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Abstract

AGeometrically nonlinear composite thin-walled beam theory with fiber-reinforced

and piezo-composite is developed. Some non-classical effects such as

anisotropy, warping inhibition and three-dimensional (3-D) strain are ac-

counted for in the beam model. The governing equations and the corresponding bound-

ary conditions are derived using the Hamilton’s principle. The Extended Galerkin’s

Method is used for the numerical study. The static and dynamical characteristics of

the adaptive thin-walled structure are investigated by studying anisotropic properties

of piezo-actuators, considered in conjunction with that of the structural tailoring of the

fiber-reinforced host structure. Furthermore, the beneficial effects of the implemen-

tation of the active feedback control and tailoring technology on advanced adaptive

aircraft wings or rotor blades, that can be modeled as the thin-walled beam developed

in this dissertation, are highlighted.
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CHAPTER1
Introduction

Composite materials and structures, due to their vast advantages, such as light weight,
specific high stiffness, and elastic couplings, have been increasingly used in aerospace
industry and other fields of advanced technology. They have even been identified as a
major thrust for designing high-performance aerospace structures (see e.g., [26, 30]).
Anisotropic composite thin-walled structures are expected to meet the increasingly ag-
gressive missions of the next generation of high-performance flight vehicles. In re-
cent years, some further refinements are conducted to the modeling of open or closed
cross-section thin-walled composite beam structures (see e.g., [13, 20, 35, 93, 94, 102]).
Among these efforts, Cortinez et al. [20] and Vo and Lee [94] introduced warping shear
to try to improve the model’s accuracy; and together with a geometrically exact, intrin-
sic theory of anisotropic beams developed by Hodges [33], the variational-asymptotic
beam sectional analysis [102] can be used for arbitrarily large deflections and rotations
(see e.g., [72]). More generally, any geometrically exact, intrinsic theory of anisotropic
beams can be used provided the beam constitutive equation are computed correctly.
Many similar approaches, based on a semi-analytical discretization of the beam section
displacement field, have been proposed to compute the stiffness matrix of arbitrarily
complex beam sections, see e.g. [28,60,102]. Basically the same approach can be used
for the characterization of composite beams with piezo-electric patches [10, 57]. That
said, simplified models such as the one used in this dissertation are still interesting, as
they allow to get a better inside into the dependence of the elastic solution of the beam
section parameters.

The design of advanced aircraft wings or rotor blades characterized by thin-walled
structures was significantly influenced by the incorporation of composite material tech-
nology. As compared to their metallic counterparts, composite design of thin-walled
structures offers considerable advantages with respect to strength and weight criteria, in

1
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Chapter 1. Introduction

addition to providing adequate means of efficiently controlling static and dynamic re-
sponse via implementation of structural tailoring [14,17,21,32,38,68,69,79,82,87,88].
Although elastic tailoring is a powerful technology that can offer a beneficial influence
on the dynamic response characteristics, this technique is passive in nature in the sense
that, once implemented, the structure cannot respond to the variety of factors under
which it must operate. As a complementary option, the active control via the imple-
mentation of the smart materials system technology can be applied [11, 27, 29, 57].
Since piezoelectric materials have a lot desirable characteristics, such as self-sensing,
structure embeddability, fast response and covering a broad range of frequency, they
are well suited for the active control of deformable beams [16, 48, 49, 61, 62]. Due to
the brittle nature of ceramics, they are however vulnerable to damage and can hardly
conform to a curved surface. These drawbacks are overcame by piezo-composite ma-
terials such as the Active Fiber Composite (AFC) [6] and the Macro-Fiber Composite
(MFC) [100]. Piezo-composite materials can be shaped and bonded to surfaces or em-
bedded into structures.

In the existing literature, a lot publications on modeling or studying adaptive thin-
walled structure are based on the assumption of fiber orientation of piezo-composite
along the spanwise missing the discussion of the isotropic properties [16, 19, 48, 49,
61,62,78,89]. Thus the system can only be controlled by the piezoelectrically induced
bending moments. Thus a comprehensive study allowing to get a better insight into the
influence of piezoelectrically induced extension, transverse shear, twist, bimoment and
bendings is still interesting.

Figure 1.1 presents the construction of this dissertation. In Chapter 2, a geometrical
nonlinear rotating thin-walled beam theory incorporating fiber-reinforced and piezo-
composite is developed. Transverse shear strain, warping inhibitions and three-dimensional
strain are accounted for. The governing equations and the associated boundary condi-
tions are derived via Hamilton’s principle.

In Chapter 3, active control of pretwisted rotating blades that modeled as thin-walled
beam structures is investigated. The adaptive capabilities provided by a system of
piezo-actuators bonded or embedded into the structure are also implemented in the
system. The effects induced by high speed rotation, e.g., centrifugal stiffening, tennis-
racket effect, that are essential for a reliable prediction of free-vibration characteristics
of rotating blades are highlighted. Based on the classical feedback control and linear
quadratic regular (LQR) control, the control authority of the implementation of piezo-
actuators with different ply-angles, considered in conjunction with that of the structural
tailoring, are highlighted. In addition, the rotating thin-walled beam model developed
in this dissertation can also serve as the basic model of flexible spacecraft. Problems
related to active vibration suppression of piezo-actuated spacecraft during attitude ma-
neuvers are discussed in Chapter 4.

The model developed in Chapter 2 can also serve as the basic model of advanced
adaptive aircraft wings when ignoring the rotating effects, see Chapters 5, 6 and 7. In
Chapter 5, the effective damping performance of piezo-actuated aircraft wings is in-
vestigated by studying lay-up configurations of piezo-composite, in conjunction with
elastic tailoring of the fiber-reinforced host structure. Problems related to nonlinear
dynamics of advanced aircraft wings are discussed in Chapter 6. Modal interactions
of swept aircraft wings carrying heavy external stores in the presence of simultaneous

2
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Figure 1.1: Flow chart of the dissertation
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Chapter 1. Introduction

internal and external resonance are investigated. Moreover, the conditions for mode
saturation and jump phenomena during modal interactions are highlighted. The objec-
tive of Chapter 7 is to study the active control effect on flutter suppression and dynamic
aeroelastic response enhancement of a smart aircraft wing. The unsteady aerodynamic
loads in subsonic compressible flows are based on 2-D indicial functions considered in
conjunction with aerodynamic strip theory extended to 3-D wing model.

4
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CHAPTER2
Modeling of Geometrically Nonlinear Rotating

Thin-Walled Beam Structures with
Piezo-composite

2.1 Introduction

Beams are three dimensional (3D) bodies in which one dimension is large compared
to the other two. The models based on 3D Finite Element Analysis (FEA) possess
significant computational advantages. However, beam or one-dimensional (1D) models
play an important role in structural analysis because they have smaller dimensionality
and provide the designer with simple tools to analyze numerous problems.

2.2 Basic Assumptions

A single-cell, closed cross-section, rotating fiber-reinforced composite thin-walled struc-
ture with piezo-composite materials is considered here, see Fig. 2.1. The inertial refer-
ence system (X, Y, Z) is attached to the center of the hub O (considered to be rigid),
while the rotating axis system (x, y, z) is located at the blade root with an offsetR0 from
the rotation axis O. The unit vectors associated with the frame coordinates (X, Y, Z)
and (x, y, z) are defined as (I,J,K) and (i, j,k), respectively. In addition, the local
frame (s, y, n) attached on the mid-line contour of the cross-section is also considered,
which s denotes the circumferential coordinate while n denotes the normal coordinate.

The geometrically nonlinear beam theory is based on the following assumptions
[7, 18, 46, 98]:

1. The projection of the cross-section on a plane normal to the y-axis does not distort
during deformation. This implies that the beam cross-sections are assumed rigid

5
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Chapter 2. Modeling of Geometrically Nonlinear Rotating Thin-Walled Beam Structures
with Piezo-composite

in their own planes, but are allowed to warp out of their original planes. For
thin-walled beam structures, i.e., aircraft wings and fuselage and ship hulls, the
original cross-sectional shape is maintained by a system of transverse stiffening
members (ribs or bulkheads). These are considered rigid within their plane but
perfectly flexible with regard to deformation normal to their own plane, so that
the adoption of this assumption leads to a reasonable mathematical model for the
actual physical behavior [47, 78].

2. The transverse shear strains γxy and γzy are uniform over the entire cross-section.

3. Products of the derivatives of v can be neglected in the Green-Lagrange strain
relations, since the axial displacement v is much smaller than displacement com-
ponents on the cross-section plane u or w in the x and z direction, respectively.

4. The normal stress σnn (see Fig. 2.1 for its direction) can be neglected in deriv-
ing the constitutive relations, and the stress resultants Nss and Nsn can also be
neglected when compared with the remaining ones [7].

5. Warping displacement along the mid-line contour (referred to as primary warping)
and off mid-line contour warping (referred to as the secondary warping) are both
considered.

6. We assume that the rotation solely takes place in the plane (X, Y ), viz., angular
velocity Λ̇ = Λ̇K = Λ̇k.

Piezoelectric actuators

Hub

x

YO

x

y
o

R 0

o x

z

s

n
Piezo-composite

Λ
.

Figure 2.1: A closed cross section of the thin-walled structure

2.3 Kinematics

It is useful to express the position vector R of an arbitrary point M(x, y, z) belonging
to the deformed beam, measured from a fixed origin O (coinciding with the center of
the hub), described in the rotating coordinate system (x, y, z). In the sense we have

R = R0 + r + ∆, (2.1)

where R0, r and ∆ denote the position vector of the beam root point o (hub periph-
ery), the undeformed position vector of point M(x, y, z), and its displacement vector,
respectively. Their expressions are

R0 = R0j, r = xi + yj + zk, ∆ = ui + vj + wk. (2.2)

6
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2.4. Green-Lagrange strain

For arbitrary large rotation φ, the components of the 3-D displacements u(x, y, z, t),
v(x, y, z, t), w(x, y, z, t) in the displacement vector ∆ can be postulated as [96, 98]:

u = u0 + (z + n
dx

d s
) sinφ− (x− nd z

d s
)(1− cosφ), (2.3a)

v = v0 + (x− nd z

d s
)θz + (z + n

dx

d s
)θx − [Fw + na]φ′, (2.3b)

w = w0 − (x− nd z

d s
) sinφ− (z + n

dx

d s
)(1− cosφ), (2.3c)

where

θx = γyz − w′0 cosφ− u′0 sinφ, θz = γxy − u′0 cosφ+ w′0 sinφ. (2.4a)

The primary warping function Fw and secondary warping function a in Eq. (2.3b) are
expressed as

Fw =

∫ s

0

[rn(s)− ψ(s)]ds, a = −(z
d z

d s
+ x

dx

d s
), (2.5)

here, the torsional function ψ(s) and the quantity rn(s) (for its geometric significance,
see Fig 2.2) are defined as

ψ(s) =

∮
c
rn(s) d s

h(s)Gsy(s)
∮
c

d s

h(s)Gsy(s)

, rn = z
dx

d s
− xd z

d s
, (2.6)

where Gsy(s) is the effective membrane shear stiffness, which is defined as [7]:

Gsy(s) =
Nsy

h(s)γ0
sy(s)

. (2.7)

For the thin-walled beam theory considered herein, the six kinematic variables, u0(y, t),
v0(y, t), w0(y, t), φ(y, t), θx(y, t), θz(y, t), which represent the 1-D displacement mea-
sures, constitute the basic unknowns of the problem. As will be shown in the sequel,
the original 3-D elasticity problem will be reduced to a 1-D problem. Note that, when
the transverse shear effect is ignored, Eqs. 2.3 degenerate to θx = −w′0, θz = −u′0, and
as a result, the number of basic unknown quantities reduces to four. Such a case leads
to the Bernoulli-Euler beam model, referred also to as the unshearble one.

2.4 Green-Lagrange strain

Based on the assumption 3, the non-zero normal Green-Lagrange strain component is:

εyy =
∂v

∂y
+

1

2

[(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2
]
≈ ∂v

∂y
+

1

2

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
.

(2.8)

Taking Eqs. 2.3 into above Eq. 2.8, we obtain that

εyy = ε0
yy + nε1

yy, (2.9)

7
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Figure 2.2: Coordinate system and displacement field for the beam model.

where

ε0
yy =[v′0 + xθ′z + zθ′x − Fwφ′′] +

1

2

[
(u′0)2 + (w′0)2 + (φ′)2(x2 + z2)

]
+ u′0φ

′(z cosφ− x sinφ)− w′0φ′(x cosφ+ z sinφ),
(2.10a)

ε1
yy =− d z

d s
θ′z +

dx

d s
θ′x − aφ′′ + u′0

[
dx

d s
cosφ+

d z

d s
sinφ

]
φ′

+ w′0

[
d z

d s
cosφ− dx

d s
sinφ

]
φ′ + rn(φ′)2,

(2.10b)

in which, ε0
yy denotes the axial strain associated with the primary warping, while ε1

yy

denotes a measure of curvature associated with the secondary warping. The non-zero
transverse shear strain components are:

γxy =
∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y
≈ ∂u

∂y
+
∂v

∂x
+
∂u

∂x

∂u

∂y
+
∂w

∂x

∂w

∂y
,

(2.11a)

γyz =
∂v

∂z
+
∂w

∂y
+
∂u

∂y

∂u

∂z
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z
≈ ∂v

∂z
+
∂w

∂y
+
∂u

∂y

∂u

∂z
+
∂w

∂y

∂w

∂z
.

(2.11b)

In the local coordinates (s, y, n), the non-zero transverse shear components can be rep-
resented as,
Tangential shear strain:

γys = γ0
ys + ψ(s)φ′ + 2nφ′, (2.12a)

8
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2.5. Constitutive Relations

where

γ0
ys =γxy

dx

d s
+ γyz

d z

d s

=
dx

d s
(θz + u′0 cosφ− w′0 sinφ) +

d z

d s
(θx + u′0 sinφ+ w′0 cosφ),

(2.12b)

Transverse shear strain:

γny =− γxy
d z

d s
+ γyz

dx

d s

= −d z

d s
(θz + u′0 cosφ− w′0 sinφ) +

dx

d s
(θx + u′0 sinφ+ w′0 cosφ).

(2.12c)

2.5 Constitutive Relations

The thin-walled beam structure consists of the passive material which is master (host)
structure and the active material which is sensors and actuators. We assume that both
passive material and active material can be modeled with the linear piezoelectric con-
stitutive relationships. The constitutive equations of a 3-D piezoelectric continuum
are [101]

σij = cEijklεkl − ekijEk, (2.13a)

Di = eiklεkl + κεikEk, (2.13b)

where, cEijkl, ekij , and κεik denote the elastic stiffness coefficients, the piezoelectric stress
tensor and dielectric constant tensor, respectively. The superscripts E and ε denote
constant electric field and constant strain, respectively. σij and εkl denote the stress
and strain components, while Ek and Di denote the electric field intensity and electric
displacement vector, respectively. Eq. (2.13a) describes converse piezoelectric effect
which is used for distributed sensing while Eq. (2.13b) describes direct piezoelectric
effect that is used for the active distributed control.

2.5.1 3-D Piezoelectric Constitutive Equations

In matrix form, the 3-D linear piezoelectric constitutive equation for a generally or-
thotropic fiber-reinforced composite material [36] and AFC or MFC piezo-composite
material [6] can be given as

σ11

σ22

σ33

τ23

τ31

τ12


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ31

γ12


−



e11

e12

e13

0

0

0


E1 (2.14)

We assume the electric filed intensity is constant across the actuator thickness, i.e.,
E1 = −(V/ĥ), where V and ĥ are the applied voltage and electrode spacing of the
interdigitated electrode for the actuator layer, respectively.

9
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Note also that the stiffness matrix, Cij , in terms of the engineering constants are
shown in [36, p. 66]. Moreover, electroelastic constant matrices of piezoelectric crys-
tals vested in 20 kinds of groups are list in [25, pp. 88-92].

Then the constitutive equations referred to the primed coordinate system (s, y, n)
for kth layer can be expressed as the form

σss

σyy

σnn

τyn

τsn

τsy


(k)

=



C̄11 C̄12 C̄13 0 0 C̄16

C̄12 C̄22 C̄23 0 0 C̄26

C̄13 C̄23 C̄33 0 0 C̄36

0 0 0 C̄44 C̄45 0

0 0 0 C̄45 C̄55 0

C̄16 C̄26 C̄36 0 0 C̄66


(k)



εss

εyy

εnn

γyn

γsn

γsz


(k)

−



ē11

ē12

ē13

0

0

ē16


(k)

E1(k)

(2.15)
where the transformed stiffness matrix [C̄] can be found in [47, p. 567], and the trans-
formed piezoelectric stress vector is given as

ē11 = m2e11 + n2e12, ē12 = n2e11 +m2e12, ē13 = e13, ē16 = mn (e11 − e12) .
(2.16)

where m ≡ cos θ and n ≡ sin θ, θ ∈ [0, 2π]. Based on the assumption 4, σnn = 0,
leads Eq. 2.15 reduced to

σss

σyy

τyn

τsn

τsy


(k)

=


Q̄11 Q̄12 0 0 Q̄16

Q̄12 Q̄22 0 0 Q̄26

0 0 Q̄44 Q̄45 0

0 0 Q̄45 Q̄55 0

Q̄16 Q̄26 0 0 Q̄66


(k)



εss

εyy

γyn

γsn

γsz


(k)

−



ess

eyy

0

0

esy


(k)

E1(k). (2.17)

where [Q̄] is the matrix of the reduced elastic coefficients can be found in [47, p. 575],
while the reduced piezoelectric stress coefficients are given as

ess = ē11 −
C̄13

C̄33

ē13, eyy = ē12 −
C̄23

C̄33

ē13, esy = ē16 −
C̄36

C̄33

ē13. (2.18)

2.5.2 2-D Piezoelectric Constitutive Equations

The master (or host) structure is assumed composed of Nh layers, while the actuator
is composed of Np piezoelectric layers. Thus the total number of layer denotes as
Nhp = Nh+Np. The distribution function P (·) of actuators can be given (see Fig. 2.3):

Pk(n) = H(n− nk−1)−H(n− nk), (2.19a)

Pk(s) = H(s− sk1)−H(s− sk2), (2.19b)

Pk(y) = H(y − yk1)−H(y − yk2), (2.19c)

where H(·) denotes Heaviside’s distribution, while (nk, nk−1), (sk1, sk2) and (yk1, yk2)
denote, respectively, the top and bottom heights of the actuator measured across the
beam thickness, and its location along the beam circumference and span.

10
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nknk-1

sk1

sk2

s

n

1

2

k
nknk-1

yk1

yk2

y

n

1

2

k

N N

Figure 2.3: Piezopatch locaton.

The membrane stress resultants, the transverse shear stress resultants and stress cou-
ples are, respectively, given as

Nss

Nyy

Nsy

 =

Nhp∑
k=1

∫ n(k)

n(k−1)


σss

σyy

σsy


k

dn,

{
Nyn

Nsn

}
=

Nhp∑
k=1

∫ n(k)

n(k−1)

{
σyn

σsn

}
k

dn, (2.20)

{
Lyy

Lsy

}
=

Nhp∑
k=1

∫ n(k)

n(k−1)

{
σyy

σsy

}
k

n dn, (2.21)

where n(k) and n(k−1) denote the distances from the middle surface of the cross-section
to the upper and lower surface of the kth layer, respectively. With the definition of
stretching quantity Aij , bending-stretching coupling stiffness quantity Bij and thermal
and hygric moments Dij ,

(Aij, Bij, Dij) =

Nhp∑
k=1

∫ n(k)

n(k−1)

Q̄
(k)
ij (1, n, n2) dn, (2.22)

as well as the assumption 4, Nss = 0 and Nsn = 0, we obtain


Nyy

Nys

Lyy

Lsy

 =


K11 K12 K13 K14

K21 K22 K23 K24

K41 K42 K43 K44

K51 K52 K53 K54




ε0yy
γ0
ys

φ′

ε1yy

−


Ñyy

Ñsy

L̃yy

L̃sy

 , (2.23)

and

Nyn =

(
A44 −

A45
2

A55

)
γyn. (2.24)

In these equations Kij denote the modified local stiffness coefficients of the adaptive
structure defined in Appendix A.1. While Ñyy, Ñsy and L̃yy, L̃sy denote the piezoelec-

11
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trically induced stress resultant and stress couple,

Ñyy =
∑Np

k=1

(
eyy −

A12

A11

ess

)
E1(k)(n2 − n1)P(k)(s)P(k)(y)

Ñsy =
∑Np

k=1

(
esy −

A16

A11

ess

)
E1(k)(n2 − n1)P(k)(s)P(k)(y)

L̃yy =
∑Np

k=1

[
1

2
eyy(n1 + n2)− B12

A11

ess

]
E1(k)(n2 − n1)P(k)(s)P(k)(y)

L̃sy =
∑Np

k=1

[
1

2
esy(n1 + n2)− B16

A11

ess

]
E1(k)(n2 − n1)P(k)(s)P(k)(y)

(2.25)

2.6 Formulation of the Governing System

In order to formulate the equations of motion and the associated boundary conditions,
Hamilton’s principle [58, pp. 82-86] is used. It states that the true path of motion
renders the following variational form stationary:∫ t2

t1

(
δT + δV − δWe

)
d t = 0, (2.26a)

with ( at t = t1, t2 )

δu0 = δv0 = δw0 = δθx = δθz = δφ = 0, (2.26b)

where the kinetic energy T , the strain energy V and the virtual work due to unsteady
aerodynamic and gust loads We are defined as [98]

T =
1

2
Jhθ̇

2 +
1

2

∫ L

0

∮
c

Nhp∑
k=1

∫
h(k)

ρ(k)

(
Ṙ · Ṙ

)
dn d s d y, (2.27a)

V =
1

2

∫ L

0

∮
c

[
Nyyε

0
yy +Nysγ

0
sy + Lyyε

1
yy + Lsyφ

′ +Nnyγny

]
d s d y, (2.27b)

δWe =τΛδΛ +

∫ L

0

[
pxδu0 + pyδv0 + pzδw0 +myδφ− bwδφ′ +mxδθx +mzδθz

]
d y[

Q̄xδu0 + Q̄zδwo + T̄yδv0 + M̄xδθx + M̄zδθz + M̄yδφ+ B̄wδφ
′
]∣∣∣∣L

0

.

(2.27c)

In Eqs. (2.26) and (2.27), t1 and t2 denote two arbitrary motions of time; Jh is the rotary
inertia of the hub; ρ is the mass density; δ denotes the variation operator; px, py and pz
are the external forces whilemx, my andmz are the moments about x−, y− and z-axes
per unit span length, respectively; bw is the bimoment of the surface tractions; the terms
with over-bar (̄ ) denotes the external loads at beam tip.

Thus, after a lengthy derivative manipulation, the governing equation of rigid hub
and flexible thin-walled beam system can be derived as

δΛ : JH +

∫ L

0

I0 d y = τΛ, (2.28a)

12
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δu0 : [Tyu
′
0 −Mzφ

′ sinφ+Mxφ
′ cosφ+Qx cosφ+Qz sinφ]′ + px − I1 = 0,

(2.28b)

δv0 : T ′y + py − I2 = 0, (2.28c)

δw0 : [Tyw
′
0 −Mzφ

′ cosφ−Mxφ
′ sinφ−Qx sinφ+Qz cosφ]′ + pz − I3 = 0,

(2.28d)

δφ : M ′
y −B′′w + [Mx(u

′
0 cosφ− w′0 sinφ)−Mz(w

′
0 cosφ+ u′0 sinφ) + Γtφ

′]′

+Mx(u
′
0φ
′ sinφ+ w′0φ

′ cosφ)−Mz(w
′
0φ
′ sinφ− u′0φ′ cosφ)

+Qx(u
′
0 sinφ+ w′0 cosφ)−Qz(u

′
0 cosφ− w′0 sinφ) +my + b′w − I4 + I ′9 = 0,

(2.28e)

δθx : M ′
x −Qz +mx − I5 = 0, (2.28f)

δθz : M ′
z −Qx +mz − I6 = 0. (2.28g)

For cantilevered beams the boundary conditions at the root are entirely static, while at
the tip entirely kinematic. As a result, the boundary conditions are
at beam root y = 0,

u0 = v0 = w0 = φ = φ′ = θx = θz = 0, (2.29)

at beam tip y = L,

δu0 : Tyu
′
0 −Mzφ

′ sinφ+Mxφ
′ cosφ+Qx cosφ+Qz sinφ = 0, (2.30a)

δv0 : Ty = 0, (2.30b)

δw0 : Tyw
′
0 −Mzφ

′ cosφ−Mxφ
′ sinφ−Qx sinφ+Qz cosφ = 0, (2.30c)

δφ : −B′w +My +Mx(u
′
0 cosφ− w′0 sinφ)−Mz(w

′
0 cosφ+ u′0 sinφ)

+ Γtφ
′ + I9 = 0,

(2.30d)

δφ′ : Bw = 0, δθx : Mx = 0, δθz : Mz = 0. (2.30e)

In governing equations (2.28), the inertial terms Ii (i = 0, 1, 2, 3, 4, 5, 6, 9) are given
as

I0 =Λ̈
[
b1(R0 + y)2 + b5 + 2b1(R0 + y)v0 + b1u0

2 + b1v0
2

+ (b4 + b14)θx
2 + (b5 + b15)θz

2 + (b10 + b18)φ′
2

+ (b4 − b5) sin2 φ
]

− b1(R0 + y + v0)ü0 + b1u0v̈0 + (b5 + b15) cosφθ̈z

− (b4θx cosφ− b5θz sinφ)φ̈+ (b4 + b14) sinφθ̈x

+ 2Λ̇
[
b1u0u̇0 + b1(R0 + y + v0)v̇0 + (b10 + b18)φ′φ̇′

::::::::::::::::::::::::::::::::::::::::::::::::

+(b4 + b14)θxθ̇x + (b5 + b15)θz θ̇z + (b4 − b5) sinφ cosφφ̇
]

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+
[
b4θx sinφ+ b5θz cosφ

]
φ̇′

2
,

(2.31a)

13
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I1 = b1[ü0 − Λ̈(R0 + y + v0)− 2Λ̇v̇0
::::

− Λ̇2u0], (2.31b)

I2 = b1[v̈0 + Λ̈u0 + 2Λ̇u̇0
:::::

− Λ̇2(R0 + y + v0)], (2.31c)

I3 = b1ẅ0, (2.31d)

I4 =(b4 + b5)φ̈− (b4θx cosφ− b5θz sinφ)Λ̈− 2Λ̇(b4θ̇x cosφ− b5θ̇z sinφ)
::::::::::::::::::::::::::

− Λ̇2(b4 − b5) sinφ cosφ. . . . . . . . . . . . . . . . . . . . . . .,
(2.31e)

I ′9 = (b10 + b18)(φ̈′′ − Λ̇2φ′′), (2.31f)

I5 = (b4 + b14)(θ̈x + sinφΛ̈− Λ̇2θx) + 2Λ̇b4 cosφφ̇
:::::::::::

, (2.31g)

I6 = (b5 + b15)(θ̈z + cosφΛ̈− Λ̇2θz)− 2Λ̇b5 sinφφ̇
:::::::::::

, (2.31h)

in which, the mass coefficients bij are give in A.2, while the terms associated with wavy
lines, double underlines, and dot lines denote the Coriolis forces, the centrifugral forces
and the Tennis-Racket effect.

As for the 1-D stress resultants and stress couples appearing in the equations of
motion and the boundary conditions (Eqs. (2.28) and (2.30)) are defined as:

Ty(y, t) =

∮
C

Nyy d s, Mz(y, t) =

∮
C

(xNyy − Lyy
d z

d s
) d s,

Mx(y, t) =

∮
C

(zNyy + Lyy
dx

d s
) d s, Qx(y, t) =

∮
C

(Nsy
dx

d s
−Nny

d z

d s
) d s,

Qz(y, t) =

∮
C

(Nsy
d z

d s
+Nny

dx

d s
) d s, Bw(y, t) = −

∮
C

(FwNyy + aLyy) d s,

My(y, t) =

∮
C

[Nsyψ(s) + 2Lsy] d s, Γt(y, t) =

∮
C

[
(x2 + z2)Nyy + 2rnLyy

]
d s.

(2.32)

Actually in Eqs. (2.32), the one dimension axial force Ty, transverse shear forces Qx,
Qz, bending moments Mx, Mz, torque My, bimoment Bw, and nonlinear stress couple
Γt consist of two parts, e.g., Ty = T̂y + T̃y, over-hat (̂·) and over-tilde (̃·) identifying
the pure mechanical and piezo-actuator contributions, respectively.

For the pure mechanical contribution, their expressions in terms of the basic 1-D

14
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displacement measures can be written as:



T̂y

M̂z

M̂x

Q̂x

Q̂z

B̂w

M̂y

Γ̂t



=



a11 a12 a13 a14 a15 a16 a17 a18

a12 a22 a23 a24 a25 a26 a27 a28

a13 a23 a33 a34 a35 a36 a37 a38

a14 a24 a34 a44 a45 a46 a47 a48

a15 a25 a35 a45 a55 a56 a57 a58

a16 a26 a36 a46 a56 a66 a67 a68

a17 a27 a37 a47 a57 a67 a77 a78

a18 a28 a38 a48 a58 a68 a78 a88





v′0 +
1

2
(u′0)2 +

1

2
(w′0)2

θ′z − w′0φ′ cosφ− u′0φ′ sinφ
θ′x + u′0φ

′ cosφ− w′0φ′ sinφ
θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ

φ′′

φ′

1

2
(φ′)2



,

(2.33)
in which the global stiffness quantities aij are defined in Appendix A.3. For general
anisotropic materials, the stiffness matrix in Eq. (2.33) is fully populated. In such a
case, the governing system and the associated BCs would exhibit a complete coupling
between the various modes, i.e., warping (primary and secondary), bending (vertical
and lateral), twist and transverse shearing. However toward the goal of meeting the
needs of various problems, such as eliminating a chronic aeroelastic instability featured
by forward wing aircraft [50], improving twisting motion of turbine rotor blades at
different rotor speeds [12], particular lay-ups are used to induce specific types of elastic
couplings. The explicit discussion will be given in the following chapters.

