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Abstract

Over the past few years, there has been a significant increase in the use of
e-commerce websites. Nowadays, almost everything can be bought online,
and market research shows that the online market is steadily growing. With
the spread of e-commerce, metasearch engines began to arise, which conduct
searches across multiple independent e-commerce, as a response to the need
of users to compare offerings without having to consult each website indi-
vidually. Metasearch engines effectively act as middlemen, sending a large
portion of the traffic to e-commerce, but giving them barely no information
about customers’ behavior and purchasing history.

In this thesis, we investigate the problem of optimal pricing in the set-
ting of online sales of goods from the point of view of an e-commerce sell-
ing its products in the profitable and challenging environment of metasearch
engines. In this setting, we have a vast catalog of items to price, no infor-
mation about our customers, low conversion rates and the environment is
non-stationary. We study the problem of finding the pricing strategy that
maximizes the profit of the e-commerce selling its products in this scenario.
We propose an automatic pricing system which uses clustering techniques
to partition the catalog of items into subsets sharing similar features, and
machine learning techniques to learn the optimal price of each subset.

First, we deal with the problem of partitioning the catalog of items. We
tackle it by learning from historical data collected by the interactions with
customers. We propose a novel algorithm which, differently from existing
solutions, provides a clear interpretability to business analysts of the result-
ing model and a risk-averse pricing policy to maximize the profit. With
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a wide experimental campaign, we present empirical evidence for the im-
proved performance of our algorithm over the state-of-the-art ones.

Then, we study algorithms to learn the optimal policy to follow in each
of the subset. We focus on online learning techniques, in particular on the
Multi-Armed Bandit ones, widely studied in the machine learning literature.
Even if existing general-purpose algorithms can be applied to the pricing
task, we propose novel algorithms exploiting the properties of the pricing
problem (some of them already studied in literature, other unexplored so
far). We derive upper bounds over the regret for the proposed algorithms and
we present a thorough experimental evaluation in a wide range of configura-
tions, some of them based on real-world data, showing that we significantly
improve the performances of the state-of-the-art algorithms.

The clustering algorithm and the online learning policies we propose are
interconnected and continuously communicating. Indeed, the data generated
from the interaction of the users with the bandits algorithms are collected
and passed through the clustering algorithm to update the partitioning and to
improve the performance of the system.
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CHAPTER1
Introduction

1.1 Scenario

Over the past few years, there has been a significant increase in the use of
e-commerce websites. Thanks to technological progress and the massive
adoption of e-commerce, almost everything can be bought online, from gro-
ceries and clothing to holiday packages and cars. Market research shows
that the one of e-commerce is a market with a global value of more than two
trillion USD, and it will even grow in the future [1].

Online markets have many features that can be exploited by vendors, thus,
with the advent of e-commerce, a number of new strategies became possi-
ble [2]. For instance, prices can be easily adjusted without incurring in any
cost, while, in traditional markets, price changes would often induce costs,
since a new catalog had to be printed or price tags had to be replaced. Fur-
thermore, in online markets it is possible to access historical data without
substantial costs, making it easier for vendors to study customers’ behavior
in order to make more accurate and informed decisions.

With the spread of e-commerce, metasearch engines began to arise as
well. These tools are so named as they conduct searches across multiple in-
dependent e-commerce and they aggregate the results, to allow customers to
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Chapter 1. Introduction

evaluate and compare the offers for a product more clearly. The scenario of
online selling of travel products is a noteworthy example in which the role
of metasearch engines is acquiring a great importance. In this scenario, we
have Online Travel Agencies (OTAs) which provide online booking facili-
ties for flight tickets, hotels and other travel-related services to customers.
Some of the most famous OTAs are lastminute.com, Expedia and eDreams.
Metasearch engines have emerged in this field as a response to the need of
users to compare offerings without having to consult each OTA individu-
ally. The most famous metasearch engines are websites such as Skyscan-
ner, Google Flights or Kayak. Their relevance has been increasing in recent
years, and market analysis for the US shows that travelers, when asked about
their last flight trips, were almost equally likely to have consulted metasearch
engines versus OTAs websites, with roughly three-quarters of the total doing
so [3].

Our work investigates the pricing problem in the setting of online sales
of digital goods from the point of view of an e-commerce, such as an OTA,
selling its products in a metasearch environment. Metasearch engines send a
lot of traffic, then resulting in sales, to OTAs’ websites. From the data of one
of the major European OTA, we saw that more than a half of the profits are
made from the sales on metasearch engines.1 Thus, this scenario presents a
great profitability, but also a number of characteristics which makes the prob-
lem very challenging. We have a vast catalog of items to price. We have al-
most no information about our customers since users do not directly use our
websites but they go on metasearch engines, which actually act as middle-
men. They send a lot of traffic to OTAs’ websites, but they give OTAs very
few information about customers’ behavior and purchasing history. Further-
more, most users perform searches without the actual intent of buying but
only for informational purposes, generating a huge amount of searches per-
formed every day on metasearch engines, but with only few of them convert-
ing into bookings. Another difficulty arises from the non-stationarity of the
environment, since we have seasonal effects on the market and we have a lot
of competitors which impact on the non-stationarity of the environment by
changing their marketing strategies.

All these characteristics make the problem of finding the optimal pricing
strategy really complex and with a lot of variables to take into account. It is
tough for a human operator to tackle this computational burden, considering
all the facets of the problem.

1We do not specify the name of the online travel agency due to confidentiality issues.
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1.2. Proposed Solution

1.2 Proposed Solution

In this dissertation, we study the problem of finding the pricing strategy that
maximizes the expected profit of an e-commerce. We design an automatic
pricing system which uses clustering techniques to partition the catalog in
contexts of items sharing similar features, and online learning techniques to
learn the optimal price of each context.

First, we tackle the clustering problem by learning from historical data
collected by recording the interactions with customers. We focus on the
Learning from Logged Bandit Feedback (LLBF) setting. Commonly, the
logs generated by the interaction between the system and a user present the
structure of a sequential decision process: basing on a context, the system
takes an action from a set of possible choices and, afterwards, the user pro-
vides the system with a feedback, in terms of reward. The peculiarity of this
setting is that the feedback, as it happens in bandit settings, is only on the
chosen action to show to the user, while no information is available about
other possible actions. Some approaches had been proposed in the last years
to address this problem, but they lack in some of the fundamental charac-
teristics that make an algorithm suitable for practical purposes. Indeed, they
did not provide a clear interpretability of the final model since there is no
direct method to infer those features that most influence the resulting model.
Moreover, in economics scenarios, it is important that the proposed algo-
rithm should be as risk-averse as possible, but most of the theoretical guar-
antees available in literature are provided in terms of average value. Finally,
existing approaches usually require knowledge of the behavior of the user
and assume it to be stationary, which is rarely met in practice in microeco-
nomics scenarios. In this work, we propose a novel algorithm, whose goal
is to solve all the mentioned drawbacks of the literature approaches. The al-
gorithm we propose can learn a risk-averse policy to maximize the expected
profit and makes use of statistical lower confidence bounds to build a deci-
sion tree, which provides both a decisional tool over future samples and an
instrument to highlight the features that influence the profit the most.

Then, we study algorithms to learn the optimal policy to follow in each
context to find the price that maximizes the expected profit. We study on-
line learning techniques, in particular the Multi-Armed Bandit (MAB) ones,
which have been widely studied in literature and provided evidence to be
effective also in real-world scenario. MAB problems have been tackled with
two distinct approaches, the frequentist and the Bayesian ones. The goal of
a frequentist algorithm is to achieve the best parameter-dependent perfor-
mance, and the expected mean rewards corresponding to the arms are con-
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sidered as unknown deterministic quantities. Conversely, in the Bayesian
approach, each arm is characterized by a distribution corresponding to the
arm parameter. Even if it is possible to use existing general-purpose al-
gorithms to solve our problem, by exploiting the pricing structure we can
improve the performance of the classical algorithms. More specifically, we
exploit the monotonicity of the conversion rate in the price and the fact that
e-commerce sellers have a priori information about the customers’ behav-
ior and the maximum conversion rate. To the best of our knowledge, these
two properties have never been studied before. Furthermore, we tackle both
stationary and non-stationary settings, as already done in literature. Finally,
we study the property of unimodality over the expected profit. We present
algorithms exploiting one or more of these features at the same time, also
providing theoretical guarantees for all of the proposed methods.

These are the techniques we used to design an automatic pricing system,
deployed in collaboration with one of the major Online Travel Agencies in
Europe. The two problems of clustering and online learning algorithms are
interconnected and continuously communicating: the data generated from
the interaction of the users with our MAB algorithms are collected and
passed through our LLBF algorithm to update the contexts model and to
improve the performance of the system.

1.3 Structure of the Thesis

The remaining part of this thesis is structured as follows:

• In Chapter 2, we present some preliminaries necessary to understand
the remaining part of the thesis.

• In Chapter 3, we give a general overview on the architecture of our pro-
posed solution and we describe the state-of-the-art techniques related to
it.

• In Chapter 4, we analyze the clustering problem to tackle the partition-
ing of the catalog in contexts.

• In Chapter 5, we propose frequentist techniques to exploit the mono-
tonicity property of conversion rates as well as the a priori information
on the maximum conversion rate, both in stationary and non-stationary
settings.

• In Chapter 6, we focus on the Bayesian approach and we design novel
algorithms to tackle non-stationary environment and the property of
unimodality over the expected profit.
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• In Chapter 7, we summarize the results obtained and we provide some
suggestions for future works.
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CHAPTER2
Preliminaries

In this chapter, we present the essential preliminaries needed to understand
the remaining part of the thesis. First, we introduce the Learning from
Logged Bandit Feedback (LLBF) problem. Then, we present the stochas-
tic Multi-Arm Bandit (MAB) formulation.

2.1 Learning from Logged Bandit Feedback

Logged data is one of the most widespread forms of recorded information
since almost any system can acquire it and stored at a little cost. Commonly,
the logs generated by the interaction between the system and users present
the structure of a sequential decision process: by basing on a context, the
system takes an action from a set of possible choices and, afterwards, the
user provides the system with a feedback, in terms of either reward or loss.
The peculiarity of this setting is that the feedback, as it happens in bandit
settings, is only on the action observed by the user, while no information
is available about other possible choices. The problem of learning a policy
mapping each context to an action from interactions which took place in the
past is known in literature as the Learning from Logged Bandit Feedback
(LLBF) problem. This setting is fundamentally different from classical su-
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pervised learning, where correct predictions together with a loss function
provide a full-information feedback.

Consider an LLFB setting defined as the tuple (X , A,R), where X =
(X,D) is a finite-dimensional multivariate probability space of contexts with
support in X ⊆ {0, 1}c with c ∈ N and unknown multivariate distribution
D, A := {a1, . . . , aK} with K ∈ N is the finite action space, and R is the
reward distribution. A generic sample zi = (xi, ai, ri) has a context vec-
tor xi = (xi1, . . . , xic) ∈ X , which is drawn from the distribution D, i.e.,
xi ∼ D. The corresponding action ai ∈ A is chosen by a generic sampling
policy U0, i.e., ai ∼ UU0, which is assumed to be unknown. Finally, the
reward ri gained by selecting action ai in the context xi is the realization of
a random variable R(xi, ai) with unknown distribution R(xi, ai) and finite
support Ω ⊂ R (w.l.o.g. from now on we consider Ω ⊆ [0, 1]) provided for
the chosen action ai in the chosen context xi, i.e., R(xi, ai) ∼ R(xi, ai).
We denote with µ(xi, ai) the expected value of the reward R(xi, ai), i.e.,
µ(xi, ai) := E [R(xi, ai)], where the expected value is computed over the
distributionR(xi, ai). A policy (or mapping) U dealing with the LLBF prob-
lem is a function (either deterministic or stochastic) providing for each con-
text x ∈ X the choice of the action a ∈ A, i.e., U(x) = a. The performance
of a policy U(·) over a generic LLBF problem (X , A,R) can be evaluated by
means of its the expected profit, defined as:

P (U) = E [R(x, a)] ,

where the expectation is taken with respect to the considered policy U and
the reward distributions {R(x, a)}x∈X,a∈A.

In [4], the authors propose an algorithm based on counterfactual risk
minimization called POEM (Policy Optimizer for Exponential Models) for
learning stochastic linear rules for structured output prediction. They de-
velop a new objective function considering both estimated rewards and their
uncertainty, and propose an optimization procedure to fit a linear classifica-
tion model. The number of parameters in their model is usually large since
it linearly depends both on the number of context variables and the number
of arms. For this reason they develop an efficient method to train the model,
by decomposing the objective function in different terms and performing
stochastic gradient descend. Then, they test POEM both on simulated ban-
dit feedback, derived from existing full information classification dataset as
already done in literature in [5], and on real-world application.

POEM is one of the possible solutions to LLBF problem. In the next
chapter, we give a more detailed review of the other state-of-the-art algo-
rithms related to our work used to tackle this problem.
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2.2 Multi-Arm Bandit

A Multi-Armed Bandit (MAB) problem is a sequential allocation problem
defined by a set of actions. At each round, an item is allocated to an action
and a payoff is obtained. The goal is to maximize the total payoff obtained
in a sequence of allocations.

“One armed bandit” is a colloquial name given to the original slot ma-
chines. These machines have one long arm, or lever, that set the mechanism
in motion. They got the nickname due to their propensity to steal all of your
money. In a casino, the player faces a sequential allocation problem, since
he is dealing with many slot machines at once (a "multi-armed bandit") and
must repeatedly choose the next arm to pull. Once the player pulls an arm,
he can only see the reward of the chosen arm and cannot know what reward
he would have got pulling other arms. Bandit problems address the fun-
damental trade-off between exploration and exploitation. The player must
balance the exploitation of arms that did well in the past and the exploration
of arms that might give higher payoffs in the future. To analyze the behavior
of a player using a bandit strategy, we compare its performance with the one
of a clairvoyant strategy that systematically plays the best arm in terms of
payoffs. In other terms, we study the loss, usually addressed as regret, of the
player for not playing always optimally.

More formally, for any horizon of N rounds, given K ≥ 2 arms and se-
quences Xi,1, Xi,2, . . . , Xi,N of unknown rewards associated with each arm
ai of the setA = {a1, a2, . . . , K}, we study a policy U(ht) that at each round
t = 1, 2, . . . , N selects an arm ait and receives the associated reward Xit,t,
given history ht. The regret after N plays is defined by:

RN = max
i=1,...,K

N∑
t=1

Xi,t −
N∑
t=1

Xit,t.

Since both the rewards and the player’s choices might be stochastic, in what
follows we will refer to the notion of pseudo-regret, defined as:

R̄N = max
i=1,...,K

E

[
N∑
t=1

Xi,t −
N∑
t=1

Xit,t

]
.

The pseudo-regret is a weaker notion of regret since one competes against
the action which is optimal only in expectation, but it is a more natural figure
of merit in a stochastic framework. In the stochastic formulation of MAB
problem, the rewards Xi,t of each arm ai are independent draws from an
unknown probability distribution νi, such as Bernoulli distribution. For i =

9
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1, . . . , K, we denote by µi the mean, or expected value, of distribution νi
and we define the optimal arm ai∗ and the mean µi∗ of the optimal arm as,
respectively:

ai∗ = arg max
i=1,...,K

µi,

µi∗ = max
i=1,...,K

µi.

Let Ti(t) =
∑t

m=1 1{U(hm) = ai} be the number of times the arm ai was
pulled in the first t rounds, where 1{B} denotes the indicator function of the
event B. Now, the pseudo-regret can be written as:

R̄N = µi∗N −
N∑
t=1

E [µit ] = µi∗N −
K∑
i=1

µiE[Ti(N)].

A simple principle to follow to deal with the exploration-exploration
dilemma is the so-called optimism in the face of uncertainty. Despite our
lack of knowledge in which is the best arm, we will consider an optimistic
guess to decide how good the expected reward of each arm is, and we will
pull the arm with the highest guess. If the guess is wrong, then the optimistic
guess will decrease, leading the choice to a different arm. If the guess is
good, we will be able to exploit that arm and to incur in little regret. Thanks
to this principle, we can balance exploration and exploitation.

The policy UCB1, proposed in [6], follows the above mentioned prin-
ciple, making use of upper confidence bound as a form of optimism. For-
mally, we want that, in high probability, the true expected value µi of an arm
is lower than a prescribed upper bound. Let X̄i,t be the empirical mean, at
round t, of the outcomes obtained by pulling arm ai for Ti(t− 1) rounds:

X̄i,t :=
1

Ti(t− 1)

Ti(t−1)∑
n=1

Xi,n.

UCB1 uses the Chernoff-Hoeffding inequality [7], that gives an upper bound
on the probability that X̄i,t deviates from its expected value µi:

P(X̄i,t + ε < µi) ≤ e−2Ti(t)ε
2

,

where ε is the upper bound. By setting ε =
√

2 log(N)/Ti(t), we get:

P(X̄i,t + ε < µi) ≤ N−4,

so that the probability quickly converges to zero as the number of rounds N
grows.1 The pseudo-code of UCB1 is presented in Algorithm 1, where x̄i,t is

1With log we refer to the natural logarithm.

10



2.2. Multi-Arm Bandit

Algorithm 1: UCB1
Input: N time horizon, A arm set
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute: ui,t = x̄i,t +

√
2 log(t)
Ti(t−1)

Play arm ait such that it = arg maxi∈{1,...,K} ui,t and observe xit,Tit (t)

the empirical mean reward of each arm ai after t rounds. Note that if an arm
is not pulled, its upper bound grows logarithmically in the number of rounds.
This means that an arm will never be permanently discarded, no matter how
poorly it performs.

In [6], the authors prove the following theorem:

Theorem (Auer et al., 2002 [6]). If policy UCB1 is run over a stochastic
MAB setting, the pseudo-regret after N rounds is at most:

R̄N ≤ 8
∑

i:µi<µ∗

logN

∆i

+

(
1 +

π2

3

)( K∑
j=1

∆j

)

where ∆i = µi∗ − µi.
The first term of the sum states that any suboptimal arm is pulled only

a logarithmic number of rounds, also depending on how hard it is to distin-
guish from the optimal arm. The smaller the ∆i, the higher the number of
pulls required to know that arm i is suboptimal, and hence the higher the
regret. The second term represents a constant number that caps the number
of rounds we will pull suboptimal arms in excess of the first term. This is
a worst-case upper bound on the pseudo-regret. Simply, UCB1 cannot do
worse than this, but it does not mean it always achieves this much regret. In
their seminal work [8], Lai and Robbins show that, for Bernoulli reward dis-
tributions, the lower bound for the pseudo-regret of any policy is logarithm
in the number of rounds. For p, q ∈ [0, 1], denote by kl(p, q) the Kullback-
Leibler divergence between a Bernoulli of parameter p and a Bernoulli of
parameter q, defined as:

kl(p, q) = p log
p

q
+ (1− p) log

1− p
1− q .

Lai and Robbins prove the following theorem:
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Theorem (Lai and Robbins, 1985 [8]). Consider a strategy that satisfies
E[Ti(N)] = o(Na) for any set of Bernoulli reward distributions, any arm
ai with ∆i > 0, and any a > 0. Then, for any set of Bernoulli reward
distributions the following holds:

lim inf
n→+∞

R̄N

logN
≥
∑
i:∆i>0

∆i

kl(µi, µi∗)
.

For all the UCB-like policies, using Pinsker’s inequality:

2(p− q)2 ≤ kl(p, q) ≤ (p− q)2

q(1− q) ,

we have the result that there exist two constants K1 > 2 and K2 > 0 such
that for every suboptimal arm ai:

R̄N ≤
K1

∆2
i

logN +K2.

Thus, UCB1 asymptotically matches the lower bound on the regret for the
MAB problem. This means that, theoretically, the achieved regret cannot be
improved, except for the constants.

In the very first paper on the MAB problem [9], a simple strategy was pro-
posed, the so-called Thompson Sampling (TS). In Algorithm 2, we present
the pseudo-code of TS. Assume to have a prior πi,0 on each reward expected
value µi,t and let πi,t be the posterior distribution for the parameter µi,t af-
ter t rounds. For instance, in the case of Bernoulli reward, we consider a
uniform uninformative prior and we choose πi,0 := Beta(1, 1), where we
denote with Beta(a, b) the Beta distribution with parameters a and b. The
posterior becomes πi,t := Beta(Si(t) + 1, Ti(t) − Si(t) + 1), where Ti(t)
is the number of times the arm ai has been pulled in the first t rounds, and
Si(t) :=

∑t
m=1 xi,m1{U(hm) = ai} is the cumulative reward of the arm

ai in the first t rounds. Let θi,t, also known as Thompson sample, denote a
sample from πi,t. TS is the algorithm which at time t selects the arm with
the highest Thompson sample θi,t.

Recently there has been a surge of interest for this policy, mainly because
of its flexibility to incorporate prior knowledge on the arms. The first asymp-
totically optimal finite-time analysis of Thompson Sampling has been proven
only recently in [10] for Bernoulli distributed rewards in stationary settings.
The authors show that the asymptotic pseudo-regret of the algorithm matches
the asymptotic rate for general MAB given by [8]. This analysis is extended
in [11] to a more general class of distributions.
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Algorithm 2: Thompson Sampling
1: Input: {πi,0}i prior distributions, N time horizon, A arm set
2: for t ∈ {1, . . . , N} do
3: for i ∈ {1, . . . ,K} do
4: Compute πi,t = Beta(Si(t) + 1, Ti(t)− Si(t) + 1)
5: Sample θi,t from πi,t
6: Play arm ait such that it = arg maxi∈{1,...,K} θi,t and observe xit,Tit (t)

We introduced the classical MAB setting, along with two of the most
famous policies: UCB1, a frequentist algorithm, and Thompson Sampling,
a Bayesian one. The goal of a frequentist algorithm is to achieve the best
parameter-dependent performance, and the expected mean rewards corre-
sponding to the arms are considered as unknown deterministic quantities. In
contrast, in the Bayesian approach, each arm is characterized by a parameter
which is related to a prior distribution.

In MAB literature, there are several policies which tackle different set-
ting and analyze some important variants and extensions of the presented
algorithms. In the next chapter, we give a more detailed review of the state-
of-the-art policies related to our work. We refer the interested reader to [12]
for more details on the MAB formulation.
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CHAPTER3
General Overview

3.1 Proposed Solution Architecture

Our work addresses the pricing problem in the setting of online sales of digi-
tal goods from the point of view of an e-commerce, such as an Online Travel
Agency (OTA), selling its products in an environment where it is not possi-
ble to use information about the customers, like the metasearch environment.
We study the problem of optimal pricing, that is the search for the pricing
strategy that maximizes the expected profit of the OTA. Metasearch engines
send a lot of traffic, then resulting in sales, to OTAs’ websites. This scenario
presents a great profitability, but also a number of characteristics which make
the problem very challenging, both from a scientific and a practical point of
view. In the specific, we have a vast catalog of items to price, which are all
the possible flights tickets. We have almost no information about our cus-
tomers since users do not directly use our websites but they go on metasearch
engines, which effectively act as middlemen (Figure 3.1). Even if they do
send a lot of traffic to OTAs’ websites, they give OTAs very few information
about customers’ behavior and purchasing history, making users identifica-
tion possible only after the purchase. Therefore, the pricing scheme cannot
rely on personal customer information that we may have collected in other
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Users

Metasearch

Engines

OTAs

Figure 3.1: Schema of the relation between metasearch engines and OTAs. The user per-
forms the search over a metasearch engine. The search is then passed to all the OTAs,
which return their prices. The metasearch engine aggregates all the results and finally
show them to the user, which can make a clear comparison of the different OTAs prices.
Metasearch engines effectively act as middlemen, sending traffic to OTAs but without
giving them information about the customers.

setting, such as with the direct selling of the product on our website to a
registered user. Furthermore, we have a huge amount of searches performed
every day on metasearch engines, but only a few of them actually convert
into bookings, since most of the users perform searches without the actual
intent of buying, but only for informational purposes. This makes the prob-
lem of building a user model and learning the optimal price very hard and
long in time. Another difficulty arises from the fact that the environment is
non-stationary since we have seasonal effects on the market and we have a
lot of competitors which impact on the non-stationarity of the environment
by changing their marketing strategies.

Formally, the pricing problem is characterized by a price which is asso-
ciated with a revenue known by the seller and a conversion rate, measuring
the probability that the item will be sold at a given price, which, instead, is
unknown to the seller. As mentioned above, the behavior of the users may
be non-stationary, thus the average conversion rate may change over time.
Extremely low conversion rates, as customary in this setting, make the esti-
mation process excessively long. As a result, the estimation process rarely
converges to stable solutions, and it is in a transient for most of the time.
Therefore, the effectiveness of a pricing strategy mainly depends on its per-
formance during the transient, and this makes the problem of finding the best
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Figure 3.2: The graphs roughly describe the profit made by a seller which uses bandit
algorithms to price his items, in the case he applies (b) or not (a) clustering techniques.
In (b), the number of feedbacks collected before the deadline is higher, thus the bandit
algorithm is able to reach better profit performances and to reduce its regret. However,
the bandit algorithm will not converge to the profit of (a), due to a loss in precision.
Nevertheless, the regret made in (b) is still lower than the one made in (a).

price an online learning problem.
In an online learning problem, a learner chooses at each round an action

and observes the reward associated with the actions. The goal of the learner
is to accumulate as much reward as possible over a sequence of rounds while
minimizing the loss incurred from choosing sub-optimal actions. The Multi-
Armed Bandit (MAB) problem is a form of online learning that perfectly
matches the characteristics of our setting. In a MAB, the learner has a finite
set of available actions. At each round, he can only choose one action to
play and, at the end of the round, he can only see the reward generated from
the chosen action. In our case, the actions are the prices the seller can set on
an item, and each round is a request, or a search, made by a user. When a
user performs a search, the seller shows the chosen price, and he collects the
feedback from the user in the form of "item bought" or "item not bought".

In general, the best strategy to maximize the expected profit for the seller
would be to set a different price for each single item of the catalog. In our
specific problem, the solution is not so straightforward. We have a vast cat-
alog of product to price and the number of feedback we are able to collect
for most of them is very low. So, if we set a different price for each item, it
would take very long time to collect samples for the learning and to converge
to the optimal price. Moreover, we are in a non-stationary environment, so,
if the convergence is too slow, it could happen that we do not converge to
the optimal price before it actually changes. For these reasons, we use clus-
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tering techniques to aggregate items into contexts, which are set of items
sharing similar features, and then we apply bandit algorithms to each of the
context. Clustering items and setting one price for each context will lead to
a loss of precision, but, on the other hand, we can collect more samples and
to converge in shorter time. Figure 3.2 gives an idea of this behavior. The
profit made when the seller sets a different price on each item is described
in Figure 3.2a. The green line is the profit made by an oracle which at each
turn knows the optimal price to set on an item, while the red line is the profit
made by a bandit algorithm, which finally converges to the optimal profit.
The black line is the deadline, that is the turn in which the optimal price
changes due to the non-stationarity of the environment. The colored area be-
tween the green and red lines is called regret, which is the loss in which the
bandit policy incurs in the learning process. Since the seller can collect only
the feedbacks of one single item, the bandit algorithm slowly converges to
the optimal price, and it is not able to reach good profit performances before
the deadline. Conversely, if the seller sets a price on a context, the number of
feedbacks collected in the same amount of time is higher since the samples
of all the items in the context are aggregated. Thus, the bandit algorithm can
reach better profit performance and to reduce the regret, as in Figure 3.2b
where the colored area is smaller than the one in Figure 3.2a. However, the
bandit algorithm will not converge to the profit we would have had in the
case of Figure 3.2a, now specified with a green dashed line: the algorithm
will loose precision due to the use of the context and it will converge to the
optimal price of the context, that generates the profit specified by the green
line. Indeed, the optimal price for a context may not be the optimal price for
each item inside the context, leading to an ineluctable loss: the price could
be too high for some of the items or could even be increased for some others.
Nevertheless, the regret made using clustering techniques is still lower than
the one done without using them.

For these reasons, our solution consists in dividing the problem into two
sub-problem: a clustering one and an online optimization one.

The first sub-problem is the one of clustering, that is the partitioning of
the catalog in contexts of items sharing similar features. This goal has been
tackled by learning from historical data collected by the interactions with
customers. Some approaches had been proposed in the last years to address
this problem but they lack in some of the fundamental characteristics that
make an algorithm suitable for practical purposes. First, they did not pro-
vide a clear interpretability of the final model since there is no direct method
to infer those features that most influence the resulting model. Second, in
economics scenarios, it is important that the proposed algorithm should be
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as risk-averse as possible, but most of the theoretical guarantees available
in literature are provided in terms of average value. Finally, existing ap-
proaches usually require knowledge of the behavior of the user and assume
it to be stationary, assumption which is rarely met in practice in microeco-
nomics scenarios. In this work, we propose a novel algorithm, whose goal is
to solve all the mentioned drawbacks of the literature approaches.

The second sub-problem is the study of algorithms to learn the optimal
policy that maximizes the expected profit of each context. As mentioned
before, we study online learning techniques, in particular the Multi-Armed
Bandit ones, which have been widely studied in literature. It is possible
to use existing general-purpose algorithms to solve our problem, but, by
exploiting the pricing structure, we investigate if it is possible to improve the
performance of the classical algorithms. There are several works in literature
which take into account one of the characteristics of our problem, but they
usually deal with only one feature to exploit at time. In this work, we propose
novel algorithms which exploit specific properties of the problem, some of
them already studied in literature, other unexplored so far, that we introduce
in the next section.

The two sub-problems are thus interconnected and continuously commu-
nicating since the data generated from the interaction of the users with the
optimization algorithms are collected and passed through the clustering al-
gorithm to update the contexts model and improve the performance of the
system. This is the architecture of the automatic pricing system we designed
in collaboration with one of the major Online Travel Agencies in Europe.

3.2 Related Works and Original Contributions

The main focus of the thesis is on bandits techniques. The Multi-Armed
Bandit (MAB) setting [6] models the sequential decision-making problem,
addressing the well-known exploration-exploitation trade-off, as introduced
in Chapter 2.

As described before, we study different properties at the same time. In
literature, to the best of our knowledge, there are no other works which pro-
pose a solution taking into account all the aspects of our problem. For this
reason, in this section, we separately describe each of the features we exploit,
and we mention the state-of-the-art studies related to that feature.

3.2.1 Monotonicity and low conversion rate

The main work dealing with bandits for pricing is provided in [13], where the
authors study the value of knowing the demand curve in stationary settings
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and provide a tight regret-bound analysis. Furthermore, the authors present
an algorithm to select a finite set of arms to which each state-of-the-art MAB
algorithm can be applied. Here, we focus on a different problem, specifically
by exploiting two properties unexplored in the literature so far.

First, we exploit the monotonicity of the conversion rate in the price.
More precisely, the conversion rate is monotonically decreasing in the price,
and this follows from the fact that the customer demand is monotonically
decreasing in the price when no network externalities are present [14]. This
means that, each time a buyer makes a purchase at a given price, we may
infer that the sale would have been made at any lower price, and, vice versa,
each time the buyer refuses to buy at a certain price, we may infer that all the
higher prices would not have been accepted too. Notice that this property
is common also in many other application domains, thus making our algo-
rithms applicable in settings different from the pricing one. For instance,
in multi-slot online advertising, where it is necessary to estimate the Click-
Through Rates (CTRs) of ads [15] and the expected value of the CTR of an
ad monotonically decreases from the slot in the top to the one in the bot-
tom; and in bandwidth allocation, where it is necessary to estimate the best
packet size for the link between some servers [16] and, if a packet has been
successfully transmitted, also a smaller one would have been received too.

Second, we exploit the fact that e-commerce sellers have a priori infor-
mation about the customer behavior, coming from past transactions. This
information is not usually sufficient for producing pre-estimates sufficiently
accurate to avoid a cold start of the learning algorithms since sellers pulled
in the past a very limited number of arms. However, such information is
sufficient to estimate a lower bound to the percentage of the buyers that are
only interested in checking the price without buying the item, which leads
to a low probability of purchasing a good [17]. Indeed, it is common that
human users check the price for some days before buying an item as well as
it is common that companies use bots to check the prices of the competitors
frequently. As a result, for every specific pricing setting, associated with a
product, we can set an upper bound over the curve of the conversion rate
as a function of price. This may allow exploiting tighter concentration in-
equalities, thus reducing the experience needed to get accurate estimates of
the expected conversion rate, and, consequently, reducing the loss due to the
algorithm exploration.

Several previous works exploit the structure of specific classes of sequen-
tial games to improve the performance provided by the general-purpose al-
gorithms. In [18, 19], the authors study a graph model for the arm feedback
in an adversarial setting under the assumption that the realizations are corre-
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lated and that this correlation is known. The treatment of this last assump-
tion is different from the treatment of the monotonicity assumption, where,
conversely, the correlation is over the expected value of the arms and not
over the realizations. In [20, 21], the authors propose a more general setting
named partial monitoring games, for which several studies on asymptotic re-
gret bounds have been produced in the last decade both in stochastic [22, 23]
and adversarial [16, 21, 24] settings. Other similar works study the problem
of dark pools [25, 26], that are recent type of stocks exchange designed to
facilitate large transactions, in which a key aspect is the censored feedback
that the trader receives. To the best of our knowledge, no work takes ad-
vantage of the monotonicity property as defined above or exploits a priori
information about the magnitude order of low conversion probabilities.

In the economics literature and, more precisely, in the sub-area of learn-
ing and earning, several works study the pricing problem [27, 28, 29, 30].
Most of these works assume that a priori information on the structure of
the problem is available (e.g., on the product supply availability or the user
behavior). More specifically, [27] deals with a limited initial inventory of a
single product and designs a parametric and a non-parametric algorithm to
estimate the demand function. Several works propose techniques to learn
the optimal price under the assumption that the expected revenue curve has
a unique global optimal solution [29, 30, 31]. Finally, [32] studies the case
of an adversarial model for the user in an online posted-price auction and di-
rectly applies the Exp3 algorithm [33] to minimize the regret. Remarkably,
most of the works in the learning and earning field do not provide any the-
oretical guarantee on the regret bounds. Even if heuristic algorithms might
perform better than the algorithms with theoretical guarantees, the lack of
worst-case guarantees discourages their employment in practice.

A problem related to pricing is the design of nearly-optimal auctions in
the case the bidders’ valuations are drawn from an unknown distribution [34,
35]. The proposed solution relies on statistical learning theory techniques
to compute the number of samples required to bound the distance of the
approximated solution from the real expected revenue.

In this thesis, we propose techniques to exploit the monotonicity prop-
erty of conversion rates as well as the a priori information on the maximum
conversion rate. Our techniques can be paired, in principle, with any MAB
algorithm. We tailor our techniques for two main Upper Confidence Bound
(UCB) like algorithms working in stationary settings: UCB1 [6], being the
most popular and basic MAB algorithm, and UCBV [36], being one of the
UCB-like algorithms with the best empiric performance. We prove that the
asymptotic regret bounds of our algorithms are of the same order as UCB1
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and UCBV. We present a thorough experimental evaluation of our algorithms
in several different configurations based on real-world data, comparing our
algorithms with the main general-purpose frequentist stochastic MAB poli-
cies and showing that exploiting the two properties mentioned above allows
one to improve the profit significantly. The empirical analysis shows that our
algorithms provide significant advantages with respect to general-purpose
MAB algorithms in the early stages of the learning process. This is crucial
in real pricing scenarios, where very low conversion rates (that require a long
exploration phase to have accurate estimations) and non-stationary buyers’
demands make the algorithms to work in a never-ending transient.

3.2.2 Unimodality

In the so-called Unimodal MAB (UMAB), introduced in [37], each arm cor-
responds to a node of a graph, and each edge is associated with a relationship
specifying which node of the edge gives the largest expected reward (provid-
ing thus a partial ordering over the arm space). Furthermore, from any node,
there is a path leading to the unique node with the maximum expected re-
ward along which the expected reward is monotonically increasing. While
the graph structure may be (not necessarily) known a priori by the UMAB
algorithm, the relationship defined by the edges is discovered during the
learning.

Models presenting a graph structure have become more and more inter-
esting in last years due to the spread of social networks. Indeed, the relation-
ships between the entities of a social network have a natural graph structure.
A practical problem in this scenario is the targeted advertisement problem,
whose goal is to discover the part of the network that is interested in a given
product. This task is heavily influenced by the graph structure since in social
networks people tend to have similar characteristics to those of their friends
(i.e., neighbor nodes in the graph). Therefore interests of people in a social
network change smoothly and neighboring nodes in the graph look similar
to each other [38, 39]. More specifically, an advertiser aims at finding those
users that maximize the ad expected revenue (i.e., the product between click
probability and value per click), while at the same time reducing the amount
of times the advertisement is presented to people not interested in its con-
tent. The unimodal structure also occurs in the sequential pricing problem,
as described in [40].

Under the assumption of unimodal expected reward, the learner can move
from low expected rewards to high ones just by climbing them in the graph,
preventing the need for a uniform exploration over all the graph nodes. This
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assumption reduces the complexity in the search for the optimal arm since
the learning algorithm can avoid to pull the arms corresponding to some sub-
set of non-optimal nodes, reducing thus the regret. Other applications might
benefit from this structure, e.g., recommender systems which aim at cou-
pling items with those users are likely to enjoy them. Similarly, the use of
the unimodal graph structure might provide more meaningful recommenda-
tions without testing all the users in the social network. Finally, notice that
problems like bidding in online sponsored search auctions [41] and single-
peak preferences economics and voting settings [14], are graph-structured
problems in which the graph is a line.

