controller Lyapunov function to be always semi-negative
definite. In fact, in general, ξ = ξ is not verified at all times and at the
beginning could be an unstabilizing term. However, under the reasonable
assumption that disturbs and non modelled dynamics are bounded, it can be
proven under the above mentioned hypothesis that a bounded convergence
is attainable. As will be clear later, the addition of an integral action can
cause a phase delay in the controller response, thus lowering the conver-
gence rate.

5.1.3 Complete feedback loop

Now, let us consider the velocity controller of Eq. (5.14) with the velocity
reference of . The full attitude controller becomes
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
τu = −K (ωb − ωbr) + ωb × (Icωb) + Icω̇br

ωbr = βs (ε)η+ωr

ω̇br ' βs (ε) (η × (ωb + ωbr) + ε (ωbr − ωb)) + ω̇r

K = Icλ

(5.24)

where Ic is the reference inertia used for the controller, often taken as
diagonal. The term ω̇br can be computed numerically or using the approx-
imated expression above that is impervious to quaternion sign change.

The control action τu has been proven previously to uniformly asymp-
totically converge ωb to ωbr. ωbr has been proven in Chapter 3 to drive the
error in attitude towards zero. If we define the error in angular velocity as
ωb − ωbr we can conclude that ωb → βs (ε)η + ωr and through we can
conclude that η → 0 exponentially.

Should be noted that ω̇br has not been computed exactly, since the deriva-
tive of s (ε) in the neighbourhood of ε = 0 is hill defined. This topological
barrier formally decays the global convergence properties of the controller
and this cannot be avoided unless a switching control is enforced . For
practical applications this might be neglected and we can limit ourselves
to check if unwinding might take place: thanks to s (ε) no terms in τu

changes sign if both η and ε change sign. Thus τu (η, ε) = τu (−η,−ε).
The price to pay is the possible chattering around ε = 0 but the situation
is quite unlikely and often can be solved using a good reference generation
algorithm.

Another very important issue is the robustness to non modelled issues
and parametric uncertainties. A robustness analysis must be conducted
while keeping the uncertainties in a reasonable range. As a matter of fact
no controller is able to fully control in case of completely underestimated
phenomena concerning the system in exam. In this case we can consider
the inertia tensor to be affected by uncertainties, while unknown disturbing
forces can be dealt with a linear approximation of the system. The term
K in the controller set the velocity loop cutoff frequency and in practical
terms with linear control theory we can conclude that disturbs with lower
frequency are rejected.

The minimum rejection is approximately given by K−1τd when no in-
tegral action is considered. An integral term would be able to completely
nullify constant disturbs and increase the rejection of lower frequency dis-
turbs, however, since the addition of an integral action reduces the phase
margin it is advisable to use it only for the terminal phases of a manoeu-
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vre or for fine pointing. It can be shown that using the integral action for
large manoeuvres slows down the convergence considerably. A practical
implementation of the controller would be



τu = −K (ωb − ωbr − κψξ) + ωb × (Icωb) + Icω̇br

ωbr = βs (ε)η + ωr

ω̇br ' βs (ε) (η × (ωb + ωbr) + ε (ωbr − ωb)) + ω̇r

ξ̇ = −ψ (ωb − ωbr)
ψ 6= 0 if d

dt
(1− ε2) ' 0

(5.25)

where the condition on ψ is meant to formally imply that the integral
action is active only near convergence in order to not slow down the con-
troller. Should be added also that each time the integral action is triggered
there should be a reset of the initial conditions in order to avoid excessive
overshooting. This implies that the switching criteria should allow the inte-
gral action to keep acting when it is required to act and not keep switching.

5.1.4 Local stability and disturbance rejection analysis

In order to easily determine the disturbance rejection conditions as well
as to tune parameters a linear analysis can be very insightful. Let us con-
sider the feedback system with no uncertainties and no integral action and
rearrange the terms. By setting ωe = ωb − ωr we find

Ibω̇e = τd −Kωe + Kβs (ε)η + Icβs (ε) η̇ (5.26)

Linearising the system around the equilibrium condition and setting the
linearised variables ϑ as follows

ε ' ±1

2s (ε) η̇ ' −ωe ' −ϑ̇
η ' −1

2
ϑ

(5.27)

lead to the simplified second order time invariant system

Ibϑ̈+

(
K + Ic

β

2

)
ϑ̇+ K

β

2
ϑ = τd (5.28)

The linearised system has no coupling if we consider principal axis and
K = λIc and Ic = Ib.
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Figure 5.3: Linearized system Bode plots

ϑ̈+

(
λ+

β

2

)
ϑ̇+ λ

β

2
ϑ = I−1

b τd

we can now consider each axis independently and write the disturb to
tracking error transfer function for generic axis i

ϑi
τdi

=
1/Ii

s2 + (λ+ β/2) s+ (λβ/2)
(5.29)

from which is clear that a constant disturbing torque is rejected by a
factor Iiλβ2 .

The integral term in the linearised Eq. (5.26) would appear as ξ '
−κϑ− κβ

s
ϑ and leads to the following modification of Eq. (5.29)

ϑi
τdi

=
s/Ii

s3 + (λ+ β/2) s2 + (λβ/2 + κ/Ii) s+ κ/Iiβ
(5.30)

Now it is easy to see with the aid of Fig 5.3 that for a constant disturbing
torque Eq. (5.30) tends to zero. Looking at the bode diagram of Fig (5.1)
it is clear that the integral action does reduce the phase margin and delays
the system response although it reduce the tracking error. As such it should
be advisable to insert the integral action only for fine pointing when the
error is below a threshold or when the derivative of the Lyapunov function
approaches zero.

From the linearised system with no integral action it is easy to determine
a relation between the control weights and the resulting frequencies f and
damping coefficients of the closed loop system:
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Figure 5.4: Inertia - adaptive Lyapounov controller block scheme

f =
√

λβ
2

ξ =
√

2
2
λ+β/2√
λβ

(5.31)

however should be noted that β/2 locates the first pole, thus is equal
the reference following cutoff frequency. The controller is able to track
attitude reference with frequency content lower than β/2 with a decrease in
error tracking of 20 dB per decade as the frequency of the reference lowers.
With integral action, as seen in Fig (5.1), the error reduces accordingly.

5.2 Adaptive Dynamic Inversion Controller

The control law derived so far is capable of achieving global convergence in
absence of disturbs. The linearised analysis shows the rejection of disturbs
and general performance and guidelines have been derived. The result is
dependent on the physical parameters and their estimation. There are cases
in OOS framework where the system parameter may change due to geo-
metrical re-configuration of the orbital robot or due to addition of another
satellite mass. In such cases the parameter should change in order to keep
the desired performance, otherwise problems might arise due to the com-
plex influence of the various feedback loops. An adaptive control law is
able to reduce the errors due to non modelled variations or estimation er-
rors.

The idea of keeping the control law as simple as possible should still be
maintained, therefore the control law here proposed has been developed to
minimize the complexity and retain in the limits the converging properties
of the previous controller.

With the exception of the non linear term, the control law presented
is purely decoupled, thus we can derive the adaptive control law on each
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axis independently for explanatory purposes. The feed forward term will
also not be considered, as it does not compromise the stability properties
of the controller. The adaptive control paradigm used in this derivation
is the Adaptive Dynamic Inversion (ADI) that shows more flexibility with
respect to the Model Reference Adaptive Control for the studied problem.
The choice is mainly due to the better ability of the ADI to incorporate
feed forward and to comply better with time varying reference signals. The
cost to pay is in general an increased control action, but in OOS scenarios
where high precision is required such effort is justified. A more detailed
comparison with some theoretical background can be found in Appendix B.

Let us write the simplified single axis model of the system by simplify-
ing Eq. (5.1) over axis i

ω̇i '
1

Ii
τi (5.32)

while the reference model with exponential convergence to be tracked is

˙ωi,m = λi (ωi,r − ωi,m) (5.33)

Let us modify (5.32) as follows

ω̇i =
1

Ii
τi +

1

Îi
τi −

1

Îi
τi (5.34)

ω̇i =
1

Îi
τi + ∆bτi (5.35)

with

∆b =
1

Ii
− 1

Îi
(5.36)

Let us define two separate errors in order to prove nominal convergence
and convergence to the reference model behaviour.{

e1 = ωi,r − ωi
e2 = ωi,m − ωi

(5.37)

whose derivatives, assuming ωr constant for the time being, are{
ė1 = −ω̇i
ė2 = ˙ωi,m − ω̇i

(5.38)
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Should be noted that since ωi,m → ωr by construction, then e2 → e1.
For the proof only one error would suffice, here the duplication is taken to
stress that the nominal stability is maintained. Expanding the derivatives
with Eq. (5.33) and Eq. (5.35) gives{

ė1 = − 1

Îi
τi −∆bτi

ė2 = λi (ωi,r − ωi,m)− 1

Îi
τi −∆bτi

(5.39)

The adaptive control law in this framework assumes the following ex-
pression

τ i = −Îiλi (ωi − ωi,r) = Îiλie1 (5.40)

Substituting it into the error derivatives leads to{
ė1 = −λie1 −∆bτi

ė2 = −λie2 −∆bτi
(5.41)

Let us take the following candidate Lyapunov function

L =
1

2
e2

1 +
1

2
e2

2 +
1

2
∆b2 (5.42)

The derivative is

L̇ = −λie2
1 − λie2

2 + ∆b
(
−e1τi − e2τi + ∆̇b

)
(5.43)

since λi > 0 as it represent the wanted loop cutoff frequency, the straight-
forward ∆̇b that does not affect the Lyapunov stability is

∆̇b = (e1 + e2) τi ' eτi (5.44)

where it is also possible to add a gain γ without changing the conver-
gence of the Lyapunov function. Assuming that İi = 0 we can substitute
∆̇b and get the adaptive inertia term as

d

dt
Îi = γeiτiÎi

2
(5.45)

however this law might have some issues and a simplified version is
instead used. In fact, integrating (5.45) by parts leads to

Îi = ˆIi,0 −
1∫

γeiτidt
(5.46)
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hence if the integral converges to zero the inertia estimated skyrockets
and can only be avoided by limiting the inertia, which is a common prac-
tice. The problem is that if the integral oscillates between two values with
opposite sign, it will cross 0 several times, and each time the inertia will
reach its maximum value. Hence, the control law that has been found to be
most suitable for the examined problem is

d

dt
Îi = γe2τi (5.47)

Substituting ∆̇b = Îi
−2 d

dt
Îi, ∆b and τi in Eq. (5.43) gives

L̇ = −λie2
1 − λie2

2 +

(
1

Ii
− 1

Îi

)(
−e1 − e2 + Îi

−2
γe2

)
Îiλie1

to simplify the expression recall that e2 → e1 = e

L̇ = −λie2

(
2−

(
Îi
Ii
− 1

)(
γÎi
−2
− 2
)
Îi

)
(5.48)

then requirement for asymptotic stability is

2−

(
Îi
Ii
− 1

)(
γÎi
−2
− 2
)
Îi > 0 (5.49)

The discriminant line between stability and instability can be expressed
either as function of γ or Ii.

Ii =
Îi
γ

(
γ − 2Îi

2
)

(5.50)

We can conclude that it always exist in a neighbourhood of Ii a maxi-
mum value of γ such that for all possible inertia estimates Îi the adaptive
controller is globally stabilizing. Deriving Eq. (5.50) with respect to Îi and
set it to zero helps to find the maximum value of γ as function of Îi. Interest-
ingly the maximum value of the instability region lies on the line Îi = 3/2Ii
and consequently the maximum value of the gain γ to prove asymptotic
stability is related to the minimum value one assumes the inertia can take

γmax = 27/2I2
i,min (5.51)
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Figure 5.5: Adaptive control convergence domain

Figure 5.5 presents the region of stability and instability as function of
γ. To give a better understanding of the regions, it has been used the pa-
rameter ρ = ÎiI−1

i on the x axis of the plot. Notably, when the estimator
underestimates the inertia of the system, convergence it is still attained.
Should be noted that in practice there is a lower bound due to the presence
of disturbs. Then, as expected, there is a value of γ that guarantees stability
for any estimates if the inertia of the system is above Ii,min. Hence the gain
γ can be tailored based on the estimation of the minimal value of the inertia
to guarantee stability.

The single axis implementation is faster and simpler with respect to the
full problem that would require to solve a matrix Lyapunov matrix equation
and might be not necessary in many cases. This study can also be extended
to the case with an integrative action by simply including the integral term
inside the reference to be tracked, since in the end everything depends on
the inertia properties and the integral term itself can be independent on the
physical properties of the system.

The complete controller, to achieve Lyapunov stability requires other
inertia dependent terms. Under the simplifying, yet plausible, assumption
that the static velocity gain K is dominant with respect the other terms it
is possible to update the non linear compensation terms ωb × (Iωb) and
Iω̇br with the ADI estimated inertia. As long as the estimation is bounded
and the update gains are reasonably small the proposed scheme should not
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be prone to instability. Namely, the simplified adaptive law of Eq. (5.47)
acts on increasing the values of the gains if the expected response is not
followed good enough.

The complete control law for attitude control with quaternion based
guidance is



τu = −Îbdiag (λ) (ωb − ωbr − κψξ) + ωb ×
(
Îbωb

)
+ Îbω̇br

ωbr = βs (ε)η + ωr

ω̇br ' βs (ε) (η × (ωb + ωbr) + ε (ωbr − ωb)) + ω̇r

ξ̇ = −ψ (ωb − ωbr)
ψ 6= 0 if d

dt
(1− ε2) ' 0

d
dt
Îb = γe � τu

(5.52)
where it has been used the operator � to denote the element wise vector

multiplication and the error vector e is the variation from predicted state
from the one measured and has components as defined beforehand in the
single axis procedure.

5.3 Robustness analysis

The physical entities, the inertia tensor, may be poorly estimated or might
change during the lifetime of the satellite due to different operative modes
(ex: rotating panels, robotic arm moving, detachment or deployment of
instruments, refueling) or unexpected events (non deployed solar panel, de-
tachment of components) and this can pose huge problems if the controller
is not robust enough.

