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Abstract

The subject of this dissertation is the mathematical analysis of some diffuse inter-
face models which arise in the realm of Fluid Dynamics to describe the motion
of two globally immiscible, incompressible and viscous fluids. Depending on

the interplay between inertial and viscous forces, we consider two classes of equations
governing the velocity field, known in literature as:

• the model H,

• the Hele–Shaw approximation.

The interface separating two fluids is assumed to be a region with non-zero thickness.
Over this interfacial region the surface tension (also called Korteweg stress) is dis-
tributed. In these models a crucial role is played by the choice of the free energy. In
the first part of this contribution we study local models originating from the Ginzburg–
Landau free energy. In the second part we consider nonlocal models related to the
Helmholtz free energy taking more general long-range interactions into account. Both
of them penalize concentration variations. This twofold choice is motivated by the clas-
sical literature and leads to different Cahn–Hilliard type equations for the order param-
eter.

The common denominator throughout our investigation is the presence of the phys-
ically relevant free energy density which consists of a logarithmic function. The main
advantage is the possibility to show the existence of a physical solution, meaning that
the order parameter (i.e. the difference of concentrations) is forced to take physically
admissible values. Thus, the order parameter maintains its original meaning. On the
other hand, the study of such logarithmic potential requires non-classical mathematical
methods. Indeed, by virtue of the different behaviour between the logarithmic potential
and its derivatives close to the singular points, high order estimates involving the order
parameter are hard to get.

The main results herein concern the uniqueness and regularity of weak solutions as
well as the existence of strong solutions. Particular attention is given to the so-called
separation property. The latter means that, if the initial datum is not a pure phase, then
the order parameter eventually stays away from the pure states with a uniform in time
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displacement. In the two dimensional setting, we present two different methods in or-
der to handle local or nonlocal models leading to the instantaneous separation property,
namely the separation occurs for any positive time with a parameter depending (ex-
plicitly) only on the initial energy value and the total mass of the initial datum. As an
interesting application of the regularity properties, we discuss the asymptotic behaviour
of solutions.

Let us now describe a summary of the main results contained in this thesis. First, the
Navier–Stokes–Cahn–Hilliard–Oono system is studied in dimension two. This model is
a generalization of the classical model H accounting for (reversible) chemical reactions.
We show the uniqueness and the instantaneous regularization of weak solutions as well
as the validity of the separation property. The latter has been obtained by combining high
order Sobolev estimates with a regularity theory for an elliptic problemwith logarithmic
nonlinear term, for which the Trudinger–Moser inequality plays an essential role. The
same result also goes for the Navier–Stokes–Cahn–Hilliard system.

The Hele–Shaw–Cahn–Hilliard system is analyzed in both two and three dimensions.
We first prove the existence of a global weak solution. Then, in dimension two we
demonstrate the uniqueness of weak solutions, their regularity propagation in time and
the separation property. Instead, in dimension three we show the global existence of
strong solution provided that the initial datum is regular enough and sufficiently close
to any local minimizer of the Gindzburg–Landau free energy.

We also investigate the Brinkman–Cahn–Hilliard system in dimension two. In partic-
ular, we address the unmatched viscosities case. We show the existence and uniqueness
of weak solutions, their regularity properties and the separation property.

Next, we study the nonlocal model H. First, we provide a comprehensive analysis
of the nonlocal Cahn–Hilliard equation. In particular, we introduce a novel technique
for the separation property which differs from the one employed in the local case. The
proposed argument is base on an Alikakos–Moser iteration argument combined with
the Trudinger–Moser inequality. Then, the analysis has been extended to the nonlocal
Navier–Stokes–Cahn–Hilliard system is studied in dimension two.

Finally, the nonlocal Hele–Shaw–Cahn–Hilliard system is considered in two and
three space dimensions. In both cases we show existence of weak solutions, unique-
ness, existence of strong solutions and their regularity properties.
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CHAPTER1
Introduction

The mathematical description of the motion of immiscible viscous fluids is a long-
standing problem in Fluid Dynamics starting at the beginning of the 19th century.
Since then, a vast literature has been devoted to find accurate models which com-

ply the physical laws and lead to efficient numerical calculations. Themutual interaction
between the interface dynamics and the surrounding fluid motion is indeed a complex
phenomenon, depending also on surface tension effects, topological changes, viscosity
ratios, temperature gradients and imposed flow at the boundary. The main common
goal among these investigations has been understanding the nature of the interface sep-
arating the binary mixture. In the classical attempt, it is assumed to be an evolving in
time surface with zero thickness, across which physical quantities must satisfy suitable
boundary conditions. Instead, a more recent and powerful approach treats the interface
as a narrow zone with finite thickness. In the latter the interface evolution is described
through the concentration variable which is uniform in bulk phases and varies steeply
but continuously across the interfaces. Whilst considerable progresses have been made
towards more efficient models, its mathematical analysis involving well-posedness as
well as regularity still remains challenging.

1.1 Fluids in motion

A wide class of processes in engineering applications rely on the interaction between
fluids within multicomponent systems. Due to the complexity of moving fluid structures
and their mutual interplay, the study of interfacial dynamics has played an increasingly
crucial role. This non-trivial behavior already arises in simple experiments that are
considered as real benchmarks in literature.

1



Chapter 1. Introduction

• Breakup or coalescence of drops. A fluid drop is immersed in a surrounding
fluid filling the domain. If the viscous forces prevail on the surface tension acting
across the interface, viscous stresses bend out the drop shape. As a result, the drop
pulls outward and breakup into two drops.

• Mixing in a driven cavity. Two fluids are initially separated by a flat interface in a
bounded geometry. The flow is driven by steady and uniform boundary velocities
of one wall alone (or two symmetric walls). As the time goes by, the fluids start to
stretch and fold as long as eddy structures arise. Chaotic pattern motions, such as
corner eddies, may also occur.

• Moving contact lines. When two viscous fluids interact each other and are also in
contact with a solid wall, the interface between the fluids which intersect the solid
surface is said contact line. A phenomenological equation (Young’s law) rules
the static angle between the solid surface and the fluid/fluid surface relating three
different coefficients of surface tension. However, the angle can be altered whether
the contact line is moving by the flow.

• Thermocapillary or Marangoni flow. The effect of a temperature gradient im-
posed at the interface between the two immiscible viscous fluids consists in a local
variation of the interfacial tension. In turn, the instability generates tangential shear
stresses and so the motion of the fluids.

• Fingering instability in Hele-Shaw cell. The injection of a viscous fluid between
two flat and parallel plates at a small distance drives a more viscous one. The
unstable interface takes the shape of several fingers. One finger then grows up at the
expense of its neighbours and the flow reaches a steady state with the propagation
of a single finger.

All of the above mentioned examples have been studied to make comparisons be-
tween theory and experiments in the simplest geometrical settings, to find common fea-
tures and develop models for more complicated flows. In particular, these processes
own a common feature. Being driven by the action of an imposed flow or a tempera-
ture gradient or by an intrinsic mechanism like the surface tension, the spatial regions
occupied by a single flow is deformed. This leads to an evolution of the interface area,
which decreases its characteristic length scale and can even change its topology.

1.2 Sharp interface method

In a fixed bounded domain Ω ⊂ Rd, d = 2, 3, the motion of an incompressible viscous
(Newtonian) fluid is described by the celebrated Navier–Stokes equations. Neglecting
external forces and assuming constant density ρ = 1 and viscosity ν, the velocity field
u : Ω× (0,∞)→ Rd and the pressure π : Ω× (0,∞)→ R are ruled by{

∂tu + (u · ∇)u− ν∆u +∇π = 0,

div u = 0,
in Ω× (0,∞), (1.2.1)

2



1.2. Sharp interface method

subject, for instance, to the no-slip boundary and initial conditions{
u = 0, on ∂Ω× (0,∞),

u(·, 0) = u0(·), in Ω.

From Leray’s seminal work until nowadays, the mathematical analysis of Navier–Stokes
equations (1.2.1) has been developed by many authors but it is still far from being com-
plete. We refer the reader to, e.g., [150] and references therein for a review on the theory
and connected problems.

Instead, if two globally immiscible, incompressible and viscous fluids lie into a fixed
domain, they additionally interact at the interface among them. To describe their motion,
the time variation of physical quantities such as velocity, pressure and stresses is formu-
lated within a certain spatial regions. In the sharp interface approach the Navier–Stokes
equations are written separately for each phases, supposing that density and viscosity
are equal to their equilibrium values. In addition, the system is closed via boundary
conditions involving velocity and strain tensor at the interface, which is unknown and
has to be determined as well.

To define the free boundary problem, Ω is separated into two subdomains ΩA(t) and
ΩB(t), for t ≥ 0, occupied by each fluid. They are separated by a surface Σ(t), such
that Ω = ΩA(t) ∪ ΩB(t) ∪ Σ(t). We introduce the velocity u : Ω × (0,∞) → Rd and
the pressure π : Ω × (0,∞) → R. Assuming the two Newtonian fluids have different
constant viscosities νi, i = A,B, neglecting densities difference ρA = ρB = 1 (the
so-called Boussinesq approximation) and gravity or external forces, the free surface
problem for t > 0 reads as{

∂tu + (u · ∇)u− div
(
− πI + 2νiDu

)
= 0, in Ωi(t),

div u = 0, in Ωi(t),
(1.2.2)

subject to the boundary and initial conditions

[u]Σ = 0, on Σ(t),

u · n = V, on Σ(t)

[−πI + νiDu]Σ · n = σκn, on Σ(t),

u = 0, on ∂Ω,

u(·, 0) = u0(·), in Ω.

(1.2.3)

Here the notation I stands for the identity tensor, D is the strain rate tensor such that
Du = 1

2
(∇u + ∇uT ), [f ]Σ denotes the jump of limiting values across the surface Σ,

n is the normal vector to Σ pointing into Ω2, V is the normal velocity, σ is the surface
tension and κ the total curvature. On the interface Σ, the above boundary condition on u
means that the interface is transported by the flow and the velocity is continuous across
the interface (no jump condition), while the one for the stress tensor is the so-called
Young-Laplace condition taking the capillary force into account.

From the mathematical viewpoint, only few results are available for system (1.2.2)-
(1.2.3) with surface tension. The existence of a local in time strong solution is proved
under the assumption that ΩA and ΩB do not change their topology. Alternatively, a
global in time solution exists provided that the initial condition is closed to a (regular)
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Chapter 1. Introduction

equilibrium. Such results can be found in [7], [17], [18] for the motion in an infinite
layer and [48], [148] , [129], [140], [143] for bounded domains. In computational fluid
dynamics, numerical methods dealing with the free boundary formulation can be di-
vided into two classes: front tracking and front capturing. In the first case the flow is
approximated over a stationary mesh to which a separate unstructured grid is added for
the moving interface. However, tracking the moving mesh entails a large computational
overhead. In the second approach the interface is instead caught as the zero-level set of
a scalar function which satisfies a transport equation driven by the velocity field. Clas-
sical references are d [153] and [154] for the former, [135] and [136] for the latter (see
also [102] and [114] and references therein).

The motion of fluids in simple geometries, where key mechanisms of more compli-
cated systems are already evident, has been the subject of many works. The starting
point of one of those branches was the experiment proposed by Hele–Shaw in [91]. A
fluid (originally a gas) is injected into a system consisting of two parallel plates separated
by a narrow gap to avoid the gravity (see [156] for a historical review). The particular
structure of the cell leads to the assumption that viscous forces prevail over inertial ones,
under which Navier–Stokes equations reduce to a linear relation. Indeed, from (1.2.1)
with no slip boundary conditions on two flat plates, assuming first the flow is steady and
parallel (∂tu = 0 and u = (u1, u2, 0)), then neglecting derivatives with respect to x1

and x2, the fluid evolution is described by

u1 =
1

2

∂π

∂x1

(x2
3

ν
− hx3

ν

)
, u2 =

1

2

∂π

∂x2

(x2
3

ν
− hx3

ν

)
.

Introducing the gap-averaged velocity

ui =
1

h

∫ h

0

ui dx3, i = 1, 2,

the two dimensional vector field u = (u1, u2) satisfies

u = − h2

12ν
∇π, (1.2.4)

where h is the cell gap. This is the so-called Hele–Shaw equation. It has the same form
of the Darcy’s law employed for saturated flow in porous media in three dimensions.
Computing the divergence of (1.2.4), a free boundary problem for the original Hele–
Shaw experiment is formulated in term of the pressure π with pointwise source/sink in
Ω(t). An equivalent formulation can be introduced leading to a boundary-value prob-
lem for a conformal map from the unit disk to the phase domain Ω(t). This gave the
possibility to construct explicit solutions from a suitable ansatz (see [76], [127], [130],
[132], [142]). Regarding a general initial domain Ω(0), the system is well posed only
in the case of fluid injection. In particular, given a domain Ω(0) with smooth boundary,
it has been proved the existence of local in time strong solutions (i.e. a smooth fam-
ily of Ω(t), t > 0). On the other hand, existence of a unique global weak solution is
reached reducing the problem to a variational inequality. We refer the reder to [89] and
references therein for a fuller treatment of this subject.

Going back to the motion of two immiscible fluids, trapped in a Hele–Shaw cell, the
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1.3. Diffuse interface method

related free boundary problem for the gap-averaged velocity reads as follows{
u = − h

12νi
∇π, in Ωi(t),

div u = 0, in Ωi(t),
(1.2.5)

subject to the boundary and initial conditions

[u]Σ = 0, on Σ(t),

u · n = V, on Σ(t)

[−π · n]Σ = σκn, on Σ(t),

u · n = 0, on ∂Ω,

u(·, 0) = u0(·), in Ω.

(1.2.6)

In contrast to the one-phase problem, the techniques to find exact solutions usually fail
in two-phase Hele–Shaw flows. Several papers have been devoted to the well-posedness
of system (1.2.5)-(1.2.6) with zero and non-zero surface tension, also considering the
gravity field with applications to porous media flows. The same also goes for applica-
tions and numerical simulations. A good source of reference on two-phase Hele-Shaw
flows can be found in the introduction of [44].

1.3 Diffuse interface method

A radical change of view in the theory dates back to Van der Waals which postulated
in [155] the notion of diffuse interface rather than a sharp one. This idea inspired many
physicists during the last century leading to the development of the so-called phase field
method. The origin of the first equations can be attributed to Cahn and Hilliard in [29]
(see also [28]), whose goal was to describe the spinodal decomposition in alloymixtures.
Afterwards the method has been used by Allen and Cahn in [8] for antiphase domain
coarsening. Since then, the approach has been employed in many areas of Materials
Science such as solidification of pure and binary materials, grain boundary, nucleation,
solid-solid or liquid-liquid phase transition and crystallization. We refer the reader to,
e.g., [52] for a general overview.

The key concept of diffuse interface methods consists in treating the interface as a
finite-width region in which the physical quantities have a rapid but smooth variation.
The evolution of thick interfaces is taken into account by means of an additional variable
upon which the free energy of the systems depends. This is the so-called phase order
parameter or phase field ϕ which distinguishes one constituent (or one phase) from the
other. Hence, the interface can be recovered as level-sets of ϕ. The order parameter is
ruled by an additional equation based on the mass balance of the mixture and assuming
Fick’s law for the mass flux. In addition, the form of the total free energy is deduced
from Statistical Mechanics. In this approach interface topological changes are naturally
allowed by the formulation of the system. This is one of the main reasons that made this
approach widespread in numerical simulations. On the other hand, letting the interface
thickness go to zero, the relating free boundary (or sharp interface) problems can be
formally recovered from diffuse interface models.
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Chapter 1. Introduction

The model H

The so-called model H was introduced by Hohenberg and Halperin in [93] to study crit-
ical points of single and binary fluids. A detailed derivation of the model was proposed
in [88] and [144] for themotion of fluids driven by capillarity forces (neglecting densities
difference). More precisely, in [88] the balance of mass and momentum are combined
with constitutive laws compatible with a version of the second law of thermodynamics.
This model has been employed in several numerical studies for concrete applications.
Main examples are interface stretching during mixing [31], thermocapillary flow [98],
drop breakup, moving contact lines and large-deformation sloshing flow [96]. For a
review on these topics see [10]. Later on suitable generalizations of the model H have
been discussed for fluid mixtures with unmatched densities in [2], [11], [50], [114]. A
diffuse interface model accounting for two-phase flow with soluble surface agents has
been proposed in [3]. Further generalizations to contact angles problem, ternary fluids
and numerical methods can be founded in [102] and references therein.

We consider two globally immiscible, incompressible and viscous fluids labelled by
A and B that occupy a domain Ω ⊂ Rd. Following the diffuse interface approach, we
assume a partial mixing of the fluids molecules. Additionally, we accept the so-called
Boussinesq approximation, namely the fluids have the same density ρA = ρB = 1. We
indicate with c the molar fraction (or concentration) of fluid A (0 ≤ c ≤ 1). Obviously,
1−c is the concentration of fluidB. From the conservation of mass of the fluid mixture,
we can write the equation of continuity for the fluid A as

∂tc+ div (cu) = div JA,

where u is the mean velocity of the fluid flow and JA is the mass flux of fluid A. We
recall that the mass flux of fluid B is JB = −JA. We now rewrite the equation for the
difference of mass concentrations which plays the role of order parameter. Introducing
ϕ = 2c− 1, we have

∂tϕ+ div (ϕu) = div J,

where J = 2JA. This is a convective Cahn–Hilliard type equation with mass flux J. The
balance of momentum ruling the mean velocity reads as

∂tu + (u · ∇)u = div T,

where T is the stress tensor such that T = TT , together with the incompressibility
constraint

div u = 0.

We proceed by stating the constitutive equations. The mass flux J is defined by Fick’s
law

J = m∇µ,

wherem is the chemical mass diffusivity (also called mobility) and µ is the chemical po-
tential. The chemical potential µ is then related to the phase parameter by the variational
derivative of the total free energy

µ =
δE
δϕ
.

6



1.3. Diffuse interface method

In the theory proposed by Cahn and Hilliard in [29], also employed for fluid mixtures,
the form of the free energy is of Ginzburg–Landau type

EGL(ϕ) =

∫
Ω

ε

2
|∇ϕ(x)|2 +

1

ε
F (ϕ(x)) dx, (1.3.1)

where ε > 0 is related to the thickness of the interface and the homogeneous free energy
density F is given by

F (s) = Ψ(s)− Θ0

2
s2, s ∈ (−1, 1), (1.3.2)

where its convex part Ψ is defined as

Ψ(s) =
Θ

2
[(1 + s) log(1 + s) + (1− s) log(1− s)] . (1.3.3)

The form of F is the sum of the free energy densities of the system before and after
mixing. In particular, the latter is deduced from the Boltzmann equation for the mixing
entropy. The constant Θ denotes the absolute temperature of the mixture, while Θ0

is the so-called critical temperature, depending on interaction potentials of same and
different phases, Avogadro’s number and Boltzmann’s constant (see [105] for a recent
review). The relation between Θ and Θ0 determines the mathematical features of F .
The interesting case is the double well one when 0 < Θ < Θ0, so that the segregation
takes place.

The stress tensor T is the sum of the Cauchy stress tensor and a further contribution
which models capillarity effects

T = Tc + Ts.

For incompressible Newtonian fluids, the Cauchy stress tensor accounts for the effects
due to pressure and the viscous stress tensor, this is

Tc = −π̃I + 2νDu = −π̃I + ν
(
∇u +∇uT

)
,

where ν is the viscosity of the fluid. From the mechanical version of the second law of
thermodynamics (see [88]), the capillary stress has the form

Ts = −ε∇ϕ⊗∇ϕ.

Summing up, the resulting system reads as follows
∂tu + (u · ∇)u− div (νDu) +∇π̃ = −εdiv (∇ϕ⊗∇ϕ),

div u = 0,

∂tϕ+ div (ϕu) = div (m∇µ),

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ).

The system is subject to the following natural boundary conditions

u = 0, ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ), (1.3.4)

that is, a no-slip boundary condition for u and homogeneous Neumann boundary con-
ditions for the chemical potential µ and for ϕ. The latter ones entail that there is no
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Chapter 1. Introduction

mass flux and the interface separating the two fluids is orthogonal to the boundary. The
system is closed with the initial conditions

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω. (1.3.5)

We observe that, due to the equality

− εdiv (∇ϕ⊗∇ϕ) = µ∇ϕ−∇
(ε

2
|∇ϕ|2 +

1

ε
F (ϕ)

)
, (1.3.6)

the system can be rewritten in the following form
∂tu + (u · ∇)u− div (νDu) +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ div (ϕu) = div (m∇µ),

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ), (1.3.7)

where π is the modified pressure, namely,

π = π̃ +
ε

2
|∇ϕ|2 +

1

ε
F (ϕ).

Here it is more evident the role of the capillary force. In the diffuse interface approach
the singular force on the free surface in (1.2.2)-(1.2.3) is smoothed and acts in the finite
transition region between the pure phases. Indeed, the term on the right hand side µ∇ϕ
is not zero only in the mixing zones. The connection with the capillarity force has been
explained in, e.g., [31] and [110] (see also [114]).

Let us now comment two coefficients of system (1.3.7) which need to be specified.
The viscosity of themixture ν is a strictly positive function of the concentrations, namely

ν = ν(ϕ) ≥ ν∗ > 0.

A possible choice of the local viscosity is a linear combination of the bulk viscosities,

ν(s) = νA
1 + s

2
+ νB

1− s
2

, (1.3.8)

where νA and νB are the positive viscosities of the two fluids. Otherwise, if the two fluids
have the same viscosity, it is usually called matched viscosities case. Another parameter
of the system is the mobility function m. Throughout this thesis it is assumed to be a
positive constant taken equal to the unity.

The total energy associated to the system is defined as the sum of kinetic and free
energies, namely,

EGL(u, ϕ) =

∫
Ω

|u(x)|2 +
ε

2
|∇ϕ(x)|2 +

1

ε
F (ϕ(x)) dx.

Exploiting the balance of momentum and concentrations together with their boundary
conditions, we find

d

dt
EGL(u, ϕ) = −

∫
Ω

ν(ϕ)|Du|2 + |∇µ|2 dx.

8



1.3. Diffuse interface method

The above energy identity (formally) entails the dissipation of the energy being the terms
on the right hand side negative. In particular, the term∇µ, which acts to sharpen inter-
facial gradients, is a diffusive term on the whole domain. It is worth mentioning that a
further significant example of mobility is the so-called degenerate case, namely

m(s) = M(1− s2).

In this case the dissipative termm(ϕ)∇µ plays an effective role only in the mixing zones
(see [22] and [54]).

An important field of application of the model H is the description of phase sepa-
ration in alloys or polymer mixtures. In this area the study of patterns formation is of
great interest for morphology selection because of the influence on macroscopic proper-
ties of the system. In particular, pattern tunability has been studied by adding chemical
reaction mechanisms to hydrodynamic effects in [94] and [95]. We mention that these
reversible reactions were still included in the phase segregation process occurring af-
ter spinodal decomposition in [85] and in microphase separation of diblock copolymers
in [19] and [152] (see also [126]). The proposed model is called Navier–Stokes–Cahn–
Hilliard–Oono system and it reads as follows

∂tu + (u · ∇)u− div (νDu) +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ div (ϕu) + β(ϕ− c) = ∆µ,

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ). (1.3.9)

with
β = γ1 + γ2, c =

γ2 − γ1

γ2 + γ1

,

where γ1 and γ2 are the forward and backward reaction rates, respectively. The system is
closed with boundary and initial conditions (1.3.4)-(1.3.5). A relevant feature of system
(1.3.9) is that, contrary to the model H, it does not necessarily preserve the total mass.
Indeed, on account of the boundary conditions, a formal integration of the convective
Cahn–Hilliard–Oono equation over Ω gives

ϕ(t) = c+ e−βt(ϕ0 − c), ∀ t ≥ 0, (1.3.10)

having set the total mass
ϕ =

1

|Ω|

∫
Ω

ϕ dx.

Accordingly, the mass is conserved only if ϕ0 = c. Otherwise, noting that c ∈ (−1, 1)
and β > 0 by definition, ϕ(t) converges exponentially fast to c (the so-called off-critical
case). In turn, the linear reaction term accounts for long-range interactions. Indeed, the
convective Cahn–Hilliard–Oono equation (cf. also (1.3.10)) is equivalent to

∂tϕ+ div (ϕu) + βe−βt(ϕ0 − c) = ∆
(
− ε∆ϕ+

1

ε
F ′(ϕ) + βG ∗ (ϕ− ϕ)

)
.

Here the symbol ∗ stands for the spatial convolution over Ω while G denotes the Green
function associated to the Laplacian with homogeneous Neumann boundary condition.
In the critical case (ϕ0 = c), the Cahn–Hilliard–Oono equation (neglecting the velocity
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Chapter 1. Introduction

field) can be viewed as the conserved gradient flow of the so-called Ohta–Kawasaki
energy functional

F(ϕ) =

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
F (ϕ) dx

+
β

2

∫
Ω×Ω

G(x− y)(ϕ(x)− ϕ)(ϕ(y)− ϕ) dxdy. (1.3.11)

This functional was introduced in [125] for diblock copolymers (see also [37]) with
smooth potential F (s) = 1

4
(1−s2)2. The nature of the minimizers ofF is more compli-

cated than the classical Ginzburg–Landau case (β = 0) due to the competition between
local and nonlocal interactions. Several properties such as structure of minimizers and
scaling properties of the Ohta–Kawasaki functional have been the subject of a number
of papers (see, for instance, [35], [36], [86], [104], [121], [124] and references therein).
In the same way, the Navier–Stokes–Cahn–Hilliard–Oono system has not a decreasing
in time energy (in the off-critical case) with respect to the Ginzburg–Landau or Ohta–
Kawasaki free energies. Its dissipation rate respect to the former energy is

d

dt
EGL(u, ϕ) = −

∫
Ω

ν(ϕ)|Du|2 + |∇µ|2 dx− β
∫

Ω

(ϕ− c)µ dx,

where the last term on the right hand side has not a definite sign.

Simplified models in a Hele–Shaw cell

Towards the purpose of modeling flow in elementary geometries, a simplification of
the model H was proposed in [106] and [107] (see also [111]). A diffuse interface
models allowing topological changes in binary mixtures is introduced to study pinchoff
and reconnection in a Hele–Shaw cell. More precisely, starting from the unmatched
densities version of model H derived in [114] and assuming a Poiseuille flow, a Hele–
Shaw–Cahn–Hilliard model have been obtained. Lately, a different unmatched densities
Hele–Shaw–Cahn–Hilliard model has been studied in [46] and applied to rising bubbles
and fingering instabilities. This has been derived from the model H with unmatched
densities proposed by [2]. Even though these models are different in the unmatched
densities case, both models in the Boussinesq approximation share the same form (up to
nondimensional factors). Numerical simulations have been provided in [32] for rotating
Hele–Shaw flow including inertial effect due to Coriolis force (see [160] for spinodal
decomposition). A further generalization is due to [146] and applied to buoyancy-driven
two phase flow involving Rayleigh-Taylor instability. Sharp interface limits have been
carried out in [46] and [111]. In these last years, the Hele–Shaw–Cahn–Hilliard model
has also had a considerable impact in modeling tumor growth. Indeed, this system has
been coupled with reaction-diffusion equations to take chemotaxis, active transport and
nutrients into account. Among the large literature devoted to this subject, we mention
[33], [42], [43], [61], [67], [78], [79], [161].

The Hele–Shaw–Cahn–Hilliard system is deduced performing a rescaled procedure
on (1.3). Analogously to the sharp interface approximation, we consider a flat thin
domain Ω = Ω′ × [0, h], where Ω′ is a smooth bounded domain in R2 and h is a small
gap. We introduce the characteristic length L, the characteristic velocity V and the

10



1.3. Diffuse interface method

parameter δ = h
L
<< 1. Following the detailed argument in [46], neglecting the gravity

field and assuming the Boussinesq approximation, the resulting system reads as
u = 1

12ν

(
−∇π̃ − εdiv (∇ϕ⊗∇ϕ)

)
,

div u = 0,

∂tϕ+ div (ϕu) = ∆µ,

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ), (1.3.12)

where u is the two dimensional gap-averaged velocity, ν = ν(ϕ) is the nondimensional
viscosity. Here other nondimensional parameters, such as the Péclet or the capillary
number, have been fixed equal to one. By using the relation (1.3.6), it is possible to
rewrite the above system as

u = 1
12ν

(
−∇π + µ∇ϕ

)
,

div u = 0,

∂tϕ+ div (ϕu) = ∆µ,

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ), (1.3.13)

where π is the modified pressure as in the model H. This system is closed with the
following boundary and initial conditions{

u · n = ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(1.3.14)

Even though the system has a derivation that naturally leads to a two-dimensional space-
domain, it can be generalized to porous media flow in three dimensions. The associated
energy to the Hele–Shaw–Cahn–Hilliard system is dissipated by the evolution. Accord-
ing to (1.3.13)-(1.3.14), we find

d

dt
EGL(ϕ) = −

∫
Ω

ν(ϕ)|u|2 + |∇µ|2 dx.

A relevant modification of the Hele–Shaw–Cahn–Hilliard model is the Brinkman–
Cahn–Hilliard system. This model have been first employed in [157] to model thermo-
capillary flow in a Hele–Shaw cell. More recently, it has been derived also in the setting
of porous media in [123] and [134]. Numerical simulations are provided in [41] for
spinodal decomposition of viscous fluid and boundary-driven flows. The Brinkman–
Cahn–Hilliard system in its general form read as follows

−div (νDu) + ηu +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ div (ϕu) = ∆µ,

µ = −ε∆ϕ+ 1
ε
F ′(ϕ),

in Ω× (0, T ), (1.3.15)

where ν = ν(ϕ) > 0 is the viscosity, η = η(ϕ) > 0 is the permeability. The system is
subject to the boundary and initial conditions{

u = 0, ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(1.3.16)

11



Chapter 1. Introduction

It is worth mentioning that the above model can be considered as a suitable regulariza-
tion of the Hele–Shaw–Cahn–Hilliard system. In particular, we observe that this model
(with η = 0) is exactly the one used in [31] for numerical calculations of mixing fluids in
a driven cavity. In addition, the Brinkman–Cahn–Hilliard model satisfies the following
energy dissipation law

d

dt
EGL(ϕ) = −

∫
Ω

ν(ϕ)|Du|2 + η(ϕ)|u|2 + |∇µ|2 dx.

1.4 Local versus nonlocal interaction free energies

In multicomponent fluid mixtures the total (Helmholtz) free energy E depends on in-
termolecular forces resulting from the competition between molecular collisions and
long-range attractions. A fundamental approach to derive its form is based on Statis-
tical Mechanics which connects the macroscopic description of the system (thermody-
namic potentials) and microscopic single-molecule energy states. The method consists
in a thermodynamic limit starting from microscopic models with a finite number of
particles interacting each other. The general form of the free energy includes not only
local concentrations but also a dependence on concentration at neighbouring points.
However, in the literature it is generally accepted to describe these nonlocal interac-
tions through concentration gradients. This is the main assumption in the derivation of
Ginzburg–Landau free energy. In a region of nonuniform composition it is assumed that

E(ϕ) =

∫
Ω

ψ(ϕ) dx, where ψ(ϕ) = ψ(ϕ,∇ϕ,∇2ϕ, ...).

The free energy density ψ is then expanded in a multivariable Taylor series of density
gradients around the homogeneous free energy, namely

ψ(ϕ) = F (ϕ) +
3∑
i=1

ψi(ϕ)∂iϕ+
3∑

i,j=1

ψ1
i,j(ϕ)∂ijϕ+

1

2

3∑
i,j=1

ψ2
i,j(ϕ)∂iϕ∂jϕ+ h.o.t.

Here F (ϕ) is the free energy density of an homogeneous system defined as (1.3.2) and
ψi, ψ1

i,j andψ2
i,j are coefficient depending onϕ. Ignoring higher terms than second-order

derivative and imposing that the system is invariant under rotations and reflections, the
free energy density is approximated by

ψ(ϕ) = F (ϕ) + ψ̃1(ϕ)∆ϕ+
1

2
ψ̃2(ϕ)|∇ϕ|2.

Observing that

ψ̃1(ϕ)∆ϕ = div (ψ̃1(ϕ)∇ϕ)− dψ̃1(ϕ)

dϕ
|∇ϕ|2,

the first term on the right hand side vanishes due to the boundary condition. Thus, by
setting ψ̃2(ϕ)− 2dψ̃1(ϕ)

dϕ
= 1, the free energy density has the form

ψ(ϕ) = F (ϕ) +
1

2
|∇ϕ|2.
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1.4. Local versus nonlocal interaction free energies

Therefore, the gradient term accounting for spatial inhomogeneities in the concentration
comes out from the assumption of short range interaction between molecules.

A different form of the free energy relies on the approach of Statistical Mechanics
to describe mutual interactions through convolution integrals weighted by a scale of
density kernels. In a basic case the Helmholtz free energy reads as

EH(ϕ) =

∫
Ω

Ψ(ϕ(x)) dx− 1

2

∫
Ω

∫
Ω

J(x− y)ϕ(x)ϕ(y) dxdy, (1.4.1)

where Ψ is the singular convex part of F given in (1.3.3) and J is the interaction kernel
such that J(x) = J(−x). We have fixed for simplicity the thickness of the interface
equal to the unity ε = 1. The free energy (1.4.1) was already known in Van der Waals
formalism. However, the contribution deriving from the dependence on concentration
in neighboring points was considered to be therein negligible. This form has been more
recently rederived by [81] and [82] (see also [80]) in the context of phase segregation
dynamics in alloys with long range interactions. Nonetheless, the global Helmholtz free
energy EH is deeply connected with the local one (1.3.1). Indeed, the Helmholtz free
energy (1.4.1) is equivalent to

EH(ϕ) =

∫
Ω

F̃ (x, ϕ) dx+
1

4

∫
Ω

∫
Ω

J(x− y)
(
ϕ(x)− ϕ(y)

)2
dxdy, (1.4.2)

where
F̃ (x, s) = Ψ(s)− 1

2
(J ∗ 1)(x)s2. (1.4.3)

Note that a = J ∗ 1 is a constant in specific domains (e.g. a d−dimensional torus) and
can be interpret as the critical temperature θc with a suitable scaling. Thus, the first
approximation of the nonlocal interaction in (1.4.2) is (formally) 1

2
|∇ϕ|2 provided that

J is sufficiently peaked around 0 (i.e. close to the delta function). Thus, the Ginzburg–
Landau free energy can be seen as an approximation of the nonlocal one.

We now reformulate the model H and the Hele–Shaw approximation in the setting
of the nonlocal Helmholtz free energy. According to the above formulations the only
difference concerns with the chemical potential. In this case, the first variation of the
total free energy is given by

µ = Ψ′(ϕ)− J ∗ ϕ.

then, the nonlocal model H can be written as
∂tu + (u · ∇)u− div (νDu) +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ div (ϕu) = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (1.4.4)

subject to the boundary and initial conditions{
u = 0, ∂nµ = 0, on ∂Ω× (0, T ),

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω.
(1.4.5)
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Chapter 1. Introduction

The system still conserves a dissipative nature. Introducing the total energy as the sum
of kinetic and free energy

EH(u, ϕ) =

∫
Ω

|u(x)|2 + Ψ(ϕ(x)) dx− 1

2

∫
Ω

∫
Ω

J(x− y)ϕ(x)ϕ(y) dxdy,

we have the energy identity

d

dt
EH(u, ϕ) = −

∫
Ω

ν(ϕ)|Du|2 + |∇µ|2 dx.

On the other hand, the nonlocal formulation of the Hele–Shaw–Cahn–Hilliard system
is 

u = 1
12ν

(−∇π + µ∇ϕ),

div u = 0,

∂tϕ+ div (ϕu) = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (1.4.6)

subject to the following natural boundary and initial conditions{
u · n = ∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(1.4.7)

In this case the energy dissipation is

d

dt
EH(ϕ) = −

∫
Ω

ν(ϕ)|u|2 + |∇µ|2 dx.

It is worth mentioning that, passing from a local to a nonlocal free energy, the Cahn–
Hilliard equation reduces from a fourth to a second order equation in space in the un-
known ϕ. Therefore, only one boundary condition is needed in the nonlocal setting in
order to guarantee the conservation of mass.

1.5 The mathematical point of view

The mathematical theory of diffuse interface models arising in fluid dynamics is quite
challenging. This is motivated by the interplay between nonlinear terms and the loga-
rithmic potential that also affects the regularity of the velocity field. Anyway, for the
cases presented above, a rather satisfactory mathematical analysis can be carried out
under suitable assumptions on the coefficients. More precisely, we will prove well-
posedness of weak and strong solutions, regularity theory and longtime behavior in the
next chapters. We now provide an informal overview on the main feature of the results.

In order to investigate the well-posedness, the first task is the existence of weak solu-
tion, namely solutions with finite total energy for any time. Such existence is reasonably
expected by virtue of the dissipative nature entailed by the (formal) identity

d

dt
E(ϕ) +

(
dissipation terms

)
= 0. (1.5.1)
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We combine this feature with a two steps approximation technique. Our approach con-
sists in approximating the logarithmic potential via a family of regular functions de-
fined on the whole real line. Then, we introduce approximate problems by means of a
Galerkin procedure. Since (1.5.1) is satisfied by approximating solutions, we find uni-
form estimates with respect to the approximation parameters. This allows us to recover
a solution to the original problem through a compactness procedure and a passage to the
limit. The advantage of this approach is the construction of approximating (Galerkin)
solutions which are regular enough to perform high order estimates rigorously. We also
remind other approaches based on the theory of maximal monotone operator on Ba-
nach spaces and fixed point methods (see, e.g., [1] and [75]). It is worth remarking that
we end up with physical solutions, namely the relative difference of concentrations ϕ
maintains its physical meaning. More precisely, we have

ϕ ∈ L∞(Ω× (0,∞)) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0,∞). (1.5.2)

Note that this is an immediate consequence of the composition between Ψ′ and ϕ.
In the literature, the homogeneous free energy density (1.3.3) is very often approxi-

mated by a fourth–order polynomial, namely

F0(s) =
k

4
(s2 − 1)2, s ∈ R, (1.5.3)

where k > 0 is a constant related toΘ0. This regular approximation is justifiedwhenever
Θ is close to Θ0. However, whether F is replaced with the regular potential F0, it is
impossible to ensure that ϕ takes value within the physically admissible interval [−1, 1].

Before proceeding to the next step, let us comment on the main difficulties to obtain
further results. A first problem concerns the velocity field due to the still open issue
regarding uniqueness and regularity of Navier–Stokes equations in three space dimen-
sions. In addition, the elliptic regularity theory of the Stokes operator with a nonconstant
viscosity −div(ν(ϕ)Du) differs from the classical one related to the Stokes operator,
requiring more regularity on ϕ. Also, the Korteweg force on the right hand side is non-
linear. In the local case, up to a gradient term (cf. (1.3.6)), it reads as

fK = −div (∇ϕ⊗∇ϕ).

On the other hand, in the nonlocal case, the different form of the chemical potential
entails

µ∇ϕ = ∇
(
F (ϕ)− (J ∗ ϕ)ϕ

)
+ (∇J ∗ ϕ)ϕ.

In turn, the forcing term
fK = (∇J ∗ ϕ)ϕ

seems to be easier to deal with (cf. (1.5.2)). It is worth mentioning that a nonlocal free
energy involves the study of a second order problem (in ϕ) contrary to the local case
(fourth order problem). This has some advantages (cf. Korteweg forces) provided one
knows how to handle the lack of regularity. Besides, even analyzing the Hele–Shaw
problem is not an easy task. Indeed, the Darcy’s law (in the matched viscosities case)
can be seen as the Helmholtz decomposition of fK . Thus, the regularity of the velocity
is the same of the Korteweg force.
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A second problem regards the physically relevant form of the potential. The logarith-
mic function (1.3.3) is difficult to treat due to the different growth of their derivatives
when they approach ±∞ as s goes to ±1. Indeed, if the chemical potential µ is regular
enough, we aim to deduce higher order estimates on ϕ with respect to the ones obtained
from the boundedness of the energy. Consequently, performing (even formally) spa-
tial derivatives on µ, it naturally requires to control terms such as Ψ′′(ϕ) and Ψ′′′(ϕ).
However, derivatives of Ψ′ fulfil the following growth bound conditions

Ψ′′(s) ≤ eC(Ψ′(s)+1), |Ψ′′′(s)| ≤ CΨ′′(s)2. (1.5.4)

This prevents the possibility to control Ψ′′(ϕ) or Ψ′′′(ϕ) in Lp-spaces in terms of Ψ′(ϕ).
Coming back to our plan, the basic issues are uniqueness of weak solutions as well

as their regularity propagation in time (at least in two space dimensions). The instan-
taneous smoothing effect of weak solutions is somehow expected due to the parabolic
dissipative nature of the systems (cf. (1.5.1)). Besides, this property is closely related to
the existence of strong solutions, namely solutions that satisfy the equations for almost
every (x, t) inΩ×(0, T ). To this purpose, either estimates for the difference of solutions
or higher order energy estimates involves coupling terms which require some regularity
properties on u and ϕ, usually stronger than the ones obtained from energy estimates.
Therefore, these questions are really connected with the difficulties mentioned above.
Nonetheless, this obstacle will be overcome by controlling the difference of solutions in
dual spaces, by deducing further bounds on u from the regularity ϕ ∈ L4(0, T ;H2(Ω))
(local case) or by exploiting the exact form of u (Hele–Shaw case).

A natural and important question from both the physical and mathematical view-
points is whether the separation property from the pure phases takes place. This means
that the phase parameter ϕ stays eventually within a suitable closed subset in (−1, 1).
Accordingly, this implies that we have a complete mixing of the two fluids. More pre-
cisely, we investigate whether there exist δ > 0 and t∗ > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ t∗.

The following distinction can be made:

• Instantaneous separation property. For any σ > 0, there exists δ = δ(σ) > 0 such
that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ σ. (1.5.5)
This is the separation property occurs instantaneously. The aim is to prove that
there exists C = C(σ) such that

‖F ′(ϕ(t))‖L∞(Ω) ≤ C, ∀ t ≥ σ.

In both local and nonlocal case, this estimate can be obtained once the chemical
potential µ is uniformly in time bounded in L∞(Ω). Unfortunately, after a first
smoothing effect, the achieved regularity for µ is only H1(Ω) uniformly in time.
Therefore higher order estimates are needed. Despite the foregoing difficulties, this
is possible in two space dimensions. Indeed, Lp-estimates of Ψ′′(ϕ) (cf. (1.5.4))
can be obtained taking advantage of the critical Trudinger–Moser inequality inR2.
This argument might be extended to some particular three-dimensional geometries
( see, e.g., [38] for rings). In addition, wemention that a quantitative estimate (from
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above) of δ can be found in terms of the parameters of the system such as the form
of Ψ, the initial energy E(ϕ0) and the total mass ϕ0. As a byproduct, dealing with
dissipative systems, it is possible to infer that (1.5.5) holds uniformly with respect
to the initial condition. More precisely, for anym ∈ (−1, 1) andR > 0, there exist
δ = δ(m,R) and t0 = t0(m,R) such that for any initial condition ϕ0 satisfying
|ϕ0| ≤ m and E(ϕ0) ≤ R, we have

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ t0. (1.5.6)

• Asymptotic separation property. There exist ta > 0 and δ > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ ta. (1.5.7)

In this case, the time ta can be eventually large and it is not estimated in terms
of the initial condition or the parameters of the system. The method consist in a
compactness argument combined with the gradient structure of the system and the
regularity of stationary points ϕ∞ (which are separated from the pure phases). In
particular, since a bound on ‖F ′(ϕ∞)‖L∞ depends on µ∞, that is a constant, this
value can be estimated in terms of the initial energy E(ϕ0) and ϕ0. In turn, as in
the previous case, the parameter δ can be controlled from above in a quantitative
way.

• Local separation property. There exist tf > 0 and δ > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ∈ [0, tf ]. (1.5.8)

In comparison with the previous cases, the separation property (1.5.8) is only valid
on a finite time interval. To obtain this, the continuity of the solutions is needed.
Indeed, assuming that ϕ0 is such that ‖ϕ0‖C(Ω) ≤ 1 − δ and ϕ is continuous in
time and space, then there exists tf = tf (ϕ0) such that ‖ϕ(t)‖C(Ω) ≤ 1− δ

2
, for all

t ∈ [0, tf ].

In literature the instantaneous separation property has been firstly proven for the local
Cahn–Hilliard equation in dimension two in [118]. A different proof will be proposed
in the next chapters. This argument is more flexible than the one used in [118] and
can be easily extended to equations with convection. Concerning nonlocal problems,
the instantaneous separation property has not been achieved before. Herein we will
provide a first proof for the nonlocal convective Cahn–Hilliard equation. The asymptotic
separation property has been shown for the local Cahn–Hilliard equation in [4] and then
for the model H in [1]. It has been mainly used to show the convergence of a single
trajectory to its equilibrium point. We mention that a nonlocal version will be treated
in [70]. On the other hand, the local separation property has been used to prove the
existence of exponential attractors for the local Cahn–Hilliard equation in [118] and
[119]. Instead, we will use it to show the existence of strong solution (for the Hele–
Shaw case) provided that the initial datum is regular enough and sufficiently close to
a local minimizer. We remark that the asymptotic and the local separation properties
usually hold in three space dimensions.

The final question we want to address is the longtime behavior of solutions. We will
divide the analysis into two main classes. The first one involves the behavior of bunch of
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trajectories starting from a given bounded set of initial conditions. This will be treated
within the theory of Infinite Dimensional Dissipative Dynamical System (see [120] and
[149]). More precisely, wewill show the existence of compact invariant attracting sets in
the phase space. On the other hand, the second one deals with the behavior of the single
solution as t approaches∞. We will prove the convergence of solutions to equilibrium
points of the system. In particular, both of these settings rely on the regularity properties
and on the separation property which allows us to handle the nonlinearity as a globally
Lipschitz function of the order parameter.
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CHAPTER2
Contribution of this thesis

In this chapter we provide an overview of the results accomplished in this thesis. We
first explain the basic assumptions that we will use throughout this contribution.
Next, the main achievements on the diffuse interface models presented in the Intro-

duction are stated and compared with the existing literature.

2.1 Main assumptions

We consider a bounded domain (open and connected) Ω ⊂ Rd, where d = 2, 3, with a
smooth boundary ∂Ω. Unless otherwise stated, a sufficient requirement is a C4-boundary.
As anticipated in the Introduction, we assume in the sequel that the mobility functionm
and the interface thickness parameter ε are fixed equal to one, since they do not play a
role in the subsequent analysis. Also, we accept the Boussinesq approximation, namely
differences on fluid densities are neglected having set ρ = 1. Further requirements on
the viscosity coefficient will be specified for any model under investigation. We recall
that the variables are defined as follows:

u = u(x, t) ∈ Rd is the mean velocity,
π = π(x, t) ∈ R denotes the pressure,
ϕ = ϕ(x, t) ∈ R is the difference of concentrations (phase parameter),
µ = µ(x, t) ∈ R represents the chemical potential,

where x ∈ Ω and t ∈ R+.
Motivated by the physically relevant potential with logarithmic convex part, we sup-

pose hereafter that a singular potential F is a function which fulfils the following as-
sumption:
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(H) F can be decomposed into the form

F (s) = Ψ(s)− Θ0

2
s2, ∀ s ∈ [−1, 1], (2.1.1)

where the function Ψ : [−1, 1] 7→ R satisfies Ψ ∈ C([−1, 1]) ∩ C2(−1, 1),

lim
s→−1+

Ψ′(s) = −∞, lim
s→1−

Ψ′s) = +∞,

Ψ′′(s) ≥ Θ > 0, ∀ s ∈ (−1, 1),

with the constants Θ0, Θ satisfying

Θ0 −Θ := α > 0.