As for pure piezo-actuator contribution, the piezoelectrically induced actuation cou-
pling are the functions of external voltages, and it can be expressed in the form as

F̃ = [AFi ]P (y)V, (2.34)

where P (y) of Eq. (2.19c) denotes the locations along span of the actuator. For the case
of a rectangular cross-section as shown in Fig. 2.4, the actuators can be grouped as two
actuator-pairs, i.e., flange-actuator-pair (top and bottom walls) and web-actuator-pair
(left and right walls). Thus the pure piezo-actuator contribution of Eqs. (2.32) can be

Web-actuator-pair

θx

(u )0

x

θz

(w )0
z

ϕ

(v )0

y

Flange-actuator-pair

Figure 2.4: Piezo-actuator-pairs for a rectangular cross-section
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expressed as

T̃y(y, t)

M̃y(y, t)

B̃w(y, t)

Γ̃t(y, t)

M̃z(y, t)

M̃x(y, t)

Q̃x(y, t)

Q̃z(y, t)



=



ATy1 ATy2 ATy3 ATy4

AMy
1 AMy

2 AMy
3 AMy

4

ABw1 ABw2 ABw3 ABw4

AΓt
1 AΓt

2 AΓt
3 AΓt

4

AMz
1 AMz

2 AMz
3 AMz

4

AMx
1 AMx

2 AMx
3 AMx

4

AQx1 AQx2 AQx3 AQx4

AQz1 AQz2 AQz3 AQz4




P F (y)V1(t)

P F (y)V2(t)

PW (y)V3(t)

PW (y)V4(t)

 , (2.35)

where P F (y) and PW (y) of Eq. (2.19c) denote the locations along span for flange-
actuator-pair and web-actuator-pair, respectively; the piezo-actuator coefficients AXi
(i = 1, 2, 3, 4) are defined in Appendix A.4, and the voltage parameters Vi (i =
1, 2, 3, 4) are defined as

V1(t) =
1

2
[VT (t)− VB(t)] , V2(t) =

1

2
[VT (t) + VB(t)] , (2.36a)

V3(t) =
1

2
[VL(t)− VR(t)] , V4(t) =

1

2
[VL(t) + VR(t)] , (2.36b)

where VT , VB, VL and VR denote the voltages applied on the actuators located at the
top, bottom, left and right plates of the beam.
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CHAPTER3
Active Control of Adaptive Pretwisted Rotating

Blades

3.1 Introduction

In this chapter, a rotating thin-walled blade theory incorporating fiber-reinforced and
piezo-composite is developed and used to study the active control for vibration sup-
pression, see Fig. 3.1. The structural model accounts for transverse shear strain, pri-
mary and secondary warpings, pretwist and presetting angles, centrifugal stiffening
effect and tennis-racket effect. The adaptive capabilities are provided by the actuators
manufactured by anisotropic piezo-composite layers embedded into the structure. In
addition, the elastic tailoring technology is applied to optimal the rotating blade struc-
ture. Specifically, circumferentially uniform stiffness (CUS) lay-up configuration is
adopted to decouple the system into two independent elastic couplings, viz., flapping-
lagging-transverse shear and extension-twist elastic couplings. Based on the negative
velocity feedback control and lienar quadratic regular (LQR) control, the control au-
thority of the implementation of piezo-actuators with different ply-angles, considered
in conjunction with that of the structural tailoring, are highlighted. Moreover, the in-
fluences of design factors, such as rotor speed, presetting and pretwist angles are also
investigated in detailed.

3.2 Dynamical model

Besides the rotating coordinate system (x, y, z), a local coordinate system (xp, y, zp) is
also defined, where xp and zp are the principal axes of an arbitrary beam cross-section,
see Fig. 3.2. Coordinate systems (x, y, z) and (xp, y, zp) are related by the following

17
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Chapter 3. Active Control of Adaptive Pretwisted Rotating Blades
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Figure 3.1: Adaptive rotating blade model

transformation {
x(s, y) = xp(s) cos β(y) + zp(s) sin β(y),

z(s, y) = −xp(s) sin β(y) + zp(s) cos β(y),
(3.1)

where the linear pretwist angle β(y) can be assumed as

β(y) = γ0 + β0y/L, (3.2)

in which γ0, β0 and L denote the presetting angle, the pretwist angle of the cross-section
at the beam tip and the length of the beam, respectively.

x

z

y

x
p

z
p

L

2b

2d
s

n

θ

θz

θx

ϕ

(w )0

(u )0

(v )0

β

Figure 3.2: A pretwisted thin-walled beam with the rectangular cross-section

The governing equations and associated boundary conditions of the adaptive rotat-
ing blade are based on the theory developed in Chapter 2. Although the governing
equations are valid for a thin-walled beam with an arbitrary closed cross-section, for
the sake of illustration, the beam with a typical rectangular cross-section of Fig. 3.2 is
solely considered in the following discussions.

3.2.1 Circumferentially uniform stiffness (CUS) lay-up configuration

A special structural configuration, viz., circumferentially uniform stiffness (CUS) con-
figuration was firstly proposed by Rehfield and Atilgan [81] and is considered here.
For the thin-walled beam with rectangular cross-section as shown in Fig. 3.2, a CUS

18
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3.2. Dynamical model

configuration implies the ply-angle distribution θ(z) = θ(−z) of the top and bottom
walls and θ(x) = θ(−x) of the left and right walls, see Fig. 3.3.

θ1

θ2

θ3

θ3

θ2

θ1

y

n

s

s

yn

θ1

θ1

Figure 3.3: Circumferentially uniform stiffness (CUS) configuration

Applying circumferentially uniform stiffness (CUS) lay-up configuration will yield
[aij(y)] in Eq. (2.33) decoupling into two, viz, extension-twist elastic coupling,


T̂y

M̂y

B̂w

Γ̂t

 =


a11 a17 0 a18

a17 a77 0 a78

0 0 a66 0

a18 a78 0 a88



v′0 +

1

2
(u′0)2 +

1

2
(w′0)2

φ′

φ′′

1

2
(φ′)2


, (3.3)

and bending-transverse shear elastic coupling,
M̂z

M̂x

Q̂x

Q̂z

 =


a22(y) a23(y) a24(y) a25(y)

a23(y) a33(y) a34(y) a35(y)

a24(y) a34(y) a44(y) a45(y)

a25(y) a35(y) a45(y) a55(y)



θ′z − w′0φ′ cosφ− u′0φ′ sinφ
θ′x + u′0φ

′ cosφ− w′0φ′ sinφ
θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ

 .

(3.4)

Note that, aij in Eq. (3.3) are independent of spanwise coordinate, i.e., aij(y) = apij . a
p
ij

is the stiffness coefficients describe in the local coordinate system (xp, y, zp). As for the
explicit expressions of aij(y) in Eq. (3.4), they are given in Appendix A.5. Note that,
ap23, ap24, ap35 and ap45, these four local stiffness quantities are all zero in the expressions
of aij(y).

Applying CUS lay-up configuration and being described in the rotating coordinate
system (x, y, z), Eq. (2.35) will be reduced as two actuating groups, viz., extension-

19
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Chapter 3. Active Control of Adaptive Pretwisted Rotating Blades

twist actuating coupling
T̃y(y, t)

M̃y(y, t)

B̃w(y, t)

Γ̃t(y, t)

 =


ATy2 ATy4

AMy
2 AMy

4

0 0

AΓt
2 AΓt

4


{
V2(t)

V4(t)

}
P (y), (3.5)

and bending-transverse shear actuating coupling
M̃z(y, t)

M̃x(y, t)

Q̃x(y, t)

Q̃z(y, t)

 =


AMx

1 sin β(y) AMz
3 cos β(y)

AMx
1 cos β(y) −AMz

3 sin β(y)

AQx1 cos β(y) AQz3 sin β(y)

−AQx1 sin β(y) AQz3 cos β(y)


{
V1(t)

V3(t)

}
P (y). (3.6)

3.2.2 Governing equations and boundary conditions

In this chapter we assume that the angular speed is constant, i.e., Λ̇ = Ω. In order
to study the eigen-frequencies of the rotating blade in a general may, a linear blade
structural dynamics model is derived. Note that, in order to capture the high rotating
speed induced effects, i.e., dynamic stiffening, tennis-racket effect, the nonlinear terms
that yield linear contributions should be kept. In view of physically evidence fact that
the blade is much stiffer in the longitudinal direction than in the flapping and lagging
ones, the effect of the axial inertia is much smaller than the others. Thus discarding
axial inertial term b1v̈0 and Coriolis effect term 2b1Ωv̇0 (which is negligibly small for
this particular blade orientation [24]), the direct integration of Eq. (2.28c) in conjunc-
tion with boundary condition at the free end, stipulating zero external forces (py = 0,
T̃y = 0) yields

Ty(y, t) ≈ −
∫ L

y

{
−b1Ω2(R0 + y + v0)

}
d y = b1Ω2R(y) =

ˆ̂
Ty(y, t), (3.7)

where double over-hat (̂̂·) denotes the force induced by dynamical (centrifugal) stiffen-
ing effect and

R(y) = R0(L− y) +
1

2
(L2 − y2). (3.8)

Note that, for high angular speed Ω, this dynamic stiffening effect will be significant and
should be included in the linear system. In addition, as concerns Eq. (2.28e) governing
the twist-extension motion, Γ̂t which plays the role of a torsional stiffness induced by
the centrifugal force field should also be considered [88],

ˆ̂
Γt = (b4 + b5)Ω2R(y). (3.9)

Taking Eqs. (3.3), (3.4), (3.5) and (3.6) into the governing equations and the associ-
ated boundary conditions (Eqs. (2.28)-(2.30)) in conjunction with Eqs. (3.7) and (3.9),
the system can be linearized in the CUS lay-up configuration. Actually the linear sys-
tem can be split into two subsystems, one governs the lateral bending-vertical bending
coupling motion (flap-lag) and the other governs the twist-extension coupling motion.
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3.2. Dynamical model

BB-subsystem (Lateral Bending-Vertical Bending coupling)

δu0 : [a24θ
′
z + a34θ

′
x + a44(u′0 + θz) + a45(w′0 + θx)]

′
+ px + b1Ω2[R(y)u′0]′

− b1[ü0 − 2Ωv̇0
::::

− Ω2u0] + δpP
′(y)

[
AQx1 V1 cos β +AQz3 V3 sin β

]
+ β′P (y)

[
−AQx1 V1 sin β +AQz3 V3 cos β

]
= 0,

(3.10a)

δw0 : [a25θ
′
z + a35θ

′
x + a45(u′0 + θz) + a55(w′0 + θx)]

′
+ b1Ω2[R(y)w′0]′

− b1ẅ0 + pz + δpP
′(y)

[
AQz3 V3 cos β −AQx1 V1 sin β

]
− β′P (y)

[
AQz3 V3 sin β +AQx1 V1 cos β

]
= 0,

(3.10b)

δθx :
[
a23θ

′
z + a33θ

′
x + a34(u′0 + θz) + a35(w′0 + θx)

]′ − [a25θ
′
z + a35θ

′
x

+ a45(u′0 + θz) + a55(w′0 + θx)
]

+mx − b4θ̈x − b6θ̈z − 2Ωb4φ̇
::::::

+ Ω2(b4θx + b6θz) + δpP
′(y)

[
AMx

1 V1 cos β −AMz
3 V3 sin β

]
+ P (y)

[
(−AMx

1 β′ +AQx1 )V1 sin β − (AMz
3 β′ +AQz3 )V3 cos β

]
= 0,

(3.10c)

δθz :
[
a22θ

′
z + a23θ

′
x + a24(u′0 + θz) + a25(w′0 + θx)

]′ − [a24θ
′
z + a34θ

′
x

+ a44(u′0 + θz) + a45(w′0 + θx)
]

+mz − b5θ̈z − b6θ̈x − 2Ωb6φ̇
::::::

+ Ω2(b5θz + b6θx) + δpP
′(y)

[
AMz

3 V3 cos β +AMx
1 V1 sin β

]
− P (y)

[
(AMz

3 β′ +AQz3 )V3 sin β − (AMx
1 β′ −AQx1 )V1 cos β

]
= 0,

(3.10d)

the boundary conditions are
at y = 0:

u0 = w0 = θx = θz = 0, (3.11)

and at y = L:

δu0 : a24(L)θ′z + a34(L)θ′x + a44(L)(u′0 + θz) + a45(L)(w′0 + θx)

+ δs

[
AQx1 V1 cos β(L) +AQz3 V3 sin β(L)

]
= Q̄x,

(3.12a)

δw0 : a25(L)θ′z + a35(L)θ′x + a45(L)(u′0 + θz) + a55(L)(w′0 + θx)

+ δs

[
AQz3 V3 cos β(L)−AQx1 V1 sin β(L)

]
= Q̄z,

(3.12b)

δθx : a23(L)θ′z + a33(L)θ′x + a34(L)(u′0 + θz) + a35(L)(w′0 + θx)

+ δs
[
AMx

1 V1 cos β(L)−AMz
3 V3 sin β(L)

]
= M̄x,

(3.12c)

δθz : a22(L)θ′z + a23(L)θ′x + a24(L)(u′0 + θz) + a25(L)(w′0 + θx)

+ δs
[
AMz

3 V3 cos β(L) +AMx
1 V1 sin β(L)

]
= M̄z.

(3.12d)
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Chapter 3. Active Control of Adaptive Pretwisted Rotating Blades

TE-subsystem (Twist-Extension coupling)

δv0 : a11v
′′
0 + a17φ

′′ + py + δpP
′(y)[ATy2 V2 +ATy4 V4]

− b1[v̈0 + 2Ωu̇0
:::::

− Ω2(R0 + y + v0)] = 0,
(3.13a)

δφ : a17v
′′
0 + a77φ

′′ − a66φ
(iv) +my + b′w + δpP

′(y)[AMy
2 V2 +AMy

4 V4]

− (b4 + b5)φ̈+ b10φ̈
′′ + 2Ω(b4θ̇x + b6θ̇z)

:::::::::::::::
+ Ω2 [b6 + (b4 − b5 − b6)φ]. . . . . . . . . . . . . . . . . . . . . . . . .

+ Ω2[(b4 + b5)R(y)φ′]′ − b10Ω2φ′′ = 0,

(3.13b)

the boundary conditions are
at y = 0:

v0 = φ = φ′ = 0, (3.14)

and at y = L:

δv0 : a11v
′
0 + a17φ

′ + δs[ATy2 V2 + ATy4 V4] = T̄y, (3.15a)

δφ : a17v
′
0 + a77φ

′ − a′′′66φ+ b10(φ̈′ − Ω2φ′) + δs[AMy
2 V2 + δsAMy

4 V4] = M̄y,

(3.15b)

δφ′ : a66φ
′′ = B̄w, (3.15c)

In these equations, the terms associated with (1) the centrifugal acceleration, (2) the
Coriolis, (3) the tennis-racket, (4) the centrifugal warping and (5) the centrifugal-
rotatory effects are underscored by (1) a solid line ( ), (2) a wavy line (

::::
),

(3) a dotted line ( . . . . .), (4) a dashed line ( ) and (5) two superposed solid lines

( ) respectively. More details about these high rotating speed induced effects can
be found e.g. in Refs. [40,47,88]. For the cases (a) the actuator is spread over the entire
beam span (b) the actuator is a single patch, the traces have to be taken as (a) δp = 0
and δs = 1 (b) δp = 1 and δs = 0, respectively. Note that, the two subsystems are
independent when Coriolis effects are discarded.

3.3 Solution methodology

3.3.1 The Extend Galerkin’s Method

The Extend Galerkin’s Method (EGM) [45, 70, 75] is applied to discretize the system
for numerical study. The underlying idea of EGM is to select weighting (or shape)
functions that exactly satisfy only the geometric boundary conditions (y = 0). The
terms arising as a result of the non-fulfillment of natural boundary conditions (y = L)
remain as residual terms in the energy functional itself, which are then minimized in
the Galerkin sense [44], thus yielding excellent accuracy and rapid convergence [70].
Let

u0(y, t) = ΨT
u (y)qu(t), v0(y, t) = ΨT

v (y)qv(t), w0(y, t) = ΨT
w(y)qw(t),

φ(y, t) = ΨT
φ (y)qφ(t), θx(y, t) = ΨT

x (y)qx(t), θz(y, t) = ΨT
z (y)qz(t),

(3.16)

22



i
i

“thesis” — 2017/12/13 — 17:19 — page 23 — #35 i
i

i
i

i
i

3.3. Solution methodology

where the shape functions ΨT
u (y), ΨT

v (y), ΨT
w(y), ΨT

φ (y), ΨT
x (y) and ΨT

z (y) are re-
quired to fulfill the geometric boundary conditions. Thus the discretized forms of the
BB- and TE-subsystems follow as

MB/T q̈B/T + [KB/T + Ω2K̂B/T ]qB/T +AB/TVB/T = QB/T , (3.17)

where
qB =

{
qTu qTw qTx qTz

}T
, qT =

{
qTv qTφ

}T
, (3.18)

VB =
{
V1 V3

}T
, VT =

{
V2 V4

}T
. (3.19)

The subscript B and T denote the matrix/vector of BB- and TE-subsystems, respec-
tively. The expressions for mass matrix MB/T , stiffness matrix KB/T , additional stiff-
ness matrix K̂B/T , actuating matrixAB/T and external excitation vector QB/T are given
in Appendix A.6.

3.3.2 Negative velocity feedback control

We assume the sensor can offer the velocity information at the beam span y = Ys,
then the actuating voltage vector VB/T for the negative velocity feedback control algo-
rithm [47, 63] can be rewritten as

VB =

{
V1

V3

}
=

{
−k1[−θ̇px(Ys, t)]
−k3[θ̇pz(Ys, t)]

}

=

{
k1[θ̇x(Ys, t) cos β + θ̇z(Ys, t) sin β]

−k3[−θ̇x(Ys, t) sin β + θ̇z(Ys, t) cos β]

}
= PB(Ys)q̇B(t),

(3.20)

VT =

{
V2

V4

}
=

{
−k2φ̇

p(Ys, t)

−k4φ̇
p(Ys, t)

}
=

{
−k2φ̇(Ys, t)

−k4φ̇(Ys, t)

}
= PT (Ys)q̇T (t), (3.21)

where, ki (i = 1, 2, 3, 4) are defined as feedback control gains. The expressions of con-
trol matrices PB/T are given in Appendix A.6. As a result, the closed-loop dicretized
system Eq. (3.17) becomes

MB/T q̈B/T (t) +AB/TPB/T q̇B/T (t) + [KB/T + Ω2K̂B/T ]qB/T (t) = QB/T (t). (3.22)

3.3.3 Linear Quadratic Regulator optimal control

One important target of the piezo-actuators is to suppress the vibration of the blade. To
achieve this target, linear quadratic regulator (LQR) optimal control based on the use
of a full state feedback scheme is adopted. Eq. (3.17) can be cast in state-space form as

ẋ(t) = Ax(t) + BQ(t)−BA1V1(t)−BA3V3(t) (3.23)

where,

x(t) =

[
qT (t)

q̇T (t)

]
, A =

[
0 I

−M−1K 0

]
, B =

{
0

M−1

}
. (3.24)
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Chapter 3. Active Control of Adaptive Pretwisted Rotating Blades

Note that the LQR control provides sort of a benchmark, an ideal optimal value which
cannot be obtained in practical applications because the state x is not available and
needs to be reconstructed using a state estimator that degrades the quality of the reg-
ulator. Within the LQR control algorithm, we minimize the cost function (both the
response of the closed-loop system and the control effort should be minimized simul-
taneously).

J =
1

2

∫ tf

t0

(
xTZx + ViRiVi

)
d t, (3.25)

where positive semidefinite matrix Z and positive definite scalar Ri denote the state
weighting matrix and the control weighting scalar, respectively, while t0 and tf denote
the present and the final time, respectively. Following Ref. [5], the weighting matri-
ces Z and Ri proper to a trade off between control effectiveness and control energy
consumption by taking

Z =

[
αK 0

0 βM

]
, Ri = ηiAi

TK−1Ai, (i = 1, 3) (3.26)

where α and β are weighting coefficients, (αβ ≥ 0 and (α + β) > 0), where ηi is a
positive scale factor. The matrix Z actually represents the sum of the system kinetic
and potential energies in the sense of

1

2

∫ tf

t0

xTZx d t =
1

2

∫ tf

t0

[
q̇TβMq̇ + qTαKq

]
d t. (3.27)

On the perspective of vibration suppression, it is reasonable to just consider the system
kinetic energy, i.e., weighting coefficients combination α = 0 and β = 1 is adopted in
the context. Thus, the LQR optimal feedback control law can be given as

Vi(t) = −Gix(t), (3.28)

where Gi is the optimal gain matrix,

Gi = −R−1Ai
TBTPi, (3.29)

while Pi is the positive-definite solution to the steady-state Riccati equation

Z + PiA + ATPi −RiPiBAiAi
TBTPi = 0. (3.30)

3.4 Model validations

The model validation is implemented on two aspects, viz., frequency and actuating
performance. At first, Table 3.1 compares the frequency predictions of an unpretwisted
rotating beam with the FEM results in Ref. [91] and the experimental data in Ref. [17],
showing good agreements. The geometry and material properties of the box beam used
in this validation are shown in Table 3.2.

Table 3.3 further compares the frequency predictions of a pretwisted and unrotating
beam. The characteristics of the beam are given as [47, p. 275]

ap22 = 487.9 N ·m2, ap33 = 2.26 N ·m2, ap44 = ap55 = 3.076× 106 N ·m2

ap25 = ap34 = 0, bp1 = 0.3447 kg/m, bp4 = 8.57× 10−8 kg ·m,
bp5 = 0.19× 10−4 kg ·m, bp6 = 0, L = 0.1524 m.
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3.5. Numerical study and discussion

The present displayed predictions are in good agreement with the results of Ref. [69].

Table 3.1: Frequencies at Ω = 1002 rpm for CUS lay-up configuration (Hz) a.

[75]6 [90/60]3
Mode Exp. [17] FEM [91] Present Exp. [17] FEM [91] Present

Flap 1 36.49 34.63 36.65 39.54 38.71 39.26
Lag 1 53.73 47.31 55.79 56.42 54.38 56.44
Flap 2 202.2 188.0 202.45 222.3 215.8 220.3

a γ0 = β0 = 0, Ω = 1002 rpm, R0 = 0

Table 3.2: Details of thin-walled composite box beam for validation [17]

E11 1.42× 1011 N/m
2 Density (ρ ) 1.442× 103 Kg/m

3

E22 = E33 9.8× 109 N/m
2 Width (2ba) 2.268× 10−2 m

G12 = G13 6.0× 109 N/m
2 Depth (2da) 1.212× 10−2 m

G23 4.83× 109 N/m
2 Number of layers (Nh) 6

µ12 = µ13 0.42 Layer thickness 1.270× 10−4 m
µ23 0.50 Length (L) 0.8446 m

a Inner dimensions of the cross section.

Table 3.3: Comparison of coupled flapping-lagging frequencies of a pretwisted beam a (Hz).

Mode 1BB 2BB 3BB 4BB
Ref. [69] 62.0 305.1 949.0 1206.1
Present 62.1 305.3 951.3 1209.2

a γ0 = 0, β0 = 45o, Ω = 0, R0 = 0

Next, a 1/16th scale blade with NACA 0012 airfoil cross-section of Fig. 3.4a is
used for actuating performance validation. Material properties of E-glass and AFC
layers are shown in Table 3.4. Fig. 3.4b plots the tip twist angle varying with applied
voltage, showing a good agreement with Ref. [23].

3.5 Numerical study and discussion

Material properties and geometric specifications of the host structure are shown in Ta-
ble 3.6. The piezo-actuator is manufactured by signal crystal MFC, whose material
properties are given in Table 3.4. We assume the piezo-actuators are spread over the
entire beam span and bonded outside the host structure. The lay-up configurations for
the host structure and the piezo-actuator are listed in Table 3.5. The sensor is located at
the beam tip, i.e., Ys = L.

3.5.1 Study of piezo-actuator coefficients

The piezo-actuator coefficients AXi appearing in Eqs. (3.5) and (3.6) are plotted as a
function of piezo-actuator ply-angle θp in Fig. 3.5. Note that, the piezo-actuator coef-
ficients appearing in BB- and TE-subsystems are indicated by solid and dashed lines,
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Figure 3.4: Validations of NACA 0012 airfoil

Table 3.4: Material properties of E-glass, AFC, and single crystal MFC (S-MFC)

Material property E-Glass [23] AFC [23] S-MFC [71]

E1 (Gpa) 14.8 30.54 6.23
E2 (Gpa) 13.6 16.11 11.08
G12 (Gpa) 1.9 5.5 2.01
µ12 0.19 0.36 0.229
d11 (×10−12 m/V) N/A 381 1896.5
d12 (×10−12 m/V) N/A -160 -838.2
ρ (Kg m−3) 1700 4810 5338.3
Thickness (×10−4 m) 2.032 1.689 17
Electrode spacing (×10−3 m) N/A 1.143 1.7

Table 3.5: CUS lay-up configurations (deg) a

Flanges Webs

Layer Material Top Bottom Left Right

CUS (7) Piezo-actuator [θp] [θp] [θp] [θp]
CUS (1-6) Host structure [θh]6 [θh]6 [θh]6 [θh]6

a θp and θh denote the ply-angles in piezo-actuator and host structure.

Table 3.6: Material properties (Graphite-Epoxy) and geometric specifications of the thin-walled box
beam

Material Value Geometric Value

E11 206.8× 109 N/m2 Width (2ba) 0.254 m
E22 = E33 5.17× 109 N/m2 Depth (2da) 0.0681 m
G12 = G13 2.55× 109 N/m2 Wall thickness (h) 0.0102 m
G23 3.10× 109 N/m2 Number of layers (Nh) 6
µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m
ρ 1.528× 103 Kg/m3 Length (L) 2.032 m

a The length is measured on the mid-line contour.
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3.5. Numerical study and discussion

respectively. Two distinct trends can be concluded in the results of Fig. 3.5. One includ-
ing bending coefficients (AMx

1 , AMz
3 ) 1 and extension coefficients (ATy2 , ATy4 ) shows a

symmetric dependence centered around θp = 90o. The other characterizing transverse
shear coefficients (AQx1 , AQz3 ) and twist coefficients (AMy

2 and AMy
4 ), instead, presents

an anti-symmetric trend. Moreover, their values equal to zero when θp = 0o, 90o, 180o,
and their maximum absolute values reached for θp ≈ 42, 138o.
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Figure 3.5: Damping ratios of BB-subsystem as a function of piezo-actuator ply-angle θp; k1 = k3 =
100, Ω = 0, γ0 = β0 = 0

3.5.2 Study of anisotropic characteristic of piezo-composite

BB-subsystem

Considering that the lateral bending-vertical bending elastic coupling has a significant
effect on flapping and lagging motions, the weak and strong elastic coupling cases
should be investigated separately. For an unpretwisted beam, the elastic coupling is
just related to stiffness coefficients a25 = ap25 and a34 = ap34 [75]. Fig. 3.6 depicts all
non-zero stiffness coefficients apij in BB-subsystem as a function of host ply-angle θh. It
can be seen that ap25 and ap34 are negligible during 0o < θh < 30o or 150o < θh < 180o.
Thus, θh = 15o and θh = 75o are selected to study the weak and strong elastic coupling
cases, respectively.

Figures 3.7a and 3.7b plot damping ratios of the first four modes as a function of
piezo-actuator ply-angle θp for the weak and strong elastic coupling cases, respectively.
The damping ratios in Figs. 3.7a and 3.7b follow the trend of coefficients (AMx

1 , AMz
3 )

in Fig. 3.5 and (AQx1 , AQz3 ) in Fig. 3.5, respectively. This implies that bending moment
actuation and transverse shear force actuation play the dominate role in weak and strong
elastic coupling cases, respectively. As a result, the optimum piezo-actuator ply-angle
for θh = 15o and θh = 75o cases are θp = 90o and θp = 130o, respectively.

TE-subsystem

Figure 3.8 depicts damping ratios of the first three twist modes as a function of θp for
selected two host structure cases, i.e., θh = 15o and θh = 75o. It can been seen that

1The reason forAMx
1 andAMz

3 exhibiting the opposite trends is the reverse definition of θx in Fig. 2.2.
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Figure 3.6: Stiffness coefficients apij as a function of host structure ply-angle θh in BB-subsystem; units:
ap22 (N ·m2), ap25 (N ·m), ap33 (N ·m2), ap34 (N ·m), ap44 (N) and ap55 (N).
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Figure 3.7: Damping ratios of BB-subsystem as a function of piezo-actuator ply-angle θp; k1 = k3 =
100, Ω = 0, γ0 = β0 = 0
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θp ≈ 135o yields the best twist control authority.
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Figure 3.8: Damping ratios of TE-subsystem as a function of piezo-actuator ply-angle θp; k2 = k4 = 10,
Ω = 0, γ0 = β0 = 0.

3.5.3 Study of host structure tailoring

BB-subsystem

Figure 3.9 plots frequencies of the first four modes of BB-subsystem as a function of
host ply-angle θh. According to the weak and strong elastic coupling cases, it is reason-
able to split the domain of θh into "Decoupling" and "Couping" two parts, see Fig. 3.9.
Note that, according to their mode shapes, the first four modes of BB-subsystem can
also be denoted as Flap1, Lag1, Flap2 and Lag2 for weak elastic coupling cases. How-
ever, there will be no pure flapping or lagging modes for strong elastic coupling cases.
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Figure 3.9: Frequencies of BB-subsystem as a function of host structure ply-angle θh; Ω = 0, γ0 =
β0 = 0.
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Damping ratios of the first four modes of BB-subsystem are highlighted in Fig. 3.10
for selected two piezo-actuator ply-angle cases, viz., θp = 90o (bending moment actu-
ation dominated) and θp = 130o (transverse shear force actuation dominated). It can
be seen that host ply-angle θh has a significant effect on damping ratios. θp = 90o

and θp = 130o would be the better choice for weak and strong elastic coupling cases,
respectively.
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Figure 3.10: Damping ratios of BB-subsystem as a function of host structure ply-angle θh; k1 = k3 =
100, Ω = 0, γ0 = β0 = 0

TE-subsystem

A typical extension mode cross phenomenon can be seen in Fig. 3.11, which depicts
frequencies of TE-subsystem as a function of θh. The results of Fig. 3.12a show that
host ply-angle θh has a significant effect on damping ratios of the twist modes. Note
that, the damping ratios change suddenly during the mode cross regions in Fig. 3.12a,
and this can be seen more clearly in Fig. 3.12b that depicts the damping ratios for
θp = 90o case. In θp = 90o case, the direct twist actuations (AMy

2 ,AMy
4 ) are immaterial.

Damping ratios of the twist modes are induced by the extension actuations (ATy2 , ATy4 )
via the twist-extension elastic coupling.

3.5.4 Study of rotor speed and presetting angle

BB-subsytem

Figures 3.13a plots frequencies of the first three modes of BB-subsystem as a func-
tion of rotating speed Ω for the weak elastic coupling case. Since centrifugal stiffening
effect is more significant in flapping modes than in lagging modes, a frequency cross-
ing of fundamental lagging and flapping modes can be seen in Fig. 3.13a for the un-
presetting beam (γ0 = 0). In addition, both in Figs. 3.13a and 3.13b, it can be found that
depending on the flapping and lagging modes, the increase of presetting angle γ0 yields
either an enhance or weaken effect on centrifugal stiffening effect, respectively. The
results of Fig. 3.14 present that with the increase of Ω, damping ratios of the flapping
modes decrease more significantly than the lagging mode does.

For the strong elastic coupling case, frequencies and damping ratios of the first three
modes are shown in Figs. 3.15 and 3.16a, respectively. Since the elastic coupling will
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Figure 3.11: Frequencies of TE-subsystem as a function of host structure ply-angle θh; Ω = 0, γ0 =
β0 = 0
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Figure 3.12: Damping ratios of TE-subsystem as a function of host structure ply-angle θh; k2 = k4 =
10, Ω = 0, γ0 = β0 = 0.
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Figure 3.13: Frequencies of BB-subsystem vs. rotating speed and presetting angle for selected presetting
angles γ0; θh = 15o, θp = 90o, k1 = k3 = 100, R0 = 0.1L.
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Figure 3.14: Damping ratios of BB-subsystem vs. rotating speed Ω for selected presetting angles γ0;
θh = 15o, θp = 90o, k1 = k3 = 100, R0 = 0.1L.
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3.5. Numerical study and discussion

be further enhanced by the centrifugal stiffening effect, in Fig. 3.15, there is no typical
flapping-lagging frequency crossing phenomenon as shown in Fig. 3.13a. During the
region near Ω ≈ 500 rad/s, the frequencies of 1BB and 2BB modes are very close
but not cross for the un-presetting beam (γ0 = 0). And their damping ratios present
sudden changes during this region, see Fig. 3.16a. The influence of presetting angle γ0

on the damping ratios for the strong elastic coupling case can be seen more clearly in
Fig. 3.16b.

