
i
i

“thesis” — 2018/1/14 — 18:38 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DEPARTMENT OF ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

SYSTEM SUPPORT FOR TRANSIENTLY-POWERED

EMBEDDED SENSING SYSTEMS

Doctoral Dissertation of:
Naveed Anwar Bhatti

Supervisor:
Prof. Luca Mottola

Tutor:
Prof. Luciano Baresi

The Chair of the Doctoral Program:
Prof. Andrea Bonarani

2017 – XXX

i
i

“thesis” — 2018/1/14 — 18:38 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page 1 — #3 i
i

i
i

i
i

Acknowledgement

I would like to start by saying, I feel that I am truly blessed by the
Almighty to be standing where I am today.

To begin with, I owe my most profound gratitude to my advisor, Luca
Mottola, for his advice, ideas, funding, and unfailing optimism since before
I arrived in Milan. From igniting in me a spark of interest for transiently-
powered systems to guiding my Ph.D. to its end, Luca has been a friend and
mentor during these last three years and I am grateful for the enthusiasm,
energy and time Luca has devoted in my work.

I want to offer my gratitude to my tutor Luciano Baresi. I also want to
thank my co-authors for their efforts at LUMS: Muhammad Hamad Alizai,
Saad Ahmed, and Junaid Haroon.

I appreciate my colleagues at Politecnico di Milano who provided me
a warm and welcoming social climate for research. Many ideas that re-
sulted in the research, presented in this thesis, had their origin in (late night)
discussions with Kapal Dev (my roommate). I would also like to thank
Mikhail Afanasov, Koustabh Doloui, Paolo Manca and Riccardo Paccagnella.
These are the amazing people I have shared the office with over the span of
three years.

I would like to thank my parents for their love, encouragement, and sup-
port throughout my entire education. Without their motivation, I wouldn’t
be here today. Also, my wife’s parents deserve my gratitude for all their
support and encouragement throughout.

And Finally, I would like to express my deepest gratitude towards my
dearest wife Hala, who has had been my backbone in this entire journey.
I believe her love and motivation has had me achieve many milestones I
couldn’t have reached otherwise.

Thanks to all of you!

This research was partly funded by by the Cluster
Projects ”Zero-energy Buildings in Smart Urban

Districts" (EEB), ”ICT Solutions to Support
Logistics and Transport Processes" (ITS), and

”Smart Living Technologies" (SHELL) of the
Italian Ministry for University and Research.

i
i

“thesis” — 2018/1/14 — 18:38 — page 2 — #4 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page I — #5 i
i

i
i

i
i

Abstract

TRANSIENTLY powered embedded systems are becoming popular be-
cause of their self-sustainable, no maintenance and easily deploy-
able nature. However, there is an intrinsic challenge with these sys-

tems: they can be unpredictably interrupted, as energy harvesting by no
means can ensure a predictable supply of energy. Reboots will frequently
happen, which translates into a waste of resources, including energy, as
applications need to re-initialize and re-acquire the state. As a result, the
overall performance inevitably suffers. To allow an application to cross
the boundaries of periods of energy unavailability, prior solutions, either
save only a portion of program memory (avoiding the heap) [171] limit-
ing developers to employ sophisticated programming techniques, or resort
to hardware modifications by replacing SRAM with FRAM [93], that may
not only impact cost but also processing speed.

This thesis aims to design software techniques for transiently-powered
embedded devices, allowing an application to make progress, with a mini-
mum possible energy spent on saving the system state and without resort-
ing to hardware modifications. In the first part of the thesis, we present
the detailed analysis of the existing energy harvesting and wireless energy
transfer solutions for wireless sensor networks (WSNs) [27]. We define
desirable properties, classify existing solutions, and argue about their ap-
plicability in different deployment environments. Later, we conduct a com-
prehensive survey of the state of the art for transiently-powered embed-
ded systems. We discuss challenges, define goals and classify transiently-
powered embedded system solutions into different categories based on the
techniques they use to ensure forward progress of the application.

In the second part of the thesis, we develop three different techniques
for saving system state quickly and in an energy-efficient manner, exploit-
ing different properties of non-volatile memory. Key to their efficiency is
the way the state information is organized on non-volatile memory. Our re-

I

i
i

“thesis” — 2018/1/14 — 18:38 — page II — #6 i
i

i
i

i
i

sults, through extensive evaluation, crucially indicate that there is no "one-
size-fits-all" solution. It is the application’s memory characteristics that
will make one technique preferable over another. These evaluation results
also lead us to design an additional technique, DICE, in which, instead
of reading non-volatile memory to compute changes in the main memory
(which is energy-hungry operation and used in previous techniques), we
track changes in the main memory through just code instrumentation. This
makes DICE not only further reduce the amount of data to write onto non-
volatile memory to ensure forward progress of the application, but also
helps existing system support complete a given workload with better en-
ergy efficiency and reduced execution latency.

Finally, we present HARVOS that decides when to save the system state
by looking at the worst-case energy cost required to reach the next opportu-
nity to save system state, depending on the program structure as represented
in the control-flow graph. HARVOS allows the system to make an informed
decision, at every opportunity to save system state, on whether to continue
with the normal execution or save the system state. Our evaluation indicates
that HARVOS allows transiently-powered embedded systems to complete
a given workload with 68% fewer restarts, compared to existing literature.

II

i
i

“thesis” — 2018/1/14 — 18:38 — page III — #7 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Questions . 3
1.3 Thesis Statement and Contribution 5
1.4 Thesis Roadmap . 6

I Understanding Transiently Powered Embedded Sensing Sys-
tems 9

2 Energy Harvesting and Wireless Energy Transfer in WSNs 11
2.1 Introduction . 12
2.2 Energy Harvesting: Overview and Desirable Properties . . . 16
2.3 Energy Harvesting→ Kinetic Sources 18

2.3.1 Kinetic Energy as Vibrations 19
2.3.2 Kinetic Energy as Air or Water Flows 22
2.3.3 Kinetic Energy as Human or Animal Motion 23

2.4 Energy Harvesting→ Radiant Sources 25
2.4.1 Extracting Energy from Visible Light 25
2.4.2 Extracting Energy from Radio-frequency (RF) Trans-

missions . 28
2.5 Energy Harvesting→ Thermal Sources 29
2.6 Energy Harvesting→ Biochemical and Chemical Sources . 30
2.7 Energy Harvesting: Discussion 34

III

i
i

“thesis” — 2018/1/14 — 18:38 — page IV — #8 i
i

i
i

i
i

Contents

2.8 Wireless Energy Transfer: Overview and Desirable Properties 36
2.9 Wireless Energy Transfer→Mechanical Waves 39
2.10 Wireless Energy Transfer→Magnetic Fields 40
2.11 Wireless Energy Transfer→ Electromagnetic Radiations . . 42

2.11.1 Visible Light . 43
2.11.2 Microwaves or RF Transmissions 44

2.12 Wireless Energy Transfer: Discussion 46
2.13 Mapping WSN Environments to Harvesting and Transfer

Techniques . 49
2.13.1 Outdoor Environments 49
2.13.2 Indoor Environments 52

2.14 Research Agenda . 54
2.15 Summary . 57

3 Transiently-Powered Embedded Systems 59
3.1 Introduction . 59
3.2 Challenges . 60
3.3 Taxonomy of Transiently Powered Computing Solutions . . 62

3.3.1 Out-of-place Checkpointing 62
3.3.2 In-place Checkpointing 70
3.3.3 Non-volatile Processor 75

3.4 Summary . 75

II System Support for Transiently Powered Embedded Sens-
ing Systems 77

4 ”How?” :Designing Checkpointing Mechanism 79
4.1 Introduction . 80
4.2 Background . 81

4.2.1 Target Platforms . 82
4.2.2 Prior Art . 83

4.3 Fundamental Operation . 85
4.4 Storage Modes . 87

4.4.1 Split . 87
4.4.2 Heap Tracker . 89
4.4.3 Copy-If-Change . 91

4.5 Evaluation . 91
4.5.1 Contiguous Data . 94
4.5.2 Non-contiguous Data 98
4.5.3 Fragmented Data . 102

IV

i
i

“thesis” — 2018/1/14 — 18:38 — page V — #9 i
i

i
i

i
i

Contents

4.6 Discussion . 106
4.6.1 The role of memory span 106
4.6.2 The role of fragmentation 107

4.7 Outlook and Summary . 108

5 ”What?” : Differential Checkpointing 109
5.1 Introduction . 110
5.2 Background . 111
5.3 Overview . 114
5.4 Recording Differentials . 115

5.4.1 Global Context . 115
5.4.2 Call Stack . 120

5.5 Implementation . 122
5.5.1 Precompiler . 122
5.5.2 record() . 122
5.5.3 Checkpoint . 123

5.6 Evaluation . 123
5.6.1 Settings . 124
5.6.2 Results→ Update Size 126
5.6.3 Results→ Smallest Energy Buffer 128
5.6.4 Results→ Number of Checkpoints 129
5.6.5 Results→ Execution Latency 132

5.7 Related Work . 133
5.8 Summary . 135

6 ”When and Where?” : HarvOS 137
6.1 Introduction . 138
6.2 Related Work . 139
6.3 Overview . 140

6.3.1 Challenge . 141
6.3.2 Rationale . 142
6.3.3 Operation . 142
6.3.4 Generalization . 145

6.4 Placement Rules . 146
6.4.1 Branching . 146
6.4.2 Loops . 148
6.4.3 Function Calls and Interrupt Handlers 151

6.5 Evaluation . 152
6.5.1 Settings . 153
6.5.2 Results . 157

V

i
i

“thesis” — 2018/1/14 — 18:38 — page VI — #10 i
i

i
i

i
i

Contents

6.6 Summary . 162

7 Conclusion and Future Directions 165
7.1 Future Directions . 167

Bibliography 169

VI

i
i

“thesis” — 2018/1/14 — 18:38 — page 1 — #11 i
i

i
i

i
i

CHAPTER1
Introduction

The increasing demand for manufacturing smaller and cheaper computing
devices triggered a new trend in embedded sensing to design battery-less
systems, with miniaturized energy storage capacity, in combination with
the small scale energy harvesting system. However, energy harvesting sys-
tem by no means can ensure a predictable supply of energy for battery-less
embedded sensing devices. Their output is both highly variable and un-
predictable. Subsequently, because of the variability of energy harvesting
system and miniaturized energy storage capacity, these battery-less systems
need to save the system state to ensure forward progress of the application
across power cycles.

1.1 Motivation

The progress in micro electro-mechanical systems and micro electronics
are redefining the scope of the energy constraints of portable embedded
devices, such as home automation, ambient sensors, wearable/implantable
medical and fitness devices, and other smartphone-connected accessories.
Technologies that harvest ambient energy can integrate with these devices
to refill their energy buffers. Wireless energy transfer can complement these

1

i
i

“thesis” — 2018/1/14 — 18:38 — page 2 — #12 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.1: Basic illustration of the working of transiently-powered embedded systems

techniques by allowing users to opportunistically recharge their devices.
Several techniques recently appeared that enable practical wireless energy
transfer at scales suitable for the aforementioned class of devices [27]. In a
few years, as much as WiFi connectivity is currently found in public areas
and commercial locations, we expect citizens to find wireless recharging as
well.

Energy harvesting and wireless energy transfer, however, can by no
means ensure a predictable supply of energy for embedded sensing devices.
Computing under such transient energy conditions becomes a challenge.
Thus, such devices need to cope with highly variable, yet unpredictable
energy supplies across both space and time, and be prepared to survive pe-
riods of energy unavailability. They will experience frequent shutdowns, to
later reboot as soon as energy is newly available, as shown in Figure 1.1
where a©, b© and c© represent different energy levels of energy buffer.

The problem is exacerbated as the complexity of applications grows.
Many modern applications are effectively stateful [28]. In these settings,
for example, whenever actuation becomes part of the application logic, ac-
tuators must retain their operating settings after a power failure to safely
resume their functionality. Even in stateless implementations, the applica-
tion processing deployed on embedded devices might not execute entirely
on a single charge of the limited energy buffers typically employed, im-
peding forward progress. For example, accelerometer sensors may need
to apply complex signal processing algorithms before reporting the data,
which typically requires a few seconds of intense MCU utilization.

The frequent shutdown and reboot represents a waste of computing re-

2

i
i

“thesis” — 2018/1/14 — 18:38 — page 3 — #13 i
i

i
i

i
i

1.2. Questions

sources and therefore of energy, as applications will need to re-initialize,
re-acquire state, and perform re-synchronization with other nearby devices.
The reboot process will take some non-negligible time; as a result, even if
the application ultimately manages to make progress, the user experience
will inevitably suffer.

We aim at allowing an application’s processing to cross the boundaries
of periods of energy unavailability, without resorting to hardware modifi-
cations, for example, replacing SRAM with FRAM [93], that may not only
impact cost but also reduce the processing speed as FRAM is 3x slower
than SRAM.

To that end, we must answer three questions. First is how to enable an
embedded system to save the state of the program on stable storage, i.e.,
checkpointing, along with its later recovery with minimal latency and en-
ergy consumption. Second is how to optimize the overall system by check-
pointing the minimal state needed to ensure forward progress of the appli-
cation – thereby reducing the energy and time overhead of saving system
state. The third is how to determine when to perform checkpointing and
how to intertwine that with the main application’s processing.

1.2 Questions

This thesis addresses the following questions:

1. How to enable efficient checkpointing mechanism?

Crucially, we need to efficiently checkpoint system’s state on stable
storage, where it can be later retrieved to resume the computation.
The whole processes should be quick and performed in an energy-
savvy manner, to minimally perturb the user experience and not to
affect the duration of the next computing cycle as shown in Figure 1.
We need to do so without resorting to hardware modifications which
otherwise may greatly impact costs, especially at scale. Additionally,
the mechanism should not exclude any data segment, for example,
MementOS [171] excludes heap, as the part of the checkpoint and re-
store. Otherwise, excluding heap will not only limit the programmer
capability in terms of using dynamic data structures. Also, modern
embedded network applications made the dynamic memory allocation
mandatory for applications’ design as their average memory require-
ment varies widely from one configuration to another [115].

3

i
i

“thesis” — 2018/1/14 — 18:38 — page 4 — #14 i
i

i
i

i
i

Chapter 1. Introduction

2. What to checkpoint?

The answer of the first question leads us to a more important ques-
tion: what is the minimal state needed to checkpoint to ensure forward
progress of the application? To answer this question, we need to de-
sign an effective checkpointing mechanism which can save only those
memory areas of the system state which are altered compared to the
previous checkpointed system state in non-volatile memory (NVM)
with minimal energy and time wastage. Furthermore, the mechanism
should be transparent where the developer is oblivious to the check-
pointing issues and focuses only on the main coding problem. The
process of detecting altered memory locations between current sys-
tem state in main memory and previously checkpointed state in NVM
needs to be done intelligently, otherwise it may increase the overhead
instead of decreasing it.

3. Where and when to trigger checkpointing mechanism?

Understanding where and when to trigger the checkpoint within the
application code is also crucial for the overall performance of the sys-
tem. As for "where", ideally one would checkpoint after every change
to a variable’s value, not to loose any progress in case of a shutdown,
but the associated overhead would be prohibitive because some check-
pointing mechanism need to probe the energy buffer, for example,
through ADC operations, which not only consumes energy but also
changes execution times. Therefore, frequently performing this op-
eration may become prohibitive because of the energy cost. As for
"when", doing checkpointing too early i.e. at position a© or b© in Fig-
ure 1, would essentially correspond to a waste of energy that could be
usefully employed in further computations. In contrast, excessively
postponing a checkpoint may yield a situation where insufficient en-
ergy is left to complete the operation. Because of the unpredictable
supply of energy from the environment and the varying run-time exe-
cution of programs, striking an efficient trade-off is challenging.

Answers to the aforementioned questions are explored in detail in three
key chapters (Chapters 4, 5, and 6)

4

i
i

“thesis” — 2018/1/14 — 18:38 — page 5 — #15 i
i

i
i

i
i

1.3. Thesis Statement and Contribution

1.3 Thesis Statement and Contribution

The focus of this doctoral research is:
Design a software-based solution, which enables transiently-powered

modern wireless embedded devices to make progress across periods of
energy unavailability, without resorting to any hardware modification.

To this end, our first contribution is to investigate different check-
pointing schemes to efficiently checkpoint system’s state on stable storage,
where it can be later retrieved to resume the computation. This thesis de-
scribes three robust checkpointing techniques [28], i.e., Full-Stack, Heap-
Tracking and Copy-if-Change, which ensure to checkpoint and restore a
device’s state on stable storage quickly and in an energy-efficient manner.
Furthermore, checkpoints are restored only if they are complete, that is,
the device has not shut down while taking the checkpoint. This thesis de-
scribes the trade-offs among the three schemes and two baselines taken
from the literature through real experiments using two different platforms.
It concludes that there is no “one-size-fits-all” solution. The performance
depends on factors such as the amount of data to handle, how in memory
the data is laid out, as well as an application’s read/write patterns.

The lessons we learned from the Copy-if-Change checkpointing tech-
nique lead us to our second contribution: DICE (DIfferential ChEck-
pointing). DICE is a set of techniques to evaluate differentials between
the previous checkpoint data in NVM and the current system state. These
differentials originate from the use of programming constructs that mu-
tate the system state, such as variable assignments and memory references.
DICE automatically instruments existing code to track such changes and
uses this information to refrain from writing to NVM the slices of the pre-
vious checkpoint that remained unaltered. This way, we reduce both the
energy spent during and the time taken for checkpoints.

The third contribution is to address the problem of where and when
to trigger the checkpoint within the application code. This thesis describes
HARVOS [29], a code instrumentation strategy, which insert systems calls
called triggers at specific locations in the code. These triggers, based
on the control-flow graph of the program and remaining energy, decide
whether to perform the checkpoint before continuing the execution. HAR-
VOS operates at compile-time with limited developer invention and adapts
to varying levels of remaining energy and possible program executions at
runtime. The underlying design rationale also allows the system to spare
energy-intensive probing of the energy buffer, for example, through ADCs,
whenever possible.

5

i
i

“thesis” — 2018/1/14 — 18:38 — page 6 — #16 i
i

i
i

i
i

Chapter 1. Introduction

1.4 Thesis Roadmap

The remainder of this thesis is structured as follows.

• Chapter 2 contains an extensive survey of the existing energy harvest-
ing (EH) and wireless energy transfer (WET) techniques. The survey
includes: a) in-depth, yet intuitive understanding of the phenomena
enabling energy harvesting and wireless energy transfer; b) relations
and complementary aspects of energy harvesting and WET; and c)
detail discussion that maps existing energy harvesting and wireless
transfer solutions to the characteristics of the target deployments.

• Chapter 3 gives an overview of the state of the art transiently-powered
embedded systems. This includes solutions which: a) checkpoint app-
lication state on to external NVM b) employ NVM, especially FRAM,
as the only memory space for both instructions and data; c) use non-
volatile processors (NVP) that relieve the system from checkpointing
altogether.

• Chapter 4 contains the set of three techniques to checkpoint the tran-
siently-powered embedded system device state onto stable storage. It
describes the trade-offs among the three schemes through real exper-
iments and provides insights on what kind of application may benefit
most from what schemes.

• Chapter 5 describes DICE, a code instrumentation strategy to au-
tomatically track changes in system state. The chapter describes the
code instrumentations rules, implementation, and results based on a
combination of three benchmarks across three different existing sys-
tem support and two different hardware platforms. For example, using
DICE, HARVOS can complete the execution of RSA algorithm with
86% fewer checkpoints and a 34% reduction in execution latency.

• Chapter 6 describes HARVOS, a code instrumentation strategy to
automatically place trigger calls, which initiate checkpointing mech-
anism depending on remaining energy in the buffer, within program-
mers code. The chapter describes the design rationale, compile-time
rules we apply to decide on the placement of trigger calls depend-
ing on the program structure, and experimental results. Compared
to existing approaches, our evaluation indicates that HARVOS allows
transiently-powered devices to complete a given workload with 68%
fewer checkpoints, on average.

6

i
i

“thesis” — 2018/1/14 — 18:38 — page 7 — #17 i
i

i
i

i
i

1.4. Thesis Roadmap

• Chapter 7 concludes the thesis and presents some possible future re-
search directions.

7

i
i

“thesis” — 2018/1/14 — 18:38 — page 8 — #18 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page 9 — #19 i
i

i
i

i
i

Part I

Understanding Transiently
Powered Embedded Sensing

Systems

9

i
i

“thesis” — 2018/1/14 — 18:38 — page 10 — #20 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page 11 — #21 i
i

i
i

i
i

CHAPTER2
Energy Harvesting and Wireless Energy

Transfer in WSNs

Advances in micro-electronics and miniaturized mechanical systems are
redefining the scope and extent of the energy constraints found in battery-
operated wireless sensor networks (WSNs). On one hand, ambient energy
harvesting may prolong the systems’ lifetime, or possibly enable perpetual
operation. On the other hand, wireless energy transfer allows systems to
decouple the energy sources from the sensing locations, enabling deploy-
ments previously unfeasible. As a result of applying these technologies to
WSNs, the assumption of a finite energy budget is replaced with that of po-
tentially infinite, yet intermittent energy supply, profoundly impacting the
design, implementation, and operation of WSNs. This chapter discusses
these aspects by surveying paradigmatic examples of existing solutions in
both fields, and by reporting on real-world experiences found in the liter-
ature. The discussion is instrumental to providing a foundation for select-
ing the most appropriate energy harvesting or wireless transfer technology
based on the application at hand. We conclude by outlining research direc-
tions originating from the fundamental change of perspective that energy
harvesting and wireless transfer bring about. This chapter is published in

11

i
i

“thesis” — 2018/1/14 — 18:38 — page 12 — #22 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Year
2004 2006 2008 2010 2012 2014

P
u
b
l
i
c
a
t
i
o
n
s

0

10

20

30

40

50

60

70

Photovoltaic
Vibration
Chemical/Biochemical
Human/Motion
RF
Thermal
Air/Water Flow

Figure 2.1: Number of journal articles published by ACM, IEEE, or Elsevier in the last
decade revolving around micro-level energy harvesting.

extended form as "Energy harvesting and wireless transfer in sensor net-
work applications: Concepts and experiences" in [27]

2.1 Introduction

Wireless sensor networks (WSNs) have become a viable tool to gather in-
formation from the environment and to act on it non-invasively. Typical
deployments employ battery-powered nodes. As a result, a whole body of
work appeared to provide staple networking functionality within limited
energy budgets. Simultaneously, as the form factor of WSN nodes shrunk,
the battery size had to reduce as a consequence. Notwithstanding recent
developments in battery fabrication, this resulted in increasingly smaller
amounts of available energy.
Energy harvesting and wireless transfer To counteract this trend, re-
cent advances in micro-electronics and miniaturized mechanical systems
are finding their way in WSNs along two lines. On one hand, technologies
to harvest energy from the ambient may integrate with WSNs to prolong
the system’s lifetime, or to enable perpetual operation whenever possible.
A variety of techniques appeared that apply to, for example, light, vibra-
tions, and thermal phenomena, while matching the constraints of common
WSN nodes. These technologies are naturally attractive wherever replacing
batteries is unfeasible or impractical, as in biomedical implants [42].

The applicability of energy harvesting remains a function of the deploy-
ment environment. Depending on its characteristics, suitable sources of

12

i
i

“thesis” — 2018/1/14 — 18:38 — page 13 — #23 i
i

i
i

i
i

2.1. Introduction

ambient energy may simply not be at disposal. Several scenarios also bear
constraints on node locations that render the benefits of energy harvesting
not able to pay back the additional complexity and costs. For example,
WSN nodes equipped with light sensors are employed to realize adaptive
lighting in road tunnels [38]. Potential sources of ambient energy are lack-
ing in this environment, thus the opportunities for energy harvesting are
minimal. However, the nodes cannot be re-arranged in space to favor en-
ergy harvesting, as their locations are dictated by application requirements.

The issues above mainly stem from the coupling between the location
of energy harvesting and where sensing needs to occur. Wireless energy
transfer (WET)—that is, the ability to move energy across space—can
break such coupling, allowing WSN designers to exploit abundant energy
sources available at places other than the locations of sensing. In addi-
tion, WET may distribute the available energy from energy-rich locations
to energy-poor ones, improving the overall energy balance. Several tech-
niques recently appeared that enable WET in WSN applications as well,
such as laser [26], power LEDs [122], or radio transmissions [35,165]. No-
tably, energy harvesting is an integral part of WET, as the latter occurs by
intentionally spreading energy in the ambient, which is gained back at the
receivers’ end using harvesting techniques.

Energy harvesting and wireless transfer fundamentally redefine the tra-
ditional design assumptions in battery-operated WSNs: from considering a
finite energy budget to relying on an infinite, yet intermittent energy sup-
ply. This change of perspective spurred a plethora of research works. As
an example, Figure 2.1 depicts the number of articles published in the last
decade in ACM, IEEE, and Elsevier journals dealing with micro-level en-
ergy harvesting, that is, the kind most directly applicable to WSNs. The
figure accounts only for the lowest-level enabling technology and does not
include, for example, works about network protocols in energy harvesting
scenarios. The overall trend is markedly increasing1.
Prior literature Because of the growing interest, a few surveys about en-
ergy harvesting and wireless transfer recently appeared. These may be
broadly classified in three categories.

A few works mainly focus on integrating energy harvesting into the

1Figure 2.1, which is only taken as an example of the trends at stake, solely considers journals as they
constitute a well-defined (sub)set of publication venues. This is certainly not comprehensive, but representative
of the growing interest in the topic. Accurately identifying relevant papers at other venues, such as conferences,
would likely be more difficult and arguably lead to similar considerations. We obtain the statistics by searching
through the ACM Digital Library, IEEEXplore, and Elsevier’s Sciencedirect based on subject categories and
relevant keywords. The complete list of papers used to obtain the statistics in Figure 2.1 is available at http:
//goo.gl/9Fzlve.

13

http://goo.gl/9Fzlve
http://goo.gl/9Fzlve

i
i

“thesis” — 2018/1/14 — 18:38 — page 14 — #24 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

node design; for example, by discussing different energy storage solutions
possibly coupled with WSN nodes [101, 201]. However, low-power em-
bedded technology is quickly evolving, and both complete uW-level plat-
forms [108] and 32-bit MCUs with standby currents of a few hundred
nA [104] are appearing. Thus, the state of affairs is in a situation of rapid
change.

Other works discuss similar aspects for WET, and yet without explic-
itly linking it with energy harvesting. For example, [12] investigate the use
of super capacitors as opposed to rechargeable batteries, whereas [228] de-
scribe a history of WET together with considerations on how to leverage the
omni-directionality of electromagnetic radiations to power WSNs. Similar
to the above, these considerations are likely to be a function of currently
available embedded hardware, which is quickly evolving.

Special attention is devoted to WET through radio-frequency (RF) trans-
missions. [216] study the feasibility of RF-based WET, as well as the hard-
ware design and dimensioning of systems to match exposure limits in spe-
cific application scenarios, such as smart buildings. [30] as well as [129]
specifically report on systems based on the “harvest-then-transmit” paradigm,
employed by RFID-scale devices to operate in a battery-less fashion. The
authors discuss circuit models, signal processing techniques, and network
architectures, reaching into systems that combine energy and data transfer
in the same waveform.
Contribution and road-map In contrast to prior literature, we aim at pro-
viding an in-depth, yet intuitive understanding of the phenomena enabling
energy harvesting and wireless transfer. Further, unlike works that only
focus on one or a few technologies [30, 129, 216], our goal is to compre-
hensively cover multiple technologies. This allows us to elicit the relations
and complementary aspects of energy harvesting and WET, while creating
a foundation to analyze the trade-offs of different technologies and compare
them against each other. Our investigation is instrumental to the selection
of the most appropriate solution based on application requirements. Con-
fronted to trends in embedded hardware, the relation of energy harvesting
and wireless transfer to an application’s traits is likely far less volatile. We
therefore expect our analysis to enjoy long-term validity.

In this chapter we limit ourselves to the lowest-level technology that
enables energy harvesting or WET. Other works that are not specific to a
given energy harvesting or WET solution, such as network protocols for
rechargeable WSNs or scheduling algorithms for mobile recharging sta-
tions, are often generally applicable regardless of the energy provisioning
technology. We also intentionally only focus on solutions possibly applica-

14

i
i

“thesis” — 2018/1/14 — 18:38 — page 15 — #25 i
i

i
i

i
i

2.1. Introduction

Table 2.1: Structure of the article.

Subject Topic Section
Overview and desirable properties 2.2
Kinetic sources 2.3
Radiant sources 2.4
Thermal sources 2.5
Biochemical and chemical sources 2.6

Energy harvesting

Discussion 2.7
Overview and desirable properties 2.8
Mechanical waves 2.9
Magnetic fields 2.10
Electromagnetic radiations 2.11

Wireless energy transfer

Discussion 2.12
Mapping WSN environments 2.13Overarching considerations Research agenda 2.14

ble in low-power WSNs of resource-constrained devices, as they represent
a significant domain with well-defined requirements. Energy harvesting
and wireless transfer are applicable to other sensing platforms as well, such
as personal mobile devices. These, however, exhibit different requirements
compared to WSNs, and would require a markedly different conceptual
framework.

Notwithstanding the specific scope of our work, the subject matter is
vast. As a result, this chapter is broadly structured in three parts, as illus-
trated in Table 2.1:

1. Energy harvesting: Section 2.2 introduces energy harvesting by ex-
plaining the fundamental distinction between energy source and cor-
responding extraction technique, by illustrating the desirable proper-
ties that harvesting solutions must present to be employed in WSN
applications, and by introducing a classification of existing solutions
to guide the reader. Sections 2.3 through 2.6 focus on the individual
energy harvesting solutions by illustrating the energy sources, their
extraction techniques, and reported experiences of applying them to
WSNs. Section 2.3 discusses kinetic energy sources, that is, the en-
ergy of motion, and ways to convert it into electrical energy. Sec-
tion 2.4 illustrates radiant energy sources, which is the energy carried
by electromagnetic radiations when they disperse. Energy sources
due to thermodynamic gradients are described in Section 2.5, whereas
Section 2.6 discusses the emerging forms of energy harvesting from
biological or chemical sources. Section 2.7 wraps up the discussion by

15

i
i

“thesis” — 2018/1/14 — 18:38 — page 16 — #26 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

providing a summarizing view on the application of energy harvest-
ing in WSNs; in particular, Table 2.3 compares the different solutions
along the desirable properties previously illustrated.

2. Wireless energy transfer: Section 2.8 introduces WET by eliciting
the underlying relation to energy harvesting, and by discussing desir-
able properties that WET techniques should present to be fruitfully
employed in WSN applications. The individual WET techniques are
illustrated in Sections 2.9 to 2.11 by focusing on the different transfer
mechanisms and by reporting on real-world experiences. Section 2.9
illustrates the use of mechanical waves, and especially of acoustic
ones, to transport energy through the oscillation of matter, that is,
in the form of kinetic energy. Magnetic fields, which may serve for
WET by means of inductive coupling or inductive resonant coupling,
are discussed in Section 2.10. The use of electromagnetic waves such
as visible light, microwaves, and RF transmissions to transfer energy
over space is described in Section 2.11. Section 2.12 concludes the
treatment by offering a high-level view on the use of WET in WSN ap-
plications; in particular, Table 2.5 confronts different solutions along
the properties introduced earlier.

3. Overarching considerations: Section 2.13 maps existing energy har-
vesting and wireless transfer solutions back to the characteristics of
the target deployments, distilling a set of general guidelines to gauge
the most appropriate technology. Section 2.14 describes open prob-
lems generated by the change of perspective brought by energy har-
vesting and wireless transfer, illustrating avenues for future research
in areas as diverse as hardware design and environment models.

We end this chapter in Section 6.6 with brief concluding remarks.

2.2 Energy Harvesting: Overview and Desirable Properties

Research in WSNs mainly concentrated on realizing advanced functionality
within finite energy budgets, dictated by the battery capacities. Because of
this, existing works mainly focus on finding optimal lifetime-performance
trade-offs at all layers of the stack. Harvesting energy from the ambient
may potentially resolve this conflict, as already demonstrated in a number
of concrete deployments [184, 185, 215].

To reason systematically about energy harvesting solutions in WSN ap-
plications, we distinguish between the relevant energy source against the

16

i
i

“thesis” — 2018/1/14 — 18:38 — page 17 — #27 i
i

i
i

i
i

2.2. Energy Harvesting: Overview and Desirable Properties

corresponding extraction techniques. The energy source indicates what en-
vironmental phenomena one may exploit to harvest energy. Examples are
kinetic energy sources such as different forms of vibrations, and radiant
energy sources such as solar or artificial light. Every source bears an intrin-
sic content of energy that may only partly be taken out, depending on the
extraction technique. This is the specific technical solution to convert an
environmental phenomena into electric energy. As a matter of fact, energy
harvesting is indeed yet another form of energy conversion.

WSNs are a specific breed of networked system, with proper character-
istics dictated by application requirements, hardware/software constraints,
and deployment environments. When applied to WSN applications, energy
harvesting solutions should present a set of desirable properties, discussed
next. These properties equally apply to a large set of deployment environ-
ments:

• EH1: high energy density. Sources should bear an intrinsically high
energy content; because of the limited efficiency of current extraction
techniques, harvesting is useful only whenever the energy density of
the source can compensate it.

• EH2: high efficiency. To justify the added system complexity, a cer-
tain extraction technique should be able to take out the highest possi-
ble fraction of the energy density offered by a given source.

• EH3: small form factor. The extraction technique should operate at
micro-level and the harvesting device be realizable in small form fac-
tors, ideally at most on the scale of the WSN node, not to complicate
the deployments.

• EH4: high robustness. The harvesting equipment should be suffi-
ciently reliable and require limited maintenance, even if exposed to
stressful environmental phenomena; ideally, it should not further con-
strain the WSN lifetime.

• EH5: low cost. The harvesting equipment should be attainable at low
cost, not to significantly impact the system’s total cost of ownership.

Besides examining harvesting solutions based on these properties, we
also consider off-the-shelf availability as an attribute of a particular extrac-
tion technique. This is relevant for determining whether the corresponding
device can be seamlessly interfaced with a WSN device and readily em-
ployed. Differently, the design of custom integration hardware is often a
function of whether an extraction technique is approximated by a voltage
or a current source. The former type of source provides constant voltage as
long as the current drawn from the source is within the source’s capabili-

17

i
i

“thesis” — 2018/1/14 — 18:38 — page 18 — #28 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Energy Harvesting

Bio-chemical Radiant

Photovoltaic RF/ Electromagnetic

Thermal Kinetic

Ex
tr

ac
ti

o
n

 T
e

ch
n

iq
u

e
s

Microbial Fuel
Cell

RectennaPoly
crystalline

Amorphous
crystalline

Mono
crystalline

Piezo-
electric

Electrostatic

Electro-
magnetic

Pyro-
electric

Thermo-
electric

Tribo-
electric

Figure 2.2: Energy sources (rectangular blocks) and their extraction techniques (oval
blocks).

ties, and dually for the case of current sources. We analyze this aspect as
well.

In the following sections, we study the nature of energy sources, their
corresponding extraction techniques, along with relevant real-world WSN
experiences. Our description is driven by the energy source, as it largely
represents a determining factor for employing energy harvesting as a func-
tion of application requirements. Throughout the discussion, we cast the
different solutions in the conceptual framework of Figure 2.2, which helps
relate energy sources with the corresponding extraction techniques.

2.3 Energy Harvesting→ Kinetic Sources

Kinetic energy is the energy of motion, and one of the most fundamental
forces of nature. It is formally defined as the work needed to accelerate a
body of a given mass from rest to a certain speed. The body gains the en-
ergy during its acceleration, and maintains this amount of energy unless its
speed changes. The same amount of work is performed by the body when
decelerating to a state of rest. Beyond the computing domain, leveraging
kinetic energy to power various devices is an established practice. One
example is that of self-winding watches, where the mainspring is wound
automatically as a result of the natural motion of one’s arm.

Kinetic energy may take numerous forms. In the following, we dis-
cuss popular forms of kinetic energy together with the corresponding, most
commonly employed extraction techniques. These, however, should not be

18

i
i

“thesis” — 2018/1/14 — 18:38 — page 19 — #29 i
i

i
i

i
i

2.3. Energy Harvesting→ Kinetic Sources

intended as mutually-exclusive categories. A given form of kinetic energy
may, for example, easily transform into a different one. As a result, ex-
traction techniques employed for one form of kinetic energy are sometimes
applicable when kinetic energy manifests in different ways.

2.3.1 Kinetic Energy as Vibrations

Vibrations from manufacturing machines, mechanical stress, and sound
waves are popular sources of kinetic energy. Vibration energy is typically
of high density EH1 and devices based on extraction techniques, discussed
in this section, are readily available off-the-shelf at fairly low costs EH5.
Moreover, these extraction techniques enjoy small form factors EH3 to-
gether with useful harvesting efficiency EH2. As a result, these solutions
are extensively explored in the WSN literature, as shown in Figure 2.1.

Extraction techniques apt to these sources and applicable to WSNs are
often based on piezoelectric [137], electromagnetic, or electrostatic ef-
fects [43, 53]. On a conceptual level, these solutions share the fundamental
mechanism to convert vibrations into electric energy. Two sub-systems are
involved: a mass-spring system and a mechanical-to-electrical converter.
The mass-spring system transforms vibrations into motion between two
elements relative to a single axis; the mechanical-to-electrical converter
transforms the relative motion into electric energy by exploiting either of
the three aforementioned effects.
Piezoelectric effect Solutions exploiting this effect are based on a property
of some crystals that generate an electric potential when they are twisted,
distorted, or compressed [163]. Whenever a piezoelectric material is put
under some external force, it causes a deformation of the internal molecu-
lar structure that shifts positive and negative charge centers. This produces
a macroscopic polarization of the material directly proportional to the ap-
plied force. The resulting potential difference across the material gener-
ates an alternating current (AC), which is then converted into direct current
(DC); for example, using a full-bridge diode rectifier. Although a piezo-
electric harvesting device naturally resembles a current source, it may also
be leveraged as a voltage source [99].

Although piezoelectric materials are not just used for harvesting energy
from vibrations [156,239], they are most often employed with a cantilever-
like structure, shown in Figure 2.3a. The cantilever acts as the mass-spring
system. When the beam bends because of vibrations, it creates stress on
the piezoelectric film, generating alternating current. The cantilever’s res-
onant frequency is key in determining the efficiency, and can be adjusted

19

i
i

“thesis” — 2018/1/14 — 18:38 — page 20 — #30 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

V

Mass
Spring

Piezoelectric
Material

Movement

(a) Piezoelectric.

V

Mass

Spring

Coil

Magnet

Movement

N

S

(b) Electromagnetic.

V

Mass

Spring

Positive Electrode

Negative Electrode

Movement

(c) Electrostatic.

Figure 2.3: Simplified models of different vibration energy harvesters.

by changing the mass at the end of the beam and the material. Due to
their mode of operation, these systems not only capture periodic ambient
vibrations, but also sudden or sporadic motion.

The choice of piezoelectric material greatly influences the harvesting ef-
ficiency EH2. Several materials, both natural and artificial, exhibit a range
of piezoelectric effects and are operational at micro-level, thus also helping
achieve small form factors EH3. One of the most commonly used materials
for piezoelectric energy harvesting is Lead Zirconate Titanate (PZT), which
is however brittle in nature and susceptible to cracks upon high stress. This
may negatively impact the device robustness EH4. Another commonly
used material is Polyvinylidene Fluoride (PVDF), which is comparatively
more flexible than PZT. Although PZT and PVDF are capable of generat-
ing high voltage, the output current is low due to their high impedance, thus
limiting the harvesting efficiency.
Electromagnetic and electrostatic effects The electromagnetic effect is
ruled by Faraday’s and Lenz’s laws, stating that a change in the mag-
netic conditions of a coils surroundings generates electromotive force. This
causes voltage to be induced in the coil. To produce the change in the mag-
netic conditions around a coil, a magnet acts as the mass in a mass-spring
system that produces movement parallel to the coils axis [107, 144], as in
Figure 2.3b. This is not the only means to exploit the electromagnetic ef-
fect. For example, Samuel DeBruin et al. [54] develop a current sensor
that leverages the changes in the magnetic field induced by an AC current
line. This, in turn, induces an AC signal on the secondary coil, producing
sufficient energy to power the sensor device.

In the case of mass-spring systems, besides the magnet’s mass, its ma-
terial and the coils characteristics concur to determine the efficiency EH2
of the harvesting device. Most solutions use Neodymium Iron Boron (Nd-

20

i
i

“thesis” — 2018/1/14 — 18:38 — page 21 — #31 i
i

i
i

i
i

2.3. Energy Harvesting→ Kinetic Sources

FeB) for the magnet, as it provides the highest magnetic field density EH1.
The number of turns and the material used for the coil help tune the res-
onant frequency according to the expected ambient vibrations. Although
electromagnetic generators are more efficient than piezoelectric ones, their
fabrication at micro level is difficult: the assembly is complex and care
must be taken to align the magnet with the coil. These aspects negatively
impact robustness EH4.

Differently, electrostatic transducers produce electric energy due to the
relative motion of two capacitor plates, as in Figure 2.3c. When the ambi-
ent vibrations act on a variable capacitance structure, its capacitance starts
oscillating between its maximum and minimum values. An increase in
the capacitance decreases voltage and vice versa If the voltage is con-
strained, charges start flowing towards a storage device, converting the
vibration energy into an electrical one. Consequently, electrostatic en-
ergy harvesters are modeled as current sources [212]. The main benefit of
electrostatic transducers over piezoelectric and electromagnetic ones is the
small form factor EH3, as they can be easily fused into a micro-fabrication
process [179]. However, they require an initial charge for the capacitor.

Reported experiences Vibrations generated by vehicles are often used as
sources of kinetic energy. For example, Edward Sazonov et al. [185] em-
ploy electromagnetic-based transducers to run a structural health monitor-
ing (SHM) system for bridges, generating up to 12.5 mW through vibra-
tions due to vehicular traffic. Similarly, K. Vijayaraghavan et al. [215] im-
plement a traffic-flow monitoring system through a self-sustained WSN that
uses vibrations generated by passing vehicles.

Vibrations from vehicles may also power on-board sensors. I.M. To-
lention and M.R. Talampas [209] design a self-powered vehicular tracking
system that uses vehicle vibrations to generate energy through piezoelec-
tric harvesters. Markus Lohndorf et al. [125] evaluate the possibility of
a self-sustained tire pressure monitoring system by harvesting vibrations
through electrostatic harvesters. To ensure the safety of industrial machin-
ery in trailer trucks, Daniele Dondi et al. [56] design a WSN of accelerom-
eters and magnetometers using piezoelectric energy harvesters, powering
the nodes from trailer-induced vibrations.

In other settings, Shad Roundy et al. [179] experimentally verify that
vibrations generated from a small microwave oven suffice to run a WSN
node. They also empirically show that vibrations from various appliances,
such as cloth dryers and blender casings, suffice to run small electronic
equipment.

21

i
i

“thesis” — 2018/1/14 — 18:38 — page 22 — #32 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Figure 2.4: Different forms of vertical air flow harvester.

2.3.2 Kinetic Energy as Air or Water Flows

Wind mills and hydroelectric turbines are among the oldest known mech-
anisms to extract energy from air or water flows, respectively. Their oper-
ating principles are similar to those applied for vibrations. In most cases,
some form of turbine converts a flow into a rotational movement. This
movement subsequently drives an electromagnetic generator. These tech-
niques are gaining popularity, as visible in Figure 2.1 from the recent in-
crease of works about energy harvesting from air or water flows.

The physical characteristics of the turbine—specifically the number and
type of blades, and the axis of rotation—heavily influence the efficiency of
the energy harvester. Whenever the air or fluid flows at high speeds, a few
short and thin blades are more efficient, whereas at low speeds, numerous
long and wide blades achieve better efficiency. Generators with vertical
axis rotation, as shown in Figure 2.4, are popular as harvesting devices,
because they do not need to be pointed accurately in the direction of the
flow, as opposed to horizontal-axis devices. These often employ a tail rotor
to adjust their orientation along the direction of flow.

At micro-level, energy harvesters for air or water flows use miniaturized
versions of traditional spinning turbines. In addition, the devices often take
advantage of drag forces causing vibrations of the device itself, through
an additional piezoelectric or electromagnetic harvester [239]. Despite the
wide variety of turbines available in the market, the large form factor EH3
due to turbine components, and the limited robustness EH4 due to degrada-
tion that also induces high maintenance costs EH5, limit their application
to specific scenarios.
Reported experiences Yen Kheng Tan and S.K. Panda [205] design a self-
sustained forest fire monitoring system that uses micro wind turbines to
harvest energy and to sense wind speed. To measure the latter, they use

22

i
i

“thesis” — 2018/1/14 — 18:38 — page 23 — #33 i
i

i
i

i
i

2.3. Energy Harvesting→ Kinetic Sources

horizontal-axis turbines with a tail rotor for orienting the device along the
direction of air flow. Similarly, Xuan Wu and Dong-Weon Lee [225] de-
sign a self-sustained forest fire monitoring system that solely runs on mi-
cro wind turbines, but uses a temperature sensor to trigger the fire alarm.
Emilio Sardini et al. [184] design an energy harvesting wireless sensor to
monitor temperature and air velocity in a building’s air ducts. Sensed data
is then used to automatically control HVAC systems. In general, the use
of air flows as sources of kinetic energy in indoor scenarios is increasingly
popular [157, 226, 239].

