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Abstract

TODAY thousands of variables or features are often used in classifica-
tion problems. It is therefore crucial to select the most relevant ones
in order to obtain robust, reliable, and easily interpretable models,

not to mention storage space and classification time issues. Feature Selec-
tion (FS) aims precisely at selecting features that allow a good discrimi-
nation among samples of different classes. Suitable criteria are required
to remove irrelevant and redundant features. Similar issues are encoun-
tered in nonlinear identification. For example when identifying polynomial
NAR[MA]X models from data one is faced with the task of selecting the
most appropriate model structure to represent the underlying system. This
task, denoted Model Structure Selection (MSS), is akin to FS.

Both mentioned tasks configure combinatorial optimization problems
aiming at selecting the combination of features or model terms that result
in the most accurate classifier or model. The objective of this thesis is to in-
vestigate the possibility of employing some recent randomized techniques,
originally developed in the nonlinear identification area, to FS problems,
and to extend those techniques in both contexts, in order to deal with large-
size problems. Indeed, the difficulty of these subset selection techniques
increases rapidly with the size, given the exponential complexity of the un-
derlying combinatorial problems.

The first outcome of the research is a novel classification approach (de-
noted RFSC, for Randomized Feature Selection and Classification), adapted
from the nonlinear model identification framework, which jointly addresses
the feature selection and classifier design tasks. The classifier is constructed
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as a polynomial expansion of the original features and a selection process
is applied to find the relevant model terms. The selection method pro-
gressively refines a probability distribution defined on the model structure
space, by extracting sample models from the current distribution and using
the aggregate information obtained from the evaluation of the population of
models to reinforce the probability of extracting the most important terms.
The performance of the RFSC was found to be quite satisfactory on small-
/medium size problems.

To address large size problems, a distributed scheme is here proposed,
which employs a vertical partitioning on the features and operates the selec-
tion in parallel on different feature subsets. The method alternates the paral-
lel selection phase with a partial information exchange among the different
processors, which reinforces the probability promising terms to be selected.
The proposed scheme is applicable to both nonlinear identification and FS
problems and in both frameworks it resulted in significant improvements
in performance and efficiency. Moreover, the method has a tendency to
produce small models, easily amenable to interpretation. While capable of
addressing much larger problems than the non-distributed approach devel-
oped previously, the distributed scheme was found to be ineffective when
dealing with extra-large search spaces (as are encountered, e.g., with micro-
arrays), due to computational issues associated with parameter estimation
and classifier design. An alternative version of the distributed scheme was
then developed to target micro-arrays in particular, which employs a non-
parametric multivariate filter algorithm and population extraction using the
distance correlation index (dCor) as a criterion.
Finally, while analyzing the behavior of the RFSC, it was noticed that struc-
turally different classifiers may result in equivalent performance due to the
discrete nature of the 0 − 1 loss function in classification problems. The
randomized characteristic of the RFSC was then exploited to generate en-
sembles of classifiers. In most cases the results demonstrate an improved
accuracy when ensembles of classifiers are employed with respect to the
’single classifier’ case.

All proposed methods have been evaluated and compared to other well-
known FS and MSS methods on standard benchmarks for classification/non-
linear identification problems. The results show the effectiveness of the
proposed methods with respect to competitor methods both in terms of pre-
diction accuracy and model complexity.
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CHAPTER1
Introduction

TODAY thousands of variables or features are used in various Machine
Learning (ML) and pattern recognition problems. Therefore, Fea-
ture selection (FS) is crucial task that aims at selecting a minimum

subset of features that are capable of discriminating samples that belong
to different classes. FS is important for reducing storage space and classi-
fication time, performing semantic analysis and aiding data interpretation
and improving prediction accuracy. It is a difficult task because it amounts
to solving a combinatorial problem whose complexity is exponential in the
number of features (curse of dimensionality). FS is also important in the
nonlinear identification context, where it is employed for model structure
selection (MSS) purposes.
Suitable selection criteria are required to remove irrelevant and redundant
features. Several techniques and approaches have been devised to address
the FS problem. In general, search mechanisms can be divided into:

• incremental

• randomized

• regularization based
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Chapter 1. Introduction

Incremental search mechanisms

Due to their simplicity, FS algorithms based on incremental model building
techniques are extremely popular in the field of nonlinear system identifica-
tion, as well as ML. These algorithms, often referred to as (forward/back-
ward) subset selection methods, are greedy procedures that build the model
structure by progressively selecting the terms to include or remove [57].
One of the most used approaches of this family in NL identification is prob-
ably the Forward Regression Orthogonal Estimator (FROE) [15, 28, 71],
which exploits Orthogonal Least Squares (OLS) to decouple the estima-
tion of the various regressors. The FROE is a forward selection method
that adds to the current model one regressor per iteration based on an im-
portance index called Error Reduction Ratio (ERR), which evaluates the
marginal contribution of each term to the model accuracy. At each itera-
tion, the ERR index is computed for each of the regressors not yet included
in the model and the one with the highest value is selected. The procedure
is repeated until a given number of regressors has been selected or if the
required prediction accuracy is achieved. Several variants have been intro-
duced in the literature using both forward and backward regression schemes
(e.g. [41, 50, 53, 62, 80, 86, 98, 120]).
The same rationale is applied also in regression problems, in the so called
stepwise regression subset selection methods. Other techniques based on
stepwise regression such as backward stepwise regression, stagewise and
leaps-and-bounds regression [87] are also considered classical methods for
regression problems.

In classification problems this family of algorithms is known as Sequen-
tial Feature Selection (SFS). The Forward SFS algorithm starts from an
empty subset and adds one feature at each iteration, selecting the one which
combined with the previously selected features maximizes the classifier
performance. Features are added over iterations as long as the classifier
performance is improving or until the required number of features has been
obtained. Conversely, the Backward SFS algorithm starts from the full fea-
ture set and discards one feature at every iteration, selecting the one whose
removal deteriorates the classifier performance the least. Various combina-
tions of the two mentioned strategies are also possible. SFS strategies are
step-optimal, and there is no guarantee of reaching the optimal solution due
to their incremental nature [100]. Indeed, each individual decision regard-
ing the inclusion or elimination of a feature depends on the current model
structure, so that early decisions (taken when the structure is still largely
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incomplete) will influence the final outcome, and the initialization is criti-
cal. Several variants of the sequential search method have been discussed
in the literature, such as the PTA(l, r) (Plus l and Take Away r), the SFFS
(Sequential Forward Floating Selection algorithm) and the SBFS (Sequen-
tial Backward Floating Selection algorithm) [43].

Randomized search mechanisms

To overcome the limitations of classical subset selection algorithms, which
are mainly related to their inherently local search mechanism, new ap-
proaches based on randomized algorithms have been recently introduced.
In the nonlinear (NL) identification field, some of them are based on evo-
lutionary paradigms. For example, a MSS algorithm that exploits random-
ness in choosing potential regressors has been proposed in [103]. More re-
cent randomized approaches, not based on evolutionary paradigms but on
the Expectation Maximization (EM) approach have been presented in [9].
A computational Bayesian approach to determine via numerical sampling
methods the posterior probability distributions of model structure and pa-
rameter estimates is employed in [10]. The algorithm is based on the Re-
versible Jump Markov Chain Monte Carlo (RJMCMC) procedure [47],
which is a generalization of the Metropolis-Hastings (MH) algorithm [58]
used in MCMC sampling. The RJMCMC procedure allows jumps be-
tween parameter spaces of different dimensions, a feature that makes the
algorithm particularly suitable for the MSS task. In fact, thanks to its trans-
dimensional nature, it can be used to take into account the update of the
model structure as part of the posterior target distribution. Briefly, the
method operates by randomly deciding at each step either to add/remove
a regressor or to update the parameters. It jointly performs the identifica-
tion of both the structure and the parameters, which though appealing in
principle, turns out to be very problematic, since the parameter distribu-
tion over different model structures is usually quite complex and so their
values do not vary continuously across structure variations [4]. Another
randomized approach with quite promising features and that generally per-
forms better than the RJMCMC, is the RaMSS algorithm [4], described in
more detail in Section 3.2. Other randomized approaches developed for ap-
plication in ML classification tasks, not based on evolutionary paradigms,
have been proposed in a few recent works. For example, the approach de-
scribed in [105] involves an initial random selection of the feature subset,
which is subsequently updated according to a randomized scheme that may
substitute or remove a single feature with a given probability. Though the
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Chapter 1. Introduction

update process is randomized, the feature selection process is still incre-
mental, with all the pros and cons of local search methods. Furthermore,
the method only considers the performance of the current model as a whole,
without distinguishing the relevance of the individual features within the
model, thus making the update process blind with respect to the features.
The methods discussed in [89] aim at the reduction of the original search
space by random projections of the feature space on a smaller space and
random extractions of feature subsets on which to perform the classifica-
tion task. Again, the strategy appears to be completely blind and does not
exploit the information resulting from each single subset that has been ex-
tracted and processed.

Regularization search mechanisms

Regularization methods have often been used for nonlinear MSS purposes.
These methods amount to solving linear regression problems with addi-
tional constraints (typically related to the model size) to avoid ill-conditioning
and/or to prevent overfitting. Ridge regression, the non-negative garrote
and the least-absolute shrinkage and selection operator (LASSO), fall into
this category [57]. While these methods are effective in obtaining parsimo-
nious models, they are not necessarily equal to the much more challenging
task of selecting the correct model structure (see, e.g., the discussion in [19]
relative to the LASSO). In ML regression problems these methods are re-
ferred as srinkage methods [127]. Regularization methods with application
to classification problems are discussed in [92], where it was shown that
for logistic regression with L1 regularization the sample complexity grows
only logarithmically in the number of irrelevant features. In view of this,
it is an appealing algorithm since it requires solving only a convex opti-
mization problem. On the other hand, the sample complexity for the logis-
tic regression method with L2 regularization grows at least linearly in the
number of irrelevant features and thus may be ineffective in settings where
only a few features are relevant, and the number of training examples is
significantly smaller than the input dimension.

In the supervised learning framework for classification there are three
main categories of FS methods, classified according to how the feature se-
lection and classifier construction processes interact.

Filter algorithms select features based only on data-related properties,
i.e. independently of the classifier design. For example, univariate fil-
ter methods are based on an individual feature assessment, which allows
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a ranking of the features. Then, the top features in the ranking are se-
lected. As interactions among features are not taken into account, it is not
infrequent that redundant terms might be selected in this way [76]. Fur-
thermore, features that are individually not significant are discarded, al-
though they may actually reveal a strong discriminatory power in combi-
nation with others [72]. Multivariate filter methods overcome this prob-
lem by evaluating subsets of features according to some scoring function.
This typically comes at a high cost in terms of computational load, es-
pecially when dealing with high dimensional data, given the exponential
complexity of the combinatorial problem. Several multivariate filter meth-
ods have been proposed in the literature to overcome this issue such as, the
Minimal-Redundancy Maximal-Relevance (MRMR) algorithm [38], Cor-
relation Based Filtering (CFS) [54], Markov Blanket Filtering (MBF) [70].
All three methods are based on an incremental strategy for the selection
of feature subset candidates. This has several drawbacks, both conceptual
and computational, the most important of which being that the decision
on which feature to add or remove at a given step of the selection process
depends locally on the currently selected feature subset. In other words,
the relevance of a specific feature is not evaluated as a global property, but
rather as a local one. This may stray the selection process from the path
leading to the optimal structure. Also, what is optimized at every step is
only the local improvement of the current feature subset with an elementary
feature variation. In this way selection errors are propagated throughout the
process. Finally, the incremental strategy depends critically on the thresh-
old adopted as a stopping criterion. For these reasons, all three methods
are subject to redundancy and overfitting problems, especially if applied to
datasets with extremely unbalanced dimensions such as microarrays [72].
Notice finally that MRMR and CFS employ the Pearson correlation coef-
ficient, which is applicable only to two-dimensional feature vectors, and
under the assumption of normal data distribution.
Wrapper algorithms are typically more accurate than filter-based ones, as
they perform FS simultaneously with the classifier design, so that feature
subsets are evaluated according to the performance the associated classifiers
can achieve. The space of feature subsets is explored with heuristic rules
(exhaustive search is typically not feasible) by employing mechnisms previ-
ously discussed. For example, the sequential FS (SFS) approach incremen-
tally builds the model, by adding at each step the feature that most improves
the classifier performance. Different wrapper algorithms based on the SFS
search mechanism are proposed in the literature, such as the PTA(l, r) (plus
l and take away r) [113], the SFFS (Sequential Forward Floating Selection)
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algorithm and the SBFS (Sequential Backward Floating Selection) algo-
rithm [100]. The same greedy policy is sometimes used in multivariate
filter methods (see, e.g., [38], [54], [107]), where it is used as a mechanism
for generating model candidates, which are then evaluated according to the
metric of choice. Greedy policies such as the SFS algorithms are subject to
the mentioned redundancy and overfitting issues as the incremental meth-
ods discussed above. In addition, the classifier bias can negatively affect
the FS process [73]. Besides sequential approaches, a significant amount of
work has been devoted to evolutionary methods such as Genetic Algorithms
(GA) [90], [109], [126], Genetic Programming (GP) [90], [88], [117], Par-
ticle Swarm Optimization (PSO) [125], [129], [64], [124], Ant Colony
Optimization (ACO) [82], [69], hybrid GAs [94], [63], Harmony Search
(HS) [102], [35].
Embedded algorithms combine the benefits of both explained approaches.
A feature screening is initially performed using a filter-based approach, fol-
lowed by the application of a wrapper method to refine the final solution.
They appear to be convenient in large scale problems such as microarrays
(e.g. [52], [51]).

From the above discussion it is apparent that, regardless of the specific
category, all FS methods may suffer from redundancy and overfitting is-
sues especially with datasets having large or disproportionate dimensions.
Another significant aspect is the computational cost involved in the com-
binatorial search of the space of feature subsets, which is further increased
in wrapper methods which add the classifier design on top of each fea-
ture subset evaluation. As an attempt to overcome some of the discussed
drawbacks of the existing methods, the first outcome of the research was
the development of a novel classification approach denoted RFSC (Ran-
domized FSC) algorithm [20], which jointly addresses the FS and classifier
design tasks. The classifier is constructed as a polynomial expansion of
the original attributes and a selection process is applied to find the relevant
terms of the model. The selection method progressively refines a probabil-
ity distribution defined on the model structure space, by extracting sample
models from the current distribution and using the aggregate information
obtained from the evaluation of the population of models to reinforce the
probability of extracting the most important terms. In order to reduce the
initial search space, a preprocessing technique called distance correlation
filtering was also applied. Though the obtained results were satisfactory
with small/medium size problems, it was observed that the performance of
the algorithm deteriorates when dealing with larger data-sets, as the com-
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plexity of the combinatorial problem grows exponentially. More precisely,
both the time required to solve the problem and the actual quality of the
solution (due, e.g., to local minima issues) are affected.

In NL identification no attempt has been made to parallelize and/or dis-
tribute the selection process. On the other hand, several approaches based
on a parallelization of the processing have been proposed in the ML liter-
ature (see, e.g, [85], [33], [48]) to improve the effectiveness and speed up
the selection process. For example, in [33] multiple processors perform in-
dependent FS tasks on the same data and the final local best results are sent
to a master process, which selects the best one in terms of performance.
Guillen et al. [48] propose a parallelized version of the Forward-Backward
(FB) SFS. Several feature sets are constructed which differ from the origi-
nal one by one feature (either added or removed), and an FB run is carried
out on each of them. Then, the best of the local solutions is selected.

While parallelization can mitigate the local minima problem by search-
ing for multiple different solutions at the same time, it does not reduce
the complexity of the problem if the computational effort is not distributed
among the available processors. In this direction, Chu et al. [29] showed
that dividing the data-set either vertically (along the features) or horizon-
tally (along the data samples) can significantly improve the efficiency of
the process, resulting in a linear speed-up with the increase of computing
resources. In [18], [17] the authors proposed a distributed FS approach with
vertical partitioning. Each processor operates on a different subset of fea-
tures (which configures a much smaller problem than the original one) and
the local solutions are eventually merged. In this way, however, the local
search processes are completely independent and do not share any infor-
mation. This may lead to poor results if the relevant features are scattered
in the different subsets and their actual importance emerges only if they
appear combined together [125].

Alternative distributed architectures for supervised FS with horizontal
and vertical partitioning have been proposed in [131] and [11], where local
best solutions are shared among all processors. More in detail, horizontal
partitioning is used in [131] so that different processors operate on differ-
ent data samples. At each iteration, the processors independently select one
feature to add to the current model (using an SFS method) and then a master
processor picks only one of these locally selected features and adds it to the
current model. This approach introduces an important element, i.e. that the
local searches are repeated after a common knowledge is established (the
current model), that is based on aggregating the local results. However, the
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Chapter 1. Introduction

method of [131] cannot be extended to exploit vertical partitioning as well,
and therefore it might be ineffective for vertically large problems. More-
over, it also carries over the defects of the SFS procedure (see, e.g., the
discussion in [?]). In [11], a supervised FS approach based on a filtering
method is developed that works for both horizontally and vertically parti-
tioned data, in which local results are shared among all processors before a
final (centralized) FS step. A shortcoming of this method is related to the
fact that the local selections are not iterated based on common knowledge.
Another drawback is typical of filter methods based on univariate feature
ranking, which neglect the interaction between features. In particular, fea-
tures that are considered individually irrelevant are eliminated, although it
may well occur that they become relevant in combination with other fea-
tures [125].
To overcome the problem, an algorithm based on vertical data partitioning
and a distributed searching architecture was proposed. It was tested both for
model structure selection problems in the context of nonlinear identification
(dRaMSS [8]) and FSC (DFS [22]) problems. In both cases, significant im-
provements have been obtained for large problems in the execution time
and the classification performance.

The basic idea underlying the proposed distributed method is as follows.
The regressors/features are divided into subsets (vertical data-set partition-
ing), each of which is associated to a dedicated processor that performs
a local search. When all local selection processes are completed, each
processor shares the regressors/features of its locally selected model with
all other processors, and the local searches are repeated until convergence.
Thanks to the vertical partitioning and the distributed selection scheme, this
architecture is capable of addressing relatively large scale examples. The
procedure is also efficient since the local processors perform the selection
tasks in parallel and on much smaller search spaces. An important feature
of the proposed method is its tendency to produce simple model structures,
which is generally advantageous for the interpretability and robustness of
the model. Though effective on medium/large problems, the proposed ap-
proach still appears ineffective when dealing with extra-large searching
spaces (e.g., micro-arrays) due to computational issues. As an attempt to
solve this problem, a multivariate filter algorithm (D2CORFS [21]) exploit-
ing the benefits of vertical partitioning and of the described distributed ar-
chitecture is proposed. The method is based on a distance correlation index
that measures the output dependence on a given subset of features. It was
shown to be quite effective in problems such as micro-arrays.

12



Structure of the thesis

The thesis is organized as follows:

• Chapter 2 provides the reader with the basic theoretical frameworks
and concepts used for developing the proposed concepts.

• Chapter 3 presents a detailed explanation of the randomized model
search idea, which is based on the randomized extraction of popula-
tions of models. A novel wrapper algorithm (RFSC [20]) based on
this concept is discussed in details.

• In Chapter 4 a distributed scheme with partial information sharing
is introduced, that is applicable to both the NL [8] and the ML [22]
frameworks. It exploits the benefits associated to parallelization, ver-
tical data partitioning, and information exchange (among the differ-
ent processors). The presented distributed optimization scheme can
in principle be combined with any FS method of choice. The pro-
posed distributed scheme is exploited to develop a novel multivariate
filter FS algorithm denoted as D2CORF [21]) which employs the dis-
tance correlation (dCor) index as a criterion function to reinforce the
probability of extracting the most important terms based on concept
discussed in Chapter 3.

• The results of a new ensemble method which exploits the random na-
ture of the RFSC algorithm together with sample manipulation as a
mechanism to generate ensembles of classifiers are presented in Chap-
ter 5.

• Some concluding remarks are drawn in Chapter 6.
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CHAPTER2
Preliminaries

This chapter provides the basic theoretical framework and concepts used in
this thesis. First, it is discussed why FS is a prerequisite for obtaining good
results in classification problems. In Sections 2.2 and 2.3, a general intro-
duction to classification and regression in the context of supervised machine
learning, is provided, as well as the principles on which well-established
classification algorithms are based. Then, the nonlinear identification prob-
lem is introduced, which for certain classes of nonlinear dynamical mod-
els (e.g., the NARX/NARMAX), amounts to a linear regression where the
main task is the selection of appropriate regressors that best represent the
underlying process. This model structure selection (MSS) turns out to be
a task akin to FS. Technical issues related to nonlinear model identifica-
tion, such as parameter estimation and model evaluation, are discussed in
Sec. 2.6. Finally, Sec. 2.7 provides metrics which are used in both dis-
cussed frameworks, and introduces the distance correlation (dCor) index as
a dependence measure for random variables.
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Chapter 2. Preliminaries

2.1 Supervised learning and the feature selection problem

Supervised learning is the process of learning a map between a set of input
variables and an output variable, with the aim of using this map to predict
the outputs for unseen data [31]. A dataset generally consists of a set of N
observations {u(k), y(k), k = 1, . . . , N}, where u = [u1, . . . , uNf ] is the
input vector and y is the output. The input-output pairs used in the learning
process constitute the training set, while those used for model evaluation
belong to the test set. Input variables are often denoted features (or at-
tributes), especially in connection with classification problems. A feature
can be defined as an individual measurable property of the process being
observed [27]. Outputs can be discrete (usually denoted classes) or con-
tinuous, and the learning problem is called a classification or a regression
problem, respectively. Accordingly, the inferred function is called a classi-
fier if the output takes discrete values and a regression function if the output
is continuous [61].

It is often the case that the number of available features is large. Indeed,
improvements in data collection technologies resulted in a drastic data ex-
pansion, from tens to thousands of variables, and more. However, this in-
formation explosion has also its drawbacks. Indeed, most of the available
features are redundant or irrelevant, and as such they may have a negative
effect on the learning process and on the accuracy of the resulting model,
as they can add more noise than useful information [72]. Reducing the set
of features to the really essential ones has various advantages: it reduces
the computational cost of the learning process and simplifies the model
structure, thus facilitating its interpretation and data understanding, and ul-
timately improves both the model accuracy and robustness [32].

Hence, a dimensionality reduction (in terms of the input variables) has
become a crucial task in different fields such as bioinformatics, machine
learning (ML), pattern recognition (PR), etc. In general, it is performed
either by feature extraction or by feature selection (FS) [101], or combi-
nations thereof. The first approach transforms the initial feature space into
a lower dimensional space. On the other hand, FS reduces the problem
dimensionality by selecting the best possible subset of the complete input
feature set. In this work we focus on the latter approach, which can be for-
malized as follows.

Let F = {u1, . . . , uNf} be a set of Nf possible input variables. Then,
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2.2. Supervised learning: The classification problem

S = 2F denotes the set of all possible feature subsets. Given s ∈ S ,
|s| denotes its size (the number of input variables it contains). Let J be
some criterion function (e.g., a performance index or some statistical met-
ric), used to evaluate feature subsets. Without any loss of generality, let us
consider a higher value of J to indicate a better feature subset. Then the
FS problem can be formulated as follows: find the subset s? for which

J (s?) = max
s∈S
J (s). (2.1)

In other words, FS can be envisaged as a combinatorial problem aiming
at selecting a feature subset that maximizes the chosen criterion function.

A model ŷ = f(s) is a function of (a subset of) features that provides an
estimate of the output corresponding to its arguments. Once the modeling
procedure is defined (e.g., a linear regression), a model is fully determined
by the subset of features constituting its arguments. In other words, there is
a bijective mapping from subsets of features to models.

2.2 Supervised learning: The classification problem

In classification problems one is interested in constructing a model that
captures the relationship between features (inputs) and classes (outputs)
through a learning process operating on the available observations (input-
output pairs).

Assume that a set of N observations is available, each consisting of a
pair (u(k), c(k)), k = 1, . . . , N , where the components up, p = 1, . . . , Nf

of vector u are the original features and c ∈ {1, . . . , Nc} is the correspond-
ing class (assumed known, according to the supervised learning frame-
work).