0 100 200 300 400 500 600

Rotating speed  (rad/s)

0

50

100

150

200

250

300

F
re

q
u
e
n
c
y
 (

H
z
)

0
=0o

0
=45o

0
=90o

1BB

2BB

3BB

Figure 3.15: Frequencies of BB-subsystem vs. rotating speed Ω for selected presetting angles γ0; θh =
75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.
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Figure 3.16: Damping ratios of BB-subsystem vs. rotating speed and presetting angle; θh = 75o,
θp = 130o, k1 = k3 = 100, R0 = 0.1L.

TE-subsystem

Figures. 3.17a and 3.17b plot frequencies and damping ratios of the first three twist
modes as a function of Ω, respectively. The additional torsional stiffness induced by
centrifugal force yields an increase of frequency in Fig. 3.17a and a decrease of damp-
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ing ratio in Fig. 3.17b. Since the increase of presetting angle γ0 will yield an increase of
the softening tennis-racket term, the fundamental twist frequency exhibits a significant
decrease in Fig. 3.18a. However this destiffening effect is immaterial for higher twist
modes. This conclusion can also be identified in Fig. 3.18b, which highlights the influ-
ence of γ0 on the twist damping ratios. In Fig. 3.18b, with the increase of γ0, damping
ratio of the fundamental twist mode increases until γ0 ≈ 75o, then slightly decreases.
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Figure 3.17: Rotating speed Ω influence of TE-subsystem for selected presetting angles γ0; θh = 75o,
θp = 130o, k2 = k4 = 10, R0 = 0.1L.
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Figure 3.18: Presetting angle γ0 influence of TE-subsystem for selected presetting angles γ0; θh = 75o,
θp = 130o, k2 = k4 = 10, R0 = 0.1L.

3.5.5 Study of pretwist angle

In order to model helicopter and tilt rotor blades, a special case of Eq. (3.2) is assumed,

β(y) = β0 − β0y/L. (3.31)

This will make the pretwist angle at the beam tip equal to zero, i.e., β(L) = 0.
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3.6. LQR control for BB-subsystem

BB-subsystem

For fiber-reinforced blades, pretwist angle will make flapping and lagging motions cou-
pled strongly, thus we just consider θh = 75o this case here. Fig. 3.19 depicts frequen-
cies of the first three modes of BB-subsystem as a function of pretwist angle β0. For the
unrotating case, the fundamental frequency (1BB) is not sensitive to pretwist angle β0.
However it decreases significantly with the increase of β0 for the high speed rotating
case (Ω = 600 rad/s).
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Figure 3.19: Frequencies of BB-subsystem vs. pretwist angle β0 for selected rotating speeds Ω; θh =
75o, θp = 130o, k1 = k3 = 100, R0 = 0.1L.

In order to study the relationship between damping ratios and pretwist angle β0, two
piezo-actuator cases, i.e., θp = 130o (transverse shear force actuation dominated) in
Fig. 3.20a and θp = 90o (bending moment actuation dominated) in Fig. 3.20b are con-
sidered. According to the previous discussion, we know for the strong elastic coupling
case, transverse shear force actuation is more efficient than bending moment actuation
when the beam is unpretwisted. However for a pretwisted beam, transverse shear force
actuation may lose control for 2BB mode, and even induce a negative damping ratio
for the high speed rotating case, see Fig. 3.20a. On the other hand, bending moment
actuation can guarantee the balanced positive damping ratios for an arbitrary pretwisted
angle β0, see Fig. 3.20b.

TE-subsystem

The influence of pretwist angle β0 on frequencies and damping ratios of the twist modes
are illustrated in Figs. 3.21a and 3.21b, respectively. It can be seen the influences of β0

are negligible both in Figs. 3.21a and 3.21b.

3.6 LQR control for BB-subsystem

3.6.1 Study of damping ratios

Recalling the LQR control methodology, the control authority is solely related to con-
trol weighing factor ηi. Figs. 3.22a and 3.22b plot damping ratios of the first four modes
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Figure 3.20: Damping ratios of the first three modes of BB-subsystem vs. pretwist angle β0 for selected
rotating speeds Ω; θh = 75o, k1 = k3 = 100, R0 = 0.1L.
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Figure 3.21: Pretwist angle β0 influence of TE-subsystem for selected rotating speeds Ω; θh = 75o,
θp = 130o, k2 = k4 = 10, R0 = 0.1L.
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as a function of ηi. It can be found damping ratios decrease with the increase of ηi.
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Figure 3.22: Damping ratios of the first four modes versus control weighting factor; β0 = 0o, θh = 90o,
θFp = 80o

For θh = 90o case that the flapwise bending and chordwise bending are elastically
decoupled, damping ratios of the first four modes plotted as a function of ply-angle
are shown in Figs. 3.23a and 3.23b. In addition, the non-shear-actuation and non-
bending-actuation points are indicated by black and red dots, respectively. Accord-
ing to mode shapes study, the 1st and 3rd are flapwise bending modes, while the 2nd
and 4th are chordwise bending modes. The result of Fig. 3.23a presents that flange-
actuator-pair can control chordwise bending modes by piezoelectrically induced chord-
wise transverse shear AQx1 while control flapwise bending modes by AMx

1 . Note that,
AQx1 will offer a robust control authority on chordwise bending modes in the domain
10o < θFp < 70o or 110o < θFp < 170o. Similar results can also be concluded for
web-actuator-pair in Fig. 3.23b.
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Figure 3.23: Damping ratios of the first four modess versus actuator-pair ply-angle θp; θh = 90o,
η1 = η3 = 600, β0 = 0o
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Chapter 3. Active Control of Adaptive Pretwisted Rotating Blades

For the strong elastic couping case θp = 75o, Figs. 3.24a and 3.24b plot damping
ratios of the first four modes as a function of flange-actuator-pair ply-angle θFp and web-
actuator-pair ply-angel θWp , respectively. It can be found that the variations of damping
ratios are complicated in Figs. 3.24a and 3.24b. In Fig. 3.24a, the flange-actuator-pair
induced transverse shear force (indicated in red dots) or bending moment (indicated in
black dots) can both control the flapwise and chordwise bending modes individually
via elastic coupling. However in Fig. 3.24b, the influence of elastic coupling on web-
actuator-pair control effect is not as significant as on that of flange-actuator-pair. In
general, in the domain of 60o < θp < 90o, the damping ratios vary sharply, while the
variations are relatively slow in the domain of 90o < θp < 150o. We denote the last
domain as the robust ply-angle domain.
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Figure 3.24: Damping ratios of the first four modess versus actuator-pair ply-angle θp; θh = 75o,
η1 = η3 = 600, β0 = 0o

Due to the pretwist angle, the chordwise and flapwise bending modes of the system
will be always coupled each other. Figs. 3.25a and 3.25b present damping ratios of
a pretwisted rotary thin-walled beam. Compared Fig. 3.25a with 3.24a, the variations
of damping ratios induced by flange-actuator-pair show the similarity. The significant
influence of pretwisted angle can be seen on the 2nd mode which is indicated by dashed
line. The variation similarity of damping ratios induced by web-actuator-pair can also
be found in Figs. 3.25b and 3.24b. The significant influence of pretwist angle can be
observed on the 3rd and 4th modes.

Figures 3.26 and 3.27 further highlight influence of pretwist angle on damping ratios
induced by pure piezoelectric bending moment (θp = 90o) and transverse shear force
(θp = 129o).

3.6.2 Dynamical simulation

A pretwisted rotary blade with strong elastic couplings is considered in this dynamic
simulation. Piezo-actuator with θp = 135o is implemented for the reason that on one
hand this ply-angle is in the robust ply-angle domain, on the other hand it can yield
a significant piezoelectrically induced torque on twist motion. Note that in the actual
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3.6. LQR control for BB-subsystem

0 30 60 90 120 150 180

Flange-actuator-pair ply-angle F
p
 (deg)

0

0.004

0.008

0.012

0.016

D
a
m

p
in

g
 r

a
ti
o

1st mode

2nd mode

3rd mode

4th mode

(a) Flange-actuator-pair

0 30 60 90 120 150 180

Web-actuator-pair ply-angle W
p

 (deg)

0

0.003

0.006

0.009

0.012

0.015

0.018

D
a
m

p
in

g
 r

a
ti
o

1st mode

2nd mode

3rd mode

4th mode

(b) Web-actuator-pair

Figure 3.25: Damping ratios of the first four modess versus actuator-pair ply-angle θp; θh = 75o,
η1 = η3 = 600, β0 = 45o
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Figure 3.26: Damping ratios of the first four modes versus pretwist angle β0; θh = 75o, η1 = η3 = 600,
θFp = 90o for flapwise bending, θFp = 129o for chordwise transverse shear
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Figure 3.27: Damping ratios of the first four modes versus pretwist angle β0; θh = 75o, η1 = η3 = 600,
θWp = 90o for chrodwise bending, θWp = 129o for flapwise transverse shear

simulations, the first seven structural modes are used. The dynamic responses of the
blade tip under the impulse load are presented in Fig.s 3.28a and 3.28b. The associate
voltage parameters are shown in Fig. 3.28c. In order to make the output value of volt-
age V1 and V3 at the same level (see Fig. 3.28c), the control weighting factors η1 = 600
and η3 = 24000 are adopted. It can be found that flange-actuator-pair present signifi-
cant better control effect than that of web-actuator-pair no matter on lateral or vertical
directions.
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Figure 3.28: Beam tip response to impulse load; px = pz = 10 N·m−1, θh = 75o, θp = 135o, β0 = 60o
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CHAPTER4
Active Control of Adaptive Rotating Hub-Beam

Multibody System

4.1 Introduction

In this chapter, modeling and control of an adaptive rigid hub and flexible beam multi-
body system are implemented. The beam structure is modeled as a fiber-reinforced
thin-walled composite beam with a typical rectangular cross-section, see Fig. 4.1. The
adaptive capabilities are provided by the anisotropic piezo-actuators embedded into the
structure. The hub-beam multibody model we developed here can serve as the basic
model of adaptive flexible spacecraft. The main target of the adaptive capabilities of
the system is to suppress the residual vibration during attitude maneuvers. Based on
the linear quadratic regular (LQR) control methodology, the influences of lay-up con-
figuration on control authority of vibration suppression are investigated.
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Figure 4.1: Hub-beam multibody system
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Chapter 4. Active Control of Adaptive Rotating Hub-Beam Multibody System

4.2 Dynamical model

The dynamical model is based on the geometrically nonlinear thin-walled beam theory
developed in Chapter 2. According to the governing equations (2.28) and the associated
boundary conditions (2.29) and (2.30), in general, the seven degrees of freedom of the
hub-beam system are fully coupled. In engineering applications, special lay-up config-
urations (e.g., cross-ply, CAS and CUS [75]) are usually adopted to design particular
couplings meeting different working environment. Here circumferentially asymmetric
stiffness (CAS) lay-up configuration (both for host structure θh and piezo-actuator θp)
is considered.

For the thin-walled beam with rectangular cross-section as shown in Fig. 5.1, a CAS
configuration implies the ply-angle distribution θ(z) = θ(z) of the top and bottom walls
and θ(x) = θ(x) of the left and right walls, see Fig. 4.2. For a circumferential asym-
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Figure 4.2: CAS lay-up configuration

metric stiffness (CAS) lay-up configuration the stiffness matrix [aij] can be decoupled
into two types of elastic coupling, viz, extension-transverse shear

T̂y

Q̂x

Q̂z

Γ̂t

 =


a11 a14 a15 a18

a14 a44 0 a48

a15 0 a55 0

a18 a48 0 a88



v′0 +

1

2
(u′0)2 +

1

2
(w′0)2

θz + u′0 cosφ− w′0 sinφ

θx + u′0 sinφ+ w′0 cosφ
1

2
(φ′)2


, (4.1a)

and bending-twist coupling,
M̂z

M̂x

B̂w

M̂y

 =


a22 0 0 0

0 a33 0 a37

0 0 a66 0

0 a37 0 a77



θ′z − w′0φ′ cosφ− u′0φ′ sinφ
θ′x + u′0φ

′ cosφ− w′0φ′ sinφ
φ′′

φ′

 , (4.1b)

the stiffness coefficient a15 is equal to zero for balanced lay-ups on the left and right
beam spars.
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4.2. Dynamical model

If the piezo-composite actuators are distributed in CAS configuration, Eq. (2.35) can
be split in two, viz., extension-transverse coupling

T̃y(y, t)

Q̃x(y, t)

Q̃z(y, t)

Γ̃t(y, t)

 =


ATy2 ATy4

AQx2 0

0 AQz4

AΓt
2 AΓt

4


{
V2(t)

V4(t)

}
P (y), (4.2a)

and bending-twist coupling
M̃z(y, t)

M̃x(y, t)

B̃w(y, t)

M̃y(y, t)

 =


0 AMz

3

AMx
1 0

0 0

AMy
1 AMy

3


{
V1(t)

V3(t)

}
P (y). (4.2b)

As a result, taking Eqs. (4.1), (4.2) and (3.7), (3.9) into the governing equations 2.28
in conjunction with the boundary conditions 2.30, approximating the trigonometric
functions with their Taylor series expansion (sinφ ≈ φ and cosφ ≈ 1), and drop-
ping other nonlinear terms induced by beam deformation, the system can be split into
two subsystems, one governs the hub, beam chordwise bending and extension coupling
motion and the other governs the beam flapwise bending and twist coupling motion.
The governing equations of the two subsystems are expressed as,

Hub-beam subsystem (Λ− u0 − v0 − θz)

δΛ : JHΛ̈ +

∫ L

0

{
Λ̈
[
b1(R0 + y)2 + b5

]
− b1(R0 + y)ü0 + (b5 + b15)θ̈z

+ 2Λ̇b1(R0 + y)v̇0

}
d y = τΛ,

(4.3a)

δu0 : a14v
′′
0 + a44(u′′0 + θ′z) + px + δpAQx2 V2P

′
2(y)

− b1

[
ü0 − Λ̈(R0 + y)− 2Λ̇v̇0

::::
− Λ̇2u0

]
+ b1Λ̇2[R(y)u′0]′ = 0,

(4.3b)

δv0 : a11v
′′
0 + a14(u′′0 + θ′z) + py + δpATy2 V2P

′
2(y)

+ δpATy4 V4P
′
2(y)− b1

[
v̈0 − 2Λ̇u̇0

:::::
+ Λ̇2(R0 + y + v0)

]
= 0,

(4.3c)

δθz : a22θ
′′
z − a14v

′
0 + a44(u′0 + θz) +mz + δpAMz

3 V3P
′
1(y)

−AQx2 V2P2(y)− (b5 + b15)
[
θ̈z + Λ̈− Λ̇2θz

]
= 0,

(4.3d)

while the associated boundary conditions are
at y = 0,

u0(0) = v0(0) = θz(0) = 0, (4.4)
and at y = L,

δu0 : a14v
′
0(L) + a44(u′0(L) + θz(L)) + δsAQx2 V2 = 0, (4.5a)

δv0 : a11v
′
0(L) + a14(u′0(L) + θz(L)) + δsATy2 V2 + δsATy4 V4 = 0, (4.5b)

δθz : a22θ
′
z(L) + δsAMz

3 V3 = 0. (4.5c)
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Beam subsystem (w0 − φ− θx)

δw0 : a55(w′′0 + θ′x)− b1ẅ0 + δpAQz4 V4P
′
2(y) + pz + b1Λ̇2[R(y)w′0]′ = 0, (4.6a)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) +my + b′w + δpAMy

1 V1P
′
1(y) + δpAMy

3 V3P
′
1(y)

− (b4 + b5)φ̈+ Λ̈b4θx + 2Λ̇b4θ̇x
::::::

+ Λ̇2(b4 − b5)φ. . . . . . . . . . . . . + (b4 + b5)Λ̇2[R(y)φ′]′

+ (b10 + b18)(φ̈′′ − Λ̇2φ′′) = 0,

(4.6b)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx) +mx + δpAMx
1 V1P

′
1(y)

−AQz4 V4P2(y)− 2Λ̇b4φ̇
::::::

− (b4 + b14)(θ̈x + φΛ̈− Λ̇2θx) = 0,
(4.6c)

the associated boundary conditions
at y = 0,

w0 = φ = φ′ = θx = 0, (4.7)

and at y = L,

δw0 : a55(w′0 + θx) + δsAQz4 V4 = 0, (4.8a)

δφ : a37θ
′
x + a77φ

′ − a′′′66φ+ (b10 + b18)φ̈′ + δsAMy
1 V1 + δsAMy

3 V3 = 0, (4.8b)

δφ′ : a66φ
′′ = B̄w, (4.8c)

δθx : a33θ
′
x + a37φ

′ + δsAMx
1 V1 = 0, (4.8d)

If the actuator is spread over the entire beam span, the traces are δp = 0 and δs = 1;
otherwise, if the actuator is a single patch, the traces assume the values δp = 1 and
δs = 0.

Note that the two subsystems are actuated coupled via web-actuator-pair (voltage
parameters V3 and V4). However, reported in Ref. [97], these coupling effects are im-
material in most cases and it is reasonable to treat these two subsystems as independent.

web-actuator-pair

V =(V -V )/23 L R

V1 T B=(V -V )/2
V2 T B=(V +V )/2

V4 L R=(V +V )/2

x
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(w )0
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(v )0
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(u )0
Fiber-refinforced

Piezo-composite

Figure 4.3: Actuator-pairs bounded on the thin-walled box beam
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4.3. Discretization via the Extend Galerkin’s Method

4.3 Discretization via the Extend Galerkin’s Method

For numerical study, the Extend Galerkin’s Method (EGM) [45,70] is used to discretize
the system. In this chapter, we just focus on control of the hub-beam subsystem. Let

u0(y, t) = ΨT
u (y)qu(t), v0(y, t) = ΨT

v (y)qv(t), θz(y, t) = ΨT
z (y)qz(t), (4.9)

where the shape functions ΨT
u (y), ΨT

v (y) and ΨT
z (y) are required to fulfill only the

essential boundary conditions, while qu(t), qv(t) and qz(t) are N × 1 generalized dis-
placement vectors. Equations (4.3) and (4.5) lead to the following discretized equations
of motion, [

JH +MΛ MΛq

MT
Λq M

]{
Λ̈

q̈

}
+ 2Λ̇

[
0 GΛq

0 G

]{
Λ̇

q̇

}

+ Λ̇2

[
0 0

0 C

]{
Λ

q

}
+

[
0 0

0 K

]{
Λ

q

}
+

{
01×3

A

}
V =

{
τΛ

Q

}
,

(4.10)

where
q =

{
qTu qTv qTz

}T
, V =

{
V2 V3 V4

}T
. (4.11)

The rotary inertia of thin-walled beam MΛ is given as

MΛ =

∫ L

0

{
b1(R0 + y)2 + b5

}
d y. (4.12)

As for matrices of hub-beam inertia coupling MΛq, beam mass M, gyroscopic effect
GΛq, beam Corilos effect G, beam centrifugal stiffening C, beam stiffness K, and
additional excitation Q, their expressions are given in Appendix A.8.

4.3.1 Dynamic model in non-inertial system

For dynamic problem of flexible hub-beam system in non-inertial system, the law of
hub motion is usually assumed known and need not be solved. Thus dynamical model
in non-inertial system can be obtained by neglecting the equations of hub in Eq. (4.10),

Mq̈ + 2Λ̇Gq̇ + (K + Λ̇2C)q +AV = Q. (4.13)

Note that, for the constant rotating speed case, the thin-walled beam system (4.13) is
linear in natural.

4.3.2 Simplified linear model and controller design

For the low rotating speed case, the Coriolis and centrifugal effects are immaterial, thus
the nonlinear flexible hub-beam system 4.10 can be reduced to the linear one,[

JH +MΛ MΛq

MT
Λq M

]{
Λ̈

q̈

}
+

[
0 0

0 K

]{
Λ

q

}
+

{
0

A

}
V =

{
τΛ

Q

}
. (4.14)

In order to suppress the vibration of the flexible thin-walled beam via the piezo-
actuators, linear quadratic regular concept (LQR) that based on the use of a full state
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feedback scheme is adopted. In state-space form, Eq. (4.14) becomes

ẋ(t) = Ax(t) + B

{
τΛ(t)

Q(t)

}
+
[
W2 W3 W4

]
V2(t)

V3(t)

V4(t)

 , (4.15)

where
x(t) = {Λ,qT (t), Λ̇, q̇T (t)}T , (4.16a)

A =

 0(N+1)×(N+1) I(N+1)×(N+1)

−
[
JH +MΛ MΛq

MT
Λq M

]−1 [
0 0

0 K

]
0(N+1)×(N+1)

 , (4.16b)

B =


0(N+1)×1[

JH +MΛ MΛq

MT
Λq M

]−1

 , (4.16c)

Wi =


0(N+1)×1

−
[
JH +MΛ MΛq

MT
Λq M

]−1 [
0

Ai

] (i = 2, 3, 4), (4.16d)

In engineering applications, active control via piezo-actuators embedded in the host
structure of the thin-walled beam is normally used to suppress the vibration during hub
motions. In other words, the major target of LQR control algorithm applied on the sys-
tem (4.14) is to eliminate the residual vibrations on transverse direction, viz., making
u̇0 = 0 or θ̇z = 0. Recalling governing equations of hub-beam system (4.3), voltage
parameter V4 is solely related to piezoelectrically induced extension T̃y. Although ad-
ditional transverse response can be induced by extension T̃y via extension-transverse
elastic coupling, indicated in Ref. [97], it is immaterial due to the high extensional
stiffness for fiber-reinforced thin-walled beam. Thus we can omit the control terms as-
sociated to V4 in Eq. (4.14). In addition, although voltage parameter V2 is related both
to extension T̃y and transverse shear Q̃x, Q̃x will play the dominate role in transverse
vibration suppression [97]. As for V3, it is just related to bending M̃z. Thus the con-
troller of the hub-beam system can be split into two independent parts, i.e., transverse
shear actuation offered by flange-actuator-pair (V2) and bending actuation offered by
web-actuator-pair (V3).

Within the linear quadratic regulator control algorithm, we minimize the cost func-
tion (both the response of the closed-loop system and the control effort should be min-
imized simultaneously) for each control methodology.

J =
1

2

∫ tf

t0

(
x̄TZx̄ + V T

i RiVi
)

d t, (4.17)

where the reduced beam state x̄ is given as x̄ = {qT , q̇T}T . The positive semidefinite
matrix Z and positive definite symmetric matrix R denote the state weighting matrix
and the control weighting matrix, respectively. According to [5], the weighting ma-
trices Z and R proper to a trade off between control effectiveness and control energy

48



i
i

“thesis” — 2017/12/13 — 17:19 — page 49 — #61 i
i

i
i

i
i

4.4. Numerical study

consumption by taking

Z =

[
αK 0

0 βM

]
, Ri = ηAi

TK−1Ai, (4.18)

where α and β are weighting coefficients, (αβ ≥ 0 and (α + β) > 0), where η a scale
factor. Actually, the matrix Z represents the combination of the thin-wall beam kinetic
and potential energies in the sense of

1

2

∫ tf

t0

x̄TZx̄ d t =
1

2

∫ tf

t0

[
βq̇TMq̇ + αqTKq

]
d t. (4.19)

For the problem of vibration suppression, it is reasonable to just consider the beam
kinetic energy, i.e., weighting coefficients combination α = 0 and β = 1 is adopted in
this chapter.

Thus the optimal feedback control law is given by

Vi(t) = −Gix̄(t), (4.20)

where Gi is the optimal gain matrix,

Gi = R−1Wi
TPi, (4.21)

while Pi is the positive-definite solution to the steady-state Riccati equation

Z + PiĀ + ĀTPi −PiWiRi
−1Wi

TPi = 0, (4.22)

where the reduced matrix Ā is

Ā =

[
0N×N IN×N

−M−1K 0N×N

]
. (4.23)

Solution of the Riccati equations yields the control law which depends only on α, β
and the structural mass, stiffness and centrifugal force matrices.

4.4 Numerical study

4.4.1 Model validation

Since the main part of the model validations have been implemented in the previous
chapters, here we just validate the rotation induced dynamics stiffness effect for CAS
lay-up configuration. The material property and geometry of the thin-walled box beam
for validation are shown in Table 4.1. The details of the CAS lay-up configuration
are given in Table. 4.2. Table 4.3 illustrates the eigen-frequencies of the rotating thin-
walled beam (4.13) for selected constant rotating speeds. It can be found that our
predicted frequencies have good agreements with those of experiment and FEM results.
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Table 4.1: Material property and geometry of the thin-walled box beam for validation [17]

E11 1.42× 1011 N/m
2 Density (ρ ) 1.442× 103 Kg/m

3

E22 = E33 9.8× 109 N/m
2 Width (2ba) 2.268× 10−2 m

G12 = G13 6.0× 109 N/m
2 Depth (2da) 1.212× 10−2 m

G23 4.83× 109 N/m
2 Number of layers (Nh) 6

µ12 = µ13 0.42 Layer thickness 1.270× 10−4 m
µ23 0.50 Length (L) 0.8446 m

a Inner dimensions of the cross section.

Table 4.2: CAS lay-up configurations for thin-walled box beama

Flanges Webs

Material Top Bottom Left Right

Host structure [θh]6 [θh]6 [θh/− θh]3 [θh/− θh]3
Piezo-actuatorb [θFp ] [θFp ] [θWp ] [θWp ]

a θh, θFp and θWp denote the ply-angle for host structure, flange-actuator-pair and web-actuator-pair,
respectively.

b The piezo-actuators are assumed positioned of the outer side of the laminate if they are adopted.

Table 4.3: Frequencies validation for rotating thin-walled beam with CAS lay-up configuration θh =
45◦.

Speed Mode Exp. [17] FEM [1,4] Present

0rpm 1st 16.67 14.69 15.19
2nd 96.15 92.02 95.04

1008rpm 1st 25.63 23.48 24.22
2nd 118.3 102.1 108.2

Table 4.4: Material property and geometric specification of the thin-walled beam with a rectangular
cross-section [97]

Material Value Geometric Value

E11 206.8× 109 N ·m−2 Width (2ba) 0.254 m
E22 = E33 5.17× 109 N ·m−2 Depth (2da) 0.0681 m
G13 = G23 2.55× 109 N ·m−2 Wall thickness (h) 0.0102 m
G12 3.10× 109 N ·m−2 Number of layers (mh) 6
µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m
ρ 1528 Kg ·m−3 Length (L) 4.064 m

a The length is measured on the mid-line contour.

Table 4.5: Material properties of piezo-actuator manufactured by MFC [71]

E11 31.2.8× 109 N ·m−2 d11 386.63× 10−12 m ·V−1
E22 = E33

∗ 17.05× 109 N ·m−2 d12 = d13
∗ −175.50× 10−12 m ·V−1

G12 = G13
∗ = G23

∗ 5.12× 109 N ·m−2 ρ 5115.9 Kg ·m−3
µ12 = µ13

∗ = µ23
∗ 0.303 mp 1

Electrode spacing 0.0017 m Thickness 0.0017 m
∗ The value is assumed by the author.
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4.4. Numerical study

4.4.2 Dynamic simulation

The material property and the geometric specification of the beam host structure used
in simulation are shown in Table 4.4. While the material property of piezo-actuators are
given in Table 4.5. We assume the piezo-actuators are spread over the entire beam span
unless other stated. The lay-up configurations of the thin-walled beam are specified in
Table 4.2.

Before the simulation, it is essential to identify the suitable host structure ply-angle
θh, flange-actuator-pair ply-angle θFp and web-actuator-pair ply-angle θWp . The rela-
tionship between stiffness coefficients aij and host structure ply-angle θh has been dis-
cussed in Ref. [98]. According to the results of Ref. [98], θh = 75◦ will induce a strong
flapwise bending-twist elastic coupling that is beneficial for the dynamical response of
the beam subsystem. Figs. 4.4a and 4.4b depict piezo-actuator coefficients of hub-beam
subsystem, viz., AQx2 and AMz

3 , respectively. It can be found that host-structure con-
figuration has a significant effect on piezo-actuators. For flange-actuator-pair induced
chordwise transverse shear AQx2 in Fig. 4.4a, θFp ≈ 135◦ will reach the maximum ab-
solve value for θh = 75◦ case. While for web-actuator-pair induced flapwise bending
AMz

3 , generally, the maximum absolute value exists at θWp = 90◦. As a result, without
other stated, the combination θh = 75◦, θFp = 135◦ and θWp = 75◦ is adopted for the
hub-beam subsystem in the simulation.
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Figure 4.4: Piezo=actuator coefficients

In order to simulate the hub-beam system undergoing a rest-to-rest motion [85] that
is widely used in spacecraft attitude maneuver, the optimal Bang-off-Bang switched
rotating torque as shown in Fig. 4.5a is applied on the hub. Note that, the first 7 modes
of the thin-walled beam are used in the simulation. And the LQR control parameters
η2 = 300 and η3 = 3000 are adopted in default.

In engineering application, the rotary inertia of hub JH is usually a variable parame-
ter. For example, as the basic model of satellite, JH will decrease with the consumption
of fuel for attitude maneuver. Thus the following nondimensional parameter is defined
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for the simple description of JH ,

ηhub =
JH∫ L

0
[b1(R0 + y)2 + b5] d y

, (4.24)

where the denominator term denotes the rotary inertia of the beam. Fig. 4.5b highlights
the influence of JH on hub angular displacement during the rest-to-rest motion. The
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Figure 4.5: Time history of external torque and angular displacement

influence of JH on active vibration suppression is further highlighted in Fig. 4.6, which
plots damping ratios of the first three modes of the hub-beam system as a function of
ηhub. In addition, the result of Fig. 4.6 illustrates that flange-actuator-pair induced shear
control will offer the balanced damping performance for all three modes, however web-
actuator-pair induced bending control will just have a significant damping effect on the
first mode.

Figures 4.7a and 4.7b depict the associated displacement and velocity responses of
the beam tip under the LQR vibration suppression control during the attitude maneu-
ver, respectively. It can be found that bending control and shear control have similar
control authority on chordwise vibration suppression. Fig. 4.8a further depicts the as-
sociated time history of angular velocity. The applied voltages history are illustrated
in Fig. 4.8b. The result of Fig. 4.8b presents that the maximum value of voltage V3

is about twice that of V2, which implies shear control is more efficient than bending
control in our case. Actually host structure configuration has a noticeable influence on
damping performance of transverse shear control, see Fig. 4.9. On the other hand, the
result of Fig. 4.9 shows that the influence of host structure on bending control induced
damping ratios is immaterial.
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CHAPTER5
Modeling and Control of Piezo-actuated Wings

5.1 Introduction

Problems related to mathematical modeling and optimal dynamic control of adaptive
aircraft wings modeled as composite thin-walled structures are considered. Some non-
classical effects such as warping inhibition and three-dimensional (3-D) strain are ac-
counted for in the beam model. The adaptive capabilities are provided by the actua-
tors manufactured by anisotropic piezo-composite layers embedded into the structure.
The Extended Galerkin’s Method is used for the numerical study. A negative velocity
feedback control algorithm and the linear quadratic regulator (LQR) feedback control
strategy are adopted to control the aircraft wing response. The effective damping per-
formance is optimized by studying anisotropic characteristics of piezo-composite and
elastic tailoring of the fiber-reinforced host structure. The relations between active vi-
bration control effect and design factors, such as the size and position of piezo-actuator
are investigated in detailed.