Frequentist approaches for UMAB with graph structure are proposed
in [40] and [37]. In [40], the authors introduce the GLSE algorithm with
a regret of order O(

√
T log(T )). However, GLSE performs better than clas-

sical bandit algorithms only when the number of arms is Θ(T ). Combes and
Proutiere [37] present the OSUB algorithm, based on KLUCB, achieving
asymptotic regret of O(log(T )) and outperforming GLSE in settings with a
few arms.

Interestingly, the assumptions of monotonicity, described in the previous
section, and unimodality are orthogonal, none of them being a special case of
the other one and, therefore, the results known for unimodal bandits cannot
be directly adopted in monotonic settings.

Some works deal with unimodal reward functions in continuous armed
bandit setting [40, 42, 43]. In [40] a successive elimination algorithm, called
LSE, is proposed achieving regret ofO(

√
T log T ). In this case, assumptions

over the minimum local decrease and increase of the expected reward is
required. Combes and Proutiere [42] study stochastic bandit problems with
a continuous set of arms and where the expected reward is a continuous and
unimodal function of the arm. They propose the SP algorithm, based on the
stochastic pentachotomy procedure to narrow the search space. Unimodal
MAB on metric spaces is studied in [43].

An application-dependent solution to the recommendation systems which
exploits the similarity of the graph in social networks in targeted advertise-
ment has been proposed in [44]. Similar information has been analyzed
in [45] where the problem of cold-start users (i.e., new users) is studied.
In [18, 19], a graph structure of the arm feedback in an adversarial setting
is investigated. In the specific, they assume to have correlation over rewards
and not over the expected values of arms.

In this thesis, we propose a novel algorithm relying on the Bayesian
learning approach for a generic UMAB setting. We derive a tight upper
bound over the regret, which asymptotically matches the lower bound for the
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UMAB setting. We provide a wide experimental campaign showing better
performance of our algorithm in applicative scenarios than those of state-of-
the-art ones, also evaluating how the performance of our algorithm and the
state-of-the-art ones varies as the graph structure properties vary.

3.2.3 Non-stationarity

Non-stationarity behaviors are common in real-world applications and play
a prominent role in Internet economics, for the reasons mentioned before.
Other forms of non-stationarity in the pricing problems may be due to a new
product invading the market: the price maximizing the expected profit of a
product already present in the market may change abruptly when a newer
product enters [46]. Non-stationarity is common also in many other ap-
plication domains. We recall that the former motivation for MAB settings
argued in [9] was the study of clinical trials, where different treatments are
available, and a learner aims at selecting the one to use for the next patient.
Although in its original formulation the clinical trial scenario was assumed
stationary over time, in the real world it may be not. Indeed, the disease to
defeat may mutate over time, thus a treatment that initially is optimal might
subsequently slowly decrease its effectiveness and another treatment, which
initially was ineffective, might become the best option [47]. Another exam-
ple is untruthful auction mechanisms for search advertising (e.g., the GSP
used by Google and Bing [48]), where advertisers try to learn the best bid to
obtain their ad displayed in some profitable slot. Here, non-stationarity may
be due to the arrival and departure of advertisers which change the profitabil-
ity of the slots [49].

Differently from the classical stochastic MAB setting, in Non-Stationary
stochastic MAB (NS-MAB) settings the expected reward of each arm may
change over time, thus potentially changing the optimal arm. As stressed
in [50], general-purpose classical MAB algorithms are not suitable when
tackling NS-MAB settings, their regret bounds not holding anymore. In non-
stationary settings, some frequentist algorithms with theoretical guarantees
are known [51, 37, 52, 53, 54], whereas, to the best of our knowledge, all the
Bayesian methods are only based on heuristics [55, 56].

NS-MAB settings have been receiving attention in the scientific commu-
nity only in the last few years. When rewards may change arbitrarily over
time, a non-stationary MAB setting is equivalent to an adversarial MAB
one [33]. As a result, the literature mainly focuses on non-stationary MAB
settings with some specific structure in the attempt to design algorithms with
better regret bounds.
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Some frequentist algorithms with theoretical guarantees are known [51,
37, 52, 53, 54]. In [52], the authors study abruptly changing MAB settings
and present the SW-UCB algorithm achieving an Õ(

√
N) regret.1 In eco-

nomic domains, an abrupt change can be due to the invasion of the mar-
ket by a new product. The same setting is tackled in [57], where the au-
thors present the SER4 algorithm which empirically outperforms the SW-
UCB one. In [37], the authors present SW-KL-UCB, a policy working in a
smoothly changing MAB settings. In this non-stationary setting, the regret
is upper bounded by Õ(N

τ
), being τ the length of a sliding window used by

the algorithm and N the learning horizon.
In [51], the authors study a non-stationary MAB setting under the as-

sumption that the total variation of the expected rewards over whole the
time horizon is bounded by a budget that is a priori fixed. They provide
a distribution-independent lower bound and they propose the REXP3 algo-
rithm, a near-optimal frequentist algorithm with a regret of order O(N2/3).
In [58], the authors focus on the dynamic bandit setting, a special case of
the restless bandits, in which the reward distribution of the arms changes at
each round according to an arbitrary stochastic process. The authors propose
algorithms that minimize the per-round regret over an infinite time horizon.

The MAB literature provides also some works that exploit MAB tech-
niques as heuristics on applicative scenarios without providing theoretical
guarantees. To cite a few, in [55], the authors propose a Bayesian algorithm
for the specific case of non-stationary normal bandit settings; in [56], the
authors analyze an NS-MAB where the probabilities according which the
expected value of the arms change are a priori fixed, and propose the CTS
algorithm that combines Thompson Sampling together with a change point
detection mechanism; in [59], the authors propose a variant of Thompson
Sampling which can be used in both rested and restless bandit non-stationary
scenarios; in [60], the authors present an evolutionary algorithm to deal with
generic non-stationary environments which empirically outperforms classi-
cal solutions.

Other settings, closely related to the MAB one, have also been studied in
the presence of non-stationaries. For instance, in [54] the authors present a
study of the regret in the case of non-stationary stochastic experts, provid-
ing a bound of order O(N1/3) in the case we assume a constant number of
switches and limited variance of the expected rewards over time.

In this thesis, we provide frequentist and Bayesian MAB algorithms for
non-stationary settings with theoretical guarantees in terms of regret, and we
empirically show their superior performance over the state-of-the-art algo-

1Õ denotes a big O notation that ignores logarithmic factors.
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rithms.

3.2.4 Contexts Generation

Due to the large availability of logged bandit feedbacks, an LLBF prob-
lem rises in a wide range of real-world micro-economic applications, be-
sides ours of pricing. Another scenario where this kind of feedback is easily
available is the ad-layout selection problem [61]. In this setting, the perfor-
mance of a given set of web ads might change, for instance, depending on
the specific website the ad is displayed and on the ad size. The available
feedback one can have is the click/non-click event only for the displayed
layout. Another example in which LLBF problem rises is the scenario of
news recommendation [62], in which, given a search query or geolocaliza-
tion information, a specific article is proposed to the user who can provide a
feedback only on the displayed article.

Classical classification (to generate the map between contexts and ac-
tions) and regression (to approximate the reward of each pair context-action
and then finding the best policy) methods provided by the machine learn-
ing literature can be extended to tackle the LLBF problem [63]. However,
since they are based on the hypothesis that feedback (usually an error score)
for each possible decision is available and this hypothesis is not satisfied
in this setting, the extension of these algorithms to the LLBF problem may
have a negative impact on their performances (e.g., see [5]). This pushed the
need for exploring in the literature novel ad hoc approaches. In particular,
the state-of-the-art approach for the LLBF problem is the POEM algorithm
described in [64, 4]. It is based on the counterfactual risk minimization
criterion, where the decision policy is produced taking into account the re-
ward estimates and uncertainties. POEM assumes that the learner knows the
stochastic behavior of the user (called logging policy) and that such behav-
ior is stationary, assumptions that are hardly satisfied in real-world settings.
Moreover, POEM suffers from two further drawbacks. First, as classical
classification and regression methods, it does not allow a clear interpretation
of how the decision policy depends on the most relevant context features.
Such an interpretation is crucial when a human operator inspects and uses
the policy. Second, in POEM, the generation of the policy is driven by the
minimization of the so-called counterfactual risk. This approach does not
explicitly take into account the risk aversion of the learner, nor provides a
given confidence over the expected profit of the proposed algorithm.

The online version of the LLBF problem has been addressed in the lit-
erature with the name of contextual Multi-Armed Bandit (MAB) [65, 66].
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3.2. Related Works and Original Contributions

For instance, in [65] the authors analyze the problem of contextual bandits
assuming that the reward is a linear combination of the context vector and
propose a modification of the LinUCB algorithm whose regret upper bound
matches the lower bound up to logarithmic factors. In [66], the authors de-
velop an algorithm based on random forest which presents promising results
in comparison with the state-of-the-art ones. The techniques developed for
the contextual MAB cannot be applied in LLBF scenario since they prescribe
a non-stationary policy aimed at solving the so-called exploration/exploita-
tion dilemma, while our proposed algorithm focuses on the maximization of
the profit given the available logs.

In this thesis, we propose a novel method for the LLBF problem, whose
main novelties are the construction of a decision tree providing a risk-averse
stationary policy for future decision by means of the maximization of statisti-
cal lower bounds over the action rewards (as suggested for bandit feedbacks
in [67]) and an easy way to compute an estimate (in high probability) of
the expected profit provided by the tree. Our method also provides a clear
interpretability of the resulting decision tree, useful for business analysis,
which allows to easily identify the most relevant features for the definition
of the contexts. We performed an experimental evaluation of our algorithm,
showing empirical evidence of the effectiveness of the proposed approach
when compared to state-of-the-art techniques (including classification and
regression methods).

Since the main idea of our algorithm lies in the construction of a deci-
sion tree for the LLBF problem, it has been influenced by those works using
decision trees to solve classification and regression problems either in off-
line [68] or online [69, 70] fashion. The aforementioned approaches are
used to address the problems with complete feedback and cannot be directly
applied to solve the LLBF problem. Nonetheless, their construction shares
some similarities with the algorithm we propose. For instance, both our al-
gorithm and the one in [71] make use of confidence bounds to determine the
best split to build a decision tree. Furthermore, to the best of our knowledge,
there are no works addressing the risk-aversion paradigm directly in the field
of decision trees.

27





CHAPTER4
Learning from Logged Bandit Feedback

In this chapter, we consider the Learning from Logged Bandit Feedback
(LLBF) problem and we propose an algorithm specifically shaped for the
this setting, based on a risk-averse learning method which exploits the joint
use of regression trees and statistical confidence bounds. Differently from
existing techniques developed for this setting, our algorithm generates poli-
cies aiming to maximize a lower bound on the expected reward and provides
a clear characterization of those features in the context that influence the
process the most. Section 4.1, provides the formulation for the considered
LLBF setting. In Section 4.2, we describe the proposed algorithm. Finally,
in Section 4.3, we provide a wide experimental campaign over both synthetic
and real-world datasets showing empirical evidence that the proposed algo-
rithm outperforms both state-of-the-art machine learning classification and
regression techniques and existing methods addressing the LLBF setting.

4.1 Problem Formulation

Consider an LLFB setting defined as the tuple (X , A,R), whereX = (X,D)
is a finite-dimensional multivariate probability space of contexts with sup-
port in X ⊆ {0, 1}c with c ∈ N and unknown multivariate distribution D,
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A := {a1, . . . , aK} with K ∈ N is the finite action space, and R is the
reward distribution.1 A generic sample zi = (xi, ai, ri) has a context vec-
tor xi = (xi1, . . . , xic) ∈ X , which is drawn from the distribution D, i.e.,
xi ∼ D. The corresponding action ai ∈ A is chosen by a generic sampling
policy U0, i.e., ai ∼ U0, which is assumed to be unknown.2 Finally, the
reward ri gained by selecting action ai in the context xi is the realization of
a random variable R(xi, ai) with unknown distribution R(xi, ai) and finite
support Ω ⊂ R (w.l.o.g. from now on we consider Ω ⊆ [0, 1]) provided for
the chosen action ai in the chosen context xi, i.e., R(xi, ai) ∼ R(xi, ai).3

We denote with µ(xi, ai) the expected value of the reward R(xi, ai), i.e.,
µ(xi, ai) := E [R(xi, ai)], where the expected value is computed over the
distributionR(xi, ai).

A policy (or mapping) U dealing with the LLBF problem is a function
(either deterministic or stochastic) providing for each context x ∈ X the
choice of the action a ∈ A, i.e., U(x) = a. The performance of a policy U(·)
over a generic LLBF problem (X , A,R) can be evaluated by means of its
the expected profit, defined as:

P (U) = E [R(x, a)] ,

where the expectation is taken w.r.t. the considered policy U and the reward
distributions {R(x, a)}x∈X,a∈A.

In real-world applications a finite dataset ZN = {z1, . . . , zN} of N ∈ N
logged bandit feedbacks is provided to learn a policy maximizing P (U). The
maximization of the empirical expected profit is not a sufficient criterion to
design the decision policy [14], since it might be arbitrarily distant from the
real expected profit value. An alternative approach, commonly used in eco-
nomic scenarios, is to consider some lower bound over the regret [67]. This
takes into account the uncertainty that affects the actual profit, but sacrifices
part of the expected profit by choosing policies that minimize the probabil-
ity of realizing a very low profit or even a loss. Nonetheless, many com-
panies prefer to choose such an approach, their strategy being risk-averse.
Formally, a risk-averse variant of the estimator P (U, ZN , δ) of the expected
profit P (U), called risk-averse profit, computed over a dataset ZN with an
overall confidence of δ ∈ (0, 1) satisfies:

P (P (U) ≤ P (U, ZN , δ)) ≤ δ,

1The choice of a binary context space is carried here for sake of notation. The case of X ⊆ Rc is discussed
in Section 4.2.2.

2Here, we focus on sampling policies not depending on the context. Suggestions about the extension to the
contextual policies case, i.e., U0 = U0(x), will be discussed in Section 4.2.2.

3The extension of this framework to the case we receive a loss function instead of rewards is straightforward.
For sake of concision, here we will only consider the reward as feedback.
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4.2. Proposed Method

The aforementioned risk-averse profit should be considered as figure of merit
to evaluate the performance of algorithms for LLBF in risk-averse scenarios.

4.2 Proposed Method

In principle, we aim at finding the best decision policy, i.e., the mapping
U(x) := a∗ between each context x ∈ X and actions in a∗ ∈ A maximizing
one of the aforementioned figures of merit, while keeping the risk as low
as possible. In practice, one faces two main challenges to find such a map-
ping. First, if we had an infinite number of samples and therefore we are
able to compute the expected reward µ(x, a) for each couple context-action
exactly, the problem could be formulated as a combinatorial optimization
problem which is not tractable with an exhaustive approach. More specifi-
cally, since the number of possible contexts is usually much larger than the
number of available actions (2c > K), the same action may be taken in mul-
tiple contexts. Therefore, by denoting with Xai the set of contexts where
we choose the action ai, i.e., Xai = {x ∈ X | ai = arg maxa∈A µ(x, a)},
and with P := {Xa1 , . . . , XaK} a partition of the space X (∪Ki=1Xai = X
and Xai ∩ Xaj = ∅ ∀i 6= j), finding the policy which maximizes the ex-
pected profit becomes equivalent to finding the partition P . Unfortunately,
the number of possible partitions is exponential in the number of contexts
(that in its turn is exponential in the number of features c), thus finding the
optimal partition is computationally hard. Second, in a real scenario the
values of the expected reward µ(x, a) for each couple context-action are un-
known and should be estimated from a finite dataset ZN . In this case, the
use of the empirical mean to estimate µ(x, a) is not sufficient. In fact, due to
the uncertainty present in the reward distributions, the empirical mean value
might deviate from the real values, thus its use does not provide any guaran-
tee that the optimization procedures also minimizes the probability of having
very low profit. We remark that this holds since the empirical mean does not
capture the risk-aversion of the learner.

We propose the RADT algorithm which greedily learns a binary tree to
approximate the optimal mapping U(x) on the basis of the available dataset
ZN and maximizes statistical lower bounds over the expected profit. This ap-
proach exploits the fact that similar contexts, i.e., contexts that differ only for
few features, are likely to share the same optimal action and thus it keeps the
complexity of the optimization procedure at bay by considering only a linear
number of possible contexts (w.r.t. the feature space dimension c) during the
process of creating the partitions. Furthermore, to cope with the uncertainty
present on the reward, as discussed in the previous section, the algorithm
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makes use of a risk-averse approach by considering statistical lower bounds
over the expected reward, which provide guarantees on the expected rewards
in high probability.

More specifically, the decision tree is built by choosing in each node the
split that guarantees the maximum improvement w.r.t. the lower bound on
the expected profit of the data corresponding to that node. When no im-
provement can be obtained the node becomes a leaf and it gets associated to
the action corresponding to the maximum value of the lower bound on the
expected reward. The lower bound over the expected profit of an action a
over a generic dataset Z (subset of ZN ) holding with probability δ is:

G(Z, a, δ) = p(Z, δ/2) · µ(Z(a), δ/2), (4.1)

which is computed as the product of two terms:

• a lower bound over the probability of the context corresponding to
dataset Z:

p(Z, δ/2) := p̂(Z,ZN)− ε1(Z, δ/2),

where p̂(Z,ZN) := |Z|
|ZN | is the empirical estimate of the probability

of a context vector to come from the considered dataset Z w.r.t. the
complete one ZN , ε1(Z, δ/2) is a confidence bound over the previously
mentioned quantity holding with probability at least 1− δ/2 and | · | is
the cardinality operator;

• a lower bound over the action a expected reward:

µ(Z(a), δ/2) := µ̂(Z(a))− ε2(Z(a), δ/2),

where Z(a) := {zi = (xi, ai, ri), zi ∈ Z | ai = a} is the subset of
samples zi ∈ Z whose action ai = a, µ̂(Z(a)) := S(Z(a))

|Z(a)| is the em-
pirical estimate of the reward corresponding to action a, S(Z(a)) :=∑

i|zi=(xi,ai,ri),zi∈Z(a) ri is the sum of the rewards of action a in the
dataset Z(a) and ε2(Z(a), δ/2) is a confidence bound over the expected
reward of an action a in the context corresponding to Z holding with
probability at least 1− δ/2.4

In what follows, we provide a detailed description of the RADT algorithm
and, after that, we present some remarks about its characteristics. At last, we
describe the possible choices of lower bounds to adopt in different settings.

4.2.1 The RADT algorithm
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4.2. Proposed Method

Algorithm 3: RADT
1: Input: Dataset ZN , Confidence δ0
2: Output: Tree root n0
3: n0 ← SPLIT(ZN , δ0)
4: return n0

Algorithm 4: SPLIT(Z, δ)

1: for a ∈ A do
2: Extract Z(a) = {zi ∈ Z|ai = a}
3: Compute G(Z, a, δ) as in Eq. (4.1)
4: Compute a∗ = arg maxa∈AG(Z, a, δ)
5: for j ∈ {1, . . . , c} do
6: Extract Zlj = {zi ∈ Z|xij = 0}
7: Extract Zrj = {zi ∈ Z|xij = 1}
8: for a ∈ A do
9: Extract Zlj(a) = {zi ∈ Zlj |ai = a}

10: Extract Zrj (a) = {zi ∈ Zrj |ai = a}
11: Compute G(Zlj , a, δ/4) as in Eq. (4.1)
12: Compute G(Zrj , a, δ/4) as in Eq. (4.1)
13: Compute H(Z, j, δ) as in Eq. (4.2)
14: Compute j∗ = arg maxj H(Z, j, δ)
15: Compute ∆G = H(Z, j∗, δ)−G(Z, a∗, δ)
16: if ∆G > 0 then
17: nl ← SPLIT(Zlj∗ , δ/2)
18: nr ← SPLIT(Zrj∗ , δ/2)

19: Set n = (j∗, a∗, nl, nr, δ)
20: else
21: Set n = (∅, a∗, ∅, ∅, δ)
22: return n

The high level pseudo-code of RADT is presented in Algorithm 3, while
a subroutine used by the main algorithm is described in Algorithm 4. Algo-
rithm 3 receives as input the entire dataset ZN = {(xi, ai, ri)}Ni=1 of N ∈ N
logged bandit feedback and a confidence value δ0 ∈ (0, 1) providing the
required probability that the policy URADT , induced by the RADT algo-
rithm, has risk-averse profit P (URADT , ZN , δ0) smaller than the expected
profit P (URADT ).

Algorithm 3 calls Algorithm 4 over the dataset ZN and with confidence
δ0. The subroutine described in Algorithm 4, called over a generic dataset
Z and confidence δ, computes the lower bound G(Z, a∗, δ) of the expected

4The choice and the computation of the confidence bounds ε1(·) and ε2(·) is discussed in Section 4.2.2.
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profit of the dataset Z as described in Equation (4.1) and compares it with
the one obtained by summing the lower bounds of the expected profit of the
best binary split w.r.t. the j∗-th variable of the dataset Z, called H(Z, j∗, δ).

More specifically, G(Z, a∗, δ) is computed by finding the action a∗ ∈ A
maximizing the lower bound of the profit computed over Z (Line 4). After
that, to compute H(Z, j∗, δ), the algorithm evaluates the lower bound over
the expected profit for all the possible splits along each context dimension.
More specifically, a split consists in the partition of the dataset Z into two
subsets Z l

j and Zr
j (which correspond to two disjoint subsets of the input

spaceX) s.t. all the samples zi ∈ Z with xij = 0 belong to Z l
j and those with

xij = 1 belong toZr
j (Lines 6-7). The algorithms computes the lower bounds

over the expected profit of an action a on the datasets Z l
j and Zr

j , called
G(Z l

j, a, δ/2) and G(Zr
j , a, δ/2), respectively, and, since the overall bound

should hold with probability δ, we split evenly the confidence δ over the two
subsets (Lines 11-12). For each context dimension index j the algorithm
considers the maximum possible gain provided by selecting a single action
in each subset, defined as:

H(Z, j, δ) := max
a∈A

G(Z l
j, a, δ/2) + max

a′∈A
G(Zr

j , a
′, δ/2) (4.2)

and, finally, it selects the index j∗ := arg maxj H(Z, j, δ) maximizing the
lower bound of the gain (Line 14).

If the lower bound over the gain of the best split H(Z, j∗, δ) provides
an improvement over the one of the single node G(Z, a∗, δ), i.e., ∆G :=
H(Z, j∗, δ)−G(Z, a∗, δ) > 0, the algorithm recursively calls the subroutine
in Algorithm 4 over the two datasets Z l

j∗ and Zr
j∗ , each one with confidence

δ/2, to maintain an overall confidence of δ (Lines 17-18). If no improvement
is provided by the best split (∆G ≤ 0), the algorithm stops the recursive step.

At the end of the execution the algorithm returns the decision tree having
in each node n the information about the index of the context dimension
j∗ where the split has occurred, about the optimal action a∗ in the node,
about the two children nl and nr of the contexts corresponding to datasets
Z l
j∗ and Zr

j∗ , respectively, and the confidence δ we considered for the node
corresponding to ZN (Line 19). If the node is a leaf, it only contains the best
action a∗ and the confidence level of the node δ (Line 21).

4.2.2 RADT properties and limitations

Differently from other techniques for the LLBF setting, the RADT algorithm
provides a natural way of computing the risk-averse profit P . The output of
RADT algorithm run over ZN with confidence δ0 is a tree structure inducing
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a partition over the context space {X1, . . . , Xe} and each leaf nk of the tree
corresponds to a context Xk. Let us consider a dataset ZM of logged bandit
feedbacks, independent from ZN and sampled by the sampling policy U0

over (X , A,R). Each node nk can be coupled with the portion of the dataset
Z(ni) ⊆ ZM s.t. zi ∈ Z(nk) iff xi ∈ Xk. The risk-averse profit of the policy
U (resulting from the RADT training) can be computed as follows:

P (U, ZM , δ0) =
e∑
i=1

p
i
µ
i
,

where p
i

:= p̂(Z(ni), ZM) − ε1(Z(ni), δ(ni)) is the lower bound over the
probability of the contextXi, µi = maxa∈A µ̂(Z(ni, a))−ε2(Z(ni, a), δ(ni))

is the lower bound over the expected reward of context Xi, Z(ni) and δ(ni)
are the portion of the dataset ZM and the confidence corresponding to node
ni, respectively, and Z(ni, a) = {zi ∈ Z(ni)|ai = a}. It is straightfor-
ward to proof, by considering a union bound argument, that the r.h.s. of the
above equation satisfies the properties of the risk averse profit, i.e., that
P (P (U) ≤ P (U, ZM , δ0)) ≤ δ0.

Besides giving guarantees on the minimum expected reward, the RADT
algorithm also provides a characterization of the context variables. In fact,
the ones that have been chosen for the splits are the context variables that
are more likely to be relevant for the considered problem. Moreover, we can
infer the importance of a single variable by looking at improvement in term
of gain ∆G provided by performing a split on it: the more the gain, the more
the variable is relevant.

Finally, the extension of the algorithm also to non-binary context vari-
ables xij is quite straightforward [72]. In the case of a finite set of ordered
values, a conversion to binary numbers suffices to transform the problem to
the LLBF setting considered here. If an attribute is categorical, we instanti-
ate a binary variable for each category. If a context variable has values in a
continuous domain, an approximate solution is to discretize the domain and
again convert the obtained values into binary variables. This process clearly
multiplies the computational complexity of the considered algorithm by a
factor proportional to the number of values one considers per variable.

4.2.3 Using different bounds

The algorithm pseudo-code described in Algorithm 3 requires the computa-
tion of lower bounds ε1(Z, δ) and ε2(Z, δ) over the contexts probabilities and
rewards, respectively. While the expected probabilities present a Binomial
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distribution, one might use different bounds on the reward due to the differ-
ent a priori information the learner has in the considered setting. In what
follows, some of the most interesting choices for the bounds are presented.

If the only information is related to the finite support of the reward dis-
tributions, one may resort to classical statistical bounds derived from the
Hoeffding [73] or the Bernstein [36] inequalities:

εH(Z, δ) =

√
− log δ

2|Z| ,

εBE(Z, δ) =

√
−2V (Z) log δ

3|Z| − log δ

|Z| ,

where V (Z) is the estimate of the variance of the rewards ri s.t. zi ∈ Z.
If one has also the prior/posterior conjugate distribution, it is possible to

use a Bayesian bound, similarly to what considered in [74], e.g., in the case
of Bernoulli variables we have Beta/Bernoulli conjugate distributions and:

εBA(Z, δ) = q(δ, π(Z))− µ̂(Z),

where π(Z) = Beta(1 + S(Z), 1 + |Z| − S(Z)) is the posterior distribu-
tion, S(Z) is the cumulative reward over the dataset Z and q(δ, π(Z)) is the
quantile of order δ of the distribution π(Z).

The previously described bounds can be used in the case the collected
logs ZN are i.i.d. sampled. This is the case when we consider a non con-
textual sampling policy U0. In the case this assumption is not verified, one
might resort to bounds which does not rely on the i.i.d. hypothesis, like the
one provided by McDiarmid inequalities [75]. In this case all the aforemen-
tioned properties and the confidence level would hold as is.

4.3 Experimental Results

In this section, we compare the empirical performance of RADT with the
ones of a number of algorithms. We evaluate three different versions of
RADT, each one using a different statistical approach: H-RADT using the
Hoeffding’s upper confidence bound εH(Z, δ); BE-RADT using the Bern-
stein’s upper confidence bound εBE(Z, δ); BA-RADT using the Bayesian
upper confidence bound εBA(Z, δ), as defined in Section 4.2. For all these
versions of RADT we use a confidence of δ0 = 10−2. Furthermore, we
evaluate a set of off-line regression techniques to learn the reward func-
tion using samples (xi, ai) ⇒ ri and providing as policy for a context the
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action providing the highest estimated reward. In the specific, we consid-
ered FeedForward regression Neural Network (FFNN) [63] with a hidden
layer with 10 neurons, Gaussian kernel Support Vector Machine (SVM)
for regression, and Random Forest Regressor (RFR) [76] with 100 trees.
We use these algorithms with the default parameters except for those men-
tioned above. Finally, we evaluate also the POEM algorithm [64] with values
c ∈ {1.0, 0.1, 0.01, 0.001} for parameter λ := cλ0 similarly to what has been
presented in the POEM empirical analysis, where λ0 is the theoretically de-
rived value for the λ parameter (see [64] for more details).5 We evaluate, for
each algorithm, the boxplot of the expected profit in terms of minimum, 1-st
quartile, median, 3-rd quartile, maximum, and potential outliers.

4.3.1 Synthetic dataset

We design synthetic data in which a single product is proposed to the cus-
tomer that can decide whether to buy it or not. The set of the choices corre-
sponds to the set of prices of the product and we set it as A = {1, . . . , 10}.
A deterministic customer is modeled as a threshold representing her reser-
vation value: any price smaller than or equal to the reservation value will be
accepted by the customer (i.e., the user buys the product), while any price
strictly larger than the reservation value will be rejected (i.e., the customer
does not buy the product). A class of customers is modeled as a probabil-
ity distribution over the threshold. For simplicity, each class is modeled as
a normal distribution with parameters µ and σ. Each class of customers is
associated with a set of features modeled as a set of binary variables observ-
able by the algorithms. Basically, each class of customers corresponds to a
context the algorithms should be able to identify. All the classes have the
same probability of being selected. We assume that a number of data have
been collected without any partitioning in contexts by means of three dif-
ferent logging policies, describing which price is returned to the customer.
Specifically, we consider: the Random logging Policy (RP), according which
each choice ofA has the same probability to be chosen (independently of the
class of customers), the UCB1 [6] policy, in which the normalized (in [0, 1])
profit is considered as reward (and therefore the resulting logging policy is
non-stationary), and the policy given by Thompson Sampling (TS) [9] with
the same previous definition for the reward (also in this case the logging pol-
icy is non-stationary; furthermore Thompson Sampling usually converges to
a single option faster than UCB1 and therefore we expect that TS is less ex-
plorative than UCB1 that, in its turn, is less explorative than RP). Finally,

5Since for c ∈ {1.0, 0.01} POEM is always outperformed by the other algorithms, below we omit the results
related to these parametrizations.
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we consider four different number of samples for each class of customers
in the set {1250, 2500, 5000, 10000} to evaluate how the performance of the
algorithms varies as the size of the available data varies. For each scenario,
characterized by a set of classes of customers, logging policy and number of
samples, we randomly generate 100 different ZN log datasets, and we ap-
ply the algorithms to each one. Finally, once obtained the contextual policy
returned by the algorithms, we evaluate their performance on a test set ZM
containing M = 10, 000 samples.

Case with 2 customer classes. We consider a case with 2 classes of cus-
tomers. The first with µ = 3 and the second with µ = 8; σ = 2 for both.
There is only one binary feature observable by the algorithms. Here, we
report the most significant results (with 1, 250 and 10, 000 samples per con-
text) in Figure 4.1, provided that experiments on other configurations do not
change the final conclusions. The green line reports the average profit of the
optimal (clairvoyance) policy U∗, while the red line reports the average profit
of the baseline optimal non-contextual policy UB. Although the three RADT
algorithms present similar performance, the BA-RADT provides a slightly
better performance especially when TS is used and the samples are few. This
is reasonable since BA-RADT requires stronger assumptions w.r.t. the other
RADT algorithms. Furthermore, as expected, the best performance is ob-
tained with RP, while the worst with TS. Increasing the number of samples
allows the algorithms to learn better, but using non-stationary policies may
avoid the algorithm to maximize the profit. POEM (for every value of c)
is outperformed by RADT both with stationary logging policies (required
by the assumption of POEM) and with non-stationary policies (with which
an effective functioning of PEOM is not guaranteed). Finally, surprisingly,
RFR and FFNN provide good performance usually comparable with that one
provided by RADT. However, these methods do not allow a simple interpre-
tation of the policy (e.g., the description of the contexts).

Case with 8 user classes. We consider a case with 8 classes of customers.
The µs of the normal distributions are {1.0, 2.5, 3.5, 4.5, 5.5, 6.5, 8.5, 10.5},
while σ = 0.5 for every class. There are three binary features observable
by the algorithms. We report the most significant results (with 1, 250 and
10, 000 samples per context) in Figure 4.2. The red and green lines have the
same meaning as in the previous experiment. The most significant result is
that the relative performance of POEM w.r.t. the other algorithms degrades
importantly. In particular, POEM provides the worst performance for all the
pairs logging policy/number of samples. Instead, all the other algorithms
perform similarly.
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4.3. Experimental Results

4.3.2 Real-world dataset

We use real-world logs generated by an online flight ticket seller (whose
name cannot be disclosed, data being confidential). This scenario is charac-
terized by a large number of searches per day and by extremely low conver-
sion rates. The space of choices A is the set of positive monetary markups to
apply to a ticket with a discretization of 0.5 Euros. The observable features
are, e.g., the departure airport/country/continent, the arrival airport/country/-
continent, the number of passengers, and the fact that the flight is one-way
or round-trip. We use three different datasets with 3, 5, and 9 millions of
samples respectively. Each dataset contains information about: the features
associated with the search done by user, the used markup, and the user feed-
back in terms of purchase or not of the ticket. We apply BA-RADT algorithm
with δ0 = 0.1 to these datasets obtaining three different trees. In this case,
we evaluate the percentage of improvement of the policy induced by RADT
U over the one provided by the non-contextual one UB in terms of lower
bound, i.e., I%(U) := 100P (U,ZN ,δ0)−P (UB ,ZN ,δ0)

P (UB ,ZN ,δ0)
.

Results. With the first dataset, the algorithm identifies 2 contexts (cor-
responding to the terminal nodes of the tree) with a minimum assured im-
provement I%(U) = 3%. With the second dataset, the algorithm identifies
8 contexts with a minimum assured improvement I%(U) = 11%. With the
third dataset, the algorithm identifies 27 contexts with a minimum assured
improvement I%(U) = 38%.

Figure 4.3 reports the tree generated by RADT with the second real-world
dataset. In each internal node (blue circles) it is specified the variable j∗

w.r.t. the algorithm performs the split and on each edge is reported the con-
dition a sample has to satisfy to fall in the node below. The leaves (green
rectangles), which correspond to contexts Xi, report information about the
optimal action a∗ chosen by RADT in the context Xi, the lower bound µ(a∗)
over the expected reward of action a∗ in the context Xi, the lower bound
p over the probability of a sample to belong to the context Xi and the car-
dinality |Z| of the data available in the considered context. It is possible
to see how the model identifies contexts which are easy to interpret, for in-
stance, the leftmost context identifies all the flight tickets which are arriving
in Czech Republic for a single passenger. The high interpretability of the
context trees allowed some experts of the field to analyze the partitioning
in contexts. Their evaluation has been extremely positive, suggesting new
business strategies unexplored so far.
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Figure 4.3: Tree generated with the second dataset (5 millions of samples) using BA-RADT,
providing a minimum assured improvement I%(U) = 11%.
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CHAPTER5
Multi-Armed Bandit for Pricing:

Frequentist Approach

In this chapter, we study the stochastic MAB setting on a finite number of
arms, and we propose techniques to apply to Upper Confidence Bound poli-
cies in order to exploit the monotonicity property of conversion rates as well
as the a priori information on the maximum conversion rate. Section 5.1
provides the formulation for the considered MAB setting. In Section 5.2,
we describe the proposed techniques in stationary settings and we prove that
the asymptotic regret bounds of our algorithms are of the same order as the
state-of-the-art ones. In Section 5.3, we describe the proposed techniques
in non-stationary settings, providing regret bound analysis. Section 5.5 pro-
vides experimental results in stationary settings, while Section 5.6 provides
experimental results in non-stationary settings. Basically, the empirical anal-
ysis shows that our algorithms provide significant advantages with respect
to general-purpose MAB algorithms in the early stages of the learning pro-
cess. This is crucial in real pricing scenarios, where very low conversion
rates (that require a long exploration phase to have accurate estimations) and
non-stationary buyers’ demands make the algorithms to work in a never-
ending transient. Finally, in Section 5.7 we introduce Thompson Sampling,
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a Bayesian MAB algorithm, and we compare it to the frequentist methods
proposed in the previous sections. The proofs of the theorems are reported
in Appendix A and the pseudocode of some algorithms can be found in Ap-
pendix B.

5.1 Problem Formulation

We study a scenario where an unlimited non-perishable amount of goods is
available to a monopolistic seller, who proposes the product she is selling to
some unknown buyers at a chosen price. We model our problem as a MAB
problem [6], where at each round t ∈ {1, . . . , N} over a finite horizon N the
seller selects an arm, corresponding to a price, among a strictly ordered finite
set of K different arms A = {a1, . . . , aK} with ai ∈ (0,+∞).1 As custom-
ary in microeconomics, each buyer is modeled as a deterministic agent who
buys the item only if the proposed price is lower than or equal to a threshold
s ∈ R+. Thus, all the prices that are lower than s lead to a sale, while all the
prices higher than s lead to a non-sale. Since buyers have generally different
thresholds s, we model s as realizations of a random variable S with a prob-
ability density function (pdf) S over a finite support Ω ⊂ R+. In stationary
settings, the pdf S is unique for all the rounds, whereas in non-stationary
settings each round t presents a potentially different pdf St. We assume that
the pdfs are unknown to the seller and therefore that the seller needs to esti-
mate them. Furthermore, for the sake of presentation, we assume the costs
of the seller to be zero.2 In that case, the price ai also represents the re-
ward received by the seller once she sold the product. The seller’s goal is
the maximization of the total expected revenue over the time horizon N . A
MAB policy is an algorithm U(ht) that chooses the next arm ait to play at
round t given history ht, defined as the sequence of past plays and obtained
rewards. At each round t the algorithm observes a single realization of the
reward Vit obtained from the arm ait = U(ht).