The objective is to construct a model that is capable of predicting cor-
rectly the class for observations unseen in the learning phase, of the follow-
ing type:

ĉ(k) = f(u(k)), (2.2)

where ĉ denotes the class estimate and f is a function. The simplest case
is binary classification, which can be addressed e.g. by assigning the esti-
mated class value depending on the sign of f(u(k)). Multiclass problems
are generally addressed by a generalization of binary classifiers, according
to two main strategies, namely one-vs.-all and one-vs.-one. In the former

17



Chapter 2. Preliminaries

case, a binary classifier is trained for each class (the output value represent-
ing the membership of the input sample to the given class). The samples
of that class are given as positive samples, and all other samples as nega-
tives. In the one-vs.-one strategy, a binary classifier is trained for each pair
of classes, and must discriminate these two only. In prediction, a majority
voting scheme is applied to decide the actual estimated class. In this work
we adopt a one-vs.-all approach, and accordingly recode the output as an
Nc-dimensional vector y, with binary components, defined as:

yi(k) =

{
1, c(k) = i

−1, otherwise
(2.3)

where i = 1, . . . , Nc. Accordingly, the multiclass problem is recast as Nc

binary classification problems, resulting in the following Nc models:

ŷi(k) = fi(u(k)), i = 1, . . . , Nc. (2.4)

Notice that if Nc = 2, a single output is sufficient to discriminate between
the two classes, the −1 value of y1 being directly associated to class 2.

To avoid ambiguities in the class estimation, the actual class estimate is
conventionally assumed as the label corresponding to the individual classi-
fier returning the largest value:

ĉ(k) = arg max
i=1,...,Nc

ŷi(k). (2.5)

In summary, the multiclass problem can be addressed by training one bi-
nary classifier for each class, that discriminates if a sample belongs to that
class or not. Accordingly, in the following we shall focus on the training
and evaluation of the binary classifiers ŷi(k), i = 1, . . . , Nc.

In the literature, different algorithms have been proposed regarding the
classifier design problem, based on Artificial Neural Networks (ANN) [95],
Support Vector Machines (SVM), often in combination with Radial Basis
Functions (RBF) as kernel functions [49], Twin Support Vector Machines
(TSVM) [123], instance based learning methods such as Nearest Neighbor
(NN) and Data Gravitational Classification (DGC) [2], evolutionary meth-
ods as genetic programming (GP) [40] and PSO [84], [108]. Instance based
algorithms are particularly appealing due to their simple classification logic
and generally satisfactory performance. In the NN (or 1-NN) algorithm, a
new sample is simply assigned to the class of the nearest previously avail-
able sample. This is one of the most used and well known classification
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algorithms due to its simplicity, though it is reported to suffer from vari-
ous drawbacks such as high dimensionality, low efficiency, high storage re-
quirements and sensitivity to noise [116]. Cases where the classes are non-
separable or overlapping appear to be particularly critical [78]. The k-NN
extension classifies a new instance based on the majority of the k nearest
neighbors. Several variants of the k-NN method have been proposed in the
literature, that typically introduce weighted distances or similar concepts to
improve the performance, such as the Adaptive k-NN (KNN-A) [118], the
Distance Weighted k-NN (DW-KNN) [39], the Center NN (CNN) [45], the
Cam weighted distance NN (CamNN) [132]. DGC algorithms [23] have
also been put forward as an attempt to overcome the mentioned problems
of the NN algorithm. In this respect, it is worth mentioning the work of
Peng et al. [96], which employs feature weighting and a tentative random
feature selection algorithm to compute the feature weights. An enhance-
ment of the DGC algorithm, denoted DGC+ is proposed in [23] to deal
with imbalanced data. Peng [97] also proposed a fast feature weighting
algorithm for DGC that evaluates features by using discrimination and re-
dundancy.

In the following we provide the basic principles of the classification
methods that are used in this thesis.

2.2.1 Linear regression classifier

A convenient way to represent the unknown functions fi(·), i = 1, . . . , Nc,
is to employ parametric functional expansions, so that the class estimate ŷi:

ŷi(k) =

(
NF∑
j=1

ϑ
(i)
j ϕj(k)

)
= ϕT (k)ϑ(i), (2.6)

i = 1, . . . , Nc, where ϑ(i) is a vector of unknown parameters (associated
to the ith output), and ϕ(k) = [ϕ1(k), . . . , ϕNF (k)]T , where ϕj(k) =
ϕj(u(k)), j = 1, . . . , NF , is a given (nonlinear) function of the features. It
predicts class 1 if ŷi(k) > 0 otherwise class −1.

In view of the fact that equation (2.6) actually configures a linear regres-
sion, these (extended) features are also called regressors.

Various types of basis functions can be used to construct the functional
expansions, such as Fourier series, piecewise linear models, polynomial
models, radial basis functions, and sigmoidal neural networks, all having
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the universal approximation property. In this work, we will consider poly-
nomial expansions, so that a generic term ϕj(k) takes the form:

ϕj(k) =

{
up1(k) · up2(k) · . . . · upl(k), l > 0

1, l = 0
(2.7)

where ps ∈ {1, . . . , Nf}, s = 1, . . . , l, with 0 ≤ l ≤ L, L being the
maximum allowed degree of the polynomial expansion for classification
problems.

The polynomial expansion is a natural generalization of a purely linear
model, that is useful when the first order interactions among the features
are insufficient to obtain satisfactory results [51]. Most conveniently, this
formulation still provides a linear-in-the-parameters model, which greatly
facilitates parameter estimation. On the down side, the number of terms
in a polynomial expansion increases rapidly with the maximum degree and
the number of arguments (curse of dimensionality). Conventional practice
has it that relatively small models of this category are suitable for various
applications. It is also well-known that the smaller the size of the model,
the more robust it will be and the more capable of generalizing to new
observations. Therefore, a crucial problem consists in selecting the best
terms of type (2.7) for the model.

2.2.2 Linear Support Vector Machine (SVM) classifier

SVM is a supervised ML tool applicable to both the mentioned supervised
learning tasks, namely the regression and classification problems. Here we
discuss its application to the latter case.

Fig. 2.1 illustrates a simple two dimensional classification problem for
a set of linearly separable data (samples of the two classes are shown in
different colors). The coordinates of the individual instances are called
support vectors. A linear classifier has a form given by:

y(ϕ) = wT
SVMu+ bSVM , (2.8)

where vector wSVM is a weight vector and bSVM is a bias. In two dimen-
sions, as in the given 2-dimensional example, it represents a line splitting
the plane into two parts, one for the positive class and one for the nega-
tive one. For an n-dimensional space (2.8) is a hyperplane. Learning the
linear SVM classifier amounts to finding the hyperplane which provides
optimal separation among the two classes, by maximizing the distance of
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SupportVector

SupportVector

SupportVector

Margin = 2
‖w‖

wTu+ b = 1 w

wTu+ b = 0

wTu+ b = −1

linearly separable data

Figure 2.1: Two-dimensional classification problem with SVM classifier.

the nearest data points from the hyperplane. Hence, learning a SVM classi-
fier can be formulated as a quadratic optimization problem subject to linear
constraints, as follows:

arg min
wSVM

2

‖wSVM‖
(2.9)

subject to (2.10)

yk(w
T
SVMuk + bSVM) ≥ 1 k = 1, . . . , N. (2.11)

2.2.3 k-Nearest Neighbors (k-NN) classifier

Given a new datumuN+1, the k-NN algorithm identifies among the training
input vectors uk, k = 1, . . . , N the k nearest neighbors to it, regardless of
their class labels. The new data instance is assigned to the class correspond-
ing to the majority of the k nearest neighbors. The distance between input
samples can be calculated using different metrics, such as the Euclidean,
the Minkowski or the Mahalanobis distances. To avoid ambiguity, k has to
be an odd number in biclass problems, while in the multiclass case k must
not be a multiple of the total number of classes. The k-NN method works on
a very simple principle, and is very easy to apply. However, it is known to
be sensitive to noise [23]. Moreover, all attributes are assumed to have the
same impact on the computation of the distance, which can be a drawback
in the presence of redundant terms, possibly leading to a misclassification.
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2.2.4 Naive Bayes (NB) classifier

The NB is a statistical classifier based on Bayes Theorem, which predicts
the class membership probability and assigns an unseen data sample to the
class with the highest membership probability. It is based on conditional
independence, that is the assumption that the feature values are condition-
ally independent of one another given the class yi of the sample.

According to Bayes Theorem, a posteriori probability that the a sample
u = [u1, · · · , uNf ] 1, belongs to class yi, i = 1, . . . , Nc is given by:

P (yi|u) =
P (u|yi)P (yi)

P (u)
, (2.12)

where P (u|yi) is the a posteriori probability of u conditioned on class yi,
P (u) is the a priori probability of u and P (yi) is the a priori probability of
yi.
Applying the naive assumption of conditional independence, P (u|yi) in
2.12 can be expressed as:

P (u|yi) ≈
Nf∏
j=1

P (uj|yi). (2.13)

Probabilities P (uj|yi), j = 1, · · · , Nf can be estimated from the training
set. In case uj is a categorical variable, P (uj|yi) is actually the number of
samples of class yi in the training set having the feature value uj , divided
by the number of samples of class yi in N . Otherwise, if the feature values
are continuous it is assumed that they have a Gaussian distribution g with a
mean µ and standard deviation (STD) σ so that:

P (uj|yi) = g(uk, µyi , σyi) (2.14)

where µyi and σyi are the mean and STD of an attribute uk of class C on
the training data.
Since the denominator in 2.12 does not depend on the class and the feature
values uj are given, only the numerator matters when computing P (yi|u).
In the classification phase, a new data sample is attributed to the class yi for
which P (u|yi)P (yi)) is maximized.

1Here u = [u1, · · · , uNf ] denotes vector of Nf feature values for a given data sample.
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2.3 Supervised learning: The linear regression problem

In regression problems the output variable is not categorical, but continu-
ous. Input variables are called independent variables, and the output(s) the
dependent variable(s). The output can be either a vector y = [y1, . . . , yM ],
M denoting the number of outputs (multiple regression problem) or a scalar.
For simplicity, we will focus on the scalar case.

The output y is a function of u, through the parameter vector ϑ. The
regression is linear if y(k) is linear in ϑ. In this work we focus on linear
regression problems. Given a set of N observations, each consisting of a
pair (u(k), y(k)), k = 1, . . . , N , where u(k) is vector of input values and
y(k) is the corresponding (scalar) output. The aim is to find a model of the
form

ŷ(k) =

NF∑
j=1

ϑjϕj(k) = ϕT (k)ϑ, (2.15)

where ϕ(k) = [ϕ1(k), . . . , ϕNF (k)]T , ϕj(k), j = 1, . . . , NF being (pos-
sibly nonlinear) functions of the original input variables, of the form (2.7),
and ϑ = [ϑ1, . . . , ϑNF ]T is the vector of unknown parameters.
This formulation has the advantage that the model is linear-in-the-parameters
so simple parameter estimation methods such as Least Squares (LS) regres-
sion can be applied, what greatly facilitates parameter estimation. Another
benefit is that it has provable convergence conditions.

2.4 Validation procedures in classification problems

The aim of the classifier design is to learn a map between a set of input
variables and an output variable, capable to predict the outputs for unseen
data. A good model has good predictive capabilities. In order to assess the
accuracy and reliability of the learned models data are split into two parts:
training set which is used in the learning process, and test set which is used
for model evaluation.
The validation method based on this principle is called hold out. Data sam-
ples are randomly divided into two subsets, one of which is employed for
training and the other one for testing. It involves just a single execution of
an algorithm. In the work presented here, 70% samples are employed for
training and 30% for testing.
To reduce the dependence of the results on the choice of training and test
data, the classification performance is usually evaluated using the k-fold
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cross validation (k-FCV) approach. Briefly, the dataset is split into k (equal
and non-overlapping) subsets (folds), possibly uniformly representative of
all classes. Then, k − 1 folds are used for training and the remaining ones
for testing, the procedure being repeated k times so that all folds are tested
once. The algorithm performance is finally computed as the average over
the ten independent runs. Leave-one-out-cross-validation (LOOCV) is a
particular case of k-FCV, with k = N .

2.5 Nonlinear system identification

System identification refers to the procedure of building a mathematical
description of the dynamic behavior of a system or process from measured
data [110]. The black-box identification of nonlinear dynamical models is
a challenging problem that has received much attention in the last decades.

A finite-order, nonlinear, discrete-time, dynamical model can be repre-
sented as a recursive expression that relates the current output value y(k) to
the past values of the input (u(·)) and output signals:

y(k) = f(x(k)) + e(k) (2.16)

where f(·) is a nonlinear function, e(·) is a noise term assumed to be
drawn from an independent and identically distributed (i.i.d.) sequence,
and x(k) = [y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)], nu and
ny being the input and output maximum lags, respectively [62]. Equa-
tion (2.16) is referred to as NARX (Nonlinear AutoRegressive with eXoge-
nous variables) model representation, a subclass of the more general NAR-
MAX (Nonlinear AutoRegressive Moving Average with eXogenous vari-
ables) class introduced in [74, 75], which also allows for past noise terms
in x(k), therefore allowing for a more flexible representation of the distur-
bance model. The NAR[MA]X representation provides a unified represen-
tation for a wide class of nonlinear systems [14]. NARX/NARMAX mod-
els have been successfully employed in many different application fields,
because of their flexibility and representative capabilities.

The nonlinear system identification problem can be described as the
problem of finding an estimator f̂(·) for function f(·) by processing a set of
input-output observations {(u(k), y(k)), k = 1, . . . N}. Assuming that f is
continuous, one may resort to a universal approximator, i.e. a functional
expansion that can approximate any continuous function to an arbitrary
level of accuracy, provided that it is endowed with sufficient degrees of
freedom. In the literature different approximation functions for nonlinear
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system identification are introduced, such as piecewise linear models, poly-
nomial expansions, multivariate adaptive regression splines [44], Gaussian
processes, wavelets, multilayer perceptron neural networks, radial basis
functions. Still, functional expansions that provide a linear combination
of nonlinear basis functions are the most common choice:

ŷ(k) = f̂(x(k),ϑ) =

NF∑
j=1

ϑj ϕj(k), (2.17)

where ŷ(k) denotes the estimate of y(k), ϕj(k) = ϕj(x(k)), j = 1, . . . , NF ,
are known nonlinear basis functions and ϑj , j = 1, . . . , NF , are parameters.
Expression (2.17) is a linear regression, where the nonlinear basis functions
are referred as regressors and as such it carries over the properties discussed
in Section 2.3.

Equation (2.17) can also be expressed in vector form:

ŷ(k) = ϕ(k)T ϑ (2.18)

ϕ(k) = [ϕ1(k), . . . , ϕNF (k)]T denoting the regressor vector and ϑ =
[ϑ1, . . . , ϑNF ]T the parameter vector. The advantages of linear regressions
such as ( 2.18) have already been discussed in Section 2.3.

Among all possible linear-in-the-parameters function expansions, a pop-
ular choice is the polynomial one. In the polynomial NARX model f(x(k))
is a linear combination of all possible monomials in the components ofx(k)
up to a given degree nd, so that a generic term ϕj(k) takes the form:

ϕj(k) =

{
y(k − dj1) . . . y(k − djr)u(k − dj,r+1) . . . u(k − djl), l > 0

1, l = 0

(2.19)

with dj1, · · · , djl ∈ N, L being the maximum degree of the polynomial ex-
pansion. Applying (2.19) to (3.8) results in polynomial NARX models,
which can be considered as a direct extension of their linear counterparts
since the nonlinearities are explicitly modeled as products of the linear vari-
ables.
This allows an easier interpretation of the model, because terms can be
more directly related to the physical aspects of the system under consid-
eration. Additionally, each element of the parameter vector ϑ can be in-
terpreted as a measure of the importance of the associated physical phe-
nomena and the existence of cross terms can also reveal the existence of

25



Chapter 2. Preliminaries

specific nonlinear dependencies among them as well. Other models, such
as artificial neural network or wavelets, are usually capable of providing
more compact representations, but they are not easily interpretable as there
is not a direct relationship between model terms and physical variables.

The similarity of expressions (2.6), (2.15) and (2.18), which represent
the model form in the classification, the linear regression and the nonlinear
identification problems, respectively, is apparent. Notice, however, that the
input-output relationship in classification and regression problems is typi-
cally non-dynamic, i.e. the output does not depend on the previous input
or output values, whereas it is dynamic in the nonlinear identification case.
Also, in the classification problem the outputs (and sometimes the inputs as
well) take values in a discrete set, whereas in regression and identification
problems the input and output signals take continuous values.

2.6 Parameter estimation in linear regression problems

The linear-in-the-parameters structure of the NARX and linear regression
models given by (2.18) and (2.15), allow the application of well estab-
lished, computationally convenient techniques for parameter estimation of
the Least Squares (LS) family. The loss function is defined as the sum (or
mean) of the squares of the output estimation errors e(k) = y(k) − ŷ(k),
k = 1, . . . , N . In the context of dynamical NARX models e(k) coincides
with the one-step ahead prediction error, so that the model minimizing the
loss function is that with the best one-step ahead prediction capabilities,
according to the Prediction Error Minimization (PEM) paradigm. For clas-
sification problems, on the other hand, due to the discrete nature of the
output, the loss function has a different form and accounts for the rate of
misclassified observations (with respect to class i), the so called 0− 1 loss.
Due to the hard nonlinearity enforced by this loss function, it is customary
to approximate it with smoother functions, in order to facilitate the opti-
mization process.

2.6.1 Least Squares

In linear regression problems, the cost function is given by the Mean Squared
Error (MSE) :

Jp(ϑ) =
1

N

N∑
k=1

(y(k)− ŷ(k))2, (2.20)
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where ŷ(k) is the estimate of the output at time k. For dynamical NARX
models it holds that ŷ(k) = ŷ(k|k−1), which is the optimal one-step-ahead
prediction of y(k) (it is based on information up to time k−1). Accordingly,
in that context, (2.20) is referred to as the Mean Squared Prediction Error
(MSPE).

The optimal model is such that

ϑ̂ = arg min
ϑ

Jp(ϑ), (2.21)

and can be calculated in closed form with the LS formula. More in detail,
expression (2.20) can be conveniently rewritten in matrix form:

Jp(ϑ) =
1

N
‖y −Φϑ‖2, (2.22)

where y = [y(1), . . . , y(N)]T , and Φ is the N ×m regression matrix

Φ =


ϕ1(1) ϕ2(1) · · · ϕm(1)
ϕ1(2) ϕ2(2) · · · ϕm(2)

...
... . . . ...

ϕ1(N) ϕ2(N) · · · ϕm(N)

 . (2.23)

The LS solution of (2.21) is given by

ϑ̂ = (ΦTΦ)−1ΦTy, (2.24)

provided that matrix ΦTΦ is positive definite, a condition that is fulfilled if
Φ has full rank.

2.6.2 Logistic regression

As already mentioned, the modeling task for classifiers taking the form of
a linear regression is addressed separately for each class. In the following,
we shall focus on the modeling of classifier ŷi associated to class i. For
ease of notation we will drop the indexing on class i.

For a given structure, the parameter estimation for a model of type (2.6)
is typically formulated as a minimization problem with reference to a loss
function defined as L : {−1,+1} × R → R+. A standard loss function
evaluates the model performance as the ratio of misclassified observations
(with respect to class i) over the total number of tested samples. The result-
ing optimization problem is given by

min
ϑ

1

N

N∑
k=1

L0−1(y(k), ŷ(k)), (2.25)
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whereL0−1 is the 0-1 loss function, defined asL0−1(q1, q2) = 1{q1q2<0}(q1, q2).

Due to the hard nonlinearity enforced by this loss function, the latter is
usually approximated with functions with nicer properties regarding opti-
mization (e.g., hinge, squared hinge, logistic, exponential). In the follow-
ing, the logistic loss will be employed for this purpose, resulting in the
following reformulation of the optimization problem:

min
ϑ

1

N

N∑
k=1

log(1 + e−y(k)ŷ(k)). (2.26)

The reader should note that log(1 + e(·)) is a strictly convex function, and
ŷ(k) is linear in ϑ. Therefore, the resulting cost function is strictly convex
in ϑ, and the minimizer of (2.26) is unique.

Although a closed-form solution to the above optimization problem does
not exist, the logistic loss is a continuous differentiable function, which
allows to apply gradient descent methods in the optimization process. In
this work, a standard Newton’s iterative optimization scheme is applied to
solve problem (2.26).

2.6.3 Statistical test for regressor significance

The rejection of redundant terms is a crucial step in the identification pro-
cedure. It can be shown that the covariance matrix of the LS estimator ϑ̂ is
equal to

cov(ϑ̂) = (ΦTΦ)−1σ2
e (2.27)

where σ2
e is the variance of the noise signal e(·) which can be estimated as

σ̂2
e =

1

N −m
‖y −Φϑ‖2 =

N

N −m
Jp. (2.28)

Using σ̂2
e in (2.27) we can estimate the variance of the jth regressor as:

σ̂2
j = σ̂2

eVjj, (2.29)

where Vjj is the jth diagonal element of V = (ΦTΦ)−1.
The variances σ̂2

j can be used to test the statistical relevance of each
regressor using a Student’s t-test. More precisely, the jth regressor is con-
sidered to be statistically irrelevant (and therefore rejected) if the interval

[ϑ̂j − σ̂jtα,N−τ , ϑ̂j + σ̂jtα,N−τ ] (2.30)
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contains 0, tα,N−τ being the 100(1− α) percentile of the Student’s t distri-
bution with N − τ degrees of freedom and significance confidence interval
α, where τ is the number of components of ϑ.

A slightly different reasoning applies to the logistic regression problem,
for which the Newton method has been applied to solve the optimization
problem (2.26), and not the LS formula. According to [16], the update
equation of the Newton method is structurally equivalent to an Iteratively
Reweighted Least Squares algorithm, so that upon convergence one can
evaluate the parameter covariance as in standard Weighted Least Squares.
Therefore, the variance σ̂2

j of the estimated parameters is given by:

σ̂2
j ≈ σ̂2

eG
−1
jj , (2.31)

where σ̂2
e is variance of the residuals and Gjj is the jth diagonal element of

the HessianG = ΦTRΦ upon convergence, Φ being the regression matrix
andR a diagonal N ×N matrix with diagonal elements given by:

Rkk = ỹ(k)(1− ỹ(k)), (2.32)

k = 1, . . . , N , where ỹ(k) = 1/(1 + ey(k)ŷ(k)).

Thus defined, the variance (2.31) can be employed in a Student’s t-test
as well, to determine the statistical relevance of each regressor.

2.7 Model evaluation metrics

2.7.1 Model evaluation metrics in nonlinear identification

As already mentioned, in the PEM framework it is natural to evaluate mod-
els according to their one-step-ahead predictive capabilities, using the MSPE
index. However, to improve the robustness of the MSS task it is sometimes
useful to compare models also in terms of their long range dynamics, using
the Mean Square Simulation Error (MSSE) besides the MSPE [98]:

MSSE = Js(ϑ) =
1

N

N∑
k=1

(y(k)− ŷs(k))2, (2.33)

where ŷs denotes the simulated output of the model (sometimes referred
to as free-run prediction). In this framework the model output at a given
time instant k is calculated as a function of the previous model output sam-
ples ŷs(k − 1), . . . , ŷs(k − ny) as opposed to the measured output samples
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y(k−1), . . . , y(k−ny). For a more detailed comparison of prediction- and
simulation-based identification approaches the reader is referred to [98],
[30], [1]. For computational reasons, we here limit the use of Js only to
the evaluation of models for the MSS task, whereas parameter estimation
is still carried out by minimization of the Jp index.

Furthermore, for MSS purposes an exponential version of these cost
functions is used, which remaps them in the [0, 1] range (high-performance
models being close to 1), [111]. More in detail, let Jp = e−KJp , and
Js = e−KJs , where K > 0 ∈ R is a tuning parameter (K is sometimes
denoted “risk sensitivity” parameter, see e.g. [77]). In this way, the dif-
ference between models with similar performance is amplified, which fa-
cilitates the discrimination process operated by the MSS procedure. This
is especially important in prediction error minimization approaches where
many models of comparable high performance may sometimes be obtained:
with the exponential index one can detect even small improvements in the
performance.