5.2 Dynamical model

The advanced aircraft wing is modeled as an adaptive composite thin-walled beam
which is developed in Chapter 2. In order to model the fixed wing structure, we ignore
the associated rotating terms in governing equations (2.28). A typical circumferential
asymmetric stiffness (CAS) lay-up configuration is adopted to model the aircraft wing
structure. The twist-bending elastic coupling induced by the CAS lay-up is benefi-
cial for the aeroelastic response behavior [43, 46, 49], especially for the suppression of
the flutter instability [76, 77, 86]. The elastic couplings and piezoelectrically induced
actuating couplings of CAS lay-up configuration are discussed in Chapter 4. Approx-
imating the trigonometric functions of Eqs. (2.28) with their Taylor series expansion,
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Figure 5.1: Thin-walled box beam model

i.e. sinφ ≈ φ and cosφ ≈ 1, the CAS lay-up configuration equations can be split into
two subsystem, the Lateral Bending-Extension coupling subsystem (u0 − v0 − θz) and
the Twist-Vertical Bending coupling subsystem (w0 − φ− θx).

BE-subsystem (Lateral Bending-Extension coupling subsystem)

δu0 : a14v
′′
0 + a44(u′′0 + θ′z)− b1ü0 + px + δpAQx2 V2R

′(y) = 0, (5.1a)

δv0 : a11v
′′
0 + a14(u′′0 + θ′z)− b1v̈0 + py + δpATy2 V2R

′(y) + δpATy4 V4R
′(y) = 0,

(5.1b)

δθz : a22θ
′′
z − a14v

′
0 + a44(u′0 + θz)− (b5 + b15)θ̈z +mz + δpAMz

3 V3R
′(y)

− (δp + δs)AQx2 V2R(y) = 0.
(5.1c)

The boundary conditions for cantilevered beams are
at y = 0:

u0 = v0 = θz = 0, (5.2)

and at y = L:

δu0 : a14v
′
0 + a44(u′0 + θz) + δsAQx2 V2 = Q̄x, (5.3a)

δv0 : a11v
′
0 + a14(u′0 + θz) + δsATy2 V2 + δsATy4 V4 = T̄y, (5.3b)

δθz : a22θ
′
z + δsAMz

3 V3 = M̄z. (5.3c)

TB-subsystem (Twist-Vertical Bending coupling subsystem)

δw0 : a55(w′′0 + θ′x)− b1ẅ0 + pz + δpAQz4 V4R
′(y) = 0, (5.4a)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) − (b4 + b5)φ̈+ (b10 + b18)φ̈′′ +my + b′w

+ δpAMy
1 V1R

′(y) + δpAMy
3 V3R

′(y) = 0,
(5.4b)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx)− (b4 + b14)θ̈x +mx + δpAMx
1 V1R

′(y)

− (δp + δs)AQz4 V4R(y) = 0,
(5.4c)
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5.3. Solution methodology

The boundary conditions, for cantilevered beams are
at y = 0:

w0 = φ = φ′ = θx = 0, (5.5)
and at y = L:

δw0 : a55(w′0 + θx) + δsAQz4 V4 = Q̄z, (5.6a)

δφ : a37θ
′
x + a77φ

′ − a′′′66φ+ (b10 + b18)φ̈′ + δsAMy
1 V1 + δsAMy

3 V3 = M̄y, (5.6b)

δφ′ : a66φ
′′ = B̄w, (5.6c)

δθx : a33θ
′
x + a37φ

′ + δsAMx
1 V1 = M̄x, (5.6d)

If the actuator is spread over the entire beam span, the traces are δp = 0 and δs = 1;
otherwise, if the actuator is a single patch, the traces assume the values δp = 1 and δs =
0. Note that the BE-subsystem and the TB-subsystem are not entirely independent,
since they are coupled by the voltage parameters V3 and V4.

5.3 Solution methodology

The Extend Galerkin’s Method (EGM) as used in Section 3.3 is adopted for numerical
study. Then Eqs. (5.1)-(5.3) and (5.4)-(5.6) lead to the following discretized equations
of motion,

[M](B,T ){q̈}(B,T ) + [K](B,T ){q}(B,T ) + [A](B,T ){V}(B,T ) = [Q](B,T ), (5.7)

where
qB =

{
qTu qTv qTz

}T
, qT =

{
qTw qTφ qTx

}T
, (5.8)

VB =
{
V2 V3 V4

}T
, VT =

{
V1 V3 V4

}T
. (5.9)

In the above equations, subscripts B, T denote the BE-subsystem and TB-subsystem,
respectively. The expressions for mass matrix M(B,T ), stiffness matrix K(B,T ), actua-
tion matrix A(B,T ) and external excitation vector Q(B,T ) are given in Appendix A.7.

5.4 Model validation

The beam model developed here is validated by comparing the vibration frequency pre-
dicted for a composite thin-walled beam with the analytical results of Ref. [4] and the
experimental data of Ref. [17]. The geometry and material properties of the cantilever
thin-walled box beam of Fig. 5.1 are specified in Table 5.1. The results, reported in
Table 5.2, show a better agreement of the present model with experimental data than
that of Ref. [4].

5.5 Static study

The material property (Graphite-Epoxy) and geometric specification for the thin-walled
box beam of Fig. 5.1 are shown in Table 5.3. In order to obtain better actuating per-
formance, the piezo-actuators are manufactured by single crystal MFC [19, 71], whose
material property is specified in Table 5.4. Moreover, the piezo-composite laminate
is distributed over the entire cross-section. The lay-up configurations (both for host
structure and piezo-actuator) can be found in Table 5.5.
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Table 5.1: Details of thin-walled composite box beam for validation [17]

E11 1.42× 1011 N/m
2 Density (ρ ) 1.442× 103 Kg/m

3

E22 = E33 9.8× 109 N/m
2 Width (2ba) 2.268× 10−2 m

G12 = G13 6.0× 109 N/m
2 Depth (2da) 1.212× 10−2 m

G23 4.83× 109 N/m
2 Number of layers (Nh) 6

µ12 = µ13 0.42 Layer thickness 1.270× 10−4 m
µ23 0.50 Length (L) 0.8446 m

a Inner dimensions of the cross section.

Table 5.2: Natural frequency (Hz) for [45]6 CAS lay-up configuration

Mode Exp. [17] Analytical [4] Error (%) Present Error a (%)

1TB 16.67 14.69 -11.9 15.20 -8.8
2TB 96.15 92.02 -4.3 95.09 -1.1
1BE 29.48 25.13 -14.8 26.64 -9.6

a Relative error, (Present− Exp.)/Exp.× 100%.

5.5.1 Piezo-actuator coefficients study

The non-zero CAS configuration piezo-actuator coefficients of Eq.(4.2) are depicted in
Fig. 5.2 as a function of the piezo-actuator ply-angle θp. Two distinct trends emerge
from the results of Fig. 5.2.

The first trend characterizes the bending coefficients (AMx
1 , AMz

3 ) and the extension
coefficients (ATy2 , ATy4 ). The coefficients increase from θp = 0o to θp = 90o, then
decrease until θp = 180o. Their values equal zero when θp ≈ 40o and ≈ 140o. Note
that, because of the reverse definition of θx (see Fig. 5.1), coefficients AMx

1 and AMz
3

present the exactly opposite trends.
The second trend characterizes the transverse shear coefficients (AQx2 , AQz4 ) and the

twist coefficients (AMy
1 , AMy

3 ). The previous groups of coefficients have a symmet-
ric dependence centered around θp = 90o. These coefficients, instead, show an anti-
symmetric trend around θp = 90o. They are equal to zero when θp = 0o, 90o, 180o,
with the maximum absolute values reached for θp ≈ 42o and θp ≈ 138o.

5.5.2 Actuation performance study

In this subsection, the relationship between actuation performance and voltage param-
eters (V1, V2, V3, V4) is specifically discussed.

Table 5.3: Material property and geometric specification of the host structure [47, p. 131]

E11 206.8× 109 N/m
2 Width (2ba) 0.254 m

E22 = E33 5.17× 109 N/m
2 Depth (2da) 0.0681 m

G12 = G13 2.55× 109 N/m
2 Wall thickness (h) 0.0102 m

G23 3.10× 109 N/m
2 Number of layers (Nh) 6

µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m

ρ 1.528× 103 Kg/m
3 Length (L) 2.032 m

a The length is measured on the mid-line contour.
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5.5. Static study

Table 5.4: Material properties of E-glass, AFC, MFC and single crystal MFC (S-MFC)

E-Glass [23] AFC [23] MFC [71] S-MFC [71]

E1 (Gpa) 14.8 30.54 31.2 6.23
E2 (Gpa) 13.6 16.11 17.05 11.08
G12 (Gpa) 1.9 5.5 5.12 2.01
µ12 0.19 0.36 0.303 0.229
d11 (×10−12 m/V) N/A 381 386.63 1896.5
d12 (×10−12 m/V) N/A -160 -175.50 -838.2
ρ (Kg m−3) 1700 4810 5115.9 5338.3
Thickness (×10−4 m) 2.032 1.689 17 17
Electrode spacing (×10−3 m) N/A 1.143 1.7 1.7

Table 5.5: Lay-up configurations for beam with CAS lay-up [unit:deg].

Flanges Webs

Material Layer Top Bottom Left Right

Piezo-actuator CAS (7) a [θp] [θp] [θp] [θp]
Host structure CAS (1-6) [θh]6 [θh]6 [θh/− θh]3 [θh/− θh]3

a The piezo-actuator is positioned of the outer side of the laminate.

TB-subsystem

The equations governing the TB-subsystem in Eqs. (5.4), have the voltage vector VT =
[V1, V3, V4]T as forcing parameters. Specifically, the voltage parameter V1 influences
both twist and bending, while V3 and V4 work for twist and transverse shear, respec-
tively. Note that the elastic coupling of the structure has a significant effect on the
actuation performance. The twist-bending elastic coupling in Eq. (4.1b) is related to
the stiffness coefficient a37. Two typical host structure ply-angles, viz., θh = 15o and
θh = 75o, are considered here. The corresponding values for a37 were computed in
Ref. [98], i.e., a37 equals −4.05× 103 N.m2 and 3.92× 105 N.m2, respectively. Thus,
the elastic coupling can be ignored for θh = 15o, while it is significant for θh = 75o.

Figures 5.3a and 5.3b depict the tip deflections obtained from V1 = 1000 V (black
curve), V3 = 1000 V (red curve) and V4 = 1000 V (green curve) for weak and strong
elastic coupling cases, respectively. The non-dimensional quantities are defined as

û0 =
u0

2b
, v̂0 =

v0

L
, ŵ0 =

w0

2b
, φ̂ = φ, θ̂x = θx, θ̂z = θz. (5.10)

It can be seen that the voltage parameter V4, which is related to transverse-shear-
actuation can be ignored in both cases. In addition, the voltage parameter V1 dominates
the TB-subsystem actuation performance. Note that, for strong elastic coupling case in
Fig. 5.3b, twist-actuation shows better performance on bending deflection than direct
bending-actuation.

BE-subsystem

According to the governing equations (5.1) of the BE-subsystem, voltage V2 is related
to both extension and transverse shear actuation, while V3 and V4 are related to bending
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Figure 5.2: Piezo-actuator coefficients with single crystal MFC as a function of the ply-angle θp in CAS
lay-up configuration.
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Figure 5.3: Beam tip deflections of the TB-subsystem as a function of the piezo-actuator ply-angle θp.
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5.5. Static study

and extension actuation, respectively. The results obtained for two typical host structure
cases, θh = 15o and θh = 75o, are reported in Figs. 5.4a and 5.4b.
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Figure 5.4: Beam tip deflections of BE-subsystem as a function of the piezo-actuator ply-angle θp.

The beam extension stiffness coefficient a11 is much higher than the other terms.
Thus, the extension actuation induced by voltage parameter V4 can be ignored, see both
Figs. 5.4a and 5.4b. The voltage V2 has a significant effect on actuation performance for
both cases: the transverse-shear-actuation, weak in the TB-subsystem, is much stronger
in the BE-subsystem. One reason for this is that the size of the flange-actuator-pair is
almost four times than that of the web-actuator-pair. In addition, the direct bending
actuation induced by voltage V3 (red line) in the θh = 75o case in Fig. 5.4b is much
weaker than that in the θh = 15o case in Fig. 5.4a.

Conclusion

In a nutshell, the TB-subsystem is dominated by V1 for the weak elastic coupling case
(see Fig. 5.3a), while the BE-subsystem is dominated by V2 when the elastic coupling
effect is strong (see Fig. 5.4b). As a result, although the TB-subsystem and the BE-
system are actually coupled by V3 and V4, it is nonetheless reasonable to treat these two
subsystems as independent.

5.5.3 The influence of piezo-composite material for actuating performance

The actuation performance of three typical piezo-composite materials, viz., AFC [6],
standard MFC [100] and single crystal MFC [71] are compared in Fig. 5.5a and 5.5b.
The corresponding material properties are reported in Table 5.4. It can be seen that,
generally, no matter the bending performance û0 (dot lines), ŵ0 (solid lines) or twist
performance φ̂ (dashed line), the single crystal MFC shows the best actuating perfor-
mance. This is in agreement with the conclusions of Park et al. [19, 71]. Note that
different piezo-composite materials may need different ply-angles θ̄p to achieve the
best actuation performance. For example, in the θh = 75o case of Fig. 5.5b, θ̄p ≈ 130o

for S-MFC and θ̄p ≈ 110o for standard MFC or AFC.
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Figure 5.5: The bending deflection û0, ŵ0 and twist deflection φ̂ of the beam tip for AFC, standard MFC
and single crystal MFC. (V1 = V3 = V4 = 1000 V for TB-subsystem, V2 = −V3 = V4 = 1000 V for
BE-subsystem)

5.6 Dynamic control of twist-bending (vertical) coupling subsystem

5.6.1 Governing equations including negative velocity feedback control

A negative velocity feedback control is considered here. In this section, we firstly
investigated the torsion/bending (TB) subsystem that is important in the aeroelastic
control of an aircraft wing. If we assume the sensor can offer the velocity information
at y = Ys, then actuating voltage vector VT for the negative velocity feedback control
can be computed

VT =


V1

V3

V4

 =


−k1[αk1

˙̂
φ(Ys, t) + βk1

˙̂
θx(Ys, t)]

−k3
˙̂
φ(Ys, t)

−k4[αk4
˙̂w0(Ys, t) + βk4

˙̂
θx(Ys, t)]

 = P(Ys)q̇T (t), (5.11)

where, ki (i = 1, 3, 4) are the feedback control gains, αki and βki are weighting coeffi-
cients of the control gains, and matrix P is defined in A.7. As a result, the closed-loop
discretized system Eq. (5.7) becomes

MT q̈T (t) +ATPq̇T (t) + KTqT (t) = QT (t). (5.12)

5.6.2 Control gain weighting coefficients discussion

The first step in designing the controller is to choose suitable control weighting co-
efficients. Since the flapping and twisting motions usually have a significant phase
difference, we can simplify the control system by considering only two cases for the
voltage parameter V1, i.e., the bending control (αk1 = 0, βk1 = −1) and the twist con-
trol (αk1 = 1, βk1 = 0). Furthermore, as evidenced by the static study, the shear force
induced by V4 is immaterial in the TB-subsystem. As a result, the velocity feedback
Eq. (5.11) can be simplified to a combination of these two cases: the Bending Control
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Figure 5.6: Damping ratios as a function of piezo-composite ply-angle θp; bending control methodology,
ki = 100, θh = 15o.

Methodology,

VT =

{
V1

V3

}
=

{
k1θ̇x

−k3φ̇

}
(5.13)

and the Twist Control Methodology

VT =

{
V1

V3

}
=

{
−k1φ̇

−k3φ̇

}
(5.14)

The static study in Section 5.5.2 evidenced a significant effect of the twist-bending
elastic coupling on the actuation performance. Thus, the weak and strong elastic cou-
pling cases are separately investigated here. Bending control is considered first because
twist control has a weak bending authority for the weak elastic coupling case. Fig. 5.6
depicts the damping ratios obtained for the first four modes of the weak elastic cou-
pling case θh = 15o. The figure allows to easily identify the positive damping area
90o 6 θp 6 138o. The first four modes are denoted as Flap1, Flap2, Twist1 and Flap3,
respectively. Since the twist-bending coupling can be ignored in the first four modes,
the damping ratios of the flapping and the twist modes follow the trend of coefficients
AMx

1 and AMy
3 variation in Fig. 5.2, respectively.

Considering the strong twist-bending elastic coupling case of θh = 75o, the results
obtained with the bending control methodology and the twist control methodology are
shown in Figs. 5.7a and 5.7b, respectively. Note that, due to the strong elastic coupling,
there will be no pure bending mode or twist mode for the TB-subsystem. The twist con-
trol methodology is more efficient, especially for the third mode (3TB), whose modal
shape is dominated by the twist component. This is because the negative twist damp-
ing will be induced by direct bending actuation via twist-bending elastic coupling, see
Fig. 5.7a.

In a nutshell, the optimal control strategy for the θh = 15o case is the bending
control methodology with θp ≈ 120o, while for the θh = 75o case is the twist control
methodology with θp ≈ 135o.
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Figure 5.7: Damping ratios as a function of the piezo-composite ply-angle θp; ki = 100, θh = 75o
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Figure 5.8: First four modes frequencies as a function of host structure ply-angle θh; θp = 120o and
ki = 100.

5.6.3 Optimized by tailoring

It is clear that the twist-bending elastic coupling has a significant effect on control effi-
ciency. Thus, in order to optimize the control performance by host structure tailoring,
the effect of the ply-angle θh on the vibration control authority is investigated.

Figure 5.8 depicts the frequencies of the first four modes as a function of angle θh.
A typical mode cross phenomenon between the third and fourth modes can be found
in Fig. 5.8. In order to avoid misunderstanding in the following study, it states that
the 4th mode is denoted 3TB and 3rd mode is denoted 4TB in the mode crossed range
33o < θh < 60o. The frequency of mode 1TB increases from θh = 0o to θh = 90o;
modes 2TB and 4TB reach their maximum frequency for θh ≈ 80o.

In order to compare the bending and twist control methodologies, θp = 120o in
piezo-actuator is adopted here, since this angle allows to achieve comparable bending
moment and twist authorities. The damping ratios obtained with the bending and the
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5.6. Dynamic control of twist-bending (vertical) coupling subsystem

twist control methodology are shown in Figs. 5.9a and 5.9b, respectively. A sudden
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Figure 5.9: Damping ratio as a function of the host structure ply-angle θh; θp = 120o and ki = 100.

change around the mode cross points θh ≈ 33o and θh ≈ 58o can be found in Figs. 5.9a
and 5.9b. Especially near the point θh ≈ 58o in Fig. 5.9a, a jump phenomenon is
observed. This is because near this point, not only the eigen-frequencies of the 3TB
and 4TB modes are almost the same, but their mode shapes are similar as well. Outside
of the mode cross regions, the damping ratios for both control methodologies increase
for the 1TB, 2TB and 4TB modes, and decreases for the 3TB mode. Furthermore, for
bending control methodology of Fig. 5.9a, mode 3TB has a negative damping above
θh ≈ 80o, and the damping ratios of modes 1TB, 2TB and 3TB significantly decrease
near θh = 90o.

The absolute value of the first mode (1TB) eigenvalue real part is plotted as a func-
tion of θh in Fig. 5.10a. The corresponding curves for the 2TB, 3TB and 4TB modes
are reported in Fig. 5.10b. The plots of Figs. 5.10a and 5.10b can be splitted into two
different regions, i.e. Area 1 for 0 < θh < 45o and Area 2 for 690 < θh < 87o; these re-
gions are characterized by weak and strong twist-bending elastic coupling, respectively.
In Area 1, the twist control methodology (red lines) has almost no flapping damping;
thus, the bending control methodology (black lines) should be chosen. Within Area
2, instead, the flapping damping induced by the elastic coupling allows to achieve a
damping that is higher than that of the direct flapping control; thus, the twist control
methodology would be a better choice here.

5.6.4 Vibration control under an impulsive load

An impulsive load with coefficients pz = my = 1, and mx = 0 in Eqs. (5.4) is applied
to the θh = 75o structure. Figs. 5.11a and 5.11b depict the time responses of the tip
flapping displacement ŵ0(L, t) and twist rotation φ̂(L, t), respectively. Piezo-actuator
θp = 90o with bending control methodology, that was chosen in Refs. [16, 49, 86], is
compared with the piezo-actuator θp = 135o with twist control methodology. From the
results of Figs. 5.11a and 5.11b, it can be seen that the twist control shows a significant
advantage both for the flapping and twisting motions.
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Figure 5.10: Absolute value of the real part of eigenvalue as a function of the host structure ply-angle
θh; θp = 120o, ki = 100.
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Figure 5.11: Tip response in TB-subsystem (θh = 75o) subject to an impulse load; ki = 100.
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5.7. Dynamic control of lateral bending-extension coupling subsystem

5.6.5 The influence of position of piezo-actuator

Investigating the effect of size and position of piezo-actuators allows to strike a balance
between their cost and efficiency. As reported by Librescu et al [43,46], twist-bending
elastic coupling is beneficial for the aeroelastic response behavior. Thus the piezo-
actuator θp = 135o with twist control methodology and strong elastic coupling host
structure θh = 75o is considered here. The size of the piezo-actuator is first fixed at
10% of the beam span, and the sensors are applied at the outer end of the piezo-actuator,
see Fig. 5.1. The resulting first four modes damping ratios are depicted in Fig. 5.12a as
a function of the piezo-actuator position. When the piezo is positioned between 48%
and 67% of the wing span, the 4TB mode damping is negative. A good compromise is
achieved at 40% of the span. However, for a large size piezo-actuator, e.g., 70% length
of span see Fig. 5.12b, the damping ratios of the first four modes are all positive. In a
nutshell, the optimized position for piezo-actuator is around central point of the span.
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Figure 5.12: Damping ratios as a function of the piezo-actuator position; θh = 75o, θp = 135o,
ki = 100.

5.7 Dynamic control of lateral bending-extension coupling subsystem

5.7.1 Elastic coupling

Figure 5.13 depicts stiffness coefficients aij of BE-subsystem as a function of host
structure ply-angle θh. Actually compared to the host structure stiffness, the additional
stiffness of piezo-actuators is immaterial. From the results of Fig. 5.13, it can be found
that, regardless of θh, the absolute value of extensional stiffness a11 is significantly
greater than that of other stiffness coefficients, which implies that the idea of controlling
beam system using piezoelectrically induced extension (T̃y) seems unrealistic. As for
bending stiffness a22 and transverse shear stiffness a44, their maximum values exist at
θh = 90o and θh ≈ 70o(110o), respectively.
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Figure 5.13: Stiffness coefficients aij of BE-subsystem; a11 (N), a14 (N), a22 (N ·m−2), a44 (N)

5.7.2 Dynamic control via velocity feedback control

In this section, damping ratios induced by piezo-actuators are studied based on the ve-
locity feedback control. The control authorities between piezoelectric transverse shear
force offered by flange-actuator-pair V2 and piezoelectric bending moment offered by
web-actuator-pair V3 are compared. Figs. 5.14a and 5.14b illustrate damping ratios of
the first three modes plotted as a function of host structure ply-angle θh. For bending
control indicated in dashed lines, the system exhibits the expected positive damping ra-
tios for all first three modes. Actually for the case that the piezo-actuator is spread over
the entire beam span, voltage parameter V3 will just produce a piezoelectric chordwise
bending moment in the boundary conditions at the beam tip. This can also explain why
the damping ratio curves (dashed lines in Figs. 5.14a and 5.14b) present the reverse
variation trend as that of bending stiffness a22 in Fig. 5.13.

However, for transverse shear control indicated in solid lines, the system exhibits a
negative damping ratio of 2nd mode in Fig. 5.14b. This means the idea of vibration
suppression via transverse shear control based on the simple velocity feedback is unre-
alistic. This result can also be concluded in Figs. 5.15a and 5.15b, which plot damping
ratios as a function of piezo-actuator ply-angle θp.

5.7.3 Dynamic control via LQR optimal control

Recalling Eq. (3.30), solution of Riccati equation yields the control law which depends
only on the weighting coefficient ηi that making the balance on control effectiveness
and energy consumption. Thus weighing coefficients for transverse shear control η2

and bending control η3 should be investigated firstly. Note that, host structure with
ply-angle θh = 75o is considered in the following numerical study, since this configura-
tion can provide a strong twist-flapwise bending elastic couping [77, 97] that is benefit
in various practical engineering applications. Relationships between weighting coeffi-
cients η2, η3 and system damping ratios are highlighted in Fig. 5.16. It can be found that
the damping ratios decrease more and more slowly with the increase of ηi. In addition,
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Figure 5.14: Damping ratio of the first three modes plotted as a function of host structure ply-angle θh;
k2 = k3 = 1000 V · s
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Figure 5.15: Damping ratio of the first three modes plotted as a function of piezo-actuator ply-angle θp;
θh = 75o, k2 = k3 = 1000 V · s
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piezoelectric induced transverse shear force (V2) will induce similar damping ratios for
the first three modes when applying LQR control strategy. While piezoelectric bending
moment (V3) will induce greater damping ratios for lower modes.
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Figure 5.16: Damping ratios of the first three modes vs. weighting coefficient η; θh = 75o, θFp = 135o

Figure 5.17a depicts the responses of beam tip under a lateral impulse load for se-
lected control strategies. Note that, the first six structure modes are used in the sim-
ulation. The associated voltage time history are shown in Fig. 5.17b. It can be seen
that within the same applied voltages level in Fig. 5.17b, as our expected, bending
LQR optimal control (V2) is more efficient than bending velocity feedback control, see
Fig. 5.17a. Moreover, transverse shear LQR control presents a significantly better con-
trol authority than that of bending LQR control.
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Figure 5.17: Response time-history to a lateral impulse load; px = 10 N ·m−1, θh = 75o, θFp = 135o,
θWp = 90o, k3 = 1000 V·s, η2 = 50, η3 = 2000

The relationships between control authority and piezo-actuator configuration on the
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5.7. Dynamic control of lateral bending-extension coupling subsystem

perspective of controller energy consumption are highlighted in Fig. 5.18, which plots
damping ratios of the first three modes as a function of piezo-actuator ply-angle θp for
the constant weighting coefficients η2 = 50 and η3 = 2000. Since piezoelectrically
induced bending will always provide positive damping for all modes, the damping ra-
tios presented in Fig. 5.18 are not sensitive to piezo-actuator ply-angle. On the con-
trary, in view of fact that transverse shear may provide positive and negative damping
for different modes at the same time, additional energy will be consumed during the
vibration suppression process. Thus we can observe the significant influence of piezo-
actuator ply-angle on damping ratios in Fig. 5.18. Specifically, flange-actuator-pair
with θFp ≈ 72o or ≈ 170o can produce the maximum balanced positive damping ra-
tios. While flange-actuator-pair may lose control for the system when θFp ≈ 5o and
θFp ≈ 80o.
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Figure 5.18: Damping ratios of the first three modes vs. piezo-actuator ply-angle θp; θh = 75o, η2 = 50,
η3 = 2000

These results can be seen more clearly in Fig. 5.19a, which plots the beam tip re-
sponse time-history under a lateral impulse load for selected flange-actuator-pair con-
figurations. The associated voltage time-history are shown in Fig. 5.19b. On the aspect
of ideal energy consumption, θFp = 170o is indeed more efficient than θFp = 135o, see
Fig. 5.19a. However, the average applied control voltage of θFp = 170o case is signifi-
cantly greater than that of θFp = 135o case in Fig. 5.19b. This is because the maximum
absolute value of transverse shear pizeo-actuator coefficient AQx2 exists at θFp ≈ 135o,
see Fig. 5.2.

5.7.4 Piezo-actuator size and position study

Considering the high cost and high density of piezo-composite materials, the rational
designs of piezo-actuators, such as the size and the position, should be investigated.
Before discussions, the following nondimensionless parameters are defined,

ηs =
La
L
, ηp =

y1

L
, (5.15)
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Figure 5.19: Response time-history to a lateral impulse load; px = 10 N ·m−1, θh = 75o, η2 = 50

where ηs and ηp denote size and position of the piezo-actuator, see Fig. 5.1.
Since flange-actuator-pair with θFp = 135o can produce a maximum piezoelectric

torque that is benefit for twist-flapwise bending coupling subsystem [97], this con-
figuration is also adopted here for chrodwise bending-extension coupling subsystem.
Figs. 5.20a and 5.20b plot damping ratios as a function of flange-actuator-pair position
for small (ηs = 0.3) and large size (ηs = 0.7) cases, respectively. It can be found that
damping ratio of the first mode is not sensitive to position. In general, flange-actuator-
pair located near the root of the beam can produce the maximum damping ratios.
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Figure 5.20: Damping ratios of the first three modes plotted as a function of flange-actuator-pair posi-
tion; θh = 75o, θFp = 135o, η2 = 50

As for the web-actuator-pair, the influence of position on damping ratios are high-
lighted in Figs. 5.21a and 5.21b. It can be found that no matter the size of the actuator,
damping ratio of the first mode decreases when the actuator position moves from beam
root to the tip. In a nutshell, the ideal position for web-actuator-pair is around central
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5.7. Dynamic control of lateral bending-extension coupling subsystem

point of the span considering the balanced damping ratios for all modes.
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Figure 5.21: Damping ratios of the first three modes plotted as a function of web-actuator-pair position;
θh = 75o, θWp = 90o, η2 = 2000
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CHAPTER6
Nonlinear Modal Interactions for Advanced

Composite Aircraft Wings

6.1 Introduction

Nonlinear dynamic characteristics of a composite aircraft wing structure modeled by a
geometrically nonlinear anisotropic thin-walled beam in the presence of simultaneous
1 : 2 internal and 1 : 1 external resonances are investigated in this chapter.

One necessary condition for the presence of modal interaction is that the linear nat-
ural frequencies ωi are commensurate or nearly commensurate, i.e.,

∑n
i=1 kiωi ≈ 0,

with ki positive or negative integers [65, p. xvii]. For composite structures, this condi-
tion can be easily fulfilled and there may even exist numerous groups of linear modes
which simultaneously fulfill this condition. As an example, for a flat sandwich panel
as investigated by [80], ω21(45.0) + ω41(133.0) = 178.0 ≈ ω42(177.0), ω12(69.0) +
ω42(177.0) = 246.0 = ω14(246.0), ω22(92.0) + ω23(169.0) = 261.0 ≈ ω24(262.0),
2ω21(90.0) + ω31(78.0) = 168.0 ≈ ω23(169.0), ω12(69.0) + ω32(129.0) = 198.0 ≈
ω33(199.0), ω21(45.0) + ω13(152.0) = 197.0 ≈ ω33(199.0). Although there have been
extensive research work on this issue in solid structures, such as solid beam, plate,
shell [53–56], in the context of aircraft composite wing structures modeled as thin-
walled box beams, the issue of modal interactions has not yet been addressed.