Without loss of generality, we suppose Ψ(0) = Ψ′(0) = 0. We also make the
extension that

Ψ(s) = +∞, for all |s| > 1.

As far as the interaction kernel is concerned, we assume that

(K) J ∈ W 1,1(Rd) such that
J(x) = J(−x).

In the sequel we will also refer to the following further requirements only when
needed:

(H.1) There exists κ ∈ (0, 1) such that Ψ′′ is non-decreasing in [1 − κ, 1) and non-
increasing in (−1,−1 + κ];

(H.2) Ψ′′(s) is a convex function in (−1, 1);

(H.3) There exists a positive constant C such that

Ψ′′(s) ≤ eC|Ψ
′(s)|+C , ∀ s ∈ (−1, 1);

(H.4) Ψ ∈ C3(−1, 1) and there exists a positive constant C such that

Ψ′(s)Ψ′′′(s) ≥ 0 and |Ψ′′′(s)| ≤ CΨ′′(s)2, ∀ s ∈ (−1, 1);

(H.5) Ψ ∈ C4(−1, 1) and there exists κ ∈ (0, 1) such that

Ψ′′′(s)s ≥ 0 and Ψiv(s) > 0, ∀ s ∈ (−1,−1 + κ] ∩ [1− κ, 1);

(K.1) J ∈ W 2,1(Bρ), where Bρ = {x ∈ Rd : |x| < ρ} with ρ sufficiently large such
that Ω ⊂ Bρ or J is admissible in the sense of [16].

Remark 2.1.1. All the assumptions (H.1) − (H.5) are satisfied by the logarithmic po-
tential

Ψ(s) =
Θ

2
[(1 + s) log(1 + s) + (1− s) log(1− s)], ∀ s ∈ [−1, 1].

Main examples of interaction kernels are Newtonian and Bessel potentials.
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2.2 Results on the Navier–Stokes–Cahn–Hilliard–Oono system

We consider the Navier–Stokes–Cahn–Hilliard–Oono system with matched viscosities
(ν = 1) which takes the form

∂tu + (u · ∇)u−∆u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ+ β(ϕ− c) = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (2.2.1)

subject to the boundary and initial conditions{
u = 0, ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω.
(2.2.2)

Here the parameter β and c satisfies the structural requirements

β ≥ 0 and c ∈ (−1, 1).

In the literature, the Navier–Stokes–Cahn–Hilliard system (β = 0) has been exten-
sively studied in the case of regular potentials. The potentialF is replaced by polynomial-
like double well functions such as, e.g., F0(s) = k

4
(s2 − 1)2. The well-posedness of

strong solution in the whole space R2 was firstly proven in [145]. In a box domain of
R3, the existence of weak solutions has been shown in [22] assuming unmatched viscosi-
ties. The author also proved the well-posedness of strong solutions which are global in
time in two dimensions and local in time in three dimensions (see also [110] and [164]).
In a general bounded domain ofR2, the well-posedness and regularity of weak solutions
have been shown in [71]. Strong solutions in two space dimension have been also ob-
tained in [30] for the system with mixed partial viscosity and mobility. The existence of
global and exponential attractors is discussed in [71]. A lower bound for the Hausdorff
dimension of the global attractor is established in [73]. The same authors have been stud-
ied the system in a bounded domain of R3 within the framework of trajectory attractors
in [72]. Regarding the longtime behavior of the single trajectory and, in particular, its
convergence to equilibrium points, we mention [22], [71], [145], [164]. On the other
hand, the Navier–Stokes–Cahn–Hilliard–Oono system (β > 0) in two dimensions two
with regular potentials has been considered in [21]. The well-posedness and regularity
of weak solutions as well as the existence of global and exponential attractors are pro-
vided. We also refer the reader to e.g. [12], [14], [58], [59], [77], [92], [97], [100], [103],
[110], [133], [137], [138], [139], [147] and [163] for numerical analysis and simulations.
Conversely, only few results are available on the model H with the physically relevant
logarithmic potential. The Navier–Stokes–Cahn–Hilliard system with unmatched vis-
cosities has been studied in [1]. First, the existence of weak solutions is shown. In par-
ticular, the phase parameter becomes instantaneously more regular. The weak solutions
are unique under extra regularity assumptions on the solutions (conditional uniqueness)
and become regular on the time interval (T,∞), for some time T > 0. In two di-
mensions, the existence of global in time strong solution is demonstrated provided that
ϕ0 ∈ H2(Ω) such that −∆ϕ0 + F ′(ϕ0) ∈ H1(Ω) and u0 is a bit more regular than
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H1(Ω). An analogous result for local in time strong solutions hold in three-dimension.
Finally, the author establishes the asymptotic separation property which allows to show
that any single trajectory converges to an equilibrium. More recently, the existence of a
weak solution has been extended to the Navier–Stokes–Cahn–Hilliard system with mov-
ing contact lines in [75] and to the Navier–Stokes–Cahn–Hilliard–Oono system in [117].

Our main result on system (2.2.1)-(2.2.2) is

Theorem 2.2.1. Let Ω be a bounded smooth domain in R2. Assume that u0 ∈ L2(Ω)
such that div u0 = 0, u0 · n = 0 on ∂Ω and ϕ0 ∈ H1(Ω) with Ψ(ϕ0) ∈ L1(Ω) and
|ϕ0| < 1. Then, there exists a unique weak solution (u, ϕ) to (2.2.1)-(2.2.2) such that

u ∈ C([0,∞),L2(Ω)),

ϕ ∈ C([0,∞), H1(Ω)) ∩ L2
loc(0,∞;W 2,p(Ω)),

for any 2 ≤ p <∞. Moreover, we have the following further results:

• For any σ > 0, the weak solution satisfies

u ∈ L∞(σ,∞; H1(Ω)) ∩ L2
loc(σ,∞; H2(Ω)) ∩H1

loc(σ,∞; L2(Ω)),

ϕ ∈ L∞(σ,∞;W 2,p(Ω)) ∩H1
loc(σ,∞;H1(Ω)),

for any 2 ≤ p <∞.

• Suppose that Ψ ∈ C3(−1, 1) and (H.2), (H.3) hold. Then, for any σ > 0, there
exists δ > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and

u ∈ L∞(2σ,∞; H2(Ω)) ∩H1
loc(2σ,∞; H1(Ω)),

ϕ ∈ L∞(2σ,∞;H4(Ω)) ∩H1
loc(2σ,∞;H2(Ω)).

In summary, Theorem 2.2.1 asserts uniqueness and regularity properties of weak
solutions for the Navier–Stokes–Cahn–Hilliard–Oono system in two dimensions. The
key idea for the proof of uniqueness is a continuous dependence estimate in a dual norm
which allows us to handle the so-called Korteweg force. Taking β = 0, we also obtain a
uniqueness result for the Navier–Stokes–Cahn–Hilliard system (model H with matched
densities). For any σ > 0, we show that any weak solution is more regular on (σ,∞),
and the instantaneous separation property holds on [2σ,∞). In particular, the above-
mentioned regularity properties derive from a priori higher order estimates, which are
uniform with respect to the initial datum and independent of β. Therefore, they can be
employed to characterize the longtime behavior.
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2.3 Results on the Hele–Shaw–Cahn–Hilliard system

The Hele–Shaw–Cahn–Hilliard system with matched viscosities (ν = 1) reads as fol-
lows 

u = −∇π + µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (2.3.1)

subject to the boundary and initial conditions{
u · n = ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(2.3.2)

Although the Hele–Shaw–Cahn–Hilliard system has been proposed as a simplifica-
tion of the Navier–Stokes–Cahn–Hilliard system, it does not appear to be much simpler
from the mathematical viewpoint. Most of the available papers are rather recent and
mainly treat the regular potential case. In a periodic setting, existence and uniqueness
of global in time classical solutions in dimension two and the existence of local in time
strong solutions along with certain blow-up criteria in dimension three were proven
in [159]. In a rectangle or a box, existence, uniqueness and regularity of global in time
two-dimensional (or local in time three-dimensional) strong solutions were established
in [113]. The longtime behavior of global solutions and the stability of local energymin-
imizers in both two and three dimensions were analyzed in [158]. The sharp-interface
limit of (2.3.1) has been investigated quite recently in [57] and [116]. More recently,
in [99] the authors analyse a variant of (2.3.1) with regular potential and div u = S,
where S is a given space-time dependent mass source that also appears as a forcing
term in the Cahn–Hilliard equation. The existence of global in time weak solutions and
local in time strong solutions is proven. In addition, the authors investigate the longtime
behavior in dimension two (pullback attractor and convergence to single equilibrium).
In the case of singular potential, some results on the existence of weak solutions for tu-
mor growth systems can be found in [45] and [67]. The system (2.3.1)-(2.3.2) is therein
coupled with other equations describing proliferating tumor cells and nutrient concen-
trations. Regarding the numerical analysis, we mention [60] and [160] (cf. also [46]).

Our main result on system (2.3.1)-(2.3.2) is

Theorem 2.3.1. Let Ω be a bounded smooth domain inRd, d = 2, 3. Assume that (H.1)
holds and ϕ0 ∈ H1(Ω) with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, there exists at least a
weak solution (u, ϕ) to (2.3.1)-(2.3.2) such that

u ∈ Lrloc(0,∞; H1(Ω)) ∩ L2
loc(0,∞; L2(Ω)),

ϕ ∈ C([0,∞), H1(Ω)) ∩ L4
loc(0,∞;H2(Ω)) ∩ L2

loc(0,∞;W 2,p(Ω)),

where r = 6
5
if d = 3 and for any r ∈ [1, 4

3
) if d = 2, p = 6 if d = 3 and for any

2 ≤ p <∞ if d = 2. Moreover, we have the following further results:

23



Chapter 2. Contribution of this thesis

• Let d = 2. Then, the weak solution is unique and, for any σ > 0, we have

u ∈ L∞(σ,∞; H1(Ω)),

ϕ ∈ L∞(σ,∞;W 2,p(Ω)) ∩H1
loc(σ,∞;H1(Ω)),

where 2 ≤ p < ∞. In addition, suppose that Ψ ∈ C3(−1, 1) and (H.2), (H.3)
hold. Then, for any σ > 0, there exists δ > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and

u ∈ L∞(2σ,∞; H2(Ω)),

ϕ ∈ L∞(2σ,∞;H4(Ω)) ∩H1
loc(2σ,∞;H2(Ω)).

• Let d = 3 and (H.5) hold. Suppose that ψ ∈ H1(Ω) such that Ψ(ψ) ∈ L1(Ω),
|ψ| < 1 and is a local energy minimizer of EGL. Then, for any ε > 0, there exists a
constant η ∈ (0, 1) such that for an arbitrary initial datum ϕ0 ∈ H3(Ω) satisfying
∂nϕ0 = 0 on ∂Ω, ϕ0 = ψ and ‖ϕ0 − ψ‖H2(Ω) ≤ η, problem (2.3.1)–(2.3.2) has a
unique global strong solution (u, ϕ) such that

u ∈ C([0,+∞),L2) ∩ L2
loc(0,+∞; H3(Ω)),

ϕ ∈ C([0,+∞), H3(Ω)) ∩ L2
loc(0,+∞;H5(Ω)) ∩H1

loc(0,+∞;V ).

and
‖ϕ(t)− ψ‖H2(Ω) ≤ ε, ∀ t ≥ 0.

Theorem (2.3.1) provides a fairly complete analysis of the initial boundary value
problem (2.3.1)–(2.3.2) with singular potential. First, we establish the existence of a
global in time weak solution with finite energy. In two dimensions, we demonstrate
the uniqueness of weak solutions (u, ϕ) along with a continuous dependence estimate.
The goal is achieved due to the integrability properties ϕ ∈ L∞(Ω × (0,∞)) and
ϕ ∈ L4

loc(0,∞;H2(Ω)) within the class of global weak solutions. We recall that the
same problem remains an open issue for the case with regular potentials. Then, we
show that weak solutions become more regular, in particular, we prove the validity of
the instantaneous separation property. Moreover, a similar argument easily yields the
existence of a unique global strong solution to (2.3.1)–(2.3.2) for arbitrary regular ini-
tial datum ϕ0 ∈ H2(Ω) such that −∆ϕ0 + F ′(ϕ0) ∈ H1(Ω). On the other hand, the
existence of strong solutions in three dimensions is a hard task due to the low regular-
ity of the velocity field that satisfies a Darcy’s law. This complexity has been partially
overcome by requiring that the initial datum is regular and sufficiently close to a local
energy minimizer of the Ginzburg–Landau free energy. Combining this choice on the
initial datum with the Łojasiewicz–Simon approach, we prove the existence of a global
in time unique strong solution (u, ϕ) such that ϕ stays in a small neighborhood of that
minimizer for all t ≥ 0. This immediately yields a local Lyapunov stability property for
any local energy minimizer of EGL.
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2.4 Results on the Brinkman–Cahn–Hilliard system

We consider the Brinkman–Cahn–Hilliard system with unmatched viscosities
−div(ν(ϕ)Du) + u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ϕ = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (2.4.1)

subject to the boundary and initial conditions{
u = 0, ∂nϕ = ∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(2.4.2)

Here, the viscosity coefficient ν ∈ C2(R) (depending on ϕ) is a bounded function that
satisfies

ν(s) ≥ 2ν1 > 0, ∀ s ∈ R.
In addition, the permeability coefficient η is taken equal to one for simplicity.
Remark 2.4.1. We recall that the local viscosity form is a linear combination of viscosity
coefficients defined by

ν(s) = νA
1 + s

2
+ νB

1− s
2

, ∀ s ∈ [−1, 1], (2.4.3)

where νA and νB are positive. It is clear that, up to a suitable extension on [−1, 1]c, the
expression (2.4.3) complies with our assumptions.

In the literature, the Brinkman–Cahn–Hilliard system has been studied with a regular
potential of the form F0(s) = k

4
(s2 − 1)2. In both two and three dimensions, the well-

posedness of weak solutions and their regularity properties have been discussed in [20],
setting ν as a positive constant. The authors also address the longtime behavior of the
system. Then, the finite dimensionality of the global attractor has been proved in [108].
Similar results have been obtained in [162] taking into account a dynamic boundary
condition for ϕ. Finally, the case of nonconstant ν, η andm has been analyzed from the
numerical viewpoint in [41] (see also [49]).

Our main result on system (2.4.1)-(2.4.2) reads as follows
Theorem 2.4.2. Let Ω be a bounded smooth domain in R2. Assume that ϕ0 ∈ H1(Ω)
with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, there exists a unique weak solution (u, ϕ) to
(2.4.1)-(2.4.2) such that

u ∈ L4
loc(0,∞; H1(Ω)) ∩ L2

loc(0,∞; W1,3(Ω)),

ϕ ∈ C([0,∞), H1(Ω)) ∩ L4
loc(0,∞;H2(Ω)) ∩ L2

loc(0,∞;W 2,p(Ω)),

where 2 ≤ p <∞. Moreover, we have the following further results:
• For any σ > 0, the weak solution satisfies

u ∈ L∞(σ,∞; H1(Ω)) ∩ L2
loc(0,∞; H2(Ω)),

ϕ ∈ L∞(σ,∞;W 2,p(Ω)) ∩H1
loc(σ,∞;H1(Ω)),

where 2 ≤ p <∞.
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• Suppose that Ψ ∈ C3(−1, 1) and (H.2), (H.3) hold. Then, for any σ > 0, there
exists δ > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and

u ∈ L∞(2σ,∞; H2(Ω)),

ϕ ∈ L∞(2σ,∞;H4(Ω)) ∩H1
loc(2σ,∞;H2(Ω)).

A complete analysis of well-posedness and regularity for the system (2.4.1)–(2.4.2)
in dimension two is provided by Theorem 2.4.2. First, we show the existence of weak
solutions (u, ϕ) such that ϕ ∈ L4

loc(0,∞;H2(Ω)). As a consequence, by studying the
Stokes problem with variable viscosity (see [1]), we obtain higher regularity properties
for u, such as u ∈ L4

loc(0,∞;H1(Ω)) ∩ L2
loc(0,∞;W 1,3(Ω)). These integrability prop-

erties are the key tools to obtain a continuous dependence estimate with respect to the
initial datum and higher order estimates on the solution. Finally, we prove the instan-
taneous separation property and some regularity consequences. It is worth mentioning
that the statement of Theorem 2.4.2 can be easily generalized to the case with positive
permeability depending on ϕ.

2.5 Results on the nonlocal Navier–Stokes–Cahn–Hilliard system

We consider the nonlocal Navier–Stokes–Cahn–Hilliard system with matched viscosi-
ties (ν = 1) that reads as

∂tu + (u · ∇)u−∆u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (2.5.1)

subject to the boundary and initial conditions{
u = 0, ∂nµ = 0, on ∂Ω× (0, T ),

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω.
(2.5.2)

The nonlocal version of the Navier–Stokes–Cahn–Hilliard system has been investi-
gated in recent years. First of all, in the case of regular potentials, the existence of a weak
solution in two and three dimensions has been shown in [39]. The same result has been
proven for nonconstant mobilities in [66]. In two dimensional domains, uniqueness of
weak solutions has been achieved in [62]. Regularity of weak solutions and existence of
global in time strong solutions have been established in [65]. Moreover, the asymptotic
behavior has been studied in [62], [63] and [65]. In the case of unmatched densities,
we mention that the existence of global in time strong solutions and the weak-strong
uniqueness have been demonstrated in [62]. On the other hand, in the case of a singular
potential, the existence of weak solutions has been shown in [64]. Uniqueness of weak
solutions in two dimensions hes been recently proven in [62].

Our main result on system (2.5.1)-(2.5.2) is
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Theorem 2.5.1. Let Ω be a bounded smooth domain in R2. Assume that u0 ∈ L2(Ω)
such that div u0 = 0, u0 · n = 0 and ϕ0 is a measurable function such that Ψ(ϕ0) ∈
L1(Ω) and |ϕ0| < 1. Then, for any σ > 0, the (unique) weak solution (u, ϕ) to (2.5.1)-
(2.5.2) satisfies

u ∈ L∞(σ,∞; H1(Ω)) ∩ L2
loc(σ,∞; H2(Ω)) ∩H1

loc(σ,∞; L2(Ω)),

ϕ ∈ L∞(σ,∞;H1(Ω)) ∩ Lqloc(0,∞;W 1,p(Ω)) ∩H1
loc(σ,∞;L2(Ω)),

where p−2
p

= 2
q
. In addition, suppose that (H.3) and (H.4) hold. Then, for any σ > 0,

there exists δ > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and

u ∈ L∞(3σ,∞; W1,4(Ω)),

ϕ ∈ Cβ,
β
2 (Ω× (4σ,∞)),

for some β ∈ (0, 1).

The regularity properties and, in particular, the instantaneous separation property
are provided by Theorem 2.5.1 in dimension two. Due to the second order nature of
the system, we employ a different argument from the one proposed for local models.
Indeed, even if we deduce a Lp-bounds on Ψ′′(ϕ) and Ψ′′′(ϕ) via the Trudinger–Moser
inequality, higher order energy estimates seem out of reach without a control of Ψ′′(ϕ)
in L∞(Ω). Nonetheless, we overcome this obstacle by performing a suitable Alikakos–
Moser iterative argument. This is the first result regarding the separation property in
the nonlocal setting. As a byproduct, we reach further regularity properties on u and ϕ.
We mention that the existence of global in time strong solutions can be easily inferred
by Theorem 2.5.1 provided that the initial condition also satisfies∇Ψ′(ϕ0) ∈ L2(Ω).

2.6 Results on the nonlocal Hele–Shaw–Cahn–Hilliard system

We recall that the nonlocal Hele–Shaw–Cahn–Hilliard system with matched viscosities
(ν = 1) reads as follows

u = −∇π + µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (2.6.1)

subject to the boundary and initial conditions{
u · n = ∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(2.6.2)

In the literature, this system has been only studied in the case of regular potential
in [47]. A nonlocal version of the Brinkman–Cahn–Hilliard system is also considered n
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the same paper. The authors prove the existence of a weak solution (unmatched densities
case) provided that the initial condition belongs to L∞(Ω). Assuming that the viscosity
coefficient is constant, the uniqueness of weak solutions is also achieved.
Our main result on system (2.6.1)-(2.6.2) is

Theorem 2.6.1. Let Ω be a bounded smooth domain in Rd, d = 2, 3. Assume that ϕ0

is a measurable function such that Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, there exists a
unique weak solution (u, ϕ) to (2.6.1)-(2.6.2) such that

u ∈ L∞(0,∞; Lp(Ω)) ∩ L2
loc(0,∞; H1(Ω)),

ϕ ∈ L2
loc(0,∞;H1(Ω)).

In addition, we have the following further results:

• Let∇Ψ′(ϕ0) ∈ L2(Ω). Then, there exists a unique strong solution (u, ϕ) to (2.6.1)-
(2.6.2) such that

u ∈ L∞(0,∞; H1(Ω)) ∩ L
8
d
loc(0,∞; W1,4(Ω)) ∩ L2

loc(0,∞; W1,p(Ω)),

ϕ ∈ L∞(0,∞;H1(Ω)) ∩ L
8
d
loc(0,∞;W 1,4(Ω)) ∩ L2

loc(0,∞;W 1,p(Ω)),

where 4 < p <∞ if d = 2 and 4 < p ≤ 6 if d = 3.

• For any σ > 0, the weak solution is a strong solution on (σ,∞).

• Let d = 2 and (H.3), (H.4) and (K.1) hold. Then, for every σ > 0, there exists
δ > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and

u ∈ L∞(3σ,∞; H2(Ω)) ∩H1
loc(3σ,∞; L2(Ω)),

ϕ ∈ L∞(3σ,∞;H2(Ω)) ∩H1
loc(3σ,∞;L2(Ω)).

The above result states the well-posedness of weak and strong solutions. In com-
parison with the local Hele–Shaw–Cahn–Hilliard system, some regularity results and
existence of strong solutions for general initial conditions can be proven also in three
dimensions. Besides, we have the validity of the instantaneous separation property in
dimension two. This is proved by exploiting the Alikakos–Moser argument employed
for the nonlocal Navier–Stokes–Cahn–Hilliard system.
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CHAPTER3
Mathematical preliminaries

This chapter is devoted to some basic mathematical tools we will use repeatedly in
the rest of this contribution.

3.1 Framework of Sobolev spaces

LetX be a (real) Banach or Hilbert space, whose norm is denoted by ‖ ·‖X . X ′ denotes
the dual space of X and 〈·, ·〉 the corresponding duality product. The boldface letter X
stands for the vectorial space Xd endowed with the product structure (d is the spatial
dimension). We denote by Lp(Ω) andW k,p(Ω), k ∈ N and p ∈ [1,+∞], the Lebesgue
spaces and Sobolev spaces of real measurable functions on the domain Ω. We introduce
the Hilbert spaces Hk(Ω) = W k,2(Ω) with respect to the inner product

(u, v)k =
∑
|ζ|≤k

∫
Ω

Dζu(x)Dζv(x) dx,

where ζ = (ζ1, ..., ζd) is a multi-index, and the induced norm ‖u‖Hk(Ω) =
√

(u, u)k.
We set H = L2(Ω) with inner product and associate norm denoted by (·, ·) and ‖ · ‖,
respectively. We denote V = H1(Ω) endowed with the norm

‖f‖2
V = ‖∇f‖2 + ‖f‖2.

Its dual space V ′ = (H1(Ω))′ is endowed with the standard dual nor. Given an interval
I of R+, we introduce the function space Lp(I;X) with p ∈ [1,+∞], which consists of
Bochner measurable p-integrable functions with values in the Banach space X .
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We report classical results within the theory of Sobolev spaces concerning embed-
dings, differentiation of products and compositions, interpolation inequalities. These
can be found in literature in [5], [26], [27], [115], [122], [151].

� Embeddings. Let u ∈ W 1,p(Ω), with 1 ≤ p ≤ ∞. We have the continuous
embeddings

W 1,p(Ω) ↪→ Lq(Ω), where
1

q
=

1

p
− 1

d
, if p < d;

W 1,p(Ω) ↪→ Lq(Ω), ∀ q ∈ [p,∞), if p = d;

W 1,p(Ω) ↪→ Cα(Ω), whereα = 1− d

p
, if p > d.

� Products. Let f, g ∈ W 1,p(Ω) ∩ L∞(Ω) with 1 ≤ p ≤ ∞. Then, the product
fg ∈ W 1,p(Ω) ∩ L∞(Ω) and

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
, i = 1, ..., d.

In particular, there exists C > 0 such that

‖fg‖V ≤ C
(
‖f‖L∞(Ω)‖g‖V + ‖f‖V ‖g‖L∞(Ω)

)
, (3.1.1)

for all f, g ∈ V ∩ L∞(Ω), and

‖fg‖H2(Ω) ≤ C
(
‖f‖L∞(Ω)‖g‖H2(Ω) + ‖f‖H2(Ω)‖g‖L∞(Ω)

)
, (3.1.2)

for all f, g ∈ H2(Ω) (d = 2, 3). Moreover, we have the following inequality

‖fg‖W 1,p(Ω) ≤ C
(
‖f‖L∞(Ω)‖g‖W 1,p(Ω) + ‖f‖W 1,q(Ω)‖g‖Lr(Ω)

)
, (3.1.3)

for all f ∈ W 1,q ∩ L∞(Ω), g ∈ W 1,p(Ω) ∩ Lr(Ω) provided that 1
p

= 1
q

+ 1
r
.

Accordingly, there exists C > 0 such that

‖fg‖V ≤ C
(
‖f‖L∞(Ω)‖g‖V + ‖f‖W 1,4(Ω)‖g‖L4(Ω)

)
, (3.1.4)

for all f ∈ W 1,4(Ω), g ∈ V .

� Composition. Let f : R→ R be a uniformly Lipschitz function and u ∈ W 1,p(Ω),
with 1 ≤ p <∞. Then, the composition f ◦ u ∈ W 1,p(Ω) and

∇(f ◦ u) = (f ′ ◦ u)∇u, a.e. inΩ.

� Poincaré–Wirtinger inequality. For every f ∈ V ′, we denote by f the average
of the function f over Ω such that

f =
1

|Ω|
〈f, 1〉.

Then, there exists C > 0 such that

‖f − f‖ ≤ C‖∇f‖, ∀ f ∈ V. (3.1.5)

As a byproduct, we have that f → (‖∇f‖2 + |f |2)
1
2 is an equivalent norm on V .
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� Trudinger–Moser inequality. Let d = 2. Then, there exists C > 0 such that∫
Ω

e|f | dx ≤ CeC‖f‖
2
V , ∀ f ∈ V. (3.1.6)

� Ladyzhenskaya’s inequality. Let d = 2. Then, there exists C > 0 such that

‖f‖L4(Ω) ≤ C‖f‖
1
2‖f‖

1
2
V , ∀ f ∈ V. (3.1.7)

� Agmon’s inequality. There exists C > 0 such that, in the case d = 2,

‖f‖L∞(Ω) ≤ C‖f‖
1
2‖f‖

1
2

H2(Ω), ∀ f ∈ H2(Ω), (3.1.8)

and, in the case d = 3,

‖f‖L∞(Ω) ≤ C‖f‖
1
2
V ‖f‖

1
2

H2(Ω), ∀ f ∈ H2(Ω). (3.1.9)

� Gagliardo–Nirenberg inequality. If j,m are arbitrary integers satisfying 0 ≤
j < m and j

m
≤ a ≤ 1, and 1 ≤ q, r ≤ +∞ such that

1

p
− j

d
= a

(
1

r
− m

d

)
+ (1− a)

1

q
.

Then, there exists C > 0 such that

‖Djf‖Lp(Ω) ≤ C‖f‖1−a
Lq(Ω)‖f‖

a
Wm,r(Ω), ∀ f ∈ Wm,r(Ω) ∩ Lq(Ω).

If 1 < r < +∞ andm− j − d
r
is a nonnegative integer, then the above inequality

holds only for j
m
≤ a < 1. Particular cases are

‖f‖Lp(Ω) ≤ C‖f‖
2
p‖f‖

1− 2
p

V , ∀f ∈ V, (3.1.10)

with p ≥ 2 and d = 2,

‖f‖Lp(Ω) ≤ C‖f‖
6−p
2p ‖f‖

3p−6
2p

V , ∀f ∈ V, (3.1.11)

with 2 ≤ p ≤ 6 and d = 3.

An application of the Gagliardo–Nirenberg inequality in dimension two is the following

Lemma 3.1.1. Let d = 2 and f ∈ V . Then, for any 0 < ε ≤ 1 and any 1 < s < ∞,
there exists C = C(s) > 0 such that

‖u‖2
Ls(Ω) ≤ ε‖∇u‖2 +

C

εs−1
‖u‖2

L1(Ω). (3.1.12)

Proof. We start from the following particular case of Gagliardo–Nirenberg inequality
in dimension two

‖f‖Ls(Ω) ≤ C‖f‖
1
s

L1(Ω)‖f‖
1− 1

s
V ,
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for any 1 < s <∞. Exploiting (3.1.5), for any ε > 0, we deduce that

‖f‖Ls(Ω) ≤ Cε
s−1
s

(
‖∇f‖+ ‖f‖L1(Ω)

)1− 1
s

(
ε

1−s
s ‖f‖

1
s

L1(Ω)

)
.

Applying the Young inequality with exponents (s/(s− 1), s), we obtain

‖f‖Ls(Ω) ≤ ε
(
‖∇f‖+ ‖f‖L1(Ω)

)
+

C

εs−1
‖‖L1(Ω)

= ε‖∇f‖+
C

εs−1
‖f‖L1(Ω).

Then, by rescaling ε with
√
ε, we easily infer the claim.

3.2 Approximation of the logarithmic potential

Let us consider the singular potential Ψ. According to (H), it is immediate to prove that
Ψ is proper, convex and lower semicontinuous with domain D(Ψ) = [−1, 1]. Appeal-
ing to theory of maximal monotone operators (see, for instance, [15], [25], [141] and
references therein), we define the subgradient of Ψ as

A = ∂Ψ : D(A) ⊂ R→ R.

We report here below a result which establishes the action of the subgradient operator
on regular points (see [15, Chapter 1, Example 3]).

Lemma 3.2.1. Let ϕ : R→ (−∞,+∞] be convex and differentiable at a point s ∈ R.
Then ∂ϕ(s) = ϕ′(s).

Since Ψ is continuously differentiable in (−1, 1), we infer that

A(s) = Ψ′(s), ∀ s ∈ (−1, 1), (3.2.1)

where Ψ′ stands for the standard derivative of Ψ. Moreover, we also have the following
characterization.

Lemma 3.2.2. Let the potential Ψ satisfy (H). Then, D(A) ≡ (−1, 1).

Proof. From [141, Corollary 1.4, Chapter 4], we notice that

(−1, 1) ⊂ D(A) ⊂ D(Ψ) = [−1, 1].

We suppose by contradiction that 1 ∈ D(A) and we consider z ∈ A(1) ⊂ R. It is
immediate to see that 1 + z ∈ 1 + A(1) = (I + A)(1). Besides, the map

g : (−1, 1)→ R, g(s) = (I + A)(s) = s+ Ψ′(s)

is continuous, lims→1− g(s) = +∞ and lims→−1+ g(s) = −∞. Then, the range of
g is R. Thus, there exists s ∈ (−1, 1) such that g(s) = 1 + z. Since A is a maximal
monotone operator, the inclusion 1+z ∈ (I+A)s has atmost one solution, so 1 /∈ D(A).
Repeating the same argument for −1, we conclude that D(A) = (−1, 1).
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Thanks to the properties of maximal monotone operators (see for instance [25] and
[141]), we approximateΨ bymeans of the sequence of everywhere defined non-negative
functions

Ψλ(s) =
λ

2
|Aλs|2 + Ψ(Jλ(s)), ∀ s ∈ R, λ > 0, (3.2.2)

where Jλ = (I + λA)−1 is the resolvent operator and Aλ = 1
λ
(I − Jλ) is the Yosida

approximation of A. According to the general theory, the following main properties
holds:

(i) Ψλ is convex and Ψλ(s)↗ Ψ(s), for all s ∈ R, as λ goes to 0;

(ii) Ψ′λ(s) = Aλ(s) and Ψ′λ is Lipschitz on R with constant 1
λ
;

(iii) |Ψ′λ(s)| ↗ |Ψ′(s)| for all s ∈ (−1, 1) and |Ψ′λ(s)| ↗ ∞, for all |s| ≥ 1, as λ goes
to 0;

(iv) Ψλ(0) = Ψ′λ(0) = 0, for all λ > 0.

Remark 3.2.3. We recall that, due to the convexity of Ψλ (cf. (i)), we have

Ψλ(s) ≤ Ψλ(r) + (s− r)Ψ′λ(s), ∀ s, r ∈ R. (3.2.3)

Now we prove some properties of Ψλ which are uniform with respect to λ.

Lemma 3.2.4. For any 0 < λ ≤ 1 and for any s ∈ R, Ψ′′λ(s) exists and satisfies

Ψ′′λ(s) ≥
Θ

1 + Θ
. (3.2.4)

Proof. We preliminarily note that Jλ is the inverse function of gλ(s) = (I + λA)(s) :
(−1, 1) → R which is differentiable with g′λ(s) ≥ 1 + λΘ > 0. This entails that Aλ

is differentiable in R. From the differentiation formula of the inverse function and the
assumption (H), we deduce that

Ψ′′λ(s) =
1

λ

[
1− 1

1 + λΨ′′(Jλ(s))

]
≥ Θ

1 + λΘ
, (3.2.5)

which, in turn, implies (3.2.4).

Lemma 3.2.5. For any 0 < λ∗ ≤ 1, we have

Ψλ(s) ≥
1

4λ∗
s2 − C, ∀ s ∈ R, 0 < λ ≤ λ∗, (3.2.6)

where C depends only on λ∗ but is independent of λ.

Proof. We infer from de L’Hôpital’s rule that

lim
s→±∞

Ψλ(s)

s2
= lim

s→±∞

Ψ′λ(s)

2s
= lim

s→±∞

s− Jλ(s)
2λs

=
1

2λ
− lim

s→±∞

Jλ(s)

2λs
=

1

2λ
,

where we have used that Range(Jλ) = (−1, 1). Setting 0 < λ∗ ≤ 1, the above limit
entails that there existsMλ∗ such that

Ψλ∗(s) ≥
1

4λ∗
s2, ∀ |s| ≥Mλ∗
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On account of the monotonicity of Ψλ with respect to λ, we have

Ψλ(s) ≥
1

4λ∗
s2, ∀ |s| ≥Mλ∗ , 0 < λ ≤ λ∗.

Since Ψλ is non-negative, according to the last inequality, we conclude that

Ψλ(s) ≥
1

4λ∗
s2 − C, ∀ s ∈ R, 0 < λ ≤ λ∗,

where C = M2
λ∗/(4λ

∗) is independent of λ.

Lastly, we state an immediate result of convergence.

Lemma 3.2.6. For any set [a, b] ⊂ (−1, 1), Ψ′λ converges uniformly to Ψ′ on [a, b].

3.3 The Neumann problem

We consider the homogeneous Neumann problem for the Laplace equation{
−∆u = f, in Ω,

∂nu = 0, on ∂Ω,
(3.3.1)

and the associated linear operator A : V → V ′ defined by

〈Au, v〉 =

∫
Ω

∇u · ∇v dx, ∀u, v ∈ V.

Recalling the definition of total mass

u =
1

|Ω|
〈u, 1〉,

we introduce the Hilbert spaces

V0 = {u ∈ V : u = 0}, L2
0(Ω) = {u ∈ H : u = 0}, V ′0 = {u ∈ V ′ : u = 0}.

By the Poincaré’s inequality (3.1.5), the restriction of A : V0 → V ′0 is an isomorphism.
In particular, A is positively defined on V0 and self-adjoint. We denote its inverse map
by N = A−1 : V ′0 → V0. Notice that for every f ∈ V ′0 , u = N f ∈ V0 is the unique
weak solution of the Neumann problem (3.3.1) such that

(∇u,∇v) = 〈f, v〉, ∀ v ∈ V0.

In accordance with these definitions, we have

〈Au,N f〉 = 〈u, f〉, ∀u ∈ V, ∀ f ∈ V ′0 , (3.3.2)

〈f,N g〉 = 〈N f, g〉 =

∫
Ω

∇(N f) · ∇(N g) dx, ∀ f, g ∈ V ′0 . (3.3.3)

We equip the Hilbert spaces V ′0 with inner product and norm

〈f, g〉V ′0 = (∇N f,∇N g), ‖f‖V ′0 = ‖∇N f‖.
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In particular, we obtain that f → ‖f‖∗ := (‖f − f‖2
V ′0

+ |f |2)
1
2 is an equivalent norm

on V ′. In addition, it follows from (3.3.2) the Hilbert interpolation inequality

‖f‖ ≤ ‖f‖
1
2

V ′0
‖∇f‖

1
2 , ∀ f ∈ V0, (3.3.4)

and the chain rule

〈ft,N f〉 =
1

2

d

dt
‖f‖2

V ′0
, a.e. t ∈ (0, T ), ∀ f ∈ H1(0, T ;V ′0). (3.3.5)

Let us now report some facts from the elliptic regularity theory of the Laplace oper-
ator AN = −∆ + I with homogeneous Neumann boundary conditions. Assume that u
satisfies ANu = f in weak sense. Then, we have the following results (see [109]):
� Let f ∈ (W 1,p′(Ω))′, with 1 < p′ < ∞. Then, u ∈ W 1,p(Ω), where 1

p
+ 1

p′
= 1,

and there exists C > 0 such that

‖u‖W 1,p(Ω) ≤ C‖f‖(W 1,p′ )′ .

� Let f ∈ Lp(Ω), with 1 < p < ∞. Then, u ∈ W 2,p(Ω), −∆u + u = f for a.e.
x ∈ Ω, ∂nu = 0 on ∂Ω in the sense of traces and there exists C > 0 such that

‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω).

� Let f ∈ W 1,p(Ω), with 1 < p < ∞. Then, u ∈ W 3,p(Ω) and there exists C > 0
such that

‖u‖W 3,p(Ω) ≤ C‖f‖W 1,p .

The above positive constants C depend on p, p′ and Ω. Moreover, we deduce the fol-
lowing estimates for the Neumann problem

‖∇N f‖Hk(Ω) ≤ C‖f‖Hk−1(Ω), ∀ f ∈ Hk−1(Ω) ∩ L2
0(Ω), k = 1, 2. (3.3.6)

3.4 The Neumann problem with logarithmic nonlinearity

We introduce the homogeneous Neumann problem with a singular nonlinear term{
−∆u+ Ψ′(u) = f, in Ω

∂nu = 0, on ∂Ω.
(3.4.1)

Given f ∈ H , the existence of a (unique) solution to (3.4.1) can be proved by exploiting
the convexity of Ψ. In the sequel, we assume that u is a solution to (3.4.1) such that
u ∈ H2(Ω) with Ψ′(u) ∈ H , ∂nu = 0 on ∂Ω in the sense of traces and satisfies
−∆u + Ψ′(u) = f for a.e. x ∈ Ω. In particular, we observe that ‖u‖L∞(Ω) ≤ 1. Now
we deduce some elliptic regularity estimates which are motivated by [1] and [118]. To
this aim, for k ∈ N, we define the globally Lipschitz function hk : R→ R such that

hk(s) =


−1 + 1

k
, s < −1 + 1

k
,

s, s ∈ [−1 + 1
k
, 1− 1

k
],

1− 1
k
, s > 1− 1

k
.

(3.4.2)
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Now we consider uk = hk ◦ u. Since u ∈ V , the result on compositions in Sobolev
spaces yields uk ∈ V , for any k > 0, and

∇uk = ∇u · χ[−1+ 1
k
,1− 1

k
](u).

This cutoff function will be repeatedly employ in the course of this section.

Lemma 3.4.1. Let f ∈ L2(Ω). Then, we have

‖∆u‖ ≤ ‖f − f‖.

Proof. Testing the problem by −∆u and noticing that ∆u = 0, we obtain

‖∆u‖2 − (Ψ′(u),∆u) = −(f − f,∆u).

We rewrite the above equality by using Ψ′(uk) as follows

‖∆u‖2 − (Ψ′(uk),∆u) = (Ψ′(u)−Ψ′(uk),∆u)− (f − f,∆u).

Observing that Ψ′(uk) ∈ V with Ψ′′(uk) > 0, from an integration by parts we deduce
that the second term on the left hand side is positive. In addition, we have Ψ′(uk) →
Ψ′(u) for a.e. x ∈ Ω and |Ψ′(uk)| ≤ |Ψ′(u)|. Since Ψ′(u) ∈ H , the dominated conver-
gence theorem implies

(Ψ′(u)−Ψ′(uk),∆u)→ 0,

as k goes to∞. This entails

‖∆u‖2 ≤ −(f − f,∆u),

which, in turn, gives our claim.

Lemma 3.4.2. Let f ∈ Lp(Ω), where 2 ≤ p ≤ ∞. Then, we have

‖Ψ′(u)‖Lp(Ω) ≤ ‖f‖Lp(Ω).

Proof. Let us consider f ∈ Lp(Ω) with 2 ≤ p < ∞. We take the test function
|Ψ′(uk)|p−2Ψ′(uk), which belongs to V for any k. Since Ψ(uk)

′′ is well-defined and
positive, we learn that

(−∆u,|Ψ′(uk)|p−2Ψ′(uk))

= (p− 1)(|Ψ′(uk)|p−2Ψ′′(uk)∇u · χ[−1+ 1
k
,1− 1

k
](u),∇u) ≥ 0.

Then, we deduce that

(Ψ′(u), |Ψ′(uk)|p−2Ψ′(uk)) ≤ (f, |Ψ′(uk)|p−2Ψ′(uk)).

Noticing that Ψ′ is increasing and Ψ′(s)s ≥ 0, we are lead to

‖Ψ′(uk)‖pLp(Ω) ≤ (Ψ′(u), |Ψ′(uk)|p−2Ψ′(uk)).

By the Hölder inequality

(f, |Ψ′(uk)|p−2Ψ′(uk)) ≤ ‖Ψ′(uk)‖p−1
Lp(Ω)‖f‖Lp(Ω).
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Therefore, we arrive at
‖Ψ′(uk)‖Lp(Ω) ≤ ‖f‖Lp(Ω).

By Fatou’s lemma, we end up with

‖Ψ′(u)‖Lp(Ω) ≤ ‖f‖Lp(Ω).

If f ∈ L∞, we infer from the above estimate that

‖Ψ′(u)‖Lp(Ω) ≤ C,

where C is independent of p. Thus, the claim follows from [5][Theorem 2.14].

Corollary 3.4.3. Let f ∈ V . Then, there exists a positive constant C = C(p) such that

‖u‖W 2,p(Ω) + ‖Ψ′(u)‖Lp(Ω) ≤ C
(
1 + ‖f‖V

)
,

where p = 6 if d = 3 and for any p ≥ 2 if d = 2.

Proof. On account of the Sobolev embeddings, an application of Lemma 3.4.2 implies

‖Ψ′(u)‖Lp(Ω) ≤ C‖f‖V ,

where p = 6 if d = 3 and for any p ≥ 2 if d = 2. We now interpret u as the solution to
−∆u+ u = g, where g = f + u+ Ψ′(u). It is clear that

‖g‖Lp(Ω) ≤ C(1 + ‖f‖V ).

Then, the desired conclusion follows from the elliptic regularity of the Neumann prob-
lem.

Lemma 3.4.4. Let f ∈ V . Given R > 0, assume that ‖∇u‖ ≤ R. Then, we have

‖∆u‖ ≤ R
1
2‖∇f‖

1
2 .

Proof. Arguing as in the proof of Lemma 3.4.1, we have

‖∆u‖2 ≤ −(f,∆u).

Thus, by virtue of the homogeneous boundary condition, an integration by parts gives

‖∆u‖2 ≤ R‖∇f‖.

We prove a generalized version of Young’s inequality.

Lemma 3.4.5. Let L > 0 be given. Then, there exists N = N(L) > 0 such that

xyeLy ≤ eNx−1 +
1

2
y2eLy, ∀x, y ≥ 0. (3.4.3)
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Proof. Let us first show that, for every a, b ≥ 0,
ab ≤ b ln b+ ea−1. (3.4.4)

The function f(b) = b ln b+ea−1−ab satisfies f(0) = ea−1 > 0 and limb→∞ f(b) =∞.
Besides f ′(b) = ln b + 1− a, hence b = ea−1 is the absolute minimum of f . Then, we
have

f(b) ≥ f(b) = ea−1 ln ea−1 + ea−1 − aea−1 = 0

for every b ≥ 0, which implies (3.4.4). Letting a = Nx and b = y
N

eLy in (3.4.4) for any
given N,L > 0, we easily find

xyeLy ≤ eNx−1 +
y

N
eLy
(

ln
y

N
+ ln eLy

)
≤ eNx−1 +

L+ 1

N
y2eLy,

and the claim follows with N > 2(L+ 1).

Lemma 3.4.6. Let d = 2 and f ∈ V . Suppose that (H.3) holds. Then, for any p ≥ 1,
there exists a positive constant C = C(p) such that

‖Ψ′′(u)‖Lp(Ω) ≤ C
(

1 + eC‖f‖
2
V

)
.

Proof. For k ∈ N, let uk be the cutoff function introduced at the beginning. Given L >
0, we consider the test function Ψ′(uk)e

L|Ψ′(uk)|. Since the function s → Ψ′(s)eL|Ψ
′(s)|

is monotone, by arguing as in the proof of Lemma 3.4.2, we find∫
Ω

|Ψ′(uk)|2eL|Ψ
′(uk)| dx ≤

∫
Ω

|f ||Ψ′(uk)|eL|Ψ
′(uk)| dx.

We estimate the right-hand side by the generalized Young inequality (3.4.3) with the
choice

x = |f |, y = |Ψ′(uk)|.
Accordingly, we find N = N(L) such that∫

Ω

|f ||Ψ′(uk)|eL|Ψ
′(uk)| dx ≤

∫
Ω

1

2
|Ψ′(uk)|2eL|Ψ

′(uk)| dx+

∫
Ω

eN |f | dx,

and we obtain
1

2

∫
Ω

|Ψ′(uk)|2eL|Ψ
′(uk)| dx ≤

∫
Ω

eN |f | dx.

Due to the Trudinger-Moser inequality in dimension two, we have the following control
1

2

∫
Ω

|Ψ′(uk)|2eL|Ψ
′(uk)| dx ≤ C

(
1 + eCN

2‖f‖2V
)
. (3.4.5)

On the other hand, by (H.3) we observe that

Ψ′′(s)p ≤ pC
(

1 + |Ψ′(s)|2epC|Ψ
′(s)|
)
, ∀ s ∈ (−1, 1).

Thus, taking L = pC in (3.4.5), we end up with∫
Ω

|Ψ′′(uk)|p dx ≤ C
(

1 + eC‖f‖
2
V

)
,

where C > 0 depends on p.
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3.5 Solenoidal vector fields

We introduce the Hilbert space of solenoidal vector fields

Hσ = {u ∈ L2(Ω) : div u = 0 in Ω, u · n = 0 on ∂Ω},

endowed with the usual inner product (·, ·) and norm ‖ · ‖. Let Π be the orthogonal
Leray projection in H = L2(Ω) onto Hσ. By the Helmholtz–Leray decomposition,
every vector field f ∈ H can be uniquely represented as

f = u +∇π,

where u = Πf ∈ Hσ and π ∈ V0. We recall thatΠ is a bounded operator fromWk,p(Ω)
(1 < p <∞, k ≥ 0) into itself (cf. [83, Lemma 3.3]), namely

‖Πf‖Wk,p ≤ C‖f‖Wk,p , ∀f ∈Wk,p(Ω), (3.5.1)

where the constant C depends on k and p. On the other hand, if f ∈ Wk,p(Ω), with
1 < p < ∞, then from ∇π = f − Πf we see that π is the unique solution to the
Neumann problem {

−∆π = div f , inΩ,

∂nπ = f · n, on ∂Ω,
(3.5.2)

satisfying π = 0. Then, it follows that π ∈ W k+1,p(Ω) by the elliptic regularity results
for the nonhomogeneous Neumann problem. In addition, solenoidal vector fields in
V = H1(Ω) satisfy the following inequality (see, e.g., [84, Theorem 3.8])

‖u‖V ≤ C (‖∇ × u‖+ ‖u‖) , ∀u ∈ V ∩Hσ. (3.5.3)

We also introduce the higher order Hilbert space of solenoidal vector fields

Vσ = {u ∈ V : div u = 0 in Ω, u = 0 on ∂Ω}

equipped with inner product and norm

〈u, v〉Vσ = (∇u,∇v), ‖u‖Vσ = ‖∇u‖.