5.1.1 Stationary Pricing Model

In the case of stationary settings, the reward gained by pulling an arm ai is
a bounded random variable Vi = aiXi, where Xi ∼ Be(µi) is a Bernoulli
variable that represents the outcome (buy/not buy) of the transaction, where
µi := E[Xi] is the expected value of the outcome corresponding to arm ai,
i.e., the conversion rate. We denote with Vi,n and Xi,n the random vari-
able of the reward and the outcome of the n-th pull of the i-th arm, respec-

1From now on, we will use the terms arm and price interchangeably.
2Our work can be easily applied also to the case in which the costs of the seller are arbitrary and known.
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tively, and with vi,n and xi,n their realizations. We denote with Ti(t) =∑t
m=1 1{U(hm) = ai} the number of times the arm ai was pulled in the

first t rounds, where 1{B} is the indicator function of the event B. The
objective of a policy is the maximization of the expected cumulative reward
or, equivalently, the minimization of the loss with respect to the optimal de-
cision (in terms of reward). This loss is usually addressed as (cumulative)
pseudo-regret, whose definition over the time horizon N is:

R̄N = ai∗µi∗N −
K∑
i=1

aiµiE[Ti(N)],

where i∗ = arg maxi∈{1,...,K} aiµi is the optimal arm and E[·] is the expecta-
tion with respect to the stochastic components of the policy.

5.1.2 Non-Stationary Pricing Model

In the case of non-stationary settings, we analyse an abruptly changing en-
vironment, similarly to what has been studied in [77], where the pdf Sj de-
scribing the buyer behavior is constant during sequences of rounds called
phases and changes at unknown rounds called breakpoints. Thus, differ-
ently from the stationary scenario, the expected value of the outcome µi,t of
an arm ai at round t changes over the phases and therefore the best arm ai∗,t
might change after each breakpoint.

A breakpoint b ∈ {1, . . . , N} is a round such that ∃i | µi,b−1 6= µi,b, i.e., a
round b where the expected reward of at least one arm changed with respect
to the one at round b − 1. In a non-stationary environment S(B) with time
horizon N we have a set of breakpoints B = {b1, . . . , bΥN} of cardinality
ΥN (for sake of notation we define b1 = 1), which determines a set of phases
{Φφ}ΥN

φ=1, where Φφ = {t|bφ−1 ≤ t < bφ}, i.e., the set of rounds between
two consecutive breakpoints. During phase Φφ, we denote (with abuse of
notation) with µi,φ the expected value of the outcome of the i-th arm ai and
with µi∗,φ the expected conversion probability corresponding to the best arm
ai∗,φ. By defining Nφ = |Φφ|, the cumulative pseudo-regret of a generic
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policy over a non-stationary environment is:

R̄N = E
[
N∑
t=1

(ai∗,tµi∗,t − aitµit,t)
]

=
ΥN∑
φ=1

ai∗,φµi∗,φNφ − E
[∑N

t=1 aitµit,t

]
=

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ − E

[∑
t∈Φφ

aitµit,t

])
=

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ −

∑K
i=1 aiµi,φE[Ti(Φφ)]

)
,

where
∑ΥN

φ=1Nφ = N , Ti(Φφ) =
∑

m∈Φφ
1 {U(hm) = ai} is the number

of times the i-th arm ai has been pulled during phase Φφ and E[·] is the
expectation with respect to the stochastic components of the policy.

5.1.3 Properties of the Pricing Problem

We exploit two properties of the probability distributions of the random vari-
ables Xi,n representing the outcomes of the transactions. The first property
is the dependency between arms. While in the classic MAB setting the re-
wards produced by different arms are assumed to be drawn from independent
probability distributions, in our setting this does not hold anymore, since the
realizations at time t (i.e., x1,T1(t), . . . , xK,TK(t)) of the outcome variables
X1,T1(t), . . . , XK,TK(t) are correlated by the threshold of the buyer that plays
at round t. The expected conversion probability µi,φ corresponding to price
ai at phase Φφ is defined as the probability that a user purchases the product
or formally:

µi,φ := PSφ(s ≥ ai) = 1−
∫ ai

0

Sφ(x)dx.

Notice that, in stationary settings, we have a single probability distribution,
thus Sφ = S and µi,φ = µi. From the non-negativity of the probability
distribution function Sφ and from the properties of the integral, it clearly
follows that ai < aj ⇒ µi,φ > µj,φ, i.e., the expected conversion probability
is monotonically decreasing with respect to the price.

The second property concerns the low conversion rates, which are com-
mon in many e-commerce applications. In this case, the seller knows that
only a certain percentage of the buyers µmax ∈ [0, 1] (typically µmax � 1)
really considers the possibility of purchasing the good, while the remain-
ing part 1 − µmax would not buy at any price. Such behavior can be in-
troduced in the user model by considering Sφ with pdf equal to Sφ(x) =
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(1 − µmax) · δ(0) + µmax · Cφ(x), x ∈ Ω, where δ(0) is a Dirac delta proba-
bility distribution centered in 0 and Cφ(·) is a pdf defined over Ω.

5.2 Exploiting Pricing Properties in Stationary Settings

In this section, we describe techniques exploiting the pricing problem struc-
ture in stationary settings. We use the monotonicity structure of the expected
value of the outcome {µi}Ki=1 of the arms to tighten the UCBs used in the fre-
quentist approach. The proposed techniques are then applied to UCB1 [6]
and UCBV [36], as interesting case studies. Furthermore, to exploit the prior
knowledge about low conversion rates, we propose the use of a form of the
Chernoff’s bound [7] which, in this case, is tighter than the Hoeffding’s one.
Finally, we provide an algorithm that combines both techniques.

5.2.1 Exploiting the Monotonicity Property

Given an arm ai, the realizations of all the outcomes Xj with j < i provide
information that can be exploited for the computation of the UCB on the
expected value µi. Indeed, since µi ≤ µj , we can use the realizations drawn
so far from Xj as optimistic samples to estimate µi. In what follows, we will
derive a set of bounds which exploit the samples coming from arms with
lower value and consider the tightest among them to design an algorithm
for the pricing scenario. Let X̄i,t be the empirical mean, at round t, of the
outcomes obtained by pulling arm ai for Ti(t−1) rounds (i.e., an estimator of
the expected conversion rate µi of arm ai) and x̄i,t its realization, or formally:

X̄i,t :=
1

Ti(t− 1)

Ti(t−1)∑
n=1

Xi,n,

x̄i,t :=
1

Ti(t− 1)

Ti(t−1)∑
n=1

xi,n.

Similarly, given 1 ≤ j ≤ i, let X̄ji,t be the following convex combination of
the sample means X̄j,t, . . . , X̄i,t and let x̄ji,t be its realization:

X̄ji,t :=

∑i
k=j Tk(t− 1)X̄k,Tk(t−1)

Tji(t− 1)
,

x̄ji,t :=

∑i
k=j Tk(t− 1)x̄k,t

Tji(t− 1)
,
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Chapter 5. Multi-Armed Bandit for Pricing: Frequentist Approach

where Tji(t − 1) =
∑i

k=j Tk(t − 1), corresponding to the cumulative num-
ber of rounds all the arms from j to i have been pulled. Since, given the
monotonicity property, it holds:

µji,t = E
[
X̄ji,t

]
≥ µi,

any upper bound on µji,t is also an upper bound on µi. This allows us to
bound the expected value µi of the outcome Xi of arm ai by using samples
drawn from the set of outcomes {X1, . . . , Xi}. In other words, we can com-
pute an upper bound on the expected conversion rate associated with arm ai
by taking into account also the experience collected when lower arms were
selected. By considering concentration bounds over the aggregated variables
Xji with j ∈ {1, . . . , i}, we may possibly find a tighter bound also on the
expected value of the outcome Xi. In what follows, we apply this idea to the
concentration bounds used in UBC1 and UCBV policies.

UCB1 with Monotonic Arms (UCB1-M)

Applying the Hoeffding’s inequality [73] to the random variables X̄ji,t, with
probability at least 1− p

i
where p ∈ [0, 1], we have the following UCBs (from

now on denoted as UCB1-M):

u
(UCB1-M)
ji,t = x̄ij,t+

√
log(i)− log(p)

2Tji(t− 1)
> µji,t ≥ µi ∀j ∈ {1, . . . , i}. (5.1)

Since, for each j ∈ {1, . . . , i}, u(UCB1-M)
ji,t is a valid upper bound on µi holding

with at least probability 1− p
i
, by setting u(UCB1-M)

i,t = minj∈{1,...,i} u
(UCB1-M)
ji,t

and resorting to a union bound, we have the tightest bound among those
provided by Equation (5.1), holding with at least probability 1− p.

The use of the UCB1-M bound constitutes a potential improvement over
the traditional one used by the UCB1 algorithm and obtained by considering
realizations coming from a single arm. Indeed, this novel UCB exploits
Tji(t − 1) ≥ Ti(t − 1) samples and may be tighter than the UCB1 one. If
the observed empirical means are consistent with the monotonicity property
(i.e., x̄i,t < x̄j,t, ∀i > j) the use of a larger number of samples coming
from other arms may allow one (specially in the early stages) to tighten the
bound. The proposed method is even more advantageous when empirical
means are not consistent with the monotonicity property (i.e., ∃ i > j such
that x̄i,t > x̄j,t). In this case, the bound u(UCB1-M)

i,t is significantly improved
over the original UCB1 bound. Such a situation is exemplified in Figure 5.1,
where we have that, in contrast with the monotonicity over A = {a1, a2},
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0.2

0.4

0.6

0.8 Conversion
UCB1
UCB1-M

0 0.2 0.4 0.6 0.8 1
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u
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Figure 5.1: Example of empirical means not consistent with the monotonicity property and
UCBs corresponding to UCB1 and UCB1-M. The top figure presents the real conversion
rate function (green line) and two bars going from the estimated expected reward and
the two bounds (in blue and red). The bottom figure represents the dependence of the
two bounds over arm a2 (in blue and red) with respect to the confidence level one wants
to keep [110−50]; p is the confidence level used to draw the top figure and the dashed
lines are the empirical means of X2 and X12.

the empirical mean of the outcome corresponding to arm a1 = 1, i.e., x̄1,t,
is lower than the one of arm a2 = 2, i.e., x̄2,t. This happens because arm a2

has been selected much less often than arm a1 and so its empirical mean is
more uncertain. The samples drawn from arm a1 allow to tighten the UCB
for arm a2 from the value denoted by the blue circle to the value denoted by
the red square (top). The use of the proposed UCB for arm a2 does not imply
a reduction in the confidence level, since the two values have been obtained
from different bounds. Indeed, they share the same confidence level 1 − p,
as shown in Figure 5.1 (bottom).

The algorithm corresponding to the derived UCB, namely UCB1 with
Monotonic arms (UCB1-M), is presented in Algorithm 5. At first, the algo-
rithm selects each arm once, to have at least one outcome realization coming
from each arm. Subsequently, for each round t, it assigns for each arm ai:

u
(UCB1-M)
i,t = min

j∈{1,...,i}

{
x̄ji,t +

√
4 log(t) + log(i)

2Tji(t− 1)

}
,

where, we considered p = t−4 and we selected the j ∈ {1, . . . , i} minimiz-
ing u(UCB1-M)

ji,t . Finally, the algorithm selects for the next round t the arm ait
providing the maximum upper bound aitu

(UCB1-M)
it,t

over the expected reward
aiµi.
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Algorithm 5: UCB1-M
Initialization
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB1-M)
i,t = min

j∈{1,...,i}

{
x̄ji,t +

√
4 log(t) + log(i)

2Tji(t− 1)

}

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCB1-M)
i,t and observe xit,Tit (t)

By using the UCB1-M algorithm we are able to show that:

Theorem 1. If policy UCB1-M is run over a stationary MAB setting with a
monotonic set A, the pseudo-regret after N rounds is at most:

R̄N ≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i

+
∑

i|ai 6=ai∗

2a2
i log(K)

∆i

+

(
1 +

π2

3

) K∑
i=1

∆i,

where ∆i := ai∗µi∗ − aiµi,∀i ∈ {1, . . . , K}.

The previous theorem guarantees that the proposed algorithm has, in the
worst case, O(log(N)) regret, as the UCB1 policy. Nevertheless, we show
that, empirically, UCB1-M dramatically outperforms UCB1.

UCBV with Monotonic Arms (UCBV-M)

Similarly, by resorting to the bound presented Theorem 1 in [36], it is pos-
sible to derive an UCB that also considers the empirical variance V̄ji,t of the
variable Xji,t by using its realization v̄ji,t, formally defined as, respectively:

V̄ji,t =

∑i
k=j

∑Tk(t−1)
n=1

(
Xk,n − X̄ji,t

)2

Tji(t− 1)
,

v̄ji,t =

∑i
k=j

∑Tk(t−1)
n=1 (xk,n − x̄ji,t)2

Tji(t− 1)
.
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The bound, from now on denoted as UCBV-M, holding with probability at
least 1− 3

(
p
i

)ξ, with p ∈ [0, 1] is:

u
(UCBV-M)
ji,t =x̄ji,t +

√
2v̄ji,tξ[log(i)− log(p)]

Tji(t− 1)
+

+
3cξ[log(i)− log(p)]

Tji(t− 1)
> µji,t,

where ξ, c ∈ R, ξ > 1, c ≥ 1; see [36] for details. Note that, if we choose
ξ > 1− log(3)

log(p)
, the previous bound holds with probability at least 1− p

i
, i.e.,

with the same confidence the UCB1-M holds.
The algorithm, based on the derived bound and called UCBV with Mono-

tonic arms (UCBV-M), is described in Algorithm 6. Similarly to UCB1-M,
it chooses each arm once in the initial phase and, after that, it selects the
next arm to play on the basis of the upper confidence bounds u(UCBV-M)

i,t =

u
(UCBV-M)

j̄i,t
, where j̄ is chosen to minimize u(UCBV-M)

i,t and p = t−1. It is possi-
ble to show that:

Theorem 2. If policy UCBV-M is run with ξ = 1.2 and c = 1 over a setting
with a monotonic set A, the pseudo-regret after N rounds is at most:

R̄N ≤
12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i

+
32

15

)
log(N)+

+
∑

i|ai 6=ai∗
∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,

where σ2
i := V ar(Xi,n), ∀i ∈ {1, . . . , K},∀ n ∈ {1, . . . , Ti(N)}.

Even in this theorem the asymptotic behaviour is of order of O(log(N))
as the one presented in [36] for the UCBV algorithm.

5.2.2 Exploiting the Low Conversion Rates Property

When it is a priori known that the conversion rates of all the arms are upper
bounded by a value µmax ≤ 1

2
, i.e., µi ≤ µmax for every i ∈ {1, . . . , K}, it

is possible to exploit probabilistic bounds that achieve better results than the
one based on the Hoeffding’s inequality [73]. More specifically, one of the
approximations used in the derivation of the Hoeffding’s inequality for the
generic outcome Xi is:

P(X̄i,t + ε ≤ µi) ≤ e−Ti(t−1)D(µi+ε||µi) ≤ e−2Ti(t−1)ε2 , (5.2)
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Algorithm 6: UCBV-M
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCBV-M)
i,t = min

j∈{1,...,i}

{
3c[ζ log(t) + log(i)]

Tji(t− 1)
+

+

√
2v̄ji,t[ζ log(t) + log(i)]

Tji(t− 1)
+ x̄ji,t

}

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCBV-M)
ji,t and observe xit,Tit (t)

ε
0 0.2 0.4 0.6 0.8 1
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1
HB(ε)
KL(ε), µmax = 0.01
CB(ε), µmax = 0.01
KL(ε), µmax = 0.001
CB(ε), µmax = 0.001

Figure 5.2: Example of bounds y = e−x(ε) obtained with different x(ε): Hoeffding’s Bound
(HB(ε)), Kullback-Leiber divergence (KL(ε)) and Chernoff’s Bound (CB(ε)).

where D(µi + ε||µi) is the Kullback-Leibler (KL) divergence between two
Bernoulli variables with mean µi + ε and µi, respectively.

As shown in Figure 5.2, the bound based on the KL divergence (solid
lines) and the one on Hoeffding’s inequality (dash-dotted line) diverge as
µmax decreases. To reduce the gap, we consider the following result that is
one of the formulations of the Chernoff’s bound [7]:
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Theorem 3 (Theorem 4 in [78], Lower tail). Given a set of Ti(t − 1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)}
such that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(X̄i,t + ε ≤ µi) ≤ e
−Ti(t−1)ε2

2µi .

Since µi is unknown, the above concentration inequality cannot be used
in practice. On the other hand, under the assumption that µi ≤ µmax, we can
replace µi with µmax, thus getting an upper confidence bound that is tighter
than the Hoeffding’s one and gets close to the one obtained by knowing the
KL divergence (see dashed lines in Figure 5.2). In order to obtain an upper
confidence bound over µi with confidence 1 − p, with p ∈ [0, 1], we resort
to Theorem 3 and get:

P(X̄i,t + ε ≤ µi) ≤ e
−Ti(t−1)ε2

2µi ≤ e−
Ti(t−1)ε2

2µmax = p, (5.3)

where the last inequality derives from the trivial fact that µmax ≥ µi for every
i ∈ {1, . . . , K}. Thus, with probability at least 1− p we have the following
UCBs (from now on denoted as UCB-L):

u
(UCB-L)
i,t := x̄i,t +

√
−2µmax log (p)

Ti(t− 1)
≥ µi, (5.4)

where the square root term is computed by considering the positive root of
the second order equality in Equation (5.3). By comparing the two bounds
provided by Hoeffding’s and Chernoff’s inequalities, it is possible to com-
pute a sufficient condition that identifies when the former is tighter than the
latter: when µmax > 1

2
the bound in Equation (5.3) is larger than the one

in the right hand side of Equation (5.2). As a consequence, if we cannot
guarantee low conversion probabilities, it is better to resort to the traditional
Hoeffding’s bound.

The proposed algorithm, namely Upper Confidence Bound with Low con-
version rates (UCB-L) is presented in Algorithm 7, where we set p = t−4

and we choose the next arm to be pulled by selecting the one having the
maximum expected revenue. The execution is analogous to the one already
described for UCB1-M and UCBV-M, where we have an initial round robin
over all the arms and, after that, the choice of the arm to be played in the
next round is based on the upper bound of the regret aiu

(UCB-L)
i,t .

In this case it is possible to show that:

Theorem 4. If policy UCB-L is run over a stationary MAB setting with a set
of arms A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] =
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Algorithm 7: UCB-L
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB-L)
i,t = x̄i,t +

√
8µmax log(t)

Ti(t− 1)

Play arm ait such that it = arg max
i∈{1,...,K}

aiu
(UCB-L)
i,t and observe xit,Tit (t)

µi ≤ µmax ≤ 1
2

for each t ∈ {1, . . . , N}, the pseudo-regret after N rounds
is at most:

R̄N ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Even by resorting by this newly designed bound the asymptotic order is
O(log(N)), thus we are assured to lose only a logarithmic amount of reward
in the learning process.

5.2.3 Exploiting both Properties

Here, we show how to combine both the monotonic and the low conversion
rates properties into a single algorithm. Such algorithm, named UCB-LM,
simply consists of computing for each arm ai the minimum upper confidence
bound among the ones built using X̄ji,t, with j ∈ {1, . . . , i}, but, differently
from UCB1-M, the UCBs are built exploiting the Chernoff’s inequality and
the assumption over the maximum conversion rate as it happens in UCB-L.

The resulting algorithm is summarized in Algorithm 8. Also in this case,
we can state the following result:

Theorem 5. If policy UCB-LM is run over a stationary MAB setting with
a monotonic set A in which each arm ai ∈ A has outcome Xi,t such that
E[Xi,t] = µi ≤ µmax ≤ 1

2
for each t, the pseudo-regret after N rounds is at
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Algorithm 8: UCB-LM
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(UCB-LM)
i,t = min

j∈{1,...,i}

{
x̄ji,t +

√
2µmax[4 log(t) + log(i)]

Tji(t− 1)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(UCB-LM)
i,t and observe xit,Tit (t)

most:

R̄N ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+
∑

i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i

+

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

This bound presents the same characteristics of the one derived for UCB-
L, e.g., O(log(N)) regret and constant dependent from µmax. The experi-
mental results, presented in Section 5.5, provide empirical evidence that the
introduction of the monotonicity assumption is improving the performance
of UCB-LM even when we use the Chernoff bound to design MAB policies.

5.3 Exploiting Pricing Properties in Non-Stationary Setting

Since in a non-stationary environment S(B) the outcome expected values
µi,φ might change as a new phase starts, we employ, similarly to [77], a
Sliding Window (SW) approach for UCB-like algorithms. This approach
takes decisions on the basis of the last τ rounds and, therefore, is capable of
forgetting information coming from previous phases. At the same time, we
integrate the information coming from the monotonicity property to speed
up the learning process.
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In what follows, we use the estimator for the outcome average value µi
over the last min{τ, t} rounds X̄i,t,τ and its realization x̄i,t,τ , which are de-
fined as:

X̄i,t,τ :=
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

Xi,s,

x̄i,Ti(t−1,τ),τ :=
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

xi,s,

where Ti(t, τ) = Ti(t)− Ti(max{t− τ + 1, 1}) is the number of rounds the
arm ai has been selected in the last min{τ, t} ones. Similarly to what has
been considered for the UCB1-M algorithm, for each 1 ≤ j ≤ i, let X̄ji,t,τ

be the following linear combination of the random variables X̄j, . . . , X̄i and
x̄ji,t,τ its realization, defined as:

X̄ji,t,τ :=

∑i
k=j Tk(t− 1, τ)X̄k,t,τ

Tji(t− 1, τ)
,

x̄ji,t,τ :=

∑i
k=j Tk(t− 1, τ)x̄k,t,τ

Tji(t− 1, τ)
,

where Tji(t, τ) =
∑i

k=j Tk(t, τ) is the number of rounds one of the arms in
{aj, . . . , ai} has been selected in the last min{τ, t} ones. Given the mono-
tonicity property and assuming to have samples to compute x̄ji,t,τ coming
from the same phase Φφ we have:

µji,φ = E
[
X̄ji,t,τ

]
≥ µi,φ.

Consider the following:

Theorem 6 (Corollary 21 in [77]). Given a sequence {X1, . . . , Xt} of t ∈ N
random variables with support Ω ⊆ [0, 1] with expectation µh := E[Xh] and
a sequence {ε1, . . . , εt} a previsible sequence of Bernoulli random variables.
For all τ ∈ N and η > 0 it holds:

P

(∑t
h=min{t−τ+1,1}(Xh − µh)εh∑t

h=min{t−τ+1,1} εh

)
≤

≤
⌈

log(min{t, τ})
log(1 + η)

⌉
exp

{
−2δ2

(
1− η2

16

)}
.
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Algorithm 9: SW-UCB-M
Initialization
for t ∈ {1, . . . ,K} do

Play arm ai and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB-M)
i,t = min

j∈{1,...,i}

{
x̄ji,t,τ +

√
ξ (4 log(min{t, τ}) + log(i))

Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-M)
i,t and observe xit,Tit (t)

If we apply the previous result to the random variable X̄ji,t,τ and η =

4
√

1− 2
ξ
, with probability at least 1 − p

i
, with p ∈ [0, 1], we have the fol-

lowing UCBs (from now on denoted as SW-UCB-M):

u
(SW-UCB-M)
ji,t = x̄ji,t,τ +

√
ξ[log(i)− log(p)]

Tji(t− 1, τ)
> µji,φ ≥ µi,φ, (5.5)

where ξ ∈ R+ is a parameter used in the bound in [77].3 Even in this case,
we select u(SW-UCB-M)

i,t as the tightest bound for 1 ≤ j ≤ i, which holds with
at least probability 1− p, to decide which arm to pull next.

The pseudocode of the algorithm employing such a bound is presented
in Algorithm 9 and presents characteristics similar to the bounds we propose
in the previous section. Focusing on the SW-UCB-M algorithm, we can
show that:

Theorem 7. If policy SW-UCB-M is run over a non-stationary MAB setting
S(B), for any τ ∈ N and ξ > 1

2
, the pseudo-regret after N rounds is at most:

R̄N ≤
K∑
i=1

[
N

τ

4a2
i ξ[log(i) + log(τ)]

∆i

+ aiΥNτ+

+
2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

]
,

3Here we assume that all the variables used to obtain X̄ji,t,τ are coming from a single phase Φφ.
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where ΥN is the number of breakpoints before N and

∆i := min
φ∈{1,...,ΥN}

(
ai∗φµi∗φ,φ − aiµi,φ

)
1{i 6= i∗φ} ∀i ∈ {1, . . . , K},

denotes the minimum, over all the phases Φφ in which the arm ai is not
optimal, of the difference of the expected reward ai∗φµi∗φ,φ of the best arm ai∗φ
and the expected reward aiµi,φ of the arm ai.

5.4 Summary of the Proposed Algorithms

In the previous sections, we study how to exploit two properties of the pric-
ing problem to improve the empiric performance of general-purpose bandit
algorithms. We provide some algorithms that we summarize in Table 5.1, to
ease the comprehension of the experimental evaluation. The first property is
the decreasing monotonicity of the conversion rate in the price. The algo-
rithms exploiting this property are specified with the suffix M (monotonic-
ity). The second property is the a priori information about the maximum
conversion rate µmax. The algorithms exploiting this property are specified
with the suffix L (low conversion rate). The algorithms exploiting both prop-
erties, are specified using the suffix LM. Furthermore, we focus both on sta-
tionary settings and non-stationary settings. We make use of a Sliding Win-
dow to tackle the non-stationarity of the environment, thus the algorithms
are specified with the prefix SW.

Stationary Non-Stationary
Generic Monotonic Generic Monotonic

µ ∈ [0, 1]
UCB1,
UCBV

UCB1-M,
UCBV-M SW-UCB SW-UCB-M,

SW-UCBV-M
µ ∈ [0, µmax] UCB-L UCB-LM SW-UCB-L SW-UCB-LM

Table 5.1: Algorithms for the different assumptions and scenarios analyzed in the chapter.
We use the boldface for the algorithms proposed in this work.

5.5 Experimental Analysis in Stationary Setting

We provide a thorough experimental evaluation of our algorithms in station-
ary environments, comparing them with the corresponding algorithms that
do not exploit the two properties of the pricing problem we study.
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5.5.1 Experimental Setting and Performance Indices

We evaluate our algorithms on a wide spectrum of configurations of pricing
settings characterized by a different number of arms in A, by different pdfs
S , and by a different µmax. Our configurations are generated from real-world
data on the reselling of flight tickets by a European online travel agency.4

In particular, we use a number of arms K ∈ {5, 9, 17, 33} evenly spaced
over the interval [1, 17], and the threshold pdfs S are as follows:5

• SH ∼ N (20, 6), representing a situation where ai∗ ≥ 15, i.e., the opti-
mal price is among the highest values in [1, 17] and for every i we have
µi ∈ [0.68µmax, µmax], and

• SL ∼ N (3, 5), representing a situation where ai∗ ≤ 5, i.e., the optimal
price is among the lowest values in [1, 17] and for every i we have
µi ∈ [0.0025µmax, 0.66µmax].

Configurations SL and SH represent the two extreme and most significant
cases for the class of algorithms that make the assumption of optimism
against uncertainty. More precisely, SH is an easy configuration indepen-
dently from the structure of the problem, since any algorithm based on the
assumption of optimism against uncertainty can identify the best arm with
a little exploration cost. Instead, SL is a challenging configuration, since
the identification of the best arm requires a large exploration cost. The
values of µmax in the case of the reselling of flight tickets are usually in
{1, 10−1, 10−2, 10−3, 10−4}, depending on the specific route and market. Let
us observe that such a range includes the values of µmax of many scenarios
different from the one we study, allowing us to provide an experimental eval-
uation of our algorithms also in other scenarios. More precisely, according
to [79], µmax = 10−1 corresponds to Bing, Google, Yahoo!; µmax = 10−2

corresponds to Facebook, Pinterest, Twitter; µmax = 10−3 corresponds to
LinkedIn; µmax = 10−4 corresponds to StumbleUpon. For each combination
of (K,S, µmax), we average over 100 independent trials of length N = 107

rounds and in each round the threshold s is independently drawn from S.
We compare our algorithms UCB1-M, UCB-L, and UCB-LM with the

corresponding frequentist algorithms that do not exploit the two properties of
the pricing problem we study: UCB1, UCBV, and UCBV-M (for the UCBV
and UCBV-M algorithms, the parameters we use are c = ξ = 1). In our

4We do not specify the name of the online travel agency due to confidentiality issues.
5Here, we denote withN (µ, σ) the normal distribution with mean µ and standard deviation σ.
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evaluation, we use the following performance indices, for each t ≤ N :

R%(t) = R̄t(U)

R̄t(UCB1)
,

∆P (t) =
∑t

t′=1 E
[
Vi(U,t′)

]
−∑t

t′=1 E
[
Vi(UCB1,t′)

]
,

∆P%(t) = ∆P (t)∑t
t′=1 E[Vi(UCB1,t′)

]
,

where U is a generic policy, i(U,t) is the index chosen by policy U at time
t. R%(t) is defined as the ratio between the total regret of policy U after t
rounds and the regret of UCB1 that we use here as the baseline (a value of
R% lower than 1 means that U outperforms UCB1 and the lower the value
the greater the improvement); ∆P (t) is the difference between the cumu-
lative expected reward of policy U and the one obtained with UCB1; ∆P%

is defined as the ratio between ∆P (t) and the cumulative expected reward
obtained with UCB1. A value of ∆P (and ∆P%) greater than 0 means that U
improves the profit with respect to UCB1 and the higher the value the greater
the improvement.

5.5.2 Regret Analysis

The average R%(N) and the 95% confidence intervals are reported in Ta-
ble 5.2 and in Table 5.3 (the results of UCB-L and UCB-LM are omitted for
µmax = 1, their bound being theoretically worse than the one of UCB1). We
omit the evaluation of R%(t) for t < N , since we provide in the next sec-
tion a detailed discussion about how the profit provided by the algorithms
changes as t changes and we believe this latter evaluation is more significant
in practice than the evaluation of the dependency of the regret on time.

We initially focus on the results obtained with SL. Here, UCBV-M out-
performs all the other algorithms, with R%(N) decreasing from 0.55 to 0.02
of the UCB1 regret. Furthermore, we observe that all the algorithms in the
table outperform UCB1. While UCB1-M performs better than UCB-L only
in some specific settings, UCB-LM outperforms both UCB1-M and UCB-
L in all the configurations. Furthermore, UCB-LM performs usually worse
than UCBV, except for very low values of µmax and many arms. These re-
sults strengthen the evidence that the use of the Chernoff’s bound is effective
when µmax � 1. Instead, UCBV-M always outperforms UCBV reducing the
regret of UCBV by a ratio up to 2/3. We observe that the (relative) perfor-
mance of the algorithms exploiting the monotonicity increases as the number
of arms increases. This is because these algorithms better exploit the corre-
lation among the arms. Finally, we observe that the best improvement (in
terms of reduction of the regret) of our algorithms with respect to the per-
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Table 5.2: Results concerning R%(N) with SL (averaged values over 100 runs, ± 95%
confidence intervals). The best results for each configuration are in boldface.

SL
µmax |A| UCB1-M UCB-L UCB-LM UCBV UCBV-M

1

5 0.81± 0.01 —— —— 0.22± 0.00 0.20± 0.00
9 0.72± 0.01 —— —— 0.24± 0.00 0.19± 0.00
17 0.67± 0.01 —— —— 0.26± 0.00 0.20± 0.00
33 0.61± 0.01 —— —— 0.31± 0.01 0.23± 0.01

10−1

5 0.80± 0.00 0.42± 0.00 0.34± 0.00 0.03± 0.00 0.02± 0.00
9 0.66± 0.00 0.45± 0.00 0.30± 0.00 0.03± 0.00 0.03± 0.00
17 0.50± 0.00 0.50± 0.00 0.27± 0.00 0.05± 0.00 0.04± 0.00
33 0.32± 0.00 0.54± 0.00 0.20± 0.00 0.06± 0.00 0.04± 0.00

10−2

5 0.87± 0.00 0.30± 0.00 0.24± 0.00 0.02± 0.00 0.02± 0.00
9 0.78± 0.00 0.49± 0.00 0.31± 0.00 0.05± 0.00 0.04± 0.00
17 0.73± 0.00 0.65± 0.00 0.30± 0.00 0.11± 0.00 0.07± 0.00
33 0.70± 0.00 0.77± 0.00 0.28± 0.00 0.17± 0.00 0.08± 0.00

10−3

5 0.91± 0.00 0.83± 0.00 0.71± 0.00 0.17± 0.00 0.15± 0.00
9 0.88± 0.00 0.88± 0.00 0.64± 0.00 0.33± 0.00 0.22± 0.00
17 0.86± 0.00 0.92± 0.00 0.59± 0.00 0.47± 0.00 0.22± 0.00
33 0.85± 0.00 0.94± 0.00 0.58± 0.00 0.60± 0.00 0.22± 0.00

10−4

5 0.92± 0.00 0.96± 0.00 0.86± 0.00 0.67± 0.01 0.55± 0.01
9 0.89± 0.00 0.97± 0.00 0.81± 0.00 0.73± 0.00 0.50± 0.01
17 0.87± 0.00 0.98± 0.00 0.78± 0.00 0.77± 0.00 0.48± 0.01
33 0.86± 0.00 0.98± 0.00 0.77± 0.00 0.80± 0.00 0.48± 0.01

formance of UCB1 is for µmax = 10−1. This is because when µmax = 1 all
the algorithms converge to the best arm before N = 107 rounds, minimizing
the differences in terms of regret among them; when µmax ∈ {10−1, 10−2}
our algorithms converge to the best arm before 107 rounds, while UCB1
does not, thus maximizing the differences in terms of regret among the algo-
rithms; when µmax ∈ {10−3, 10−4} no algorithm converges to the best arm
by 107 rounds, but some algorithms select the best arm more frequently than
others.

Now, we focus on the results obtained with SH . Here, there is no algo-
rithm that always outperforms the others. We observe that, for large values
of µmax, UCBV is the best algorithm, for intermediate values UCBV-M out-
performs the others, and for small values UCB-LM is the best. The best
algorithm presents R%(N) in the range between 0.20 and 0.66. In details,
UCB1 performs better than UCB1-M for some cases and, surprisingly, better
than UCBV when µmax is very small. We observe that UCB-L, UCB-LM,
and UCBV-M always perform better than UCB1. In some configurations
UCB-LM improves over UCBV, halving the UCBV regret, e.g., in the con-
figuration with K = 33 arms and µmax = 10−4, providing a significant
improvement over UCBV performance. Differently from the case with SL,
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Table 5.3: Results concerning R%(N) with SH (averaged values over 100 runs, ± 95%
confidence intervals). The best results for each configuration are in boldface.

SH
µmax |A| UCB1-M UCB-L UCB-LM UCBV UCBV-M

1

5 1.01± 0.02 —— —— 0.20± 0.01 0.21± 0.01
9 1.01± 0.03 —— —— 0.28± 0.01 0.31± 0.01
17 1.02± 0.02 —— —— 0.45± 0.02 0.50± 0.02
33 1.02± 0.01 —— —— 0.37± 0.01 0.42± 0.01

10−1

5 1.03± 0.02 0.60± 0.02 0.60± 0.02 0.23± 0.01 0.24± 0.01
9 0.98± 0.01 0.63± 0.01 0.63± 0.01 0.22± 0.01 0.23± 0.01
17 0.86± 0.01 0.65± 0.01 0.59± 0.01 0.31± 0.01 0.29± 0.01
33 0.67± 0.01 0.69± 0.01 0.54± 0.01 0.42± 0.01 0.36± 0.01

10−2

5 0.93± 0.00 0.30± 0.01 0.29± 0.01 0.21± 0.01 0.22± 0.01
9 0.85± 0.00 0.38± 0.01 0.35± 0.01 0.25± 0.01 0.25± 0.01
17 0.75± 0.00 0.37± 0.00 0.28± 0.00 0.29± 0.01 0.22± 0.01
33 0.67± 0.00 0.42± 0.00 0.25± 0.00 0.37± 0.00 0.21± 0.00

10−3

5 1.26± 0.00 0.31± 0.01 0.30± 0.01 0.33± 0.01 0.32± 0.01
9 1.28± 0.00 0.44± 0.01 0.36± 0.01 0.46± 0.01 0.37± 0.01
17 1.30± 0.00 0.49± 0.01 0.34± 0.01 0.58± 0.01 0.34± 0.01
33 1.30± 0.00 0.57± 0.00 0.35± 0.01 0.74± 0.01 0.35± 0.01

10−3

5 1.46± 0.00 0.55± 0.01 0.54± 0.01 0.89± 0.02 0.78± 0.02
9 1.51± 0.00 0.68± 0.01 0.63± 0.01 1.03± 0.01 0.83± 0.02
17 1.57± 0.00 0.74± 0.01 0.64± 0.01 1.20± 0.01 0.86± 0.02
33 1.59± 0.00 0.79± 0.01 0.66± 0.01 1.33± 0.01 0.86± 0.02

with SH the relative improvement of algorithms exploiting the monotonicity
does not increase as the number of arms increases. The same holds for the
UCBV algorithm, which does not exploit any assumption, suggesting that
the performance of the UCB1 algorithm improves as the number of arms in-
creases in the SH setting. This is probably due to the fact that UCB1 is able
to exclude many arms easily if the optimal values of the expected reward are
realized on high arms, e.g., if µiai > aj it will not play arms lower or equal
to aj . Thus, UCB1 is effectively working on a smaller set of arms than A
and this leads to low regret even for this policy.