In the present work, due to its beneficial aeroelastic response behavior, composite
thin-walled box beams with geometric nonlinear deformations under circumferentially
asymmetric stiffness (CAS) [46, 47] configuration is adopted to model the advanced
wing structure. Bending-twist coupling induced both by the anisotropy of the con-
stituent material and by the heavy external stores arbitrarily located along the wing span
and chord is accounted as well. The equations of motion and compatible boundary con-
ditions are derived from an extended Hamilton’s principle [58, pp. 82-86]. Then, the
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Chapter 6. Nonlinear Modal Interactions for Advanced Composite Aircraft Wings

extended full-basis Galerkin’s method [45, 70] and the method of multiple scales [64]
are adopted to semi-discretize and solve the related nonlinear problems. Alternatively,
the direct form with the multiple scales method [2] is also viable in the present case. As
proved by Lacarbonara [41], full-basis discretization (e.g., Galerkin) approach yields
the same resonant nonlinear normal modes with the direct approach. Next, based on
the amplitude modulation equations, modal interactions in the presence of simultaneous
internal and external resonances are analytically investigated. Actually, for the case of
simultaneous 1 : 2 internal and 1 : 1 external resonances we considered in the present
work, as demonstrated by Nayfeh [66] and Luongo [52], cubic and higher nonlinear-
ities has no effect on the amplitude modulation equations. Finally, for the purpose of
validating the preceding theoretical results, the commercial code ABAQUS [31] is used
to simulate the nonlinear vibration responses of the thin-walled box beam subjected to
primary-resonance excitation. The fast Fourier transform (FFT) [99] is further used for
validating the preceding theoretical results.

6.2 Dynamical model

A fiber-reinforced composite thin-walled beam as shown in Fig. 6.1a is considered here
to model the aircraft wing structure. In addition to the concentrate stores distributed
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(a) Geometry of an aircraft wing modeled as a thin-walled beam

O

o

x

y

x

Y

ξ1

ξ2

ξ1

ξ2

o’

ξ1

ξ2

Λ

Y
j

Y
1 xTy

T

rj

r1

x y

o

(b) A swept aircraft wing with external stores

Figure 6.1: Advanced aircraft wing structure model

along the beam span, a tip store is also considered, see Fig. 6.1b. In order to describe
the position of the store, besides the inertial frame OXY Z, another body-fixed frame
oxyz attached to the wing is considered, see Fig. 6.1b.

6.2.1 Kinetic energy of external stores

To derive the kinetic energy of external stores associated with the various components
of the system, the centroid position of the jth external store described in the body-fixed
coordinate system oxyz should be expressed in terms of those of the global coordi-
nate system OXY Z via a rotation matrix R. The expressions for the components of
the rotation matrix R are related to the choice of technique for representing the rota-
tion. In this investigation, an exponential of a skew-symmetric matrix R = exp(Θ) is
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6.2. Dynamical model

adopted [3, 74, 84]. It is reasonable to use the following truncated form of the rotation
matrix [59, 73]

R = exp(Θ) ≈ I + Θ +
1

2
Θ2, Θ =

 0 −θz φ

θz 0 θx

−φ −θx 0

 . (6.1)

Note that the truncated rotation matrix (6.1) will characterize complete quadratic non-
linear terms induced by external stores but incomplete cubic nonlinear terms. However,
only the quadratic nonlinear terms are specifically discussed in the context. As a result,
the position vector pj of the jth store after deformation measured from zero can be
expressed as

pj =
{
u0 v0 + Yj w0

}T
+ R

{
xj yj zj

}T
, (6.2)

in which for the span distributed store located at Yj ( j = 1, J), the local position
components (xj, yj, zj) is given as (rj, 0, 0). rj is the chord location of the jth store,
see Fig. 6.1b. As for the tip store (Yj = L), (xj, yj, zj) is given as (xT , yT , 0), in
which xT and yT denote chord and span offsets of the tip store, see Fig. 6.1b. Thus the
translational kinetic energy of the stores can be expressed as:

T trs =
1

2
mT

(
∂pT
∂t

)2

+
J∑
j=1

1

2
mj

(
∂pj
∂t

)2

, (6.3)

where mj and mT denote mass of the jth span distributed store and mass of the tip
store, respectively.

The external stores of the aircraft wing are usually associated with engines, fuel
tanks or winglets. For the rotational kinetic energy of the external stores, described in
the store attached inertial frame (o′ξ1ξ2ξ3) (see Fig. 6.1b) can be expressed as:

T ros =
1

2


Ω1

Ω2

Ω3


T I

11
T 0 0

0 I22
T 0

0 0 I33
T




Ω1

Ω2

Ω3

+
J∑
j=1

1

2


Ω1

Ω2

Ω3


T I

11
j 0 0

0 I22
j 0

0 0 I33
j




Ω1

Ω2

Ω3

 ,

(6.4)
where Ixxj and IxxT (xx = 11, 22, 33) are the principal moments of inertia of the jth span
distributed store and of the tip store, respectively. The angular velocity components
(Ω1,Ω2,Ω3) can be computed of those of the global coordinate system OXY Z as

Ω1

Ω2

Ω3

 =

 cos(Λ) sin(Λ) 0

− sin(Λ) cos(Λ) 0

0 0 1



θ̇1

θ̇2

θ̇3

 , (6.5)

where Λ is the sweep angle (positive backward), see Fig. 6.1b. The angular velocities
{θ̇1 θ̇2 θ̇3}T can be obtained from the truncated form of rotation matrix in Eq. (6.1)
as [34, 59] 

θ̇1

θ̇2

θ̇3

 ≈ [I +
1

2
Θ]


−θ̇x
φ̇

θ̇z

 . (6.6)
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6.2.2 Governing equations and boundary conditions

In order to formulate the equations of motion, Hamilton’s principle [58, pp. 82-86] is
applied. The true path of motion renders the following variational form stationary:∫ t2

t1

(
δTb + δT trs + δT ros + δVb − δWe

)
d t = 0, (6.7a)

with
δu0 = δv0 = δw0 = δθx = δθz = δφ = 0 at t = t1, t2, (6.7b)

where Tb and Vb denote the kinetic energy and strain energy of the clear wing, respec-
tively; while δWe stands for the virtual work due to the external forces. Their explicit
expressions can be known in Ref. [98]. After lengthy manipulations and collecting
the terms associated with the same displacement variation, the governing equations
expressed in terms of the basic unknowns, are:

δu0 : a14v
′′
0 + a44(u′′0 + θ′z)−

J∑
j=1

δD(y − Yj)mjü0 +
[
N2
u +N3

u

]′ − Ē2
u − Ē3

u +O4
u

+ px − b1ü0 = 0,
(6.8a)

δv0 : a11v
′′
0 + a14(u′′0 + θ′z)−

J∑
j=1

δD(y − Yj)mj(v̈0 + rj θ̈z)

+
[
N2
v +N3

v

]′ − Ē2
v − Ē3

v +O4
v + py − b1v̈0 = 0,

(6.8b)

δw0 : a55(w′′0 + θ′x)−
J∑
j=1

δD(y − Yj)mj(ẅ0 − rjφ̈)

[
N2
w +N3

w

]′ − Ē2
w − Ē3

w +O4
w + pz − b1ẅ0 = 0,

(6.8c)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) +

[
N2
φ +N3

φ

]′ − Ē2
φ − Ē3

φ + N̄2
φ + N̄3

φ +O4
φ

+my + b′w − (b4 + b5)φ̈+ b10φ̈
′′ −

J∑
j=1

δD(y − Yj)
{
mj(−rjẅ0 + rj

2φ̈)

+
[
(I11
j sin2Λ + I22

j cos2Λ)φ̈+ (I22
j − I11

j ) sin Λ cos Λθ̈x
]}

= 0,

(6.8d)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx) +
[
N2
x +N3

x

]′
+ N̄2

x + N̄3
x − Ē2

x − Ē3
x +O4

x

−
J∑
j=1

δD(y − Yj)
{[

(I11
j cos2Λ + I22

j sin2Λ)θ̈x + (I22
j − I11

j ) sin Λ cos Λφ̈
]}

+mx − b4θ̈x = 0,
(6.8e)

78



i
i

“thesis” — 2017/12/13 — 17:19 — page 79 — #91 i
i

i
i

i
i
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δθz : a22θ
′′
z − a14v

′
0 − a44(u′0 + θz) +

[
N2
z +N3

z

]′
+ N̄2

z + N̄3
z − Ē2

z − Ē3
z +O4

z

+mz − b5θ̈z −
J∑
j=1

δD(y − Yj)
{
mj

[
rj v̈0 + rj

2θ̈z
]

+ I33
j θ̈z

}
= 0,

(6.8f)
and the associate boundary conditions can be given as:
at y = 0,

u0 = v0 = w0 = φ = φ′ = θx = θz = 0, (6.9)

at y = L,

δu0 : a14v
′
0 + a44(u′0 + θz) +mM(ü0 − yT θ̈z) + E2

u +N2
u + E3

u +N3
u +O4

u = 0,

(6.10a)

δv0 : a11v
′
0 + a14(u′0 + θz) +mT (v̈0 + xT θ̈z) + E2

v +N2
v + E3

v +N3
v +O4

v = 0,

(6.10b)

δw0 : a55(w′0 + θx) +mT (ẅ0 − xT φ̈− yT θ̈x) + E2
w +N2

w + E3
w +N3

w +O4
w = 0,

(6.10c)

δφ : a37θ
′
x + a77φ

′ − a66φ
′′′ +mT (−xT ẅ0 + xT

2φ̈+ xTyT θ̈x)

+ (I11
T sin2Λ + I22

T cos2Λ)φ̈+ (I22
T − I11

T ) sin Λ cos Λθ̈x

+ E2
φ +N2

φ + E3
φ +N3

φ +O4
φ = 0,

(6.10d)

δθx : a33θ
′
x + a37φ

′ +mT (−yT ẅ0 + xTyT φ̈+ yT
2θ̈x) + (I11

T cos2Λ + I22
T sin2Λ)θ̈x

+ (I22
T − I11

T ) sin Λ cos Λφ̈+ E2
x +N2

x + E3
x +N3

x +O4
x = 0,

(6.10e)

δθz : a22θ
′
z +mT (−yT ü0 + xT v̈0 + yT

2θ̈z) + I33
T θ̈z + E2

z +N2
z + E3

z +N3
z +O4

z = 0,

(6.10f)

In these equations, the aij and bij terms are associated with 1-D stiffness and mass terms
of the clean wing, and their expressions can be found in the appendix of Ref. [98]. In
Eqs. (6.8), px, py, pz are the external forces per unit span; bw is the bimoment of the
surface tractions; mx, my, mz are the moments about x−, y−, z−axis, respectively;
(N2

i , N̄
2
i ) and (N3

i , N̄
3
i ) (i = u, v, w, φ, x, z) are quadratic and cubic nonlinear terms

that only related to the wing structure. Terms Ē2
i and Ē3

i (i = u, v, w, φ, x, z) appear-
ing in the governing equations (6.8) denote the quadratic and cubic nonlinear terms
induced by all J span distributed stores. While E2

i and E3
i that in the boundary con-

ditions (6.10) denote the quadratic and cubic nonlinear terms induced by the tip store.
The expressions of quadratic nonlinear terms are reported in appendix A.9.

6.3 Nonlinear analysis

6.3.1 Discretization via the Extended Galerkin’s Method

For nonlinear dynamic analysis, the spatial discretization based on the Extended Galerkin
Method (EGM) [45, 70] is implemented. Thus, the discretized nonlinear equations of
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motion for wing-store system can be written as

[M + E]{q̈}+ [K]{q}+ {N2}+ {N3}+ {E2}+ {E3}+ {O4} = {Q}, (6.11)

where
q =

{
qTu qTv qTw qTφ qTx qTz

}T
, (6.12)

and M, E, K, Q denote mass matrix of wing, mass matrix of all stores, stiffness ma-
trix and external excitation vector, respectively. Their expressions are shown in ap-
pendix A.10. N2, N3 are the vectors of wing structure nonlinearities, while E2 and E3

are the vectors of nonlinearities induced by all external stores. O4 stands for the higher
order nonlinear terms.

6.3.2 Analytical solution via the multiscale method

We follow the procedure in Ref. [67] and seek a first-order uniform expansion by using
the method of multiple scales in the form

q = εq1(T0, T1, ...) + ε2q2(T0, T1, ...) + ε3q3(T0, T1, ...) + · · · (6.13)

where ε is a small, dimensionless parameter related to the amplitudes and Tn = εnt.
Furthermore, we introduce the external harmonic excitation matrix F and the Rayleigh
damping matrix CR [51, 92] into the system. Meanwhile we order these two matrices
so that the effects of the external excitation, the damping and the nonlinearity appear in
the same perturbation equations. Thus we let

{F} = −2ε2{Q} cos Ωt, [CR] = 2εµ[M + E], (6.14)

where Ω denotes the frequency of the external excitation. Substituting Eqs. (6.13) and
(6.14) into Eq. (6.11) and collecting all terms of order ε, we obtain
On scale O(ε)

[M + E]{∂
2q1

∂T 2
0

}+ [K]{q1} = 0, (6.15)

On scale O(ε2)

[M + E]{∂
2q2

∂T 2
0

}+ [K]{q2} = −2[M + E]{ ∂2q1

∂T0∂T1

} − 2µ[M + E]{∂q1

∂T0

}

−{N2(q1,q1)} − {E2(q̇1, q̇1)} − {E2(q1, q̈1)} − 2{Q} cos Ωt,

(6.16)

On scale O(ε3)

[M + E]{∂
2q3

∂T 2
0

}+ [K]{q3} =− [M + E]{ 2∂2q1

∂T0∂T1

+
∂2q1

∂2T1

} − [M + E]{ 2∂2q2

∂T0∂T1

}

− 2µ[M + E]{∂q1

∂T1

+
∂q2

∂T0

} − {N2(q1,q2)}

− {N3(q1,q1,q1)} − {E2(q̇1, q̇2)} − {E2(q1, q̈2)}
− {E2(q̈1,q2)} − {E3(q1, q̇1, q̇1)} − {E3(q1,q1, q̈1)}.

(6.17)
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The solution to the first-order perturbation Eq. (6.15) can be written in the form [52,
66]:

q1 =
∞∑
n=1

{
An(T1)Vne

iωnT0 + Ān(T1)Vne
−iωnT0

}
, (6.18)

in which, An and Vn denote the amplitude and the eigenvector of the nth mode. Re-
placing the first-order solution form Eq. (6.18) into Eq. (6.16) leads to

[M + E]{∂
2q2

∂T 2
0

}+ [K]{q2} = −2{Q} cos Ωt

−2[M + E]
∞∑
p=1

Vp(iωp)
{∂Ap
∂T1

eiωpT0 − ∂Āp
∂T1

e−iωpT0
}

−2µ[M + E]
∞∑
p=1

Vp(iωp)
{
Ape

iωpT0 − Āpe−iωpT0
}

−
∞∑
n=1

∞∑
m=1

[Nnm − ωm2Enm]
{
AnAme

i(ωn+ωm)T0 + AnĀme
i(ωn−ωm)T0

+ĀnAme
i(−ωn+ωm)T0 + ĀnĀme

−i(ωn+ωm)T0
}

−
∞∑
n=1

∞∑
m=1

[−ωmωnÊnm]
{
AnAme

i(ωn+ωm)T0 − AnĀmei(ωn−ωm)T0

−ĀnAmei(−ωn+ωm)T0 + ĀnĀme
−i(ωn+ωm)T0

}
,

(6.19)

where the quadratic nonlinear matrices Nnm, Enm and Ênm are defined in appendix A.10.
For eliminating the possible secular terms in Eq. (6.19), the extra internal resonance link
connecting q2 may exist when ωp ≈ ωm ± ωn. Furthermore, if we go to the third scale
(related to Eq. (6.17)) to check an internal resonance, on can find an internal resonance
combination ωp ≈ ωm±ωn±ωl. It becomes apparent that 1 : 1, 1 : 2 and 1 : 3 internal
resonances are the special cases of the preceding combinations when n = l, m = n,
and m = n = l.

6.4 The internal resonance case: ωp ≈ 2ωm

At first, modal interactions in the presence of 1 : 2 internal resonance for the clean
wing structure is investigated, i.e., we consider the internal resonance when ωp ≈ 2ωm
as a case study. We introduce the internal and external resonance detuning parameters
σ1 and σ2 [42, 90]

ωp = 2ωm + εσ1, Ω = ωi + εσ2, (6.20)

where Ω denotes the frequency of the external excitation, while ω denotes the natural
frequency of the beam.
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6.4.1 When the external energy input from the pth mode, Ω near ωp.

In such a case, by dropping the terms related to external stores, the solvability condi-
tions of Eq. (6.19) are

i
dAp
dT1

+NpAmAme
−iσ1T1 + iµAp + Fp cos Ωte−iωpT0 = 0, (6.21a)

i
dAm
dT1

+NmApĀme
iσ1T1 + iµAm = 0, (6.21b)

in which the nonlinear coefficients Np, Nm and the external excitation coefficient Fp
(or Fm) are defined as

Np =
(Nmm

T )Vp

ωpVp
TMTVp

, Nm =
(Nmp

T + Npm
T )Vm

2ωmVm
TMTVm

, (6.22)

Fp =
QTVp

2ωpVp
TMTVp

, Fm =
QTVm

2ωmVm
TMTVm

. (6.23)

We introduce the polar notations for the amplitudes as

Ap(T1) = αp(T1)eiβp(T1), Am(T1) = αm(T1)eiβm(T1), (6.24)

substituting Eq. (6.24) into Eqs. (6.21a-b), separating real and imaginary parts of the
resulting equations, and after some manipulations, we obtain the following differential
equations:

α̇p = −Npαm
2 sin γ − µαp − Fp sin ξ, (6.25a)

αpβ̇p = Npαm
2 cos γ + Fp cos ξ, (6.25b)

α̇m = Nmαpαm sin γ − µαm, (6.25c)

αmβ̇m = Nmαpαm cos γ, (6.25d)

where
γ = 2βm − σ1T1 − βp, ξ = σ2T1 − βi. (6.26)

Steady-state solution

The steady-state motions occur when α̇p = α̇m = 0, γ̇ = 0 and ξ̇ = 0, which corre-
spond to the fixed points solution of Eqs. (6.25) and (6.26). It can be found that there
are two kinds of fixed points:
(1) αp 6= 0 and αm = 0,

αp
2 =

Fp
2

µ2 + σ2
2
, (6.27)

(2) αp 6= 0 and αm 6= 0,

αp
2 =

(σ1 + σ2)2 + 4µ2

4Nm
2 , (6.28)

while αm is the solution of the following equation

Np
2αm

4 +
Np

Nm

[2µ2 − σ2(σ1 + σ2)]αm
2 + αp

2(µ2 + σ2
2)− Fp2 = 0. (6.29)
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6.4. The internal resonance case: ωp ≈ 2ωm

For solution (1), the primary (external) resonance plays a dominant role and the
internal resonance can be ignored. No energy transfer between modes occur and the
response of the system is governed by the directly excited pth mode only. This agrees
with the solution of the corresponding linear system.

In solution (2), the amplitude of the primary resonance mode αp is independent of
external excitation FP . For further discussion, at first we define two critical values of
Fp, namely, f c1p and f c2p

[
f c1p
]2

=

[
µ(3σ2 + σ1)

2Nm

]2

,
[
f c2p
]2

=
(σ1 + σ2)2 + 4µ2

4Nm
2

(
µ2 + σ2

2
)
. (6.30a)

Clearly, |f c2p | must be greater than |f c1p |. Similarly, we also define two critical values of
σ2, namely, σc12 and σc22 , which are governed by[

µ(3σc12 + σ1)
]2

= [2FpNm]2 , (6.31)

and [
(σc22 + σ1)2 + 4µ2

] [
(σc22 )2 + µ2

]
= [2FpNm]2 . (6.32)

Next we determine when the roots αm2 of Eq. (6.29) are real. If the parameter Γ is no
less than 0, i.e.,

Γ =
Np

Nm

[2µ2 − σ2(σ1 + σ2)] > 0, (6.33)

one real solution αm2 exists when |FP | > |f c2p |. Otherwise there is no real solution. If
the parameter Γ is negative, two real solutions αm2 exist when |FP | < |f c2p |, and one
real solution αm2 exists when |FP | > |f c2p |. We note that when the detunings of internal
and external resonance are both small, the sign of the parameter Γ is just determined by
the sign of Np/Nm.

Stability analysis

The stability of steady-state solutions can be determined by the eigenvalues of the
linearized coefficients matrix of the system (Jacobian matrix) near the corresponding
steady-state solution. If the real part of each eigenvalue of the coefficient matrix is not
positive, then the corresponding steady-state solution is stable, otherwise is unstable.
Consequently [66], the stability of steady-state solutions can be summarized as:

1. When |Fp| < |f c1p |, the stable response must be given by (6.27), which agrees with
the linear solution of the system.

2. When Γ is negative and |f c1p | 6 |Fp| 6 |f c2p |, the response given by the linear
system (6.27) and the response given by the greater one of the two possibilities
predicted by (6.28) and (6.29) are both stable. Jump phenomenon can be observed
in this case.

3. When |Fp| > |f c2p |, the stable response is given by (6.28) and (6.29). Saturation
phenomenon can be observed in this case.
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6.4.2 When the external energy input from the mth mode, Ω near ωm.

Similarly to (6.25) and (6.26), we can obtain the following differential equations:

α̇p = −Npαm
2 sin γ − µαp, (6.34a)

αpβ̇p = Npαm
2 cos γ, (6.34b)

α̇m = Nmαpαm sin γ − µαm − Fm sin ξ, (6.34c)

αmβ̇m = Nmαpαm cos γ + Fm cos ξ, (6.34d)

where
γ = 2βm − σ1T1 − βp, ξ = σ2T1 − βi. (6.35)

Steady-state solution

In this case, only one steady-state solution exists (αp 6= 0 and αm 6= 0),

αp
2 =

Np
2

µ2 + (2σ2 − σ1)2
αm

4, (6.36)

while αm is the solution of the following equation

Nm
2Np

2αm
6

µ2 + (2σ2 − σ1)2
+

2 [µ2 − σ2(2σ2 − σ1)]NmNpαm
4

µ2 + (2σ2 − σ1)2
+ (µ2 + σ2

2)αm
2 − Fm2 = 0.

(6.37)

According to the discriminant of the cubic equations, the roots αm2 of Eq. (6.37)
may have one or three real solutions. Indeed, only one real solution exists when Fm is
beyond a critical value, and normally this critical value is zero, which means three real
solutions may rarely exist.

Stability analysis

Similarly, the stability of the steady-state solutions is determined by the eigenvalues of
the corresponding Jacobian matrix.Then for the steady-state solution, Jacobian matrix
can be simplified as

J =



−µ 2µαp
αm

−(2σ2 − σ1)αp 0

−µNmαp
Npαm

−µ+ J43 J23 αmσ2 − J23

J31 −2J42 −
2(2σ2 − σ1)

αm
−µ− 2J43 −2J43 + 2µ

− J23

αmαp
J42 J43 −µ+ J43


, (6.38)

where,

J23 =
(2σ2 − σ1)Nmαp

2

Npαm
, J31 =

2J23

αmαp
+

(2σ2 − σ1)

αp
,

J42 =
σ2

αm
− (2σ2 − σ1)Nmαp

2

Npαm3
, J43 = −µNmαp

2

Npαm2
.
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6.5. Numerical study for 1 : 2 internal resonance

According to the Routh-Hurwitz criterion, it can be proved that when Fm is beyond
a critical value, there exists no steady-state in spite of the presence of damping. In
this case the energy is continuously exchanged between these two modes without being
attenuated. There is no saturation phenomenon.

6.4.3 Further analysis of the internal resonance relationship

The results of the governing equations (6.8) and boundary conditions (6.9)-(6.10) show
that the linear part of the system can be split into two independent subsystems, viz., one
involving Lateral Bending/Extension/Lateral Transverse-shear motions (BE-subsystem
u0 − v0 − θz) and the other involving Twist /Vertical Bending /Vertical Transverse-
shear motions (TB-subsystem w0 − φ − θx). Thus the eigen-frequencies ωi and the
corresponding eigen-modes can also be split into two parts, ωBEi in the BE-subsystem
and ωTBi in the TB-subsystem. Therefore, the possible internal resonance relationship
ωp ≈ 2ωm can be split into the following 4 cases,

(1) ωBEp ≈ 2ωBEm , (2) ωBEp ≈ 2ωTBm , (3) ωTBp ≈ 2ωBEm , (4) ωTBp ≈ 2ωTBm .

Because the nonlinear coefficients Np and Nm are determined by the space of linear
system, it is not difficult to determine that the nonlinear coefficients Np and Nm are
both zero for the case (3) and case (4). Indeed for case (4), the nonlinear coefficients
Np and Nm are related to the global stiffness quantities a58 that we ignored in the
nonlinear terms. As a consequence, there will exist no significant modal interactions
for these two internal resonance relationships. In other words, modal interaction may
occur only in the following 2 internal resonance relationships:

(1) ωBEp ≈ 2ωBEm , (2) ωBEp ≈ 2ωTBm . (6.39)

When the internal resonance relationship ωBEp ≈ 2ωBEm is satisfied, energy just trans-
fers in the BE-subsystem. But when the internal resonance relationship ωBEp ≈ 2ωTBm
is satisfied, energy can transfer between the two subsystems, i.e., vertical bending/twist
motions may induce lateral bending/extension motions and vice verse. The independent
two subsystems are coupled again due to the internal resonance.

6.5 Numerical study for 1 : 2 internal resonance

For a concrete study of modal interaction caused by the internal resonance, we con-
sider a composite thin-walled beam with length L = 2.43m. The material property
and geometric specification of the beam are given in Table 6.1, and the lay-ups are
specified in Table 6.2 (θ = 45◦). From Table 6.3, a significant relationship for internal
resonance can be found: ωBE3 ≈ 2ωTB3 . However it is important to note that, although
ωTB2 ≈ 2ωBE1 , this relationship can not induce internal resonance according to the for-
mer analysis.

Figures 6.2a and 6.2b give the mode shapes of ωBE3 and ωTB3 , respectively. We can
find that v0 plays a pivotal role in the ωBE3 mode from Fig. 6.2a. While in Fig. 6.2b,
each component is important in ωTB3 mode. We make ωp = ωBE3 and ωm = ωTB3 , then
the nonlinear coefficients can be specified as Np = 1906.2 and Nm = 138118. And
here we make the damping coefficient as µ = 0.5.
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Table 6.1: Material property and geometric specification of the thin-walled box beam

Material Value Geometric Value

E11 206.8× 109 N/m2 Width (2ba) 0.254 m
E22 = E33 5.17× 109 N/m2 Depth (2da) 0.0681 m
G13 = G23 2.55× 109 N/m2 Wall thickness (h) 0.0102 m
G12 3.10× 109 N/m2 Number of layers (ml) 6
µ12 = µ13 = µ23 0.25 Layer thickness 0.0017 m
ρ 1.528× 103 Kg/m3

a The length is measured on the mid-line contour.

Table 6.2: Thin-walled box beam with CAS lay-up [unit:deg].

Flanges Webs

Top Bottom Left Right

[θ]6 [θ]6 [θ/− θ]3 [θ/− θ]3

Table 6.3: The natural frequencies of the thin-walled box beam (L = 2.432 m , θ = 45◦) [unit: Hz]

Mode# Theoretical ABAQUS Error (%)a

ωBE
1 22.701 22.637 0.28
ωBE
2 134.11 134.48 -0.28
ωBE
3 248.07 247.22 0.35
ωBE
4 348.52 350.59 -0.59

ωTB
1 7.1784 7.1379 0.57
ωTB
2 44.672 44.451 0.50
ωTB
3 124.06 123.33 0.59
ωTB
4 149.25 147.93 0.89

a Relative error, ([Analytical]-[ABAQUS])/([ABAQUS])×100%.
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Figure 6.2: Mode shapes
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6.5. Numerical study for 1 : 2 internal resonance

6.5.1 Energy is input from the ωBE3 mode, Ω near ωBE3

In Figs. 6.3a and 6.3b, αp and αm are plotted as functions of external excitation Fp,
where stable solutions are indicated in solid lines while unstable solutions in dashed
lines. In Fig. 6.3a the detunings of the internal and external resonance are both small,
the parameter Γ is positive. Thus there is only one real solution for (6.36) when Fp >
f c2p . In Fig. 6.3b, σ1 = σ2 = 1.5, this combination renders Γ negative. Thus in
the region f c1p < Fp < f c2p , there is a jump phenomenon associated with varying the
amplitude of the excitation Fp. The trend of amplitude responses αp and αm can be
traced from two ways, i.e., from Fp = 0 to higher values and vice verse. The jump
phenomenon can be traced by tracking the arrows, respectively.

In Figs. 6.3a and 6.3b, one can clearly see the saturation phenomenon. As the ex-
ternal excitation Fp increases from zero, so does the response of αp. This agrees with
the solution of the corresponding linear system (6.27). Beyond the critical value f c2p ,
the solution (6.27) loses stability and another branch of solution determined by (6.28)
and (6.36) dominates. It is clearly seen that the response αp is independent of external
excitation, though the energy is input from the external resonance mode ωBE3 .

In Figs. 6.4a, 6.4b, and 6.4c, αp and αm are plotted as functions of external reso-
nance detuning parameter σ2, where stable solutions are indicated in solid lines while
unstable solutions in dashed lines. In the region between σ−c22 and σc22 , the linear solu-
tion (6.27) is unstable. The regions between σc22 and σc12 and between σ−c22 and σ−c12 ,
where two stable solutions exist, correspond to the parameter Γ < 0. In Fig. 6.4a, the
jump phenomenon associated with varying the frequency Ω of the excitation is indi-
cated by the arrows. The symmetric behavior of the frequency-response curve versus
external resonance detuning σ2 can be seen where the internal resonance detuning σ1

is zero. The nonzero value of internal resonance detuning parameter σ1 will cause
the unsymmetrical configurations in frequency-response curves which can be seen in
Figs. 6.4b and 6.4c.
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Figure 6.3: Response amplitudes versus excitation intensity Fp when energy is input from the ωBE
3 mode
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Figure 6.4: Response amplitudes versus excitation frequency σ2 when energy is input from the ωBE
3

mode ( Fp = 0.001).
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6.5. Numerical study for 1 : 2 internal resonance

6.5.2 Energy is input from the ωTB3 mode, Ω near ωTB3

In Figs. 6.5a and 6.5b, αp and αm are plotted as functions of external excitation Fm,
where stable solutions are indicated in solid lines while unstable solutions in dashed
lines. Fig. 6.5a shows that when Fm is beyond a critical value, there exists no steady-
state solution. In such a case, the energy is continuously exchanged between the two
modes without being attenuated. Fig. 6.6 shows a continuous exchange of energy back
and forth between the two modes for a large value of time T1. There no saturation
phenomenon exists. When the external resonance detuning σ2 is large (σ2 = 3), jump
phenomenon indicated by the arrows can be observed in Fig. 6.5b.

In Figs. 6.7a, 6.7b, and 6.7c, αp and αm are plotted as functions of external reso-
nance detuning parameter σ2. There is a region near the center dip of theses curves
where no steady-state solution exists. The regions in which there are two stable solu-
tions correspond to Fig. 6.5b, while the center regions correspond to Fig. 6.5a. As |σ2|
increases, αp tends to zero faster than αm which is similarly to Figs. 6.4a, 6.4b, and
6.4c.
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Figure 6.5: Response amplitudes versus excitation intensity Fm when energy is input from the ωTB
3

mode

6.5.3 Validation

In oder to test the accuracy of our model and validate our theoretical results on modal in-
teractions, the commercial code ABAQUS [31] is used in simulating the forced nonlin-
ear vibration responses of the thin-walled box beams. A 4-node doubly curved general-
purpose shell element type S4 is adopted in the computation. All the responses in
validations all come from one note at the tip of the beam. And Fast Fourier Transform
(FFT) [99] is used for the corresponding frequency-domain analysis. Material property,
geometric specification and lay-ups of the beams we used in the ABAQUS validation
are given in Table 6.1 and Table 6.2.