Besides air flows, James L Chen et al. [40] use a vertical-axis water
turbine for powering WSN nodes in water pipes to monitor leakages and
quality. Thad Starnes [199] proposes the idea of energy harvesting from
blood pressure, later realized by Martin Detrre et al. [55] by creating a
self-sustained pacemaker. This device, even if not explicitly designed for
networked sensing, demonstrates the feasibility of energy harvesting from
flows at extremely small scales, which may be similarly applied in WSNs.

2.3.3 Kinetic Energy as Human or Animal Motion

As mentioned earlier, kinetic energy may easily transform from one form
to another. This increases the general applicability of extraction techniques
commonly employed for one form to a different form of kinetic energy. An
illustrative example is that of kinetic energy from human motion. Extrac-
tion techniques employed for vibrations and described in Section 2.3.1—
including those based on piezoelectric, electromagnetic, and electrostatic
effects—are also applicable to harvest energy from human motion. For ex-
ample, Joseph A Paradiso et al. [156] design a system able to harvest energy
from the push of a button through a piezoelectric material. The device then
transmits a digital identifier wirelessly, which can be used to control other
electronic equipment.

In addition, it is possible to harvest electric energy from movements such
as footfalls or fingers’ motion through the triboelectric effect. This is one of
the most natural phenomena, which occurs when different materials come
into frictive contact with each other, becoming electrically charged. Rub-
bing glass with fur, or passing a comb through the hairs can, for example,
yield triboelectricity. Various forms of energy harvesting using the tribo-
electric effect are possible. For example, Te-Chien Hou et al. [85] show
a triboelectric energy harvester embedded within a shoe able to power 30
light-emitting diodes. These devices are typically composed of two films
of different polymers laid in a “sandwich” structure, as in Figure 2.5a. The

23

i
i

“thesis” — 2018/1/14 — 18:38 — page 24 — #34 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

V

Electrodes

Polymers Sliding

(a) Double electrode triboelectric harvester.

V

Electrode

Polymers

Human Finger

(b) Single electrode triboelectric harvester.

Figure 2.5: Two modes of energy harvesting through the triboelectric effect.

charge is generated by the rubbing of the two polymer films when they slide
against each other, then captured by two electrodes.

To capture triboelectric energy generated by the touch of human skin,
a single-electrode device is used, as in Figure 2.5b. When a positively
charged surface, such as a human finger, comes in contact with the polymer,
it induces a negative charge on it. The overall circuit remains neutral as
long as the two surfaces remain in contact, producing zero voltage on the
load, as indicated on the left-hand side of Figure 2.5b. However, as the
positively charged surface moves away, as shown on the right-hand side
of Figure 2.5b, the polymer induces a positive charge on the electrode to
compensate the overall charge. This makes the free electrons flow from
the polymer towards the electrode, and then to ground producing output
voltage on the load. Once the polymer comes back to the original state, the
voltage drops back to zero.

The use of polymers in both these forms of triboelectric devices makes
the structure flexible, improving robustness EH4, and allows one to achieve
small form factors EH3. The latter feature, for example, facilitates the inte-
gration into wearable WSNs, where the skin rubbing against the harvesting
device triggers the triboelectric effect. However, the scenarios where these
technologies may be applied are vastly different, requiring significant cus-
tomizations, as a solution is difficult to obtain off-the-shelf.
Reported experiences Extracting energy from human motion is a natu-
ral choice in a number of scenarios, especially within the health-care do-
main. As an example, there exist implantable sensors able to harvest energy
from muscular movements to transmit useful information about prosthetic
implants [14, 192]. Besides the aforementioned work by [156], [67] also
use piezoelectric energy harvesters embedded within shoes to power active
RFID tags for indoor localization. The range of application is not limited
to scenarios involving humans. Nelson I. Dopico et al [58], for example,
demonstrate a herd localization system powered solely by harvesting en-
ergy from cattle movement.

24

i
i

“thesis” — 2018/1/14 — 18:38 — page 25 — #35 i
i

i
i

i
i

2.4. Energy Harvesting→ Radiant Sources

P-type

VN-type

P-N junction

Bottom electrode

Top electrode

Glass

Hole

Freed
electrons

Figure 2.6: Simplified model of a photovoltaic cell.

2.4 Energy Harvesting→ Radiant Sources

Radiant energy is the energy carried by electromagnetic radiations when
they disperse from a source to the surrounding environment. The most
common form of radiant energy is, of course, solar light. However, light ra-
diation may or may not be visible. Besides light, a source of radiant energy
that recently received increased attention are pre-existing radio-frequency
(RF) transmissions.

2.4.1 Extracting Energy from Visible Light

The photoelectric effect allows one to extract energy from electromagnetic
radiations below the infrared spectrum, with solar (visible) light as the pri-
mary example. Photovoltaic cells, leveraging the photoelectric effect, are
one of the most mature energy harvesting technologies. As Figure 2.6 de-
picts, a photovoltaic cell—also known as solar cell—consists of a mini-
mum of two layers of semi-conducting material, mostly silicon. One of the
layers, called N-type layer, is doped with impurities to increase the concen-
trations of electrons. Likewise, freely moving positive charges called holes
are introduced by doping the silicon of the other layer, thus called P-type
layer. Together, P-type and N-type layers form so called P-N junctions.

When light hits the N-type layer, due to the photoelectric effect, the ma-
terial absorbs the photons and thus releases the free electrons. The electrons
travel through the P-N junction towards the P-type layer to fill the holes in
the latter. Among the freed electrons, few of them do not find a hole in
the P-type layer, and move back to the N-type layer. This occurs through
an external circuit, whereby the generated current is directly proportional
to the intensity of light. Thus, photovoltaic cells are generally modeled as

25

i
i

“thesis” — 2018/1/14 — 18:38 — page 26 — #36 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Mono crystalline Poly crystalline Thin Film(a) Monocrystalline cell.Mono crystalline Poly crystalline Thin Film(b) Polycrystalline cell.Mono crystalline Poly crystalline Thin Film(c) Amorphous cell.

Figure 2.7: Different types of solar cells.

Load (Ohms)
100 101 102 103 104 105 106

P
o
w
e
r

(
m
W
)

10-10

10-8

10-6

10-4

10-2

100

102

Indoor office light (~250-300 lux)
PowerLED torch (~350-400 lux)

Maximum Power

Maximum Power

Figure 2.8: Harvested power using amorphous silicon cells against different loads.

current sources [99].
The material used in a cell’s construction mainly determines its effi-

ciency EH2, along with form factor EH3 and cost EH5. Monocrystalline
cells, shown in Figure 2.7a, use a single crystal of silicon, and are both
most expensive and most efficient. However, they are not employed at mi-
cro level because of their cost. Polycrystalline cells, shown in Figure 2.7b,
use multiple silicon crystals and can be recognized by their shattered-glass
look. They are less efficient than monocrystalline cells, but their lower cost
outweighs the efficiency losses. Amorphous silicon cells—also known as
thin film cells, shown in Figure 2.7c—are manufactured by depositing va-
porized silicon on a substrate of glass or metal and may be flexible, which
simplifies installation. These are both the least performing and cheaper
type of cell; however, under typical indoor lighting conditions, they may
outperform monocrystalline ones.

A characteristic of solar cells is the relation between their efficiency
against the actual load and operating temperature. Figure 2.8 illustrates

26

i
i

“thesis” — 2018/1/14 — 18:38 — page 27 — #37 i
i

i
i

i
i

2.4. Energy Harvesting→ Radiant Sources

this relation for an amorphous cell. In conditions of office lighting, the cell
gives maximum power with a load of 10,000Ω; when the same cell is un-
der a PowerLED torch, it generates maximum power with a load of 1000Ω.
To leverage this phenomena, solar cells usually incorporate a Maximum
Power Point Tracking (MPPT) module, which tracks the output power and
applies the appropriate load to optimize the output performance. In prin-
ciple, MPPT modules may similarly assist the functioning of other energy
harvesting techniques [232], but their use is most commonly reported with
solar cells.

Due to the high energy density of solar light EH1 and off-the-shelf avail-
ability of existing solutions at relatively low cost EH5, light-based energy
harvesting is a popular means to power WSN nodes. The greatest advan-
tage at micro level is the lack of moving parts, which increases robustness
EH4, and the absence of emissions or noise. Nevertheless, the overall per-
formance strongly depends on environmental conditions, that is, on light
intensity and duration.

Reported experiences Many cases of light-based energy harvesting can
be found in the literature. For example, Julian Gutierrez et al. [73] de-
sign an automated irrigation system by extending the battery lifetime of
WSN nodes using solar cells. A self-sustained transmit beacon is also
reported [178], which uses both light and vibration energy harvesting to
achieve up to 100% duty cycle.

The need to employ solar energy harvesting at micro-level also moti-
vates novel solutions compared to the mainstream use of solar cells. For
example, Davide Brunelli et al. [32] improve the efficiency of solar cells
by designing a very low power (1 mW) MPPT module for micro-level en-
ergy harvesting. Lohit Yerva et al. [231] show a sensor device able to har-
vest sufficient indoor-solar energy to acquire and transmit sensor readings
every minute along a collection routing tree. Differently, EnHANTs [70]
leverages solar radiations using organic semiconductors, enabling the use
of bendable cells that facilitate deployments. The use of organic semicon-
ductors allows the system to keep constant efficiency over different lighting
levels, avoiding the need of MPPT modules. Finally, Prometheus [95] and
Everlast [193] use a super-capacitor as a primary buffer to store energy; the
main advantage being a reduction of the recharge cycles of the main battery,
which prolongs its lifetime.

27

i
i

“thesis” — 2018/1/14 — 18:38 — page 28 — #38 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

2.4.2 Extracting Energy from Radio-frequency (RF) Transmissions

Extracting energy from pre-existing radio-frequency (RF) transmissions re-
cently received much attention, as shown in Figure 2.1, due to the increas-
ing pervasiveness of cellular stations, FM radios, and WiFi networks.

The key element of an RF energy harvesting device is the “rectenna”,
that is, a special type of antenna able to convert the energy carried by elec-
tromagnetic waves directly into electrical current. A rectenna comprises a
standard antenna and a rectifying circuit. The antenna captures the electro-
magnetic waves in the form of AC current; the rectifier performs the AC-
to-DC conversion, making a rectenna resemble a voltage-controlled current
source [150]. To design an efficient rectenna, different types of physical
antennas, such as patch, dipole, planar, microstrip, and uniplanar antennas,
may be incorporated with different types of rectifying circuits.

RF energy harvesting evidently bears a significant potential, yet it still
requires evidence of practical applicability. Several efforts are undergo-
ing towards this end; for example, studies exist to assess the feasibility of
RF energy harvesting across different bands, such as those for digital TV,
GSM900, GSM1800, 3G, and WiFi [162, 217]. These works report power
levels in harvested energy from nW tomW depending on the distance from
the nearest base station.

The conversion of RF transmissions into electrical current through the
rectenna does not involve any mechanical process as compared to other
techniques, and thus provides higher robustness EH4. Small form factors
EH3 are attainable by employing specific types of antennas, such as micro-
strip ones. In general, rectennas require highly customized solutions for a
particular frequency band.
Reported experiences RF energy harvesting is gaining momentum in a
number of WSN applications. For example, several successful attempts
exist in smart-health applications for powering wearable and implantable
medical sensors from pre-existing RF transmissions. Peng Cong et al.
[45] design a cubic millimeter-scale battery-less wireless sensor to mon-
itor blood pressure powered by external RF sources. Similarly, P. Anacleto
et al. [15] build a cubic micrometer-scale rectenna able to harvest 1 uW,
which can be used to power wireless implantable sensors.

Prototypes of RF-harvesting wireless sensors for HVAC control and
building automation are also reported [109, 152]. These harvest energy
from the unlicensed 2.4 GHz ISM band, that is, the one used by WiFi,
Bluetooth, and other commodity wireless devices. Being one of the most
crowded portions of the spectrum, harvesting energy from these frequencies

28

i
i

“thesis” — 2018/1/14 — 18:38 — page 29 — #39 i
i

i
i

i
i

2.5. Energy Harvesting→ Thermal Sources

Hot

Cold

N-type

P-type

V

Figure 2.9: Simplified illustration of thermoelectric effect leading to electrical current.

is typically very effective. General-purpose WSN platforms harvesting RF
energy also exist [151, 158]. These provide a stepping stone to validate the
practical applicability of the related harvesting techniques.

Worth noticing is that the use of RF energy harvesting goes beyond
merely powering WSN devices. For example, Vinvent Liu et al. [123],
combine RF energy harvesting with backscatter communications, and cre-
ate a communication primitive where devices communicate by backscatter-
ing ambient RF signals. This eliminates the need for both dedicated power
sources and wires for communication.

2.5 Energy Harvesting→ Thermal Sources

Thermal energy refers to the internal energy of an object in conditions of
thermodynamic equilibrium, that is, in the absence of macroscopic flows
of matter or energy, and in conditions of constant temperature. Whenever
the conditions of thermodynamic equilibrium cease to exist, the resulting
matter or energy flows become usable to harvest electric energy through
thermoelectric or pyroelectric techniques.

Thermoelectric techniques are based on Seebeck’s effect, which is con-
ceptually similar to the photovoltaic techniques in Section 2.4.1. N-type
and P-type materials are employed here as well, as shown in Figure 2.9.
As the temperature difference between opposite segments of the materials
increases, charges are driven towards the cold end. This creates a voltage
difference across the base electrodes, which is proportional to the tempera-
ture difference. Thus, thermoelectric harvesters can be modeled as voltage
sources [99]. Silicon wafer or aluminum oxide are typically used as a sub-
strate material, because of their large thermal conductivity.

In contrast, pyroelectric energy harvesters leverage materials with the

29

i
i

“thesis” — 2018/1/14 — 18:38 — page 30 — #40 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

ability to generate a temporary voltage as their temperature is made con-
tinuously varying, much like piezoelectric materials generate a potential
when they are distorted, as discussed in Section 2.3.1. Specifically, the
temperature changes cause the atoms to re-position themselves in a crys-
talline structure, changing the polarization of the material. This induces
a voltage difference across the crystal, which gradually disappears due to
leakage currents if the temperature stays constant.

Generally, the extraction techniques operating from thermal sources have
no moving parts, and are therefore more robust EH4 to environment factors
compared to other micro-level harvesters. The devices may thus achieve
operational lifetimes of several years without maintenance. Because of
their mode of operation, it is also relatively simple to achieve small form
factors EH3. Both thermoelectric and pyroelectric based harvesters are be-
coming increasingly available off-the-shelf.
Reported experiences Several works exist reporting on the use of energy
harvesting from thermal sources to power WSN devices. For example,
Chen Zhao et al. [237] design a self-powered WSN node that harvests en-
ergy from temperature fluctuations in the environment. Similarly, structural
health monitoring systems for oil, gas, and water pipes [136, 234] leverage
thermal sources such as hot water and steam. Luca Rizzon et al. [175] use
heat dissipated from CPUs in data centers to run a WSNs for environment
monitoring. Energy harvesters based on thermal phenomena may oper-
ate both as sensors and energy harvesters [37]; for example, by measuring
temperature differences in the environment as a function of the produced
energy. Also, the warmth of humans or animals may be used to power
medical sensors [127], even though the applications in these areas do not
appear to leverage networking functionality.

2.6 Energy Harvesting→ Biochemical and Chemical Sources

Energy harvesting may leverage forms of biological or chemical energy
in specific environments. Biochemical energy is the potential of a chemi-
cal substance to produce electrical energy through a chemical reaction or
through the transformation of other chemical substances. Humans embody
the biochemical harvesting pathway, as we power ourselves by the conver-
sion of food into energy through biochemical processes. Differently, the
electric battery is an example that uses chemical processes to convert natu-
rally occurring chemical reactions into electricity [167].

Among biochemical extraction techniques, microbial fuel cells (MFC)
use biological waste to generate electrical energy, as schematically shown

30

i
i

“thesis” — 2018/1/14 — 18:38 — page 31 — #41 i
i

i
i

i
i

2.6. Energy Harvesting→ Biochemical and Chemical Sources

Low Oxygen

Cathode

Anode

Bacteria

High Oxygen

e 𝐶𝑂2 𝐻+

𝐻+ 𝑂2

e

𝐻2O+

Sediment

Organic
Substances

V

Figure 2.10: Working of a microbial fuel cell: as part of their natural nutrition process-
ing, bacteria remove electrons from organic material; these flow through an anode-
cathode, battery-like, structure where the two compartments are separated in terms of
their O2 concentration.

in Figure 2.10. Bacteria in water metabolize biological waste by breaking
it down in a process of oxidization. This results in the creation of free
electrons, along with CO2 and H+ ions. If the environment is deficient
in oxygen, an anode picks up the free electrons and transports them to a
corresponding cathode where, in an environment abundant in oxygen, the
reduction process completes, yielding a water molecule.

The efficiency of an MFC is thus a function of the difference in oxygen
concentration across the anode and the cathode sections. This is why, for
example, MFCs deployed in marine environments have the anode partly
embedded in soil and the cathode placed close to the surface, at a higher
oxygen concentration, as in Figure 2.10. MFCs are thus modeled as a volt-
age source in series with a resistance. As energy harvesting devices, MFCs
are usually robust EH4 and require little maintenance, as long as the re-
newable resource, such as biological waste, is available. Recent results
also indicate the potential to harvest energy from voltage differences across
the xylem of a tree bark and the soil [128], using similar principles.

MFCs are usually employed to power medium-to-large scale electronic
devices. For miniaturized devices, such as biomedical implants, enzymatic
biofuel cells are also considered [133]. Enzymes are proteins generated
by living organisms to catalyze chemical reactions. Unlike MFCs, enzy-
matic biofuel cells do not use living organisms to trigger the oxidation pro-
cess, but only some of the enzymes that specific microorganisms produce,
which are carefully extracted and purified for use. This results in higher
energy efficiency EH2 than MFCs, at the expense of higher production
costs EH5 [17]. Moreover, the power densities of enzymatic biofuel cells

31

i
i

“thesis” — 2018/1/14 — 18:38 — page 32 — #42 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

vary significantly compared to MFCs, as they are typically several times
smaller [36].

Extraction techniques based on chemical processes typically focus on
taking advantage of corrosion phenomena; for example, those occurring
on steel bars used to reinforce concrete structures. The two main fac-
tors responsible for the corrosion of steel in cement are carbonation and
oxidation under the presence of water that seeps through cement pores.
These elements, when reacting with iron (Fe), form new compounds like
hydrated iron oxides (Fe2O3Â·nH2O) or iron oxide-hydroxide (FeO(OH),
also known as rust), while releasing electrons. The portion of the steel that
releases electrons acts as anode, whereas the portion of metal that accepts
the electrons acts as cathode, with water acting as an electrolyte. The re-
sulting flow of electrons is harvested in the form of electrical current.
Reported experiences Several WSN applications exist where the sensed
phenomena is a naturally occurring biochemical or chemical process. Clare
et al. [174] establish the viability of powering small oceanographic sensors
by demonstrating a constant output power of 0.05 W/m2 from MFCs in a
marine settings. Donovan et al. [57] design a power management system
to boost the voltage of MFCs for powering wireless temperature sensors
over a period of one year in natural water. Gong et al. [69] use a tiny
0.25 m footprint MFC with average output power of 44 mW/m2 to power
an acoustic modem for transmitting temperature measures over 50 days.
Similarly, Kaku et al. [98] and Dai et al. [49] place MFCs in rice paddies
and forests to power wireless sensors. Building upon the work by Love et
al. [128], Voltree Inc. devises a custom sensor platform that harvests energy
from voltage differences across tree barks and soil, demonstrating a large-
scale forest fire detection system [100, 218].

As for chemical processes, corrosion phenomena often cater for an op-
portunity for in-situ sensing. Qiao et al. [167] design a steel corrosion
monitoring system for reinforcing concrete structures where they harvest
the needed energy from the corrosion process. Similar cases are reported in
the design of sensing systems for waste water treatment [65, 145]. Several
results indicate that the corrosion process can produce energy in the range
of a few mW over a period of several hours, which is sufficient to power
small electronics [154, 168, 202].

32

i
i

“thesis” — 2018/1/14 — 18:38 — page 33 — #43 i
i

i
i

i
i

2.6. Energy Harvesting→ Biochemical and Chemical Sources
Ta

bl
e

2.
2:

R
ep

re
se

nt
at

iv
e

W
SN

de
pl

oy
m

en
ts

em
pl

oy
in

g
en

er
gy

ha
rv

es
tin

g
an

d
th

ei
r

ke
y

ch
ar

ac
te

ri
st

ic
s.

E
ne

rg
y

So
ur

ce
E

xt
ra

ct
io

n
Te

ch
ni

qu
es

A
pp

lic
at

io
n

H
ar

ve
st

ed
Po

w
er

E
ne

rg
y

Av
ai

lib
ilt

y
O

pe
ra

tio
n

L
ite

ra
tu

re
R

ef
er

en
ce

K
in

et
ic

V
ib

ra
tio

n
E

le
ct

ro
m

ag
ne

tic
St

ru
ct

ur
al

he
al

th
m

on
ito

ri
ng

12
m

W
In

te
rm

itt
en

t
In

te
rm

itt
en

t
[1

85
]

V
ib

ra
tio

n
Pi

ez
oe

le
ct

ri
c

Sa
fe

ty
of

ve
hi

cl
es

13
.5
u

W
C

on
tin

uo
us

C
on

tin
uo

us
[1

25
]

V
ib

ra
tio

n
Pi

ez
oe

le
ct

ri
c

Sa
fe

ty
of

ag
ri

cu
ltu

re
m

ac
hi

ne
ry

72
4u

W
In

te
rm

itt
en

t
In

te
rm

itt
en

t
[1

88
]

A
ir

flo
w

E
le

ct
ro

m
ag

ne
tic

D
et

ec
tio

n
of

fo
re

st
fir

e

7.
7m

W
(@

3.
6m

/s
)

C
on

tin
uo

us
C

on
tin

uo
us

[2
05

]

A
ir

flo
w

E
le

ct
ro

m
ag

ne
tic

A
ut

om
at

ic
H

VA
C

45
m

W
(@

9m
/s

)
In

te
rm

itt
en

t
In

te
rm

itt
en

t
[1

84
]

W
at

er
flo

w
E

le
ct

ro
m

ag
ne

tic
W

at
er

pi
pe

m
on

ito
r-

in
g

18
m

W
C

on
tin

uo
us

C
on

tin
uo

us
[1

47
]

H
um

an
m

ot
io

n
Pi

ez
oe

le
ct

ri
c

B
io

m
ed

ic
al

im
pl

an
ts

1m
W

In
te

rm
itt

en
t

In
te

rm
itt

en
t

[1
4]

A
ni

m
al

m
ot

io
n

E
le

ct
ro

m
ag

ne
tic

H
er

d
lo

ca
liz

at
io

n
N

/A
In

te
rm

itt
en

t
In

te
rm

itt
en

t
[5

8]

R
ad

ia
nt

In
do

or
lig

ht
A

m
or

ph
ou

s
cr

ys
ta

lli
ne

In
do

or
ap

pl
ic

at
io

n
18

0u
W

In
te

rm
itt

en
t

In
te

rm
itt

en
t

[1
78

]

Su
n

lig
ht

A
m

or
ph

ou
s

cr
ys

ta
lli

ne
Sm

ar
ti

rr
ig

at
io

n
24

0m
W

In
te

rm
itt

en
t

C
on

tin
uo

us
[7

3]

A
m

bi
en

tR
F

R
ec

te
nn

a
O

ut
do

or
Se

ns
in

g
60

u
W

C
on

tin
uo

us
C

on
tin

uo
us

[1
83

]

T
he

rm
al

T
he

rm
oe

le
ct

ri
c

E
nv

ir
on

m
en

t
m

on
i-

to
ri

ng
21

8u
W

C
on

tin
uo

us
C

on
tin

uo
us

[1
75

]

T
he

rm
oe

le
ct

ri
c

W
at

er
m

et
er

in
g

25
0u

C
on

tin
uo

us
C

on
tin

uo
us

[3
7]

B
io

-C
he

m
ic

al
M

ic
ro

bi
al

fu
el

ce
ll

(M
FC

)
Pr

ec
is

io
n

ag
ri

cu
ltu

re
31

0.
24

u
W

C
on

tin
uo

us
C

on
tin

uo
us

[1
61

]

33

i
i

“thesis” — 2018/1/14 — 18:38 — page 34 — #44 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

2.7 Energy Harvesting: Discussion

Table 2.2 illustrates a summary view on the use of energy harvesting in
WSN applications, based on a set of representative examples. Key obser-
vations we draw are:

• Energy harvesting from kinetic sources is vastly employed in WSN
applications. The harvesting performance varies greatly, from few
uW to tens of mW, as it depends on ambient characteristics and ef-
ficiency EH2 of the specific technique. In many cases, the harvested
energy suffices to run mainstream WSN platforms, such as the TelosB
node that requires less than 10 mW to achieve 10% duty cycle [26].
In several applications, the ambient can supply energy in a continuous
manner. In these cases, harvesting techniques for kinetic sources also
enable continuous operation of the WSN nodes, that is, whenever am-
bient energy is available, the system can run using only tiny energy
buffers, helping to cut down costs EH5. This is contrast to the larger
energy buffers, or supplementary batteries, employed whenever the
ambient energy is insufficient to fully sustain the system’s operation.

• Radiant sources are also popular in WSN applications; for example,
when relying on solar light. The harvesting performance is in the
mW range for visible light, but lowers by several orders of magnitude
when harvesting from RF transmissions. This limits the application
of the latter to extremely low-power settings. In both cases, the per-
formance is strongly influenced by the size of the harvesting device,
being it a solar cell or a rectenna, and by the distance from the source.
The behavior of radiant sources is also more predictable as compared
to others; sunlight can be forecast and RF transmissions are almost
omnipresent nowadays. These aspects facilitate achieving perpetual
operation using these harvesting techniques. Even when ambient en-
ergy is not continuously available, the intermittent supply of energy
from solar light can be counteracted by equipping the nodes with suit-
ably dimensioned energy buffers [73], or by adapting the duty cycle
depending on the expected energy availability [34].

• The remaining cases of thermal and biochemical sources, besides be-
ing among the most natural forms of harvestable energy, are also those
with the lowest reported performance in WSN applications, typically
in the uW range. This might be sufficient to power individual sensors
performing local data processing, but not for achieving full-fledged

34

i
i

“thesis” — 2018/1/14 — 18:38 — page 35 — #45 i
i

i
i

i
i

2.7. Energy Harvesting: Discussion

Table 2.3: Energy harvesting solutions against the desirable properties of Section 2.2. The
power density ranges are taken from the the papers referenced in Table 2.2. Conversion
efficiency data, whenever available, are taken from [219] and [201].

Type of energy harvesting

Property B
io

ch
em

ic
al

V
is

ib
le

lig
ht

R
F

tr
an

sm
is

si
on

s

T
he

rm
al

V
ib

ra
tio

ns

A
ir

/w
at

er
flo

w
s

H
um

an
/a

ni
m

al
m

ot
io

n

Power-
density

Low
(∼300uW)

Low
(180uW)
to high
(240mW)

Low
(∼100uW)

Low
(218uW
to
250uW)

Low
(700uW)
to
medium
(12mW)

Medium
(7.7mW
to
18mW)

Medium
(∼1mW)

Conversion
efficiency N/A ∼0.1%

to 15% ∼33% ∼0.1% to
10% N/A N/A ∼7.5%

to 11%
Form factor Large Small Medium Small Small Large Small
Robustness High High High High Low Low Low
Cost Medium Low Medium Low Low High Low

networking functionality. Nevertheless, compared to kinetic and ra-
diant sources, thermal and biochemical sources exhibit unique char-
acteristics. Energy from the ambient is continuously available, and
the harvesting performance is sufficient to let the system run contin-
uously. Extraction techniques from thermal sources also enjoy high
robustness EH4 because of the lack of moving parts, whereas MFCs
can power WSN applications in environments where no other energy
source is at disposal, as in underwater scenarios.

Table 2.3 wraps up our discussion on energy harvesting by qualitatively
indicating to what extent different harvesting techniques meet the desirable
properties of Section 2.2, independent of their reported use in WSN appli-
cations. With this, we intend to foster new directions besides the trends
already apparent in the literature. We can draw the following observations
from the analysis:

• Highest energy density EH1 is found in visible light and human mo-
tion. Their extraction techniques; for example, based on photoelec-
tric and triboelectric effects, enjoy high efficiency EH2 and low cost

35

i
i

“thesis” — 2018/1/14 — 18:38 — page 36 — #46 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

EH5. As all other kinetic sources, however, the latter has moving
parts, which is detrimental to robustness EH4.

• Extraction techniques from thermal sources and mechanical vibrations
exhibit the smallest form factors EH3 among available solutions. In
the latter case, the process of miniaturization tends to negatively affect
robustness reqEH4.

• More than a single technique is available at a reasonable cost EH5
compared to mainstream WSN technology, with the only exception of
harvesting devices from air/water flows, which tend to be expensive.

The next section focuses on wireless energy transfer (WET), its relation
to energy harvesting, and its use in WSN applications.

2.8 Wireless Energy Transfer: Overview and Desirable Prop-
erties

Figure 2.11: WSN de-
ployment on the Mat-
terhorn cliffs: node C
faces north-west and is
rarely exposed to the
sun.

Energy harvesting is attractive to prolong the WSN
lifetime and to possibly enable perpetual operation.
However, harvesting is only possible if the system
is deployed where a sufficiently high-density en-
ergy source is available. In some deployments,
this is simply not the case. In other settings, the
availability of energy sources may be inconsistent
across the deployment area, creating an energy im-
balance.

Figure 2.11 shows a real-world example of the
latter situation, taken from the WSN deployment
at the Matterhorn mountain complex [77]. Node C,
installed on the north-west side of the mountain, is
not exposed to sunlight as often as nodes A and B.
Applying energy harvesting from light is thus most
effective only for node A and B, whereas node C
would constantly enjoy a smaller energy contribu-
tion from the harvesting device.

Recent advancements in wireless energy transfer (WET), that is, the
ability to wirelessly move energy in space, can decouple the sensing loca-
tion from where energy harvesting is most efficiently applied. For example,
WET can transport harvested energy to locations where ambient energy is
scarce, as in the case of Figure 2.11. Moreover, WET can balance en-
ergy provisioning within a WSN characterized by non-uniform workloads,

36

i
i

“thesis” — 2018/1/14 — 18:38 — page 37 — #47 i
i

i
i

i
i

2.8. Wireless Energy Transfer: Overview and Desirable Properties

taking from energy-rich nodes and giving to energy-poor ones. Without
applying WET, these situations may result in a non-functional system even
when the globally-available energy would be sufficient.

Most WET techniques include two components: i) a transfer mecha-
nism, that is, the technical solution that allows the system to move energy
across space wirelessly, and ii) a corresponding harvesting technique used
at the destination to gain back the energy. Therefore, energy harvesting is
one, but not the only, functional component of WET. In principle, apply-
ing WET to a certain location is analogous to artificially provisioning an
environment with harvestable ambient energy at that location.

Figure 2.12 shows the relation between transfer mechanism and har-
vesting technique, and may be taken as a reference throughout the coming
material. The harvesting techniques are largely the same as those discussed
earlier. In the following section, we therefore concentrate on the other func-
tional component of WET, that is, on the transfer mechanism. Separating
the treatment of energy harvesting and transfer mechanisms is instrumental
to elicit the complementary aspects between the two.

Similar to Section 2.2, we identify the desirable properties that WET
techniques should present. These are intended in addition to those already
discussed for energy harvesting, in that the individual WET techniques nec-
essarily include a harvesting component. Some properties might not be as
relevant for WET as for energy harvesting. For example, compared to the
cost EH5 and availability of different harvesting solutions, wireless energy
transmitters such as antennas, torches, and lasers, are known to be commer-
cially available at fairly low prices. Different than Section 2.2, the follow-
ing properties may take strikingly different forms depending on the target
deployment scenario:

• WET1: high efficiency. To be effective, a given WET technique
should maintain the highest possible ratio between the energy har-
vested at the receiver and the one emitted by the source.

• WET2: small form factor. The harvesting part should operate at
micro-level; the same requirement is less stringent for the transmitter
part, in that the energy source is not necessarily integrated with a WSN
node.

• WET3: long range. The operational distance of WET without con-
siderable losses should minimally impact the deployment configura-
tion, most often dictated by application or networking requirements.

• WET4: high permeability. It defines the ability to travel through

37

i
i

“thesis” — 2018/1/14 — 18:38 — page 38 — #48 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Figure 2.12: Existing transfer mechanisms and corresponding harvesting techniques.

obstacles of different types; certain technologies can easily traverse
certain materials, such as air or water, but need line of sight or exhibit
drastic losses w.r.t. other materials.

• WET5: safety. WET is about spreading energy in the ambient; the
possibility of harming objects or persons is thus a concern, and care
must be taken to determine whether a certain technique may be unsafe
within its operational range.

• WET6: routability. It indicates technologies known to feature ef-
ficient ways to route energy across multiple hops; whereas simply
harvesting received energy and using this to act as a further source
is likely too inefficient.

An additional aspect is that of directionality. Existing solutions may operate
in a directional fashion—with greater efficiency and range—as opposed to
a omni-directional mode, which facilitates deployments by removing the
need to orient the transmitters.

Next, we survey WET techniques that find application in WSNs. The
discussion is driven by the transfer mechanism, as it largely determines the
applicability in WSNs. The illustrative pictures shown in the next sections
are to scale compared to each other, which enables a qualitative comparison
of operational ranges.

38

i
i

“thesis” — 2018/1/14 — 18:38 — page 39 — #49 i
i

i
i

i
i

2.9. Wireless Energy Transfer→ Mechanical Waves

2.9 Wireless Energy Transfer→ Mechanical Waves

Mechanical waves propagate as an oscillation of matter. Such oscillation
transfers kinetic energy through a medium, such as air or water. Out of
the existing forms of mechanical waves, acoustic waves, that is, waves that
propagate because of displacement and pressure changes of the medium,
are by far the most explored for WET. Acoustic waves cause a vibrational
movement onto the receiving elements. This enables the use of vibrational
harvesting, discussed in Section 2.3.1, to gain back the energy. Other kinds
of mechanical waves that require more sophisticated harvesting mecha-
nisms, such as surface waves, are comparatively less explored. This rep-
resents, in fact, a consequence of the complementary aspects between the
transfer mechanism used in WET and the corresponding energy harvesting
technique.

As shown in Figure 2.13, acoustic waves are compressional, that is, the
displacement of the medium is parallel to the direction of travel of the wave.
Thus, their efficiency WET1, range WET3, and permeability WET4 are
greatly affected by the medium itself. Acoustic waves travel best through
solids, then liquids, and show the most resistance through air. For example,
acoustic waves are shown to transfer energy through metal walls 5 cm to
8 cm thick with efficiency of 50% to 89% [23, 191]. The efficiency in
water varies from 15% to 40%; for example, Ozeri et al. [155] achieve
39% efficiency in water at a distance of 50 mm. Whenever waves travel
through air, the efficiency drops to 17% at 100 mm distance [176]. We
also observe ultrasound-based solutions [213] appearing on the market to
charge personal devices through the air.

The propagation medium, however, is often not under the control of
the WSN designers. To improve the performance in given settings, multi-
ple vibration harvesters may be installed at the receiver’s end, or transmit-
ters may be arranged in a phased array configuration, which helps travel
though objects, as shown in Figure 2.13. Acoustic waves also enjoy slower
propagation speed than other kinds of waves, such as electromagnetic ones.
This makes it possible to achieve more compact designs of the transmitters
as well as greater efficiency WET1 for the transmission electronics at the
operational frequencies [177]. Finally, in settings where the transmission
medium is animal tissue or human skin, acoustic waves naturally provide
better safety WET5 than other techniques, such as lasers.
Reported experiences A paradigmatic example is that of body sensor net-
works [18,39], where safety becomes a key asset for cm- to mm-sized bio-
implants. In settings where WET using electromagnetic waves is not pos-

39

i
i

“thesis” — 2018/1/14 — 18:38 — page 40 — #50 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Multiple
Vibration Energy

Harvesters

Vibration Energy Harvester

Relative Transmission Range

Acoustic
Transmitter

Phased Array
Acoustic Transmitters

Obstacle

Obstacle

Vibration Energy Harvester
Medium (other than air)

Figure 2.13: Acoustic waves are compressional; therefore, the efficiency, range, and per-
meability depend on the medium of propagation. Given a specific medium, better per-
formance is attainable by employing multiple harvesting devices at the receiver’s end
or by using phased arrays of transmitters.

sible or permissible, acoustic waves are often used. Examples are deploy-
ments where acoustic waves are used to power sensors embedded in metals
walls, water pipelines, and gas chambers [71,86,103,191]. Because of their
permeability WET4 properties, acoustic waves are also employed to power
electronic equipment in sealed environments, such as nuclear storage fa-
cilities, where the sensors leverage piezoelectric extraction techniques to
harvest the energy [87].

2.10 Wireless Energy Transfer→ Magnetic Fields

WET techniques using magnetic fields mainly leverage energy harvesting
based on electromagnetic effects. In Section 2.7, we already noted how the
latter are vastly employed in WSN applications and enjoy good properties.
Coupled with this kind of energy harvesting, two transfer mechanisms are
primarily used: inductive coupling and resonant inductive coupling.

Inductive coupling is a near field—in the cm scale—WET technology
that exploits two magnetically coupled coils. When alternate current is ap-
plied to the transmitter coil, this changes the magnetic field of the receiver
coil, generating a potential. The mechanism is similar to the electromag-

40

i
i

“thesis” — 2018/1/14 — 18:38 — page 41 — #51 i
i

i
i

i
i

2.10. Wireless Energy Transfer→ Magnetic Fields

Transmitter
Coil

Receiver
Coil

Obstacle

Relative Transmission Range

V
C C

Figure 2.14: Inductive resonant coupling allows medium-range energy transfers at high
efficiency, and adding relay coils can further extend the range.

netic extraction mechanisms of Section 2.3.1, except here we use a coil
instead of a magnet to disturb the magnetic field. The efficiency WET1
of such a system is determined by the coupling of the coils, their distance,
and alignment. Over longer distances, the vast majority of the energy is
lost because of resistive losses of the transmitter coil. This technique is
thus solely suitable for WSN applications where the necessary operational
range WET3 is not significant.

Inductive resonant coupling, on the other hand, adds a capacitance to
each coil, thus forming a tuned LC circuit, as shown in Figure 2.14. When
both coils resonate at a common frequency, it is possible to attain high
efficiency WET1 over a range a few times greater than the coil’s diameter.
Kurs et al. [110] demonstrate this effect by powering a 60 W light bulb
with approximately 40% efficiency over a 2 m distance. Recent results also
make this technique more flexible in terms of reciprocal orientation of the
coils. For example, Sample et al. [181] use adaptive tuning techniques to
transfer energy at 2 m with high efficiency, even when coils are not properly
aligned. The same system is used to run an artificial heart [223]. Sample et
al. [182] show that a constant efficiency of 75% is attainable within a 65o

coil rotation angle, using continuous frequency tracking and tuning of the
resonant coil structure.

Inductive resonant coupling also caters for non-radiative transmission
of energy, which entails the propagation of energy is not subject to phe-
nomena such as absorption and scattering. To this end, the magnetic field
is created all around the transmitter coil, with the orientation of the re-

41

i
i

“thesis” — 2018/1/14 — 18:38 — page 42 — #52 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

ceiver coil impacting the efficiency. Being non-radiative, inductive resonant
coupling dissipates little energy off to resonant objects [110], preventing
spreading losses typical of acoustic waves. This techniques is also perme-
able WET4 through metals and tissues, and remains safe WET5 if low
levels—in the range of mW to a few W—of power is transferred. Zhong
et al. [238] show inductive resonant coupling to support routing WET6
using straight-line, curved, circular, and Y-shape intermediate coils, as in
Figure 2.14. Several commercial solutions based on resonant inductive cou-
pling appeared [164, 169, 224], improving off-the-shelf availability of this
technology.
Reported experiences As already mentioned, WET using inductive cou-
pling is applicable only at very short ranges, and thus we only find experi-
ences of resonant inductive coupling in WSNs. Nonetheless, the use of the
latter technique in WSNs is arguably in its infancy, so not many works exist
that report such experiences.

For example, Jonal et al. [96] use resonant inductive coupling to power
sensors embedded in concrete at 40 cm depth with 5.3% efficiency. Xie et
al. [227] design a WSN powered with resonant inductive coupling through
a wireless charging vehicle, aiming at the optimization of the traveling path
and charging times. Hancke et al. [74] demonstrate powering a MicaZ node
with just a 3.2 cm diameter coil, at 10% duty cycle and a distance of 80 cm.
Finally, Sample et al. [181] use resonant inductive coupling to power an
underwater WSN at a depth of 1000 m.

2.11 Wireless Energy Transfer→ Electromagnetic Radiations

Electromagnetic radiations are a form of radiant energy released by a cer-
tain electromagnetic process. Visible light is a common type of electromag-
netic radiation; other forms are instead invisible to the human eye, such as
X-rays and radio waves.

Electromagnetic radiations are distinguished based on their frequency.
Such distinction also impacts the techniques to gain back the energy the ra-
diation carries, further underlining the complementary aspects of the trans-
fer mechanism and of the corresponding energy harvesting technique. Elec-
tromagnetic radiations below the infrared spectrum—mainly visible light—
pack sufficient photonic energy to use extraction techniques based on the
photoelectric effect, illustrated in Section 2.4.1. We already noted, as re-
ported in Section 2.7, how such techniques are among the most mature
means for energy harvesting. Electromagnetic radiations at higher frequen-

42

i
i

“thesis” — 2018/1/14 — 18:38 — page 43 — #53 i
i

i
i

i
i

2.11. Wireless Energy Transfer→ Electromagnetic Radiations

Focused Light
(Laser)

Solarpanel

Mirror

Mirror

Un-focused
Light Multiple

Solarpanels

Photons

Particle Effect

Relative Transmission Range

Figure 2.15: WET using visible light. Incoherent sources suffer spreading and frequency
losses, but also ameliorate the alignment requirements. Focused sources, such as
lasers, require careful alignment, but also allow for greater efficiency and range.

cies, such as microwaves and RF transmissions2, require using rectennas,
discussed in Section 2.4.2. Still based on the discussion in Section 2.7,
these are comparatively less developed than energy harvesting using the
photoelectric effect.

2.11.1 Visible Light

It is possible to artificially generate visible light radiations and direct them
towards a photovoltaic surface to enable energy transfer at a distance. Within
the visible spectrum, there exist two means to transfer energy, as shown in
Figure 2.15.

One possibility is to use the light diffused from sources such as incan-
descent bulbs or LEDs. This type of radiation tends to be incoherent and
unfocused, thus creating spreading losses due to the light beam diverging
as it travels across space. The produced light also consists of several dif-
ferent frequencies, thus spreading the energy across the frequency domain.
Thus, this approach tends to be applicable only in the short range, due to

2Microwaves represent the 300 MHz to 300 GHz band of the electromagnetic spectrum, while RF transmis-
sions represents the 3 MHz to 300 MHz band.

43

i
i

“thesis” — 2018/1/14 — 18:38 — page 44 — #54 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

quadratic-to-distance spreading losses and because the receiving cells of-
ten tend to be efficient only for a subset of the involved frequencies. As an
example, Bhatti et al. [26] show that a 1W LED can transfer a few mW, but
only at very short distances.

Laser light is, on the other hand, a stimulated emission of photons that
results in a coherent and focused beam of light energy. These character-
istics allow a laser beam to bear minimal losses due to spreading across
space, enabling efficient energy transfer at very long ranges WET3, even
hundreds of Km. Since the emitted light is limited to a narrow band of
frequencies, the efficiency mainly rests upon the choice of the correct pho-
tovoltaic material corresponding to the used frequency bands.

Both forms of light radiation can be artificially generated from a power
source, or obtained from sunlight. For example, Syed et al. [204] use
mirrors to route WET6 sunlight to locations under shade, where energy
harvesting using photovoltaic techniques occurs. Sunlight can be used
as the lasing source in solar-pumped lasers, sparing an artificial power
source [119]. Visible light, being not permeable to most materials, requires
clear line of sight. Moreover, while normal light is generally safe WET5,
laser light may pose safety hazards, even at low-power rating, due to its
focused nature that results in higher energy density.
Reported experiences Visible light is vastly explored as a WET technique
to power WSN nodes. For example, reflection systems exist that use mirrors
to balance the spread of sunlight in solar-harvesting sensor networks [122,
204]. LAMP [26] shows a practical laser-based long-range solution for
WSNs and develops a system architecture able to power a TelosB node with
10% duty cycle at a distance of 100 m using a 0.8 W laser. Wang et al. [221]
use laser light to simultaneously power multiple nodes by diffusing the light
through phosphorus surfaces, eliminating the need to accurately localize the
receiver nodes. Using a 3 W laser source, they are able to harvest 85 uW at
a distance of 1.5 m.