Since Vσ ⊂ H1
0(Ω), which consists of vector fields in V with null trace on ∂Ω, the

classical Poincaré inequality is valid in Vσ. That is, there exists C > 0 such that

‖u‖ ≤ C‖∇u‖, ∀u ∈ Vσ.

We also recall the Korn inequality

‖∇u‖2 ≤ 2‖Du‖2 ≤ 2‖∇u‖2, ∀u ∈ Vσ. (3.5.4)

In turn, ‖Du‖ is an equivalent norm on Vσ. As customary, we define the trilinear form
on Vσ ×Vσ ×Vσ

b(u, v,w) =

∫
Ω

(u · ∇)v · w dx =
d∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wj dx,

satisfying the relation
b(u, v, v) = 0. (3.5.5)
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3.6 The Stokes problem

Let us consider the Stokes problem
−∆u +∇π = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω.

(3.6.1)

We introduce the Stokes operator A : Vσ → V′σ defined by

〈Au, v〉 = (∇u,∇v), ∀u, v ∈ V,

namely A is the canonical isomorphism from Vσ onto V′σ. We denote by A−1 : V′σ →
V′σ its inverse map. Given f ∈ V′σ, A−1f is the unique function u ∈ Vσ such that

(∇u,∇v) = 〈f , v〉, ∀ v ∈ Vσ.

By definition, it follows that

‖f‖] := ‖∇A−1f‖ = 〈f ,A−1f〉
1
2

is an equivalent norm in V′σ and

〈f t,A−1f〉 =
1

2

d

dt
‖f‖2

] , a.e. t ∈ (0, T ), ∀f ∈ H1(0, T ; V′σ).

Notice that, in order to recover the pressure and interpret (u, π) as the solution to (3.6.1),
the forcing term f need to be in (H1

0(Ω))′. In this case, we recall the following regularity
results for the Stokes problem (3.6.1) (see [24] and [151]):

� Let f ∈ (H1
0(Ω))′. Then, these exists a unique solution (u, π) ∈ Vσ ∩ L2

0(Ω) to
(3.6.1) and there exists C > 0 such that

‖u‖Vσ + ‖π‖L2
0(Ω) ≤ C‖f‖(H1

0(Ω))′ .

� Let f ∈ Wk,p(Ω), with k = 0, 1 and 1 < p < ∞. Then, there exists C > 0
depending on k, p and Ω such that

‖u‖Wk+2,p(Ω) + ‖π‖Wk+1,p(Ω) ≤ C‖f‖Wk,p(Ω).

We now consider A as an unbounded operator on Hσ with domain

D(A) = {u ∈ Vσ : Au ∈ Hσ}.

It is well known that A is a positive self-adjoint operator on Hσ. On account of the
regularity theory for (3.6.1), we have a precise description of A on its domain, namely

D(A) = Vσ ∩H2(Ω), Au = Π(−∆u), ∀u ∈ D(A).

Then, we define the Hilbert space

Wσ = Vσ ∩H2(Ω)
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endowed with inner product and norm

(u, v)Wσ = (Au,Av), ‖u‖Wσ = ‖Au‖.

By virtue of the above regularity, there exists C > 0 such that

1

C
‖u‖Wσ ≤ ‖u‖H2(Ω) ≤ C‖u‖Wσ , ∀u ∈Wσ. (3.6.2)

We conclude this section with a regularity result on the Stokes problem with non-
constant viscosity depending on concentration. Let us consider the following Stokes
problem 

−div(ν(ϕ)Du) +∇π = f, in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω.

(3.6.3)

Here, the viscosity coefficient ν ∈ C2(R) satisfies

0 < ν∗ ≤ ν(s) ≤ ν∗, ∀ s ∈ R.

We recall an elliptic estimate on system (3.6.3) (see [1] for the proof).

Lemma 3.6.1. Let ϕ ∈ W 1,r(Ω), with r > d ≥ 2, and f ∈ H. Assume that u ∈ Vσ is
a weak solution to (3.6.3), namely

(ν(ϕ)Du, Dv) = (f , v), ∀ v ∈ Vσ.

Then, there exists C > 0, depending on ν∗, ν∗, r, such that

‖u‖W2,p(Ω) ≤ C
(
1 + ‖∇ϕ‖Lr(Ω)

)(
‖f‖+ ‖∇u‖

)
,

where 1
p

= 1
2

+ 1
r
.

3.7 Gronwall type lemmas

We report in this section some Gronwall type results that will be needed in the course
of the investigation. The proofs can be found in [25] and [149].

Lemma 3.7.1 (Gronwall lemma). Let f be an absolutely continuous function on [0, T ]
and g, h two summable functions on [0, T ] which satisfy the differential inequality

d

dt
f(t) ≤ g(t)f(t) + h(t)

for almost every t ∈ [0, T ]. Then, we have

f(t) ≤ f(0)e
∫ t
0 g(τ) dτ +

∫ t

0

e
∫ t
τ g(s) dsh(τ) dτ, ∀ t ∈ [0, T ].
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Lemma 3.7.2 (Integral Gronwall lemma). Let f be a continuous function on [0, T ],
g a positive summable function and R a positive constant which satisfy the integral
inequality

1

2
f 2(t) ≤ 1

2
R2 +

∫ t

0

g(τ)f(τ) dτ, ∀ t ∈ [0, T ].

Then, we have

|f(t)| ≤ R +

∫ t

0

g(τ) dτ, ∀ t ∈ [0, T ].

Lemma 3.7.3 (Uniform Gronwall lemma). Let f be an absolutely continuous positive
function on [0,∞) and g, h two positive locally summable functions on [0,∞) which
satisfy the differential inequality

d

dt
f(t) ≤ g(t)f(t) + h(t),

for almost every t ≥ 0, and the uniform bounds∫ t+r

t

f(τ) dτ ≤ a1,

∫ t+r

t

g(τ) dτ ≤ a2,

∫ t+r

t

h(τ) dτ ≤ a3, ∀ t ≥ 0,

for some r, a1, a2, a3 positive. Then, we have

f(t) ≤ (
a1

r
+ a3)ea2 , ∀ t ≥ r.
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CHAPTER4
The Navier–Stokes–Cahn–Hilliard–Oono system

In this chapter we consider the Navier–Stokes–Cahn–Hilliard–Oono (NSCHO) sys-
tem with matched viscosities in two space dimensions. We will address the unique-
ness of weak solutions, the regularity propagation in time and the separation prop-

erty from the pure phases. In the last part we will discuss some consequences regarding
the longtime behavior of solutions. As mentioned earlier, all the results presented in
this chapter are also valid for the Navier–Stokes–Cahn–Hilliard (NSCH) system.

In a bounded domain Ω ⊂ R2, the Navier–Stokes–Cahn–Hilliard–Oono system with
matched viscosities (ν = 1) reads as follows

∂tu + (u · ∇)u−∆u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ+ β(ϕ− c) = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (4.0.1)

subject to the boundary and initial conditions{
u = 0, ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω.
(4.0.2)

General agreement. Throughout this chapter, if it is not otherwise stated, we indicate
by C a generic positive constant depending only on the domain and on structural quan-
tities. The constant C may vary from line to line and even within the same line. Any
further dependence will be explicitly pointed out if necessary.
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4.1 Existence of Weak Solutions and Dissipativity

In the sequel the parameter β and c satisfy the structural requirements

β ≥ 0 and c ∈ (−1, 1).

In addition, we remind that the singular potential F fulfils the assumption (H). As a
byproduct, we have the basic inequality

F (s) ≤ F (w) + F ′(s)(s− w) +
α

2
(s− w)2, ∀ s, w ∈ (−1, 1). (4.1.1)

We begin by stating the definition of weak solution.

Definition 4.1.1. Given u0 ∈ Hσ, ϕ0 ∈ V , with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1, a pair
(u, ϕ) is a weak solution to (4.0.1)-(4.0.2) on [0, T ] if

u ∈ L∞(0, T ; Hσ) ∩ L2(0, T ; Vσ) ∩H1(0, T ; V′σ),

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )), with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

Ψ′(ϕ) ∈ L2(0, T ;H),

and

〈∂tu, v〉+ b(u,u, v) + (∇u,∇v) = (µ∇ϕ, v), ∀ v ∈ Vσ, (4.1.2)
〈∂tϕ, v〉+ (u · ∇ϕ, v) + β(ϕ− c, v) + (∇µ,∇v) = 0, ∀ v ∈ V, (4.1.3)

for almost every t ∈ (0, T ), where µ ∈ L2(0, T ;V ) is given by

µ = −∆ϕ+ F ′(ϕ), (4.1.4)

for almost every (x, t) ∈ Ω×(0, T ). Moreover, ∂nϕ = 0 a.e. on ∂Ω×(0, T ), u(·, 0) = u0

and ϕ(·, 0) = ϕ0 a.e. in Ω.

Remark 4.1.2. Weobserve that any admissible initial conditionϕ0 belongs to V ∩L∞(Ω)
with ‖ϕ0‖L∞(Ω) ≤ 1. However, due to |ϕ0| < 1, it can not be a pure phase, i.e. ϕ0 ≡ ±1.
Remark 4.1.3. It is straightforward to see that any energy solution satisfies the relation

ϕ(t) = c+ e−βt(ϕ0 − c), ∀ t ≥ 0, (4.1.5)

Remark 4.1.4. Note that the weak formulation for the velocity field is equivalent to

〈ut, v〉 − (u⊗ u,∇v) + (∇u,∇v) = (∇ϕ⊗∇ϕ,∇v), ∀ v ∈ V,

where (v ⊗ w)ij = viwj , i, j = 1, 2, in light of the equalities

(u · ∇)u = div(u⊗ u) (4.1.6)

and
µ∇ϕ = ∇

(1

2
|∇ϕ|2 + F (ϕ)

)
− div(∇ϕ⊗∇ϕ).
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Remark 4.1.5. As customary, the pressure π disappears in the weak formulations. In-
deed, once we have a weak solution in the sense of Definition 4.1.1, the pressure is
recovered by using de Rham’s theorem (see [151]).

Theorem 4.1.6. Let u0 ∈ Hσ, ϕ0 ∈ V , with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, for
any T > 0, there exists a weak solution (u, ϕ) to problem (4.0.1)-(4.0.2) on [0, T ] such
that

u ∈ C([0, T ],Hσ), ϕ ∈ C([0, T ], V ).

In addition, the energy identity

EGL(u(t), ϕ(t))+

∫ t

s

‖∇u(τ)‖2+‖∇µ(τ)‖2+β(ϕ(τ)−c, µ(τ)) dτ = EGL(u(s), ϕ(s))

is satisfied for all 0 ≤ s < t <∞.

Proof. The existence of a weak solution has been proved in [117] through a standard
procedure involving a Galerkin scheme together with an approximation of the singular
potential. Moreover, the regularity of the velocity field u ∈ C([0, T ],H) is an immediate
consequence of Definition 4.1.1. In order to show the energy identity, we consider the
convex part of the Ginzburg–Landau free energy

E∗GL(ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

Ψ(ϕ) dx, ∀ϕ ∈ H.

On account of the continuity and the convexity of Ψ, E∗GL is a proper, lower semicontin-
uous and convex functional. Let ϕ be a weak solution in the sense of Definition 4.1.1. In
view of−∆ϕ+Ψ′(ϕ) ∈ L2(0, T ;V ) andϕt ∈ L2(0, T ;V ′), we infer from [131, Lemma
4.1] that

d

dt
E∗GL(ϕ) = 〈∂tϕ, µ+ Θ0ϕ〉, a.e. t ∈ [0, T ].

We also observe that, as a byproduct, the map t 7→ E∗GL(ϕ(t)) is absolutely continuous
on [0, T ]. In addition, through a standard argument, we also learn that ϕ ∈ C([0, T ], V ).
Besides, using the standard chain rule in L2(0, T ;V ) ∩H1(0, T ;V ′) and the weak for-
mulation, we obtain

d

dt
EGL(ϕ) + ‖∇µ‖2 + (u · ∇ϕ, µ) + β(ϕ− c, µ) = 0, a.e. t ∈ [0, T ].

Now, taking v = u as test function and using (3.5.5), we get

1

2

d

dt
‖u‖2 + ‖∇u‖2 = (µ∇ϕ,u), a.e. t ∈ [0, T ].

In summary, we end up with

d

dt
EGL(u, ϕ) + ‖∇u‖2 + ‖∇µ‖2 + β(ϕ− c, µ) = 0, a.e. t ∈ [0, T ].

Accordingly, d
dt
EGL(u, ϕ) is the sum of functions in L1(0, T ) so that EGL is an abso-

lutely continuous function on [0, T ]. A final integration in time on (s, t) of the above
equality entails the energy identity.
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We show the dissipative nature of the NSCHO system in the next result.

Theorem 4.1.7. Let (u, ϕ) be a weak solution with initial datum (u0, ϕ0). Then, we
have the dissipative estimate

EGL(u(t), ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEGL(u0, ϕ0)e−ωt + C,

for every t ≥ 0. Here, ω and C are positive constants independent of the initial datum.
In addition, let m ∈ [0, 1) be such that c ∈ [−m,m] and ϕ0 ∈ [−m,m]. Then, for any
p ≥ 2, there exists a positive constant C = C(m, p) such that∫ t+1

t

‖ϕ(τ)‖2
W 2,p(Ω) + ‖Ψ′(ϕ(τ))‖2

Lp(Ω) dτ ≤ CEGL(u0, ϕ0)e−ωt + C, (4.1.7)

and ∫ t+1

t

‖ϕ(τ)‖4
H2(Ω) dτ ≤ CEGL(u0, ϕ0)2e−ωt + C, (4.1.8)

for every t ≥ 0.

Proof. We introduce the functional

Γ(t) = (ϕ(t)− ϕ(t), µ(t)).

Due to the definition of the chemical potential, after an integration by parts, we have

Γ = ‖∇ϕ‖2 + (F ′(ϕ), ϕ− ϕ).

In light of the assumptions on F , the inequalities (4.1.1) and ‖ϕ(t)‖L∞(Ω) ≤ 1, for
almost every t ≥ 0, we obtain

(F ′(ϕ), ϕ− ϕ) ≥
∫

Ω

F (ϕ) dx− F (ϕ)|Ω| − α

2
‖ϕ− ϕ‖2

≥
∫

Ω

F (ϕ) dx− C.

At the same time, the uniform control in L∞(Ω) of ϕ and the Poincaré–Wirtinger in-
equality (3.1.5) yield

Γ = (ϕ− ϕ, µ− µ) ≤ C‖∇µ‖. (4.1.9)

Hence, we reach
‖∇ϕ‖2 +

∫
Ω

Ψ(ϕ) dx ≤ 1

2
‖∇µ‖2 + C.

Adding the above inequality to the energy identity (cf. Theorem 4.1.6) and using the
Poincaré inequality (3.1.5), there exists ω > 0 such that

d

dt
EGL(u, ϕ) + ωEGL(u, ϕ) +

1

2
‖∇u‖2 +

1

2
‖∇µ‖2 + β(ϕ− c, µ) ≤ C.

In a similar way, we have

β(ϕ− c, µ) ≥ β‖∇ϕ‖2 + β

∫
Ω

F (ϕ) dx− βF (c)|Ω| − βα
2
‖ϕ− c‖2 ≥ −C.
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Therefore, we find the differential inequality

d

dt
EGL(u, ϕ) + ωEGL(u, ϕ) +

1

2
‖∇u‖2 +

1

2
‖∇µ‖2 ≤ C.

An application of the Gronwall lemma entails the dissipative estimate. Next, in order to
prove (4.1.7), the first task is to provide a uniform estimate on µ in V . Owing to (3.1.5),
it is sufficient to control its total mass, that is

|µ| = |F ′(ϕ)|.

According to the assumptions on c and ϕ0, we infer from (4.1.5) that

|ϕ(t)| ≤ m < 1, ∀ t ≥ 0.

Consequently, thanks to the hypotheses on F , we have the well-known inequality (see,
e.g., [118, Proposition A.2] and Chapter 7)

‖F ′(ϕ)‖L1(Ω) ≤ C(F ′(ϕ)− F ′(ϕ), ϕ− ϕ) + C.

Here C depends onm. Then, by definition of Γ, and exploiting (4.1.9), we deduce that

‖F ′(ϕ)‖L1(Ω) ≤ C‖∇µ‖+ C.

Hence, we arrive at
‖µ‖V ≤ C (1 + ‖∇µ‖) . (4.1.10)

Now, by taking f = µ+ Θ0ϕ, an application of Corollary 3.4.3 yields

‖ϕ‖2
W 2,p(Ω) + ‖Ψ′(ϕ)‖2

Lp(Ω) ≤ C
(
1 + ‖∇µ‖

)2
. (4.1.11)

In addition, Lemma 3.4.4 together with the elliptic regularity of the Neumann problems
entails

‖ϕ‖4
H2(Ω) ≤ C

(
1 + ‖∇ϕ‖‖∇µ‖

)2
. (4.1.12)

Integrating in time the above inequalities (4.1.11) and (4.1.12), and by using the dissi-
pative estimate, we infer 4.1.7 and 4.1.8, respectively. This completes the proof.

Remark 4.1.8. We observe that the dissipative estimate has been proved by working di-
rectly with the weak solution in the sense of Definition 4.1.1. In particular, we have
used the global boundedness ‖ϕ‖L∞(Ω×(0,T )) ≤ 1. On the other hand, the same dissipa-
tive estimate can be proved within a Galerkin approximating sequence and replacing the
singular potential with a suitable approximation (see [117]). Besides, the same goes for
(4.1.7) with p = 2 and (5.3.15). Nonetheless, this is not the case for (4.1.7) for p > 2.

4.2 Uniqueness of Weak Solutions

In this section we prove the uniqueness of weak solutions to the NSCHO system. This
is a direct consequence of the continuous dependence estimate with respect to the initial
data stated below. An analogous result holds for the NSCH system. In fact the argument
used here applies equally well in that case.
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Theorem 4.2.1. Let (u01, ϕ01), (u02, ϕ02) be such that u0i ∈ Hσ, ϕ0i ∈ V , Ψ(ϕ0i) ∈
L1(Ω) and |ϕ0i| < 1, i = 1, 2. Assume that (u1, ϕ1) and (u2, ϕ2) are two pairs of
weak solutions to (4.0.1)-(4.0.2) on [0, T ] with initial data (u01, ϕ01) and (u02, ϕ02),
respectively. Then, there exists a positive constant C = C(T ) such that

‖u1(t)− u2(t)‖V′σ + ‖ϕ1(t)− ϕ2(t)‖V ′

≤ C‖u01 − u02‖V′σ + C‖ϕ01 − ϕ02‖V ′ + C|ϕ01 − ϕ02|
1
2 , ∀ t ∈ [0, T ].

Proof. Let us define u = u1 − u2 and ϕ = ϕ1 − ϕ2, where (u1, ϕ1), (u2, ϕ2) are
two weak solutions corresponding to the initial data (u01, ϕ01), (u02, ϕ02), respectively.
According to Remark 6.1.3, u and ϕ solve

〈∂tu, v〉 − (u1 ⊗ u,∇v)− (u⊗ u2,∇v) + (∇u,∇v)

= (∇ϕ1 ⊗∇ϕ,∇v) + (∇ϕ⊗∇ϕ2,∇v), (4.2.1)
〈∂tϕ, v〉+ (u1 · ∇ϕ, v) + (u · ∇ϕ2, v) + β(ϕ, v) + (∇µ,∇v) = 0, (4.2.2)

for all v ∈ Vσ and v ∈ V , where µ = µ1 − µ2 satisfies

µ = −∆ϕ+ F ′(ϕ1)− F ′(ϕ2).

Taking v = 1 in (4.2.2) and recalling that u1 · ∇ϕ and u · ∇ϕ2 have zero total mass, we
have

d

dt
ϕ+ βϕ = ∂tϕ+ βϕ = 0. (4.2.3)

Hence, we deduce that
ϕ(t) = ϕ0e−βt, ∀ t ≥ 0, (4.2.4)

and, in turn, we rewrite (4.2.2) as

〈∂tϕ− ∂tϕ, v〉+ (u1 · ∇ϕ, v) + (u · ∇ϕ2, v) + β(ϕ− ϕ, v) + (∇µ,∇v) = 0. (4.2.5)

Now, taking v = N (ϕ− ϕ) in (4.2.5) and using (3.3.2)-(3.3.5), we obtain

1

2

d

dt
‖ϕ− ϕ‖2

V ′0
+ β‖ϕ− ϕ‖2

V ′0
+ (µ, ϕ− ϕ) = I1 + I2,

where
I1 = −(u1 · ∇ϕ,N (ϕ− ϕ)), I2 = −(u · ∇ϕ2,N (ϕ− ϕ)).

In light of (4.2.3),
1

2

d

dt
|ϕ|2 + β|ϕ|2 = 0

and we arrive at
1

2

d

dt
‖ϕ‖2

∗ + β‖ϕ‖2
∗ + (µ, ϕ− ϕ) = I1 + I2.

By the assumptions on F , we get

(µ, ϕ− ϕ) = ‖∇ϕ‖2 + (F ′(ϕ1)− F ′(ϕ2), ϕ)− (F ′(ϕ1)− F ′(ϕ2), ϕ)

≥ ‖∇ϕ‖2 − α‖ϕ‖2 − (F ′(ϕ1)− F ′(ϕ2), ϕ).
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By (3.3.4), we have
α‖ϕ‖2 ≤ 1

2
‖∇ϕ‖2 + C‖ϕ‖2

∗. (4.2.6)

Then, we end up with
1

2

d

dt
‖ϕ‖2

∗ +
1

2
‖ϕ‖2

V + β‖ϕ‖2
∗ (4.2.7)

≤ C‖ϕ‖2
∗ + C

(
1 + ‖F ′(ϕ1)‖L1(Ω) + ‖F ′(ϕ2)‖L1(Ω)

)
|ϕ|+ I1 + I2.

Taking v = A−1u in (4.2.1), we find
1

2

d

dt
‖u‖2

] + ‖u‖2 = I3 + I4, (4.2.8)

where

I3 = (u1 ⊗ u,∇A−1u) + (u⊗ u2,∇A−1u),

I4 = (∇ϕ1 ⊗∇ϕ,∇A−1u) + (∇ϕ⊗∇ϕ2,∇A−1u).

Now, setting
Φ =

1

2
‖u‖2

] +
1

2
‖ϕ‖2

∗

and summing (4.2.7) and (4.2.8), we are led to
d

dt
Φ + ‖u‖2 +

1

2
‖ϕ‖2

V + β‖ϕ‖2
∗

≤ C‖ϕ‖2
∗ + C

(
1 + ‖Ψ′(ϕ1)‖L1(Ω) + ‖Ψ′(ϕ2)‖L1(Ω)

)
|ϕ|

+ I1 + I2 + I3 + I4.

We proceed estimating all the remaining terms on the right-hand side. By (3.1.7),
(3.6.2), the embedding V ↪→ Lp(Ω), and the uniform bound of ϕ2 in L∞(Ω), we have

I1 = (u1ϕ,∇N (ϕ− ϕ))

≤ ‖u1‖L3(Ω)‖ϕ‖L6(Ω)‖ϕ− ϕ‖V ′0
≤ 1

4
‖ϕ‖2

V + C‖u1‖2
L3(Ω)‖ϕ‖2

∗,

I2 = (uϕ2,∇N (ϕ− ϕ))

≤ ‖u‖‖ϕ− ϕ‖V ′0
≤ 1

2
‖u‖2 + C‖ϕ‖2

∗,

I3 ≤
(
‖u1‖L4(Ω) + ‖u2‖L4(Ω)

)
‖u‖‖∇A−1u‖L4(Ω)

≤ C
(
‖u1‖L4(Ω) + ‖u2‖L4(Ω)

)
‖u‖

1
2
] ‖u‖

3
2

≤ 1

2
‖u‖2 + C

(
‖u1‖4

L4(Ω) + ‖u2‖4
L4(Ω)

)
‖u‖2

] ,

I4 ≤
(
‖∇ϕ1‖L∞(Ω) + ‖∇ϕ2‖L∞(Ω)

)
‖∇ϕ‖‖∇A−1u‖

≤ 1

4
‖ϕ‖2

V +
(
‖∇ϕ1‖2

L∞(Ω) + ‖∇ϕ2‖2
L∞(Ω)

)
‖u‖2

] .

51



Chapter 4. The Navier–Stokes–Cahn–Hilliard–Oono system

Collecting the above estimates, we find the differential inequality

d

dt
Φ ≤ CΥ1Φ + CΥ2|ϕ|,

where

Υ1(t) = 1 + ‖u1(t)‖2
L3(Ω) + ‖u1(t)‖4

L4(Ω) + ‖u2(t)‖4
L4(Ω)

+ ‖∇ϕ1(t)‖2
L∞(Ω) + ‖∇ϕ2(t)‖2

L∞(Ω),

and

Υ2(t) = 1 + ‖F ′(ϕ1(t))‖L1(Ω) + ‖F ′(ϕ2(t))‖L1(Ω).

Thanks to Theorem (4.1.7) and the Sobolev embedding W 2,3(Ω) ↪→ W 1,∞(Ω), we
deduce that Υ1 and Υ2 belong to L1(0, T ). Therefore, an application of the Gronwall
lemma together with (4.2.4) entails

‖u(t)‖2
] + ‖ϕ(t)‖2

∗ ≤ C‖u(0)‖2
] + C‖ϕ(0)‖2

∗ + C|ϕ(0)|, ∀ t ∈ [0, T ],

whereC depends on T . Due to the equivalence of norms, the above inequality concludes
the proof.

4.3 Regularity Properties and Separation Property

In this section we show that weak solutions regularize instantaneously by virtue of the
intrinsic parabolic nature of the system. Accordingly, any weak solution is indeed a
strong solution on Ω× (σ,∞), for any σ > 0, namely system (4.0.1) is satisfied almost
everywhere. To this aim, we provide higher order regularity estimates which are inde-
pendent of the specific choice of the initial datum, but only depend on its total mass and
the value of the energy. Hence, we fix R > 0 and m ∈ [0, 1) such that −m ≤ c ≤ m
and we consider bundles of trajectories (u, ϕ) departing from (u0, ϕ0) with

E(u0, ϕ0) ≤ R and −m ≤ ϕ0 ≤ m.

In particular, due to (4.1.5), we deduce that

|ϕ(t)| ≤ m, ∀ t ≥ 0.

In what follows, the generic constant C > 0 may depend on R andm.

Theorem 4.3.1. For any σ > 0, there exists a positive constant C = C(σ) such that

‖u‖L∞(σ,∞;Vσ) + ‖µ‖L∞(σ,∞;V ) ≤ C (4.3.1)

and ∫ t+1

t

‖u(τ)‖2
Wσ

+ ‖∂tu(τ)‖2 + ‖∂tϕ(τ)‖2
V dτ ≤ C, ∀ t ≥ σ. (4.3.2)

In addition, for any p ≥ 2, there exists a positive constant C = C(σ, p) such that

‖ϕ‖L∞(σ,∞;W 2,p(Ω)) + ‖Ψ′(ϕ)‖L∞(σ,∞;Lp(Ω)) ≤ C. (4.3.3)
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The estimates presented in the following proof are formal. However, they can be rigor-
ously justified by establishing them first for Galerkin approximating solutions (see for
instance [117]) and then passing to the limit in the usual way.

Proof of Theorem 4.3.1. We start by recalling that the dissipative inequalities in Theo-
rem 4.1.7 (cf. Remark 4.1.8) yield, for any t ≥ 0,

EGL(u(t), ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 + ‖ϕ(τ)‖4
H2(Ω) dτ ≤ C. (4.3.4)

In particular, we have for any t ≥ 0

‖u(t)‖+ ‖ϕ(t)‖V ≤ C, (4.3.5)

and
‖µ(t)‖V ≤ C(1 + ‖∇µ(t)‖). (4.3.6)

Taking v = µt in (4.1.3), we get

1

2

d

dt
‖∇µ‖2 + 〈∂tϕ, ∂tµ〉+ (u · ∇ϕ, ∂tµ) + β(ϕ− c, ∂tµ) = 0.

In light of

α‖∂tϕ‖2 ≤ 1

2
‖∇∂tϕ‖2 + C‖∂tϕ‖2

V ′ ,

we infer from the assumptions on F that

〈∂tϕ, ∂tµ〉 = (∂tϕ,−∆∂tϕ) + (∂tϕ, F
′′(ϕ)∂tϕ)

≥ ‖∇∂tϕ‖2 − α‖∂tϕ‖2

≥ 1

2
‖∇∂tϕ‖2 + C‖∂tϕ‖2

V ′ .

Besides, we observe that

(u · ∇ϕ, ∂tµ) + β(ϕ− c, ∂tµ)

=
d

dt

{
(u · ∇ϕ, µ) + β(ϕ− c, µ)

}
− (∂tu · ∇ϕ, µ)− (u · ∇∂tϕ, µ)− β(∂tϕ, µ)

=
d

dt

{
(u · ∇ϕ, µ) + β(ϕ− c, µ)− β

2
‖∇ϕ‖2 − β

∫
Ω

F (ϕ) dx
}

− (∂tu · ∇ϕ, µ)− (u · ∇∂tϕ, µ).

By (4.3.6), we estimate the last two terms as

(∂tu · ∇ϕ, µ) ≤ ‖∂tu‖‖∇ϕ‖L3(Ω)‖µ‖L6(Ω)

≤ 1

4
‖∂tu‖2 + C‖∇ϕ‖2

L3(Ω)‖µ‖2
V

≤ 1

4
‖∂tu‖2 + C‖∇ϕ‖2

L3(Ω)

(
1 + ‖∇µ‖2

)
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and

(u · ∇∂tϕ, µ) ≤ ‖u‖L3(Ω)‖∇∂tϕ‖‖µ‖L6(Ω)

≤ 1

4
‖∇∂tϕ‖2 + C‖u‖2

L3(Ω)‖µ‖V

≤ 1

4
‖∇∂tϕ‖2 + C‖u‖2

L3(Ω)

(
1 + ‖∇µ‖2

)
.

Accordingly, we arrive at
d

dt

{1

2
‖∇µ‖2 + (u · ∇ϕ, µ) + β(ϕ− c, µ)− β

2
‖∇ϕ‖2 − β

∫
Ω

F (ϕ) dx
}

+
1

4
‖∇∂tϕ‖2

≤ 1

4
‖∂tu‖2 + C‖∂tϕ‖2

V ′ + C
(
‖∇ϕ‖2

L3(Ω) + ‖u‖2
L3(Ω)

)
‖∇µ‖2

+ C‖∇ϕ‖2
L3(Ω) + C‖u‖2

L3(Ω). (4.3.7)

Taking v = Au and v = ∂tu in (4.1.2) and summing the resulting equations, we obtain
d

dt
‖∇u‖2 + ‖Au‖2 + ‖∂tu‖2

= −b(u,u,Au)− b(u,u, ∂tu) + (µ∇ϕ,Au) + (µ∇ϕ, ∂tu).

By (3.1.7) and using (4.3.4)-(4.3.6), we get

−b(u,u,Au)− b(u,u, ∂tu) ≤
(
‖Au‖+ ‖∂tu‖

)
‖u‖L4(Ω)‖∇u‖L4(Ω)

≤ C
(
‖Au‖+ ‖∂tu‖

)
‖∇u‖‖Au‖

1
2

≤ 1

4
‖Au‖2 +

1

8
‖∂tu‖2 + C‖∇u‖4

and

(µ∇ϕ,Au) + (µ∇ϕ, ∂tu) ≤ ‖µ‖V ‖∇ϕ‖L3(Ω)

(
‖Au‖+ +‖∂tu‖

)
≤ 1

4
‖Au‖2 +

1

8
‖∂tu‖2 + C‖∇ϕ‖2

L3(Ω)

(
1 + ‖∇µ‖2

)
.

Hence, we are led to
d

dt
‖∇u‖2 +

1

2
‖Au‖2 +

3

4
‖∂tu‖2 ≤ C‖∇u‖4 + C‖∇ϕ‖2

L3(Ω)

(
1 + ‖∇µ‖2

)
. (4.3.8)

Collecting (4.3.7) and (4.3.8), we find the differential inequality
d

dt
Λ +

1

2
‖Au‖2 +

1

2
‖∂tu‖2 +

1

4
‖∇∂tϕ‖2 (4.3.9)

≤ C‖∂tϕ‖2
V ′ + C‖∇u‖4 + C

(
‖∇ϕ‖2

L3(Ω) + ‖u‖2
L3(Ω)

)
‖∇µ‖2

+ C‖∇ϕ‖2
L3(Ω) + C‖u‖2

L3(Ω),

where

Λ(t) = ‖∇u(t)‖2 +
1

2
‖∇µ(t)‖2 + (u(t) · ∇ϕ(t), µ(t))

+ β(ϕ(t)− c, µ(t))− β

2
‖∇ϕ(t)‖2 − β

∫
Ω

F (ϕ(t)) dx.
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Next, we show that Λ ≥ −C, for some positive constant C. Arguing as in Theorem
4.1.7,

β(ϕ− c, µ) ≥ β‖∇ϕ‖2 + β

∫
Ω

F (ϕ) dx− βF (c)|Ω| − βΘ0‖ϕ− c‖2.

Furthermore, by (3.1.7) and exploiting (4.3.4)-(4.3.6), we have

(u · ∇ϕ, µ) ≤ ‖u‖L4(Ω)‖∇ϕ‖‖µ‖L4(Ω)

≤ C‖u‖
1
2‖∇u‖

1
2‖µ‖V

≤ C‖∇u‖
1
2 + C‖∇u‖

1
2‖∇µ‖

≤ 1

2
‖∇u‖2 +

1

4
‖∇µ‖2 + C.

In summary, we infer that

Λ ≥ 1

2
‖∇u‖2 +

1

4
‖∇µ‖2 − C.

Moreover, it is easily seen that

Λ ≤ C‖∇u‖2 + C‖∇µ‖2 + C,

which leads us to rewrite (4.3.9) as

d

dt
Λ +

1

2
‖Au‖2 +

1

2
‖∂tu‖2 +

1

4
‖∇∂tϕ‖2 (4.3.10)

≤ CΛ2 + C
(
‖∇ϕ‖2

L3(Ω) + ‖u‖2
L3(Ω)

)
Λ + C

+ C‖∂tϕ‖2
V ′ + C‖∇ϕ‖2

L3(Ω) + C‖u‖2
L3(Ω).

Owing to (4.3.4) and exploiting Sobolev embeddings, we infer that∫ t+1

t

Λ(τ) + ‖u(τ)‖2
L3(Ω) + ‖∇ϕ(τ)‖2

L3(Ω) dτ ≤ C.

Also, by comparison, ∫ t+1

t

‖∂tϕ(τ)‖2
V ′ dτ ≤ C.

Therefore, the uniform Gronwall lemma entails

‖∇u(t)‖+ ‖∇µ(t)‖ ≤ C, ∀ t ≥ σ,

whereC depends on σ. A further integration in time of (4.3.10) on any interval [t, t+1],
for t ≥ σ, gives ∫ t+1

t

‖Au(τ)‖2 + ‖∂tu(τ)‖2 + ‖∇∂tϕ(τ)‖2 dτ ≤ C.

In turn, together with (4.1.5) and (3.6.2), this implies (4.3.2). Finally, having in mind the
Neumann problem (3.4.1), we deduce the desired control (4.3.3) from Corollary 3.4.3
and µ ∈ L∞(σ,∞;V ).
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Remark 4.3.2. As a consequence of Theorem 4.3.1, we learn from the regularity theory
of the Neumann problem that µ ∈ L2(t, t+ 1;H3(Ω)) for every t ≥ σ and

∂µ

∂n
= 0, a.e. (x, t) ∈ ∂Ω× (σ,∞).

The regularity attained in Theorem 4.3.1 does not entail the separation property from
the pure phases. Indeed, a uniform-in-time control of Ψ′(ϕ) in L∞(Ω) is needed. To
this aim, we first learn from Lemma 3.4.6 that Ψ′′(ϕ) is bounded in Lp(Ω× (t, t+ 1)),
for any t ≥ σ. Then, the achieved regularity allows us to perform further higher order
estimates which will guarantee the validity of the instantaneous separation property.
More precisely, we have

Theorem 4.3.3. Assume that Ψ ∈ C3(−1, 1) and (H.2), (H.3) hold. Then, for any
σ > 0, there exists a positive constant C = C(σ) such that

‖∂tu‖L∞(2σ,∞;Hσ) + ‖∂tϕ‖L∞(2σ,∞;H) ≤ C (4.3.11)

and ∫ t+1

t

‖∂tu(τ)‖2
Vσ

+ ‖∂tϕ(τ)‖2
H2(Ω) dτ ≤ C, ∀ t ≥ 2σ. (4.3.12)

In addition, there exist δ = δ(σ,R,m) ∈ (0, 1) and C = C(σ) > 0 such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ,

and
sup
t≥2σ
‖u(t)‖Wσ + ‖ϕ(t)‖H4(Ω) ≤ C. (4.3.13)

Remark 4.3.4. Note that ϕ ∈ C(Ω × [σ,∞)), σ > 0, by Theorem 4.3.1 and the Aubin
embedding theorem. Hence, we have, in particular,

|ϕ(x, t)| ≤ 1− δ, ∀ (x, t) ∈ Ω× [2σ,∞).

Proof of Theorem 4.3.3. Let us define f = µ + Θ0ϕ. An application of Lemma 3.4.6
entails for any p ≥ 2 that

‖Ψ′′(ϕ)‖L∞(σ,∞;Lp(Ω)) ≤ C, (4.3.14)

where C depends on σ and p. We proceed by showing additional a priori estimates on
the solutions. To this end, given h > 0, we denote the difference quotient of a function
v by

∂ht v =
1

h

(
v(t+ h)− v(t)

)
.

On account of Definition 4.1.1, ∂ht ϕ solves

〈∂t∂ht ϕ, v〉+ (∂ht u · ∇ϕ(t+ h), v) + (u · ∇∂ht ϕ, v) + β(∂ht ϕ, v) + (∇∂ht µ,∇v) = 0,
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for all v ∈ V . Taking v = ∂ht ϕ in the above equation, we find
1

2

d

dt
‖∂ht ϕ‖2 + β‖∂ht ϕ‖2 + (∇∂ht µ,∇∂ht ϕ) = J1 + J2, (4.3.15)

having set

J1 = −(∂ht u · ∇ϕ(t+ h), ∂ht ϕ), J2 = −(u · ∇∂ht ϕ, ∂ht ϕ).

Integrating by parts, and using the boundary conditions (cf. Remark 4.3.2), we have

(∇∂ht µ,∇∂ht ϕ) = −(∂ht µ,∆∂
h
t ϕ)

= ‖∆∂ht ϕ‖2 −Θ0‖∇∂ht ϕ‖2 − (
1

h
[Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))],∆∂ht ϕ).

By the convexity of Ψ′′, we find the control

1

h

∣∣∣Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))
∣∣∣ ≤ ∫ 1

0

Ψ′′(τϕ(t+ h) + (1− τ)ϕ(t)) |∂ht ϕ| dτ

≤
∫ 1

0

(
τΨ′′(ϕ(t+ h)) + (1− τ)Ψ′′(ϕ(t))

)
|∂ht ϕ| dτ

≤
(

Ψ′′(ϕ(t+ h)) + Ψ′′(ϕ(t))
)
|∂ht ϕ|,

which, in turn, leads us to∣∣∣( 1

h
[Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))],∆∂ht ϕ)

∣∣∣
≤ 1

4
‖∆∂ht ϕ‖2 + C

(
‖Ψ′′(ϕ(t+ h))‖2

L3(Ω) + ‖Ψ′′(ϕ(t))‖2
L3(Ω)

)
‖∂ht ϕ‖2

L6(Ω).

We notice that

‖∂ht ϕ‖2
L6(Ω) ≤ C‖∇∂ht ϕ‖2 + C|∂ht ϕ|2

≤ C‖∂ht ϕ‖‖∆∂ht ϕ‖+ C|∂ht ϕ|2.

Then, we arrive at

(∇∂ht µ,∇∂ht ϕ) ≥ 1

2
‖∆∂ht ϕ‖2 − C

(
1 + ‖Ψ′′(ϕ(t+ h))‖4

L3(Ω) + ‖Ψ′′(ϕ(t))‖4
L3(Ω)

)
‖∂ht ϕ‖2

− C
(
‖Ψ′′(ϕ(t+ h))‖2

L3(Ω) + ‖Ψ′′(ϕ(t))‖2
L3(Ω)

)
|∂ht ϕ|2.

Moreover, by (4.3.1) and (4.3.3), we have

J1 ≤ ‖∂ht u‖‖∇ϕ(t+ h)‖L∞(Ω)‖∂ht ϕ‖
≤ C‖∂ht u‖2 + C‖∂ht ϕ‖2

and

J2 ≤ ‖u(t)‖L3(Ω)‖∇∂ht ϕ‖‖∂ht ϕ‖L6(Ω)

≤ C‖∇∂ht ϕ‖2 + |∂ht ϕ|‖∇∂ht ϕ‖

≤ 1

4
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2 + C|∂ht ϕ|2.
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Collecting the above estimates, we end up with the differential inequality

1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2 +β‖∂ht ϕ‖2 ≤ Υ‖∂ht ϕ‖2 + Υ

1
2 |∂ht ϕ|2 +C‖∂ht u‖2, (4.3.16)

where
Υ(t) = C(1 + ‖Ψ′′(ϕ(t+ h))‖4

L3(Ω) + ‖Ψ′′(ϕ(t))‖4
L3(Ω)).

We observe that Υ is summable in light of (4.3.14). Now, we rewrite (4.1.2) for ∂ht u
getting

〈∂t∂ht u, v〉 − (u(t+ h)⊗ ∂ht u,∇v)− (∂ht u⊗ u,∇v) + (∇∂ht u,∇v)

= (∇ϕ(t+ h)⊗∇∂ht ϕ,∇v) + (∇∂ht ϕ⊗∇ϕ,∇v),

for all v ∈ Vσ. Taking v = ∂ht u, we obtain

1

2

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 = J3 + J4,

having set

J3 = (u(t+ h)⊗ ∂ht u,∇∂ht u) + (∂ht u⊗ u,∇∂ht u),

J4 = (∇ϕ(t+ h)⊗∇∂ht ϕ,∇∂ht u) + (∇∂ht ϕ⊗∇ϕ,∇∂ht u).

Exploiting the estimates (4.3.1) and (4.3.3), and using (3.1.7), we control Ji, i = 3, 4,
as follows

J3 ≤
(
‖u(t+ h)‖L4(Ω) + ‖u(t)‖L4(Ω)

)
‖∂ht u‖L4(Ω)‖∇∂ht u‖

≤ 1

4
‖∇∂ht u‖2 + C‖∂ht u‖2

and

J4 =
(
‖∇ϕ(t+ h)‖L∞(Ω) + ‖∇ϕ(t)‖L∞(Ω)

)
‖∇∂ht ϕ‖‖∇∂ht u‖

≤ C‖∂ht ϕ‖
1
2‖∆∂ht ϕ‖

1
2‖∇∂ht u‖

≤ 1

4
‖∇∂ht u‖2 +

1

8
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

In summary, setting
Φ(t) =

1

2
‖∂ht ϕ(t)‖2 +

1

2
‖∂ht u(t)‖2,

we find the differential inequality

d

dt
Φ +

1

8
‖∆∂ht ϕ‖2 + β‖∂ht ϕ‖2 +

1

2
‖∇∂ht u‖2 ≤ C(1 + Υ)Φ + Υ

1
2 |∂ht ϕ|2.

Observing that
‖∂ht v‖L2(t,t+1;H) ≤ ‖∂tv‖L2(t,t+1+h;H),

we easily deduce from (4.3.2) and (4.3.14) that∫ t+1

t

Φ(τ) + Υ(τ) dτ ≤ C,
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where C is independent of h. Hence, the uniform Gronwall lemma yields

‖∂ht u‖L∞(2σ,∞;Hσ) + ‖∂ht ϕ‖L∞(2σ,∞;H) ≤ C

and ∫ t+1

t

‖∇∂ht u(τ)‖2 + ‖∆∂ht ϕ(τ)‖2 dτ ≤ C, ∀ t ≥ 2σ.

A final passage to the limit as h → 0 entails (4.3.11) and (4.3.12). We are now in a
position to prove the separation property. By the elliptic regularity of the Neumann
problem, we obtain

‖µ‖L∞(2σ,∞;H2(Ω)) ≤ C. (4.3.17)
Accordingly, using the Sobolev embedding H2(Ω) ↪→ L∞(Ω), we infer from Lemma
3.4.2 with p =∞ that

‖Ψ′(ϕ)‖L∞(Ω×(t,t+1)) ≤ C, ∀ t ≥ 2σ.

Hence, there exists δ > 0 such that

‖ϕ‖L∞(Ω×(t,t+1)) ≤ 1− δ, ∀ t ≥ 2σ.

Besides, due to (4.3.2) and (4.3.12), an application of [9, Theorem 1.1] gives us

‖u‖L∞(2σ,∞;W1,4(Ω)) ≤ C.

Therefore, u · ∇u is bounded in L∞(2σ,∞;H). In turn, we infer from the regularity
theory of the Stokes problem together with (4.3.11) that

‖u‖L∞(2σ,∞;Wσ) ≤ C.

Next, in light of (4.3.3) and (4.3.17), we derive that

‖ϕ(t)‖L∞(2σ,∞;H4(Ω)) ≤ C.

Finally, due to the continuity in time of the solution, the above inequalities hold for any
t ≥ 2σ, this is

sup
t≥2σ
‖u(t)‖Wσ + ‖ϕ(t)‖H4(Ω) ≤ C.

Remark 4.3.5. It is worth mentioning that the regularity results stated in Section 4.3
are also valid if ε = 0. In that case, the novelty compared to [1] is the validity of the
separation property in dimension two on the interval (σ,∞), for any σ > 0.

4.4 Longtime Behavior

In this section we discuss the longtime behavior of the NSCH system (ε = 0) and the
NSCHO system (ε > 0) within the theory of infinite-dimensional dynamical systems.
Given m ∈ [0, 1) such that −m ≤ c ≤ m, we introduce the complete metric space (cf.
Remark 4.1.2)

Vm =
{
ϕ ∈ V ∩ L∞(Ω) : ‖ϕ‖L∞(Ω) ≤ 1 and −m ≤ ϕ ≤ m

}
,
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endowed with the metric
d(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖V .

We also define the phase space

Hm = Hσ × Vm

equipped with the corresponding graph metric. For any β ≥ 0, on account of Theorems
4.1.6 and 4.2.1, problem (4.0.1)-(4.0.2) generates a strongly continuous semigroup (dy-
namical system)

Sβ(t) : Hm → Hm,

via the rule
Sβ(t)(u0, ϕ0) = (u(t), ϕ(t)), ∀ t ≥ 0,

(u, ϕ) being the unique weak solution to the NSCHO system with initial condition
(u0, ϕ0). This is a one-parameter family of maps Sβ(t) on Hm satisfying the proper-
ties:

• Sβ(0) = Id;

• Sβ(t+ τ) = Sβ(t)Sβ(τ), for every t, τ ≥ 0;

• t 7→ Sβ(t)(u0, ϕ0) ∈ C([0,∞),Hm), for every (u0, ϕ0) ∈ Hm.