It is difficult to pick up a test to simulate many of these scenarios and
retain general conclusions thus some restriction must be enforced. The
following test has been devised focusing on the effect of unknowingly relo-
cated masses and for such only gravity force contribution is considered for
all simulations.

The satellite is modelled as a cube of uniform density plus eight concen-
trated masses fixed at the center of each sub-cube generated by the three
planes of symmetry parallel to the faces of the main body. The total mass is
fixed and the inertia of the main body is computed using uniformity condi-
tion with mass equal to a fixed percentage of the total mass. The rest of the
mass is distributed using a normalized uniform distribution among the other
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Figure 5.6: Robustness to parametric uncertainty

eight masses. A direct consequence of this is that the resulting inertia prin-
cipal components are higher than the nominal case where the whole mass
is distributed uniformly in a single cube. Principal axes also varies from
nominal condition, which is expected after docking of during the move-
ment of a robotic arm. Designing the controller using as reference inertia
the nominal cubic case would result in a underestimated inertia, the worse
case with respect to overestimation as would not normally compromise the
controllability.

Two simulation campaigns are conducted with a relocated mass of 70
and 30 percent respectively. Gravity gradient is not inserted as a body
inertia torque as each relocated mass has no inertia and the base is tri-
symmetrical, instead, since it has been used the multibody approach, the
gravity force acts on each mass, thus generating a discretised gravity gra-
dient. The controller has no integral action active thus a residual error is
expected in any non-nominal case. Initial conditions are set randomly at the
beginning of the simulations and kept constant as mass distribution varies
in order to retain a comparison in the output graphs. No external torques or
measurement noises are considered.

From the graphs of Fig (5.6) it is clear that the convergence is not
lost even for a 70% mass relocation but the performance is of course de-
graded. The Lyapunov function derivative is no longer always negative
semi-definite but bounded convergence seems to be attained. In either case
a delay in response is visible and expected. As reference, Fig (5.7) presents
a visual representation and comparison of inertia ellipsoids of the nominal
case and all the cases with relocated mass in order to put in perspective the
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(a) 70 % relocated mass (b) 30% relocated mass

Figure 5.7: Inertia ellipsoid envelopes of robustness test
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Figure 5.8: Adaptive controller robustness test

uncertainties the control can overcome.
The same procedure is then applied to the ADI controller considering

the inertia estimation to be bounded within a order of magnitude from the
initial estimation and with non linear parameters updated accordingly. The
simulations are performed with 30% relocated mass and for each mass dis-
tribution the nominal and adaptive controller are tested.

From Fig (5.8) we can appreciate the ADI controller ability to stick to
the reference behaviour more than the nominal case. The adaptation of the
inertia allows to reduce the final error at the cost of an evident but justifiable
control effort. The adaptive version of the controller is expected to stick
more to the expected behaviour of the system, increasing the predictability
of the attitude controller, which can be a desired feature when looking at
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the complete GNC loop or with respect to other systems like robotic arms.

5.4 Position control

Controlling the position of a satellite is not easy task, however there are
fewer problems in terms of kinematics. Using dual quaternions it is easy
to make a chain of transformations between reference frames to control a
spacecraft with respect to another one. In order to avoid unwinding prob-
lems it is wiser to use the position as control variable, that is already inde-
pendent from the change in sign of any dual quaternion that can be used to
determine the relative state.

The relative dynamics of the center of mass of a satellite with respect
to the LVLH frame presented in Chapter 2 can be linearised and in case of
circular orbit it is also time invariant. Regardless, in this reference frame
closed form solutions can be found and a trajectory can be devised to min-
imize fuel expense or maximize safety of operations.

Let the rotating orbital frame be attached to the center of mass of the
satellite and qr and its derivative represent the attitude of the satellite with
respect to this frame given the quaternions for the satellite (qb) and frame
(qh) with respect to Earth as follows

qr =
[
qh

+
⊗
]T

qb (5.53)

Then the dual quaternion representing the target body in frame h using a
measurement relative to the satellite is given simply by

ah =

[{
qr

04×1

}+

ε×

]
ar (5.54)

such that the dual quaternions of target and satellite are connected by

at =
[
ar
−
ε×
]
ab (5.55)

should be noted that ar contains info on the relative attitude between the
two satellite, information that can be neglected when looking only at rel-
ative position. Moreover when two satellites are far, the estimation of a
relative attitude might not be sufficiently precise and introduce more errors.
Simplifying gives{

dh

0

}
=
[
qh
−
⊗
] [

qb
−
⊗
]T [

qh
+
⊗
]T [

qb
+
⊗
]{db

0

}
(5.56)
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that can be further simplified in the obvious dh = Rhbdb where the
position vector in body frame db is simply rotated using the relative quater-
nion qr as one would expect. Then using the information of dh a simple
PD controller can be implemented to follow a trajectory easily designed in
that reference frame, remembering to translate back the computed forces in
the body reference frame. Alternatively it is possible to rotate the trajec-
tory from frame h to body frame, although it is more effective to build the
controller in frame h since the dynamics is well known and understood.

When decoupling the attitude control and position control, assuming the
two set of actuators are independent, there could be cases where the attitude
variation might influence the position control, however if the transforma-
tions are well performed there should be no problem.

When thinking about an orbital rendezvous and docking it is necessary
to achieve relative attitude and position, hence finding relative velocities
such that a relative position and attitude error tends to zero.

If we consider ar in Eq. (5.55) to be the error computed from the body
frame to the target frame at we can express the position error in as

db,r = Rbi (di,t − di,b) (5.57)

Then a candidate Lyapunov function would be

L = dTb,rdb,r = (di,t − di,b)T (di,t − di,b) (5.58)

hence by following an appropriate reference velocity in the base frame
we can enforce L̇ ≤ 0 ∀db,r

L̇ = dTb,r

(
˙di,t − ˙di,b

)
(5.59)

˙di,b = ˙di,t + Kdb,r (5.60)

Then the reference velocity in the body frame is of course

ḋb = Rbi

(
˙di,t + Kdb,r

)
(5.61)

hence we can determine a reference velocity in any reference frame and
with any intermediate reference frame transformation and then translate in
the reference frame where the velocity controller is able to translate the
input into the proper action and achieve exponential convergence.

In relative GNC the estimation of distance and direction of the other
satellite is of primary importance to fulfil mission objective safely. Sensors
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suite varies in terms of distances and availability of a inter-satellite com-
munication. To guarantee the minimum safety for the customer it is almost
mandatory to have a communication, albeit contained in data rate and with
possible delays in the connection chain. Using relative GPS measurement
can give a reasonable estimation of satellite relative position and with a
good dynamical model it is possible to propose a filter.

5.4.1 Thrusters control

In order to move the center of mass from the current orbit a thrusters are
required. Big thrusters can provide enough accelerations to change orbits,
while smaller ones are able to perform more refined manoeuvres. When
dealing with proximity manoeuvre, the use of thrusters for position control
is mandatory. Those thrusters are positioned usually near the corners and
sides of a satellite so that they are also able to produce substantial torques.
Reaction wheels are more suited for precise control when the control au-
thority required is sufficiently small, in other cases thrusters are required.
In case when the center of mass is moving due to fuel sloshing or transfer,
robotic arm movement or satellite capture small disturbs will be added to
the system. We can write the scheme that relates thrusters ON/OFF com-
mands to actual forces and torques as follows{

f

τ

}
= Mψth (5.62)

where the matrix M has dimension six times n, where n is the number
of thrusters. In order to be able to deliver forces and torques with both
signs and with the possibility to produce forces with nominal null torques
the number of thrusters is more than six. The minimum number is 12 but
for redundancy in OOS mission is highly recommended to have a full 24
thrusters configuration. ψth are the ON/OFF binary signal to the thrusters
and usually are determined through PWM.

A naive determination of ψth could be

ψth = M∗
{
f

τ

}
(5.63)

However, with a least square solution the value of ψth will not be binary
nor positive. In cases where for each engine exist another one capable of
delivering the opposite forces and torques the sign might still be recovered.
Another possible way is to write an optimization problem and solve for the
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values of ψth, bounded to be between 0 and 1 while trying to minimize the
sum of its element, closely linked to the fuel expense. An attempt using
the LM algorithm has been made and used for later simulations of Chap-
ter 7. Another possible strategy is to use Lyapunov-like thrusters selection
as done in [85].

Then, once the value of ψth that closely match the requested forces and
torques are computed, a PWM or any algorithm with similar behaviour,
translates into actual command to the thrusters. In the modulation category
we can list the Sigma Delta Modulation (SDM) that has been successfully
implemented and ground tested for space applications in [86]. It has been
shown that comparing with classical PWM the SDM can achieve a lower
steady state error at the cost of higher control expense. Since for OOS
applications the precision of estimation is closely linked to the safety of
operations it is completely plausible to prefer the SDM over classic PWM
at an increased control cost and subsequently of propellant mass expenses
if that is the case. A direct comparison is included in Chapter 7.

Actuation errors

For the proposed GNCR suite the position control relies solely on thrusters
for actuation and including errors in the actuation helps to assess the robust-
ness of the position control. Two main factors might be source of errors in
the actuation: the thrust module and the positioning and orientation of each
thruster. The latter can be introduced by computing a perturbation of ma-
trix M considering a random error with uniform distribution and bounded
limits for the position and direction of thrust. This introduces a constant
bias in the actuation, hence every time a thruster is selected to be switched
ON it generates the nominal force plus a disturbing action on other axis.
Errors in thrust magnitude can be treated as gain errors, hence the thrust
magnitude is multiplied by a factor that is the composition of a constant
part, a sinusoidal part with high or low frequency content and a random
bounded factor with uniform distribution [87]. Such analysis are usually
done when dealing with actuation failure to test if a control law is able to
adapt to fluctuation in the actuation or reduced performances. Again, even
in this case the perturbing effect is present only if the thrusters are fired.
Since the proposed GNCR do not uses a model for the center of mass po-
sitioning, each time a mass moves the thrusters contribution changes from
the nominal values that are stored and equivalent forces are also exerted on
the main body, hence the algorithms could prove robust even in the baseline
configuration.
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CHAPTER6
Robotics

This chapter is intended to address robotics for OOS from a high level per-
spective. Since, at this stage, there is no reference arm for commercial OOS
operations, any attempt to dive into electro-mechanical/mechatronic details
would not be supported by real data or insights. On the other hand without
knowing the boundaries of servicing robotics it is unlikely to be able to de-
sign a full fledged robotic system. This means that in this chapter elements
of robot control (path generation, state estimation, control) will be derived
in order to perform a closed loop analysis for the whole Orbital Robot (OR).
An OR is a free floating vehicle with robotic appendages orbiting in space,
hence moving a manipulator would cause disturbances and motion on the
base and vice versa. To some extent the attitude perturbations acting on a
orbital robot might be negligible, hence a popular way to control the arm
was to exploit angular momentum conservation [22, 23]. Pure conserva-
tion is never attained though and correction for gravity gradient should be
included based on experimental data [6]. Drawback of this free-floating
control are the need for torque control, the centralized control strategy and
the motion of the OR base. The latter is more concerning because sensors
for relative positioning are mounted on the base, hence rotation of such
base might compromise state estimation thus jeopardizing the whole mis-
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sion. The first two problems are a general concern in the implementation of
such approaches as stated before in Chapter 5. Since the robot dynamics is
complex any attempt to use it in a feedback loop would result in potential
robustness weaknesses.

In space robotics particular attention has been given to trajectory plan-
ning to reduce attitude disturbances [88], however this concept rely on kine-
matic redundancy and thus can be applied with some limitations. In general
the free floating control assumptions are not applicable in cases where po-
sition control is involved to maintain a precise station keeping near the tar-
get, as many OOS scenario request in order to maintain safety of customer
satellite.

In [89] a review of Model Reference Adaptive Control has been pro-
posed to control a robot and estimate the non linear terms that can be used
to compensate an otherwise decentralized control [90]. Here the simplified
control of Chapter 5 has been adapted to robotic arm control and is based
on the Adaptive Dynamical Inversion framework. Adaptive manipulator
schemes like [91] have been studied and implemented, although complex-
ity still remained an issue. The idea of slightly modifying PID-like con-
troller with more advanced techniques has been harboured in the past, for
example sliding mode [92], or dynamic adaptation [90] even with neural
networks [93].

A lot of research has been invested also in the so called visual servo-
ing [94, 95], where the feedback loop of the manipulator is closed by a
camera. The approach is very relevant to the OOS tasks but some further
insights are needed. First of all, if a connection has to be performed, the
camera mounted on the robotic arm is not able to provide measurements
in the terminal phases due to out of focus issues and potential illumination
occlusion.

Here the grasping control will not be covered since it has been assumed
for the most part that the connection in OOS has been designed before-
hand, thus specifics on connections for a servicing port are supposed to be
known and not requiring grasping or similar actions. All the literature about
impedance matching and control will not be covered as out of the scope of
this research.

6.1 Robotic arm guidance

Any robotic arm used for OOS purposes requires a trajectory to be followed
in the task space. Namely the tip, equipped with specific tools, needs to be
moved relative to a target that can sometimes be in motion. In literature
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different strategies for different applications have been devised, here focus
will be given to fast computation of a reasonable path within the limits of
operations of the robotic arm. Although path constraints due to self contact
will not be covered it is important to stress out that in some rare case it
could be an important matter. For example in the substitution of a part in
orbit the robotic arm should take a component from its base and then plug
into the target, however such cases are less likely and with proper attention
errors should be avoided.

First of all the position and attitude of the tip of a robotic arm can be
written as follows through dual quaternions. For reference on dual quater-
nions please refer to Appendix A.h = f (ϑ)

ḣ = f
(
ϑ, ϑ̇

)′ (6.1)

it is possible to express the dual quaternion velocity with a linear rela-
tionship

ḣ =
∂f (ϑ)

∂ϑ
ϑ̇ = Jϑϑ̇ (6.2)

where Jϑ is the Jacobian of the manipulator. The end effector linear
and angular velocities can be recovered by multiplying for the matrix Sh
defined as

Sh = 2

[[
qh

+
⊗
]T

04×4[
th
−T
⊗
] [

qh
−
⊗
]T
]

(6.3)

Due to the linearity of the relation between joint velocity and end effec-
tor velocities a popular control approach is the tip velocity control. This
approach does not directly lead to a specific position and attitude, hence
a proper reference trajectory would need to take into account the position
error.