2.11.2 Microwaves or RF Transmissions

Electromagnetic radiations at frequencies higher than visible light carry en-
ergy that can be gained back using a rectenna, described in Section 2.4.2.
This kind of WET is extensively studied for long-distance energy transfers—
in the order of several Km—and for high-power systems. Existing liter-
ature reports the use of these techniques to power airplanes [186], heli-
copters [31], and even satellites [138]. These techniques, however, also
require line of sight because of the low permeability, as well as a track-

44

i
i

“thesis” — 2018/1/14 — 18:38 — page 45 — #55 i
i

i
i

i
i

2.11. Wireless Energy Transfer→ Electromagnetic Radiations

Uni-directional
Antenna

Omni-directional
Antenna Multiple

Rectennas

Rectenna

Obstacle Radio Waves

Wave Effect

Relative Transmission Range

Figure 2.16: WET using microwaves and RF transmissions. Large antennas are typically
required, hampering their application to WSN-size devices. Omni-directional antennas
pose less stringent line-of-sight requirements, but are less efficient because of spread-
ing losses.

ing mechanism to localize the receiver, due to directional energy transfer
towards a moving target.

As shown in Figure 2.16, using an omni-directional antenna, such re-
quirements become less stringent than for laser power beaming and the
transfer mechanism is safer WET5, at the cost of higher spreading losses
similar to unfocused sources of visible light. Ensuring safe operation of
these systems is an actively researched topic. For example, algorithms ex-
ist to interrupt transmitters to avert dangerous continuous radiations [47],
or to adjust their transmission power [48] to avoid safety hazards while
retaining an efficient energy transfer.

Because of longer wavelengths, a large antenna is also normally required
at both the source’s and the receiver’s end, in principle hampering the ap-
plication to WSNs because of large form factors. Several efforts exist to
miniaturize the rectenna design [146, 196, 197, 203]. The problem, how-
ever, is still open, in that no established solution is available. The size
restriction on the receiver antenna, which should be on par with the size of
the WSN device, still represents a limiting factor. For example, Bhatti et
al. [26] show that a commercial 3W RF power transmission system [165]
can generate mW of power only at a few cm.

45

i
i

“thesis” — 2018/1/14 — 18:38 — page 46 — #56 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Reported experiences Computational RFIDs [72], together with the re-
cent push for highly miniaturized uW-level WSN platforms [108] point to
a class of systems that may benefit from WET through microwaves and RF
transmissions. Powercast chips [165] and the WISP node [195] represent
concrete platforms available to evaluate the limits and applications of RF
energy transfer in WSNs [211]. As an example, Peng et al. [160] build a
prototype system with a Powercast transmitter on top of a mobile robot,
and equip the WSN devices with a wireless energy receiver. An energy
station monitors the energy level of the WSN nodes and routes the robot
accordingly. Similarly, Tong et al. [211], Li et al. [118], and Dai et al. [46]
also study deployment configurations, scheduling, and near-optimal rout-
ing of a mobile node to wirelessly recharge WSN nodes using a Powercast
transmitter. Mishra et al. [143] show that multi-hopping is also possible
when employing WET with RF transmissions, which may increase the op-
erational range.

2.12 Wireless Energy Transfer: Discussion

To provide a summarizing view of how WET is employed in WSN appli-
cations, Table 2.4 shows representative efforts in this area, along with their
key features. Based on these, we draw the following observations:

• WET using acoustic waves, due to its high permeability WET4, is of-
ten employed to power sensors in sealed or inaccessible environments,
such as bio-medical implants and areas behind metal walls. The re-
ported performance is in the mW scale with efficiency WET1 from
21% up to 54%. Compared to the general state of the art, these figures
represent a best-case performance in real-world deployments. In con-
trast, the practical feasibility of WET using acoustic waves in WSN
applications is limited by its operational range WET3, which rarely
exceeds a few cm.

• Magnetic fields as a means to implement WET also enjoy high perme-
ability WET4, yet through different materials than acoustic waves, en-
abling WSN deployments underground or inside concrete structures.
Compared to WET using acoustic waves, however, the attainable effi-
ciency WET1 is one to several orders of magnitude lower, while the
operational range WET3 is distinctively larger only when transferring
through air. In the few cases where performance figures are indicated,
mW scale energy transfers are reported across tens of cm.

46

i
i

“thesis” — 2018/1/14 — 18:38 — page 47 — #57 i
i

i
i

i
i

2.12. Wireless Energy Transfer: Discussion

Ta
bl

e
2.

4:
R

ep
re

se
nt

at
iv

e
W

SN
de

pl
oy

m
en

ts
em

pl
oy

in
g

W
E

T
an

d
th

ei
r

ke
y

ch
ar

ac
te

ri
st

ic
s.

Te
ch

no
lo

gi
es

Se
tt

in
g

Pe
rf

or
m

an
ce

E
ffi

ci
en

cy
R

an
ge

L
ite

ra
tu

re
re

fe
re

nc
e

B
io

m
ed

ic
al

10
0

W
54

%
3

cm
(S

ki
n)

[3
9]

B
io

m
ed

ic
al

62
.5

m
W

21
-3

5%
10

5
m

m
(S

ki
n)

[1
8]

T
hr

ou
gh

m
et

al
w

al
l

30
m

W
–

7
m

m
(A

lu
m

in
um

)
[1

03
]

A
co

us
tic

w
av

es

T
hr

ou
gh

m
et

al
w

al
l

0.
25

W
–

5.
7

cm
(S

te
el

)
[1

91
]

T
hr

ou
gh

co
nc

re
te

–
5.

3%
40

cm
(C

on
cr

et
e)

[9
6]

M
ag

ne
tic

fie
ld

s
R

es
on

an
t

in
du

ct
iv

e
co

up
lin

g
U

nd
er

gr
ou

nd
se

ns
or

s
–

0.
8%

5
m

(A
ir

)
[7

4]
M

ic
ro

w
av

e
/R

F
tr

an
sm

is
si

on
s

T
hr

ou
gh

ai
r

45
m

W
1.

5%
10

cm
(A

ir
)

[1
60

]

T
hr

ou
gh

ai
r

7
m

W
–

10
0

m
(A

ir
)

[2
6]

E
le

ct
ro

-
-m

ag
ne

tic
ra

di
at

io
ns

V
is

ib
le

lig
ht

T
hr

ou
gh

ai
r

85
u

W
–

1.
5

m
(A

ir
)

[2
21

]

47

i
i

“thesis” — 2018/1/14 — 18:38 — page 48 — #58 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Table 2.5: WET against the desirable properties of Section 2.2.

WET technique

Efficiency Acoustic Inductive
coupling

Resonant
inductive
coupling

Microwaves/
RF transmissions Light

Performance Medium Low High Medium High
Form factor Medium Medium Medium Big Small
Range Medium Medium Low High High
Permeability High Low High Low Low

Safety Medium High High Medium
High (dif-
fused)/
Low (lasers)

Routability No No Yes Yes Yes

• WET through electromagnetic radiations shows different performance
when using visible light or microwaves/RF transmissions. Because
of low permeability WET4, WSN applications leveraging this tech-
nique are mainly limited to transfers through air. Efficiency WET1 is
comparable to that of magnetic fields, whereas the operational range
WET3 may reach hundreds of m while keeping mW scale perfor-
mance at the receiver. In WSN applications, this performance is often
achieved by means of a directional beam; for example, using laser
light, provided line of sight and an accurate transmitter-receiver align-
ment is attainable.

Table 2.5 concludes the discussion by qualitatively illustrating how dif-
ferent WET techniques cater for the desirable properties of Section 2.8.
Again, we do this independent of their reported use in WSN applications
to foster new directions regardless of already existing efforts. Key observa-
tions are:

• Most efficient WET1 techniques appear to be magnetic fields using
resonant inductive coupling and visible light. The former enjoys bet-
ter permeability through solids WET4, whereas the latter has greater
operational ranges WET3.

• WET using visible light may also provide small form factors WET2
compared to all other techniques, but it may pose safety WET5 haz-
ards when using lasers, due to the high energy density.

• WET using electromagnetic radiations is, in principle, most suited
to scenarios needing long operational ranges WET3, also because

48

i
i

“thesis” — 2018/1/14 — 18:38 — page 49 — #59 i
i

i
i

i
i

2.13. Mapping WSN Environments to Harvesting and Transfer Techniques

of the routability WET6 properties that both visible light and mi-
crowaves/RF transmissions enjoy.

• High permeability WET4, in contrast, is provided by acoustic waves
and resonant inductive coupling, especially through solids. Only the
latter is routable WET6.

The following section opens the last part of the article, providing a set
of overarching considerations that begin with mapping energy harvesting
and wireless transfer techniques back to the characteristics of target WSN
deployments.

2.13 Mapping WSN Environments to Harvesting and Transfer
Techniques

The discussion thus far points out the applicability of energy harvesting
and wireless transfer techniques as a function of the target environment. In
light of this discussion, we give the reader a set of guidelines to gauge the
most appropriate solution based on the characteristics of the deployment.
To this end, we distill a set of paradigmatic WSN deployment environments
and map energy harvesting and wireless transfer back to them. Figure 2.17
pictorially illustrates the mapping.

2.13.1 Outdoor Environments

Early literature on battery-operated WSNs included numerous reports on
outdoor deployments with little infrastructure support [61,62,194,210], in-
cluding remote [134], harsh [126], underwater [78], and subterranean [135,
206, 207] locations. Later, outdoor deployments in urban areas also re-
ceived considerable attention [51, 66, 220]. Each of these environments
features distinctive characteristics that may alter the choice of the most suit-
able energy harvesting or wireless transfer solution.
Outdoor environments → remote Locations that lack human infrastruc-
ture in the vicinity are, for example, forests, deserts, glaciers, and vol-
canoes. In such locations, solar light remains perhaps the single most
likely natural source of energy, which can be extracted as explained in Sec-
tion 2.4.1. Nonetheless, other forms of energy harvesting may be feasible
in these locations, such as harvesting energy from air or water flows, as
illustrated in Section 2.3.2, and from thermal gradients, as discussed in
Section 2.5.

49

i
i

“thesis” — 2018/1/14 — 18:38 — page 50 — #60 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

Fi
gu

re
2.

17
:M

ap
pi

ng
fr

om
W

SN
de

pl
oy

m
en

te
nv

ir
on

m
en

ts
to

en
er

gy
ha

rv
es

tin
g

an
d

w
ir

el
es

s
tr

an
sf

er
.

50

i
i

“thesis” — 2018/1/14 — 18:38 — page 51 — #61 i
i

i
i

i
i

2.13. Mapping WSN Environments to Harvesting and Transfer Techniques

WSNs deployed in remote environments may also benefit from WET.
The availability of the aforementioned energy sources, indeed, can vary
significantly, both temporally and spatially. Larger harvesting units can be
deployed at locations with abundant harvestable energy, later re-distributed
through WET. While other techniques might also be suitable in specific
scenarios, the potentially large distances favor WET using lasers or mi-
crowaves, illustrated in Section 2.11.1 and 2.11.2, respectively. In the long
term, it is expected that systems will be deployed catering for energy from
very far; for example, if satellite stations eventually provided energy ser-
vices like GPS today [190].
Outdoor environments → underwater Underwater sensor networking
differs from traditional WSNs on many accounts; for example, because
of the use of acoustic waves for data transfer, which results in significantly
lower bandwidth and higher latencies. The need for energy harvesting and
wireless transfer is natural in these environments, since battery replacement
is highly undesirable or even impossible.

Submerged WSN deployments, that is, located near the water surface,
include applications such as monitoring water quality in rivers or lakes,
and checking for occlusions in home water pipes [37, 40, 141]. Since these
deployments are close to the surface, it is natural to harvest kinetic energy
from water waves, as described in Section 2.3.2. Moreover, solar energy
can be harvested at the surface and transferred to the nodes below using
water-permeable WET technique such as acoustic waves, illustrated in Sec-
tion 2.9, or inductive resonant coupling, as explained in Section 2.10. WET
through electromagnetic mechanisms, described in Section 2.11, is ruled
out due to the high attenuation through water.

Deep underwater deployments observe phenomena such as sub-sea oil-
fields [78] and enjoy little or no direct access to ambient energy sources.
In these scenarios, the only realistic—yet not entirely practical to date—
solution is to deploy a large energy source, like a radioisotope thermoelec-
tric generator, on the ocean floor that can transfer energy using one of the
water-penetrating WET techniques.
Outdoor environments → subterranean WSN deployments are also re-
ported in underground colonies of animals [135,206,207], inside mines [117],
and in agricultural fields [97]. Harvesting opportunities in these locations
are minimal, with the exception of vibrational and thermal sources. Vibra-
tional sources may emerge due to movements above ground that propagate
through the soil, harvested using approaches presented in Section 2.3.1. As
an example, in agricultural fields, shallow subterranean deployments may
benefit from the vibrations generated by regular movement of heavy ma-

51

i
i

“thesis” — 2018/1/14 — 18:38 — page 52 — #62 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

chinery including seeders, harvesters, and mobile irrigation systems [97].
Thermal sources appear due to differences between soil and ambient tem-
peratures. The extraction techniques described in Section 2.5 are usable
there.

WET based on magnetic fields is arguably the most suitable mecha-
nism to supply energy in subterranean deployments, due to permeability
in soil. For example, a source above ground may employ inductive reso-
nant coupling to transfer energy through soil at 10-40 cm of depth [140],
employing the techniques illustrated in Section 2.10. The natural mobil-
ity of subterranean fauna under observation [121]; for example, whenever
animals come out and go back into burrows, can be exploited to transfer
bulks of energy, later redistributed to nodes inside burrows using any of the
short range WET technique, such as inductive resonant coupling. Similarly,
for deep underground operations, such as in mines, an energy source that
we may deploy in-situ may employ the routability features of WET using
magnetic fields, as described in Section 2.10.
Outdoor environments → urban These environments are characterized
by an abundance of infrastructure for energy, transport, and living. Thus,
they offer a host of sources for energy harvesting, being energy generated
not just by nature, as in the case of solar light and wind, but also by hu-
mans and their activities, as in the case of RF transmissions, discussed in
Section 2.4.2, water flows, reported in Section 2.3.2, or vehicle-induced
vibrations, as in Section 2.3.1.

WET for WSNs in urban environments is, however, arguably nontrivial.
Current trends indicate the possibility of eventually deploying a low-energy
wireless power-grid. Cities can deploy power beaming systems; for exam-
ple, using microwaves, described in Section 2.11.2, at locations that have
best solar irradiation to gather energy and re-distribute it within a mesh of
energy-distributing nodes. One such example is the “array of things” de-
ployment in Chicago [208], where energy-distributing nodes deployed on
top of light poles use microwaves to hand out harvested solar energy. Ur-
ban environments, nonetheless, impose strict safety WET5 requirements,
ruling out unsafe WET technologies, such as laser, in densely populated
areas.

2.13.2 Indoor Environments

Market needs progressively drove the deployment of WSNs in structured
indoor environments. These installations serve a multitude of purposes; for
example, providing means to extend the scope and granularity of building

52

i
i

“thesis” — 2018/1/14 — 18:38 — page 53 — #63 i
i

i
i

i
i

2.13. Mapping WSN Environments to Harvesting and Transfer Techniques

automation systems [233,242], and replacing existing industrial wired sen-
sors [76, 91]. WSN-powered medical and smart-health applications also
emerged; for example, in the form of body sensor networks (BSNs) provid-
ing one’s vital signs for real-time analysis [45, 236]. Similar to the outdoor
case, every such environment bears distinctive characteristics.
Indoor environments → industrial and building automation Most of
these environments enjoy an existing wired energy distribution infrastruc-
ture. Still, energy harvesting and wireless transfer remain desirable for a
number of reasons; for example, to exploit renewable energy sources or to
enable rapid prototyping.

In factory environments, vibrations due to moving machines provide
an abundant source of kinetic energy. The corresponding extraction tech-
niques, as discussed in Section 2.3.1, are both sufficiently mature and pro-
vide reasonable performance. In buildings, numerous other harvestable en-
ergy sources exist, such as air flows induced by the operation of ventilation
systems and RF transmissions due to WiFi and cellular networks. Extrac-
tion techniques apt to the former are sufficiently developed, as discussed in
Section 2.3.2. Differently, the state of the art in rectenna design, still bat-
tling with the need to miniaturize the devices as discussed in Section 2.4.2,
is arguably not quite at a level of widespread adoption.

WET in such energy-rich environments might facilitate seamless de-
ployment of WSN nodes. With the advent of commercial, high intensity
WET solutions [60, 224], using resonant inductive coupling, discussed in
Section 2.10, or RF transmissions, described in Section 2.11, one may fore-
see the availability of a full energy infrastructure within buildings. WSNs
installed therein can thus primarily focus on the application requirements
and not on energy-conservation issues, as these technologies are provi-
sioned for multi-watt consumer appliances, such as TVs and mobile phones,
and thus easily support the mW requirement of WSNs.
Indoor environments→ body sensor networks (BSNs) Applications em-
ploying BSNs are often required to operate unattended for months or years,
and yet they often exhibit varying degrees of mobility and severe form
factor constraints. These characteristics make applying traditional battery
technology very difficult. Because of this, BSNs are often coupled with
energy harvesting and wireless transfer techniques.

For example, kinetic energy sources including muscle movements and
blood flows, as well as thermal energy sources such as temperature differ-
entials, are well suited to energy harvesting in such networks. The corre-
sponding extraction techniques, described in Section 2.3 and 2.5, are able
to match the form factor constraints without impacting the node mobility.

53

i
i

“thesis” — 2018/1/14 — 18:38 — page 54 — #64 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

WET is also a practical solution when monitoring patients inside hospi-
tals or at home, mainly because they are expected to be restricted in their
movements, and thus remain within the range of WET mechanisms such as
magnetic resonance, as described in Section 2.10, or light, as explained in
Section 2.11.1. It is even conceivable that purely inductive coupling is used
to transfer energy for sub-cutaneous devices, using a robotic infrastructure
in a patient’s vicinity [189].

2.14 Research Agenda

Battery-powered WSNs manifested new challenges out of the necessity
to manage finite energy budgets against sensing, computation, and com-
munication needs. Energy harvesting and wireless transfer fundamentally
redefine these challenges, as the assumption of a finite energy budget is
replaced with that of potentially infinite, yet intermittent energy supply.
This profoundly impacts every aspect of wireless sensor networking, ulti-
mately including the pattern of operation. This will eventually transform
from the traditional sense-compute-transmit to a harvest-sense-compute-
transmit-share, that is, beginning and ending with energy- and not data-
related tasks.

Based on this observation, we identify four major areas worth additional
research efforts. We discuss next the issues that we maintain are to be
researched in every such area, providing specific directions for future work.
1. Hardware design In energy-harvesting WSNs, the input power is a
function of energy availability in the environment, and thereby heavily fluc-
tuates. Electronics employed in battery-powered WSNs, on the other hand,
feature a narrow operational power spectrum, that is, the range of different
power inputs the electronics can withstand. This makes traditional electron-
ics ill-unsuited to energy-harvesting WSNs [229]. To make things worse,
the same kind of electronics often presents high surge current requirements,
possibly preventing WSN nodes from (re-)booting even if energy is avail-
able.

These considerations influence every aspect of a node’s hardware de-
sign, from sensors to memory, to processors, to radios. New designs are
thus required that: i) can cope with highly variable supplies of energy, and
ii) reduce the gap between a node’s energy requirements and the generation
capacity of the harvesting unit. For example, multiple operational states of
the hardware, with varying performance levels and power requirements, can
be defined to stretch the operational power spectrum. Efforts are currently
undergoing to achieve these objectives [108], yet the challenge is arguably

54

i
i

“thesis” — 2018/1/14 — 18:38 — page 55 — #65 i
i

i
i

i
i

2.14. Research Agenda

far from being fully addressed.
2. Networking energy The integration of energy harvesting in traditional
WSNs does not pose significant challenges, as it requires extensions—in
the form of a harvesting unit—that only impact individual nodes.

The case is different when applying WET. Energy, previously consid-
ered as a node’s local commodity, now becomes a deployment-wide share-
able resource. How to concretely take advantage of this conceptual leap is
still quite unclear. For example, one needs to understand how to schedule
energy transfers; what amount of energy to transfer; and whom to trans-
fer energy to, which may further require accurate localization when us-
ing directional techniques. Some recent work started exploring these ques-
tions [118,240,241], providing early evidence of the opportunities enabled
by embedding a notion of a energy distribution as a first class concept that
impacts both the sensing functionality and communication stack of WSNs.
Data- and energy-networking will need to be co-designed, and an energy
management stack be integrated to serve energy distribution requests. The
possible design choices are also several. For example, scheduling energy
transfers is achievable with static policies like earliest-dead first, or based
on application-specific requirements.

Because of the characteristics of current energy harvesting and wireless
transfer technologies, we may also need to redefine the roles of different
nodes. A homogeneous network model, which considers every node to be
equally capable of energy harvesting and wireless transfer, is hardly de-
sirable. As discussed in Section 2.8, for example, deployment constraints
may create significant imbalances in the ability to harvest energy. As a re-
sult, a tiered network model is probably more appropriate, similar to RFID
systems. More capable nodes will be responsible for generating energy,
perhaps from a renewable ambient source, and for transferring it to less
capable in-situ devices that harvest and consume it. A similar model was
repeatedly advocated for data networking [61, 187]; the integration of an
energy management stack is only going to make these efforts more rele-
vant.
3. System software The ability to harvest energy from the ambient is also
changing how the system software operates, including operating systems
and data networking. In addition to being energy-aware, systems must be
supply-aware, that is, able both to accommodate intermittent supplies of
energy and to withstand power outages.

Operating systems must be capable of stretching an application’s pro-
cessing across periods of energy unavailability, letting the system resume,
and not restart, the previously-running tasks. Efficient solutions to this

55

i
i

“thesis” — 2018/1/14 — 18:38 — page 56 — #66 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

problem, however, are far from straightforward. For example, periodically
checkpointing the entire system state for later resumption is likely ineffi-
cient. Strategies must be conceived to decide when to checkpoint based on
the current system state and remaining running time, doing so with minimal
disruption of the application’s processing. Some works in the area of com-
putational RFIDs [172] resonate with some of these considerations, yet the
specific solutions are difficult to port to WSNs because of the significant
degree of decentralized processing that characterizes the latter. Efficient
state retention techniques for modern WSN platforms exist [28], yet it is
also likely that only parts of the system state are to be checkpointed, or
that state information bear time-dependent validity constraints; for exam-
ple, when using sensor data to enact decisions on the environment. Devel-
opers need to be given ways to express these aspects in their programs; for
example, through proper language constructs.

Challenges also exist for data networking. A better understanding of
how existing protocols are influenced by periods of energy unavailability is
required in the first place. It may be argued, for example, that nodes running
out of energy and later resuming are analogous to nodes crashing and even-
tually being replaced. This argument, however, plainly depends on the time
scales at hand. A more robust approach would dissect the relevant network-
ing mechanisms, such as neighborhood management and packet forwarding
in routing protocols, and possibly design ways to adapt these mechanisms
to an intermittent computing pattern. Anytime algorithms [243]—returning
a valid solution at any point in their execution—may provide a means to
this end.

The OS-level and networking challenges meet when thinking of the is-
sues possibly arising whenever the state of a node resuming after a period
of energy unavailability shows inconsistencies against the state of nodes
enjoying different energy supplies. This may create ripple effects that ulti-
mately worsen performance, as it was already recognized in the literature
in the context of software failures [41]. In principle, addressing these is-
sues would require coordinating checkpoints on a system- or neighborhood-
wide scale, making sure that nodes resume from a state that remains mean-
ingful compared to that of other nodes. These considerations may bring
back to life a whole body of work on distributed checkpointing [105], now
cast in a domain of resource-constrained devices operating across multi-hop
topologies.
4. Environment models and tools The need for accurate environment
models is clear already in battery-operated WSNs. For example, mod-
els of wireless propagation in a given deployment may serve simulators

56

i
i

“thesis” — 2018/1/14 — 18:38 — page 57 — #67 i
i

i
i

i
i

2.15. Summary

or pre-deployment tools that allow users to establish performance vs. cost
trade-offs. Obtaining this kind of models is a challenge, as the relevant
environment features are difficult to identify.

In a similar vein, obtaining models of energy propagation or availabil-
ity in a given environment is also complex. As for energy propagation,
considerations akin to wireless transmissions largely apply. In the case of
energy harvesting, the general characteristics of an area may be known;
for example, Southern California is sunny, the Pacific Northwest less so.
However, available energy in a specific location varies greatly over short
distances and time. A paradigmatic example is that of sun-flecks: rapidly
moving solar spotlights on the forest under story [112]. Their presence or
absence can greatly change solar irradiation on ground, yet their patterns
are surprisingly complicated.

Confronted with these challenges, we need to conceive suitable envi-
ronment models and incorporate them in concrete tools to help users un-
derstand the energy nature of the environment, enable pre-deployment sim-
ulations to understand performance vs. cost trade-offs, assist debugging at
deployment time, and enable remote tuning and adaptive management of
network-wide energy. Designing such tools, in turn, raises several ques-
tions; for example, how to trade accuracy vs. processing times in the simu-
lation of energy-harvesting WET-enabled WSNs? How long do we need to
observe a site to gain sufficient information for feeding the models? What
level of spatial granularity is required to obtain trustful estimates for a given
site?

2.15 Summary

Energy harvesting and wireless transfer are gradually finding their way
in WSNs. The former can mitigate the energy constraints of traditional
battery-powered WSNs, and possibly achieve the longstanding vision of
perpetual deployments. However, the feasibility of a particular energy har-
vesting technique is deployment-specific. WET can overcome these limita-
tions by provisioning an energy-deficient environment with abundant har-
vestable energy. Because of these crucial features, a plethora of research
work appeared on these subjects.

In this chapter, we defined desirable properties that energy harvesting
and wireless transfer techniques must present to enable their use in WSN
applications, we surveyed and classified existing solutions, and argued about
their applicability in different deployment environments. Although the ini-
tial upsurge in these fields is clearly visible, a lot remains to be researched

57

i
i

“thesis” — 2018/1/14 — 18:38 — page 58 — #68 i
i

i
i

i
i

Chapter 2. Energy Harvesting and Wireless Energy Transfer in WSNs

to reap maximum benefits. For example, the gap between the efficiency of
exiting techniques and the energy demands of WSN nodes is to be reduced
further. Moreover, WET makes energy become a network wide shareable
resource, fundamentally impacting the pattern of system operation. As a re-
sult, a number of further research directions open up involving hardware de-
sign, networking energy, system software, environment models, and tools.

58

i
i

“thesis” — 2018/1/14 — 18:38 — page 59 — #69 i
i

i
i

i
i

CHAPTER3
Transiently-Powered Embedded Systems

In the previous chapter, we covered the challenges that arise because of en-
ergy harvesting and wireless transfer in WSNs and some of them need fur-
ther investigation and improvements. One particular research problem dis-
cussed at a very high level in Section 2.14, is about the class of embedded
systems that operate solely on ambient harvested energy, i.e., transiently-
powered embedded systems. This chapter further explores the challenges
these transiently-powered embedded systems have to overcome in actual
real-world deployments and describe the range of existing solutions that
address these challenges.

3.1 Introduction

Over the past decade, researchers invested considerable effort towards de-
signing increasingly small and low-power computing devices. While there
has been considerable progress in every domain, the holy grail of compact,
low-cost, long-lasting batteries remains elusive. The pullulating demand
in manufacturing smaller, cheaper and self-sustainable computing devices
triggers a new trend to design battery-less systems with miniaturized energy
storage capacity, equipped with ambient energy harvesting systems. With

59

i
i

“thesis” — 2018/1/14 — 18:38 — page 60 — #70 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

the increase in the number of Internet of Things (IoT) devices, the tasks per-
formed by these devices has also gone way beyond simple sense-compute-
send kind of applications [171]. These devices nowadays are required to
perform complex computations.

Transient-powered embedded systems is a field of autonomous systems
in which tiny embedded devices receive power directly from the ambient
energy harvester output. It not only expunges the requirement of tethered
power or continuous battery maintenance, but also reduces the size, weight,
cost and ecological footprint of the device.

The trouble is, energy provisioning from ambient harvesting or wire-
less transfer is generally erratic [27] and exhibits high spatial and temporal
variation. This makes the transiently-powered embedded devices shutdown
and reboots continuously. In the meantime, applications lose state, wast-
ing most of the computation already performed, and need to restart from
scratch. This represents a waste of computing resources and therefore of
energy, as applications will need to re-initialize, re-acquire state, and per-
form re-synchronization with other nearby devices.

This chapter is a survey of various technical papers that propose solu-
tions using different technologies for the challenges transiently-powered
embedded systems face in real-world deployment. The chapter is broadly
structured in two parts:

• Section 3.2 describes and discusses the challenges of designing an
efficient solution for transiently-powered embedded systems.

• Section 3.3 defines the taxonomy of existing solutions and briefly
summarizes each solution to guide the reader.

3.2 Challenges

Embedded systems running on harvested energy, which can either be solar,
wind or vibrations [120, 139, 166] etc, normally have unpredictable power
supply [27] and because of it, they face frequent shutdowns. Whenever the
voltage of energy buffer drops below the operating voltage (Voff), MCU
with volatile registers and main memory loses their content. The system has
to wait till the harvested energy is sufficient for the device to work. When
the device starts harvesting energy, the voltage starts to increase and when
this voltage reaches a certain threshold, i.e.,Von, the device starts working
again.

However, the work done previously on the device needs to be performed
again. With a very small energy buffer, the system will never be able to

60

i
i

“thesis” — 2018/1/14 — 18:38 — page 61 — #71 i
i

i
i

i
i

3.2. Challenges

complete a computation required by most of the modern-day applications
in one power cycle. Thus these devices need to have some mechanism
of saving the system state (i.e. checkpointing mechanism) across power
cycles to complete the computation without losing useful work done in the
previous power cycle.

Most of the solutions designed for transiently-powered embedded sys-
tems have another voltage level namely the threshold voltage, i.e., Vthreshold,
such that Voff < Vthreshold < Von. When the voltage reaches the thresh-
old value, the device stops performing computations and starts saving the
system state, so it can resume from that exact state in the next power cycle.
The choice of voltage threshold depends on the amount of state that needs
to be saved. Volatile state which needs to be saved before power failure in-
cludes general and special purpose registers (GPRs and SPRs), peripherals
state, stack, heap, .data, .bss segments etc. The larger the state, the higher
the voltage is required to have enough energy in energy buffer for copying
the state from volatile memory to NVM. In this way, "what" to checkpoint
(i.e size of state) becomes a prerequisite question for transiently-powered
computing solutions to answer the next big question, i.e., "when" to check-
point?

The amount of energy required to save the system state is directly pro-
portional to the number of bytes of volatile state that needs to be saved to
NVM. This determines the least amount of energy, which is required by the
transiently powered embedded systems to retain state across power cycles.
Energy is directly proportional to the voltage from the following equation.

E =
1

2
CV 2 (3.1)

To insure the system state is retained across power cycles, transiently-
powered embedded systems have to stop doing computations and start sav-
ing the state when it reaches the threshold voltage. The useful work done
after the last checkpoint and power failure is always lost. Ideally, this com-
putation/energy loss should be equal to zero and device should save state
only when the remaining energy is only sufficient for checkpointing opera-
tion, not greater than that.

There is another class of transiently-powered embedded system solu-
tion, which is free from all of the above challenges, called non-volatile
processors (NVPs). This kind of solution extends the non-volatility down
to the level of flip-flops, making application immune to transient power
failures. We will discuss more about these solutions in the next section
(section 3.3).

61

i
i

“thesis” — 2018/1/14 — 18:38 — page 62 — #72 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

Figure 3.1: Taxonomy of transiently-powered embedded system solutions. Solid rectangu-
lar blocks represent categories whereas dashed rectangular blocks represent solutions
belonging to each category. Oval blocks with dotted lines represent solutions handling
data inconsistency.

3.3 Taxonomy of Transiently Powered Computing Solutions

Keeping in view the challenges of transiently powered embedded system
solutions, researchers have proposed various solutions. Some of them re-
quire hardware modifications, and some do not require any hardware mod-
ification. Some of them explicitly use checkpointing mechanism to save
state across power cycles while others define a new architecture/mechanism
that does not require checkpointing and are robust against the multiple re-
boots. Based on this heterogeneity, we have divided the solutions into three
categories as shown in Figure 3.1.

3.3.1 Out-of-place Checkpointing

We categorize all those solutions in "out-of-place" checkpointing that em-
ploy NVM as an external storage for saving system state. These systems
target mainstream IoT architectures employing volatile main memory for
efficient processing and NVM as an external storage, i.e., Flash or FRAM.

The volatile state that these systems need to save before power failure
includes general/special purpose registers (GPRs and SPRs), stack, heap,
.data, .bss segments etc. One can easily see that saving the entire volatile
state into NVM will solve the problem but it is not going to be an optimal
solution because of the following reasons:

• Saving the entire volatile state will consume energy in saving those

62

i
i

“thesis” — 2018/1/14 — 18:38 — page 63 — #73 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

memory locations into NVM that contain a non-valid/empty memory
locations; thus, wasting precious time/energy on useless work.

• Saving the entire new checkpoint is not always required. Comput-
ing what has changed from the previous checkpoint can create a new
up-to-date checkpoint without having to copy memory locations that
never changed from the previous checkpoint; thus, saving energy.

These are some of the reasons why simple approaches are inefficient for
"out-of-place" checkpointing systems. In a nutshell, following are some
goals for the "out-of-place" checkpointing system solutions to make them
more reliable and efficient.

a. Checkpoint size reduction: Solutions should intelligently copy the
volatile state to NVM and reduce the amount of data that need to be
saved as much as possible. Energy should not be wasted in copying
the data that has not been changed from the previous checkpoint or is
never modified by the program. This will save the energy that can be
used in actual computations.

b. No exclusion of data: Solutions should not exclude any important
data segments that limits the functionality/flexibility of the program
(i.e. heap etc), besides empty spaces and redundant data, while saving
the state onto NVM. Excluding data segments from checkpointed state
limits the programmer and scope of the applications.

c. Least amount of wasted energy: Solutions should minimize the
amount of work lost from the last checkpoint, ideally making it to
zero, by saving system state only when the remaining energy is strictly
sufficient for checkpointing only. The amount of work done by the de-
vice from the last checkpoint to the power failure does not become part
of any checkpoint. When energy buffer is depleted, this work done is
lost and is re-performed by the device.

d. Ensure data consistency: Solutions should ensure the consistency of
data after the restoration of the system state and re-execution of the
code. Inconsistent data will corrupt the program execution and may
produce erroneous results.

e. Minimum user intervention: Solutions should require only minimal-
istic input from the user and should work in an automated manner, i.e,
configuring threshold voltage, reducing checkpoint size, placement of
trigger calls (briefly discussed in Section 1.3) etc. Their working

63

i
i

“thesis” — 2018/1/14 — 18:38 — page 64 — #74 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

should be hidden from the user (programmer, system developer, user
or application program).

The transiently-powered embedded system solutions can be divided into
two sub categories: proactive and reactive checkpointing systems.

Proactive Systems:
These systems proactively probe the energy buffer and decide whether

to checkpoint system state, based on the remaining energy. To proactively
probe the energy buffer, these systems insert trigger calls at specific
locations in the code based on different strategies.

MementOS [171]

Ransford et al. [171] developed MementOS on top of LLVM compiler [111]
and used external NVM, i.e., Flash, for storing system state (i.e stack,
global variables, MCU registers etc). It works by inserting static trigger
calls within the code based on three different strategies:

• loop-latch: In this mode MementOS places trigger calls at the end of
loop iterations.

• function-return: In this mode MementOS places trigger calls at func-
tion return points.

• time-aided: In this mode MementOS periodically executes the trigger
calls after a fixed interval.

Loop-latch and function-return are the locations where one may expect
the stack to store less data, which would then reduce the size and energy
cost of saving system state to Flash memory. It meets goal a: checkpoint
size reduction, as trigger calls are placed at selective locations minimizing
computational overhead. MementOS also exposes an API to the program-
mer to insert trigger calls manually within the code. Regardless, whether
the trigger calls are placed automatically or manually, they all check if the
static threshold voltage has reached or not. If it has reached, trigger call
will initiate checkpointing mechanism to save system state onto NVM.

The threshold voltage is obtained through repeated emulation experi-
ments. These experiments eventually determine a single program-wide
threshold, based on average run-time behavior and user-supplied energy
traces (which is compulsory); thus, it does not completely satisfy goal e:
minimum user intervention. If the voltage of the energy buffer is below

64

i
i

“thesis” — 2018/1/14 — 18:38 — page 65 — #75 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

a static threshold voltage, MementOS saves the volatile state i.e. .bss, .data
and stack segments along with general-purpose registers (GPR’s) and pe-
ripheral state, into NVM, i.e., Flash.

MementOS does not checkpoint heap by arguing the class of applica-
tions that normally run on these devices do not use dynamic data structures.
Thus, MementOS does not meet goal b: no exclusion of data. However,
modern IoT platform developers, i.e., ARM-based platforms [20] which
support MPU (memory protection unit) and MMU (memory managment
unit), encourage developers to use dynamic memory structures for higher
programming flexibility with more complex IoT applications [114]. This
approach limits the applicability of MementOS to a wide set of IoT ap-
plications. As MementOS only handles contiguous areas of memory, the
processing is quite simple.

Due to the placement strategies of MementOS, there is no upper bound
on the space between two consecutive trigger calls that can be greatly in-
creased depending upon the structure of the code. Also, because of its
trivial threshold voltage based decision logic, whether to checkpoint sys-
tem state, the time between last checkpoint and actual power failure can
increase. Subsequently, because of these two factors, work done from the
last checkpoint till actual power failure can greatly increase and not be-
come part of any checkpoint, hence not satisfying goal c: least amount of
wasted energy.

Data consistency is not the focus of this work, so it does not satisfy goal
d: ensure data consistency.

DINO [173]

One major issue with proactive systems is data inconsistency. In proactive
systems, there always exists a non-negligible amount of work that does not
become part of any checkpoint. This work has to be performed again when
the system resumes from the checkpoint. Performing the same work again
can cause data inconsistency when it is performed on non-volatile variables
as shown in Fig 3.2 [173].

DINO [131] is one of the first solutions that tackle this problem and en-
sures consistency in transiently powered systems through a task-based pro-
gramming model. This approach requires the programmer to split programs
statically into smaller tasks. The programmer is responsible for identifying
the optimal length of the task so that the program can finish its execution.

DINO generates control and data-flow graphs of the program, where
nodes in these graphs represent instructions of the program. According to
DINO, If there exists a path between two nodes in a CFG (control-flow

65

i
i

“thesis” — 2018/1/14 — 18:38 — page 66 — #76 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

Figure 3.2: The operations before the reboot update len but not buf. When execution
resumes–e.g., from a checkpoint–r1 gets the incremented value of len and the code
writes a character into buf’s second entry, not its first. Updating buf leaves the data
inconsistent: only buf’s second entry contains a, which is impossible in a continuous
execution [173]

graph) and its DFG (data-flow graph), then it means both instructions come
in the same path of execution and access same memory with anyone of
them writing it. DINO uses CFG and DFG to identify potential non-volatile
variables that can become inconsistent after reboot.

DINO’s runtime environment provides support for checkpointing and
data versioning between task boundaries to ensure state retention across re-
boots. The updates within the task are not visible to other tasks until they
are completely executed. At each task boundary, DINO’s checkpointing
strategy copies all potential non-volatile variables that can become incon-
sistent after reboot onto the stack to make a volatile copy of them. At
task boundary, DINO executes checkpointing mechanism just like Memen-
tOS [171], which means it does not satisfy goal b: no exclusion of data.
Later during the restoration of the checkpointed state, DINO restore the
values of non-volatile variables from stack making it consistent with the
volatile state. This allows non-volatile variables to change their state only
at task boundaries satisfying goal d: ensure data consistency.

As DINO places the burden of identifying task boundaries on the pro-
grammer, it does not satisfy goal e: minimum user intervention. How-
ever, during the compile time, DINO’s compiler emits a warning for each
boundary that can have slightly lower checkpoint size by moving task bound-
ary by few instructions, satisfying goal a: checkpoint size reduction.
Also, during the compile time, DINO’s compiler emits a warning if a task is

66

i
i

“thesis” — 2018/1/14 — 18:38 — page 67 — #77 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

Figure 3.3: There are three tasks in this example Chain program namely Sense, CmpAvg
and Alert. Each task at its end specifies the next task to be executed, forming a chain.
Each task takes input variable using channel ChIn and send the output variables using
ChOut channel. These channels are named regions in NVM controlled by Chain [44].

too long and contains I/O operations (which are costly in terms of energy).
It suggests the programmer to split the task into subtasks minimizing the
risk of losing work done since the last checkpoint, hence satisfying goal c:
least amount of wasted energy

Chain [44]

Chain [44] proposes very similar approach used by DINO in which task
boundary is enforced through the programming language by the program-
mer. Chain proposes a programming language that provides task-based
flow control that ensures progress and channel-based data flow between
tasks.

Each task defined in Chain’s programming language has a successor and
predecessor task. Each task has to define the next task to be executed after
the current task is finished. Chain keeps track of the currently executing
task. There is only one entry and exit point of a task and one task is marked
as the origin. This ensures that control cannot jump abruptly anywhere in
the program which can be seen in Fig 3.3.

The input to a task and output from that task occurs only by means of
channels. A channel is a region in NVM defined between tasks for shar-
ing data, in simple words checkpointing is happening in the channel. All

67

i
i

“thesis” — 2018/1/14 — 18:38 — page 68 — #78 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

variables of a task, in Chain, are local and volatile. This allows each task
to be restarted on failure with almost zero restoration cost (MCU registers
and peripherals still need to be checkpointed and restored). Since input and
output of tasks lie on NVM, data consistency issue is resolved, satisfying
goal d: ensure data consistency.

The only data that Chain needs to checkpoint is; the data which tasks
share among them (which can be any type of data: heap or stack), so it
meets both goal a: checkpoint size reduction and goal b: no exclusion
of data. However, Chain places the burden on the programmer to identify
task boundaries and enforce its programming constructs, so it does not meet
goal e: minimum user intervention. Also, as Chain only checkpoints be-
tween tasks, the processing done within the task can be lost when a power
failure happens, not satisfying goal c: least amount of wasted energy.

Reactive Systems:
In these systems, an external interrupt may preempt the execution at any

time and prompt the system to take a checkpoint. Since, in these systems,
the threshold voltage is detected using in-built, or external, voltage com-
parator, no continuous probing of energy buffer is required.

Hibernus [21]

Hibernus [21] belongs to a class of solutions that does not need to place the
trigger calls within the code. It generates an interrupt when the device volt-
age has dropped below the threshold voltage. If the voltage drops below the
threshold, interrupt service routine saves the system state (complete RAM
along with MCU registers) to the FRAM (NVM). This brings Hibernus
close to the checkpoint on last practical point when the power supply fails,
reducing the wasted energy and providing more energy for actual compu-
tation satisfying goal c: least amount of wasted energy.

Once the voltage rises above the minimum voltage requirement of the
device, Hibernus recovers the saved checkpoint state from NVM and re-
stores it to continue the computation. Furthermore, the use of FRAM for
storing checkpointed state allows Hibernus to have a low threshold voltage
value which further increases the active period of the main program.

The threshold voltage depends upon the size of the RAM and energy
required to copy the complete RAM (and MCU registers) onto FRAM. Hi-
bernus uses MSP430FR5739 evaluation board with built-in FRAM, voltage
comparator and decoupling capacitance of size 16µF. It does not focus on
reducing the size of the checkpoint that can reduce the threshold voltage;

68

i
i

“thesis” — 2018/1/14 — 18:38 — page 69 — #79 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

thus, Hibernus does not satisfy goal a: checkpoint size reduction.

Hibernus can work with platforms with the Flash memory but this will
significantly increase the energy overhead, potentially requiring additional
capacitance on the supply and may also require external voltage comparator
if the platform does not have the built-in comparator.

Hibernus meets goal d: ensure data consistency, as data inconsistency
issue arises only when a non-idempotent piece of code re-executes and
some of the variables used in that code are in NVM. In Hibernus, the sys-
tem always resumes from where it stopped working. However, Hibernus
does require user configuration of threshold voltage, not satisfying goal e:
minimum user intervention.

Hibernus++ [22]

One main limitation of Hibernus is an off-line characterization of the de-
vice to find the threshold voltages for checkpointing and restoring the sys-
tem state. This limitation was addressed in Hibernus++ [22] by the authors
by proposing an adaptive approach to self-calibrate Hibernus checkpoint-
ing threashold (VH), depending upon the system power consumptions and
dynamics of energy source.