Moreover, thanks to Theorem 4.3.1 and arguing by interpolation, we have the following
further property.

Proposition 4.4.1. For every t ≥ 0, Sβ(t) ∈ C(Hm,Hm).

Proof. The case t = 0 is trivial. Let us fix t > 0. We consider a sequence {(u0n, ϕ0n)} ⊂
Hm and (u0, ϕ0) ∈ Hm such that ‖u0n − u0‖ → 0, d(ϕ0n, ϕ0) → 0 as n → ∞. By
(4.3.1) and (4.3.3), there exists a constant C > 0, independent of n, such that

‖un(t)‖Vσ + ‖ϕn(t)‖H2(Ω) + ‖u(t)‖Vσ + ‖ϕ(t)‖H2(Ω) ≤ C, (4.4.1)

where (un(t), ϕn(t)) = Sβ(t)(u0n, ϕ0n). Then, by virtue of Theorem 4.2.1, by standard
interpolation we find

‖u(t)− un(t)‖+ ‖ϕ(t)− ϕn(t)‖V

≤ ‖u(t)− un(t)‖
1
2

V′σ
‖u(t)− un(t)‖

1
2
Vσ

+ ‖ϕ(t)− ϕn(t)‖
1
3

V ′‖ϕ(t)− ϕn(t)‖
2
3

H2(Ω)

≤ C‖u(t)− un(t)‖
1
3

V′σ
+ C‖ϕ(t)− ϕn(t)‖

1
3

V ′

≤ C
(
‖u0 − u0n‖V′σ + ‖ϕ0 − ϕ0n‖V ′ + |ϕ0 − ϕ0n|

1
2

) 1
3
,

which, in turn, gives the desired conclusion.

On account of Theorem 4.1.7, the semigroup Sβ(t) is dissipative. Namely, there
exists R > 0 such that the ball B0 of radius R centered at 0 in Hm is an absorbing set,
i.e. for every bounded set B ⊂ Hm, there exists tB such that

Sβ(t)B ⊂ B0, ∀ t ≥ tB.
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Hence, the trajectories originating from any given bounded set eventually fall into a
bounded set of the phase space. Actually, the trajectories are in fact attracted by thinner
invariant subsets of the phase space Hm. For a complete dissertation of the theory, we
refer the reader to [120] and [149]. In order to show this, in addition to the general re-
quirements, we assume in what follows thatΨ complies with the hypotheses of Theorem
4.3.3.

Theorem 4.4.2. For any β ≥ 0, the dynamical system Sβ(t) on Hm has the global
attractor Aβ ⊂Wσ ×H4(Ω), that is

• Aβ is compact inHm;

• Aβ is invariant, i.e. Sβ(t)Aβ = Aβ , for all t ≥ 0;

• Aβ is an attracting set, i.e. for every bounded set B ⊂ Hm

lim
t→∞

dist(S(t)B,Aβ) = 0,

where dist(A,B) is the Hausdorff semidistance between A and B.

The proof of Theorem 4.4.2 immediately follows from an application of the general
result [149, Theorem 1.1]. Indeed, the uniform a priori estimate (4.3.13) entails the
existence of a compact absorbing set in the phase spaceHm.

Theorem 4.4.3. For any β ≥ 0, the dynamical system Sβ(t) onHm possesses an expo-
nential attractorMβ ⊂Wσ ×H4(Ω), that is

• Mβ is compact inHm;

• Mβ is semi-invariant, i.e. Sβ(t)Mβ ⊂Mβ , for all t ≥ 0;

• Mβ has finite fractal dimension inHm;

• Mβ is an exponentially attracting set, i.e. there exists ω > 0 such that, for every
bounded set B ⊂ Hm, there exists a constant C such that

dist(Sβ(t)B,Mβ) ≤ Ce−ωt, ∀ t ≥ 0.

By virtue of the strict separation property, the proof of Theorem 4.4.3 can be done
arguing as in [71, Section 3.3] if β = 0 and [21] if β > 0. In particular, the construction
of a family of exponential attractors, which is robust (i.e. continuous) with respect to β,
showed in [21] can be easily generalized to system (4.0.1)-(4.0.2).

We conclude by noticing that the convergence to an equilibrium for the NSCHO
system is an interesting open issue. In the two-dimensional case, one would argue as
in Section 7 of [W.2], taking advantage of the strict separation property. However, in
three dimensions, the problem is connected with the lack of a Lyapunov function (cf. [1,
Lemma 11] for ε = 0).
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CHAPTER5
The Hele-Shaw-Cahn-Hilliard system

In this chapter we study the Hele–Shaw–Cahn–Hilliard (HSCH) systemwith matched
viscosities in two and three space dimensions. First, the existence of a global weak
solution that satisfies a dissipative property is proven. Then, in dimension two, we

obtain the uniqueness and regularity of global weak solutions. In particular, we show
that any two-dimensional weak solution satisfies the instantaneous separation property.
When the spatial dimension is three, we prove the existence of a unique global strong
solution, provided that the initial datum is regular enough and sufficiently close to any
local minimizer of the free energy. This also yields the local Lyapunov stability of the
local minimizer itself. Finally, we discuss the convergence of any global solution to a
single stationary state as time goes to infinity.

In a bounded domain Ω ⊂ Rd, d = 2, 3, the Hele–Shaw–Cahn–Hilliard system with
matched viscosities (ν = 1) reads as follows

u = −∇π + µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (5.0.1)

subject to the boundary and initial conditions{
u · n = ∂nµ = ∂nϕ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(5.0.2)

General agreement. Throughout this chapter, if it is not otherwise stated, we indicate
by C a generic positive constant depending only on the domain and on structural quan-
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tities. The constant C may vary from line to line and even within the same line. Any
further dependence will be explicitly pointed out if necessary.

5.1 Existence of Weak Solutions and Dissipativity

We assume throughout this chapter that the singular potentialF satisfies the assumptions
(H) and (H.1).

We introduce the notion of weak solution to the initial boundary value problem
(5.0.1)-(5.0.2).

Definition 5.1.1. Let ϕ0 ∈ V be such that Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. A triple
(u, π, ϕ) is a weak solution to problem (5.0.1)-(5.0.2) on [0, T ] if

u ∈ L2(0, T ; Hσ), π ∈ L
8
5 (0, T ;V0),

ϕ ∈ L∞(0, T ;V ) ∩ L4(0, T ;H2(Ω)) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

Ψ(ϕ) ∈ L∞(0, T ;L1(Ω)), Ψ′(ϕ) ∈ L2(0, T ;H),

µ ∈ L2(0, T ;V ),

and
〈∂tϕ, v〉+ (u · ∇ϕ, v) + (∇µ,∇v) = 0, ∀ v ∈ V, (5.1.1)

for almost every t ∈ (0, T ), where

µ = −∆ϕ+ F ′(ϕ), u = −∇π + µ∇ϕ, (5.1.2)

for almost every (x, t) ∈ Ω× (0, T ). Moreover, ∂nϕ = 0 a.e. on ∂Ω× (0, T ), ϕ(·, 0) =
ϕ0 a.e. in Ω.

Remark 5.1.2. According to the Darcy’s equation, the above Definition 5.1.1 is equiva-
lent to the following weak formulation∫

Ω

u · v dx =

∫
Ω

µ∇ϕ · v dx,∫
Ω

∇π · ∇ψ dx =

∫
Ω

µ∇ϕ · ∇ψ dx,

for almost every t ∈ (0, T ) and for any v ∈ Hσ, ψ ∈ V . Thus, the pressure π is
recovered by the second equation. In addition, in light of the boundary conditions and
the identity

µ∇ϕ = ∇
(1

2
|∇ϕ|2 + Ψ(ϕ)

)
− div(∇ϕ⊗∇ϕ),

we can rewrite the weak formulation of Darcy’s equation as∫
Ω

u · v dx =

∫
Ω

ϕ∇µ · v dx = −
∫

Ω

div(∇ϕ⊗∇ϕ) · v dx. (5.1.3)

The first result concerns the existence of global weak solutions, in both two and three
dimensions.
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5.1. Existence of Weak Solutions and Dissipativity

Theorem 5.1.3. Let d = 2, 3. Assume that ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1.
Then, for any T > 0, there exists at least one weak solution (u, π, ϕ) to problem (5.0.1)-
(5.0.2) on [0, T ] such that

u ∈ Ls(0, T ; V), π ∈ Lq(0, T ;H2(Ω)),

ϕ ∈ C([0, T ], V ) ∩ L2(0, T ;W 2,p(Ω)),

Ψ′(ϕ) ∈ L2(0, T ;Lp(Ω)),

where s = 6
5
if d = 3 or s ∈ [1, 4

3
) if d = 2; q = 8

7
is d = 3 or 1 ≤ q < 6

5
if d = 2;

p = 6 if d = 3 or 2 ≤ p < ∞ if d = 2. Moreover, every weak solution satisfies the
energy identity

d

dt
EGL(ϕ(t)) + ‖u(t)‖2 + ‖∇µ(t)‖2 = 0, for a.e. t ∈ (0, T ), (5.1.4)

as well as the mass conservation∫
Ω

ϕ(t) dx =

∫
Ω

ϕ0 dx, ∀ t ∈ [0, T ]. (5.1.5)

Remark 5.1.4. The assumption |ϕ0| < 1 indicates that the initial datum is not allowed
to be a pure state (i.e. ±1). On the other hand, we observe that if the initial datum is a
pure state then no separation process will take place because we now have a single fluid.

The strategy to prove Theorem 5.1.3 is based on a standard approximation proce-
dure. First, we introduce a family of regular potentials {Fε} that suitably approximates
the singular potential F . Then we establish an existence result to the approximating
problem with the regular potential Fε, by means of the Galerkin method. Finally, for
the approximate solutions (uε, πε, ϕε) related to the family of regular potentials {Fε},
we recover compactness by means of uniform energy estimates with respect to the ap-
proximation parameter ε and we show that as ε→ 0 the limit triple (u, p, ϕ) is indeed a
global weak solution with weak to problem (5.0.1)-(5.0.2).

The approximating problem
For any ε ∈ (0, κ) with κ being the constant given in (H.1), we introduce a family of
regular potentials {Fε} that approximates the original singular potential F by setting

Fε(s) = Ψε(s)−
Θ0

2
s2, ∀ s ∈ R, (5.1.6)

where

Ψε(s) =



2∑
j=0

1

j!
Ψ(j)(1− ε) [s− (1− ε)]j , ∀ s ≥ 1− ε,

Ψ(s), ∀ s ∈ [−1 + ε, 1− ε],
2∑
j=0

1

j!
Ψ(j)(−1 + ε) [s− (−1 + ε)]j , ∀ s ≤ −1 + ε.

(5.1.7)

By the above construction of Fε, we obtain the following properties that will be useful
in the proof of Theorem 5.1.3.
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Lemma 5.1.5. Assume that (H.1) is satisfied. Then, there exists κ ∈ (0, κ] such that for
any ε ∈ (0, κ), the approximating function Fε given by (5.1.6) satisfies

(AH) Fε ∈ C2(R) and

−α̃ ≤ Fε(s), −α ≤ F ′′ε (s) ≤ L, ∀ s ∈ R,

where α̃ is a positive constant independent of ε, the constant α is given in (H)while
L is a positive constant that may depend on ε.

For every ε ∈ (0, κ) and Fε being the regular potential constructed in (5.1.6), we
consider the approximating problem (AP1):

uε = −∇πε + µε∇ϕε,
div uε = 0,

∂tϕε + uε · ∇ϕε = ∆µε,

µε = −∆ϕε + Ψ′ε(ϕε),

in Ω× (0, T ), (5.1.8)

subject to the boundary and initial conditions{
uε · n = ∂nµε = ∂nϕε = 0, on ∂Ω× (0, T ),

ϕε(·, 0) = ϕ0(·), in Ω.
(5.1.9)

We state the global existence of weak solutions to the approximating problem.

Proposition 5.1.6. Let d = 2, 3 and ε ∈ (0, κ). Suppose that ϕ0 ∈ V with Ψ(ϕ0) ∈
L1(Ω) and |ϕ0| < 1. Then, we have:

(1) For every T > 0, there exists at least one weak solution (uε, pε, ϕε) to the approx-
imating problem (AP1) on [0, T ] such that

uε ∈ L2(0, T ; Hσ), πε ∈ L
8
5 (0, T ;V0),

ϕε ∈ L∞(0, T ;V ) ∩ L2(0, T ;H3(Ω)) ∩W 1, 8
5 (0, T ;V ′),

µε ∈ L2(0, T ;V ).

Such a solution satisfies the weak formulation

〈∂tϕε, v〉+ (uε · ∇ϕε, v) + (∇µε,∇v) = 0, ∀ v ∈ V, (5.1.10)

for almost every t ∈ (0, T ), where

µε = −∆ϕε + Ψ′ε(ϕε), uε = −∇πε + µε∇ϕε, (5.1.11)

for almost every (x, t) ∈ Ω× (0, T ).

(2) The total mass is conserved∫
Ω

ϕε(t) dx =

∫
Ω

ϕ0 dx, ∀ t ∈ [0, T ].
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(3) The pair (uε, ϕε) satisfies the energy inequality

1

2
‖∇ϕε(t)‖2 +

∫
Ω

Fε(ϕε(t)) dx ≤ 1

2
‖∇ϕ0‖2 +

∫
Ω

Fε(ϕ0) dx, (5.1.12)

for almost every t ∈ (0, T ), and∫ T

0

‖uε(τ)‖2 + ‖∇µε(τ)‖2 dτ ≤ 1

2
‖∇ϕ0‖2 +

∫
Ω

Fε(ϕ0) dx+ C, (5.1.13)

where C is a constant depending on α̃ (cf. Lemma 5.1.5), but is independent of the
parameter ε.

The existence of a weak solution to the approximating problem (AP1) on [0, T ] can be
easily proven by employing a Galerkin approximation scheme (see, e.g., [99, Section 3]
and [113]). Indeed, according to the property (AH) in Lemma 5.1.5, for any ε ∈ (0, κ],
the approximating potential Fε has a quadratic growth as |s| → +∞ and F ′ε is globally
Lipschitz on R.
Remark 5.1.7. We note that it is sufficient to assume ϕ0 ∈ V to reach the conclusions
of Proposition 5.1.6. Indeed, the additional assumptions such that Ψ(ϕ0) ∈ L1(Ω) and
|ϕ0| < 1will be necessary to derive uniform estimates with respect to ε in the subsequent
section. Moreover, the estimates for pε and ∂tϕε when d = 2 can be improved by arguing
as in [90, Section 3.4]. Nonetheless, the regularity properties stated above are enough
to pass to the limit as ε→ 0+.

ε-independent a priori estimates
In order to pass to the limit as ε → 0+, it is necessary to obtain suitable uniform esti-
mates for the approximating solutions (uε, πε, ϕε) that are independent of ε ∈ (0, κ].

First, we report the following lemma which turns out to be useful in the sequel (see,
e.g., [63] for a proof).

Lemma 5.1.8. Suppose that (H.1) is satisfied. For ε ∈ (0, κ], the approximating func-
tion Fε given by (5.1.6) satisfies the following properties:

|F ′ε(s)| ≤ |F ′(s)|, ∀ s ∈ (−1, 1),

Fε(s) ≤ F (s), ∀ s ∈ [−1, 1].

Now, we are in a position to derive uniform estimates with respect to the approximate
parameter ε.

First estimate. Since Ψ(ϕ0) ∈ L1(Ω), it holds ‖ϕ0‖L∞(Ω) ≤ 1. Then it follows
from Lemma 5.1.8 and the energy inequality (5.1.12) that, for almost every t ∈ (0, T ),

1

2
‖∇ϕε(t)‖2 +

∫
Ω

Ψε(ϕε(t)) dx ≤ 1

2
‖∇ϕ0‖2 +

∫
Ω

Ψ(ϕ0) dx = EGL(ϕ0). (5.1.14)

Similarly, we infer from (5.1.13) that∫ T

0

‖uε(τ)‖2 + ‖∇µε(τ)‖2 dτ ≤ EGL(ϕ0) + C. (5.1.15)
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Second estimate. Testing the fourth equation in (5.1.8) by −∆ϕε, we obtain

‖∆ϕε‖2 − (Ψ′ε(ϕε),∆ϕε) = −(µε,∆ϕε).

Exploiting the integration by parts and the homogeneous Neumann boundary condition
for ϕε, we get

‖∆ϕε‖2 + (Ψ′′ε(ϕε)∇ϕε,∇ϕε) = (∇µε,∇ϕε).
Hence, we deduce from (AH) that

‖∆ϕε‖2 ≤ α‖∇ϕε‖2 + ‖∇µε‖‖∇ϕε‖.

Taking the square of both sides and integrating in time, we have∫ T

0

‖∆ϕε(τ)‖4 dτ ≤ C(1 + T )
(
1 + EGL(ϕ0)

)2
. (5.1.16)

Third estimate. We provide a uniform estimate for ∂tϕε. By comparison, we easily
obtain

‖∂tϕε‖V ′ ≤ ‖∇µε‖+ ‖uε‖‖ϕε‖L∞(Ω).

Applying the Hölder and Agmon inequalities (3.1.9), we infer from (5.1.14)–(5.1.16)
that ∫ T

0

‖∂tϕε(τ)‖
8
5

V ′ dτ

≤ C

∫ T

0

‖∇µε(τ)‖
8
5 dτ + C

∫ T

0

‖uε(τ)‖
8
5‖ϕε(τ)‖

8
5

L∞(Ω) dτ

≤ C

∫ T

0

‖∇µε(τ)‖
8
5 dτ + C

∫ T

0

‖uε(τ)‖
8
5‖ϕε(τ)‖

4
5
V ‖ϕε(τ)‖

4
5

H2(Ω) dτ

≤ C

∫ T

0

(1 + ‖∇µε(τ)‖2) dτ

+ C‖ϕε‖
4
5

L∞(0,T ;V )

(∫ T

0

‖uε(τ)‖2 dτ

) 4
5
(∫ T

0

‖ϕε(τ)‖4
H2(Ω) dτ

) 1
5

≤ C(1 + T )
(
1 + EGL(ϕ0)

) 8
5 . (5.1.17)

Fourth estimate. We derive a uniform estimate for ‖µε‖V . On account of the
Poincaré–Wirtinger inequality

‖µε‖ ≤ C(‖∇µε‖+ |µε|) (5.1.18)

and in light of (5.1.15), it is sufficient to estimate the mean value µε. On the other hand,
since ∫

Ω

µε dx =

∫
Ω

F ′ε(ϕε) dx,

it remains to find a uniform control of F ′ε(ϕε) in L1(Ω). To this aim, we recall the
well-known inequality for approximating functions of singular potentials satisfying the
assumption (H) (see, e.g., [63], [118] and Chapter 7 for the proof)

‖Ψ′ε(ϕε)‖L1(Ω) ≤ C

∫
Ω

(ϕε − ϕ0)
(
Ψ′ε(ϕε)−Ψ′ε(ϕε)

)
dx+ C, (5.1.19)
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where C may depend on ϕ0 and Ψ but is independent of ε. Then, testing the fourth
equation in (5.1.8) by ϕε − ϕ0, and using the integration by parts together with the
boundary condition on ϕε and Poincaré’s inequality (3.1.5), we find

‖∇ϕε‖2 +

∫
Ω

(ϕε − ϕ0)Ψ′ε(ϕε) dx

=

∫
Ω

µε(ϕε − ϕ0) dx+ Θ0

∫
Ω

ϕε(ϕε − ϕ0) dx

=

∫
Ω

(µε − µε)(ϕε − ϕ0) dx+ C‖∇ϕε‖2

≤ C
(
‖∇µε‖‖∇ϕε‖+ ‖∇ϕε‖2

)
. (5.1.20)

Hence, collecting (5.1.19) and (5.1.20), and using (5.1.14) and (5.1.15), after an inte-
gration in time we get∫ T

0

‖Ψ′ε(ϕε(τ))‖2
L1(Ω) dτ ≤ C

∫ T

0

(‖∇µε(τ)‖2‖∇ϕε(τ)‖2 + ‖∇ϕε(τ)‖4) dτ

≤ C(1 + T )
(
1 + EGL(ϕ0)

)2
, (5.1.21)

which together with (5.1.14) yields∫ T

0

|µε(τ)|2 dτ ≤ C

∫ T

0

(
‖Ψ′ε(ϕε(τ))‖2

L1(Ω) + Θ2
0‖ϕε(τ)‖2

L1(Ω)

)
dτ

≤ C(1 + T )
(
1 + EGL(ϕ0)

)2
.

The above estimate together with (5.1.15) and (5.1.18) implies∫ T

0

‖µε(τ)‖2
V dτ ≤ C(1 + T )

(
1 + EGL(ϕ0)

)2
. (5.1.22)

Fifth estimate. We aim to derive a uniform estimate for the pressure πε. It follows
from the Darcy’s equation for uε, the Gagliardo–Nirenberg inequality (d = 3) and the
estimates (5.1.14), (5.1.15), (5.1.16) and (5.1.22) that∫ T

0

‖∇πε(τ)‖
8
5 dτ

≤ C

∫ T

0

‖uε(τ)‖
8
5 + ‖∇ϕε(τ)‖

8
5

L3(Ω)‖µε(τ)‖
8
5

L6(Ω) dτ

≤ C

∫ T

0

(1 + ‖uε(τ)‖2) dτ + C‖ϕε(t)‖
4
5

L∞(0,T ;V )

∫ T

0

‖ϕε(τ)‖
4
5

H2(Ω)‖µε‖
8
5
V dτ

≤ C

∫ T

0

(1 + ‖uε(τ)‖2) dτ

+ C‖ϕε‖
4
5

L∞(0,T ;V )

(∫ T

0

‖ϕε(τ)‖4
H2(Ω) dτ

) 1
5
(∫ T

0

‖µε(τ)‖2
V dτ

) 4
5

≤ C(1 + T )
(
1 + EGL(ϕ0)

) 12
5 . (5.1.23)
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Collecting all the above estimates, we conclude that

‖uε‖L2(0,T ;Hσ) ≤ C, (5.1.24)
‖πε‖L 8

5 (0,T ;V0)
≤ C, (5.1.25)

‖ϕε‖L∞(0,T ;V ) ≤ C, (5.1.26)
‖ϕε‖L4(0,T ;H2(Ω)) ≤ C, (5.1.27)
‖∂tϕε‖L 8

5 (0,T ;V ′)
≤ C, (5.1.28)

‖µε‖L2(0,T ;V ) ≤ C, (5.1.29)

where the constant C > 0 depends on the initial energy EGL(ϕ0), the form of Ψ, Ω and
coefficients of the system, but is independent of ε.

Proof of Theorem 5.1.3

We are now in a position to prove Theorem 5.1.3. The proof consists of several steps.

Step 1. Preliminary convergence results. Thanks to the uniform estimates (5.1.24)–
(5.1.29), letting ε → 0+, the following weak convergence results hold (up to a subse-
quence):

uε ⇀ u, weakly in L2(0, T ; Hσ), (5.1.30)

πε ⇀ π, weakly in L
8
5 (0, T ;V0), (5.1.31)

ϕε ⇀ ϕ, weakly star in L∞(0, T ;V ), (5.1.32)
ϕε ⇀ ϕ, weakly in L4(0, T ;H2(Ω)), (5.1.33)

∂tϕε ⇀ ∂tϕ, weakly in L
8
5 (0, T ;V ′), (5.1.34)

µε ⇀ µ, weakly in L2(0, T ;V ), (5.1.35)

Besides, on account of the Aubin–Lions compactness lemma, we have

ϕε → ϕ, strongly in C([0, T ], H) ∩ L4(0, T ;W 1,r(Ω)), (5.1.36)

for r ∈ [1, 6) when d = 3 and r ∈ [1,+∞) when d = 2, which also implies the
pointwise convergence

ϕε → ϕ, a.e. in Ω× (0, T ). (5.1.37)

Step 2. L∞-estimate for ϕ. On account of the singular potential Ψ, we shall prove
that the limit function ϕ fulfills

ϕ ∈ L∞(Ω× (0, T )) and |ϕ(x, t)| < 1 a.e. in Ω× (0, T ). (5.1.38)

It follows from (5.1.21) that

‖Ψ′ε(ϕε)‖L1(Ω×(0,T )) ≤ C, (5.1.39)

withC independent of ε. By the definition of Ψε and the assumptions (H)−(H.1), there
exists a constant % ∈ (0, κ) such that for all ε ∈ (0, %], Ψ′ε(s) ≥ 1 for s ∈ [1− %,+∞)
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and Ψ′ε(s) ≤ −1 for s ∈ (−∞,−1 + %] and Ψ′ε(s) is monotone increasing for s ∈ R.
Then we introduce the sets

Eε
% = {(x, t) ∈ Ω× (0, T ) : |ϕε(x, t)| > 1− %} , ε ∈ (0, %],

E% = {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| > 1− %} .

From the pointwise convergence of ϕε and Fatou’s Lemma, we have for any fixed %

meas(E%) ≤ lim inf
ε→0+

meas(Eε
%).

At the same time, when ε ∈ (0, %], we infer from (5.1.39) that

min{Ψ′(1− %),−Ψ′(−1 + %)}meas(Eε
%) ≤ ‖Ψ′ε(ϕε)‖L1(Ω×(0,T )) ≤ C,

where the constant C does not depend on % and ε. Therefore, we have

meas(E%) ≤
C

min{Ψ′(1− %),−Ψ′(−1 + %)}
.

Passing to the limit as %→ 0+, we deduce that

meas({(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1}) = 0,

which yields the conclusion (5.1.38).

Step 3. Passage to the limit as ε→ 0+. The L∞-estimate (5.1.38) together with the
pointwise convergence of ϕε and the uniform convergence of Ψ′ε to Ψ′ on every compact
set in (−1, 1) entails that

Ψ′ε(ϕε)→ Ψ′(ϕ) a.e. (x, t) ∈ Ω× (0, T ),

as ε → 0+. Besides, by comparison in the equation for µε (see (5.1.11)) and owing to
the estimates (5.1.27) and (5.1.29), we have

‖Ψ′ε(ϕε)‖L2(0,T ;H) ≤ C,

uniformly in ε. Hence, up to a subsequence, it holds

Ψ′ε(ϕε)→ Ψ′(ϕ), weakly in L2(0, T ;H). (5.1.40)

On the other hand, it follows from (5.1.30), (5.1.35), and (5.1.36) with r = 4 that

µε∇ϕε ⇀ µ∇ϕ, weakly in L
4
3 (Ω× (0, T )). (5.1.41)

In a similar manner, we have

uε · ∇ϕε ⇀ u · ∇ϕ, weakly in L
4
3 (Ω× (0, T )). (5.1.42)

On account of (5.1.30)-(5.1.35) and (5.1.40)-(5.1.42), we are able to pass to the limit as
ε→ 0+ (up to a subsequence) in the weak formulation (5.1.10)-(5.1.11) for (uε, πε, ϕε)
and conclude that the limit triple (u, π, ϕ) fulfills (5.1.1)-(5.1.2).
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Step 4. Further regularity properties. We establish some further regularity re-
sults for the global weak solution (u, π, ϕ) by making use of the estimates (5.1.27) and
(5.1.38). First, it follows from (5.1.30) and (5.1.38) that

u · ∇ϕ ∈ L2(0, T ;V ′). (5.1.43)

Then by comparison in (5.1.1) we immediately see that

ϕt ∈ L2(0, T ;V ′). (5.1.44)

Next, an application of Corollary 3.4.3 with f = µ+ Θ0ϕ gives∫ T

0

‖ϕ(τ)‖2
W 2,p(Ω) dτ +

∫ T

0

‖Ψ′(ϕ(τ))‖2
Lp(Ω) dτ

≤ C

∫ T

0

1 + ‖µ(τ)‖2
V + ‖ϕ(τ)‖2

V dτ, (5.1.45)

where p = 6 if d = 3 and 2 ≤ p < ∞ if d = 2. We recall that by the Gagliardo–
Nirenberg inequality

‖∇ϕ‖L∞(Ω) ≤

C‖ϕ‖
r−2

2(r−1)

L∞(Ω)‖ϕ‖
r

2(r−1)

W 2,r(Ω), for d = 2, r > 2,

C‖ϕ‖
1
3

L∞(Ω)‖ϕ‖
2
3

W 2,6(Ω), for d = 3,
(5.1.46)

and by interpolation between Lp-spaces

‖∆ϕ‖L3(Ω) ≤ C‖ϕ‖
2(r−3)
3(r−2)

H2(Ω)‖ϕ‖
r

3(r−2)

W 2,r(Ω), for r ≥ 3. (5.1.47)

Applying the curl operator to the Darcy’s equation for u and exploiting the particular
form of the Korteweg force, we deduce that

‖∇ × u‖ = ‖∇µ×∇ϕ‖ ≤ C‖∇µ‖‖∇ϕ‖L∞(Ω). (5.1.48)

Then by (5.1.38) and (5.1.46), we find

‖∇ × u‖
4(r−1)
3r−2 ≤ C‖∇µ‖

4(r−1)
3r−2 ‖ϕ‖

2r
3r−2

W 2,r(Ω)

≤ C‖∇µ‖2 + C‖ϕ‖2
W 2,r(Ω), for d = 2, r > 2,

‖∇ × u‖
6
5 ≤ C‖∇µ‖

6
5‖ϕ‖

4
5

W 2,6(Ω)

≤ C‖∇µ‖2 + C‖ϕ‖2
W 2,6(Ω), for d = 3.

Besides, according to theNeumann problem (3.5.2) with f = µ∇ϕ and by using (3.1.3),
we have

‖∆π‖ = ‖∇ · (µ∇ϕ)‖ ≤ C‖∇µ‖‖∇ϕ‖L∞(Ω) + C‖µ‖L6(Ω)‖∆ϕ‖L3(Ω). (5.1.49)

Hence, we get

‖∆π‖
6(r−2)
5r−9 ≤ C‖∇µ‖

6(r−2)
5r−9 ‖ϕ‖

3r(r−2)
(5r−9)(r−1)

W 2,r(Ω) + C‖µ‖
6(r−2)
5r−9

V ‖ϕ‖
4(r−3)
5r−9

H2(Ω)‖ϕ‖
2r

5r−9

W 2,r(Ω)

≤ C‖µ‖2
V + C‖ϕ‖2

W 2,r(Ω) + C‖ϕ‖4
H2(Ω) + C, for d = 2, r ≥ 3,

‖∆π‖
8
7 ≤ C‖∇µ‖

8
7‖ϕ‖

16
21

W 2,6(Ω) + C‖µ‖
8
7
V ‖ϕ‖

4
7

W 2,6(Ω)‖ϕ‖
4
7

H2(Ω)

≤ C‖µ‖2
V + C‖ϕ‖2

W 2,6(Ω) + C‖ϕ‖4
H2(Ω) + C, for d = 3.
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The above estimates together with (5.1.26), (5.1.29), (5.1.45) and the inequality (3.5.3)
yield that

‖u‖Ls(0,T ;V) ≤ C, ‖π‖Lq(0,T ;H2(Ω)) ≤ C, (5.1.50)

where s = 6
5
if d = 3 and 1 ≤ s < 4

3
if d = 2, q = 8

7
is d = 3 and 1 ≤ q < 6

5
if d = 2.

Step 5. Mass conservation and energy identity. For every global weak solution,
taking v = 1 in (5.1.1), we have

d

dt

∫
Ω

ϕ dx = 〈ϕt, 1〉 = 0,

which implies the mass conservation (5.1.5).
Next, due to the regularity properties of weak solution (see (5.1.30), (5.1.43), (5.1.44)

and (5.1.50)), for a.e. t ∈ (0, T ) we are able to test the Darcy’s equation by u and to
take v = µ in (5.1.2) to get

‖u‖2 =

∫
Ω

(µ∇ϕ) · u dx, (5.1.51)

〈ϕt, µ〉+

∫
Ω

(u · ∇ϕ)µ dx+ ‖∇µ‖2 = 0. (5.1.52)

Adding (5.1.51) and (5.1.52) together, we get

〈ϕt, µ〉+ ‖u‖2 + ‖∇µ‖2 = 0, for a.e. t ∈ (0, T ). (5.1.53)

On the other hand, we consider the functional

E∗GL(ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

Ψ(ϕ) dx

defined on H . It is well-known that E∗GL is proper, lower semicontinuous, convex with
domain

D(E∗GL) = {ψ ∈ V ∩ L∞(Ω) : ψ(x) ∈ [−1, 1] a.e. x ∈ Ω}.
Being the subgradient of E∗GL equal to ∂E∗GL(ϕ) = −∆ϕ + Ψ′(ϕ), and on account of
the regularity −∆ϕ + Ψ′(ϕ) ∈ L2(0, T ;V ) and ∂tϕ ∈ L2(0, T ;V ′) of a weak solution
we learn from [131, Lemma 4.1] that

d

dt
EGL(ϕ) =

d

dt
E∗GL(ϕ)− d

dt

Θ0

2
‖ϕ‖2

= 〈ϕt,−∆ϕ+ Ψ′(ϕ)〉 −Θ0〈ϕt, ϕ〉
= 〈ϕt, µ〉, for a.e. t ∈ (0, T ).

Here, we have also used the standard chain rule in L2(0, T ;V ) ∩ H1(0, T ;V ′). As a
consequence, the required energy identity (5.1.4) holds, which yields that EGL(ϕ(t)) is
absolutely continuous on [0, T ] and fulfills

EGL(ϕ(t)) +

∫ t

0

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ = EGL(ϕ0), ∀ t ≥ 0. (5.1.54)

Lastly, we see from (5.1.32) and (5.1.34) thatϕ ∈ Cw([0, T ], V ) aswell asϕ ∈ C([0, T ], H).
At the same time, the convexity of the function Ψ, we obtain that t→ ‖∇ϕ(t)‖2 is con-
tinuous (cf. [1, Theorem 6]). As a result, this gives ϕ ∈ C([0, T ], V ). The proof of
Theorem 5.1.3 is complete.
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Remark 5.1.9. The energy identity (5.1.54) andϕ ∈ C([0, T ], V ) entail that
∫

Ω
Ψ(ϕ(t)) dx

is bounded for all t ≥ 0. Then, from assumption (H), we get

sup
t≥0
‖ϕ(t)‖L∞(Ω) ≤ 1. (5.1.55)

Remark 5.1.10. It is worth pointing out that the hypothesis on the growth of Ψ′′ assumed
in (H.1) can be removed byworkingwith the approximation family of singular potentials
proposed in Section 3.2.

Next, we show that any global weak solution is dissipative, namely,

Theorem 5.1.11. Let the assumptions of Theorem 5.1.3 hold. Then, any global weak
solution (u, π, ϕ) satisfies the following dissipative estimate

EGL(ϕ(t)) +

∫ t+1

t

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEGL(ϕ0)e−ωt + C, ∀ t ≥ 0,

where ω and C are positive constants independent of the initial datum. Moreover, we
have for all t ≥ 0∫ t+1

t

‖ϕ(τ)‖4
H2(Ω) + ‖ϕ(τ)‖2

W 2,p(Ω) + ‖Ψ′(ϕ(τ))‖2
Lp(Ω) dτ ≤ CEGL(ϕ0)2e−ωt + C,

where p = 6 if d = 3 or p ∈ [2,+∞) if d = 2. Here, the positive constant C depends
on ϕ0 ∈ (−1, 1) and the parameter p, but is independent of other norms of the initial
datum.

Proof. Testing the equation for µ in (5.1.2) by ϕ− ϕ0 and using the mass conservation
(5.1.5), we get

‖∇ϕ‖2 +

∫
Ω

F ′(ϕ)(ϕ− ϕ0) dx =

∫
Ω

(µ− µ)(ϕ− ϕ0) dx. (5.1.56)

Recalling the basic inequality for a singular potential satisfying (H)

F (s) ≤ F (w) + F ′(s)(s− w) +
α

2
(s− w)2, ∀ s, w ∈ (−1, 1),

and exploiting the estimate |ϕ(x, t)| < 1 for almost every (x, t) ∈ Ω×(0,+∞), we find∫
Ω

F ′(ϕ)(ϕ− ϕ0) dx ≥
∫

Ω

F (ϕ) dx− F (ϕ0)|Ω| − α

2
‖ϕ− ϕ0‖2

≥
∫

Ω

F (ϕ) dx− C,

where C > 0 depends on Ω but is independent of ϕ0. Inserting the above inequality
into (5.1.56) and applying Poincaré’s inequality (3.1.5), we infer that

1

2
‖∇ϕ‖2 +

∫
Ω

Ψ(ϕ) dx ≤ C‖∇µ‖2 + C. (5.1.57)

Hence, in light of the energy identity (5.1.4), we obtain

d

dt
EGL(ϕ) + ωEGL(ϕ) + ‖u‖2 +

1

2
‖∇µ‖2 ≤ C,
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where ω, C are positive constants independent of ϕ0. An application of the Gronwall
lemma yields

EGL(ϕ(t)) +

∫ t+1

t

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEGL(ϕ0)e−ωt + C. (5.1.58)

for all t ≥ 0. In particular, this gives

‖ϕ(t)‖2
V ≤ CEGL(ϕ0)e−ωt + C, ∀ t ≥ 0. (5.1.59)

Next, by Lemma 3.4.4 with f = µ+ Θ0ϕ, we learn from (5.1.58) and (5.1.59) that∫ t+1

t

‖∆ϕ(τ)‖4 dτ ≤ CEGL(ϕ0)2e−ωt + C, ∀ t ≥ 0.

Then, by repeating the same argument exploited in the proof of Theorem 5.1.3 to get a
uniform control of µ in V (cf. (5.1.22)), we obtain∫ t+1

t

‖µ(τ)‖2
V dτ ≤ CEGL(ϕ0)2e−ωt + C, ∀ t ≥ 0.

Here, the constant C depends on the total mass of the initial datum ϕ0. Therefore, by
Corollary 3.4.3 with the same choice of f = µ+ Θ0ϕ, we find∫ t+1

t

‖ϕ(τ)‖2
W 2,p(Ω) + ‖Ψ′(ϕ)‖2

Lp(Ω) dτ ≤ CE(ϕ0)2e−ωt + C, ∀ t ≥ 0.

where p = 6 if d = 3 and for any p ≥ 2 if d = 2.

5.2 Uniqueness of Weak Solutions in Two Dimensions

In this section, we address the uniqueness of weak solutions to problem (5.0.1)-(5.0.2)
when the spatial dimension is two. In general, uniqueness of weak solutions for the
Hele–Shaw–Cahn–Hilliard system (5.0.1) turns out to be a rather hard task, due to the
low regularity of the velocity field u (cf. [99, 158] for the case of regular potentials,
where the uniqueness remains an open question even in two dimensions). However,
in the case of physically relevant singular potential, we are able to prove the following
continuous dependence result on initial data in a lower-order function space (i.e., V ′0)
when d = 2.

Theorem 5.2.1. Let d = 2. Assume that ϕ0i ∈ V with Ψ(ϕ0i) ∈ L1(Ω), i = 1, 2, and
ϕ01 = ϕ02 = m ∈ (−1, 1). Then, any pair of global weak solutions (u1, π1, ϕ1) and
(u2, π2, ϕ2) to problem (5.0.1)-(5.0.2) on [0, T ] with initial data ϕ01 and ϕ02, respec-
tively, fulfills the following estimate

‖ϕ1(t)− ϕ2(t)‖2
V ′0

+

∫ t

0

‖ϕ1(τ)− ϕ2(τ)‖2
V dτ ≤ C‖ϕ01 − ϕ02‖2

V ′0
, (5.2.1)

for every t ∈ [0, T ]. Here, the positive constant C depends on T as well as on the
initial energy EGL(ϕ0i), i = 1, 2. In particular, the global weak solution to problem
(5.0.1)-(5.0.2) is unique.
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Proof. Let (u1, π1, ϕ1) and (u2, π2, ϕ2) be two global weak solutions to problem (5.0.1)-
(5.0.2) on [0, T ] with initial data ϕ01 and ϕ02, respectively. Their difference denoted by
(u, π, ϕ) = (u1 − u2, π1 − π2, ϕ1 − ϕ2) solves

〈∂tϕ, v〉 − (u1ϕ,∇v)− (uϕ2,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V, (5.2.2)

for almost every t ∈ (0, T ), where u and the difference of chemical potentials µ :=
µ1 − µ2 satisfy (cf. Remark 5.1.2){

u = −Π
(
div(∇ϕ1 ⊗∇ϕ) + div(∇ϕ⊗∇ϕ2)

)
,

µ = −∆ϕ+ F ′(ϕ1)− F ′(ϕ2).
(5.2.3)

Thanks to the mass conservation and ϕ01 = ϕ02, we observe that ϕ = 0 for all t ≥ 0.
By Theorem 5.1.3 (see (5.1.26), (5.1.55)), we also know that

‖ϕi(t)‖V + ‖ϕi(t)‖L∞(Ω) ≤ C, ∀ t ∈ [0, T ], i = 1, 2. (5.2.4)

Taking v = Nϕ in (5.2.2), and using (3.3.2), we get

1

2

d

dt
‖ϕ‖2

V ′0
+ (µ, ϕ) = (u1ϕ,∇Nϕ) + (uϕ2,∇Nϕ). (5.2.5)

Using integration by parts and the homogeneous Neumann boundary condition for ϕ,
and making use of (H) and (3.3.4), we have

(µ, ϕ) = ‖∇ϕ‖2 + (F ′(ϕ1)− F ′(ϕ2), ϕ)

≥ ‖∇ϕ‖2 − α‖ϕ‖2

≥ 1

2
‖∇ϕ‖2 − C‖ϕ‖2

V ′0
.

Then, the differential equality (5.2.5) turns into

1

2

d

dt
‖ϕ‖2

V ′0
+

1

2
‖∇ϕ‖2 ≤ C‖ϕ‖2

V ′0
+ I + J, (5.2.6)

where
I = (u1ϕ,∇Nϕ) and J = (uϕ2,∇Nϕ).

Firstly, by (3.1.5), (3.1.7), (3.3.4) and (3.3.6), we control I as follows

I ≤ ‖u1‖‖ϕ‖L4(Ω)‖∇Nϕ‖L4(Ω)

≤ C‖u1‖‖ϕ‖
1
2‖ϕ‖

1
2
V ‖∇Nϕ‖

1
2‖∇Nϕ‖

1
2
V

≤ C‖u1‖‖ϕ‖
1
2

V ′0
‖ϕ‖‖∇ϕ‖

1
2

≤ C‖u1‖‖ϕ‖V ′0‖∇ϕ‖

≤ 1

8
‖∇ϕ‖2 + C‖u1‖2‖ϕ‖2

V ′0
.

Next, we take care of J . To this aim, by means of (5.2.3), J can be rewritten as

J = −
(
Π(div(∇ϕ1 ⊗∇ϕ) + div(∇ϕ⊗∇ϕ2)), ϕ2∇Nϕ

)
= −

(
div(∇ϕ1 ⊗∇ϕ) + div(∇ϕ⊗∇ϕ2), Π(ϕ2∇Nϕ)

)
.
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A further integration by parts together with the homogeneous Neumann boundary con-
dition for ϕ entails

−
(
div(∇ϕ1 ⊗∇ϕ), Π(ϕ2∇Nϕ)

)
=
(
∇ϕ1 ⊗∇ϕ, ∇Π(ϕ2∇Nϕ)

)
−
∫
∂Ω

(∇ϕ⊗∇ϕ1)Π(ϕ2∇Nϕ) · n dσ

=
(
∇ϕ1 ⊗∇ϕ, ∇Π(ϕ2∇Nϕ)

)
−
∫
∂Ω

(∇ϕ · n)(∇ϕ1 · Π(ϕ2∇Nϕ)) dσ

=
(
∇ϕ1 ⊗∇ϕ, ∇Π(ϕ2∇Nϕ)

)
:= J1.

Similarly, we infer that

−
(
div(∇ϕ⊗∇ϕ2),Π(ϕ2∇Nϕ)

)
=
(
∇ϕ⊗∇ϕ2, ∇Π(ϕ2∇Nϕ)

)
−
∫
∂Ω

(∇ϕ2 · n)(∇ϕ · Π(ϕ2∇Nϕ)) dσ

=
(
∇ϕ⊗∇ϕ2, ∇Π(ϕ2∇Nϕ)

)
:= J2.

We now estimate J1 and J2. Exploiting (3.1.7), (3.5.1) and (5.2.4), we obtain

J1 ≤ C‖∇ϕ1‖L4(Ω)‖∇ϕ‖‖∇Π(ϕ2∇Nϕ)‖L4(Ω)

≤ C‖∇ϕ1‖
1
2‖∇ϕ1‖

1
2
V‖∇ϕ‖‖∇Π(ϕ2∇Nϕ)‖

1
2‖∇Π(ϕ2∇Nϕ)‖

1
2
V

≤ C‖ϕ1‖
1
2

H2(Ω)‖∇ϕ‖‖Π(ϕ2∇Nϕ)‖
1
2
V‖Π(ϕ2∇Nϕ)‖

1
2

H2(Ω)

≤ C‖ϕ1‖
1
2

H2(Ω)‖∇ϕ‖‖ϕ2∇Nϕ‖
1
2
V‖ϕ2∇Nϕ‖

1
2

H2(Ω). (5.2.7)

It follows from (3.1.8), (3.1.1), (3.3.4), (3.3.6) and (5.2.4), that

‖ϕ2∇Nϕ‖V ≤ C‖ϕ2‖L∞(Ω)‖∇Nϕ‖V + C‖ϕ2‖V ‖∇Nϕ‖L∞(Ω)

≤ C‖∇Nϕ‖V + C‖∇Nϕ‖L∞(Ω)

≤ C‖ϕ‖+ C‖∇Nϕ‖
1
2‖∇Nϕ‖

1
2

H2(Ω)

≤ C‖ϕ‖
1
2

V ′0
‖∇ϕ‖

1
2 .

On the other hand, by (3.1.8), (3.1.2), (3.3.6) and (5.2.4), we deduce that

‖ϕ2∇Nϕ‖H2(Ω) ≤ C‖ϕ2‖L∞(Ω)‖∇Nϕ‖H2(Ω) + C‖ϕ2‖H2(Ω)‖∇Nϕ‖L∞(Ω)

≤ C‖∇Nϕ‖H2(Ω) + C‖ϕ2‖H2(Ω)‖∇Nϕ‖
1
2‖∇Nϕ‖

1
2

H2(Ω)

≤ C‖∇ϕ‖+ C‖ϕ2‖H2(Ω)‖ϕ‖
1
2

V ′0
‖∇ϕ‖

1
2 .

Thus, from (5.2.7) we obtain

J1 ≤ C‖ϕ1‖
1
2

H2(Ω)‖ϕ‖
1
4

V ′0
‖∇ϕ‖

7
4 + C‖ϕ1‖

1
2

H2(Ω)‖ϕ2‖
1
2

H2(Ω)‖ϕ‖
1
2

V ′0
‖∇ϕ‖

3
2

:= R1 +R2.
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Using Young’s inequality, the reminder terms R1 and R2 can be controlled as follows

R1 = C‖ϕ1‖
1
2

H2(Ω)‖ϕ‖
1
4

V ′0
‖∇ϕ‖

7
4

≤ 1

32
‖∇ϕ‖2 + C‖ϕ1‖4

H2(Ω)‖ϕ‖2
V ′0
,

and

R2 = C‖ϕ1‖
1
2

H2(Ω)‖ϕ2‖
1
2

H2(Ω)‖ϕ‖
1
2

V ′0
‖∇ϕ‖

3
2

≤ 1

32
‖∇ϕ‖2 + C‖ϕ1‖2

H2(Ω)‖ϕ2‖2
H2(Ω)‖ϕ‖2

V ′0
.