Accordingly, for MSS purposes models are evaluated in terms of the
following composite index [1], [4]:

J = αJJs + (1− αJ)Jp, (2.34)

where αJ ∈ [0, 1] is a user defined parameter that determines the balance
between the simulation and prediction indices.

2.7.2 Model evaluation metrics in classification problems

Classifiers are commonly evaluated with several metrics so that different
aspects of the obtained model can be assessed. The basic evaluation metric
is the correct classification rate, defined as the ratio of correctly classified
samples over the total number of tested samples:

J = 1− 1

N

N∑
k=1

L0−1(y(k), ŷ(k)) (2.35)

The performance index (2.35) can be reformulated as:

J =
TP + TN

N
, (2.36)

where TP and TN denote the number of correctly classified samples of
the positive and negative classes, respectively. The total number of sam-
ples equals the sum of misclassified and correctly classified samples of
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both classes, i.e. N = TP + TN + FP + FN , where FP and FN
are the misclassified samples of the positive and negative classes, respec-
tively. The sensitivity of the classifier is measured by the true positive rate
TPR = TP

TP+FN
, i.e. the ratio of correctly classified positive samples over

the total number of positive samples. Conversely, the specificity is captured
by the true negative rate TNR = TN

TN+FP
, i.e. the ratio between correctly

classified negative samples over the total number of negative samples. The
Gmean and Fscore indices combine both criteria:

Gmean =
√
TPR · TNR (2.37)

Fscore = 2
TPR · TNR
TPR + TNR

. (2.38)

An alternative accuracy measure for classifiers is the Cohen’s Kappa
rate [12], which is capable of dealing more effectively with imbalanced
data. The Kappa statistic was originally designed to compare two differ-
ent classifiers to measure the degree of (dis)agreement, compensating for
chance (dis)agreements, but can be used to evaluate the merit of a specific
classifier by comparing it to an “ideal” classifier producing the exact clas-
sifications. Let the confusion matrix be an Nc ×Nc matrix C such that Cij
equals the number of samples that are classified in class i by classifier 1 and
j by classifier 2, and denote by Ci· =

∑Nc
k=1Cik and C·j =

∑Nc
k=1Ckj the

row and column counts (that represent the individual classification counts).
Then, the Kappa rate is defined as follows:

K =
N
∑Nc

i=1Cii −
∑Nc

i=1Ci·C·i

N2 −
∑Nc

i=1Ci·C·i
,

and ranges from −1 (total disagreement) to 0 (random classification) to 1
(total agreement). The Kappa statistic is very useful for multi-class prob-
lems, in that it measures the classifier accuracy while compensating for
random successes [23].

2.8 Measuring the dependence of random variables

Various statistical tests have been developed in the literature to test the de-
pendence of random vectors. The dCor criterion, proposed in [115] and
refined in [114], is a generalization of the correlation concept that provides
a reliable dependence measure between random vectors of arbitrary dimen-
sion. It is applicable to both discrete and continuous random variables, and
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does not require any a priori assumption on their distribution. The higher
the dependence between vectors, the higher the dCor index (the maximum
value is 1 for linearly related variables).

In view of its inherent robustness to redundancy and overfitting issues,
the dCor has been studied for variable selection in regression problems
[127], where it was employed in combination with incremental model build-
ing. When compared to the stepwise Akaike information criterion (AIC) or
the Lasso method, it displays comparable or better performance even in the
presence of nonlinear dependencies [127]. It has also been applied for fea-
ture screening purposes in ultrahigh-dimensional data [81], where it proved
more effective than a classical screening procedure based on the classical
Pearson’s correlation coefficient.

In the rest of this Section, we provide a brief assessment of the dCor
criterion, as of [115].

Let x = [x1, . . . , xp]
T and z = [z1, . . . , zq]

T be two random vectors,
such that E(‖x‖+ ‖z‖) <∞, where ‖ · ‖ denotes the Euclidean norm. Let
also x(1), . . . ,x(N) be N i.i.d. realizations of x, and z(1), . . . ,z(N) the cor-
responding i.i.d. realizations of z. Now, the empirical distance covariance
(briefly, dCov) is defined as

ν2N(x, z) =
1

N2

N∑
k, l=1

AklBkl, (2.39)

where

Akl = akl − āk· − ā·l + ā··,

Bkl = bkl − b̄k· − b̄·l + b̄··,

with
akl = ‖x(k) − x(l)‖, bkl = ‖z(k) − z(l)‖,

and

āk· =
1

N

N∑
l=1

akl, ā·l =
1

N

N∑
k=1

akl, ā·· =
1

N2

N∑
k, l=1

akl,

b̄k· =
1

N

N∑
l=1

bkl, b̄·l =
1

N

N∑
k=1

bkl, b̄·· =
1

N2

N∑
k, l=1

bkl.
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Then, the empirical dCor is the square root of

R2
N(x, z) =


ν2N (x,z)√
ν2N (x)ν2N (z)

, ν2N(x)ν2N(z) > 0

0, ν2N(x)ν2N(z) = 0
(2.40)

In the assumption that E(‖x‖+‖z‖) <∞, it holds that the sampled ver-
sion of the dCor tends to the corresponding probabilistic quantity, denoted
R:

lim
N→∞

R2
N(x, z) = R2(x, z). (2.41)

It also holds that 0 ≤ R(x, z) ≤ 1, and R(x, z) = 0 iff x and z are
independent. Similarly, 0 ≤ RN(x, z) ≤ 1, and if RN(x, z) = 1, then
there exists a vector ζ , a nonzero real number τ and an orthogonal matrix
P such that z = ζ + τxP.

In view of the last property, RN(x, z) can be indeed used as a mea-
sure of linear dependence between random vectors. Fortunately, it can be
verified that the proposed index is also sensitive to nonlinear input-output
relationships.

2.8.1 The unbiased dCor index

It is worth mentioning that the bias of the dCor index increases with the di-
mension of the random vectors dimensions. As discussed in [114], for fixed
number of samples N the dCor tends to 1 as p, q → ∞. Thus, it might be
hard to interpret the obtained index in high dimensional cases. This prob-
lem is investigated in [114] where an unbiased version of the dCor index
is introduced, which is amenable for high dimensional problems. Here, the
following quantities A∗kl and B∗kl are used instead of Akl and Bkl:

A∗kl =

{
N
N−1(Akl − akl

N
), k 6= l

N
N−1(āk· − ā··), k = l

(2.42)

B∗kl =

{
N
N−1(Bkl − bkl

N
), k 6= l

N
N−1(b̄k· − b̄··), k = l

(2.43)

Let

U∗N(x, z) =
N∑
k 6=l

A∗klB
∗
kl −

2

N − 2

N∑
k=1

A∗kkB
∗
kk. (2.44)
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The modified dCov and dCor indices are given respectively by:

ν∗N(x, z) =
U∗N(x, z)

N(N − 3)
, (2.45)

R∗N(x, z) =
ν∗N(x, z)√
ν∗N(x)ν∗N(z)

. (2.46)

For simplicity, in the rest of this thesis we will drop the asterisk symbol
and use the notationRN to denote the unbiased dCor index.

2.8.2 dCor dependence test

The dCor index can be used to design a statistical test for assessing the
dependence between two random vectors.
Let x and z be two random variables such that E = ‖x‖+‖z‖ <∞, where
‖ · ‖ denotes the absolute value. Let H0 : x and z independent be the null
hypothesis.

Then, the statistical test proposed in [115] rejects H0 if

N ν2N(x, z)

S
> N−1

(
1− αd

2

)2
, (2.47)

where N (·) denotes the normal cumulative distribution function, αd is the
significance level of the test, and

S = ā··b̄··. (2.48)

This test can be employed fruitfully in FS, by retaining only features
for which there is enough statistical evidence to reject the independence
hypothesis.

2.8.3 Sensitivity of the dCor to redundant terms

We next present some illustrative simulations that emphasize the robustness
of the dCor index in the presence of redundant terms. Let x = [x1, . . . , x6]

T

be a random vector and z = 3x1, and assume that N i.i.d. realizations of
both x and z are available. All elements of the x vector are independently
drawn from the same distribution. Table 2.1 reports the dCor value calcu-
lated for different subsets of inputs on average over 1000 Monte Carlo tests
performed for data generated with different distributions (normal, Pois-
son and lognormal). The evaluated input subsets are {x1, . . . , x1+kr}, for
kr = 0, . . . , 5, corresponding to the exact model and 5 redundant models
with increasing number of redundant terms. While the dCor equals 1 for the

34



2.8. Measuring the dependence of random variables

Table 2.1: Average dCor measure over 1000 Monte Carlo tests for increasingly redundant
models (true model: z = 3x1).

Number of Data distribution
redundant terms Normal Poisson Lognormal

0 1.0000 1.0000 1.0000
1 0.9873 0.9835 0.9765
2 0.9778 0.9729 0.9573
3 0.9697 0.9640 0.9406
4 0.9623 0.9560 0.9262
5 0.9555 0.9488 0.9130

Table 2.2: Average dCor measure over 1000 Monte Carlo tests for increasingly redundant
models (true model: z = 3x2

1).

Number of Data distribution
redundant features Normal Poisson Lognormal

0 0.5731 0.9682 0.9221
1 0.5447 0.9570 0.9106
2 0.5261 0.9490 0.8997
3 0.5120 0.9419 0.8897
4 0.5008 0.9352 0.8808
5 0.4916 0.9289 0.8716

true model (including only x1), its value decreases as we introduce further
terms, regardless of the distribution of the data.

A similar result holds even if the input-output relationship is nonlinear,
e.g. z = 3x21, although this time the dCor associated to the model contain-
ing only x1 is less than 1: any further term added to the model decreases
the dCor. The results are reported in Table 2.2.

Inspecting the results presented in Tables 2.1-2.2 leads to the conclusion
that the dCor index is highly sensitive to the presence of redundant terms,
and is maximal in the absence of redundant terms. This property proves to
be crucial for the detection of redundant terms in the FS task.
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CHAPTER3
Randomized Selection Strategy

FS algorithms based on incremental model building techniques are ex-
tremely popular due to their simplicity. The main problem with stepwise
subset selection algorithms is that the feature inclusion policy is based on
local estimates of the term importance. Indeed, the objective function of
choice (e.g., an error index or a statistical index) measures the added bene-
fit that a new term can provide if included in the current model. Therefore,
the inclusion of a term in the model depends on the terms that have already
been selected during previous iterations. As a consequence, it may happen
that some of the terms selected during early iterations turn out to be irrel-
evant once the algorithm has identified the complete model structure [42].
Although there are ways to mitigate this issue, e.g. by introducing a pruning
mechanism to eliminate redundant terms [99], or by iterating the method
with different initializations (see the iOFR method discussed in [50]), they
are not sufficient to prevent the algorithm from occasionally taking wrong
search paths.

In the following we introduce a novel FS scheme, which overcomes
this issue by determining the importance of terms based on a population
of models rather than a single one. This aggregate information provides
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a more robust estimation of the relevance of each term and guides the se-
lection process more effectively. The method is based on a probabilistic
reformulation of the selection problem, where a probability distribution is
defined in the model space, and two operations are alternated to progres-
sively refine it until convergence to a limit distribution representing a single
model. The distribution is used first to generate sample models, which are
used to evaluate the importance of model terms, and then updated based
on the latter information, to reinforce the probability of extracting the most
promising terms. The proposed randomized FS scheme is applicable to
both frameworks discussed in this thesis.

A first application of this concept resulted in the RaMSS algorithm for
the identification of NARX models [4], [13]. In this thesis, two novel clas-
sification algorithms (namely, the RFSC and the DCORF) have been de-
veloped based on the same selection scheme. The RFSC is a wrapper algo-
rithm, where the classifier takes the form of a linear regression, and features
are selected according to the mentioned randomized scheme based on the
classifier performances. The DCORF is a multivariate filter method which
will be discussed in Chapter 4.

3.1 Probabilistic formulation of the model structure selection
problem

Let R = {ϕ1, · · · , ϕNF } be the set of NF possible model terms. As dis-
cussed in the previous chapter, these terms are polynomial functions of the
features in a classification problem, or of the past input and output samples
in an identification framework. In the simplest case (polynomial expansion
of degree 1), they coincide with the original features or the past samples
themselves. In this framework, with a slight abuse of notation, a model de-
notes a subset of R. Accordingly, S = 2R is the set of all possible model
structures. We will denote as J the criterion used to evaluate models.

Model structure selection is the problem of selecting the optimal subset
of R according to the criterion J . As such it is a combinatorial problem,
in that the space of solutions contains 2NF − 1 possible models (each of the
NF terms can either belong to a given model or not, and the empty model
is neglected). The exponential complexity of this combinatorial problem
makes it impossible to adopt exhaustive search methods to find the target
model. A convenient solution approach involves its reformulation as an op-
timization problem over the probability distribution of model structures [4].
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Let φ denote a discrete variable taking values in S according to a proba-
bility distribution Pφ. The performance of φ is also a random variable, and
its expectation is given by

E[J (φ)] =
∑
s∈S

J (s)Pφ(s). (3.1)

Index (3.1) is maximized when the probability mass concentrates on the
model structure associated to the highest value of J (or one of the possible
best model structures, if the minimum is not unique).

Therefore, the problem of finding the best s ∈ S can be formulated as
follows

P?φ = arg max
Pφ

E[J (φ)], (3.2)

where P?φ is such that P?φ(s?) = 1.
A convenient parametrization forPφ is obtained by associating a Bernoulli

random variable ρj to each term ϕj , that models the probability that ϕj be-
longs to the target model:

ρj ∼ Be(µj), (3.3)

j = 1, . . . , NF , where µj ∈ [0, 1]. According to this representation, a model
extraction from Pφ implies testing each term for inclusion, by extracting a
value from the respective Bernoullian distribution. Term ϕj is included if
the outcome of the jth extraction is 1, and omitted in case of a 0. The former
event has probability µj , whereas the probability of getting a 0 is given by
1− µj . Accordingly, in the rest of the thesis we will denote µj as the Term
Inclusion Probability (TIP) of the jth term, and defineµ = [µ1 · · ·µNF ]T as
the vector of TIPs. For simplicity, we assume that all random variables ρj ,
j = 1, . . . , NF are independent. In summary, the probability distribution
Pφ over the models in S can be written as:

Pφ(s) =
∏
j:ϕj∈s

µj
∏
j:ϕj /∈s

(1− µj) (3.4)

for any s ∈ S . If all TIPs have values in {0, 1} only, a limit distribution
is obtained with all probability mass concentrated on a specific model s̃
(containing all the terms whose TIPs equal 1). In that case, it follows that
Pφ(s̃) = 1. The objective of the model selection procedure will therefore
be that of adapting the TIPs until convergence to the target limit distribution
associated to an optimal model s?.

To evaluate the importance of a given term we consider an aggregate
indicator Ij that compares the average performance of the models including
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the jth term with that of the remaining ones:

Ij = E[J (φ)|ϕj ∈ φ]− E[J (φ)|ϕj /∈ φ], (3.5)

where j = 1, . . . , NF . Thanks to the averaging over all models, indicator
Ij can be interpreted as a global measure of the term importance. Addi-
tionally, an important property holds: if µ is not distant from the target
limit distribution corresponding to s?, it can be shown (see Theorem 1),
that Ij > 0 if and only if ϕ ∈ s?.

Theorem 1 ([4, Theorem 1]). Let Pφ be the probability distribution in-
duced by µ, as indicated by (3.4). Then there exists δ ∈ (0, 1) such that if
Pφ̃(s?) ≥ δ it holds that Ij > 0 if ϕj ∈ s? and Ij < 0 if ϕj /∈ s?, for all
j = 1, 2, . . . , NF .

3.2 Randomized model structure selection

Based on the probabilistic reformulation of the structure selection problem
discussed in the previous section, we here describe an iterative optimiza-
tion approach that operates on the model distribution Pφ(s) with the aim of
maximizing the average performance given by (3.1). MSS is performed by
progressively refining the model distribution Pφ, until it converges to the
target limit distribution. This is achieved by means of an iterative learning
process, which alternates sampling and updating operations on the distri-
bution. Sampling is used to gather information on the importance of indi-
vidual model terms. The update step reflects the acquired knowledge by
reinforcing the probability associated to important terms.

More in detail, at the beginning of each iteration, a set of models is
extracted from the space of all possible model structures using the cur-
rent Bernoullian distributions associated to terms in the pool of candidate.
These models are individually estimated and evaluated. Then, the impor-
tance of each term is assessed with index Ij , j = 1, . . . , NF , or rather a
sampled version of it, denoted Ĩj , based on the extracted models. Indeed,
an exact evaluation of Ij is not practically feasible, since it would require
an exhaustive approach on the model space. The robustness of this approx-
imation, which is computed over a subset of the model space, clearly de-
pends on the number of models Np extracted at each iteration. On the other
hand, one wants to limit the value Np, for obvious computational reasons.
Therefore, in order to mitigate the effects related to the uncertainty of this
estimate, the new information is suitably averaged with the already avail-
able knowledge on the term importance gathered up to the current iteration,
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using the following TIP update equation:

µj(t+ 1) = sat(µj(t) + γĨj) (3.6)

for j = 1, . . . , NF , where sat(x) = min(max(x, 0), 1) is a function that
ensures that the calculated µj values will not exceed the interval [0, 1], and
γ is a step-size parameter. The value of the latter parameter is adapted at
each iteration as well:

γ =
1

10(Jmax − J̄ ) + 0.1
, (3.7)

where Jmax and J̄ are the maximum and average of the objective function
values among the models extracted at the current iteration, respectively. In
practice, the larger the variance of the model performances, the smaller the
step-size, indicating a lower level of reliability of the computed global mea-
sure of the term importance Ij .

The procedure is iterated as long as the TIPs continue evolving and stops
upon reaching a limit distribution.

A sketch of the basic loop of the proposed randomized model selection
procedure is presented below as Algorithm 1.

Algorithm 1 Randomized Model Selection
Input: R, Np, α, µinit, ε, Ni
Output: µ

1: µ(1)← µinit
2: for t = 1 to Ni do
3: for np = 1 to Np do
4: Generate random model structure s ∈ S
5: Evaluate performance J of s
6: end for
7: for j = 1 to NF do
8: Evaluate importance of jth term with Ĩj
9: Update jth TIP according to (3.6)

10: end for
11: if max

j=1,...,NF
|µj(t+ 1)− µj(t)| ≤ ε then

12: Break
13: end if
14: end for

3.3 The RaMSS algorithm

A first application of the randomized model structure selection procedure
described in the previous sections has been targeted at the identification of
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NARX models [4], and resulted in the RaMSS algorithm. Here the nonlin-
ear dynamic model is expressed as a linear regression of nonlinear mono-
mials of the past input and output samples:

y(k) = ϕ(k)T ϑ. (3.8)

The model terms (usually referred to as regressors) are the elements of
vector ϕ(k) = [ϕ1(k), . . . , ϕNF (k)]T , while ϑ = [ϑ1, . . . , ϑNF ]T is the
parameter vector. As already discussed, the regressors are monomials in
y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu).

After the extraction of a model structure from the Bernoullian distribu-
tions, the model parameters are estimated (with LS), and the model perfor-
mance is rated according to performance index (2.34). To avoid distorting
the selection process due to over-parametrization issues, a statistical test
(see Section 2.6.3) is used to remove redundant terms after the parameter
estimation phase. The rejection of redundant terms is a crucial step in the
identification procedure as it eliminates statistically non-significant regres-
sors. For this purpose, the statistical significance of each estimated param-
eter is calculated with a Students t-test so that the parameters statistically
indistinguishable from 0 are ruled out. If any model terms are removed at
this stage, the model parameters are re-estimated prior to model evaluation.

The interested reader is addressed to [4] for further details on the algo-
rithm and the setting of its parameters.

A variant of the RaMSS algorithm, denoted C-RaMSS (for Correlated-
RaMSS), was proposed in [13]. Unlike the original RaMSS which is based
on an independence assumption between regressors, the C-RaMSS includes
second-order information, i.e. it accounts for the correlation between re-
gressors. Extracting samples from a real multivariate Bernoulli distribution
(in the standard RaMSS multiple independent univariate Bernoulli distri-
butions are used instead) is by no means an easy task, and special tools are
required. Also, the method requires an additional update equation for the
covariance (or correlation) matrix of the model terms. Using the covari-
ance matrix allows the algorithm to take into account well-matched pairs
of terms as well, and not only promising individual terms. Overall, it typi-
cally boosts the convergence process, and sometimes can even improve its
robustness and reliability. However, this comes at some cost in terms of
computation effort and for this reason has not been explored further in this
work. The interested reader is referred to [13] for additional details.
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3.4 The RFSC algorithm

The explained randomized model selection scheme was also used to de-
velop a feature selection method for classification problems (RFSC [20]).
The RFSC (for Randomized FS and Classification) is a wrapper method
where each feature subset is evaluated in terms of the corresponding clas-
sifier performance, through index (2.35), i.e. the correct classification rate.
The classifier is defined as a linear regression with respect to the augmented
features (i.e., monomials of the original features), according to (2.6). Its
parameters are estimated using the logistic regression approach (see Sec-
tion 2.6.2), and similarly to what done for NARX models, a statistical test is
employed to remove possible redundant terms, as explained in Section 2.6.3
(if any redundant terms are detected, they are eliminated and the parameters
re-estimated prior to evaluation).

A sketch of the basic loop of the proposed RFSC procedure is presented
below as Algorithm 2.

Algorithm 2 RFSC
Input: {u(k), y(k)},R, Np, α, µinit, ε, Ni
Output: µ

1: µ(1)← µinit
2: for t = 1 to Ni do
3: for np = 1 to Np do
4: Generate random model structure s ∈ S
5: Estimate parameter vector ϑ by solving (2.26)
6: Compute σ̂2

j according to (2.31)
7: Apply the statistical test according to (2.30)
8: Remove redundant terms
9: Re-estimate parameter vector ϑ

10: Evaluate model performance according to (2.35)
11: end for
12: for j = 1 to NF do
13: Evaluate importance of jth term with Ĩj
14: Update jth TIP according to (3.6)
15: end for
16: if max

j=1,...,NF
|µj(t+ 1)− µj(t)| ≤ ε then

17: Break
18: end if
19: end for

A high-dimensional feature space can hamper FS algorithms by slowing
down the search process and by increasing the chances of getting stuck in
local minima. To tackle this issue a common approach is to perform a pre-
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filtering of the feature space. Specifically, it would be desirable to identify
those features that are relevant in describing the output, and those which
are not. We address this problem as an optional procedure executed before
Algorithm 2 which analyzes the dependence of the output on each feature.
The rationale is as follows: if a feature uj is not important in the descrip-
tion of the output yi, then we expect yi and uj to be independent. The
reader should note that at this point we are just interested in characteriz-
ing the dependence/independence of the output from a specific feature, not
the strength nor the ”shape” of such dependence, tasks that are performed
during the FS process.

Algorithm 3 Feature set preprocessing for a class i.
Input: {u(k), yi(k)}, F = {u1, . . . , uNf }, αd
Output: F̃ i

1: F̃ i ← F
2: for j = 1 to Nf do
3: Hj

0 ← true
4: x← [uj(1) · · · uj(N)]T

5: z← [yi(1) · · · yi(N)]T

6: Compute ν2
N (x, z) as in (2.39)

7: Compute S as in (2.48)
8: if Nν2

N (x, z)/S > N−1(1− αd/2)
2 then

9: Hj
0 ← false

10: end if
11: if Hj

0 then
12: F̃ i ← F̃ i \ {uj}
13: end if
14: end for

There exist various statistical tests designed to assess the dependence
between two random vectors. We here employ the one described in Section
2.8.2 based on the dCor which is very flexible and can handle both discrete
and continuous random vectors, without any assumption on their distribu-
tions, making it particularly amenable for classification purposes. More in
detail, let x and z be two random variables such that E[|x|+|z|] <∞, where
| · | denotes the absolute value. In our case we have x = uj and z = yi for
any i and j. We want to test the null hypothesis H0 : x and z independent.
Let x = [uj(1) · · · uj(N)]T be a vector of i.i.d. realizations of x, and
z = [yi(1) · · · yi(N)]T the corresponding realizations of z. The statistical
test rejects H0 if inequality (2.47) holds. For each class i, inequality (2.47)
is tested for all j, and only those features uj for which there is enough sta-
tistical evidence to reject the independence hypothesis are considered in the
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FS process for determining the classifier ŷi. The prefiltering procedure, is
summarized in Algorithm 3.