To summarize, our algorithms, specifically UCBV-M and UCB-LM, pro-
vide a significant improvement in terms of regret with respect to the algo-
rithms available in the state of the art.

5.5.3 Profit Analysis

The average ∆P%(t) and ∆P (t) for t ∈ {1, . . . , 107} obtained with UCB-
LM and UCBV-M (with respect to the results obtained with UCB1 and 5
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arms) are reported in Figure 5.3 and Figure 5.4, respectively.6

Initially, we focus on the results obtained with µmax ∈ {1, 10−1} and
SL. The value of ∆P%(t) dramatically changes during the time horizon. It
reaches a maximum around t = 104 for µmax = 1 and t = 105 for µmax =
10−1 and then it decreases approaching the value of zero at t = 107. The
improvement is significant, the maximum of ∆P%(t) being about 2.2 for
UCBV-M (i.e., the profit of UCB1 is more than tripled) and about 1.3 for
UCB-LM (i.e., the profit is more than doubled). In the case of SH , the value
of ∆P%(t) initially reaches a minimum and subsequently a maximum, and
finally approaches zero as t goes to 107. In this case, the improvement is less
significant than the one we have in the case of SL and ∆P%(t) is about 0.003
when µmax = 1 and 0.033 when µmax = 10−1, meaning an improvement of
0.3% and 3.3% over the UCB1 profit, respectively.

Now we focus on the results obtained with µmax = 10−2 and SL. The
maximum of ∆P%(t) is reached in the range between t = 106 and t = 107

(that is, very close to the termination of the time horizon). The improvement
is very significant, ∆P%(t) achieving values larger than 3.3. The behavior
for SH is analogous with respect to the one with larger µmax. Here, we
can observe that the minimum is achieved for a larger t than in the setting
with µmax ∈ {1, 10−1}. The maximum of ∆P%(t) is about 0.04. Finally, we
focus on the results obtained with µmax ∈ {10−3, 10−4} and SL. The ∆P%(t)
trend suggests that its maximum might be beyond 107 rounds. Nevertheless,
the improvement is very significant: ∆P%(t) is larger than 3 for µmax =
10−3 and almost 2 for µmax = 10−4. As for smaller values of µmax, the
improvements with SH are less significant. Nevertheless, UCB-LM presents
a maximum of ∆P%(t) that is almost 0.08 even with µmax = 10−4.

Furthermore, we observe how the performance of the algorithms varies
as the number of arms varies in the two different pdfs. With SL the best
improvement is achieved when the number of arms is 33 with µmax ≤ 10−1

and 5 otherwise. Instead, with SH , the best improvement is achieved, in the
most cases, when using 33 arms.

To summarize, our algorithms, specifically UCBV-M and UCB-LM, pro-
vide a significant improvement in terms of relative profit especially in the
early stages of the learning process.

6Results for UCB-LM in the case µmax = 1 are not reported since this algorithm requires µmax <
1
2

to be
effective. Moreover, the results for ∆P (t) for SH are not reported since they are less significant.
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Figure 5.3: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with UCB-LM
with different configurations.

5.6 Experimental Analysis in Non-Stationary Setting

We experimentally evaluate the performance of our techniques in an abruptly
changing environment, that, as aforementioned, is one of the most common
non-stationary settings in e-commerce. We compare the SW-UCB-M algo-
rithm with UCBV-M, as representatives of algorithms exploiting the mono-
tonicity assumption, and SW-UCB from [77], as representatives of frequen-
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Figure 5.4: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with UCBV-M
with different configurations.
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tist MAB designed for non-stationary environments. In addition to the al-
ready presented SW-UCB-M, we extend the sliding window approach to
other algorithms proposing the SW-UCB-LM and the SW-UCBV-M algo-
rithms, to include the maximum probability information and to consider
UCBV-like algorithms with the monotonicity information, respectively. The
pseudocode of these algorithms is provided in Appendix B.1.

5.6.1 Experimental Setting and Performance Indices

The experimental setting considers a number of rounds of N = 4 · 107 and
uses two different abruptly changing pdfs, denoted with SLHLH and SHLHL,
each of which contains three breakpoints at rounds t = 107, t = 2 · 107 and
t = 3 · 107. The threshold pdf switches from SL to SH or vice versa for
SLHLH and SHLHL, respectively, where SL and SH are defined as in Sec-
tion 5.5. For instance, SLHLH starts with SL in phase Φ1, then switches to
SH in phase Φ2 and so on. For the sliding window algorithms, we choose
a sliding window τ = 4

√
N log(N) and we consider a parameter ξ = 0.6

for SW-UCB and SW-UCB-M, as in [77]. We average the results over 100
independent trials.

We redefine the performance indices using SW-UCB as baseline in place
of UCB1 as follows:

R%(t) = R̄t(U)

R̄t(SW-UCB)
,

∆P (t) =
∑t

t′=1 E
[
Vi(U,t′)

]
−∑t

t′=1 E
[
Vi(SW-UCB,t′)

]
,

∆P%(t) = ∆P (t)∑t
t′=1 E[Vi(SW-UCB,t′)

]
,

where U is a generic policy, i(U,t) is the index chosen by policy U at time t.

5.6.2 Regret Analysis

The average R%(N) and the 95% confidence intervals are reported in Ta-
ble 5.4 and in Table 5.5 (the results of SW-UCB-L and SW-UCB-LM are
omitted for µmax = 1, their bound being always larger than the one used in
SW-UCB). As in the stationary case, we omit the evaluation of R%(t) for
t < N , since we provide in the next section a detailed discussion about how
the profit provided by the algorithms changes as t changes and we believe
this latter evaluation is more significant in practice than the evaluation of the
dependency of the regret on time.

The first observation we provide is that, except for some specific cases,
the performance in terms of regret of each algorithm is similar in the two
configurations SLHLH and SHLHL. This shows that the switches between
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Table 5.4: Results concerningR% in non-stationary settings with SLHLH (averaged values
over 100 runs, ± 95% confidence intervals).

SLHLH
µmax |A| SW-UCB-M SW-UCB-L SW-UCB-LM SW-UCBV SW-UCBV-M UCBV-M

1

5 1.02± 0.00 —— —— 0.95± 0.00 0.98± 0.02 10.67± 0.00
9 1.82± 0.26 —— —— 0.94± 0.00 1.46± 0.18 10.18± 0.00
17 2.29± 0.35 —— —— 0.92± 0.00 2.44± 0.37 9.57± 0.00
33 2.96± 0.44 —— —— 0.91± 0.00 3.49± 0.44 8.60± 0.06

10−1

5 0.82± 0.01 1.08± 0.00 0.88± 0.01 0.33± 0.00 0.25± 0.02 5.71± 0.00
9 0.72± 0.01 1.05± 0.00 0.75± 0.01 0.51± 0.00 0.40± 0.05 4.77± 0.00
17 0.63± 0.02 1.04± 0.00 0.64± 0.01 0.66± 0.00 0.67± 0.13 4.41± 0.03
33 0.57± 0.02 1.04± 0.00 0.57± 0.01 0.82± 0.00 0.68± 0.13 4.01± 0.08

10−2

5 0.98± 0.00 0.88± 0.00 0.79± 0.00 0.74± 0.00 0.58± 0.01 3.37± 0.05
9 0.98± 0.00 0.89± 0.00 0.76± 0.00 0.88± 0.00 0.59± 0.01 3.10± 0.03
17 0.97± 0.00 0.90± 0.00 0.71± 0.00 0.98± 0.00 0.60± 0.01 2.97± 0.07
33 0.97± 0.00 0.92± 0.00 0.69± 0.01 1.07± 0.00 0.60± 0.02 2.78± 0.13

10−3

5 1.10± 0.00 0.92± 0.00 0.90± 0.00 1.09± 0.00 1.08± 0.00 3.00± 0.11
9 1.14± 0.00 0.93± 0.00 0.92± 0.00 1.14± 0.00 1.14± 0.00 2.65± 0.14
17 1.17± 0.00 0.94± 0.00 0.93± 0.00 1.19± 0.00 1.18± 0.00 1.84± 0.24
33 1.19± 0.00 0.96± 0.00 0.93± 0.00 1.21± 0.00 1.20± 0.01 1.25± 0.23

10−4

5 1.12± 0.00 0.97± 0.00 1.04± 0.00 1.24± 0.00 1.49± 0.00 1.34± 0.24
9 1.17± 0.00 0.97± 0.00 1.08± 0.00 1.24± 0.00 1.56± 0.00 0.57± 0.01
17 1.21± 0.00 0.98± 0.00 1.11± 0.00 1.26± 0.00 1.63± 0.00 0.55± 0.01
33 1.23± 0.00 0.98± 0.00 1.12± 0.00 1.26± 0.00 1.64± 0.01 0.54± 0.00

L and H and vice versa do not significantly affect the performance of the
algorithms. Instead, the performance depends on the number of L and H
configurations. This holds for all the algorithms, µmax values, and number
of arms, except for the following special cases:

• UCBV-M: it performs much worse in SLHLH than in SHLHL for µmax ∈
{10−1, 10−2, 10−3}. This result does not depend on the exploitation of
the monotonicity, but on the fact that, once UCBV-M has learned a
configuration L or H , its bounds do not significantly change after an
abrupt change given that it does not exploit any sliding window and
the optimal arm in the configuration L has a very small relative reward
in configuration H . This does not hold when µmax = 10−4 since the
sliding window is excessively small and the baseline SW-UCB cannot
learn anything.

• SW-UCB-M and SW-UCBV-M: they perform worse in SLHLH than in
SHLHL for µmax = 1. This is an anomaly of our algorithms. In this
specific case, the cost of exploiting the monotonicity is larger than the
gain provided by the algorithm.
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Table 5.5: Results concerningR% in non-stationary settings with SHLHL (averaged values
over 100 runs, ± 95% confidence intervals).

SHLHL
µmax |A| SW-UCB-M SW-UCB-L SW-UCB-LM SW-UCBV SW-UCBV-M UCBV-M

1

5 1.01± 0.00 —— —— 0.96± 0.00 0.97± 0.01 1.44± 0.00
9 0.99± 0.00 —— —— 0.95± 0.00 0.96± 0.01 1.32± 0.00
17 0.97± 0.01 —— —— 0.93± 0.00 0.94± 0.01 1.29± 0.00
33 0.92± 0.01 —— —— 0.89± 0.00 0.89± 0.01 1.18± 0.00

10−1

5 0.86± 0.01 1.08± 0.00 0.90± 0.01 0.33± 0.00 0.29± 0.01 1.43± 0.00
9 0.75± 0.01 1.05± 0.00 0.78± 0.01 0.51± 0.00 0.43± 0.03 1.10± 0.00
17 0.66± 0.01 1.04± 0.00 0.67± 0.01 0.66± 0.00 0.53± 0.07 1.04± 0.01
33 0.59± 0.01 1.04± 0.00 0.60± 0.01 0.82± 0.00 0.57± 0.07 0.95± 0.01

10−2

5 0.98± 0.00 0.88± 0.00 0.79± 0.00 0.74± 0.00 0.60± 0.01 0.85± 0.00
9 0.98± 0.00 0.89± 0.00 0.76± 0.00 0.88± 0.00 0.64± 0.01 0.76± 0.01
17 0.97± 0.00 0.90± 0.00 0.73± 0.00 0.98± 0.00 0.63± 0.01 0.74± 0.01
33 0.97± 0.00 0.92± 0.00 0.71± 0.00 1.07± 0.00 0.63± 0.01 0.72± 0.01

10−3

5 1.10± 0.00 0.92± 0.00 0.90± 0.00 1.09± 0.00 1.08± 0.00 0.83± 0.03
9 1.14± 0.00 0.93± 0.00 0.92± 0.00 1.14± 0.00 1.14± 0.00 0.76± 0.02
17 1.17± 0.00 0.94± 0.00 0.93± 0.00 1.19± 0.00 1.18± 0.00 0.75± 0.02
33 1.19± 0.00 0.96± 0.00 0.94± 0.00 1.21± 0.00 1.21± 0.00 0.75± 0.01

10−4

5 1.12± 0.00 0.97± 0.00 1.04± 0.00 1.24± 0.00 1.49± 0.00 0.85± 0.02
9 1.17± 0.00 0.97± 0.00 1.08± 0.00 1.24± 0.00 1.56± 0.00 0.82± 0.01
17 1.21± 0.00 0.98± 0.00 1.10± 0.00 1.26± 0.00 1.63± 0.00 0.81± 0.01
33 1.23± 0.00 0.98± 0.00 1.12± 0.00 1.26± 0.00 1.65± 0.00 0.80± 0.01

Summarily, we can observe that: SW-UCBV is the optimal algorithm for
µmax = 1, SW-UCBV-M is the optimal algorithm for µmax ∈ {10−1, 10−2},
and UCBV-M is the optimal algorithm for µmax ∈ {10−3, 10−4} except in
the configuration SLHLH , where, instead, for µmax = 10−3 SW-UCB-LM is
the best one. This is because the exploitation of the monotonicity allows an
algorithm to perform better, but it requires a cost, i.e., the one incurred when
a union bound over 1 ≤ j ≤ i is performed. When the setting is easy (e.g.,
µmax is very high), the improvement provided by the monotonicity is smaller
than the cost needed for its exploitation. Instead, for µmax ∈ {10−1, 10−2},
the cost required for the exploitation of the monotonicity is much lower than
the gain. When µmax is smaller, e.g., µmax ∈ {10−3, 10−4}, the setting is too
hard and we suppose that an optimal solution to the problem would require a
sliding window longer than that one used here. Indeed, the fact that UCBV-
M is the best algorithms shows essentially that abstaining from learning after
the first abrupt change is better than trying to learn the change. In these
settings that are so hard, a different approach should be used: for instance,
one could identify the abrupt change and employ different stationary MAB
policies, one per phase.
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Finally, we remark that in every configuration it is possible to outperform
the baseline and in many cases the reduction of regret is significant.

5.6.3 Profit Analysis

The average ∆P%(t) and ∆P (t) for t ∈ {1, . . . , 107} obtained with SW-
UCB-LM and SW-UCBV-M (with respect to the results obtained with SW-
UCB and 5 arms) are reported in Figure 5.5 and Figure 5.6, respectively.7

The main difference between the results in the stationary settings and
those in non-stationary settings concerns the trend of ∆P%(t). In the case of
the stationary settings, ∆P%(t) achieves a maximum and subsequently goes
asymptotically to zero, showing that our algorithms provide a gain in the
early stages of the learning process. Instead, in the case of non-stationary
settings, our algorithms repeatedly provide a gain at each abrupt change.
This is showed by the fact that ∆P%(t) does not go to zero as t increases.
Therefore, the ∆P (t) continuously increases over time. To summarize, these
results provide evidence for a promising application of the proposed SW
algorithms in the non-stationary setting.

7Results for SW-UCB-LM in the case µmax = 1 are not reported since this algorithm requires µmax <
1
2

to
be effective.
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Figure 5.5: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with SW-UCB-
LM with different configurations.
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Figure 5.6: ∆P%(t) (first two columns) and ∆P (t) (third column) obtained with SW-
UCBV-M with different configurations.
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5.7 From Frequentist to Bayesian

In the previous sections, we provided a wide experimental evaluation of our
algorithms, comparing them with frequentist MAB algorithms present in lit-
erature. We evaluated the improvement obtained thanks to the exploitation
of the problem characteristics and we elected two algorithms as the best
ones: UCBV-M and UCB-LM in stationary settings and SW-UCBV-M and
SW-UCB-LM in non-stationary ones. In most of the configurations, our al-
gorithms perform better than the general-purpose ones. However, it is well
known that Bayesian MAB algorithms usually suffer of same order of regret
as the best frequentist one (e.g., in unstructured settings [10]), but they out-
perform the frequentist methods in a wide range of problems (e.g., in bandit
problems without structure [80] and in bandit problems with budget [81]).
Furthermore, in problems with structure, the classical Thompson Sampling
in its original formulation may outperform frequentist algorithms exploit-
ing the problem structure. For this reason, in this section, we evaluate the
performance of the best frequentist algorithms we elected with the one of
Thompson Sampling (TS).

We compare UCBV-M, UCB-LM and TS with the same configurations
of Section 5.5, and we compare SW-UCBV-M, SW-UCB-LM and TS with
the same configurations of Section 5.6. We use UCB1 as the baseline in
non-stationary settings for the performance index R%(N), while in the non-
stationary ones we use SW-UCB.

In Table 5.6, we reported the average R%(N) and the 95% confidence in-
tervals of the results in the stationary setting. TS outperforms our algorithms
in almost all the configurations. Not only TS reaches the best performances,
but it also provide a significant improvement in terms of regret with respect
to our algorithms. Just in the case with µmax = 10−3 in configuration SH , TS
is not able to outperform UCB-LM, proving that Chernoff’s bound is more
efficient when mumax is really low.

In Table 5.7, we reported the average R%(N) and the 95% confidence
intervals of the results in the non-stationary setting. With configuration
SLHLH , TS is not able to outperform our algorithms and its performance
are much worser than the one of the baseline SW-UCB. This behavior may
be due to the fact that TS is not using a sliding window approach. With con-
figuration SHLHL, instead, TS outperforms our algorithm in the case with
µmax ∈ {10−3, 10−4}. With µmax = 10−2, even though TS is not able to out-
perform our algorithms, it provide an improvement in terms of regret with
respect to the baseline SW-UCB, showing that, even without the use of a
sliding window, it reaches better performances.
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We remark that, in both the stationary and non-stationary setting, we used
the classical Thompson Sampling, without exploiting the pricing problem
structure, i.e., the information about the monotonicity and the low conversion
rates. In non-stationary settings, TS is not even using a sliding window to
update its posterior distribution. The results show that Thompson Sampling
outperforms the frequentist methods in the stationary pricing problem setting
and in some of the non-stationary setting we considered. For these reasons,
in the next chapter we focus on the design of Thompson Sampling-based
algorithms.
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Table 5.6: Results concerning R%(N) with SL and SH (averaged values over 100 runs, ±
95% confidence intervals) of TS versus frequentist algorithms. The best results for each
configuration are in boldface.

SL
µmax |A| UCB-LM UCBV-M TS

1

5 —— 0.20± 0.00 0.06± 0.00
9 —— 0.19± 0.00 0.07± 0.00
17 —— 0.20± 0.00 0.08± 0.00
33 —— 0.23± 0.01 0.13± 0.01

10−1

5 0.34± 0.00 0.02± 0.00 0.01± 0.00
9 0.30± 0.00 0.03± 0.00 0.01± 0.00
17 0.27± 0.00 0.04± 0.00 0.02± 0.00
33 0.20± 0.00 0.04± 0.00 0.02± 0.00

10−2

5 0.24± 0.00 0.02± 0.00 0.00± 0.00
9 0.31± 0.00 0.04± 0.00 0.01± 0.00
17 0.30± 0.00 0.07± 0.00 0.03± 0.00
33 0.28± 0.00 0.08± 0.00 0.05± 0.00

10−3

5 0.71± 0.00 0.15± 0.00 0.03± 0.00
9 0.64± 0.00 0.22± 0.00 0.07± 0.00
17 0.59± 0.00 0.22± 0.00 0.13± 0.00
33 0.58± 0.00 0.22± 0.00 0.21± 0.00

10−4

5 0.86± 0.00 0.55± 0.01 0.18± 0.01
9 0.81± 0.00 0.50± 0.01 0.31± 0.01
17 0.78± 0.00 0.48± 0.01 0.43± 0.01
33 0.77± 0.00 0.48± 0.01 0.56± 0.01

SH
µmax |A| UCB-LM UCBV-M TS

1

5 —— 0.21± 0.01 0.10± 0.05
9 —— 0.31± 0.01 0.10± 0.01
17 —— 0.50± 0.02 0.25± 0.03
33 —— 0.42± 0.01 0.15± 0.01

10−1

5 0.60± 0.02 0.24± 0.01 0.11± 0.02
9 0.63± 0.01 0.23± 0.01 0.09± 0.02
17 0.59± 0.01 0.29± 0.01 0.13± 0.01
33 0.54± 0.01 0.36± 0.01 0.23± 0.01

10−2

5 0.29± 0.01 0.22± 0.01 0.11± 0.03
9 0.35± 0.01 0.25± 0.01 0.12± 0.01
17 0.28± 0.00 0.22± 0.01 0.13± 0.01
33 0.25± 0.00 0.21± 0.00 0.18± 0.01

10−3

5 0.30± 0.01 0.32± 0.01 0.22± 0.02
9 0.36± 0.01 0.37± 0.01 0.23± 0.02
17 0.34± 0.01 0.34± 0.01 0.27± 0.01
33 0.35± 0.01 0.35± 0.01 0.37± 0.01

10−4

5 0.54± 0.01 0.78± 0.02 0.43± 0.04
9 0.63± 0.01 0.83± 0.02 0.59± 0.03
17 0.64± 0.01 0.86± 0.02 0.70± 0.02
33 0.66± 0.01 0.86± 0.02 0.87± 0.02

74



5.7. From Frequentist to Bayesian

Table 5.7: Results concerning R% in non-stationary settings with SLHLH and SHLHL
(averaged values over 100 runs, ± 95% confidence intervals) of TS versus frequentist
algorithms. The best results for each configuration are in boldface.

SLHLH
µmax |A| SW-UCB-LM SW-UCBV-M TS

1

5 —— 0.98± 0.02 8.93± 0.68
9 —— 1.46± 0.18 7.37± 0.78
17 —— 2.44± 0.37 5.11± 0.72
33 —— 3.49± 0.44 4.55± 0.65

10−1

5 0.88± 0.01 0.25± 0.02 3.60± 0.46
9 0.75± 0.01 0.40± 0.05 2.61± 0.36
17 0.64± 0.01 0.67± 0.13 1.72± 0.29
33 0.57± 0.01 0.68± 0.13 2.32± 0.30

10−2

5 0.79± 0.00 0.58± 0.01 2.14± 0.25
9 0.76± 0.00 0.59± 0.01 1.44± 0.22
17 0.71± 0.00 0.60± 0.01 1.58± 0.21
33 0.69± 0.01 0.60± 0.02 1.89± 0.20

10−3

5 0.90± 0.00 1.08± 0.00 1.82± 0.23
9 0.92± 0.00 1.14± 0.00 1.35± 0.18
17 0.93± 0.00 1.18± 0.00 1.60± 0.19
33 0.93± 0.00 1.20± 0.01 1.55± 0.17

10−4

5 1.04± 0.00 1.49± 0.00 1.45± 0.21
9 1.08± 0.00 1.56± 0.00 1.28± 0.15
17 1.11± 0.00 1.63± 0.00 1.12± 0.12
33 1.12± 0.00 1.64± 0.01 0.81± 0.07

SHLHL
µmax |A| SW-UCB-LM SW-UCBV-M TS

1

5 —— 0.97± 0.01 1.71± 0.08
9 —— 0.96± 0.01 1.80± 0.11
17 —— 0.94± 0.01 1.62± 0.08
33 —— 0.89± 0.01 1.42± 0.08

10−1

5 0.90± 0.01 0.29± 0.01 1.58± 0.06
9 0.78± 0.01 0.43± 0.03 1.39± 0.08
17 0.67± 0.01 0.53± 0.07 1.17± 0.06
33 0.60± 0.01 0.57± 0.07 1.06± 0.05

10−2

5 0.79± 0.00 0.60± 0.01 0.94± 0.04
9 0.76± 0.00 0.64± 0.01 0.86± 0.04
17 0.73± 0.00 0.63± 0.01 0.80± 0.03
33 0.71± 0.00 0.63± 0.01 0.80± 0.03

10−3

5 0.90± 0.00 1.08± 0.00 0.84± 0.03
9 0.92± 0.00 1.14± 0.00 0.79± 0.03
17 0.93± 0.00 1.18± 0.00 0.78± 0.02
33 0.94± 0.00 1.21± 0.00 0.83± 0.03

10−4

5 1.04± 0.00 1.49± 0.00 0.86± 0.02
9 1.08± 0.00 1.56± 0.00 0.85± 0.02
17 1.10± 0.00 1.63± 0.00 0.86± 0.02
33 1.12± 0.00 1.65± 0.00 0.87± 0.01
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CHAPTER6
Multi-Armed Bandit for Pricing:

Bayesian Approach

In the previous chapter we propose techniques to apply to frequentist policies
in order to exploit the pricing problem structure, but we finally show how
Thompson Sampling, the most popular Bayesian algorithm, outperforms the
designed algorithms even without exploiting the problem structure. In this
chapter, we focus on Bayesian MAB and we design novel algorithms based
on Thompson Sampling.

First, in Section 6.1 we introduce an update scheme to exploit the mono-
tonicity property for Bayesian policies, showing that it is hard to obtain a
closed form solution and to assure theoretical guarantees to a version of TS
exploiting the monotonicity property.

Then, we study the Non-Stationary MAB (NS-MAB) settings, propos-
ing an algorithm based on Thompson Sampling which exploits a sliding-
window approach to tackle, in a unified fashion, two different forms of
non-stationarity studied separately so far: abruptly changing and smoothly
changing. In the former, the reward distributions are constant during se-
quences of rounds and change at unknown rounds, while, in the latter, the
reward distributions smoothly evolve over rounds. Section 6.2 provides the
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formulation for the NS-MAB setting. In Section 6.3, we describe the pro-
posed algorithm to tackle the NS-MAB setting and we derive upper bounds
over the pseudo-regret for the algorithm. In Section 6.4, we empirically show
that our algorithm dramatically outperforms the state-of-the-art algorithms
even when the forms of non-stationarity are taken separately as previously
studied in the literature.

Finally, we focus on the Unimodal MAB (UMAB) setting, in which each
arm corresponds to a node of a graph and each edge is associated with a
relationship specifying which node of the edge gives the largest expected re-
ward (providing thus a partial ordering over the arm space). While the graph
structure may be (not necessarily) known a priori by the UMAB algorithm,
the relationship defined over the edges is discovered during the learning.
Section 6.5 provides the formulation for the UMAB setting. In Section 6.6,
we propose a novel Bayesian MAB algorithm and we derive upper bounds
over the pseudo-regret for the algorithm. In Section 6.7, we describe a wide
experimental campaign showing better performance of our algorithm in ap-
plicative scenarios than those of state-of-the-art ones, evaluating also how
the performance of the considered algorithms varies as the graph structure
properties vary.

6.1 Exploiting the Pricing Problem Structure

In the case of no monotonicity existing on A the Bayesian update due to the
outcome xit,t at time t is:

Pt(µit) := Pt−1(µi|xit,t) ∝ Pt−1(xit|µit)Pt−1(µit),

where a single arm ait is updated at each time point.1 On the other hand,
when the monotonicity property holds on A as defined in Section 5.1, it
is possible to update all the arms at each time point. The corresponding
updating scheme due to a realization xit,t is:

Pt(µi) ∝



Pt−1(µi)Pt−1(xit,t|µi) it = i

Pt−1(µi)

∫ µi
0

P(xit,t|µj)Pt−1(Mit = µj)dµj∫ µi
0

Pt−1(Mit = x)dx
it > i

Pt−1(µi)

∫ 1

µi
P(xit,t|µj)Pt−1(Mit = µj) dµj∫ 1

µi
Pt−1(Mit = x)dx

it < i

, (6.1)

1From now on, as usual in probability theory, we will use the notation P(x) := P(X = x), whenever there is
no ambiguity.
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where Mi is the random variable whose distribution is the prior on µi. In
what follows, we focus on the case where each variable Xi has Bernoulli
distribution on Ω ∈ {0, 1}. Notice that, when Equation (6.1) is used as up-
date rule, Beta distribution is no more conjugate prior. Since we do not have
a closed form solution, we can resort to a non-parametric scheme, i.e., Se-
quential Monte Carlo (SMC) technique [82] to represent and to update the
prior distribution. More specifically, a scheme where the prior Pt−1(µi) is
represented by a finite number Np ∈ N of particles Pi = {pi1, . . . piNp},
pih ∈ [0, 1], ∀h ∈ {1, . . . , Np} and their corresponding weights Wi =
{wi1, . . . , wiNp}, wih ∈ R+, ∀h ∈ {1, . . . , Np}. In this case the update
scheme in Equation (6.1) becomes:

wih ←



wihp
xit,t
it,h

(1− pit,h)1−xit,t it = i

wih

∑
h|pit,h≤pi,h

p
xit,t
it,h

(1− pit,h)1−xit,twit,h∑
h|pit,h≤pi,h

wit,h
it > i

wih

∑
h|pit,h≥pi,h

p
xit,t
it,h

(1− pit,h)1−xit,twit,h∑
h|pit,h≥pi,h

wit,h
it < i

. (6.2)

Since we arrived to an approximated solution, we are not able to pro-
vide any theoretical guarantee on the regret bounds. Thus, in the Bayesian
framework, the exploitation of the monotonicity turns out to be a not promis-
ing research direction. As previously stated, even if an heuristic algorithm
might perform better than algorithms with theoretical guarantees, the lack
of worst-case guarantees discourages their employment in practice. We are
studying an applicative scenario, so we are not interested in evaluating al-
gorithm without theoretical guarantees. For this reason, in the next sections
of this chapter, we do not consider the exploitation of the pricing problem
properties as done in Chapter 5 with UCB-like algorithms, but we focus on
two other interesting features of our problem: the non-stationarity of the
environment and the unimodality of the expected profit of the set of arms.

6.2 Non-Stationary MAB: Problem Formulation

We model our problem as a stochastic Non-Stationary MAB (NS-MAB) set-
ting, in which, at each round t over a finite horizon N , the learner selects an
arm ait among a finite set of K arms A = {a1, . . . , aK}. At each round t the
learner observes a realization of the reward xit,t obtained from the chosen
arm ait . The rewards for each arm ai at round t are modeled by a sequence
of i.i.d. random variables Xi,t from a distribution unknown to the learner.
We denote by µi,t := E[Xi,t] the expected value of the reward of arm ai at
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round t. As customary in the MAB literature, here we consider Bernoulli dis-
tributed rewards, i.e., Xi,t ∼ Be(µi,t).2 A policy U is a function U(ht) = ait
that chooses the arm ait to play at round t according to history ht, defined as
the sequence of past plays and obtained rewards.

The goal of the learner is to design a policy U that minimizes the loss
w.r.t. the optimal decision in terms of reward. This loss, usually addressed
as cumulative dynamic pseudo-regret, is defined as:

R̄N(U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
, (6.3)

where µi∗t ,t = maxi∈{1,...,K} µi,t is the expected reward of the optimal arm ai∗t
at round t and E [·] is the expectation w.r.t. the stochasticity of the policy. Dif-
ferently from the classical (stationary) stochastic MAB setting, where an arm
(unique unless degeneracy) is optimal for the all-time horizon (i∗t = i∗,∀t),
in the NS-MAB setting the arms that are optimal might change during time.
We recall that when the optimal arm expected value can change without any
restriction, the NS-MAB setting is equivalent to an adversarial MAB one,
which has been studied in the past [33]. In what follows, we will discuss two
different settings where the evolution over time of the arms reward distribu-
tions is constrained to change according to specific schemes.

6.2.1 Abruptly Changing Setting

The Abruptly Changing MAB (AC-MAB) setting is introduced in [52]. The
reward distributions are constant during sequences of rounds, said phases,
and change at unknown rounds, said breakpoints. Thus, the expected value
µi,t of the reward of an arm ai at round t only changes at the beginning of
each phase and therefore the best arm ai∗t remains the same during the whole
phase.

Let us define a breakpoint as a round b ∈ {1, . . . , N} s.t. ∃i | µi,b−1 6= µi,b,
i.e., a round b in which the expected reward of at least one arm ai changes
w.r.t. the one at round b−1. In an AC-MAB setting with horizonN we have a
set of breakpointsB = {b1, . . . , bΥN} of cardinality ΥN (for sake of notation
we define b0 = 1), which determine a set of phases {Φφ}ΥN

φ=1, where each
phase is set of rounds between two consecutive breakpoints, namely, Φφ =
{t ∈ {1, . . . , N} s.t. bφ−1 ≤ t < bφ}. In order to have sublinear pseudo-
regret, we upper bound the number of breakpoints over the time horizon.
We do that by making the following assumption:

2The extension to other distributions is straightforward. Bernoulli variables are considered here for sake of
simplicity.
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Assumption 1. There exists α ∈ [0, 1), independent from N , s.t. the number
of breakpoints ΥN is of order O(Nα). That is, there exist α ∈ [0, 1) and
Υ ∈ R+ such that: ΥN ≤ ΥNα.

During phase Φφ, with abuse of notation, we denote with µi,φ the ex-
pected value of the reward of arm ai, with ai∗φ the optimal arm, and with
µi∗,φ the corresponding expected reward. By defining the length of a phase
as Nφ := |Φφ|, a more compact formulation of the cumulative pseudo-regret
of a generic policy U over an AC-MAB is available:

R̄N(U) =
K∑
i=1

ΥN∑
φ=1

∆i,φE[Ti(Φφ)],

where
∑ΥN

φ=1 Nφ = N , Ti(Φφ) =
∑

t∈Φφ
1 {it = i} is the number of times

the arm ai has been pulled during phase Φφ, ∆i,φ := µi∗,φ−µi,φ is the differ-
ence between the expected reward µi∗,φ of the optimal arm ai∗φ of phase Φφ

and the expected reward µi,φ of arm ai, and E[·] is the expectation w.r.t. the
stochasticity of the policy.3

6.2.2 Smoothly Changing Setting

The Smoothly Changing MAB (SC-MAB) setting we study is similar to
that one studied in [37], where the expected value µi,t of each arm varies
smoothly over time. More formally, we make the following Lipschitz as-
sumption:

Assumption 2. There exists σ > 0 constant w.r.t time horizon N , such that
|µi,t − µi,t′ | ≤ σ |t− t′| for all t, t′ ∈ {1, . . . , N} and all i ∈ {1, . . . , K}.

Furthermore, in such a setting, a suboptimal arm ai might be arbitrarily
close to the optimal one ai∗t in terms of expected reward. Identifying the
best arm among those with similar expected expected reward is known to
be hard [8]. Indeed, it is known that a learner takes a time of the order of

1
(µi∗t ,t

−µi,t) . Thus, to prevent the regret from being linearly dependent on the

horizonN , we assume also that the separation between the expected rewards
of two arms is arbitrarily small only for a limited number of rounds.4 More
formally, consider 0 < ∆ < 1, we define:

Φ∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}
and we assume that:

3From now on we denote with | · | the cardinality operator and with 1{A} the indicator function of event A.
4This is a slightly stronger assumption than the one considered in [37] which allows us to provide, in what

follows, a regret of order Õ(
√
N).
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Assumption 3. There exist β ∈ [0, 1), F ∈ R+ and ∆0 ∈ (0, 1), all inde-
pendent from N , s.t. for all ∆ < ∆0 it holds |Φ∆,N | ≤ F∆Nβ .

6.2.3 Abruptly and Smoothly Changing Setting

Finally, in a quite straightforward way, it is possible to study also a scenario,
from now on addressed as Abruptly and Smoothly Changing MAB (ASC-
MAB) setting, in which the two forms of non-stationarity (abrupt changes
and smooth ones) occur over a finite time period. In this setting, we have
that Assumption 1 and Assumption 3 hold, and we also have that:

Assumption 4. There exists σ > 0 constant w.r.t the time horizon N , such
that:

|µi,t − µi,t′| ≤ σ |t− t′|
for all i ∈ {1, . . . , K} and all t, t′ ∈ {1, . . . , N} \B, i.e., the expected value
of the reward function is Lipschitz continuous for all the rounds except the
breakpoints.

This newly defined assumption is the natural extension of Assumption 2
to this new setting, in which the smoothness assumption might be violated if
the process is at a breakpoint.

6.3 The Sliding-Window Thompson Sampling Algorithm

We propose an algorithm that exploits a Sliding-Window (SW) approach
to forget past information during the learning process which could provide
a bias to the estimation process. More precisely, at round t, we take into
account only the rewards obtained in the last τ rounds.5 Based on these re-
alizations, we apply a TS-based algorithm to decide which arm should be
selected in the next round. More specifically, each arm expected value is
coupled with a posterior distribution from which we extract samples. By
choosing the sample with the highest value we decide which is the next arm
to play. For sake of clarity, at first, we describe the algorithm and provide the
finite-time analysis of its pseudo-regret RN(U) for Bernoulli distributed re-
wards separately for the AC-MAB and SC-MAB and, after that, we analyze
the ASC-MAB settings in which both the non-stationary processes (abrupt
and smoothly changing) are present at the same time.6

5As showed in the following, the optimal τ depends on the parameters of the problem. In Appendix B.2, we
provide the sensitivity analysis of τ , showing how the algorithm performance degrades when τ is not optimal.