6.1.1 Classic implementation (L-Guidance)

To assess a guidance control laws that guarantees to move the end effector
towards its target consider the following Lyapunov function

L =
(
1− ε2

)
+

1

2
dTe de (6.4)
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where ε is the error quaternion scalar component and de = dr − d the
position error in the inertial frame. Following the approach on Chapter 3
the end effector desired velocities should be equal to{

ωr = Kωs (ε)η

vr = Kdde

to guarantee exponential convergence. However the end effector veloc-
ities are dependent on the joint velocities, true variables of the problem.
Such relations depends on the current configuration and current position
error but is linear {

ωr

vr

}
= Gϑ̇r (6.5)

with G = ShJϑthat is a matrix of dimensions six by nϑ that depends
only on the joint position and the geometric correlations of the links. The
derivative of the Lyapunov candidate function now depends on the refer-
ence joints velocity

d

dt
L = −

{
ηT ε dTe

}
Gϑ̇r (6.6)

and to achieve convergence the joints velocities must be put in correla-
tion with the errors

ϑ̇r = U

{
s (ε)η

de

}
(6.7)

If GU is symmetric semi positive definite, then d
dt
L < 0 for any error

position. A popular strategy is to use the Moore-Penrose pseudoinverse of
G∗

G∗ =
(
GTG

)−1
GT (6.8)

unfortunately there are some configurations where GTG is almost sin-
gular and convergence is lost. Another strategy is to use the transpose of
G with less computation. When dealing with Jacobians a computationally
effective way to handle them is to apply a column scaling.

Gs = GD (6.9)

where the diagonal matrix D has each element elements equal to the
inverse of the norm of the respective column of G. Thus we can rewrite
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GU = GDKϑ (GD)T (6.10)

with Kϑ constant and s.d.p. we would have convergence. The resulting
reference velocity is thus

ϑ̇r = DKϑDGT

{
s (ε)η

de

}
(6.11)

If the robotic arm can track effectively ϑ̇r then The error would converge
to zero exponentially. Should be noted that this reference, depending on
the position error, thus on the joint position, can be inserted in the control
loop directly without requiring integration of ϑ̇r. This formulation does
not take into account joint limits, but could theoretically limit ϑ̇r to be
under the joints speed limits. The continuity of the reference is ensured
up to speed level, so on the acceleration level some discontinuities might
arise and excite the system in the high frequency range. A similar strategy
has been used in [96] although the handling of dual quaternion is slightly
different.

6.1.2 Filtered Levenberg-Marquardt robotic guidance

In order to generate a trajectory that is compliant with the joints limits,
smooth, with frequency content that can be followed by the control and is
not prone to Jacobian singularities, a new guidance has been designed. The
new guidance is composed of two main blocks: one determine the final
position the joints have to reach in order to follow the target and the second
one translates the final values in a smooth trajectory that the arm controller
can follow. A small addition can be made in order to achieve null error in
case of moving target.

Final state determination

First the final state is computed using a non linear minimizer able to work
under Jacobian singularities. In formal terms we search for the final joint
state ϑt such that the end effector position h is equal to the target location
ht.

ϑt = arg min
(
ηTη + ηTt ηt

)
(6.12)

where η and ηt are respectively the vector part of the attitude and posi-
tion quaternions of the dual quaternion error eh given by
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eh =
[
ht

+T
ε÷
]
h =

{
ηT ε ηTt εt

}T (6.13)

where the end effector position h is given by Eq. (6.1) and is function
of the (desired) joint variables only. In order to stick to the matrix repre-
sentation we can define a matrix V as follows

V =

[
I3×3 03×1 03×3 03×1

03×3 03×1 I3×3 03×1

]
(6.14)

so that we can express the objective function as

ϑt = arg min
(
f (ϑt)

T [ht+Tε÷ ]T V TV
[
ht

+T
ε÷
]
f (ϑt)

)
(6.15)

where the dependency on ϑt is better seen. This is not sufficient as ϑt is
bounded by the physical joints limits of the considered robotic arm, hence

ϑt =arg min
(
f (ϑt)

T [ht+Tε÷ ]T V TV
[
ht

+T
ε÷
]
f (ϑt)

)
(6.16)

s.t.ϑmin < ϑt < ϑmax

Considering computational efficiency and robustness, one of the fastest
and most popular methods that can be used is the Levenberg-Marquardt
(LM) minimizer . For implementation and theoretical background, refer
to Appendix C. The algorithm can be seen as a damped Newton-Gauss
method for non linear minimization and is able to solve with superlinear
or quadratic convergence rate problems like the one in Eq. (6.15). From a
robotics background could be seen as similar to the damped Moon-Penrose
pseudo inverse method, however it does about 20 iterations per step, grant-
ing higher accuracy. The algorithm is fast and accurate in the determination
of the desired final joint position, but requires extra care to introduce the
joint limits of Eq. (6.16).

Two possibilities using a variable change are explored. Let us define a
mapping function gm ( ) from the new variable vector ξ to the joint vari-
ables ϑt such that we have

h = f (ϑt) = f (gm (ξ)) = f
′
(ξ) (6.17)

Then the problem in Eq. (6.15) changes to

ξ = arg min
(
f
′
(ξ)T

[
ht

+T
ε÷
]T
V TV

[
ht

+T
ε÷
]
f
′
(ξ)
)

(6.18)
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Eq. (6.19) presents this option using the arctangent function which is a
upper and lower bounded function of a parameter that can freely change
with no limits.

ϑt = gm (ξ) =
2

π
tan−1

(
ξ +

ϑmax + ϑmin
2

)
ϑmax − ϑmin

2
(6.19)

With good initial guess this parametrization is able to convey the solu-
tion, however the search space is no longer well defined and multiple restart
of the algorithm shall be performed especially when there is no prior infor-
mation on possible solutions. The selling point of this transformation is that
it does not increase the number of variables nor the number of equations,
which is six with the V matrix considered. Should be noted that instead
of a constant V it could have been introduced a matrix mapping the dual
quaternion to eh to a different position and attitude error representation,
but for the minimization point of view this only increases the number of
operations without adding anything to the solution.

Another strategy is to add dummy variables ν to the problem and extend
the cost function of Eq. (6.15) to account for joint limits. The mapping
function is linear and still depends only on ξ

ϑt = gm (ξ) = ξ +
ϑmax + ϑmin

2
(6.20)

but the cost function is modified as follows

(ξ, ν) = arg min
(
f
′
(ξ)T

[
ht

+T
ε÷
]T
V TV

[
ht

+T
ε÷
]
f
′
(ξ) + eϑ

Teϑ

)
(6.21)

with the constraint error function eϑ expressed as follows

eϑ (ξ,ν) = ξ2 + ν2 −
(
ϑmax − ϑmin

2

)2

(6.22)

This procedure increases both the number of equations and the number
of variables by the number of joints composing the robotic arm. The LM
algorithm is set to drive to zero the cost function thus at the same time
it will modify both ξ and ν such that also Eq. (6.22) is verified. The
constraint error function has been chosen in such a way that ν is equal to
the remaining margin of the joint. In fact with null error we have

ν2 =

(
ϑmax − ϑmin

2

)2

− ξ2 (6.23)
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Figure 6.1: Smoother block scheme

a non negative function that is zero only for ξ2 =
(
ϑmax−ϑmin

2

)2
thus

for ξ = ±
(
ϑmax−ϑmin

2

)
. If |ξ| >

(
ϑmax−ϑmin

2

)
, meaning ϑt > ϑmax or

ϑt < ϑmin we would have ν2 < 0 hence eϑ 6= 0, thus the constraint would
not be satisfied.

This parametrization with the addition of a constraint error function is
heavier per iteration with respect to the first option but does not require any
re-start as the solution space is well defined.

Should be noted that in case of redundant manipulators there exist mul-
tiple solutions and with the current framework is not possible to shift the
problem to constrained minimization as the algorithm does not deliver good
precision estimates. Forcibly adding an equation would reduce the accu-
racy of final pose and constraints. Theoretically it is possible to add a non
linear constraint that keep under a user defined threshold the displacement
from current configuration, however this generates a potential flaw in case
of large manoeuvres. The solution that has been implemented is different
and rather than focusing on minimizing a displacements it minimizes the
jump from solutions as uses the previously computed solution as first guess
for the new iteration. Then, the attractivity of the solution does the rest,
as LM algorithm fast converges to the nearest solution which will be very
close to the previous. Only one solution jump is possible at the start when
no previous solution is present.

Smoother

Then the second step is to feed a proper trajectory to the controller, avoiding
to excite the system with step or impulses using instead a proper trajectory.
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Figure 6.2: Smoother filter comparison

Take a lowpass filter of the third order

G (s) =
ω3

0

(s+ ω0)3 =
ω3

0

s3 + 3ω0s2 + 3ω2
0s+ ω3

0

(6.24)

It has cutoff frequency ω0 and slope -3 afterwards. This can be read as

d

dt
ÿ = ω3

0 (r − y)− 3ω0ÿ − 3ω2
0 ẏ (6.25)

and implemented in the block scheme in Figure 6.1. y will be the filtered
signal of reference r, ẏ its velocity and ÿ the acceleration. Then, by simply
adding at each stage of integration a saturation with anti-windup it is possi-
ble to generate a reference signal whose derivatives are bounded and whose
frequency content is essentially limited up to ω0. It is possible to modify
a bit the weights of the filter, for example the corresponding Butterworth
filter would be

G (s) =
ω3

0

s3 + 2ω0s2 + 2ω2
0s+ ω3

0

(6.26)

Figure 6.2 present a brief comparison between the Butterworth version
and the simpler version in terms of magnitude and phase diagrams and step
response. Phase delay and filtering properties are quite close, however the
Butterworth version has overshoot in the response, something that is not
preferable for precise motion of the end effector.

This procedure can be applied to the reference ϑt coming from the LM
generating a reference trajectory that is continuous until the acceleration
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Figure 6.3: Position saturation example

level, that has acceleration, velocity and position limits and filter out the
high frequency content.

Figure 6.3 present an example of the filter with saturation of the refer-
ence position signal. The input signal is a unitary sinusoidal of frequency
0.01 rad/s with the filter with cutoff frequency of 1Hz. The implementation
is discrete with sampling time 0.01 s and executed in Simulink. The satura-
tion in position causes an abrupt increase in the reference velocity testified
by discontinuities in the acceleration of the output. This is the main reason
that lead to the choice of using a LM that takes care already of the position
limits. Looking at the output frequency response it is clear that the signal
contains some noise with frequency greater than the reference but lower
than the cutoff frequency of the filter.

Figure (6.4) simulates a velocity saturation. First of all the position
output keeps tracking the reference but due to velocity saturation cannot
follow the reference in the high velocity region. This is also testified by the
lower frequencies content in the output. Looking at the velocity confront
between input and output seems that the anti-windup is not working, but in
reality the lasting saturation is due to the filter trying to track the reference
signal. Accelerations are continuous but greatly increased.

The input signal in both cases, being sinusoidal with no phase shift, has
non zero velocity at the initial point, thus a spike in initial acceleration is
required to start tracking completely the signal. In figure (6.5) the signal
has a 90° phase shift and acceleration saturates at the beginning while the
filter tries to follow the reference. The consequent frequency noise in the
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Figure 6.4: Velocity saturation example
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Figure 6.5: Acceleration saturation example
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signal can be noticed in the spectrum plot.
When dealing with a moving target, should be noted that with the fil-

tered approach there will be small phase delays as well as a tracking error
that depends on the chosen filter. This can be observed in Fig (6.6) where
comparison between the tracking error of the Butterworth version versus
the simple lowpass implementation. Also, if using the LM strategy, the fre-
quency of the LM update can influence the tracking of the moving target
since it can track signals only up to its Nyquist limit.

Moving target modification

In case of moving target the solution LM plus smoother is not able to per-
fectly track a moving target, hence a modification must be made. When
the end effector is almost in position a feedforward velocity signal is com-
puted such that the velocity of the smoother is augmented with the velocity
needed to match the moving target velocity. This can be achieved using
the Jacobian of the end effector thus linking joint velocity with end effector
velocity. This requires an estimation of the target velocity and the inver-
sion (or transpose) of the Jacobian as popular robot kinematic references
are generated, even with dual quaternion [96]. Let us take the derivative of
the dual quaternion error (6.13) and substitute (6.2)[

ht
+T
ε÷
]
Jϑϑ̇ = ėh −

[
h+
ε÷
]
ḣt (6.27)
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Then posing the error variation in time to be null and exploiting some
properties of dual quaternion the target joint velocities would be

ϑ̇ = Jϑ
∗ [eh−ε÷] ḣt (6.28)

That is the feedforward velocity that is supplied to the end effector con-
trol in addition to the one computed by the smoother. To avoid instability or
constraint issues, such feedforward shall be added only in terminal phases,
when the error has converged to a somehow steady values or in general
only when the error is small. A simple frequency analysis permits to assess
the maximum target velocity that the end effector can actively follow, in
many OOS applications relative velocities are kept at minimum by position
control of the satellite base. In fact, with good base position control this
addition can be irrelevant.

6.2 Robotic arm control

In many applications a service module requires a robotic arm or docking
mechanism to fulfil some tasks, hence a proper control paradigm has to be
found in order to be used in different scenarios. The dynamical system of a
ground based robot can be written as

M (ϑ) ϑ̈ = f
(
ϑ, ϑ̇

)
+ d + u (6.29)

where M is the mass matrix depending on mass distribution, inertia and
the configuration given by the joint angles ϑ. ϑ̇ and ϑ̈ are respectively
joints velocity and acceleration, f a vector of non linear terms and u the
vector of control torques, d the non modelled disturbing actions. To con-
trol such system two approaches are generally accepted: centralized and
decentralized control. By considering each joint as a decoupled system a
simple PD controller can be derived, in some cases it is possible to include
the non linear coupling terms adding them to the control torques. The latter
approach might suffer from parametric uncertainties and be less robust.