Collecting the above estimates and using again Young’s inequality, we end up with

J1 ≤
1

16
‖∇ϕ‖2 + C

(
‖ϕ1‖4

H2(Ω) + ‖ϕ2‖4
H2(Ω)

)
‖ϕ‖2

V ′0
.

Repeating the same calculations for J2 line by line, we get

J2 ≤
1

16
‖∇ϕ‖2 + C‖ϕ2‖4

H2(Ω)‖ϕ‖2
V ′0
.

Finally, combining (5.2.6) with the above controls of I , J1 and J2, we find the differential
inequality

1

2

d

dt
‖ϕ‖2

V ′0
+

1

4
‖∇ϕ‖2 ≤ C

(
1 + ‖u1‖2 + ‖ϕ1‖4

H2(Ω) + ‖ϕ2‖4
H2(Ω)

)
‖ϕ‖2

V ′0
. (5.2.8)

On the other hand, thanks to Theorem 5.1.3, we have∫ T

0

‖u1(τ)‖2 + ‖ϕ1(τ)‖4
H2(Ω) + ‖ϕ2(τ)‖4

H2(Ω) dτ ≤ C. (5.2.9)

Thus, an application of Gronwall lemma together with (5.2.8) and (5.2.9) gives (5.2.1).

5.3 Regularity Properties and Separation Property in Two Dimensions

In this section, we show that global weak solutions become instantaneouslymore regular
when the spatial space dimension is two. Furthermore, we are able to prove the validity
of the instantaneous separation property. The goal will be achieved by obtaining some
higher order estimates for weak solutions that only depend on the initial energy E(ϕ0)
and on the average of total mass ϕ0. In particular, these estimates will be independent
of any other norm of ϕ0. To this end, given arbitrary but fixed numbers R > 0 and
m ∈ (−1, 1), we consider weak solutions (u, π, ϕ) departing from ϕ0 with

E(ϕ0) ≤ R and ϕ0 = m.

Consequently, in this section the generic constant C > 0 depends on R,m and possibly
on Ω.

Our result on regularity properties of weak solutions reads as follows
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Theorem 5.3.1. Let d = 2. Then, for every σ > 0 and p ≥ 1, there exists a positive
constant C = C(σ, p) such that

‖u‖L∞(σ,∞;V) + ‖π‖L∞(σ,∞;H2(Ω)) + ‖ϕ‖L∞(σ,∞;W 2,p(Ω)) ≤ C.

In addition, suppose that Ψ ∈ C3(−1, 1) and (H.2)-(H.3) hold. Then, for every σ > 0,
there exist δ = δ(σ,R,m) ∈ (0, 1) and a positive constant C = C(σ) such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ, (5.3.1)

and

‖u‖L∞(2σ,∞;H2(Ω)) + ‖π‖L∞(2σ,∞;H3(Ω)) + ‖ϕ‖L∞(2σ,∞;H4(Ω)) ≤ C. (5.3.2)

Remark 5.3.2. The proof of Theorem 5.3.1 easily implies the existence of a unique
global strong solution to problem (5.0.1)-(5.0.2) in two dimensions, provided that the
initial datum ϕ0 is more regular, e.g., µ(0) = −∆ϕ0 + F ′(ϕ0) ∈ V with ∂nϕ0 = 0 on
∂Ω.

The proof of Theorem 5.3.1 is carried out by means of several lemmas. Our first
regularity result is the following estimate for ∂tϕ.
Lemma 5.3.3. Let the assumptions of Theorem 5.3.1 hold. For any σ > 0, there exists
a positive constant C = C(σ) such that

‖∂tϕ‖L∞(σ,t;V ′) + ‖∂tϕ‖L2(t,t+1;V ) ≤ C, ∀ t ≥ σ. (5.3.3)

Proof. We first note that, by virtue of Theorem 5.1.11 (see also (5.1.55)),

‖ϕ(t)‖V + ‖ϕ(t)‖L∞(Ω) ≤ C, ∀ t ≥ 0. (5.3.4)

Given h > 0, let us introduce the difference quotient of a function v by

∂ht v =
1

h

(
v(t+ h)− v(t)

)
.

Owing to Definition 5.1.1, the difference quotient of a weak solution satisfies

〈∂t∂ht ϕ, v〉+ (u(t+ h) · ∇∂ht ϕ, v) + (∂ht u · ∇ϕ, v) + (∇∂ht µ,∇v) = 0, ∀ v ∈ V,

for almost every t ∈ (0,+∞), where

∂ht µ = −∆∂ht ϕ+
1

h

(
F ′(ϕ(t+ h))− F ′(ϕ(t))

)
(5.3.5)

and
∂ht u = −Π

(
div(∇ϕ(t+ h)⊗∇∂ht ϕ) + div(∇∂ht ϕ⊗∇ϕ)

)
. (5.3.6)

We observe from the mass conservation that

∂ht ϕ = ∂ht ϕ = 0.

Taking v = N∂ht ϕ in the above weak formulation, and exploiting (3.3.2)-(3.3.5), we
have

1

2

d

dt
‖∂ht ϕ‖2

V ′0
+ (∂ht µ, ∂

h
t ϕ)

= −(u(t+ h) · ∇∂ht ϕ,N∂ht ϕ)− (∂ht u · ∇ϕ,N∂ht ϕ). (5.3.7)
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By the definition of ∂ht µ and making use of the homogeneous Neumann boundary con-
dition for ∂ht ϕ together with (H) and (3.3.4), we get

(∂ht µ, ∂
h
t ϕ) = ‖∇∂ht ϕ‖2 +

1

h
(F ′(ϕ(t+ h))− F ′(ϕ(t)), ∂ht ϕ)

≥ ‖∇∂ht ϕ‖2 − α‖∂ht ϕ‖2

≥ 1

2
‖∇∂ht ϕ‖2 − C‖∂ht ϕ‖2

V ′0
.

Setting

K1 = (u(t+ h)∂ht ϕ,∇N∂ht ϕ) and K2 = (∂ht uϕ,∇N∂ht ϕ),

we find the differential inequality from (5.3.7) such that

1

2

d

dt
‖∂ht ϕ‖2

V ′0
+

1

2
‖∇∂ht ϕ‖2 ≤ C‖∂ht ϕ‖2

V ′0
+K1 +K2. (5.3.8)

In order to control K1 and K2, we argue similarly to the proof of Theorem 5.2.1. By
(3.1.5), (3.1.7), (3.3.4) and (3.3.6), we estimate K1 as follows

K1 ≤ ‖u(t+ h)‖‖∂ht ϕ‖L4(Ω)‖∇N∂ht ϕ‖L4(Ω)

≤ C‖u(t+ h)‖‖∂ht ϕ‖
1
2‖∂ht ϕ‖

1
2
V ‖∇N∂

h
t ϕ‖

1
2‖∇N∂ht ϕ‖

1
2
V

≤ C‖u(t+ h)‖‖∂ht ϕ‖
1
2

V ′0
‖∂ht ϕ‖‖∇∂ht ϕ‖

1
2

≤ C‖u(t+ h)‖‖∂ht ϕ‖V ′0‖∇∂
h
t ϕ‖

≤ 1

8
‖∇∂ht ϕ‖2 + C‖u(t+ h)‖2‖∂ht ϕ‖2

V ′0
.

Regarding K2, in light of (5.3.6) we obtain

K2 = −
(

Π(div(∇ϕ(t+ h)⊗∇∂ht ϕ)), ϕ∇N∂ht ϕ
)

−
(

Π(div(∇∂ht ϕ⊗∇ϕ)), ϕ∇N∂ht ϕ
)

= −
(

div(∇ϕ(t+ h)⊗∇∂ht ϕ), Π(ϕ∇N∂ht ϕ)
)

−
(

div(∇∂ht ϕ⊗∇ϕ), Π(ϕ∇N∂ht ϕ)
)

=
(
∇ϕ(t+ h)⊗∇∂ht ϕ, ∇Π(ϕ∇N∂ht ϕ)

)
+
(
∇∂ht ϕ⊗∇ϕ, ∇Π(ϕ∇N∂ht ϕ)

)
:= Z1 + Z2.

Let us proceed to estimate Z1 and Z2. By (3.1.7), (5.3.4) and (3.5.1), we deduce that

Z1 ≤ C‖∇ϕ(t+ h)‖L4(Ω)‖∇∂ht ϕ‖‖∇Π(ϕ∇N∂ht ϕ)‖L4(Ω)

≤ C‖∇ϕ(t+ h)‖
1
2‖ϕ(t+ h)‖

1
2

H2(Ω)‖∇∂
h
t ϕ‖‖Π(ϕ∇N∂ht ϕ)‖W1,4(Ω)

≤ C‖ϕ(t+ h)‖
1
2

H2(Ω)‖∇∂
h
t ϕ‖‖ϕ∇N∂ht ϕ‖

1
2
V‖ϕ∇N∂

h
t ϕ‖

1
2

H2(Ω).
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A further application of (3.1.1), (3.1.2), (3.1.8), (3.3.4), (3.5.1), and (5.3.4) yields

‖ϕ∇N∂ht ϕ‖V ≤ C‖ϕ‖L∞(Ω)‖∇N∂ht ϕ‖V + C‖ϕ‖V ‖∇N∂ht ϕ‖L∞(Ω)

≤ C‖∂ht ϕ‖+ C‖∇N∂ht ϕ‖
1
2‖∇N∂ht ϕ‖

1
2

H2(Ω)

≤ C‖∂ht ϕ‖
1
2

V ′0
‖∇∂ht ϕ‖

1
2 ,

and

‖ϕ∇N∂ht ϕ‖H2(Ω) ≤ C‖ϕ‖L∞(Ω)‖∇N∂ht ϕ‖H2(Ω) + C‖ϕ‖H2(Ω)‖∇N∂ht ϕ‖L∞(Ω)

≤ C‖∇N∂ht ϕ‖H2(Ω) + C‖ϕ‖H2(Ω)‖∇N∂ht ϕ‖
1
2‖∇N∂ht ϕ‖

1
2

H2(Ω)

≤ C‖∇∂ht ϕ‖+ C‖ϕ‖H2(Ω)‖∂ht ϕ‖
1
2

V ′0
‖∇∂ht ϕ‖

1
2 .

Therefore, we learn that

Z1 ≤ C‖ϕ(t+ h)‖
1
2

H2(Ω)‖∂
h
t ϕ‖

1
4

V ′0
‖∇∂ht ϕ‖

7
4

C‖ϕ(t+ h)‖
1
2

H2(Ω)‖ϕ‖
1
2

H2(Ω)‖∂
h
t ϕ‖

1
2

V ′0
‖∇∂ht ϕ‖

3
2

:= Y1 + Y2.

By Young’s inequality, we infer that

Y1 = C‖ϕ(t+ h)‖
1
2

H2(Ω)‖∂
h
t ϕ‖

1
4

V ′0
‖∇∂ht ϕ‖

7
4

≤ 1

32
‖∇∂ht ϕ‖2 + C‖ϕ(t+ h)‖4

H2(Ω)‖∂ht ϕ‖2
V ′0
,

and

Y2 = C‖ϕ(t+ h)‖
1
2

H2(Ω)‖ϕ‖
1
2

H2(Ω)‖∂
h
t ϕ‖

1
2

V ′0
‖∇∂ht ϕ‖

3
2

≤ 1

32
‖∇∂ht ϕ‖2 + C‖ϕ(t+ h)‖2

H2(Ω)‖ϕ‖2
H2(Ω)‖∂ht ϕ‖2

V ′0
.

Hence, combining the above estimates together, we end up with

Z1 ≤
1

16
‖∇∂ht ϕ‖2 + C

(
‖ϕ(t+ h)‖4

H2(Ω) + ‖ϕ‖4
H2(Ω)

)
‖∂ht ϕ‖2

V ′0
.

Arguing in the same way for Z2, we also find

Z2 ≤
1

16
‖∇∂ht ϕ‖2 + C‖ϕ‖4

H2(Ω)‖∂ht ϕ‖2
V ′0
.

Then, collecting the estimates of K1 and K2, from (5.3.8) we deduce the following
differential inequality

1

2

d

dt
‖∂ht ϕ‖2

V ′0
+

1

4
‖∇∂ht ϕ‖2

≤ C
(

1 + ‖u(t+ h)‖2 + ‖ϕ(t+ h)‖4
H2(Ω) + ‖ϕ‖4

H2(Ω)

)
‖∂ht ϕ‖2

V ′0
.
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On account of

‖∂ht ϕ‖L2(t,t+1;V ′0) ≤ ‖ϕt‖L2(t,t+1+h;V ′0), ∀ t ≥ 0,

and the dissipative estimate (cf. Theorem 5.1.11)∫ t+1

t

‖ϕ(τ)‖4
H2(Ω) + ‖u(τ)‖2 + ‖ϕt(τ)‖2

V ′0
dτ ≤ C, ∀ t ≥ 0, (5.3.9)

an application of the uniform Gronwall lemma entails the uniform bounds

‖∂ht ϕ‖L∞(σ,t;V ′0) + ‖∂ht ϕ‖L2(t,t+1;V ) ≤ C, ∀ t ≥ σ.

Here, C is a positive constant which depends on σ > 0 but is independent of h. A final
passage to the limit as h→ 0+ completes the proof.

Thanks to Lemma 5.3.3, we derive a preliminary higher order estimate for ϕ with
respect to the spatial variable.

Lemma 5.3.4. Let the assumptions of Theorem 5.3.1 hold. For any σ > 0, there exists
a positive constant C = C(σ) such that

‖ϕ‖L∞(σ,t;H2(Ω)) ≤ C, ∀ t ≥ σ. (5.3.10)

Proof. By [9, Theorem 1.1], we have for an arbitrary T ≥ σ

H1(σ, T ;V ) ∩ L2(σ, T ;H2(Ω)) ↪→ C([σ, T ],W 1,4(Ω)).

Hence, in light of Theorem 5.1.3 and Lemma 5.3.3, we infer that

ϕ ∈ C([σ,+∞),W 1,4(Ω)).

In order to get a uniform-in-time estimate, we recall that (cf. Theorem 5.1.11)

‖ϕ‖H1(t,t+1;V ) + ‖ϕ‖L2(t,t+1;H2(Ω)) ≤ C, ∀ t ≥ σ,

where C is independent of t. Then, by the above result, we have

‖ϕ(t)‖W 1,4(Ω) ≤ C, ∀ t ∈ [σ, σ + 1].

By the same argument replacing ϕ(·) with ϕ(·+ n), for any n ∈ N, we have

‖ϕ(t+ n)‖W 1,4(Ω) ≤ C, ∀ t ∈ [σ, σ + 1] and ∀n ∈ N,

where C is independent of n. This in turn gives the uniform estimate

‖ϕ(t)‖W 1,4(Ω) ≤ C, ∀ t ≥ σ. (5.3.11)

Next, taking v = N (µ− µ) in the weak formulation (5.1.1), we get

〈ϕt,N (µ− µ)〉 − (uϕ,∇N (µ− µ)) + (µ, µ− µ) = 0.

We note that
(µ, µ− µ) = ‖µ− µ‖2.
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Besides, by (3.1.4), (3.3.6), (3.5.1) and (5.3.11), we control the other two terms as fol-
lows

〈ϕt,N (µ− µ)〉 ≤ ‖ϕt‖V ′0‖N (µ− µ)‖V0

≤ C‖ϕt‖V ′‖µ− µ‖

≤ 1

4
‖µ− µ‖2 + C‖ϕt‖2

V ′ ,

and (
uϕ,∇N (µ− µ)

)
= −

(
Π(div(∇ϕ⊗∇ϕ)), ϕ∇N (µ− µ)

)
= −

(
div(∇ϕ⊗∇ϕ), Π(ϕ∇N (µ− µ))

)
=
(
∇ϕ⊗∇ϕ, ∇Π(ϕ∇N (µ− µ))

)
≤ C‖∇ϕ‖2

L4(Ω)‖Π(ϕ∇N (µ− µ))‖V
≤ C‖ϕ∇N (µ− µ)‖V
≤ C‖ϕ‖L∞(Ω)‖∇N (µ− µ)‖V + C‖ϕ‖W 1,4(Ω)‖∇N (µ− µ)‖L4(Ω)

≤ C‖µ− µ‖

≤ 1

4
‖µ− µ‖2 + C.

Collecting the above estimates and using Lemma 5.3.3, we find

‖µ− µ‖L∞(σ,t;H) ≤ C, ∀ t ≥ σ. (5.3.12)

Applying Lemma 3.4.1 with f = µ+ Θ0ϕ, the above estimate further entails

‖∆ϕ‖L∞(σ,t;H) ≤ C, ∀ t ≥ σ.

Finally, due to classical elliptic regularity results for the Neumann problem, we conclude
that (5.3.10) holds. The proof is complete.

Now we can improve the regularity properties of global weak solutions (u, ϕ) on the
time interval [σ,+∞) for any σ > 0.

Lemma 5.3.5. Let the assumptions of Theorem 5.3.1 hold. For any p > 2, there exists
a positive constant C = C(σ, p) such that

‖u‖L∞(σ,t;V) + ‖π‖L∞(σ,t;H2(Ω)) ≤ C, ∀ t ≥ σ,

‖µ‖L∞(σ,t;V ) + ‖ϕ‖L∞(σ,t;W 2,p(Ω)) ≤ C, ∀ t ≥ σ.

Proof. First, we observe that

u = −∇π∗ −∆ϕ∇ϕ, a.e. (x, t) ∈ Ω× (0,+∞),
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where π∗ is the modified pressure given by π∗ = π + Ψ(ϕ) (cf. Remark 5.1.2). Thus,
we have u = Π(−∆ϕ∇ϕ) and by (3.5.1) together with the uniform estimates in Lemma
5.3.4, it follows that

‖u‖
L∞(σ,t;L

3
2 (Ω))

≤ C‖∆ϕ∇ϕ‖
L∞(σ,t;L

3
2 (Ω))

≤ C‖ϕ‖L∞(σ,t;H2(Ω))‖ϕ‖L∞(σ,t;W 1,6(Ω))

≤ C. (5.3.13)

Next, we prove a uniform bound for the V -norm of µ arguing as in the proof of Theorem
5.1.3. As customary, we need to control its average value over Ω. To this end, we recall
that the singular potential F satisfies

‖F ′(ϕ)‖L1(Ω) ≤ C

∫
Ω

(ϕ− ϕ0)(F ′(ϕ)− F ′(ϕ)) dx+ C,

where C depends on m (cf. (5.1.19)). Testing µ by ϕ − ϕ0, integrating by parts and
using (3.1.5) and (5.3.4), we easily get (cf. (5.1.20))∫

Ω

(ϕ− ϕ0)(F ′(ϕ)− F ′(ϕ)) dx ≤ C(1 + ‖∇µ‖).

Combining the above inequalities, we are led to the inequality

‖Ψ′(ϕ)‖L1(Ω) ≤ C (1 + ‖∇µ‖) , (5.3.14)

which together with (5.1.18) gives

‖µ‖V ≤ C(1 + ‖∇µ‖). (5.3.15)

Now, taking v = µ in (5.1.1), we have

‖∇µ‖2 = −〈ϕt, µ〉 − (u · ∇ϕ, µ).

By (5.3.3), (5.3.10), (5.3.13) and (5.3.15), we get

‖∇µ‖2 ≤ ‖ϕt‖V ′‖µ‖V + ‖u‖
L

3
2 (Ω)
‖∇ϕ‖L6(Ω)‖µ‖L6(Ω)

≤ ‖ϕt‖V ′‖µ‖V + ‖u‖
L

3
2 (Ω)
‖ϕ‖H2(Ω)‖µ‖V

≤ C(1 + ‖∇µ‖).

Hence, we infer from the above estimate, Young’s inequality and (5.3.15) that

‖µ‖L∞(σ,t;V ) ≤ C, ∀ t ≥ σ. (5.3.16)

Thus, we can apply Corollary 3.4.3 again with f = µ + Θ0ϕ. As a consequence, for
any p > 2, there exists C > 0 such that

‖ϕ‖L∞(σ,t;W 2,p(Ω)) ≤ C, ∀ t ≥ σ. (5.3.17)

Therefore, combining (5.1.48), (5.1.49), (5.3.16), (5.3.17) and using the Gagliardo–
Nirenberg inequality (5.1.46) for d = 2, we have

‖u‖L∞(σ,t;V) + ‖π‖L∞(σ,t;H2(Ω)) ≤ C, ∀ t ≥ σ.

The proof is complete.
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Remark 5.3.6. Thanks to the regularity achieved in Lemma 5.3.5, it is easily seen that
(5.1.1) holds almost everywhere in Ω× (σ,+∞) and, in particular, µ satisfies ∂nµ = 0
almost everywhere on ∂Ω × (σ,+∞). Since σ > 0 is arbitrary, we infer that any
global weak solution to problem (5.0.1)-(5.0.2) becomes a global strong solution in-
stantaneously when t > 0.

We now have the necessary ingredients to prove the validity of the instantaneous
separation property. The main task is to show that Ψ′(ϕ) is essentially bounded in time
and space. For this purpose, higher order estimates will be derived by using the further
assumption (H.3) on the growth control between derivatives.

Lemma 5.3.7. Let the assumptions of Theorem 5.3.1 hold. Then, for any σ > 0, there
exists C = C(σ) > 0 such that

‖∂tϕ‖L∞(2σ,t;H) + ‖µ‖L∞(2σ,t;H2(Ω)) ≤ C, ∀ t ≥ 2σ.

Moreover, there exist δ = δ(σ,R,m) > 0 and C = C(σ) such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ 2σ, (5.3.18)

and

‖u‖L∞(2σ,t;H2(Ω)) + ‖π‖L∞(2σ,t;H3(Ω)) + ‖ϕ‖L∞(2σ,t;H4(Ω)) ≤ C, ∀ t ≥ 2σ. (5.3.19)

Proof. Under the assumption (H.2), we can apply Lemma 3.4.6 with f = µ + Θ0ϕ.
Hence, for any p ≥ 2, using the estimates obtained in Lemma 5.3.5, there exists C =
C(p) such that

‖Ψ′′(ϕ)‖L∞(σ,t;Lp(Ω)) ≤ C, ∀ t ≥ σ. (5.3.20)
We recall that the finite difference ∂ht ϕ solves

〈∂t∂ht ϕ, v〉+ (u(t+ h) · ∇∂ht ϕ, v) + (∂ht u · ∇ϕ, v) + (∇∂ht µ,∇v) = 0, ∀ v ∈ V,

where ∂ht µ and ∂ht u are given by (5.3.5) and (5.3.6), respectively. Taking v = ∂ht ϕ, we
get

1

2

d

dt
‖∂ht ϕ‖2 + (∇∂ht µ,∇v) = H1 +H2, (5.3.21)

having set

H1 = −(u(t+ h) · ∇∂ht ϕ, ∂ht ϕ), H2 = −(∂ht u · ∇ϕ, ∂ht ϕ).

By integration by parts and making use of the homogeneous Neumann boundary con-
ditions for ∂ht ϕ and ∂ht µ, we find

(∇∂ht µ, ∇∂ht ϕ) = −(∂ht µ, ∆∂ht ϕ)

= ‖∆∂ht ϕ‖2 −Θ0‖∇∂ht ϕ‖2 −
(1

h

(
Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))

)
, ∆∂ht ϕ

)
.

Thanks to the convexity of Ψ′′, we obtain

1

h

∣∣∣Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))
∣∣∣ ≤ ∫ 1

0

Ψ′′(τϕ(t+ h) + (1− τ)ϕ(t)) |∂ht ϕ| dτ

≤
(
Ψ′′(ϕ(t+ h)) + Ψ′′(ϕ(t))

)
|∂ht ϕ|,
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and as a consequence, it follows that∣∣∣(1

h

(
Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))

)
, ∆∂ht ϕ

)∣∣∣
≤ 1

2
‖∆∂ht ϕ‖2 + C

(
‖Ψ′′(ϕ(t+ h))‖2

L3(Ω) + ‖Ψ′′(ϕ(t))‖2
L3(Ω)

)
‖∂ht ϕ‖2

L6(Ω).

By (3.1.5) and the boundary conditions, we infer from Poincaré’s inequality and inte-
gration by parts that

‖∂ht ϕ‖2
L6(Ω) ≤ C‖∇∂ht ϕ‖2 ≤ C‖∂ht ϕ‖‖∆∂ht ϕ‖.

Therefore, we easily derive from (5.3.21) the differential inequality
1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2

≤ C
(

1 + ‖Ψ′′(ϕ(t+ h))‖4
L3(Ω) + ‖Ψ′′(ϕ(t))‖4

L3(Ω)

)
‖∂ht ϕ‖2 +H1 +H2. (5.3.22)

Regarding the term H1, by Lemma 5.3.5, the Sobolev embedding V ↪→ Lp(Ω) for any
p ≥ 1, and the elliptic estimate for the Neumann problem, we get

H1 ≤ ‖u(t+ h)‖L6(Ω)‖∇∂ht ϕ‖L3(Ω)‖∂ht ϕ‖
≤ C‖∂ht ϕ‖H2(Ω)‖∂ht ϕ‖

≤ 1

16
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

On the other hand, by the Darcy’s equation (cf. Remark 5.1.2), Lemma 5.3.5 together
with (3.1.5) and (3.1.4), we infer that

H2 =
(

Π(div(∇ϕ(t+ h)⊗∇∂ht ϕ+∇∂ht ϕ⊗∇ϕ)), ∇ϕ∂ht ϕ
)

=
(
∇ϕ(t+ h)⊗∇∂ht ϕ+∇∂ht ϕ⊗∇ϕ, ∇Π(∇ϕ∂ht ϕ)

)
≤
(
‖∇ϕ(t+ h)‖L∞(Ω) + ‖∇ϕ‖L∞(Ω)

)
‖∇∂ht ϕ‖‖∇Π(∇ϕ∂ht ϕ)‖

≤ C‖∇∂ht ϕ‖‖∇ϕ∂ht ϕ‖V
≤ C‖∇∂ht ϕ‖

(
‖∇ϕ‖L∞(Ω)‖∇∂ht ϕ‖+ ‖ϕ‖W 2,4(Ω)‖∂ht ϕ‖L4(Ω)

)
≤ C‖∇∂ht ϕ‖2

≤ 1

16
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

Collecting the above estimates for H1 and H2, we end up with
1

2

d

dt
‖∂ht ϕ‖2 +

1

8
‖∆∂ht ϕ‖2 ≤ W‖∂ht ϕ‖2,

where
W (t) = C

(
1 + ‖S ′′(ϕ(t+ h))‖4

L3(Ω) + ‖S ′′(ϕ(t))‖4
L3(Ω)

)
.

On account of the estimate (5.3.20), we have∫ t+1

t

W (τ) dτ ≤ C, ∀ t ≥ σ.
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Thus, an application of the uniform Gronwall lemma implies that

‖∂ht ϕ‖L∞(2σ,t;H) + ‖∆∂ht ϕ‖L2(t,t+1;H) ≤ C, ∀ t ≥ 2σ,

where the constant C is independent of h. Passing to the limit as h→ 0+, we obtain

‖∂tϕ‖L∞(2σ,t;H) ≤ C, ∀ t ≥ 2σ. (5.3.23)

Now, using Lemma 5.3.5 and (5.3.23), we deduce by comparison that

‖µ‖L∞(2σ,t;H2(Ω)) ≤ C, ∀ t ≥ 2σ. (5.3.24)

Therefore, Lemma 3.4.2 with p = ∞ together with the Sobolev embedding H2(Ω) ↪→
L∞(Ω) yields

‖Ψ′(ϕ)‖L∞(2σ,t;L∞(Ω)) ≤ C, ∀ t ≥ 2σ.

Due to the singularity of Ψ′ at the pure states±1, the above estimate immediately yields
the conclusion (5.3.18). Thus, it is readily seen from (5.3.24) and the separation prop-
erty (5.3.18) that

‖ϕ‖L∞(2σ,t;H4(Ω)) ≤ C, ∀ t ≥ 2σ. (5.3.25)

Finally, by (3.1.2), (5.3.24) and (5.3.25), we arrive at

‖µ∇ϕ‖L∞(2σ,t;H2(Ω)) ≤ C, ∀ t ≥ 2σ.

In turn, due to (3.5.1), this gives the estimate (5.3.19). The proof of is complete.

In summary, we have

Proof of Theorem 5.3.1. Combining the results obtained in Lemma 5.3.5 and Lemma
5.3.7, we immediately arrive at our conclusions in Theorem 5.3.1.

Remark 5.3.8. The validity of the separation property (5.3.18) is crucial, since it entails
further regularity of weak solutions to problem (5.0.1)-(5.0.2). Indeed, if (5.3.18) holds
along the trajectory, the solution ϕ is confined to an interval that does not contain the
pure states ±1. Thus the term Ψ′(ϕ) can be seen as a Lipschitz nonlinearity.

5.4 Strong Solutions and Lyapunov Stability in Three dimensions

When the spatial dimensional is three, the existence of a unique global strong solution
to problem (5.0.1)-(5.0.2) with arbitrary large regular initial datum ϕ0 can not be ex-
pected (cf. [158] for the case with regularity potential). In this section, we first prove
the existence of a unique local strong solution (u, π, ϕ). Then, we show that if the initial
datum ϕ0 is sufficiently close to a local minimizer of the energy functional E , then the
local strong solution is indeed a global one and ϕ will stay close to that minimizer for
all t ≥ 0.

To this end, we recall the following definition
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Chapter 5. The Hele-Shaw-Cahn-Hilliard system

Definition 5.4.1. Let us set

Vm =
{
ϕ ∈ V ∩ L∞(Ω) : ‖ϕ‖L∞(Ω) ≤ 1 and −m ≤ ϕ ≤ m

}
, (5.4.1)

A function ψ ∈ Vm is called a local energy minimizer of the total energy EGL if there
exists a constant χ > 0 such that EGL(ψ) ≤ EGL(ϕ) for all ϕ ∈ Vm satisfying ‖ϕ −
ψ‖V < χ. If χ = +∞, then ψ is called a global energy minimizer of EGL.

Our result on the existence of strong solution in dimension three is the following

Theorem 5.4.2. Let d = 3. Suppose that the assumptions (H.1) and (H.5) hold. In ad-
dition, assume that Ψ is real analytic in (−1, 1) and ψ ∈ Vm is a local energy minimizer
of the total energy EGL. Then, for any ε > 0, there exists a constant η ∈ (0, 1) such that
for an arbitrary initial datumϕ0 ∈ H3(Ω) satisfying ∂nϕ0 = 0 on ∂Ω, ϕ0 = ψ = m and
‖ϕ0 − ψ‖H2(Ω) ≤ η, the problem (5.0.1)-(5.0.2) admits a unique global strong solution
(u, π, ϕ) such that

u ∈ C([0,+∞),Hσ) ∩ L2
loc(0,+∞; H3(Ω)),

π ∈ C([0,+∞), V0) ∩ L2
loc(0,+∞;H4(Ω)),

ϕ ∈ C([0,+∞), H3(Ω)) ∩ L2
loc(0,+∞;H5(Ω)) ∩H1

loc(0,+∞;V ),

µ ∈ C([0,+∞), V ) ∩ L2
loc(0,+∞;H3(Ω)) ∩H1

loc(0,+∞;V ′).

Moreover, the solution ϕ always stays close to the minimizer ψ such that

‖ϕ(t)− ψ‖H2(Ω) ≤ ε, ∀ t ≥ 0.

Namely, any local energy minimizer of EGL is locally Lyapunov stable.

Remark 5.4.3. The conclusions of Theorem 5.4.2 (in particular, the Lyapunov stability
for local energy minimizers) are still valid in two dimensions, with only minor modifi-
cations in the proof.
Remark 5.4.4. Actually the solution given by Theorem 5.4.2 is slightly more regular
than the usual notion of strong solution (i.e., a solution which satisfies the equations
and the initial and boundary conditions almost everywhere, cf. Theorem 5.3.1).

Local strong solutions in three dimensions

We first provide a result on the existence of local-in-time strong solutions.

Theorem 5.4.5. Let d = 3. Assume that (H.1) and (H.5) hold and ϕ0 ∈ H3(Ω) satisfy-
ing ‖ϕ0‖C(Ω) ≤ 1−δ0, for an arbitrary but fixed δ0 ∈ (0, 1), and ∂nϕ = 0 on ∂Ω. Then,
there exists a unique local strong solution (u, π, ϕ) to problem (5.0.1)-(5.0.2) such that

u ∈ C([0, T ∗],Hσ) ∩ L2(0, T ∗; H3(Ω)),

π ∈ C([0, T ∗], V0) ∩ L2(0, T ∗;H4(Ω)),

ϕ ∈ C([0, T ∗], H3(Ω)) ∩ L2(0, T ∗;H5(Ω)) ∩H1(0, T ∗;V ),

µ ∈ C([0, T ∗], V ) ∩ L2(0, T ∗;H3(Ω)) ∩H1(0, T ∗;V ′),
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and

‖ϕ(t)‖C(Ω) ≤ 1− 1

2
δ0, ∀ t ∈ [0, T ∗], (5.4.2)

for some T ∗ ∈ (0,+∞) depending on ‖ϕ0‖H3(Ω) and δ0. In particular, the strong solu-
tion satisfies (5.0.1) for almost every (x, t) ∈ Ω× (0, T ∗) and the boundary conditions
∂np = ∂nµ = 0 on ∂Ω× (0, T ∗).

Proof. For any ε ∈ (0, 1), we introduce a regular approximating potential F̂ε ∈ C4(R),
namely,

F̂ε(s) = Ψ̂ε(s)−
Θ0

2
s2, ∀ s ∈ R, (5.4.3)

where

F̂ε(s) =



4∑
j=0

1

j!
Ψ(j)(1− ε) [s− (1− ε)]j , ∀ s ≥ 1− ε,

Ψ(s), ∀ s ∈ [−1 + ε, 1− ε],
4∑
j=0

1

j!
Ψ(j)(−1 + ε) [s− (−1 + ε)]j , ∀ s ≤ −1 + ε.

(5.4.4)

Then we consider the following approximating problem (AP2)
uε = −∇πε + µε∇ϕε,
div uε = 0,

∂tϕε + uε · ∇ϕε = ∆µε,

µε = −∆ϕε + Ψ̂′ε(ϕε),

in Ω× (0, T ), (5.4.5)

subject to the initial and boundary conditions (5.0.2) (with ϕ, µ being replaced by ϕε
and µε, respectively).

For any given δ0 ∈ (0, 1), by the assumption (H.5) we can choose a sufficiently small
constant ε ∈ (0,min{κ, 1

4
δ0}] such that F̂ε ∈ C4(R) satisfies

F̂ε(s) ≥ γs4 − C, ∀ s ∈ R,

for some positive constants γ andC which are independent of ε. Local well-posedness of
the approximating problem (AP2) easily follows by employing theGalerkinmethod as in
[113,158]. In particular, bymeans of a differential inequality involving theH3(Ω)-norm
of ϕ (see [158]), it follows that there exists a Tε ∈ (0,+∞) depending on ‖ϕ0‖H3(Ω),
ε and Ω such that problem (AP2) admits a unique local strong solution (uε, πε, ϕε) on
[0, Tε]. Then, in light of the regularity ϕε ∈ L2([0, Tε];H

5(Ω)) ∩ H1(0, Tε;V ) (see
[158, Proposition 2.1]), we deduce that ϕε ∈ C

1
2 ([0, Tε];H

2(Ω)) (see [9]). Then, due
to the Sobolev embedding H2(Ω) ↪→ C(Ω), the function t 7→ ‖ϕε(t)‖C(Ω) is Hölder
continuous and

|‖ϕε(t)‖C(Ω) − ‖ϕ0‖C(Ω)| ≤ Ct
1
2 ,

where C only depends on the norm ‖ϕ0‖H3(Ω). Accordingly, we find T ∗ ∈ (0, Tε] such
that

‖ϕε(t)‖C(Ω) ≤ 1− 1

2
δ0, ∀ t ∈ [0, T ∗], (5.4.6)
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where T ∗ only depends on ‖ϕ0‖H3(Ω) and δ0. Noting that, by the choice of ε and the
definition of F̂ε, it holds F̂ε|[−1+ 1

2
δ0,1− 1

2
δ0] = F . Hence, (uε, πε, ϕε) actually is the strong

solution (u, π, ϕ) to the original problem (5.0.1)-(5.0.2) on [0, T ∗]. In turn, it is unique
and satisfies the separation property (5.4.2). The proof is complete.

Next, we derive a higher order differential inequality for (local) strong solutions.

Lemma 5.4.6. Let d = 3 and let the assumptions of Theorem 5.4.5 hold. Assume that
(u, π, ϕ) is a strong solution to problem (5.0.1)-(5.0.2) on [0, T ]. Define the function

Λ = ‖∇µ‖2 + ‖u‖2.

Then, we have
d

dt
Λ ≤ C∗

(
1 + Λ

7
3

)
. (5.4.7)

for almost every t ∈ (0, T ). Here, the constant C∗ only depends on Ω, α, m and
EGL(ϕ0).

Proof. By the regularity properties of a strong solution (see Theorem 5.4.5), we infer
that u · ∇ϕ ∈ L2(0, T ;V ). Thus, we test the third equation of (5.0.1) by µt such that

1

2

d

dt
‖∇µ‖2 + ‖∇ϕt‖2 +

∫
Ω

F ′′(ϕ)|ϕt|2 dx = −
∫

Ω

(u · ∇ϕ)µt dx. (5.4.8)

Next, in light of Remark 5.1.2, for any v ∈ Hσ ∩V, we have

〈ut, v〉 =

∫
Ω

(−∇π + µ∇ϕ)t · v dx

= −2

∫
Ω

div(∇ϕ⊗∇ϕt) · v dx

= 2

∫
Ω

(∇ϕ⊗∇ϕt) : ∇v dx

≤ 2‖∇ϕ‖L∞(Ω)‖∇ϕt‖‖v‖Vσ

≤ C‖ϕ‖H3(Ω)‖∇ϕt‖‖v‖Vσ ,

which entails that ut ∈ L2(0, T ; (Hσ ∩V)′). Thus, differentiating the first equation of
(5.0.1) with respect to time and testing the resulting equation by u, we get

1

2

d

dt
‖u‖2 =

∫
Ω

µt∇ϕ · u dx+

∫
Ω

µ∇ϕt · u dx. (5.4.9)

Noting that, by (3.3.4), we have∫
Ω

F ′′(ϕ)|ϕt|2 dx ≥ −α‖ϕt‖V ′0‖∇ϕt‖

≥ −1

2
‖∇ϕt‖2 − C‖ϕt‖2

V ′0
.

Then adding (5.4.8) to (5.4.9), we infer that

d

dt
Λ + ‖∇ϕt‖2 ≤ C‖ϕt‖2

V ′0
+ 2

∫
Ω

µ∇ϕt · u dx. (5.4.10)
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By comparison, we have
‖ϕt‖V ′0 ≤ ‖u‖+ ‖∇µ‖. (5.4.11)

On the other hand, by (3.1.11) with p = 3, we obtain∫
Ω

µ∇ϕt · u dx = −
∫

Ω

ϕtu · ∇µ dx

≤ ‖u‖‖ϕt‖L3(Ω)‖∇µ‖L6(Ω)

≤ C‖u‖‖ϕt‖
1
2‖∇ϕt‖

1
2

(
‖∆µ‖+ ‖µ‖

)
≤ C‖u‖‖ϕt‖

1
4

V ′0
‖∇ϕt‖

3
4

(
‖ϕt‖+ ‖u · ∇ϕ‖+ ‖µ‖

)
:= W1 +W2 +W3. (5.4.12)

The reminder terms Wi, i = 1, 3 can be controlled by (3.1.5), (3.3.4) and (5.4.11) as
follows

W1 = C‖u‖‖ϕt‖
1
4

V ′0
‖∇ϕt‖

3
4‖ϕt‖

≤ ‖u‖‖ϕt‖
3
4

V ′0
‖∇ϕt‖

5
4

≤ 1

6
‖∇ϕt‖2 + C‖u‖

8
3‖ϕt‖2

V ′0

≤ 1

6
‖∇ϕt‖2 + C

(
1 + Λ

7
3

)
,

and

W3 = C‖u‖‖ϕt‖
1
4

V ′0
‖∇ϕt‖

3
4‖µ‖

≤ C‖u‖‖ϕt‖
1
4

V ′0
‖∇ϕt‖

3
4

(
1 + ‖∇µ‖

)
≤ C‖u‖‖ϕt‖

1
4

V ′0
‖∇ϕt‖

3
4

(
1 + ‖∇µ‖

)
≤ 1

6
‖∇ϕt‖2 + C

(
1 + Λ

7
3

)
.

Here, we have used the estimates (5.3.14) and Young’s inequality. ConcerningW2, by
the Gagliardo–Nirenberg inequality (5.1.46), Young’s inequality and Lemma 3.4.6, we
get

W2 = C‖u‖‖ϕt‖
1
4

V ′0
‖∇ϕt‖

3
4‖u · ∇ϕ‖

≤ C‖u‖2‖ϕt‖
1
4

V ′0
‖∇ϕt‖

3
4‖∇ϕ‖L∞(Ω)

≤ 1

6
‖∇ϕt‖2 + C‖u‖

16
5 ‖ϕt‖

2
5

V ′0
‖ϕ‖

8
15

L∞(Ω)‖ϕ‖
16
15

W 2,6(Ω)

≤ 1

6
‖∇ϕt‖2 + C

(
1 + Λ

7
3

)
.

Collecting the above estimates together, we deduce (5.4.7).

Remark 5.4.7. It is worth mentioning that the differential inequality (5.4.7) has been
obtained without using the separation property (5.4.2) but only the regularity of strong
solutions to problem (5.0.1)-(5.0.2) given by Theorem 5.4.5.
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The stationary points

The stationary problem related to the evolution system (5.0.1)-(5.0.2) reads as follows{
−∆ψ + F ′(ψ) = F ′(ψ), in Ω

∂nψ = 0, on ∂Ω,
(5.4.13)

where ψ = ϕ0 = m. For any given m ∈ (−1, 1), we introduce the set of stationary
points

Zm =
{
ψ ∈ H2(Ω), EGL(ψ) < +∞ : ψ solves (5.4.13)

}
. (5.4.14)

The following result has been proven in [4, Section 6].

Proposition 5.4.8. The set Zm is nonempty. Every element ψ ∈ Sm is a critical point
of EGL. Moreover, for each ψ ∈ Zm, there is a constant ξ ∈ (0, 1) such that

|ψ(x)| ≤ 1− ξ, ∀x ∈ Ω. (5.4.15)

Next, on account of Proposition 5.4.8 and arguing as in [4, Proposition 6.3] (or [1,
Proposition 3]), the following gradient inequality of Łojasiewicz–Simon type can be es-
tablished. This inequality will be crucial in the study of stability and longtime behavior
of problem (5.0.1)-(5.0.2).

Lemma 5.4.9 (Łojasiewicz–Simon inequality). Let d = 2, 3. Assume that Ψ satisfies
(H) and Ψ is real analytic on the open interval (−1, 1). For any m ∈ (−1, 1), let
ψ ∈ Zm. Then, there exist constants θ ∈ (0, 1

2
) and β > 0 such that

|EGL(ϕ)− EGL(ψ)|1−θ ≤
∥∥∥−∆ϕ+ Ψ′(ϕ)−Ψ′(ϕ)

∥∥∥ , (5.4.16)

whenever ϕ ∈ H2(Ω) satisfying ‖ϕ− ψ‖H2(Ω) < β, ϕ = m and ∂nϕ = 0 on ∂Ω.

Finally, we provide a characterization of local energy minimizers of the functional E
(cf. Definition 5.4.1).

Lemma 5.4.10. Let ψ ∈ Vm be a local energy minimizer of EGL. Then, ψ ∈ Zm and it
satisfies the separation property (5.4.15).

Proof. We consider the Cahn–Hilliard equation with singular potential
ϕt = ∆µ, in Ω× (0,+∞),

µ = −∆ϕ+ F ′(ϕ), in Ω× (0,+∞),

∂nµ = ∂nϕ = 0, on ∂Ω× (0,+∞),

ϕ(·, 0) = ϕ0, in Ω.

(5.4.17)

It has been proved in [4, Section 6] that for both d = 2, 3 and any ϕ0 ∈ V with Ψ(ϕ0) ∈
L1(Ω), ϕ0 = m ∈ (−1, 1), problem (5.4.17) admits a unique solution ϕ(t), which
defines a family of operators {G(t)}t≥0 such that G(t) ∈ C([0,+∞);Vm), G(t)ϕ0 =
ϕ(t), for all t ≥ 0. Besides, ϕ(t) regularizes instantaneously for positive time, e.g.,
G(t)ϕ0 ∈ H2(Ω) for every t > 0. Then, {G(t)}t≥0 is a dynamical system on Vm in

92



5.4. Strong Solutions and Lyapunov Stability in Three dimensions

the sense of [149] and the energy functional EGL(ϕ) : Vm → R is a strict Lyapunov
function for {G(t)}t≥0 (due to an energy identity similar to (5.1.4) with u = 0).

Therefore, every local energy minimizer ψ ∈ Vm must be a stationary point of the
evolution problem (5.4.17), i.e., G(t)ψ = ψ for all t ≥ 0. On the other hand, due to the
instantaneous regularity property of problem (5.4.17), it has been shown in [?, Section
6] that the set of all stationary points is characterized by Zm. As a consequence, we
conclude that ψ ∈ Zm and ψ fulfills (5.4.15) for some ξ ∈ (0, 1).

Proof of Theorem 5.4.2
The following relations will be used in the subsequent proof.

Lemma 5.4.11. Let d = 3 and let the assumptions of Theorem 5.4.5 hold. Suppose that
(u, π, ϕ) is a strong solution to problem (5.0.1)-(5.0.2) on [0, T ]. Then, we have

‖u‖ ≤ ‖∇µ‖,
‖∇µ‖ ≤ ‖ϕ‖H3(Ω) + ‖F ′′(ϕ)‖L∞(Ω)‖∇ϕ‖,

‖ϕ‖H3(Ω) ≤ C
(
‖∇µ‖+ ‖F ′′(ϕ)‖L∞(Ω)‖ϕ‖V + ‖ϕ‖V

)
,

where the positive constant C only depends on Ω.

Proof. The first two conclusions are obvious. Next, by elliptic regularity, we have

‖ϕ‖H3(Ω) ≤ C(‖∆ϕ‖V + ‖ϕ‖L2(Ω))

≤ C
(
‖∇µ‖+ ‖F ′′(ϕ)‖L∞(Ω)‖∇ϕ‖+ ‖ϕ‖H2(Ω)

)
≤ C

(
‖∇µ‖+ ‖F ′′(ϕ)‖L∞(Ω)‖ϕ‖V

)
+ C‖ϕ‖

1
2
V ‖ϕ‖

1
2

H3(Ω)

≤ 1

2
‖ϕ‖H3(Ω) + C

(
‖∇µ‖+ ‖F ′′(ϕ)‖L∞(Ω)‖ϕ‖V + ‖ϕ‖V

)
,

where C only depends on Ω.

Proof of Theorem 5.4.2. The proof mainly follows the idea in [158], where problem
(5.0.1)-(5.0.2) with the regular potential (1.5.3) was considered. However, here we meet
an extra difficulty due the singular potential F . An essential step is to prove a separation
property from the pure states ±1 uniformly for t ≥ 0 along the trajectory of ϕ(t).

For any given m ∈ (−1, 1), let ψ ∈ Zm be an arbitrary local energy minimizer of
the free energy E such that (cf. Definition 5.4.1 and Lemma 5.4.10)

‖ψ‖C(Ω) ≤ 1− ξ, and EGL(ψ) ≤ EGL(ϕ) for all ϕ ∈ Vm : ‖ϕ− ψ‖V < χ. (5.4.18)

We note that the constants ξ ∈ (0, 1) and χ > 0 are fixed once ψ is given. Since Ψ
is assumed to be real analytic on (−1, 1), then by the separation property (5.4.15) and
the classical elliptic regularity theory for the Neumann problem, we have ψ ∈ Hk(Ω)
(k ∈ N) provided that Ω is a domain of class Ck.