89



i
i

“thesis” — 2017/12/13 — 17:19 — page 90 — #102 i
i

i
i

i
i

Chapter 6. Nonlinear Modal Interactions for Advanced Composite Aircraft Wings

Time T
1

0 10 20 30 40 50

A
m

p
lit

u
d
e
s
 α

×10
-4

0

1

2

3

4

5

6

7

8

9

 α
p

 α
m

Figure 6.6: The evolution of the amplitudes αp and αm when energy is input from the ωTB
3 mode.

(Fm = 0.001 and σ1 = σ2 = 0.1).

Case 1: ωBE
p ≈ 2ωTB

m

Firstly, the validation for the beam model used in the example is given, where internal
resonance relationship ωBE3 ≈ 2ωTB3 occurs. Theoretical prediction of the natural fre-
quencies and the results from ABAQUS are compared in Table 6.3. In all computed
modes, an excellent agreement is observed between the theoretical and numerical re-
sults. Because v0 plays a pivotal role in the ωBE3 mode, in this validation we just focus
on the analysis of extension and vertical bending responses of the beam.

Excitation energy is input from the ωBE
3 mode The normal uniform shell edge external load

distributed on the tip of the beam with magnitude specified as 5000N/m and frequency
Ω specified as 247.2Hz is considered in this case. The responses of v and w are dis-
played in Fig. 6.8a and Fig. 6.8b, respectively. It is readily seen that after a transient
process about 0.3 second, the vertical bending response is induced strongly by the ex-
tension excitation. And from the results of frequency-domain analysis, it is easy to
confirm the induced mode is ωTB3 . Moreover, the response amplitude of mode ωTB3

is nearly twice that of the response amplitude of mode ωBE3 . Extension excitation in-
duces high-amplitude low-frequency vertical bending response, which agrees with our
theoretical prediction.

Excitation energy is input from the ωTB
3 mode The normal vertical pressure distributed

uniformly on the top and bottom walls of the beam with magnitude specified as 10Kpa
and frequency specified as 123.3Hz is considered in this case. The responses of w and
v are displayed in Fig. 6.9a and Fig. 6.9b, respectively. The mode ωBE3 is significantly
excited, which can been seen in Fig. 6.9b.

When we increase the magnitude of the pressure to 100Kpa, significant noise can
be seen in Fig. 6.10a and Fig. 6.10b. According to the preceding theoretical analyses,
when the external excitation is large enough, there will be no steady-state solution.
Thus these noise may come from the energy exchange between ωTB3 mode and ωBE3

mode, which is similar to that in Fig. 6.6.
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6.5. Numerical study for 1 : 2 internal resonance

(a) σ1 = 0

(b) σ1 = 2 (c) σ1 = −2

Figure 6.7: Response amplitudes versus excitation frequency σ2 when energy is input from the ωTB
3

mode (Fm = 0.0015)
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Figure 6.8: The responses and the corresponding frequency-domain analysis when the excitation energy
is input from the ωBE

3 mode.
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Figure 6.9: The responses and the corresponding frequency-domain analysis when the excitation energy
is input from the ωTB

3 mode.
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Figure 6.10: The responses and the corresponding frequency-domain analysis when the excitation en-
ergy is input from the ωTB

3 mode.
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6.5. Numerical study for 1 : 2 internal resonance

Table 6.4: The natural frequencies of the thin-walled box beam by ABAQUS (Length = 2.665 m,
θ = 45◦) [unit: Hz]

Mode# 1st 2nd 3nd 4th

ωBE 18.835 112.89 224.78 300.22
ωTB 5.9334 36.995 102.94 135.11

Case 2: ωTB
p ≈ 2ωBE

m

In the example model, whose frequencies are listed in Table 6.3, there exists another
internal resonance relationship ωTB2 ≈ 2ωBE1 . But there will be no significant modal
interactions according to the theoretical analysis. Because u0 plays a pivotal role in the
ωBE1 mode, we focus on the analysis of lateral bending and vertical bending responses.

Excitation energy is input from ωTB
2 The normal vertical pressure distributed uniformly on

the top and bottom walls of the beam with magnitude specified as 10Kpa and frequency
specified as 44.5Hz is considered in this case. The responses of w and u are displayed
in Fig. 6.11a and Fig. 6.11b, respectively. No ωBE1 mode exists in the frequency-domain
analysis. And the induced lateral bending response u is tiny compared with the vertical
bending response w.
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Figure 6.11: The responses and the corresponding frequency-domain analysis when the excitation en-
ergy is input from the ωTB

2 mode.

Excitation energy is input from ωBE
1 The normal lateral pressure distributed uniformly on

the left and right walls of the beam with magnitude specified as 10Kpa and frequency
specified as 22.6Hz is considered in this case. The responses of u and w are displayed
in Figs. 6.12a and 6.12b, respectively. Although ωTB2 mode is excited and can been
seen in Fig. 6.12b, the induced vertical bending response is extremely tiny compared
with the lateral bending response (nearly 3000 times), which can be neglected. There is
no significant modal interactions when the internal relationship ωTBp ≈ 2ωBEm occurs.
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Figure 6.12: The responses and the corresponding frequency-domain analysis when the excitation en-
ergy is input from the ωBE

1 mode.

Case 3: ωBE
p ≈ 2ωBE

m

Here we consider a thin-walled beam with length L = 2.665m whose frequencies by
ABAQUS are given in Table. 6.4, where a significant internal resonance relationship
ωBE3 ≈ 2ωBE2 can be found. According the theoretical prediction, significant modal
interactions will occur when excitation energy is input from ωBE2 mode or ωBE3 mode.
We note that u0 plays a pivotal role in the ωBE2 mode, however v0 plays a pivotal role
in the ωBE3 mode.

Excitation energy is input from ωBE
3 The normal uniform shell edge external load dis-

tributed on the tip of the beam with magnitude is specified as 5000N/m and frequency
Ω specified as 224.8Hz is considered in this case. The responses of v and u are dis-
played in Fig. 6.13a and Fig. 6.13b, respectively. It is readily seen that after a transient
process about 0.6 second, the lateral bending response is induced strongly by the ex-
tension excitation, i.e. ωBE2 mode is excited when excitation energy is input from ωBE3

mode. The response amplitude of mode ωBE2 is over thrice than that of mode ωBE3 ,
which may be the result of the saturation phenomenon.

Excitation energy is input from ωBE
2 The normal lateral pressure distributed uniformly on

the left and right walls of the beam with magnitude is specified as 40Kpa and frequency
specified as 112.9Hz is considered in this case. The responses of u and v are displayed
in Fig. 6.14a and Fig. 6.14b, respectively. ωBE3 mode is excited due to modal interaction
when excitation energy is input from ωBE2 mode.

Case 4: ωTB
p ≈ 2ωTB

m

In order to validate that there will be no significant modal interactions with the internal
resonance relationship ωTBp ≈ 2ωTBm , a thin-walled beam with length L = 2.98m is
considered here. The frequencies by ABAQUS are given in Table. 6.5, where ωTB7 ≈
2ωTB5 can be found.
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6.5. Numerical study for 1 : 2 internal resonance
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(b) The lateral bending response u

Figure 6.13: The responses and the corresponding frequency-domain analysis when the excitation en-
ergy is input from the ωBE

3 mode.
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Figure 6.14: The responses and the corresponding frequency-domain analysis when the excitation en-
ergy is input from the ωBE

2 mode.

Table 6.5: The natural frequencies of the thin-walled box beam by ABAQUS (Length = 2.98 m, θ =
45◦) [unit: Hz]

Mode# 1st 2nd 3nd 4th 5th 6th 7th 8th

ωTB 4.7354 29.560 82.441 120.91 160.57 258.25 320.54 367.84
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Excitation energy is input from ωTB
7 The normal vertical pressure distributed uniformly

on the top and bottom walls of the beam with magnitude specified as 600Kpa and fre-
quency specified as 320.5Hz is considered in this case. The response of w is displayed
in Fig. 6.15a. Although ωBE5 mode component can be found in the frequency-domain
analysis, it is extremely small so that it can be ignored.

Excitation energy is input from ωTB
5 For the external excitation in this case, We just

change the excitation frequency from 320.5Hz to 160.6Hz. From Fig. 6.15b, there
is no noticeable ωTB7 mode component in the frequency-domain analysis. There is no
significant modal interactions when the internal relationship ωTBp ≈ 2ωTBm occurs.
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Figure 6.15: The vertical bending response w and the corresponding frequency-domain analysis

6.6 The internal resonance case: ωp ≈ ωm + ωn

Next, based on the 1 : 2 internal resonance discussion in the previous sections, a more
general frequency relationship is investigated for the wing with external stores, i.e.,

ωp = ωm + ωn + εσ1, Ωi = ωi + εσ2. (6.40)

6.6.1 When the external energy is input from the pth mode

In such a case, in order to allow solvability of Eq. (6.19) [67], the following amplitude
modulation equations can be obtained

i
dAp
dT1

+NpAmAne
−iσ1T1 + iµAp + Fp cos(Ωpt)e

−iωpT0 = 0, (6.41a)

i
dAm
dT1

+NmApĀne
iσ1T1 + iµAm = 0, (6.41b)

i
dAn
dT1

+NnApĀme
iσ1T1 + iµAn = 0, (6.41c)

in which the nonlinear coefficients Np, Nm, Nn are defined as
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6.6. The internal resonance case: ωp ≈ ωm + ωn

Np =
[(Nnm

T + Nmn
T )− (ωm

2Enm
T + ωn

2Emn
T )− ωmωn(ÊT

nm + ÊT
mn)]Vp

2ωpVp
T [M + E]TVp

,

(6.42a)

Nm =
[(Nnp

T + Npn
T )− (ωp

2Enp
T + ωn

2Epn
T ) + ωnωp(Ê

T
np + ÊT

pn)]Vm

2ωmVm
T [M + E]TVm

, (6.42b)

Nn =
[(Nmp

T + Npm
T )− (ωm

2Epm
T + ωp

2Emp
T ) + ωmωp(Ê

T
mp + ÊT

pm)]Vn

2ωnVn
T [M + E]TVn

,

(6.42c)
and the external excitation parameter Fp is defined as

Fp =
QTVp

2ωpVp
T [M + E]TVp

. (6.43)

The amplitude modulation equations (6.41) can be put in real form by introducing the
polar notations for the amplitudes

Ak(T1) = αk(T1)eiβk(T1), k = p,m, n, (6.44)

where αk and βk are real amplitudes and phases, respectively. By substituting Eq. (6.44)
into Eqs. (6.41) and separating the real and imaginary parts, it follows that

α̇p = −Npαmαn sin γ − µαp − Fp sin ξp, (6.45a)

αpβ̇p = Npαmαn cos γ + Fp cos ξp, (6.45b)
α̇m = Nmαpαn sin γ − µαm, (6.45c)

αmβ̇m = Nmαpαn cos γ, (6.45d)
α̇n = Nnαpαm sin γ − µαn, (6.45e)

αnβ̇n = Nnαpαm cos γ, (6.45f)

where
γ = βm + βn − σ1T1 − βp, ξp = σ2T1 − βp. (6.46)

The steady-state motions occur when α̇p = α̇m = α̇n = γ̇ = ξ̇p = 0, that correspond
to the fixed points solution of amplitudes and phases equations (6.45) and (6.46). It can
be found that there are two kinds of fixed points.

1. The first kind fixed point is

αp
2 =

Fp
2

µ2 + σ2
2
, αm = αn = 0. (6.47)

The first kind fixed point is actually the solution of the corresponding linear system.
2. The second kind fixed point is

αp
2 =

(σ1 + σ2)2 + 4µ2

4NmNn

, αm
2 =

√
Nm

Nn

Xp, αn
2 =

√
Nn

Nm

Xp, (6.48a)
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where Xp is the positive real root of the following equation,

Np
2Xp

2 +
NpNm√
Nm

3Nn

[2µ2 − σ2(σ1 + σ2)]Xp + αp
2(µ2 + σ2

2)− Fp2 = 0. (6.49)

αp, αm and αn will have real solutions for the second kind fixed point only when the
condition NmNn > 0 is satisfied. Eq. (6.48a) shows that the amplitude of the external
resonance mode αp is independent of external excitation FP . This may lead to a satura-
tion phenomenon [66] and result in energy transfer to lower frequency modes ωm and
ωn.

According to the solution cases of Eq. (6.49), the domain of the steady-state solu-
tions can be split into three parts. i.e., subdomain I, II and III.

Subdomain I In this subdomain, the second kind fixed point has no real solution. Thus
the system only has the first kind fixed point. This implies that in subdomain I there is
no modal interactions and the external resonance plays the dominant role.

Subdomain II When the parameters combination satisfies

[(σ1 + σ2)2 + 4µ2](µ2 + σ2
2)− 4NmNnFp

2 < 0, (6.50)

Eq. (6.49) has only one positive real solution. In this subdomain, the system exhibits
the first kind fixed point and one second kind fixed point at the same time. The stability
of these two fixed points can be determined by the eigenvalues of the system’s Jacobian
matrix near the corresponding steady-state solution [22]. If the real part of each eigen-
value is not positive, then the corresponding steady-state solution is stable, otherwise is
unstable.

Subdomain III When the parameters combination satisfies
Nm[2µ2 − σ2(σ1 + σ2)] < 0,

µ2(σ1 + 3σ2)2 < 4NmNnFp
2,

4NmNnFp
2 < [(σ1 + σ2)2 + 4µ2](µ2 + σ2

2),

(6.51)

Eq. (6.49) has two positive real solutions. Thus subdomain III consists of the first kind
fixed point plus two second kind fixed points.

6.6.2 When the external energy is input from the mth or nth mode.

Since the mth mode and nth mode can be exchanged with each other in the solvability
conditions, we just consider the case when external energy is input from the mth mode.
Similarly to Eqs. (6.45) and (6.46), we can obtain the following amplitudes and phases
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equations:

α̇p = −Npαmαn sin γ − µαp, (6.52a)

αpβ̇p = Npαmαn cos γ (6.52b)
α̇m = Nmαpαn sin γ − µαm − Fm sin ξm, (6.52c)

αmβ̇m = Nmαpαn cos γ + Fm cos ξm, (6.52d)
α̇n = Nnαpαm sin γ − µαn, (6.52e)

αnβ̇n = Nnαpαm cos γ, (6.52f)

where

Fm =
QTVm

2ωmVm
T [M + E]TVm

, ξm = σ2T1 − βm. (6.53)

For steady-state motions, similarly, two kinds of fixed points can be found.
1. The first kind fixed point is

αm
2 =

Fm
2

µ2 + σ2
2
, αp = αn = 0. (6.54)

2. The second kind fixed point is

αm
2 =

(σ1 − σ2)2 + 4µ2

−4NpNn

, αp
2 =

√
−Np

Nn

Xm, αn
2 =

√
−Nn

Np

Xm, (6.55a)

where Xm is the positive root of the following equation,

Nm
2Xm

2 +
Nm√
−NpNn

[2µ2 − σ2(σ1 − σ2)]Xm + αm
2(µ2 + σ2

2)− Fm2 = 0. (6.56)

One essential condition for that αp, αm and αn have real solutions for the second kind
fixed point is NpNn < 0.

According to the solution cases of Eq. (6.56), similarly, subdomains I, II and III
can be defined in the steady-sate solution domain.

Subdomain I Eq. (6.56) has no positive real solution. The solution of the linear system
dominates the system.

Subdomain II When the parameters combination satisfies

[(σ1 − σ2)2 + 4µ2](µ2 + σ2
2) + 4NpNnFm

2 < 0, (6.57)

Eq. (6.56) has one positive real solution.

Subdomain III Eq. (6.56) has two positive real solutions when the parameters combi-
nation satisfies 

Nm[2µ2 − σ2(σ1 − σ2)] < 0,

[(σ1 − σ2)2 + 4µ2](µ2 + σ2
2) < 4NpNnFm

2,

4NpNnFm
2 < µ2(σ1 + σ2)2.

(6.58)
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6.6.3 Discussion for internal resonance conditions and energy flow criterion

Similar in section 6.4.3, eigen-frequencies of the wing-store system can also be split
into two independent parts, ωBEi in the BE-subsystem and ωTBi in the TB-subsystem.
Therefore, the possible internal resonance relationship ωp ≈ ωm + ωn can be split into
the following 6 cases,

(1) ωBEp ≈ ωBEm + ωBEn , (2) ωBEp ≈ ωTBm + ωTBn , (3) ωTBp ≈ ωBEm + ωTBn ,

(4) ωTBp ≈ ωBEm + ωBEn , (5) ωBEp ≈ ωTBm + ωBEn , (6) ωTBp ≈ ωTBm + ωTBn .

It can be determined that the nonlinear coefficients Np Nm and Nn in Eqs. (6.42) are all
zero for the last three cases (4-6). In other words, the existence of the efficient internal
resonances is only related to the first three (cases 1-3) eigenfrequencies combinations.

When the relationship ωBEp ≈ ωBEm + ωBEn is satisfied, energy flows inside the BE-
subsystem. However when the relationship ωBEp ≈ ωTBm + ωTBn or ωTBp ≈ ωBEm +

ωTBn is satisfied, energy can be transferred between the two subsystems, i.e., flapping-
twist motions may induce lagging-extension motions and vice versa. Because of modal
interactions, the independent two subsystems are nonlinearly coupled again.

Energy flow criterion

Based on the discussions in sections 6.6.1 and 6.6.2, the conditions for existence of
the second kind fixed point can offer a criterion to estimate the direction of energy flow
during the internal resonance. Based on the conventionNp > 0, the other two nonlinear
parameters Nm and Nn leads to the relation conditions:

1. Nm > 0 & Nn > 0. In this case, the second kind fixed point exists only when
external energy is input from ωp mode. Energy can only be transferred from higher
to lower modes when the internal resonance exists.

2. Nm > 0 & Nn < 0 (or Nm < 0 & Nn > 0). Only when energy is input from
ωm (or ωn) mode, the system may have the second kind fixed point. As a result,
the energy can be transferred only from ωm (or ωn) mode to the other two during
the internal resonance.

3. Nm < 0 & Nn < 0. In this case, Eqs. (6.48) and (6.55) can both have positive real
solutions. This means that energy can be freely transferred among the three modes
via the internal resonance. Moreover, when energy is transferred from mode A to
modes B and C, mode B or C will serve as a new energy source, passing energy
to the other two modes and looping infinitely. As a result, in this case there will
be no stable steady-sate solutions during the internal resonance process.

6.7 Numerical study for wings with external stores

6.7.1 Frequency study

The material property and geometric specification of the wing structure of Fig. 6.1a
are given in Table 6.6. The CAS lay-up configuration is given in Table 6.7. In the
numerical study, only one rigid homogeneous cylinder with geometric specification as
diameter 0.127 m and height 0.508 m is considered as the external store.
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6.7. Numerical study for wings with external stores

Table 6.6: Material property and geometric specification of the thin-walled box beam

Material Value Geometric Value

E11 206.8× 109 N/m2 Width (2ba) 0.254 m
E22 = E33 5.17× 109 N/m2 Depth (2da) 0.0681 m
G13 = G23 2.55× 109 N/m2 Wall thickness (h) 0.0102 m
G12 3.10× 109 N/m2 Number of layers 6
µ12 = µ13 = µ23 0.25 Length (L) 2.540 m
ρ 1.528× 103 Kg/m3 Layer thickness 0.0017 m

a The length is measured on the mid-line contour.

Table 6.7: Lay-up configuration for wing structure (deg)

Flanges Webs

Top Bottom Left Right

[45]6 [45]6 [45/− 45]3 [45/− 45]3

Influence of span distributed store Three nondimensional parameters are defined to de-
scribe the span distributed store, viz., span and chord locations ηY and ηr, and mass
parameter ηM

ηY =
Yj
L
, ηr =

rj
2b
, ηM =

Ms

Mb

. (6.59)

Figure 6.16a shows the variation of the frequencies against the span location of the
external store. It can be found that both the fundamental frequencies ωTB1 and ωBE1

decrease when the store moves from the root to the tip of the wing. For higher modes,
the frequencies are sensitive to the span location. As for the influence of the chord
location, it is significant only on ωTB3 , in which the twist component φ dominates the
mode shape, see Fig. 6.16b.
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Figure 6.16: Variation of the frequencies as a function of the span and chord locations ( ηr = 0.5,
ηM = 0.5, Λ = 30◦)
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Influence of the tip store The other two nondimensional parameters of the tip store, viz.,
the chord and span offsets parameters ηTx and ηTy are defined as

ηTx =
xT
2b
, ηTy =

yT
L
. (6.60)

Figure 6.17 shows the variation of the frequencies against the mass of the tip store. As
the mass parameter ηM increases, the frequencies of the wing-store system decrease.
Moreover, it can be seen that the gradient of the frequencies also decrease. The influ-
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Figure 6.17: Variation of the frequencies as a function of the mass of the tip store ηM . ( ηTx = 0,
ηTy = 0.1, Λ = 30◦)

ences of the chord and span offsets on frequencies are highlighted in Figs. 6.18a and
6.18b, respectively. It can be seen that the fundamental frequencies, ωTB1 and ωBE1 , are
slightly sensitive to the tip store location. Fig. 6.19 further depicts the frequency as a
function of the sweep angle Λ. The result shows that the sweep angle Λ only has an
obvious effect on the high mode frequencies.
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Figure 6.18: Variation of the frequencies as a function of the chord and span offsets of the tip store ηTx

( ηM = 0.5, Λ = 30◦ )
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Figure 6.19: Variation of the frequencies as a function of sweep angle Λ. ( ηM = 0.5, ηTx = 0,
ηTy = 0.1

6.7.2 Nonlinear modal interactions

For a concrete study of modal interaction in the presence of internal resonance, the
case that the aircraft wing carrying a heavy tip store is considered here. The mass and
location parameters of the tip store are given as ηM = 0.326, ηTx = 0, and ηTy =
0.07. The frequencies of the wing-store system are listed in Table 6.8. Two significant
relationships for internal resonance can be found, i.e., ωTB4 ≈ ωBE2 + ωTB1 and ωBE2 ≈
ωTB3 + ωTB1 . According to the internal resonance conditions in section 6.6.3, these two
relationships are both efficient, i.e., can both yield modal interactions.

Table 6.8: Frequencies of the wing-tip store system (ηM = 0.326, ηTx = 0, ηTy = 0.07, Λ = 30◦)
[unit: Hz]

Mode# Theoretical Abaqus Error (%)a Mode# Theoretical Abaqus Error (%)a

ωBE
1 12.903 12.820 0.646 ωTB

1 4.0570 4.0344 0.560
ωBE
2 87.000 86.955 0.051 ωTB

2 28.798 28.668 0.454
ωBE
3 180.66 179.40 0.705 ωTB

3 83.795 84.268 -0.561
ωBE
4 240.16 242.14 -0.816 ωTB

4 91.072 90.879 0.213
a Relative error: ([Theoretical]-[Abaqus])/([Abaqus])×100%.

Internal resonance: ωTB
4 ≈ ωBE

2 + ωTB
1

The internal resonance relationship ωTB4 ≈ ωBE2 +ωTB1 is firstly discussed. Letting ωp =
ωTB4 , ωm = ωBE2 and ωn = ωTB1 , then the nonlinear parameters Np, Nm and Nn can
be identified from Eqs. (6.42). Their values are given in Table 6.9, i.e., Np = 0.6609,
Nm = 0.7271 and Nn = −14.59. 1 Recalling the energy flow criterion in section 6.6.3,
the condition (Nm > 0, Nn < 0) implies that only when energy is input from ωBE2

mode, the modal interaction phenomenon will occur. Note that, a different energy flow
direction will exhibit if we ignore the nonlinearities induced by the external stores (see

1Here we make the convention Np > 0
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Table 6.9), i.e., condition (Nm > 0, Nn > 0) means energy can only be transferred
from ωTB4 mode to ωBE2 and ωTB1 modes.

Table 6.9: Comparison of nonlinear parameters Np, Nm and Nn

ωTB
4 ≈ ωBE

2 + ωTB
1 ωBE

2 ≈ ωTB
3 + ωTB

1

Np Nm Nn Np Nm Nn

-0.6609 -0.7271 14.59 3.590 3.518 72.82
a 8.247 9.134 187.4 6.202 6.160 127.2
b -9.008 -9.861 -172.8 -2.711 -2.641 -54.42

a Component induced by the wing structure.
b Component induced by the external store.

When energy is input from ωBE2 mode, the steady-state solutions of the wing-store
system will be governed by Eqs. (6.54) and (6.55). Figs. 6.20a and 6.20b present two
typical types of steady-state solutions domain. Specifically, when the absolute value of
the internal resonance detuning parameter σ1 is small, the solution domain just consists
of subdomain I and II, see Fig. 6.20a. However, if the absolute value of σ1 is greater
than a critical value (|σ1| > 2

√
2µ), the solution domain will involve the subdomain

III, see Fig. 6.20b. Both Figs 6.20a and 6.20b show that only when external excita-
tion Fm is beyond a minimal extreme value, the steady-state solution may locate in
subdomain II or III.

One can see this conclusion more clearly in Figs. 6.21a and 6.21b, which depict the
amplitudes as a function of external excitation parameter Fm for two different combi-
nations of σ1 and σ2. Note that in Figs. 6.21a and 6.21b, stable solutions are indicated
in solid lines while unstable solutions are in dashed lines. In Fig. 6.21a, with the in-
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Figure 6.20: Steady-state solution domain

creasing Fm, the steady-state solution will shift to subdomain II from I (also indicated
in Fig. 6.20a). In subdomain II, the second kind fixed point will replace the first kind
fixed point as the system stable solutions with the presence of ωBE2 mode saturation
phenomenon [66]. In Fig. 6.21b, the increasing Fm leads the steady-state solution from
subdomain I, crossing subdomian III, and then into subdomain II (also indicated in
Fig. 6.20b). It can be seen that the first kind fixed point and one of the second kind
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6.7. Numerical study for wings with external stores

fixed points are both stable in subdomain III. As a result, a jump phenomenon indi-
cated by the arrows in Fig. 6.21b can be observed on the boundary of subdomain III.
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Figure 6.21: Response amplitudes versus excitation parameter Fm when energy is input from ωBE
2 mode

Figures 6.22a and 6.22b depict the amplitudes in the steady-state solution as a func-
tion of external resonance detuning parameter σ2 for selected two combinations of σ1
and Fm. Similarly, on the boundary of subdomain III, the jump phenomenon indicated
by the arrows in Fig. 6.22b can be observed. In addition, it can been seen that for σ1 6= 0
cases, suitable external resonance detuning may contribute to the modal interactions.
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Figure 6.22: Response amplitudes versus external resonance detuning parameter σ2 when energy is
input from ωBE

2 mode

Internal resonance: ωBE
2 ≈ ωTB

3 + ωTB
1

Next, the internal resonance relationship ωBE2 ≈ ωTB3 + ωTB1 is investigated. The
parameters ωp = ωBE2 , ωm = ωTB3 and ωn = ωTB1 are defined in Eqs. (6.41). Then
the nonlinear parameters Np = 3.590, Nm = 3.518 and Nn = 72.82 can be obtained.
(Nm > 0, Nn > 0) means that the system will exhibit an apparent internal resonance
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only when energy is input from ωBE2 mode. By comparing the nonlinearity components
in Table 6.9, nonlinearities induced by the tip store present a negative effect on the
modal interactions in this case.

The typical steady-state solution domain determined by Eqs (6.47) and (6.48) is
presented in Fig. 6.23a. Unlike Fig. 6.20b that just contains a negligible closed subdo-
main III, Fig. 6.23a has two significant open subdomain III. This difference can also
be clearly seen in Fig. 6.23b, which depicts the amplitudes as a function of external
resonance detuning parameter σ2. From the result of Fig. 6.23b, one can see that the
critical modal interaction occurs at the boundary of subdomain III.
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Figure 6.23: Internal resonance: ωBE
2 ≈ ωTB

3 + ωTB
1 ( σ1 = 1, Fp = 0.15, µ = 0.5)

6.7.3 Validation

For the purpose of validating the results showed in the numerical section, the commer-
cial code Abaqus [31] is used for direct numerical simulations. In the computation, the
4-node doubly curved general-purpose shell element type S4 is adopted.

For frequency validation, good agreements between theoretical results and Abaqus
results are achieved, as shown in Figs. 6.16a-6.19. Table 6.8 compares the eigenfre-
quencies from our theoretical analysis with the results from Abaqus, showing excellent
agreement.

For the nonlinear forced vibration simulation, we note that the external excitations
loading on the wing structure are all strong enough to induce the possible internal res-
onance. All the results presented in the time-domain are directly obtained by tracing
responses of the nodes on the 80% beam span during the simulation time of 2 second.
Actually 80% is a balanced choice according to the mode shapes (ωBE2 , ωTB1 , ωTB3 , ωTB4

) that involved in the internal resonances. In addition, fast Fourier transform (FFT) [99]
is applied for the corresponding frequency-domain analysis.

When energy is input from ωBE
2 mode

According to the numerical study in section 6.7, we know that when energy is input
from ωBE2 mode, energy will be transferred to lower frequency modes ωTB1 , ωTB3 and
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6.7. Numerical study for wings with external stores

higher frequency mode ωTB4 via the internal resonances at the same time.
In order to simulate the case when energy is input from ωBE2 mode, the normal

lateral pressure distributed uniformly on the left and right walls of the wing structure
with magnitude specified as 5 kpa and frequency specified as 87 Hz is considered.
Figs. 6.24a, 6.24b and 6.24c depict the response components u, w and φ during the
simulation time 2 second, respectively.

In Fig. 6.24a, the displayed time-domain result reveals that after an external res-
onance process about 0.8 second, the response of lateral bending u decreases signif-
icantly. Taking into account the results of Figs. 6.24b and 6.24c, it can be seen that
energy is transferred from BE-subsystem to TB-subsystem, and ωTB1 , ωTB3 , ωTB4 these
three modes are induced significantly. The simulation results agree with our theoretical
predictions excellently.
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Figure 6.24: The responses at the 80% span and the corresponding frequency-domain analysis when
energy is input from ωBE

2 mode

When energy is input from ωTB
4 , ωTB

3 or ωTB
1 mode

The numerical study in section 6.7 points out that when energy is input from ωTB4 , ωTB3

or ωTB1 mode, there will be no modal interactions. As a result, the external resonance
will dominate the primary resonance and the internal resonance can be ignored.
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First of all, for the case when energy is input from ωTB4 mode, the normal vertical
pressure distributed uniformly on the top and bottom walls of the wing structure with
magnitude specified as 5 kpa and frequency specified as 91.0 Hz is considered as the
external excitation. Based on the previous theoretical study, ωTB4 mode involves in the
internal resonance ωTB4 ≈ ωBEw + ωTB1 . However, neither apparent ωBE2 frequency
component in the lateral bending response in Fig. 6.25a nor ωTB1 frequency component
in the vertical bending response in Fig. 6.25b or in the twist response in Fig. 6.25c can
be found. In addition, compared with the vertical bending amplitude in Fig. 6.25b, the
lateral bending amplitude in Fig. 6.25a is negligible. Thus, we can conclude that when
energy is input from ωTB4 mode, the external resonance dominates the system and the
responses of BE-subsystem can be ignored. This conclusion agrees with our theoretical
prediction.
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Figure 6.25: The responses at the 80% span and the corresponding frequency-domain analysis when
energy is input from ωTB

4 mode

For the case when energy is input from ωTB3 mode, similar conclusion can be ob-
tained from the results of Figs. 6.26a, 6.26b and 6.26c. In this case, frequency of the
external excitation is specified as 84.5 Hz.