3.5 Analysis of the RSFC algorithm

This section illustrates various experiments carried out to assess the per-
formance of the proposed RFSC algorithm. Eight numerical datasets from
the UCI machine learning repository [91] have been analyzed. The main
features of the selected datasets are given in Table 3.1.

All the input data in the original feature sets have been normalized in
the [0, 1] range according to:

up(k) =
up,raw(k)− upmin
upmax − upmin

, (3.9)

for k = 1, . . . , N , where up,raw(k) is the original numeric value of the kth
observation of feature p in a given dataset, and upmax and upmin represent
the maximum and minimum value of the pth attribute in the dataset, respec-
tively.

Table 3.1: Main characteristics of the used datasets, [91].

Dataset No. of No. of Feature types No. of
name samples features Real Integer classes
Bupa 345 6 1 5 2
HillValley 606 0 100 0 2
Ionosphere 351 34 32 1 2
Iris 150 4 4 0 3
Musk1 476 166 0 166 2
Sonar 208 60 60 0 2
WDBC 569 30 13 0 2
Wine 178 13 13 0 3

The classification performance has been evaluated using the 10-fold
cross validation (10-FCV) approach as explained in Section 2.4. The algo-
rithm performance is computed as the average over ten independent runs.
Given the randomized nature of the RFSC, different results may be ob-
tained on each run, especially on datasets with large feature sets, for which
full exploration may be too costly. For this reason, the application of the
RFSC on each fold is repeated 10 times and the best model retained.
To obtain results more directly comparable to the literature, the perfor-
mance on the HillValley and Musk1 datasets is evaluated with the hold
out method. The algorithm performance is computed as the average of 10
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independent runs with a random data division of the training-testing pairs.

Regarding the initial parameter setup for the RFSC, the number of iter-
ations was set to Ni = 300, the maximum nonlinearity degree to L = 2,
the number of generated models to Np = 100, the significance confidence
interval to α = 0.99 and all initial TIPs to 1/NF . Parameter α also influ-
ences the average model size, by acting on the threshold for the rejection
of redundant terms. The closer α is to 1, the more terms are rejected (and
greater is the confidence that only meaningful terms are retained), and the
smaller is the average model size. Parameter ε in the termination condi-
tion has been set to ε = 0.002. Finally, the significance level αd for the
statistical test based on the dCor in the prefiltering phase was set to 0.99
for the HillValley, Ionosphere, and Musk1 databases, to 0.87 for the Sonar
database, and to 0.9999 for the WBCD database. The proposed algorithm
was implemented in Matlab (version 2012b) and executed on an Intel(R)
Core i7-3630QM machine, with 2.4GHz CPU, 8GB of RAM, and a 64-bit
Operating System.

3.5.1 An illustrative example

To get a greater insight in the mechanisms of the selection process, we here
illustrate the RFSC behavior with reference to the WDBC dataset, which
has 30 attributes and 2 class labels. Assuming a maximum nonlinearity
degree of L = 2, the total number of extended features is NF = 496.
We will focus on two independent runs of the RFSC algorithm. Both runs
returned a 7-terms model (denoted Model 1 and Model 2) with no common
model terms and only one common feature. We refer to the terms of the
returned models as “final” terms. It is worth mentioning that despite their
different structure, Model 1 and Model 2 both exhibit 0 classification errors
on the validation dataset.

Figures 3.1-3.2 (top) show the evolution of the TIP values for both runs.
In both cases various terms are initially considered promising and their
TIPs increased. In the first run (Fig. 3.1, top) the TIPs of the final terms
keep increasing from the very first iterations, whereas the other terms are
progressively discarded as the algorithm progresses. On the other hand, in
the second run (Fig. 3.2, top) most terms are selected or discarded in the
first 25 iterations, but the last term is selected at a later stage (around itera-
tion 40), essentially after two other terms have been rejected. Before final
convergence, other terms are tested but ultimately discarded.

It is interesting to note that in both cases some terms are initially se-
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Figure 3.1: Model 1: Evolution of the TIPs during the selection process (top, thicker
lines indicate the terms contained in the final model), average loss function (middle),
average model size (bottom) before (dashed) and after (solid) the t-test.
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Figure 3.2: Model 2: Evolution of the TIPs during the selection process (top, thicker
lines indicate the terms contained in the final model), average loss function (middle),
average model size (bottom) before (dashed) and after (solid) the t-test.
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lected, to the point that their TIPs rise to 1, but are subsequently rejected
in favor of other terms. If we compare (column-wise) this behavior of the
TIPs with the evolution of the average loss function (average value of the
loss function of theNp extracted models at a given iteration) in Figures 3.1-
3.2 (middle), it is clear that the algorithm is exploring model structures with
a higher average loss function in order to ultimately escape from structures
that represent only local minima.

Figures 3.1-3.2 (bottom) show the average model size (AMS) at each
iteration for both runs. For Model 1, the AMS of the generated models
(measured before the application of the statistical test) grows rapidly in the
beginning and starts decreasing significantly only after iteration 10. Later
on, after iteration 38, the model size does not change significantly. On the
other hand, the AMS measured after the statistical test is very low from
iterations 10 to 30, indicating that the algorithm is systematically rejecting
tentative terms as redundant. It is only between iterations 30 to 40 (i.e.,
when the final two terms have been added), that the model size converges
to its final value. Similarly, for Model 2 the AMS before the t-test increases
at the beginning, reaching a peak around iteration 15, and then stabilizes
after iteration 20.

Notice that in both runs the AMS value is always reduced after the test,
indicating the effectiveness of the latter in detecting redundant terms.

3.5.2 Interpretation of the results

As previously stated, all input data points up(k), with p = 1, . . . , Nf and
k = 1, . . . , N , have been normalized to be in the [0, 1] interval. Since each
term ϕj(k) is constructed as a product of features, ϕj(k) takes values in
[0, 1] as well, for all j = 1, . . . , NF and k = 1, . . . , N .

Now, the estimated model is of the form (2.6), where only the selected
terms are associated to non-zero parameters. The predicted class for the
kth observation is given only by the sign of ŷi, while the absolute value of
ŷi is related to the reliability of the prediction. Since ϕj(k) is non-negative,
the information about the sign is carried by the coefficients ϑ(i) of the lin-
ear combination in (2.6). Therefore, the model can be decomposed in two
additive components based simply on the sign of the parameters:

ŷi(k) = ŷ+i (k)− ŷ−i (k) = ϕ(k)T+ϑ
(i)
+ −ϕ(k)T−(−ϑ(i)

− ), (3.10)

where the first component ŷ+i (k) = ϕ(k)T+ϑ
(i)
+ is associated to terms with

positive coefficients and the second one ŷ−i (k) = ϕ(k)T−(−ϑ(i)
− ) to terms

with negative coefficients. This decomposition has the following very nice
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Figure 3.3: Values of ŷ+
i (k) and ŷ−i (k) for 20 validation samples: Model 1 (top) and

Model 2 (bottom).

and clear interpretation: features which appear in model terms inside ŷ+i (k)
are representative for class i, whereas features appearing in ŷ−i (k) are against
class i. The “strongest” group of (extended) features in the ith model de-
termines the sign of ŷi, and therefore if the predicted class should be class i
or not. If multiple classes exhibit a positive ŷi, then the class is determined
by the most “confident” classifier, i.e the one with the largest difference
between ŷ+i (k) and ŷ−i (k).

In Figure 3.3, we report the values of the two quantities ŷ+i (k) and ŷ−i (k)
for 20 validation data points. The two plots in Figure 3.3 (top and bottom)
refer to the final models of the two runs of the RFSC algorithm analyzed in
the previous section. Both models exhibit 0 classification errors on the test
set (56 samples).

From Figure 3.3, it is also apparent that despite the fact that both models
exhibit 0 classification errors, they are not equivalent in terms of reliability.
In particular, the value of δi(k) = (ŷ+i (k)−ŷ−i (k))/max(ŷ+i (k), ŷ−i (k)) can
be interpreted as the “confidence” the model has in attributing class i to the
kth sample. Apparently, Model 1 has generally greater values of δi. This
difference is not currently captured by the performance index (2.35), and

50



3.5. Analysis of the RSFC algorithm

therefore the two models are considered equivalent for the RFSC algorithm.
To conclude the analysis of the results, we report in Table 3.2 the aver-

age size of the final model structures obtained by the 10-FCV procedure.
Specifically, Table 3.2 displays the number of original features Nf , the
number of features after the dCor-based prefiltering N?

f , the average num-
ber of features nf used by the classifier over the 10 folds, the number of
termsNF generated based on the original features, the number of termsN?

F

generated based on the pre-filtered features, the average number of terms
nF used by the classifier over the 10 folds1. In the non-binary classifica-
tion problems (Iris and Wine datasets), a separate modeling is carried out
for each class. In those cases, the classifier size (in terms of the number of
original and extended features used) is calculated by performing the union
over the individual class models ŷi, i = 1, . . . , Nc.

By inspecting Table 3.2, it is noticeable that while the RFSC algorithm
processes a considerable fraction of the available features, it generally re-
quires only a small number of model terms, demonstrating its capability of
compressing the information.

Table 3.2: Average size of the obtained classifiers over the 10 folds.

Dataset Nf N?
f nf NF N?

F nF

Bupa 6 − 5.8 28 − 7.4
HillValley 100 100 8.3 5151 5151 3.7
Ionosphere 34 29 16.4 595 465 14.7
Iris 4 − 3.2 15 − 6.1
Musk1 166 165 46.2 14028 13860 23.2
Sonar 60 39 25.8 1891 820 18.7
WDBC 30 24 11.5 496 325 10.3
Wine 13 − 7.3 105 − 7.5

3.5.3 Comparative analysis

To assess the performance of the RFSC algorithm, we report in this section
an extensive comparison with the results documented in [125], [112], [55],
[23], [97], [83], on the datasets in Table 3.1. The comparison is carried out
in terms of the average classification accuracy Ja, the average Kappa rate
Ka, and the average model size. The performance comparison is summa-
rized in Tables 3.3-3.4 and the size comparison in Table 3.5.
The RFSC outperformed all other documented results on the Bupa, Hill-
Valley and WDBC datasets, both in terms of average accuracy and average
Kappa rate. This has been achieved at the cost of using more attributes

1A dash in the N?
f and N?

F columns indicates that the pre-filtering stage has not been applied
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compared to the other methods. On the other hand, the proposed algorithm
was only slightly outperformed by the best competitor (which is differ-
ent from case to case) on the remaining datasets, providing overall a good
tradeoff between model complexity and accuracy. Considering more recent
approaches such as [112], [55], and [97], the proposed RFSC dominates on
4 out of 8 tested benchmarks, and is only slightly outperformed in the other
cases.

3.5.4 Computational time

A comparative analysis in terms of computational time is finally presented
in Table 3.6. Though inherently time consuming due to the model ex-
ploration mechanism in the randomized MSS process, the RFSC achieves
convergence in comparable time with competitor algorithms. Indeed, it
outperforms the PSO4-2 method for the Wine and WDBC datasets, but is
generally somewhat slower than PSO+LDA. In this respect, it is important
to note that non-optimized Matlab code has been used to obtain the docu-
mented results, so that the reported figures must be considered gross upper
bounds. Still, the computational time goes from a few seconds to a little
more than a minute for all analyzed datasets.

In order to analyze the algorithm’s computational effort as a function of
the problem size, we report in Fig. 3.4 the elapsed time versus the number
of extended features for the WDBC dataset. More precisely, the curves in
Fig. 3.4 show, for different values of the maximum number of iterations
Ni, the average computational time associated to the algorithm calculated
over ten different subsets of extended features of a given size (drawn at
random). The four curves are characterized by an initial increase of the
computational time with the increase of the problem size, followed by a
saturation. The latter indicates that all simulations exhaust the available
number of iterations above a certain problem size. Notice that the initial
TIPs are defined so as to result in the same initial AMS for any problem
size, so that it is expected that the computational load of the algorithm is
essentially independent of the problem size for a givenNi. AsNi increases,
the saturation point shifts, indicating that early convergence is sometimes
achieved.
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Figure 3.4: Computational time of the RFSC algorithm for the WDBC dataset with Ni =
[30 55 80 105].

3.6 RFSC application to Big Data problems

Nowadays, the implementation of Big Data applications increases con-
stantly [66]. Apache Hadoop is a software-framework based on the MapRe-
duce (MR) parallel programming model, which is used for the distributed
storage and processing of Big Data. MR has become the most widespread
programming model for processing and generating large datasets [34] due
to its simplicity, maturity and generality [128]. The MR framework is based
on two stages, i.e., map and reduce. The map job, takes a set of data and
converts it into another set of data, where individual elements are broken
down into tuples (key/value pairs). The reduce job takes the output from
a map as input and combines those data tuples into a smaller set of tu-
ples. Its extensions, e.g. Tez or Spark, split a complex application into a
Directed Acyclic Graph (DAG) of stages so that all tasks are performed on
corresponding input data partitions. The MR/Tez/Spark routine is repeated
constantly in the following order: (i) read the input data set or data from a
previous stage, (ii) execute an operation in parallel, (iii) send intermediate
results to the next stage or write the final results on the cluster distributed
file system (usually HDFS [130] or a cloud data storage, e.g., Amazon S3).
Among the above mentioned technologies, the Spark framework is the most
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3.6. RFSC application to Big Data problems

promising today since it is able to cache in memory intermediate results and
implements multiple transformations in a single step, reducing the disk and
network I/O required by copy/shuffle operations. It reads data from the
cluster in the beginning and once all required operations are completed it
writes the final result on the cluster. Compared to Hadoop it can speed up
by a factor 3x to 100x on certain scenarios.
In this context, one of the main challenges is the prediction of the execution
time of Big Data applications, which is essential in providing and guaran-
teeing the required Quality of Service (QoS). Usually, it is done empirically
through experimental tests, but this turns out to be very costly [46]. A con-
venient way to address this problem is by developing a predictive model.
In the literature there are two main approaches addressing the modeling of
Big Data applications, namely Analytical Models (AMs) [6] and Hybrid
Models (HMs) ( [7], [36], [65]). AMs can be based on Queuing Networks,
Petri Nets and Stochastic Activity networks. However, modelling is diffi-
cult especially in environments where resources are dynamically allocated
(e.g. Hadoop 2.x). Besides, resource contention and performance degrada-
tion in cloud applications, introduced by the underlying virtualization layer,
might induce variations in the application execution time [24], adding ad-
ditional complexity to the modeling task. HMs exploit the benefits of AM
and Machine Learning (ML). More in detail, AM are characterized by good
extrapolation capabilities, i.e. good generalization properties, while ML by
good interpolation capabilities, i.e. good predictive capabilities for regions
of the feature space learned on sufficiently big number of training samples.
Here we present a modeling approach fully based on a ML approach. More
specifically, the RFSC algorithm was employed to learn the model for pre-
dicting an application completion time. The original RFSC was adjusted
to regression problems so that the MSE given by Eq. 2.20 is employed as
criterion function for the model evaluation. The method is tested on both
the Hadoop 2.x and the Spark frameworks.

3.6.1 Performance analysis on Hadoop 2.x

This section reports the analysis carried out to assess the performance of
the RFSC algorithm with application to the Hadoop 2.x environment. More
precisely, the data are generated on PICO 2, a Big Data cluster available at
CINECA, composed of 74 nodes, each of them boasting two Intel Xeon
10- core 2670 v2@2.5GHz, with 128 GB RAM per node. Out of these 74
nodes, up to 66 are available for computation. In our experiments on PICO,

2http://www.hpc.cineca.it/hardware/pico
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we used several configurations ranging from 40 to 120 cores and set up the
scheduler to provide one container per core.

The cluster is shared among different users, and the resources are man-
aged by the Portable Batch System (PBS). PBS Professional allows to sub-
mit jobs and check their progress, configuring at a fine-grained level the
computational requirements. For each submission it is possible to request
a number of nodes and to define how many CPUs and what amount of
memory are needed. Since the cluster is shared among different users, the
performance of single jobs depends on the overall system load, even though
the PBS tries to split the resources. Due to this, it is possible to have large
variations in performance according to the total usage of the cluster. In
particular, the storage is not handled directly by the PBS, thus leading to
an even greater impact on performance. To mitigate the variability, first of
all entire nodes of the cluster are requested for the execution of our exper-
iments. This ensures that nobody else could run other jobs on the same
nodes, thus interfering with the performance measurement. An ephemeral
Hadoop cluster was created at the beginning of each experiment on the al-
located nodes. The PICO cluster provides the myHadoop tool for setting
up a Hadoop 2.5.1 cluster, upon which we used Hive 1.2.1. HDFS is kept
locally on the selected nodes, in order to experience lower variability than
the one observed using the centralized storage. In spite of these settings,
the experiments still showed high variability, with a few runs characterized
by an extremely high execution time. To further reduce this variability, in
our analyses we discarded runs with an anomalous execution time, taking
out all the experiments that lie more than three standard deviations away
from the average computed for the same configuration. The dataset used
for testing has been generated using the TPC-DS benchmark 3 data gener-
ator, that creates several files ranging from 250 GB to 1 TB, directly used
as external tables by Hive. We chose the TPC-DS benchmark as it is the
industry standard for benchmarking data warehouses. Furthermore, we per-
formed experiments on three Hive queries, dubbed R1, R3 and R4. These
are ad hoc queries that Hive runs as a single MapReduce job. The profiling
phase has been conducted by extracting average task durations from at least
twenty runs of each query. The numbers of map and reduce tasks varied,
respectively, in the ranges [2, 1560] and [2, 1009].

The main characteristics of the queries, in terms of data size, are pre-
sented in Tab. 3.7. Nf denotes the size of the original feature set, NF is
the size of the extended feature set and N is the total number of available
samples.

3http://www.tpc.org/tpcds/
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Figure 3.5: Output data for query R3: Original output signal and piecewise averaged
original output (top), high frequency residual of the original output (middle), resam-
pled low frequency residual of the original output (bottom).
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The features represent the main characteristics of the MR phases, that are
inverse of the number of cores (u1) 4, the data size (u2), the maximum and
average bytes sent (u3, u4), the maximum and average shuffling time (u5,
u6), the maximum and average reduce time (u7, u8), the maximum and av-
erage mapping time (u9, u10), the number of reducers (u11) and the number
of mappers (u12).

Table 3.7: Main characteristics of the datasets used for the experiments.

Query Nf NF N
R1 12 91 395
R3 12 91 430
R4 12 91 264

Several preprocessing steps are applied on the original dataset. The out-
put data are filtered so that the samples exceeding + − 20% of the out-
put (i.e. application completion time) median are removed. The original
features are normalized with the same procedure explained in Section 3.5,
while the output is recomputed in logarithmic scale. In Fig. 3.5 (top) the
original output signal and the piecewise averaged original signal are pre-
sented for query R3 in increasing order. The latter one is obtained after
the filtering by averaging the output on the samples corresponding to the
same setup of the number of cores. It is used as a baseline of the original
signal and characterizes the low frequency dynamics of the output. Thus
the original signal is decomposed into two components: the low frequency
dynamics (see Fig. 3.5 , bottom) and the high frequency dynamics (see Fig.
3.5, middle). Since the low frequency dynamics signal is piecewise con-
stant, it was resampled so that just one sample is retained for each data slot
of the constant values. Based on this rationale the RFSC was employed to
extract two different linear regression models, which explain the low and
high frequency dynamics. The final predicted completion time is obtained
by summing up the predicted outputs of the two models. To account for
the algorithm randomness, the algorithm is executed five times on all three
queries. The final performance is evaluated in terms of the Normalized
Root Mean Square Error (NRMSE) computed as:

NRMSE =

√
MSE

ymax − ymin
(3.11)

Regarding the initial setup of the design parameters, the number of iter-
ations was set to Ni = 100, the maximum nonlinearity degree to L = 2,

4Since the application completion time is reciprocal to the number of employed cores, we used 1/nCores
as an input instead of nCores.
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the number of generated models to Np = 100, the significance confidence
interval to α = 0.8, all initial TIPs to 1/50, and ε = 0.001. The proposed
algorithm was implemented in Matlab (version 2016a) and executed on an
Intel(R) Core i7-6700K machine, with 4.00GHz CPU, 32GB of RAM, and
a 64-bit Windows Operating System.

Table 3.8 reports the results obtained with 5 independent runs for each
query (R1, R3 and R4), in terms of the extracted models and the corre-
sponding NRMSE. As a benchmark for the performance analysis we used
an AM for the evaluation the execution time of Big Data applications. Ac-
cording to this model, the execution time is given by:

Atime =
k∑
s=1

dnTasks
nCores

eavgTasks (3.12)

where nTasks is the number of tasks, avgTasks the average execution time
of each task associated with a stage s, nCores the number of available cores
during the jobs execution and k the total number of stages. The rationale be-
hind the model given by (3.12) is as follows: the number of waves required
to execute the tasks sequentially at a stage s equals dnTaskss

nCores
e. During the

first dnTaskss
nCores

e− 1 waves, the tasks keep the nCores cores busy, while dur-
ing the very last wave, the final tasks complete the execution of a stage s
using fewer cores.
Inspecting Table 3.8, the behavior of the high frequency dynamics behav-
ior is mostly described by the maximum and average values of shuffling,
mapping and reduce tasks and their combinations. Features related to the
mean of the parameters (e.g. u6, u8, and u10) indicate a small variability
in the data and thus they are sufficient to explain the overall behavior of
the system. On the contrary, the presence of features related to maximum
values indicate more variability due to the degradation of the performance
at the synchronization points by slowest tasks. Considering that these vari-
ables belong to the network layer, the latter case can be justified by the fact
that the experiments were performed in a data center accessing the remote
data disk while the other tasks from other users were performed simulta-
neously, so that average values of the variables were insufficient to capture
the system behavior properly. The low dynamics model frequently includes
second order monomials, involving the reciprocal of the number of cores
(u1), the number of reducers (u11) or the number of mappers (u12), in line
with the AM model. Considering the performance, the RFSC outperforms
significantly the AM on query R3, while being outperformed on query R2.
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3.6.2 Performance analysis on Spark

In this section we report the main results obtained with the estimated mod-
els in terms of accuracy. The synthetic datasets used for running the experi-
ments has been generated using the TPC-DS industry standard benchmark.
Multiple experiments were conducted and three different cluster configura-
tions were used, i.e., two different deployments on Microsoft Azure HDIn-
sight and a cluster based on IBM Power8 (P8) available at the Politecnico di
Milano premises. Concerning Microsoft Azure, the HDInsight PaaS offer
which includes Spark 1.6.2 release on Ubuntu 14.04 was used. The exper-
iments were performed on two different deployments where two different
types of virtual Machines (VMs), namely A3 and D12v2 were tested. A3
VMs includes 4 cores with 7 GB of RAM and 250 GB disk.

Regarding the second deployment, the D12v2 nodes include 4 cores,
28 GB of RAM and 200 GB local SSD. In the A3 case, the workers con-
figuration consisted of 6 up to 48 cores, while in the D12v2 case workers
used between 12 and 52 cores. Each Spark executor had 2 cores with 2GB
RAM while 4GB were allocated to the driver. The P8 cluster is based on
Spark 1.4.1 running on Red Hat 7.3 and includes six VMs with 11 cores
and 60GB of RAM each. Fiber channel disks up to 12TB of physical stor-
age were available. Spark executors were configured with 2 cores and 4GB
RAM while 8GB were allocated to the driver. Workers’ runs were sup-
ported by 4 VMs and used between 6 and 44 cores. The driver was running
on a dedicated master node with the same VM configuration. Tests were
performed on four SQL queries: Q26, Q32, Q40 and Q52 coming form
the official TPC-DS specification. The data set was generated also in this
case through the TPC-DS generator and we considered a 500 GB size on
Azure while on the P8 platform the data set was varied between 250 GB
and 1TB with step 250 GB. For every query we repeated the profiling pro-
cess ten times, considering that the profiles collect statistical information
about jobs.