The simplified linear decoupled system is very akin to the attitude con-
trol scheme of Chapter 5 and the considerations made above still hold. To
put this in a formal expression:{

u = −K2

(
ϑ̇m − ϑ̇r

)
ϑ̇r = K1 (ϑr − ϑm)

(6.30)
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with the gains K1 and K2 as diagonal positive definite matrices, ϑr the
reference joint position, ϑm and ϑ̇m the measured or estimated joint posi-
tion and velocity. Considering no measurement errors the system becomes
now

Mϑ̈ + K2ϑ̇ + K2K1ϑ = f + d + K2K1ϑr (6.31)

That is a nonlinear second order coupled system. Let us rewrite the mass
matrix with a constant diagonal matrix and a variation matrix

M (ϑ) = diag (m) + ∆M (ϑ) (6.32)

then the system becomes

diag (m) ϑ̈ + K2ϑ̇ + K2K1ϑ = f + d + K2K1ϑr −∆Mϑ̈ (6.33)

that tends towards the value ϑr + (K2K1)−1 (f + d) if the accelerations
are damped and tends to zero. The higher the control gains the lower the
tracking error due to disturbs and non linear effects. If the system is well
known, it could be possible to estimate the term f − ∆Mϑ̈, but it has not
been considered for robustness issues. The weights for the linear controllers
can be chosen as before looking at the disturbing actions and reference
frequency content. If K2 � K1 then both values are equal to each loop
cutoff frequency.

The addition of an integrative term is sometime used to reject a constant
torque acting on the robot, namely due to gravity, however there is still
no formal proof that such integrative term ensures stability and usually are
switched on only for when the system is close to the solution.

6.2.1 Lyapunov stability & integral action

Consider only the dynamical loop of (6.29) and let us study the convergence
using Lyapunov theory. Define the joint velocity error as

ϑ̇e = ϑ̇ − ϑ̇r (6.34)

ϑ̈e = ϑ̈ − ϑ̈r (6.35)

the candidate Lyapunov function

L =
1

2
ϑ̇
T

e Mϑ̇e (6.36)
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its time derivative is

d

dt
L = ϑ̇

T

e

(
f + d + u−Mϑ̈r

)
(6.37)

to achieve stability the control law should look like

u = −Kvϑ̇e − f − d + Mϑ̈r (6.38)

again we can add an integrative action and remove the unknown or com-
putationally expensive parts of the dynamics and get the following control
law

u = −Kvϑ̇e + ξ (6.39)

then the modified Lyapunov candidate function would be

L =
1

2
ϑ̇
T

e Mϑ̇e +
1

2

(
ξ − ξ

)T
Ki

(
ξ − ξ

)
(6.40)

and its time derivative

d

dt
L =− ϑ̇Te Kvϑ̇e + ϑ̇

T

e

(
f + d−Mϑ̈r

)
+ ξT

(
ϑ̇e + Kiξ̇

)
− ξTKiξ̇ −

(
ξ − ξ

)T
Kiξ̇ (6.41)

The variation in time of ξ is computed to nullify the term in brackets

ξ̇ = −K−1
i ϑ̇e (6.42)

and thus remains

d

dt
L = −ϑ̇Te Kvϑ̇e + ϑ̇

T

e

(
f + d−Mϑ̈r + ξ

)
−
(
ξ − ξ

)T
Kiξ̇ (6.43)

stability is ensured if

ξ = Mϑ̈r − f − d (6.44)

and ξ → ξ regardless of the variation of ξ in time. Then differentiating
(6.42) and substituting the control law (6.39) and the theoretical value of ξ
results in a n-dimensional coupled harmonic oscillator

MKiξ̈ + KvKiξ̇ + ξ = ξ (6.45)
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This time the difference is that the mass matrix is not fixed in time and
thus formally the convergence can be guaranteed only in quasi-static con-
ditions and with frequencies lower than the cutoff frequency of the above
system. The frequency and the damping of the system are affected by the
choice of Ki.

6.3 Adaptive control

Like for the attitude case, even here an adaptive law can be used one the
dynamic loop to adapt to parameter change in time. Should be stressed out
again that only in some special cases the estimated parameters are equal to
their true value, however the controller is much more adaptable to changes
and practically extends the converging region of the controller.

The controller developed in Chapter 5 is now applied to the control of a
robot, taking into account that unlike for attitude control, a OR is extremely
coupled. The decoupled controller sees as disturbances any other torque
applied to the link, meaning that coupling terms in velocity and acceleration
are labelled as disturbs and rejected. The adaptive control is set to do the
same but it is expected a more centralized answer to the adaptation.

In other words, each time a joint controller increases its action it also
increases the disturbing torques on other joints, that on their end will prob-
ably increase their own action. Would this happen all the times, it would
mean complete divergence of the control as a whole, however what hap-
pens is that all gains increase at the same time and converge to a value that
is maintained if the arm operates in that neighbourhood. These values do
not represent the decoupled inertia parameters m of Eq (6.32) as the same
trajectory might lead to different values depending on the initial estimation
of the inertia related term due to the expected choral increase stated before.
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CHAPTER7
Simulations

In this section two main scenarios will be analysed. First an inspection
manoeuvre with recovery after safe mode making use of relative GPS and
stereo camera estimation will be presented and results analysed. Finally,
a simulation using vision estimation in the loop is performed and results
analysed for a close proximity operation common to many OOS scenarios.

7.1 Inspection

The goal of this section is to show the proposed kinematic parametrization
and GNC infrastructure applied to OOS scenario. Peculiarity of OOS are
close proximity operations, formation flying with a non dedicated satellite
and inspection. Of the many possible scenarios to analyse here will be in-
cluded a scenario to test attitude control and position estimation using GPS
and camera measurements. Simulations are carried out with the multibody
orbital robotics simulator of Chapter 2.

The servicing satellite is already in a stable relative orbit at a safe dis-
tance form the client satellite but cameras are not pointed towards the tar-
get and all filters are reset. This scenario would represent a follow up of
a safety mode exit and resume the nominal operation. The servicer would
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acquire GPS signal from the target at slow data-rate and with some delays,
estimate thus the position of the other through a Kalman filter and steer to
point cameras towards the target. Then through camera estimation a pre-
cise inspection is conducted. All the images when the target is on sight can
be used on board, or streamed down on Earth, to assess for damages and
estimate, if close enough, the attitude of the other satellite. This aspect,
as is not properly related to the GNC aspects of the operations, is not here
addressed. The minimum requirement for the attitude control is to track a
reference that has higher frequency content than usual as some inversion of
rotations with respect to the inertial frame are expected.
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Figure 7.1: Simulation sensor output

Fig 7.1a presents the comparison between GPS simulated measurements
and stereo camera estimation. GPS measurement has been obtained by
computing the difference between on board GPS and GPS position trans-
mitted by the other satellite. Uncorrelated white noise has been added on
azimuth, elevation and altitude for each satellite separately, a delay of 4
seconds in the transmission and a delay compensation of 2 seconds: the
resulting signal is thus affected by noise and a small phase delay.

Features are extracted from both frames, matched and filtered in order to
compute a geometrical centroid in 3D space and use that as measurement.
The target satellite for the simulation is between Earth and servicer, as can
be seen from an example image in Fig 7.1b, thus the planet is in the back-
ground. Using a threshold it is possible to eliminate features that appears
to have no displacement with respect to the stereo baseline. The simulated
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stereo pair cameras have 30 degrees of semi-aperture and are turned on only
when the estimated target position is within 15 degrees.

The camera switch, alongside the true pointing error are shown in Fig
7.2a. From that instant onwards camera estimate are added to the filter and
refine the estimation. Here we can appreciate the attitude control capability
to steer 180 degrees following a rather noisy signal. It can also be proven
that in a close relative orbit the angular velocity profile needed to perfectly
point towards target has a frequency spectrum with small high frequency
content, thus some error is bound to happen even in a perfect scenario. Here
the signal reference is obtained by determining the minimum relative rota-
tion between the current and target direction in body frame then multiplied
by estimated satellite quaternion and then filtered using a modified com-
plementary filter in order to estimate at higher frequency both quaternion
and velocity reference needed for the attitude control. This operation also
filter the signal so that the reference has lower high frequency content and
be more traceable by the controller. On the other hand this include a small
delay and the pointing will have a small error regardless of the reference
noise.

0 100 200 300 400 500

time [s]

0

50

100

150

er
ro

r 
[d

eg
]

Pointing error
Camera activation

0 100 200 300 400 500

time [s]

0

0.5

1

1.5

2

er
ro

r 
[d

eg
]

Pointing error
Camera activation

(a) Pointing error

0 100 200 300 400 500

time [s]

-30

-20

-10

0

10

20

30

po
si

tio
n 

[m
]

True
Estimated

(b) Estimation

Figure 7.2: Pointing & estimation for inspection test case

Finally, Fig 7.2b compares the true relative position signal in the rotating
frame against the estimated value coming from fusing the GPS and camera
measurements with the Chloessy-Wiltshire model for the linearised system
through a Kalman filter, partitioned to accept camera measurements only
when the target is in sight as developed in Chapter 4. The outcome of this
estimation is then used for attitude pointing.
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7.2 Proximity operations
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Figure 7.3: Modes

The main scenario to test the GNCR closed loop performance sees proxim-
ity operations performed by a servicer robot to a customer satellite in LEO.
The satellite needs to autonomously station keep at few meter distance form
the target, maintain relative attitude and operate the robotic arm to reach a
docking port. The operative modes of the robotic arm sequence are corre-
lated with time in Figure 7.3. The first task (1) sees the arm approach the
target port at a hovering distance of 20 cm. The position of the port with
respect to the target is known with an error of 2, 3 and 1 cm for x, y and
z axis respectively. Once this stage is reached, the phase (2) starts and the
camera on the robotic arm takes 21 pictures of the port and an estimation of
the real location is made. Then phase (3) sees the final approach until the
port is reached. The final stage (4) has been added to verify the capability
of keeping the arm in position while connection is made. The threshold
for reaching stage (4) is mainly related to the estimated distance from the
target and is set to 0.5 centimetres. The effective error in positioning of
the end effector depends mainly on the s/c ability to keep a fixed distance
with relative estimation errors lower than 5 millimetres and below 0.5 de-
grees. For some applications the requirements could be even stricter and
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require a more elaborate estimation scheme, but the goal set is meant to be
representative for the early design phases of a GNCR subsystem for OOS.

Attitude results

The satellite attitude control makes use of 3 reaction wheels, one per axis,
and a gyroscope and a star tracker for the attitude determination. Data on
the base-only inertia parameters can be found in Table 7.1 alongside the
parameters of the serviced satellite. The latter is also feedback controlled
but with the intent to have nadir pointing.

The quaternion and angular velocity measured are then compared to the
complementary filter output in Figure 7.4. What is possible to appreciate is
the reduction in maximum error for the attitude estimation once the biases
of the gyroscope are estimated. The bias rejection is self-evident in Figure
7.4b. The initial small drift of quaternion estimation is due to the integral
action of the filter to reject the bias and is present only at the beginning of
operations.

Table 7.1: Satellites physical properties

Servicer base Client

m [kg] 1500 1000

Ixx
[
kg ·m2

]
250 500

Iyy
[
kg ·m2

]
250 500

Izz
[
kg ·m2

]
250 500

Table 7.2: Attitude controller parameters

Sampling Frequency [Hz] 100 Torque saturation [Nm] 1

Velocity cutoff frequency[Hz] 1 Adaptive gain
[
s2
]

100000

Guidance loop frequency[Hz] 0.1 Deadzone wide [rad/s] 2 · 10−5

Reference inertia
[
kg ·m2

]
250 Inertia limits

[
kg ·m2

]
50-1250

The torques required for the attitude control are computed using the
adaptive control law of Chapter 5 and the optimal quaternion guidance of
Chapter 4. The parameters shown in Table 7.2 were used for the simula-
tions. The true error computed using true values and the reference fed to
the controller, hence without estimation errors of Figure 7.4, can be seen
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in Figure 7.5b. The attitude controller is thus able to keep the system sta-
ble against disturbances coming from the position control and the robotics
combined. it is also clear that for these simulations the integral action of the
controller has been switched off and the errors in both attitude and velocity
is stable but not tending to zero. Even with the integrative term such be-
haviour would kick with a settling time higher than the whole manoeuvre.
On the left, in Figure 7.5a, we can see the inertia parameter estimated by
the controller through the whole simulation. It is possible to appreciate the
capability of the estimator to reduce the gains if the output is higher than
necessary.
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Figure 7.4: Complementary filtering performance
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Figure 7.5: Attitude control performance
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Robotics results

Table 7.3: Robotic arm parameters

1 2 3 4 5 6 7

link mass [kg] 2.12 42.4 4.24 16.96 2.12 2.12 1.06

link length [m] 0.1 2 0.2 0.8 0.1 0.1 0.05

link max inertia
[
kg ·m2

]
0.003 14.16 0.017 0.915 0.003 0.003 0.001

link min inertia
[
kg ·m2

]
0.003 0.053 0.0053 0.0212 0.003 0.003 0.001

Abs. Enc. max err [deg] 0.088 0.088 0.088 0.088 0.088 0.088 0.088

Encoder max error [deg/s] 0.088 0.088 0.088 0.088 0.088 0.088 0.088

Max joint position [deg] 180 90 180 0 90 180 180

Min joint position [deg] -180 -90 0 -180 -90 0 -180

Max joint velocity1 [deg/s] 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Table 7.4: Robotic arm controller parameters

1 2 3 4 5 6 7

Reference inertia
[
kg ·m2

]
7.5 3 1.5 3 1.5 0.15 0.6

Maximum inertia
[
kg ·m2

]
300 300 30 300 3 0.3 0.3

Minimum inertia
[
kg ·m2

]
10−3 10−3 10−3 10−3 10−3 10−3 10−3

Reference cutoff frequency [Hz] 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Velocity cutoff freq. [Hz] 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Torque saturation [Nm] 1 1 1 1 1 1 1

The robotic arm mounted on the satellite base has mechanical parameters
shown in table 7.3 and consist of seven serial joints with alternate axis of
rotation starting from axial (joint 1) then lateral (joint 2) and repeating till
the last link that has axial rotation. Inertia parameters assumed are also
listed in table 7.3 with also joints limits.
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Figure 7.6: End effector trajectory in joint space

The path to reach the port is translated by the LM guidance of Chap-
ter 6 to a smoothed reference. The actual path and velocities of the joints
are shown in Figure 7.6a. In the same figure is also presented the distance
and angular displacement of the end effector from the true port location. In
Figure 7.6a it is possible to see the effect of velocity saturation in the tra-
jectory of the joints. This testifies the reliability of the guidance system of
the OR. Spikes and noise, especially in the first instants, of the velocity plot
are due to the controller underestimation of the parameters. The chattering
of joints velocity is due to the numerous sources of disturbance in forms of
disturbing torques and noisy measurements.
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Figure 7.7: Estimation of joint state

The filtering of the encoder measurements is shown in 7.7 and although
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Figure 7.8: Robotics control performance

it was not covered much, it has been used a complementary-like filter. The
presence of noise is of the utmost importance when dealing with the adap-
tive control and to correlate velocity noises that translates back into torque
disturbances.