Due to the Sobolev embedding theorem H2(Ω) ↪→ C(Ω) (d = 3), it holds

‖ϕ‖C(Ω) ≤ CS‖ϕ‖H2(Ω), (5.4.19)
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meanwhile, by (5.1.18) we have

‖ϕ‖2
V ≤ CP (‖∇ϕ‖2 + |ϕ|2), (5.4.20)

where CS and CP are positive constants that only depend on Ω.
Step 1. Bounds for the initial datum. We consider any initial datum ϕ0 ∈ H3(Ω)

with ∂nϕ = 0 on ∂Ω that satisfies

‖ϕ0‖H3(Ω) ≤M, ϕ0 = m, (5.4.21)
‖ϕ0 − ψ‖H2(Ω) ≤ η, (5.4.22)

where η ∈ (0, 1) will be determined later andM > 0 is given by (5.4.29) below. The
fact η < 1 implies that

‖ϕ0‖H2(Ω) ≤ ‖ψ‖H2(Ω) + 1. (5.4.23)

Moreover, if we further require

0 < η < min

{
1,

ξ

3CS

}
, (5.4.24)

it follows from (5.4.19) that

‖ϕ0‖C(Ω) ≤ ‖ψ‖C(Ω) + ‖ϕ0 − ψ‖C(Ω) ≤ 1− 2ξ

3
. (5.4.25)

We define the constants

K1 = max
s∈[−1+ ξ

3
,1− ξ

3
]
|F ′′(s)|, K2 = max

s∈[−1,1]
|F (s)|. (5.4.26)

Hence, it holds (cf. (5.4.25))

EGL(ϕ0) ≤ 1

2
‖∇ϕ0‖2 + |Ω| max

s∈[−1,1]
|F (s)|

≤ 1

2
(‖ψ‖V + 1)2 + |Ω|K2

:= γ1, (5.4.27)

where γ1 > 0 only depends on ‖ψ‖V , Ω, F , but is independent of ϕ0. Next, denote

γ2 = C
1
2
P

(
2γ1 + Θ0|Ω|+ 1

) 1
2 . (5.4.28)

Then, we take the constantM in (5.4.21) to be a sufficiently large but fixed number such
that

M ≥ C
[
(K1 + 1)γ2 + 2

]
, (5.4.29)

where the constant C is given in Lemma 5.4.11.
In the sequel we denote by C, Ci those constants that only depend on Ω, the aver-

aged massm, norms of the local minimizer ψ, the function Ψ and parameters like ξ, χ.
Specific dependences will be pointed out explicitly.
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Step 2. Strong solution on a finite interval. On account of the assumptions (5.4.21),
(5.4.24) and (5.4.29), it follows from Theorem 5.4.5 that there exists a unique local
strong solution (u, π, ϕ) to problem (5.0.1)-(5.0.2) on [0, T1] such that

‖ϕ(t)‖C(Ω) ≤ 1− ξ

3
, ∀ t ∈ [0, T1], (5.4.30)

where T1 depends, in particular, onM and ξ. We infer from (5.4.21) and Lemma 5.4.11
that

Λ(0) = ‖∇µ(0)‖2 + ‖u(0)‖2 ≤ 2
[
M +K1(‖ψ‖V + 1)

]2

:= M1. (5.4.31)

It follows from the higher order inequality (5.4.7) and (5.4.27) that there exists T2 ∈
(0, T1] depending onM1, α, Ω,m and ‖ψ‖V such that

Λ(t) ≤ 2M1, ∀ t ∈ [0, T2]. (5.4.32)

Besides, we set

E0 =
min{1,M1}T2

2
, (5.4.33)

which is a number that characterizes the energy drop along the trajectory ϕ(t) (cf.
(5.4.43)). By the energy identity (5.1.4), it holds EGL(ϕ(t)) ≤ EGL(ϕ0) for t ≥ 0.
On the other hand, we know that

EGL(ϕ(t)) ≥ 1

2
‖∇ϕ(t)‖2 − Θ0

2
|Ω|, ∀ t ∈ [0, T2].

Then, we deduce from (5.4.20), (5.4.27) and (5.4.28) that

‖ϕ(t)‖2
V ≤ CΩ(‖∇ϕ(t)‖2 +m2)

≤ CΩ

(
2E(ϕ0) + Θ0|Ω|+ 1

)
≤ γ2

2 , ∀ t ∈ [0, T2], (5.4.34)

which together with Lemma 5.4.11, (5.4.30) and (5.4.32) yields

‖ϕ(t)‖H3(Ω) ≤ C
[√

2M1 + (K1 + 1)γ2

]
:= M2, ∀ t ∈ [0, T2]. (5.4.35)

Step 3. Refined estimates. Our aim is to find a sufficiently small η > 0 such that
the local strong solution satisfies a uniform bound that is independent of the existence
interval. If this is true, then we can extend the unique local strong solution obtained in
Step 1 to be a global one on [0,+∞).

It follows from (5.4.30) and (5.4.34) that

EGL(ϕ0)− EGL(ϕ(t)) ≤ 1

2
‖∇(ϕ(t) + ϕ0)‖‖∇(ϕ(t)− ϕ0)‖

+ max
s∈[−1+ ξ

3
,1− ξ

3
]
|F ′(s)|‖ϕ(t)− ϕ0‖L1(Ω)

≤M3‖ϕ(t)− ϕ0‖V , ∀ t ∈ [0, T2], (5.4.36)
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where the constantM3 depends on γ2, ‖ψ‖V , Ψ, ξ and Ω.
For any ε > 0, let us now set

ω = min

{
1, ε, χ, β,

ξ

3CS
,

2E0

3M3

}
, (5.4.37)

where β > 0 is determined by Lemma 5.4.9 and E0 is given in (5.4.33). We define

Tη = inf{t > 0 : ‖ϕ(t)− ψ‖H2(Ω) ≥ ω} for η ∈
(

0,
ω

2

]
.

By (5.4.21) and continuity of the strong solution ϕ(t) in H2(Ω), it follows that Tη > 0.
Next, we claim that there exists at least a value of η such that Tη ≥ T2. Indeed, by
contradiction, we have that Tη < T2 for all η ∈ (0, ω

2
]. As a consequence, we apply

Lemma 5.4.9 to derive the following energy inequality on the interval [0, Tη] ⊂ [0, T2]

− d

dt
[EGL(ϕ(t))− EGL(ψ)]θ = −θ[EGL(ϕ(t))− EGL(ψ)]θ−1 d

dt
E(ϕ(t))

≥ θ(‖∇µ‖2 + ‖u‖2)

‖∇µ‖

≥ θ

2
(‖u‖+ ‖∇µ‖) ≥ C1‖ϕt‖V ′0 , (5.4.38)

where the constant C1 depends on θ and Ω. Here and after, we shall always exclude the
trivial case such that there is a t0 ∈ [0, Tη] such that EGL(ϕ(t0)) = EGL(ψ). In that case,
‖u(t)‖ = ‖∇µ(t)‖ = 0 for all t ≥ t0 by virtue of the energy identity (5.1.4) and the
evolution stops.

Then, using (5.4.38) and recalling that E(ϕ(t)) is nonincreasing and, by the choice
of ω, E(ϕ(t)) ≥ E(ψ) on [0, Tη] (cf. Definition 5.4.1), we infer that (cf. (5.4.36))∫ Tη

0

‖ϕt(τ)‖V ′0 dτ ≤ C1

(
EGL(ϕ0)− EGL(ψ)

)θ ≤ C2‖ϕ0 − ψ‖θV ,

where C2 depends on C1, ‖ψ‖V , F , ξ and Ω. As a consequence, we obtain

‖ϕ(Tη)− ψ‖H2(Ω) ≤ ‖ϕ0 − ψ‖H2(Ω) + ‖ϕ(Tη)− ϕ0‖H2(Ω)

≤ ‖ϕ0 − ψ‖H2(Ω) + C3‖ϕ(Tη)− ϕ0‖
3
4

H3(Ω)‖ϕ(Tη)− ϕ0‖
1
4

V ′0

≤ ‖ϕ0 − ψ‖H2(Ω) + C3(M +M2)
3
4

(∫ Tη

0

‖ϕt(τ)‖V ′0 dτ

) 1
4

≤ ‖ϕ0 − ψ‖H2(Ω) + C3(M +M2)
3
4C

1
4
2 ‖ϕ0 − ψ‖

θ
4

H2(Ω).

Choosing now

η = min

ω2 ,
(

ω

4C
1
4
2 C3(M +M2)

3
4

) 4
θ

 , (5.4.39)

we have ‖ϕ(Tη)− ψ‖H2(Ω) ≤ 3
4
ω < ω, which yields a contradiction with the definition

of Tη. As a consequence, for the above choice of η, it holds Tη ≥ T2 and we learn that

‖ϕ(t)− ψ‖H2(Ω) ≤ ω, ∀ t ∈ [0, T2]. (5.4.40)
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In turn, by (5.4.37) and (5.4.40) we obtain, for all t ∈ [0, T2],

‖ϕ(t)‖C(Ω) ≤ ‖ψ‖C(Ω) + CS‖ϕ(t)− ψ‖H2(Ω) ≤ 1− 2ξ

3
, (5.4.41)

‖ϕ(t)− ϕ0‖H2(Ω) ≤ ‖ϕ(t)− ψ‖H2(Ω) + ‖ϕ0 − ψ‖H2(Ω) ≤
E0

M3

. (5.4.42)

Then we infer from the energy identity (5.1.4), (5.4.36) and (5.4.42) that∫ T2

0

Λ(τ) dτ = EGL(ϕ0)− EGL(ϕ(T2)) ≤ E0. (5.4.43)

Step 4. Iteration argument. Due to the nonnegativity of the functionΛ and (5.4.43),
there exists t∗ ∈ [1

2
T2, T2] such that

Λ(t∗) ≤ min{1,M1}. (5.4.44)

Then it follows from Lemma 5.4.11, (5.4.29) and (5.4.34) that

‖ϕ(t∗)‖H3(Ω) ≤ C
[√

min{1, M1}+ (K1 + 1)γ2

]
< M. (5.4.45)

Now we easily see that ϕ(t∗) satisfies the same bounds as for ϕ0 (compare (5.4.21),
(5.4.25) with (5.4.41), (5.4.45)). Thus, we can take ϕ(t∗) as the new initial datum and
solve the problem (5.0.1)-(5.0.2) as in Step 1 and Step 2 on [t∗, t∗ + T2]. Thanks to the
uniqueness of strong solutions, this yields a local strong solution defined on the extended
interval [0, t∗ + T2]. After that we repeat the argument in Step 3 on [0, 3

2
T2] ⊂ [0, t∗ +

T2] to derive the same refined estimates (5.4.40)–(5.4.43) on [0, 3
2
T2] under exactly the

same choice of η (i.e., (5.4.39)). Again, there exists t∗∗ ∈ [T2,
3
2
T2] such that Λ(t∗∗) ≤

min{1,M1}. Then we can take t∗∗ as the initial time to repeat the above procedure and
extend the unique local strong solution to the extended interval [0, 2T2] with uniform
estimates (5.4.35) and (5.4.40) on [0, 2T2].

By iteration, we easily arrive at the conclusion of Theorem 5.4.2.

5.5 Longtime Behavior

In this section, we investigate the longtime behavior of global solutions.

The Infinite Dimensional Dynamical System
We briefly discuss the infinite dimensional dynamical system associated to (5.0.1)-
(5.0.2). For any m ∈ (−1, 1), we consider the phase space Vm (see (5.4.1)) with the
metric

d(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖V .
It is well-known that Vm is a complete metric space. The following result can be proven:

Theorem 5.5.1. Let m ∈ (−1, 1). Denote by Gm the family of all global weak solu-
tions to problem (5.0.1)-(5.0.2) with initial condition ϕ0 ∈ Vm. Then, Gm defines a
generalized semiflow on Vm in the sense of [13] and admits a unique global attractor.
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Thanks to the validity of Theorems 5.1.3 and 5.1.11, in particular, the energy identity
(5.1.4) for global weak solutions, the proof of Theorem 5.5.1 can be carried out by a
standard argument (see, e.g., [63]) with some minor modifications and thus we leave
the details to the interested readers.

Next, in two spatial dimensions, thanks to the uniqueness and regularity results (cf.
Theorem 5.2.1 and Theorem 5.3.1, we have a strongly continuous semigroup acting
on the phase space Vm defined via the rule Sm(t)ϕ0 = ϕ(t) (see Section 8.4). More-
over, Theorem 5.3.1 also entails that the global attractor is bounded in the more regular
space H4(Ω). Therefore, on account of known results for infinite dimensional dynam-
ical systems, the global attractor obtained in Theorem 5.5.1 consists of a time-section
of complete (i.e., defined on the whole R) strong solutions. Besides, exploiting the sep-
aration property (5.3.1), one can proceed to establish the following result through the
general approach described in [120].
Theorem 5.5.2. Let d = 2 andm ∈ (−1, 1). Assume that Ψ ∈ C3(−1, 1) and (H.2)−
(H.3) hold. The dynamical system (Vm,Sm(t)) has an exponential attractor that is
bounded in H4(Ω). This further implies, in particular, the global attractor for problem
(5.0.1)-(5.0.2) has finite fractal dimension.

Convergence to Single Stationary State
Concerning the longtime behavior of single trajectory associated to (5.0.1)-(5.0.2), we
have the uniqueness of the asymptotic limit as t→ +∞. In order to show this, we need
that the solution eventually satisfies the separation property. Accordingly, the following
result deal with any global weak solutions in dimension two, whereas it considers global
strong solutions in dimension three.
Theorem 5.5.3. Assume that Ψ is real analytic in (−1, 1). If d = 2, let (u, π, ϕ) be any
global weak solution to problem (5.0.1)-(5.0.2). If d = 3, let (u, π, ϕ) be a global strong
solution given by Theorem 5.4.2. Then, for both cases, there exists ϕ∞ ∈ H3(Ω) which
is a solution to the stationary Cahn–Hilliard equation

−∆ϕ∞ + F ′(ϕ∞) = F ′(ϕ∞), in Ω

∂nϕ∞ = 0, on ∂Ω,

ϕ∞ = ϕ0,

such that (u(t), ϕ(t)) converges to (0, ϕ∞) as t→ +∞ with the following convergence
rate

‖u(t)‖+ ‖ϕ(t)− ϕ∞‖H3(Ω) ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 1.

Here, C ≥ 0 is a constant depending on ‖ϕ0‖V (if d = 2), ‖ϕ0‖H3(Ω) (if d = 3),
‖ϕ∞‖H3(Ω) and F , while θ ∈ (0, 1

2
) is a constant depending only on ϕ∞ (cf. Lemma

5.4.9).
Remark 5.5.4. Theorem 5.5.3 implies that, for any global strong solution (u, π, ϕ) ob-
tained in Theorem 5.4.2, ϕwill not only stay close to that local energy minimizer ψ, but
also converge to a certain equilibrium ϕ∞ that is near ψ. Furthermore, if ψ is an isolated
minimizer, then it follows that ϕ∞ = ψ, namely, ψ is locally asymptotically stable.

Before proving Theorem 5.5.3, we need the following preliminary convergence re-
sult.
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Proposition 5.5.5. Let d = 2, 3 and let the assumptions of Theorem 5.4.5 hold. Assume
that the initial averaged mass satisfies ϕ0 = m ∈ (−1, 1) and Ψ is real analytic in
(−1, 1). If (u, π, ϕ) is a global strong solution to problem (5.0.1)-(5.0.2) and there exist
M > 0 and δ ∈ (0, 1) such that

‖ϕ(t)‖H3(Ω) ≤M, ‖ϕ(t)‖C(Ω) ≤ 1− δ, ∀ t ≥ 0, (5.5.1)

then (u(t), ϕ(t)) converges to an equilibrium (0, ϕ∞) as t → +∞ with the following
convergence rate

‖u(t)‖+ ‖ϕ(t)− ϕ∞‖H3(Ω) ≤ C(1 + t)−
θ

1−2θ , ∀ t ≥ 0. (5.5.2)

Here,ϕ∞ ∈ Zm∩H3(Ω) is a solution to the stationary Cahn–Hilliard equation (5.4.13),
C > 0 is a constant depending onM , ‖ϕ∞‖H3(Ω), δ, Ψ and Ω, θ ∈ (0, 1

2
) is a constant

depending only on ϕ∞.

Proof. We observe that due to the assumption (5.5.1), F (ϕ(t)) is confined on [−1 +
δ, 1 − δ] along the trajectory ϕ(t) for t ≥ 0 so that Lemma 5.4.9 can apply. Then, the
conclusion follows from the same argument as in [158] for the problem (5.0.1)-(5.0.2)
with the regular potential (1.5.3).

We can now proceed to prove Theorem 5.5.3.

Proof of Theorem 5.5.3. In light of Theorem 5.3.1 for any global weak solution (u, π, ϕ)
in two dimensions, we can consider our solution from a certain positive time on to deal
with a (global) strong solution. By Theorem 5.3.1 (resp. Theorem 5.4.2, with ε suffi-
ciently small, cf. (5.4.41)) for global strong solutions in two (resp. three) dimensions,
we see that the assumptions made in Proposition 5.5.5 are fulfilled. As an immediate
consequence, the conclusion in Theorem 5.5.3 holds.
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CHAPTER6
The Brinkman-Cahn-Hilliard system

In this chapter we consider the Brinkman–Cahn–Hilliard (BCH) system with un-
matched viscosities in two space dimensions. We first show the existence of weak
solutions. In particular, we are able to prove further regularities in the class of

weak solutions. In turn, these properties allow us to address the uniqueness of weak
solutions. Then, we study the regularity propagation in time and the instantaneous sep-
aration property from the pure phases.

In a bounded domain Ω ⊂ R2, the Brinkman–Cahn–Hilliard system with unmatched
viscosities reads as

−div(ν(ϕ)Du) + u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ϕ = ∆µ,

µ = −∆ϕ+ F ′(ϕ),

in Ω× (0, T ), (6.0.1)

subject to the boundary and initial conditions{
u = 0, ∂nϕ = ∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(6.0.2)

General agreement. Throughout this chapter, if it is not otherwise stated, we indicate
by C a generic positive constant depending only on the domain and on structural quan-
tities. The constant C may vary from line to line and even within the same line. Any
further dependence will be explicitly pointed out if necessary.
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6.1 Existence of Weak Solutions

In the sequel the viscosity coefficient ν = ν(s) is assumed to be a bounded function
satisfying ν ∈ C2(R) and

ν(s) ≥ 2ν1 > 0, ∀ s ∈ R. (6.1.1)

We introduce the definition of weak solutions.

Definition 6.1.1. Given ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1, a pair (u, ϕ) is a
weak solution to (6.0.1)-(6.0.2) on [0, T ] if

u ∈ L2(0, T ; Vσ),

ϕ ∈ L∞(0, T ;V ) ∩ L4(0, T ;H2(Ω)) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

Ψ′(ϕ) ∈ L2(0, T ;H),

and

(ν(ϕ)Du, Dv) + (u, v) = (µ∇ϕ, v), ∀ v ∈ Vσ, (6.1.2)
〈∂tϕ, v〉+ (u · ∇ϕ, v) + (∇µ,∇v) = 0, ∀ v ∈ V, (6.1.3)

for almost every t ∈ (0, T ), where µ ∈ L2(0, T ;V ) is given by

µ = −∆ϕ+ F ′(ϕ), (6.1.4)

for almost every (x, t) ∈ Ω × (0, T ). Moreover, ∂nϕ = 0 a.e. on ∂Ω × (0, T ) and
ϕ(·, 0) = ϕ0 a.e. in Ω.

Remark 6.1.2. It is straightforward to observe that any solution satisfies the mass con-
servation property, namely,

ϕ(t) = ϕ0, ∀ t ≥ 0.

Remark 6.1.3. Note that equation (6.1.2) is equivalent to

(ν(ϕ)Du, Dv) + (u, v) = (∇ϕ⊗∇ϕ,∇v), ∀ v ∈ Vσ,

in light of the equality

µ∇ϕ = ∇
(1

2
|∇ϕ|2 + F (ϕ)

)
− div(∇ϕ⊗∇ϕ).

Remark 6.1.4. As customary, the pressure term is dropped in the weak formulation of
the Brinkman’s law. Indeed, the pressure can be recovered (up to a constant) thanks to
the classical de Rham’s theorem (see, for instance, [151]). In particular, since

S = ∇ · (ν(ϕ)Du)− u− µ∇ϕ

is orthogonal (in the dual sense) to any element of H1
0(Ω), then there exists a function

π ∈ L2(0, T ;L2
0(Ω)) satisfying∇π = S.

We state our existence result.
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Theorem 6.1.5. Let ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, for any T > 0,
there exists a weak solution (u, ϕ) to problem (6.0.1)-(6.0.2) on [0, T ] such that

ϕ ∈ C([0,∞), V ),

and the energy identity

EGL(ϕ(t)) +

∫ t

s

‖
√
ν(ϕ(τ))Du(τ)‖2 + ‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ = EGL(ϕ(s))

is satisfied for all 0 ≤ s < t <∞. Furthermore, we have the dissipative estimates

EGL(ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEGL(ϕ0)e−ωt + C, (6.1.5)

and ∫ t+1

t

‖ϕ(τ)‖4
H2(Ω) + |µ(τ)|2 dτ ≤ CEGL(ϕ0)2e−ωt + C (6.1.6)

for every t ≥ 0, where ω and C are positive constants independent of the initial datum.

The rest of the section is devoted to the proof of Theorem 6.1.5, which is obtained
via an approximation procedure and energy estimates.

Approximation of the singular potential

We recall the sequence of regular functionsΨλ which approximate the singular potential
Ψ introduced in Section 3.2. For any λ > 0, there exists

Ψλ : R→ R

such that

(i) Ψλ is convex and Ψλ(s)↗ Ψ(s), for all s ∈ R, as λ→ 0;

(ii) For any 0 < λ ≤ 1, there exists C > 0 such that

Ψλ(s) ≥
1

4λ
s2 − C, ∀ s ∈ R, ∀λ ∈ (0, λ];

(iii) Ψ′λ is Lipschitz on R with constant 1
λ
and Ψ′′λ(s) exists (see Lemma 5.1.5) for all

s ∈ R;

(iv) |Ψ′λ(s)| ↗ |Ψ′(s)| for s ∈ (−1, 1) and Ψ′λ converges uniformly to Ψ′ on any set
[a, b] ⊂ (−1, 1);

(v) Ψλ(0) = Ψ′λ(0) = 0, for all λ > 0.

The approximating problems.

For any λ ∈ (0, 1) fixed, we introduce the quadratic perturbation of Ψλ by

Fλ(s) = Ψλ(s)−
Θ0

2
s2.
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The corresponding regular BCHλ problem reads as
−div(ν(ϕ)Du) + u +∇π = µ∇ϕ,
div u = 0,

ϕt + u · ∇ϕ = ∆µ,

µ = −∆ϕ+ F ′λ(ϕ),

endowed with (6.0.2). Analogously to the singular case, given any ϕ0 ∈ V , a pair (u, ϕ)
is a solution of BCHλ on [0, T ] if

u ∈ L2(0, T ; Vσ),

ϕ ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)) ∩H1(0, T ;V ′),

and

(ν(ϕ)Du, Dv) + (u, v) = (µ∇ϕ, v), ∀ v ∈ Vσ, (6.1.7)
〈∂tϕ, v〉+ (u · ∇ϕ, v) + (∇µ,∇v) = 0, ∀ v ∈ V, (6.1.8)

for almost every t ∈ (0, T ), where

µ = −∆ϕ+ F ′λ(ϕ) ∈ L2(0, T ;V ).

The Brinkman–Cahn–Hilliard system with regular potential having polynomial growth,
satisfying also suitable dissipation assumptions, has been studied in [20]. Since Fλ
complies with these requirements, for any λ > 0 we have the following
Theorem 6.1.6. Let ϕ0 ∈ V . Then, for any T > 0, the BCHλ problem has at least a
weak solution (u, ϕ) on [0, T ] such that

ϕ ∈ C([0, T ], V ) ∩ L2(0, T ;H3(Ω)),

which satisfies (6.1.7)-(6.1.8).
The proof of Theorem 6.1.6 is carried out by a standard Galerkin method and by

exploiting the Lipschitz regularity of Fλ.

Energy estimates
Let λ ∈ (0, 1) be fixed. We denote the energy of a solution to BCHλ by

EλGL(ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

Fλ(ϕ) dx.

In what follows, the generic positive constant C is independent of λ and of the initial
datum.
Lemma 6.1.7. There exist λ > 0 and ω > 0 such that, for any ϕ0 ∈ V and any
0 < λ ≤ λ, we have the dissipative estimates

EλGL(ϕ(t)) + ‖ϕ(t)‖2
V ≤ CEλGL(ϕ0)e−ωt + C(Ψλ(ϕ0) + 1), (6.1.9)

and ∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEλGL(ϕ0)e−ωt + C(Ψλ(ϕ0) + 1), (6.1.10)

for every t ≥ 0.
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Proof. We take v = u in (6.1.7) and v = µ in (6.1.8). Summing up the resulting
equalities, we have

d

dt
EλGL(ϕ) + 〈ν(ϕ)Du, Du〉+ ‖u‖2 + ‖∇µ‖2 = 0. (6.1.11)

To reconstruct the energy in (6.1.11), we test µ by ϕ− ϕ, getting

(Ψ′λ(ϕ), ϕ− ϕ) + ‖∇ϕ‖2 = Θ0(ϕ, ϕ− ϕ) + (µ− µ, ϕ− ϕ). (6.1.12)

By the convexity of Ψλ, we know that∫
Ω

Ψλ(ϕ) dx ≤
∫

Ω

Ψ′λ(ϕ)(ϕ− ϕ) dx+

∫
Ω

Ψλ(ϕ) dx.

By (3.1.5), we also get

Θ0(ϕ, ϕ− ϕ) + (µ− µ, ϕ− ϕ) ≤ 1

2
‖∇ϕ‖2 + C‖∇µ‖2 + CΘ2

0‖ϕ‖2.

Then, we arrive at∫
Ω

Ψλ(ϕ) dx+
1

2
‖∇ϕ‖2 ≤ C‖∇µ‖2 + CΨλ(ϕ) + CΘ2

0‖ϕ‖2.

Now, exploiting (ii) with a small λ = λ(Θ0), we find

1

2
EλGL(ϕ) ≤ C‖∇µ‖2 + CΨλ(ϕ) + C.

Multiplying the above inequality by 2ω, where ω = 1
4C

, and, summing up with (6.1.11),
we obtain

d

dt
EλGL(ϕ) + ωEλGL(ϕ) + ν1‖∇u‖2 +

1

2
‖∇µ‖2 ≤ CΨλ(ϕ) + C. (6.1.13)

Here, we have also used (6.1.1) and the Korn inequality (3.5.4). An application of the
Gronwall lemma, together with the mass conservation, yields

EλGL(ϕ(t)) ≤ EλGL(ϕ0)e−ωt + C(Ψλ(ϕ0) + 1),

for some ω,C > 0 that are independent of λ. In addition, owing to (ii), for a possibly
smaller λ, there exists C such that

EλGL(ϕ) ≥ 1

2
‖ϕ‖2

V − C,

for every λ ∈ (0, λ]. Therefore, we infer that

‖ϕ(t)‖2
V ≤ CEλGL(ϕ0)e−ωt + C(Ψλ(ϕ0) + 1), ∀ t ≥ 0.

A final integration of (6.1.13) on [t, t+ 1] completes the proof.

We prove two consequences of the dissipative nature of the system, referring here-
after to λ and ω as the parameters defined in Lemma 6.1.7.
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Lemma 6.1.8. We have∫ t+1

t

‖∂tϕ(τ)‖2
V ′ dτ ≤ C

(
EλGL(ϕ0)e−ωt + Ψλ(ϕ0) + 1

)2

, ∀ t ≥ 0. (6.1.14)

Proof. We first observe that

(u · ∇ϕ, v) ≤ ‖u‖L3(Ω)‖ϕ‖L6(Ω)‖∇v‖ ≤ C‖∇u‖‖ϕ‖V ‖∇v‖, v ∈ V.

Then, exploiting (6.1.9), we have∫ t+1

t

‖u(τ) · ∇ϕ(τ)‖2
V ′ dτ ≤ C

(
EλGL(ϕ0)e−ωt + Ψλ(ϕ0) + 1

)∫ t+1

t

‖∇u(τ)‖2 dτ.

Therefore, by comparison∫ t+1

t

‖∂tϕ(τ)‖2
V ′ dτ

≤ C
(
EλGL(ϕ0)e−ωt + Ψλ(ϕ0) + 1

)∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 dτ,

which, in turn, entails the desired conclusion.

Lemma 6.1.9. Let ϕ0 ∈ V with ϕ0 = m ∈ (−1, 1). We have∫ t+1

t

‖∆ϕ(τ)‖4 + ‖Ψ′(ϕ(τ))‖2
L1(Ω) + |µ(τ)|2 dτ ≤ C

(
EλGL(ϕ0)e−ωt + Ψλ(ϕ0) + 1

)2

,

for every t ≥ 0.

Proof. Testing µ by −∆ϕ and integrating by parts, we get

(∇µ,∇ϕ) = ‖∆ϕ‖2 + (F ′λ(ϕ),−∆ϕ).

An additional integration by parts, together with (H), yields

(F ′λ(ϕ),−∆ϕ) = (F ′′λ (ϕ)∇ϕ,∇ϕ) ≥ −α‖∇ϕ‖2.

Hence, we find
‖∆ϕ‖2 ≤ C‖∇ϕ‖2 + ‖∇µ‖‖∇ϕ‖.

Besides, we have
µ = (F ′λ(ϕ), 1).

In order to control the right-hand side, we recall that there exists C > 0, independent of
λ ∈ (0, λ], such that

‖F ′λ(ϕ)‖L1(Ω) ≤ (F ′λ(ϕ)− F ′λ(ϕ), ϕ− ϕ) + C.

where C depends onm (see, e.g., [118, Proposition A.2] and Chapter 7). Moreover, by
virtue of (6.1.12), we know that

(F ′λ(ϕ), ϕ− ϕ) ≤ (µ− µ, ϕ− ϕ)

≤ C‖∇µ‖‖∇ϕ‖.
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Combining the above controls, we arrive at

‖F ′λ(ϕ)‖L1(Ω) + |µ| ≤ C‖∇µ‖‖∇ϕ‖+ C.

Finally, we deduce that

‖∆ϕ‖4 + ‖F ′λ(ϕ)‖2
L1(Ω) + |µ|2 ≤ C

(
‖∇ϕ‖2 + ‖∇µ‖‖∇ϕ‖+ 1

)2
. (6.1.15)

In light of (6.1.9)-(6.1.10), the claim follows from an integration in time on [t, t+1].

Remark 6.1.10. Note that ϕ ∈ L2(0, T ;H3(Ω)) is obtained by testing the equation
of µ by −∆2ϕ (see [20]) and exploiting the Lipschitz regularity of F ′λ. In turn, ϕ ∈
C([0, T ], V ) immediately follows. Nonetheless, this argument does not work in presence
of the singular potential.

Existence of a weak solution to the BCH system
Let us fix

ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and ϕ0 = m ∈ (−1, 1).

Thanks to Theorem 6.1.6, for λ ∈ (0, λ], we consider the family of solutions (uλ, ϕλ)
to BCHλ departing from ϕ0. On account of property (i), we observe that

Ψλ(s) ≤ Ψ(s) ≤ C, ∀ s ∈ [−1, 1].

In turn, this gives EλGL(ϕ0) ≤ EGL(ϕ0). Thus, from Lemmas 6.1.7, 6.1.8 and 6.1.9, we
infer the uniform estimates

‖ϕλ(t)‖2
V ≤ C,

and ∫ t+1

t

‖∇uλ(τ)‖2 + ‖ϕλ(τ)‖4
H2(Ω) + ‖∂tϕλ(τ)‖2

V ′ + ‖µλ(τ)‖2
V dτ ≤ C,

for every t ≥ 0, where the right-hand sides are independent of λ.
Now, in the limit λ→ 0, we have the following convergences (up to subsequences)

uλ → u weakly in L2(0, T ; Vσ),

ϕλ → ϕ weakly star in L∞(0, T ;V ),

ϕλ → ϕ weakly in L4(0, T ;H2(Ω)),

∂tϕλ → ∂tϕ weakly in L2(0, T ;V ′),

µλ → µ weakly in L2(0, T ;V ).

By the classical Aubin-Lions compactness lemma, we also deduce that

ϕλ → ϕ strongly in L2(0, T ;V ) ∩ C([0, T ], H),

and
ϕλ(x, t)→ ϕ(x, t) a.e. (x, t) in Ω× (0, T ).

We claim that the limit pair (u, ϕ) is a weak solution according to Definition 6.1.1.
Indeed, the required regularity of (u, ϕ) immediately follows by the above convergences.
Next, we show that ϕ fulfils

|ϕ(x, t)| < 1 a.e. (x, t) in Ω× (0, T ).
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To this aim, note that ∫ T

0

‖Ψ′λ(ϕλ(t))‖L1(Ω) dt ≤ C,

for some C > 0 depending on T and on the initial datum. Following a standard argu-
ment, for any fixed η ∈ (0, 1/2) we introduce the set

Eλ
η = {(x, t) ∈ Ω× [0, T ] : |ϕλ(x, t)| > 1− η} .

It is easy to see that

|Eλ
η | ≤

C

min{Ψ′λ(1− η), |Ψ′λ(−1 + η)|}
.

Hence, passing to the limit as λ→ 0 and then letting η → 0, we conclude

| {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1} | = 0.

Regarding the nonlinear potential, using the pointwise convergence of ϕλ and the uni-
form convergence of Ψ′λ to Ψ′ on any closed subset of (−1, 1), we infer that

Ψ′λ(ϕλ)→ Ψ′(ϕ) a.e. (x, t) ∈ Ω× (0, T ).

Moreover, using the definition of µλ, we get∫ T

0

‖Ψ′λ(ϕλ(τ))‖2 dτ ≤ C.

Then, we deduce that Ψ′λ(ϕλ) → Ψ′(ϕ) weakly in L2(0, T ;H), which allows us to
identify

µ = −∆ϕ+ F ′(ϕ) ∈ L2(0, T ;V ).

Finally, in a standard way, we pass to the limit in the weak formulation of BCHλ proving
the validity of (6.1.2)-(6.1.3).

Energy equality and dissipativity

Let us define the functional

E∗GL(ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

Ψ(ϕ) dx, ∀ϕ ∈ H.

It is clear that E∗GL is proper, convex and lower-semicontinuous. Hence, appealing to
[131, Lemma 4.1], we infer that t 7→ E∗GL(ϕ) is absolutely continuous on [0, T ] and

d

dt
E∗GL(ϕ) = 〈∂tϕ, µ+ Θ0ϕ〉, a.e. t ∈ [0, T ].

In particular, it follows by a standard argument that∫
Ω

Ψ(ϕ(·)) dx ∈ C([0, T ]),
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which in turn gives ϕ ∈ C([0, T ], V ). Now, taking v = µ in (6.1.3) and exploiting the
standard chain rule, we get

d

dt
EGL(ϕ) + ‖∇µ‖2 + (u∇ϕ, µ) = 0, a.e. t ∈ [0, T ]. (6.1.16)

At this time, taking v = u in (6.1.2) and summing up to (6.1.16), we find

d

dt
EGL(ϕ) + ‖

√
ν(ϕ)Du‖2 + ‖u‖2‖∇µ‖2 = 0, a.e. t ∈ [0, T ],

proving the energy equality claimed in Theorem 6.1.5. We are left to establish the dis-
sipative estimates. As a matter of fact passing to the limit as λ→ 0 in (6.1.9)-(6.1.10),
we deduce that

EGL(ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEGL(ϕ0)e−ωt + C,

for almost every t ≥ 0. The continuity of the energy EGL ∈ C([0, T ]) allows us to
conclude that the inequality holds true for all t ≥ 0. Finally, the control (6.1.6) follows
by Lemma 6.1.9. This finishes the proof of Theorem 6.1.5.

6.2 Further Regularity of Weak Solutions

We establish some further regularity properties of weak solutions (u, ϕ) given by The-
orem 6.1.5. In the sequel, the generic constant C > 0 may depend on E(ϕ0) and ϕ0.

Lemma 6.2.1. For any p ≥ 2, there exists C = C(p) such that∫ t+1

t

‖ϕ(τ)‖2
W 2,p(Ω) + ‖Ψ′(ϕ(τ))‖2

Lp(Ω) dτ ≤ C, ∀ t ≥ 0.

Proof. The claim immediately follows from Corollary 3.4.3 and Theorem 6.1.5.

Lemma 6.2.2. We have ∫ t+1

t

‖∇u(τ)‖4 dτ ≤ C, ∀ t ≥ 0.

Proof. We take v = u in (6.1.2) (cfr. Remark 6.1.3)

(ν(ϕ)Du, Du) + ‖u‖2 = (∇ϕ⊗∇ϕ,∇u).

Hence, exploiting (6.1.1) and the Korn inequality (3.5.4), we have

ν1‖∇u‖2 + ‖u‖2 ≤ (∇ϕ⊗∇ϕ,∇u).

By (3.1.7), we deduce that

(∇ϕ⊗∇ϕ,∇u) ≤ ‖∇u‖‖∇ϕ‖2
L4(Ω)

≤ C‖∇u‖‖ϕ‖V ‖ϕ‖H2(Ω)

≤ ν1

2
‖∇u‖2 + C‖ϕ‖2

H2(Ω),
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so we end up with the control

‖∇u‖ ≤ C‖ϕ‖H2(Ω).

The thesis follows from (6.1.6).

Remark 6.2.3. It is worth noticing that the above regularity for u holds true also for
the Galerkin approximating solutions. Unfortunately, this is not enough to ensure the
uniqueness of weak solutions, and we need to gain some extra regularity properties for
u. To this aim, let us observe that (6.1.2) is also equivalent to

(ν(ϕ)Du, Dv) + (u, v) = −(ϕ∇µ, v), ∀ v ∈ V,

for almost every t ∈ (0, T ), where

ϕ∇µ ∈ L2(0, T ;H),

according to the boundedness ofϕ stated in theDefinition 6.1.1. However, due to the vis-
cosity depending on concentrations, we do not expect the regularityu ∈ L2(0, T ;H2(Ω))
as well as in the case of constant viscosity by the classical regularity result for the Stokes
problem (see Section 3.6).

We prove the following crucial result.

Lemma 6.2.4. We have ∫ t+1

t

‖u(τ)‖
8
5

W2, 43 (Ω)
dτ ≤ C, (6.2.1)

and ∫ t+1

t

‖u(τ)‖2
W1,3(Ω)dτ ≤ C, (6.2.2)

for every t ≥ 0.

Proof. Let us first observe that the velocity equivalently solves

〈ν(ϕ)Du, Dv〉 = 〈f, v〉, v ∈ Vσ,

where
f = −ϕ∇µ− u.

Now, we apply Lemma 3.6.1 with p = 4
3
and r = 4 obtaining

‖u‖
W2, 43 (Ω)

≤ C
(
1 + ‖∇ϕ‖L4(Ω)

)(
‖f‖+ ‖∇u‖

)
.

By (3.1.7) and the Young inequality, we have

‖u‖
8
5

W2, 43 (Ω)
≤ C

(
1 + ‖f‖2 + ‖∇u‖2 + ‖ϕ‖4

H2(Ω)

)
.

Recalling that ∫ t+1

t

‖f(τ)‖2 + ‖∇u(τ)‖2 + ‖ϕ(τ)‖4
H2(Ω) dτ ≤ C,
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we conclude ∫ t+1

t

‖u(τ)‖
8
5

W2, 43 (Ω)
dτ ≤ C.

In order to prove (6.2.4), we recall the following Gagliardo-Nirenberg inequality (see
Section 3.1)

‖u‖W1,3(Ω) ≤ ‖u‖
2
3

W2, 43 (Ω)
‖u‖

1
3

W1,2(Ω).

Hence, we deduce

‖u‖2
W1,3(Ω) ≤ C‖u‖

4
3

W2, 43 (Ω)
‖∇u‖

2
3 ≤ ‖u‖

8
5

W2, 43 (Ω)
+ C‖∇u‖4,

and the conclusion follows by collecting (6.2.1) with Lemma 6.2.2.

6.3 Uniqueness of Weak Solutions

We are now in a position to prove the following continuous dependece estimate with
respect to the initial conditions. In turn, this implies the uniqueness of weak solutions.

Theorem 6.3.1. Let ϕ01, ϕ02 be such that ϕ0i ∈ V , Ψ(ϕ0i) ∈ L1(Ω) and |ϕ0i| < 1,
i = 1, 2. Assume that (u1, ϕ1) and (u2, ϕ2) are two weak solutions to the BCH problem
on [0, T ]with initial dataϕ01 andϕ02, respectively. Then, there exists a positive constant
C = C(T ) such that

‖ϕ1(t)− ϕ2(t)‖V ′ ≤ C‖ϕ01 − ϕ02‖V ′ + C|ϕ01 − ϕ02|1/2,

for any t ∈ [0, T ]. In particular, the energy solution to the BCH system is unique.

Proof. Let us consider (u1, ϕ1) and (u2, ϕ2) two weak solutions to the BCH systemwith
total mass ϕ01 and ϕ02. Their difference u = u1 − u2, ϕ = ϕ1 − ϕ2 solves

(ν(ϕ1)Du, Dv) + (ν(ϕ1)− ν(ϕ2)Du2, Dv)

+(u, v) = (∇ϕ⊗∇ϕ1,∇v) + (∇ϕ⊗∇ϕ2,∇v), ∀ v ∈ Vσ, (6.3.1)

and

〈∂tϕ, v〉+ (u1 · ∇ϕ, v) + (u · ∇ϕ2, v) + (∇µ,∇v) = 0, ∀ v ∈ V, (6.3.2)

where µ = µ1 − µ2 satisfies

µ = −∆ϕ+ F ′(ϕ1)− F ′(ϕ2).

We note that ϕ(t) = ϕ01 − ϕ02 for all t ≥ 0. Taking v = N (ϕ− ϕ) in (6.3.2), we find

1

2

d

dt
‖ϕ− ϕ‖2

V ′0
+ (µ, ϕ− ϕ) = I1 + I2,

having set
I1 = (ϕu1,∇N (ϕ− ϕ)), I2 = (ϕ2u,∇N (ϕ− ϕ)).
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By the assumptions on F , we deduce

(µ, ϕ− ϕ) = ‖∇ϕ‖2 + (F ′(ϕ1)− F ′(ϕ2), ϕ1 − ϕ2) + (F ′(ϕ1)− F ′(ϕ2), ϕ)

≥ ‖∇ϕ‖2 − α‖ϕ‖2 − |(F ′(ϕ1)− F ′(ϕ2), ϕ)|

≥ ‖ϕ‖2
V − (α + 1)‖ϕ‖2 −

(
‖F ′(ϕ1)‖L1(Ω) + ‖F ′(ϕ2)‖L1(Ω)

)
|ϕ|.

Besides, by (3.3.4), we have

(α + 1)‖ϕ‖2 ≤ C‖∇ϕ‖‖ϕ− ϕ‖V ′0 + C|ϕ|2

≤ 1

2
‖ϕ‖2

V + C‖ϕ‖2
∗.

We set
Υ(t) = C

(
‖F ′(ϕ1(t))‖L1(Ω) + ‖F ′(ϕ2(t))‖L1(Ω)

)
,

which is a summable on any [0, T ]. Owing to the mass conservation, we thus obtain

d

dt
‖ϕ‖2

∗ +
1

2
‖ϕ‖2

V ≤ C‖ϕ‖2
∗ + Υ|ϕ|+ I1 + I2. (6.3.3)

We proceed by estimating I1 and I2. First, we have

|I1| ≤ ‖u1‖L3(Ω)‖ϕ‖L6(Ω)‖ϕ− ϕ‖V ′0
≤ 1

4
‖ϕ‖2

V + C‖u1‖2
L3(Ω)‖ϕ‖2

∗.

Next, since by definition of solution ‖ϕ2‖L∞(Ω) ≤ 1,

|I2| ≤ ‖u‖‖ϕ2‖L∞(Ω)‖ϕ− ϕ‖V ′0
≤ ‖u‖‖ϕ‖∗.

Now, in order to find a control for the velocity field, we take v = u in (6.3.1) yielding

(ν(ϕ1)Du, Du) + ‖u‖2 + J = (∇ϕ⊗∇ϕ1,∇u) + (∇ϕ⊗∇ϕ2,∇u), (6.3.4)

where
J = (ν(ϕ1)− ν(ϕ2)Du2, Du).

By Sobolev embedding, we notice that

(∇ϕ⊗∇ϕ1,∇u) ≤ ‖∇ϕ‖‖∇ϕ‖L∞(Ω)‖∇u‖

≤ ν1

4
‖∇u‖2 + C‖ϕ1‖2

W 2,3(Ω)‖∇ϕ‖2.

Dealing analogously with the last term, on account of (6.1.1) and (3.5.4), we arrive at
ν1

2
‖∇u‖2 + ‖u‖2 + J ≤ C

(
‖ϕ1‖2

W 2,3(Ω) + ‖ϕ2‖2
W 2,3(Ω)

)
‖ϕ‖2

V . (6.3.5)

Regarding J , by ν ∈ C1(R), we find the control

J ≤ C‖ϕ‖L6(Ω)‖∇u2‖L3(Ω)‖∇u‖

≤ ν1

2
‖∇u‖2 + C‖∇u2‖2

L3(Ω)‖ϕ‖2
V .
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Thus, we learn by (6.3.5) that

‖u‖ ≤ C
(
‖ϕ1‖W 2,3(Ω) + ‖ϕ2‖W 2,3(Ω) + ‖u2‖W1,3(Ω)

)
‖ϕ‖V ,

and, exploiting this estimate in I2, we find

I2 ≤
1

4
‖ϕ‖2

V + C
(
‖ϕ1‖2

W 2,3(Ω) + ‖ϕ2‖2
W 2,3(Ω) + ‖u2‖2

W1,3(Ω)

)
‖ϕ‖2

∗.

Collecting the above controls for I1 and I2 in (6.3.3), we obtain the final differential
inequality

d

dt
‖ϕ‖2

∗ ≤ Γ‖ϕ‖2
∗ + Υ|ϕ|,

having set

Γ(t) = C
(

1 + ‖ϕ1(t)‖2
W 2,3(Ω) + ‖ϕ2(t)‖2

W 2,3(Ω) + ‖u2(t)‖2
W1,3(Ω) + ‖u1(t)‖2

Vσ

)
,

which is summable in light of Lemma 6.2.1 and Lemma 6.2.4. An application of the
Gronwall lemma gives

‖ϕ(t)‖2
∗ ≤ ‖ϕ(0)‖2

−1eC + C|ϕ(0)|eC , ∀ t ∈ [0, T ].

In particular, if ϕ01 = ϕ02, then ϕ1 ≡ ϕ2 and by (6.3.4), u1 ≡ u2 as well, thus unique-
ness follows.

6.4 Regularity Properties and Separation Property

Let R > 0 andm ∈ (−1, 1) be given. In the sequel, we consider bundles of trajectories
(u, ϕ) departing from ϕ0 such that

EGL(ϕ0) ≤ R and ϕ0 = m.

The aim is proving higher order regularity estimates for the trajectories which depend
onR andm but are independent of the specific choice of the initial datum. Accordingly,
the generic constant C > 0 depends on R andm.