At last, when energy is input from ωTB1 mode, the vertical pressure distributed uni-
formly on the top and bottom walls of the wing with magnitude specified as 0.5 kpa and
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Figure 6.26: The responses at the 80% span and the corresponding frequency-domain analysis when
energy is input from ωTB

3 mode
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frequency specified as 4.0 Hz is considered. From the responses of the system depicted
in Figs. 6.27a, 6.27b and 6.27c, no evidence for internal resonance ωTB4 ≈ ωBE2 + ωTB1

or ωBE2 ≈ ωTB3 + ωTB1 can be found.
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Figure 6.27: The responses at the 80% span and the corresponding frequency-domain analysis when
energy is input from ωTB
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CHAPTER7
Aeroelasticity Control of Adaptive Aircraft Wings

7.1 Introduction

In this chapter, active control of swept smart aircraft wings in an incompressible flow
and exposed to gust loads are examined. The wing structure is modeled as a composite
thin-walled beam featuring fiber-reinforced host structure and piezo-composite actua-
tors. The nonclassical effects, such as twist-bending elastic coupling, warping inhibi-
tion, transverse shear and rotatory inertia are incorporated. The unsteady incompress-
ible aerodynamics are derived based on the concept of indicial functions, applicable
to arbitrary small motion in the time domain. The influence of directionality property
both of the host structure and piezo-actuators on improving aeroelastic performance are
specifically investigated. A number of conclusions are outlined at the end.

x

y

U =U cosn ∞ Λ
free stream direction

U∞

y
1
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y
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Piezo-actuator
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Figure 7.1: Aircraft wing structure
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Chapter 7. Aeroelasticity Control of Adaptive Aircraft Wings

7.2 3-D unsteady aerodynamic loads in incompressible flow

Based on the two-dimensional incompressible unsteady strip theory aerodynamics, the
aerodynamic lift Lae and twist moment Tae about the beam coordinate system oxyz in
Fig. 7.1 can be expressed in the time domain [76]

Lae(y, t) = −πρ∞b2
[
ẇc/2(y, t)

]
− LC(y, t), (7.1a)

Tae(y, t) = −πρ∞b3

[
1

2
Unφ̇(y, t) +

1

8
bφ̈(y, y)

]
− 1

2
bLC(y, t). (7.1b)

In these equations, the underscored terms are associated with non-circulatory part of
aerodynamic loads (e.g., see Ref. [39]); Un is the freestream speed normal to the leading
edge (see Fig. 7.1); wc/2 denotes the downwash at the middle chord points measured
from the leading edge of the airfoil; Λ denotes the sweep angle (positive backward, see
Fig. 7.1); and the circulatory lift force LC can be written as [76]

LC(y, t) =2πρ∞Unb

{
w3c/4(y, t)φw

(
Un
b
t

)
+

∫ t

0

dw3c/4(y, τ)

d τ
φw

[
Un
b

(t− τ)

]
d τ

}
,

(7.2)

where φw is Wagner’s function, which is related to Theodoresn’s lift deficiency function
through a Fourier transform; w3c/4 denotes the downwash at the three quarters chord
point.

Actually, the previous results are valid for two-dimensional cross-section wings.
In order to extend the 2-D aerodynamics to 3-D one, the modified strip theory for a
finite-span wing is used [15, 83]. Taking into account the sweep angle Λ, the lift curve
slope 2π and the downwash boundary condition for the 2-D aerodynamics model are
modified partially to account for the finite-span effects [9]:

2π → CLφ ≡
dCL
dφ

=
L

L+ 2b cos Λ
2π,

1

2
b→

[
CLφ
2π
− 1

2

]
b. (7.3)

Note that only circulatory lift LC in Eq. (7.2) should be modified.
In connection with the geometric transformations, the downwash velocities at mid-

dle and three quarters chord points of the profile related to the rotated chordwise coor-
dinate system are

wc/2(y, t) = ẇ0(y, t)− Unφ(y, t) + Un tan Λ
∂w0(y, t)

∂y
, (7.4a)

w3c/4(y, t) =ẇ0(y, t)− Unφ(y, t) + Un tan Λ
∂w0(y, t)

∂y

− b

2

[
∂φ(y, t)

∂t
+ Un

∂φ(y, t)

∂y
tan Λ

] [
CLφ
π
− 1

]
.

(7.4b)
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7.2. 3-D unsteady aerodynamic loads in incompressible flow

7.2.1 State space form

To cast Lae and Tae into state space form, a general two term exponentially growing
indicial function φw in Eq. (7.2) is assumed such that [8, 37]

φw(t) = 1.0− α1e
−β1

Un
b
t
− α2e

−β2
Un
b
t

= 1.0− 0.165e
−0.0455

Un
b
t
− 0.355e

−0.3
Un
b
t
.

(7.5)

By denoting

D(y, t) = w3c/4(y, 0)φw(t) +

∫ t

0

dw3c/4(y, τ)

d τ
φw(t− τ) d τ

≈ w3c/4(y, t)− α1B1(y, t)− α2B2(y, t),

(7.6)

where Bi(y, t) satisfies the condition [76]

Ḃi(y, t) +

(
Un
b
βi

)
Bi(y, t) = ẇ3c/4(y, t), i = 1, 2. (7.7)

Thus the unsteady aerodynamic lift and twist moment can be expressed in state space
form as

Lae(y, t) = −πρ∞b2
[
ẅ0 + Unẇ

′
0 tan Λ− Unφ̇

]
− CLφρ∞Unb

[
ẇ0 − Unφ

+ Unw
′
0 tan Λ− b

2

(
CLφ
π
− 1

)(
φ̇+ Unφ

′ tan Λ
)
− α1B1 − α2B2

]
,

(7.8a)

Tae(y, t) = −πρ∞b3

{[
1

2

(
CLφ
π
− 1

)(
Unφ̇+ Un

2φ′ tan Λ
)]

+
1

8
b
[
φ̈+ Unφ̇

′ tan Λ
]}
− 1

2
CLφρ∞Unb

2

{
ẇ0 − Unφ+ Unw

′
0 tan Λ

− b

2

(
CLφ
π
− 1

)(
φ̇+ Unφ

′ tan Λ
)
− α1B1 − α2B2

}
.

(7.8b)

7.2.2 Gust Loads

Based on Duhamel’s convolution integral and the indicial function for an arbitrary gust
wG(t), the induced aerodynamic lift is expressed as [9]

Lg(t) = CLφbUn

[
wG(0)ψK(t) +

∫ t

0

∂wG(τ)

∂τ
ψK(t− τ) d τ

]
, (7.9)

where in the practical calculation, the Kussner’s Function ψK can be approximated by
the following exponential form

ψK(t) = 1− 0.500e
−0.130

Un
b
t
− 0.500e

−1.00
Un
b
t
, t > 0. (7.10)
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Chapter 7. Aeroelasticity Control of Adaptive Aircraft Wings

As proved by von Kármán and Sears [95], the gust embedded in the atmosphere and
flowing with the atmosphere always acts at the quarter chord position, even when the
aerodynamic load is not completely circulatory. For simplicity, it is assumed that the
gust is not affected by the penetration of the wing. Thus, the aerodynamic moment
about the reference axis due to the gust can be expressed as

Tg(t) =
1

2
bLg(t) =

1

2
CLφb

2Un

[
wG(0)ψK(t) +

∫ t

0

∂wG(τ)

∂τ
ψK(t− τ) d τ

]
. (7.11)

In general, a gust can be specified by the gust intensity, gradient and its profile. Here,
with the assumption the gust intensity is uniformly distributed along the span, the fol-
lowing Sharp-edged gust is used in the present study

wG(τ) = H(τ)Ug, (7.12)

where Ug is the peak gust velocity.

7.3 Dynamical model

The structure model of the adaptive aircraft wing is based on the thin-walled beam
model we developed in Chapter 2. Indicated in Chapter 5, the beam system will decou-
pled into two subsystems, viz., one governing vertical bending-twist coupling motion
and the the other governing extension-lateral bending couping motion, when apply-
ing circumferentially asymmetric stiffness (CAS) lay-up configuration. Taking into ac-
count the aerodynamic model in section 7.2, the governing equations and the associated
boundary conditions of the aeroelastic system can be derived from Hamilton’s princi-
ple [75]. After a lengthy variation process and collecting the terms associated with the
same variations (δw0, δφ and δθx), the linear governing equations of the bending-twist
subsystem that are of interest for the present problem are

δw0 : Q̄′z + Q̃′z + Lae + Lg − b1ẅ0 = 0, (7.13a)

δφ : M̄ ′
y + M̃ ′

y − B̄′′w − B̃′′w + Tae + Tg − (b4 + b5)φ̈+ (b10 + b18)φ̈′′ = 0, (7.13b)

δθx : M̄ ′
x + M̃ ′

x − Q̄z − Q̃z − (b4 + b14)θ̈x = 0, (7.13c)

the associated boundary conditions at the beam root are

w0(0) = φ(0) = φ′(0) = θx(0) = 0, (7.14)

and at the beam tip are
δw0 : Q̄z(L) + Q̃z(L) = 0, (7.15a)

δφ : M̄y(L) + M̃y(L)−B′w(L)− B̃′w(L) + (b10 + b18)φ̈′(L) = 0, (7.15b)

δφ′ : B̄w(L) + B̃w(L) = 0, (7.15c)

δθx : Mx(L) + M̃x(L) = 0. (7.15d)

The above aeroelastic model is valid for the thin-walled beam with an arbitrary closed
cross-section, however we will consider rectangular and biconvex these two typical
cross-section cases in the following discussions.
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7.3. Dynamical model

7.3.1 Rectangular cross-section

Based on the thin-walled box beam theory in section 5.2, the governing equations (7.13)
for the rectangular cross-section can be simplified as

δw0 : a55(w′′0 + θ′x)− b1ẅ0 + Lae + Lg + δpAQz4 V4R
′(y) = 0, (7.16a)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) − (b4 + b5)φ̈+ (b10 + b18)φ̈′′

+ Tae + Tg + δpAMy
1 V1R

′(y) + δpAMy
3 V3R

′(y) = 0,
(7.16b)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx)− (b4 + b14)θ̈x + δpAMx
1 V1R

′(y)

5− (δp + δs)AQz4 V4R(y) = 0.
(7.16c)

The associated boundary conditions are
at y = 0:

w0 = φ = φ′ = θx = 0, (7.17)

and at y = L:

δw0 : a55(w′0 + θx) + δsAQz4 V4 = 0, (7.18a)

δφ : a37θ
′
x + a77φ

′ − a′′′66φ+ (b10 + b18)φ̈′ + δsAMy
1 V1 + δsAMy

3 V3 = 0, (7.18b)

δφ′ : a66φ
′′ = 0, (7.18c)

δθx : a33θ
′
x + a37φ

′ + δsAMx
1 V1 = 0, (7.18d)

7.3.2 Biconvex cross-section

For the biconvex cross-section, the stiffness matrix [aij] in Eq. (2.33) can be decoupled
into four parts when applying the circumferential asymmetric stiffness (CAS) lay-up
configuration, viz., extension-chordwise transverse shear coupling

T̂y

Q̂x

Γ̂t

 =

a11 a14 a18

a14 a44 a48

a18 a48 a88



v′0 +

1

2
(u′0)2 +

1

2
(w′0)2

θz + u′0 cosφ− w′0 sinφ
1

2
(φ′)2

 , (7.19a)

chordwise bending {
M̂z

}
=
[
a22

] {
θ′z − w′0φ′ cosφ− u′0φ′ sinφ

}
, (7.19b)

twist-flapwise bending coupling{
M̂x

M̂y

}
=

[
a33 a37

a37 a77

]{
θ′x + u′0φ

′ cosφ− w′0φ′ sinφ
φ′

}
, (7.19c)

and flapwise transvser shear-bimoment coupling{
Q̂z

B̂w

}
=

[
a55 a56

a56 a66

]{
θx + u′0 sinφ+ w′0 cosφ

φ′′

}
. (7.19d)
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Chapter 7. Aeroelasticity Control of Adaptive Aircraft Wings

As for the piezo-actuators of Fig. 7.1, Eq. (2.35) can also be decoupled into two
actuation couplings, viz., twist-flapwise bending coupling{

M̃x(y, t)

M̃y(y, t)

}
=

[
AMx

1

AMy
1

]
V1(t)P (y), (7.20a)

extension-chordwise transverse shear coupling
T̃y(y, t)

Q̃x(y, t)

Γ̃t

 =

A
My
2

AMx
2

AΓt
2

V2(t)P (y). (7.20b)

As for the piezoelectrically induced flapwise transverse shear Q̃z, chordwise bending
M̃z and bimoment B̃w, they are immaterial.

Taking Eqs. (7.19) and (7.20) into governing equations (7.13), as a result, the linear
governing equations of the thin-walled beam with a biconvex cross-section expressed
in terms of the basic unknowns are

δw0 : a55(w′′0 + θ′x) + a56φ
′′′ − b1ẅ0 + Lae + Lg = 0, (7.21a)

δφ : a37θ
′′
x + a77φ

′′ − a66φ
(iv) − a56(w′′′0 + θ′′x)− (b4 + b5)φ̈+ (b10 + b18)φ̈′′

+ Tae + Tg + δpAMy
1 V1R

′(y) = 0,
(7.21b)

δθx : a33θ
′′
x + a37φ

′′ − a55(w′0 + θx)− a56φ
′′ − (b4 + b14)θ̈x + δpAMx

1 V1R
′(y) = 0,

(7.21c)

the associated boundary conditions are
at y = 0:

w0 = φ = φ′ = θx = 0, (7.22)

and at y = L:

δw0 : a55(w′0 + θx) + a56φ
′′ = 0, (7.23a)

δφ : a37θ
′
x + a77φ

′ − a′′′66φ− a56(w′′0 + θ′x) + (b10 + b18)φ̈′′ + δsAMy
1 V1 = 0, (7.23b)

δφ′ : −a56(w′0 + θx)− a66φ
′′ = 0, (7.23c)

δθx : a33θ
′
x + a37φ

′ + δsAMx
1 V1 = 0. (7.23d)

Note that the traces are δp = 0 and δs = 1 for the case the actuator is spread over the
entire beam span, otherwise their values are assumed as δp = 1 and δs = 0. In the
previous case the bending moment piezo-coefficient AMx

1 and torque piezo-coefficient
AMy

1 appear in the governing equations; while in the later case they appear solely in
the boundary conditions at y = L, their contribution in the governing equations being
immaterial. The whole aeroelastic system is controlled solely by the voltage parameter
V1.

Note that, unless other states, we solely consider the aircraft wing with a biconvex
cross-section in the following discussions.
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7.4 Solution methodology

7.4.1 State-space solution

Due to the high complexity arising from the elastic couplings and the boundary con-
ditions, the spatial discretization via the extended Galerkin’s method [45, 70] is imple-
mented to cast the governing equations in state-space form. Thus the following spatial
semi-discretization is introduced:

w0(y, t) = Ψw
T (y)qw(t), φ(y, t) = Ψφ

T (y)qφ(t), θx(y, t) = Ψx
T (y)qx(t),

(7.24)
where the 1 × N shape functions Ψw

T (y), Ψφ
T (y) and Ψx

T (y) are required to fulfill
only the geometric boundary conditions. In Eq. 7.24, qw(t), qφ(t) and qx(t) are N × 1
generalized displacement vectors, which, by the modal expansion theorem (e.g., see
[58, pp. 171-178]), can be further expressed as:

qw(t) = Θwξs(t), qφ(t) = Θφξs(t), qx(t) = Θxξs(t), (7.25)

Θw, Θφ and Θx are N ×m matrices consisting of the first m eigenmodes; ξs are the
modal coordinates (e.g., see [58, p. 199]). Thus the state-space form of the aeroelastic
governing equations are obtained as

{
ẋs

ẋa

}
=

[
As Bs

BaAs Aa + BaBs

]{
xs

xa

}
+


0m×m

M−1

D2M
−1

D2M
−1

 [Qg +AV1(t)] . (7.26)

In Eq. (7.26), xs and xa are 2m × 1 vectors that describe the motion of the wing and
unsteady aerodynamic loads on the wing, respectively. The expression of the matrices
in Eq. (7.26) are

[As]2m×2m =

[
0m×m Im×m

−M−1K −M−1C

]
, (7.27a)

[Bs]2m×2m =

[
0m×2m

−(CLφρ∞bUn)M−1
[
α1Im×m α2Im×m

]] , (7.27b)

[Aa]2m×2m =

[
−β1Im×m 0m×m

0m×m −β2Im×m

]
, (7.27c)

[Ba]2m×2m =

[
Im×m

Im×m

] [
D1 D2

]
m×2m

, (7.27d)

D1 =

∫ L

0

(
Θw

TΨw +
1

2
bΘφ

TΨφ

)
Un

[
Ψ′w

T
Θwξ̇s tan Λ−Ψ′φ

T
Θφξ̇s −

1

2
bΨ′φ

T
Θφξ̇s tan Λ

(CLφ
π
− 1
)]

d y,

(7.27e)

D2 =

∫ L

0

(
Θw

TΨw +
1

2
bΘφ

TΨφ

)[
Ψw

TΘwξ̈s −
1

2
bΨφ

TΘφξ̈s

(CLφ
π
− 1
)]

d y, (7.27f)

Qg =
1

2
CLφb

2Un

[
wG(0)ψK(t) +

∫ t

0

∂wG(τ)

∂τ
ψK(t− τ) d τ

]
×
∫ L

0

[
Θw

TΨw +
b

2
Θφ

TΨφ

]
d y,

(7.27g)
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A =

∫ L

0

[
AMy

1 Θφ
TΨφ +AMx

1 Θx
TΨx

]
P ′(y) d y. (7.27h)

In the above equations, M and K are the mass and stiffness matrices of the wing struc-
ture; C is the pneumatic damping matrix; Qg denotes the external gust loads; A is the
actuating matrix; D1 and D2 are related to Wagner’s function.

7.4.2 Velocity feedback control

In order to study the influence of anisotropic characteristics of the piezo-composite
layer on control authority, a negative velocity feedback control algorithm is applied.
Recalling governing equations (7.21), the ply-angle θp of piezo-actuator just affects the
piezoelectric bending moment and twist actuations. Thus the actuating voltage V1(t)
can be computed as two cases [97], viz., Bending Control Methodology

V1(t) = kB θ̇x(Ys, t) = kBΨx
T (Ys)Θxξ̇s(t), (7.28)

and Twist Control Methodology

V1(t) = kT φ̇(Ys, t) = kTΨφ
T (Ys)Θφξ̇s(t), (7.29)

where kB and kT are the control gains; Ys is span location of the sensor offering the
velocity information. Note that the sensor is assumed at the wing tip (Ys = L) unless
explicitly stated. Thus the closed-loop system Eq. (7.26) becomes

{
ẋs

ẋa

}
=

[
Âs Bs

BaÂs Aa + BaBs

]{
xs

xa

}
+


0m×m

M−1

D2M
−1

D2M
−1

Qg, (7.30)

where

[Âs]2m×2m =

[
0m×m Im×m

−M−1K −M−1(C + PT/B)

]
, (7.31)

PT = kTAΨx
T (Ys)Θx, PB = kBAΨφ

T (Ys)Θφ. (7.32)

7.5 Validation

In order to validate our aeroelastic model, the wing structure model in Ref. [49] is used
for validation. The material properties and geometric specification of the wing structure
are shown in Table 7.1. The CAS lay-up configuration is given in Table 7.2.

Figures 7.2a and 7.2b plot the first five frequencies and the associated damping ratios
as functions of freestream speed U∞, respectively. It can been seen that the lowest
flutter speed in Fig. 7.2b and the eigen-frequencies near the onset of flutter in Fig. 7.2a
predicted by our approach all show excellent agreements with those in Ref. [49] (see
also Table 7.3).

Figure 7.3 further highlights the influence of elastic tailoring on instability bound-
aries for selected swept wings. When in the domain 0o < θh < 90o, host structure
ply-angle θh produces a negative elastic bending-twist couping, leading to a very low
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7.6. Numerical study

Table 7.1: Material property and geometric specification of the thin-walled beam with a biconvex cross-
section [49]

Material Value Geometric Value

E11 206.8× 109 N ·m−2 Width (2ba) 0.757 m
E22 = E33 5.17× 109 N ·m−2 Depth (2da) 0.100 m
G13 = G23 2.55× 109 N ·m−2 Wall thickness (h) 0.03 m
G12 3.10× 109 N ·m−2 Number of layers (mh) 6
µ12 = µ13 = µ23 0.25 Aspect ratio 16
ρ 1528 Kg ·m−3 Length (L) 6.058 m

a The length is measured on the mid-line contour.

Table 7.2: CAS lay-up configurations for the thin-walled beama of Fig. 7.1 (deg).

Host structure Top Bottom Piezo-actuator Top Bottom

Graphite-Epoxy [θh]6 [θh]6 MFC [θp] [θp]
a The piezo-actuator is positioned of the outer side of the laminate.

divergence speed (indicated by −o− lines), especially for forward-swept wings. How-
ever, when in the domain 95o < θh < 125o, the strong positive elastic bending-twist
couping leads to a higher divergence speed. Instead, flutter speed (indicated by −×−
lines) becomes the lowest instability speed.

7.6 Numerical study

7.6.1 Piezo-coefficients study

We assume the piezo-actuator manufactured by MFC [100] is distributed over the entire
beam span. The lay-up configuration and material properties are presented in Tables 7.2
and 7.4, respectively.

Figure 7.4 plots the bending moment piezo-coefficientAMx
1 and torque piezo-coefficient

AMy
1 as a function of piezo-actuator ply-angle θp for selected host structure cases. It can

be seen that stiffness of the host structure has a significant effect on piezo-coefficients.
In general, centered around θp = 90o, the curves of AMx

1 and AMy
1 exhibit a sym-

metric and an antisymmetric behavior, respectively. Furthermore, θp = 90o yields the
maximum piezoelectric bending moment while the piezoelectric torque is immaterial.

7.6.2 Damping ratio study for wing structure

In order to focus on the wing structure, we assume the freestream speedU∞ = 0 m · s−1

in the aeroelastic system of Eq. (7.30). Recalling the instability boundaries in Fig. 7.3,
two typical host structure cases are chosen for specific investigation, i.e., θh = 105o

Table 7.3: Frequencies of the system near onset of flutter (Hz)

Mode 1 Mode 2 Mode 3 Mode 4
Ref. [49] 14.449 15.842 32.205 53.399
Present 14.920 15.688 32.735 52.358
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Figure 7.2: Frequencies and damping ratios vs. freestream speed U∞; θh = 1050, Λ = 0o.
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7.6. Numerical study

Table 7.4: Material properties of piezo-actuator manufactured by MFC [71]

E11 31.2.8× 109 N ·m−2 d11 386.63× 10−12 m ·V−1
E22 = E33

∗ 17.05× 109 N ·m−2 d12 = d13
∗ −175.50× 10−12 m ·V−1

G12 = G13
∗ = G23

∗ 5.12× 109 N ·m−2 ρ 5115.9 Kg ·m−3
µ12 = µ13

∗ = µ23
∗ 0.303 mp 1

Electrode spacing 0.005 m Thickness 0.005 m
∗ The value is assumed by the author.
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Figure 7.4: Piezo-coefficients vs. piezo-actuator ply-angle θp.

characterizing strong bending-twist elastic coupling and θh = 150o characterizing
weaker elastic coupling.

For the excellent aeroleastic behavior [43] even for forward-swept wings, the struc-
ture with strong elastic coupling case θh = 105o is investigated firstly. Fig. 7.5 depicts
damping ratios of the first four modes as functions of piezo-actuator ply-angle θp. It can
be found that no matter implementing the bending or the twist control methodology, the
trends of all damping ratio curves show a similarity with that of torque piezo-coefficient
AMy

1 in Fig. 7.4. This implies that piezoelectric torque actuation plays a dominant role
in the structure incorporating strong bending-twist elastic couping. Based on the mode
shape study, it can be identified that the bending motion is more significant than the
twist motion in the first two modes, while the twist motion dominates the third mode.
Thus the result of Fig. 7.5 reveals that the twist control will even be more efficient than
the direct bending control for bending motions. Note that for the third mode, bend-
ing control methodology produces a negative damping ratio while makes the first two
modes exhibiting positive damping ratios. On the other hand, twist control methodol-
ogy shows an extremely large positive damping ratio of the third mode when θp ≈ 45o.

For the wing structure (θh = 150o) characterizing weak elastic coupling case, Fig. 7.6
compares damping ratios of the first four modes between twist and control methodolo-
gies. It can be found that depending on the mode shape dominated by bending and twist
component, bending and twist control methodologies have the better control authority,
respectively.
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Figure 7.5: Damping ratios of the first four modes vs. piezo-actuator ply-angle θp; kB = kT =
200 V · s, θh = 105o, U∞ = 0 m · s−1.

0 30 60 90 120 150 180

Piezo-actuator ply-angle 
p
 (deg)

-0.01

0

0.01

0.02

0.03

0.04

D
a

m
p

in
g

 r
a

ti
o

Bending Control

Twist Control

Mode 1 (Bending 1)

Mode 2 

(Bending 2)

0 30 60 90 120 150 180

Piezo-actuator ply-angle 
p
 (deg)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

D
a

m
p

in
g

 r
a

ti
o

Bending Control

Twist Control

Mode 4 (Twist 1)

Mode 3 (Bending 3)

Figure 7.6: Damping ratios of the first four modes vs. piezo-actuator ply-angle θp; kB = kT =
200 V · s, θh = 150o, U∞ = 0 m · s−1.
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7.6. Numerical study

7.6.3 Damping ratio study for aeroelastic system

Figure 7.7 plots damping ratios of the first three modes as functions of piezo-actuator
ply-angle θp for an unswept wing (Λ = 0o) with strong elastic coupling (θh = 105o)
at freestream speed U∞ = 50 m · s−1. There is no doubt twist control methodology
has significantly better control performance. Actually, the aerodynamic load induced
damping ratio (indicated by dotted lines) is large enough on the first mode in Fig. 7.7.
Thus in order to improve the flight stability, more attention should be focused on the
higher modes, especially the mode dominated by twist motion. In summary, twist
control with θp ≈ 60o can offer a balanced control performance for the first three
modes.
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Figure 7.7: Damping ratio of the first three modes vs. piezo-actuator ply-angle θp; kB = kT =
200 V · s, θh = 105o, U∞ = 50 m · s−1, Λ = 0o.

Damping ratios of the aeroelastic system with weak bending-twist elastic coupling
(θh = 150o) are reported in Fig. 7.8. In view of physical evidence that on the one hand
aerodynamic lift and twist loads may enhance the coupling of twist-bending motion,
on the other hand the aerodynamic load induced damping is already strong enough on
bending motion, the twist control seems more essential than the bending control. Thus
twist control with θp ≈ 30o is suggested for the aeroelastic system of θh = 150o.

7.6.4 Post-flutter study

One important target of active aeroelastic control is preventing or delaying the occur-
rence of flutter. Fig. 7.9 highlights the influence of additional piezo-composite layers
on the lowest flutter speed. In Fig. 7.9, compared with the predicted flutter speed when
ignoring the piezo-actuator plotted as solid lines, the additional mass and stiffness of
piezo-composite layers have a significant effect on flutter speed, which are indicated by
dashed lines. Specifically, ignoring the effect of mass and stiffness of the piezo-actuator
in the modeling process may induce a maximum error over 30%.

Firstly, an unswept wing (Λ = 0o) with weak bending-twist elastic couping (θh =
150o) is considered to study the active control near the onset of flutter. In Fig. 7.9, it
can be found that the lowest flutter speed varies from 130 m · s−1 to 149 m · s−1 with
the change of piezo-actuator ply-angle θp. Thus a freestream speed U∞ = 151 m · s−1

is applied to investigate the post-flutter control performance. Based on the associated
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Figure 7.8: Damping ratios vs. piezo-actuator ply-angle θp; kB = kT = 200 V · s, θh = 150o,
U∞ = 50 m · s−1, Λ = 0o.
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eigenvalue and eigenvector study, it can be verified that the twist component dominates
the unstable mode shape, viz., the lowest flutter is dominated by the twist motion.

Figure 7.10a depicts damping ratio of the unstable mode as a function of piezo-
actuator ply-angle θp for controlled and uncontrolled cases. Without control, the aero-
dynamic load will produce a negative damping ratio of the lowest twist mode which
is indicated by the dotted line. When applying the twist control, the flutter mode will
be stable when 0o < θp < 70o. On the contrary, bending control will make the flutter
instability even worse. Note that, the damping ratio curves in Fig. 7.10a may present a
sudden change (non-smooth) during the mode cross point (see, e.g. [97]).

In order to further investigate the influence of these two control methodologies on
flutter speed, piezo-actuator with ply-angle θp = 30o is selected to demonstrate the
damping ratios near the onset of flutter in Fig. 7.10b. Since the flutter mode is domi-
nated by twist motion (in dotted line), bending control (in solid line) will decrease the
lowest flutter speed. On the contrary, twist control (in dashed line) will improve the
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stability of the lowest twist mode and increase the lowest flutter speed significantly.
Note that the lowest bending mode will become the flutter mode instead of the lowest
twist mode when the aeroelastic system is under twist control.
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(a) Damping ratio of the lowest twist mode vs. piezo-actuator ply-
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Figure 7.10: Damping ratio study; kB = kT = 200 V · s, θh = 150o, Λ = 0o

Next, the aeroelastic system characterizing strong twist-bending elastic coupling
(θh = 105o) is investigated. Figs. 7.11a and 7.11b show damping ratios of the unstable
flutter mode of an unswept (Λ = 0o) and a backward-swept (Λ = 30o) wing cases,
respectively. The results of Figs. 7.11a and 7.11b show that bending and twist control
methodologies both present a negative control effect near the onset of flutter. This
is because, although the velocity feedback control improve the stability of Mode 2, it
makesMode 1 unstable even before the flutter speed. Thus, an optimal effective control
strategy, e.g., bang-bang control, sliding mode control, should be applied instead of the
simple velocity feedback control.
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(a) Noswept wing; Λ = 0o, U∞ = 158 m · s−1
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Figure 7.11: Damping ratio of the unstable flutter mode vs. piezo-actuator ply-angle θp; kB = kT =
200 V · s, θh = 105o

However for the forward-swept wing (Λ = −30o) case in Fig. 7.12, the simple ve-
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locity feedback control can keepMode 1 stable while improving the stability ofMode 2
near the onset of flutter when piezo-actuator ply-angle around θp ≈ 45o. This can be
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Figure 7.12: Damping ratio of the unstable mode vs. piezo-actuator ply-angle θp; kB = kT = 200 V · s,
θh = 105o, Λ = −30o, U∞ = 201 m · s−1.

seen more clearly in the numerical simulations of the forward-swept wing exposed to
a sharp gust in Figs. 7.13a and 7.13b. Figs. 7.13a and 7.13b display the tip bending
and twist responses under a twist control for selected ply-angles θp, respectively. Note
that only the first five structural modes are used in the actual simulations. And the re-
sults are simulated based on zero initial conditions. It can be found that twist control
with θp = 45o can significantly prevent the occurrence of the flutter instability penal-
ties when the flight speed is slightly over the flutter speed. Fig. 7.14 further gives the
associated voltage time-history applied on the actuator.
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Figure 7.13: Tip responses of a forward-swept wing subject to a sharp-edged gust near the onset of flutter
under twist control methodology; kT = 200 V · s, Λ = −30o, Ug = 10 m · s−1, U∞ = 201 m · s−1
.