Hibernus++ self-calibration routine inserts another voltage threshold:
calibration start voltage Vcal. Hibernus++ self-calibration routine waits for
the energy buffer voltage to reach the Vcal. Once this voltage is reached,
the harvesting source is disconnected by closing the switch and a complete
snapshot of main memory (including MCU registers and peripherals’ state)
is saved onto NVM. The drop in supply voltage due to checkpointing is
given by Vcal - (voltage measured at the end of the checkpointing process).
Based on this information, VH is set to minimum operating voltage (Vmin)
+ the drop in supply voltage. If the calibration routine fails, Vcal has to be
increased. Vcal is first set as low as possible to determine the lowest value
of VH .

This calibration strategy makes the overall system transparent and portable
across multiple systems by adapting voltage threshold at run-time, con-
sidering system power consumption, decoupling capacitance and energy
source behavior. This approach satisfies all the goals in the same manner
as Hibernus except for goal e: minimum user intervention, as user inter-
vention is reduced by run-time characterization of the device.

69

i
i

“thesis” — 2018/1/14 — 18:38 — page 70 — #80 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

3.3.2 In-place Checkpointing

This class of solutions targets device architectures that employ non-volatile
main memory (replacing traditional SRAM [90]). This relieves these sys-
tems from checkpointing the main memory which in return reduces the size
of the checkpoint. They only need to checkpoint MCU registers and periph-
erals’ state, increasing the energy efficiency of the system as compared to
external NVM transiently-powered embedded system solutions. Also, due
to in-place checkpointing, solutions under this category do not focus on
reducing the checkpoint state size.

However, "in-place" checkpointing solutions are only beneficial under
those scenarios where power interruption happens very frequently. As FRAM
accesses are 3x slower than SRAM, applications using FRAM consume
more time during execution.

Following are some goals which "in-place" checkpointing systems need
to achieve to make them more reliable and efficient.

a. Insure data consistency: In "out-of-place" checkpointing system,
data consistency issue arises only when some of its variables are de-
clared in NVM. In "in-place" checkpointing, data consistency is still
a major goal regardless all the local variables are now saved in NVM.
In "in-place" checkpointing, we still need to checkpoint registers. De-
pending upon the mechanism used to trigger checkpointing, i.e, re-
active or proactive, portion of the code is re-executed causing data
inconsistencies.

b. Least amount of wasted energy: As discussed above, these solutions
still need to save MCU special/general purpose registers and periph-
eral state to completely retain MCU’s state. Just like in "out-of-place"
checkpointing, in "in-place" checkpointing, the useful work done be-
tween the last checkpoint and power failure is always considered lost
(even though data of main memory is preserved). These solutions
should also try to make this loss to zero by saving MCU registers only
when the remaining energy is only sufficient for checkpointing.

c. Minimum user intervention: Just like in "out-of-place" checkpoint-
ing, "in-place" checkpointing solutions should require only minimal-
istic input from the user and should work in an automated manner
(configuring threshold voltage and placement of trigger calls etc.).
Their working should be hidden from the user (programmer, system
developer, user or application program).

70

i
i

“thesis” — 2018/1/14 — 18:38 — page 71 — #81 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

Proactive Systems:
These systems do not need to checkpoint main memory, yet they still

need to insert triggers to checkpoint MCU special and general purpose
registers.

Ratchet [214]

Van et al. [214] proposed Ratchet, which uses NVM as main memory. As
the application data already resides in NVM, Ratchet only needs to save
general and special purpose registers, along with other peripherals’ state
when checkpointing. The main focus of Ratchet is to solve the problem of
data inconsistency in "in-place" checkpointing solutions by finding all pos-
sible write-after-read (WAR) dependencies and inserting checkpoint calls
(for saving registers/peripheral states) between the instruction with WAR
dependencies in the code. This is based on the intuition that if two in-
structions have a WAR dependency, a code must not re-execute the both
instructions in the same cycle.

Van et al. implement their approach (Ratchet) on top of LLVM [111]
compiler. According to [52], between any two instructions having a WAR
dependency, there is an idempotent section. After finding all possible WAR
dependencies, the proposed approach inserts a checkpoint call between the
two idempotent section using an optimization which finds the minimum
number of checkpoint call insertions (minimum trigger calls) in the code.
Ratchet resolves the issue of memory inconsistency, satisfying goal a: en-
sure data consistency

Since this approach is based on statically placed checkpoint calls, there
will exist some computations that will not become part of any checkpoint
when energy buffer becomes empty. This will lead the approach to waste
energy, not satisfying goal b: least amount of wasted energy.

Ratchet requires no user intervention to work, as it finds all possible
write-after-read(WAR) dependencies and inserts checkpoint calls automat-
ically; thus, satisfying goal c: minimum user intervention.

Clank [82]

Matthew Hicks [82] designed a system (Clank) that splits the program into
idempotent sections, just like Ratchet [214]. However, instead of detect-
ing idempotency violation with the help of compiler support like Ratchet,
Clank relies on hardware support.

Matthew Hicks uses three additional hardware buffers (volatile memory)
which keeps the track of each memory address accessed: read-first, write-

71

i
i

“thesis” — 2018/1/14 — 18:38 — page 72 — #82 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

first, and write-back buffers. The read-first buffer holds read dominated ad-
dresses, while the write-first buffer holds write dominated addresses. Dur-
ing the execution of the program, Clank checks if the memory access is a
"write" and if the address of the access is already in the read-first buffer, it
signals an idempotency violation, satisfying goal a: ensure data consis-
tency

Unlike Ratchet, Clank does not take checkpoint when idempotency vi-
olation happens. It simply adds the violating address and its value in the
write-back buffer to delay the checkpointing. This allows Clank to stretch
the execution of an idempotent section past its natural limits. However,
when any of these three buffers overflow, Clank initiates its checkpointing
mechanism (which involves saving MCU registers and peripherals’ state)
and then empty all the buffers.

Clank also uses watchdog timers to minimize the gap between two check-
points because of two reasons: 1) to ensure that no single idempotent sec-
tion is big enough that it exceeds average power cycle time, and 2) to reduce
the overhead due to re-execution of the idempotent section. This makes
Clank satisfy goal b: least amount of wasted energy.

Overall, Clank enables existing programs to execute in intermittent power
environment automatically, without programmer intervention, satisfying
goal c: minimum user intervention.

Jayakumar et al. [94]

However, replacing traditional SRAM with FRAM does not completely
solve the problem of energy/time overhead required to save the content
of main memory. As mentioned earlier, FRAM consumes more time and
energy as compared to SRAM. On the other hand, SRAM, while being
efficient in terms of access time and energy consumption, is volatile and
vulnerable when frequent power losses occur.

This raises a question if there is a way to extract the best of both worlds.
To answer this question, Jayakumar et al. [94] proposed a hybrid approach
where they map different sections of the program, i.e., text, stack and
data, to either FRAM or SRAM depending upon the optimal configura-
tion at the granularity of functions. They use function as the basic unit be-
cause it can be considered as an independent entity having its own text,
stack and data sections that can be mapped onto memory at runtime.
They show that mapping different sections of functions in either FRAM or
SRAM leads to different energy and time consumption values.

It can easily be seen that all embedded sensing devices follow determin-
istic behavior. The execution flow of these devices does not change and

72

i
i

“thesis” — 2018/1/14 — 18:38 — page 73 — #83 i
i

i
i

i
i

3.3. Taxonomy of Transiently Powered Computing Solutions

the clock cycle/energy consumption of the application remains constant.
One can analyze energy consumption on all possible memory configura-
tions for a function and find the best maping for each function that has
the least energy consumption. This one-time characterization of the device
is named as eMmap. A checkpoint occurs only at the function boundary
in an effort to reduce trigger calls. Whenever a function is executed, its
sections are loaded into memory sections for which it has optimal energy
measurements and when the function has finished, the volatile state (if any)
is checkpointed. A function is executed only if it has enough energy to:

• migrate the code into the relevant memory section.

• execute the function.

• and checkpoint the state when the function ends.

If remaining energy is less than the sum of energy required for all these
operations, the system shuts down so that it should not waste energy and
recharge quickly satisfying goal b: least amount of wasted energy.

However, interrupts can cause non-determinism and can lead to an in-
valid state. Interrupts have higher priority in the system than other tasks. So
if an interrupt occurs during function execution, depending upon the length
of ISR(interrupt service routine), the function may or may not be able to
complete even though initially, it had sufficient energy to execute.

There are two types of interrupts in the system, deterministic and non-
deterministic interrupts. Deterministic interrupts are the ones that occur
after a regular interval of time. This includes timer interrupt or any other
periodic task. For this type of interrupts, profiling can be done in the same
way as any other task. Non-deterministic interrupts (NDI) are the ones
that occur when some event is detected. Example is the pressure sensor.
When pressure falls below a threshold, an interrupt is generated to indicate
possible leak.

Jayakumar et al. [94] handle NDIs by adding additional energy per func-
tion, in addition to that energy of the function (as measured by eMmap), to
correctly execute the function. It increases the optimal energy value for
each function, by a user-defined factor α, to take care of NDI. If the pro-
gram has more NDIs, then programmer should set it high, otherwise, set it
low.

Jayakumar et al. only ask the programmer to define α to take care of
non-deterministic interrupts (NDI) satisfying goal c: minimum user in-
tervention. Jayakumar et al. do not handle data inconsistency issues, not

73

i
i

“thesis” — 2018/1/14 — 18:38 — page 74 — #84 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

satisfying goal a: ensure data consistency.

Reactive Systems:
These systems use an external interrupt that may preempt the execution

at any time and prompt them to checkpoint MCU special and general pur-
pose registers.

QuickRecall [93]

QuickRecall [93] belongs to the reactive class of solutions. It proposes a
hardware/software based solution that integrates FRAM as the main mem-
ory instead of traditional SRAM. In comparison with Ratchet, QuickRecall
does not need to place trigger calls within the code as it uses external com-
parators to check the voltage levels continuously. A trigger call is generated
only when the voltage level of the device goes below the pre-defined thresh-
old. The external comparator sends the signal to the MCU when the voltage
level drops below the pre-defined threshold voltage.

The threshold voltage does not need to be high, as QuickRecall only
saves registers, peripheral state and a checkpoint flag. Checkpoint flag is
used to determine the existence of a valid checkpoint in memory. Whenever
low voltage interrupt arrives, QuickRecall will save registers and set the
checkpoint flag. QuickRecall’s boot sequence then stalls the execution till
the supply voltage surpasses the threshold voltage. When sufficient energy
is available, QuickRecall first checks the checkpoint flag. If the flag is set,
QuickRecall’s ISR revives the MCU state and clears the checkpoint flag. If
the flag is not set, the system will boot normally.

QuickRecall estimates triggering voltage, using the time it requires to
save the registers, peripheral state, checkpoint flag, and the rate of dis-
charge of capacitor after complete energy cut-off. The required time varies
depending upon the embedded devices. QuickRecall requires the user to
input this information; thus, not satisfying goal c: minimum user inter-
vention.

Since a checkpointing routine is triggered only at the threshold voltage,
wasted energy is zero, satisfying goal b: least amount of wasted energy.
Due to the same reason, data inconsistency issue never arises with Quick-
Recall as program resumes its execution from exactly the same point it was
interrupted. In this way, no piece of code executes twice, satisfying goal a:
ensure data consistency.

74

i
i

“thesis” — 2018/1/14 — 18:38 — page 75 — #85 i
i

i
i

i
i

3.4. Summary

3.3.3 Non-volatile Processor

Up till now, we have discussed how NVM are used as a backup for volatile
memory to save the state of the system in transiently-powered environ-
ments. There is the new class of embedded systems where the entire proces-
sor is designed using these nonvolatile technologies, known as Non-Volatile
Processors (NVPs).

Wang et al. [222] designed the first NVP chip, THU-1010N, that uses
ROHM ferroelectric based technology for the construction of nonvolatile
flip-flops (NVFF). This makes the register file, ALU, Timer and other MCU
components non-volatile in nature which reduces the sleep time to 7µs and
wake-up time to 3µs with zero standby power for the ambient energy har-
vesting devices. This architecture includes a configurable voltage detection
system (CVDS) which generates signals for power failure and regain. This
helps the MCU know when to sleep and wake-up.

Sakimura et al. [180] designed an architecture which uses 4072 non-
volatile magnetic flip-flops (MFFs) to capture the context of MCU. They
managed to reduce the wake-up time to 120ns. There are two special in-
struction in the instruction set namely "SAVE" and "LOAD" to flexibly save
and restore state from MFFs.

Khanna et al. [102] propose ferroelectric capacitor-based non-volatile
arrays, called NVL arrays, for saving the state before going into sleep mode.
It uses traditional FRAM for saving program memory. The system includes
a power management state machine which receives input from power sup-
ply detector. It saves the state when the supply is low and restores it when
power is regained. It claims 400ns wake-up time for ultra-low power appli-
cations.

Overall, the nonvolatile processor (in combination with FRAM) can re-
alize complete in-place checkpointing and restore process (including regis-
ters). However, a NVP may consume more power than the volatile proces-
sor due to the inherently higher power required for a non-volatile read and
write operation.

3.4 Summary

In this chapter we discussed some of the prominent solutions in the field
of transiently-powered embedded systems. Table 3.1 and Table 3.2 sum-
marize the goals achieved by "out-of-place" and "in-place" checkpointing
solutions.

Overall, "out-of-place" checkpointing solutions target mainstream IoT

75

i
i

“thesis” — 2018/1/14 — 18:38 — page 76 — #86 i
i

i
i

i
i

Chapter 3. Transiently-Powered Embedded Systems

Table 3.1: Goals achieved by each of the "Out-of-place" checkpointing solutions

Checkpoint
size reduc-
tion

No ex-
clusion
of data

Least
amount
of
wastage
energy

Ensure
data con-
sistency

Minimum user
intervention

MementOS
Yes No No No Energy traces

DINO
Yes No Yes Yes Task boundaries

Chain
Yes Yes No Yes Task boundaries

Hibernus
No Yes Yes Yes Threshold volt-

age for complete
RAM

Hibernus++
No Yes Yes Yes Yes

Table 3.2: Goals achieved by each of the "In-place" checkpointing solutions

Least amount of
wastage energy

Ensure data
consistency

Minimum user inter-
vention

Ratchet
No Yes Yes

Clank
Yes Yes Yes

Jayakumar et al.
Yes No Yes

QuickRecall
Yes Yes Threshold voltage for

saving MCU registers

architectures employing a volatile main memory for efficient processing,
and NVM as external storage. "In-place" checkpointing solutions relieve
the system from checkpointing main memory but it increases the energy
consumption during normal computations, due to the use of FRAM as
main memory. Although they are commercially available, they are not
widespread and still far from massive production. On the other hand, "non-
volatile processors" solutions relieve the system from checkpoints alto-
gether, yet require dedicated processor designs and do not exist commer-
cially. Both these solutions, "in-place" and "non-volatile processors", are
beneficial only under those scenarios where power interruptions happen
very frequently.

76

i
i

“thesis” — 2018/1/14 — 18:38 — page 77 — #87 i
i

i
i

i
i

Part II

System Support for Transiently
Powered Embedded Sensing

Systems

77

i
i

“thesis” — 2018/1/14 — 18:38 — page 78 — #88 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page 79 — #89 i
i

i
i

i
i

CHAPTER4
”How?” :Designing Checkpointing

Mechanism

The solutions for transiently powered embedded sensing system, as dis-
cussed in Section 3.2, is confronted with set of requirements (goals). One of
the requirement is to save the system state on non-volatile memory (NVM)
in an energy-efficient manner without leaving any data segment behind.

In this chapter, we present an efficient checkpointing mechanism to sup-
port embedded sensing applications on 32-bit microcontrollers whose en-
ergy provisioning is assisted through ambient harvesting or wireless energy
transfer. We investigate the fundamental building block necessary to this
end, and conceive three mechanisms to checkpoint and restore a device’s
state on non-volatile memory (NVM) quickly and in an energy-efficient
manner. The problem is unique in many regards; for example, because
of the distinctive performance vs. energy trade-offs of modern 32-bit mi-
crocontrollers and the peculiar characteristics of current flash chips. Our
results, obtained from real experiments using two different platforms, cru-
cially indicate that there is no “one-size-fits-all” solution. The performance
depends on factors such as the amount of data to handle, how in memory
the data is laid out, as well as an application’s read/write patterns. This

79

i
i

“thesis” — 2018/1/14 — 18:38 — page 80 — #90 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

chapter is published as "Efficient State Retention for Transiently-powered
Embedded Sensing" in [28].

4.1 Introduction

As we have discussed in chapters 2 and 3, progresses in micro electro-
mechanical systems are redefining the scope and extent of the energy con-
straints in networked embedded sensing. Technologies to harvest energy
from the ambient can integrate with embedded devices to refill their en-
ergy buffers. A variety of these technologies appeared that apply to, for
example, light and vibrations, while matching the physical constraints of
the devices [56, 75, 97]. Wireless energy transfer complements these tech-
niques by enabling opportunistic recharges. Several techniques recently
appeared that enable practical wireless energy transfer at scales suitable for
embedded sensing [26, 116, 122].

These technologies, however, can rarely ensure a predictable supply of
energy. Computing under such transient energy conditions becomes a chal-
lenge. Devices experience frequent shutdowns, to later reboot as soon as
energy is newly available. In the mean time, applications lose their state.
This translates into a lack of dependable behavior and a waste of resources,
including energy, as applications need to re-initialize, re-acquire state, and
perform re-synchronization with other nearby devices. As a result, even
if an application ultimately manages to make some progress, the overall
system performance inevitably suffers.

Meanwhile, embedded sensing systems are increasingly built around
modern 32-bit microcontrollers (MCUs), such as those of the ARM Cortex-
M series [3]. These provide increased computing power and larger amounts
of memory compared to earlier 16-bit MCUs, at a modest increase in en-
ergy consumption. These features enable employing more sophisticated
algorithms and programming techniques, facilitating more demanding em-
bedded sensing applications in several that require dependable behaviors,
including wireless control [1, 11] and Internet-connected sensing [2].

In this context, we aim at allowing an application’s processing to cross
the boundaries of periods of energy unavailability. We wish to do so with-
out resorting to hardware modifications that may greatly impact costs, espe-
cially at scale. Solutions to similar issues exist, for example, in the domain
of computational RFIDs [172,235], whose applications and hardware char-
acteristics are, however, sharply different from the platforms above. As
further elaborated in Section 6.2, the net result is that existing solutions are
hardly applicable.

80

i
i

“thesis” — 2018/1/14 — 18:38 — page 81 — #91 i
i

i
i

i
i

4.2. Background

In this chapter, we study the fundamental building block to reach the
goal, and investigate efficient system support to checkpoint an application’s
state on stable storage, where it can be later retrieved to re-start the appli-
cation from where it left. Two requirements are key for these functionality:

1. they must be energy-efficient not to affect the duration of the next com-
puting cycle; indeed, the energy spent in checkpointing and restoring
is subtracted to the energy budget for computing and communicating.

2. they need to execute quickly to minimally perturb the system; as the
time taken to complete the routines grows, applications may be in-
creasingly affected as they are often not designed to be preempted.

As described in Section 4.3, the checkpoint and restore routines we de-
sign are made available to programmers through a single pair of check-
point() and restore() functions. Key to their efficiency is the way
the state information is organized on stable storage. Embedded devices
are indeed typically equipped with flash chips as stable storage, which are
energy-hungry and offer peculiar modes to perform read and write oper-
ations. Section 4.4 describes three dedicated storage modes that exploit
different facets of how data is laid out on modern 32-bit MCUs and of the
energy consumption characteristics of current flash chips.

We study the trade-offs among the three schemes and two baselines
taken from the literature through real experiments using two different plat-
forms. Our results, reported in Section 6.5, provide evidence of several
trade-offs that depend, for example, on the amount of data to handle and
an application’s read/write patterns. Section 4.6 discusses these trade-offs
based on our results, and provides insights on what kind of application may
benefit most from what storage mode. Section 4.7 ends the chapter with
brief concluding remarks.

4.2 Background

Our work targets modern embedded platforms, whose characteristics depart
from traditional mote-class devices. Differently, existing software tech-
niques for state retention on transiently-powered devices mostly target com-
putational RFIDs, whose programming techniques and resource constraints
do not match those of the aforementioned platforms.

81

i
i

“thesis” — 2018/1/14 — 18:38 — page 82 — #92 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

4.2.1 Target Platforms

We consider 32-bit MCUs of the ARM Cortex-M series as representatives
of modern embedded sensing platforms. This specific breed of MCU is
gaining momentum [2], due to excellent performance vs. energy consump-
tion trade-offs.
ARM Cortex-M We use two STM32 Cortex-M prototyping boards, one
ST Nucleo L152RE board equipped with a Cortex-M3 MCU, and one ST
Nucleo F091RC board equipped with a Cortex-M0 MCU. The two boards
represent, in a sense, opposite extremes within the Cortex-M family. The
Cortex-M3 board offers higher processing power, 80 KBytes of RAM space,
and maximum energy consumption of 0.365 mA/MHz. Differently, the
Cortex-M0 board has more limited processing capabilities, 32 KBytes of
RAM space, and maximum energy consumption of 0.31 mA/MHz.

The Cortex-M design provides sixteen core registers. The first thirteen
registers (R0-R12) are 32-bit General-Purpose Registers (GPRs) for data
processing. The Stack Pointer register (SP, R13) tracks the address of the
last stack allocation in RAM. The Link Register (LR, R14) holds the ad-
dress of the return instruction when a function call completes, whereas the
Program Counter (PC, R15) holds the address of the currently executing
instruction.

The characteristics of Cortex-M MCUs as well as the availability of ded-
icated development environments [2,4] and efficient compilers [88] are im-
pacting existing embedded programming techniques. A paradigmatic ex-
ample is the use of heap memory. Traditionally discouraged because of
overhead and lack of predictable behavior, it is increasingly gaining adop-
tion [24, 89]. Besides providing better programming flexibility, heap mem-
ory allows developers to employ sophisticated programming languages and
techniques, such as object orientation with polymorphic data types and ex-
ception handling [113]. Moreover, it facilitates porting existing libraries,
such as STL containers, to embedded systems [89].
Flash memory Representative of existing platforms is also the kind of sta-
ble storage aboard both boards we use. The MCU is connected to a NAND-
type flash memory chip through a dedicated instruction bus, optimized for
smaller chip size and low energy cost per bit.

This kind of flash memories are divided into sectors, which are then
sub-divided into pages. The two units determine the read/write modes. The
flash chip on the Cortex M3 board requires to write half of the page size at
a time, whereas the flash chip on the Cortex M0 board permits writes of a
32-bit word in a single turn. This complicates saving arbitrary amounts of

82

i
i

“thesis” — 2018/1/14 — 18:38 — page 83 — #93 i
i

i
i

i
i

4.2. Background

RAM

Flash

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM
St

ac
k

H
ea

p
D

at
a+

 B
SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

Stack mode Full RAM mode SHBD mode
(Stack, Heap, BSS and Data)

Efficient Heap mode Copy-if-change mode

1st

Iteration
2nd

Iteration

3rd

Iteration

Copying

Copying

Copying

Modified
Entry

New
Entry

Flash Flash Flash Flash Flash Flash

(a) Full RAM [153].

RAM

Flash

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

Stack mode Full RAM mode SHBD mode
(Stack, Heap, BSS and Data)

Efficient Heap mode Copy-if-change mode

1st

Iteration
2nd

Iteration

3rd

Iteration

Copying

Copying

Copying

Modified
entry

New
entry

Flash Flash Flash Flash Flash Flash

(b) Stack-based [172].

Figure 4.1: Existing checkpointing techniques.

data on the flash. Moreover, the written data cannot be modified in-place as
in RAM; data needs to be erased before re-writing. The unit size of an erase
operation is, however, different than the unit size for writes, which further
complicates matters. For example, the Cortex M0 board requires the erase
of an entire 2 KByte sector at a time, possibly to modify a single bit in a
sector.

These aspects combine with the peculiar energy consumption of flash
chips: write and erase operations are slow and extremely energy-hungry,
whereas read operations takes significantly shorter time and consumes less
energy. To put things in perspective, the flash chip of the Cortex-M3 board
draws 11.1 uA/MHz, that is, orders of magnitude more than any other pe-
ripheral on the board.

4.2.2 Prior Art

Checkpointing and restoring the system’s state is not a new concept. In
database systems, for example, these mechanisms are used for ensuring the
consistency of concurrent transactions on replicated databases [25]. In dis-
tributed debugging, checkpointing aids identifying root causes by providing
the input to re-play concurrently executing processes [105]. Checkpoints
are also used for ensuring fault-tolerance in redundant real-time embedded
systems, such as those interconnected via wired buses [13].

83

i
i

“thesis” — 2018/1/14 — 18:38 — page 84 — #94 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Checkpoint and restore techniques are often reported for testing and ex-
perimentation using mote-class devices. For example, Osterlind et al. [153]
present a checkpointing scheme similar to the one in Figure 4.1a, where
the entire RAM space is transferred to stable storage. The objective is
to facilitate transferring network state between testbeds and simulations,
thus achieving increased repeatability. Their technique targets TMote Sky
nodes. However, dumping the entire RAM space onto stable storage is
likely inefficient, as the procedure also includes empty areas of memory
that do not need to be saved. Moreover, the work of Osterlind et al. [153]
does not necessarily support resuming the execution from the point in the
code where the last checkpoint is taken, which is however required in our
setting.

Chen et al. [41] augment the TinyOS operating system with mechanisms
to checkpoint and restore selected components upon recognizing state in-
consistencies. The mechanisms to trigger the checkpoints are generally
application-specific, and meant to describe the conditions that indicate data
faults. In our setting, the motivation for checkpoint and restore is different;
it originates from a lack of the energy necessary to continue the computa-
tion, rather than data faults. As a result, we do not aim at checkpointing
selected components, but the entire application state so that a device can
survive periods when it completely shuts down.

Existing works closest to ours target computational RFIDs equipped
with 16-bit MCUs and small amounts of memory, such as the WISP mote [35].
For these platforms, MementOS [171] allows programmers to inserts “trig-
ger points” to save programmer-selected parts of the BSS or DATA sec-
tions and the stack onto stable storage, as shown in Figure 4.1b. As it only
handles contiguous areas of memory, the processing is quite simple. It is,
however, inapplicable to our case. For example, we are to include also heap
memory as part of checkpoint and restore. This creates issues such as how
to cope with fragmentation in the heap, which are specific to the setting we
consider in this work.

To ameliorate the energy overhead of flash memory, Quickrecall [93]
resorts to hardware modifications by replacing traditional SRAM with non-
volatile ferroelectric RAM chips. However, ferroelectric RAM is currently
significantly less dense and more expensive compared to normal SRAM,
which makes it less desirable for high-performance embedded devices, such
as those built with Cortex-M MCUs. Furthermore, memory-mapped FRAM
will create data inconsistencies among non-volatile data variables. Lucia et
al. [130] ensure volatile and non-volatile data consistency by asking the
programmer to manually place the calls to the checkpoint routines within

84

i
i

“thesis” — 2018/1/14 — 18:38 — page 85 — #95 i
i

i
i

i
i

4.3. Fundamental Operation

RAM
Flash

D
at

a

Copying

LR
SP

M

M
Link register
Stack pointer

Magic section

C
o

m
p

le
te

 c
h

ec
kp

o
in

t

Magic section

Figure 4.2: Fundamental operation during checkpoint.

the code. In this work, we intend to use non-volatile memory as a support,
not a replacement of RAM. We only use non-volatile memory for storing
and retrieving checkpoints, rather than supporting general computations.

4.3 Fundamental Operation

We describe the choice of the minimum state information required for cor-
rectly enabling a subsequent restore, as well as the fundamental operation
of the checkpoint and restore routines. The former are independent of how
the state information is mapped to stable storage. We deal with this aspect
in Section 4.4, by presenting three different storage modes.

Our target platforms employ a plain memory map. The program data is
divided into five segments: DATA, BSS, heap, stack, and TEXT. The DATA
segment includes initialized global and static variables, and is typically lo-
cated at the starting address of the RAM. The BSS segment is located ad-
jacent to the DATA segment and includes uninitialized global variables. At
the end of the BSS segment starts the heap segment, dedicated to dynamic
data. The stack segments starts from the bottom address of the main mem-
ory and grows towards the heap. The TEXT segment resides in a flash-type
memory and holds the program instructions.

In principle, the minimum state information for later restoring the de-
vice’s state includes: i) the values of all GPRs, ii) the content of the RAM,
including stack, heap, and the BSS and DATA segments, and iii) the val-
ues of stack pointer (SP), program counter (PC), and link register (LR). To
checkpoint the device’s state, we initially push the values of all GPRs onto

85

i
i

“thesis” — 2018/1/14 — 18:38 — page 86 — #96 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

the stack through an assembly function—this is the only device-specific
step in the whole procedure. Next, we proceed backward from the last
address of the stable storage, as in Figure 4.2. In doing so, we:

1. save a “magic section” [172] on the last address of the stable storage,
which includes a randomly generated number and the size of the RAM
data we need to store—this information is used to ensure a checkpoint
is complete when restoring, as explained next;

2. save the current values of stack pointer and link register: as described
later, these two are sufficient to resume the computation using the
checkpoint information;

3. copy to stable storage the RAM data, including stack, heap, the BSS
and DATA segments, as well as the values of the GPRs we copied to
RAM earlier;

4. save the same “magic section” again and pop the GPR values from the
stack back into their respective registers, so the program can resume
its normal execution.

These operations are made available through a single C function check-
point() that takes the value of the stack pointer (SP) as an argument1.
The reason why the function requires this value is because the call to the
function itself affects the stack pointer. However, a checkpoint must re-
sume the computation right after the call to checkpoint(), that is, in a
situation where the stack pointer holds the same value as before the call.
Because of this, it is also not necessary to save the value of the program
counter (PC). The link register (LR), which holds the return address of the
call to checkpoint(), carries precisely the point in the program where
we wish to resume the computation after restoring.

To restore the device’s state, we provide a symmetric C function re-
store(), which is to be called immediately after the device starts running
the main() function. The key functionality is to ensure that only complete
checkpoints are restored. It may indeed happen that checkpoint() is
called when the energy left on the device is insufficient to complete the
operation, and the device turns off before the function finishes. In these
circumstances, the data on the stable storage cannot be used to resume the
computation: a partial restore may ultimately bring the device to an incon-
sistent state that prevents any other progress.

1For programming convenience, this information is provided through a C macro.

86

i
i

“thesis” — 2018/1/14 — 18:38 — page 87 — #97 i
i

i
i

i
i

4.4. Storage Modes

To address this issue, the restore() function proceeds in the opposite
way compared to checkpoint(). It first reads the magic section. Based
on this, it calculates the size of the whole checkpoint and retrieves the other
copy of the magic section at the end of the checkpoint. If the two copies of
the random number in the magic section are equal, it means the checkpoint
data is complete, that is, the checkpoint() function correctly reached
the end of its processing. Only in this case, restore() proceeds by
reading the data from the checkpoint to re-populate the RAM space and
to update the stack pointer (SP) as well as link register (LR). Setting the
latter to the instruction immediately following the call to checkpoint()
makes the program resume as if the computation was never interrupted.

4.4 Storage Modes

The crucial aspect determining the performance of the checkpoint and re-
store routines is the organization of the state information on stable storage.
We design three storage modes, described later and illustrated in Figure 4.3.
In Section 6.5 we report on extensive experimental results revealing several
performance trade-offs.

4.4.1 Split

To include the heap segment in the checkpoint, the most natural optimiza-
tion over copying the whole RAM space [153] is to split the operation be-
tween the stack, heap, and the BSS and DATA segments. This allows one
not to write to stable storage the unused memory space between the end
of the heap and the top of the stack, avoiding unnecessary energy-hungry
write operations.

Based on this reasoning, as shown in Figure 4.3a, the SPLIT mode pro-
cesses the stack information and the rest of the memory segments sepa-
rately. First, it copies the whole stack segment to stable storage. This
is possible because, as explained in Section 4.3, the checkpoint routine
receives the current value of the stack pointer as input. Next, we copy
the DATA, BSS, and heap segments as a whole to stable storage. To this
end, the checkpoint routine needs to know the highest allocated address in
the heap segment. We gain this information by wrapping malloc() and
free() with the functionality to keep track of this address as memory is
allocated and deallocated during the application’s lifetime. The checkpoint
routine then simply copies everything below this address up to the RAM
start address.

87

i
i

“thesis” — 2018/1/14 — 18:38 — page 88 — #98 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

RAM

Flash

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

Stack mode Full RAM mode SHBD mode
(Stack, Heap, BSS and Data)

Efficient Heap mode Copy-if-change mode

1st

Iteration
2nd

Iteration

3rd

Iteration

Copying

Copying

Copying

Modified
Entry

New
Entry

Flash Flash Flash Flash Flash Flash

(a) SPLIT.

RAM

Flash

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

Stack mode Full RAM mode SHBD mode
(Stack, Heap, BSS and Data)

Efficient Heap mode Copy-if-change mode

1st

Iteration
2nd

Iteration

3rd

Iteration

Copying

Copying

Copying

Modified
Entry

New
Entry

Flash Flash Flash Flash Flash Flash

(b) HEAP TRACKER.

RAM

Flash

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

RAM

St
ac

k
H

ea
p

D
at

a+
 B

SS

Stack mode Full RAM mode SHBD mode
(Stack, Heap, BSS and Data)

Efficient Heap mode Copy-if-change mode

1st

Iteration
2nd

Iteration

3rd

Iteration

Copying

Copying

Copying

Modified
entry

New
entry

Flash Flash Flash Flash Flash Flash

(c) COPY-IF-CHANGE.

Figure 4.3: Storage modes.

88

i
i

“thesis” — 2018/1/14 — 18:38 — page 89 — #99 i
i

i
i

i
i

4.4. Storage Modes

Block of size 𝑆ℎ

c = 3
a = 0

c = 0
a = 0

c = 1
a = 0xFC

Address = 0xFC

c = 0
a = 0

c = 0
a = 0

c = 1
a = 0

c = 1
a = 0

c = 1
a = 0xFC

Figure 4.4: Example configuration in HEAP TRACKER when allocated memory crosses
multiple blocks.

Trade-offs The processing required by SPLIT is extremely simple. More-
over, the additional state information to be kept is minimal: it solely amounts
to keeping track of the highest memory address allocated in the heap. On
the other hand, the custom malloc() and free() system functions in-
troduce some slight processing overhead. In addition, space is still wasted
on stable storage if the heap segment is fragmented. Again, unnecessary
writes may be detrimental to the system’s lifetime and, particularly, to the
ability of the checkpoint routine to correctly complete.

4.4.2 Heap Tracker

To overcome the potential energy waste due to writes of fragmented areas of
the heap, we must achieve higher granularity in keeping track of allocated
and deallocated memory. This is, however, challenging in the general case.
It is indeed quite complex to predict allocation and deallocation operations
in the heap, or to forecast the size of the allocated or deallocated chunks of
memory.

To address these issues, we conceive a simple, yet effective scheme
called HEAP TRACKER, intuitively illustrated in Figure 4.3b. We split the
heap segment in blocks of size Sh, and create a supporting data structure
m with M/Sh entries, M being the maximum size of the heap. Each en-
try m[i] carries two pieces of information: a 1 byte integer counter c and a
memory address a.

The counter c records the number of memory chunks allocated in the
i-th heap block. The checkpoint routine checks this information before
copying the block to stable storage, and performs the operation only if c is
greater than zero. A counter is necessary, rather than simply a flag, because

89

i
i

“thesis” — 2018/1/14 — 18:38 — page 90 — #100 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

in the general case Sh may be larger than the size of the allocated chunks
of memory, so a single block may accommodate multiple allocations. The
counter for every block is incremented or decremented upon allocating or
deallocating memory within the block’s boundaries, again through proper
wrappers to malloc() and free().

The address a serves the cases where allocations and deallocations cross
multiple blocks. For example, the right part of Figure 4.4 shows a case
where a chunk of memory is allocated across three blocks. In this situa-
tion, the counters of all affected blocks are to be incremented upon allocat-
ing memory, and vice-versa when deallocating. The operation is simple in
the former case, but special care needs to be taken when deallocating. In-
deed, unless one modifies the internal implementation of malloc() and
free(), which we would rather avoid for better portability, it is difficult
to know the size of the deallocated memory when free()-ing. To address
this, the memory address a is set to a value corresponding to the one re-
turned by the original malloc() when allocating the crossing chunk. In a
sense, it indicates where the crossing chunk starts out of the current block.
This way, the wrapper for free() can recognize the situation based on
the function’s input argument, and proceeds decrementing the counter for
all blocks where a matches.

Note that, as the data structure m is in the DATA segment, it implicitly
becomes part of the checkpoint. The restore routine uses this information
to reconstruct the heap, including the fragmented areas, before resuming
the computation.
Trade-offs The choice of the value for Sh greatly impacts the performance
of HEAP TRACKER. Larger values for Sh decrease the size of the support-
ing data structure, thus alleviating the memory overhead due to additional
state information. However, the achieved granularity may still cause some
un-allocated space to be written to stable storage if memory is allocated in
chunks smaller than Sh. Conversely, smaller values for Sh ameliorate this
issue, but increase the size of the additional state information required by
HEAP TRACKER. This makes the checkpoints larger, and thus increases
the energy required when writing to stable storage.

Orthogonal to this trade-off is the fact that if the block size Sh does
not align with the smallest writeable unit on stable storage, the same heap
block may require multiple writes on stable storage unit, as discussed in
Section 4.2.1, causing unnecessary energy overhead. Among these con-
flicting requirements, we choose to optimize the energy spent in writing the
memory blocks to stable storage, and set Sh equal to the size of the smallest
writeable unit of stable storage. Based on the maximum heap size allowed

90

i
i

“thesis” — 2018/1/14 — 18:38 — page 91 — #101 i
i

i
i

i
i

4.5. Evaluation

by the compiler we use, this creates an overhead of 3200 (1280) Bytes for
the Cortex M3 (M0) board, which is at most 4% of the available RAM.

4.4.3 Copy-If-Change

A different take at the problem is to try and understand whether a write to
stable storage is needed at all. It may indeed be the case that the previous
checkpoint already includes the same information, thus re-writing to stable
storage is unnecessary. This reasoning finds justification in some of the
characteristics of modern flash chips, as discussed in Section 4.2.1, where
read operations are often more quick and energy-efficient than writes. Thus,
trading the energy necessary to read from the previous checkpoint to possi-
bly avoid a write may be beneficial overall.

To leverage this aspect, COPY-IF-CHANGE splits the entire RAM space
in blocks of size Sc again equal to the size of the smallest writable unit on
stable storage. As illustrated in Figure 4.3c, for each such block, COPY-
IF-CHANGE first reads the corresponding memory block from the previous
checkpoint if available, and compares that with the current content of the
RAM. If the two differ, the block is updated on stable storage; otherwise,
we proceed to the next block. In the first iteration, COPY-IF-CHANGE
considers the previous checkpoint as empty, thus all blocks are updated.
Trade-offs COPY-IF-CHANGE evidently incurs high overhead for the first
checkpoint, as all the blocks appear as modified and need to be copied to
stable storage. Conversely, the fewer modifications to the RAM, the more
efficient the mode becomes, as more energy-hungry write operations are
avoided. As experimentally verified in Section 6.5 and unlike the previous
two modes, the energy performance of COPY-IF-CHANGE is also simple to
predict, as it shows a basic relation with the number of modified memory
blocks.

4.5 Evaluation

We discuss the experimental results we obtain by comparing the perfor-
mance of the storage modes in Section 4.4 against each other, as well as
with i) a mode equivalent to that of Österlind et al. [153] called FULL,
whereby the entire RAM space is copied to stable storage regardless of
how memory is occupied, and ii) a mode akin to MementOS [172] called
STACK, whereby only the BSS, DATA, and stack segments are copied to
stable storage.

The results we present next indicate that no single solution outperforms
all others in all settings. Thus, the choice of what storage mode to employ

91

i
i

“thesis” — 2018/1/14 — 18:38 — page 92 — #102 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Figure 4.5: The 1Ω resistor in series with the IDD connector aboard the ST Nucleo boards
and the measurement setup used in the evaluation.

depends on the application’s characteristics. We provide an overarching
discussion of these aspects, including examples of target applications for
each storage mode, in Section 4.6.

Metrics and setup

We consider two metrics based on the requirements we elicit in the Intro-
duction: i) the energy consumption for the checkpoint and restore routines,
and ii) the time to perform the routines since the time of the call to the
corresponding C function. Note that the impact of restore operations on
the overall system performance is generally much smaller than checkpoint
ones. This is essentially because: i) as already mentioned, reading from
flash memories is both faster and consumes less energy than writes, ii) re-
store operations generally happen with the node charged, as opposed to
checkpoints.

The metrics are a function of both the energy spent to operate on the
flash chip and by the MCU for processing. To compute them, we place a
1Ω resistor in series with a dedicated connector provided by the ST Nucleo
boards, shown in Figure 4.5. A Tektronix TBS 1072B oscilloscope tracks
the current flowing through the resistor. This allows us to accurately record
both the energy absorbed and the time taken during checkpoint or restore.

92

i
i

“thesis” — 2018/1/14 — 18:38 — page 93 — #103 i
i

i
i

i
i

4.5. Evaluation

Fragmentation
level

Span

free free free

freefree

free

Occupation

0.3

0.5

0.8 4

4

4

Figure 4.6: Memory configurations representing the same span and occupation, but dif-
ferent fragmentation.

We set Sh = 128 Bytes for HEAP TRACKER, which corresponds to the
smallest writeable unit on the flash chip of the Cortex M3 board. All val-
ues we present next are averages and error bars obtained over at least ten
repetitions.

Memory configuration

Conceiving a thorough set of inputs for measuring the performance of the
checkpoint and restore routines is only deceptively simple. Their function-
ing is indeed determined by the content of the memory when running the
checkpoint, which is arbitrary. Quantitatively characterizing the relevant
aspects for the DATA and BSS segments might not be difficult, as the data
therein is necessarily contiguous and their size is known at compile time.
This is not so for the stack, and especially for the heap.

We thus consider the model represented in Figure 4.6 to synthetically
characterize the inputs to our experiments, and accordingly define three
metrics that apply to either the stack or the heap segment:

1. the span indicates the memory interval from the first allocated chunk
to the last one, that is, what portion of RAM space is covered by either
segment.

2. the occupation measures the net amount of data found in memory
within a given span. This corresponds to the span only for the stack,
as the memory allocation is contiguous; the same does not hold for
the heap as chunks of unallocated memory may be present.

3. for the heap, the fragmentation measures how allocated and unallo-
cated memory chunks are distributed within the span; we quantita-

93

i
i

“thesis” — 2018/1/14 — 18:38 — page 94 — #104 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

tively characterize this as

fragmentation(x) = 1− x× (#free chunks of size x)

(total free bytes)
(4.1)

where x is the size of the largest allocated memory chunk at the time
of taking the measure.

Equation (4.1) evaluates to 0.0 in configurations where it is possible to
allocate the maximum possible number of objects of size x, that is, the
memory is not fragmented. Differently, it evaluates to 1.0 when it is im-
possible to allocate any chunk of size x, that is, memory is extremely frag-
mented.

Note that, for the heap, these metrics are orthogonal. For example, the
same span may correspond to different occupations. Given a value of span
and occupation, different configurations may yield different levels of frag-
mentation depending on the distribution of the allocated memory chunks,
as illustrated in Figure 4.6.

4.5.1 Contiguous Data

We investigate the performance of the different storage modes when RAM
data is allocated in a contiguous manner. This is the case of applications
whose memory demands are mostly known beforehand; in these cases, pro-
grammers tend to pre-allocate the necessary data structures. Differently, the
case of non-contiguous data and general fragmentation are investigated in
the following.
Setting We vary together the span and occupation of different RAM seg-
ments to understand how these affect the performance. We test values
within the limits allowed by either physical memory or the compiler we
use, and operate differently depending on the storage mode.

For the STACK mode, we artificially increase the span of the stack by
growing the size of local variables in a dummy function. As STACK does
not consider the heap, its manipulation is indeed immaterial. For both
SPLIT and HEAP TRACKER, we artificially increase the span and occu-
pation of the heap by growing dynamically-allocated dummy structures,
and keep the stack segment to the minimum. This is to investigate the per-
formance as the varies; if it is empty, both SPLIT and HEAP TRACKER
behave equivalent to STACK. For COPY-IF-CHANGE, we initially consider
the first iteration, whereby all blocks are found to be different from the pre-
vious (empty) checkpoint, and later study the case of a varying number of

94

i
i

“thesis” — 2018/1/14 — 18:38 — page 95 — #105 i
i

i
i

i
i

4.5. Evaluation

Memory span (bytes) #104
0 2 4 6 8 10

E
ne

rg
y

(m
J)

0

20

40

60

80

100

Stack
Split
Heap Tracker

(a) Average energy consumption.