Theorem 6.4.1. For every σ > 0, there exists C = C(σ) such that

‖µ‖L∞(σ,∞;V ) + ‖u‖L∞(σ,∞;Vσ) ≤ C,

and ∫ t+1

t

‖u(τ)‖2
Wσ

+ ‖ϕt(τ)‖2
V dτ ≤ C, ∀ t ≥ σ. (6.4.1)

Moreover, for any p ≥ 2, there exists C = C(σ, p) such that

‖ϕ‖L∞(σ,∞;W 2,p(Ω)) + ‖Ψ′(ϕ)‖L∞(σ,∞;Lp(Ω)) ≤ C. (6.4.2)
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Remark 6.4.2. At this point, by the classical Aubin embedding lemma, we learn that

ϕ ∈ C([σ,∞),W 1,p(Ω)),

for every p ≥ 2 and σ > 0. In particular,

ϕ ∈ C(Ω× [σ,∞)).

Proof of Theorem 6.4.1. Let us first recall that the dissipative inequalities (6.1.5) and
(6.1.6) yield

E(ϕ(t)) +

∫ t+1

t

‖ϕ(τ)‖4
H2(Ω) + ‖∇µ(τ)‖2 + ‖∇u(τ)‖4 dτ ≤ C, (6.4.3)

for every t ≥ 0. Besides, arguing by comparison, we deduce

‖ϕt‖V ′ ≤ C(‖∇µ‖+ ‖∇u‖), (6.4.4)

and, reasoning as in the proof of Lemma 6.1.9, we learn that

‖µ‖V ≤ C(1 + ‖∇µ‖). (6.4.5)

We take v = ∂tµ in (6.1.3) getting

〈∂tϕ, ∂tµ〉+ (u · ∇ϕ, ∂tµ) + (∇µ,∇∂tµ) = 0.

Since

〈∂tϕ, ∂tµ〉 = (−∆∂tϕ, ∂tϕ) + (F ′′(ϕ)∂tϕ, ∂tϕ)

≥ 1

2
‖∇∂tϕ‖2 − C‖∂tϕ‖2

V ′ ,

we have
1

2

d

dt
‖∇µ‖2 +

1

2
‖∇∂tϕ‖2 + (u · ∇ϕ, ∂tµ) ≤ C‖∂tϕ‖2

V ′ .

A differentiation in time of (6.1.2) entails

(ν(ϕ)D∂tu, Dv) + (ν ′(ϕ)∂tϕDu, Dv) + (∂tu, v) = (∂tµ∇ϕ, v) + (µ∇∂tϕ, v),

for all v ∈ Vσ. Taking v = u, this gives

1

2

d

dt

{
(ν(ϕ)Du, Du) + ‖u‖2

}
= (∂tµ∇ϕ,u) + (µ∇∂tϕ,u)− 1

2
(ν ′(ϕ)∂tϕDu, Du).

Hence, setting
Λ = (ν(ϕ)Du, Du) + ‖u‖2 + ‖∇µ‖2,

we find
1

2

d

dt
Λ +

1

2
‖∇∂tϕ‖2 ≤ C‖∂tϕ‖2

V ′ + (µ∇∂tϕ,u)− 1

2
(ν ′(ϕ)∂tϕDu, Du).

Now, taking v = −∆u in (6.1.2), we have

(ν(ϕ)∆u,∆u) + ‖∇u‖2 = −(µ∇ϕ,∆u)− (ν ′(ϕ)∇ϕDu,∆u).
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Recalling (6.1.1), we deduce

(ν(ϕ)∆u,∆u) + ‖∇u‖2 ≥ ν1‖∆u‖2 + ‖∇u‖2

≥ ν1‖u‖2
Wσ

.

Summing up with the above differential inequality for Λ, we are lead to

1

2

d

dt
Λ +

1

2
‖∇∂tϕ‖2 + ν1‖u|2Wσ) ≤ C‖∂tϕ‖2

V ′ + |(µ∇∂tϕ,u)|

+ C|(ν ′(ϕ)∂tϕDu, Du)|+ |(µ∇ϕ,∆u)|+ |(ν ′(ϕ)∇ϕDu,∆u)|.

First, we estimate

|(µ∇∂tϕ,u)| ≤ 1

8
‖∇∂tϕ‖2 + C‖u‖2

L3(Ω)‖µ‖2
V .

Next, by (3.1.7) and (3.3.4), we control

C|(ν ′(ϕ)∂tϕDu, Du)| ≤ C‖∂tϕ‖‖Du‖2
L4(Ω)

≤ C‖∂tϕ‖
1
2

V ′‖∇∂tϕ‖
1
2‖∇u‖‖u‖Wσ

≤ ν1

4
‖u‖2

Wσ
+

1

8
‖∇∂tϕ‖2 + C‖∇u‖4‖∂tϕ‖2

V ′ ,

and

|(ν ′(ϕ)∇ϕDu,∆u)| ≤ C‖∇ϕ‖L4(Ω)‖Du‖L4(Ω)‖∆u‖

≤ C‖∇ϕ‖
1
2‖ϕ‖

1
2

H2(Ω)‖∇u‖
1
2‖u‖

3
2
Wσ

≤ ν1

4
‖u‖2

Wσ
+ C‖ϕ‖2

H2(Ω)‖∇u‖2.

In addition,
|(µ∇ϕ,∆u)| ≤ ν1

4
‖u‖2

Wσ
+ C‖µ‖2

V ‖ϕ‖2
H2(Ω).

Therefore, we get

1

2

d

dt
Λ +

1

4
‖∇∂tϕ‖2 +

ν1

4
‖u‖2

Wσ

≤ C(1 + ‖∇u‖4)‖∂tϕ‖2
V ′ + C‖u‖2

L3(Ω)‖µ‖2
V + C‖ϕ‖2

H2(Ω)

(
‖∇u‖2 + ‖µ‖2

V ).

Keeping in mind (6.4.4) and (6.4.5), in light of the equivalence

1

C
(‖∇µ‖2 + ‖∇u‖2) ≤ Λ ≤ C(‖∇µ‖2 + ‖∇u‖2),

we finally obtain

1

2

d

dt
Λ +

1

8
‖∇∂tϕ‖2 +

ν∗
4
‖u‖2

Wσ
≤ ΥΛ + Υ, (6.4.6)

where
Υ(t) = C

(
1 + ‖u(t)‖2

L3(Ω) + ‖∇u(t)‖4 + ‖ϕ(t)‖2
H2(Ω)

)
.
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Owing to (6.4.3), an application of the uniform Gronwall lemma yields

‖∇µ(t)‖+ ‖∇u(t)‖ ≤ C, ∀ t ≥ σ.

The inequality (6.4.1) follows by an integration of (6.4.6) on any interval [t, t+ 1]. Fi-
nally, from µ ∈ L∞(σ,∞;V ) and Corollary 3.4.3, we easily deduce the desired control
(6.4.2).

Remark 6.4.3. The proof of Theorem 6.4.1 is obtained by formal computations. How-
ever, they can be rigorously justified through the Galerkin scheme mentioned in Section
6.1.
Remark 6.4.4. As a consequence of Theorem 6.4.1, we learn thatµ ∈ L2(t, t+1;H3(Ω))
for every t ≥ σ. Then, it is immediate to deduce that

ϕt +∇ · (uϕ) = ∆µ, a.e. (x, t) ∈ Ω× (σ,∞)

and ∂nµ = 0 a.e. in ∂Ω × (σ,∞). Accordingly, the energy solution is indeed a strong
solution on Ω× (σ,∞).
Our next aim is to prove the validity of the instantaneous separation property.

Theorem 6.4.5. Assume that Ψ ∈ C3(−1, 1) and (H.2), (H.3) hold. Then, for any
σ > 0, there exists a positive constant C = C(σ) such that

‖∂tϕ‖L∞(2σ,∞;H) ≤ C.

In addition, there exists δ = δ(σ,R,m) > 0 and C = C(σ) such that

sup
t≥2σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ, (6.4.7)

and
sup
t≥2σ
‖ϕ(t)‖H4(Ω) ≤ C.

Proof. We first deduce integrability properties for Ψ′′(ϕ). To this aim, in light of The-
orem 6.4.1, seeting f = µ + Θ0ϕ, an application of Lemma 3.4.6 entails that, for any
p ≥ 2, there exists C = C(σ, p), such that

‖Ψ′′(ϕ)‖L∞(σ,∞;Lp(Ω)) ≤ C. (6.4.8)

We are now in a position to prove higher order estimates. Given h > 0, let us introduce
the difference quotient of a function v by

∂ht v =
1

h

(
v(t+ h)− v(t)

)
.

Owing to Remark 6.4.4, the solution solves

∂t∂
h
t ϕ+ ∂ht u · ∇ϕ(t+ h) + u · ∇∂ht ϕ = ∆∂ht µ.

Testing the above equation by ∂ht ϕ, we have

1

2

d

dt
‖∂ht ϕ‖2 = (∆∂ht µ, ∂

h
t ϕ) +R1 +R2, (6.4.9)
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where
R1 = −(∂ht u · ∇ϕ(t+ h), ∂ht ϕ), R2 = −(u · ∇∂ht ϕ, ∂ht ϕ).

Integrating by parts and making use of the boundary conditions, we get

(∆∂ht µ, ∂
h
t ϕ) = (∂ht µ,∆∂

h
t ϕ)

= −‖∆∂ht ϕ‖2 + Θ0‖∇∂ht ϕ‖2 + (
1

h
[Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))],∆∂ht ϕ).

By using (H.2), we estimate

1

h

∣∣∣Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))
∣∣∣ ≤ ∫ 1

0

Ψ′′(τϕ(t+ h) + (1− τ)ϕ(t)) |∂ht ϕ| dτ

≤
∫ 1

0

(
τΨ′′(ϕ(t+ h)) + (1− τ)Ψ′′(ϕ(t))

)
|∂ht ϕ| dτ

≤
(

Ψ′′(ϕ(t+ h)) + Ψ′′(ϕ(t))
)
|∂ht ϕ|,

and we deduce∣∣∣( 1

h
[Ψ′(ϕ(t+ h))−Ψ′(ϕ(t))],∆∂ht ϕ)

∣∣∣
≤ 1

2
‖∆∂ht ϕ‖2 + C

(
‖Ψ′′(ϕ(t+ h))‖2

L3(Ω) + ‖Ψ′′(ϕ(t))‖2
L3(Ω)

)
‖∂ht ϕ‖2

L6(Ω).

By interpolation

‖∂ht ϕ‖2
L6(Ω) ≤ C‖∇∂ht ϕ‖2

≤ C‖∂ht ϕ‖‖∆∂ht ϕ‖.

Thus we easily derive from (6.4.9) the differential inequality

1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2 ≤ Υ‖∂ht ϕ‖2 +R1 +R2, (6.4.10)

where
Υ(t) = C

(
1 + ‖Ψ′′(ϕ(t+ h))‖4

L3(Ω) + ‖Ψ′′(ϕ(t))‖4
L3(Ω)

)
.

Let us now consider the equation satisfied by ∂ht u in the equivalent formulation of Re-
mark 6.1.3. Testing by ∂ht u, we find

(ν(ϕ(t+ h))D∂ht u, D∂ht u) + ‖∂ht u‖2 = Z1 + Z2, (6.4.11)

having set
Z1 = −(

1

h
[ν(ϕ(t+ h))− ν(ϕ(t))]Du, D∂ht u),

and
Z2 = (∇∂ht ϕ⊗∇ϕ(t+ h),∇∂ht u) + (∇ϕ⊗∇∂ht ϕ,∇∂ht u).

Note that by (6.1.1) and (3.5.4)

(ν(ϕ(t+ h))D∂ht u, D∂ht u) ≥ ν1‖∇∂ht u‖2,
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hence, summing up (6.4.10) and (6.4.11), we obtain

1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2 + ν1‖∇∂ht u‖2 ≤ Υ‖∂ht ϕ‖2 +R1 +R2 + Z1 + Z2.

We estimate the right-hand side term by term as follows. By Theorem 6.4.1, we have

|R1| ≤ ‖∂ht u‖L6(Ω)‖∇ϕ(t+ h)‖L3(Ω)‖∂ht ϕ‖

≤ ν1

4
‖∇∂ht u‖2 + C‖∂ht ϕ‖2,

and

|R2| ≤ ‖u‖L6(Ω)‖∇∂ht ϕ‖L3(Ω)‖∂ht ϕ‖

≤ 1

24
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

Besides, recalling that ν ∈ C1(R), and by using (3.1.7), we find the control

|Z1| ≤ C‖∂ht ϕ‖L4(Ω)‖∇u‖L4(Ω)‖∇∂ht u‖

≤ ν1

4
‖∇∂ht u‖2 + C‖∇u‖‖u‖H2(Ω)‖∂ht ϕ‖‖∆∂ht ϕ‖

≤ ν1

4
‖∇∂ht u‖2 +

1

24
‖∆∂ht ϕ‖2 + C‖u‖2

H2(Ω)‖∂ht ϕ‖2.

Finally, the embeddingW 1,3(Ω) ⊂ L∞(Ω) together with (6.4.2) yields

|Z2| ≤ ‖∇∂ht ϕ‖
(
‖∇ϕ(t)‖L∞(Ω) + ‖∇ϕ(t+ h)‖L∞(Ω)

)
‖∇∂ht u‖

≤ ν1

4
‖∇∂ht u‖2 +

1

24
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

Collecting all the above estimates, we end up with

1

2

d

dt
‖∂ht ϕ‖2 +

1

8
‖∆∂ht ϕ‖2 +

ν1

4
‖∇∂ht u‖2 ≤ C(1 + ‖u‖2

H2(Ω) + Υ)‖∂ht ϕ‖2.

Note that ∫ t+1

t

‖∂ht ϕ(τ)‖2 + ‖u(τ)‖2
H2(Ω) + Υ(τ) dτ ≤ C, ∀ t ≥ σ,

in light of Theorem 6.4.1 and (6.4.8). An application of the uniform Gronwall lemma
and a final passage to the limit as h → 0 imply that there exists C = C(σ) > 0 such
that

‖∂tϕ‖L∞(2σ,∞;H) ≤ C,

and
‖∂tϕ‖L2(t,t+1;H2(Ω)) + ‖∂tu‖L2(t,t+1;V) ≤ C, ∀t ≥ 2σ.

On the other hand, by Theorem 6.4.1, we observe that

‖u · ∇ϕ‖L∞(2σ,∞;H) ≤ C.
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Thus, the elliptic regularity of the Neumann problem (see Section 3.3) entails

‖µ‖L∞(2σ,∞;H2(Ω)) ≤ C. (6.4.12)

Therefore, by virtue of the Sobolev embedding H2(Ω) ↪→ L∞(Ω), we deduce from
Lemma 3.4.2 with p =∞ that

‖Ψ′(ϕ)‖L∞(Ω×(t,t+1)) ≤ C, ∀ t ≥ 2σ.

Since Ψ′ diverges at ±1 and ϕ is continuous as established in Remark 6.4.2, we imme-
diately infer the existence of δ > 0 such that

|ϕ(x, t)| ≤ 1− δ, ∀ (x, t) ∈ Ω× [2σ,∞).

Finally, thanks to the separation property and (6.4.12), it is easily seen that

‖ϕ‖L∞(2σ,∞;H4(Ω)) ≤ C,

which completes the proof.

6.5 Further Comments

In this final section we collect some remarks and natural developments regarding the
Brinkman–Cahn–Hilliard system.
• The longtime behavior of the BCH system can be characterized by virtue of the reg-
ularity properties here established. More specifically, for any m ∈ (−1, 1), we define
the complete metric space

Vm =
{
ϕ ∈ V ∩ L∞(Ω) : ‖ϕ‖L∞(Ω) ≤ 1 and −m ≤ ϕ ≤ m

}
,

On account of Theorem 6.1.5 and Theorem 6.3.1, system (6.0.1)-(6.0.2) generates a
semigroup of operators

S(t) : Vm → Vm,
via the rule

S(t)ϕ0 = ϕ(t), ∀ t ≥ 0,

being (ϕ,u) the unique global energy solution to the BCH problemwith initial condition
ϕ0. The semigroup turns out to be strongly continuous (see Proposition 4.4.1 for the
proof) and dissipative due to (6.1.5). Then, in light of Theorem 6.4.1, the existence of
a unique (compact and connected) global attractor Am for S(t) on Vm follows by the
classical semigroup theory (see, e.g., [149]). Furthermore, once the strict separation is
reached, a further investigation of the asymptotic behavior is possible. In particular, the
existence of exponential attractorsMm (see [120]). Besides, the convergence of each
trajectory to a single stationary state can be also proved.
• The results herein achieved can be easily generalized to the BCH model with perme-
ability η depending on the concentration in dimension two (cf. (1.3.15)). The depen-
dence of η on ϕ is similar to (1.3.8), namely

η(s) = ηA
1 + s

2
+ ηB

1− s
2

,
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where ηA, ηB are the positive fluid permeabilities. Being able to handle the higher
nonlinear term∇·(ν(ϕ)D(u)), we observe that the presence of η(ϕ)u in the Brinkman’s
law does not affect significantly the proofs of the present paper.
• A further interesting problem is the study of the BCH system with singular potential
and matched viscosity in dimension three. In which case, the continuous dependence
estimate and the regularization in finite time can be achieved by the same techniques
exploited in this work. By virtue of the energy identity, the asymptotic separation prop-
erty can be proved by exploiting the technique used in [4]. In turn, this would allow to
show the convergence of weak solutions to single stationary state.
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Nonlocal interaction models
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CHAPTER7
The nonlocal Navier-Stokes-Cahn-Hilliard system

This chapter is devoted to the regularity properties of the nonlocal Navier–Stokes–
Cahn–Hilliard system with matched viscosities in two space dimensions. To
this purpose, we first provide a comprehensive analysis of the nonlocal Cahn–

Hilliard. In particular, we address the well-posedness of weak solutions, the regularity
propagation in time and the longtime behavior. In particular, in two dimensions, we
prove the instantaneous separation property. Thereafter, we extend these regularity re-
sults to the nonlocal Navier–Stokes–Cahn–Hilliard system.

In a bounded domain Ω ⊂ R2, we consider the nonlocal Navier–Stokes–Cahn–Hilliard
system with matched viscosities (ν = 1)

∂tu + (u · ∇)u−∆u +∇π = µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (7.0.1)

subject to the boundary and initial conditions{
u = 0, ∂nµ = 0, on ∂Ω× (0, T ),

u(·, 0) = u0(·), ϕ(·, 0) = ϕ0(·), in Ω.
(7.0.2)

General agreement. Throughout this chapter, if it is not otherwise stated, we indicate
by C a generic positive constant depending only on the domain and on structural quan-
tities. The constant C may vary from line to line and even within the same line. Any
further dependence will be explicitly pointed out if necessary.
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7.1 The Nonlocal Cahn-Hilliard Equation: Well-posedness

In a bounded domain Ω ⊂ Rd, d = 2, 3, the nonlocal Cahn–Hilliard system reads as
follows {

∂tϕ = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (7.1.1)

subject to the boundary and initial conditions{
∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(7.1.2)

We remind that in the sequel the main assumptions on the singular potential and the
interaction kernel are (H) and (K).

We are now ready to give the definition of a weak solution to problem (7.1.1)-(7.1.2).

Definition 7.1.1. Let ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω). A function ϕ
is a weak solution to (7.1.1)-(7.1.2) on [0, T ] if

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

µ ∈ L2(0, T ;V ),

and
〈∂tϕ, v〉+ (∇µ,∇v) = 0, ∀ v ∈ V, (7.1.3)

for almost every t ∈ (0, T ), where

µ = Ψ′(ϕ)− J ∗ ϕ

for almost every (x, t) ∈ Ω× (0, T ). Moreover, ϕ(·, 0) = ϕ0 a.e. in Ω.

Remark 7.1.2. Let us observe that:

1. From Ψ(ϕ0) ∈ L1(Ω) we deduce that |ϕ0(x)| ≤ 1, for almost every x ∈ Ω.

2. The conservation of mass is a straightforward consequence of (7.1.3). Indeed,
taking v = 1, we get 〈∂tϕ, 1〉 = 0, so ϕ (t) = ϕ0 for all t ≥ 0.

3. Let T > 0 be arbitrary. Note that ϕ ∈ L∞(Ω × (0, T )) with |ϕ(x, t)| < 1
for almost any (x, t) ∈ Ω × (0, T ) implies ϕ ∈ L∞(0, T ;Lp(Ω)), for all p ≥
1, and ‖ϕ‖L∞(0,T ;Lp(Ω)) ≤ |Ω|

1
p . Moreover, we observe that the function t 7→

‖ϕ(t)‖L∞(Ω) is measurable, essentially bounded and, for all f ∈ L1(0, T ;L1(Ω)),
there holds

|(ϕ(t), f(t))| ≤ ‖f(t)‖L1(Ω), a.e. t ∈ (0, T ).

We refer the reader to [56].

4. As a direct consequence of Definition 7.1.1, we haveϕ ∈ C([0, T ], H) andΨ′(ϕ) ∈
L2(0, T ;V ). The former property entails that the initial condition is well defined.
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The well-posedness of system (7.1.1)-(7.1.2) is given by

Theorem 7.1.3. Let ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω), |ϕ0| < 1 and
T > 0 be given. Assume that hypotheses (H.1) − (H.2) are satisfied. Then, for any
T > 0, there exists a unique weak solution ϕ to problem (7.1.1)-(7.1.2) on [0, T ]. In
addition, the global weak solution satisfies the dissipative inequality

EH(ϕ(t)) +

∫ t+1

t

‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEH(ϕ0)e−ωt + C, (7.1.4)

for every t ≥ 0, where ω and C are positive constants independent of the initial condi-
tion. Moreover, for every two weak solutions ϕ1 and ϕ2 to (7.1.1)-(7.1.2) on [0, T ] with
initial data ϕ01 and ϕ02, respectively, the following continuous dependence estimate
holds

‖ϕ1(t)− ϕ2(t)‖2
V ′ ≤ C‖ϕ01 − ϕ02‖2

V ′e
CT + C|ϕ01 − ϕ02|eCT , (7.1.5)

for every t ∈ [0, T ], where the positive constant C depends on T .

Remark 7.1.4. By virtue of the dissipative inequality (7.1.4) and ϕ ∈ C([0, T ], H), the
function t→

∫
Ω

Ψ(ϕ(t)) dx is bounded for all t ≥ 0. This immediately entails that

sup
t≥0
‖ϕ(t)‖L∞(Ω) ≤ 1.

As a consequence, we deduce by interpolation that ϕ ∈ C([0, T ], Lp(Ω)), for any p ≥ 2.
The proof of Theorem 7.1.3 is carried out via several steps. First, we provide a family

of regular function defined on the whole R which approximates the singular potential.
The existence of a weak solution to (7.1.1)-(7.1.2) with a regular potential is established
via the Galerkin method (see [39]). Then, we show (uniform) estimates on the solutions
of this approximate problem in order to pass to the limit via compactness. To the best of
our knowledge, Theorem 7.1.3 ensures the existence and uniqueness of a weak solution
in the most general framework. Indeed, it requires the convexity of the potential whereas
other existence results (cf., for example, [63, Corollary 1]) require further monotonicity
and sign conditions on higher derivatives (i.e. from the second one up) of Ψ. For related
results obtained within a more abstract framework see also [40].
Remark 7.1.5. We highlight that our analysis relies on the assumption ϕ0 ∈ (−1, 1) (see
also, for instance, [101] for the standard Cahn–Hilliard equation). This is physically
reasonable since ϕ0 = 1 (or ϕ0 = −1) means that the initial condition is a pure phase,
so that no phase separation takes place in Ω.

Proof of Theorem 7.1.3

1. Approximation of Ψ. We consider the family of approximation functions Ψλ intro-
duced in Section 3.2. We report herein the main properties:

(i) for any 0 < λ ≤ 1, there exists C > 0 such that

Ψλ(s) ≥
1

4λ
s2 − C, ∀ s ∈ R, ∀λ ∈ (0, λ]; (7.1.6)
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(ii) Ψλ is convex with
Ψ
′′

λ(s) ≥
α

1 + α
, ∀ s ∈ R;

(iii) Ψ
′

λ is Lipschitz on R with constant 1
λ
;

(iv) Ψλ(s)↗ Ψ(s) and |Ψ′λ(s)| ↗ |Ψ′(s)| for every s ∈ R as λ→ 0 and, in addition,
Ψ′λ converges uniformly to Ψ′ on any interval [a, b] ⊂ (−1, 1);

(v) Ψλ(0) = Ψ′λ(0) = 0, for all λ > 0.

Remark 7.1.6. We recall that, due to the convexity of Ψλ (see (i)), we have

Ψλ(s) ≤ Ψλ(w) + (s− w)Ψ′λ(s), for all s, w ∈ R. (7.1.7)

2. The approximating problem and the dissipative inequality. For any fixed λ >
0, we consider the problem (7.1.1)-(7.1.2) replacing Ψ with Ψλ. The corresponding
problem reads as follows{

∂tϕ = ∆µ,

µ = Ψ′λ(ϕ)− J ∗ ϕ,
in Ω× (0, T ), (7.1.8)

subject to {
∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0, in Ω.
(7.1.9)

Here, we simply use ϕ instead of ϕλ for the sake of simplicity. We denote the energy
functional EλH : H → R by

EλH(v) =

∫
Ω

Ψλ(v) dx− 1

2
(J ∗ v, v)

and we show the dissipative nature of the system.
Lemma 7.1.7. There exists λ > 0 such that, for any 0 < λ ≤ λ, any solution to
(7.1.8)-(7.1.9) satisfies

EλH(ϕ(t)) +

∫ t+1

t

‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ

≤ CEλH(ϕ0)e−ωt + C(1 + Ψλ(ϕ0)), (7.1.10)

for every t ≥ 0. Here, ω and C are positive constant that depend on J and α but are
independent of the initial condition and λ.

We provide below a formal proof of Lemma 7.1.7. A rigorous argument can be done
by performing the same computations within a Galerkin approximation scheme (see the
proof of Theorem 7.1.9 reported below).

Proof. Let us consider EλH . By virtue of property (i) and the Young inequality for con-
volution, for any λ < λ, we obtain

EλH(v) ≥ 1

4λ
‖v‖2 − C|Ω| − 1

2
‖J ∗ v‖‖v‖

≥
(

1

4λ
−
‖J‖L1(Ω)

2

)
‖v‖2 − C|Ω|.
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Therefore, for any γ > 0 there exists C such that

EλH(v) ≥ γ‖v‖2 − C|Ω| (7.1.11)

provided that λ is small enough. It is also apparent from (v) and (7.1.7) that

Ψλ(s) ≤ sΨ′λ(s) ≤
1

λ
|s|2.

Thus, we deduce that

EλH(v) ≤
(

2

λ
+
‖J‖L1(Ω)

2

)
‖v‖2 +

2

λ
|Ω|. (7.1.12)

Now, testing (7.1.8)1 and (7.1.8)2 by µ and ϕt, respectively, and adding the two equa-
tions, we obtain

d

dt
EλH(ϕ) + ‖∇µ‖2 = 0. (7.1.13)

In order to reconstruct the energy functional on the left-hand side, we take the gradient
of (7.1.8)2 and we test by ∇ϕ yielding

(Ψ′′λ(ϕ)∇ϕ,∇ϕ) = (∇µ,∇ϕ) + (∇J ∗ ϕ,∇ϕ).

According to (ii) and the Young inequality for convolution, we get

β

2
‖∇ϕ‖2 ≤ 1

2β
‖∇µ‖2 +

1

2β
‖∇J‖2

L1(Ω)‖ϕ‖2, (7.1.14)

where β = α/(1 +α). On the other hand, testing again (7.1.8)2 by ϕ−ϕ and using the
Poincaré inequality, we obtain

(Ψ′λ(ϕ), ϕ− ϕ) = (J ∗ ϕ, ϕ− ϕ) + (µ, ϕ− ϕ)

≤ C‖J ∗ ϕ‖‖∇ϕ‖+ C‖∇µ‖‖∇ϕ‖. (7.1.15)

Exploiting (7.1.7) with s = ϕ, w = ϕ, we find

EλH(ϕ) ≤ Ψλ(ϕ)|Ω|+ (Ψ′λ(ϕ), ϕ− ϕ)− 1

2
(J ∗ ϕ, ϕ) . (7.1.16)

Combining (7.1.15) with (7.1.16), and using the Young inequality, we infer that

EλH(ϕ) ≤ Ψλ(ϕ)|Ω|+ C‖J ∗ ϕ‖‖∇ϕ‖+ C‖∇µ‖‖∇ϕ‖+
1

2
|(J ∗ ϕ, ϕ)|

≤ Ψλ(ϕ)|Ω|+ β

4
‖∇ϕ‖2 +

C

2β
‖∇µ‖2 +

( C
2β
‖J‖2

L1(Ω) +
1

2
‖J‖L1(Ω)

)
‖ϕ‖2.

Adding (7.1.14) to the above inequality, we reach

EλH(ϕ) +
β

4
‖∇ϕ‖2 ≤

(
C + 1

2β

)
‖∇µ‖2 + Ψλ(ϕ)|Ω|

+
( 1

2β
‖∇J‖2

L1(Ω) +
C

2β
‖J‖2

L1(Ω) + ‖J‖L1(Ω)

)
‖ϕ‖2.
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In light of the control from below (7.1.11), there existsλ > 0 such that for any 0 < λ < λ
we have

1

2
Eλ(ϕ) +

β

4
‖∇ϕ‖2 ≤ C + 1

2β
‖∇µ‖2 + Ψλ(ϕ)|Ω|+ C

2
|Ω|. (7.1.17)

Summing up, by (7.1.13) and (7.1.17) we find the differential inequality

d

dt
EλH(ϕ) + ω

(
EλH(ϕ) + ‖∇ϕ‖2 + ‖∇µ‖2

)
≤ C (1 + Ψλ(ϕ)) ,

for some ω > 0 independent of λ. Finally, an application of the Gronwall lemma com-
pletes the argument.

3. Existence of an approximate solution. By analogy with Definition 7.1.1, we recall
the definition of weak solution to the approximating problem.

Definition 7.1.8. Let ϕ0 be a measurable function with Ψλ(ϕ0) ∈ L1(Ω). A function ϕ
is a weak solution to problem (7.1.8)-(7.1.9) on [0, T ] if

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

µ ∈ L2(0, T ;V ),

and
〈∂tϕ, v〉+ (∇µ,∇v) = 0, ∀ v ∈ V,

for almost every t ∈ (0, T ), where

µ = Ψ′λ(ϕ)− J ∗ ϕ,

for almost every (x, t) ∈ Ω× (0, T ). Moreover, ϕ(·, 0) = ϕ0 a.e. in Ω.

It is immediate to see that point 2 and 4 of Remark 7.1.2 are valid in the regular potential
case as well. We can thus prove the existence of a global weak approximating solution.

Theorem 7.1.9. Let ϕ0 be a measurable function with Ψλ(ϕ0) ∈ L1(Ω) and 0 < λ ≤ λ.
Then, there exists a global weak solution ϕ to problem (7.1.8)-(7.1.9) which fulfills the
dissipative inequality (7.1.10) for all t ≥ 0.

Proof. The existence of a weak solution is established through a Galerkin scheme. Let
us n ∈ N be fixed. We seek a function

ϕn(t) =
n∑
k=1

ak(t)ψk

which solves for all t ∈ (0, T )

〈∂tϕn, v〉+ (∇µn,∇w) = 0, ∀ v ∈ Vn, (7.1.18)

where
µn = Πn [Ψ′λ(ϕn)− J ∗ ϕn] .

Here, {ψk}∞k=1 are the eigenfunctions associated to the Neumann operator A+I, Vn =
span {ψ1, ..., ψn}, Πn is the projector operators from V onto Vn and ϕ0n = Πn(ϕ0). We
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observe that ϕ0 ∈ H due to Ψλ(ϕ0) ∈ L1(Ω). Equation (7.1.18) is equivalent to a sys-
tem of ordinary differential equations ȧn(t) = G(an(t)), where an(t) = [a1(t), ..., an(t)]
is the unknown and G is a locally Lipschitz continuous function. Then, the Cauchy–
Lipschitz theorem entails the existence of a unique local solution an ∈ C1([0, T ∗),Rn).
Since Ψ1 = 1 is the first eigenfunction of A + I , we note that the conservation of
mass holds for the approximated problem, namely, ϕn(t) = ϕ0n. Thanks to Lemma
7.1.7, we derive some uniform estimates in order to guarantee that T ∗ =∞ and recover
compactness properties of the sequence ϕn. Indeed, the Galerkin approximation ϕn
fulfills the following inequality for all t ≥ 0,

EλH(ϕn(t)) +

∫ t+1

t

‖∇ϕn(τ)‖2 + ‖∇µn(τ)‖2 dτ ≤ CEλH(ϕ0n)e−ωt + C(1 + Ψλ(ϕ0n)).

By ϕ0n → ϕ0 in H and (7.1.11) and (7.1.12), the right-hand side of can be controlled
by a constant independent of n and we deduce that

ϕn is uniformly bounded in L∞(0, T ;H) ∩ L2(0, T ;V ), (7.1.19)
∇µn is uniformly bounded in L2(0, T ;H). (7.1.20)

On account of (iii) and the above boundedness properties, we have

|µn| ≤ C
(
1 + ‖ϕn‖L1(Ω)

)
≤ C,

where C is independent by n. In turn, this combined with (3.1.5) entails that

µn is uniformly bounded in L2(0, T ;V ). (7.1.21)

By comparison, we find

Ψ′λ(ϕn) is uniformly bounded in L2(Ω× (0, T )), (7.1.22)
∂tϕn is uniformly bounded in L2(0, T ;V ′). (7.1.23)

Thanks to (7.1.19)-(7.1.23) and standard compactness arguments, we infer that, up to
subsequences,

ϕn → ϕ, weakly in L2(0, T ;V ),

ϕn → ϕ, weakly star in L∞(0, T ;H),

∂tϕn → ∂tϕ, weakly in L2(0, T ;V ′),

µn → µ, weakly in L2(0, T ;V ),

Ψ′λ(ϕn)→ Ψ′λ(ϕ), weakly in L2(Ω× (0, T )).

Hence, we can pass to the limit in the approximation problem achieving the existence of
a weak solution to (7.1.8)-(7.1.9) in the sense of Definition 7.1.8. Fromϕ ∈ L2(0, T ;V )
and ∂tϕ ∈ L2(0, T ;V ′), we also deduce that ϕ ∈ C([0, T ], H). Furthermore, according
to the above convergences properties, and passing to the limit in the dissipative inequal-
ity, the weak solution satisfies

EλH(ϕ(t)) +

∫ t+1

t

‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEλH(ϕ0)e−ωt + C(1 + Ψλ(ϕ0))
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for almost every t ≥ 0. In particular, we have used the fact that ϕ0n → ϕ0 in H entails
that EλH(ϕ0n)→ EλH(ϕ0), which easily follows from

|Ψλ(s)−Ψλ(w)| ≤ 1

λ
|s− w|max{|s|, |w|}, ∀ s, w ∈ R. (7.1.24)

We conclude by observing that the above dissipation inequality holds for every t ≥ 0
by virtue of ϕ ∈ C([0, T ], H).

We can now prove Theorem 7.1.3.
4. Passage to the limit. First, we observe that Ψ(ϕ0) ∈ L1(Ω) implies that Ψλ(ϕ0) ∈
L1(Ω) for any λ > 0. Then, as a consequence of Theorem 7.1.9, for any λ ∈ (0, λ],
there exists a weak solution ϕλ to problem (7.1.8)-(7.1.9) which satisfies

EλH(ϕλ(t)) +

∫ t+1

t

‖∇ϕλ(τ)‖2 + ‖∇µλ(τ)‖2 dτ ≤ CEH(ϕ0)e−ωt + C(1 + Ψ(ϕ0)),

for all t ≥ 0. Here, we have used (i) to control the right-hand side. Hence, in light of
(7.1.11), this entails that

ϕλ is uniformly bounded w.r.t. λ in L∞(0, T ;H), (7.1.25)
ϕλ is uniformly bounded w.r.t. λ in L2(0, T ;V ), (7.1.26)
∇µλ is uniformly bounded w.r.t. λ in L2(0, T ;H). (7.1.27)

By comparison we also obtain

∂tϕλ is uniformly bounded w.r.t λ in L2(0, T ;V ′). (7.1.28)

In order to pass to the limit we need to recover a uniform estimate for µλ in V . To this
aim, we first control the L1-norm of Ψ′λ(ϕλ). We apply the argument devised in [101]
(see also [63] for the details). Let us choosem1,m2 ∈ (−1, 1) in such a way thatm1 <
ϕ0 < m2. We also set δ := min{ϕ0−m1,m2−ϕ0} and δ1 := max{ϕ0−m1,m2−ϕ0}.
Then, for almost every t ∈ (0, T ), we consider the sets

Ω0 := {m1 ≤ ϕλ(x, t) ≤ m2}, Ω1 := {ϕλ(x, t) < m1}, Ω2 := {ϕλ(x, t) > m2}.

Since Ψ′λ is monotone and Ψ′λ(0) = 0 for any λ, using the assumption ϕ0 ∈ (−1, 1) and
property (iii), we get

δ‖Ψ′λ(ϕλ)‖L1(Ω) = δ

∫
Ω0

|Ψ′λ(ϕλ)| dx+ δ

∫
Ω1

|Ψ′λ(ϕλ)| dx+ δ

∫
Ω2

|Ψ′λ(ϕλ)| dx

≤ δ

∫
Ω0

|Ψ′λ(ϕλ)| dx+

∫
Ω1

(ϕ− ϕ0) Ψ′λ(ϕλ) dx

+

∫
Ω2

(ϕ− ϕ0) Ψ′λ(ϕλ) dx

≤ (δ + δ1)

∫
Ω0

|Ψ′(ϕλ)| dx+

∫
Ω

(ϕλ − ϕ0)Ψ′λ(ϕλ) dx

≤ C +

∫
Ω

(ϕλ − ϕ0)Ψ′λ(ϕλ) dx
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where C is independent of λ. Now, testing µλ by ϕλ − ϕ0, we find

(Ψ′λ(ϕλ), ϕλ − ϕ0) ≤ C‖J ∗ ϕλ‖‖ϕλ‖+ C‖∇µλ‖‖ϕλ‖. (7.1.29)

Then, by (7.1.25), we obtain∫
Ω

(ϕλ − ϕ0)Ψ′λ(ϕλ) dx ≤ C
(

1 + ‖∇µλ‖
)
,

where C is independent of λ. Therefore, combining the above inequalities, we deduce
from (7.1.28) that ∫ T

0

‖Ψ′λ(ϕλ)(τ)‖2
L1(Ω) dτ ≤ C (7.1.30)

where C is independent of λ. In turn, by∫
Ω

µλ dx =

∫
Ω

Ψ′λ(ϕλ) dx+

∫
Ω

J ∗ ϕλ dx,

we get
‖µλ‖L2(0,T ) ≤ C.

Thus, due to the Poincaré–Wirtinger inequality (3.1.5), we arrive at

µλ is uniformly bounded w.r.t. λ in L2(0, T ;V ). (7.1.31)

Accordingly, up to subsequences, we have the following convergences

ϕλ → ϕ, weakly in L2(0, T ;V ), (7.1.32)
ϕλ → ϕ, weakly star in L∞(0, T ;H), (7.1.33)
∂tϕλ → ∂tϕ, weakly in L2(0, T ;V ′), (7.1.34)
µλ → µ, weakly in L2(0, T ;V ). (7.1.35)

Furthermore, compactness yields

ϕλ → ϕ, strongly in L2(0, T ;H). (7.1.36)

Also, (K) and (7.1.36) imply that

J ∗ ϕλ → J ∗ ϕ, strongly in L2(0, T ;V ). (7.1.37)

Concerning the nonlinear term, we prove that the limit function ϕ fulfills

|ϕ(x, t)| < 1 a.e. (x, t) in Ω× (0, T ).

For a fixed η ∈ (0, 1), we introduce the sets

Eλ
η = {(x, t) ∈ Ω× (0, T ) : |ϕλ(x, t)| > 1− η} ,

Eη = {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| > 1− η} .

Since ϕλ → ϕ a.e. (x, t) ∈ Ω× (0, T ), the Fatou’s lemma entails

|Eη| ≤ lim inf
λ→0+

|Eλ
η |.
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Recalling thatΨ′λ(x) ≥ 0 for x ∈ [0, 1), Ψ′λ(x) ≤ 0 for x ∈ (−1, 0] andΨ′λ is monotone,
we deduce

min{Ψ′(1− η),−Ψ′(−1 + η)}|Eε
%| ≤ ‖Ψ′λ(ϕλ)‖L1(Ω×(0,T )) ≤ C,

where C does not depends on λ and η. Therefore, we have

|Eη| ≤
C

min{Ψ′(1− η),−Ψ′(−1 + η)}
.

Passing to the limit as η → 0+, we deduce that

| {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1} | = 0

which yields the desired conclusion. As a byproduct,

Ψ′λ(ϕλ)→ Ψ′(ϕ) a.e. (x, t) ∈ Ω× (0, T ),

where we have used the pointwise convergence of ϕλ and the uniform convergence of
Ψ′λ to Ψ′. Moreover, by the expression of µλ, we get

Ψ′λ(ϕλ) is uniformly bounded w.r.t. λ in L2(0, T ;H). (7.1.38)

A standard compactness argument implies that Ψ′λ(ϕλ) → Ψ′(ϕ) weakly in L2(Ω ×
(0, T )). On account of the above convergences, we easily find that

〈∂tϕ, v〉+ (∇µ,∇v) = 0, ∀ v ∈ V,

for almost every t ≥ 0, with

µ = Ψ′(ϕ)− J ∗ ϕ ∈ L2(0, T ;V ).

Now, by virtue of the regularity of ϕ and ∂tϕ, we have ϕ ∈ C([0, T ], H). By the above
convergences, we pass to limit in the dissipative inequality satisfied by ϕλ and we learn
that, for almost every t ≥ 0,

EH(ϕ(t)) +

∫ t+1

t

‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ CEH(ϕ0)e−ωt + C.

Here we have used the boundedness of Ψ. On the other hand, the above inequality holds
for any t ≥ 0 since ϕ ∈ C([0, T ], H). Indeed, J ∗ϕ ∈ C([0, T ], H), the integral terms on
the left-hand side are continuous as well as the right-hand side. Let t > 0, there exists a
sequence {tj} which tends to t and for which the above inequality holds. We show that

lim
tj→t

∫
Ω

Ψ(ϕ(tj)) dx =

∫
Ω

Ψ(ϕ(t)) dx.

On account of the continuity of ϕ, ϕ(tj) → ϕ(t) strongly in H , so there exists a sub-
sequence which converges for almost every x ∈ Ω and the limit necessarily satisfies
|ϕ(x, t)| ≤ 1 for almost every x ∈ Ω. Since Ψ is continuous on the compact set [−1, 1],
using the Lebesgue theorem, we infer that (7.1.4) holds for all t ≥ 0.

5. Continuous dependence on the initial data and uniqueness.
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Let us consider two weak solutions ϕ1 and ϕ2 related to the initial conditions ϕ01 and
ϕ02, respectively. The function ϕ(t) = ϕ1(t)− ϕ2(t) with ϕ(0) = ϕ01 − ϕ02 solves

〈∂tϕ, v〉+ (∇µ,∇v) = 0, ∀ v ∈ V,

for almost every t ∈ (0, T ), where

µ = Ψ′(ϕ1)−Ψ′(ϕ2)− J ∗ ϕ.

Taking v = N (ϕ− ϕ) and exploiting (3.3.5), we get

1

2

d

dt
‖ϕ− ϕ‖2

V ′0
+ (µ, ϕ− ϕ) = 0. (7.1.39)

According to the assumption (H) and the definition of the operator N , we deduce that

(µ, ϕ− ϕ) ≥ α‖ϕ‖2 − (Ψ′(ϕ1)−Ψ′(ϕ2), ϕ)− (∇J ∗ ϕ,∇N (ϕ− ϕ)).

Moreover, we have

|(∇J ∗ ϕ,∇N (ϕ− ϕ))| ≤ ‖∇J ∗ ϕ‖‖ϕ− ϕ‖V ′0
≤ ‖∇J‖L1(Ω)‖ϕ‖‖ϕ− ϕ‖V ′0
≤ α

2
‖ϕ‖2 + C‖ϕ− ϕ‖2

V ′0
.

Hence, we find the differential inequality for almost every t ∈ [0, T ],

d

dt
‖ϕ− ϕ‖2

V ′0
+ α‖ϕ‖2 ≤ C‖ϕ− ϕ‖2

V ′0
+ Λ|ϕ|,

where
Λ = 2‖Ψ′(ϕ1)‖L1(Ω) + 2‖Ψ′(ϕ2)‖L1(Ω),

that is a summable function. Therefore, an application of the Gronwall lemma yields,
for all t ∈ [0, T ],

‖ϕ(t)− ϕ (t) ‖2
V ′0
≤ ‖ϕ(0)− ϕ (0) ‖2

V ′0
eCT + C|ϕ (0) |eCT (7.1.40)

Finally, by the conservation of mass, (7.1.5) follows. As a byproduct, we learn the
uniqueness of weak solutions.

7.2 The Nonlocal Cahn-Hilliard Equation: Regularity Properties

In this section we study the regularity properties of the weak solutions which allow us,
in particular, to establish the existence of the (smooth) global attractor for the dissipative
dynamical system associated with (7.1.1)-(7.1.2).

We will derive some uniform higher order estimates which will be independent of the
form of the initial datum, but only depend on its total mass and the value of the energy.
Henceforth, the generic constant C may also depend onm ∈ (0, 1) and R such that

−1 +m ≤ ϕ0 ≤ 1−m, and EH(ϕ0) ≤ R.
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As a consequence of the dissipative inequality (7.1.4), we have

EH(ϕ(t)) +

∫ t+1

t

‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 + ‖∂tϕ(τ)‖2
V ′ dτ ≤ C, (7.2.1)

for every t ≥ 0.
Our first regularity result is

Theorem 7.2.1. For any σ > 0, there exists C = C(σ) > 0 such that

‖∂tϕ‖L∞(σ,t;V ′) + ‖∇µ‖L∞(σ,t;H) + ‖∂tϕ‖L2(t,t+1;H) ≤ C, ∀ t ≥ σ, (7.2.2)

and
sup
t≥σ
‖ϕ(t)‖V ≤ C. (7.2.3)

Proof. We provide below a formal estimate which can be easily justified by exploiting
the difference quotient rather then differentiating with respect to time. We differentiate
system (7.1.1) with respect to time and we obtain

∂ttϕ = ∆(Ψ′′(ϕ)∂tϕ− J ∗ ∂tϕ).

Testing by N∂tϕ and recalling that ∂tϕ = 0, we have

1

2

d

dt
‖∂tϕ‖2

V ′0
+ (Ψ′′(ϕ)∂tϕ, ∂tϕ) = (J ∗ ∂tϕ, ∂tϕ).

By (H),
(Ψ′′(ϕ)∂tϕ, ∂tϕ) ≥ α‖∂tϕ‖2.

Reasoning as in the proof of the continuous dependence estimate, the right-hand side is
controlled as follows

(J ∗ ∂tϕ, ∂tϕ) = (∇J ∗ ∂tϕ,∇N∂tϕ)

≤ α

2
‖∂tϕ‖2 + C‖∂tϕ‖2

∗.

Here we have used the Young inequality for convolution and (3.3.2). Summing up, we
find differential inequality

d

dt
‖∂tϕ‖2

V ′0
+ α‖∂tϕ‖2 ≤ C‖∂tϕ‖2

V ′0
.