The performance of the adaptive controller tailored for the robotic arm
are shown in Figure 7.8; its parameters are instead listed in Table 7.4. It is
possible to see the error increasing at the beginning of the manoeuvre as the
equivalent inertia has been severely underestimated. The inertia adaptation
kicks in rather soon as testified by the increase, up to saturation, of some
joints controller inertia as it is visible from the graph of Figure 7.8a. After
the first rough tuning phase, the joints error are effectively kept in check by
the controller for the rest of the simulation.

Position control

Table 7.5: Position controller parameters

Sampling Frequency [Hz] 100

Frequency[Hz] 0.5

Damping 5

Reference mass [kg] 1661

Force saturation [N] 4

Table 7.5 presents the parameters used for the relative position control. The
force only request is then translated into thrusters firings whose activation
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Figure 7.9: Position control performance

command can be seen in Figure 7.9a. Although it is rather difficult to see
from the plot, in each firing area the forces are almost impulsive, as ex-
pected. The length of clustered firings varies through the simulation as
the center of mass of the ensemble moves with respect to the base due to
arm movement. The back and forth movement on the axis is better seen in
Figure 7.9 looking at the position error. Such error is the error processed
on-board, hence relative to the estimation error of Figure 7.10a. The er-
ror is around 1 centimetre per axis which is expected considering the 1N
of thrust for each of the on-board thrusters. Being able to use modulable
thrusters could really make the difference, although the use could probably
be limited to GEO orbits as such thrusters are most likely to be electric. By
increasing or decreasing the frequency of the position control we can have
a more precise station keeping at the cost of more attitude disturbances.

Vision based estimation

Table 7.6: Cameras Parameters

Left Right Arm

Field of view [deg] 60 60 60

n° Pixel 1024x1024 1024x1024 1024x1024

Framerate [fps] 1 1 1

Duration of activity [s] always always 20
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Figure 7.10: Vision based relative state estimation performance

The images simulated with POV-Ray makes use of a simple camera whose
data can be found in Table 7.6. The left and right camera can be used for
stereo vision but in this simulation only the left camera is used for position
estimation. The camera on the robotic arm is used only in Phase (2) and is
mounted on the tip with a little displacement.

From Figure 7.10a we can see that the expected error with the algorithm
presented in Chapter 4 is about 3 millimetres when relative distances are
around 3 meters. The method used for the state estimation is rather raw but
for relying only on 4 points it is still capable of a good amount of precision.
As for attitude is concerned, Figure 7.10b presents the attitude estimation
errors through small angle approximation from the error quaternion. Look-
ing at the Gaussian probability density function of the error and the values
for all the simulation it is clear that two axis are more prone to errors as one
would expect from close distances.

The port estimation during phase (2) drops the position error from 3.7
centimetres to 5.5 millimetres (lower per axis). The initial error is thus re-
duced by an order of magnitude and is in line with the position error of
Figure 7.10a by which is also affected. A more rigorous estimation al-
gorithm should be devised in order to reduce further the influence of the
relative estimation. Increasing the number of images taken in phase (2) can
reduce the effect up to an expected lower limit.

Datarate effects

Figure 7.11 shows a confront on the datarate of the relative pose estimation
with perfect measurements. The first row shows the error that a perfect es-
timation of the relative pose would cause and one can appreciate the differ-
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Figure 7.11: Datarate analysis for relative pose
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Table 7.7: Planar robot data

base wheel link 1 link 2 link 3

Mass [kg] 1500.00 5.00 21.21 16.96 4.24

Inertia
[
kg ·m2

]
100.00 10.00 1.78 0.92 0.02

Characteristic lengths 2.00 - 1.00 0.80 0.20

Ref. Inertia
[
kg ·m2

]
100.00 - 25.00 2.00 3.85

Joint lower limits [deg] - - -180 -90 -90

Joint upper limits [deg] - - 0 90 90

ence by comparing the two images with Figures 7.9 and 7.8b. As expected
the one with more realistic measurement exhibits higher noise in velocity
error. The second row of Figure 7.11 reports the position and joints error
when the sampling time of the perfect vision based reconstruction is in-
creased ten times and closer to the state of the art. The upsampling filters
used for the slower version are not modified in weights and acts as simple
lowpass filters. As one could expect, increasing the sampling time allows
for a better velocity estimation and reduced efforts that consequently re-
duces errors in joint positioning. With a proper study and realization of
the vision based algorithms it is possible to reduce errors and vibrations as
well.

7.3 Comparison

The proposed methods for GNCR for OOS have shown good performance
with a time varying model and in presence of noises and simulated images.
The closed loop performance are satisfying, but a comparison with other
methods can further show the proposed GNCR algorithms performance in-
crease.

In order to show that a simplified planar model of the previous case has
been prepared. The reference orbit is circular equatorial and the space robot
consist of a base, a reaction wheel and 3 links that all have a vertical axis
of rotation. This ensures the motion to be planar and the disturbs due to
gravity gradient stays planar as well. Target physical properties and control
are the same as the previous case; this case also keeps unchanged sensors
and estimation of the previous one in order to focus more on the adaptive
control and guidance of the space robot. Relevant physical and control data
are shown in Table 7.7.
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Table 7.8: Simulation cases

Case 1 2 3 4 5 6 7 8 9 10 11 12 13

RW 2� 2� 2� 2� 2� 2� 2� 2� 4 2� 2� 2� 2�

Thr 2� 2� 4 4 2� 4 2� 2� 2� 2� 4 4 4

Guid LM L GJ GJ LM L L L LM LM GJ LM GJ

Att 2� 2� 4 2� 2� 4 2� 2� 2� 2� 4 4 2�

Mod SD SD - - PW - SD SD SD SD - - -

Adpt 2� 4 4 4 2� 2� 4 2� 2� 2� 2� 2� 2�

Should be noted that the reference inertia of link 2 has been deliberately
underestimated to show the capability of the adaptive controller to reduce
error with a poorer parameter estimation. It should be clear that an adaptive
controller has almost the same performance as the non adaptive version if
the parameters are estimated with high precision. The base attitude control,
on the other hand, has a good initialization of the inertia in order to show
the adaptive control enhancing performance when inertia changes due to
arm movement and with actuators errors.

Another issue is the modulation, hence a comparison between SDM and
PWM is performed using the same sampling time of 0.1 seconds. Unlike
[86], here will be shown that PWM is more consuming with respect to
SDM.

The last part to be tested is the robot guidance. Three different algo-
rithms will be tested and differences will be shown. The LMG with fil-
tered input is compared with classical velocity guidance (here named Lya-
punov Guidance or LG for short) and a modified version of [22] where
Generalized Jacobian Guidance (GJG) is used. In order to better show the
latter algorithm capabilities the rendezvous approach is on v-bar, meaning
the direction where drift due to orbital motion is lower and an approach that
request no position control can be used. Unlike the first one, the other two
algorithms generates a velocity reference and do not require a joint position
control hence the robot controller will not use position as feedback when
these two guidance algorithms are used.

The comparison and the following graphics are generated with different
test cases. The correspondence between cases, algorithms and modes is
listed in Table 7.8.

The simulations see the robotic arm deploying from a stowed position
and reach a target position on the other satellite. Each simulation concludes
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if the end effector positioning error goes below 1 millimetre for five seconds
straight or if a maximum time (a tenth of the orbital period) has passed.
This level of precision is reachable in this simplified scenario because the
relative state estimation is perfect.

Adaptive vs non adaptive control

Figure 7.12 Shows the confront of the proposed GNCR algorithm with its
non-adaptive version. The difference is not extreme but it is clearly shown
in attitude and joint angles errors where CASE 7, the non adaptive version,
has clearly an higher error through the whole simulation. The difference
can be seen also on the velocities plots, however is less readable from the
graphs without filtering results, an operation avoided to maintain uniformity
in all results. Although the non adaptive case seems to be faster, should be
noted that meeting the requirement for stopping condition when errors in
control are higher may be pure and sheer luck.

What can be drown from this comparison is that adaptive control is ef-
fectively able to reduce errors without increasing much the effort. There
are up to three figure of merit with respect to effort and those are the fuel
mass expense, the arm effort and the reaction wheel velocity profile. Time
can also be included, however the first two figure of merit are result of an
integration, hence time is indirectly included.

The fuel mass is computed through integration of the mass flow rate
computed from the famous rocket equation using the thrust and specific
impulse written in the figure. This is not the straightforward mass expense
and is not to be read as the effective mass consumption but as a figure of
merit as the above mentioned quantities are kept constant for all simula-
tions. Moreover, in order to increase readability, the expense is computed
using the total thrust commanded from the modulation and not the effective
thrust produced which includes also disturbs in the actuation process.

The arm effort is the integration of the norm of the vector of commanded
torques to the robotic arm joints. The energy usage of arm control is linked
to the power budget and not on the mass budget of a mission, but since the
estimation would be more cumbersome than explanatory, here is preferred
this version equally readable and understandable.

The reaction wheel velocity profile is not shown because there is no
sensible difference.

The difference between adaptive and non adaptive control is more clearly
seen when using a less refined guidance strategy for the robot. The reported
Lyapunov stable guidance law is used here and fed to the same controller,
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Figure 7.12: Adaptation in proposed GNCR algorithm
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Figure 7.13: Adaptation with classical robot guidance
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although no position or acceleration information coming from the guidance.
Hence, position and acceleration constraints are not enforced and velocity
constraints are satisfied by scaling the velocity reference vector in such a
way that the maximum value of velocity lies on the boundary for any given
computation.

This means that the reference is less smooth and followable than the
previous case and this result in degraded performance of the non adaptive
control. This implies that LMG through the filtering of the reference is
able to reduce the uncertain effects. Also, the previous guidance adds more
information and that is able to reduce errors as well.

In Figure 7.13 is presented the staggering difference that an adaptive
control brings in the picture. Thanks to the adaptation the end effector is
able to reach the target way faster as shown by the Lyapunov function of the
vector dual quaternion quantities (ηt, ηq) in the lowest figure. The adaptive
control is able to overcome the poor initial estimation of one parameter and
adjust accordingly, showing the great difference in terms of time and effort.

Interestingly, yet expected, the mass usage by thrusters has a similar
trend in both cases because the position control is non-adaptive and thus the
sooner the target is reached (grasping for example) the sooner the position
control can be switched off. The error trend (xe) is of course very similar.
More interesting is the reduction of control effort for the robotic arm, since
in the non adaptive case in order to try to reach a good level of precision an
higher torque is required.

Robotic guidance confront

A representative comparison between the proposed and reported guidance
systems for orbital robots can be found looking at Figure 7.14 where CASE
1, 8 and 11 are compared. All of them uses the adaptive control and the
one with GJG approach has no position or attitude control involved, as per
natural application of its capabilities.

From a quick look one can see that even when the approach is on the
V-bar the GJG takes too much time to reach the target and finally it slips
away from reach, as seen in the last figure where error in end effector po-
sition increases towards the end. The drift is caused by a misalignment of
the center of mass from the theoretical stationary point of few centimetres,
which can be expected normally. Hence the classical implementation of the
GJG , although appealing from the effort point of view, might require an
unbearable increase in velocity of the arm or adjustment.

Then, looking at the confront of CASE 1 and 8 one can see the differ-
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Figure 7.14: Robot guidance strategies with adaptive control
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Figure 7.15: Robot guidance strategies without position and attitude control

ences induced by the two guidance systems. The classical Lyapunov veloc-
ity guidance of CASE 8 disturbs way more the attitude of the system and
as a consequence the effort of the robotic arm is greater than the one of the
LMG. On the other hand the L guidance provides a faster convergence of
the end effector towards the target as expected from its Lyapunov analysis
and from the delays introduced by the filtering in the LMG version. Such
delay can be adjusted but at the cost of higher error in the early stages or by
using more expensive and powerful avionics to increase the computational
power of the system.

Fuel expense is not reported because is quite similar and depends mostly
on the duration of the manoeuvre.

To give a better perspective on the near-zero effort perspective of the
GJG, a comparison of methods is presented in Figure 7.15. The cases in
exam are 6, 11 and 12, all with adaptive control included for robotic arm,
but no control in position and attitude.

The GJG and the Lyapunov based guidance behaves closely to the LG
(and is implemented as a variation where the Jacobian of the LG is modified
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Figure 7.16: Generalized Jacobian guidance strategies

using the information of angular momentum) but has a faster convergence
due to the incorporation of the base expected motion through angular mo-
mentum conservation. Should be noted that even in this simple case the
assumption of conservation of angular momentum is not verified as gravity
gradient due to a distributed mass system is still present. The slight im-
provement of GJG with respect to the L guidance is mostly due to this fact.
In this case, neither method can achieve the desired target in time and then
it slips away.

The LMG behaves poorly with respect to the other two methods because
of inherent slower tracking of moving target with respect to its L guidance
counterpart as expected by previous comparison.

Finally, modified versions of the GJG are included to show that by
adding attitude control, through reaction wheels, it is possible to reduce
the time to reach the target before it slips away. CASE 3, 4, 11 and 13 are
presented in Figure 7.16.

CASE 3 and 11 do not use attitude control but 11 has adaptive control
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for the robotic arm and the results are impressive as it is able to reach a
minimum distance from the target sensibly before the non-adaptive coun-
terpart. Even here the adaptive control shows the increase in performance
with lower effort, although in both cases the target is not reached in time.
The expense of the two cases becomes equal as both start to slip away,
however the adaptive version reaches a lower error before the other case
and with lower effort.