Memory span (bytes) #104
0 2 4 6 8 10

T
im

e
(s

ec
)

0

0.5

1

1.5

2

2.5

3

3.5

Stack
Split
Heap Tracker

(b) Average time taken.

Figure 4.7: Cortex M3: performance of the checkpoint routine with increasing span of
contiguous RAM data. Heap fragmentation is 0. STACK and SPLIT show similar
performance in this setting, whereas HEAP TRACKER suffers from the overhead of
additional support data without being able to take advantage of it.

blocks requiring an update. The FULL mode covers the entire RAM space
anyways.

Results Figure 4.7 summarizes the results obtained with the Cortex M3
board in energy and time, using STACK, SPLIT, and HEAP TRACKER.
Overall, the values are quite limited. A checkpoint that covers the entire

95

i
i

“thesis” — 2018/1/14 — 18:38 — page 96 — #106 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Number of blocks changed (256 bytes)
0 20 40 60 80 100

E
ne

rg
y

(m
J)

0

10

20

30

40

50

Writing blocks
Reading and comparing all blocks

Figure 4.8: Cortex M3: energy consumption in COPY-IF-CHANGE against the number
of blocks that need to be updated on flash. The performance is a function of a fixed
overhead for reading and comparing all blocks, plus the variable cost of re-writing
those that are found modified.

RAM space is completed in slightly more than 3 secs, arguably resulting
in a moderate disruption of the application processing. In all modes, writes
to the flash chip dominate both energy and time; thus the two figures are
highly correlated, as seen by comparing Figure 4.7a and 4.7b.

All modes in Figure 4.7 show a linear increase in both metrics as the
memory span grows. STACK and SPLIT follow each other closely, as their
working principles are the same, that is, they copy memory segments as
a whole. Differently, the performance of HEAP TRACKER is slightly, but
constantly worse than STACK and SPLIT. This quantifies the trade-offs dis-
cussed in Section 4.4.2, as it represents the price for: i) storing the support
data structure that indicates what memory blocks are occupied in addition
to the application data, and ii) performing additional processing on such
data structure during checkpoint. In absolute terms, the overhead is limited
in a worst-case situation for HEAP TRACKER: the contiguous memory allo-
cation prevents it from leveraging the ability to avoid copying some blocks
if they do not cover chunks of allocated memory.

The energy performance of COPY-IF-CHANGE for the initial iteration
and of FULL—not shown in the charts as they are independent of the mem-
ory span—is 94.5±1.34mJ and 85.2±4.0mJ , respectively. We are indeed
considering a worst case also for COPY-IF-CHANGE, as all memory blocks

96

i
i

“thesis” — 2018/1/14 — 18:38 — page 97 — #107 i
i

i
i

i
i

4.5. Evaluation

Memory span (bytes) #104
0 2 4 6 8 10

E
ne

rg
y

(m
J)

0

1

2

3

4

5

6

7

8

9

Stack
Split
Heap Tracker

(a) Average energy consumption.

Memory span (bytes) #104
0 2 4 6 8 10

T
im

e
(s

ec
)

0

0.005

0.01

0.015
Stack
Split
Heap Tracker

(b) Average time taken.

Figure 4.9: Cortex M3: performance of the restore routine with increasing span of con-
tiguous RAM data. The heap fragmentation is 0. Because of the small absolute values,
the overhead of restoring the support data and reconstructing the heap becomes more
visible for HEAP TRACKER as compared to STACK and SPLIT.

are detected to be different from the previous (empty) checkpoint. In this
case, COPY-IF-CHANGE also copies the entire RAM space. Unlike FULL,
however, COPY-IF-CHANGE also needs to read all blocks from the previ-
ous checkpoint before deciding whether to update.

The performance of COPY-IF-CHANGE in the general case is rather il-

97

i
i

“thesis” — 2018/1/14 — 18:38 — page 98 — #108 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

lustrated in Figure 4.8, where we artificially create a situation with a vary-
ing number of modified blocks in RAM, which thus require an update on
flash when checkpointing. The performance corresponding to every value
on the X-axis is a combination of fixed overhead caused by reading and
comparing all the blocks, plus erasing and re-writing those that are found
modified.

Figure 4.9 plots the performance of the restore routine in energy and
time for the Cortex M3 board. Because of the small values at hand, the
overhead of HEAP TRACKER due to additional data structures and further
processing becomes more visible. During the restore routine, the latter pro-
cessing might be non-trivial, as we need to carefully reconstruct the layout
of the heap using the information in the support data structure. For the same
reason, the measures come close to the granularity of our equipment, hence
higher variability is observed. COPY-IF-CHANGE restore performance, not
shown in Figure 4.9, is constant and worse than any other mode. This is
because COPY-IF-CHANGE does not leverage any information about what
blocks need to be restored, thus it always re-writes the whole RAM.

We draw similar conclusions also for the Cortex M0 board. The exper-
iments leading to Figure 4.7 and 4.9, however, do not exercise the ability
of HEAP TRACKER to avoid writing some memory blocks in case of heap
fragmentation. We investigate this setting next.

4.5.2 Non-contiguous Data

To investigate the other extreme compared to the case above, we concen-
trate on how SPLIT and HEAP TRACKER handle the case of non-contiguous
data in the heap.
Setting We employ a configuration with a fixed memory occupation and a
varying span. This models the case where data is continuously allocated
and deallocated in ways that prevent the program to use previous areas of
the memory. To this end, we artificially create a situation with two 128-byte
chunks of dynamically allocated memory separated by a variable number of
unallocated chunks of the same size. All other memory segments, includ-
ing the stack, are kept to the minimum. We only consider SPLIT and HEAP
TRACKER because this setting bears no influence on FULL and STACK.
COPY-IF-CHANGE, on the other hand, would show almost constant perfor-
mance, as it would update at most two blocks.
Results Figure 4.10 shows the energy and time performance for the Cor-
tex M3 board as the span increases with a growing number of unallocated
chunks.

98

i
i

“thesis” — 2018/1/14 — 18:38 — page 99 — #109 i
i

i
i

i
i

4.5. Evaluation

Empty chunks (128 bytes)
-10 0 10 20 30 40 50 60 70 80

E
ne

rg
y

(m
J)

0

2

4

6

8

10

12

14

Split
Heap Tracker

(a) Average energy consumption during checkpoint.

Empty chunks (128 bytes)
-10 0 10 20 30 40 50 60 70 80

E
ne

rg
y

(m
J)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Split
Heap Tracker

(b) Average energy consumption during restore.

Empty chunks (128 bytes)
-10 0 10 20 30 40 50 60 70 80

T
im

e
(m

s)

0

0.05

0.1

0.15

0.2

0.25

Split
Heap Tracker

(c) Average time taken during restore.

Figure 4.10: Cortex M3: performance in the case of non-contiguous data in the heap.
HEAP TRACKER starts paying off in energy and time as soon as the number of memory
blocks it can avoid writing to flash equals the size of the support data structure used to
track the heap. 99

i
i

“thesis” — 2018/1/14 — 18:38 — page 100 — #110 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Empty chunks (128 bytes)
-5 0 5 10 15 20 25 30 35

E
ne

rg
y

(m
J)

0

1

2

3

4

5

6

7

Split
Heap Tracker

(a) Average energy consumption during checkpoint.

Empty chunks (128 bytes)
-5 0 5 10 15 20 25 30 35

E
ne

rg
y

(m
J)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Split
Heap Tracker

(b) Average energy consumption during restore.

Empty chunks (128 Bytes)
-5 0 5 10 15 20 25 30 35

T
im

e
(m

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

Split
Heap Tracker

(c) Average time taken during restore.

Figure 4.11: Cortex M0: performance in the case of non-contiguous data in the heap.
Even though processing using a Cortex M0 is cheaper energy-wise, but also slower
compared to a Cortex M3, the performance is mainly determined by the flash chip.

100

i
i

“thesis” — 2018/1/14 — 18:38 — page 101 — #111 i
i

i
i

i
i

4.5. Evaluation

As for energy consumption during checkpoint, shown in Figure 4.10a,
the performance of HEAP TRACKER is about constant: by tracking what
blocks cover chunks of allocated memory, the net amount of bytes written
to stable storage remains the same regardless of the unallocated chunks.
SPLIT, however, is unable to recognize the situation. It copies an increas-
ingly higher amount of data to the flash chip as the span increases, because
the highest memory address allocated on the heap continues to grow.

Nevertheless, the constant performance of HEAP TRACKER is worse
than SPLIT as long as the size of the unallocated memory chunks collec-
tively equals the size of the support data structure used by HEAP TRACKER
to map out the heap. This occurs around 35 unallocated chunks; as soon as
this grows larger, HEAP TRACKER shows overall better performance than
SPLIT. In other words, HEAP TRACKER starts to pay off whenever the
number of blocks it can avoid writing to flash counter-balances the over-
head due to the support data structure. Similar considerations also apply to
time, whose plot we omit for brevity.

Even though the trends remain similar, the break-even point occurs ear-
lier for the restore routine: around 20 unallocated chunks, as shown in Fig-
ure 4.10b. This is an effect of the cheaper cost, in terms of energy consump-
tion, of read operations from flash compared to writes. In this respect, the
Cortex M3 imposes a further cost: as shown in Figure 4.10c, the break-even
point for time no longer corresponds to the one for energy during restore.
The added overhead is imputable to the processing required to reconstruct
the heap based on information in the support data structure, which in the
case of the Cortex M3 becomes appreciable.

Different, and sometimes opposite consideration apply to the results ob-
tained from the Cortex M0 board, because of the different combination of
MCU and flash chip, as visible in Figure 4.11. The flash chip on the Cor-
tex M0 board requires erasing an entire 2 KByte segment before a new
write can occur on the same segment. Figure 4.11a indeed indicates two
steep increases in energy consumption between 14-15 and 30-31 chunks,
corresponding to when a whole flash segment needs to be erased before
performing a write.

Moreover, the flash chip largely determines the restore performance.
Processing on a Cortex M0 is cheaper energy-wise than on a Cortex M3,
but also slower. Despite this, comparing Figure 4.11b with Figure 4.11c
indicates that the break-even point between SPLIT and HEAP TRACKER
occurs earlier when considering time as opposed to energy, unlike what we
observe in Figure 4.10b and 4.10c for the Cortex M3. Thus, reconstructing
the heap using a Cortex M0 does not impose a significant time overhead

101

i
i

“thesis” — 2018/1/14 — 18:38 — page 102 — #112 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Iteration #

2

3

4

5

6

7

8

9

10

11

12

13

Routing table entry (8 bytes)
Log data entry (8 bytes)

Neighbor table entry (16 bytes)

Tree structure (32 bytes)

14

15

16

17

18

Empty space (32 bytes)

1 0

0.2

0.33

0.428

0.5

0.6

0.636

0.69

0.71

0.73

0.75

0.76

0.77

0.55

0.666

0.78

0.6

0.5

Fragmentation level

Figure 4.12: Evolution of the memory configurations as both span and fragmentation
continue to change.

due to processing, even though the MCU is slower than a Cortex M3. The
overall performance is determined by the flash chip.

The results above all consider cases of 0% fragmentation. We study next
the case of varying degrees of fragmentation.

4.5.3 Fragmented Data

We aim at realistically creating different levels of fragmentation in the heap
to study how SPLIT, HEAP TRACKER, and COPY-IF-CHANGE handle the
situation.
Setting We borrow the definition of data structures from the CTP [5] pro-
tocol, from the custom design logging, and from a link estimator table [6]
to emulate a scenario where differently-sized data items are continuously
allocated and deallocated in the heap. Figure 4.12 exemplifies the first few
iterations in these experiments. Memory occupation remains constant, as
the sum of allocated memory chunks is always the same. Both the mem-
ory span and fragmentation change at every iteration. The former grows
monotonically, whereas the latter yields seemingly casual values.

Such a setting replicates—on a smaller scale—the evolution of heap
memory when using general purpose libraries of commonly used data struc-
tures. The only difference compared to reality is that we force the span to
continue grow to sweep this parameter as well, whereas normally the heap
manager would eventually start re-using previously deallocated memory
chunks. All other memory segments, including the stack, are kept to the
minimum possible.
Results Figure 4.13 plots the results of energy consumption for the check-
point routine, against a varying memory span. Similar overall trends are

102

i
i

“thesis” — 2018/1/14 — 18:38 — page 103 — #113 i
i

i
i

i
i

4.5. Evaluation

Memory span (bytes)
0 2000 4000 6000 8000

E
ne

rg
y

(m
J)

11.55

11.6

11.65

11.7

11.75

11.8

11.85

11.9

11.95

(a) Cortex M3: COPY-IF-CHANGE.

Memory span (bytes)
0 1000 2000 3000 4000 5000 6000 7000 8000

E
ne

rg
y

(m
J)

1

2

3

4

5

6

7

8

9

10

Split
Heap Tracker

(b) Cortex M3: SPLIT and HEAP TRACKER.

Memory span (bytes)
0 1000 2000 3000 4000 5000 6000 7000 8000

E
ne

rg
y

(m
J)

0

2

4

6

8

10

12

Split
Heap Tracker

(c) Cortex M0: SPLIT and HEAP TRACKER.

Figure 4.13: Energy consumption performance with varying span in case of fragmented
memory, as shown in Figure 4.12. For COPY-IF-CHANGE, the performance oscillates
depending on how the changes in RAM align with the blocks on the flash chip. SPLIT
and HEAP TRACKER provide different trade-offs depending on the memory span.

103

i
i

“thesis” — 2018/1/14 — 18:38 — page 104 — #114 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

Fragmentation level
0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

(m
J)

1

2

3

4

5

6

7

8

9

10

(a) SPLIT.

Fragmentation level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ne

rg
y

(m
J)

1

2

3

4

5

6

7

8

9

10

(b) HEAP TRACKER.

Figure 4.14: Cortex M3: energy performance against different fragmentation levels.
HEAP TRACKER outperforms SPLIT for low levels of fragmentation, whereas the op-
posite holds for high levels of fragmentation.

104

i
i

“thesis” — 2018/1/14 — 18:38 — page 105 — #115 i
i

i
i

i
i

4.5. Evaluation

observed also for time.
The results for COPY-IF-CHANGE on the Cortex M3 board are shown

separately in Figure 4.13a for better clarity. The performance is highly os-
cillating as it depends on how the changes in RAM align with the blocks on
the flash chip. Initially, the trend is increasing because the allocated chunks
are still close to each other in the first few iterations, and so they “move”
within the same block that constantly needs to be dumped on flash. As the
allocated blocks spread out, situations where an entire block is not impacted
by changes increasingly occur, eventually determining oscillations within a
specific interval. Similar trends are also seen for the Cortex M0 board, yet
the 2 KByte granularity of page erases changes the scale of the oscillations.

Figure 4.13b plots the energy consumption for SPLIT and HEAP TRACKER
on the Cortex M3 board. The absolute numbers indicate that both out-
perform COPY-IF-CHANGE within the 8 KByte maximum span we test,
which we maintain to be a reasonable limit considering the intended use of
the heap on this class of MCUs [24, 89]. Comparing SPLIT with HEAP
TRACKER, as discussed in Section 4.5.1, the latter provides benefits as
soon as the number of blocks it can skip writing on flash counterbalances
the added overhead due to storing information to track the heap. Due to
fragmentation in these experiments, HEAP TRACKER skips some blocks
as soon as the size of unallocated memory chunks grows larger than Sh.
Because of this, the break-even point with SPLIT occurs around a span of
5 KBytes. Different than Section 4.5.1, however, the performance of HEAP
TRACKER is not always constant: the initial increase in energy consump-
tion is due to the same reason as in Figure 4.13a.

The results for the Cortex M0 board, shown in Figure 4.13c, show sim-
ilar trends as the corresponding results for the Cortex M3 board in Fig-
ure 4.13b. Again, the different combination of MCU and flash chip makes
the break-even point between SPLIT and HEAP TRACKER occur earlier,
whereas the steep increase in memory consumption around 4 KBytes of
memory span is again due to the page erase mode on the specific flash chip.

Figure 4.14 shows the results of these same experiments from the per-
spective of the fragmentation level rather than the memory span. We only
consider SPLIT and HEAP TRACKER here, as COPY-IF-CHANGE is not
directly affected by this dimension. The key observation based on compar-
ing Figure 4.14a with 4.14b is that for low levels of fragmentation, HEAP
TRACKER often outperforms SPLIT, whereas the opposite always holds for
high levels of fragmentation. The explanation is that, also based on Fig-
ure 4.12, with constant occupation low levels of fragmentation are more
likely to manifest as the span increases. Whenever this happens, however,

105

i
i

“thesis” — 2018/1/14 — 18:38 — page 106 — #116 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

we already observed that SPLIT incurs in high costs as it is unable to op-
timize the writes to flash based on unallocated memory chunks. The same
applies to the Cortex M0 board, despite the different hardware.

4.6 Discussion

The results we collect crucially indicate that no single storage mode is ef-
ficient in all situations. We discuss next these insights and attempt at iden-
tifying the application’s characteristics that determine the recommended
mode. Our conclusions are summarized in Table 4.1.

4.6.1 The role of memory span

Section 4.5.1 indicates that, independent of the span, using COPY-IF-CHANGE
the overhead for reading a block from the previous checkpoint to under-
stand whether an update is needed is quite limited. This is due to the char-
acteristics of flash chips, where read operations are more energy-efficient
than writes. Differently, the performance of all other storage modes drasti-
cally grows as the span increases, regardless of the need to update the pre-
vious checkpoint. As an example, comparing Figure 4.7 with 4.8 indicates
that updating 25.6 KBytes of memory, that is, about one third of the entire
RAM space on our Cortex M3 board, using COPY-IF-CHANGE roughly
costs the same energy as using SPLIT with an overall span of 32 KBytes.

This observation makes COPY-IF-CHANGE attractive for applications
characterized by a large memory span and a limited number of updates
between consecutive checkpoints. This is the case, for example, of appli-
cations possibly required to run in a disconnected fashion. Under these
circumstances, a node accumulates data until some form of opportunistic
connection is established and data is offloaded. The data is often appended
at the end of buffers while performing few changes on other data struc-
tures [148]: a pattern particularly suited to the way COPY-IF-CHANGE op-
erates. Based on the same considerations, running SPLIT or HEAP TRACKER
where COPY-IF-CHANGE is preferred would likely be inefficient. The for-
mer save all data regardless of changes and their performance worsen as the
span grows, as already shown in Figure 4.7.

Opposite considerations apply to applications characterized by small
memory span and frequent updates to data structures. This is the case, for
example, of applications mostly concerned with routing packets on behalf
of other nodes [68], where a small set of data structures is continuously up-
dated as the wireless topology changes and protocols need to adapt. Most

106

i
i

“thesis” — 2018/1/14 — 18:38 — page 107 — #117 i
i

i
i

i
i

4.6. Discussion

of our results indicate that, if the span is limited and regardless of occu-
pation and fragmentation, SPLIT outperforms all other modes. This is, in
essence, a result of its simple operation. Compared to COPY-IF-CHANGE,
SPLIT does not pay the cost of initially reading all blocks from the pre-
vious checkpoint; compared to HEAP TRACKER, it does not suffer from
the overhead of support data structures. As an example, Figure 4.13 indi-
cates that checkpointing around 3 KBytes of heap data using SPLIT costs
40% less energy than using HEAP TRACKER, and one third of that with
COPY-IF-CHANGE.

4.6.2 The role of fragmentation

Section 4.5.2 and 4.5.3 point to a fundamental trade-off between SPLIT and
HEAP TRACKER that concerns cases where the memory span grows with-
out the occupation necessarily following. In these circumstances, HEAP
TRACKER outperforms SPLIT provided the overhead of the support data
structure equals the savings due to avoiding the write of some blocks on
flash. The latter occurs when unallocated memory chunks are large enough
to cover multiples of Sh, which we set to the smallest writable unit on the
flash chip for better energy saving.

These memory configurations correspond to low levels of fragmenta-
tion. As an example, Figure 4.14 often demonstrates better performance
for HEAP TRACKER up to 0.1 fragmentation. As a result, whenever the
memory span is not too limited, and yet it is still not comparable to the
entire RAM space, the choice of SPLIT or HEAP TRACKER ultimately de-
pends on the expected levels of fragmentation. If the size of data structures
in an application’s implementation is close to Sh, low levels of fragmenta-
tion are likely and thus HEAP TRACKER is recommended. This may be the
case of control applications, where the representation of the process state is
typically rendered with complex data structures [244]. Differently, if high

Table 4.1: Summary of insights from the experimental results and mapping to example
target applications.

Recommended ExampleSpan Fragmentation mode target

Large - COPY-IF-CHANGE
Disconnected

operation

Small - SPLIT
Networking

support

Intermediate
Low HEAP TRACKER

Process
control

High SPLIT
Remote
sensing

107

i
i

“thesis” — 2018/1/14 — 18:38 — page 108 — #118 i
i

i
i

i
i

Chapter 4. "How?" :Designing Checkpointing Mechanism

levels of fragmentation are expected, SPLIT is to be favored. This would
be the case of Internet-connected sensing [2], where small data items are
acquired for the time necessary to perform some simple processing before
sending the data out towards a long-distance destination.

4.7 Outlook and Summary

Our work here is foundational: we aim at developing the basic building
blocks for state retention. In doing so, the contribution we present cer-
tainly has limitations. For example, we use synthetic settings rather than
deploying real applications for evaluating the performance. Our method-
ology creates a controlled environment that offers repeatability and allows
us to uniformly sweep the parameter space, at the cost of reduced realism.
In contrast, concrete applications would introduce several sources of ran-
domness, such as the unpredictable evolution of application state and the
unequal harvesting performance across devices.

Necessary to enable an assessment in real applications is also to decide
on the location of checkpoint() calls in the code. In principle, they
should be placed at a point where the application makes a progress worth to
be saved and the remaining energy is sufficient to complete the checkpoint.
How to generalize such a notion is both challenging and orthogonal to in-
creasing the efficiency of the individual checkpoint and restore operations,
which is the goal we set forth in this work. We are currently investigating
this problem with the goal of automatically deciding on the placement of
checkpoint() calls, for example, based on control flow graph informa-
tion, as opposed to manual placement of checkpoints by programmer [130].

In this chapter, we presented techniques to checkpoint and restore a de-
vice’s state on stable storage, catering for scenarios where devices oppor-
tunistically harvest energy from the ambient or are provided with wireless
energy transfer mechanisms. Our work aims at reducing the time for these
operations and at minimizing their energy cost. We target modern 32-bit
MCUs and currently available flash chips, making the checkpoint and re-
store routines available to programmers through a pair of simple C func-
tions. The three storage modes we designed in support expose different
trade-offs that depend on the memory span, its occupation, the possible
fragmentation, and the read/write patterns in memory. The experimental
results we gathered allowed us to quantity these trade-offs and discern the
application’s characteristics that would make one storage mode preferable
over another.

108

i
i

“thesis” — 2018/1/14 — 18:38 — page 109 — #119 i
i

i
i

i
i

CHAPTER5
”What?” : Differential Checkpointing

The Copy-if-change technique, as discussed in Section 4.4.3, greatly re-
duces the data written to NVM. Performing such comparison, however,
requires to sweep the entire checkpoint data, resulting in a high number of
read operations on NVM.

In this chapter, we present DICE, a set of differential techniques to
tracks modifications in the application state and isolates these from the
slice of the previous checkpoint data that remains unaltered, without read-
ing previous state from NVM. At the following checkpoint, DICE may thus
only update the parts it detects as modified, improving the time and energy
overhead of this operation. We design DICE as a complement to exist-
ing system support, and show it may be integrated with systems based on
reactive (Hibernus) or proactive (MementOS, HarvOS) checkpoint mecha-
nisms. As a result, DICE allows an existing system support to shift part of
the energy budget from checkpoints to useful computations, yielding bet-
ter overall energy efficiency and reduced execution latency. For example,
using DICE, HarvOS can complete the execution of RSA algorithm with
86% fewer checkpoints and a 34% reduction in execution latency.

109

i
i

“thesis” — 2018/1/14 — 18:38 — page 110 — #120 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

5.1 Introduction

Modern energy harvesting and wireless energy transfer techniques [27] al-
low embedded devices to mitigate, if not to eliminate, their dependency on
traditional batteries. However, this form of energy provisioning is generally
highly variable and unpredictable across space and time.

This trait clashes with the increasing push to realize tiny devices en-
abling unobtrusive and pervasive deployments. Energy storage facilities
possibly used to ameliorate fluctuations in energy supplies need to be minia-
turized as well, as they often represent a dominating factor in size. Sys-
tem shutdowns due to energy depletion in such settings are thus difficult
to avoid. The computing pattern then becomes intermittent [170, 229]: pe-
riods of normal computation and periods of energy harvesting come to be
unpredictably interleaved [131].
Problem: As we discuss in Section 5.2, dedicated system support exists to
enable this kind of intermittent computing. Many of such systems employ
a form of checkpoint to let the system cross periods of energy unavail-
ability. This essentially consists in replicating the application state over
non-volatile memory (NVM), where it is retrieved back once the system
resumes with sufficient energy to compute.

Due to the characteristics of available NVM technology, the checkpoint
operation is extremely costly both in energy and time. When using flash
memories as NVM, for example, the energy cost is orders of magnitude
larger than most common system operations [28,63]. Availability of FRAM
technology improves these figures; still, checkpoints may often represent
the dominating operation in an application’s energy and time profile [21,
29]. As the cost of checkpoint is ultimately subtracted from the resources
invested in useful computations, taming such an overhead is crucial.
DICE: To reduce the energy and time overhead of checkpoints, we design
and implement DICE (DIfferential ChEckpointing), a set of techniques to
evaluate differentials between the previous checkpoint data in NVM and
the current application state. DICE uses this information to refrain from
writing to NVM the slices of the previous checkpoint that remained unal-
tered. This way, we reduce both the energy spent during, and the time taken
for checkpoints.

These differentials originate from the use of programming constructs
that mutate the application state, such as variable assignments and memory
references. DICE automatically instruments existing code to track such
changes. Section 5.3 describes the design rationale for DICE, as well as
the different techniques we employ to track changes in the application state

110

i
i

“thesis” — 2018/1/14 — 18:38 — page 111 — #121 i
i

i
i

i
i

5.2. Background

depending on whether they reside in globally-accessible memory, dynamic
memory, or the call stack.

We conceive DICE as a complement to existing system support. This
adds a further challenge. Systems such as Hibernus [21, 22] operate in a
reactive manner: an interrupt is fired that may preempt the application exe-
cution at any point in time. Differently, systems such as MementOS [172]
and HarvOS [29] place explicit function calls within the code to proac-
tively probe the energy buffer and decide whether to checkpoint. Knowl-
edge of when and where in the code a checkpoint may possibly take place
influences what differentials need to be considered, and how to track them.
Section 5.4 details the code instrumentation of DICE, together with the
different techniques we employ to support both reactive and proactive sys-
tems.
Benefits: Following implementation details in Section5.5, we quantita-
tively report on the performance of DICE in Section6.5. Our results are
based on a combination of three benchmarks across three different existing
system support and two different hardware platforms. Based on more than
107,000 data points, we demonstrate both the effectiveness of our design
choices and their performance impact.

For example, we show that DICE reduces the amount of data to be writ-
ten on NVM by orders of magnitude when used with Hibernus, and by a
fraction of the original size when used with MementOS or HarvOS. This
bears beneficial cascading effects on a number of other key performance
metrics. It abates the energy cost of checkpoints, reducing the peak energy
demand due to checkpoints and allowing the system to use energy more for
computation than for checkpoints. The former enables a reduction of up
to 88% in the size of the energy buffer necessary for completing a given
workload, cutting the time required to reach the operating voltage when
charging and enabling smaller device footprints. The latter yields up to
97% fewer checkpoints to complete a workload, compared to those origi-
nally required. In turn, sparing checkpoints lets the system progress farther
on a single charge, cutting down the execution latency up to one order of
magnitude.

We conclude the chapter by surveying relevant work in the area in Sec-
tion 5.7 and with brief concluding remarks in Section 5.8.

5.2 Background

Specialized custom hardware support [80,93] exists to make the system re-
tain the application state in the absence of energy, as discussed further in

111

i
i

“thesis” — 2018/1/14 — 18:38 — page 112 — #122 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

Section 5.7. Using mainstream device architectures, however, checkpoint-
ing the application state on NVM is the only means for an application to
make progress across periods of energy unavailability [81].

When to take a checkpoint, however, involves striking a trade-off be-
tween postponing the checkpoint as long as possible; for example, in the
hope the environment provisions new energy, and anticipating the check-
point to ensure sufficient energy is available to successfully complete it.
Existing solutions: Hibernus [21] and Hibernus++ [22] employ dedicated
hardware support to constantly monitor the amount of energy left. When-
ever the remaining energy falls below a threshold, both systems react by fir-
ing an interrupt that preempts the application and forces the system to take a
checkpoint. Checkpoints may thus take place at any arbitrary point in time.
Both systems spare any kind of compile-time instrumentation by copying
the entire memory area—including unused or empty portions—onto NVM.
Using FRAM as NVM, this is still a reasonable choice energy-wise. We
call this strategy copy-all.

Differently, MementOS [172] operates at compile-time by inserting ded-
icated system calls to check the voltage of the energy buffer: if the voltage
is below a given threshold, a checkpoint is taken. Checkpoints then happen
proactively and only whenever the execution reaches one of these calls. The
threshold is heuristically determined with repeated emulation experiments
of a given application code based on developer-provided energy traces,
against progressively decreasing thresholds. The minimum value that guar-
antees completion of the workload is taken. During a checkpoint, every
used segment in main memory is copied to NVM regardless of changes
since the last checkpoint. We call such a strategy copy-used, and note it is
mainly motivated by the need to reduce overhead when NVM operations
are particularly expensive; for example, when using flash memories.

HarvOS [29] also instruments the code with dedicated system calls. Un-
like MementOS that employs fixed strategies to place the calls, HarvOS
does so based on the control flow graph (CFG) of the program and a worst-
case estimate of the energy consumption of every edge in the CFG. Depend-
ing on the programming construct, HarvOS decides on call placement and
voltage threshold to ensure that either the next system call is reached with
sufficient energy to checkpoint, or a checkpoint can succeed at the current
system call. HarvOS adopts the same copy-used strategy as MementOS.

Similar in spirit to DICE is the copy-if-change strategy of Bhatti et
al. [28]. To understand the differentials since the last checkpoint, they com-
pare the content of main memory with the existing checkpoint data on NVM
on a word-by-word basis. Every segment found to be different is updated.

112

i
i

“thesis” — 2018/1/14 — 18:38 — page 113 — #123 i
i

i
i

i
i

5.2. Background

I/O write
I/O read

Amount of data written on NVM

E
ne

rg
y

Copy-if-change

Copy-used
(MementOS,

HarvOS)

DICE

Memory Access

Copy-all
(Hibernus,

Hibernus++)
NVM writeNVM writeNVM write

NVM read
NVM write
NVM read

Figure 5.1: Comparison of the different checkpoint techniques. Copy-all in Hibernus has
highest energy costs due to maximum write operation on NVM. Copy-used in Me-
mentos and HarvOS avoids copying unused memory areas, reducing the energy cost
of write operations. Copy-if-change further reduces the latter, at the cost of read op-
erations from NVM to compute a word-by-word differential. DICE trades additional
write operations to NVM, due to recording changes in the call stack at frame granular-
ity, with the ability to only operate in main memory to record differentials.

In all the solutions hitherto described, MCU registers are always treated the
same and copied to NVM during a checkpoint.
Landscape: By factoring out any performance difference due to NVM
characteristics, Figure 5.1 qualitatively compares the performance of the
solutions above. The plot relates the amount of data written on NVM
against energy overhead. We split the latter between read/write operations
on NVM, and operations in main memory.

Hibernus [21] and Hibernus++ [22] lie at the top right with their copy-
all strategy. The amount of data written to NVM is maximum, as it corre-
sponds to the entire memory space regardless of occupation. Both perform
no read operations from NVM during checkpoint, and essentially no op-
eration in main memory. MementOS [172] and HarvOS [29] write fewer
data on NVM during checkpoint, as their copy-used strategy only copies
the occupied portions. To that end, they need to keep track of a handful
of information, such as stack pointers, adding minimal processing in main
memory.

Bhatti et al.’s [28] copy-if-change technique is at the other extreme. Be-

113

i
i

“thesis” — 2018/1/14 — 18:38 — page 114 — #124 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

bss,

data,

heap

call

stack

First

checkpoint

Subsequent

checkpoints

V
o

la
ti
le

 M
e

m
o

ry

N
o
n

-V
o

la
ti
le

 M
e

m
o

ry

modified

(a) DICE

First

checkpoint

Subsequent

checkpoints

(b) Existing system support

Figure 5.2: DICE fundamental operation. DICE allows to update the checkpoint with
differentials recorded at variable level in the global context, or with modified stack
frames.

cause of word-by-word comparison between the current memory state and
the last checkpoint data, the amount of data written to NVM is greatly re-
duced. Performing such comparison, however, requires to sweep the entire
checkpoint data, resulting in a high number of read operations on NVM.
Because write operations on NVM tend to be more energy-hungry than
reads [142], Bhatti et al. [28] demonstrate that the energy overhead is still
reduced compared to a copy-used strategy. We return to Figure 5.1 in Sec-
tion 5.3 to argue about the placement of DICE in the picture.

5.3 Overview

Figure 5.2 describes the fundamental operation of DICE. Once an initial
checkpoint is available, DICE tracks changes in main memory to only up-
date the affected slices of the existing checkpoint data, as shown in Fig-
ure 5.2a. We detail such a process, which we call recording differentials,
in Section 5.4. DICE therefore contrasts existing system support, shown in
Figure 5.2b, which works by blindly dumping on NVM the entire system’s
memory [21], or at most the used part [29,172]. This happens regardless of
what changes in the application state occur since the previous checkpoint.

We apply different criteria to determine the granularity for recording
differentials. The patterns of data reads and writes, in fact, are typically
distinct depending on the memory segment [106]. We individually record
modifications in the global context, including the BSS, DATA, and HEAP

114

i
i

“thesis” — 2018/1/14 — 18:38 — page 115 — #125 i
i

i
i

i
i

5.4. Recording Differentials

segments. Such a choice minimizes the size of the update for these seg-
ments on checkpoint data. Differently, we record modifications in the
call stack at frame granularity. Local variables of a function are likely
frequently updated during a function’s execution. Their lifetime is also
the same: they are allocated when allocating the frame, and collectively
lost once the function returns. Because of this, recording differentials at
frame-level abates overhead for variables whose differentials would likely
be recorded together.

A dedicated precompiler instruments the code so that both kinds of dif-
ferentials are efficiently recorded. For global context, the precompiler in-
serts DICE code to populate an in-memory data structure with informa-
tion about modified memory areas. Identifying where such changes in
global context may occur means identifying a predetermined set of state-
ments including assignments and unary operations. The precompiler also
instruments the code to record differentials in the call stack by tracking
the changes to the base pointer since the last checkpoint, as explained in
Section 5.4. The latter only requires to identify function calls.

In Figure 5.1, our techniques place DICE between the copy-if-change
and copy-used strategies. DICE tends to write more data to NVM com-
pared to copy-if-change, because modifications in the call stack are recorded
at frame granularity. However, only recording differentials reduces the data
to be written on NVM compared to copy-used, even if this happens only
at frame granularity. Crucially, recording differentials only requires opera-
tions in main memory. As these are significantly more energy-efficient than
read operations from NVM as used in copy-if-change, we argue the energy
performance is ultimately improved, as shown along the Y-axis. Section 6.5
provides quantitative evidence.

5.4 Recording Differentials

We first describe the technique we adopt for recording differentials in the
global context, depending on the system support. Next, we illustrate the
mechanism to identify modified stack frames.

5.4.1 Global Context

DICE maintains a data structure in main memory, called modification record,
to record differentials in global context. It is updated as a result of the exe-
cution of a record() primitive that the DICE precompiler inserts when
detecting a potential change to global context. The modification records are
not part of checkpoint data, as described in Section 5.5.

115

i
i

“thesis” — 2018/1/14 — 18:38 — page 116 — #126 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

...

record(&var,sizeof(var));

var++;

...

Figure 5.3: Example instrumented code to record differentials in global context.

Figure 5.3 shows an example of instrumented code. The record()
primitive simply takes as input a memory address and the number of bytes
allocated to the corresponding data type. These information are sufficient
for the modification record to keep track that the corresponding slice of
the checkpoint data is to be updated: the memory values have possibly
changed. How to inline the call to record() depends on the underlying
system support, which may operate in a reactive or proactive manner, as
explained in Section 5.2
Reactive checkpoints: In Hibernus [21] and Hibernus++ [22], an external
interrupt may preempt the execution at any time and prompt the system
to take a checkpoint. This creates a potential issue with the placement of
record() compared to where a change in global context takes place.

If the call to record() is placed right after the statement modifying
global context and the system triggers a checkpoint right after the latter,
the modification record includes no information on the latest change dur-
ing checkpoint. The remedy would be to require atomic execution of both
record() and the statement changing data in global context; for example,
by temporarily disabling interrupts. With systems such as Hibernus [21]
and Hibernus++ [22], however, this may delay the execution of critical in-
terrupts, affecting the dependability of application execution.

Because of these issues, we choose to place calls to record() right
before the relevant program statements, as shown in Figure 5.4(b), remov-
ing the need for atomic executions. However, we must still address the
case when the interrupt triggering the checkpoint occurs immediately after
the call to record(), but before the modification occurs in the follow-
ing statement. In this case, when resuming from checkpointed state, the
following statement is executed first, but the corresponding changes are
not tracked in the next checkpoint, as record() already executed for
that statement before the previous checkpoint. We handle this by mark-
ing the memory region reported in the most recent call to record() to
be included in the next two consecutive checkpoints. We prefer this minor
additional overhead for these corner cases, rather than atomic executions.

The operation of the precompiler is straightforward when the statements
modifying global context are part of compound statements, such as the

116

i
i

“thesis” — 2018/1/14 — 18:38 — page 117 — #127 i
i

i
i

i
i

5.4. Recording Differentials

1 . . .
2 i n t v1 , v2 , v3 , a r r [s i z e] ;
3 . . .
4 vo id foo () {
5 i n t l o c a l _ v ;
6 . . .
7 i f (l o c a l _ v < MAX) {
8 l o c a l _ v ++;
9

10 v1 = l o c a l _ v ;
11
12 v2 =v2 + l o c a l _ v ;
13
14
15 }
16 e l s e {
17
18 v2 = MAX;
19
20 }
21 f o r (i n t i =0 ; i <SIZE ; i ++) {
22
23 a r r [i] =zoo (i) ;
24 }
25
26 t r i g g e r () ;
27 . . .

(a) Before instrumentation

1 . . .
2 i n t v1 , v2 , v3 , a r r [s i z e] ;
3 . . .
4 vo id foo () {
5 i n t l o c a l _ v ;
6 . . .
7 i f (l o c a l _ v < MAX) {
8 l o c a l _ v ++;
9 r e c o r d (v1 , s i z e o f (v1)) ;

10 v1 = l o c a l _ v ;
11 r e c o r d (v2 , s i z e o f (v2)) ;
12 v2 = v2 + l o c a l _ v ;
13
14
15 }
16 e l s e {
17 r e c o r d (v2 , s i z e o f (v2)) ;
18 va r2 = MAX;
19
20 }
21 f o r (i n t i =0 ; i <SIZE ; i ++) {
22 r e c o r d (a r r [i] , s i z e o f (i n t)) ;
23 a r r [i] =zoo (i) ;
24 }
25
26
27 . . .

(b) After instrumentation (reactive)

Figure 5.4: Example instrumentation for reactive checkpoints. With reactive check-
points, each statement possibly changing global context data is preceded by a call to
record().

117

i
i

“thesis” — 2018/1/14 — 18:38 — page 118 — #128 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

cases in Figure 5.4 and Figure 5.5. However, additional care is necessary at
certain unusual locations where the call to record() is not trivial to add.
For example, the ternary operator (?:) may also modify global variables,
yet in the C language the operator cannot be used with multiple statements
in either of the sub-expressions. Here, we may either convert the ternary
operator into a traditional if-else, or pessimistically record an address
as potentially modified even if the corresponding statement may not be ex-
ecuted. DICE currently employs the latter strategy, due to its general ap-
plicability for all similar situations.
Proactive checkpoints: Systems such as MementOS [172] and HarvOS [29]
insert systems calls called triggers at specific locations in the code, as
described in Section 5.2. These triggers, based on the current state of the
energy buffer, decide whether to checkpoint before continuing. This ap-
proach, besides eliminating the need to insert record() calls for every
statement possibly modifying global context, exposes the code to further
optimizations.

As example, Figure 5.5(b) shows the same code as Figure 5.4(b), now
instrumented for a proactive system support. For code segments that do not
involve loops, we may now aggregate updates to the modification record
at the basic block level or just before the call to trigger(), whichever
comes first. The former case is shown, for example, in line 8 to 14. In
these cases, we cannot postpone the update to the modification record any
further, as branching statements can determine only at run-time what basic
block is executed.

In the case of loops operating on contiguous memory areas, further op-
timizations are available. Say a loop is employed to process the elements
of a sequential data structure, as in Figure 5.4 lines 21 to 24. A call to
record() inside the loop body, necessary in Figure 5.4(b) for each and
every iteration of the loop, may be now replaced with a single call right
before the call to trigger() to record modifications in the whole data
structure at once, as shown in Figure 5.5(b) line 25.

Certain peculiarities of such a technique warrant careful consideration.
For instance, loops may, in turn, contain branching statements that may
execute before updating one of the sequential elements. This may lead to
false positives in the modification record, which would result in an overes-
timation of differentials. Similarly, a loop with a complex expression in its
condition part may not necessarily inspect the whole sequence. A number
of fine-grained optimizations may be possible in these cases, which how-
ever would require to drastically increase the complexity of instrumentation
and/or to ask for developer intervention. As of now, we opt for a conser-

118

i
i

“thesis” — 2018/1/14 — 18:38 — page 119 — #129 i
i

i
i

i
i

5.4. Recording Differentials

1 . . .
2 i n t v1 , v2 , v3 , a r r [s i z e] ;
3 . . .
4 vo id foo () {
5 i n t l o c a l _ v ;
6 . . .
7 i f (l o c a l _ v < MAX) {
8 l o c a l _ v ++;
9

10 v1 = l o c a l _ v ;
11
12 v2 =v2 + l o c a l _ v ;
13
14
15 }
16 e l s e {
17
18 v2 = MAX;
19
20 }
21 f o r (i n t i =0 ; i <SIZE ; i ++) {
22
23 a r r [i] =zoo (i) ;
24 }
25
26 t r i g g e r () ;
27 . . .

(a) Before instrumentation

1 . . .
2 i n t v1 , v2 , v3 , a r r [s i z e] ;
3 . . .
4 vo id foo () {
5 i n t l o c a l _ v ;
6 . . .
7 i f (l o c a l _ v < MAX) {
8 l o c a l _ v ++;
9

10 va r1 = l o c a l _ v ;
11
12 v2 = v2 + l o c a l _ v ;
13 r e c o r d (v1 , v2 ,
14 s i z e o f (v1) , s i z e o f (v2)) ;
15 }
16 e l s e {
17
18 va r2 = MAX;
19 r e c o r d (v2 , s i z e o f (v2)) ;
20 }
21 f o r (i n t i =0 ; i <SIZE ; i ++) {
22
23 a r r [i] =zoo (i) ;
24 }
25 r e c o r d (a r r , s i z e o f (a r r)) ;
26 t r i g g e r () ;
27 . . .

(c) After instrumentation (proactive)

Figure 5.5: Example instrumentation for proactive checkpoints. With proactive check-
points, code locations where a checkpoint may take place are known, so calls to
record() can be aggregated to reduce overhead.

119

i
i

“thesis” — 2018/1/14 — 18:38 — page 120 — #130 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

vative approach: we record modifications on the entire memory area that
is possibly, but not definitely modified inside the loop, favoring simplicity
over a slightly increased overhead.

5.4.2 Call Stack

Unlike data in global context, we record differentials of local variables in
a function at frame level. As described in Section 5.3, this is essentially
because local variables in a function are often modified together and their
lifetime is the same. To this end, DICE monitors the growth and shrinking
of the call stack, respectively due to function calls and returns. At the time
of checkpoint, we update the stack frames possibly modified since the last
checkpoint.

Operations on the stack are normally handled through a pair of memory
pointers. The base pointer (BP) points to the base of the frame of the
currently executing function. It normally serves to access parameters and
local variables, which happen to be located at a fixed offset from BP. The
stack pointer (SP) points to the top of the stack, and is normally used to
determine where to start allocating a new frame.

Recording differentials at frame level in DICE only requires one addi-
tional memory pointer, called the stack tracker (ST). We use ST to keep
track of changes in the value of BP between successive checkpoints. To
identify the region of the stack possibly modified, we only need to know
how BP moved since the previous checkpoint. We proceed according to the
following four rules:

R1: ST is initialized to BP every time the system resumes from the last
checkpoint, or at startup;

R2: ST is unchanged as long as the current or additional functions are ex-
ecuted, thus more frames are pushed onto the stack, that is, ST does
not follow BP as the stack grows;

R3: whenever a function returns that possibly causes BP to point deeper in
the stack compared to ST, we set ST equal to BP, that is, ST follows
BP as the stack shrinks;

R4: at the time of checkpoint, we save the memory region between ST and
SP, as this corresponds to the set of frames possibly changed since the
last checkpoint.