The main characteristics of the employed queries in terms of data size,
are presented in Table 3.9, where stg denotes the number of stages in a
given query, Nf the size of the original feature set, and Ns the total num-
ber of available samples for the experiments carried out on datasets with
DataSize = {250 750 1000}GB. The original feature set was ex-
tended with the features obtained by combining the original features, i.e.
DataSize ∗ nCores (u2), (DataSize2)/nCores (u3), DataSize/nCores
(u4), 1/nCores (u5).
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Table 3.9: Main characteristics of the datasets used for the experiments.

Query stg Nf N250 N750 N1000

Q26 9 54 115 105 115
Q32 8 52 111 105 115
Q40 9 54 113 105 115
Q52 4 30 111 105 115

The original features which characterize the Spark jobs at every stage
are the average and maximal completion time of the tasks. The average and
maximal shuffle time and the average and maximal bytes sent characterize
spark jobs from stage 4 for the Q26, stage 2 for the Q32, stage 4 for the
Q40 and stage 1 for the Q26. The data are normalized as explained in the
previous sections (e.g. Section 3.5).

To obtain a reliable assessment of the method and to test also the model
interpolation capabilities, tests are carried out on six different training-test
partitions of the original datasets’ for every dataset, which will be denoted
as a cases c1 to c6 in the following.

Fig. 3.6 presents the output, i.e. the application completion time for
query Q26 and DataSize = 1000GB. Unlike query R3 which we pre-
sented for the MR framework, it does not contain high frequency signal
component. Hence, it was sufficient to extract a single model in the form
of a liner regression which captures the overall output dynamics.
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Figure 3.6: Application completion time for query Q26 and DataSize = 1000GB.
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Regarding the initial parameter setup of the RFSC, the number of iter-
ations was set to Ni = 100, the maximum nonlinearity degree to L = 1,
the number of generated models to Np = 100, the significance confidence
interval to α = 0.9, all initial TIPs to 1/1000, and ε = 0.001.

Tables 3.10 and 3.13 report the results in terms of the selected models
and the corresponding accuracy on the training and test data for all six cases
for each dataset. The list of model terms and the corresponding features for
all four queries (Q26,Q32,Q40,Q52) is reported in 3.11. The performance
of the obtained models is measured in terms of the NRMSE and compared
to the one obtained by AM with the same experiment setup.

Inspecting the results presented in Tab. 3.10, features u2, u3, u4, and u5
constitute the most frequent model terms. Beside these, u13, u27 u33 (rep-
resenting the average time of tasks for the stages) and u40 (the number of
cores) also frequently appear. The selection of feature u4 is in line with the
AM (3.12), where it is used to provide the expected number of stages in
order to estimate the application execution time. u2 is representative of the
shuffle activities which are implemented as a many to many communication
in the network, when intermediate results are sent form some nodes to the
others to create next stage Resilient Distributed Dataset (RDD)5. Hence, the
intermediate data size is also proportional to DataSize. For what concerns
the number of cores (u40) term, shuffle communication is many to many and
grows with the cluster size. Though terms u4 and u5 do not have physical
interpretation nor can they be compared the AM, the algorithm recognizes
them as valuable for obtaining a good predictive performance.
In general the RFSC has a better performance compared to the AM. For
what concerns the model structure, the RFSC provides more compact mod-
els containing on average 5-8 elements, while the size of the AM varies
depending on the total number of stages.

5RDD are the most important concept in Spark: a collection of reliable objects partitioned across the nodes
of the cluster that can be processed in parallel.
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3.6. RFSC application to Big Data problems

Table 3.11: Model terms and the corresponding features for queries Q26, Q32 and Q40
(top) and Q52 (bottom).

Model term Feature Index of the model term Feature
u1 constant u23 avgTaskS6
u2 datasize ∗ nCore u24 SHmaxS6
u3 (datasize2)/nCore u25 SHavgS6
u4 datasize/nCore u26 maxTaskS7
u5 1/nCore u27 avgTaskS7
u6 maxTaskS0 u28 SHmaxS7
u7 avgTaskS0 u29 SHavgS7
u10 maxTaskS2 u30 BmaxS7
u11 avgTaskS2 u31 BavgS7
u12 maxTaskS3 u32 maxTaskS8
u13 avgTaskS3 u33 avgTaskS8
u14 maxTaskS4 u34 SHmaxS8
u15 avgTaskS4 u35 SHavgS8
u16 SHmaxS4 u36 BmaxS8
u18 maxTaskS5 u37 BavgS8
u19 avgTaskS5 u38 maxTaskS9
u20 SHmaxS5 u39 avgTaskS9
u21 SHavgS5 u40 nContainers
u22 maxTaskS6

Model term Feature
u1 constant
u2 datasize ∗ nCore
u3 (datasize2)/nCore
u4 datasize/nCore
u5 1/nCore
u6 maxTaskS0
u8 maxTaskS1
u9 avgTaskS1
u10 SHmaxS1
u11 SHavgS1
u12 maxTaskS2
u13 avgTaskS2
u14 SHmaxS2
u15 SHavgS2
u16 maxTaskS3
u17 avgTaskS3
u18 SHmaxS3
u19 SHavgS3
u21 maxTaskS4
u22 avgTaskS4
u23 nCore
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Chapter 3. Randomized Selection Strategy

Table 3.12: NRMSE of the models presented in Tab. 3.10 for the corresponding training-
test data partitionings and DataSize.

RFSC NRMSETR NRMSETE
DataSize[GB] 250 750 1000 250 750 1000

Query c1 0.01 0.01 0.04 0.01 0.01 0.05
c2 0.01 0.01 0.03 0.01 0.01 0.04

Q26 c3 0.01 0.01 0.04 0.03 0.01 0.06
c4 0.01 0.03 0.03 0.04 0.04 0.05
c5 0.04 0.01 0.00 0.10 0.07 0.01
c6 0.03 0.02 0.04 0.04 0.03 0.06

c1 0.02 0.02 0.00 0.04 0.02 0.01
c2 0.01 0.01 0.00 0.03 0.02 0.01

Q32 c3 0.01 0.01 0.04 0.02 0.01 0.05
c4 0.01 0.01 0.01 0.02 0.01 0.03
c5 0.03 0.03 0.03 0.08 0.06 0.05
c6 0.01 0.01 0.03 0.07 0.04 0.05

c1 0.02 0.01 0.01 0.03 0.02 0.01
c2 0.01 0.02 0.02 0.01 0.02 0.03

Q40 c3 0.01 0.01 0.01 0.02 0.03 0.01
c4 0.01 0.01 0.00 0.01 0.03 0.05
c5 0.03 0.00 0.01 0.09 0.07 0.02
c6 0.01 0.00 0.04 0.01 0.02 0.05

c1 0.01 0.01 0.03 0.01 0.01 0.05
c2 0.02 0.01 0.01 0.02 0.02 0.02

Q52 c3 0.02 0.02 0.04 0.02 0.04 0.05
c4 0.03 0.03 0.00 0.05 0.06 0.01
c5 0.03 0.01 0.01 0.08 0.05 0.04
c6 0.03 0.03 0.01 0.05 0.03 0.02
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3.6. RFSC application to Big Data problems

Table 3.13: NRMSE of the AM model for the corresponding training-test data partition-
ings and DataSize.

AM NRMSETR NRMSETE
DataSize[GB] 250 750 1000 250 750 1000

Query c1 0.04 0.01 0.02 0.05 0.03 0.02
c2 0.04 0.02 0.02 0.05 0.03 0.02

Q26 c3 0.04 0.02 0.02 0.05 0.03 0.02
c4 0.04 0.03 0.03 0.05 0.02 0.02
c5 0.04 0.02 0.02 0.07 0.04 0.03
c6 0.04 0.02 0.02 0.05 0.03 0.02

c1 0.04 0.02 0.02 0.06 0.03 0.02
c2 0.04 0.02 0.02 0.06 0.02 0.02

Q32 c3 0.04 0.02 0.02 0.05 0.02 0.02
c4 0.04 0.03 0.02 0.05 0.02 0.02
c5 0.04 0.02 0.02 0.08 0.03 0.03
c6 0.04 0.02 0.02 0.06 0.02 0.02

c1 0.03 0.02 0.02 0.05 0.03 0.03
c2 0.03 0.01 0.02 0.04 0.03 0.03

Q40 c3 0.03 0.01 0.02 0.04 0.03 0.03
c4 0.04 0.02 0.03 0.04 0.03 0.03
c5 0.03 0.02 0.02 0.06 0.04 0.04
c6 0.03 0.02 0.02 0.04 0.03 0.03

c1 0.05 0.02 0.02 0.08 0.03 0.02
c2 0.05 0.02 0.02 0.08 0.03 0.02

Q52 c3 0.05 0.03 0.02 0.07 0.03 0.02
c4 0.05 0.03 0.03 0.07 0.03 0.02
c5 0.05 0.03 0.02 0.11 0.04 0.03
c6 0.05 0.03 0.02 0.08 0.03 0.02
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CHAPTER4
Distributed Model Selection Strategy

The complexity of the combinatorial problem inherent in the FS task in-
creases rapidly with the number of features, and may easily become pro-
hibitive for large-sized problems. This is particularly true for methods
based on incremental model building. More importantly, besides the ob-
vious increase in computational complexity, the ability of FS algorithms to
reach the optimal feature subset diminishes with the increase of the num-
ber of features, due to the corresponding exponential growth of the search
space. This occurs for all FS methods, although with different incidence
levels. To explore the model space more efficiently, we introduce a dis-
tributed combinatorial optimization approach, that exploits vertical parti-
tioning and information exchange. The basic idea is to perform separate
independent FS tasks on smaller subsets of features, and share the local
results among the different optimization processors so that they can im-
prove their selection by combining the locally available features with the
most promising ones found elsewhere. It is important to notice that any
FS method can be employed in the proposed optimization scheme to per-
form the local model selection tasks. This distributed FS architecture, de-
noted distributed MSS (dMSS), is used to develop algorithms applicable
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to both the frameworks considered in this thesis, i.e. distributed algorithm
for the identification of NARX models, denoted dRaMSS, and two dis-
tributed feature selection algorithms for classification, namely the DFS and
the D2CORFS algorithms.

The dRaMSS [8] is a direct extension of the RaMSS method that uses
the distributed scheme to divide the MSS task among different processors,
each operating on a portion of the regressors with the RaMSS algorithm.
The DFS [22] is a generic distributed scheme for FS. As such, it is applica-
ble in combination with any FS method of choice: here we present results
obtained using the distributed scheme with the SFS, the RFSC, and the
ReliefF FS algorithms (the former two as representatives of wrapper meth-
ods, as the latter as representative of filter methods). The D2CORFS [21]
is a novel multivariate filter method which employs the distance correla-
tion index as a model evaluation metric and the DFS scheme. In all cases,
compared to its non-distributed counterpart and to other competitor meth-
ods as well, the proposed distributed scheme yields significant savings in
computational time, as well as more accurate and more robust results.

4.1 Distributed model structure selection

The general idea behind the proposed dMSS scheme is borrowed from
an algorithm developed for solving distributed LP-type optimization pro-
grams, called the Constraints Consensus algorithm [93]. These optimiza-
tion problems are characterized by a large set of given constraints. Elabo-
rating on the observation that only a tiny fraction of the latter are actually
active in correspondence to the optimal solution, it is proposed in [93] to
address the optimization problem in a distributed fashion, redistributing the
constraints over a network of processors. Each of these processors solves a
local optimization problem (of smaller complexity, since it is subject only
to a fraction of the constraints) and finds the subset of active constraints that
characterizes the solution. All these subsets of (locally) active constraints
are then shared among the network and added to the local constraint sets of
all the processors. When the communication round is finished, each pro-
cessor verifies that its local solutions do not violate any of the newly added
constraints. If this is the case, the processor must repeat the optimization
process to update the solution. After a finite number of rounds, the ex-
changed constraints are not violated by any of the local solutions, i.e. a
consensus on the constraints has been achieved, and the algorithm stops.

In analogy to LP-type optimization programs, the MSS problem is char-
acterized by many potential model terms, only a fraction of which char-
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4.1. Distributed model structure selection

acterize the optimal solution. Accordingly, one can address the MSS task
using a distribution approach over the model terms, thus breaking the com-
plexity of the original MSS problem into a number of smaller problems
(i.e., with fewer terms), and alternating a solution phase where all the local
problems are solved, to a communication phase where the local solutions
(i.e., the locally selected model terms) are shared among the different local
MSS problems. The optimal solution to any of the local problems is either
the best model found so far (since the corresponding terms are among those
shared at the end of the previous iteration) or an improving model that com-
bines some of the newly added terms to the previously available ones in the
local set. The procedure is iterated until convergence of all the solutions
to a unique model. The overall dMSS scheme is explained in detail in the
following.

A dMSS problem is defined as a tuple (D,R,J ,U ,B), where:

1. D is a sequence of N input-output samples;

2. R is a finite set of NF model terms;

3. J is a performance index J : 2R → [0 1];

4. U is a set of Nu processing units;

5. B : R → U is a surjective function that associates each model term to
one of the local MSS processors (referred to as the term distribution
map).

The triple (D, R, J ) identifies the MSS problem, whereas U and B de-
fine the structure of the distributed problem. In general, the latter should
include a description of the communication network (generally, a time-
dependent directed graph), but we here assume for simplicity that all pro-
cessors are able to communicate with each other at every communication
round. Accordingly, it is only necessary to specify the node set U of
the communication network. The method can be generalized to problems
where the local units are not all pair-wise connected (provided that the com-
munication graph is strongly connected).

At a given round r the nuth processing unit is assigned a local subset of
model termsRnu(r) ⊆ R, according to the following formula:

Rnu(r) = Rnu(0) ∪ E(r − 1), (4.1)

for nu = 1, . . . , Nu, where Rnu(0) is the initial local term set for the nuth
processing unit, and E(r− 1) denotes the subset of model terms selected at
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the end of the previous round collectively by all the processors. Then, the
nuth processing unit solves the local MSS task using a suitable algorithm
and returns the local best model term subset Enu(r) ∈ Rnu(r). Finally,

E(r) =
Nu⋃
nu=1

Enu(r) (as commented below, it is sometimes convenient to

limit this aggregation to a portion of the processors, e.g., those returning
the best results).

The iterative procedure is initialized by applying a strict partition of R
to define the initial local model term sets:

Nu⋃
nu=1

Rnu(0) = R, (4.2)

whereRnm(0) ∩Rnn(0) = ∅, for m 6= n.
A balanced-size random allocation of the model terms to the setsRnu(0),

nu = 1, . . . , Nu, is here adopted, such that the size of the resulting sets is
either bNF/Nuc or dNF/Nue. Regarding the subdivision of model terms to
the various processors, another policy is also experimented (see Section 4.4,
later on), that consists in re-allocating randomly the terms to the processors
at the beginning of every iteration. This reshuffling of the bins improves
the exploration capabilities of the algorithm by adding a further layer of
randomization.

The initial common model term set E(0) is typically an empty set, unless
some a priori information about the model structure is available that sug-
gests some promising terms. Assigning those model terms to all processors
may accelerate the convergence of the algorithm.

Let C(r) denote the cumulative set of shared model terms until round r
(referred to as the common model term set), which can be calculated recur-
sively as:

C(r) = C(r − 1) ∪ E(r), (4.3)

with C(0) = ∅. The dMSS algorithm stops when no new model terms are
returned by the set of processors, i.e. when C(r?) = C(r? − 1), r? denoting
the round at which convergence is reached. Ideally, at convergence all pro-
cessors should return the same model. In practice, however, this does not
necessarily always happen, since the employed MSS algorithms are based
on some heuristic, and hence may fail to achieve optimality. This effect
may be further amplified if the MSS algorithm employed at each processor
is randomized. To deal with this potential multiplicity of solutions we here
adopt a majority voting approach and return the model structure that has
been selected by most of the local MSS processors. Alternatively, one can
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perform a final MSS round limited to the model terms in E(r?).

During the selection process, one must take care that the size of the lo-
cal model term sets Rnu(r), nu = 1, . . . , Nu, does not increase too much
by way of the shared regressors E(r − 1). Indeed, this would defy the
very purpose of the distribution procedure (i.e. that of breaking the origi-
nal MSS problem into much smaller ones). This “overloading” problem is
particularly significant at the early stages of the procedure, and especially
when Nu is large, since then many of the locally selected models will typ-
ically contain irrelevant terms and thus have poor performance. Therefore,
sharing all the Nu different models with each of the local model term bins
would greatly enlarge its set of model terms, and mostly with useless con-
tent. This problem is automatically mitigated as the procedure goes on,
since when some useful model terms have been detected and shared among
the local model term bins then they are typically selected in all local mod-
els. Consider also that the information sharing stage is always performed
starting from the initial model term subsets assigned to the local model
term bins so that term accumulation is avoided. Clearly, it is important to
limit the number of terms that are actually shared among the local model
term bins, especially at the first stages of the algorithm. This can be simply
done by restricting attention to the first N?

u � Nu local models ranked by
performance.

Algorithm 4 The dMSS scheme

1: (R1(0), . . . ,RNu(0))← BRP(R, Nu)
2: C(0)← ∅
3: E(0)← ∅
4: r ← 0
5: repeat
6: r ← r + 1
7: for nu ← 1, . . . , Nu do
8: Rnu(r)← Rnu(0) ∪ E(r − 1)
9: (Enu(r),Jnu)← MSS(D,Rnu(r),J )

10: end for
11: U? ← RANK(J1, . . . ,JNu , N?

u)
12: E(r)←

⋃
nu∈U? Enu(r)

13: C(r)← C(r − 1) ∪ E(r)
14: until C(r) = C(r − 1)
15: (E?, c?)← MV(E1(r), . . . , ENu(r))

A pseudocode of the dMSS procedure is described in Algorithm 4. The
main procedure uses three accessory routines, namely BRP, RANK and MV
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which are omitted for brevity. BRP performs the balanced-size random par-
tition of R, RANK outputs the indices of the top N?

u local models, ranked
in terms of performance, and MV returns the most selected model among
the different processors (c? is the consensus percentage, i.e. the percent-
age of processors returning exactly that model, which provides a measure
of the reliability of the algorithm result). The MSS function performs the
selection over a given subset of model terms. The preferred MSS algorithm
can be adopted for this purpose.

A flowchart of the dMSS scheme is shown in Figure 4.1.

Random vertical partitioning
R = R(0)1 [R(0)2 [ : : : [R(0)Nu

R, E(0) = ;

Processor 2:Processor 1: Processor Nu:

FS ! E1 FS ! E2 FS ! ENu

· · ·

Stopping
Criterion

YES

NO

Bin augmentation
Rnu = R(0)nu [ E ; nu = 1; :::; Nu

E = [
Nu
b=1Enu

E∗

Figure 4.1: A flowchart of the proposed dMSS scheme.
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4.2 The distributed RaMSS

The RaMSS has proven to be a very effective MSS strategy for the iden-
tification of NARX models, capable of outperforming both classical MSS
algorithms, such as the FROE and the iOFR, and probabilistic ones, such as
the RJMCMC [4]. As such, it is a good candidate for application within the
dMSS scheme. However, some of the parameters that govern its execution
must be specifically set for the dMSS scheme, in order to fully leverage the
advantages provided by the distributed framework. In the sequel we will
employ the acronym dRaMSS (distributed RaMSS) to refer to the dMSS
scheme employing the RaMSS as local MSS algorithm.

As explained in Section 3.2, at each iteration the RaMSS extracts Np

samples from the current model distribution and uses them to evaluate the
importance indices Ij , j = 1, . . . , NF , associated to the regressors. The
reliability of these indices depends on the size of the sample (Np), and ul-
timately on the relative frequency with which the various regressors are
extracted. In general, the higher the number of the regressors in the search
space R, the higher the number of generated models should be, in order to
sample the space of model structures with sufficient resolution and to gather
sufficiently vast information to evaluate all regressors. Unfortunately, the
computational effort increases with Np and becomes easily prohibitive for
large problems. Thanks to its distribution mechanism, the dMSS proce-
dure can overcome this limitation by applying the RaMSS algorithm to
sub-problems of manageable size.

The experimental results reported in section 4.3.2 show that the accu-
racy and elapsed time are nondecreasing with respect to Np. They are also
affected by the initial value of the TIPs, which sets the exploration rate of
the algorithm (high initial TIPs imply that each regressor will be sampled
more frequently and that, consequently, larger models will be extracted).
Combining a small Np with large initial TIPs provides a good setting for
the dRaMSS, resulting in quite accurate selections at an affordable com-
putational cost. In most of the documented experiments we set Np = 10
and µj(0) = 0.5 for j = 1, . . . , NF . Since with these settings quite large
models are initially selected, the role of the statistical test in detecting the
redundant terms is crucial.

Other important settings are the threshold for selecting regressors µthresh

and the maximum number of iterations. Indeed, especially in the first
rounds of the dRaMSS, many processors will operate on regressor sub-
sets containing few or even none of the true regressors, which may result
in an incomplete convergence and a stopping of the local RaMSS execu-
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tions due to an exhaustion of the available iterations. As a side effect,
these executions often return large regressor subsets as a result of the se-
lection, with mostly useless regressors. A possible, effective solution to
this problem is to reduce the maximum number of iterations regardless of
the actual convergence of the algorithm. In this way, the pointless explo-
ration of local spaces that contain little or no useful information is con-
tained. Furthermore, stopping prematurely these executions prevents the
algorithm from selecting many useless regressors for further sharing. As
already commented in the previous section, these local selections can be
automatically rejected by applying the rule that only the top-ranked local
models are to be considered for sharing. In the following, we used the
threshold µthresh = 0.75 for regressor selection, and a number of maximum
iterations equal to 50.

4.3 Experimental analysis of the dRaMSS

4.3.1 An illustrative example

Consider the following system taken from [10]:

S1 : y(k) = 0.7y(k − 1)u(k − 1)− 0.5y(k − 2)

+ 0.6u(k − 2)2 − 0.7y(k − 2)u(k − 2)2 + e(k)

with u(k) ∼ WUN(−1, 1) and e(k) ∼ WGN(0, 0.004), where WUN(a, b)
denotes a white uniform distribution defined on the interval [a, b], whereas
WGN(ρ, σ2) is a white Gaussian distribution with mean ρ and variance σ2.
A sequence of 2000 input/output data is used for identification purposes.
The candidate regressor setR contains all the monomials obtained as com-
binations of lagged inputs and outputs with maximum lags nu = ny = 4
and maximum degree L = 3, for a total of NF = 165 regressors. The
dRaMSS is applied with Nu = 10, so that each processor starts with 16 or
17 regressors. As a result of the initial random distribution of the candidate
regressors, y(t−1)u(t−1) ∈ R4(0), y(t−2) ∈ R5(0), y(t−2)u(t−2)2 ∈
R5(0), and u(t− 2)2 ∈ R7(0).

The parameter settings of the local RaMSS algorithms are set as follows:
the maximum number of iterations is equal to Ni = 50, the number of
extracted models is equal to Np = 20, the initial TIPs are set to µj(0) =
0.25, j = 1, . . . , NF , the significance level for the statistical test is set to
α = 0.001, and K = 1 in the exponential form of the cost function. Model
performances are evaluated using index (2.34) with αJ = 1/2. The TIP
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threshold for final regressor selection is set to µthresh = 0.75. The models
extracted by the local MSS processors are all redistributed.