6We report the complete proofs of the analysis in Appendix A.2.3, Appendix A.2.4, and Appendix A.2.5.
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Algorithm 10: SW-TS
1: Input: {πi,0}i prior distributions, N time horizon, A arm set
2: for t ∈ {1, . . . , N} do
3: for i ∈ {1, . . . ,K} do
4: Compute πi,t = Beta(Si,t,τ + 1, Ti,t,τ − Si,t,τ + 1)
5: Sample θi,t from πi,t
6: Play arm ait s.t.: it = arg maxi∈{1,...,K} θi,t and observe xit,t

6.3.1 The SW-TS Pseudo-code

The pseudocode of SW-TS for Bernoulli distributed rewards is presented
in Algorithm 10. Assume to have a prior πi,0 on each reward expected value
µi,t and let πi,t be the posterior distribution for the parameter µi,t after t
rounds. In the case we consider a uniform uninformative prior, we choose
πi,0 := Beta(1, 1), where we denote with Beta(a, b) the Beta distribution
with parameters a and b, and the posterior becomes πi,t := Beta(Si,t,τ +

1, Ti,t,τ − Si,t,τ + 1), where Ti,t,τ :=
∑t

s=max{t−τ+1,1} 1{is = i} is the num-
ber of times the arm ai has been selected in the last min{t, τ} rounds, and
Si,t,τ :=

∑t
s=max{t−τ+1,1} xi,s1{is = i} is the cumulative reward of the arm

ai in the last min{t, τ} rounds.7 Once computed the posterior distributions
πi,t, we draw a random sample θi,t, also known as Thompson sample, from
each distribution. Finally, we select the arm ai with the highest sample θi,t
for this round. The extension of the SW-TS algorithm to the case where the
rewards Xi,t are not Bernoulli distributed is similar to what proposed for the
classical TS algorithm [80], given that conjugate prior/posterior distributions
are available.

6.3.2 Finite-Time Analysis in the Abruptly Changing Setting

We provide a finite-time analysis of the pseudo-regret achieved by SW-TS
algorithm, in the AC-MAB setting introduced in Section 6.2.1.

Theorem 8. If policy SW-TS is run over an AC-MAB setting with Xi,t ∼

7In what follows, we omit to explicitly state the dependence on τ with a subscript when there is no ambiguity
in doing so.
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Be(µi,t), for any τ ∈ N, the pseudo-regret after N rounds is at most:

R̄N(U) ≤
K∑
i=1

[
τΥNα+

+

ΥN∑
φ=1

∆i,φ
Nφ

τ

(
56 log τ

∆2
i,φ

+ log τ + 4 +
22

log τ
+

1

τ
1
2

)]
,

where Υ and α are defined in Assumption 1 and ∆i,φ := µi∗,φ − µi,φ is
the difference between the expected reward µi∗,φ of the best arm ai∗φ and the
expected reward µi,φ of arm ai. By defining:

∆i := min
φ∈{1,...,ΥN}

∆i,φ1{i 6= i∗φ},

for all i ∈ {1, . . . , K}, i.e., the minimum over all the phases Φφ of the
difference of the expected rewards ∆i,φ, the pseudo-regret becomes:

R̄N(U) ≤ τKΥNα +
N

τ

K∑
i=1

(
56 log τ

∆2
i

+ log τ + 4 +
22

log τ
+

1

τ
1
2

)
.

By using a sliding window τ ∝ N
1−α

2 in Theorem 8, the pseudo-regret
R̄N(U) of the SW-TS is of the order Õ(N

1+α
2 ). In particular, if Assumption 1

holds for α = 0, meaning that the number of breakpoints is constant w.r.t. the
time horizon, and we use a sliding window τ ∝

√
N , the order of the pseudo-

regret is Õ(
√
N). Conversely, if Assumption 1 does not hold (α ≥ 1), the

above bound would provide a linear upper bound on the pseudo-regret over
the time horizon. Notice that the sliding window approach outperforms clas-
sical MAB algorithms for stationary settings, e.g., UCB1, even with a single
breakpoint (α = 0 and ΥN = 1) and two arms. Those algorithms would
suffer from Ω(

√
N) regret in the second phase, in addition to the customary

regret due to the first phase.8

Before providing a sketch of the proof (the complete proof is provided
in Appendix A.2.2), we present a lemma used in what follows, which might
be of independent interest to the reader.

Lemma 1. Consider a random variable B with Beta distribution Beta(S +

1, T − S + 1), where S :=
∑T

s=1Xs is the sum of T ∈ N Bernoulli trials

8For instance, suppose we have 2 arms a1, a2 and a breakpoint b1 = N/2 in which the expected values of
the arms switch (a1 is better than a2 before N/2 and worse after). After N/2, O(

√
N) pulls of a1 are required

before the upper confidence bound of a2 overcomes the one of a1, leading to a regret of at least Ω(
√
N).
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Xs ∼ Be(µ) with same parameter µ ∈ [0, 1]. Consider a finite integer
τ ∈ N, τ > T , a parameter ε > 1

2
and:

uT :=
S

T
+

√
ε log τ

T
,

qT := Q

(
1− 1

τ

)
,

where Q(α) is the α-quantile of the random variable B. We have that qT ≤
uT .

This lemma is used in what follows to bound the number of times a
Thompson sample θi,t is drawn from a high quantile of the Beta distribu-
tion by using a UCB-like bound uT .

Sketch of the proof. To prove the bound provided in Theorem 8, we consider
one phase at a time and we upper bound the number of rounds a suboptimal
arm has been selected. Let us focus on the phase Φφ: we exclude the first
τ rounds during which the SW-TS algorithm is using data about rewards
coming from two different distributions. More precisely, they are drawn
either from Be(µi,φ−1) or Be(µi,φ). The contribution of these rounds to the
pseudo-regret is bounded by τΥNα, thanks to Assumption 1. After that,
we analyse the remaining rounds Φ′φ of phase Φφ: during these rounds the
pseudo-regret increases when a suboptimal arm is pulled. The probability of
this event is upper bounded by the summation of the probability of event E1

that the optimal arm ai∗φ is under-estimated and the probability of event E2

that the optimal arm ai∗φ is not under-estimated, but a sub-optimal arm ai is
played.

The event E1 occurs when a sample from a Beta distribution is lower
that a certain lower bound and can be transformed, by resorting to the Be-
ta/Binomial trick [83], into the event that a Binomial is lower than a lower
bound. After this transformation, we use the Hoeffding inequality [73] over
a bounded martingale difference to bound the probability of event E1.

Event E2 probability is further divided into the one of the event E2a of
drawing a sample which is higher than the quantile qTi,t,τ in Lemma 1 and
the one of the complementary event E2b. The former event has low proba-
bility (less than 1

τ
) and in the latter one we considered Lemma 1 with ε = 2

to consider the UCB1 bound uTi,t,τ instead of the quantile. By choosing a
suitable number of pulls of the suboptimal arm and of the optimal one s.t. the
estimated expected value is well concentrated around the real mean µi,φ, we
bound again the probability of the event E2b resorting to the Hoeffding in-
equality. The guarantee that the arms have been pulled a sufficient number
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of times is provided by a general result in [84, 37]. Summing the aforemen-
tioned probabilities over the arms and the phases concludes the proof.

6.3.3 Finite-Time Analysis in the Smoothly Changing Setting

We provide a finite-time analysis of the pseudo-regret achieved under SW-
TS algorithm, in the SC-MAB setting introduced in Section 6.2.2.

Theorem 9. If policy SW-TS is run over a SC-MAB setting with Xi,t ∼
Be(µi,t), Lipschitz constant σ > 0 and there exists ∆0 ∈ (0, 1) as in Assump-
tion 3, for any τ ∈ N s.t. 2στ < ∆ ≤ 3στ ≤ ∆0, the expected pseudo-regret
after N rounds is at most:

R̄N(U) ≤
(
3σFNβ + 1

)
τ

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
.

Sketch of the proof. At first, we divide the rounds in Φ∆,N , in which the
pseudo-regret is bounded trivially by 3στFNβ thanks to Assumption 3,
and the remaining ones Φ∆C ,N := {1, . . . , N} \ Φ∆,N , in which the ab-
solute difference in terms of expected reward between pair of arms is greater
than ∆ > 2στ . Over Φ∆C ,N we define an arm ai∗t with reward X̃i∗,s :=
Xi∗,s + µi∗,t − µi∗,s − στ , i.e., a pessimistic version of the optimal arm
ai∗t . Assumption 2 guarantees that this newly defined reward is optimal in
the last τ rounds and has constant expected value equal to µi∗t ,t, allowing us
to use a reasoning similar to what has been done for Theorem 8 to bound the
pseudo-regret. Summing the two pseudo-regret contributions and over the
arms concludes the proof.

The dependence of the pseudo-regret to the factor N
τ

is similar to what
has been obtained in [37, 52], where frequentist algorithms have been con-
sidered. In the case Assumption 3 holds with β = 0, an order optimal choice
of the sliding window is τ ∝

√
N which provides a pseudo-regret R̄N(U) of

order Õ(
√
N). In the case Assumption 3 hold for β > 0, considerations sim-

ilar to what has been discussed in the AC-MAB setting can be used to derive
the order optimal sliding window τ and the corresponding upper bound over
the pseudo-regret.

6.3.4 Finite-Time Analysis in the Abruptly and Smoothly Changing
Setting

Once we proved theoretical guarantees of SW-TS in both the AC-MAB and
SC-MAB settings, it is quite straightforward to show that:
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Theorem 10. If policy SW-TS is run over an ASC-MAB setting with Xi,t ∼
Be(µi,t), Lipschitz constant σ > 0 as in Assumption 4 and there exists ∆0 ∈
(0, 1) as in Assumption 3, for any τ ∈ N s.t. 2στ < ∆ ≤ 3στ ≤ ∆0, the
expected pseudo-regret after N rounds is at most:

R̄N(U) ≤
(
3σFNβ + ΥNα

)
τ

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
,

where Υ and α are defined in Assumption 1.

As pointed out in the other settings, in the case α = 0 and β = 0 and by
setting a window of τ =

√
N , we would have an upper bound over the regret

of order Õ(
√
N). The asymptotic order of SW-TS in the ASC-MAB setting

upper bound reduces to the one of Theorem 9 in the case we have Υ = 0, i.e.,
we are in a SC-MAB setting. If we apply the bound in Theorem 10 for the
AC-MAB setting, by fixing ∆ = mini ∆i we have |Φ∆,N | = 0, thus F = 0,
and we obtain a slightly less accurate bound, which presents the same order
in terms of N and τ of the one in Theorem 8.

6.4 Experimental Evaluation of SW-TS

We experimentally evaluate our algorithm w.r.t. the state-of-the-art algo-
rithms with theoretical guarantees in terms of pseudo-regret performance
in the AC-MAB and SC-MAB settings. In particular, we compare SW-TS
with Thompson Sampling (TS) [9] to evaluate the improvement obtained
thanks to the employment of a sliding window τ . Furthermore, we compare
SW-TS with REXP3 [51], SW-UCB [52], SW-KL-UCB [37] and SER4 [57]
to evaluate the improvement obtained thanks to the adoption of Bayesian
methods vs. frequentist ones in non-stationary settings. The figures of merit
we consider is the pseudo-regret R̄N(U), as defined in Equation (6.3), and
the corresponding 95% confidence intervals. Here we report only the most
significant results, provided that experiments on the other tested configura-
tions do not change the final conclusions.

6.4.1 Abruptly Changing MAB Setting

Experimental Setting We consider a time horizon N ∈ {104, 105, 106}
and a number of arms K ∈ {5, 10, 20, 30}. We split the time horizon N into
four phases of equal length. During each phase, we select randomly the ex-
pected value µi,φ for each arm i. After each breakpoint, we randomly change
the expected value µi,φ of each arm ai, making sure that there is never the
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Table 6.1: AC-MAB: Results concerning R̄N (U).

N
104 105 106

K

5

TS 1317±52.89 12857±425.68 114476±4836.98
SER4 2494±37.63 25601±513.99 238034±4323.34

REXP3 1451±13.70 8448±55.21 42561±212.75
SW-UCB 824±66.80 5687±814.94 32939±7587.28

SW-KL-UCB 344±7.57 1570±31.51 6248±145.51
SW-TS 437±13.37 1467±30.45 4904±39.00

10

TS 1251±26.90 10927±315.30 98312±4168.24
SER4 3151±34.63 31454±499.91 279232±6504.65

REXP3 1913±17.85 12170±108.38 61978±345.25
SW-UCB 1116±68.46 8143±872.37 49537±6191.14

SW-KL-UCB 469±7.98 2197±45.54 8601±162.32
SW-TS 470±8.82 1632±32.85 5493±92.67

20

TS 1130±30.91 8864±139.77 69919±2447.98
SER4 3684±26.76 33293±167.89 293844±3038.42

REXP3 2480±17.27 16134±93.65 83042±337.96
SW-UCB 1405±57.44 11789±503.34 68751±6651.74

SW-KL-UCB 652±6.70 3086±48.22 11921±315.74
SW-TS 536±10.26 1858±26.82 6156±149.64

30

TS 1016±35.55 7714±170.92 61979±2001.15
SER4 3922±19.23 33622±212.29 285382±1727.97

REXP3 2712±22.37 18432±100.09 96851±378.67
SW-UCB 1566±60.42 12271±804.93 82006±8424.70

SW-KL-UCB 770±19.79 3858±84.94 15287±233.75
SW-TS 575±12.20 2067±35.65 7123±96.46

same optimal arm in two different phases, i.e., ai∗φ 6= ai∗
φ′

, ∀φ, φ′ with φ 6= φ′.

For sake of comparison, we choose a sliding window τ = 4
√
N log(N) as

in [52]. We generate 10 configurations for each combination of N and K as
described above and we provide the results averaged over the configurations
and over 100 independent trials for each of them.

Results The numerical results in terms of R̄N(U) are reported in Table 6.1.
For each combination ofN andK, we highlight in bold the smallest value of
R̄N(U) achieved. SW-TS outperforms the other algorithms in all the config-
urations except for the setting withN = 104 andK = 5 where SW-KL-UCB
outperforms SW-TS. In the setting with N = 104 and K = 10 there is no
statistical evidence to determine which algorithm is the best between SW-TS
and SW-KL-UCB, since the 95% confidence intervals overlap. In Figure 6.1,
we report the results for settings with K = 10 as t varies. It can be observed
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Figure 6.1: AC-MAB: Results as t varies for the pseudo-regret R̄t(U) with K = 10, in the
settings with N = 104 (a) and with N = 105 (b).

that with N = 104 (Figure 6.1a), the performance of SW-TS and SW-KL-
UCB are similar. However, the regret obtained by the algorithms is almost
linear, suggesting that the algorithms are not able to learn since the problem
is excessively hard. With a longer time horizon of N = 105 (Figure 6.1b),
the sliding window τ becomes larger (we recall that we use a τ depending on
N ) as well as the phases length and thus SW-TS outperforms SW-KL-UCB.
The SW-TS suffers from a larger regret when we enter a new phase, e.g.,
around t = 5 ·104, but once the sliding window discards the samples coming
from the previous phase, SW-TS is able to learn faster than other algorithms,
which is exemplified by the lower slope of the regret between t = 6 ·104 and
t = 7 · 104.

6.4.2 Smoothly Changing MAB Setting

Experimental Setting We consider a time horizon N ∈ {104, 105, 106}
and a number of arms K ∈ {5, 10, 20, 30}. We consider the experimental
settings of [37], where the expected value µi,t of arm ai changes according
to the following function:

µi,t =
K − 1

K
− |w(t)− i|

K
, w(t) = 1 +

(K − 1)(1 + sin(tσ))

2
.

We used a sliding window τ =
√
N and, in order to satisfy the assumption

on the value of ∆ in Theorem 9 for all values of N , we choose σ = 0.0001.9
9A discussion on the conditions for which the analysed SC-MAB setting satisfies Assumption 3 is provided

in Appendix A.2.6.
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Table 6.2: SC-MAB: Results concerning R̄N (U).

N
104 105 106

K

5

TS 218±41.94 11995±562.73 161933±3767.54
SER4 1787±6.61 22398±61.49 212095±309.93

REXP3 957±16.58 11141±58.95 111403±169.79
SW-UCB 1624±62.40 6560±49.31 34615±160.23

SW-KLUCB 987±13.79 7407±50.99 40190±165.42
SW-TS 608±15.43 3330±40.60 16403±117.46

10

TS 520±42.19 13253±579.05 169850±4434.77
SER4 2206±14.66 26094±145.80 242464±498.22

REXP3 1253±19.36 14391±63.09 144581±199.42
SW-UCB 3424±105.37 36622±314.36 80256±4375.85

SW-KLUCB 1289±12.56 11009±50.77 64518±179.97
SW-TS 922±16.18 5529±49.82 28258±149.82

20

TS 549±26.74 12843±390.73 173140±2772.27
SER4 2361±32.85 27286±259.41 258380±1039.26

REXP3 1470±16.91 17334±67.77 174065±219.54
SW-UCB 4466±202.74 45089±353.93 448649±155.59

SW-KLUCB 1330±12.17 13630±38.60 89442±157.88
SW-TS 1180±15.48 7971±49.70 44186±154.32

30

TS 581±26.29 12483±297.63 172305±2205.39
SER4 2480±23.17 27872±354.54 279190±1680.75

REXP3 1607±14.59 18854±59.28 189734±178.99
SW-UCB 4348±329.65 47586±911.96 462611±443.20

SW-KLUCB 1638±11.92 14603±37.31 102707±126.91
SW-TS 1339±11.49 9595±39.76 54298±124.20

We average the results over 100 independent trials for each combination of
N , K and σ.

Results The numerical results in terms of R̄N(U) are reported in Table 6.2.
It can be observed that SW-TS outperforms all the other algorithms except
for the case with N = 104: SW-TS achieves the best performance w.r.t. the
other sliding window algorithms, but it is not able to outperform TS. The
reason behind this behaviour lies in the fact that with such a small value of
σ the optimal arm remains the same until round t = 5 · 103 and it is not
convenient to use a sliding window approach. Conversely, if we have longer
time horizons, the optimal arm changes more often: with N = 105 we have
14 changes of the optimal arm and the performance of TS becomes the worst.
In Figure 6.2a, we report the results as t varies in the case with N = 104.
It can be observed that, when the optimal arm changes, there is a worsening
in the regret performance of TS. However, no sliding window algorithm can
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Figure 6.2: SC-MAB: Results as t varies for the pseudo-regret R̄t(U) with K = 5, with
N = 104 (a) and N = 105 (b).

reach its performance. In the case with N = 105, reported in Figure 6.2b,
TS is not able to limit its regret. Even if in the very first rounds TS and SW-
TS share similar behaviours, the use of a sliding window assures the best
performance to SW-TS.

6.4.3 Abruptly and Smoothly Changing MAB Setting

Experimental Setting We consider a time horizon N ∈ {104, 105, 106}
and a number of arms K ∈ {5, 10, 20, 30}. For each setting, we split the
time horizon N into four phases of equal duration. During each phase, the
expected value µi,t of arm ai changes according to the following function:

µi,t =
K − 1

K
− |w(t)− i|

K
,

w(t) = 1 +
(K − 1)(1 + sin(tσ))

2
.

After each breakpoint, in order to abruptly change the optimal arm, we shift
the sin(tσ) in the expected value µi,φ of each arm i of an amount of rounds
proportional to the time horizon N : after the first breakpoint, we shift of an
amount of rounds of 25% of N ; after the second one, 50% of N ; after the
third one, 75% of N . At first, we consider a sliding window τ =

√
N and, in

order to satisfy, for all values ofN , the assumption on the value of ∆ in The-
orem 10, we choose σ = 0.0001. After that, we choose a sliding window
τ = σ−

4
5 and we set σ ∈ {0.001, 0.002, . . . , 0.01}, as in [37]. In both cases,
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Table 6.3: ASC-MAB with τ = σ−
4
5 : Results concerning R̄N (U) in the settings with σ =

10−3.

N
104 105 106

K

5

TS 1252±39.02 23163±305.47 211871±380.91
SER4 2253±9.44 23133±55.87 226316±294.62

REXP3 1661±14.75 17517±42.07 175080±115.16
SW-UCB 684±15.74 7451±74.99 90968±7174.24

SW-KLUCB 754±9.62 8232±50.02 83436±359.15
SW-TS 470±11.90 4645±54.85 47197±298.63

10

TS 1370±39.51 26078±384.97 266289±283.49
SER4 2745±23.31 29277±99.78 299947±456.21

REXP3 2063±12.45 21719±49.39 217066±140.36
SW-UCB 4736±62.98 41371±76.94 423199±99.35

SW-KLUCB 1090±11.15 11958±48.21 120388±218.01
SW-TS 728±11.76 7630±47.36 77302±207.19

20

TS 1394±41.43 26573±341.85 292356±328.06
SER4 3107±21.22 34016±46.53 341214±164.83

REXP3 2389±14.57 25122±46.73 251113±143.90
SW-UCB 5309±4.98 45305±77.67 459211±75.73

SW-KLUCB 1345±9.73 14479±36.84 145437±133.78
SW-TS 980±9.92 10420±34.53 104146±107.82

30

TS 1401±27.51 26713±326.58 301882±317.67
SER4 3252±13.63 35227±22.46 352542±78.03

REXP3 2558±12.68 26911±40.75 268738±126.13
SW-UCB 5513±4.21 46429±132.47 471276±0.00

SW-KLUCB 1418±11.11 15161±37.74 151120±143.85
SW-TS 1136±10.84 12102±32.18 120625±115.00

we average the results over 100 independent trials for each combination of
N , K and σ.

Results The results for both settings are similar to the ones presented for
the SC-MAB setting, suggesting that the abrupt changes do not affect the
regret if the expected values of the arms are smoothly changing.

The numerical results in terms of R̄N(U) with τ =
√
N are reported

in Table 6.4 for the experiments with σ = 10−4. As in the SC-MAB setting,
it can be observed that SW-TS outperforms all the other algorithms except
for the case with N = 104, in which it is not able to outperform TS. The
reason behind this behaviour lies again in the fact that with such a small
value of σ the optimal arm remains the same until round t = 5 · 103 and it is
not convenient to use a sliding window approach. With longer time horizons,
the optimal arm changes more often and the performance of TS becomes the
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Table 6.4: ASC-MAB with τ =
√
N : Results concerning R̄N (U) in the settings with σ =

10−4.

N
104 105 106

K

5

TS 416±42.09 11598±294.55 155795±3325.74
SER4 2136±10.24 22894±63.04 211904±386.48

REXP3 984±18.45 11428±55.26 111657±166.40
SW-UCB 1424±80.93 6565±58.97 34832±162.74

SW-KLUCB 991±16.66 7367±51.78 40395±171.51
SW-TS 587±15.28 3376±51.61 16546±143.17

10

TS 513±33.02 13322±399.70 166233±4166.45
SER4 2677±28.61 26590±163.43 243132±652.63

REXP3 1391±20.59 14652±65.30 144851±231.14
SW-UCB 3807±146.66 51669±13.16 82394±5545.59

SW-KLUCB 1434±15.94 10994±42.74 64783±166.04
SW-TS 967±15.41 5512±47.74 28539±143.63

20

TS 598±30.29 13099±243.57 172319±3124.95
SER4 2832±56.99 28280±242.18 258039±1055.98

REXP3 1664±18.84 17838±62.91 173867±198.21
SW-UCB 5085±229.91 56948±35.71 450598±200.35

SW-KLUCB 1544±12.00 13718±40.59 89463±139.87
SW-TS 1280±12.89 8017±52.56 44306±115.80

30

TS 589±21.37 12854±288.97 171534±2879.85
SER4 2929±48.64 29651±457.64 278093±1590.27

REXP3 1833±18.58 19585±53.51 189882±189.03
SW-UCB 4819±418.89 59078±38.20 464238±565.19

SW-KLUCB 1882±14.16 14718±33.40 102637±138.04
SW-TS 1471±13.06 9612±41.48 54363±134.34

worst.
The results in terms of R̄N(U) with τ = σ

4
5 are reported in Table 6.3

for the experiments with σ = 10−3. As in the SC-MAB setting, SW-TS
outperforms all the other algorithms, providing in every setting the smallest
value for R̄N(U).

6.5 Unimodal MAB: Problem Formulation

In the Unimodal MAB setting, a learner receives in input a finite undirected
graph MAB setting G = (A,E), whose vertices A = {a1, . . . , aK} with
K ∈ N correspond to the arms and an edge (aiaj) ∈ E exists only if there
is a direct partial order relationship between the expected rewards of arms
ai and aj . The leaner knows a priori the nodes and the edges (i.e., she
knows the graph), but, for each edge, she does not know a priori which
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is the node of the edge with the largest expected reward (i.e., she does not
know the ordering relationship). At each round t over a time horizon of
N ∈ N the learner selects an arm ai and gains the corresponding reward xi,t.
This reward is drawn from an i.i.d. random variable Xi,t (i.e., we consider a
stochastic MAB setting) characterized by an unknown distribution Di with
finite known support Ω ⊂ R (as customary in MAB settings, from now on
we will consider Ω ⊆ [0, 1]) and by unknown expected value µi := E[Xi,t].
We assume that there is a single optimal arm, i.e., there exists a unique arm
ai∗ s.t. its expected value µ∗ := µi∗ = maxi µi with µ∗ ≥ µi for each
i ∈ {1, . . . , K}.

Here we analyze a graph bandit setting with unimodality property, defined
as:

Definition 1. A graph unimodal MAB (UMAB) setting G = (A,E) is a
graph bandit setting G s.t. for each sub-optimal arm ai, i 6= i∗ it exists a
finite path p = (i1 = i, . . . , im = i∗) s.t. µik < µik+1

and (aik , aik+1
) ∈ E for

each k ∈ {1, . . . ,m− 1}.

This definition assures that if one is able to identify a non-decreasing path
inG of expected rewards, she will be able to reach the optimum arm, without
getting stuck in local optima. We would like to point out that the unimodality
property implies that the graph G is connected, thus we will consider only
connected graphs from this point on.

A policy U over a UMAB setting is a procedure able to select at each
round t an arm ait by basing on the history ht, i.e., the sequence of past se-
lected arms and past rewards gained. The pseudo-regret R̄N(U) of a generic
policy U over a UMAB setting is defined as:

R̄N(U) := Nµ∗ − E

[
N∑
t=1

Xit,t

]
, (6.4)

where the expected value E[·] is taken w.r.t. the stochasticity of the gained
rewards Xit,t and of the policy U.

Let us define the neighborhood of arm ai asN (i) := {j|(aiaj) ∈ E}, i.e.,
the set of each index j of the arm aj connected with an edge (aiaj) ∈ E to
the arm ai. It has been shown in [37] that the problem of learning in a UMAB
setting presents a lower bound over the regret R̄N(U) of the following form:

Theorem 11. Let U be a uniformly good policy, i.e., a policy s.t. R̄N(U) =
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Algorithm 11: UTS

1: Input: UMAB setting G = (V,E), Horizon T , Priors {πi}Ki=1

2: for t ∈ {1, . . . , T} do
3: Compute µ̂i,Ti,t for each i ∈ {1, . . . ,K}
4: Find the leader al(t)
5: if Ll(t),t mod |N+(l(t))| = 0 then
6: Collect reward xl(t),t
7: else
8: Draw θi,t from πi,t for each i ∈ N+(l(t))
9: Collect reward xit,t where it = arg maxi θi,t

o(N c) for each c > 0. Given a UMAB setting G = (A,E) we have:

lim inf
N→∞

R̄N(U)

log(N)
=

∑
i∈N (i∗)

µ∗ − µi
KL(µi, µ∗)

(6.5)

whereKL(p, q) = p log
(
p
q

)
+(1−p) log

(
1−p
1−q

)
, i.e., the Kullaback-Leibler

divergence of two Bernoulli distributions with means p and q, respectively.

This result is similar to the one provided in [8], with the only difference
that the summation is restricted to the arms laying in the neighborhood of the
optimal armN (i∗) and reduces to it when the optimal arm is connected to all
the others (i.e., N (i∗) ≡ {1, . . . , K}) or the graph is completely connected
(i.e., N (i) ≡ {1, . . . , K},∀i). We would like to point out that by relying
on the assumption of having a single maximum of the expected rewards, we
also assure that the optimal arm neighborhood N (i∗) is uniquely defined
and, thus, the lower bound inequality in Equation (6.5) is well defined.

6.6 The Unimodal Thompson Sampling Algorithm

We describe the UTS algorithm and we show that its regret is asymptotically
optimal, i.e., it asymptotically matches the lower bound of Theorem 11. The
algorithm is an extension of the Thompson Sampling [9] that exploits the
graph structure and the unimodal property of the UMAB setting. Basically,
the rationale of the algorithm is to apply a simple variation of the TS algo-
rithm to only the arms associated with the nodes that compose the neighbor-
hood of the arm with the highest empirical mean reward, called leader.

6.6.1 The UTS Pseudo-code
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The pseudo-code of the UTS algorithm is presented in Algorithm 11. The
algorithm receives in input the graph structure G, the time horizon N , and a
Bayesian prior πi for each expected reward µi. At each round t, the algorithm
computes the empirical expected reward for each arm (Line 3):

µ̂i,t :=


Sit
Ti,t

if Ti,t > 0

0 otherwise
,

where Si,t =
∑t−1

h=1 Xi,h1{U(h) = ai} is the cumulative reward of arm ai up
to round t and Ti,t =

∑t−1
h=1 1{U(h) = ai} is the number of times the arm

ai has been pulled up to round t.10 After that, UTS selects the arm denoted
as the leader al(t) for round t, i.e., the one having the maximum empirical
expected reward:

al(t) = arg max
ai∈A

µ̂i,t. (6.6)

Once the leader has been chosen, we restrict the selection procedure to it
and its neighborhood, considering only arms with indexes in N+(l(t)) :=
N (l(t))∪{l(t)}. Denote withLi,t :=

∑t−1
h=1 1{l(h) = i} the number of times

the arm ai has been selected as leader before round t. If Ll(t),t is a multiple of
|N+(l(t))|, then the leader is pulled and reward xl(t),t is gained (Line 6).11

Otherwise, the TS algorithm is performed over arms ai s.t. i ∈ N+(l(t))
(Lines 8-9).

Basically, under the assumption of having a prior πi, we can compute the
posterior distribution πi,t for µi after t rounds, using the information gathered
from the rounds in which ai has been pulled. We denote with θi,t a sample
drawn from πi,t, called Thompson sample. For instance, for Bernoulli re-
wards and by assuming uniform priors we have that πi,t = Beta(1+Si,t, 1+
Ti,t − Si,t), where Beta(α, β) is the beta distribution with parameters α and
β. Finally, the UTS algorithm pulls the arm with the largest Thompson sam-
ple θi,n and collects the corresponding reward xit,t. See [10] for further de-
tails.

Remark 1. Assuming that the UTS algorithm receives in input the whole
graph G is unnecessary. The algorithm just requires an oracle that, at each
round t, is able to return the neighborhood N (l(t)) of the arm which is cur-
rently the leader al(t). This is crucial in all the applications in which the
graph is discovered by means of a series of queries and the queries have a

10We here denote with 1{·} the indicator function.
11We here denote with | · | the cardinality operator.
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non-negligible cost (e.g., in social networks a query might be computation-
ally costly). Finally, we remark that the frequentist counterpart of our algo-
rithm (i.e., the OSUB algorithm) requires the computation of the maximum
node degree γ := maxi |N (i)|, thus requiring at least an initial analysis of
the entire graph G.

6.6.2 Finite-time analysis of UTS

Theorem 12. Given a UMAB setting G = (A,E), the expected pseudo-
regret of the UTS algorithm satisfies, for every ε > 0:

R̄N(UTS) ≤ (1 + ε)
∑

i∈N (i∗)

µ∗ − µi
KL(µi, µ∗)

[log(N) + log log(N)] + C̃,

where C̃ > 0 is a constant depending on ε, the number of arms K and the
expected rewards {µ1, . . . , µK}.
Sketch of the proof. The complete version of the proof is reported in the ap-
pendices. At first, we remark that a straightforward application of the proof
provided for OSUB is not possible in the case of UTS. Indeed, the use of
frequentist upper bounds over the expected reward in OSUB implies that in
finite time and with high probability the bounds are ordered as the expected
values. Since we are using a Bayesian algorithm, we would require the same
assurance over the Thompson samples θi,t, but we do not have a direct bound
over P(θi,t > θi′,t) where ai′ is the optimal arm in the neighborhood N+(i).
This fact requires to follow a completely different strategy when we analyze
the case in which the leader is not the optimal arm.

The regret of the UTS algorithm R̄N(UTS) can be divided in two parts:
the one obtained during those rounds in which the optimal arm a∗ is the
leader, called R1, and the summation of the regrets in the rounds in which
the leader is the arm ai 6= a∗, calledRi. R1 is obtained when i∗ is the leader,
thus, the UTS algorithms behaves like Thompson Sampling restricted to the
optimal arm and its neighborhoodN+(i∗), and the regret upper bound is the
one derived in [10] for the TS algorithm.
Ri is upper bounded by the expected number of rounds the arm ai has

been selected as leader E[Li,N ] over the horizon N . Let us consider L̂i,N
defined as the number of rounds spent with ai as leader when restricting
the problem to its neighborhood N+(i). E[L̂i,N ] is an upper bound over
E[Li,N ], since there is nonzero probability that the UTS algorithm moves
in another neighborhood. Since i 6= i∗ and the setting is unimodal, there
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exists an optimal arm ai′ , i
′ 6= i among those in the neighborhood N (i)

s.t. µi′ = maxi|ai∈N (i) µi and µ̂i,t ≥ µ̂i′ . Thus:

Ri ≤ E[L̂i,N ] =
N∑
t=1

E
[
1{µ̂i,t = max

aj∈N+(i)
µ̂j,t}

]

=
N∑
t=1

P
(
µ̂i,t ≥ max

aj∈N+(i)
µ̂j,t

)
≤

N∑
t=1

P (µ̂i,t ≥ µ̂i′,t)

=
N∑
t=1

P
(
µ̂i,t − µi −

∆i

2
− µ̂i′,t + µi′ −

∆i

2
≥ 0

)

≤
N∑
t=1

P
(
µ̂i,t − µi −

∆i

2
≥ 0

)
︸ ︷︷ ︸

Ri1

+
N∑
t=1

P
(
µ̂i′,t − µi′ +

∆i

2
≤ 0

)
︸ ︷︷ ︸

Ri2

,

where ∆i = maxi′|ai∈N (i) µi′ − µi is the expected loss incurred in choosing
ai instead of its best adjacent one ai′ .
Ri1 can be upper bounded by a constant by relying on conditional prob-

ability definition and the Hoeffding inequality [73]. Specifically, we rely on
the fact that the leader is chosen at least

⌊
Ll(t),t
|N+(l(t))|

⌋
times. Upper bounding

Ri2 by a constant term requires the use of Proposition 1 in [10], which limits
the expected number of times the optimal arm is pulled less than tb times by
TS, where b ∈ (0, 1) is a constant, and the use of a technique already used on
Ri1. Summing up the regret over i 6= i∗ and considering the three obtained
bounds concludes the proof.

6.7 Experimental Evaluation of UTS

In this section, we compare the empirical performance of the proposed algo-
rithm UTS with the performance of a number of algorithms. We study the
performance of the state-of-the-art algorithm OSUB [37] to evaluate the im-
provement due to the employment of Bayesian approaches w.r.t. frequentist
approaches. Furthermore, we study the performance of TS [9] to evaluate the
improvement in Bayesian approaches due to the exploitation of the problem
structure. For completeness, we study also the performance of KLUCB [85],
being a frequentist algorithm that is optimal for Bernoulli distributions.
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6.7.1 Figures of merit

Given a policy U, we evaluate the average and 95%-confidence intervals of
the following figures of merit:

• the pseudo-regret R̄N(U) as defined in Equation (6.4); the lower R̄N(U)
the better the performance;

• the regret ratio R%(U1,U2) = R̄N (U1)

R̄N (U2)
showing the ratio between the

total regret of policy U1 after N rounds and the one obtained with U2;
the lower R%(U1,U2) the larger the relative improvement of U1 w.r.t.
U2.

6.7.2 Line graphs

We initially consider the same experimental settings are in [37], composed
of line graphs. They consider graphs with K ∈ {17, 129} arms, where the
arms are ordered on a line from the arm with smallest index to the arm with
the largest index and with Bernoulli rewards whose averages have a trian-
gular shape with the maximum on the arm in the middle of the line. More
precisely, the minimum average is 0.1, associated with arms a1 and a17 when
K = 17 and with arms a1 and a129 with K = 129, while the maximum aver-
age reward is µ∗ = 0.9, associated with arm a9 when K = 17 and with arm
a65 with K = 129. The averages decrease linearly from the maximum one
to the minimum one.

For both the experiments, we average the regret over 100 independent
trials of length N = 105. We report Rt(U) for each policy U as t varies
in Figure 6.3a, for K = 17, and in Figure 6.3b, for K = 129. The UTS
algorithm outperforms all the other algorithms along the whole time horizon,
providing a significant improvement in terms of regret w.r.t. the state-of-the-
art algorithms. In order to have a more precise evaluation of the reduction
of the regret w.r.t. OSUB algorithm, we report R%(U,OSUB) in Table 6.5.
As also confirmed below by a more exhaustive series of experiments, in line
graphs the relative improvement of performance due to UTS w.r.t. OSUB
reduces as the number of arms increases, while the relative improvement of
performance due to UTS w.r.t. TS increases as the number of arms increases.