Figure 5.6 depicts an example. Pretend the system is starting with an
empty stack. Therefore, ST, SP and BP all point to the base of the stack ac-
cording to R1. As the application unfolds, a chain of three nested function

120

i
i

“thesis” — 2018/1/14 — 18:38 — page 121 — #131 i
i

i
i

i
i

5.4. Recording Differentials

SP,

BP,

ST F1

BP

SP

ST

F2

F1

F2

BP

SP

F3STF3

F1

F2 BP

SP

ST

Update

stack

frames

Checkpoint #

startup 1 2 3

Figure 5.6: Identifying possibly modified stack frames. The stack tracker (ST) is reset to
the base pointer (BP) when the system resumes or at startup. ST does not follow BP as
the stack grows, but it does so as the stack shrinks. The dark grey region between ST
and the stack pointer (SP) is possibly modified.

calls is executed. The stack grows accordingly. While executing F3, BP
points to the base of the corresponding frame. Say a checkpoint happens at
this time, as shown under checkpoint #1 in Figure 5.6: the memory region
between ST and SP is correctly considered as a differential since the initial
situation, due to R4. The checkpoint is accordingly updated.

When resuming from checkpoint #1, we set ST equal to BP because
of R1. Function F3 continues its execution; no new functions are called
and no functions return. According to R2, ST and BP remain unaltered.
The next checkpoint happens at this time. As shown for checkpoint #2 in
Figure 5.6, R4 indicates that the memory region to consider as a differential
for updating the checkpoint corresponds to the frame of function F3. In
fact, the execution of F3might still alter local variables, requiring an update
of the checkpoint data.

When the system resumes from checkpoint #2, function F3 returns. Be-
cause of R3, BP is updated to point to the base of the stack frame of F2.
If a checkpoint happens at this time, as shown under checkpoint #3 in Fig-
ure 5.6, R4 indicates the stack frame of function F2 to be the differential to
update on the checkpoint. This is necessary, as local variables in F2 might
have changed once F3 returns control to F2 and the execution proceeds
within F2.

Note that the efficiency of recording differentials in the stack at frame
level also depends on programming style and of specific NVM technology.
If function calls are often nested, the benefits brought by this technique
likely amplify compared to tracking individual local variables. Differently,
on flash memories, updating an existing checkpoint with frames smaller
than the size of a page may not lead to any benefit compared to track-

121

i
i

“thesis” — 2018/1/14 — 18:38 — page 122 — #132 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

ing individual variables, as the corresponding page needs to be erased and
rewritten anyways. To cater for specific deployment configurations, pro-
grammers may still opt to record differentials in the call stack at variable
level, using a specific precompiler option.

5.5 Implementation

The implementation of DICE includes: i) the precompiler to instrument the
code for estimating differentials, as in Section 5.4, ii) the implementation
of the record() primitive to update the modification records, and iii) a
modified implementation of the checkpoint routine of the chosen system
support.

5.5.1 Precompiler

We implement the DICE precompiler targeting the C language using ANTLR
[159]. The precompiler instruments the code for recording modifications in
the global context as described in Section 5.4.1, and for identifying mod-
ified regions of the stack, as explained in Section 5.4.2. For the former,
command-line parameters are accepted also to indicate the kind of un-
derlying system support to target, being it proactive or reactive. We test
the correctness of the precompiler implementation on a range of applica-
tions found in existing codebases, including those we use in the evaluation
of Section 6.5.

As a result of the precompiler operation, DICE can capture modifica-
tions in main memory except for those originating from peripherals with
direct memory access (DMA). These changes bypass the execution of the
main code; thus DICE cannot track them. However, in embedded plat-
forms, DMA buffers are typically allocated by the application or the OS, so
we know where they are located in main memory. We may either always
consider such memory areas as modified, or at run-time, flag them as mod-
ified as soon as the corresponding peripheral interrupts fire, independent of
their processing.

5.5.2 record()

We implement record() as a variable argument function. This way, in
the case of proactive checkpoint support, we can aggregate tracking multi-
ple changes in main memory with a single call, as shown in Figure ??(c).

How to store the modification records progressively accumulated bears
an impact on the overhead of DICE on both the application processing

122

i
i

“thesis” — 2018/1/14 — 18:38 — page 123 — #133 i
i

i
i

i
i

5.6. Evaluation

and main memory consumption. Out of the many different data structures
available to this end, we choose to employ a simple bit-array, where each
bit represents one byte in main memory as modified or not. Such a repre-
sentation is particularly compact, causing little overhead in main memory.
Crucially, it allows record() to run in constant time, as it supports direct
access to arbitrary elements. This is key to prevent record() from chang-
ing the application execution timings, which may be critical on resource-
constrained embedded platforms [230].

Such a data structure, however, causes no overhead on NVM, as it does
not need to be part of the checkpoint. Every time the system resumes from
the previous checkpoint, we start afresh with an empty set of modification
records to track the differentials since the the time the system restarts.

5.5.3 Checkpoint

We also need to replace the checkpoint operation implemented in existing
system support, either as an interrupt handler (in reactive systems) or as
part of the trigger() (in proactive systems), with a DICE-specific one.
We first estimate the checkpoint differentials by inspecting the modification
records and the current values of ST and SP, as described in Section 5.4.
These differentials, along with MCU registers, are used to update the last
available checkpoint.

Similar to existing work [28,172], we ensure the validity of a checkpoint
by adding a random byte at the beginning and at the end of the checkpoint.
At the time of resuming, DICE checks if the two byte sequences are equal,
which means the checkpoint operation completed successfully.

5.6 Evaluation

We experimentally assess the performance of DICE along multiple dimen-
sions, using a combination of three benchmarks across three system support
and two hardware platforms. Based on 107,000+ data points, we conclude
that:
• DICE reduces the amount of data to be written on NVM during a check-

point by orders of magnitude compared to the original Hibernus, and by
a fraction of the original size with MementOS or HarvOS;

• such a reduction abates the peak energy demands and allows systems to
use up to 88% smaller energy buffers to complete the same workload,
cutting the time to reach the operating voltage and enabling smaller
device footprints;

123

i
i

“thesis” — 2018/1/14 — 18:38 — page 124 — #134 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

• the energy saved in checkpoints can be used for computation: DICE
results in up to 97% fewer checkpoints required to complete the work-
load, compared with those originally required, resulting in better energy
efficiency;

• fewer checkpoints also mean reduced execution latency: using DICE,
the same workload is completed in a time up to one order of magnitude
shorter than with the original system support implementations.

In the following, Sec. 5.6.1 describes the settings, whereas Sec. 5.6.2 to
Sec. 5.6.5 discuss the results.

5.6.1 Settings

Benchmarks: We consider three benchmarks widely employed to evaluate
system support for transiently-powered computing [21, 93, 172, 214]: i) a
Fast Fourier Transform (FFT) implementation, ii) RSA cryptography, and
iii) Dijkstra spanning tree algorithm. FFT is representative of signal pro-
cessing functionality in embedded sensing devices. RSA is a paradigmatic
example of the kind of security support deployed on modern embedded sys-
tems. Dijkstra’s spanning tree algorithm represents a staple case of graph
processing functionality, which may be found in some form also in embed-
ded network stacks [92].

These benchmarks offer a variety of different programming structures,
data types, memory access patterns, and processing load. For example,
the FFT implementation operates mainly over variables local to functions
and has moderate processing requirements, whereas RSA operates mainly
on global data and demands great MCU resources. Dijkstra’s algorithm is
less computationally-intensive than the first two; it mainly handles integer
data types as opposed to variable-precision ones, but exhibits much deeper
levels of nesting due to loops and function calls, requiring a denser instru-
mentation compared to the first two. Such diversity allows us to generalize
our conclusions. All implementations are taken from public code reposito-
ries [2].
Systems and platforms: We measure the performance of DICE when used
with either Hibernus [21], MementOS [172], or HarvOS [29]. We thus test
DICE with both reactive and proactive checkpoints, investigating the dif-
ferent instrumentation strategies in Section 5.4.1. We consider as baselines
the original unmodified Hibernus, MementOS, and HarvOS using either the
copy-all or copy-used strategies, as well as the copy-if-change [28] strategy
where meaningful. To make our analysis of MementOS independent of
the deployment-specific energy traces used to identify a suitable voltage

124

i
i

“thesis” — 2018/1/14 — 18:38 — page 125 — #135 i
i

i
i

i
i

5.6. Evaluation

threshold, as described Section 5.2, in all experiments we manually sweep
the possible settings of such parameter with steps of 0.2V, and always use
the best performing one.

We run Hibernus on an MSP430-based TelosB interfaced over SPI with
a byte-programmable 128 KByte FRAM chip as NVM, akin to the hard-
ware originally used for Hibernus [21]. MementOS and HarvOS run on a
Cortex M3-based ST Nucleo with a standard flash chip as NVM, already
used to compare MementOS and HarvOS [29]. Neither of these boards
is explicitly targeting transiently-powered computing; yet, as much as the
original system support we plug DICE into [21, 29, 172], here we are only
interested in data processing on the MCU and read/write operations on
NVM. From this perspective, these boards offer a range of hooks to trace
the execution, enabling fine-grained measurements. Further, our choice of
platforms ensures direct comparison with existing literature.

Metrics: We compute four key metrics to quantify the benefits brought by
DICE as well as the system overhead:

• The update size is the amount of data written to NVM during a check-
point. Using DICE, it is determined by the modification records. For
the baselines, it is determined by the specific strategy, as described in
Section 5.2. This is the key metric that DICE seeks to reduce: assess-
ing this figure is a stepping stone to understand the performance gains
DICE provides in all other metrics.

• The size of the smallest energy buffer is the smallest amount of en-
ergy that allows the system to complete a fixed workload. If the en-
ergy buffer is too small, a system may be unable to complete check-
points, ending up in a livelock situation where the execution always
resumes from the same point and makes no further progress. On the
other hand, transiently-powered devices typically employ a capacitor as
energy buffer: a smaller capacitor reaches the operating voltage more
quickly and allows one to reduce a device’s form factor.

• The number of checkpoints is the number of times the system takes a
checkpoint because energy is about to be exhausted, to later resume
once the energy buffer is full. The more the checkpoints, the more
the system subtracts energy from useful computations. Reducing the
size of data written on NVM should allow DICE to shift part of the
energy budget from checkpoints to computation, allowing an applica-
tion to progress further on the same charge and reducing the number
of required checkpoints. In essence, this metric represents the energy
efficiency of a given system configuration.

125

i
i

“thesis” — 2018/1/14 — 18:38 — page 126 — #136 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

Table 5.1: Measured FRAM and flash characteristics

Platform Operation Time Current1 byte 2561bytes 512 bytes
FRAM Read 0.15 ms 6.47 ms 12.8 ms 360 µA

Write 0.18 ms 7.52 ms 14.9 ms 360 µA
Flash Read n.a. 0.02 ms n.a. 12.4 mA

Write n.a. 212 ms n.a. 12.4 mA
1

Flash is page-programmable with page size of 256 bytes on Nucleo boards. The write operation
also includes energy required to erase a page, as necessary before rewriting.

• The execution latency is the total time to complete a fixed workload, in-
cluding checkpoints and resume operations, but excluding the recharge
times that are generally deployment-dependent. DICE introduces a run-
time overhead due to recording differentials. On the other hand, smaller
updates should reduce both the time required for a single checkpoint
and, because of the reasoning above, their number too.

To accurately compute these metrics, we trace the execution on real
hardware using an attached oscilloscope along with the ST-Link in-circuit
debugger and Kiel µVision for the Nucleo board. This equipment allows
us to ascertain the time taken and energy consumption of every operation
involved during the execution, including checkpoints on FRAM or flash
memory. Our findings on the performance of these two, summarized in
Table 5.1, closely match existing measurements [142]. This is key to the
accuracy of the results, enabling emulation of additional executions against
arbitrary inputs and variable-size energy buffers.

The executions to gather the actual measurements are assumed to em-
ploy a capacitor as energy buffer, which we assume to fully recharge after
being exhausted. The results below are obtained from 1,000 (10,000) iter-
ations of the benchmarks on the MSP430 (Cortex M3) platform to avoid
outliers overly impacting the results. We use dummy data to trigger the
execution of the three benchmarks.

5.6.2 Results→ Update Size

Figure 5.7 shows the update size we measure during our experiments. When
considering Hibernus, the code location where a checkpoint takes place is
unpredictable: depending on the capacitor size, an interrupt eventually fires
prompting the system to checkpoint. Figure 5.7a, 5.7b, and 5.7c1 thus re-
port the average update size we measure during an experiment until com-
pletion of the workload, as a function of the capacitor size. Compared
to the original copy-all strategy that mandates the update of the whole

1Some data points are missing in the charts for the original design of Hibernus, as it is unable to complete the
workload in those conditions. We investigate this aspect further in Section 5.6.3.

126

i
i

“thesis” — 2018/1/14 — 18:38 — page 127 — #137 i
i

i
i

i
i

5.6. Evaluation

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es

0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(a) Hibernus (FFT)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
200 400 600 800 1000

of

 b
yt

es

0

500

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(b) Hibernus (RSA)

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

Capacitor (uF)
0 200 400 600 800 1000

of

 b
yt

es

0

200

Hibernus
Hibernus+Copy-if-change
Hibernus+DICE

#104

1

1.05

1.1

(c) Hibernus (Dijkstra)

Trigger Call Locations
TCL1 TCL2 TCL3 TCL4 TCL5 TCL6 TCL7

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20
MementOS+Copy-if-change
MementOS+DICE
MementOS

FFT

22

Dijkstra

19

7

111
2

33
2

1

7

RSA

121212121212

6 6

(d) MementOS

Trigger Call Locations
TCL1 TCL2 TCL3

of

 p
ag

es
 (

25
6

by
te

s)

0

5

10

15

20

25

HarvOS+Copy-if-change
HarvOS+DICE
HarvOS

RSAFFT

Dijkstra

3 3

12

6

12

2

19

2

6

(e) HarvOS

Figure 5.7: Update size comparison. The size of updates is significantly smaller when
using DICE compared to the original system support. Compared to copy-if-change, it
remains the same or marginally larger.

10 KBytes main memory on NVM, DICE provides orders of magnitude
improvements. These gains are naturally a result of limiting updates to
those determined by the modification records. On the other hand, copy-if-
change provides marginal advantages over DICE, because modifications in
the call stack are recorded at word-, rather than frame-granularity.

When considering the original design of MementOS or HarvOS as a
baseline, the update size is independent of the capacitor size, but a function
of the location of the trigger call. At different places in the code, in fact,

127

i
i

“thesis” — 2018/1/14 — 18:38 — page 128 — #138 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

a checkpoint may find the stack with different sizes. Figure 5.7d and Fig-
ure 5.7e2 show that DICE reduces the update size to a fraction of that in the
original copy-used strategy, no matter the location of the trigger call. The
same charts show that the performance of copy-if-change when combined
with MementOS or HarvOS is the same as DICE. This is an effect of the
page-level programmability of flash storage, requiring an entire page to be
rewritten on NVM even if a small fraction of it is to be updated.

The cost for copy-if-change to match or slightly improve the perfor-
mance of DICE in update size is, however, prohibitive in terms of en-
ergy consumption. Copy-if-change indeed requires a complete sweep of
the checkpoint data before updating. Even for FRAM, arguably the most
energy-efficient NVM available as of today, Table 5.1 shows that the cost
of read operations is comparable to write operations. As an example, we
compute the energy cost of a checkpoint with the update sizes shown in Fig-
ure 5.7b to be 93% higher with copy-if-change compared with DICE, on
average. For Hibernus, copy-if-change would then result in an energy effi-
ciency even worse than the original copy-all strategy. As energy efficiency
is the figure developers are ultimately interested in, we justifiably narrow
down our focus to comparing a DICE-equipped system support with the
original designs.

5.6.3 Results→ Smallest Energy Buffer

Figure 5.8 reports the minimum size of the capacitor required to complete
the given workloads. A DICE-equipped system constantly succeeds with
smaller capacitors. With Hibernus, DICE allows one to use a capacitor
that is up to 88% smaller than the one required with the original copy-
all strategy. Similarly, for MementOS and HarvOS, the smallest capacitor
one may employ is about half the size of the one required in the original
designs. Smaller capacitors mean reaching operating voltage faster and
smaller device footprints.

Such a result is directly enabled by the reduction in the update size, dis-
cussed in Section 5.6.2. With fewer data to write on NVM at every check-
point, their energy cost reduces proportionally. As a result, the smallest
amount of energy the system needs to have available at once to successfully
complete the checkpoint reduces as well. Provided the underlying system
support correctly identifies when to start the checkpoint, the workload can
be completed with a smaller capacitor.

2For MementOS, the trigger call locations refer to the “function call” placement strategy in MementOS [171].
We find the performance with other MementOS strategies to be essentially the same. We omit that for brevity.

128

i
i

“thesis” — 2018/1/14 — 18:38 — page 129 — #139 i
i

i
i

i
i

5.6. Evaluation

FFT RSA Dijkstra

C
ap

ac
ito

r
(u

F
)

0

100

200

300

400

500

600

700

800

Without DICE
With DICE

500 500

100

400

200

50

(a) Hibernus Trigger Call Locations
FFT RSA Dijkstra FFT RSA Dijkstra

C
ap

ac
ito

r
(m

F
)

0

10

20

30

40

50

60

70

80 Without DICE
With DICE

60

4040 40

1010 101010

20 20 20

MementOS HarvOS

(b) MementOS and HarvOS

Figure 5.8: Smallest capacitor to complete the workloads. A DICE-equipped system can
complete a fixed workload with smaller energy buffers. This is due to a reduction in
the energy cost of checkpoints, enabled by the reduction in update size. Therefore, the
smallest amount of energy the system needs to have available at once reduces as well.

5.6.4 Results→ Number of Checkpoints

Figure 5.9 reports the percentage reduction in the number of checkpoints at
the smallest capacitor size where both the DICE-equipped system and the
original design complete the workload, as shown in Figure 5.8. This is ar-
guably the most likely hardware configuration; as we argued, it reduces the
time to reach operating voltage and reduces the device footprint [80]. The
improvements are significant and apply consistently with different bench-
marks. They are relatively smaller in MementOS because of the fixed volt-
age threshold, which makes it start operating with a larger capacitor than
HarvOS.

We detail the improvements against variable capacitor sizes in Figure 5.103.
With larger capacitors, the improvements are smaller, even if still apprecia-
ble4. This is expected: the larger the capacitor, the more the system behaves
like a traditional battery-operated one: the application progresses farther
on a single charge, checkpoints are sparser in time, while the modifications
since the previous checkpoint accumulate as a result of increased process-
ing. The state of main memory then becomes increasingly different than the
checkpoint data, and eventually DICE ends up updating a significant part

3For MementOS, we tag every data point with the minimum voltage threshold that allows the system to
complete the workload, if at all possible, as it would be returned by the repeated emulation runs [172].

4Note the log scale on the Y axis of Figure 5.10.

129

i
i

“thesis” — 2018/1/14 — 18:38 — page 130 — #140 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

MementOS HarvOS Hibernus MementOS HarvOS Hibernus MementOS HarvOS Hibernus

of

 c
he

ck
po

in
ts

 r
ed

uc
ed

 (
%

)

0

20

40

60

80

100

120

46.4%

84.5%
88.5%

42.6%

86.2%

72.7%

33.3%

68.1%

FFT DIJKSTRARSA

97.41%

Figure 5.9: Percentage reduction in the number of checkpoints enabled by DICE at the
smallest capacitor. Gains are enabled by DICE across systems and benchmarks, im-
proving the overall energy efficiency as energy is used more for computation than for
checkpoints.

of it. In contrast, with smaller capacitors, DICE enables larger improve-
ments, that is, precisely for the kind of setting these systems are designed
for. In fact, the more the computation becomes intermittent [81, 132], the
more a DICE-equipped system support performs better than its original
counterpart.

Figure 5.11 provides a summary view on the results for the number of
required checkpoints, plotting the percentage reduction enabled by DICE
against variable capacitor sizes and across systems. The curves tend to flat-
ten with larger capacitors for the aforementioned reasons. A significant part
of the chart is empty as no comparison is possible, because the workload
cannot be completed in the original designs. When a comparison is possi-
ble, improvements are largest with smaller capacitors, topping above 80%
in most cases.

Overall, reducing the number of checkpoints means energy is spent more
in useful computations than in checkpoints. The application can make more
progress between periods of energy unavailability, which in turn reduces the
time to complete the workload, as we investigate next.

130

i
i

“thesis” — 2018/1/14 — 18:38 — page 131 — #141 i
i

i
i

i
i

5.6. Evaluation

Capacitor (uF)
0 200 400 600 800 1000

of

 c
he

ck
po

in
ts

101

102

103

104

105

106

Hibernus
Hibernus+DICE

(a) Hibernus (FFT)

Capacitor (uF)
0 200 400 600 800 1000

of

 c
he

ck
po

in
ts

101

102

103

104

105

106

Hibernus
Hibernus+DICE

(b) Hibernus (RSA)

Capacitor (uF)
0 200 400 600 800 1000

of

 c
he

ck
po

in
ts

101

102

103

104

105

106

Hibernus
Hibernus+DICE

(c) Hibernus (Dijkstra)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

2.2 V

2.4 V

2.2 V
2.0 V

1.8 V1.8 V1.8 V

2.0 V
1.8 V

1.8 V
1.8 V

1.8 V
1.8 V1.8 V1.8 V

1.8 V

(d) MementOS (FFT)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

1.8 V 1.8 V

2.2 V
2.0 V

1.8 V

2.2 V

2.0 V
1.8 V

1.8 V1.8 V

1.8 V1.8 V

1.8 V

2.4 V

(e) MementOS (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

MementOS
MementOS+DICE

2.2 V

1.8 V

1.8 V
1.8 V

1.8 V
1.8 V

1.8 V1.8 V
1.8 V

2.4 V
2.2 V2.2 V

2.0 V2.0 V

(f) MementOS (Dijkstra)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(g) HarvOS (FFT)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(h) HarvOS (RSA)

Capacitor (mF)
0 20 40 60 80 100

of

 c
he

ck
po

in
ts

101

102

103

104

HarvOS
HarvOS+DICE

(i) HarvOS (Dijkstra)

Figure 5.10: Number of checkpoints necessary against varying capacitor sizes. Improve-
ments enabled by DICE are smaller with larger capacitors, as the system behavior
starts approximating that of a traditional battery-operated one. With smaller capaci-
tors, in contrast, the intermittent execution greatly benefits from DICE.

131

i
i

“thesis” — 2018/1/14 — 18:38 — page 132 — #142 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

Capacitor (uF)
0 200 400 600 800 1000#

of
 c

he
ck

po
in

ts
 r

ed
uc

ed
 (

%
)

0

20

40

60

80

100

FFT
RSA
Dijkstra

System does
not work

without DICE

(a) Hibernus

Capacitor (mF)
0 20 40 60 80 100#

of
 c

he
ck

po
in

ts
 r

ed
uc

ed
 (

%
)

0

20

40

60

80

100
MementOS+DICE (FFT)
MementOS+DICE (RSA)
MementOS+DICE (Dijkstra)
HarvOS+DICE (FFT)
HarvOS+DICE (RSA)
HarvOS+DICE (Dijkstra)

System
does

not work
without

DICE

(b) MementOS and HarvOS

Figure 5.11: Improvement at different capacitor sizes enabled by DICE. The improve-
ments are largest with smaller capacitors, which is precisely the kind of setting that
system support for transiently-powered computing is designed for.

5.6.5 Results→ Execution Latency

DICE naturally imposes a cost for the benefits reported thus far. Such a cost
materializes as run-time overhead due to recording differentials, which may
increase the time taken to complete a given workload. On the other hand,
based on the above results, DICE enables more rapid checkpoints as it
reduces the update size, which in turn allows one to reduce their number as
energy is spent more on completing the workload than checkpoints. Both
factors should rather reduce the execution latency.

Figure 5.12 investigates the additional execution latency in a single iter-
ation of the benchmarks only due to recording differentials: the code exe-
cutes normally, but we skip the actual checkpoint operations. This way, we
can observe the net run-time overhead due to executing record(). The
chart shows that this overhead is generally very limited. This is valid also
for reactive checkpoints in Hibernus, despite the conservative approach at
placing record() calls due to the lack of knowledge of where the execu-
tion is preempted.

Figure 5.13 takes into account the time required for the number of check-
point operations at the smallest capacitor where both the DICE-equipped
system support and the original design complete the workload, as indicated
in Figure 5.8. The overhead due to executing record() calls is not only
compensated, but actually overturn by the gains enabled by the reduction

132

i
i

“thesis” — 2018/1/14 — 18:38 — page 133 — #143 i
i

i
i

i
i

5.7. Related Work

FFT RSA Dijkstra

E
xe

cu
tio

n
la

te
nc

y
w

/o
 c

he
ck

po
in

ts
 (

s)

0

0.5

1

1.5

2

Without DICE
With DICE

1.75
1.8091.802

0.005 0.008

1.69

(a) Hibernus

FFT RSA Dijkstra FFT RSA Dijkstra

E
xe

cu
tio

n
la

te
nc

y
w

/o
 c

he
ck

po
in

ts
 (

m
s)

0

10

20

30

40

50

60

70
Without DICE
With DICE

HarvOSMementOS

27.27 27.38

5.41

51.82

4.74 5.38

51.63

27.3327.23

4.75

51.66 51.87

(b) MementOS and HarvOS

Figure 5.12: Execution latency without concrete checkpoints. The additional run-time
overhead due to DICE code instrumentation is limited.

of update size, which in turn yields fewer, more rapid checkpoints. Using
these configurations, DICE allows the system to complete the workload
much earlier.

Differently, Figure 5.14 provides an example of the trends in execution
latency against variable capacitor sizes. The improvements are significant
with smaller capacitors, again precisely in the intermittent computing set-
ting we target. However, two factors contribute to the curves in Figure 5.14
approaching each other and flattening as the system configuration increas-
ingly resembles a traditional battery-operated device. Larger capacitors al-
low a benchmark to make more progress on a single charge, so the num-
ber of required checkpoints reduces. On the other hand, as more process-
ing happens between subsequent checkpoints, more modifications occur in
main memory, forcing DICE to update a larger portion of the checkpoint
data. Eventually, these two factors compensate each other, and the time
behavior of a DICE-equipped system approaches the one of the original
system support.

5.7 Related Work

We can effectively divide the existing literature on system support for transiently-
powered computing in two classes.

133

i
i

“thesis” — 2018/1/14 — 18:38 — page 134 — #144 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

FFT RSA Dijkstra

E
xe

cu
tio

n
la

te
nc

y
w

ith
 c

he
ck

po
in

ts
 (

s)

0

5

10

15

20
Without DICE
With DICE

1.93
0.32 0.008

20

1.77

8.17

(a) Hibernus

FFT RSA Dijkstra FFT RSA Dijkstra

E
xe

cu
tio

n
la

te
nc

y
w

ith
 c

he
ck

po
in

ts
 (

m
s)

0

100

200

300

400

500

600

Without DICE
With DICE

MementOS
501.1

HarvOS

59.5
33.14

103.5

69.2

30.1
7.1

205.3

34.1

82.7

11.2 7.4

(b) MementOS and HarvOS

Figure 5.13: Complete execution latency at the smallest capacitor size. The run-time
overhead due to DICE is overturn by great gains due to reducing size and number of
checkpoints, ultimately resulting in a reduction of execution latency.

The first class essentially includes checkpoint-based solutions that may
benefit from DICE as a complement, such as Hibernus [21], Hibernus++ [22]
Mementos [172], and HarvOS [29]. These target mainstream device archi-
tectures employing a volatile main memory for efficient processing, and
external storage as NVM. DICE complements them by reducing the time
and energy overhead of checkpoints. Closest to our work in this area is the
copy-if-change strategy [28], described in Section 5.7 and demonstrated in
Section 6.5 to provide much worse energy performance than DICE.

The second class of solutions [93, 131, 214] targets device architec-
tures that employ non-volatile processors [200] or non-volatile main mem-
ory [80]. The former relieve the system from checkpoints altogether, yet
require dedicated processor designs still far from massive production. The
latter still needs to checkpoint MCU registers. In both kinds of solutions,
reduced reliance on checkpoints is traded for increased energy consumption
during normal computations, due to the use of FRAM as main memory.

Compared to the solutions targeting mainstream device architectures,
this class of solution therefore requires further investigation to understand
what are the conditions—for example, in terms of energy provisioning
patterns—where the trade-off above plays favorably. Nevertheless, addi-
tional challenges also arise, including how to handle data consistency is-

134

i
i

“thesis” — 2018/1/14 — 18:38 — page 135 — #145 i
i

i
i

i
i

5.8. Summary

Capacitor (uF)
0 200 400 600 800 1000

E
xe

cu
tio

n
la

te
nc

y
w

ith
 c

he
ck

po
in

ts
 (

s)

1

2

3

4

5

6

7

8

9

Hibernus
Hibernus+DICE

(a) Hibernus (RSA)

Capacitor (mF)
0 20 40 60 80 100

E
xe

cu
tio

n
la

te
nc

y
w

ith
 c

he
ck

po
in

ts
 (

m
s)

0

100

200

300

400

500

600 MementOS (RSA)
MementOS+DICE (RSA)
HarvOS (RSA)
HarvOS+DICE (RSA)

(b) Mementos and HarvOS (RSA)

Figure 5.14: Execution latency against variable-size capacitors. DICE-enabled gains
are higher in an intermittent computing setting. Larger capacitors approximate the
behavior of traditional batteries, and DICE provides little benefit.

sues [44] that could lead to incorrect executions [214], and what program-
ming models are best fit to such computing platforms [131]. Addressing
the latter challenge most often requires programmers to learn new program-
ming abstractions and language constructs [44,131], which may slow down
adoption, as opposed to the first class of solutions that mostly operate trans-
parently from programmers.

In the same way as the solutions we complement [22,29,172], we focus
on supporting transiently-powered computing for the MCU. Other device
components, such as sensors or radios, may operate through separate en-
ergy buffers [79] or techniques such as radio backscattering [124]. The
former effectively decouples the energy management of peripherals from
that of the MCU. The latter enables networking through energy-neutral
operations. Dedicated solutions for checkpointing peripheral states also
exist [64, 132], and are likely to integrate with a DICE-equipped system
support as much as with the original designs.

5.8 Summary

DICE is a set of compile-time techniques for transiently-powered comput-
ers to reduce the amount of data written on NVM during checkpoints. To

135

i
i

“thesis” — 2018/1/14 — 18:38 — page 136 — #146 i
i

i
i

i
i

Chapter 5. "What?" : Differential Checkpointing

this end, we conceive different ways to track changes in main memory, de-
pending on what memory segment these reside on, as well as lightweight
code instrumentation strategies with dedicated customization depending on
how checkpoints are possibly triggered. DICE helps existing system sup-
port to complete a given workload with i) smaller energy-buffers, ii) fewer
checkpoints, and thus better energy efficiency, and iii) reduced execution
latency. Our experimental evaluation, based on a combination of three
benchmarks across three different existing system support and two differ-
ent hardware platforms, provides quantitative evidence. For example, using
DICE, HarvOS can complete the execution of the RSA algorithm with 86%
fewer checkpoints, resulting in better overall energy utilization and a 34%
reduction in execution latency.

136

i
i

“thesis” — 2018/1/14 — 18:38 — page 137 — #147 i
i

i
i

i
i

CHAPTER6
”When and Where?” : HarvOS

In this chapter, we present code instrumentation strategies to allow transien-
tly-powered embedded sensing devices efficiently checkpoint the system’s
state before energy is exhausted. Our solution, called HARVOS, operates at
compile-time with limited developer intervention based on the control-flow
graph of a program, while adapting to varying levels of remaining energy
and possible program executions at run-time. In addition, the underlying
design rationale allows the system to spare the energy-intensive probing
of the energy buffer whenever possible. Compared to existing approaches,
our evaluation indicates that HARVOS allows transiently-powered devices
to complete a given workload with 68% fewer checkpoints, on average.
Moreover, our performance in the number of required checkpoints rests
only 19% far from that of an “oracle” that represents an ideal solution, yet
unfeasible in practice, that knows exactly the last point in time when to
checkpoint. This chapter is published as "HarvOS: Efficient code instru-
mentation for transiently-powered embedded sensing" in [29].

137

i
i

“thesis” — 2018/1/14 — 18:38 — page 138 — #148 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

6.1 Introduction

In chapter 4, we explained the design of an efficient checkpointing mech-
anism which enable transiently-powered embedded devices to efficiently
checkpoint the system’s state on non-volatile memory [28, 171] whenever
energy is about to be exhausted. This allows a device to resume operation
from the saved state as soon as energy is newly available. Where and when
to perform the checkpoint, which is an energy-expensive operation per se,
is crucial. Doing so too early would essentially correspond to a waste of en-
ergy that could be usefully employed in further computations. In contrast,
excessively postponing a checkpoint may yield a situation where insuffi-
cient energy is left to complete the operation. Because of the unpredictable
supply of energy from the environment and the varying run-time execution
of programs, striking an efficient trade-off is challenging.

In this chapter, we present code instrumentation strategies to place calls
to trigger functions that, based on the current system state, decide whether
to perform the checkpoint before continuing the execution [171]. Different
from existing approaches, we look at the control-flow graph (CFG) of a
program and place triggers according to different strategies depending on
the programming constructs, for example, branching statements as opposed
to loops. Simultaneously, we aim at reducing the size of the checkpoint
itself by placing triggers where the size of the allocated memory is reduced.
The decision on whether to checkpoint is based on available energy as well
as the worst-case estimation of the energy required to reach the next trigger
call.

Such a scheme, which we call HARVOS, completely operates at compile-
time and dynamically adapts to varying levels of remaining energy at run-
time, while capturing the actual program execution through the CFG. The
underlying design rationale also allows the system to spare energy-intensive
probing of the energy buffer, for example, through ADCs, whenever possi-
ble.

HARVOS is largely independent of programming language, OS, and un-
derlying platform. It is generally applicable to imperative programming
languages. The execution of checkpoints is transparent to the OS as long as
a way to make these operations atomic is somehow provided. Our solution
applies both to platforms where traditional volatile memory is employed
for normal processing and a separate non-volatile memory is reserved for
checkpoints, and to platforms where non-volatile memory is used in place
of volatile one; for example, when FRAM chips replace normal SRAM
chips.

138

i
i

“thesis” — 2018/1/14 — 18:38 — page 139 — #149 i
i

i
i

i
i

6.2. Related Work

Our evaluation considers modern 32-bit MCUs and three increasingly
complex benchmark codes commonly employed in embedded sensing. We
execute the programs mutiple times against varying size of the underlying
energy buffers to measure the performance of HARVOS against existing
approaches. The results we collect indicate that, for example, HARVOS
allows a device to complete a given workload with 68% fewer checkpoints,
on average compared to existing approaches. Moreover, such a perfor-
mance rests 19% far from that of an “oracle” that represents an ideal so-
lution, yet unfeasible in practice, that knows exactly the last point in time
when a checkpoint is required.

The benefits are not, however, limited to the number of required check-
points. Our evaluation also shows that, because checkpoints in HARVOS
happen much closer to the last practical point in time when the system
should take a checkpoint, we can also reduce the processing that would go
wasted as its results would not become part of any checkpoint. We further
demonstrate that, unlike existing approaches, our performance is largely
robust against different program structures. Ultimately, this means that en-
ergy utilization is improved in a larger set of applications, as it is employed
more for useful computations than for checkpointing.

The rest of the chapter unfolds as follows. Section 6.2 places our work
in context. Section 6.3 describes the design rationale and the foundations
of our approach. Section 6.4 describes the compile-time rules we apply to
decide on the placement of trigger calls depending on the program struc-
ture. Experimental results are reported in Section 6.5. We end the paper
with brief concluding remarks in Section 6.6.

6.2 Related Work

Relatively little research exists on enabling transiently-powered computing
on embedded devices. Recent work comprehensively describes existing ap-
proaches and quantitatively compares them against each other [19]. Here
we focus on the aspects most relevant for code instrumentation. We recog-
nize two classes of such approaches.

One class is based on separate memory areas for normal computations
and for checkpointing. Examples are MementOS [171] and Hibernus [21].
The MementOS prototype uses flash memory for checkpointing. Trigger
calls are executed periodically or placed using a loop-latch or function-
return strategy. The former places trigger calls at the end of loop iterations;
the latter places trigger calls at function return points. These are the loca-
tions where one may expect the stack to store less data, which would then

139

i
i

“thesis” — 2018/1/14 — 18:38 — page 140 — #150 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

reduce the size and energy cost of moving data to flash. The decision to
checkpoint is based on a voltage threshold obtained through repeated emu-
lation experiments that eventually determine a single program-wide thresh-
old based on average run-time behavior and user-supplied energy traces.

Hibernus [21] uses FRAM instead of flash memory, and triggers a check-
point based on a hardware interrupt firing if the operating voltage drops
below a threshold. Because of the higher energy efficiency of FRAM com-
pared to flash memory, the latter can be statically defined because Hiber-
nus can afford to copy the entire RAM segment independent of the current
memory occupation. The energy to perform such a fixed-cost checkpoint is
stored in a separate decoupling capacitor, in turn driven by an external volt-
age regulator. In contrast, one of our goals is to enable efficient checkpoint-
ing without requiring hardware modification. Furthermore, FRAM chips
are still limited in overall size. It is then difficult to store multiple check-
points; for example, to ensure that at least a complete consistent checkpoint
is always available.

The other class of solutions employ non-volatile memory, especially
FRAM, as the only memory space. This means FRAM is used both for
normal computations and for saving the system’s state in periods of en-
ergy unavailability. The advantage is that application data already resides
on non-volatile memory, so only registers and program counter need to be
saved when checkpointing. QuickRecall [93] is an example in this class.
These solutions are especially indicated for scenarios characterized by very
short energy bursts, as checkpoints can happen quickly. However, they suf-
fer from an increase of energy consumption during normal computations
due to the use of FRAM in place of SRAM, and from potential data consis-
tency issues that require specialized compiler techniques [131].

HARVOS is independent of the underlying memory architecture, and
applies to both classes of approaches with only minor changes. The trigger
placement rules we describe next may replace or complement the heuris-
tics or periodic trigger calls employed in the aforementioned systems. Our
design is rooted in the unbalance between normal computation and the
energy-hungry operation of checkpointing, and seeks to reduce the over-
head of the latter.

6.3 Overview

Calls to trigger functions placed anywhere in the code essentially represent
an overhead compared to the normal computation. In existing systems,
two operations are performed every time the execution encounters a trigger

140

i
i

“thesis” — 2018/1/14 — 18:38 — page 141 — #151 i
i

i
i

i
i

6.3. Overview

call. First, the system verifies some condition that indicates whether it is
time to checkpoint. MementOS, for example, uses a voltage threshold as
explained in Section 6.2. If the condition is verified, the checkpoint takes
place. The energy cost of checking whether a checkpoint is necessary is
normally constant.

The energy cost of the actual checkpoint, on the other hand, depends
on the underlying memory architecture. For platforms that only employ a
single non-volatile memory area [93], the size of checkpoints is fixed and
independent of where the checkpoint takes place throughout the program
execution: only registers and program counter need to be saved. Thus, the
energy cost of checkpointing is fixed.

In platforms employing separate memory areas for normal computations
and for checkpointing [21, 171], the entire allocated memory needs to be
saved, including stack and heap, at the time of checkpointing. As a result,
the size and therefore the energy cost of checkpointing depend on where in
the program the checkpoint takes place, making this energy cost typically
proportional to the size of the allocated memory [28]. For example, the
higher the stack at that point in the execution, the larger is the energy cost
of checkpointing.

6.3.1 Challenge

Our objective is to minimize the energy overhead due to checkpointing op-
erations. This means i) to minimize the number of trigger calls that are
uselessly executed, that is, to verify no checkpoint is needed, and ii) to
postpone the actual checkpoint to a moment where the available energy is
strictly sufficient to that end, that is, one can not perform further computa-
tions without jeopardizing the ability to checkpoint later.

The two needs are at odds with each other. Postponing the checkpoint,
in fact, requires to frequently check how close is the execution to when
no sufficient energy is left to perform the checkpoint. However, trigger
calls need to probe the energy buffer, for example, through ADC opera-
tions. Therefore, frequently performing this operation may become pro-
hibitive because of the energy cost. The negative effects are not limited
to energy consumption. Trigger calls might, in addition, change the execu-
tion timings. Using resource-constrained devices, this may introduce subtle
software bugs [230].

141

i
i

“thesis” — 2018/1/14 — 18:38 — page 142 — #152 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

⟨1⟩ worst-case
memory

allocation

⟨2⟩ max MCU
cycles on full

charge

⟨3⟩ useful
cycles before
checkpoint

⟨4⟩ compute
CFG and split
in sub-graphs

ECKPmax

CMCUmax

Cuse

Figure 6.1: Compile-time operation of HARVOS.

6.3.2 Rationale

To optimize the point in time when the actual checkpoint takes places and
its energy cost, we rely on compile-time information on memory alloca-
tion patterns. Static code analysis techniques exist that can return accurate
information on the evolution of the stack and, in many cases, of the heap
as well [10, 83, 84]. The latter techniques especially apply when the size
of heap-allocated data structures is known at compile-time; for example,
whenever objects are dynamically allocated in languages such as C++.

Similar to existing works [21,93,171], we focus on supporting transiently-
powered computing for the main MCU. Other components on the device,
such as sensors or radios, may operate through separate energy buffers [79]
or techniques such as radio backscattering [124]. The former technique
effectively decouples the energy management of peripherals from that of
the MCU, which is in charge of driving the entire system and thus requires
ad-hoc techniques to operate across periods of energy unavailability. The
latter techniques enable networking among embedded devices and between
embedded devices and surroundings infrastructure through energy-neutral
operations. These ensure that the amount of energy consumed for transmis-
sions does not exceed the harvested RF energy.

6.3.3 Operation

Figure 6.1 illustrates the compile-time operation of HARVOS. Given a pro-
gram, at step 〈1〉 we estimate the worst-case memory usage throughout the
code and use this to obtain an estimate of the highest energy cost ECKPmax

for checkpointing at any point in a program’s execution. The latter step
is simple; for example, as the energy consumption of flash chips obeys to
specific trends dictated by the manufacturing characteristics.

In case the underlying platform employs non-volatile memory also for
normal computations, the energy cost ECKPmax is constant; application
data already resides on stable storage, and only the content of registers

142

i
i

“thesis” — 2018/1/14 — 18:38 — page 143 — #153 i
i

i
i

i
i

6.3. Overview

𝑇1 𝑇2 𝑇3 𝑇4

𝐶𝑢𝑠𝑒/ 2

Local minima

𝐶𝑢𝑠𝑒/ 2 𝐶𝑢𝑠𝑒/ 2 𝐶𝑢𝑠𝑒/ 2

Figure 6.2: Splitting the CFG in sub-graphs whose required number of MCU cycles is at
most Cuse/2. The picture considers a linear CFG for simplicity.

and program counter needs to be saved. In the following, we consider the
more complex case of variable energy cost for checkpointing operations,
germane to platforms that employ separate memory areas for normal com-
putations and for checkpointing.

At step 〈2〉, we calculate the maximum number of cycles CMCUmax we
can execute whenever the device wakes up with a freshly charged energy
buffer supplying energy Ewake−up. Many transiently-powered devices in-
clude a wake-up circuit that boots the device when the voltage level of
the on-board capacitor surpasses a certain threshold. Knowing this value,
computing CMCUmax is also simple, according to an MCU’s datasheet. In
doing so, we consider the maximum power consumption of the MCU. This
likely underestimates the value of CMCUmax, and yet allows us to reason in
a worst-case setting that shields us from unexpected power failures.

Steps 〈1〉 and 〈2〉 above are independent of each other. Their outputs are
fed as input to step 〈3〉 where we compute the number of useful cycles Cuse

the MCU can execute in a worst-case scenario where: i) the device starts
afresh with energy Ewake−up, ii) it does not receive any additional energy
contribution from the environment afterwards, and iii) it needs to spend
ECKPmax right before dying to checkpoint the system’s state. The number
Cuse of cycles are therefore those the MCU can execute with an amount of
energy Ewake−up − ECKPmax, and can be computed similarly to step 〈2〉.
These cycles are, in practice, those the MCU can execute to make progress
in the program.

Next, in step 〈4〉 we compute the CFG of the program and associate ev-
ery block in the graph to the number of cycles required to execute it with the
target MCU. A combination of mature code inspection and emulation tools,
such as Understand (www.scitools.com), Emul8 (emul8.org), and
Kiel uVision (www2.keil.com) can be used to this end. We then split
the CFG in sub-graphs whose total stretch in number of cycles is at most
Cuse/2, as intuitively shown in Figure 6.2. The picture considers a linear
CFG for simplicity; we discuss the general case next.