The evolution of the TIP vectors for all processors is shown in Fig-
ure 4.2, where the rows are associated to the processors and the columns
to the iterations of the dMSS scheme. The TIP trajectories associated to
the correct model terms are emphasized. At the 1st round, all processors
select a model with 2 to 6 regressors and performance ranging from 0.91 to
0.95. Only 3 of the 4 correct regressors are selected by processors 4, 5 and 7
(y(t−2)u(t−2)2 is missed). The best performing model is obtained by the
7th processor. A total of 33 regressors are shared for the next dMSS round.
At the beginning of the 2nd round all processors have 3 correct regressors in
their local regressor sets, and the 5th one has the complete model structure.
Unsurprisingly, processor 5 converges to the correct model structure after
only 23 iterations. All the other processors select all their correct terms
and their local solutions are characterized by better performance indices
compared to the previous round (the performances range from 0.98662 to
0.99178, the latter being the performance of the 5th processor). All these
solutions contain the term y(t − 4)u(t − 2)2 which resembles the missing
correct one y(t − 2)u(t − 2)2. As one can see from the evolution of the
TIPs (see Figure 4.2, 2nd column), the limit on the number of iterations
stops prematurely the execution of all the processors that do not contain the
complete true model structure (i.e., all except processor 5), and prevents
many irrelevant regressors from being selected. At the end of the execu-
tion, the only new regressor that is added to the common set is the missing
correct regressor. At the beginning of the 3rd round, the search space of
all the processors finally contains the correct model structure. All the pro-
cessors are able to select the correct model structure (100% consensus) and
the algorithm terminates (no new regressors are selected). The three rounds
have lasted around 3 s, overall.

4.3.2 Sensitivity of the RaMSS to its design parameters

The number of generated models Np and the initial TIP values µ0 are cru-
cial design parameters for the RaMSS algorithm both in terms of accuracy
and speed of convergence. It is therefore important to understand their im-
pact, in order to determine appropriate parameter settings for the dRaMSS.
We here illustrate a Monte Carlo analysis on the S1 system for varying val-
ues of the mentioned parameters. The initial TIP values are expressed as a
fraction of the total number of regressors NF , to easily determine the av-
erage size of the models extracted during the first iteration. All the other
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Figure 4.2: Evolution of the TIP vectors for processors 1 to 10 (from top to bottom), over
three consecutive rounds (from left to right). Trajectories associated to true regressors
are emphasized.
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algorithm parameters are set as in Section 4.3.1, except that model evalua-
tion is carried out only in prediction (αJ = 0).

Figure 4.3 shows the average accuracy of the RaMSS algorithm for in-
creasing Np, each curve being calculated with a different initial TIP value.
The results support the general expectation that increasing the number of
explored models improves the robustness of the selection process (the re-
gressor importance is evaluated based on more samples), with a consequent
benefit in terms of accuracy as well. For example, with µj(0) = 1/NF ,
j = 1, . . . , NF , a correct model selection is achieved only 13% of the times
if only 10 models are generated per iteration. This percentage grows to 44%
with Np = 15 and to 99% with Np = 30.
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Figure 4.3: Illustrative example: Average accuracy of the RaMSS for increasing Np and
different initial TIP values (µj = β/NF , j = 1, . . . , NF , with β = 1, 10, 20, . . . , 100).

More interestingly, the simulations also show that the initial TIP value
greatly affects the accuracy achieved by the RaMSS algorithm. Appar-
ently, one can achieve a high selection accuracy even with a low Np, pro-
vided that a sufficiently large initial TIP value is used. For example, setting
µj(0) = 100/NF , j = 1, . . . , NF , allows one to reach 100% accuracy with
as few as 10 generated models per iteration. The rationale is that, since
more regressors are tested for each generated model, the terms that belong
to the true model structure have a higher probability to emerge. This occurs
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even if they are combined with irrelevant regressors, since the latter ones
are removed by the statistical significance test.

Needless to say, µ0 and Np also affect the computational load involved
in the execution of the RaMSS algorithm. Overall, the elapsed time grows
with both Np and µ0 (see Figure 4.4), given that the two parameters affect
respectively the number and size of the models to be processed. On the
contrary, both the number of explored models and the number of iterations
(not represented for brevity) decrease as µ0 grows. In fact, increasing the
number of regressors that are simultaneously tested allows the RaMSS to
explore the search space more efficiently, requiring the exploration of fewer
models and the execution of fewer iterations to reach convergence. This
effect partially compensates the increase in computational load due to the
fact that larger models are processed.
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Figure 4.4: Illustrative example: Elapsed time of the RaMSS for increasing Np and dif-
ferent initial TIP values (µj = β/NF , j = 1, . . . , NF , with β = 1, 10, 20, . . . , 100).

This analysis suggests that a large Np should be adopted in combination
with small initial TIPs or viceversa. In the latter case, we are leveraging
the statistical test to remove the vast majority of irrelevant terms in the gen-
erated models. In the considered example, the best results were obtained
by setting µj(0) = 100/NF , j = 1, . . . , NF and Np = 10. The algo-
rithm converged, on average, in 0.899 seconds after 14.61 iterations, with

82



4.3. Experimental analysis of the dRaMSS

275.1 models explored on average during each run. Notice, however, that
this strategy increases the risk of incurring in ill-conditioned parameter es-
timations, especially if the total number of terms is much greater than the
number of available samples.

4.3.3 An MSS problem with a large candidate regressor set: case 1

This example compares the basic RaMSS and its distributed version on an
MSS problem with a large number of regressors. Consider the following
system1:

S2 : y(k) = 0.7y(k − 1)u(k − 1)3 − 0.5y(k − 2)

+ 0.6u(k − 2)6 − 0.7y(k − 2)u(k − 2)6

+ 0.2e(k − 1)− 0.3u(k − 1)3e(k − 2) + e(k)

with u(k) = sign(w(k))· 3
√
|w(k)|,w(k) ∼WUN(−1, 1), e(k) ∼WGN(0, 0.01).

System S2 has a nonlinearity degree equal to 7. Accordingly, we have in-
cluded in the regressor set monomials up to lags nu = ny = 4 with a
maximum degree of L = 7, for a total of NF = 6435 regressors.

Table 4.1 reports the results of a Monte Carlo analysis of the perfor-
mance of the RaMSS and dRaMSS algorithms on this example. Here, the
convergence rate CR denotes the fraction of runs that converged before the
maximum allowed number of iterations (for the RaMSS) or rounds (for the
dRaMSS). A is an accuracy indicator calculated as the fraction of runs re-
sulting in the selection of the correct model structure. The consensus on
the winner model is measured by parameter CW , which reports the frac-
tion of processors that have selected the same model (applies only to the
dRaMSS). Two elapsed time indices are used: ETt is simply the sum of
all processor times, while ETp denotes the elapsed time assuming that the
processing units can actually operate in parallel (only the former applies
to the RaMSS case). Both indices are in seconds. Finally, ENF is the to-
tal number of extracted models, I is the total number of RaMSS iterations
(all processors, all rounds), and R denotes the number of rounds required
by the distributed algorithm to converge (applies only to the dRaMSS). All
indices are averaged over the Monte Carlo runs.

Given the large size of the candidate regressor set, using large initial
TIP values to increase the algorithm’s exploration capabilities turns out
to be inapplicable in the non-distributed setting, both because the num-
ber of available samples is smaller than the number of regressors (so that

1This system is equivalent to system S4 in [4], albeit with a higher polynomial degree.
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ill-conditioning issues may easily occur), and because of the large com-
putational load involved. This, in turn, calls for a setting of Np to a rel-
atively large value to allow for a sufficient regressor exploration. A first
set of results reported in Table 4.1 has been obtained with µj(0) = 1/Np,
j = 1, . . . , NF (this setting implies that on average a given regressor should
appear at least in one model at the onset of the algorithm) and values of Np

ranging from 500 to 2000. In this case 100 Monte Carlo runs were carried
out. Apparently, perfect selection accuracy is achieved only at the cost of
extracting a large number of models at each iteration (Np = 2000), for a
significant computational cost.

A second set of results (5 runs) of the non-distributed RaMSS was ob-
tained with larger initial TIPs (µj(0) = 0.25, j = 1, . . . , NF ). Not surpris-
ingly, smaller Np values can be employed in this case. However, perfect
selection accuracy was obtained only for Np = 100, which resulted in a
much higher elapsed time compared to the previous case.

As for the dRaMSS, ten processor units have been employed in the dis-
tributed scheme and all the local selected models are redistributed at the
end of each round. Given that the size of the candidate regressor set used
in each MSS task is 10 times smaller than with the plain RaMSS, much
higher initial TIP values can be tolerated. The reported results were ob-
tained with µj(0) = 0.5, j = 1, . . . , NF . Not surprisingly, perfect se-
lection can be achieved with much fewer extracted models for each local
processor (Np = 10). Less than 3 MSS rounds were required to achieve
convergence. Notice that on average each processor performs I/Nu MSS
iterations, which is less than the number of iterations of the centralized
RaMSS. This can be partially ascribed to the fact that a lower threshold on
the number of MSS iterations can be adopted in the distributed case. Ac-
curacy being equal, the distributed algorithm can converge to the solution
faster not only in terms of ETp, which is one order of magnitude lower,
but even in terms of the total elapsed time ETt. This demonstrates that
the strategy of splitting and distributing the regressors really allows a more
efficient exploration of the model space.

4.3.4 An MSS problem with large candidate regressor set: case 2

With larger MSS problems both computational and selection accuracy prob-
lems are experienced with the plain RaMSS, while the dRaMSS still pro-
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Table 4.1: Performance of the RaMSS and dRaMSS algorithms on system S2.

Method Nu Np µj(0) CR A CW ETt ETp EM I R

RaMSS 1 500 1/Np 1.00 0.80 - 144.73 - 101155.82 103.50 -
RaMSS 1 1000 1/Np 1.00 0.93 - 243.08 - 163577.16 83.62 -
RaMSS 1 1500 1/Np 1.00 0.97 - 348.36 - 224748.10 76.56 -
RaMSS 1 2000 1/Np 1.00 1.00 - 476.50 - 285511.15 72.72 -
RaMSS 1 20 0.25 1.00 0.00 - 140.67 - 5994.20 159.80 -
RaMSS 1 50 0.25 1.00 0.60 - 320.41 - 3610.40 37.00 -
RaMSS 1 100 0.25 1.00 1.00 - 615.63 - 9721.17 49.50 -
dRaMSS 10 5 0.5 0.93 0.80 0.40 104.42 11.32 7479.89 991.54 5.14
dRaMSS 10 10 0.5 1.00 1.00 0.81 112.51 12.56 14779.17 850.28 2.43
dRaMSS 10 20 0.5 1.00 1.00 0.95 257.94 30.69 37683.10 982.88 2.39

vides a viable solution. Consider the following system:

S3 : y(k) = 0.5y(k − 1) + 0.8u(k − 2)3 + u(k − 2)6

− 0.05y(k − 2)2 + 0.5 + e(k)

with u(k) = sign(w(k))· 3
√
|w(k)|,w(k) ∼WGN(0, 0.3), e(k) ∼WGN(0, 0.01).

The candidate regressor set includes all monomials with maximum lags
nu = ny = 6 and maximum degree L = 6, for a grand total ofNF = 18564
terms. The results are reported in Tables 4.2. For each entry, 30 Monte-
Carlo runs have been executed. In order to tackle the huge regressor set,
100 processors have been employed in the distributed scheme, and, at the
end of each round, only the best 10 locally selected models are redistributed
to the other units. As previously mentioned, by limiting the distribution of
the local MSS solutions we prevent the local regressor subsets from being
overloaded with irrelevant terms, so that their sizes do not grow up to an
unmanageable level.

Table 4.2: Performance of the RaMSS and dRaMSS algorithms on system S3.

Method Nu Np µj(0) CR A CW ETt ETp EM I R

RaMSS 1 100 1/Np 1.00 0.37 - 194.47 - 48388.20 244.50 -
RaMSS 1 500 1/Np 1.00 0.50 - 993.92 - 186469.00 187.80 -
RaMSS 1 1000 1/Np 1.00 0.50 - 1924.01 - 273515.53 137.53 -
dRaMSS 100 10 0.5 1.00 1.00 0.80 922.73 14.03 255807.85 14806.09 4.18

In this challenging scenario the RaMSS algorithm clearly shows its lim-
itations: the model space is too large to be accurately explored, even if
many models are extracted at each iteration. In fact, even with Np = 1000
the plain RaMSS algorithm has been able to select the true model struc-
ture only half of the times, spending in doing so more than 30 minutes to
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converge on average, the slowest execution requiring 2 hours. On the other
hand, the distributed algorithm appears to be capable of dealing with this
kind of situations thanks to its divide et impera approach that breaks the
problem into many smaller ones. With a number of generated models as
low as 10, the dRaMSS algorithm has been successful in selecting the true
model every time, reaching also a very high consensus rate: the true model
structure has indeed been selected on average by 80% of the processors.
The algorithm converges approximately in 4 rounds, with an average total
elapsed time which is slightly greater than 15 minutes (with a maximum of
28 minutes) and an average parallel time of 14 seconds. Each elementary
MSS task converges in less than 36 iterations on average.

4.3.5 A system with non-polynomial model structure

A full assessment of the presented method requires that it is also evaluated
when the system generating the data does not belong to the model fam-
ily used in the model structure identification procedure. For this reason,
consider now the non-polynomial NARX system

S4 : y(k) = exp(−y(k − 1))− 1 + 0.3u(k − 1) + e(k),

with u(k) ∼ WUN(−1, 1) and e(k) ∼ WGN(0, 0.01). For identification
purposes we generated a sequence of 3000 input-output data from system
S4, the first 2000 being used for training and the rest for validation. The can-
didate regressor setR contains all the monomials obtained as combinations
of the lagged input and output variables with maximum lags nu = ny = 4
and maximum degree L = 3, for a total of NF = 165 regressors. The sig-
nificance level is set to α = 0.001, the performance index is set to J = Jp,
with K = 1. The final TIP threshold is equal to µthresh = 0.75.

Two different experiments were carried out with the dRaMSS algorithm,
both with Nu = 10 processors. In the first case, at each round of the dis-
tributed scheme all the 10 returned models are shared among the local re-
gressor subsets, while in the second case only the top 5 models are redis-
tributed. Regarding the local RaMSS processes, Np = 50, Ni = 100, and
the initial TIPs are set to 0.5. One hundred Monte Carlo runs have been
computed for each experiment. Table 4.3 summarizes the results (fsel de-
notes the frequency with which a given model structure is selected). The
structures of the selected models are reported in Table 4.4, where f (1)

sel and
f
(2)
sel denote the selection frequency for all regressors in the two experiments.

Although there does not exist a unique target model in this case, the
dRaMSS tends to select combinations of regressors belonging to a quite
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small subset of regressors (containing just 8 elements), and yields models
with a size ranging from 4 to 6 regressors and all with comparable accuracy
(on the training set). In the first experiment the selection looks sharper, with
only two different model structures being selected by the dRaMSS in 100
runs. The second case is slightly more various, although the 3 most selected
models account for 94% of the runs. Notice that for modelsM5,M6, and
M7, the threshold on the number of RaMSS iterations has been reached,
suggesting that convergence may have not been obtained yet.

Table 4.3: System S4: dRaMSS model selections.

Exp. Model fsel J training
p J test

p CW ETt ETp EM I R

1 M1 63% 0.9902 0.9903 0.61 154.28 21.53 18020.83 218.22 2.43
1 M2 37% 0.9901 0.9902 0.78 143.74 20.19 16045.00 189.51 2.24
2 M2 56% 0.9901 0.9902 0.71 294.44 38.06 45357.73 281.05 2.86
2 M1 19% 0.9902 0.9903 0.42 249.34 30.82 35992.63 215.79 2.16
2 M3 19% 0.9903 0.5631 0.43 235.31 28.92 34776.16 210.53 2.11
2 M4 3% 0.9901 0.7525 0.42 307.13 38.40 43887.33 266.67 2.67
2 M5 1% 0.9900 0.9809 0.40 329.53 41.85 51597.00 300.00 3.00
2 M6 1% 0.9899 0.9901 1.00 219.62 26.31 32215.00 200.00 2.00
2 M7 1% 0.9882 0.9884 0.30 377.08 44.62 48533.00 300.00 3.00

Table 4.4: System S4: structure of the selected models.

Regressor M1 M2 M3 M4 M5 M6 M7 f
(1)
sel f

(2)
sel

u(k − 1) X X X X X X X 100% 100%
y(k − 1) X X X X X X X 100% 100%
y(k − 2) X X 0% 22%
y(k − 1)2 X X X X X X 100% 99%
y(k − 1)y(k − 2) X X 0% 2%
y(k − 2)2 X 0% 1%
y(k − 1)3 X X X 100% 94%
y(k − 1)2y(k − 2) X X X X X 63% 43%

4.4 The DFS algorithm

The proposed distributed scheme for MSS was also employed to develop an
FS method for classification problems, denoted DFS. In principle, the dis-
tributed selection scheme can be combined with any FS method of choice
[22]. In the work presented here, we employ the SFS and the RFSC algo-
rithms as representatives of wrapper methods, and the ReliefF algorithm as
a representative of filter methods.
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A pseudocode of the proposed DFS scheme is given in Algorithm 5. The
inputs are the set of input/output observation pairsD = {d1(k), · · · , dN(k)},
with d(k) = (u(k), c(k)), the full set of extended featuresR = {ϕ1, . . . , ϕNF }
(that includes the original features uj , j = 1, . . . Nf , as well as products of
them up to a given order), the number of feature binsNu, and the maximum
number iterationsNi. As the proposed scheme can be combined with the FS
method of choice (represented by a placeholder function FS(·) in the pseu-
docode, which returns the selected feature subset and the associated per-
formance index), we synthetically denote with Ψ the corresponding vector
of input parameters (which is algorithm-dependent). The main loop goes
from line 2 to 19. The vertical partitioning in Nu bins is carried out at line
3, by means of function DISTRIBUTE(·). Lines 4 to 12 describe the local
selection processes, while at line 13 the N∗u top ranked models are selected,
and the aggregation stage is at line 14. Finally, the termination conditions
are given from line 15 to 19 (plus line 9). Though the convergence of all the
local processors on the same solution terminates the process for practical
purposes, other termination conditions are enforced as well. For example,
if any of the local best solutions is also a global optimizer (i.e, it achieves
perfect classification), the process is terminated. Failure to improve the
current best solution over a number (e.g., 3) of subsequent iterations or the
exceeding of a prescribed number of iterations (rmax) are also employed as
premature termination conditions. To avoid the overloading of irrelevant
terms, the algorithm provides the option to share only the top ranked lo-
cal best models at each iteration among the processors in the subsequent
iteration. It is important to note that the feature distribution is reshuffled
at every iteration to allow a richer exploration of the search space by the
algorithm. The algorithm returns the selected feature subset E? along with
the corresponding classification performance J ?.

4.4.1 Discussion on the algorithm convergence

As already explained, at the onset of each DFS iteration each feature bin
is augmented with the features of the best solution found so far, so that –at
least in principle– each processor should be capable either to retrieve the
same solution or find an even better one by combining the added features
with those already present in the bin. Therefore, it is apparent that the
convergence properties of the DFS rest on the ability of the FS algorithm
operating on the local bins to reach the optimal solution on the subset of
features they are in charge of. In turn, the task of retrieving the optimal
solutions over the local feature bins is greatly facilitated by the fact that the
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Algorithm 5 DFS
Input: D,R, Nu, rmax, Ψ.
Output: E?, J ?.

1: E(0) = ∅, J ? = 0, E? = ∅
2: for r = 1 to rmax do
3: (R̄1, · · · , R̄Nu) = DISTRIBUTE(R, Nu)
4: for nu = 1 to Nu do
5: Rnu = R̄nu ∪ E(r − 1)
6: (Enu ,Jb) = FS(D,Rb, Ψ)
7: if Jnu > J ? then
8: E? ← Enu , J ? ← Jnu
9: if J ? = 1 then return end if . The current best cannot be improved.

10: end if
11: end for
12: J ?vec(r) = J ?
13: U? ← RANK(J1, . . . ,JNu , N?

u)
14: E(r)←

⋃
nu∈U? Enu(r)

15: if E(r) = ∩Nunu=1Enu then return end if . All local models are equal.
16: if r = rmax then return . Maximum number of iterations reached.
17: else if r ≥ 3 then
18: if (J ?vec(r − 1) = J ?) ∧ (J ?vec(r − 2) = J ?) then return end if
19: end if . No appreciable improvement over the last 3 iterations.
20: end for

local processors operate on a relatively small subset of features, so that the
corresponding local search space is easily manageable.

Theorem 2. Assume that Alg. 5 employs an FS method that guarantees
the optimality of the solutions of the local problems. Then, the DFS will
converge to a locally optimal solution in a finite number of iterations, not
greater than the number of tested samples.

Proof. In view of the iteration mechanism described above,J ?(r) ≥ J ?(r−
1), where J ?(r) denotes the performance of the best local model obtained
at the i-th iteration. Since J can take only a finite number of values (J
equals the percentage of correctly classified samples), and the sequence
J ?(r) is limited from above (it cannot exceed 1), it will converge in a fi-
nite number of iterations (actually, not greater than the number of tested
samples).

Notice that, due to the discrete nature of the performance index J , there
might be multiple models with equal accuracy. Thanks to the convergence
condition J ?(r) = J ?(r − 1) (the last termination condition of Alg. 5,
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which is extended to 3 consecutive iterations for greater robustness), the
DFS will converge to one of the equivalent locally optimal solutions. No-
tice also that the alternative termination conditions (included in Alg. 5 for
practical reasons), are all subsumed by the previously mentioned conver-
gence condition formulated on the performance index. For instance, if all
local processors return the same model, at the next iteration they will op-
erate on the same subset of features and, therefore, they will not be able to
improve the local solutions.

A final remark is due regarding the reshuffling of the feature bins that
is carried out at the beginning of each iteration. Although the previous
discussion on the convergence properties of the DFS scheme holds regard-
less of this operation, the reshuffling proves to be useful in escaping from
local minima of the combinatorial problem, by enhancing the exploration
capabilities of the algorithm. As such it greatly enhances the probability of
finding the actual global optimum.

4.5 Analysis of the DFS algorithm

This section reports the results of various tests carried out to assess the per-
formance of the proposed distributed FS architecture. Ten numerical data-
sets, collected from the UCI machine learning repository [91], are used in
the experiments. In the following tests, the original data-sets are prepro-
cessed as follows.

All original features are first normalized in the [0, 1] range, according to
(3.9). Then, as already mentioned, the original features are polynomially
expanded. A different maximum nonlinearity degree is adopted depending
on the size of the considered problem. More precisely, we used L = 3 for
small data-sets (Bupa and Iris) and L = 2 for medium- and big-sized data-
sets, with the exception of the Colon, Madelon, Ovarian data-sets for which
L = 1. The FS task was carried out on the resulting extended feature set
R. The main characteristics of these data-sets are presented in Table 4.5.

To evaluate the performance of the proposed algorithm and provide a fair
comparison with the literature, two validation methods are used, namely
10-FCV and hold out validation with random 70− 30 horizontal data parti-
tioning (70% of the samples used for training and 30% for testing).

For the 70 − 30 validation, 10-FCV was performed as an inner loop on
the training data. The best of the 10 obtained models is selected and tested
on the test data. To account for the non-determinism of the algorithm the
procedure is further repeated 10 times and the performance averaged.

Besides evaluating the performance in terms of classification accuracy,
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we also considered the Cohen’s Kappa rate.

Table 4.5: Main characteristics of the considered data-sets.

Data-set N Nf NF Nc
Bupa 345 6 84 2
Colon 62 2000 2000 2
HillValley 606 100 5151 2
Ionosphere 351 34 595 2
Iris 150 4 70 3
Madelon 4400 500 500 2
Musk1 476 166 14028 2
Ovarian 253 15154 15154 2
Sonar 208 60 1891 2
Vehicle 846 18 190 4
WDBC 569 30 496 2
Wine 178 13 105 3

4.5.1 Algorithm settings

In the following we study the DFS scheme in combination with different
FS algorithms, namely the SFS, the RFSC and the ReliefF. Accordingly, we
will refer to the corresponding DFS schemes as dSFS, dRFSC and dReli-
efF, respectively. We next list the main settings for the SFS, the RFSC
and the ReliefF algorithms, followed by some remarks on the setup of the
distributed scheme.

At each iteration, the SFS operates by testing each available feature for
inclusion in the selected subset and actually adding only the most improv-
ing one. More precisely, the 10-FCV is performed in the inner loop for
each candidate feature subset so that the feature whose inclusion improves
the performance the most within the 10-FCV is included in the model. The
iterative procedure is repeated as long as improvements are obtained by
adding further features. Since in our framework improvements are discrete,
no parameters are required to operate the algorithm.