6.7.3 Erdős-Rényi graphs

To provide a thorough experimental evaluation of the considered algorithms
in settings in which the space of arms has a graph structure, we generate
graphs using the model proposed by Erdős and Rényi [86], which allows us
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Table 6.5: Results concerning R%(U,OSUB) in the setting with K = 17 and K = 129 and
a line graph.

K
17 129

KLUCB 3.08± 0.05 6.51± 0.07
TS 1.34± 0.07 2.68± 0.05

UTS 0.52± 0.07 0.76± 0.15
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Figure 6.3: Results for the pseudo-regret R̄t(U) in line graphs settings with K = 17 (a)
and K = 129 (b) as defined in [37].

to simulate graph structures more complex than a simple line. An Erdős-
Rényi graph is generated by connecting nodes randomly: each edge is in-
cluded in the graph with probability p, independently from existing edges.
We consider connected graphs with K ∈ {5, 10, 20, 50, 100, 1000} and with
probability p ∈ {1, 1

2
, log(K)

K
, `}, where p = 1 corresponds to have a fully

connected graph and therefore the graph structure is useless, p = 1
2

corre-
sponds to have a number of edges that increases linearly in the number of
nodes, p = log(K)

K
corresponds to have a few edges w.r.t. the nodes, and we

use p = ` to denote line graphs (these line graphs differ from those used for
the experimental evaluation discussed above for the reward function, as dis-
cussed in what follows). We use different values of p in order to see how the
performance of UTS changes w.r.t. the number of edges in the graph; we re-
mark that such an analysis is unexplored in the literature so far. The optimal
arm is chosen randomly among the existing arms and its reward is given by
a Bernoulli distribution with expected value 0.9. The rewards of the subopti-
mal arms are given by Bernoulli distributions with expected value depending
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Table 6.6: Results concerning R̄N (U) (N = 105) in the setting with Erdős-Rényi graphs.

p
1 1/2 log(K)/K `

K

5

KLUCB 34± 0.4 50± 1.5 52± 3.7 56± 2.2
TS 18± 0.2 23± 0.6 24± 1.3 25± 0.7

OSUB 34± 0.3 32± 7.2 35± 5.8 31± 4.1
UTS 17 ± 0.1 15 ± 2.4 16 ± 2.2 14 ± 1.3

10

KLUCB 77± 0.5 107± 5.5 127± 11.2 159± 7.0
TS 40± 0.2 50± 2.0 56± 3.8 67± 2.5

OSUB 77± 0.3 76± 8.1 57± 5.6 70± 8.1
UTS 39 ± 0.2 35 ± 3.2 27 ± 2.1 34 ± 2.4

20

KLUCB 163± 0.7 217± 6.2 262± 16.2 386± 21.3
TS 84± 0.5 102± 2.3 117± 5.7 157± 6.9

OSUB 163± 0.8 148± 14.9 86± 14.6 124± 11.7
UTS 83 ± 0.3 70 ± 6.0 44 ± 4.8 65 ± 8.8

50

KLUCB 420± 0.7 560± 15.0 686± 30.5 1132± 49.2
TS 217± 0.5 262± 4.4 303± 10.0 454± 19.9

OSUB 420± 1.0 382± 35.6 162± 13.9 240± 15.8
UTS 216 ± 0.7 182 ± 14.2 89 ± 5.5 156 ± 30.1

10
0

KLUCB 846± 2.0 1134± 17.8 1313± 59.7 2327± 63.5
TS 436 ± 1.1 528± 4.9 586± 18.4 973± 31.8

OSUB 846± 2.7 786± 39.0 226± 27.1 369± 10.7
UTS 437 ± 0.5 372 ± 15.2 141 ± 9.1 290 ± 42.3

10
00

KLUCB 8505± 12.2 11247± 60.1 12024± 464.7 10640± 291.5
TS 4391 ± 3.4 5262± 23.0 5478± 151.3 6554± 115.2

OSUB 8493± 13.6 7761± 153.4 1151± 45.0 1165 ± 20.7
UTS 4388 ± 5.2 3718 ± 62.9 1000 ± 14.2 1165 ± 41.8

on their distance from the optimal one. More precisely, let d∗i be the shortest
path from the i-th arm to the optimal arm and let d∗max = maxi∈{1,...,K} d∗i
be the maximum shortest path of the graph. The expected reward of the i-th
arm is µi = 0.9− d∗i (0.9−0.1)

d∗max
, i.e., the arm with d∗max has a value equal to 0.1

and the expected rewards of the arms along the path from it to the optimal
arm are evenly spaced between 0.1 and 0.9. We generate 10 different graphs
for each combination ofK and p and we run 100 independent trials of length
N = 105 for each graph. We average the regret over the results of the 10
graphs.

In Table 6.6, we report R̄N(U) for each combination of policy U, K,
and p. It can be observed that the UTS algorithm outperforms all the other
algorithms, providing in every case the smallest regret except for K = 1000
and p = `. Below we discuss how the relative performance of the algorithms
vary as the values of the parameters K and p vary.
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Figure 6.4: Results for the pseudo-regret R̄t(U) in the setting with K = 5 and p = 1.

Consider the case with p = 1. The performance of UTS and TS are
approximately equal and the same holds for the performance of OSUB and
KLUCB. This is due to the fact that the neighborhood of each node is com-
posed by all the arms, the graphs being fully connected, and therefore UTS
and OSUB cannot take any advantage from the structure of the problem. We
notice, however, that UTS and TS have not the same behavior and that UTS
always performs slightly better than TS. It can be observed in Figure 6.4 with
K = 5 and p = 1 that the relative improvement is mainly at the beginning of
the time horizon and that it goes to zero as K increases (the same holds for
OSUB w.r.t. KLUCB). The reason behind this behavior is that UTS reduces
the exploration performed by TS in the first rounds, forcing the algorithm
to pull the leader (chosen as the arm maximizing the empirical mean) for a
larger number of rounds.

Consider the case with p = 1
2
. In the considered experimental setting,

the relative performance of the algorithms does not depend on K. The or-
dering, from the best to the worst, over the performance of the algorithms
is: UTS, TS, OSUB, and finally KLUCB. Surprisingly, even the dependency
of the following ratios on K is negligible: R%(UTS,TS) = 0.68 ± 0.03,
R%(UTS,OSUB) = 0.47± 0.01, and R%(OSUB,KLUCB) = 0.68± 0.03.
This shows that the relative improvement due to UTS is constant w.r.t. TS
and OSUB as K varies. These results raise the question whether the relative
performance of OSUB and TS would be the same, except for the numerical
values, for every p constant w.r.t. K. To answer to this question, we run ad-
ditional experiments, considering the case in which p = 0.1, corresponding
to the case in which the number of edges is linear in K, but it is smaller than
the case with p = 1

2
. The results in terms of R̄N(U) show that OSUB outper-
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forms TS for K ≥ 10, suggesting that, when p is constant in K, OSUB may
or may not outperform TS depending on the specific pair (p,K).

Consider the case with p = log(K)
K

. The ordering over the performance of
the algorithms changes as K varies. More precisely, while UTS keeps to be
the best algorithm for everyK and KLUCB the worst algorithm for everyK,
the ordering between TS and OSUB changes. When K ≤ 10 TS performs
better than OSUB, instead when K ≥ 20 OSUB outperforms TS, see Fig-
ure 6.5. This is due to the fact that, with a small number of arms, exploiting
the graph structure is not sufficient for a frequentist algorithm to outper-
form the performance of TS, while with many arms exploiting the graph
structure even with a frequentist algorithm is much better than employing a
general-purpose Bayesian algorithm. The ratioR%(UTS,TS) monotonically
decreases as K increases, from 0.66 when K = 5 to 0.19 when K = 1000,
suggesting that exploiting the graph structure provides advantages as K in-
creases. Instead, the ratio R%(UTS,OSUB) monotonically increases as K
increases, from 0.45 when K = 5 to 0.94 when K = 1000, suggesting that
the improvement provided by employing Bayesian approaches reduces as K
increases as observed above in line graphs.

Consider the case with p = `. As in the case discussed above, OSUB
is outperformed by TS for a small number of arms (K ≤ 10), while it out-
performs TS for many arms (K ≥ 20). The reason is the same. Similarly,
the ratio R%(UTS,TS) monotonically decreases as K increases, from 0.58
when K = 5 to 0.18 when K = 1000, and the ratio R%(UTS,OSUB)
monotonically increases as K increases, from 0.45 when K = 5 to 1.00
when K = 1000. This confirms that the performance of UTS and the
one of OSUB asymptotically match as K increases when p = ` (as well
as p = log(K)

K
). In order to investigate the reasons behind such a behav-

ior, we produce an additional experiment with the line graphs of Combes
and Proutiere [37] except that the maximum expected reward is set to 0.108
when K = 17 and 0.165 when K = 129 (thus, given any edge with termi-
nals i and i + 1, we have |µi − µi+1| = 0.001). What we observe is that,
on average, OSUB outperforms UTS at N = 105 suggesting that, when it is
necessary to repeatedly distinguish between three arms that have very similar
expected rewards, frequentist methods may outperform the Bayesian ones.
This is no longer true when N is much larger, e.g., N = 107, where UTS
outperforms OSUB (interestingly, differently from what happens in the other
topologies, in line graphs with very small |µi−µi+1|, the average R̄N(UTS)
and R̄N(OSUB) cross a number of times during the time horizon). Further-
more, we evaluate how the relative performance of OSUB w.r.t. UTS varies
for |µi− µi+1| ∈ {0.001, 0.002, 0.005}, observing it improves as |µi− µi+1|
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Figure 6.5: Results for the pseudo-regret R̄t(U) in the setting with K = 5 (a) and K = 20

(b) and p = log(K)
K .

decreases. Finally, we evaluate whether this behavior emerges also in Erdős-
Rényi graphs in which p = c

K
where c is a constant (we use p = 5

K
, 10
K

) and
we observe that UTS outperforms OSUB, suggesting that line graphs with
very small |µi − µi+1| are pathological instances for UTS.
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CHAPTER7
Conclusions and Future Works

In this thesis, we investigate the pricing problem in the setting of online sales
of digital goods from the point of view of an e-commerce, such as an Online
Travel Agency (OTA), selling its products in an environment where it is not
possible to use information about the customers, like the metasearch envi-
ronment. We study the problem of optimal pricing, that is the search for the
optimal price to set on an item to maximize the expected profit. Metasearch
scenario presents a large profitability, but also many characteristics which
make the problem very challenging. In the specific, we have a huge catalog
of items to price, we have no information about our customers, the environ-
ment is non-stationary, and we have really low conversion rates. Thus, the
problem of building a user model and learning the optimal price becomes
very hard and long in time. We tackle the problem of finding the best price
as an online learning problem, with a particular focus on Multi-Armed Ban-
dit (MAB) techniques. The solution we propose consists in dividing the
problem into two sub-problems.

Clustering problem The first sub-problem is the one of clustering, that is
the partitioning of the catalog in contexts of items sharing similar features.
This goal can be achieved by learning from historical data collected directly
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Chapter 7. Conclusions and Future Works

with the system, recording the interactions with the customers. We propose
a novel algorithm to deal with the problem of Learning with Logged Bandit
Feedback (LLBF). The proposed methodology can learn a risk-averse policy
to maximize the expected profit gained in this setting. It makes use of lower
confidence bounds to build a decision tree over the context space, which
provides both a decisional tool over future samples and an instrument to
highlight the features that influence the profit the most. Indeed, our method
provide a clear interpretability of the resulting model, useful for business
analysis, that allows to easily identify the most relevant features for the def-
inition of the contexts. With a wide experimental campaign, we present
empirical evidence for the improved performance of our algorithm over the
state-of-the-art and we show promising results on real-world datasets.

Optimization problem The second sub-problem is the study of algorithms
to learn the optimal price that maximizes the expected profit of each context.
Making use of Multi-Armed Bandit techniques, we exploit some properties
of the pricing problem to improve the performance of the classical algo-
rithms.

The first two properties are the decreasing monotonicity of the conversion
rate on the price and the a priori information about the maximum conversion
rate. We study how to exploit two properties of the pricing problem to im-
prove the empiric performance of general-purpose bandit algorithms without
losing their theoretical guarantees on the regret. We propose a methodology
to apply to Upper Confidence Bound (UCB) policies, such as the well-known
UCB1 and UCBV. We provide a wide experimental evaluation of our algo-
rithms, comparing them with other frequentist MAB algorithms with theo-
retical guarantees that do not exploit the two aforementioned properties. In
this way, we show the improvement obtained thanks to the exploitation of
the problem characteristics.

Furthermore, we focus on non-stationary settings. We make use of a slid-
ing window to tackle the non-stationarity of the environment. We propose
algorithms both for the frequentist and the Bayesian case, we derive upper
bounds on the regret of the proposed algorithms, and we show that our algo-
rithms empirically outperform the state-of-the-art approaches in most of the
considered configurations.

Finally, we study the Unimodal Multi-Armed Bandit (UMAB), charac-
terized by a graph structure in which each arm corresponds to a node of a
graph and each edge is associated with a relationship in terms of expected
reward between its arms. We propose, to the best of our knowledge, the first
Bayesian algorithm for the UMAB setting. We derive a tight upper bound
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that asymptotically matches the lower bound for the UMAB setting and we
present a thorough experimental analysis showing that our algorithm outper-
forms the state-of-the-art methods.

Proposed solution The final solution consists of making the two sub-problems
to work together. The feedback collected from the interaction between the
users and the system, which implements bandits algorithms to price the
items, is used as input for the clustering algorithm. The data collected with
the newly generated model will be used to improve the clustering. Thus, the
two sub-problems work in a cycle, continuously improving the performance
of the system.

Future works A number of extensions are possible to this work. Future
developments may study the exploitation of the pricing properties in con-
tinuous MAB setting, that is the case of a continuous decision space. Fur-
thermore, we may study the finite-time lower bound of the regret and the
gap-independent bounds of the proposed algorithms.

Future extensions for our clustering algorithm may concern settings with
a continuous space of actions or a continuous space of contexts (without
requiring to discretize it). Furthermore, another interesting future work is
the use of metrics different from the expected profit to partition the context
space suited for a subsequent learning process, for instance considering also
non-stationary policies over the newly coming data.

We may also study a way to better integrate the two sub-problems into
each other. For example, the clustering problem could be online and forms a
significant part of the optimization as well.
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APPENDIXA
Proofs of Theorems

A.1 Frequentist Approach

A.1.1 Proof of Theorem 1

Theorem 1. If policy UCB1-M is run over a stationary MAB setting with a
monotonic set A, the pseudo-regret after N rounds is at most:

R̄N ≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i

+
∑

i|ai 6=ai∗

2a2
i log(K)

∆i

+

(
1 +

π2

3

) K∑
i=1

∆i,

where ∆i := ai∗µi∗ − aiµi,∀i ∈ {1, . . . , K}.

Proof. Let us remind that we denote with i∗ := arg maxi∈{1,...,K} aiµi the
index corresponding to the optimal arm ai∗ . Similarly to [6], we want to
compute the expected number of times the policy UCB1-M does not pick
the optimal arm ai∗ or, more formally, E[Ti(N)], ∀ai 6= ai∗ and compute the
regret as:

R̄N =
∑

i|ai 6=ai∗
∆iE[Ti(N)].
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Appendix A. Proofs of Theorems

Consider the round of the learning process at which a specific arm ai has
been selected for s rounds and define:

• j̄(i, t) := j̄ (with abuse of notation) as the index j ∈ {1, . . . , i} mini-

mizing the quantity x̄ji,t +
√

4 log(t)+log(i)
2Tji(t−1)

, i.e., the upper bound of arm
ai;

• j̄∗ := j̄(i∗, t) as the index j ∈ {1, . . . , i∗} minimizing the quantity

x̄ji∗,t +
√

4 log(t)+log(i∗)
2Tji∗ (t−1)

, i.e., the upper bound of arm ai∗;

• X̄i,(s) is the unbiased estimate of µi in the case we collected a total of s
samples from arm ai;

• X̄j̄i,(s) is the unbiased estimate of µj̄i,t,s = E
[
X̄j̄i,(s)

]
, in the case we

collected a total of s samples from arm ai (and thus we use s′ ≥ s
samples to estimate µj̄i,s);

• ci,t,s :=
√

4 log(t)+log(i)
2s

as the Hoeffding bound with confidence t−4

i
for

X̄i,(s) after t rounds;

• cji,t,s :=
√

4 log(t)+log(i)
2s′

as the Hoeffding bound with confidence t−4

i
for

X̄ji,(s) after t rounds, in the case arm ai has been pulled a total of s
times and the arms {aj, . . . , ai} have been chosen in total s′ > s times.

We have that, for each l > 0:

Ti(N) = 1 +
N∑

t=K+1

1 {it = i} ≤ l +
N∑

t=K+1

1 {it = i, Ti(t− 1) ≥ l}

≤ l +
N∑

t=K+1

1
{
ai∗X̄j̄∗i∗,t + ai∗cj̄∗i∗,t,Ti∗ (t−1) ≤ aiX̄j̄i,t+

+ai cj̄i,t,Ti(t−1), Ti(t− 1) ≥ l
}

≤ l +
N∑

t=K+1

1

{
min

0<s<t

(
ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s

)
≤ max

l<si<t

(
aiX̄j̄i,(si)+

+ aicj̄i,t,si
)}

≤ l +
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1
{
ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX̄j̄i,(si) + aicj̄i,t,si

}
.
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A.1. Frequentist Approach

where we denoted with 1 {B} the indicator function of the event B.
If we consider:

ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX̄j̄i,(si) + aicj̄i,t,si ,

ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s − aiX̄j̄i,(si) − aicj̄i,t,si ≤ 0,

ai∗X̄j̄∗i∗,(s) − ai∗µi∗ + ai∗cj̄∗i∗,t,s − aiX̄i,t,(si) + aiµi + aici,t,si+

+ ai∗µi∗ − aiµi + aiX̄i,(si) − aiX̄j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0,

we have that that, if the previous inequality is satisfied, at least one of the
following inequalities is satisfied:

ai∗X̄j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄∗i∗,t,s (A.1)

aiX̄i,(si) ≥ aiµi + aici,t,si (A.2)
ai∗µi∗ − aiµi + aiX̄i,(si) − aiX̄j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0. (A.3)

We need to bound the probabilities that the each one of the previous events
occurs.

Probability of Event (A.1) By considering the fact that X̄j̄∗i∗,(s) +cj̄∗i∗,t,s
is an upper bound for µj̄i,t,s and thanks to the monotonicity assumption over
µi∗ , we can bound the probability of the events in Equation (A.1) as follows:

P
(
ai∗X̄j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄∗i∗,t,s

)
= P

(
X̄j̄∗i∗,(s) ≤ µi∗ − cj̄∗i∗,t,s

)
≤ P

(
X̄j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µi∗

)
≤ P

(
X̄j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µj̄i,t,s

)
≤ e−4 log t = t−4,

where the i term disappeared with the union bound over X̄ji∗,(s) such that
1 ≤ j ≤ i∗.

Probability of Event (A.2) By considering the Hoeffding bound we have
that the event Equation (A.2) is bounded by:

P(aiX̄i,(si) ≥ aiµi + aici,t,si)

= P
(
X̄i,(si) ≥ µi + ci,t,si

)
≤ e−4 log t−log i =

t−4

i
≤ t−4.

Probability of Event (A.3) Note that since the algorithm chooses the
tightest bound among the set X̄ji,(s) + cji,t,s with j ≤ i we have:

aiX̄j̄i,(si) + aicj̄i,t,si ≤ aiX̄i,(si) + aici,t,si ,

aiX̄j̄i,(si) − aiX̄i,(si) + aicj̄i,t,si ≤ aici,t,si ,

aiX̄i,(si) − aiX̄j̄i,(si) − aicj̄i,t,si ≥ −aici,t,si
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If we consider l =
⌈

2a2
i [4 log(t)+log(i)]

∆2
i

⌉
the event in Equation (A.3) is not

possible since:

0 ≥ ai∗µi∗ − aiµi + aiX̄i,(si) − aiX̄j̄i,(si) − aicj̄i,t,si︸ ︷︷ ︸
≥−aici,t,si

−aici,t,si (A.4)

≥ ∆i − 2ai

√
4 log(t) + log(i)

2l
> ∆i −∆i = 0, (A.5)

where we recall that ∆i := ai∗µi∗ − aiµi.
Thus, since log(t) ≤ log(N) and log(i) ≤ log(K), ∀i we have:

E[Ti(N)] ≤
⌈

2a2
i [4 log(N) + log(K)]

∆2
i

⌉
+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

2t−4

≤ 8a2
i log(N)

∆2
i

+
2a2

i log(K)

∆2
i

+ 1 +
π2

3

and the total regret becomes (since
∑K

i=1 E[Ti(N)] = N ):

R̄N = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi =
K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

8a2
i log(N)

∆i

+
∑

i|ai 6=ai∗

2a2
i log(K)

∆i

+

(
1 +

π2

3

) K∑
i=1

∆i,

which concludes the proof.
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A.1.2 Proof of Theorem 2

Theorem 2. If policy UCBV-M is run with ξ = 1.2 and c = 1 over a setting
with a monotonic set A, the pseudo-regret after N rounds is at most:

R̄N ≤
12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i

+
32

15

)
log(N)+

+
∑

i|ai 6=ai∗
∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,

where σ2
i := V ar(Xi,n), ∀i ∈ {1, . . . , K},∀ n ∈ {1, . . . , Ti(N)}.

Proof. In what follows we make use of the notation used in Theorem 1. By
following the proof of Theorem 3 in [36] we would like to bound the number
of times a suboptimal arm is played:

E[Ti(N)] ≤ li +
N∑

t=li+1

t−1∑
s=li

P
(
aiX̄j̄i,(s) + aicj̄i,t,s ≥ ai∗µi∗

)
︸ ︷︷ ︸

Ti1

+

+
N∑

t=li+1

t−1∑
s=1

P
(
ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ ai∗µi∗

)
︸ ︷︷ ︸

Ti2

,

where the inequality is due to Theorem 2 in [36]. Let us consider the two
contribution to the regret separately.

Bound over Ti1 The first contribution can be bounded as follows:

Ti1 =
t−1∑
s=li

P
(
aiX̄j̄i,(s) − aiX̄i,(s) + aicj̄i,t,s − ai∗µi∗ + aiµi+

+aici,t,s + aiX̄i,(s) − aiµi − aici,t,s ≥ 0
)

≤
t−1∑
s=li

P
(
aiX̄j̄i,(s) − aiX̄i,(s) + aicj̄i,t,s − ai∗µi∗ + aiµi + aici,t,s > 0

)
+

(A.6)

+
t−1∑
s=li

P(aiX̄i,(s) − aiµi − aici,t,s ≥ 0). (A.7)
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By considering s = li =
⌈
2a2

i

(
σ2
i

∆2
i

+ 2
∆i

)
max{c, 1}ξ(log(t) + log(i))

⌉
,

where σ2
i := V ar(Xit), ∀i ∈ {1, . . . , K}, t ∈ {1, . . . , N}, we have that:

0 < aiX̄j̄i,(s) − a2
i X̄i,(s) + aicj̄i,t,s︸ ︷︷ ︸
≤aici,t,s

−ai∗µi∗ + aiµi + aici,t,s

≤ 2aici,t,s −∆i ≤ ∆i −∆i = 0,

where we used the fact that, by the choice made by the proposed algorithm,
we have aiX̄j̄i,(s) +aicj̄i,t,s ≤ aiX̄i,(s) +aici,t,sfor each j ∈ {1, . . . , i}. Thus,
the contribution of the term in Equation (A.6) to the regret is null since the
aforementioned event is impossible.

The term in Equation (A.7) can be bounded by Theorem 1 in [36] in the
following way:

t−1∑
s=li

P(aiX̄i,(s) − aiµi − aici,t,s ≥ 0)

t−1∑
s=li

P(aiX̄i,(s) − aiµi − aici,t,s ≥ 0) ≤ β(t, c, i) ≤ β(t, c)

where β(t, c, i) := 3 min{c, 1} inf1<α≤3

[(
min

{
log(t)
log(α)

, t
})

(ti)−
ξ
α

]
and

β(t, c) := β(t, c, 1).
Bound over Ti2 By exploiting the monotonicity, i.e., since µi∗ ≤ µj̄∗i∗,t,s

and by considering Theorem 1 in [36] we have:

Ti2 =
t−1∑
s=1

P
(
ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ ai∗µi∗

)
=

t−1∑
s=1

P
(
X̄j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µi∗

)
≤

t−1∑
s=1

P
(
X̄j̄∗i∗,(s) + cj̄∗i∗,t,s ≤ µj̄∗i∗

)
≤ β(t, c),

where for the monotonicity µj̄∗i∗ ≥ µi∗ and we used a union bound over all
the considered bounds (j ∈ {1, . . . , i}).

Regret R̄N: Summing up, since log(t) ≤ log(N) and log(i) ≤ log(K),
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we have:

R̄N =
K∑
i=1

E[Ti(N)]∆i ≤
∑

i|ai 6=ai∗
(li +

N∑
t=li+1

Ti1 + Ti2)

≤
∑

i|ai 6=ai∗

[
1 + 2a2

i

(
σ2
i

∆2
i

+
2

∆i

)
max{c, 1}ξ(log(t) + log(i))+

+ 2
N∑

t=li+1

β(t, c)

]
∆i

≤
∑

i|ai 6=ai∗

[
12

5
a2
i

(
σ2
i

∆i

+ 2

)
log(N) + 4c′ log(N)

]
+

+
∑

i|ai 6=ai∗
∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]

≤ 12

5

∑
i|ai 6=ai∗

a2
i

(
σ2
i

∆i

+
32

15

)
log(N)+

+
∑

i|ai 6=ai∗
∆i

[
1 + a2

i

(
σ2
i

∆2
i

+
2

∆i

)
log(K)

]
,

where by choosing ξ = 1.2 and c = 1 we have
∑N

t=li+1 β(t, c) ≤ c′ 2 log(N)
∆k

with c′ ≤ 0.08 (see proof of Theorem 4 in [36] for details). This concludes
the proof.
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A.1.3 Proof of Theorem 4

Let us recall that thanks to the Chernoff’s theorem we have:

Theorem 3 (Theorem 4 in [78], Lower tail). Given a set of Ti(t − 1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)}
such that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(X̄i,t + ε ≤ µi) ≤ e
−Ti(t−1)ε2

2µi .

and also:

Theorem 13 (Theorem 4 in [78], Upper tail). Given a set of Ti(t− 1) inde-
pendent and identically distributed random variables {Xi,1, . . . , Xi,Ti(t−1)}
such that Xi,s ∼ Be(µi), for any ε > 0 we have:

P(X̄i,t − ε ≥ µi) ≤ e
−Ti(t−1)ε2

2µi+
ε
3 .

Theorem 4. If policy UCB-L is run over a stationary MAB setting with a set
of arms A in which each arm ai ∈ A has outcome Xi,t such that E[Xi,t] =
µi ≤ µmax ≤ 1

2
for each t ∈ {1, . . . , N}, the pseudo-regret after N rounds

is at most:

R̄N ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Proof. In what follows we make use of the notation used in Theorem 1. Let
us recall that µmax ≥ µi, ∀i ∈ {1, . . . , K}. By defining:

εi,t,Ti(t−1) :=

√
8µmax log(t)

Ti(t− 1)
,

we have that, similarly to what has been derived in Theorem 1, for each
l > 0:

Ti(N) ≤ l +
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1{ai∗X̄i∗,(s) + ai∗εi∗,t,s ≤ aiX̄i,(si) + aiεi,t,si}.

124



A.1. Frequentist Approach

If we consider the event in the previous inequality, we have:

ai∗X̄i∗,(s) + ai∗εi∗,t,s ≤ aiX̄i,(si) + aiεi,t,si
ai∗X̄i∗,(s) − ai∗µi∗ + ai∗εi∗,t,s + ai∗µi∗ ≤ aiX̄i,(si) − aiµi − aiεi,t,si+

+ aiµi + 2aiεi,t,si
ai∗X̄i∗,(s) − ai∗µi∗ + ai∗εi∗,t,s − aiX̄i,(si) + aiµi + aiεi,t,si + ai∗µi∗−
− aiµi − 2aiεi,t,si ≤ 0,

we have that it implies that at least one of the following inequalities is satis-
fied:

ai∗X̄i∗,(s) ≤ ai∗µi∗ − ai∗εi∗,t,s (A.8)
aiX̄i,(si) ≥ aiµi + aiεi,t,si (A.9)
ai∗µi∗ − aiµi < 2aiεi,t,si . (A.10)

Let us focus on the event in Equation (A.8). Thanks to Theorem 3 we are
able to bound the probability of this event:

P(ai∗X̄i∗,(s) ≤ ai∗µi∗ − ai∗εi∗,t,s) = P
(
X̄i∗,(s) ≤ µi∗ − εi∗,t,s

)
≤ e−

s(εi∗,t,s)2

2µ∗ ≤ e−
s(εi∗,t,s)2

2µmax = e−4 log t = t−4.

By relying on the upper tail of the Chernoff’s bound, as described in Theo-
rem 13 (cited in this appendix) we can bound the probability of the event in
Equation (A.9):

P(aiX̄i,(si) ≥ aiµi + aiεi,t,si) = P
(
X̄i,(si) ≥ µi + εi,t,si

)
≤ exp

{
− si(εi,t,si)

2

2µi +
εi,t,si

3

}
≤ e

−
si(εi,t,si

)2

7
3µmax ≤ t−

24
7 ,

where we consider εi,t,si ≤ µmax and µi ≤ µmax ≤ 1
2
. At last, if we focus

on the event in Equation (A.10) and we consider l =
⌈

32µmaxa2
i log(t)

∆2
i

⌉
, where

∆i = ai∗µi∗ − aiµi, the event in Equation (A.3) is not possible since:

0 ≥ ai∗µi∗ − aiµi − 2aiεi,t,si
≥︸︷︷︸
si≥l

ai∗µi∗ − aiµi − 2aiεi,t,l ≥ ai∗µi∗ − aiµi − ai∗µi∗ − aiµi = 0.
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Finally we have:

E[Ti(N)] ≤
⌈

32µmaxa
2
i log(t)

∆2
i

⌉
+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

(t−4 + t−
24
7 )

≤ 32µmaxa
2
i log(N)

∆2
i

+ 1 +
π2

6
+ ζ

(
10

7

)
where ζ(·) is the Riemann zeta function. The total regret becomes (since∑K

i=1 E[Ti(N)] = N ):

R̄N = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi =
K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

which concludes the proof.

126



A.1. Frequentist Approach

A.1.4 Proof of Theorem 5

Theorem 5. If policy UCB-LM is run over a stationary MAB setting with
a monotonic set A in which each arm ai ∈ A has outcome Xi,t such that
E[Xi,t] = µi ≤ µmax ≤ 1

2
for each t, the pseudo-regret after N rounds is at

most:

R̄N ≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+
∑

i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i

+

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

where ζ(·) is the Riemann zeta function.

Proof. The proof is a straightforward combination of the arguments used for
the UCB1-M and UCB-L ones. Consider the round of the learning process
at which a specific arm ai has been selected for s rounds and define:

• j̄(i, t) := j̄ (with abuse of notation) as the index j ∈ {1, . . . , i} min-

imizing the quantity x̄ji,t +
√

2µmax[4 log(t)+log(i)]
Tji(t−1)

, i.e., the upper bound
of arm ai;

• j̄∗ := j̄(i∗, t) as the index j ∈ {1, . . . , i∗} minimizing the quantity

x̄ji∗,t +
√

2µmax[4 log(t)+log(i∗)]
Tji∗ (t−1)

, i.e., the upper bound of arm ai∗;

• X̄i,(s) is the unbiased estimate of µi in the case we collected a total of s
samples from arm ai;

• X̄j̄i,(s) is the unbiased estimate of µj̄i,t,s = E
[
X̄j̄i,(s)

]
, in the case we

collected a total of s samples from arm ai (and thus we have s′ ≥ s
samples to estimate µj̄i,s);

• ci,t,s :=
√

2µmax[4 log(t)+log(i)]
s

as the Hoeffding bound with confidence
t−4

i
for X̄i,(s) after t rounds;

• cji,t,s :=
√

2µmax[4 log(t)+log(i)]
s′

as the Hoeffding bound with confidence
t−4

i
for X̄ji,(s) after t rounds, in the case arm ai has been pulled a total

of s times and the arms {aj, . . . , ai} have been chosen in total s′ > s
times.
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We have that, for each l > 0:

Ti(N) ≤ l+
∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1
{
ai∗X̄j̄∗i∗,(s) + ai∗cj̄∗i∗,t,s ≤ aiX̄j̄i,(si) + aicj̄i,t,s

}
and consequently we only need to bound the probability of these three events:

ai∗X̄j̄∗i∗,(s) ≤ ai∗µi∗ − ai∗cj̄
∗i∗,t,s (A.11)

aiX̄i,(si) ≥ aiµi + aici,t,si (A.12)
ai∗µi∗ − aiµi + aiX̄i,(si) − aiX̄j̄i,(si) − aicj̄i,t,si − aici,t,si ≤ 0. (A.13)

Similarly to what has been done for Theorem 1, the probability of the
event in Equation (A.11) can be bounded by t−4 by using the monotonicity
assumption and Theorem 3, the one corresponding to the event in Equa-
tion (A.12) is bounded by t

24
7 by using the Chernoff theorem (Theorem 13,

which considers the upper tail) and the event in Equation (A.13) is not pos-
sible if we choose l =

⌈
8a2
iµmax[4 log(t)+log(i)]

∆2
i

⌉
. Thus, by considering that

log(t) ≤ log(N) and log(i) ≤ log(K), ∀i, we have:

R̄N = ai∗µi∗N −
K∑
i=1

E[Ti(N)]aiµi

=
K∑
i=1

(ai∗µi∗ − aiµi)E[Ti(N)]

≤
∑

i|ai 6=ai∗

32µmaxa
2
i log(N)

∆i

+
∑

i|ai 6=ai∗

8µmaxa
2
i log(K)

∆i

+

+

[
1 +

π2

6
+ ζ

(
10

7

)] K∑
i=1

∆i,

which concludes the proof.
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A.1.5 Proof of Theorem 7

Theorem 7. If policy SW-UCB-M is run over a non-stationary MAB setting
S(B), for any τ ∈ N and ξ > 1

2
, the pseudo-regret after N rounds is at most:

R̄N ≤
K∑
i=1

[
N

τ

4a2
i ξ[log(i) + log(τ)]

∆i

+ aiΥNτ+

+
2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

]
,

where ΥN is the number of breakpoints before N and

∆i := min
φ∈{1,...,ΥN}

(
ai∗φµi∗φ,φ − aiµi,φ

)
1{i 6= i∗φ} ∀i ∈ {1, . . . , K},

denotes the minimum, over all the phases Φφ in which the arm ai is not
optimal, of the difference of the expected reward ai∗φµi∗φ,φ of the best arm ai∗φ
and the expected reward aiµi,φ of the arm ai.

Proof. Consider the phases φ ∈ {1, . . . ,ΥN} introduced in Section 5.1. Let
us define:

Ai,φ(τ) =
4a2

i ξ[log(i) + log(τ)]

∆2
i,φ

,

where ∆i,φ = ai∗φµi∗φ,φ − aiµi,φ, ∀i ∈ {1, . . . , K} \ {i∗φ}.
Let us denote with Ti(Φ

′
φ) the number of times an arm ai, with i ∈

{1, . . . , K} \ {i∗φ}, has been played when it was not the best arm during
the rounds t ∈ Φ′φ := {t|bφ−1 + τ ≤ t < bφ}. We consider τ < Nφ, i.e., τ is
smaller than the number of rounds in each phase.1

We can bound the number of times we are pulling an arm as:

Ti(N) =

ΥN∑
φ=1

Ti(Φφ) ≤
ΥN∑
φ=1

τ + Ti(Φ
′
φ)

where we assume that τ > K.
Let us focus on a single phase Φφ. Consider the number of times a sub-

1We make this assumption for ease of notation. In the case ∃τ > Nφ, it is straightforward to extend the
analysis.
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optimal arm ai 6= ai∗φ has been pulled, we have:

Ti(Φ
′
φ) =

∑
t∈Φ′φ

1{it = i}

≤
∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) < Ai,φ(τ)}+ (A.14)

+
∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)} (A.15)

where it is the index of the arm ait selected at round t by policy SW-UCB-M
with a window of size τ .

By using Lemma 25 in [77], we can bound the first term of Equation (A.15),
we have:

Ti(Φ
′
φ) ≤

⌈ |Φ′φ|
τ

⌉
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}

≤
⌈
Nφ − τ
τ

⌉
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}

≤ Nφ

τ
Ai,φ(τ) +

∑
t∈Φ′φ

1{it = i, Ti(t− 1, τ) ≥ Ai,φ(τ)}. (A.16)

Let us focus on the second term of the last expression. The event it = i
occurs when:

ai∗φX̄j̄∗i∗φ,t,τ
+ ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ ≤ aiX̄j̄i,t,τ + aiεi,t,Tj̄i(t−1),τ

ai∗φX̄j̄∗i∗φ,t,τ
− ai∗φµi∗φ,φ + ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ − aiX̄i,t,τ + aiµi,φ + aiεi,t,Ti(t−1),τ+

+ ai∗φµi∗φ,φ − aiµi,φ + aiX̄i,t,τ − aiX̄j̄i,t,τ − aiεi,t,Tij̄i(t−1),τ − aiεi,t,Ti(t−1),τ

where εi,t,Tji(t−1),τ :=

√
ξ[log(i) + log(min{t, τ})]

Tji(t− 1)
=

√
ξ[log(i) + log(τ)]

Tji(t− 1)
,

since t ∈ Φ′φ ⇒ t > τ and it is contained in the union of the following three
events:

ai∗φX̄j̄∗i∗φ,t,τ
≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ ; (A.17)

aiX̄i,t,τ ≥ aiµi,φ + aiεi,t,Ti(t−1),τ ; (A.18)
ai∗φµi∗φ,φ − aiµi,φ + aiX̄i,t,τ − aiX̄j̄i,t,τ − aiεi,t,Tj̄i(t−1),τ − aiεi,t,Ti(t−1),τ ≤ 0.