Within each sub-graph, we identify the block corresponding to the mini-

143

www.scitools.com
emul8.org
www2.keil.com

i
i

“thesis” — 2018/1/14 — 18:38 — page 144 — #154 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

𝑻𝒊

𝐶𝑢𝑠𝑒
2

𝑻𝒊−𝟏

𝑬𝒏𝒆𝒙𝒕

𝑬𝑪𝑲𝑷
Energy Buffer

𝑬𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈

Figure 6.3: Decision logic to take a checkpoint. At the Ti−1-th trigger call, the system
checks if sufficient energy remains to reach the next trigger call at Ti and to checkpoint
at Ti. If so, the execution continues. If not, a checkpoint takes place at Ti−1.

mum size of allocated memory, and place a trigger call right at the end of it.
This means we aim at possibly checkpointing the system’s state whenever
the cost of the checkpoint operation is reduced, as the amount of data to
copy over stable storage is minimal within a sub-graph. In doing so, we do
not add any instrumentation other than the trigger calls themselves. As a re-
sult of these procedures, provided the code can execute entirely on a single
charge, that is, the Cuse cycles are sufficient to cover the entire execution,
no trigger calls are placed anywhere in the code, which remains unaltered.

Step 〈4〉 explained above is crucial in the general case. Because of our
placement strategy, the maximum number of MCU cycles separating any
two trigger calls, for example, T3 and T4 in Figure 6.2, is bound to be less
than Cuse. The extreme case is where the Ti−1-th call is at the start of a
sub-graph and Ti-th call is at the end of following sub-graph; in this case
as well, the cycle distance is at most Cuse. Thus, even in a worst-case situ-
ation, a device that starts afresh with energy Ewake−up from the location of
a previous checkpoint can reach the next trigger call with sufficient energy
to complete the checkpoint before dying again.

As a result of the placement logic and based on the information collected
up to step 〈4〉, at every trigger call the system can take an informed decision
on whether to checkpoint. Say Enext is the energy to execute the required
MCU cycles from the Ti−1-th call to the Ti-th call, whereas ECKP (i) is
the energy required to checkpoint the system’s state against the size of the
allocated memory at the Ti-th call, as intuitively depicted in Figure 6.3. A

144

i
i

“thesis” — 2018/1/14 — 18:38 — page 145 — #155 i
i

i
i

i
i

6.3. Overview

checkpoint at the Ti−1-th call is required if

Eremaining ≤ Enext + ECKP (i) (6.1)

where Eremaining is the energy left in the buffer when executing the Ti−1-th
trigger call.

The condition in equation (6.1) essentially checks if the remaining en-
ergy is sufficient to reach the next trigger call and to checkpoint there. This
reasoning assumes that the environment provisions no additional energy
between Ti−1 and Ti, that is, we are operating in a worst-case situation
in terms of energy provisioning. At run-time, we can obtain the value of
Eremaining through software-based techniques [33, 198] or hardware solu-
tions [59, 149] with negligible overhead.

The ability to reason on whether the system can reach the next trigger
call is one of the key of traits of our approach, and a major source of im-
provements compared to previous work, as we discuss in Section 6.5.

6.3.4 Generalization

CFGs are generally not linear as the example of Figure 6.2. On the con-
trary, they show complex structures reflecting the variety of available pro-
gramming constructs, such as branching statements, loops, and function
calls. This means there may be multiple places in a sub-graph correspond-
ing to the minimum allocated memory, as a function of different execution
paths. Moreover, embedded devices often operate in an interrupt-driven
manner, that is, the execution through a CFG may be arbitrarily preempted
and temporarily re-directed through the CFG of interrupt handlers. The
latter case does not appear to be taken into explicit account in existing sys-
tems [21, 171].

To address these issues, the next section describes a set of trigger place-
ment rules that, depending on the program structure, dictate where to place
the trigger call and what to consider as the Enext energy to reach the next
trigger call. We identify branches, loops, function calls and interrupt han-
dlers as the fundamental structures of the CFG, and design specific rules for
them. The complete set of rules is recursively applied until an elementary
block in the CFG is reached. The rules also determine the conditions when
probing the energy buffer for the value of Eremaining is strictly needed, or
Eremaining can be inferred from compile-time information. The latter situ-
ation allows the system to spare operations that may be energy-expensive
per se, such as probing ADCs.

145

i
i

“thesis” — 2018/1/14 — 18:38 — page 146 — #156 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

6.4 Placement Rules

We illustrate the set of rules used to place trigger calls for arbitrary program
structures. In conceiving these rules, our reasoning is based on a worst-
case analysis among the possible program executions. In addition, interrupt
handlers require special care, as it is generally impossible to predict the
point in time when they preempt the execution.

6.4.1 Branching

The challenge here is to account for the lack of compile-time information
on what path is taken at run-time. To address this, one may decide to instru-
ment the code to trace the actual execution. Doing so, however, would add
further overhead and greatly complicate the instrumentation strategy; as the
complexity of the code grows, the number of possible paths increases expo-
nentially. We rather adopt a worst-case approach and avoid any further code
instrumentation besides the trigger calls. We demonstrate in Section 6.5
that this is not necessarily detrimental to performance.

In general, what rule to apply depends on whether branching is fully
included in a single sub-graph or not.
Branching in a single sub-graph Figure 6.4 shows the situation. We call
TA (TB) the last (first) trigger call in the preceding (following) sub-graph.
We consider two cases:

1. The minimum amount of allocated memory is outside the branching
statement, for example, at location T1 in Figure 6.4a. If so, at trigger
call TA we consider the Enext value corresponding to the most energy-
consuming branch. This means that, if the environment provisions no
additional energy since TA and the least energy-consuming branch is
taken, at T1 we are going to find a higher value for Eremaining than
we expect. This is the reason why at T1 we are forced to probe the
energy buffer to find out the exact value for Eremaining before taking a
decision to checkpoint.

2. The minimum amount of allocated memory is found in either of the
two branches, say at location T1 in Figure 6.4b. According to Sec-
tion 6.3, we place a trigger call at T1. However, an issue arises if the
other path is taken, where no trigger calls are placed. To cater for this,
we place a trigger call right outside the branching statement, say at
location T2 in Figure 6.4b. The Enext value at trigger call TA is set to
the most energy-consuming path between those leading to either T1 or

146

i
i

“thesis” — 2018/1/14 — 18:38 — page 147 — #157 i
i

i
i

i
i

6.4. Placement Rules

IF

If the ‘IF’ block executes in one complete segment

If the local minima in terms of memory is at
‘3’ then save the energy budget of the path in
‘A’ which needs highest power consumption

to reach ‘3’. 3 requires ADC operation

If the local minima is at ‘1’, we still need to
place one checkpoint outside the ‘if’ block.

Save the budget of the path in ‘A’ which needs
highest power consumption to reach either ‘3’

or ‘1’. ‘1’ requires ADC operation and will
contain the energy consumption of a path till
‘B’. Advantage: We will save energy by saving

small amount of data.

Same procedure as 1 will be applied on ‘2’, if
the local minima is at ‘2’

𝑻𝟏

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩
(a) The location of minimum allocated

memory is found outside of the
branching statement.

IF

If the ‘IF’ block executes in one complete segment

If the local minima in terms of memory is at
‘3’ then save the energy budget of the path in
‘A’ which needs highest power consumption

to reach ‘3’. 3 requires ADC operation

If the local minima is at ‘1’, we still need to
place one checkpoint outside the ‘if’ block.

Save the budget of the path in ‘A’ which needs
highest power consumption to reach either ‘3’

or ‘1’. ‘1’ requires ADC operation and will
contain the energy consumption of a path till
‘B’. Advantage: We will save energy by saving

small amount of data.

Same procedure as 1 will be applied on ‘2’, if
the local minima is at ‘2’

𝑻𝟏

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩
(b) The location of minimum allocated mem-

ory is found in either of the two branches.

Figure 6.4: Placement rules for branching statements fully included in a single sub-graph.
The battery icon indicates where probing the energy buffer is mandatory.

T2. At T1 we can spare probing the energy buffer because, provided
only one execution path exists, the energy necessary from TA to T1
is fixed. Differently, we still need to probe the energy buffer at T2.
In fact, without additional instrumentation, we cannot determine what
path is taken at run-time.

Branching across multiple sub-graphs Figure 6.5 illustrates a general ex-
ample. Following the sub-graph where the last trigger call is TA, differ-
ent sub-graphs may correspond to different paths. We may thus identify a
block in the CFG with the minimum amount of allocated memory in every
involved sub-graph. The Enext value at trigger call TA is then set to the
most energy-consuming path between the one leading to either T1 or T2.
If a single execution path exists, the trigger call along this path does not
require probing again the energy buffer, as the energy required from TA up
to the trigger call is fixed. The same does not hold for the path requiring
the least energy.

Based on a similar reasoning, the Enext value at trigger call T1 or T2 is
set to the energy required to reach T3. At the latter, however, we neces-
sarily need to probe the energy buffer; again, we cannot determine what

147

i
i

“thesis” — 2018/1/14 — 18:38 — page 148 — #158 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

IF

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝐶𝑢𝑠𝑒
2𝐶𝑢𝑠𝑒

2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

Figure 6.5: Placement rules for branching statements executing across multiple sub-
graphs. The battery icon indicates where probing the energy buffer is mandatory.

path the execution is coming from. Cases may exist where combining these
rules recursively might introduce a slight overhead. For example, if mul-
tiple branch statements are nested inside each other, all of them are forced
to probe the energy buffer at the end. A single probe operation may be,
however, sufficient.

6.4.2 Loops

When the number of iterations is known or can be statically determined,
placing trigger calls when a sub-graph includes loop statements is not an
issue. One may first exercise existing loop unrolling schemes [50]; then
apply the remainder of the techniques in this section to the resulting CFG.

Whenever the number of iterations is determined by run-time informa-
tion, however, we are faced with two challenges. First, we need to decide
whether the last (or single) trigger call inside the loop should consider as
the Enext value the energy to reach the first trigger call inside the same
loop, that is, the loop continues with the next iteration, or rather the energy
to reach the first trigger call outside the loop, that is, the execution exits

148

i
i

“thesis” — 2018/1/14 — 18:38 — page 149 — #159 i
i

i
i

i
i

6.4. Placement Rules

If the ‘WHILE’ block comes in one complete segment

“A” will save the energy budget of the to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘1’ again. ‘1’ will not require an ADC

operation

While

We will place another checkpoint at the end
of while e.g. ‘2’. ‘2’ will save the energy

budget of the path to reach ‘B’. ‘2’ will require
an ADC operation

𝑻𝟏

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩
(a) The loop executes in a single sub-graph.

If the ‘WHILE’ block does not comes in one complete
segment

“A” will save the energy budget of the path to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. ‘2’ will not require an ADC operation

We will place another checkpoint at the end
of while e.g. ‘3’. ‘3’ will save the energy

budget of the path to reach ‘B’. ‘3’ will require
an ADC operation

‘2’ will save the energy budget of the path to
reach ‘1’.

While

𝑻𝒇𝒊𝒓𝒔𝒕

𝑻𝟐

𝐶𝑢𝑠𝑒
2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

𝑻𝒍𝒂𝒔𝒕

(b) The loop executes across multiple sub-graphs.

Figure 6.6: Placement rules for loops. The battery icon indicates where probing the
energy buffer is mandatory.

the loop. Second, whenever the latter happens, it is impossible to know
how many iterations were executed without additional instrumentation, for
example, in the form of counters, which would increase the overhead.

The lack of run-time information at compile-time prevents us from tak-
ing an accurate decision here. However, loops that depend on run-time
information are likely to yield some number of iterations. Again, we need
to distinguish whether the loop is fully included in a single sub-graph or
not.
Loop in a single sub-graph Figure 6.6a illustrates the situation. Consider
TA (TB) is the last (first) trigger call in the preceding (following) sub-graph.
Inside the loop, T1 indicates the trigger call corresponding to the location
of minimum allocated memory.

The Enext value at TA is set to the energy to reach T1, which is fixed if
a single execution path exists; therefore, the trigger call at T1 may not need
to probe the energy buffer. This already implicitly considers the case that
the execution enters the loop at least once, which may be considered as the
most frequent case.

Because of the above observation, at T1 we consider the Enext value to
reach the next trigger call as the one corresponding to the execution contin-

149

i
i

“thesis” — 2018/1/14 — 18:38 — page 150 — #160 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

uing with the next iteration. In Figure 6.6a, this corresponds to the energy
to execute from T1 back to T1. In this case, if the code inside the loop
shows a single execution path, we can spare probing the energy buffer, as
the energy to reach T1 from T1 itself is fixed.

Note that the other option here would be to consider the Enext value cor-
responding to the execution exiting the loop, that is, the energy necessary to
reach the first trigger call outside the loop. If this was higher than the one to
reach T1 again, the system would likely over-checkpoint without any need.
Every time the execution reaches T1 with little energy, the system would
detect there is no sufficient energy to reach the first trigger call outside of
the loop and it would checkpoint. However, the energy may be sufficient
for another iteration of the loop if the individual iterations are less energy-
expensive than reaching the first trigger call outside of the loop. We expect
this to be the most frequent case.

Finally, we place another trigger call, indicated with T2 in Figure 6.6a,
right outside the loop. This is necessary because we have no information on
how many loop iterations executed before exiting. The last time the trigger
call at T1 is executed before the loop breaks may not checkpoint, as the
system thinks one more iteration is possible. As this reasoning is no longer
applicable when the execution exits the loop, at T2 we are forced to probe
the energy buffer to possibly checkpoint. The Enext value at T2 considers
the energy to reach TB, that is, the first trigger call in the following sub-
graph.

Loops across multiple sub-graphs Figure 6.6b illustrates a general exam-
ple. We handle this case as an extension of the previous one, with the added
complexity that multiple trigger calls are necessarily included in the loop
body because it spans multiple sub-graphs.

In this case, the last trigger call in the previous sub-graph considers the
Enext value to reach the first trigger call inside the loop, indicated with
Tfirst in Figure 6.6b. Inside the loop body, the last trigger call, that is, Tlast
in Figure 6.6b, considers the energy value Enext corresponding to contin-
uing with a further loop iteration, which leads to Tfirst. Again in the case
of a single execution path, the Enext value at Tlast to reach Tfirst is fixed,
so we can spare probing the energy buffer. This again considers the case of
the loop continuing with the following iteration as the most probable.

Right outside the loop, we still need to place a further trigger call T2,
required for the exact same reasons as the case of Figure 6.6a.

150

i
i

“thesis” — 2018/1/14 — 18:38 — page 151 — #161 i
i

i
i

i
i

6.4. Placement Rules

Function

If the ‘FUNCTION’ block does not comes in one
complete segment

“A” will save the energy budget of the path to
reach ‘1’. ‘1’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. ‘2’ will not require an ADC operation

‘2’ will save the energy budget of the path to
reach ‘3’. ‘3’ will not require an ADC operation

‘3’ will save the energy budget of the path to
reach ‘B’. ‘B’ will not require an ADC

operation

𝐶𝑢𝑠𝑒
2

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

Function Call

𝑻𝒇𝒊𝒓𝒔𝒕

𝑻𝒍𝒂𝒔𝒕

𝑻𝒓𝒆𝒕𝒖𝒓𝒏

(a) Function calls.

If the ‘ISR’ comes in one complete segment

“A” will save the energy budget of the path to
reach ‘3’. ‘3’ will not require an ADC

operations.

‘1’ will save the energy budget of the path to
reach ‘2’. Neither 1 nor 2 will require an ADC

operation

‘2’ will check if the flag is raised then
checkpoint otherwise not.

‘3’ will save the energy budget of the path to
reach ‘B’. Neither 3 nor B will require an ADC

operation

If it is evident that the checkpointing is required after reaching the next
checkpointing function then before continuing we will raise the flag ‘F’ while we
are in the current checkpointing function. We will place the checkpointing
function in the start which will check whether enough energy is left to complete
the current ISR or not. And place another checkpointing function in the end which
will check if the flag ‘F’ is raised or not, and if it is raised then checkpoint the state

𝑻𝟑

𝑻𝟏

𝑻𝟐

Interrupt Handler

𝐶𝑢𝑠𝑒
2

𝑻𝑨

𝑻𝑩

𝑻𝒏

(b) Interrupt handlers.

Figure 6.7: Placement rules for function calls and interrupt handlers. The battery icon
indicates where probing the energy buffer is mandatory.

6.4.3 Function Calls and Interrupt Handlers

Placement rules for function calls and interrupt handlers follow a similar
rationale as the previous cases.
Function calls Whenever a given execution path includes a function call,
the situation is equivalent to “inlining” the CFG of the function within the
CFG of the caller, as shown in Figure 6.7a.

If the execution of a function call spans multiple sub-graphs, at least one
trigger call is placed at a local minimum of allocated memory inside the
function. The energy value Enext at the last trigger call in the previous sub-
graph considers the energy to reach the first trigger call inside the function,
that is, Tfirst in Figure 6.7a.

The issue here is that same function may be called at multiple places in
the code. Without resorting to additional code instrumentation, it is impos-
sible to differentiate these cases. Therefore, at Tfirst we necessarily must
probe the energy buffer, as the function’s execution is unaware of where
the caller code issued the call; thus, we cannot know uniquely what is the
amount of energy spent since an arbitrary TA.

Because of the same reason, we need to place a further trigger call right
after the function returns, indicated with Treturn in Figure 6.7a. Chances
are that the local minimum in allocated memory within the sub-graph is
found right when the function returns, that is, the time when the function’s
activation record—including the memory allocated for local variables and
to resume execution of the main code—is de-allocated. The Enext value

151

i
i

“thesis” — 2018/1/14 — 18:38 — page 152 — #162 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

at the last trigger call inside a function considers the energy spent to reach
Treturn.
Interrupt handlers The case of interrupt handlers adds another challenge
to those for function calls. Without additional instrumentation, interrupt
handlers have no information on what was the situation in the execution the
handler preempted. Consider Figure 6.7b as an example. The trigger call
at TA decides not to checkpoint as the condition in equation (6.1) indicates
the execution may reach T3. An interrupt handler preempts the execution
between TA and T3. Coping with this case requires two rules in addition to
those normally applied to the code in the interrupt handler:

1. When it starts, the interrupt handler has no information on what de-
cision was taken at TA. Therefore, we place a trigger call right at the
beginning of the interrupt handler to verify that, based on remaining
energy, the next trigger call within the interrupt handler is reachable.
Probing the energy buffer is thus mandatory at T1.

2. When the interrupt handler finishes, it has no information on where
the next trigger call is located in the main code. It may happen that
the execution at TA was actually expecting to checkpoint at T3, as
we predicted we could reach T3 with just the right amount of energy.
As the interrupt handler consumes some energy per se, T3 may be
unreachable now, and we need to checkpoint before returning to the
main code. To capture these situations, every trigger call raises a flag
if it expects to checkpoint at the immediately following trigger call.
In this example, TA would raise the flag. The flag prompts an addi-
tional trigger call at the end of the interrupt handler, shown as T2 in
Figure 6.7b to checkpoint.

Finally, we need a second flag to indicate that the main code was pre-
empted. The trigger call at T3 may be one that does not require probing the
energy buffer, according to normal placement rules. This decision must be
superseded if an interrupt handler executed in between, whose energy cost
is generally not known.

6.5 Evaluation

We assess the effectiveness of HARVOS along multiple dimensions. In
the following, Section 6.5.1 describes the experimental settings, whereas
Section 6.5.2 reports on the results. Our key findings are summarized as
follows:

152

i
i

“thesis” — 2018/1/14 — 18:38 — page 153 — #163 i
i

i
i

i
i

6.5. Evaluation

• HARVOS allows transiently-powered devices to complete a fixed work-
load with with 68% fewer checkpoints, on average compared to exist-
ing approaches;

• HARVOS performance rests 19% far from that of an “oracle” that,
while unpractical in reality, knows exactly the last point in time when
to checkpoint;

• compared to existing approaches, HARVOS reduces the amount of
MCU processing whose results do not eventually become part of a
checkpoint;

• compared to existing approaches, HARVOS allows transiently-powered
devices to complete the same fixed workload using smaller energy
buffers;

• HARVOS performance is robust against implementations of different
complexity and structure, unlike existing approaches.

The following sections provide quantitative evidence of these findings.

6.5.1 Settings

Benchmarks and setup We consider publicly available C implementations
of Kalman filter [9], finite impulse response (FIR) filter [8], and Advanced
Encryption Standard (AES) [7] with key length of 256 bits. Kalman filters
are often used in embedded sensing to process accelerometer values; for
example, to predict future trends. FIR filters are equally used in embedded
sensing to filter out noise, especially when the input signal includes multi-
rate components. AES is a block-cipher algorithm widely employed in
embedded systems.

The implementations we consider include a variety of branching state-
ments, loops, and function calls; therefore, they exercise most of the trigger
placement rules described in Section 6.4. These implementations also ex-
hibit different degrees of complexity, with the Kalman filter code being
the simplest, the FIR filter code being the longest in number of lines of C
code, and the AES implementation being the one structurally most com-
plex. Overall, the benchmarks are arguably on par, and sometimes more
complex, than those considered in existing literature [19, 171]

The Kalman filter code executes a fixed workload of 1000 iterations us-
ing 48 bytes of dummy data as input, emulating the use of Kalman filter

153

i
i

“thesis” — 2018/1/14 — 18:38 — page 154 — #164 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

to process consecutive acceleration readings. Instead, we consider a sin-
gle iteration of both the FIR filter and AES implementations as they per-
form enough processing in a single iteration to raise the problem of resets
with limited energy buffers. We feed the FIR filter code with 116 bytes of
dummy data, whereas AES processes 100 bytes of dummy data for both
encryption and decryption. We consider these sizes as they are comparable
to the size of a radio packet.

These benchmark codes do not take decisions based on sensed values
or perform actuation. To introduce some degree of unpredictability, we ex-
periment with a further custom version of the Kalman filter code, where
we artificially modify the executions so that there is a 75% probability that
a dummy interrupt handler worth 10000 MCU cycles preempts the execu-
tion. The latter version serves to measure the performance of the rules in
Section 6.4.3 in an extreme case.

We consider an ARM Cortex M3 MCU aboard an ST Nucleo L152RE
board, equipped with a standard flash chip as stable storage. The board
is not specifically designed for transiently-powered operation; however,
here we are only interested in the MCU, which represents state-of-the-art
technology and was recently employed in designs with power consumption
comparable to earlier 16-bit platforms [16]. To this end, ST Nucleo boards
crucially provide a range of hooks useful to monitor the MCU execution
and isolate its power consumption. Using the ST-Link in-circuit debugger,
Kiel uVision, and a Tektronix TBS 1072B oscilloscope, we can obtain very
fine-grained information on the real hardware execution, including all the
information required at compile-time as described in Section 6.3. This is
key to the accuracy of the results.
Metrics Based on the information gathered with the setup above, we con-
sider a variable size for a capacitor used as energy buffer that we assume
to fully recharge every time is exhausted. Then, similar to existing wor-
ks [19, 171], we synthetically emulate the execution of the code and com-
pute three key metrics:

1. The number of times the MCU resets because the capacitor needs
to recharge to complete the fixed workload. This figure is inversely
proportional to the effectiveness of a given instrumentation strategy.
Given a fixed workload, the more the MCU needs to reboot, the more
the checkpointing operation is subtracting energy from useful compu-
tations. Lower values are thus better.

2. The number of wasted cycles because the MCU exhausts the energy
before reaching the next trigger call. This figure is again inversely

154

i
i

“thesis” — 2018/1/14 — 18:38 — page 155 — #165 i
i

i
i

i
i

6.5. Evaluation

proportional to the effectiveness of a certain solution. The higher is
this figure, the more a given instrumentation strategy is failing in ac-
curately identifying the last useful moment where to possibly check-
point. Lower values are thus again better.

3. The minimum size of the energy buffer that allows the MCU to com-
plete the workload under a given instrumentation strategy. For ex-
ample, depending on how the trigger calls are placed, with small ca-
pacitor sizes, the execution may not reach even the first trigger call.
This means checkpointing never happens and the system is stuck in a
live-lock situation, rebooting every time from the initial state.

Baselines We consider the loop-latch and function-return strategies of Me-
mentOS, described in Section 6.2, as representative of current approaches.

Note that the voltage threshold MementOS considers to decide whether
to checkpoint is the result of repeated emulation experiments ran with a
specific application code and user-supplied energy traces [171]. HARVOS
does not require users to supply similar traces, which may be hard to obtain
in the first place. Our solution is rather based on a worst-case analysis and
assumes that the environment provides no additional energy once the device
can reboot.

Considering this specific energy supply pattern also in the evaluation, as
we do, does not impact the results. Should the environment provide new
energy after the device reboots, equation (6.1) in Section 6.3 would capture
the new supply of energy as part of Eremaining. Similarly, the new supply of
energy would affect the execution of MementOS as soon as it is sufficient
to move the operating voltage above the threshold.

To study the performance of MementOS in a manner orthogonal to the
availability of energy traces, in our experiments we manually vary the value
of MementOS voltage threshold. This way, we are likely to cover also the
specific setting that MementOS would identify given a specific application
code, and orthogonally to energy traces. We experiment with multiple such
thresholds, always above the minimum voltage that still allows the system
to write onto the flash chip. Settings of or below 2.2V, in particular, were
never seen for MementOS in related literature [19, 171], and are likely to
play favorably to it.

In addition, we apply a brute-force search on all possible executions
of the code to identify an oracle that, by predicting how the execution is
going to unfold in the future, knows the last practical point in time when
to checkpoint. This is not feasible in reality; to make it work in a concrete
execution, one would theoretically need to place a trigger call after every

155

i
i

“thesis” — 2018/1/14 — 18:38 — page 156 — #166 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

50

100

150

200

250

300

350

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(a) Kalman filter.

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

2

4

6

8

10

12

14

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(b) FIR filter.

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

5

10

15

20

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS
Oracle

(c) AES.

Figure 6.8: Number of resets necessary to complete a fixed workload. HARVOS improves
by a 69% factor on average, with a peak improvement of 80% compared to MementOS,
while performing close to the oracle.

156

i
i

“thesis” — 2018/1/14 — 18:38 — page 157 — #167 i
i

i
i

i
i

6.5. Evaluation

instruction in the code, yielding an unbearable overhead.

6.5.2 Results

Number of resets Figure 6.8 plots the results we obtain in the number
of MCU resets for a fixed workload, with no preemption due to interrupt
handlers. As expected, bigger capacitor sizes generally correspond to fewer
resets, in that individual executions progress farther on a single charge.

Compared to either of the MementOS strategies, HARVOS completes
the fixed workload with 69% fewer resets on average, with a peak improve-
ment of 80% fewer resets. On the other hand, certain configurations exist,
especially for the FIR filter code in Figure 6.8b and for the AES implemen-
tation in Figure 6.8c, where the performance is the same. Yet, HARVOS
never performs worse than MementOS in our experiments.

Moreover, in most cases the performance of our solution rests very close
to the oracle. Notably for the Kalman filter code, the performance is often
almost the same. This demonstrates that the rationale explained in Sec-
tion 6.3 strikes an effective trade-off between opposite needs, ultimately
performing similarly to an optimal solution that is, however, unfeasible in
practice.

Comparing Figure 6.8a, obtained using the Kalman filter code, with Fig-
ure 6.8b that shows the performance with the FIR filter code as well as Fig-
ure 6.8c that depicts the performance of the AES implementation, one may
note that the performance of HARVOS is robust against diverse benchmark
codes. The Kalman filter code is 1053 lines of C code and includes a few
function calls at the outmost level of the code structure; the size of a check-
point is 442 bytes. The AES implementation is 2848 lines of C code and
it includes two loops and multiple function calls at the outmost level of the
code structure; the size of a checkpoint is 624 bytes. The FIR code is 14986
lines of C code as it includes several digital signal processing functions part
of a larger library, but includes two loops with fewer function calls than
AES at the outmost level of code structure; the size of a checkpoint is 568
bytes.

MementOS, on the other hand, shows a different behavior in terms of
how the program structure affects the performance. For a certain voltage
threshold, the performance of both MementOS strategies is very similar for
the Kalman filter code in Figure 6.8a and for the FIR filter code in Fig-
ure 6.8b. In contrast, loop-latch performs distinctively better than function-
return for the AES implementation, as shown in Figure 6.8c. In fact, one
should generally not only emulate different voltage thresholds for config-

157

i
i

“thesis” — 2018/1/14 — 18:38 — page 158 — #168 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

Capacitor size(uF)
0 100 200 300 400 500

N
um

be
r

of
 r

es
et

s

0

50

100

150

200

250

300

350

CFG-based
Oracle

Figure 6.9: Number of resets necessary to complete a fixed workload with the implemen-
tation of Kalman filter in preemptable executions. We emulate a 75% probability of
preemption by an interrupt handler. The performance is close to that of Figure 6.8a
with no interrupts. The rules of Section 6.4.3 bear minimal additional impact.

uring MementOS, but also try with different instrumentation strategies to
find the best performing configuration [171]. The process may then become
laborious.

To complement these results, Figure 6.9 depicts the number of resets
necessary to complete the Kalman filter workload with a 75% probability
that the main code is preempted by a dummy interrupt handler. As Memen-
tOS does not explicitly account for interrupt handlers, we can only compare
against the oracle here. Compared to Figure 6.8a, the performance is re-
markably similar. The strategy described in Section 6.4.3, as a result, bears
minimal additional overhead.
Explaining the improvements The gains over MementOS are intuitively
explained in Figure 6.10. MementOS employs a single voltage threshold
in all of its trigger calls. Such threshold defines a “grey region” of energy
supplies that, during the off-line emulation experiments, were found at least
once to immediately require a checkpoint, or the device would die before
reaching the next trigger call with sufficient energy to checkpoint. As soon
as MementOS enters the grey region and a trigger call is executed, a check-
point takes place without checking whether it can reach the next trigger call
given the available energy.

In contrast, our solution works in a localized fashion. Once we enter in
what MementOS would consider the grey area, every trigger call results in

158

i
i

“thesis” — 2018/1/14 — 18:38 — page 159 — #169 i
i

i
i

i
i

6.5. Evaluation

[MementOS]
Voltage

threshold

Checkpointing
not possibleVoltage

[HarvOS] Can I reach
the next T? Yes!

[HarvOS] Can I reach
the next T?

No, checkpoint!

[HarvOS] Can I reach
the next T? Yes!

[MementOS]
Did I surpass

the threshold?
Yes, checkpoint!

Figure 6.10: Graphically comparing the behavior of MementOS against HARVOS. The
voltage threshold in MementOS defines a “grey area” that corresponds to a mandatory
checkpoint as soon as it is entered. While this threshold applies globally to the whole
program and may penalize specific executions by checkpointing too early, HARVOS
can postpone the decision to checkpoint based on the specific situation.

a checkpoint only if the available energy is insufficient, in the worst-case,
to reach the next trigger call and to checkpoint there. This is, in essence,
what equation (6.1) in Section 6.3 stipulates. This reasoning allows us to
postpone checkpointing in time and space, essentially “digging” down into
the grey area as long as possible.
Wasted cycles Figure 6.11 shows the number of wasted cycles against the
capacitor size. As expected in light of the discussion of Figure 6.10, at
higher threshold voltages, MementOS wastes a higher number of cycles
because checkpoints tend to happen too early, leaving unused energy in the
buffer.

Moreover, the staircase pattern in MementOS, especially visible for the
Kalman filter code in Figure 6.11a and the FIR filter code in Figure 6.11b,
appears because both its strategies are too coarse-grained. Either the trigger
call is located at the “right” place, and so there are only a few wasted cycles,
or it is located at “wrong” place and so a lot of unused energy remains in the
buffer. In fact, MementOS placement strategies only look at the structure
of the code and not at its energy consumption patterns.

Differently, with smaller capacitors, HARVOS results in a higher num-
ber of wasted cycles than MementOS because equation (6.1) in Section 6.3
often finds Eremaining insufficient to reach the next trigger call in the worst
case. The value of Eremaining is, in fact, upper-bound by the size of the
capacitor. The worst-case analysis we apply is here counter-productive,
in that it tends to be excessively pessimistic. The larger is the capacitor,
however, the less this issue affects the operation of HARVOS, yielding in-

159

i
i

“thesis” — 2018/1/14 — 18:38 — page 160 — #170 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

cy
cl

es

#107

0

2

4

6

8

10

12

14

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(a) Kalman filter.

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

C
yc

le
s

#106

0

1

2

3

4

5

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(b) FIR filter.

Capacitor size(uF)
0 100 200 300 400 500

W
as

te
d

C
yc

le
s

#106

0

2

4

6

8

10

12

Loop-latch(2.4)
Loop-latch(2.2)
Function-return(2.4)
Function-return(2.2)
HarvOS

(c) AES.

Figure 6.11: Number of wasted cycles. Both MementOS strategies are too coarse-grained
and oblivious of energy consumption patterns. Differently, basing the checkpointing
decisions on the ability to reach the next trigger call yields increasingly precise deci-
sions with bigger capacitors.

160

i
i

“thesis” — 2018/1/14 — 18:38 — page 161 — #171 i
i

i
i

i
i

6.5. Evaluation

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

20

40

60

80

100

120

Loop-latch
Function-return
HarvOS

(a) Kalman filter.

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

10

20

30

40

50

60

70

80

Loop-latch
Function-return
HarvOS

(b) FIR filter.

Voltage threshold(V)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
ap

ac
ito

r
si

ze
(u

F
)

0

10

20

30

40

50

60

70

80

Loop-latch
Function-return
HarvOS

(c) AES.

Figure 6.12: Minimum capacitor size required to complete the three benchmarks. Me-
mentOS places trigger calls too far from each other, and thus requires bigger capaci-
tors to complete the workload. Our placement rules allows the system to complete the
workload with smaller capacitors.

161

i
i

“thesis” — 2018/1/14 — 18:38 — page 162 — #172 i
i

i
i

i
i

Chapter 6. "When and Where?" : HarvOS

creasingly precise checkpoint decisions that reduce the number of wasted
cycles.
Minimum size of energy buffer Figure 6.12 reports the minimum capaci-
tor size required to complete the three benchmarks, against different thresh-
old voltages for MementOS.

When operated under lower threshold voltages, MementOS finishes the
execution only with bigger capacitors. This is essentially a result of its logic
for placing triggers and of basing the decision to checkpoint on voltage
levels. Without reasoning on the energy necessary to reach the next trigger
call, MementOS may place trigger calls too far from each other. Under
lower threshold voltages, the execution may then continue “blindly” up to
a point when insufficient energy is left to complete the checkpoint, namely
it is too late to checkpoint. To remedy this, a bigger capacitor is needed.

In contrast, our solution allows one to employ smaller capacitors. The
splitting of the CFG in sub-graphs whose stretch is at most equal to the
number of cycles the MCU can execute in a worst-case situation, as ex-
plained in Section 6.3, rules out the possibility of placing trigger calls too
far apart. In fact, our performance in Figure 6.12 is independent of the volt-
age threshold used by MementOS. At each trigger call, we again decide
whether to continue the execution or to checkpoint based on the ability to
reach the next trigger call with sufficient energy to checkpoint there, as
equation (6.1) indicates. The ability to complete a given workload with
smaller capacitors may be particularly beneficial in applications requiring
quick recharge times.

6.6 Summary

HARVOS operates at compile-time based on the control-flow graph (CFG)
of the program. Trigger calls are placed by looking at the worst-case energy
cost required to reach the next trigger call and depending on the program
structure as represented in the CFG. The information collected at compile-
time also enables to spare the energy-intensive probing of the energy buffers
whenever possible. The combination of these techniques allows the system
to take informed decisions at every trigger call on whether to continue with
the normal execution or to rather checkpoint. Our evaluation of the ap-
proach, based on three diverse benchmarks, indicates that our techniques
allow transiently-powered devices to complete a given workload with 68%
fewer checkpoints, compared to existing literature. Our performance also
rests only 19% far from that of an “oracle” that would know exactly the
last point in time when a checkpoint is required. The performance of HAR-

162

i
i

“thesis” — 2018/1/14 — 18:38 — page 163 — #173 i
i

i
i

i
i

6.6. Summary

VOS may further improve by removing, whenever possible, the worst-case
assumption at the cost of additional code instrumentation.

163

i
i

“thesis” — 2018/1/14 — 18:38 — page 164 — #174 i
i

i
i

i
i

i
i

“thesis” — 2018/1/14 — 18:38 — page 165 — #175 i
i

i
i

i
i

CHAPTER7
Conclusion and Future Directions

This thesis has presented a set of tools that enable checkpointing of the
program state on stable storage, along with its later recovery, with minimal
latency and energy consumption [28,29] for transiently-powered embedded
system. This pushes the boundaries of the embedded sensing and enables
richer data collection.

In the first part of the thesis, we presented the detailed analysis of the ex-
isting energy harvesting and wireless energy transfer solutions for wireless
sensor networks (WSNs) [27]. We defined desirable properties that energy
harvesting and wireless transfer techniques must present to enable their use
in WSN applications, we surveyed and classified existing solutions, and
argued about their applicability in different deployment environments.

Later, we conducted a comprehensive survey of the state of the art for
transiently-powered embedded systems and classified them into three cat-
egories: "out-of-place", "in-place" and "non-volatile processor" solutions.
Overall, "out-of-place" checkpointing solutions target mainstream embed-
ded sensing architectures, employing a volatile main memory for efficient
processing, and NVM as external storage.

"In-place" checkpointing solutions relieve the system from checkpoint-
ing main memory but it increases the energy consumption during normal

165

i
i

“thesis” — 2018/1/14 — 18:38 — page 166 — #176 i
i

i
i

i
i

Chapter 7. Conclusion and Future Directions

computations, due to the use of FRAM as main memory. Although they are
commercially available, they are not widespread and still far from massive
production. On the other hand, "non-volatile processors" solutions relieve
the system from checkpoints altogether, yet require dedicated processor de-
signs and do not exist commercially. Both these solutions, "in-place" and
"non-volatile processors", are beneficial only under those scenarios where
power interruptions happen very frequently.

In the second part of the thesis, we formalized the challenge of tran-
siently powered embedded systems, i.e., enabling applications to make
progress across periods of energy unavailability, into three high-level re-
search questions:

• How to enable efficient checkpointing mechanism?
We presented techniques to checkpoint and restore a device’s state on
stable storage, catering for scenarios where devices opportunistically
harvest energy from the ambiance or are provided with wireless en-
ergy transfer mechanisms. Our work aims at reducing the time for
these operations and at minimizing their energy cost. We target mod-
ern 32-bit MCUs and currently available flash chips (but can extend to
any type of NVM), making the checkpoint and restore routines avail-
able to programmers through a pair of simple C functions. The three
storage modes we designed in support expose different trade-offs that
depend on the memory span, its occupation, the possible fragmenta-
tion, and the read/write patterns in memory. The experimental results
we gathered allowed us to quantify these trade-offs and discern the ap-
plication’s characteristics that would make one storage mode prefer-
able over another.

• What to checkpoint?
Our efforts to design efficient checkpointing mechanism revealed that
the key aspect of any system should be its ability to automatically and
efficiently estimate the minimal application checkpoint state, which
is required to ensure forward progress. We designed DICE, which
is a set of compile-time techniques for transiently-powered systems
to reduce the amount of data needed to write on NVM during check-
points. We conceived different ways to track changes in main mem-
ory, depending on what memory segment these reside on, as well as
lightweight code instrumentation strategies with dedicated customiza-
tion depending upon how checkpoints are possibly triggered. DICE
helps existing system support to complete a given workload with i)
smaller energy-buffers, ii) fewer checkpoints, and thus better energy

166

i
i

“thesis” — 2018/1/14 — 18:38 — page 167 — #177 i
i

i
i

i
i

7.1. Future Directions

efficiency, and iii) reduced execution latency. Our experimental eval-
uation, based on a combination of three benchmarks across three dif-
ferent existing system support and two different hardware platforms,
provides quantitative evidence. For example, using DICE, HARVOS
can complete the execution of the RSA algorithm with 86% fewer
checkpoints, resulting in better overall energy utilization and a 34%
reduction in execution latency.

• Where and when to trigger checkpointing mechanism?
We proposed HARVOS that operates at compile-time. It inserts trig-
ger calls by looking at the worst-case energy cost required to reach the
next trigger call, depending on the program structure as represented
in the CFG. The information collected at compile-time also enables
to spare the energy-intensive probing of the energy buffers whenever
possible. The combination of these techniques allow the system to
take informed decisions at every trigger call on whether to continue
with the normal execution or to rather checkpoint. Our evaluation of
the approach, based on three diverse benchmarks, indicates that our
techniques allow transiently-powered embedded devices to complete
a given workload with 68% fewer checkpoints, compared to existing
literature. Our performance also rests only 19% far from that of an
“oracle” that would know exactly the last point in time when a check-
point is required. The performance of HARVOS may further improve
by removing, whenever possible, the worst-case assumption at the cost
of additional code instrumentation.

7.1 Future Directions

As we explained earlier in chapter 6, HARVOS split the CFG of the pro-
gram into sub-graphs. One logical continuation of our work is to exploit
these sub-graphs to further reduce the size of system state that we need
to checkpoint to ensure forward progress of application. Within each sub-
graph, we can find two types of data structures: those that are local and do
not affect the outcome of other sub-graphs, and the others that are shared
among different sub-graphs and have a direct effect on the outcome of other
sub-graphs. In future, we will further optimize the application checkpoint
state size by saving only those data structures that are being shared among
different sub-graphs of the program. Saving only such data structures will
greatly reduce the checkpoint state size while preserving forward progress.
We will automatically identify which data structures are overlapping in dif-
ferent subgraphs and then only save those data structures.

167

i
i

“thesis” — 2018/1/14 — 18:38 — page 168 — #178 i
i

i
i

i
i

Chapter 7. Conclusion and Future Directions

Also, we will provide application-specific customizations by providing
simple API, as only developers know what are the conditions that render
restored state effectively usable when a device re-starts. The API will allow
the programmer to set time-related validity constraints on application state.
As the time a device remains without energy is unpredictable, programmers
will need to check the state validity before using it. This may be necessary
because part of the state may bear time-related validity constraints, as in
the case of sensor data.

168

i
i

“thesis” — 2018/1/14 — 18:38 — page 169 — #179 i
i

i
i

i
i

Bibliography

[1] Honeywell Inc: Honeywell Process Solutions—White Paper. tinyurl.com/
honeywell-whitepaper.

[2] mbed. tinyurl.com/pkgoy6d, 2015.

[3] STM32 32-bit ARM Cortex MCUs. tinyurl.com/STM32bitMCU, 2015.

[4] STM32 Cube. tinyurl.com/STM32CubeMX, 2015.

[5] TinyOS CTP tree routing . tinyurl.com/TreeRouting, 2015.

[6] TinyOS Link Estimator. tinyurl.com/LinkEstimator, 2015.

[7] AES C implementation for Mbed platform. goo.gl/PBjhoF, 2016.

[8] FIR Filter C implementation for Mbed platform. goo.gl/yFyUyX, 2016. Accessed: 10-
13-2016.

[9] Kalman Filter C implementation for Mbed platform. goo.gl/ikzYFt, 2016. Accessed:
30-9-2016.

[10] mBed OS energy profiler. goo.gl/dghhd4, 2016. Accessed: 11-10-2016.

[11] Yuvraj Agarwal et al. Duty-cycling Buildings Aggressively: The Next Frontier in HVAC
Control. In IPSN, 2011.

[12] Fayaz Akhtar and Mubashir Husain Rehmani. Energy replenishment using renewable and
traditional energy resources for sustainable wireless sensor networks: A review. Renewable
and Sustainable Energy Reviews, 45:769–784, 2015.

[13] L. Almeida, P. Pedreiras, and J. Fonseca. The FTT-CAN protocol: Why and how. IEEE
Trans. on Industrial Electronics, 49(6), 2002.

[14] Shaban Almouahed, Manuel Gouriou, Chafiaa Hamitouche, Eric Stindel, and Christian Roux.
The use of piezoceramics as electrical energy harvesters within instrumented knee implant
during walking. IEEE/ASME Transactions on Mechatronics, 16(5):799–807, 2011.

[15] P Anacleto, PM Mendes, E Gultepe, and DH Gracias. 3d small antenna for energy harvest-
ing applications on implantable micro-devices. In Antennas and Propagation Conference
(LAPC), 2012 Loughborough, pages 1–4. IEEE, 2012.

169

tinyurl.com/honeywell-whitepaper
tinyurl.com/honeywell-whitepaper
tinyurl.com/pkgoy6d
tinyurl.com/STM32bitMCU
tinyurl.com/STM32CubeMX
tinyurl.com/TreeRouting
tinyurl.com/LinkEstimator
goo.gl/PBjhoF
goo.gl/yFyUyX
goo.gl/ikzYFt
goo.gl/dghhd4

i
i

“thesis” — 2018/1/14 — 18:38 — page 170 — #180 i
i

i
i

i
i

Bibliography

[16] Michael Andersen et al. System design for a synergistic, low power mote/BLE embedded
platform. In IPSN, 2016.