The simple addition of attitude control though reaction wheel changes
the results and the system is able to reach the target in time. By looking
at CASE 4 and CASE 3 it is possible to see that keeping the attitude more
stable permits to reach the target in time whereas a non controlled case
would not. Again, the addition of adaptation reduces the error way faster
as shown here by the curves of CASE 13. Graphs are not generated, how-
ever there is a close matching between CASE 13 and CASE 8 with the L
guidance instead. This is expected as both algorithms work using the same
principle, however CASE 8 also control position and thus has a higher fuel
expense. A modification of CASE 8 with no position control is not included
but the results have very high correlation with CASE 13, hence L guidance
and GJG in the end can provide the same results when attitude control is
switched ON.

The GJG approach should be more performing but, as stated before, the
conservation of angular momentum is never verified in reality and small
modifications need to be made. Moreover it results less appealing from the
robustness point of view as it requires a good model and errors in masses,
inertia and lengths might reduce the performances. Such errors are not
taken into account here but reduced performance are expected nevertheless.
GJG approach, and similar approaches, were not developed for position
feedback but rather to follow a velocity profile, hence closing the loop with
a target pose can yield similar results for L and GJG guidance algorithms.

Modulation & Thrusters considerations

Considerations about modulation for thruster activation is made here by
looking at Figure 7.17 where CASE 1 and 5 are compared. The only dif-
ference is that CASE 5 uses PWM while CASE 1 uses SDM. Unlike [86]
the sampling time of both is the same and taken as 0.1 seconds. The result
shown here is the increase in effort and error with the PWM as one would
expect if both sample the signal at the same frequency. In [86] the PWM
sampling time appears to be 10 times slower than the other one so results
might be affected by this difference. Should be noted that unlike [86] here
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Figure 7.17: PWM versus SDM performance at same sampling time

the thrusters are used only for position control and not for attitude control.
For almost all cases of Table 7.8 the attitude is controlled with a reaction

wheel, however the attitude can be controlled equally also using thrusters.
Figure 7.18 compare CASE 1 with CASE 9 and the results are interesting.
Through SDM the precision reached using thrusters (position and orienta-
tion errors are taken into account as per all cases) is on the same level as
the one with a reaction wheel and with the same fuel expense.

This is caused by the fact that torques can be generated by a proper ac-
tivation of thrusters by producing the same amount of net thrust. However,
what is notable is the increase in the arm effort at convergence caused by
the higher disturbs caused by base motion on the arm itself.

Even if the precision in attitude is the same as the one with reaction
wheels, the use of thrusters induces locally higher torque impulses. A trade
off between the two strategies can be made based on reaction wheel satura-
tion level and power/energy on board, connected to the control effort of the
robotic arm.

Comparison conclusion

Figure 7.19 sums up the improvement possible using the proposed adaptive
control and robotic guidance scheme. In presence of parametric uncertain-
ties and time varying quantities the adaptive controller allows both attitude
and robotic arm to improve the convergence rate displaying better perfor-
mance. Although the LMG filtered scheme is slower with respect to LG, it
converge faster thanks to adaptivity and to lower disturbs transmitted to the
base. The guidance scheme is also able to reduce the control effort regard-
less from adaptation as the filtered output and the consequent feedforward
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Figure 7.18: Attitude control actuation method differences
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Figure 7.19: GNCR Improvements
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permits to follow a more compliant reference signal. The proposed scheme
requires position and attitude control to be active for all the manoeuvre in
order to give the desired performance; such hypothesis is coherent within
a practical context as the previously shown comparison highlights difficul-
ties in using a free floating approach even when approaching from the less
demanding tangential direction.
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Conclusions

The first OOS commercial mission will mark the beginning of a new era
in the space industry and possibly be marked as a revolution. This might
sounds excessive at first, but if one looks at all possible applications and
the radical shift in the design of satellites that will happen as a direct con-
sequence of the serviceability paradigm the definition of revolution is not
at all resounding. While big players and small disruptive endeavors fight
against the current system in order to establish OOS, research in many fields
has to follow.

In OOS the intertwining of multidisciplinary area of interest is so deep
that one can hardly disjoint them during research. Any OOS mission would
require a deep planning of a servicer satellite lifetime in order to be prof-
itable, hence mission analysis optimization and economical analysis should
be looked at together. Another example is the use of cameras in close prox-
imity hovering applications that could also generate issues about property
rights. Before diving into the multidisciplinary pool a researcher, as well
as an entrepreneur, must first look at his own skills in order to find the best
way to contribute to this revolution.

According to that principle, this thesis represents the analysis on one
core aspect of OOS operations: the GNCR subsystem that provides the
means to deliver the OOS service. Literature on this specific topic, es-
pecially covering the whole control loop, is rather scarce and often some
parts of the loop are overlooked. What happens then is that actual per-
formance are below the expected values or lack trustworthiness, especially
when cameras are considered as sensors.
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The first step, presented in Chapter 2, is to simulate the mechanical sys-
tem at the highest level of detail permitted by hardware and engineering
judgment. In this work a multibody software with capability of simulat-
ing many sensors, including cameras with photorealistic features, has been
coded, validated and used to simulate a space robot. Equations of motion
have not been linearized and for the timeframe and orbits considered deliv-
ers expected performance.

The second step was to prepare all blocks that compose the GNCR loop
in order to perform a full simulations. This required to plunge into the
guidance and control of satellites and robots, but also to look at attitude
estimation and relative vision based estimation techniques. Neglecting one
of these aspects would have compromised the final analysis and peering too
much into the depths of each field would have made impossible to get the
big picture. Hence, focus was given to characterize all parts at the highest
level of precision for a preliminary assessment of the GNCR system. For
example, an effective computer vision algorithm for relative pose estima-
tion requires years of development and many people working on it before it
gets to the required level of precision for real OOS applications. However,
overlooking the effect of this part on the relative control would not expose
the frequency estimation problematic and subsequent problems of closed
loop performance.

One of the main contributions in subsystems is probably the Principal
Inertia Adaptive Dynamic Inversion Controller developed in Chapter 5 also
applied to robotics in Chapter 6. The strife was to find a suitable adaptive
scheme that would not require estimation of many parameters and was eas-
ily implementable. Being de facto a PD controller with adaptive derivative
terms, it is more than suitable to be looked at in the industry. The main
reason behind this study is the acknowledgment that in many OOS sce-
narios considered the servicer satellites undergoes geometrical variation or
mass/inertia variation due to docking/capture. All possible sources of errors
have been pointed out (noise, drift, overestimation, stability) and verified
through simulations and the structure has been simplified at the maximum
level possible. The controller can be further improved and connected to a
robust estimation of the nominal parameters and performance.

In Chapter 7 few simulation studies, making use of all that has been
developed from previous chapters, were presented and results analyzed.
Vision sensors prove to be effective in the estimation of target position and
pose with encouraging level of precision. However, precision is not the
only concern, as the robustness of image processing in space is a huge
problematic. What is recommended to possible OOS provider/OOS system
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manufacturers is to spend time in preparing a robust vision system capable
of doing both pose estimation in close proximity and centroid estimation
for long range approach. The two approaches presented here are compat-
ible but would require more study to provide a fusion of the two that is
able to guarantee the level of robustness capable of not jeopardizing the
OOS mission they were designed for. In general it has been seen that, with
the provided control architecture, it gets fundamental to reduce the noise in
velocities estimation, especially for robot control. This would reduce the
effect on flexibility and cross-system frequency interference. For exam-
ple, the frequency of the position control (force determination and thrusters
wise) has huge impact on the attitude control and the robotic arm movement
shall be slow enough to keep the adaptive controller in the global conver-
gence region. The frequency content of position control is then influenced
by the pose estimation sampling time, which should be increased hardware
wise and not only through a upsampling process (that can either add delays
or high frequency noises).

The bottom line of this consideration is that the GNCR system is heavily
coupled and it is easy to reduce global performance by overlooking a sim-
ple aspects in one of the loop parts or the influence on other subsystems.
It is here stated and stressed the need for complete loop simulations when
dealing with OOS scenarios because, unlike many commercial scenarios,
the GNCR system plays a key role for the economical growth and stabil-
ity of a OOS provider company. In the end the company that delivers the
best and more reliable OOS service will be the victor as consequences of
a failed OOS mission would be catastrophic especially in the erly develop-
ment stages of the next two decades.
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APPENDIXA
Dual Quaternions

This Appendix is meant to provide the basics of quaternions and dual quater-
nions algebra and matrix notation. This extract has been presented before
in [18] to introduce the GNCR dual quaternion based framework. Let us
start by reviewing what a quaternion is.

A quaternion q is a four-element entity belonging to a space where three
components are imaginary. The group of quaternions is defined as

H = {q = q4 + iq1 + jq2 + kq3 : q4, q1, q2, q3 ∈ R} (A.1)

where i, j, k follow the rules of Eq. (A.2).
i2 + j2 + k2 = −1

ij = k = −ji
jk = i = −kj
ki = j = −ik

(A.2)

In this group addition and multiplication are defined and form a skew
field, often called “Division Algebra”. It is possible to represent a quater-
nion using a R4 vector so that
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q =


q1

q2

q3

q4

 =

{
η

ε

}
(A.3)

In the latter representation it has been introduced also the separation of
the scalar real (ε) and vector imaginary (η) part of the quaternion as will
be particularly helpful later on. The use of the vector and matrix forms of
quaternions allows for a easier understanding of the underlying nature of
their representation capabilities.

The quaternion group is closed with respect to the summation, subtrac-
tion, multiplication and division. Multiplication and division must be han-
dled in a peculiar way due to the rules of (A.2). A quaternion product can
be written as

qc = qb � qa =
[
qb
−
⊗
]
qa =

[
qa

+
⊗
]
qb (A.4)

where the matrix forms
[
q−⊗
]

and
[
q+
⊗
]

are no other than canonical left
and right transformation or Hamilton operators. Should be noted that a
symmetric definition of the quaternion product would be fine as well, since
the result is still a quaternion. However the consistency must be maintained
through the whole development. The matrix notation has been different
through literature, the form adopted here is meant to suggest the matrix
form of a general quaternion and the duality of the product representation.
In terms of components those four by four matrices are given as

[
q−⊗
]

=

[
I3×3ε −

[
η×
]
η

−ηT ε

]
(A.5)

[
q+
⊗
]

=

[
I3×3ε +

[
η×
]
η

−ηT ε

]
(A.6)

where I3×3 is the identity matrix and
[
η×
]

is the skew matrix form of
the vector η1. To better comprehend the duality of the two matrices let us
look at the components of the quaternion multiplication (A.4){

ηc = εbηa −
[
ηb×
]
ηa + εaηb

εc = −ηTb ηa + εaεb
(A.7)

1Cross product and notation: ηa × ηb =
[
ηa×

]
ηb
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Rearranging the terms and remembering the property of the cross prod-
uct ηa×ηb = −ηb×ηa we can see that the duality of the two matrix form
with respect to multiplication is indeed verified. This keeps being valid for
any extension that will be made hereafter.

The division operation follows quite straightforwardly from (A.4){
qa =

[
qb
−
⊗
]−1

qc

qb =
[
qa

+
⊗
]−1

qc
(A.8)

where it can be shown that[
qb
−
⊗
]−1

qc =
1

qTb qb

[
qb
−
⊗
]T

qc (A.9)

Being de facto an inverse multiplication there is also another matrix
form that allows to switch the position of qc in the equation above.

Unitary quaternion and attitude representation

We already know that a unitary quaternion can represent the attitude of a
given body. From the quaternion group it is possible to consider a subgroup
consisting of quaternion with unitary norm. In this group the norm consid-
ered is the root of the squared sum of quaternion components. Briefly the
condition that must hold for unitary quaternion is

‖q‖ = 1 = ηTη + ε2 (A.10)

This allows the quaternion multiplication to be considered a rotation
of a given angle around the Euler axis. Limiting the quaternion to lie on
the R4 unitary sphere permits to gain few properties that can be exploited
in rotation parametrization, but on the other hand it loses the operations of
sum and subtraction: the unitary quaternion group is not closed with respect
to sum and subtraction. Summing two quaternion with unitary norm will
generate a quaternion with non unitary norm.

A unitary quaternion can be written in terms of Euler angle and axis as
follows. {

η = e sin ϑ
2

ε = cos ϑ
2

(A.11)

where e is the Euler axis and ϑ the Euler angle. It is possible to recover
a rotation matrix (or Direction Cosines Matrix (DCM)) Rbi (that rotates a
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tridimensional vector from frame i to frame b) with one of the following
expressions, consistent with Kayley-Rodrigues formula



[
R−bi 03×1

01×3 1

]
=
[
q−

+
⊗
]T [

q−
−
⊗
]

[
R+
bi 03×1

01×3 1

]
=
[
q+
−
⊗
]T [

q+
+
⊗
] (A.12)

From (A.12) we note that the direction cosines matrix is “quadratic” in
terms of quaternion components. This implies that Rbi (q) = Rbi (−q)
meaning that ±q represent the same attitude. This is the source of the
unwinding phenomena that may occur with quaternion based controllers.
Should be clear now that the two possibilities of (A.12) are one the trans-
pose of the other and follows also that q− is the quaternion conjugate of
q+

2.
From Cartan-Dieudonne theorem we do know that the angular velocity

ωi of the frame i can be recovered from the following relation

d

dt
(Rib) ·Rib

T = [ωi×] (A.13)

By differentiation Eq. (A.10) it is clear that the derivative of a quaternion
with respect to time is bounded by the following relation and thus is the
quaternion representation of a tridimensional entity, the angular velocity.