(A.19)
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Let us define δ = εi,t,Ti(t−1),τ

√
Ti(t− 1, τ) =

√
ξ[log(i) + log(τ)] and

consider the probability of the event in Equation (A.18), we have:

P

(
aiX̄i,t,τ ≥ aiµi,φ + ai

δ√
Ti(t− 1, τ)

)

= P

(
X̄i,t,τ − µi,φ ≥

δ√
Ti(t− 1, τ)

)

≤ P

(
X̄i,t,τ − µi,φ ≥

δ√
Ti(t− 1, τ)

)

= P

(
Ti(t− 1, τ)

(
X̄i,t,τ − µi,φ

)√
Ti(t− 1, τ)

≥ δ

)
.

By applying Corollary 21 in [77] we have that for all η > 0:

P

(
Ti(t− 1, τ)

(
X̄i,t,τ − µi,φ

)√
Ti(t− 1, τ)

≥ δ

)

≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2δ2

(
1− η2

16

))
≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2ξ[log(i) + log(τ)]

(
1− η2

16

))
=

⌈
log(τ)

log(1 + η)

⌉
(iτ)

−2ξ

(
1− η2

16

)

where we consider the events of choosing arms ai as the sequence of previs-
ible variables.

Similarly, by exploiting the monotonicity property, we have that for each
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j ≤ i∗φ and by defining δ = εi,t,Tji∗
φ

(t−1),τ

√
Tji∗φ(t− 1, τ):

P
(
ai∗φX̄ji∗φ,t,τ

≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
≤ P

(
ai∗φX̄ji∗φ,t,τ

≤ ai∗φµji∗φ,φ − ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
= P

(
ai∗φX̄ji∗φ,t,τ

≥ ai∗φµji∗φ,φ + ai∗φεi∗φ,t,Tji∗ (t−1),τ

)
= P

(
X̄ji∗φ,t,τ

− µji∗φ,φ ≥ εi∗φ,t,Tji∗ (t−1),τ

)
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2δ2

(
1− η2

16

))
≤
⌈

log(τ)

log(1 + η)

⌉
exp

(
−2ξ[log(i) + log(τ)]

(
1− η2

16

))
=

⌈
log(τ)

log(1 + η)

⌉
(iτ)

−2ξ

(
1− η2

16

)

=

⌈
log(τ)

log(1 + η)

⌉
(τ)
−2ξ

(
1− η2

16

)
,

where first equality sign is due to the symmetry of the Bernoulli distribution,
the event of choosing an arm among the set {aj, . . . ai∗φ} has been chosen as
the sequence of previsible Bernoulli variables.

Thus, the probability of the event in Equation (A.17) can be bounded by:

P
(
ai∗φX̄j̄∗i∗φ,t,τ

≤ ai∗φµi∗φ,φ − ai∗φεi∗φ,t,Tj̄∗i∗ (t−1),τ

)
=

⌈
log(τ)

log(1 + η)

⌉
(τ)
−2ξ

(
1− η2

16

)
,

by resorting to an union bound over all j ≤ i.
Finally, consider the event in Equation (A.19) and that Ti(t − 1, τ) ≥

Ai,φ(τ):

0 ≥ ∆i,φ + aiX̄i,t,τ − aiX̄j̄i,t,τ − aiεi,t,Tj̄i(t−1),τ︸ ︷︷ ︸
≥−aiεi,t,Ti(t−1),τ

−aiεi,t,Ti(t−1),τ

≥ ∆i,φ − 2aiεi,t,Ti(t−1),τ > 0;

where the inequality is given from the fact that the SW-UCB-M algorithm
chooses the tightest bound among the aiX̄ji,t,τ +aiεi,t,Tji(t−1),τ with 1 ≤ j ≤
i. Since the last expression is a contradiction, the considered event does not
occur.
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By choosing η = 4
√

1− 1
2ξ

we have 2ξ
(

1− η2

16

)
= 1 and we get:

E[Ti(Φ
′
φ)] ≤ Nφ

τ
Ai,φ(τ) + 2

∑
t∈Φ′φ

⌈
log(τ)

log(1 + η)

⌉
τ

=
Nφ

τ
Ai,φ(τ) +

2|Φ′φ|
τ

log(τ)

log(1 + η)

≤ Nφ

τ

4a2
i ξ[log(i) + log(τ)]

∆2
i,φ

+
2Nφ

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)


The total regret becomes:

R̄N =

ΥN∑
φ=1

(
ai∗,φµi∗,φNφ −

K∑
i=1

aiµi,φE[Ti(Φφ)]

)

=

ΥN∑
φ=1

(
K∑
i=1

(ai∗,φµi∗,φ − aiµi,φ)E[Ti(Φφ)]

)

=
K∑
i=1

(
ΥN∑
φ=1

(ai∗,φµi∗,φ − aiµi,φ)E[Ti(Φφ)]

)

≤
K∑
i=1

(
ΥN∑
φ=1

∆i,φE[Ti(Φφ)]

)

≤
K∑
i=1

[
ΥN∑
φ=1

∆i,φ (τ + E[Ti(Φφ)])

]

≤
K∑
i=1

[
aiΥNτ +

ΥN∑
φ=1

∆i,φ

(
Nφ

τ

4a2
i ξ[log(i) + log(τ)]

∆2
i,φ

+

+
2Nφ

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

)]
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Considering ∆i as defined in in the theorem statement, we obtain:

R̄N ≤
K∑
i=1

[
N

τ

4a2
i ξ[log(i) + log(τ)]

∆i

+

+ aiΥNτ +
2N

τ

 log(τ)

log
(

1 + 4
√

1− 1
2ξ

)

]
,

which concludes the proof.
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A.2 Bayesian Approach

A.2.1 Bayes update rule

Here we report the derivation of the update rule for the Bayesian approach,
presented in Equation (6.1), and the Sequential Monte Carlo (SMC) scheme,
presented in Equation (6.2).

Assume to have a monotonic set of arms A = {a1, . . . , aK} as defined
in Section 5.1. Given a generic random variable Mi whose distribution is the
prior µi for all i ∈ {1, . . . , K} and a policy U(ht) to select arm ait , we have
a realization xit,t of Xit at time t. If we consider the generic i-th arm, we
have different Bayesian updates depending on the fact that it = i, it < i or
it > i. In fact, if it = i, we are able to update the prior directly, i.e.,

Pt(µi) := Pt(µi|xit,t) ∝ P(xit,t|µi)Pt−1(µi),

where P(xit,t|µit) the the loglikelihood of the realization xit,t. If it 6= i we
have:

Pt(µi|xit,t) ∝ P(xit,t|µi)Pt−1(µi) =

∫
µj∈[0,1]

P(xit,t, µj|µi)Pt−1(µi) dµj

=

∫
µj∈[0,1]

Pt−1(xit,t, µj, µi) dµj =

=

∫
µj∈[0,1]

Pt−1(xit,t, µi|µj)Pt−1(Mit = µj) dµj =

=

∫
µj∈[0,1]

P(xit,t|µj)Pt−1(µi|µj)Pt−1(Mit = µj) dµj =

=

∫
µj∈[0,1]

P(xit,t|µj)
Pt−1(µj|µi)Pt−1(µi)

Pt−1(Mit = µj)
Pt−1(Mit = µj) dµj =

= Pt−1(µi)

∫
µj∈[0,1]

P(xit,t|µj)Pt−1(µj|µi) dµj (A.20)

where we assume conditional independence of Xit⊥µi|µj for every i, j ∈
{1, . . . , K} with i 6= j.

Since we have the assumption monotony on A, if it > i⇒ µit ≤ µi thus:

Pt−1(µj|µi) =


0 µj > µi

Pt−1(Mit = µj)∫ µi
0

Pt−1(Mit = x)dx
µj ≤ µi

(A.21)
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By substituting Equation (A.21) in Equation (A.20), we obtain:

Pt−1(µi|xj) ∝ Pt−1(µi)

∫
µj∈[0,1]

P(xit,t|µj)Pt−1(µj|µi) dµj =

= Pt−1(µi)

∫ µi

0

P(xit,t|µj)
Pt−1(Mit = µj)∫ µi

0
Pt−1(Mit = x)dx

dµj =

= Pt−1(µi)

∫ µi
0

P(xit,t|µj)Pt−1(Mit = µj)dµj∫ µi
0

Pt−1(Mit = x)dx

In the case it < i⇒ µit ≥ µi we have that:

Pt−1(µj|µi) =


Pt−1(Mit = µj)∫ 1

µi
Pt−1(Mit = x)dx

µj ≥ µi

0 µj < µi

(A.22)

leading to:

Pt−1(µi|xj) ∝ Pt−1(µi)

∫
µj∈[0,1]

Pt−1(Mit = µj)Pt−1(µj|µi) dµj =

= Pi,t−1(µi)

∫ 1

µi

P(xit,t|µj)
Pt−1(Mit = µj)∫ 1

µi
Pt−1(Mit = x)dx

dµj =

= Pi,t−1(µi)

∫ 1

µi
P(xit,t|µj)Pt−1(Mit = µj) dµj∫ 1

µi
Pt−1(Mit = x)dx

.

Summarizing we have:

Pt(µi) ∝



Pt−1(µi)Pt−1(xit,t|µi) it = i

Pt−1(µi)

∫ µi
0

P(xit,t|µj)Pt−1(Mit = µj)dµj∫ µi
0

Pt− 1(mit = x)dx
it > i

Pt−1(µi)

∫ 1

µi
P(xit,t|µj)Pt−1(Mit = µj) dµj∫ 1

µi
Pt−1(Mit = x)dx

it < i

(A.23)

This scheme does not provide a straightforward closed-form solution in its
general formulation. In this work, we consider a non-parametric approxima-
tion of the prior by resorting to SMC techniques [82]. Each prior distribution
is represented by a finite number Np ∈ N of particles Pi = {pi1, . . . piNp}
with pih ∈ [0, 1] for every h ∈ {1, . . . , Np} and their corresponding weights
Wi = {wi1, . . . , wiNp} with wih ∈ R+ for every h ∈ {1, . . . , Np}. In this
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case, by also considering Xi ∼ Be(µi) which implies that P(xit,t|µj) =
µ
xit,t
j (1− µj)1−xit,t , the update scheme in (A.23) becomes:

wih ←



wihp
xit,t
it,h

(1− pit,h)1−xit,t it = i

wih

∑
h|pit,h≤pi,h

p
xit,t
it,h

(1− pit,h)1−xit,twit,h∑
h|pit,h≤pi,h

wit,h
it > i

wih

∑
h|pit,h≥pi,h

p
xit,t
it,h

(1− pit,h)1−xit,twit,h∑
h|pit,h≥pi,h

wit,h
it < i

(A.24)

137



Appendix A. Proofs of Theorems

A.2.2 Preliminaries for Theorem 8, Theorem 9 and Theorem 10

Before presenting the proofs of the Theorem 8, Theorem 9 and Theorem 10,
we provide a technical lemma and some results which will be used in what
follows.

Here we recall the link shown in [83] (and cited in [10]) between Beta
and Bernoulli distributions, usually addressed in the literature as the “Beta-
Binomial trick”.

Lemma 2 ([83]). Let us denote with F Beta
a,b the Cumulative Distribution Func-

tion (CDF) of a beta distribution Beta(a, b) with parameters a and b and with
F B
n,µ the CDF of a random variable with binomial distribution Bi(n, µ) with

parameters n and µ. It is true that:

F Beta
a,b (y) = 1− F B

a+b−1,y(a− 1),

Lemma 1. Consider a random variable B with Beta distribution Beta(S +

1, T − S + 1), where S :=
∑T

s=1Xs is the sum of T ∈ N Bernoulli trials
Xs ∼ Be(µ) with same parameter µ ∈ [0, 1]. Consider a finite integer
τ ∈ N, τ > T , a parameter ε > 1

2
and:

uT :=
S

T
+

√
ε log τ

T
,

qT := Q

(
1− 1

τ

)
,

where Q(α) is the α-quantile of the random variable B. We have that qT ≤
uT .

This lemma is used in what follows to bound the number of times a
Thompson sample θi,t is drawn from a high quantile of the Beta distribu-
tion by using a UCB-like bound uT .

Proof. We here considered the inequalities provided in [74] to bound the
quantile of a Beta distribution with the KL-divergence and elaborate over
them. Consider the event that the considered variable B ∼ Beta(S + 1, T −
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S + 1) is greater than the considered UCB-like bound uT . We have:

P(B ≥ uT ) = 1− F Beta
S+1,T−S+1(uT ) (A.25)

= F B
T+1,uT

(S) (A.26)

= F B
T+1,1−uT (T − S + 1) = P(BiT+1,1−uT > T − S + 1)

(A.27)

≤ exp

{
−T ·KL

(
T − S + 1

T + 1
, 1− uT

)}
(A.28)

≤ exp

{
−2T

(
T − S + 1

T + 1
− 1 + uT

)2
}

(A.29)

= exp

−2T

(
T − S + 1

T + 1
− 1 +

S

T
+

√
ε log τ

T

)2


(A.30)

≤ exp

{
−2T

ε log τ

T

}
=

1

τ 2ε
, (A.31)

where Bin,µ is a random variable with binomial distribution Bi(n, µ) with
parameters n and µ, KL(·, ·) is the Kullback-Leibler divergence, the equal-
ities in Equation (A.25) follow from the Lemma 2, Equation (A.27) follow
from the properties of the binomial distribution, Equation (A.28) follows
from the Sanov inequality, Equation (A.29) follows from the Pinsker in-
equality.

Considering the quantile Q
(
1− 1

τ

)
, we have:

P (B ≥ qT ) =
1

τ
.

Since for ε ≥ 1
2

we have 1
τ
≥ 1

τ2ε , it follows that qT ≤ uT .

Here we recall the lemma that has been proven independently in the ap-
pendices of [84] (Lemma 1) and [37] (Lemma 4.1).

Lemma 3 ([84, 37]). Let A ⊂ N and a(t) =
∑t−1

t′=t−τ 1{t′ ∈ A}, then for
any positive integer τ and any s ∈ N we have:

N∑
t=1

E [1{t ∈ A, a(t) ≤ s}] ≤ s

⌈
N

τ

⌉
.
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A.2.3 Proof of Theorem 8

Theorem 8. If policy SW-TS is run over an AC-MAB setting with Xi,t ∼
Be(µi,t), for any τ ∈ N, the pseudo-regret after N rounds is at most:

R̄N(U) ≤
K∑
i=1

[
τΥNα+

+

ΥN∑
φ=1

∆i,φ
Nφ

τ

(
56 log τ

∆2
i,φ

+ log τ + 4 +
22

log τ
+

1

τ
1
2

)]
,

where Υ and α are defined in Assumption 1 and ∆i,φ := µi∗,φ − µi,φ is
the difference between the expected reward µi∗,φ of the best arm ai∗φ and the
expected reward µi,φ of arm ai. By defining:

∆i := min
φ∈{1,...,ΥN}

∆i,φ1{i 6= i∗φ},

for all i ∈ {1, . . . , K}, i.e., the minimum over all the phases Φφ of the
difference of the expected rewards ∆i,φ, the pseudo-regret becomes:

R̄N(U) ≤ τKΥNα +
N

τ

K∑
i=1

(
56 log τ

∆2
i

+ log τ + 4 +
22

log τ
+

1

τ
1
2

)
.

Proof. In the proof, we follow the strategy presented in [74] to bound the
regret of the classical Thompson Sampling algorithm. We will underline the
critical points where we needed to deviate from the original proof to deal
with the AC-MAB setting.

Let us define the effective phase Φ′φ := {t ∈ N s.t. bφ−1 + τ ≤ t < bφ}
and denote with Ti(Φ′φ) :=

∑
t∈Φ′φ

1{it = i, i 6= i∗φ}, i.e., the number of
times a suboptimal arm ai 6= ai∗φ has been played in the effective phase Φ′φ.
During the generic effective phase Φ′φ we are considering a stationary MAB
setting. Moreover, by the definition of effective phase Φ′φ we have:

E [Ti(Φφ)] ≤ τ + E
[
Ti(Φ

′
φ)
]
, (A.32)

where we recall that Ti(Φφ) is the number of times the arm ai has been pulled
during phase Φφ.

At first, we bound the expected number of times we selected a subopti-
mal arm in a generic effective phase Φ′φ. We consider two events to bound
E[Ti(Φ

′
φ)]: in the first one the optimal arm ai∗φ is underestimated and in the

140



A.2. Bayesian Approach

second one the optimal arm ai∗φ is not underestimated but the suboptimal arm
ai is played. Hence, we have:

E
[
Ti(Φ

′
φ)
]

=
∑
t∈Φ′φ

E [1{it = i}] (A.33)

=
∑
t∈Φ′φ

[
P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, it = i

)
+

+ P

(
θi∗φ,t > µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, it = i

)]
(A.34)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
+

+
∑
t∈Φ′φ

P

(
θi,t > µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, it = i

)
(A.35)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
+

+
∑
t∈Φ′φ

P

(
θi,t > µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, it = i, θi,t < qTi,t,τ

)
+

+
∑
t∈Φ′φ

P
(
θi,t ≥ qTi,t,τ

)
(A.36)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
︸ ︷︷ ︸

RA

+

+
∑
t∈Φ′φ

P

(
uTi,t,τ > µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, it = i

)
︸ ︷︷ ︸

RB

+

+
∑
t∈Φ′φ

P
(
θi,t ≥ qTi,t,τ

)
︸ ︷︷ ︸

RC

, (A.37)

where in bounding Equation (A.34) we used the fact that the Thompson sam-
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ple θit,t = θi,t chosen for the t turn is larger than the one of the optimal arm
θi∗φ,t, i.e., θi,t ≥ θi∗φ,t, qTi,t,τ is the quantile of order 1− 1

τ
of the posterior Beta

distribution of the expected value µi,t of the arm ai and we used Lemma 1
to bound the second term in Equation (A.36), by considering the rewards
gained by arm ai, T = Ti,t,τ and ε = 2.

Let us focus onRA. While in [74] the probability that the optimal arm has
been pulled in the past less than tb times (by properly defining the constant
b ∈ (0, 1)) was bounded by a constant (from Proposition 1 in [74]), in this
case we cannot resort to that result, since the amount of samples considered
in the posterior distribution πi,t of the expected reward µi,t does not increase
indefinitely over time due to the SW approach (we use at most τ samples).
Thus, we bound the event that an arm is pulled less than n̄A times by consid-
ering Lemma 3 with A = {t|it = i}, t ∈ Φ′φ and, consequently a(t) = Ti,t,τ .
We have:∑

t∈Φ′φ

E [1{it = i, Ti,t,τ ≤ n̄A}] ≤ n̄A

⌈
Nφ − τ
τ

⌉
≤ n̄A

Nφ

τ
. (A.38)

where |Φ′φ| = Nφ − τ ≤ Nφ, which holds for all i ∈ {1, . . . , K}. Thus, by

choosing n̄A =
⌈

22
log τ

⌉
, we have:

RA =
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
(A.39)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+

+
∑
t∈Φ′φ

P
(
Ti∗φ,t,τ ≤ n̄A

)
(A.40)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+

+
∑
t∈Φ′φ

E
[
1

{
Ti∗φ,t,τ ≤ n̄A

}]
(A.41)

≤
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
+ n̄A

Nφ

τ
, (A.42)

where we considered Lemma 3 to bound Equation (A.42).
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Let us define:

• {Ut}t∈Φ′φ
a sequence of i.i.d. uniform random variables over Ω = [0, 1];

• Si,t,τ :=
∑t

h=t−τ+1 Xi,h1{ih = i} the sum of the rewards received by
the arm ai in the last τ rounds (with abuse of notation);

• Σi,t,τ,s :=
∑t−τ+s

s=t−τ+1Xi,h1{ih = i} the sum of the first s rewards over
the last τ rounds of arm ai.

Recalling that Ti,t,τ :=
∑t

h=max{t−τ+1,1} 1{ih = i}, we have:

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ
, Ti∗φ,t,τ > n̄A

)
(A.43)

= P

(
Ut ≤ F Beta

Si∗
φ
,t,τ+1,Ti∗

φ
,t,τ−Si∗

φ
,t,τ+1

(
µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
, Ti∗φ,t,τ > n̄A

)
(A.44)

= P

(
Ut ≤ 1− F B

Ti∗
φ
,t,τ+1,µi∗

φ
,t−
√

6 log τ
Ti∗
φ
,t,τ

(Si∗φ,t,τ ), Ti∗φ,t,τ > n̄A

)
(A.45)

= P

(
F B
Ti∗
φ
,t,τ+1,µi∗

φ
,t−
√

6 log τ
Ti∗
φ
,t,τ

(Si∗φ,t,τ ) ≤ Ut, Ti∗φ,t,τ > n̄A

)
(A.46)

≤ P
(
∃s ∈ {n̄A, . . . , τ}F B

s+1,µi∗
φ
,t−
√

6 log τ
s

(Σi∗φ,t,τ,s
) ≤ Ut

)
(A.47)

≤
τ∑

s=n̄A

P

(
Σi∗φ,t,τ,s

≤ (F B)−1

s+1,µi∗
φ
,t−
√

6 log τ
s

(Ut)

)
, (A.48)

where to derive Equation (A.45) we considered Lemma 2, to derive Equa-
tion (A.46) we used the fact that Ut ∼ 1− Ut and to bound Equation (A.48)
we considered a union bound.

Note that:

(F B)−1

s+1,µi∗
φ
,t−
√

6 log τ
s

(Ut) ∼ Bi

(
s+ 1, µi∗φ,t −

√
6 log τ

s

)
(A.49)

and is independent from Σi∗φ,t,τ,s
∼ Bi(s, µi∗φ,t). Similarly to what has been

considered in [10], we define, for a chosen s, two i.i.d. sequences of Bernoulli

143



Appendix A. Proofs of Theorems

random variables {X1,l}sl=1 and {X2,l}sl=1 of size s and s+ 1, respectively:

X1,l ∼ Be

(
µi∗φ,t −

√
6 log τ

s

)
, (A.50)

X2,l ∼ Be
(
µi∗φ,t

)
, (A.51)

whose summations correspond to the r.h.s. and l.h.s. of the inequality present
in the probability in Equation (A.48), respectively. Let {Zl}sl=1 be another
i.i.d. sequence of random variables, with Zl := X2,l − X1,l and E[Zl] =√

6 log τ
s

.2 We get:

P

(
Σi∗φ,t,τ,s

≤ (F B)−1

s+1,µi∗
φ
,t−
√

6 log τ
s

(Ut)

)
(A.52)

= P

(
s∑
l=1

X2,l ≤
s+1∑
l=1

X1,l

)
(A.53)

= P

(
s∑
l=1

Zl ≤ X1,s+1

)
(A.54)

≤ P

(
s∑
l=1

Zl ≤ 1

)
(A.55)

= P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

s∑
l=1

√
6 log τ

s
+ 1

)
(A.56)

= P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

(√
6s log τ − 1

))
(A.57)

≤ P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

√
5s log τ

)
, (A.58)

where to bound Equation (A.58) we used the fact that s > n̄A ⇒
√

6s log τ−
1 >

√
5s log τ . We apply the Hoeffding’s inequality [73] to the bounded

martingale difference sequence {Zl}sl=1 (having support of measure 2) and

2We here assume that µi∗
φ
,t −

√
6 log τ
s
≥ 0, i.e., that the sequence {X1,l}sl=1 is well defined. In the case

this condition does not hold we have RA = 0, since the event that the Thompson sample θi∗t ,t < 0 has zero
probability.
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we get:

τ∑
s=n̄A

P

(
Σi∗φ,t,τ,s

≤ (F B)−1

s+1,µi∗
φ
,t−
√

6 log τ
s

(Ut)

)
(A.59)

≤
τ∑

s=n̄A

exp

(
−2s(

√
5s log τ)2∑s
h=1 22

)
(A.60)

=
τ∑

s=n̄A

exp

(
−(
√

5s log τ)2

2s

)
(A.61)

=
τ∑

s=n̄A

e−
5
2

log τ (A.62)

≤
τ∑
s=1

1

τ
5
2

=
1

τ
3
2

. (A.63)

Finally, we get:

RA =
∑
t∈Φ′φ

P

(
θi∗φ,t ≤ µi∗φ,t −

√
6 log τ

Ti∗φ,t,τ

)
(A.64)

≤ n̄A
Nφ

τ
+
∑
t∈Φ′φ

1

τ
3
2

(A.65)

≤ Nφ

τ

(
22

log τ
+ 1

)
+
Nφ

τ
3
2

(A.66)

=
22Nφ

τ log τ
+
Nφ

τ
+
Nφ

τ
3
2

. (A.67)

Let us focus onRB. Define µ̂i,t,τ :=
∑t
s=t−τ+1 Xi,s1{is=i}

Ti,t,τ
, i.e., the estimator

of the expected value µi,φ of the rewards of the arm ai computed over the last

τ rounds and choose n̄B∗ =
⌈

24 log τ
∆2
i,φ

⌉
and n̄B =

⌈
32 log τ

∆2
i,φ

⌉
, where we recall

that ∆i,φ := µi∗φ,t−µi,t with t ∈ Φ′φ. This choice implies that if Ti∗φ,t,τ > n̄B∗
and Ti,t,τ > n̄B:

−
(

2

√
2 log τ

Ti,t,τ
+

√
6 log τ

Ti∗φ,t,τ

)
> −∆i,φ (A.68)
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and thus:

RB ≤
∑
t∈Φ′

φ

P
(
uTi,t,τ > µi∗

φ
,t −

√
6 log τ

Ti∗
φ
,t,τ

, it = i

)
(A.69)

=
∑
t∈Φ′

φ

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗

φ
,t −

√
6 log τ

Ti∗
φ
,t,τ

, it = i

)
(A.70)

≤
∑
t∈Φ′

φ

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗

φ
,t −

√
6 log τ

Ti∗
φ
,t,τ

, Ti∗
φ
,t,τ > n̄B∗, Ti,t,τ > n̄B

)
+

+
∑
t∈Φ′

φ

P
(
Ti∗
φ
,t,τ ≤ n̄B∗

)
+
∑
t∈Φ′

φ

P (Ti,t,τ ≤ n̄B) (A.71)

≤
∑
t∈Φ′

φ

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗

φ
,t −

√
6 log τ

Ti∗
φ
,t,τ

, Ti∗
φ
,t,τ > n̄B∗, Ti,t,τ > n̄B

)
+

+ n̄B∗
Nφ
τ

+ n̄B
Nφ
τ

(A.72)

≤
∑
t∈Φ′

φ

P

µ̂i,t,τ −
√

2 log τ

Ti,t,τ
> µi,t + µi∗

φ
,t − µi,t︸ ︷︷ ︸
=∆i,φ

−
(

2

√
2 log τ

Ti,t,τ
+

√
6 log τ

Ti∗
φ
,t,τ

)
︸ ︷︷ ︸

>−∆i,φ

+

+
Nφ
τ

(
56 log τ

∆2
i,φ

+ 2

)
(A.73)

≤
∑
t∈Φ′

φ

P
(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)
+
Nφ
τ

56 log τ

∆2
i,φ

+
2Nφ
τ

, (A.74)

where Equation (A.70) is thanks to the definition of uTi,t,τ .
By considering Corollary 21 in [52] we have for all η > 0:

∑
t∈Φ′φ

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)

≤
∑
t∈Φ′φ

log τ

log(1 + η)
exp

(
−12 log τ

(
1− η2

16

))
(A.75)

and by considering η = 4
√

1− 1
12

∑
t∈Φ′φ

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t

)
≤
∑
t∈Φ′φ

log τ

τ
≤ Nφ log τ

τ
. (A.76)
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Summarizing we have:

RB ≤
Nφ

τ

56 log τ

∆2
i,φ

+
2Nφ

τ
+
Nφ log τ

τ
. (A.77)

Let us focus on RC . The RC term is upper bounded by:

RC =
∑
t∈Φ′φ

P
(
θi,t ≥ qTi,t,τ

)
=
∑
t∈Φ′φ

1

τ
≤ Nφ

τ
. (A.78)

Pseudo-regret. Since
∑ΥN

φ=1Nφ = N and recalling that if t ∈ Φφ ⊃ Φ′φ
we have µi,t = µi,φ, the total regret over all the phases becomes:

R̄N (U) = E
[
N∑
t=1

(µi∗,t − µit,t)
]

=

ΥN∑
φ=1

µi∗,φNφ − E
[
N∑
t=1

µit,t

]
(A.79)

=

ΥN∑
φ=1

µi∗,φNφ − E

∑
t∈Φφ

µit,t

 =

ΥN∑
φ=1

(
µi∗,φNφ −

K∑
i=1

µi,φE[Ti(Φφ)]

)
(A.80)

=

ΥN∑
φ=1

(
K∑
i=1

(µi∗,φ − µi,φ)E[Ti(Φφ)]

)
=

K∑
i=1

ΥN∑
φ=1

(µi∗,φ − µi,φ)E[Ti(Φφ)]

 (A.81)

=

K∑
i=1

ΥN∑
φ=1

∆i,φE[Ti(Φφ)]

 ≤ K∑
i=1

ΥN∑
φ=1

∆i,φ

(
τ + E[Ti(Φ

′
φ)]
) (A.82)

≤
K∑
i=1

τΥN +

ΥN∑
φ=1

∆i,φ (RA +RB +RC)

 (A.83)

≤
K∑
i=1

τΥNα +

ΥN∑
φ=1

∆i,φ

(
22Nφ
τ log τ

+
Nφ
τ

+
Nφ

τ
3
2

+
Nφ
τ

56 log τ

∆2
i,φ

+
2Nφ
τ

+
Nφ log τ

τ
+
Nφ
τ

)
(A.84)

≤
K∑
i=1

τΥNα +

ΥN∑
φ=1

∆i,φ

(
22Nφ
τ log τ

+
Nφ

τ
3
2

+
Nφ
τ

56 log τ

∆2
i,φ

+
Nφ log τ

τ
+

4Nφ
τ

)
(A.85)

≤
K∑
i=1

τΥNα +

ΥN∑
φ=1

∆i,φ
Nφ
τ

(
56 log τ

∆2
i,φ

+ log τ + 4 +
22

log τ
+

1

τ
1
2

) (A.86)

where ΥN is the number of breakpoints before N .
By defining:

∆i := min
φ∈{1,...,ΥN}

∆i,φ1{i 6= i∗φ} ∀i ∈ {1, . . . , K}, (A.87)

i.e., the minimum over all the phases Φφ in which the arm ai is not optimal
of the difference of the expected reward µi∗φ,φ of the best arm ai∗φ and the
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expected reward µi,φ of arm ai, the regret becomes:

R̄N(U) ≤ τKΥNα +
N

τ

K∑
i=1

(
56 log τ

∆2
i

+ log τ + 4 +
22

log τ
+

1

τ
1
2

)
,

(A.88)
which concludes the proof.
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A.2.4 Proof of Theorem 9

Theorem 9. If policy SW-TS is run over a SC-MAB setting with Xi,t ∼
Be(µi,t), Lipschitz constant σ > 0 and there exists ∆0 ∈ (0, 1) as in Assump-
tion 3, for any τ ∈ N s.t. 2στ < ∆ ≤ 3στ ≤ ∆0, the expected pseudo-regret
after N rounds is at most:

R̄N(U) ≤
(
3σFNβ + 1

)
τ

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
.

Proof. Let us consider:

• Φ∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}, i.e., the set of
the rounds in which there exist two arms with expected values differing
less than ∆;

• Φ∆C ,N := {τ, . . . , N}\Φ∆,N , i.e., the set of the rounds t ≥ τ , in which
the expected rewards of the arms are well separated (|µi,t − µj,t| >
∆,∀i 6= j});
• Ti(Φ∆,N) :=

∑
t∈Φ∆,N

1{it = i, i 6= i∗t}, i.e., the amount of rounds the
arm ai has been played when it was not the optimal one during rounds
t ∈ Φ∆,N ;

• Ti(Φ∆C ,N) :=
∑

t∈Φ
∆C,N

1{it = i, i 6= i∗t}, i.e., the amount of rounds
the arm ai has been played when it was not the optimal one during
rounds t ∈ Φ∆C ,N .

By considering ∆ s.t. 2στ ≤ ∆ ≤ 3στ , we have that:

R̄N(U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
(A.89)

≤
N∑
t=1

E [1{it = i, i 6= i∗t}] =
K∑
i=1

N∑
t=1

E [1{it = i, i 6= i∗t}] (A.90)

≤ τ +
K∑
i=1

E[Ti(Φ∆,N)] +
K∑
i=1

E[Ti(Φ∆C ,N)]. (A.91)

While the second term in Equation (A.91) E[Ti(Φ∆,N)] is bounded by As-
sumption 3, we need to bound with a more complex procedure the third one
E[Ti(Φ∆C ,N)]. Similarly to what has been considered in Theorem 8, we fol-
low the line delineated in [74], where we have the further technical difficulty
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that the reward distributions are varying at every round.3 We consider two
events: in the first one the optimal arm ai∗t is underestimated; in the second
one the optimal arm ai∗t is not underestimated, but the suboptimal arm ai is
played. Hence, we have:

E
[
Ti(Φ∆C ,N)

]
(A.92)

≤
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)
+

+
∑

t∈Φ
∆C,N

P

(
θi,t > µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, it = i

)
(A.93)

≤
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)
+

+
∑

t∈Φ
∆C,N

P

(
θi,t > µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, it = i, θi,t ≤ qTi,t,τ

)
+

+
∑

t∈Φ
∆C,N

P
(
θi,t ≥ qTi,t,τ

)
(A.94)

≤
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

RA

+

+
∑

t∈Φ
∆C,N

P

(
uTi,t,τ > µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

RB

+
∑

t∈Φ
∆C,N

P
(
θi,t ≥ qTi,t,τ

)
︸ ︷︷ ︸

RC

, (A.95)

where to bound the expression in Equation (A.95) we considered Lemma 1
over the rewards of the arm ai, T = Ti,t,τ and ε = 2.

Let us focus on RA. By considering Lemma 3 and defining n̄A =
⌈

22
log τ

⌉
,

3For sake of concision we will omit those derivations which are equal to those considered in Theorem 8.
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we have:

RA =
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)

≤
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
+

+
∑

t∈Φ
∆C,N

P
(
Ti∗t ,t,τ ≤ n̄A

)
≤

∑
t∈Φ

∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
+ n̄A

⌈
N∆

τ

⌉

≤
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
+ n̄A

N

τ

where N∆ := |Φ∆C ,N | ≤ N − τ and | · | denotes the cardinality operator.
While in the proof of Theorem 8 the expected values of the considered

rewards were constant over the considered τ rounds, in this case we don
not have such an assumption and, thus, we need to define a set of auxiliary
variables whose mean is constant over the last τ rounds and whose value is
smaller than the one of the optimal arm. Over this newly defined variables
we can use the Lemma 2 to transform the Beta distribution into a Binomial
one.

Let us define:

• {Ut}t∈Φ
∆C,N

as a sequence of i.i.d. uniform random variables over Ω =

[0, 1];

• Si,t,τ :=
∑t

s=t−τ+1 1{is = i}Xi,s, i.e., the amount of successes of arm
ai at round t in the previous τ rounds (with abuse of notation);

• X̃i,s := Xi,s + µi,t − µi,s − στ, ∀s ∈ {t − τ + 1, t}, i.e., a set of
auxiliary variables having X̃i,s ≤ Xi,s (since |µi,t − µi,s| ≤ στ ) and
µ
i,t

:= E[X̃i,s] = µi,t − στ ;

• Si,t,τ :=
∑t

s=t−τ+1 1{is = i}X̃i,s, the amount of successes of an arm
ai having rewards X̃i,s at round s in the rounds {t− τ + 1, . . . , t};
• Σi,t,τ,s :=

∑t−τ+s
h=t−τ+1 1{ih = i}X̃i,h, i.e., the sum of the random vari-

ables X̃i,t−τ+1, . . . , X̃i,t−τ+s.