[17] Robert E Armstrong. Bio-inspired innovation and national security. Smashbooks, 2010.

[18] S. Arra et al. Ultrasonic power and data link for wireless implantable applications. In 2nd
International Symposium on Wireless Pervasive Computing, 2007. ISWPC ’07., pages –, Feb
2007.

[19] Alberto Arreola et al. Approaches to transient computing for energy harvesting systems: A
quantitative evaluation. In ENSSYS, 2015.

[20] Domenico Balsamo, Ali Elboreini, Bashir Al-Hashimi, and Geoffrey Merrett. Exploring arm
mbed support for transient computing in energy harvesting iot systems. 2017.

[21] Domenico Balsamo et al. Hibernus: Sustaining computation during intermittent supply for
energy-harvesting systems. IEEE Embedded Systems Letters, 7(1), 2015.

[22] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Davide Brunelli,
Bashir M Al-Hashimi, Geoff V Merrett, and Luca Benini. Hibernus++: A self-calibrating and
adaptive system for transiently-powered embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(12):1968–1980, 2016.

[23] Xiaoqi Bao, Will Biederman, Stewart Sherrit, Mircea Badescu, Yoseph Bar-Cohen, Christo-
pher Jones, Jack Aldrich, and Zensheu Chang. High-power piezoelectric acoustic-electric
power feedthru for metal walls. In The 15th International Symposium on: Smart Structures
and Materials & Nondestructive Evaluation and Health Monitoring, pages 69300Z–69300Z.
International Society for Optics and Photonics, 2008.

[24] Michael Barr and Anthony Massa. Programming Embedded Systems. O’Relly Media, 2006.

[25] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[26] Naveed Anwar Bhatti et al. Sensors with Lasers: Building a WSN Power Grid. In IPSN,
2014.

[27] Naveed Anwar Bhatti et al. Energy harvesting and wireless transfer in sensor network appli-
cations: Concepts and experiences. ACM TOSN, 12, 2016.

[28] Naveed Anwar Bhatti and Luca Mottola. Efficient state retention for transiently-powered
embedded sensing. In EWSN, 2016.

[29] Naveed Anwar Bhatti and Luca Mottola. Harvos: Efficient code instrumentation for
transiently-powered embedded sensing. In Proceedings of the 16th ACM/IEEE International
Conference on Information Processing in Sensor Networks, IPSN ’17, pages 209–219, New
York, NY, USA, 2017. ACM.

[30] Suzhi Bi, Chin Keong Ho, and Rui Zhang. Wireless powered communication: opportunities
and challenges. IEEE Communications Magazine, 53(4):117–125, 2015.

[31] William C. Brown. Experiments involving a microwave beam to power and position a heli-
copter. IEEE Transactions on Aerospace and Electronic Systems, AES-5(5):692–702, Sept
1969.

[32] Davide Brunelli, Luca Benini, Clemens Moser, and Lothar Thiele. An efficient solar energy
harvester for wireless sensor nodes. In Proceedings of the conference on Design, automation
and test in Europe, pages 104–109. ACM, 2008.

[33] Bernhard Buchli et al. Battery state-of-charge approximation for energy harvesting embedded
systems. In EWSN, 2013.

170

i
i

“thesis” — 2018/1/14 — 18:38 — page 171 — #181 i
i

i
i

i
i

Bibliography

[34] Bernhard Buchli et al. Dynamic power management for long-term energy neutral operation of
solar energy harvesting systems. In Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, SenSys ’14, pages 31–45, 2014.

[35] Michael Buettner et al. RFID Sensor Networks with the Intel WISP. In SENSYS, 2008.

[36] Scott Calabrese Barton, Josh Gallaway, and Plamen Atanassov. Enzymatic biofuel cells for
implantable and microscale devices. Chemical reviews, 104(10):4867–4886, 2004.

[37] Bradford Campbell et al. Energy-harvesting thermoelectric sensing for unobtrusive water and
appliance metering. In Proceedings of the 2nd International Workshop on Energy Neutral
Sensing Systems, pages 7–12. ACM, 2014.

[38] Michele Ceriotti et al. Is there light at the ends of the tunnel? wireless sensor networks for
adaptive lighting in road tunnels. In 10th International Conference on Information Processing
in Sensor Networks (IPSN), 2011, pages 187–198. IEEE, 2011.

[39] Jayant Charthad et al. A mm-sized implantable device with ultrasonic energy transfer and
rf data uplink for high-power applications. In IEEE Proceedings of the Custom Integrated
Circuits Conference (CICC), 2014, pages 1–4. IEEE, 2014.

[40] James L Chen et al. A novel vertical axis water turbine for power generation from water
pipelines. Energy, pages 184–193, 2013.

[41] Y. Chen et al. Surviving sensor network software faults. In SOSP, 2009.

[42] Eileen Y. Chou et al. Mixed-signal integrated circuits for self-contained sub-cubic millimeter
biomedical implants. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2010 IEEE International, 2010.

[43] W.C. Chye et al. Electromagnetic micro power generator: A comprehensive survey. In IEEE
Symposium on Industrial Electronics Applications (ISIEA), 2010, pages 376–382. IEEE,
2010.

[44] Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable intermittent pro-
grams. SIGPLAN Not., 51(10):514–530, October 2016.

[45] Peng Cong et al. A wireless and batteryless 10-bit implantable blood pressure sensing mi-
crosystem with adaptive rf powering for real-time laboratory mice monitoring. IEEE Journal
of Solid-State Circuits, pages 3631–3644, 2009.

[46] Haipeng Dai, Lintong Jiang, Xiaobing Wu, D.K.Y. Yau, Guihai Chen, and Shaojie Tang. Near
optimal charging and scheduling scheme for stochastic event capture with rechargeable sen-
sors. In IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS),
2013, pages 10–18. IEEE, 2013.

[47] Haipeng Dai, Yunhuai Liu, Guihai Chen, Xiaobing Wu, and Tian He. Safe charging for
wireless power transfer. In INFOCOM, 2014 Proceedings IEEE, pages 1105–1113. IEEE,
2014.

[48] Haipeng Dai, Yunhuai Liu, Guihai Chen, Xiaobing Wu, and Tian He. Scape: Safe charging
with adjustable power. In IEEE 34th International Conference on Distributed Computing
Systems (ICDCS), 2014, pages 439–448. IEEE, 2014.

[49] Jianing Dai, Jun-Jian Wang, Alex T Chow, and William H Conner. Electrical energy pro-
duction from forest detritus in a forested wetland using microbial fuel cells. GCB Bioenergy,
7(2):244–252, 2015.

[50] Jack Davidson and Sanjay Jinturkar. Improving instruction level parallelism by loop unrolling
and dynamic memory disambiguation. In MICRO, 1995.

171

i
i

“thesis” — 2018/1/14 — 18:38 — page 172 — #182 i
i

i
i

i
i

Bibliography

[51] Carlisto de Alvarenga et al. A notification architecture for smart cities based on push tech-
nologies. In Computing Conference (CLEI), 2014 XL Latin American, pages 1–8. IEEE,
2014.

[52] Marc De Kruijf and Karthikeyan Sankaralingam. Idempotent code generation: Implemen-
tation, analysis, and evaluation. In Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 1–12. IEEE Computer Society,
2013.

[53] Antonio Carlos M. de Queiroz. Electrostatic generators for vibrational energy harvesting.
In IEEE Fourth Latin American Symposium on Circuits and Systems (LASCAS), 2013, pages
1–4, 2013.

[54] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. Monjolo: An energy-harvesting en-
ergy meter architecture. In Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems, page 18. ACM, 2013.

[55] Martin Deterre, Elie Lefeuvre, Yanan Zhu, Marion Woytasik, Bertrand Boutaud, and Renzo
Dal Molin. Micro blood pressure energy harvester for intracardiac pacemaker. Journal of
Microelectromechanical Systems, 23(3):651–660, 2014.

[56] Daniele Dondi et al. A WSN System Powered by Vibrations to Improve Safety of Machinery
with Trailer. In IEEE Sensors, 2012.

[57] Conrad Donovan, Alim Dewan, Deukhyoun Heo, and Haluk Beyenal. Batteryless, wireless
sensor powered by a sediment microbial fuel cell. Environmental science & technology,
42(22):8591–8596, 2008.

[58] Nelson I. Dopico et al. Performance assessment of a kinetically-powered network for herd
localization. Computers and Electronics in Agriculture, 87:74–84, 2012.

[59] Prabal Dutta et al. Energy metering for free: Augmenting switching regulators for real-time
monitoring. In IPSN, 2008.

[60] Energous. WattUp. http://energous.com/technology/, 2015.

[61] Deborah Estrin et al. Next century challenges: Scalable coordination in sensor networks. In
Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing
and Networking, MobiCom ’99, 1999.

[62] Deborah Estrin et al. Connecting the physical world with pervasive networks. IEEE Pervasive
Computing, 1, 2002.

[63] H. A. Nguyen et al. Sensor node lifetime: An experimental study. In IEEE PerCom 2011,
21-25 March 2011, 2011.

[64] R. Smith et al. Surviving peripheral failures in embedded systems. In USENIX ATC, 2015.

[65] Timothy Ewing et al. Self-powered wastewater treatment for the enhanced operation of a
facultative lagoon. Journal of Power Sources, 269:284–292, 2014.

[66] Luca Filipponi et al. Smart city: An event driven architecture for monitoring public spaces
with heterogeneous sensors. In Fourth International Conference on Sensor Technologies and
Applications (SENSORCOMM), 2010, pages 281–286. IEEE, 2010.

[67] Emanuele Frontoni et al. Energy harvesting for smart shoes: A real life application. 2013
ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applica-
tions, pages V004T08A034–V004T08A034, August 2013.

[68] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis. Col-
lection Tree Protocol. In SENSYS, 2009.

172

http://energous.com/technology/

i
i

“thesis” — 2018/1/14 — 18:38 — page 173 — #183 i
i

i
i

i
i

Bibliography

[69] Yanming Gong et al. Benthic microbial fuel cell as direct power source for an acoustic mo-
dem and seawater oxygen/temperature sensor system. Environmental Science & Technology,
45(11):5047–5053, 2011.

[70] Maria Gorlatova et al. Challenge: ultra-low-power energy-harvesting active networked tags
(EnHANTs). In In Proceedings of the 15th annual international conference on Mobile com-
puting and networking Mobicom ’09, pages 253–260. ACM, Sept. 2009.

[71] Daniel J. Graham et al. Investigation of methods for data communication and power delivery
through metals. IEEE Transactions on Industrial Electronics, 58(10):4972–4980, 2011.

[72] Jeremy Gummeson et al. On the limits of effective hybrid micro-energy harvesting on mo-
bile crfid sensors. In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’10, pages 195–208. ACM, 2010.

[73] Julian Gutierrez et al. Automated irrigation system using a wireless sensor network and gprs
module. IEEE Transactions on Instrumentation and Measurement, 63(1):166–176, 2014.

[74] Gerhard Hancke and N.A. Vorster. The feasibility of using resonant inductive power transfer
to recharge wireless sensor network nodes. In Wireless Power Transfer Conference (WPTC),
2014 IEEE, pages 100–105. IEEE, May 2014.

[75] Abhiman Hande, Todd Polk, William Walker, and Dinesh Bhatia. Indoor Solar Energy Har-
vesting for Sensor Network Router Nodes . Microprocessors and Microsystems, 31(6), 2007.

[76] HART Communication Foundation. WirelessHART. http://en.hartcomm.org/
main_article/wirelesshart.html, 2015.

[77] Andreas Hasler et al. Wireless sensor networks in permafrost research concept, require-
ments, implementation and challenges. In Proc. 9th International Conference on Permafrost
(NICOP), volume 1, pages 669–674, Jun 2008.

[78] John Heidemann et al. Research challenges and applications for underwater sensor network-
ing. volume 1, pages 228–235. IEEE, 2006.

[79] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Tragedy of the coulombs: Federating
energy storage for tiny, intermittently-powered sensors. In SENSYS, 2015.

[80] J. Hester et al. Flicker: Rapid prototyping for the batteryless internet-of-things. In SenSys,
2017.

[81] J. Hester et al. New directions: The future of sensing is batteryless, intermittent, and awe-
some. In SenSys, 2017.

[82] Matthew Hicks. Clank: Architectural support for intermittent computation. In Proceedings of
the 44th Annual International Symposium on Computer Architecture, pages 228–240. ACM,
2017.

[83] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order func-
tional programs. In POPL, 2003.

[84] Martin Hofmann and Steffen Jost. Type-based amortised heap-space analysis. In ESOP,
2006.

[85] Te-Chien Hou et al. Triboelectric nanogenerator built inside shoe insole for harvesting walk-
ing energy. Nano Energy, 2(5):856–862, 2013.

[86] Hongping Hu et al. Wireless energy transmission through a thin metal wall by shear wave
using two piezoelectric transducers. In Ultrasonics Symposium, 2008. IUS 2008. IEEE, pages
2165–2168. IEEE, 2008.

[87] Yuantai Hu et al. Transmitting electric energy through a metal wall by acoustic waves using
piezoelectric transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 50:2165–2168, 2008.

173

http://en.hartcomm.org/main_article/wirelesshart.html
http://en.hartcomm.org/main_article/wirelesshart.html

i
i

“thesis” — 2018/1/14 — 18:38 — page 174 — #184 i
i

i
i

i
i

Bibliography

[88] IAR Systems. IAR Embedded Workbench Cortex M Edition. tinyurl.com/
arm-m-workbench, 2015.

[89] IAR Systems. Mastering Stack and Heap for System Reliability. tinyurl.com/
iar-stack-heap, 2015.

[90] Texas Instrument Inc. Intelligent system state restoration after power failures with compute
through power loss utility, jun 2017.

[91] International Society of Automation. ISA100.11a. https://www.isa.org/isa100/,
2015.

[92] O. Iova et al. Rpl: The routing standard for the internet of things... or is it? IEEE Communi-
cations Magazine, 54(12), 2016.

[93] Hrishikesh Jayakumar et al. QuickRecall: A low overhead HW/SW approach for enabling
computations across power cycles in transiently powered computers. In VLSI Design, 2014.

[94] Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan. Energy-aware
memory mapping for hybrid fram-sram mcus in intermittently-powered iot devices. ACM
Trans. Embed. Comput. Syst., 16(3):65:1–65:23, April 2017.

[95] Xiaofan Jiang et al. Perpetual environmentally powered sensor networks. In 4rth Interna-
tional Symposium on Information Processing in Sensor Networks, 2005. IPSN 2005., pages
463–468. IEEE, 2005.

[96] O. Jonah and S.V. Georgakopoulos. Wireless power transmission to sensors embedded in
concrete via magnetic resonance. In IEEE 12th Annual Wireless and Microwave Technology
Conference (WAMICON), 2011, pages 1–6. IEEE, 2011.

[97] Salman Kahrobaee and Mehmet C. Vuran. Vibration energy harvesting for wireless under-
ground sensor networks. In ICC, 2013.

[98] Nobuo Kaku et al. Plant/microbe cooperation for electricity generation in a rice paddy field.
Applied microbiology and biotechnology, 79(1):43–49, 2008.

[99] Kai Kang. Multi-source energy harvesting for wireless sensor nodes. 2012.

[100] Stella J. Karavas et al. VoltreePower. http://www.voltreepower.com, 2007.

[101] Zahid Kausar et al. Energizing wireless sensor networks by energy harvesting systems:
Scopes, challenges and approaches. Renewable and Sustainable Energy Reviews, 38:973–
989, 2014.

[102] S. Khanna, S. C. Bartling, M. Clinton, S. Summerfelt, J. A. Rodriguez, and H. P. McAdams.
An fram-based nonvolatile logic mcu soc exhibiting 100retention at rmV DD = 0 v achiev-
ing zero leakage with lt; 400-ns wakeup time for ulp applications. IEEE Journal of Solid-State
Circuits, 49(1):95–106, 2014.

[103] M. Kluge et al. Remote acoustic powering and data transmission for sensors inside of con-
ductive envelopes. In Sensors, 2008 IEEE, pages 41–44. IEEE, 2008.

[104] JeongGil Ko et al. Low power or high performance? a tradeoff whose time has come (and
nearly gone). In Proceedings of the 9th European Conference on Wireless Sensor Networks
(EWSN), pages 98–114. Springer, 2012.

[105] Richard Koo and Sam Toueg. Checkpointing and Rollback-recovery for Distributed Systems.
In Proceedings of ACM Fall Joint Computer Conference, 1986.

[106] P. Koopman. Better Embedded System Software. CMU Press, 2010.

[107] Haluk Kulah and K. Najafi. An electromagnetic micro power generator for low-frequency en-
vironmental vibrations. In 17th IEEE International Conference on Micro Electro Mechanical
Systems, 2004, pages 237–240. IEEE, 2004.

174

tinyurl.com/arm-m-workbench
tinyurl.com/arm-m-workbench
tinyurl.com/iar-stack-heap
tinyurl.com/iar-stack-heap
https://www.isa.org/isa100/
http://www.voltreepower.com

i
i

“thesis” — 2018/1/14 — 18:38 — page 175 — #185 i
i

i
i

i
i

Bibliography

[108] Ye Kuo et al. Mbus: A 17.5 pj/bit/chip portable interconnect bus for millimeter-scale sensor
systems with 8 nw standby power. In IEEE Proceedings of the Custom Integrated Circuits
Conference (CICC), 2014, pages 1–4. IEEE, 2014.

[109] Gudan Kurilj et al. A 2.4ghz ambient rf energy harvesting system with -20dbm minimum
input power and nimh battery storage. In RFID Technology and Applications Conference
(RFID-TA), 2014 IEEE, pages 7–12. IEEE, 2014.

[110] Andre Kurs et al. Wireless power transfer via strongly coupled magnetic resonances. science,
317(5834):83–86, 2007.

[111] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analy-
sis & transformation. In Proceedings of the international symposium on Code generation and
optimization: feedback-directed and runtime optimization, page 75. IEEE Computer Society,
2004.

[112] Andrew Leakey et al. Physiological and ecological significance of sunflecks for dipterocarp
seedlings. Journal of Experimental Botany, 56(411):469–482, 2005.

[113] E.A. Lee. Cyber Physical Systems: Design Challenges. In IEEE ISORC, 2008.

[114] Charles Leech, Yordan P Raykov, Emre Ozer, and Geoff V Merrett. Real-time room occu-
pancy estimation with bayesian machine learning using a single pir sensor and microcon-
troller. In Sensors Applications Symposium (SAS), 2017 IEEE, pages 1–6. IEEE, 2017.

[115] Marc Leeman, Geert Deconinck, Vincenzo De Florio, David Atienzà, Jose M Mendias, Chan-
tal Ykman, Francky Catthoor, and Rudy Lauwereins. Methodology for refinement and opti-
mization of dynamic memory management for embedded systems in multimedia applications.
In Signal Processing Systems, 2003. SIPS 2003. IEEE Workshop on, pages 369–374. IEEE,
2003.

[116] Ke Li, Hao Luan, and Chien-Chung Shen. Qi-ferry: Energy-constrained Wireless Charging
in Wireless Sensor Networks. In WCNC, 2012.

[117] Mo Li and Yunhao Liu. Underground coal mine monitoring with wireless sensor networks.
ACM Transactions on Sensor Networks (TOSN), 5(2):10, 2009.

[118] Zi Li, Yang Peng, Wensheng Zhang, and Daji Qiao. J-roc: A joint routing and charging
scheme to prolong sensor network lifetime. In Proceedings of the IEEE International Con-
ference on Network Protocols (ICNP), pages 373–382. IEEE, 2011.

[119] Dawei Liang and Joana Almeida. Highly efficient solar-pumped nd: Yag laser. Optics express,
19(27):26399–26405, 2011.

[120] Kris Lin, Jennifer Yu, Jason Hsu, Sadaf Zahedi, David Lee, Jonathan Friedman, Aman
Kansal, Vijay Raghunathan, and Mani Srivastava. Heliomote: enabling long-lived sensor
networks through solar energy harvesting. In Proceedings of the 3rd international conference
on Embedded networked sensor systems, pages 309–309. ACM, 2005.

[121] Bitsch Link et al. Burrowview - seeing the world through the eyes of rats. In Proceedings of
the Second IEEE International Workshop on Information Quality and Quality of Service for
Pervasive Computing (IQ2S 2010), Mannheim, Germany, pages 56–61. IEEE, 2010.

[122] Peng Liu et al. eLighthouse: Enhance Solar Power Coverage in Renewable Sensor Networks.
IJDSN, 2013.

[123] Vincent Liu et al. Ambient backscatter: Wireless communication out of thin air. SIGCOMM
Comput. Commun. Rev., 43(4):39–50, 2013.

[124] Vincent Liu et al. Ambient backscatter: Wireless communication out of thin air. In SIG-
COMM, 2013.

175

i
i

“thesis” — 2018/1/14 — 18:38 — page 176 — #186 i
i

i
i

i
i

Bibliography

[125] Markus Lohndorf et al. Evaluation of energy harvesting concepts for tire pressure monitoring
systems. Proceedings of Power MEMS, pages 331–334, 2007.

[126] Konrad Lorincz et al. Deploying a wireless sensor network on an active volcano. In IEEE
Internet Computing, volume 10, pages 18–25. IEEE, 2006.

[127] Marianne Lossec et al. Sizing optimization of a thermoelectric generator set with heatsink for
harvesting human body heat. Energy Conversion and Management, 68:260–265, 2013.

[128] Christopher Love et al. Source of sustained voltage difference between the xylem of a potted
ficus benjamina tree and its soil. PloS one, 3, 2008.

[129] Xiao Lu et al. Wireless networks with rf energy harvesting: A contemporary survey. IEEE
Communications Surveys & Tutorials, 17(2):757–789, 2015.

[130] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. In PLDI, 2005.

[131] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. In PLDI, 2015.

[132] G. Lukosevicius et al. Using sleep states to maximize the active time of transient computing
systems. In ENSsys (with SenSys), 2017.

[133] Kevin MacVittie, Jan Halamek, Lenka Halamkova, Mark Southcott, William D. Jemison,
Robert Lobel, and Evgeny Katz. From "cyborg" lobsters to a pacemaker powered by im-
plantable biofuel cells. Energy and Environmental Science, 6(1):81–86, 2013.

[134] Alan Mainwaring et al. Wireless sensor networks for habitat monitoring. 2002.

[135] Andrew Markham et al. Revealing the hidden lives of underground animals using magneto-
inductive tracking. In 8th ACM Conference on Embedded Networked Sensor Systems (Sensys
2010). Zurich, Switzerland, pages 281–294. ACM, November 2010.

[136] Paul Martin et al. Doubledip: Leveraging thermoelectric harvesting for low power monitoring
of sporadic water use. In Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, pages 225–238. ACM, 2012.

[137] Cian O MathÃºna et al. Energy scavenging for long-term deployable wireless sensor net-
works. Talanta, 75(3):613–623, 2008.

[138] Hiroshi Matsumoto. Research on solar power satellites and microwave power transmission in
japan. IEEE microwave magazine, 3(4):36–45, 2002.

[139] Scott Meninger, Jose Oscar Mur-Miranda, Rajeevan Amirtharajah, Anantha Chandrakasan,
and Jeffrey H Lang. Vibration-to-electric energy conversion. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 9(1):64–76, 2001.

[140] Unnikrishna Menon et al. Wireless power transfer to underground sensors using resonant
magnetic induction. In Tenth International Conference on Wireless and Optical Communica-
tions Networks (WOCN), 2013, pages 1–5. IEEE, 2013.

[141] Nicole Metje et al. Real time condition monitoring of buried water pipes. Tunnelling and
Underground Space Technology, 28:315–320, 2012.

[142] K. Mihic et al. Mstore: Enabling storage-centric sensornet research. In IPSN, 2007.

[143] Debabrata Mishra et al. Smart rf energy harvesting communications: challenges and oppor-
tunities. Communications Magazine, IEEE, 53(4):70–78, 2015.

[144] Masaki Mizunoand and D. G. Chetwynd. Investigation of a resonance microgenerator. Jour-
nal of Micromechanics and Microengineering, 13, 2003.

176

i
i

“thesis” — 2018/1/14 — 18:38 — page 177 — #187 i
i

i
i

i
i

Bibliography

[145] S. Venkata Mohan et al. Harnessing of bioelectricity in microbial fuel cell (mfc) employ-
ing aerated cathode through anaerobic treatment of chemical wastewater using selectively
enriched hydrogen producing mixed consortia. Fuel, 87(12):2667–2676, 2008.

[146] J.I. Moon et al. Design of efficient rectenna with vertical ground-walls for rf energy harvest-
ing. Electronics Letters, 49(17):1050–1052, 2013.

[147] Raul Morais et al. Sun, wind and water flow as energy supply for small stationary data
acquisition platforms. Computers and electronics in agriculture, 64(2):120–132, 2008.

[148] Luca Mottola. Programming Storage-centric Sensor Networks with Squirrel. In IPSN, 2010.

[149] Saman Naderiparizi et al. µMonitor: In-situ energy monitoring with microwatt power con-
sumption. In RFID, 2016.

[150] Antwi Nimo, Tobias Beckedahl, Thomas Ostertag, and Leonhard Reindl. Analysis of passive
rf-dc power rectification and harvesting wireless rf energy for micro-watt sensors. AIMS
Energy, 3(2):184–200, 2015.

[151] H. Nishimoto et al. Prototype implementation of ambient rf energy harvesting wireless sensor
networks. In Sensors, 2010 IEEE, pages 1282–1287. IEEE, 2010.

[152] U. Olgun et al. Design of an efficient ambient wifi energy harvesting system. IET Microwaves,
Antennas and Propagation, 6(11):1200–1206, 2012.

[153] Fredrik Österlind et al. Sensornet Checkpointing: Enabling Repeatability in Testbeds and
Realism in Simulations. In EWSN, 2009.

[154] S.A. Ouellette and M.D. Todd. Cement seawater battery energy harvester for marine infras-
tructure monitoring. Sensors Journal, IEEE, 14:865–872, 2014.

[155] Shaul Ozeri et al. Ultrasonic transcutaneous energy transfer using a continuous wave 650khz
gaussian shaded transmitter. Ultrasonics, 50(7):666–674, 2010.

[156] Joseph A. Paradiso and Mark Feldmeier. A compact, wireless, self-powered pushbutton con-
troller. In Proceedings of the 3rd International Conference on Ubiquitous Computing, pages
299–304. Springer, 2001.

[157] Chulsung Park and P.H. Chou. AmbiMax: Autonomous energy harvesting platform for multi-
supply wireless sensor nodes. volume 1, pages 168–177. IEEE, 2006.

[158] Aaron Parks et al. A wireless sensing platform utilizing ambient rf energy. In IEEE Topical
Conference on Wireless Sensors and Sensor Networks (WiSNet), 2013, pages 154–156. IEEE,
2013.

[159] Terence Parr. The Definitive ANTLR 4 Reference. goo.gl/RR1s, 2013.

[160] Yang Peng et al. Prolonging sensor network lifetime through wireless charging. In IEEE 31st
Real-Time Systems Symposium (RTSS), 2010, pages 129–139. IEEE, 2010.

[161] Andrea Pietrelli et al. Wireless sensor network powered by a terrestrial microbial fuel cell as
a sustainable land monitoring energy system. Sustainability, 6(10):7263–7275, 2014.

[162] M. Pinuela et al. Ambient rf energy harvesting in urban and semi-urban environments. IEEE
Transactions on Microwave Theory and Techniques, 61(7):2715–2726, 2013.

[163] G. Poulin et al. Generation of electrical energy for portable devices: Comparative study of an
electromagnetic and a piezoelectric system. Sensors and Actuators A: physical, 116(3):461–
471, 2004.

[164] PowerByProxi. PowerByProxi. http://powerbyproxi.com/, 2015.

[165] PowerCast. P2110 receiver and TX91501-3W-ID transmitter. http://tinyurl.com/
powercaster, 2009.

177

goo.gl/RR1s
http://powerbyproxi.com/
http://tinyurl.com/powercaster
http://tinyurl.com/powercaster

i
i

“thesis” — 2018/1/14 — 18:38 — page 178 — #188 i
i

i
i

i
i

Bibliography

[166] Shashank Priya, Chih-Ta Chen, Darren Fye, and Jeff Zahnd. Piezoelectric windmill: a novel
solution to remote sensing. Japanese journal of applied physics, 44(1L):L104, 2004.

[167] Guofu Qiao et al. Remote corrosion monitoring of the rc structures using the electrochemical
wireless energy-harvesting sensors and networks. NDT and E International, 44(7):583–588,
2011.

[168] Guofu Qiao et al. Heterogeneous tiny energy: An appealing opportunity to power wireless
sensor motes in a corrosive environment. Applied Energy, 131:87–96, 2014.

[169] Qualcomm. WiPower. https://www.qualcomm.com/products/wipower, 2015.

[170] B. Ransford. Transiently Powered Computers. PhD thesis, School of Computer Science,
UMass Amherst, 2013.

[171] Benjamin Ransford et al. MementOS: System support for long-running computation on
RFID-scale devices. In ASPLOS, 2011.

[172] Benjamin Ransford et al. Mementos: System support for long-running computation on rfid-
scale devices. Acm Sigplan Notices, 47(4):159–170, 2012.

[173] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a broken time machine. In
Proceedings of the workshop on Memory Systems Performance and Correctness, page 5.
ACM, 2014.

[174] Clare E Reimers et al. Harvesting energy from the marine sediment-water interface. Environ-
mental science and technology, 35(1):192–195, 2001.

[175] Luca Rizzon et al. Wireless sensor networks for environmental monitoring powered by mi-
croprocessors heat dissipation. In Proceedings of the 1st International Workshop on Energy
Neutral Sensing Systems, ENSSys ’13, page 8. ACM, 2013.

[176] Maurice Roes et al. Contactless energy transfer through air by means of ultrasound. In IEEE
Conference on Industrial Electronics (IECON), pages 1238–1243. IEEE, 2011.

[177] Maurice Roes et al. Acoustic energy transfer: a review. IEEE Transactions on Industrial
Electronics, 60(1):242–248, 2013.

[178] Shad Roundy et al. A 1.9ghz rf transmit beacon using environmentally scavenged energy. In
Dig. IEEE Int. Symposium on Low Power Elec. and Devices, 2003.

[179] Shad Roundy et al. A study of low level vibrations as a power source for wireless sensor
nodes. Computer communications, 26(11):1131–1144, 2003.

[180] Noboru Sakimura, Yukihide Tsuji, Ryusuke Nebashi, Hiroaki Honjo, Ayuka Morioka, Ku-
nihiko Ishihara, Keizo Kinoshita, Shunsuke Fukami, Sadahiko Miura, Naoki Kasai, et al.
10.5 a 90nm 20mhz fully nonvolatile microcontroller for standby-power-critical applications.
In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE Interna-
tional, pages 184–185. IEEE, 2014.

[181] Alanson Sample et al. Analysis, experimental results, and range adaptation of magnetically
coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics,
58(2):544–554, 2011.

[182] Alanson Sample et al. Analysis, experimental results, and range adaptation of magnetically
coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics,
58(2):544–554, 2011.

[183] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, and Joshua R Smith. Design of a
passively-powered, programmable sensing platform for uhf rfid systems. In IEEE Interna-
tional Conference on RFID, 2007.

178

https://www.qualcomm.com/products/wipower

i
i

“thesis” — 2018/1/14 — 18:38 — page 179 — #189 i
i

i
i

i
i

Bibliography

[184] Emilio Sardini and M. Serpelloni. Self-powered wireless sensor for air temperature and veloc-
ity measurements with energy harvesting capability. IEEE Transactions on Instrumentation
and Measurement, 60(5):1838–1844, 2011.

[185] Edward Sazonov et al. Self-powered sensors for monitoring of highway bridges. Sensors
Journal, IEEE, 9, 2009.

[186] John Schlesak et al. A microwave powered high altitude platform. In Microwave Symposium
Digest, 1988., IEEE MTT-S International, pages 283–286. IEEE, 1988.

[187] Thomas Schmid et al. Disentangling wireless sensing from mesh networking. In Proceedings
of the 6th Workshop on Hot Topics in Embedded Networked Sensors, HotEmNets ’10, page 3.
ACM, 2010.

[188] Stefano Scorcioni et al. A vibration-powered wireless system to enhance safety in agricultural
machinery. In IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society,
pages 3510–3515. IEEE, 2011.

[189] Young-Sik Seo et al. Wireless power transfer by inductive coupling for implantable battery-
less stimulators. In Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International,
pages 1–3. IEEE, 2012.

[190] N. Shinohara. Wireless power transmission for solar power satellite (sps). In Space Solar
Power Workshop.

[191] D.A. Shoudy et al. P3f-5: An ultrasonic through-wall communication system with power
harvesting. In Ultrasonics Symposium, 2007. IEEE, pages 1848–1853. IEEE, 2007.

[192] Nuno M. Silva et al. Power management architecture for smart hip prostheses comprising
multiple energy harvesting systems. Sensors and Actuators A: Physical, 202:183–192, 2013.

[193] F. Simjee and P.H. Chou. Everlast: Long-life, supercapacitor-operated wireless sensor node.
In Low Power Electronics and Design, 2006. ISLPED’06. Proceedings of the 2006 Interna-
tional Symposium on, Oct 2006.

[194] Amarjeet Singh et al. Mobile robot sensing for environmental applications. In Field and
service robotics, pages 125–135. Springer, 2008.

[195] Joshua R Smith, Alanson P Sample, Pauline S Powledge, Sumit Roy, and Alexander Mami-
shev. A wirelessly-powered platform for sensing and computation. In International Confer-
ence on Ubiquitous Computing, pages 495–506. 2006.

[196] Ladan Soltanzadeh et al. Highly efficient compact rectenna for wireless energy harvesting
application. IEEE Microwave Magazine, 14(1):117–122, 2013.

[197] Ladan Soltanzadeh et al. A high-efficiency 24 ghz rectenna development towards millimeter-
wave energy harvesting and wireless power transmission. IEEE Transactions on Circuits and
Systems I: Regular Papers, 61(12):3358–3366, 2014.

[198] Philipp Sommer et al. Information bang for the energy buck: Towards energy-and mobility-
aware tracking. In EWSN, 2016.

[199] Thad Starner. Human-powered wearable computing. IBM Syst. J., 35, 1996.

[200] F. Su et al. Nonvolatile processors: Why is it trending? In Proceedings of the Conference on
Design, Automation & Test in Europe, 2017.

[201] S. Sudevalayam and P. Kulkarni. Energy harvesting sensor nodes: Survey and implications.
IEEE Communications Surveys Tutorials, 13(3), 2011.

[202] Guodong Sun et al. Events as power source: Wireless sustainable corrosion monitoring.
Sensors, 13(12):17414–17433, 2013.

179

i
i

“thesis” — 2018/1/14 — 18:38 — page 180 — #190 i
i

i
i

i
i

Bibliography

[203] Hucheng Sun et al. Design of a high-efficiency 2.45-ghz rectenna for low-input-power energy
harvesting. IEEE Antennas and Wireless Propagation Letters, 11:929–932, 2012.

[204] Affan A. Syed et al. Energy transference for sensornets. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 397–398. ACM,
2010.

[205] Yen Kheng Tan and S.K. Panda. Self-autonomous wireless sensor nodes with wind energy
harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instru-
mentation and Measurement, 60(4):1367–1377, 2011.

[206] J. Thiele et al. Smart sensors for small rodent observation. In Sensors, 2008 IEEE, pages
709–711. IEEE, 2008.

[207] Johannes Thiele et al. Dynamic Wireless Sensor Networks for Animal Behavior Research.
INTECH Open Access Publisher, 2010.

[208] Array Of Things. Array Of Things. https://arrayofthings.github.io/, 2014.

[209] I.M. Tolentino and M.R. Talampas. Design, development, and evaluation of a self-powered
gps tracking system for vehicle security. In Sensors, 2012 IEEE, pages 1–4. IEEE, 2012.

[210] Gilman Tolle et al. A macroscope in the redwoods. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages 51–63. ACM, 2005.

[211] Bin Tong et al. How wireless power charging technology affects sensor network deploy-
ment and routing. In IEEE 30th International Conference on Distributed Computing Systems
(ICDCS), 2010, pages 438–447. IEEE, 2010.

[212] E.O. Torres and G. Rincon-Mora. Electrostatic energy harvester and li-ion charger circuit for
micro-scale applications. In 49th IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS)., volume 1, pages 65–69. IEEE, 2006.

[213] uBeam. uBeam. http://ubeam.com/, 2015.

[214] Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware sup-
port or programmer intervention. In Proceedings of OSDI’16: 12th USENIX Symposium on
Operating Systems Design and Implementation, page 17, 2016.

[215] K. Vijayaraghavan and R. Rajamani. Novel batteryless wireless sensor for traffic-flow mea-
surement. IEEE Transactions on Vehicular Technology, 59(7):3249–3260, 2010.

[216] H.J. Visser and R.J.M. Vullers. Rf energy harvesting and transport for wireless sensor net-
work applications: Principles and requirements. Proceedings of the IEEE, 101(6):1410–1423,
2013.

[217] Hubregt J. Visser et al. Ambient rf energy scavenging: Gsm and wlan power density mea-
surements. In Microwave Conference, 2008. EuMC 2008. 38th European, pages 721–724.
IEEE, 2008.

[218] Voltree. Voltree Demonstrates the First Wireless Sensor Network Powered by Trees. http:
//voltreepower.com/pressReleases/pr_firstWirelessSensor.html,
2009.

[219] RJM Vullers, Rob van Schaijk, Inge Doms, Chris Van Hoof, and R Mertens. Micropower
energy harvesting. Solid-State Electronics, 53(7):684–693, 2009.

[220] Jiafu Wan et al. M2m communications for smart city: An event-based architecture. In IEEE
12th International Conference on Computer and Information Technology (CIT), 2012, pages
895–900. IEEE, 2012.

[221] Ning Wang et al. One-to-multipoint laser remote power supply system for wireless sensor
networks. IEEE Sensors Journal, 12(2):389–396, 2012.

180

https://arrayofthings.github.io/
http://ubeam.com/
http://voltreepower.com/pressReleases/pr_firstWirelessSensor.html
http://voltreepower.com/pressReleases/pr_firstWirelessSensor.html

i
i

“thesis” — 2018/1/14 — 18:38 — page 181 — #191 i
i

i
i

i
i

Bibliography

[222] Yiqun Wang, Yongpan Liu, Shuangchen Li, Daming Zhang, Bo Zhao, Mei-Fang Chiang,
Yanxin Yan, Baiko Sai, and Huazhong Yang. A 3us wake-up time nonvolatile processor
based on ferroelectric flip-flops. In ESSCIRC (ESSCIRC), 2012 Proceedings of the, pages
149–152. IEEE, 2012.

[223] Benjamin H Waters et al. Innovative free-range resonant electrical energy delivery system
(free-d system) for a ventricular assist device using wireless power. ASAIO Journal, 60(1):31–
37, 2014.

[224] WiTriCity. WiTriCity. http://witricity.com/, 2015.

[225] Xuan Wu and Dong-Weon Lee. An electromagnetic energy harvesting device based on high
efficiency windmill structure for wireless forest fire monitoring application. Sensors and
Actuators A: Physical, 219:73–79, 2014.

[226] Tianyu Xiang et al. Powering Indoor Sensing with Airflows: A Trinity of Energy Harvesting,
Synchronous Duty-Cycling, and Sensing. In In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems (SenSys’13), page 16. ACM, 2013.

[227] Liguang Xie et al. On renewable sensor networks with wireless energy transfer: The multi-
node case. In 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2012, pages 10–18. IEEE, 2012.

[228] Liguang Xie et al. Wireless power transfer and applications to sensor networks. IEEE Wireless
Communications, 20(4):140–145, 2013.

[229] Guang Yang et al. Challenges for energy harvesting systems under intermittent excitation.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(3):364–374, 2014.

[230] Jing Yang et al. Clairvoyant: A comprehensive source-level debugger for wireless sensor
networks. In SENSYS, 2007.

[231] Lohit Yerva, Brad Campbell, Apoorva Bansal, Thomas Schmid, and Prabal Dutta. Grafting
energy-harvesting leaves onto the sensornet tree. In Proceedings of the 11th International
Conference on Information Processing in Sensor Networks (IPSN), pages 197–208. ACM,
2012.

[232] Jun Yi et al. An energy-adaptive mppt power management unit for micro-power vibration
energy harvesting. In IEEE International Symposium on Circuits and Systems, 2008. ISCAS
2008., pages 2570–2573. IEEE, 2008.

[233] Z-WAVE. Z-WAVE. http://www.z-wave.com/, 2015.

[234] Chengjie Zhang et al. Steam-powered sensing. In Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’11, pages 204–217. ACM, 2011.

[235] Pengyu Zhang, Deepak Ganesan, and Boyan Lu. QuarkOS: Pushing the Operating Limits
of Micro-powered Sensors. In Proceedings of the USENIX Conference on Hot Topics in
Operating Systems, 2013.

[236] Xiaoyu Zhang et al. An energy-efficient asic for wireless body sensor networks in medical
applications. IEEE Transactions on Biomedical Circuits and Systems, 4(1):11–18, 2010.

[237] Chen Zhao et al. Powering wireless sensor nodes with ambient temperature changes. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’14, pages 383–387. ACM, 2014.

[238] Wenxing Zhong et al. General analysis on the use of tesla’s resonators in domino forms for
wireless power transfer. IEEE Transactions on Industrial Electronics, 60(1):261–270, 2013.

[239] Dibin Zhu et al. Novel miniature airflow energy harvester for wireless sensing applications in
buildings. IEEE Sensors Journal, 13(2):691–700, 2013.

181

http://witricity.com/
http://www.z-wave.com/

i
i

“thesis” — 2018/1/14 — 18:38 — page 182 — #192 i
i

i
i

i
i

Bibliography

[240] T. Zhu, A. Mohaisen, Y. Ping, and D. Towsley. Deos: Dynamic energy-oriented scheduling
for sustainable wireless sensor networks. In Proceedings of IEEE INFOCOM, pages 2363–
2371. IEEE, 2012.

[241] Ting Zhu et al. eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-
Term Operation. In sensys’10, pages 239–252. ACM, 2010.

[242] ZigBee. ZigBee. http://www.zigbee.org/, 2015.

[243] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine, 17, 1996.

[244] Jia Zou et al. Execution Strategies for PTIDES, a Programming Model for Distributed Em-
bedded Systems. In RTAS, 2009.

182

http://www.zigbee.org/

	Introduction
	Motivation
	Questions
	Thesis Statement and Contribution
	Thesis Roadmap

	I Understanding Transiently Powered Embedded Sensing Systems
	Energy Harvesting and Wireless Energy Transfer in WSNs
	Introduction
	Energy Harvesting: Overview and Desirable Properties
	Energy Harvesting Kinetic Sources
	Kinetic Energy as Vibrations
	Kinetic Energy as Air or Water Flows
	Kinetic Energy as Human or Animal Motion

	Energy Harvesting Radiant Sources
	Extracting Energy from Visible Light
	Extracting Energy from Radio-frequency (RF) Transmissions

	Energy Harvesting Thermal Sources
	Energy Harvesting Biochemical and Chemical Sources
	Energy Harvesting: Discussion
	Wireless Energy Transfer: Overview and Desirable Properties
	Wireless Energy Transfer Mechanical Waves
	Wireless Energy Transfer Magnetic Fields
	Wireless Energy Transfer Electromagnetic Radiations
	Visible Light
	Microwaves or RF Transmissions

	Wireless Energy Transfer: Discussion
	Mapping WSN Environments to Harvesting and Transfer Techniques
	Outdoor Environments
	Indoor Environments

	Research Agenda
	Summary

	Transiently-Powered Embedded Systems
	Introduction
	Challenges
	Taxonomy of Transiently Powered Computing Solutions
	Out-of-place Checkpointing
	In-place Checkpointing
	Non-volatile Processor

	Summary

	II System Support for Transiently Powered Embedded Sensing Systems
	"How?" :Designing Checkpointing Mechanism
	Introduction
	Background
	Target Platforms
	Prior Art

	Fundamental Operation
	Storage Modes
	Split
	Heap Tracker
	Copy-If-Change

	Evaluation
	Contiguous Data
	Non-contiguous Data
	Fragmented Data

	Discussion
	The role of memory span
	The role of fragmentation

	Outlook and Summary

	"What?" : Differential Checkpointing
	Introduction
	Background
	Overview
	Recording Differentials
	Global Context
	Call Stack

	Implementation
	Precompiler
	record()
	Checkpoint

	Evaluation
	Settings
	Results Update Size
	Results Smallest Energy Buffer
	Results Number of Checkpoints
	Results Execution Latency

	Related Work
	Summary

	"When and Where?" : HarvOS
	Introduction
	Related Work
	Overview
	Challenge
	Rationale
	Operation
	Generalization

	Placement Rules
	Branching
	Loops
	Function Calls and Interrupt Handlers

	Evaluation
	Settings
	Results

	Summary

	Conclusion and Future Directions
	Future Directions

	Bibliography