ηT η̇ + εε̇ = 0 (A.14)

This can be made clearer by using the two matrix forms of the quaternion
q and its derivative q̇. Depending on which matrix form is used the result
will be different, hence two different q̇ are possible given the same general
tridimensional vector ξ.{

ξ

0

}
=
[
q−⊗
]T

q̇− =
[
q+
⊗
]T

q̇+ (A.15)

The result is still a quaternion but its norm depends on the norm of q̇,
hence will be connected to the norm of the relative angular velocity of the
frames. Applying Cartan-Dieudonne theorem to (A.12) gives respectively3

2A quaternion conjugate has vector part with opposite sign: conj

({
η

ε

})
=

{
−η
ε

}
3It can be proven using properties of the matrix forms.
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{
d
dt

(
R−ib
)
·Rib−T =

[
2ξ×

]
d
dt

(
R+
ib

)
·Rib+

T = −
[
2ξ×

]
hence we have four different possibilities linked to the choice of map-

ping from the quaternion q to the DCM Rib.{
ωi

0

}
= ±2

{
ξ

0

}
=

{
±2
[
q−⊗
]T

q̇−

±2
[
q+
⊗
]T

q̇+

then the velocity of frame b with respect to frame i is given by ωb =
Rbiωi that gives four different possibilities

{
ωb

0

}
=


2
[
q−

+
⊗
]T

q̇−

2
[
q−

+
⊗
]T [

q−
−
⊗
] [

q−
+
⊗
]T

q̇+

−2
[
q+
−
⊗
]T [

q+
+
⊗
] [

q+
−
⊗
]T

q̇−

−2
[
q+
−
⊗
]T

q̇+

(A.16)

To recap what has been said, there are four different possibilities to link
a quaternion and its derivative to a DCM and angular velocities. Any choice
is valid and depending on the problem in exam one might be computation-
ally better than the other. From here on the attitude kinematics will be
represented using the following

[
Rbi 03×1

01×3 1

]
=
[
q+
⊗
]T [

q−⊗
]

{
ωi

0

}
= 2

[
q−⊗
]T

q̇

(A.17)

Looking at the derivative of the quaternion components we can link the
derivative in terms of ωi or ωb{

2η̇ = εωi −
[
η×
]
ωi = εωb +

[
η×
]
ωb

2ε̇ = −ηTωi = −ηTωb
(A.18)

Dual quaternion

Dual quaternions are mathematical entities that can be used to fully rep-
resent rigid body kinematics and are an extension of the quaternion group
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to include in one entity both attitude and position parametrization. A dual
quaternion is a quaternion with a dual part: the real part represent rotation,
the dual part include also the position of the body. In order to understand the
idea behind such formulation, one should first address dual numbers and the
properties that are linked to the representation of kinematics through same
entities. For the sake of brevity here is omitted, the interested reader should
refer to . Should be noted that the said approach is of course closely linked
to the screw theory popular in robotics. The bottom line of the approach is
that it is possible to use a non-unitary quaternion to represent displacement
between reference frames. Since the translation group has not the specific
problematic of the rotation group there should be no need to increase the
dimensionality of the entities at hand, however using the same arithmetic,
linear algebra and others for the whole body kinematics is appealing and
general.

The goal, now, is to link any displacement di to a position quaternion t,
taking into account the attitude represented by the rotation quaternion q. A
relation between q and t must hold since only three components of t are
linearly independent. The possibilities are

{
di

0

}
= 2



[
q−
−
⊗
]T
ta[

q+
−
⊗
]T
tb[

q−
+
⊗
]T
tc[

q+
+
⊗
]T
td

(A.19)

and the displacement in the other reference frame db = Rbidi

{
db

0

}
= 2



[
q−

+
⊗
]T
ta[

q+
−
⊗
]T [

q+
+
⊗
] [

q+
−
⊗
]T
tb[

q−
+
⊗
]T [

q−
−
⊗
] [

q−
+
⊗
]T
tc[

q+
−
⊗
]T
td

(A.20)

As before, the choice depends on the uses and its arbitrary, to maintain
symmetry with the previous choice here will be used the following{

di

0

}
= 2

[
q−⊗
]T
t (A.21)

Should be noted that like for rotations a simultaneous change in sign
of both q and t gives back the same di. If we do use t in a control loop
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we could incur in unwinding phenomena, however unlike for rotations a
tridimensional exact parametrization can still be made and be exploited.

Differentiating Eq. (A.21) gives{
vi

0

}
= 2

[
q̇−⊗
]T
t + 2

[
q−⊗
]T
ṫ (A.22)

The result shows that the derivative of the position quaternion ṫ depends
on both linear velocity, attitude and angular velocity, as one would expect.
By introducing a new matrix form which is the dual of

[−
⊗
]Twe can link the

velocities in frame i as follows
ωi

0

vi

0

 = 2

[[
q−⊗
]T

04×4[
t−T⊗
] [

q−⊗
]T
]{

q̇

ṫ

}
(A.23)

Now, only the transformation from a reference frame to another is left.
The dual quaternion can be represented as a eight-dimensional vector and
the product operation can be used again to represent rotation and translation
from a frame to another. Rotation and translation are not commutative and
can be defined in two different ways. Given a common frame i let there
be two reference frame, 1 and 2, whose inertial position and attitude from
i are given by dual quaternion a1 =

{
qT1 tT1

}T and a2 =
{
qT2 tT2

}T
here represented as vectors of eight components. The relative displacement
from one to the other is given by

d2i = dri + d1i (A.24)

and must holds true whichever dual quaternion operation we can define.
We can also express dri in frame 1 using dri = Ri1dr1. To codify the
operation in dual quaternion terms we have two possibilities{

d2i = Ri1dr1 + d1i

d2i = Ri1 (dr1 + d1)
(A.25)

with of course

d1i = Ri1d1 (A.26)

thus the choice of which of the two is connected to the position quater-
nion influence the form of the transformation matrix between frame 1 and
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Figure A.1: Example of reference frame transformation

2. In other terms if the translation is performed before or after the rotation
during the transformation. Looking at (A.19) and (A.20) the first approach
seems more natural, although this is still arbitrary. Following this choice,
the position quaternion of 2 is given by

t2 =
[
tr
−
⊗
]
q1 +

[
qr
−
⊗
]
t1 (A.27)

The result can be obtained easily by exploiting some properties of the
matrix representation of quaternions and remembering that for rotation holds

q2 =
[
qr
−
⊗
]
q1 (A.28)

The complete transformation from frame 1 to frame 2 can be represented
by the dual quaternion ar. The transformation is thus a multiplication de-
fined in the dual quaternion group and its matrix representation encapsu-
lates the quaternion matrix forms previously defined.

a2 = ar ⊗ a1 (A.29)

a2 =
[
ar
−
ε×
]
a1 (A.30){

q2

t2

}
=

[[
qr
−
⊗
]

04×4[
tr
−
⊗
] [

qr
−
⊗
]]{q1

t1

}
(A.31)

The extension of the quaternion space to the dual quaternion space in-
herits many matrix form properties, with the exception of the division oper-
ation. For unitary quaternion the inverse is equal to the transpose, while for
non unitary quaternions like t this does not apply. On the other hand, the
inversion operation still retains the linear structure presented before. For
example looking at Figure A.1 we can define easily
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Figure A.2: Chain of transformations example


a2 =

[
ar
−
ε×
]
a1 =

[
a1

+
ε×
]
ar

a1 =
[
ar
−
ε÷
]
a2 =

[
a2
−T
ε÷
]
ar

ar =
[
a1

+
ε÷
]
a2 =

[
a2

+T
ε÷
]
a1

(A.32)

The linearity and the duality of matrix forms can be easily exploited,
for example a chain of transformation can be rearranged in many different
ways. Using Figure A.2 as visual reference we have

a2 =
[
af
−
ε×
] [
ar
−
ε×
]
a1

a2 =
[
af
−
ε×
] [
a1

+
ε×
]
ar

a2 =
[
a1

+
ε×
] [
af
−
ε×
]
ar

a2 =
[
a1

+
ε×
] [
ar

+
ε×
]
af

(A.33)

This is pretty useful when dealing with many different reference frames
and chains of transformations. Similar result can be obtained also using
exponential mapping and a consistent minimal representation of the dual
quaternion consisting in six components. It can be easily verified that

[
ar
−
ε×
]

= exp
([
ξr
−
ε×
])

ξr =
{
ξTq 0 ξTt 0

}T (A.34)

However the relation with displacement and rotation of ξq and ξt is
highly non-linear, thus more cumbersome to be dealt with.
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APPENDIXB
Adaptive control

Adaptive control is a system control paradigm where some parameters are
updated considering the evolution in time of the controlled system. These
controllers are inherently non-linear and are meant to adapt to uncertainties
or to track a reference behaviour. Two main strategies are used for adap-
tive control: Model Reference Adaptive Control (MRAC) and Adaptive
Dynamical Inversion (ADI) which can be seen, depending on the classifi-
cation, as an indirect MRAC. Both can account for unknown and bounded
parameters of a dynamical system with known basis functions in the system
state variables and are set to track a reference response of the system. A
combination of the two can be devised and is usually referred to as CM-
RAC. Literature on the subject is quite vast and the interested reader can
look into [97] or into [98] that has been widely used for this Appendix and
subsequent work.

Let us consider a linear system as our system plant

ẋ = ax + bu (B.1)
and a stable reference model that we want the controller to follow

˙xm = amxm + bmr (B.2)
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with am < 0 the reference model has exponential convergence towards
− bm
am
r.

Let us take the simpler, yet more desirable, model to be

˙xm = λ (r − xm) (B.3)

with positive λ. The system that results is a first order lowpass filter with
cutoff frequency λ. It is equivalent to take am = −bm = −λ.

Direct MRAC estimates and adapt the control gains while the ADI or
indirect MRAC estimates the plant uncertain parameters.

Model Reference Adaptive Control

The MRAC law can be written for system of Eq. (B.3) as

u = k̂xx+ k̂rr (B.4)

substituting this control law in the system real model (B.1) gives

ẋ = ax + bk̂rr + bk̂xx (B.5)

ẋ =
(
a + bk̂x

)
x + bk̂rr (B.6)

hence we can conclude that there exist an ideal control gain k such that{
−λ = a + bkx

λ = bkr
(B.7)

Let us define the tracking error and its derivative as function of ∆kx =

k̂x − kx and ∆kr = k̂r − kr{
e = x − xm
ė = ame + b∆kxx+ b∆krr

(B.8)

Consider the Lyapunov function candidate

L =
1

2
e2 +

1

2
|b|
(
γ−1
x ∆k2

x + γ−1
r ∆k2

r

)
(B.9)

Then its derivative is
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d

dt
L =ame

2 + |b|∆kx
(
esign (b)x+ γ−1

x

d

dt
∆kx

)
+ |b|∆kr

(
esign (b) r + γ−1

r

d

dt
∆kr

)
(B.10)

Considering that the system of Eq. (B.1) is LTI, then d
dt

∆kx = d
dt
k̂x and

d
dt

∆kr = d
dt
k̂r, hence to achieve the stability condition we have to null the

terms in the parentheses, giving the adaptation laws as{
d
dt
k̂x = −γxexsign (b)

d
dt
k̂r = −γrersign (b)

(B.11)

with am < 0 this gives d
dt
L < 0 in all the considered domain, hence

parameter tracking is stable and through a chain of considerations we have
that error and its derivatives are bounded. Differentiating Eq. (B.10) to-
gether with the previous considerations leads to the boundedness of the
second derivative of the Lyapunov function and consequent continuity of
the first derivative. Then, thanks to Barbalat’s lemma we can conclude
asymptotic tracking.

Adaptive Dynamic Inversion control

In the ADI version the adaptive system estimates directly the parameters of
the plant. The system plant of (B.1) is rewritten as follows

ẋ = ax + bu + âx − âx + b̂u − b̂u (B.12)

ẋ = âx + b̂u + (a − â)x +
(
b − b̂

)
u (B.13)

ẋ = âx + b̂u −∆ax −∆bu (B.14)

the ADI feedback control is

u =
1

b̂
((am − â)x + bmr) (B.15)

substituting (B.15) in (B.14) gives the closed loop dynamics

ẋ = λ (r − x) + ∆ax + ∆bu (B.16)

The tracking error is now defined as
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{
e = x − xm
ė = −λe −∆ax −∆bu

(B.17)

The Lyapunov function candidate is

L =
1

2
e2 +

1

2

(
γ−1
a ∆a2 + γ−1

b ∆b2
)

(B.18)

its derivative is

d

dt
L = −λe2 + ∆a

(
−ex + γ−1

a

d

dt
∆a

)
+ ∆b

(
−eu + γ−1

b

d

dt
∆b

)
(B.19)

Considering that the system of (B.1) is LTI, then d
dt

∆a = d
dt
â and

d
dt

∆b = d
dt
b̂, hence {

d
dt
â = γaex

d
dt
b̂ = γbeu

(B.20)

should be noted that in this case the reference signal does not enter in
the adaptive laws directly as was in the MRAC. Stability and tracking prop-
erties demonstrations follows as in the previous case.

Comparison: ADI vs MRAC

Let us compare the two control laws and point out the differences.{
uMRAC = k̂xx+ k̂rr

uADI = 1

b̂
(λ (r − x)− âx)

(B.21)

The MRAC law is simpler but is slightly more complex to estimate the
initial values for the parameters and reasonable boundaries, while on the
other hand the ADI control law requires the inversion of b̂ which poses a
zero crossing issue as well as limited uses for a MIMO system since not
always is possible to invert the control to state matrix due to different di-
mensions, although a Pseudo Inverse might be used. The adaptive param-
eters in the ADI framework are closely linked to parametric uncertainty in
the systems and thus it is more likely to find a suitable initial guess and
boundaries for the parameters. Nevertheless the relation is quickly found
as follows
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Table B.1: Comparison simulation data

a/kx b/kr

System ±0.10 0.10
perfect controller ±0.10 0.10

MRAC -7.34 6.67
ADI 1.00 1.50
λ 1.00
r 1.00
ω 1.00

{
k̂x = − (λ+â)

b̂

k̂r = λ

b̂

(B.22)

the difference lies in the update of the parameters. In the MRAC the
updates for reference and state are not connected while in the ADI through
control variable u the update of b̂ relies on a combination of state, reference
and estimation of parameters.

In the classical implementation both versions makes use of a reference
model, however it is possible to reach the same conclusion using as error
e = x − r for the ADI controller, inherently assuming a unitary transfer
function between the reference and the model; stability and convergence
properties still holds but system response is faster.

Making use of the structure of the system, the ADI allows for simplifica-
tions in cases where the parameter a ' 0 by simply eliminating the update
on â. This operation is more cumbersome in the MRAC design.