126



i
i

“thesis” — 2017/12/13 — 17:19 — page 127 — #139 i
i

i
i

i
i

7.6. Numerical study

0 0.2 0.4 0.6 0.8 1

Time (s)

-2000

-1000

0

1000

2000

V
o
lt
a
g
e
 (

V
)

p
=45o

p
=60o

Figure 7.14: Voltage V1 applied on the actuators of a forward-swept wing subject to a sharp-edged
gust near the onset of flutter under twist control methodology; kT = 200 V · s, Λ = −30o, Ug =
10 m · s−1, U∞ = 201 m · s−1.
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CHAPTER8
Conclusion

AGeometrically nonlinear fiber-reinforced composite rotary thin-walled beam the-
ory incorporating piezo-composite actuators is developed. Some non-classical
effects, e.g., anisotropy, transverse shear, warping inhibitions and three-dimensional

strain are accounted for in the beam model. The strong and synergistic effect played
by the directionality property of advanced composite materials, considered in conjunc-
tion with that of piezoelectric actuation, on their dynamic response characteristics was
highlighted. This one dimensional beam model can serve as the basic model of rotating
blade, spacecraft and aircraft wing, offering a simple way for engineers to design and
study the structure meeting the particular operating environment condition. Generally
speaking, engineers can use elastic tailoring for passive control of the system. And
at same time, they can implement an effective active control via designing an optimal
piezo-actuator configuration.

In this dissertation, two special lay-up configurations, i.e., circumferentially uni-
form stiffness (CUS) and circumferentially asymmetric stiffness (CAS) configurations
are adopted. Applying CUS lay-up configuration, the linear system will decouple into
two independent subsystems, viz., chordwise bending-spanwise bending coupled BB-
subsystem and twist-extension coupled TE-subsystem. As for the CAS lay-up con-
figuration, the linear system can be similarly split into two parts, chordwise bending-
extension coupled BE-subsystem and twist-spanwise bending coupled TB-subsystem.
Although BE-subsystem and TB-subsystem are piezo-actuated coupled, they can be
treated as independent subsystems in most cases. However, based on the nonlinear dy-
namics analysis, these two subsystems appear to be coupled via modal interactions, i.e.,
energy can be transferred between these two subsystems.

Considering that structure elastic couplings and active control strategy both have
significant effects on active control efficiency, designers are suggested to implement
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Chapter 8. Conclusion

elastic tailoring and determine the appropriate control strategy firstly, then to optimize
configuration factors of piezo-actuators, such as fiber orientations, lay-ups, sizes and
positions.
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APPENDIXA
Appendix

A.1 The modified local stiffness coefficients Kij

K11 = A22 −
A2

12

A11

, K12 = A26 −
A12A16

A11

= K21, (A-1a)

K13 =

(
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A12A16

A11

)
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(
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A12B16

A11

)
, (A-1b)
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16
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Appendix A. Appendix

A.2 Inertial coefficients bij
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∮
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A.3 The cross-section stiffness quantities aij
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∮
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A.3. The cross-section stiffness quantities aij
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d s
K43

]
d s, (A-6d)

a38 =

∮
C

{
z[K11(x2 + z2) + 2rnK41]

}
d s+

∮
C

{
dx

d s
[K14(x2 + z2) + 2rnK44]

}
d s,

(A-6e)

a44 =
∮
C

[(
dx

d s

)2

K22 +

(
d z

d s

)2

Ā44

]
d s, a45 =

∮
C

[
dx

d s

d z

d s
K22 −

dx

d s

d z

d s
A44

]
d s,

(A-7a)

a46 =

∮
C

[
−Fw

dx

d s
K21 − a(s)

dx

d s
K24

]
d s, a47 =

∮
C

K23
dx

d s
d s, (A-7b)

a48 =

∮
C

dx

d s
[K12(x2 + z2) + 2rnK42] d s, (A-7c)

a55 =

∮
C

[(
d z

d s

)2

K22 +

(
dx

d s

)2

Ā44

]
d s, (A-8a)

a56 =

∮
C

[
−Fw

d z

d s
K21 − a(s)

d z

d s
K24

]
d s, a57 =

∮
C

K23
d z

d s
, (A-8b)

a58 =

∮
C

d z

d s
[K12(x2 + z2) + 2rnK42] d s, (A-8c)

a66 =

∮
C

[
F 2
wK11 + 2Fwa(s)K14 + a(s)2K44

]
d s, (A-8d)

a67 = −
∮
C

[FwK13 + a(s)K43] d s, (A-8e)

a68 =−
∮
C

{
Fw[K11(x2 + z2) + 2rnK41]

}
d s−

∮
C

{
a[K14(x2 + z2) + 2rnK44]

}
d s,

(A-8f)

a77 =

∮
C

(ψ(s)K23 + 2K53) d s, a78 =

∮
C

[K13(x2 + z2) + 2rnK43] d s, (A-8g)

a88 =

∮
C

{
(x2 + z2)[K11(x2 + z2) + 2rnK41]

}
d s+

∮
C

{
2rn[K14(x2 + z2) + 2rnK44]

}
d s,

(A-8h)
where

Ā44 = A44 −
A2

45

A55

. (A-9)
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A.4 The cross-section piezo-actuator coefficients AXi

The subscript i = 1, 2, 3, 4 of piezo-actuator coefficients AXi denote the operation

AX1 =

∫
T

AXT d s−
∫
B

AXB d s, AX2 =

∫
T

AXT d s+

∫
B

AXB d s, (A-10a)

AX3 =

∫
L

AXL d s−
∫
R

AXR d s, AX4 =

∫
L

AXL d s+

∫
R

AXR d s, (A-10b)

where the definition of AX are given as

ATy =
m∑
k=1

(
eyy −

A12

A11

ess

)
(n2 − n1)

ĥ
R(k)(s), (A-11a)

AMz =
m∑
k=1

{
x

(
eyy −

A12

A11

ess

)
(n2 − n1)

ĥ
R(k)(s)−

d z

d s

[
1

2
eyy(n1 + n2)− B12

A11

ess

]
(n2 − n1)

ĥ
R(k)(s)

}
,

(A-11b)

AMx =
m∑
k=1

{
z

(
eyy −

A12

A11

ess

)
(n2 − n1)

ĥ
R(k)(s) +

dx

d s

[
1

2
eyy(n1 + n2)− B12

A11

ess

]
(n2 − n1)

ĥ
R(k)(s)

}
,

(A-11c)

AQx =
m∑
k=1

dx

d s

(
esy −

A16

A11

ess

)
(n2 − n1)

ĥ
R(k)(s), (A-11d)

AQz =
m∑
k=1

d z

d s

(
esy −

A16

A11

ess

)
(n2 − n1)

ĥ
R(k)(s), (A-11e)

ABw = −
m∑
k=1

{
Fw

(
eyy −

A12

A11

ess

)
(n2 − n1)

ĥ
R(k)(s) + a

[
1

2
eyy(n1 + n2)− B12

A11

ess

]
(n2 − n1)

ĥ
R(k)(s)

}
,

(A-11f)

AMy =
m∑
k=1

{
ψ(s)

(
esy −

A16

A11

ess

)
(n2 − n1)

ĥ
R(k)(s) + 2

[
1

2
esy(n1 + n2)− B16

A11

ess

]
Ek(n2 − n1)R(k)(s)

}
,

(A-11g)

AΓt =
m∑
k=1

{
(x2 + z2)

(
eyy −

A12

A11

ess

)
(n2 − n1)

ĥ
R(k)(s) + 2rn

[
1

2
eyy(n1 + n2)− B12

A11

ess

]
(n2 − n1)

ĥ
R(k)(s)

}
.

(A-11h)

A.5 Global stiffness quantities aij

a11 = ap11, a16 = ap16, a17 = ap17, a18 = ap18, (A-12a)

a28 = ap28, a66 = ap66, a67 = ap67, a68 = ap68, (A-12b)

a77 = ap77, a78 = ap78, a88 = ap88. (A-12c)

134



i
i

“thesis” — 2017/12/13 — 17:19 — page 135 — #147 i
i

i
i

i
i

A.6. Matrix via the Extended Galerkin’s Method in CUS lay-ups

a12 = ap12 cos β + ap13 sin β, a13 = aP13 cos β − ap12 sin β, (A-13)
a14 = ap14 cos β + ap15 sin β, a15 = ap15 cos β − ap14 sin β, (A-14)
a26 = ap26 cos β + ap36 sin β, a27 = ap27 cos β + ap37 sin β, (A-15)
a36 = ap36 cos β − ap26 sin β, a37 = ap37 cos β − ap27 sin β, (A-16)
a38 = ap38 cos β − ap28 sin β, a46 = ap46 cos β + ap56 sin β, (A-17)
a47 = ap47 cos β + ap57 sin β, a48 = ap48 cos β + ap58 sin β, (A-18)
a56 = ap56 cos β − ap46 sin β, a57 = ap57 cos β − ap47 sin β, (A-19)

a58 = ap58 cos β − ap48 sin β. (A-20)

a22 = ap22 cos2 β + ap33 sin2 β + 2ap23 cos β sin β, (A-21)

a23 = ap23(cos2 β − sin2 β) + (ap33 − a
p
22) cos β sin β, (A-22)

a24 = ap24 cos2 β + ap35 sin2 β + (ap25 + ap34) cos β sin β, (A-23)

a25 = ap25 cos2 β − ap34 sin2 β + (ap35 − a
p
24) cos β sin β, (A-24)

a33 = ap33 cos2 β + ap22 sin2 β − 2ap23 cos β sin β, (A-25)

a34 = ap34 cos2 β − ap25 sin2 β + (ap35 − a
p
24) cos β sin β, (A-26)

a35 = aP35 cos2 β + ap24 sin2 β − (ap34 + ap25) cos β sin β, (A-27)

a44 = ap44 cos2 β + ap55 sin2 β + 2ap45 cos β sin β, (A-28)

a45 = ap45(cos2 β − sin2 β) + (ap55 − a
p
44) cos β sin β, (A-29)

a55 = ap55 cos2 β + ap44 sin2 β − 2ap45 cos β sin β. (A-30)

A.6 Matrix via the Extended Galerkin’s Method in CUS lay-ups

Mass matrix

MB =

∫ L

0


b1ΨuΨ

T
u 0 0 0

0 b1ΨwΨT
w 0 0

0 0 b4ΨxΨ
T
x b6ΨxΨ

T
z

0 0 b6ΨzΨ
T
x b5ΨzΨ

T
z

 d y. (A-31)

MT =

∫ L

0

[
b1ΨvΨ

T
v 0

0 (b4 + b5)ΨφΨ
T
φ + b10Ψ

′
φΨ
′T
φ

]
d y. (A-32)

Stiffness matrix

KB =
∫ L

0


a44Ψ

′
uΨ
′
u
T a45Ψ

′
uΨ
′
w
T a34Ψ

′
uΨ
′
x
T + a45Ψ

′
uΨx

T a24Ψ
′
uΨ
′
z
T + a44Ψ

′
uΨz

T

a55Ψ
′
wΨ′w

T a35Ψ
′
wΨ′x

T + a55Ψ
′
wΨx

T a25Ψ
′
wΨ′z

T + a45Ψ
′
wΨz

T

K55 K56

Symm K66

 d y,

(A-33)
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with 
K55 = a33Ψ

′
xΨ
′
x
T + a35Ψ

′
xΨx

T + a35ΨxΨ
′
x
T + a55ΨxΨx

T ,

K56 = a23Ψ
′
xΨ
′
z
T + a34Ψ

′
xΨz

T + a25ΨxΨ
′
z
T + a45ΨxΨz

T ,

K66 = a22Ψ
′
zΨ
′
z
T + a24Ψ

′
zΨz

T + a24ΨzΨ
′
z
T + a44ΨzΨz

T .

(A-34)

KT =

∫ L

0

[
a11Ψ

′
vΨ
′
v
T a17Ψ

′
vΨ
′
φ
T

a17Ψ
′
φΨ
′
v
T a77Ψ

′
φΨ
′
φ
T + a66Ψ

′′
φΨ
′′
φ
T

]
d y. (A-35)

Additional stiffness matrix

K̂B =
∫ L

0


b1R(y)Ψ′uΨ

′
u
T − b1ΨuΨu

T 0 0 0

0 b1R(y)Ψ′wΨ′w
T 0 0

0 0 −b4ΨxΨx
T −b6ΨxΨz

T

0 0 −b6ΨzΨx
T −b5ΨzΨz

T

 d y,

(A-36)

K̂T =
∫ L

0

[
−b1ΨvΨv

T 0

0 −(b4 − b5 − b6)ΨφΨφ
T + (b4 + b5)R(y)Ψ′φΨ

′
φ
T − b10Ψ

′
φΨ
′
φ
T

]
d y.

(A-37)
Actuating matrix

AB =
∫ L

0


AQx1 Ψ′u cos β AQz3 Ψ′u sin β

−AQx1 Ψ′u sin β AQz3 Ψ′w cos β

AMx
1 Ψ′x cos β −AQx1 Ψx sin β −AMz

3 Ψ′x sin β +AQz3 Ψx cos β

AMx
1 Ψ′z sin β +AQx1 Ψz cos β AMz

3 Ψ′z cos β +AQz3 Ψx sin β

P (y) d y.

(A-38)

AT =

∫ L

0

[
ATy2 Ψ′v ATy4 Ψ′v

AMy
2 Ψ′φ A

My
4 Ψ′φ

]
P (y) d y. (A-39)

External forces vector

QB =



∫ L
0
pxΨu d y + Q̄xΨu(L)∫ L

0
pzΨw d y + Q̄zΨw(L)∫ L

0
mxΨx d y + M̄xΨx(L)∫ L

0
mzΨz d y + M̄zΨz(L)

 . (A-40)

QT =

{ ∫ L
0

[Ω2(R0 + y) + py]Ψv d y + T̄yΨv(L)∫ L
0

(Ω2b6 +my + b′w)Ψφ d y + [M̄yΨφ(L) + B̄wΨ′φ(L)]

}
. (A-41)

Control matrix
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A.7. Matrix via the Extended Galerkin’s Method in CAS lay-ups

PB =

[
0 0 k1 cos β(Ys)Ψx

T (Ys) k1 sin β(Ys)Ψz
T (Ys)

0 0 k3 sin β(Ys)Ψx
T (Ys) −k3 cos β(Ys)Ψz

T (Ys)

]
, (A-42)

PT =

[
0 −k2Ψφ

T (Ys)

0 −k4Ψφ
T (Ys)

]
. (A-43)

A.7 Matrix via the Extended Galerkin’s Method in CAS lay-ups

Mass matrix

MB =

∫ L

0

b1ΨuΨ
T
u 0 0

b1ΨvΨ
T
v 0

Symm (b5 + b15)ΨzΨ
T
z

 d y, (A-44)

MT =
∫ L

0

b1ΨwΨT
w 0 0

(b4 + b5)ΨφΨ
T
φ + (b10 + b18)Ψ′φΨ

′T
φ 0

Symm (b4 + b14)ΨxΨ
T
x

 d y.

(A-45)
Stiffness matrix

KB =

∫ L

0

a44Ψ
′
uΨ
′
u
T a14Ψ

′
uΨ
′
v
T a44Ψ

′
uΨz

T

a11Ψ
′
vΨ
′
v
T a14Ψ

′
vΨz

T

Symm a22Ψ
′
zΨ
′
z
T + a44ΨzΨz

T

 d y, (A-46)

KT =
∫ L

0

a55Ψ
′
wΨ′w

T 0 a55Ψ
′
wΨ′x

T

a77Ψ
′
φΨ
′
φ
T + a66Ψ

′′
φΨ
′′
φ
T a37Ψ

′
φΨ
′
x
T

Symm a33Ψ
′
xΨ
′
x
T + a55ΨxΨx

T

 d y.

(A-47)
Piezo-actuator Matrix

AB =

∫ L

0

 A
Qx
2 ΨuR

′(y) 0 0

ATy2 ΨvR
′(y) 0 ATy4 ΨvR

′(y)

−AQx2 ΨzR(y) AQz3 ΨzR
′(y) 0

 d y, (A-48)

AT =

∫ L

0

 0 0 AQz4 ΨwR
′(y)

AMy
1 ΨφR

′(y) AMy
3 ΨφR

′(y) 0

AMx
1 ΨxR

′(y) 0 −AQz4 ΨxR(y)

 d y, (A-49)

External forces vector

QB =


∫ L

0
pxΨu d y + Q̄xΨu(L)∫ L

0
pyΨv d y + T̄yΨv(L)∫ L

0
mzΨz d y + M̄zΨz(L)

 , (A-50)
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QT =


∫ L

0
pzΨw d y + Q̄zΨw(L)∫ L

0
(my + b′w)Ψφ d y + [M̄yΨφ(L) + B̄wΨ′φ(L)]∫ L

0
mxΨx d y + M̄xΨx(L)

 . (A-51)

Control matrix P in Eq. (5.11)

P =


0 −k1α

k
1Ψφ

T (Ys) −k1β
k
1 Ψx

T (Ys)

0 −k3Ψφ
T (Ys) 0

−k4α
k
4

Ψw(Ys)
T

2b
0 −k4β

k
4 Ψx

T (Ys)

 (A-52)

A.8 Matrix in the hub-beam multibody system

M =

∫ L

0

b1ΨuΨ
T
u 0 0

b1ΨvΨ
T
v 0

Symm (b5 + b15)ΨzΨ
T
z

 d y, (A-53)

MΛq =

∫ L

0

[
−b1(R0 + y)ΨT

u 0 0 0 0 (b5 + b15)ΨT
z

]
d y (A-54)

K =

∫ L

0

a44Ψ
′
uΨ
′
u
T a14Ψ

′
uΨ
′
v
T a44Ψ

′
uΨz

T

a11Ψ
′
vΨ
′
v
T a14Ψ

′
vΨz

T

Symm a22Ψ
′
zΨ
′
z
T + a44ΨzΨz

T

 d y, (A-55)

GΛq =

∫ L

0

[
0 b1(R0 + y)ΨT

v 0 0 0 0 0
]

d y (A-56)

G =

∫ L

0

−b1ΨuΨ
T
v 0 0

0 −b1ΨvΨ
T
u 0

0 0 0

 d y (A-57)

C =

∫ L

0

b1R(y)Ψ′uΨ
′
u
T − b1ΨuΨu

T 0 0

0 −b1ΨvΨv
T 0

0 0 −(b5 + b15)ΨzΨz
T

 d y,

(A-58)

A =
[
A2 A3 A4

]
=

∫ L

0

 A
Qx
2 ΨuP

′(y) 0 0

ATy2 ΨvP
′(y) 0 ATy4 ΨvP

′(y)

−AQx2 ΨzP (y) AQz3 ΨzP
′(y) 0

 d y,

(A-59)

Q =

∫ L

0


pxΨu

[Λ̇2(R0 + y) + py]Ψv

mzΨz

 d y. (A-60)
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A.9. Nonlinear terms in Eqs. (6.8) and (6.10)

A.9 Nonlinear terms in Eqs. (6.8) and (6.10)

Quadratic nonlinear terms of wing structure

N2
u : a11v

′
0u
′
0 + a14θzu

′
0 + a55θxφ+ (a55 − a44)w′0φ+ a14

[
3

2
(u′0)2 +

1

2
(w′0)2

]
+ a33θ

′
xφ
′ + a37(φ′)2 + a48

1

2
(φ′)2,

(A-61a)

N2
v : a11

[
1

2
(u′0)2 +

1

2
(w′0)2

]
− a14w

′
0φ+ a18

1

2
(φ′)2, (A-61b)

N2
w : a11v

′
0w
′
0 + a14θzw

′
0 − a14v

′
0φ− a44θzφ+ a14u

′
0w
′
0 − a22θ

′
zφ
′ + (a55 − a44)u′0φ,

(A-61c)

N2
φ : a18v

′
0φ
′ + a48φ

′θz + 2a37u
′
0φ
′ + a33u

′
0θ
′
x − a22w

′
0θ
′
z + a48u

′
0φ
′, (A-61d)

N̄2
φ : a14v

′
0w
′
0 + a44w

′
0θz − a55u

′
0θx + (a44 − a55)u′0w

′
0, (A-61e)

N2
x : a33u

′
0φ
′, N̄2

x : −a55u
′
0φ, N2

z : −a22w
′
0φ
′, (A-61f)

N̄2
z : − a14

[
1

2
(u′0)2 +

1

2
(w′0)2

]
+ a44w

′
0φ− a48

1

2
(φ′)2. (A-61g)

Quadratic nonlinear terms induced by the span distributed stores

Ē2
u =

J∑
j=1

δD(y − Yj)mjrj

[
− θz θ̈z − φφ̈− θ̇2

z − φ̇2
]

(A-62a)

Ē2
v =

J∑
j=1

δD(y − Yj)mjrj

[
− 1

2
φθ̈x −

1

2
θxφ̈− φ̇θ̇x

]
, (A-62b)

Ē2
w =

J∑
j=1

δD(y − Yj)mjrj

[
− 1

2
θxθ̈z −

1

2
θz θ̈x − θ̇xθ̇z

]
, (A-62c)

Ē2
φ =

J∑
j=1

δD(y − Yj)
{
mj

[
rj(−φü0 −

1

2
θxv̈0) + rj

2(
1

2
θxθ̈x + θ̇xθ̇z)

]
+

1

2

[
I11
j cos2 Λ + I22

j sin2 Λ
][

2θ̇xθ̇z + θz θ̈x

]
+

1

2

[
I11
j sin2 Λ + I22

j cos2 Λ
][
θxθ̈z − θz θ̈x

]
+

1

2
sin Λ cos Λ

[
I22
j − I11

j

][
2φ̇θ̇z + 2θzφ̈− φθ̈z

]
+

1

2
I33
j

[
− 2θ̇xθ̇z − θxθ̈z

]}
,

(A-62d)

Ē2
x =

J∑
j=1

δD(y − Yj)
{
mj

[
− 1

2
rj(θzẅ0 + φv̈0) +

1

2
rj

2(θzφ̈− φθ̈z)
]

+
1

2

[
I11
j cos2 Λ + I22

j sin2 Λ
][
θzφ̈− φθ̈z

]
+

1

2

[
I11
j sin2 Λ + I22

j cos2 Λ
][
− 2φ̇θ̇z − θzφ̈

]
+

1

2
sin Λ cos Λ

[
I22
j − I11

j

][
− 2θ̇xθ̇z + θxθ̈z − 2θz θ̈x

]
+

1

2
I33
j

[
2φ̇θ̇z + φθ̈z

]}
,

(A-62e)
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Ē2
z =

J∑
j=1

δD(y − Yj)
{
mj

[
− rj(θzü0 +

1

2
θxẅ0)− rj2(

1

2
φθ̈x + φ̇θ̇x)

]
+

1

2

[
I11
j cos2 Λ + I22

j sin2 Λ
][
− 2θ̇xφ̇− φθ̈x

]
+

1

2

[
I11
j sin2 Λ + I22

j cos2 Λ
][

2φ̇θ̇x + θxφ̈
]

+
1

2
sin Λ cos Λ

[
I22
j − I11

j

][
− 2φ̇2 + 2θ̇2

x − φφ̈+ θxθ̈x

]
+

1

2
I33
j

[
− θxφ̈+ φθ̈x

]}
.

(A-62f)
Quadratic nonlinear terms induced by the tip store

E2
u =mT

[
− xT (θz θ̈z + φφ̈+ θ̇2

z + φ̇2)− yT (
1

2
φθ̈x +

1

2
θxφ̈+ θ̇xφ̇)

]
, (A-63a)

E2
v =mT

[
− xT (

1

2
φθ̈x +

1

2
θxφ̈+ φ̇θ̇x)− yT (θxθ̈x + θz θ̈z + θ̇2

x + θ̇2
z)
]
, (A-63b)

E2
w =mT

[
− xT (

1

2
θxθ̈z +

1

2
θz θ̈x + θ̇xθ̇z) + yT (

1

2
φθ̈z +

1

2
θzφ̈+ φ̇θ̇z)

]
, (A-63c)

E2
φ =mT

[
xT (−1

2
θxv̈0 − φü0) +

1

2
yT (−θxü0 + θzẅ0) + xTyT (

1

2
φθ̈z − θzφ̈− φ̇θ̇z)

+ xT
2(

1

2
θz θ̈x + θ̇xθ̇z) +

1

2
yT

2(−θz θ̈x + θxθ̈z)
]

+
1

2

[
I11
T cos2 Λ + I22

T sin2 Λ
]

[
2θ̇xθ̇z + θz θ̈x

]
+

1

2

[
I11
T sin2 Λ + I22

T cos2 Λ
][
θxθ̈z − θz θ̈x

]
+

1

2
sin Λ cos Λ

[
I22
T − I11

T

][
2φ̇θ̇z + 2θzφ̈− φθ̈z

]
+

1

2
I33
T

[
− 2θ̇xθ̇z − θxθ̈z

]
,

(A-63d)

E2
x =mT

[1

2
xT (−θzẅ0 − φv̈0) + yT (−θxv̈0 −

1

2
φü0) + xTyT (θz θ̈x −

1

2
θxθ̈z + θ̇xθ̇z)

+
1

2
xT

2(−φθ̈z + θzφ̈) + yT
2(−1

2
θzφ̈− θ̇zφ̇)

]
+

1

2

[
I11
T cos2 Λ + I22

T sin2 Λ
][
θzφ̈− φθ̈z

]
+

1

2

[
I11
T sin2 Λ + I22

T cos2 Λ
][
− 2φ̇θ̇z − θzφ̈

]
+

1

2
sin Λ cos Λ

[
I22
T − I11

T

][
− 2θ̇xθ̇z + θxθ̈z − 2θz θ̈x

]
+

1

2
I33
T

[
2φ̇θ̇z + φθ̈z

]
,

(A-63e)

E2
z =mT

[
xT (−1

2
θxẅ0 − θzü0) + yT (−θzv̈0 +

1

2
φẅ0) + xTyT (

1

2
φφ̈− 1

2
θxθ̈x + φ̇2 − θ̇2

x)

+ xT
2(−1

2
φθ̈x − φ̇θ̇x) + yT

2(
1

2
θxφ̈+ φ̇θ̇x)

]
+

1

2

[
I11
T cos2 Λ + I22

T sin2 Λ
][
− 2θ̇xφ̇− φθ̈x

]
+

1

2

[
I11
T sin2 Λ + I22

T cos2 Λ
][

2φ̇θ̇x + θxφ̈
]

+
1

2
I33
T

[
− θxφ̈+ φθ̈x

]
+

1

2
sin Λ cos Λ

[
I22
T − I11

T

][
− 2φ̇2 + 2θ̇2

x − φφ̈+ θxθ̈x

]
.

(A-63f)
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A.10. Matrixes in Eq. 6.11 and Eq. 6.19

A.10 Matrixes in Eq. 6.11 and Eq. 6.19

Mass matrix

M =
∫ L

0



b1ΨuΨ
T
u 0 0 0 0 0

b1ΨvΨ
T
v 0 0 0 0

b1ΨwΨT
w 0 0 0

(b4 + b5)ΨφΨ
T
φ + (b10 + b18)Ψ′φΨ

′T
φ 0 0

Symm (b4 + b14)ΨxΨ
T
x 0

(b5 + b15)ΨzΨ
T
z


d y.

(A-64)
Mass matrix of external stores E

E =
J∑
j=1



mjΨuΨu
T 0 0 0 0 0

mjΨvΨv
T 0 0 0 rjmjΨvΨz

T

mjΨwΨw
T −rjmjΨwΨφ

T 0 0[
rj

2mj + I11
j sin2Λ + I22

j cos2Λ
]
ΨφΨφ

T (I22
j − I11

j ) sin Λ cos ΛΨφΨx
T 0

Symm
[
I11
j cos2Λ + I22

j sin2Λ
]
ΨxΨx

T 0[
rj

2mj + I33
j

]
ΨzΨz

T



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=Yj

+



mTΨuΨu
T 0 0 0 0 −yTmTΨuΨz

T

mTΨvΨv
T 0 0 0 xTmTΨvΨz

T

mTΨwΨw
T −xTmTΨwΨφ

T −yTmTΨwΨx
T 0[

I11
T sin2Λ + I22

T cos2Λ + xT
2mT

]
ΨφΨφ

T [(I22
T − I11

T ) sin Λ cos Λ + xTyTmT ] ΨφΨx
T 0

Symm
[
I11
T cos2Λ + I22

T sin2Λ + yT
2mT

]
ΨxΨx

T 0

[I33
T + yT

2mT ] ΨzΨz
T



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=L

(A-65)
Stiffness matrix

K =
∫ L

0



a44Ψ
′
uΨ
′
u
T a14Ψ

′
uΨ
′
v
T 0 0 0 a44Ψ

′
uΨz

T

a11Ψ
′
vΨ
′
v
T a15Ψ

′
vΨ
′
w
T 0 a15Ψ

′
vΨ
′
x
T a14Ψ

′
vΨz

T

a55Ψ
′
wΨ′w

T 0 a55Ψ
′
wΨ′x

T 0

a77Ψ
′
φΨ
′
φ
T + a66Ψ

′′
φΨ
′′
φ
T a37Ψ

′
φΨ
′
x
T a27Ψ

′
φΨ
′
z
T

Symm a33Ψ
′
xΨ
′
x
T + a55ΨxΨx

T 0

a22Ψ
′
zΨ
′
z
T + a44ΨzΨz

T


d y.

(A-66)
External forces vector Q

Q =

∫ L

0

{
pxΨu pyΨv pzΨw (my + b′w)Ψφ mxΨx mzΨz

}T
d y. (A-67)

Nonlinear terms related to wing structure Nnm

Nnm =
∫ L

0

{
Ψ′uN

2
u Ψ′vN

2
v Ψ′wN

2
w (Ψ′φN

2
φ −ΨφN̄

2
φ) (Ψ′xN

2
φ −ΨxN̄

2
x) (Ψ′zN

2
φ −ΨzN̄

2
z )
}T

d y

(A-68)
Nonlinear terms induced by external stores Enm and Ênm. First of all, we define a

vector E̊nm

E̊nm =

∫ L

0

{
ΨuĒ

2
u ΨvĒ

2
v ΨwĒ

2
w ΨφĒ

2
φ ΨxĒ

2
x ΨzĒ

2
z

}T
d y

+
{

Ψu(L)E2
u(L) Ψv(L)E2

v(L) Ψw(L)E2
w(L) Ψφ(L)E2

φ(L) Ψx(L)E2
x(L) Ψz(L)E2

z (L)
}T

(A-69)
Then Enm and Ênm equal to E̊nm only when (AnB̈m) and (ȦnḂm) (A,B = u0, v0, w0, φ, θx, θz)
terms are retained in E̊nm, respectively.
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