The RFSC requires a careful setting of various parameters. Using the
notation reported in [20], the initial model distribution was defined so that
the probability of selecting any given feature is equal to µ0 = 1/NF . The
number of models generated at each iteration was set to Np = 10. The
significance confidence interval for rejecting redundant features was set to
α = 0.998. This parameter influences the model size, in that the closer it
is to 1, the more terms are rejected by the statistical test. To constrain the
computational time of the processors in case of slow convergence, the max-
imum number of iterations was set to Ni = 100. The probability threshold

91



Chapter 4. Distributed Model Selection Strategy

for extracting the selected model structure from the feature distribution was
set to µ̄ = 0.7.

The only parameter to design for the ReliefF algorithm is the number of
features to be retained after ranking. This parameter is set to NF

Nu

rperc
100

, where
rperc denotes the percentage of retained features. Parameter rperc was set to
35 for all data-sets, i.e. the 35% top ranked features are selected from each
bin at every iteration.

Another important parameter for the DFS is the number of bins Nb (or
equivalently the size of the bins). This parameter is influenced by many
factors (such as the adopted FS algorithm, NF , N ), so that there is no
straightforward rule that can be invoked for its setting, and some degree
of trial-and-error is necessary for its correct dimensioning. Some rules of
thumb are reported below.

The SFS algorithm, due to its greedy and exhaustive searching nature,
works better with small sets of features. Accordingly, we used 10 bins
for data-sets with NF ≤ 1000, in order to get less than 100 features per
bin. Larger Nu values were used for the other data-sets. Notice also, that
the number of features in a bin should be less or equal to the number of
samples to avoid numerical issues such as overfitting. This implies that
Nu ≥ NF/N .

ReliefF is relatively insensitive to the bin size (the computational com-
plexity grows linearly with the number of features). However, splitting the
feature set will favor the emergence of other features, besides those that are
individually ranked as the best. In this way, features that are not individ-
ually significant but that are crucial for good classification when suitably
combined with others may be detected. With ReliefF we employed 5, 10,
and 15 bins, for small, medium, and large data-sets, respectively.

As for the RFSC, since a very small number of models is extracted at
each iteration (Np = 10) and the probability of selecting any given feature
is also set to a small value (µ0 = 1/NF ), a relatively small bin size is indi-
cated in order to ensure an adequate representativeness of all the features in
the population of extracted models. If one wants to operate with larger bins,
it is necessary to increase Np (or µ0) accordingly, for the same reason. On
the other hand, if the bin size is too small, the RFSC may fail to converge
in a reasonable time. With respect to the considered data-sets the number
of bins was set so as to generate bins of approximately size 25 and 50 for
small and medium cases, respectively. Larger bins are used for the other
data-sets.

Table 4.6 reports settings for Nu that were reported to perform success-
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fully in this study.

Table 4.6: Number of bins (Nu) employed for each data-set, as a function of the FS
algorithm.

Data-set SFS RFSC ReliefF
Bupa 10 4 5
Colon 66 40 47
HillValley 50 51 15
Ionosphere 10 12 10
Iris 10 3 5
Madelon 10 10 10
Musk1 100 56 15
Ovarian 80 303 86
Sonar 20 18 15
Vehicle 10 4 5
WDBC 10 10 10
Wine 10 2 5

When a large number of bins is adopted, bin overloading typically oc-
curs at the first iterations of the distributed algorithm, since in the aggrega-
tion phase a lot of regressors are added to each bin. To avoid this, informa-
tion sharing is limited to the five top ranked local models.

The proposed DFS algorithm was implemented in Matlab (version 2016a)
and executed on an Intel(R) Core i7-3630QM machine, with 4.3GHz CPU,
32GB of RAM, and a 64-bit Operating System.

4.5.2 Sensitivity analysis

Effects of the randomized nature of the DFS scheme
The DFS scheme involves a random shuffling and the distribution of

the features in the Nu bins at every iteration. To get a better insight on
the effects related to the randomized nature of the algorithm, we analyzed
the variability of the classification performance results by means of a Monte
Carlo test. We considered the WDBC data-set employing the same training-
test partitioning of the data for this purpose, and tested both the non-distributed
and distributed architectures for all 3 FS methods. In the latter case 10 fea-
ture bins are employed. The total feature set amounts to NF = 496 terms
(30 original features, polynomial expansion of degree L = 2). Overall, 100
Monte Carlo simulations have been performed for each method.

Regarding in particular the dRFSC, it is important to note that an addi-
tional source of randomization is present besides that related to the distribu-
tion of the features in the feature bins, due to the randomized nature of the
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RFSC algorithm itself. It is therefore important to assess the robustness of
the selection results especially with reference to large search spaces. Fur-
thermore, notice that in the distributed scheme the RFSC operates on much
smaller feature subsets, and can therefore tolerate a smaller number of ex-
tracted models at each iteration. In view of this, we used Np = 100 for the
non-distributed scheme andNp = 10 for the distributed one. The maximum
number of RFSC iterations was set to Ni = 100 in both cases.

Figure 4.5 shows the distribution of the classification error on the test set
with the non-distributed (RFSC, SFS, ReliefF) and the distributed (dRFSC,
dSFS, dReliefF) approaches. A strong dominance of the distributed ap-
proach over the non-distributed one is apparent in all three cases. Nearly
half of the times (46%) the dRFSC algorithm picked solutions with 0 clas-
sification error on the test data, while this figure falls to just 2% for the
non-distributed RFSC. In general, the RFSC displays a higher variance of
the error, which is probably related to the complexity of the search space,
that grows exponentially with size (the non-distributed RFSC operates on
a search space of 2NF possible model structures, while the local RFSC in-
stances used in the dRFSC approach work on sets which are several orders
of magnitude smaller). Even if the non-distributed RFSC employs a much
higher Np value, this is not enough to explore the huge search space effi-
ciently.

The dSFS algorithm outperformed the SFS 90% of the times, while the
dReliefF algorithm had 100% dominance over ReliefF. Among the dis-
tributed algorithms, dRFSC displays the smallest variance of the error.

Effects of the partitioning of the data for training and testing
The classification accuracy depends on how the partitioning of the data-

set in the training and testing sets is performed. To analyze this effect we
carried out 100 Monte Carlo simulations on the WDBC data-set, regenerat-
ing every time the training-testing partition. In this analysis, we compared
the results obtained with the distributed dRFSC, dSFS and dReliefF archi-
tectures. To provide a fair comparison, all 3 algorithms were trained and
tested on the same data for each Monte Carlo simulation. Fig. 4.6 reports
the distribution of the classification error for the dRFSC, dSFS and dReliefF
on the test data. Once again, the error distribution of the dRFSC is mainly
concentrated near zero, and 99% of the times it is below 4%, which shows
the robustness of the proposed approach with respect to the data division
issue.

Both the dSFS and dReliefF present a much larger average error and also
a much wider spread of the results, with occasionally very bad classification
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Figure 4.5: Test error performance of the RFSC, dRFSC, SFS, dSFS, ReliefF and dReliefF
over 100 Monte Carlo runs performed on the same training/test data split of the WDBC
data-set.

performance.

Performance dependence on the number of bins
In the DFS scheme, the number of bins has a strong impact on the clas-

sification performance. To explore the variability of the classification error
performance with respect to the number of generated bins, we tested the
dSFS algorithm on the WDBC data-set using a fixed training-test data split,
but different bin settings, Nu = 10, 20, . . . , 80). Five simulations were car-
ried out for each case, assuming a fixed maximum number of iterations. The
average results are reported in Fig. 4.7. Apparently, the error first decreases
with the number of bins, but after some point it starts to increase again. In
other words, one obtains worse performance when there are either too few
bins (because their size is too large) or too many (because many redundant
features are shared at the end of each DFS round).

4.5.3 Comparative analysis

Non-distributed vs. distributed FS scheme
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Figure 4.6: Monte Carlo evaluation of the test error with dRFSC (top), dSFS (middle) and
dReliefF (bottom) for 100 different training/test data partitions.
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Figure 4.7: Test error dependence on Nu.

Tables 4.7 and 4.8 report extensive simulation results obtained on the
twelve considered data-sets using all the mentioned non-distributed and
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Table 4.7: Comparative analysis of the non-distributed and distributed schemes for the
RFSC, SFS and ReliefF algorithms (Part 1)

Method Data-set Nfs NFs J K ET

RFSC Bupa 5.8 7.4 0.7884 0.4950 14.6
dRFSC 5.8 4.3 0.7945 0.5701 1.9
SFS + 5NN 3.9 4.2 0.6228 0.2104 24.2
dSFS + 5NN 3.4 2.7 0.6576 0.3424 12.6
ReliefF + 5NN 3 6 0.5704 0.1154 0.4
dReliefF + 5NN 5 6 0.6724 0.4348 0.2
RFSC Colon - - - - -
dRFSC 2.3 2.3 0.8421 0.6209 0.3
SFS + 5NN 3 3 0.7579 0.2963 605
dSFS + 5NN 1.25 1.25 0.8026 0.4673 15.8
ReliefF + 5NN 21 21 0.5529 0.5529 0.37
dReliefF + 5NN 21 21 0.8526 0.6211 0.01
RFSC HillValley 8.3 3.7 0.9277 0.8552 18.6
dRFSC 5.6 2.8 0.9859 0.9846 7.7
SFS + 5NN 5.6 4.5 0.5549 0.1095 658.7
dSFS + 5NN 4.3 4.5 0.5604 0.1214 250.4
ReliefF + 5NN 39 120 0.4890 -0.0207 30.4
dReliefF + 5NN 39 120 0.5274 0.0616 2.8
RFSC Ionosphere 16.4 14.7 0.9330 0.8541 57.0
dRFSC 13.5 11.8 0.9487 0.8861 2.4
SFS + 5NN 4.7 2.8 0.9028 0.7818 129.8
dSFS + 5NN 3.9 2.1 0.9198 0.8215 21.6
ReliefF + 5NN 10 20 0.9004 0.7699 2.3
dReliefF + 5NN 18 20 0.9403 0.8653 0.5
RFSC Iris 3.2 6.1 0.9666 0.9500 10.0
dRFSC 2.8 4.5 0.9902 0.9900 1.3
SFS + 5NN 2.6 2.2 0.9600 0.9480 6.8
dSFS + 5NN 1.7 1.7 0.9800 0.9745 2.10
ReliefF + 5NN 2 5 0.9600 0.9457 0.08
dReliefF + 5NN 4 5 0.9800 0.9740 0.06
RFSC Madelon 3.5 3.5 0.6160 0.2212 370.3
dRFSC 3.5 3.5 0.6347 0.2692 34.5
SFS + 5NN 7.5 7.5 0.8966 0.7933 326.1
dSFS + 5NN 7.4 7.4 0.9021 0.8043 60.3
ReliefF + 5NN 18 18 0.8910 0.7820 42.2
dReliefF + 5NN 18 18 0.9083 0.8166 4.7

distributed FS algorithms. For each case we report the number of se-
lected original (Nfs) and extended (NFs) features (clearly, Nfs ≤ Nf and
NFs ≤ Nr), the accuracy performance index J , the Kappa rate K, and the
elapsed time ET .
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Table 4.8: Comparative analysis of the non-distributed and distributed schemes for the
RFSC, SFS and ReliefF algorithms (Part 2)

Method Data-set Nfs NFs J K ET

RFSC Musk1 46.2 23.2 0.8132 0.6201 51.6
dRFSC 48 22.5 0.8216 0.6372 40.7
SFS + 5NN 20 11 0.8531 0.7049 11712.2
dSFS + 5NN 15 7.5 0.8671 0.7360 1328.9
ReliefF + 5NN 84 327 0.8461 0.6937 41.9
dReliefF + 5NN 84 327 0.8559 0.7143 4.2
RFSC Ovarian - - - - -
dRFSC 5 5 0.9653 0.9251 2.23
SFS + 5NN 2 42 0.9868 0.9710 3344
dSFS + 5NN 2.25 2.25 0.9868 0.9710 130
ReliefF + 5NN 62 62 1 1 16.4
dReliefF + 5NN 62 62 1 1 14.4
RFSC WDBC 11.5 10.3 0.9827 0.9621 66.0
dRFSC 8.1 5.2 0.9860 0.9674 8.5
SFS + 5NN 6.1 3.5 0.9507 0.8942 129.9
dSFS + 5NN 4.4 2.5 0.9597 0.9129 32.2
ReliefF + 5NN 10 17 0.9596 0.9116 4.1
dReliefF + 5NN 21 17 0.9825 0.9621 0.8
RFSC Sonar 25.8 18.7 0.8806 0.8101 72.0
dRFSC 9.6 5.1 0.9090 0.8164 1.21
SFS + 5NN 8.5 4.8 0.7167 0.5346 624.6
dSFS + 5NN 6.9 3.7 0.8073 0.6093 131.1
ReliefF + 5NN 19 44 0.7753 0.5460 3.1
dReliefF + 5NN 42 44 0.8075 0.7640 1.4
RFSC Vehicle 10.9 16.6 0.7888 0.7186 162.4
dRFSC 8.1 5.2 0.8003 0.7339 25.3
SFS + 5NN 10.3 8.5 0.7010 0.6558 130.2
dSFS + 5NN 9.6 7.8 0.7292 0.6886 57.6
ReliefF + 5NN 9 13 0.6913 0.6436 3.3
dReliefF + 5NN 10 13 0.7671 0.7314 1.2
RFSC Wine 7.3 7.5 0.9944 0.9916 12.0
dRFSC 3.6 2.2 0.9944 0.9916 1.16
SFS + 5NN 6.7 4.6 0.9493 0.9306 40.1
dSFS + 5NN 5.6 3.6 0.9777 0.9698 11.2
ReliefF + 5NN 6 7 0.9323 0.9080 0.2
dReliefF + 5NN 8 7 0.9944 0.9916 0.1

Apparently, there is a systematic gain in using the distributed scheme
as opposed to the non-distributed one, independently of the adopted FS
algorithm. This is generally due to the fact that the complexity of the FS
task increases exponentially with the number of considered features, and all
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wrapper methods tend to perform better when the search space is smaller.
The distributed approach is ultimately beneficial also for a filter method

like ReliefF, since in the centralized case it just picks the individually top
ranked features, which, as mentioned before, do not necessarily coincide
with the best features to combine in the classifier design.

The inspection of Tables 4.7 and 4.8 reveals that the dSFS and dRFSC
generally provide smaller models than their non-distributed counterparts.
Besides having less extended features, these models also contain less orig-
inal features. As for the dReliefF method the final model size depends on
the rperc parameter which is set in the same way for the non-distributed
and distributed schemes. The dSFS typically returns the smaller models,
whereas the dRFSC and the dReliefF provide more often the most accurate
results.

Finally, there appears to be a significant gain (sometimes even an or-
der of magnitude) in computational time due to the adoption of the DFS
scheme, implying that the searching mechanism is much more efficient than
in the non-distributed case.

Comparison with state-of-the-art methods
This section compares the results obtained with the proposed DFS scheme

(in the 3 versions, namely dRFSC, dSFS and dReliefF) to those reported in
the literature (see, in particular, [124], [125], [112], [23], [83], and [17]).
Tables 4.10 and 4.11 report respectively the performance (both in terms
of classification accuracy and Kappa rate) and the model size (in terms of
the number of selected features NFs) of the obtained classifiers for 10 UCI
datasets (the larger Colon and Ovarian data-sets are considered separately).

The best results in terms of classifier performance are typically associ-
ated to one of the 3 distributed schemes. A similar pattern is observed also
regarding the classifier size. The results (see Table 4.11) also support the
choice of extending the original set of features with a polynomial expan-
sion, in that in general the obtained models outperform the literature while
using a very limited number of the original features.

Finally, Table 4.12 reports the results (in terms of model size and classi-
fication performance) obtained for the two large microarray data-sets (Colon
and Ovarian). Besides the good performance in terms of accuracy (see the
dReliefF algorithm in particular), the obtained results also demonstrate the
improvements that can be gained with the proposed methods in terms of
model size with respect to the distributed FS approaches discussed in [17].
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Chapter 4. Distributed Model Selection Strategy

Table 4.12: Comparative analysis: performance (Nfs and J).

FS Method + Classifier Colon Ovarian
Nfs J Nfs J

INT DF + 1NN 16 0.7700 27 0.9786
INT DRF + 1NN 16 0.7000 27 1.000
INT DRF0 + 1NN 16 0.8500 27 1.000
IG10 DF + 1NN 200 0.8000 1516 0.9905
IG10 DRF + 1NN 200 0.7000 1516 1.000
IG10 DRF0 + 1NN 200 0.8000 1516 1.000
Rel10 DF + 1NN 200 0.8300 1516 0.9810
Rel10 DRF + 1NN 200 0.7000 1516 1.000
Rel10 DRF0 + 1NN 200 0.8000 1516 1.000
dRFSC (avrg) 2.3 0.8421 5 0.9653
dRFSC (best) 3 0.8947 7 1.000
dSFS + 1NN (avrg) 1.25 0.8026 2.25 0.9868
dSFS + 1NN (best) 1 0.8421 3 1.000
dReliefF + 1NN (avrg) 21 0.8526 62 1.000
dReliefF + 1NN (best) 21 0.8947 62 1.000

4.6 The D2CORFS Algorithm

The high dimensional nature of bioinformatic data poses a severe challenge
on machine learning methods. For example, microarrays allow to simul-
taneously measure the expression levels of a large number of genes, so
that the resulting datasets are characterized by a large number of features
(tens of thousands of genes may be considered) and a very limited sam-
ple size [104]. Most of the genes provide little or no information useful for
classification purposes, and it is particularly important to detect the smallest
subset of features (referred to as biomarkers) that provide sufficient infor-
mation to separate the classes represented in the dataset (which could dis-
tinguish cancerous and noncancerous samples, or identify different types of
cancer [60]).

The highly unbalanced dimensions of microarray datasets greatly com-
plicate the FS task, and unsatisfactory classification performances are often
obtained with standard methods [67], [3]. Indeed, large feature vectors sig-
nificantly slow down the learning process, since the complexity of the FS
problem grows exponentially with the number of features. At the same
time, in combination with the small number of samples, this may cause the
classifier to overfit the training data, thus compromising model generaliza-
tion [72]. Besides their unbalanced dimensions, microarray data are often
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4.6. The D2CORFS Algorithm

corrupted with noise, which further aggravates the analysis. For all these
reasons, specialized FS techniques must be developed to appropriately han-
dle this type of datasets.

The dMSS scheme provides a powerful approach for the exploration
of the huge space of feature subsets, but we cannot complement it with a
wrapper method to operate at each processor, due to the excessive compu-
tational effort required. In addition, by inspecting the results presented in
Table 4.12 the filter method outperforms both wrapper methods. We there-
fore adopt here (see also [21]) a multivariate filter-based FS strategy based
on a randomized model generation policy as in the RFSC and the distance
correlation (dCor) criterion (see Section 2.8) for model evaluation.
An important feature of the dMSS scheme is that the FS procedure is carried
out on smaller datasets with much less disproportionate dimensions, which
has significant implications on the accuracy and robustness of the results.
In particular, the bias effect of the dCor associated to high-dimensional
problems is much de-emphasized thanks to this strategy. Due to the issue
of dimensional imbalance, only the best local solution is shared with the
feature bins at each iteration.

A pseudocode of the distributed scheme is provided below under the
name D2CORFS (Distributed dCor-based FS). The local FS method ap-
plied at each processor is denoted DCORFS algorithm (see Section 4.6.1).
The input parameters Np, Ni, µ(0), µ̄, and ε are actually arguments of the
DCORFS function and will be explained later. The other inputs are the set
of input/output observation pairs D = {(u(k)

s , c(k)), k = 1, . . . , N}, the full
set of features R, the number of feature bins Nu, and the maximum num-
ber of allowed rounds NF . Notice that the problem addressed here (i.e.,
microarrays) is too high-dimensional to allow a polynomial extension of
the original features. Therefore, R = F . The algorithm returns the se-
lected feature subset E? ⊆ R, along with its dCor value R?

N . Notice that
the procedure is terminated if a model with the maximum possible dCor
is obtained (line 10), or if all local models are equal (line 13), or if the
maximum number of rounds has been reached (line 15), or finally if no
improvement is achieved for 3 consecutive rounds (line 18). A detailed ex-
perimental study of the proposed distributed algorithm will be presented in
Section 4.7 after introducing the DCORFS algorithm.
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Chapter 4. Distributed Model Selection Strategy

Algorithm 6 D2CORFS

Input: D,R, Nu, NF , Ni, Np, µ(0), µ̄, ε.
Output: E?,R?N .

1: R = R(0)
1 ∪ · · · ∪ R

(0)
Nu

2: E(0) = ∅, E? = ∅,R?N = 0
3: for r = 1 to rmax do
4: Enu ← s?

5: for nu = 1 to Nu do
6: Rnu = R(0)

nu ∪ E
7: (Enu ,Rnu) = DCORFS(D,Rb, Ni, Np, µ(0), µ̄, ε)
8: ifRnu > R?N then
9: E? ← Enu ,R?N ← Rnu

10: ifR?N = 1 then return end if
11: end if
12: end for
13: if ∪nuEnu = ∩nuEnu then return end if
14: R?Nvec(r) = R?N
15: if r = rmax then
16: return
17: else if r ≥ 3 then
18: if (R?Nvec(r − 1) = R?Nvec(r − 2) = R?N ) then
19: return
20: end if
21: end if
22: end for

4.6.1 The DCORFS algorithm

The same randomized approach of the RFSC is employed in the DCORFS.
A probabilistic distribution of the model structures is progressively refined
based on the information on the individual extended features gathered from
populations of models extracted from the same distribution. The main dif-
ference is in the criterion used to evaluate models, which does not require
the development and assessment of a classifier but only the calculation of
the unbiased dCor index given by (2.46). Unlike any other (multivariate) fil-
ter method and according to the randomized scheme, the features are eval-
uated not just individually or in pairs, but based on populations of extracted
models. The objective of the DCORFS algorithm is to find the subset of
features E∗ ⊆ R that maximizes the dCor indexRN(ϕ

(k)
s , c(k)).

A pseudocode of the DCORFS algorithm is given in Algorithm 7.
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4.7. Analysis of the D2CORFS algorithm

Algorithm 7 DCORFS

Input: D,Rb, Ni, Np, µ(0), µ̄, ε
Output: E?,R?N

1: ϕE? = ∅,
2: for j = 1 to |Rb| do
3: µj ← µ(0) TIP initialization
4: end for
5: for t = 1 to Ni do
6: for p = 1 to Np do
7: φp ∼ Pφ Extract sample feature subset
8: RpN ← RN (φp, c) Compute dCor with (2.46)
9: end for

10: RN max ← max(R1
N , . . .R

Np
N )

11: R̄N = 1
Np

∑Np
p=1R

p
N

12: γ = 1
λ(RN max−R̄N )+0.1

13: for j = 1 to |Rb| do

14: Ij ←
∑
p|ϕ∈φp R

p
N∑

p|ϕ∈φp 1 −
∑
p|ϕ/∈φp R

p
N∑

p|ϕ/∈φp 1

15: µj ← sat(µj + γIj) TIP update
16: end for
17: if max

j=1,...,|Rb|
|µj(i)− µj(i− 1)| ≤ ε then

18: break
19: end if
20: end for
21: E? ← ∅
22: for j = 1 to |Rb| do
23: if µj ≥ µ̄ then E? ← E? ∪ {ϕj} end if
24: end for
25: R?N = RN (ϕE? , c)

The required inputs are the observations {u(k)
s , c(k)}, k = 1, . . . , N , the

set of features Rb on which to perform the search, the maximum number
of iterations Ni, the number Np of feature subsets to be extracted from
the current distribution at each iteration, the initial value of the TIPs µ(0),
the acceptance threshold µ̄, and a convergence threshold ε. The algorithm
returns the selected feature subset E?, along with its dCor valueR?

N .