Example of comparison

Let us address other differences through a simple example. Let us take
the system of Eq. (B.1) with two kind of input: a filtered step function of
amplitude r and a sinusoidal signal of frequency ω and maximum amplitude
r. Values for system and controllers can be found in Table (B.1). The gains
have been selected to have a similar behaviour for the step response.

The two adaptive controller are devised with the same system parameter
and the same reference controller, both modified to accept a feed forward
information. Should be noted that such modification needs to be included in
the reference model as well and is straightforward only in the ADI design,
while for the MRAC a weighting parameter is added, namely a factor k̂r/λ.

This implies that for time varying reference the ADI is supposed to be
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Figure B.1: MRAC vs ADI

more performing than the MRAC. Simulation for stable and unstable plant
with step and sinusoidal entry are performed and results can be found in
Figure B.1.

In Figure B.1 for each simulations the quadratic errors and the control
effort are presented. The control effort is shown with respect to the baseline
of a perfect controller. The MRAC offers better performance than ADI for
a step input while for a constantly exciting reference the ADI parameters
converge faster and outperform greatly the MRAC controller.

The MRAC performance could be improved by adding another gain to
be estimated for the feed forward, however that would increase the com-
plexity and the number of computations needed for such approach. On the
other hand it can be seen that for a step entry the ADI controller requires
more effort to bring the controller to operative regime. The MRAC has a
gentler action and sometimes lower than the optimal but with higher error.

The bottom line of this confront is to show that for different applicative
cases the choice of the architecture is important. In cases where a time
varying reference is expected it is more straightforward to choose the ADI
controller, while for reference with little frequency content the MRAC is
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a more reasonable choice. Also, system with negligible dynamics can be
treated better with a simplified ADI with respect to a full MRAC.

Confront with baseline controllers

Let us take the Lyapunov candidate function for the ADI controller with
plant (B.1) and suppose to freeze the parameter update. The derivative of
the Lyapunov function can be rewritten as follows

d

dt
L = e (−λe −∆ax −∆bu) = e ((D − λ) e −Dxm + Cr)

even assuming bounded reference and reference model state, since at
low frequency it perfectly follows the reference, we might have a condition
where D > λ and thus convergence might not be guaranteed. It can be
shown that such instability condition can be written as follows

b̂

b
a − â > λ (B.23)

That coherently nullifies for â → a and b̂ → b. A properly formulated
adaptive control can reduce the value of D to ensure stability if the system
knowledge is affected by high uncertainties or lower control capability. As
a matter of fact λ is connected to the maximum control action and limited
when dealing with discrete implementation.

Assuming D < λ we have that the state to reference error boundary for
a non adaptive controller, considering that xm → r and thus e → x − r is
given by

‖emax‖
‖rmax‖

=
‖C −D‖
λ−D

(B.24)

and again is function of the uncertainties. From this also follows that
the higher λ the lower ‖emax‖ as one would expect. A proper designed
adaptive controller reduces inherently the uncertainties and thus is able to
reduce the boundary of the state error with respect to the non-adaptive law.
For simple system with null a the boundary becomes

‖emax‖
‖rmax‖

= 2

∥∥∥∥∥ b̂b − 1

∥∥∥∥∥ (B.25)

and considering that we assume b̂
b
> 0 we can conclude that under-

estimating b̂ is slightly better than overestimating it too much. The same
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conclusion can be achieved by simply looking at the control law where the
error is multiplied by a factor λ

b̂
, hence the lower b̂ the higher the control

action and equivalent stiffness of the system resulting in lower errors. An
adaptive control law would try to reduce the estimation error in such a way
that an optimal control effort is achieved. In case of â = a = 0 we can
relate approximately

uADI =
b

b̂
uperfect (B.26)

From which follows that overestimating b̂ reduces the control action
with respect to the theoretical optimum (at fixed reference model) with re-
duced performance while, on the other hand, underestimating b̂ leads to
needlessly higher control effort.

Miscellaneous issues of Adaptive Control

Both ADI and MRAC parameter update equations rely on the state determi-
nation. Since measurements are always affected by noise it is straightfor-
ward to see that noise can affect negatively the variation of the parameters,
hence a common solution is to apply a Dead-Zone to the error in parame-
ters estimates. In this case the tracking error e will never be zero but will
converge to a confined zone. The limit of the dead-zone should take into
account the noise content of the measured state, typically in the higher fre-
quencies as a static non-modelled bias would be unstabilizing.

Another issue with Adaptive control is that parameters may shift too
much and require a saturation. Since the parameters are estimated through
an integration process what is often required is an Anti-Windup operator.
In literature the projection operator is often used, but virtually any Anti-
Windup would suffice.

Other parameters estimation

In the adaptive control framework it is also possible to include estimation of
state dependent uncertain functions. Let us re-write the plant of Eq. (B.1)
with the addition of such contribution

ẋ = ax + bu + θTΦ (x) (B.27)

where θ is the vector containing the parameters and Φ (x) is the vector
of basis functions of the state. If Φ (x) are known and the parameters θ are
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constant, then the adaptive framework allows to include such uncertainties
in the controller. The MRAC and ADI control laws are then modified as
follows uMRAC = k̂xx+ k̂rr + θ̂TΦ (x)

uADI = 1

b̂

(
λ (r − x)− âx − θ̂TΦ (x)

) (B.28)

with update laws that can be determined through the same procedure
presented before. This leads to the following, quite similar, adaptive pa-
rameters update. {

d
dt
θ̂ = −ΓθeΦ (x) sign (b) MRAC

d
dt
θ̂ = ΓθeΦ (x) ADI

(B.29)

Convergence of parameters

Both ADI and MRAC solutions, as other adaptive paradigms, do not guar-
antee convergence of parameters unless a persistent excitation is exerted
on the system. Even in cases where perfect measurements are available,
parameters converge to their true values only with specific classes of ref-
erence signals in a time frame deeply varying. Stability does not imply
convergence to the real values and a bounded convergence is expected.

The result is expected as estimating parameters of a dynamical system
requires a reference signal capable of exciting a response dependent on
the said parameters. This applies also to adaptive controls where a state
observer is used to estimate the uncertain parameters.

Time varying model

If the system is no longer LTI but changes in time, then the used schemes for
MRAC and ADI are no longer asymptotically converging to null error but to
a bounded error. This can be easily seen looking at the Lyapunov function
candidate derivatives. Take the ADI scheme for example as parametric
variations are more easily seen.

d

dt
L = −λe2 + ∆aγ−1

a

d

dt
a + ∆bγ−1

b

d

dt
b (B.30)

If we assume ∆a and ∆b to be bounded and both d
dt
a and d

dt
b to be

bounded as well we can state that
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d

dt
L ≤ −λe2 + C (B.31)

where C > 0 is equal to the maximum contribution of the time varying
terms and errors and is meant to define the error boundary. The maximum
error expected is thus

‖emax‖ =

√
C

λ
(B.32)

which is rather intuitive as λ defines the static disturbance rejection of
the linear system.
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APPENDIXC
Levenberg-Marquardt algorithm

Given a non-linear function r = f (a) in the parameters vector a, a general
minimization algorithm search for the solution a∗ such that

a∗ = arg min
(
rT r
)

(C.1)

Hence a good indication of the goodness of a solution at step k is the chi
squared criterion

χ2 (ak) = rTk rk =
n∑
i=1

r2
i (C.2)

The function to be minimized can either be scalar or vector and may be
used for data fitting, solving system of equations, training neural networks
and so on. A popular algorithm is the LM method, which is a non-linear re-
cursive minimization algorithm that can shift between Newton-Gauss (NG)
method and the gradient method (also Steepest Descent (SD)). Let us ad-
dress these two methods first. All these methods are able to find local
minima not global minima though recursive iterations:

ak+1 = ak + δak+1 (C.3)
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and will achieve convergence at a certain iteration under some user de-
fined threshold in most cases.

Gradient descent method

The gradient method is inherently straightforward: the solution is found
looking at the direction that minimizes χ2. At each iteration the solution is
updated as follows

δak+1 = −αĝ (C.4)

where ĝ is the gradient direction of the squared criterion and α is the
length of the step. The latter might be changed iteration by iteration to
adjust to the solution, if needed.

Taking the gradient of the squared criterion is simple

∂χ2 (a)

∂a
= 2JT r (C.5)

where J = ∂(r)
∂a

is the Jacobian of the residual r. Following this princi-
ple, the opposite direction of the gradient is the direction of minimization
of the residual, therefore the SD step is given by

δak+1 = −α JTk rk
‖JTk rk‖

(C.6)

Should be noted that with a constant α there could be situations where
the SD method chatters around the solution or diverges.

Newton-Gauss method

The Newton-Gauss method can be seen as the generalization of the Newton
method to solve non-linear problems with higher order. First let us expand
χ2 in a neighbourhood of state a with a small perturbation δa

χ2 (a + δa) = r (a + δa)T r (a + δa) (C.7)

Expanding the residual and stopping at the first order term leads to

r (a + δa) ' r + Jδa (C.8)

substituting (C.8) in (C.7) lead to

χ2 (a + δa) ' rT r + 2δaTJT r + δaTJTJδa (C.9)
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The variation of the perturbed solution with respect to the perturbation
is

∂χ2 (a + δa)

∂δa
' 2JT r + 2JTJδa (C.10)

when the variation of the perturbed solution is null, then a maps to a
local minimum, maximum or a saddle. The variation that satisfy the condi-
tion at each step is given by

δak+1 = −
(
JTk Jk

)−1
JTk rk (C.11)

The solution of the NG step is simply given by the pseudoinverse of the
Jacobian and the residual. It is easy to see that the results is equivalent to
the least square solution of a linear problem, but for the NG method the
procedure is repeated until convergence.

Levenberg - Marquardt method

The Levenberg-Marquardt algorithm owes its name to Kenneth Levenberg
who initially proposed the algorithm in 1944 [99] and to Donald W. Mar-
quardt who revised the method in 1963 [100]. Since then it has been a
popular method to solve non linear least square problems and has been
applied to computer vision, Neural Network training and much more. Fol-
lowing the initial premises, the canonical form of the LM algorithm step is
as follows (

JTk Jk + λkdiag
(
JTk Jk

))
δak+1 = −JTk rk (C.12)

where λk is the LM damping parameters that shifts the algorithm from
SD to NG. In case where JTk Jk could be singular it is often used the primal
version with the identity matrix instead of the diagonal of JTk Jk. The latter
has been introduced in the past because represent the perfect scaling of the
problem for numerical reasons. From (C.12) it is straightforward to see that
for λk = 0 the LM step is equal to the NG step, while for high values of λk
the step is a close approximation of the SD step as on the right hand side of
(C.12) appears the gradient of χ2.

In general, at each step the new solution is tested with a metric function
[101] that usually is given by

ρ (ak+1) =
χ2 (ak)− χ2 (ak + δak)

2δaTk+1 (λkδak+1 − JTk rk)
(C.13)
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and if it is higher than a threshold the step is accepted and the damp-
ing parameter reduced to approach the NG algorithm. Otherwise λk is in-
creased for the next iteration and the algorithm approaches the SD method,
useful when far from the solution. The update of λk is indeed a thrust re-
gion algorithm. In order to waste less iterations a step is often accepted as
soon as χ2 (ak + δak+1) < χ2 (ak).

Damping parameter update

In the years the LM algorithm has been studied and new more performing
ways to update λk have been found. Let us introduce the method used in
this work. The damping factor is always computed as function of the norm
of the residual vector as follows

λk = µ0 ‖rk‖ (C.14)

where the parameter µ0 can be kept constant or evolve with a thrust
region algorithm. It has been demonstrated that λk ∝ ‖rk‖a has superlinear
convergence for a < 1 and quadratic convergence for 1 ≤ a ≤ 2 [102].
In [103] a generalization of such approach is presented, with µ0 updated
using a thrust region technique, but µ0 assumes also the role of a scaling
factor. Since the scale of the error might change during the descent it is
important that the method keep the initial λk in a suitable range for fast
convergence.

µ0 =
λ0

‖rk‖
(C.15)

where λ0 is the initial value of the damping parameter, usually chosen
by experience, initial guess error estimation and/or a robust initialization.
In the implemented LM λ0is chosen between a subset of possible values:
the one that produces the highest metric for the first step is taken as initial
damping. To reduce the computational cost it is implemented the procedure
of [104,105] where the LM step of Eq. (C.12) is re-written as two stage QR
decomposition. This procedure is heavier than the previous one but does
not require a full re-computation when the damping is changed, making it
appealing for the first initialization.

From experience in using the LM algorithm with this formulation it has
been observed that in case of well defined problems µ0 can be kept constant
and convergence is attained in few steps. On the other hand, in some cases
where the function is inherently numerically hill defined the thrust region
update of µ0 proves to be fundamental.
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Two step solution

In the version of [104, 105] the LM algorithm is solved with another per-
spective. The LM step can be rewritten as follows[

Jk

λkIn×n

]
δak = −

[
rk

0

]
(C.16)

The solution is obtained using a recursive QR decomposition. The first
step is to compute the QR decomposition of the Jacobian, such that

Jk = Q1U1 (C.17)

where Q1 is an orthogonal matrix with dimension equal to the rows of
the Jacobian and U1 an upper triangular matrix. Since Q1

−1 = Q1
T it is

easy to compute [
U1

λkI×

]
δak = −

[
Q1

T rk

0

]
= −

[
g

0

]
(C.18)

Then the QR decomposition is used again as follows[
U1

λkI×

]
δak = Q2U2 (C.19)

The system is thus

U2δak = −Q2
T

[
g

0

]
= −

[
u

v

]
(C.20)

and the solution of the problem is

δak = −U−1
2 u (C.21)

where the last step can be computed with back substitution since U2is
upper triangular. In order to avoid unnecessary computation and get u it
is possible to take the upper left portion of the matrix Q2. The advantage
of this function is that if the step is not successful and λk changes only the
second QR step must be computed again. To reduce numerical errors is
thus also possible to scale the Jacobian to have column of unitary length by
setting

J1 = JkD (C.22)

D = diag
([
‖J1‖−1 · · · ‖Ji‖−1 · · · ‖Jm‖−1

])
(C.23)
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Of course the state variation solution has to be modified accordingly

δak = −DU−1
2 u (C.24)
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