151



Appendix A. Proofs of Theorems

Note that if we consider an arm ai∗t having expected value µ
i∗t ,t

, it would still
be the optimal one, since we are in the rounds t ∈ Φ∆C ,N . Hence, we have:

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄A

)
(A.96)

= P

(
Ut ≤ F Beta

Si∗t ,t,τ
+1,Ti∗t ,t,τ

−Si∗t ,t,τ+1

(
µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)
,

, Ti∗t ,t,τ > n̄A

)
(A.97)

= P

(
Ut ≤ 1− F B

Ti∗t ,t,τ
+1,µi∗t ,t

−στ−
√

6 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ), Ti∗t ,t,τ > n̄A

)
(A.98)

= P

(
F B
Ti∗t ,t,τ

+1,µi∗t ,t
−στ−

√
6 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ) ≤ Ut, Ti∗t ,t,τ > n̄A

)
(A.99)

≤ P

(
F B
Ti∗t ,t,τ

+1,µ
i∗t ,t
−
√

6 log τ
Ti∗t ,t,τ

(Si∗t ,t,τ ) ≤ Ut, Ti∗t ,t,τ > n̄A

)
(A.100)

≤ P
(
∃s ∈ {n̄A, . . . , τ} s.t. F B

s+1,µ
i∗t ,t
−
√

6 log τ
s

(Σi∗t ,t,τ,s
) ≤ Ut

)
(A.101)

=
τ∑

s=n̄A

P

(
Σi∗t ,t,τ,s

≤ (F B)−1

s+1,µ
i∗t ,t
−
√

6 log τ
s

(Ut)

)
, (A.102)

where to derive Equation (A.98) we considered Lemma 2, Equation (A.99)
follows from Ut ∼ 1 − Ut and we bound Equation (A.100) by the fact that
Si,t,τ ≥ Si,t,τ , ∀i, which follows from the definition of Si,t,τ .

Note that:

(F B)−1

s+1,µ
i∗t ,t
−
√

6 log τ
s

(Ut) ∼ Bi

(
s+ 1, µ

i∗t ,t
−
√

6 log τ

s

)
(A.103)

and is independent from Σi∗t ,t,τ,s
∼ Bi(s, µ

i∗t ,t
). Consider, for a chosen s,

two i.i.d. sequences of random variables {X1,l}sl=1 and {X2,l}sl=1 of size s
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and s+ 1, respectively:

X1,l ∼ Be

(
µ
i∗t ,t
−
√

6 log τ

s

)
, (A.104)

X2,l ∼ D
(
µ
i∗t ,t

)
, (A.105)

whose summations correspond to the r.h.s. and l.h.s. of the inequality present
in the probability in Equation (A.102), respectively. In equation (A.104)
we denoted with Be(µ) a Bernoulli distribution with mean µ and in Equa-
tion (A.105) we denoted with D a discrete distribution defined over Ω =
{1 + µi∗t ,t − µi∗t ,s − στ, µi∗t ,t − µi∗t ,s − στ} and expected value equal to
µ
i∗t ,t

. Let {Zl}sl=1 be another i.i.d. sequence of random variables, with Zl :=

X2,l −X1,l, having support of measure 2 and E[Zl] =
√

6 log τ
s

.4 We get:

P

(
Σi∗t ,t,τ,s

≤ (F B)−1

s+1,µ
i∗t ,t
−
√

6 log τ
s

(Ut)

)
(A.106)

= P

(
s∑
l=1

X2,l ≤
s+1∑
l=1

X1,l

)
= P

(
s∑
l=1

Zl ≤ X1,s+1

)
(A.107)

≤ P

(
s∑
l=1

Zl ≤ 1

)
(A.108)

= P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

s∑
l=1

√
6 log τ

s
+ 1

)
(A.109)

= P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

(√
6s log τ − 1

))
(A.110)

≤ P

(
s∑
l=1

(
Zl −

√
6 log τ

s

)
≤ −

√
5s log τ

)
, (A.111)

where we used the fact that s > n̄A ⇒
√

6s log τ−1 >
√

5s log τ . We apply
the Hoeffding’s inequality to the bounded martingale difference sequence

4Similarly to what has been done in Theorem 8, we here consider only the case in which the sequence
{X1,l}sl=1 is well defined.
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{Zl}sl=1 and we get:

τ∑
s=n̄A

P

Σi∗t ,t,τ,s
≤ (F B)−1

s+1,µ
i∗t ,t
−
√

6 log τ
Ti∗t ,t,τ

(Ut)

 (A.112)

≤
τ∑

s=n̄A

exp

(
−2

(
√

5s log τ)2

4s

)
=

τ∑
s=n̄A

e−
5
2

log τ ≤
τ∑
s=1

1

τ
5
2

=
1

τ
3
2

.

(A.113)

Finally, we get:

RA =
∑

t∈Φ
∆C,N

P

(
θi∗t ,t ≤ µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ

)

≤ n̄A
N

τ
+

∑
t∈Φ

∆C,N

1

τ
3
2

≤ 22N

τ log τ
+
N

τ
+
N

τ
3
2

. (A.114)

Let us focus on RB. Let us define µ̂i,t,τ :=
∑t
s=t−τ+1 Xi,s1{is=i}

Ti,t,τ
, i.e., the

estimator of the expected value of the rewards of the arm ai computed over
the last τ rounds and µi,t,τ :=

∑t
s=t−τ+1 µi,s1{is=i}

Ti,t,τ
, the expected value of the

rewards of the arm ai computed over the last τ rounds. Note that −µi,t,τ ≥
−µi,t − στ due to Assumption 2.

We can rewrite term RB and apply Lemma 3 with n̄B∗ = 24 log τ
(∆−2στ)2 and
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n̄B = 32 log τ
(∆−2στ)2 :

RB =
∑

t∈Φ
∆C,N

P
(
uTi,t,τ > µi∗t ,t − στ −

√
6 log τ

Ti∗
φ
,t,τ

, it = i

)
(A.115)

=
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗t ,t − στ −

√
6 log τ

Ti∗t ,t,τ
, it = i

)
(A.116)

≤
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗t ,t − στ −

√
6 log τ

Ti∗
φ
,t,τ

, Ti∗t ,t,τ > n̄B∗, Ti,t,τ > n̄B

)
+

+
∑

t∈Φ
∆C,N

P
(
Ti∗t ,t,τ ≤ n̄B∗

)
+
∑
t∈N∆

P (Ti,t,τ ≤ n̄B) (A.117)

≤
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ +

√
2 log τ

Ti,t,τ
> µi∗

φ
,t − στ −

√
6 log τ

Ti∗t ,t,τ
, Ti∗t ,t,τ > n̄B∗, Ti,t,τ > n̄B

)
+

+ n̄B∗

⌈
N∆

τ

⌉
+ n̄B

⌈
N∆

τ

⌉
(A.118)

=
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ + µi∗t ,t − µi,t,τ − στ − 2

√
2 log τ

Ti,t,τ
−
√

6 log τ

Ti∗t ,t,τ

)
+

+
N

τ

[
56 log τ

(∆− 2στ)2
+ 2

]
(A.119)

≤
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ + µi∗t ,t − µi,t − στ − στ − 2

√
2 log τ

Ti,t,τ
−
√

6 log τ

Ti∗t ,t,τ

)
+

+
N

τ

56 log τ

(∆− 2στ)2
+ 2

N

τ
(A.120)

≤
∑

t∈Φ
∆C,N

P

µ̂i,t,τ −
√

2 log τ

Ti,t,τ
> µi,t,τ + ∆i,t − 2στ −

(
2

√
2 log τ

Ti,t,τ
+

√
6 log τ

Ti∗t ,t,τ

)
︸ ︷︷ ︸

≥−(∆−2στ)

+

+
N

τ

56 log τ

(∆− 2στ)2
+ 2

N

τ
(A.121)

≤
∑

t∈Φ
∆C,N

P
(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)
+
N

τ

56 log τ

(∆− 2στ)2
+ 2

N

τ
, (A.122)

where to bound Equation (A.121) we considered that ∆i,t > ∆∀i, ∀t ∈
Φ∆C ,N .
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By considering Corollary 21 in [52] we have for all η > 0:∑
t∈Φ

∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)

≤
∑

t∈Φ
∆C,N

log τ

log(1 + η)
exp

(
−12 log τ

(
1− η2

16

))

thus by considering η = 4
√

1− 1
12

we have:

∑
t∈Φ

∆C,N

P

(
µ̂i,t,τ −

√
2 log τ

Ti,t,τ
> µi,t,τ

)

≤
∑

t∈Φ
∆C,N

log τ

τ
=
N∆ log τ

τ
≤ N log τ

τ
.

Thus, summarizing:

RB ≤
N

τ

56 log τ

(∆− 2στ)2
+ 2

N

τ
+
N log τ

τ
. (A.123)

Let us focus on RC The RC term is upper bounded by:

RC =
∑

t∈Φ
∆C,N

P
(
θi,t ≥ qTi,t,τ

)
=

∑
t∈Φ

∆C,N

1

τ
≤ N

τ
.

Pseudo-regret Summing all the derived bounds the pseudo-regret becomes:

R̄N(U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
(A.124)

≤ τ +
K∑
i=1

(
E[Ti(Φ∆,N)] + E[Ti(Φ∆C ,N)]

)
(A.125)

≤ τ + |Φ∆,N |+K (RA +RB +RC) (A.126)

= τ + F∆Nβ+ (A.127)

+K

(
22N

τ log τ
+
N

τ
+
N

τ
3
2

+
N

τ

56 log τ

(∆− 2στ)2
+ 2

N

τ
+
N log τ

τ
+
N

τ

)
(A.128)

≤
(
3σFNβ + 1

)
τ +

NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
,

(A.129)
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where we considered that
K∑
i=1

E[Ti(Φ∆,N)] ≤ |Φ∆,N | ≤ F∆Nβ by defini-

tion, which concludes the proof.
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A.2.5 Proof of Theorem 10

Theorem 10. If policy SW-TS is run over an ASC-MAB setting with Xi,t ∼
Be(µi,t), Lipschitz constant σ > 0 as in Assumption 4 and there exists ∆0 ∈
(0, 1) as in Assumption 3, for any τ ∈ N s.t. 2στ < ∆ ≤ 3στ ≤ ∆0, the
expected pseudo-regret after N rounds is at most:

R̄N(U) ≤
(
3σFNβ + ΥNα

)
τ

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
,

where Υ and α are defined in Assumption 1.

Proof. Let us consider:

• Φ∆,N := {t ∈ {1, . . . , N} s.t. ∃i 6= j, |µi,t − µj,t| < ∆}, i.e., the set of
the rounds in which there exist two arms with expected values differing
less than ∆;

• Φ∆C ,N := {τ, . . . , N}\Φ∆,N , i.e., the set of the rounds t ≥ τ , in which
the expected rewards of the arms are well separated (|µi,t − µj,t| >
∆,∀i 6= j});

• Φ∆C ,φ := {bφ−1, . . . , bφ}\Φ∆,N , i.e., the set of the rounds of phase Φφ,
in which the expected rewards of the arms are well separated;

• Φ′∆C ,φ := {bφ−1 + τ, . . . , bφ} \Φ∆,N , i.e., the set of the rounds of phase
Φφ discarding the first τ ones, in which the expected rewards of the
arms are well separated;

• Ti(Φ) :=
∑

t∈Φ 1{it = i, i 6= i∗t}, i.e., the amount of rounds the arm ai
has been played when it was not the optimal one during rounds t ∈ Φ.
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By considering ∆ s.t. 2στ ≤ ∆ ≤ 3στ , we have that:

R̄N(U) = E

[
N∑
t=1

(
µi∗t ,t − µit,t

)]
(A.130)

≤
N∑
t=1

E [1{it = i, i 6= i∗t}] =
K∑
i=1

N∑
t=1

E [1{it = i, i 6= i∗t}]

(A.131)

=
K∑
i=1

E[Ti(Φ∆,N)] +
K∑
i=1

E[Ti(Φ∆C ,N)] (A.132)

=
K∑
i=1

E[Ti(Φ∆,N)] +

ΥN∑
φ=1

K∑
i=1

E[Ti(Φ∆C ,φ)] (A.133)

=
K∑
i=1

E[Ti(Φ∆,N)] +

ΥN∑
φ=1

(
τ +

K∑
i=1

E[Ti(Φ
′
∆C ,φ)]

)
(A.134)

=
K∑
i=1

E[Ti(Φ∆,N)] + τΥN +

ΥN∑
φ=1

K∑
i=1

E[Ti(Φ
′
∆C ,φ)]. (A.135)

The first term in Equation (A.135) E[Ti(Φ∆,N)] is bounded by Assump-
tion 3, while each element E[Ti(Φ

′
∆C ,φ)] of the summation in the third term

of Equation (A.135) can be bounded as has been done for E[Ti(Φ∆C ,N)] in
the proof of Theorem 9, by considering a specific time horizon of length
Nφ − τ for phase Φφ. This is due to the fact that when we are considering
rounds belonging to a single phase, we are effectively considering a SC-
MAB setting. Formally, we have:

E[Ti(Φ
′
∆C ,φ)] ≤ Nφ − τ

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
≤ Nφ

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
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Finally we have:

R̄N(U) ≤
K∑
i=1

E[Ti(Φ∆,N)] + τΥN +

ΥN∑
φ=1

K∑
i=1

E[Ti(Φ
′
∆C ,φ)] (A.136)

≤ F∆Nβ + τΥNα+

+

ΥN∑
φ=1

K∑
i=1

Nφ

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
(A.137)

≤ τ3σFNβ + τΥNα+

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
(A.138)

=
(
3σFNβ + ΥNα

)
τ+

+
NK

τ

[
56 log τ

(∆− 2στ)2
+ log τ + 4 +

22

log τ
+

1

τ
1
2

]
, (A.139)

where we consider Assumption 1 and Assumption 3 in Equation (A.137) and

we consider that ∆ ≤ 3στ and that
ΥN∑
φ=1

Nφ = N in Equation (A.138), which

concludes the proof.
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A.2.6 Proof of Assumption 3

Here we prove that the Assumption 3 on ∆ in the SC-MAB experimental
setting is satisfied. We want to show that the cardinality of the rounds in
which at least one pair i, j ∈ {1, . . . , K}, i 6= j the following holds:

|µi,t − µj,t| < ∆

is bounded by F∆, where F is a constant w.r.t. the time horizon N . Let us
consider ∆0 = 1

3
which implies ∆ ≤ 1

3
.

The evolution of the expected values of the arms over time in the SC-
MAB we analysed in the experimental section is the following:

µi,t =
K − 1

K
−
∣∣1 + 1

2
(K − 1)(1 + sin(tσ))− i

∣∣
K

If we are in Φ∆,N there exists a couple of index i and j s.t. i 6= j, we
have:

|µi,t − µj,t|

=

∣∣∣∣∣K − 1

K
−
∣∣1 + 1

2
(K − 1)(1 + sin(tσ))− i

∣∣
K

− K − 1

K
+

∣∣1 + 1
2
(K − 1)(1 + sin(tσ))− j

∣∣
K

∣∣∣∣∣ =

=

∣∣∣∣∣−
∣∣1 + 1

2
(K − 1)(1 + sin(tσ))− i

∣∣
K

+

∣∣1 + 1
2
(K − 1)(1 + sin(tσ))− j

∣∣
K

∣∣∣∣∣ =

=
1

K

∣∣∣ ∣∣1 + 1
2
(K − 1)(1 + sin(tσ))− j

∣∣− ∣∣1 + 1
2
(K − 1)(1 + sin(tσ))− i

∣∣ ∣∣∣ ≤ ∆,

thus we have:

−K∆ <
∣∣1 + 1

2
(K − 1)(1 + sin(tσ))− j

∣∣− ∣∣1 + 1
2
(K − 1)(1 + sin(tσ))− i

∣∣ < K∆.

In what follows, we divide the analysis in two cases.

Case 1: t s.t. (1+1
2
(K−1)(1+sin(tσ))−j)(1+1

2
(K−1)(1+sin(tσ))−i) > 0

Let us consider the case in which both 1 + 1
2
(K − 1)(1 + sin(tσ) > 0 and

1 + 1
2
(K − 1)(1 + sin(tσ)) − i > 0. The same holds in the case both the

terms are negative and by inverting the roles of i and j. In the former case,
the inequality becomes:

−K∆ < 1 + 1
2
(K − 1)(1 + sin(tσ))− j − 1− 1

2
(K − 1)(1 + sin(tσ)) + i < K∆

−K∆ < i− j < K∆.

If i > j the inequality −K∆ < i − j is always satisfied, while we need
to examine whether i− j < K∆ or not. The most strict case is when the two
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arms being similar are i = K and j = 1, thus:

i− j < K∆

K − 1 < K∆

∆ >
K − 1

K
,

which is always false if K > 2 since ∆0 = 1
3
. Thus the set of the rounds in

this case is empty.
If i < j the inequality i− j < K∆ is always satisfied, while we need to

verify −K∆ < i− j. The worst case is when i = 1 and j = K, thus:

−K∆ < i− j
−K∆ < 1−K

∆ >
K − 1

K

thus the same reasoning made for the previous case holds and we have an
empty set of rounds.

Case 2: t s.t. (1+1
2
(K−1)(1+sin(tσ))−j)(1+1

2
(K−1)(1+sin(tσ))−i) < 0

Even in this case we analyse the case in which 1+ 1
2
(K−1)(1+sin(tσ))−j <

0 and 1 + 1
2
(K − 1)(1 + sin(tσ))− i < 0, being the opposite one analogous.

In this case, the inequality becomes:

−K∆ < −1− 1
2
(K − 1)(1 + sin(tσ)) + j + 1 + 1

2
(K − 1)(1 + sin(tσ))− i < K∆

−K∆ < j − i < K∆

whose analysis is the same as in Case 2 by substituting the role of i and j
indexes.

Case 2: t s.t. 1+1
2
(K−1)(1+sin(tσ))−j < 0 and 1+1

2
(K−1)(1+sin(tσ))−i < 0

−K∆ < 1 + 1
2
(K − 1)(1 + sin(tσ))− j + 1 + 1

2
(K − 1)(1 + sin(tσ))− i < K∆

−K∆ < 2 + (K − 1)(1 + sin(tσ))− j − i < K∆

−K∆− 2 + j + i < (K − 1)(1 + sin(tσ)) < K∆− 2 + j + i

−K∆− 2 + j + i

K − 1
− 1 < sin(tσ) <

K∆− 2 + j + i

K − 1
− 1

1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
< t <

1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)
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We are interested in the number of rounds for which the inequalities hold,
i.e.,:

|t| =
∣∣∣∣{t :

1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
< t <

1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)
}
∣∣∣∣

=
1

σ
arcsin

(
K∆− 2 + j + i

K − 1
− 1

)
︸ ︷︷ ︸

A

− 1

σ
arcsin

(−K∆− 2 + j + i

K − 1
− 1

)
︸ ︷︷ ︸

B

.

By relying on the following inequalities:

arcsin(x) < 2x x > 0,

arcsin(x) > 2x x < 0,

we have that if A < 0 and B > 0, we can write:

|t| ≤ 1

σ

(
K∆− 2 + j + i

K − 1
− 1

)
− 1

σ

(−K∆− 2 + j + i

K − 1
− 1

)
=

2K∆

σ(K − 1)
,

thus Assumption 3 is satisfied with F := 2K
σ(K−1)

Finally we have to show that A < 0 and B > 0. Let us start with A < 0.
The value minimizing A for the indexes are i = 1 and j = 2, consequently,
we have:

K∆− 2 + j + i

K − 1
− 1 =

K∆− 2 + 2 + 1−K + 1

K − 1

=
K∆−K + 2

K − 1
=

(∆− 1)K + 2

K − 1
< 0

∆ <
K − 2

K

which is satisfied since ∆0 ≤ 1
3
.

Let us consider B > 0. Even in this case the choice of i = 1 and j = 2 is
the one providing the most restrictive conditions. We have:

−K∆− 2 + j + i

K − 1
− 1 =

−K∆− 2 + 2 + 1−K + 1

K − 1

=
−K∆−K + 2

K − 1
=
−(∆ + 1)K + 2

K − 1
> 0

which is the same condition as in the A > 0 derivations. This concludes the
proof.
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A.2.7 Proof of Theorem 12

Theorem 12. Given a UMAB setting G = (A,E), the expected pseudo-
regret of the UTS algorithm satisfies, for every ε > 0:

R̄N(UTS) ≤ (1 + ε)
∑

i∈N (i∗)

µ∗ − µi
KL(µi, µ∗)

[log(N) + log log(N)] + C̃,

where C̃ > 0 is a constant depending on ε, the number of arms K and the
expected rewards {µ1, . . . , µK}.
Proof. At first, the regret of the UTS algorithm R̄N(UTS) can be rewritten
by dividing the N rounds in two sets: those rounds in which the best arm a∗

is the leader , i.e., l(t) = i∗, and those in which the leader is another arm,
i.e., l(t) 6= i∗:

R̄N(UTS) =
∑
i 6=i∗

(µ∗ − µi)E[Ti,N ]

=
∑
i 6=i∗

(µ∗ − µi)E
[

N∑
t=1

1{it = i}
]

=
∑
i 6=i∗

(µ∗ − µi)E
[

N∑
t=1

1{l(t) = i∗ ∧ it = i}
]

︸ ︷︷ ︸
R1

+

+
∑
i 6=i∗

(µ∗ − µi)E
[

N∑
t=1

1{l(t) 6= i∗ ∧ it = i}
]

︸ ︷︷ ︸
R2

Let us focus on R1. When i∗ is the leader, the proposed algorithm behaves
like Thompson Sampling restricted to the optimal arm and its neighborhood
N+(i∗), and the regret upper bound is the one presented in Theorem 1 in [10]
for TS algorithm, i.e., for every ε > 0:

R1 ≤ (1 + ε)
∑

i∈N (i∗)

µ∗ − µi
KL(µi, µ∗)

[log(N) + log log(N)] + C1, (A.140)

where C1 is an appropriate constant depending on ε and on the expected
rewards µi of arms in N+(i∗).
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Now let us considerR2, we have:

R2 =
∑
i 6=i∗

(µ∗ − µi)︸ ︷︷ ︸
≤1

E

[
N∑
t=1

1{l(t) 6= i∗ ∧ it = i}
]

≤
∑
i 6=i∗

E [Li,N ] .

Here we want to upper bound the number of times ai has been the leader
Li,N with L̂i,N defined as the number of rounds spent with ai as leader in the
case only its neighborhood is considered during the whole time horizon N .
This is clearly an upper bound over Li,N , since there is nonzero probability
that the UTS algorithms moves in another neighborhood. From now on in
the proof the analysis is carried on an algorithm working only on a unique
neighborhood N (i).

R2 ≤
∑
i 6=i∗

E [Li,N ] ≤
∑
i 6=i∗

E
[
L̂i,N

]
=
∑
i 6=i∗

N∑
t=1

E [1{l(t) = i}]

=
∑
i 6=i∗

N∑
t=1

E
[
1{µ̂i,t = max

aj∈N (i)
µ̂j,t}

]
,

where, with abuse of notation, l(t) is the leader at round t in this new problem
where only N (i) is considered.

When i 6= i∗ is the leader, ai is not the optimal arm. Thus, since we are
in a unimodal setting, it exists an optimal arm ai′ ∈ N (i), i′ 6= i s.t. µi′ =
maxi|ai∈N (i) µi. Nonetheless, since ai is the leader, its empirical mean is the
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maximum in its neighborhood and, in particular, µ̂i,t ≥ µ̂i′ . Thus, we have:

R2 ≤
∑
i 6=i∗

N∑
t=1

E
[
1{µ̂i,t = max

aj∈N (i)
µ̂j,t}

]

≤
∑
i 6=i∗

N∑
t=1

E [1{µ̂i,t ≥ µ̂i′,t}]

=
∑
i 6=i∗

N∑
t=1

P (µ̂i,t ≥ µ̂i′,t)

=
∑
i 6=i∗

N∑
t=1

P
(
µ̂i,t − µi −

∆i

2
− µ̂i′,t + µi′ −

∆i

2
≥ 0

)

≤
∑
i 6=i∗


N∑
t=1

P
(
µ̂i,t − µi −

∆i

2
≥ 0

)
︸ ︷︷ ︸

Ri1

+
N∑
t=1

P
(
µ̂i′,t − µi′ +

∆i

2
≤ 0

)
︸ ︷︷ ︸

Ri2

 ,

where ∆i = maxi′|ai∈N (i) µi′ − µi denotes the expected loss incurred in
choosing arm ai instead of its best adjacent one ai′ .

Let us focus onRi1:

Ri1 =
N∑
t=1

P
(
µ̂i,t ≥ µi +

∆i

2

)

=
N∑
t=1

t∑
h=1

P
(
Ti,t = h ∧ µ̂i,t ≥ µi +

∆i

2

)

=
N∑
t=1

t∑
h=1

P
(
Ti,t = h | µ̂i,t ≥ µi +

∆i

2

)
P
(
µ̂i,t ≥ µi +

∆i

2

)

≤
N∑
t=1

t∑
h=1

P
(
Ti,t = h | µ̂i,t ≥ µi +

∆i

2

)
e−

h∆2
i

2

Where the last inequality is due to the Hoeffding inequality [73]. By relying
on the fact that

∑∞
h=x+1 e

−kh ≤ 1
k
e−kx and by considering x = t

|N+(i)| we
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have:

Ri1 ≤
N∑
t=1


t

|N+(i)|∑
h=1

P
(
Ti,t = h | µ̂i,t ≥ µi +

∆i

2

)
︸ ︷︷ ︸

=0

e
h∆2

i
2 +

2

∆2
i

e−
t

|N+(i)|
∆2
i

2


=

N∑
t=1

2

∆2
i

e
− t
|N+(i)|

∆2
i

2 ≤ C2

where P
(
Ti,t = h | µ̂i,t ≥ µi + ∆i

2

)
= 0 for h ≤ t

|N+(i)| is due to the fact
that the leader is chosen at least t

|N+(i)| over t rounds and C2 is a constant.

Let us focus onRi2 and the following proposition provided in [10]:

Proposition 1. If we use a TS policy over a set of finite arms {ai} where ai′
is the optimal one, there exist constants b ∈ (0, 1) and Cb ≤ ∞ s.t.:

∞∑
t=1

E
[
1{Ti′,t ≤ tb}

]
≤ Cb. (A.141)
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Similarly to what has been derived forRi1 we have:

Ri2 =
N∑
t=1

P
(
µ̂i′,s ≤ µi′ −

∆i

2

)

=
N∑
t=1

t∑
h=1

P
(
Ti′,t = h ∧ µ̂i′,s ≤ µi′ −

∆i

2

)

=
N∑
t=1

tb∑
h=1

P
(
Ti′,t = h ∧ µ̂i′,s ≤ µi′ −

∆i

2

)
+

+
N∑
t=1

t∑
h=tb+1

P
(
Ti′,t = h | µ̂i′,s ≤ µi′ −

∆i

2

)
︸ ︷︷ ︸

≤1

P
(
µ̂i′,s ≤ µi′ −

∆i

2

)

≤
∞∑
t=1

E
[
1{Ti′,t ≤ tb}

]
+

N∑
t=1

t∑
h=tb+1

P
(
µ̂i′,s ≤ µi′ −

∆i

2

)

≤ Cb +
N∑
t=1

t∑
h=tb+1

e−
t∆2
i

2

≤ Cb +
N∑
t=1

2

∆2
i

e−
tb∆2

i
2 ≤ C3

since we are using TS in among arms in N (i) and the last inequality holds
for all b ∈ (0, 1).

By considering the three partial results onR1,Ri1,Ri2 we have:

R̄N(UTS) ≤ R1 +
∑
i 6=i∗

(Ri1 +Ri2)

= (1 + ε)
∑

i∈N (i∗)

(µ∗ − µi)
log(N) + log log(N)

KL(µi, µ∗)
+ C1 + (K − 1)(C2 + C3)

considering C̃ = C1 + (K − 1)(C2 + C3) concludes the proof.
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APPENDIXB
Non-Stationary Environment: Additional

Material

B.1 Additional Sliding Window Algorithms

In this section, we report the algorithm used in the experimental analysis of
the non-stationary case. While the algorithm SW-UCB has been proposed
in [77] and is used here as baseline, the other presented algorithms are the
straightforward application of the developed bounds in the sliding windows
paradigm.

We recall that the expected value of the outcome µi over the last min{τ, t}
rounds is:

X̄i,t,τ =
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

Xi,s,

where Ti(t, τ) = Ti(t)− Ti(max{t− τ + 1, 1}) is the number of rounds the
arm ai has been selected in the last min{τ, t} ones and its realization is:

x̄i,t,τ =
1

Ti(t− 1, τ)

Ti(t−1)∑
s=Ti(max{t−τ,1})

xi,s.

169



Appendix B. Non-Stationary Environment: Additional Material

Moreover, we recall that X̄ji,t,τ is the following convex linear combina-
tion of the sample means X̄j, . . . , X̄i:

X̄ji,t,τ =
1

Tji(t− 1, τ)

i∑
k=j

Tk(t−1)∑
s=Tk(max{t−τ,1})

Xk,s,

where Tji(t, τ) =
∑i

k=j Tk(t − 1) − Tk(max{t − τ, 1}) is the number of
rounds one of the arms in {aj, . . . , ai} has been selected in the last min{τ, t}
ones and the realization of X̄ji,t,τ is denoted as follows:

x̄ji,t,τ =
1

Tji(t− 1, τ)

i∑
k=j

Tk(t−1)∑
s=Tk(max{t−τ,1})

xk,s.

At last, the variances V̄i,t,τ and V̄ji,t,τ of the two aforementioned random
variables X̄i,t,τ and X̄ji,t,τ is:

V̄i,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(
Xi,s − X̄i,t,τ

)2

Ti(t, τ)

V̄ji,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(
Xk,s − X̄ji,t,τ

)2

Ti(t, τ)
,

respectively, and their realizations v̄i,t,τ and v̄ji,t,τ :

v̄i,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(xi,s − x̄i,t,τ )2

Tji(t− 1, τ)

v̄ji,t,τ =

Ti(t−1)∑
s=Ti(max{t−τ,1})

(xk,s − x̄ji,t,τ )2

Tji(t− 1, τ)
,

respectively.
In what follows, the algorithms derived from the bound in [77] consider

a parameter ξ > 0. For ease of comparison with [77], in the experimental
section we set it to ξ = 0.6.
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Algorithm 12: SW-UCB
Initialization
Input: ξ
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB)
i,t = x̄i,t,τ +

√
ξ log(min{t, τ})
Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB)
i,t and observe xit,Tit (t)

Algorithm 13: SW-UCB1-M
Initialization
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB1-M)
i,t = min

j∈{1,...,i}

{
x̄ji,t,τ +

√
4 log(min{t, τ}) + log(i)

2Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB1-M)
i,t and observe xit,Tit (t)

Algorithm 14: SW-UCB-L
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB-L)
i,t = x̄i,t,τ +

√
8µmax log(min{t, τ})

Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-L)
i,t and observe xit,Tit (t)
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Algorithm 15: SW-UCB-LM
Initialization
Input: µmax

for t ∈ {1, . . . ,K} do
Play arm at and observe xt,1

Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCB-LM)
i,t = min

j∈{1,...,i}

{
x̄ji,t,τ +

√
2µmax[log(min{t, τ}) + log(i)]

Tji(t− 1, τ)

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCB-LM)
i,t and observe xit,Tit (t)

Algorithm 16: SW-UCBV
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCBV)
i,t = x̄i,t,τ +

√
2v̄i,t,τξ log(min{t, τ})

Ti(t− 1, τ)
+

+
3cξ log(min{t, τ})

Ti(t− 1, τ)

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCBV)
i,t and observe xit,Tit (t)
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Algorithm 17: SW-UCBV-M
Initialization
Input: ξ, c
for t ∈ {1, . . . ,K} do

Play arm at and observe xt,1
Loop
for t ∈ {K + 1, . . . , N} do

for i ∈ {1, . . . ,K} do
Compute:

u
(SW-UCBV-M)
i,t = min

j∈{1,...,i}

{√
2v̄ji,t,τ [ξ log(min{t, τ}) + log(i)]

Tji(t− 1, τ)
+

+
3c[ξ log(min{t, τ}) + log(i)]

Tji(t− 1, τ)
+ x̄ji,t,τ

}

Play arm ait such that it = arg maxi∈{1,...,K} aiu
(SW-UCBV-M)
i,t and observe xit,Tit (t)
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B.2 Sensitivity Analysis

Here we present the results of the sensitivity analysis for parameter α of The-
orem 8 in the AC-MAB and for parameter β of Theorem 9 in the SC-MAB.

B.2.1 AC-MAB Setting

Experimental Setting We compare the performance of SW-TS using dif-
ferent sliding windows τ = N

1−α
2 with α = {−1,−0.95, . . . , 0.95, 1}. We

consider a time horizon N ∈ {104, 105, 2 ·105, 3 ·105, . . . , 9 ·105, 106} and a
number of arms K ∈ {5, 10, 20, 30}. We split the time horizon N into four
phases of equal length. During each phase, we select randomly the expected
value µi,φ for each arm i. After each breakpoint, we randomly change the
expected value µi,φ of each arm ai, making sure that there is never the same
optimal arm in two different phases, i.e., ai∗φ 6= ai∗

φ′
, ∀φ, φ′ with φ 6= φ′. We

generate 10 configurations for each combination of N and K as described
above and we provide the results averaged over the configurations and over
100 independent trials for each of them.

Results In Figure B.1, with α∗ we reported, for each of the possible val-
ues of N , the α with which SW-TS achieved the best performance in terms
of R̄N(U). In order to understand how the regret gets worse as α gets far
from the optimal α∗, we plot as α150%, α200% and α300% the α for which
correspond, respectively, a 150%, 200% and 300% increase w.r.t. the regret
achieved with α∗. In the experimental analysis of Section 6.4.1, we use a
sliding window τ ∝

√
N which corresponds to α = 0, reported in the fig-

ures as α0. It can be observed that using α = 0 corresponds to an increase
lower than the 150% w.r.t the regret achieved with α∗. It can be noted that
α∗ always corresponds to a negative value, suggesting that a sliding window
τ longer than the one obtained with α0 is preferable.

In Figure B.2, we report the results in terms of R̂N(U) = R̄N(U)/N for
all the values of α as the time horizon N varies with the number of arms
K fixed. The lowest point of the lines corresponds to α∗ for the considered
time horizon. As it is possible to see from the figures, no matter the time
horizon, the lowest regret is always achieved with almost the same value of
α. It can also be observed that R̂N(U) grows faster moving from α∗ toward
lower values of α. Conversely, the growth moving toward higher values of
α is initially smoother. Such behavior suggest that an underestimation of the
optimal sliding window is safer than an overestimation.

In Figure B.3, we report the results in terms of R̂N(U) = R̄N(U)/N for
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all the values of α as the number of arms K varies with the time horizon N
fixed. Again, the lowest point of the lines corresponds to α∗ for the consid-
ered number of arms. It can be observed that the higher the number of arms
K the lower the value of α∗. Intuitively, this behavior is due to the fact that
when SW-TS has more arms to play, it also needs more samples for each
arm to understand which is the optimal one, thus a longer sliding window τ
is preferable.
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Figure B.1: AC-MAB
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Figure B.2: AC-MAB: Results in terms of R̂N (U) = R̄N (U)/N for all the values of α as
the time horizon N varies with the number of arms K fixed.
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Figure B.3: AC-MAB: Results in terms of R̂N (U) = R̄N (U)/N for all the values of α as
the number of arms K varies with the time horizon N fixed.
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B.2.2 SC-MAB Setting

Experimental Setting We compare the performance of SW-TS using dif-
ferent sliding windows τ = N

1−β
2 with β = {−1,−0.95, . . . , 0.95, 1}.

We consider a time horizon N ∈ {104, 105, 106} and a number of arms
K ∈ {5, 10, 20, 30}. The expected value µi,t of arm ai changes according to
the following function:

µi,t =
K − 1

K
− |w(t)− i|

K
, w(t) = 1 +

(K − 1)(1 + sin(tσ))

2
.

Results In Figure B.4, with β∗ we report, for each of the possible values
of N , the β with which SW-TS achieved the best performance in terms of
R̄N(U). In order to understand how the regret gets worse as β gets far from
the optimal β∗, we plot as β150%, β200% and β300% the β for which correspond,
respectively, a 150%, 200% and 300% increase w.r.t. the regret achieved with
β∗. In the experimental analysis of Section 6.4.2, we use a sliding window
τ ∝
√
N which corresponds to β = 0, reported in the figures as β0. It can be

observed that using β = 0 corresponds to an increase of the regret lower than
the 150% w.r.t the regret achieved with β∗. It can be noted that β∗ always
corresponds to a negative value, suggesting that a sliding window τ longer
than the one obtained with τ0 is preferable.

In Figure B.5, we report the results in terms of R̂N(U) = R̄N(U)/N for
all the values of β as the time horizon N varies with the number of arms
K fixed. The lowest point of the lines corresponds to β∗ for the considered
time horizon. As it is possible to see from the figures, no matter the time
horizon, the lowest regret is always achieved with almost the same value of
β. It can also be observed that, R̂N(U) grows faster moving from β∗ toward
higher values of β. Conversely, the growth moving toward higher values of
β is smoother. Such behavior suggest that using a sliding window τ slightly
longer than the one of the optimal β∗ is preferable w.r.t. a slightly smaller
one.

In Figure B.6, we report the results in terms of R̂N(U) = R̄N(U)/N for
all the values of β as the number of arms K varies with the time horizon
N fixed. The lowest point of the lines corresponds to β∗ for the considered
number of arms. It can be observed that the higher the number of arms K
the lower the value of β∗. Intuitively, this behavior is due to the fact that
if SW-TS has more arms to play, it also needs more samples for each arm
to understand which is the optimal one, thus a longer sliding window τ is
preferable.
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Figure B.4: SC-MAB
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Figure B.5: SC-MAB: Results in terms of R̂N (U) = R̄N (U)/N for all the values of β as
the time horizon N varies with the number of arms K fixed.
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Figure B.6: SC-MAB: Results in terms of R̂N (U) = R̄N (U)/N for all the values of β as
the number of arms K varies with the time horizon N fixed.
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