4.7 Analysis of the D2CORFS algorithm

In this section we report the results of different experiments carried out to
assess the performance of the proposed algorithm on four well known mi-
croarray benchmarks: Prostate, Lung, Leukemia and Ovarian cancer. All
four datasets are biclass problems. For example, the Prostate dataset has
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Chapter 4. Distributed Model Selection Strategy

the Relapse and non-Relapse classes. The Lung data set contains 12533
genes and distinguishes between the Mesothelioma and ADCA class. The
Leukemia data cover 7129 genes used to distinguish between Acute Lym-
phoblastic Leukemia (ALL) and Acute myeloid leukemia (AML). All datasets
except the Ovarian cancer are originally divided into training and test data.
To be comparable with the literature, we split the Ovarian data randomly
assigning 70% of the samples for training and 30% for testing, preserving
the original class distributions on both data sets. The main characteristics
of the considered datasets are given in Table 4.13, where NP and NN are
the total number of samples belonging to class 1 and 2, respectively, and
σTR and σTE are the data skew ratios. The latter indicate the class imbal-
ance, measured as σ = NP

NN
in the training and test data, respectively. This

information is important, since it is related to the accuracy and reliability
of classification algorithms across classes [59].

Table 4.13: Dataset characteristics.

Dataset NF Nc Training (NP / NN) Test (NP / NN) σTR σTE

Prostate 12600 2 102 (52 / 50) 34 (25 / 9) 0.96 0.36
Lung 12533 2 32 (16 / 16) 149 (15 /134) 1 8.93
Leukemia 7129 2 38 (13 / 25) 34 (10 / 24) 1.92 2.4
Ovarian 15154 2 177 (113 / 64) 76 (49 / 27) 0.566 0.551

The original features have been normalized in the [0, 1] range according
to Eq. (3.9). For the Prostate, Lung and Ovarian datasets, a feature screen-
ing based on dCor was applied as a preprocessing step. The significance
level was set to αd = 0.95 for the Prostate, αd = 0.90 for the Lung and to
αd = 0.99 for Ovarian dataset, in order to reduce the features by a factor
4. To evaluate the performance of the proposed method we trained dif-
ferent classifiers on the selected features, namely support vector machines
(SVM) with linear decision boundaries, the naive Bayes (NB) classifier and
k-nearest neighbors (kNN, with k = 5). We employed alternative evalu-
ation criteria (e.g. TPR, TNR, Gmean, Fscore), especially designed to
account for class imbalanced data.

The initial parameter setup for the D2CORFS in the experiments is as
follows: a maximum of rmax = 5 rounds is allowed for the distributed
search scheme and the number of bins is set to Nu = 2NF/N . As for the
DCORFS algorithm operating on each feature bin, the number of iterations
is limited to Ni = 100, the number of feature subset extractions at each
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4.7. Analysis of the D2CORFS algorithm

iteration is set to Np = 100, the initial TIPs are set to µ0 = 1/|Rb|, ε =
0.001, and the acceptance threshold is µ̄ = 0.98. The proposed algorithm
was implemented in Matlab (version 2016a) and executed on an Intel(R)
Core i7-3630QM machine, with 2.4GHz CPU, 8GB of RAM, and a 64-bit
Operating System.

4.7.1 Detailed performance analysis

Table 4.14 reports the results obtained with the linear SVM, NB and kNN
classifiers, assessed in terms of classification accuracy on the training (JTR)
and the test data (JTE), as well as using the mentioned alternative metrics.
Apparently, the FS procedure selected very compact models in all cases,
with 4 features at most, and relatively high classification accuracy was ob-
tained with SVMs (the results compare quite favorably with the literature,
as shown later in Table 4.16). Interestingly enough, though the Leukemia
data are imbalanced in favor of negative samples, the obtained classifier
scores better on the TPR index, than on the TNR. The computational time
is sufficiently low, the lowest computational cost having being observed
for the Lung dataset. Indeed, the Lung dataset has the smallest number
of samples, which in turn causes the size of the feature bins to be partic-
ularly small resulting in a very high computational efficiency. Conversely,
the much higher computational time observed for the Ovarian data can be
ascribed to the larger size of the local FS problems both in terms of samples
and features.

4.7.2 Redundancy analysis of the obtained models

We also performed an a posteriori analysis on the obtained models, both
in terms of the dCor measure and the classifier performance, to investigate
the presence of redundant biological information. The test is performed by
removing one gene at a time from E?, and re-evaluating the reduced feature
subset. Table 4.15 reports the obtained results. By inspecting Table 4.15, it
is apparent that the dCor index indicates the absence of redundant terms in
all selected models. Conversely, the performance index on the training set
JTR is not necessarily worse for reduced models. Still, the corresponding
performance on the test data is always worse (or equal at most).
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4.7. Analysis of the D2CORFS algorithm

Table 4.15: Redundancy analysis on the obtained models (obtained withD2CORFS and
SVM).

Dataset Feature subset Rnu JTR JTE
Prostate E? 0.8253 0.9314 0.9706

E? \ {ϕ4282} 0.8129 0.9216 0.8529
E? \ {ϕ6185} 0.7875 0.9020 0.9118
E? \ {ϕ8965} 0.8054 0.9412 0.9706
E? \ {ϕ10494} 0.8169 0.9020 0.9412

Lung E? 0.9311 0.9688 0.9933
E? \ {ϕ7765} 0.7809 0.7500 0.9329
E? \ {ϕ12308} 0.8919 0.9063 0.9664

Leukemia E? 0.9816 1.0000 0.9412
E? \ {ϕ4781} 0.9709 0.9737 0.9118
E? \ {ϕ4847} 0.9809 1.0000 0.3529
E? \ {ϕ5039} 0.9699 1.0000 0.9118

Ovarian E? 0.9413 1.0000 1.0000
E? \ {ϕ182} 0.9194 0.9774 0.9868
E? \ {ϕ1680} 0.8741 0.9831 1.0000
E? \ {ϕ2237} 0.9261 1.0000 0.9868

Apparently, using the dCor index as a selection criterion provides mod-
els with good generalization properties, and, what is more, the proposed
algorithm has better generalization properties than a wrapper method using
SVM, since the search process of the latter would be driven by performance
JTR. The only exception to the mentioned behavior is observed for the
Prostate case, where a reduced model slightly outperformed the complete
model on the training data, but without any apparent benefit on the test data.

4.7.3 Distribution of the feature values

A more detailed analysis of the obtained models, with focus on the selected
features, reveals several interesting aspects. Fig. 4.8 shows the values of the
selected features for all samples, divided by class and training/test subset.
If the data distribution of the extracted features on the training set remains
the same or similar on the test part, then it is expected to have comparable
performance of the extracted model on the training and test splits. On the
contrary, if the distribution of the features within the extracted model on
the test part differs (significantly) with respect to the training data, then it is
expected to have different performances on the training and the test parts.
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Figure 4.8: Distribution of the feature values of the models presented in Table 4.14.

Models characterized by perfect performance on the training set have
features with little or no overlap between different classes (see, e.g., Lung,
Leukemia, and Ovarian datasets). This indicates that a perfectly legitimate
model selection was operated based on the available information (training
set). Unfortunately, for some of these datasets (Lung, Leukemia) the fea-
ture value distributions over classes turns out to be different on the test set,
resulting in some small classification error.

Such imprecision could not have been avoided based on information
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gathered from the training set, if not by luck. In other words, if a subset
of features provides good class discrimination on the training set, it will
provide good generalization only if the feature value distributions on the
training and the test subsets are similar. It may well happen that better
generalization is achieved through a model which is not optimal on the
training set.

4.7.4 Complexity analysis

We here analyse the computational complexity of the proposed algorithm
as a function of the problem size (i.e., the number of features NF and sam-
ples N ), and of some crucial design parameters (e.g., the number of rounds
of the D2CORFS algorithm rmax, the number of iterations of the DCORFS
algorithm Ni, and the number of the feature bins Nu). Let F be the full
set of NF features. Clearly, the model space to be explored grows expo-
nentially with the number of features (the number of possible non-empty
subsets of F is 2NF − 1. At every iteration, each processor executes the
DCORF algorithm on its feature bin, which performs three tasks: feature
subset extraction and evaluation, regressor evaluation, and RIP update. The
first task requires NpN

′
F operations, where Np is the number of feature

subsets to be evaluated, and N ′F ' NF/Nu is the number of features in
each feature bin. The evaluation of a feature subset by means of Equa-
tion (2.46) is of order O(N2N ′F ), whereas the calculation of all the in-
dices Ij , j = 1, . . . , N ′F requires an order of NpN

′
F operations. Finally,

the RIP update is linear in the number of features in the bin, i.e. O(N ′F ).
The complexity of the DCORFS is then O(NiN

′
F (N2 + Np)), which is

typically dominated by the first term. The complexity of the overall dis-
tributed scheme D2CORFS is dominated by its main cycle which repeats
up to Nr times the DCORFS on Nb feature bins, for an overall complex-
ity of O(rmaxNuNiN

′
F (N2 +Np)) ' O(rmaxNFNiN

2)). An experimental
characterization of the algorithm time complexity has also been carried out,
the results of which are shown in Fig. 4.9. More precisely, Fig. 4.9 (top)
reports the elapsed time for the DCORF algorithm, averaged over ten runs
(such that the features are reshuffled at random in each run), as a function of
the number of features in the bin and the number of iterations. The curves
are characterized by an initial increase of the computational time with the
growth of the feature space, followed by a saturation associated with the
reaching of the maximum allowed number of iterations. Indeed, as Ni in-
creases, the saturation point shifts to the right. These curves can be used to
properly set Ni with respect to the number of features in the bin, in order to
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obtain convergence prior to the saturation point.
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Figure 4.9: Complexity analysis: Time dependency of the DCORFS execution time on
the number of features in the bin and the number of iterations (top), time dependency
of the D2CORFS execution time on the problem size and the maximal number of bins
(bottom).

Fig. 4.9 (bottom) analyses the elapsed time of the overall D2CORFS al-
gorithm, as a function of the problem sizes NF and the number of bins Nu.
As can be seen from the figure, it is quite apparent that the execution time
decreases rapidly as the number of bins increases, but at a certain point it
starts increasing again, though at a slower rate. This result emphasizes the
importance of the Nu design parameter. If the number of bins is chosen too
sparingly, the bin size will be too large, thus leading to insufficient search
space reduction. This ultimately defies the very purpose of the distributed
scheme, i.e. to break the problem complexity, and thus slows down the
convergence of the algorithm. Conversely, if one employs too many small
bins, most of these will initially not contain any useful feature and will pre-
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sumably return inaccurate results, whereas only the processors associated
to bins that contain features of the true model will typically produce mean-
ingful results. As a consequence of this, the algorithm will require more
rounds and thus more time to converge.

4.7.5 Model sensitivity on the data subdivision

To analyse the model sensitivity on the data subdivision in training and test
data, we took the best model (see Tab. 4.14) obtained using the nominal
training-test subdivision of the Leukemia dataset, and evaluated its perfor-
mance with a Monte Carlo test over 1000 random training-test data sub-
divisions (generated so as to preserve the distribution among classes). On
each run, the selected features are the same but the classifier is re-estimated
on the corresponding training subset and evaluated on the test subset. The
results are presented in Fig. 4.10, and show a non-neglectable sensitivity
to the training-test data subdivisions. Indeed, the same performance of the
nominal case is re-obtained less than 50% of the times, and on more than
10% of the runs a performance as low as JTE = 0.91 is achieved (corre-
sponding to 3 errors over the 34 test samples). One possible explanation of
this phenomenon is that there are some isolated samples which cannot be
learnt by the model if they fall in the test portion of the data.
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Figure 4.10: Accuracy of the Leukemia model obtained with the nominal training-test
data split over 1000 alternative data-splits.

4.7.6 Comparative analysis

Table 4.16 reports a comparison with the results documented in [17] and
[79], which consider exactly the same datasets with the same data splitting.
To account for the randomized nature of the D2CORFS algorithm (both re-
garding the splitting of the features in the feature bins and the DCORFS
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algorithm employed on each of these), we present the averaged results of
5 independent runs besides the best ones. Both the classification accuracy
on the test set and the model size are reported (J̄TE and |E| denoting the
averages, and J?TE and |E?| the values associated to the best models, re-
spectively). Compared to the results taken from the literature, the proposed
method selects compact models capable of providing good performance.
Moreover, the selected feature subsets result in comparable performance
on all four datasets, regardless of the classifier employed, which is not the
case for the methods discussed e.g. in [17].
Some further results are available for the Leukemia dataset regarding other
multivariate filter methods, namely the MRMR [38], the CFS [119], and
the MBF [122]. These results cannot be directly compared to the preceding
ones since they have been obtained with the leave-one-out cross validation
(LOOCV). Using this approach the MRMR, the MBF, and the D2CORFS
all score J̄ = 1, whereas the CFS only obtains J̄ = 0.91. Interestingly
enough, the D2CORFS obtains this performance with the smallest feature
subset with respect to the other methods, with just 3 features, compared to
the 6 of MRMR and the 8 of MBF.
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4.8 Randomized FS as a mechanism for generating ensemble
of classifiers

It is well-known that an ensemble of classifiers can perform better in terms
of accuracy with respect to a single classifier [37]. This is possible just
if the classifiers make uncorrelated decisions, that is just if the individual
classifiers are different among each other. In this section we present the
preliminary results of a new ensemble method denoted E-RFSC. Namely,
the random nature of the RFSC algorithm in combination with the discrete
loss function and sample manipulation are exploited to serve as a mecha-
nism for generating diversity among the classifiers. Once all classifiers are
constructed, the final decision is made by a so called meta-classifier, which
takes the form of a linear regression and is trained on the whole training
dataset.

4.8.1 Preliminaries on ensemble-based classification methods

One of the main aims in supervised ML is to improve accuracy. In this
direction, an active research area on this problem is the study of meth-
ods for constructing ensembles of classifiers, which combine the decisions
od different classifiers by adding a further decision layer based on voting,
weighted voting, or other criteria. Ensembles are more accurate than the
individual classifiers with which they are built if the individual classifiers
disagree with one another [56]. That is, diversity among the classifiers leads
to uncorrelated class predictions, which results in improved classification
accuracy. This is in line with the well known Condorcet’s jury theorem
which refers to the problem of a group of individuals making a correct fi-
nal decision. Namely, let us assume that the voting is independent and that
there are only two possible outcomes. If an individual of a group has a
probability p of being correct and the probability of the majority of being
correct is Tp, then p > 0.5 implies Tp > p. If p > 0.5 and the number
of individuals approaches infinity, then Tp → 1. Hence, the key factor for
making a successful ensemble is to find uncorrelated classifiers, with indi-
vidual classification performance above 0.5.
Still, the theorem is based on the strong assumption that the voting is inde-
pendent and holds just for biclass classification problems.

In general, the ensemble construction involves four main components:
i) the available training data pairs {u(k), y(k)}, ii) a diversity generator re-
sponsible for generating diversity among the classifiers, iii) a base inducer,
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i.e. an algorithm for classifier design and iv) a combiner block, i.e. a policy
for combining the decisions of the individual classifiers into the final out-
come of the ensemble.

There are several methods in the literature for obtaining diversity: i)
Sampling methods manipulate the training samples so that multiple hy-
potheses can be generated; ii) Methods based on input manipulation manip-
ulate the features to generate different feature subsets for different learning
processes; iii) Methods based on output manipulation manipulate the out-
puts to generate different training subsets on which the learning process is
performed; and finally iv) Methods based on injecting randomness into the
learning algorithm repeat the learning process multiple times on the same
training data but with different initial feature weights.

Given the set of classifiers which construct an ensemble, it is neces-
sary to apply some policy to combine their individual results into a unique
decision. Combining methods are generally classified into voting and meta-
combination methods. Voting methods can be either unweighted or weighted.
Majority voting is the simplest (unweighted) vote approach. In case of clas-
sifiers with probabilistic outcome, the ensemble outcome is the class with
the highest average probability obtained by averaging the predicted proba-
bilities of the individual classifiers independently for each class. Weighted
voting methods weigh the decisions of the individual classifiers with a cer-
tain policy to make the final decision. In [56] least square regression is
applied to find the weights which maximize the ensemble accuracy on the
training data. Another common method is to weigh the classifiers’ deci-
sions based on their individual accuracy (e.g. [5]). The approach proposed
in [68] uses features as inputs to compute weights, which are later used to
weigh the hypothesis of the individual classifiers.
Meta-combination methods learn meta-classifiers from the individual clas-
sifiers and their corresponding outputs. In the literature, several methods
based on meta-combinations are proposed [121], [106], [26], [25]). In this
work we exploit the basic idea of stacking [121], which uses the predictions
of the individual classifiers as inputs to ameta−level classifier which com-
bines the individual decisions into the final one.

4.8.2 The E-RFSC algorithm

The discrete nature of the loss function used in the RFSC algorithm in com-
bination with its random nature causes different runs on the same data to ex-
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tract different models with similar or equivalent performance as discussed
in Section 3.5.2. This behaviour of the algorithm suggested the develop-
ment of a method for generating ensembles of classifiers, which will be
denoted as E-RFSC in the sequel. Considering that diversity is essential in
the construction of successful ensemble classifiers, we exploited the men-
tioned behavior of the RFSC algorithm together with sample manipulation
as a diversity generator (in the work we present here we used 10-fold cross-
validation for this purpose). More precisely, training data are divided ini-
tially into 10 non-overlapping sample subsets. Learning is performed 10
times, so that nine slots are used for training and the remaining one for test-
ing. Once all classifiers are obtained, the corresponding predictions serve
as inputs to a meta-classifier. The meta-classifier takes the form of a linear
regression:

ĉE(k) = ϕE(k)T ϑE. (4.4)

where ϕE(k) = [ŷ1(k), . . . , ŷ10(k)]T is vector of regressors representing
the prediction values of the individual classifiers, whileϑE = [ϑE1 , . . . , ϑE10 ]

T

is the parameter (i.e. weight) vector. The logistic loss function is applied
to find the weights that maximize the accuracy of the meta-classifier on the
whole training dataset.

4.8.3 Performance analysis

This section reports the results of an analysis carried out to assess the accu-
racy of the proposed ensemble classification algorithm. It is tested on four
numerical datasets, two obtained from the UCI machine learning repository
(HillVally and Musk1) and two micro-array datasets (Colon and Ovarian).
The original features of the HillValley and the Musk1 datasets are polyno-
mially expanded with L = 2. The main characteristics of the datasets are
represented in Table 4.17. As with the RFSC, all the original features are
normalized in the [0, 1] range according to Eq.( 3.9).
The design parameters of the algorithm were set to the same values as for
the RFSC for the HillValley and Musk1 datasets (number of iterations was
set to Ni = 300, the maximum nonlinearity degree to L = 2, the number
of generated models to Np = 100, the significance confidence interval to
α = 0.99 and all initial TIPs to 1/NF ), and the to the initial setting used
in dRFSC for two microarray datasets (the nonlinearity degree L = 1, the
number of generated models Np = 10, the significance confidence interval
α = 0.998. This parameter influences the model size, in that the closer
it is to 1, the more terms are rejected by the statistical test, the maximum
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number of iterations was set to Ni = 100, the probability threshold for ex-
tracting the selected model structure from the feature distribution was set
to µ̄ = 0.7)).

Table 4.17: Main characteristics of the considered data-sets.

Data-set N Nf NF Nc
Colon 62 2000 2000 2
HillValley 606 100 5151 2
Musk1 476 166 14028 2
Ovarian 253 15154 15154 2

The performance is evaluated by random 70 − 30 horizontal data parti-
tioning, so that 70% of the samples served for learning and the remaining
30% for testing. The results in terms of the performance index J are pre-
sented in Table 4.18. As can be noticed, the proposed ensemble method
scores the same or improved results with respect to the other two methods
which take decisions based on single classifiers.

Table 4.18: Performance comparison E-RFSC vs. RFSC and dRFSC in terms of accuracy.

Data-set Method J
Colon E-RFSC 0.8421

RFSC [20] -
dRFSC [22] 0.8421

HillValley E-RFSC 1.0000
RFSC [20] 0.9277

dRFSC [22] 0.9859
Musk1 E-RFSC 0.8670

RFSC [20] 0.8132
dRFSC [22] 0.8216

Ovarian E-RFSC 1.0000
RFSC [20] -

dRFSC [22] 1.0000
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CHAPTER5
Conclusions

IN this thesis we presented the outcome of the research on randomized
model selection for NL identification and supervised ML.
The first outcome of the research is the RFSC algorithm, which applies

a randomized model search strategy to the feature selection and classifi-
cation problem. The FS problem is reformulated as a model structure se-
lection problem, where suitable nonlinear functions of the original features
are evaluated for insertion in a linear regression model. Differently from
commonly adopted methods, the importance of each candidate regressor
is not evaluated with reference to a specific model, but to a population of
models, which appears to provide more reliable information regarding the
actual significance of the term. A distribution of the models is used to ex-
tract the population of models and is then updated based on the aggregate
information gathered from the extracted models, reinforcing the probabil-
ity to extract the most promising regressors. Upon convergence a limit
distribution is obtained, which in practice identifies a single model struc-
ture. The proposed algorithm was tested also in the context of Big Data
problems to build models capable of predicting the completion time of an
application. The discrete nature of the loss function used in the RFSC al-
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gorithm in combination with its random nature and sample manipulation is
exploited to develop a method for generating ensembles of classifiers, de-
noted E-RFSC. The outputs of several individual classifiers serve as inputs
to a meta-classifier, in the form of a linear regression, which takes the final
decision.
The observed limitations of the proposed algorithms on large scale prob-
lems motivated the development of a distributed scheme for FS applicable
to both frameworks. The proposed algorithm is based on vertical data par-
titioning, the distribution of the FS task among several processing units and
on the exchange of their local solutions until a consensus is reached. The
proposed distributed scheme can be used in combination with any FS algo-
rithm of choice. The method produces small and compact models, easily
amenable to interpret, while at the same it obtains improvements on perfor-
mance and efficiency. This concept is exploited also for developing mul-
tivariate filter algorithm based on the distance correlation index, targeting
micro-arrays problems. Actually, the distributed scheme in combination
with the RFSC algorithm was found to be ineffective when dealing with
extra-large search spaces (e.g. microarrays), due to computational issues
related to parameter estimation and classifier design. More in detail, we
introduced a novel feature selection (FS) approach which employs the dis-
tance correlation (dCor) as a criterion for evaluating the dependence of the
class on a given feature subset. The dCor index provides a reliable depen-
dence measure among random vectors of arbitrary dimension, without any
assumption on their distribution. Moreover, it is sensitive to the presence of
redundant terms. The proposed FS method is based on a probabilistic rep-
resentation of the feature subset model, which is progressively refined by a
repeated process of model extraction and evaluation. A key element of the
approach is a distributed optimization scheme based on a vertical partition-
ing of the dataset, which alleviates the negative effects of its unbalanced
dimensions.
The proposed methods have been evaluated and compared to the other well-
known FS and MSS algorithms on standard benchmarks, obtaining promis-
ing and competitive results, especially in terms of the tradeoff between
model complexity and prediction accuracy.
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techniques in bioinformatics. bioinformatics, 23(19):2507–2517,
2007.

[105] S. Saha, S. Rajasekaran, and R. Ramprasad. Novel randomized fea-
ture selection algorithms. International Journal of Foundations of
Computer Science, 26(03):321–341, 2015.

[106] A. K Seewald and J. Fürnkranz. An evaluation of grading classifiers.
In International Symposium on Intelligent Data Analysis, pages 115–
124. Springer, 2001.

[107] D. Shalon, S. J. Smith, and P. O. Brown. A dna microarray system for
analyzing complex dna samples using two-color fluorescent probe
hybridization. Genome research, 6(7):639–645, 1996.

[108] R. Sheikhpour, M. A. Sarram, and R. Sheikhpour. Particle swarm
optimization for bandwidth determination and feature selection of

132



Bibliography

kernel density estimation based classifiers in diagnosis of breast can-
cer. Applied Soft Computing, 40:113–131, 2016.

[109] M. G. Smith and L. Bull. Genetic programming with a genetic algo-
rithm for feature construction and selection. Genetic Programming
and Evolvable Machines, 6(3):265–281, 2005.
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[114] G. J. Székely and M. L. Rizzo. The distance correlation t-test of
independence in high dimension. Journal of Multivariate Analysis,
117:193–213, 2013.
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