Therefore, exploiting (7.2.1), an application of the uniform Gronwall Lemma gives

‖∂tϕ(t)‖2
V ′0

+

∫ t+1

t

‖∂tϕ(τ)‖2 dτ ≤ C, ∀ t ≥ σ. (7.2.4)

By comparison, we easily deduce that

‖∇µ(t)‖ ≤ C, ∀ t ≥ σ. (7.2.5)

Let us recover a uniform estimate of the weak solution in V . Applying the gradient
operator to the chemical potential, and testing by∇ϕ, we get

(∇µ,∇ϕ) = (Ψ′′(ϕ)∇ϕ,∇ϕ)− (∇J ∗ ϕ,∇ϕ).
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Recalling (H) and using Young and Cauchy–Schwarz inequalities, we arrive at

α‖∇ϕ‖2 ≤ ‖∇µ‖‖∇ϕ‖+ ‖∇J‖L1(Ω)‖ϕ‖‖∇ϕ‖.

Then, on account of (7.2.1), the Young inequality gives

‖∇ϕ(t)‖ ≤ C, ∀ t ≥ σ. (7.2.6)

Since (7.2.4) and (7.2.5) hold for the Galerkin aprroximation, from the lower semiconti-
nuity of the normwe deduce (7.2.2). Finally, we infer (7.2.3) from (7.2.6), the continuity
ϕ ∈ C([0, T ], H) and the mass conservation.

Next, we establish further regularity results and, in particular, a uniform V -bound of
µ. These properties will be helpful in the next section.

Proposition 7.2.2. For any σ > 0, there exists C = C(σ) > 0 such that

‖Ψ′(ϕ)‖L∞(σ,t;V ) + ‖µ‖L∞(σ,t;V ) + ‖µ‖L2(t,t+1;H2(Ω)) ≤ C, ∀ t ≥ σ, (7.2.7)

and

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
p− 2

p
=

2

q
, d = 2, (7.2.8)

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
3p− 6

2p
=

2

q
, d = 3, (7.2.9)

where 2 ≤ p <∞ if d = 2 and 2 ≤ p ≤ 6 if d = 3.

Proof. Let us consider the identity

µ− µ = −J ∗ ϕ+ J ∗ ϕ+ Ψ′(ϕ)−Ψ′(ϕ).

By (3.1.5), we deduce that

‖Ψ′(ϕ)−Ψ′(ϕ)‖V ≤ C‖∇µ‖+ C‖∇J ∗ ϕ‖.

Hence, according to Theorem 7.2.1, we have

‖Ψ′(ϕ)−Ψ′(ϕ)‖L∞(σ,t;V ) ≤ C, ∀ t ≥ σ.

In order to control the missing term F ′(ϕ), arguing as in the proof of Theorem 7.1.3,
we find

‖Ψ′(ϕ)‖L1(Ω) ≤ C

∫
Ω

(ϕ− ϕ0)Ψ′(ϕ) dx+ C.

Then, testing µ by ϕ− ϕ0 and using (3.1.5) and (7.2.3), we obtain∫
Ω

(ϕ− ϕ0)Ψ′(ϕ) dx ≤ C(1 + ‖∇µ‖).

Therefore, the above inequalities yield

‖Ψ′(ϕ)‖L∞(σ,t;L1(Ω)) ≤ C, ∀ t ≥ σ,
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which, in turn, gives
‖µ‖L∞(σ,t) ≤ C, ∀ t ≥ σ.

Thus, we end up with

‖Ψ′(ϕ)‖L∞(σ,t;V ) + ‖µ(t)‖L∞(σ,t;V ) ≤ C, ∀ t ≥ σ. (7.2.10)

Furthermore, notice that the regularity ofϕt in (7.2.2), (7.2.10) and the regularity theory
of the Neumann problem entail that the first equation of problem (7.1.1) is satisfied for
almost every (x, t) ∈ Ω× (σ,∞), ∂nµ = 0 for almost every (x, t) ∈ ∂Ω× (σ,∞) and

‖µ‖L2(t,t+1;H2(Ω)) ≤ C, ∀ t ≥ σ. (7.2.11)

Arguing now as in [65], we find a control of∇ϕ inLp(Ω) bymeans of theL2-norm of
ϕt. To this aim, we take the gradient of µ, multiply it by |∇ϕ|p−2∇ϕ and integrate over
Ω. We observe that this estimate cannot be made rigorously within a Galerkin scheme.
Nevertheless, the regularity of the weak solution is enough to compute it. Indeed, on
account of (H) and (K), by (7.2.11) we deduce that

‖Ψ′′(ϕ)∇ϕ‖L2(t,t+1;Lp(Ω)) ≤ C, ∀ t ≥ σ, (7.2.12)

where 2 ≤ p < ∞ if d = 2 and 2 ≤ p ≤ 6 if d = 3. This allows us to multiply by
|∇ϕ|p−2∇ϕ yielding∫

Ω

Ψ′′(ϕ)|∇ϕ|p dx ≤
∫

Ω

|∇ϕ|p−2∇ϕ · ∇µ dx+

∫
Ω

|∇ϕ|p−2∇ϕ · ∇J ∗ ϕ dx.

By (H) and Young’s inequality, we have

α‖∇ϕ‖pLp(Ω) ≤ ‖∇µ‖Lp(Ω)‖∇ϕ‖p−1
Lp(Ω) + ‖∇J‖L1(Ω)‖ϕ‖Lp(Ω)‖∇ϕ‖p−1

Lp(Ω).

Then, by (K) and (7.2.3) we get

‖∇ϕ‖Lp(Ω) ≤ C
(
‖∇µ‖Lp(Ω) + ‖ϕ‖V

)
. (7.2.13)

In order to estimate∇µ inLp(Ω), if d = 2, the Gagliardo–Nirenberg inequality (3.1.10),
together with (7.2.7), entails

‖∇µ‖Lp(Ω) ≤ C‖∇µ‖
2
p‖∇µ‖

1− 2
p

V

≤ C
(
‖∆µ‖1− 2

p + ‖µ‖1− 2
p

)
≤ C

(
1 + ‖ϕt‖1− 2

p

)
.

Hence, setting q such that p−2
p

= 2
q
, using (7.2.2) and (7.2.13), the estimate (7.2.8) easily

follows. On the other hand, if d = 3, applying the Gagliardo–Nirenberg inequality
(3.1.11), we get

‖∇µ‖Lp(Ω) ≤ C‖∇µ‖
6−p
2p ‖∇µ‖

3p−6
2p

V

≤ C‖µ‖
3p−6

2p

H2(Ω)

≤ C
(

1 + ‖ϕt‖
3p−6

2p

)
.

Hence, (7.2.9) is obtained as a byproduct of (7.2.2) and (7.2.13). The proof is complete.
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Remark 7.2.3. An immediate consequence of (7.2.8), (7.2.9) is the regularity ϕ ∈
L∞(σ, t;L∞(Ω)) with ‖ϕ‖L∞(σ,t;L∞(Ω)) ≤ 1 for all t ≥ σ and d = 2, 3. Indeed, it
follows from ϕ ∈ L6(σ, t;W 1,3(Ω)) for d = 2 and ϕ ∈ L 8

3 (σ, t;W 1,4(Ω)) for d = 3.

7.3 The Nonlocal Cahn-Hilliard Equation: The Separation Property

In this section we restrict our analysis to the two dimensional case, d = 2, and we
prove the validity of the instantaneous separation property. Some consequences of this
property will also be analyzed.

In the sequel, the generic constant C is allowed to depend on m and R as in the
previous section.
Theorem 7.3.1. Let d = 2. Assume that (H.3) and (H.4) hold. Then, for any σ > 0,
there exists δ = δ(m,R, σ) > 0 such that

‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ 2σ. (7.3.1)

Proof. We begin by proving some integrability properties of Ψ′′(ϕ) and Ψ′′′(ϕ). Let
p ≥ 1 be given. Thanks to the first assumption of (H.3), we have∫

Ω

Ψ′′(ϕ)p dx ≤
∫

Ω

ep[C|Ψ
′(ϕ)|+C] dx

= eCp
∫

Ω

eCp|Ψ
′(ϕ)| dx.

Recalling that Ψ′(ϕ) ∈ V for almost every t ∈ [σ,∞), an application of the Trudinger–
Moser inequality (3.1.6) to CpΨ′(ϕ) gives

‖Ψ′′(ϕ)‖pLp(Ω) ≤ eCpeCp
2‖Ψ′(ϕ)‖2V .

Then, on account of (7.2.7), we infer

‖Ψ′′(ϕ)‖L∞(σ,t;Lp(Ω)) ≤ CeCp, ∀ t ≥ σ. (7.3.2)

In turn, by (7.2.2), (7.2.7) and (7.3.2), we get

∂tΨ
′(ϕ) = Ψ′′(ϕ)∂tϕ ∈ L2(t, t+ 1;V ′), ∀ t ≥ σ.

Thus, we find Ψ′(ϕ) ∈ C([σ, t], H) for all t ≥ σ and

‖Ψ′(ϕ(t))‖V ≤ C, ‖Ψ′′(ϕ(t))‖Lp(Ω) ≤ C, ∀ t ≥ σ. (7.3.3)

Consequently, according to (H.4) and (7.3.3), we easily deduce that

‖Ψ′′′(ϕ(t))‖Lp(Ω) ≤ CeCp, ∀ t ≥ σ. (7.3.4)

Now, our aim is to show a uniform in time control of theL∞-norm ofΨ′(ϕ). To this end,
we perform a Alikakos–Moser iteration argument. Taking v = |Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)
in (7.1.3), we have for almost every t ≥ σ

1

p+ 1

d

dt

∫
Ω

|Ψ′(ϕ)|p+1 dx+

∫
Ω

Ψ′′(ϕ)∇ϕ · ∇
(
|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)

)
dx

=

∫
Ω

(∇J ∗ ϕ) · ∇
(
|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)

)
dx. (7.3.5)
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Observe that

∇
(
|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)

)
= p|Ψ′(ϕ)|p−1Ψ′′(ϕ)2∇ϕ+ |Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′′(ϕ)∇ϕ.

Then, we can write

1

p+ 1

d

dt

∫
Ω

|Ψ′(ϕ)|p+1 dx+ I1 + I2 = I3 + I4, (7.3.6)

where

I1 := p

∫
Ω

Ψ′′(ϕ)∇ϕ · |Ψ′(ϕ)|p−1Ψ′′(ϕ)2∇ϕ dx,

I2 :=

∫
Ω

Ψ′′(ϕ)∇ϕ · |Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′′(ϕ)∇ϕ dx,

I3 := p

∫
Ω

(∇J ∗ ϕ) · |Ψ′(ϕ)|p−1Ψ′′(ϕ)2∇ϕ dx,

I4 :=

∫
Ω

(∇J ∗ ϕ) · |Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′′(ϕ)∇ϕ dx.

We point out that taking v in (7.1.3) is not formal. Indeed, it is easy to check that
the regularities property ∇ϕ ∈ L6(t, t + 1;L3(Ω)) in (7.2.8) and the uniform bounds
(7.2.7), (7.3.2) and (7.3.4) entail v ∈ L2(t, t + 1;V ), for all t ≥ σ. Then, since ϕt
belong to L2(t, t + 1;H), for any t ≥ σ, and s 7→ |Ψ′(s)|p+1 is convex, an application
of [141, Chap.IV, Lemma 4.3] gives

1

p+ 1

d

dt

∫
Ω

|Ψ′(ϕ)|p+1 dx =

∫
Ω

|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)ϕt dx,

for almost every t ≥ σ.
Now we have to estimate all the terms Ii, i = 1, 2, 3, 4. By the identity

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2|∇ϕ|2 =
4

(p+ 1)2
|∇|Ψ′(ϕ)|

p+1
2 |2, (7.3.7)

and recalling (H), we have

I1 ≥ αp

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2|∇ϕ|2 dx ≥ 4αp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx. (7.3.8)

On the other hand, from (H.4), we obtain

I2 =

∫
Ω

|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′′(ϕ)Ψ′′(ϕ)|∇ϕ|2 dx ≥ 0.

Hypotheses (K), (H.3) and (H.4) together with Young’s inequality, Remark 7.1.4 and
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(7.3.7) allow us to control I3 and I4 as follows

I3 ≤ p

∫
Ω

(
|Ψ′(ϕ)|

p−1
2 Ψ′′(ϕ)|∇ϕ|

)(
|Ψ′(ϕ)|

p−1
2 Ψ′′(ϕ)|∇J ∗ ϕ|

)
dx

≤ εp

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2|∇ϕ|2 dx+
p

4ε

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2|∇J ∗ ϕ|2 dx

≤ 4εp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2dx+
p

4ε
‖∇J ∗ ϕ‖2

L∞(Ω)

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+
Cp

4ε

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+
Cp

4ε
‖Ψ′′(ϕ)‖2 +

Cp

4ε

∫
Ω

|Ψ′(ϕ)|p+1Ψ′′(ϕ)2 dx,

and

I4 ≤
∫

Ω

(
|Ψ′(ϕ)|

p−1
2 Ψ′′(ϕ)|∇ϕ|

)(
|Ψ′(ϕ)|

p+1
2
|Ψ′′′(ϕ)|
Ψ′′(ϕ)

|∇J ∗ ϕ|
)

dx

≤ εp

∫
Ω

|Ψ′(ϕ)|p−1Ψ′′(ϕ)2|∇ϕ|2 dx+
1

4εp

∫
Ω

|Ψ′(ϕ)|p+1 |Ψ′′′(ϕ)|2

Ψ′′(ϕ)2
|∇J ∗ ϕ|2 dx

≤ 4εp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2dx+
C

4εp
‖∇J ∗ ϕ‖2

L∞(Ω)

∫
Ω

|Ψ′(ϕ)|p+1Ψ′′(ϕ)2 dx

≤ 4εp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2dx+
C

4εp

∫
Ω

|Ψ′(ϕ)|p+1Ψ′′(ϕ)2 dx,

where ε > 0 is an arbitrary parameter. Choosing ε = α
4
in the above estimates, we infer

from (7.3.3) and (7.3.6) that

1

p+ 1

d

dt

∫
Ω

|Ψ′(ϕ)|p+1 dx+
2αp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx

≤ Cp+ Cp

∫
Ω

|Ψ′(ϕ)|p+1Ψ′′(ϕ)2 dx, (7.3.9)

for almost every t ≥ σ. Taking now

J =

∫
Ω

|Ψ′(ϕ)|p+1|Ψ′′(ϕ)|2 dx

and applying the Hölder inequality, we find

J ≤ ‖Ψ′′(ϕ)‖2
L4(Ω)‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)

≤ C‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)
,

where we have used (7.3.3) to control Ψ′′(ϕ). Hence, (7.3.9) turns into

1

p+ 1

d

dt

∫
Ω

|Ψ′(ϕ)|p+1 dx+
2αp

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx

≤ Cp
(

1 + ‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)

)
.
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Setting w(t) = |Ψ′(ϕ(t))| p+1
2 , we rewrite the above differential inequality in terms of w

as follows
d

dt
‖w‖2 +

2αp

p+ 1
‖∇w‖2 ≤ Cp(p+ 1)

(
1 + ‖w‖2

L4(Ω)

)
. (7.3.10)

Exploiting Lemma 3.1.1 with ε = α
C(p+1)2

Cp(p+ 1)‖w‖2
L4(Ω) ≤

αp

p+ 1
‖∇w‖2 + C

(
1 + (p+ 1)6

)
‖w‖2

L1(Ω)

and inserting the above estimate into (7.3.10), we obtain

d

dt
‖w‖2 +

αp

p+ 1
‖∇w‖2 ≤ Cp6

(
1 + ‖w‖2

L1(Ω)

)
.

Then, noting that p
p+1
≥ 1

2
, and using again Lemma 3.1.1 with s = 2 and ε = α

2
, we

reach
d

dt
‖w‖2 + ‖w‖2 ≤ Cp6

(
1 + ‖w‖2

L1(Ω)

)
. (7.3.11)

for almost every t ≥ σ and any p ≥ 1. We are now in a position to carry out an
iterative argument (see [6]). To this aim, we observe that, by comparison, Ψ′(ϕ) ∈
L1(σ, 2σ;W 1,3(Ω)) (see (7.2.11)) with

‖Ψ′(ϕ)‖L1(σ,2σ;W 1,3(Ω)) ≤ C,

where C only depends on σ. By the Sobolev embeddingW 1,3(Ω) ↪→ L∞(Ω), we infer
that there exists ξ ∈ (σ, 2σ) such that

‖Ψ′(ϕ(ξ))‖L∞(Ω) ≤ C.

Hence, denoting

η = max
{
‖Ψ′(ϕ(ξ))‖L∞(Ω),max

t≥ξ

∫
Ω

|Ψ′(ϕ)| dx
}
,

and according to (7.2.7), we find the estimate

1 ≤ η ≤ C. (7.3.12)

Next, recalling the very definition of w, an application of the Gronwall Lemma to
(7.3.11) gives

max
t≥ξ

∫
Ω

|Ψ′(ϕ(t))|p+1 dx ≤ max
{
ηp+1, Cp6 max

t≥ξ

(
1 +

∫
Ω

|Ψ′(ϕ(t))|
p+1

2 dx
)2}

for all t ≥ ξ and p ≥ 1. As customary, taking p+ 1 = 2k, k ∈ N, we rewrite the above
inequality as

max
t≥ξ

∫
Ω

|Ψ′(ϕ(t))|2k dx ≤ max
{
η2k , C26k max

t≥ξ

(
1 +

∫
Ω

|Ψ′(ϕ(t))|2k−1

dx
)2}

≤ max
{
η2k , C26k+2 max

t≥ξ

(∫
Ω

|Ψ′(ϕ(t))|2k−1

dx
)2}

.
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Setting Ak = C26k+2 and arguing by iteration, we arrive at

max
t≥ξ

∫
Ω

|Ψ′(ϕ(t))|2k dx ≤ η2kAk A
2
k−1 A

22

k−2 ... A
2k−1

k−(k−1) (7.3.13)

≤ η2kCA2k2B2k ,

where

A =
∞∑
i=1

1

2i
<∞, B =

∞∑
i=1

6i+ 2

2i
<∞.

Finally, taking the 2−k-power on both sides of (7.3.13), passing to the limit as k → +∞,
and using (7.3.12), we end up with

max
t≥ξ
‖Ψ′(ϕ(t))‖L∞(Ω) ≤ C.

Therefore, (7.3.1) immediately follows from the above estimate. The proof is complete.

Remark 7.3.2. Suppose the third condition in (H.4) is replaced by the more general one

|Ψ′′′(s)| ≤ CΨ′′(s)q, ∀ s ∈ (−1, 1), (7.3.14)

for some q ≥ 1. Then, following line by line the above proof, and setting now

J =

∫
Ω

|Ψ′(ϕ)|p+1Ψ′′(ϕ)2(q−1) dx,

we just need to control J in a slightly different way. Indeed, applying the Hölder in-
equality, we get

|J | ≤ ‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)
‖Ψ′′(ϕ)‖2(q−1)

L4(q−1)(Ω)
≤ C‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)
.

Thus the conclusion still follows arguing as above.
A first immediate consequence of Theorem 7.3.1 is

Corollary 7.3.3. For any σ > 0, there exists C = C(σ) > 0 such that

‖µ(t)‖L∞(Ω) ≤ C, ∀ t ≥ 2σ.

Moreover, as a byproduct, we can also obtain the Hölder regularity of the weak solutions
by means of [51, Corollary 4.2]. Indeed we have

Corollary 7.3.4. For any σ > 0, there exists C = C(σ) > 0 and β = β(σ, δ) ∈ (0, 1)
such that

|ϕ(x1, t1)− ϕ(x2, t2)| ≤ C
(
|x1 − x2|β + |t1 − t2|

β
2

)
|µ(x1, t1)− µ(x2, t2)| ≤ C

(
|x1 − x2|β + |t1 − t2|

β
2

)
,

for all (x1, t1), (x2, t2) ∈ [t, t+ 1]× Ω and t ≥ 3σ.
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Leaning on the strict separation property (7.3.1), we are able to interpret the weak
solutions to problem (7.1.1)-(7.1.2) as the weak solutions to a similar problem where Ψ
is replaced by a suitable regular potential. More precisely, we define the regular potential
Ψ ∈ C3(R), which extends Ψ outside of [−1 + δ, 1− δ], as follows

Ψ(s) =
∑3

k=0
Ψ(k)(1−δ)

k!
(s− 1 + δ)k, ∀ s ≥ 1− δ,

Ψ(s) = Ψ(s), ∀ s ∈ (−1 + δ, 1− δ)
Ψ(s) =

∑3
k=0

Ψ(k)(−1+δ)
k!

(s+ 1− δ)k, ∀ s ≤ −1 + δ.

(7.3.15)

According to the assumptions H.3 and H.4 and taking into account the sign of Ψ and its
derivatives at s = 1− δ and s = −1 + δ, we deduce the following properties:

(A.1) for any Λ > 0, there exists C > 0 such that

Ψ(s) ≥ Λs2 − C, ∀ s ∈ R;

(A.2) there exists N > 0 such that

|Ψ′(s)| ≤ N(1 + s2), ∀ s ∈ R;

(A.3) there exists N > 0 such that

α ≤ Ψ
′′
(s) ≤ N(1 + |s|), |Ψ′′′(s)| ≤ N, ∀ s ∈ R.

Here, α is the same value defined in assumption (H). Instead, C and N can be easily
estimated in terms of δ.

Let us now set ϕ1 = ϕ(3σ), which is a function in V such that ‖ϕ1‖L∞(Ω) ≤ 1− δ,
ϕ1 ∈ [−1 +m, 1−m]. We consider the Cahn–Hilliard system{

∂tϕ̃ = ∆µ̃,

µ̃ = Ψ
′
(ϕ̃)− J ∗ ϕ̃,

in Ω× (0, T ), (7.3.16)

subject to the boundary and initial conditions{
∂nµ̃ = 0, on ∂Ω× (0, T )

ϕ̃(·, 0) = ϕ1, in Ω.
(7.3.17)

Combining Lemma 7.1.7 and Theorem 7.1.9, it follows immediately that problem (7.3.16)-
(7.3.17) has a unique weak solution in the sense of Definition (7.1.8) obtained as a limit
of a Galerkin sequence. On the other hand, from the separation property, the definition
of Ψ and the uniqueness of (7.3.16)-(7.3.17), we easily infer that ϕ is also a weak so-
lution to (7.3.16) so ϕ̃(t) ≡ ϕ(t + 3σ) for all t ≥ 0. According to this equivalence,
the idea is to compute some higher order estimates on the Galerkin sequence due to
its regularity. Note that the Galerkin sequence does not satisfy the separation property.
Nevertheless, we can take advantage of the specific form of Ψ.

Lemma 7.3.5. For any σ > 0, there exists C = C(σ) > 0 such that

‖∂tϕ‖L∞(5σ,t;H) + ‖∂tϕ‖L2(t,t+1;V ) + ‖∇∂tµ‖L2(t,t+1;H) ≤ C, ∀ t ≥ 5σ. (7.3.18)
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Proof. Let us consider the Galerkin sequence ϕ̃n which converges to ϕ̃. Due to the
regularity of ϕ̃n and the properties of Ψ, we can repeat line by line the proof of Theorem
7.2.1. In particular, we have

‖ϕ̃n(t)‖2
V + ‖∂tϕ̃n(t)‖2

V ′ +

∫ t+1

t

‖∂tϕ̃n(τ)‖2 dτ ≤ C, ∀ t ≥ σ, (7.3.19)

where C is independent of n. Now, arguing as in [65], we differentiate the system with
respect to time and we test by ∂tµ̃n getting

(∂ttϕ̃n, ∂tµ̃n) + ‖∇∂tµ̃n‖2 = 0.

Hence, exploiting the form of µ̃n, we obtain

(∂ttϕ̃n,Ψ
′′
(ϕ̃n)∂tϕ̃n)− (∂ttϕ̃n, J ∗ ∂tϕ̃n) + ‖∇∂tµ̃n‖2 = 0.

Using the first equation of (7.3.16), we can rewrite the above equality as

1

2

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+ ‖∇∂tµ̃n‖2 = (∆∂tµ̃n, J ∗ ∂tϕ̃n) +

1

2

∫
Ω

Ψ
′′′

(ϕ̃n)∂tϕ̃
3
n dx.

After an integration by parts in the right-hand side, we get

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+‖∇∂tµ̃n‖2 = −(∇∂tµ̃n,∇J ∗∂tϕ̃n)+

1

2

∫
Ω

Ψ
′′′

(ϕ̃n)∂tϕ̃
3
n dx.

By Young’s inequality, assumption (K) and (A.3), we deduce

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+

1

2
‖∇∂tµ̃n‖2 ≤ C‖∂tϕ̃n‖2 + C

∫
Ω

|∂tϕ̃n|3 dx. (7.3.20)

On account of (3.1.10) with p = 3, we control the last term on the right-hand side as

‖∂tϕ̃n‖3
L3(Ω) ≤ γ‖∇∂tϕ̃n‖2 + C‖∂tϕ̃n‖4,

for any γ > 0 and C > 0 depending on γ but independent of n. In order to reconstruct
the L2-norm of the gradient of ∂tϕ̃n on the left-hand side, we multiply the gradient of
∂tµ̃n by∇∂tϕ̃n getting∫

Ω

∇∂tµ̃n · ∇∂tϕ̃n dx =

∫
Ω

Ψ
′′
(ϕ̃n)|∇∂tϕ̃n|2 dx+

∫
Ω

Ψ
′′′

(ϕ̃n)∇ϕ̃n · ∇∂tϕ̃n dx

−
∫

Ω

∇J ∗ ∂tϕ̃n · ∇∂tϕ̃n dx.

Using again Young’s inequality, assumption (K) and (A.3), we obtain∫
Ω

Ψ
′′
(ϕ̃n)|∇∂tϕ̃n|2 dx ≤ α

2
‖∇∂tϕ̃n‖2 + C‖∇∂tµ̃n‖2 + C‖∇ϕ̃n‖2 + C‖∂tϕ̃n‖2.

According to the bound from below of Ψ
′′, the above inequality yields

1

2

∫
Ω

Ψ
′′
(ϕ̃n)|∇∂tϕ̃n|2 dx ≤ C‖∇∂tµ̃n‖2 + C‖∇ϕ̃n‖2 + C‖∂tϕ̃n‖2. (7.3.21)
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Gathering together (7.3.20) and (7.3.21), there exists ω > 0 such that

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+ ω

∫
Ω

Ψ
′′
(ϕ̃n)|∇∂tϕ̃n,t|2 dx+

1

4
‖∇∂tµ̃n‖2

≤ γ‖∇∂tϕ̃n‖2 + C‖∂tϕ̃n‖4 + C‖∇ϕ̃n‖2 + C‖∂tϕ̃n‖2.

Setting γ = ωα
2
, we have

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+γ

∫
Ω

|∇∂tϕ̃n|2 dx+
1

4
‖∇∂tµ̃n‖2

≤ C‖∂tϕ̃n‖4 + C‖∇ϕ̃n‖2 + C‖∂tϕ̃n‖2.

Noting that the first term on the right-hand side can be controlled as follows

‖∂tϕ̃n‖4 ≤ C‖∂tϕ̃n‖2

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx,

we get

d

dt

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+ γ

∫
Ω

|∇∂tϕ̃n|2 dx+
1

4
‖∇∂tµ̃n‖2

≤ C‖∂tϕ̃n‖2

∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx+ C‖∇ϕ̃n‖2 + C‖∂tϕ̃n‖2. (7.3.22)

In order to apply the uniform Gronwall lemma, we need to find a bound of∫ t+1

t

∫
Ω

Ψ
′′
(ϕ̃n(τ))|∂tϕ̃n(τ)|2 dxdτ, ∀ t ≥ σ.

To this aim, we observe that∫
Ω

Ψ
′′
(ϕ̃n)|∂tϕ̃n|2 dx = (J ∗ ∂tϕ̃n, ∂tϕ̃n) + (∂tµ̃n, ∂tϕ̃n)

= (J ∗ ∂tϕ̃n, ∂tϕ̃n)− 1

2

d

dt
‖∂tϕ̃n‖2

∗.

Integrating in time from t to t+ 1 and exploiting (7.3.19), we get∫ t+1

t

∫
Ω

Ψ
′′
(ϕ̃n(τ))|∂tϕ̃n(τ)|2 dxdτ ≤ C

∫ t+1

t

‖∂tϕ̃n(τ)‖2 dτ +
1

2
‖∂tϕ̃n(t)‖2

∗

≤ C.

Therefore, due to the above estimate and (7.3.19), we apply the uniformGronwall lemma
to (7.3.22) deducing

‖∂tϕ̃n(t)‖2 +

∫ t+1

t

‖∂tϕ̃t(τ)‖2
V + ‖∇∂tµ̃n(τ)‖2 dτ ≤ C, ∀ t ≥ 2σ.

Passing to the limit as n goes to∞, using the lower semicontinuity of the norm and the
equivalence between ϕ̃ and ϕ, we obtain (7.3.18).
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Remark 7.3.6. Notice that by comparison, we also infer that for all t ≥ 5σ,

‖µ‖L∞(5σ,t;H2(Ω)) + ‖∇ϕ‖L∞(5σ,t;Lp(Ω)) + ‖∂ttϕ‖L2(t,t+1;V ′) ≤ C.

If we strengthen a bit the assumptions on the interaction kernel J , we can say more
about the regularity of the solution.

Lemma 7.3.7. Assume that J satisfies K.1. For any σ > 0, there exists C = C(σ) > 0
such that

sup
t≥5σ
‖ϕ(t)‖H2(Ω) ≤ C.

The claim of Lemma 7.3.7 can deduced from the regularity µ ∈ L∞(5σ,∞;H2(Ω))
(see [62, Theorem 5]). Moreover, further regularity properties can be achieved by mak-
ing use of the maximal regularity of the Neumann Laplacian (see [69]).

7.4 The Nonlocal Cahn-Hilliard Equation: Longtime behavior

In this section we discuss the longtime behavior of global solutions.

The Infinite Dimensional Dynamical System
Let us now analyze the dynamical system associated to problem (7.1.1)-(7.1.2). For any
givenm ∈ (0, 1), we introduce the phase space

Vm =
{
ϕ ∈ L∞(Ω) : ‖ϕ(x)‖L∞(Ω) ≤ 1 and − 1 +m ≤ ϕ ≤ 1−m

}
, (7.4.1)

endowed with the metric
d(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖. (7.4.2)

It is easily seen that Vm is a complete metric space. Thanks to Theorem 7.1.3, we can
set

S(t) : Vm → Vm, S(t)ϕ0 = ϕ(t), ∀ t ≥ 0,

where ϕ is the weak solution in the sense of Definition 7.1.1 corresponding to the i
nitial condition ϕ0. The dynamical system (Hκ, S(t)) is dissipative owing to (7.1.4).
Moreover, S(t) is a closed semigroup on the phase space Vm because of (7.1.5) (see
[128]).

The following result concerns the existence of the global attractor.

Theorem 7.4.1. The dynamical system (Vm,S(t)) has a connected global attractorAm
which is bounded in Vm ∩ V .

Proof. Let us set
B = BV (0, R) ∩ Vm,

where R > 0 sufficiently large. We infer from Theorem 7.2.1 that B is a connected
compact absorbing set for the dynamical system (Vm,S(t)). Hence, the existence of the
global attractor is an immediate consequence of [128, Corollary 6].

Thanks to the validity of the separation property, we can deduce more information
on the asymptotic behavior of the weak solutions in dimension two.
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Theorem 7.4.2. Let the assumptions of Theorem 7.3.1 hold. Then, for every m > 0,
there exists an exponential attractor Mm bounded in V ∩ Cβ(Ω) for the dynamical
system (Vm,S(t)), namely,

(i) S(t)Mm ⊂Mm, ∀ t ≥ 0;

(ii) Mm exponentially attracts the bounded subsets of Vm, i.e. there exist C and ω
such that for every B bounded set of Vm

distCγ(Ω)(S(t)B,Mm) ≤ Ce−ωt, ∀ t ≥ 0,

for any γ ∈ (0, β);

(iii) the fractal dimension ofMm is finite, that is,

dimF (Mm, Cβ(Ω)) ≤ C,

where C depends on β andm.

As consequences of Theorem 7.4.2 we have
Corollary 7.4.3. Let the assumptions of Theorem 7.3.1 hold, then the global attractor
is a bounded subset of V ∩ Cβ(Ω) and has finite fractal dimension, that is,

dimF (Am, Cβ(Ω)) ≤ C.

Corollary 7.4.4. Let the assumptions of Theorem 7.3.1 hold. If, in addition, J satisfies
(K.1), then the global attractor Am and the exponential attractorMm are bounded in
Hm ∩H2(Ω).

Theorem 7.4.2 and Corollaries 7.4.3 and 7.4.4 are byproducts of the separation prop-
erty. Indeed, we recall that the weak solutions to (7.1.1)-(7.1.2) coincides in finite
time with the weak solutions to (7.1.1)-(7.1.2) with a smooth potential. Hence we can
use [74, Theorem 2.8] to guarantee the existence of an exponential attractor and its con-
sequences.

Convergence to Single Stationary State
We conclude this section by stating a result on the convergence of single trajectories.
More precisely, we have that anyweak solution does converge to a single stationary state.
This result also follows from the argument mentioned above which is based on the strict
separation property. More precisely, it can be proven arguing as in [74, Theorem 2.21]
where the regular potential case is considered. Thus, we also have
Corollary 7.4.5. Let the assumptions of Theorem 7.3.1 hold. If Ψ is real analytic on
[−1 + δ(m), 1 − δ(m)]. Then, any weak solution ϕ to problem (7.1.1)-(7.1.2) is such
that

lim
t→∞
‖ϕ (t)− ϕ∗‖L∞(Ω) = 0, (7.4.3)

where ϕ∗ ∈ V ∩ Cα(Ω) solves

Ψ′(ϕ∗)− J ∗ ϕ∗ = µ∗,

where µ∗ ∈ R, and ϕ0 = ϕ∗.
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7.5 The Nonlocal Navier-Stokes-Cahn-Hilliard System: Regularity Prop-
erties

This section is devoted to the regularity results and the validity of the strict separation
property to problem (7.0.1)-(7.0.2) in dimension two. Let us introduce first the definition
of weak solution (see [63]).

Definition 7.5.1. Let u0 ∈ Hσ, ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω). A
couple (u, ϕ) is a weak solution to problem (7.0.1)-(7.0.2) on [0, T ] if

u ∈ L∞(0, T ; Hσ) ∩ L2(0, T ; Vσ) ∩H1(0, T ; V′σ),

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

µ ∈ L2(0, T ;V )

such that

〈∂tu, v〉+ b(u,u, v) + (∇u,∇v) = (µ∇ϕ, v), ∀ v ∈ Vσ,

〈∂tϕ, v〉+ (u · ∇ϕ, v) + (∇µ,∇v) = 0, ∀ v ∈ V,

for almost every t ∈ (0, T ), where

µ = Ψ′(ϕ)− J ∗ ϕ,

for almost every (x, t) ∈ Ω × (0, T ). Moreover, the initial conditions u(·, 0) = u0 and
ϕ(·, 0) = ϕ0 a.e. in Ω× (0, T ).

Recalling the energy associated to system (7.0.1)

EH(u, ϕ) =
1

2
‖u‖2 +

∫
Ω

Ψ(ϕ)dx− 1

2
(J ∗ ϕ, ϕ),

we state the well-posedness result related to problem (7.0.1)-(7.0.2).

Theorem 7.5.2. Let u0 ∈ Hσ, ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω) and
ϕ0 ∈ (−1, 1). Then, for any T > 0, there exists a unique weak solution (u, ϕ) to
problem (7.0.1)-(7.0.2) on [0, T ] which satisfies the dissipative estimate

EH(u(t), ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇ϕ(τ)‖2 + ‖∇µ(τ)‖2 dτ

≤ CEH(u0, ϕ0)e−ωt + C,

for all t ≥ 0, where ω and C are positive constants independent of the initial condition.

The proof of Theorem 7.5.2 can be carried out by arguing as in Theorem 7.1.3 and
by using the standard Galerkin scheme for the Navier–Stokes system (see [151]). We
also refer to [63, Section 2, Theorem 1] for a different approximation technique. Instead,
uniqueness has been proven arguing as in [62].
Let us fixm ∈ (0, 1) and R ≥ 0. We consider trajectories such that

|ϕ0| ≤ 1−m and EH(u0, ϕ0) ≤ R.
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Accordingly, the generic constant C may depend on R andm but is independent of the
specific form of the initial datum. Moreover, thanks to the above result, we have that
any weak solution fulfills for all t ≥ 0

EH(u(t), ϕ(t)) +

∫ t+1

t

‖∇u(τ)‖2 + ‖∇ϕ(τ)‖2

+ ‖∇µ(τ)‖2 + ‖∂tϕ(τ)‖2
V ′ dτ ≤ C. (7.5.1)

We begin with a regularity result for the Navier–Stokes system in dimension two.

Lemma 7.5.3. For any σ > 0, there exists C = C(σ) such that

‖u‖L∞(σ,t;Vσ) + ‖u‖L2(t,t+1;H2(Ω)) + ‖∂tu‖L2(t,t+1;L2(Ω)) ≤ C, ∀ t ≥ σ. (7.5.2)

Proof. We observe that the Korteweg force can be rewritten as

µ∇ϕ = ∇π∗ − (J ∗ ϕ)∇ϕ.

On the other hand, we have for all t ≥ 0∫ t+1

t

‖(J ∗ ϕ(τ))∇ϕ(τ)‖2 dτ ≤ C.

Thus (7.5.2) follows from [151, Theorem 3.10].

Thanks to Lemma 7.5.3, we can prove the following regularity result on the phase
parameter.

Lemma 7.5.4. For any σ > 0, there exists C = C(σ) > 0 such that

‖∂tϕ‖L∞(2σ,t;V ′) + ‖∂tϕ‖L2(t,t+1;H) ≤ C, ∀ t ≥ 2σ. (7.5.3)

Proof. We provide below a formal computation. A rigorous proof can be easily done by
replacing the differentiation with respect to time with difference quotient. We differen-
tiate the nonlocal Cahn–Hilliard equation with respect to time and we test the equation
by Nϕt. Then, arguing as in the proof of Lemma 7.2.1, we obtain

d

dt
‖∂tϕ‖2

V ′0
+ α‖∂tϕ‖2 ≤ C‖∂tϕ‖2

V ′0
+ 2|(∂tuϕ,∇N∂tϕ)|+ 2|(u∂tϕ,∇N∂tϕ)|.

By the Hölder inequality and the properties of N , we deduce that

|(∂tuϕ,∇N∂tϕ)| ≤ ‖∂tu‖‖∂tϕ‖V ′0
and

|(u∂tϕ,∇N∂tϕ)| ≤ ‖u‖L∞(Ω)‖∂tϕ‖‖∂tϕ‖V ′0 .
Collecting together the above estimates and using the Young inequality, we get

d

dt
‖∂tϕ‖2

V ′0
+
α

2
‖∂tϕ‖2 ≤ C

(
1 + ‖u‖2

L∞(Ω)

)
‖∂tϕ‖2

V ′0
+ ‖∂tu‖2.

Now, exploiting the uniformGronwall lemma together with (7.5.1) and (7.5.2), we easily
infer (7.5.3).
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As an immediate consequence, we deduce two additional regularity results whose
proofs can be performed following line by line the proofs of their previous counterparts
(namely, Theorem 7.2.1 and Proposition 7.2.2).

Lemma 7.5.5. For any σ > 0, there exists C = C(σ) > 0 such that

‖∇µ‖L∞(σ,t;H) ≤ C, ∀ t ≥ 2σ, (7.5.4)

and
sup
t≥2σ
‖ϕ(t)‖V ≤ C. (7.5.5)

Lemma 7.5.6. For any σ > 0, there exists C = C(σ) > 0 such that for all t ≥ 2σ

‖Ψ′(ϕ)‖L∞(2σ,t;V ) + ‖µ‖L∞(2σ,t;V ) + ‖µ‖L2(t,t+1;H2(Ω)) ≤ C, (7.5.6)

‖∇µ‖Lq(t,t+1;Lp(Ω)) + ‖∇ϕ‖Lq(t,t+1;Lp(Ω)) ≤ C, if
p− 2

p
=

2

q
and d = 2. (7.5.7)

We now have all the ingredients to establish the separation property.

Theorem 7.5.7. Given σ > 0. Suppose that Ψ also fulfills (H.3)-(H.4). Then, there
exists δ = δ(m,R, σ) > 0 such that

sup
t≥3σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ. (7.5.8)

Proof. We apply the same argument of Theorem 7.3.1. We need to handle the following
further term

Z =

∫
Ω

uϕ∇
(
|Ψ′(ϕ)|p−1Ψ′(ϕ)Ψ′′(ϕ)

)
dx.

Using the boundedness of ϕ, we have

|Z| ≤
∫

Ω

|u||Ψ′(ϕ)p−1Ψ′(ϕ)Ψ′′′(ϕ)∇ϕ| dx+ p

∫
Ω

|u|Ψ′′(ϕ)2|Ψ′(ϕ)|p−1|∇ϕ| dx

≤ Z1 + Z2.

Furthermore, we have

Z1 ≤
4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+
1

4Cp

∫
Ω

|Ψ′(ϕ)|p+1|Ψ
′′′(ϕ)|2

Ψ′′(ϕ)2
u2 dx

≤ 4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+
1

4Cp

∫
Ω

|Ψ′(ϕ)|p+1|Ψ′′(ϕ)|2u2 dx

≤ 4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+ ‖Ψ′′(ϕ)2u2‖H‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+ ‖Ψ′′(ϕ)‖2
L8(Ω)‖u‖2

L8(Ω)‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+ C‖Ψ′(ϕ)‖p+1

L2(p+1)(Ω)
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and

Z2 ≤
4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+
1

4C
‖u2Ψ′′(ϕ)2‖H‖Ψ′(ϕ)‖p−1

L2(p+1)(Ω)

≤ 4p

(p+ 1)2

∫
Ω

|∇|Ψ′(ϕ)|
p+1

2 |2 dx+ C‖Ψ′(ϕ)‖p−1

L2(p−1)(Ω)
.

Arguing as in Theorem 7.3.1 and using an Alikakos–Moser type iteration procedure, we
obtain (7.5.8).

Thanks to the strict separation property we can also prove some Hölder continuity.
Indeed we have

Lemma 7.5.8. For any σ > 0, there exists C = C(σ) > 0 and β ∈ (0, 1), depending
on δ such that

sup
t∈[4σ,∞)

‖u(t)‖W1,4(Ω) ≤ C (7.5.9)

and
|ϕ(x1, t1)− ϕ(x2, t2)| ≤ C

(
|x1 − x2|α + |t1 − t2|

α
2

)
, (7.5.10)

for all (x1, t1), (x2, t2) ∈ [t, t+ 1]× Ω and any t ≥ 5σ.

Proof. We observe that the Korteweg force can be rewritten in the following form

µ∇ϕ = ∇π̃ − (∇J ∗ ϕ)ϕ.

Thanks to Lemma 7.5.4 and the boundedness of ϕ, we deduce that

‖∂t((∇J ∗ ϕ)ϕ)‖L2(t,t+1;H)

≤ ‖(∇J ∗ ∂tϕ)ϕ‖L2(t,t+1;H) + ‖(∇J ∗ ϕ)∂tϕ‖L2(t,t+1;H) ≤ C, ∀ t ≥ 3σ.

Therefore, we can consider the Navier–Stokes equation

〈∂tu, v〉+ b(u,u, v) + (∇u,∇v) = (f , v), ∀ v ∈ Vσ,

for almost every t ≥ 0, where f is a vector-field bounded in L2(t, t + 1; H) with ∂rf
bounded in L2(t, t+ 1; H). Setting

∂ht v =
1

h

(
v(t+ h)− v(t)

)
,

we take the difference of the above equation for t + h and t and we test by ∂ht u. This
gives

1

2

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 + b(∂ht u,u(t+ h), ∂ht u) + b(u, ∂ht u, ∂ht u) = (∂ht f , ∂

h
t u).

Notice that the last term on the left-hand side is equal to zero. Exploiting (3.1.7) and
the Young inequality, we obtain

1

2

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 ≤ ‖u(t+ h)‖Vσ‖∂ht u‖‖∂ht u‖Vσ + ‖∂ht f‖‖∂ht u‖.
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Due to the Poincaré inequality, we deduce

d

dt
‖∂ht u‖2 + ‖∇∂ht u‖2 ≤ C‖u(t+ h)‖2

Vσ
‖∂ht u‖2 + C‖∂ht f‖2

≤ C‖∂ht u‖2 + C‖∂ht f‖2,

where we have used Lemma 7.5.3. On account of the inequality

‖∂ht v‖L2(t,t+1+h;H) ≤ ‖vt‖L2(t,t+1;H),

applying the uniform Gronwall lemma, we infer that

‖∂ht u‖L∞(4σ,t;H + ‖∇∂ht u‖L2(t,t+1;H) ≤ C, ∀ t ≥ 4σ.

Hence, we conclude that

‖∂tu‖L∞(4σ,t,H) + ‖∇∂tu‖L2(t,t+1;H) ≤ C, ∀ t ≥ 4σ. (7.5.11)

Therefore, an application of [9, Theorem 1.1] yields

‖u(t)‖W1,4(Ω) ≤ C, ∀ t ≥ 4σ,

and we conclude that (7.5.9) holds. Finally, we can apply [51, Corollary 4.2] to the
nonlocal Cahn–Hilliard equation with convective term and infer (7.5.10).

Remark 7.5.9. As we observed in Section 7.3 we can still identify the weak solutions
to problem (7.0.1)-(7.0.2) with the weak solutions to a similar problem with a regular
potential. Then, we can generalize the results on the longtime behavior contained in
Section 7.3. More precisely, we know from [62] that (7.0.1)-(7.0.2) generates a dissipa-
tive dynamical systems which possesses a global attractor. Then, the regularity of the
global attractor as well as the convergence of any weak solution to a single equilibrium
proved in [65] for a regular potential can be extended to the present case. The same can
be told for results on the existence of an exponential attractor proven in [62, Section 5].
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CHAPTER8
The nonlocal Hele-Shaw-Cahn-Hilliard system

This chapter is devoted to the mathematical analysis of the nonlocal version of the
Hele–Shaw-Cahn–Hilliard system. First, we prove the well-posedness of weak
solutions in both two and three dimensions. Then, we show the existence of

global in time strong solutions. Consequently, due to the parabolic nature of the system,
we deduce that weak solutions become instantaneously strong solutions. In addition,
by using the method introduced in Chapter 7, we obtain the validity of the separation
property in dimension two. Finally, we discuss the longtime behavior.

In a bounded domain Ω ⊂ Rd, d = 2, 3, the nonlocal Hele–Shaw–Cahn–Hilliard system
with matched viscosities (ν = 1) reads as follows

u = −∇π + µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ = ∆µ,

µ = Ψ′(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (8.0.1)

subject to the boundary and initial conditions{
u · n = ∂nµ = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0(·), in Ω.
(8.0.2)

General agreement. Throughout this chapter, if it is not otherwise stated, we indicate
by C a generic positive constant depending only on the domain and on structural quan-
tities. The constant C may vary from line to line and even within the same line. Any
further dependence will be explicitly pointed out if necessary.
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8.1 Well-posedness

We prove that problem (8.0.1)-(8.0.2) is well posed with respect to the notion of weak
solutions in Ω ⊂ R3. To this purpose, we remind that the singular potential and the
interaction kernel satisfy the basic assumptions (H) and (K).

By weak solution we mean the following

Definition 8.1.1. Let ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1.
A triple (u, π, ϕ) is a weak solution to problem (8.0.1)-(8.0.2) on [0, T ] if

u ∈ L2(0, T ; Hσ), π ∈ L1(0, T ;W 1, 3
2 (Ω)),

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

Ψ′(ϕ) ∈ L2(0, T ;V ),

µ ∈ L2(0, T ;V ),

such that
〈∂tϕ, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V, (8.1.1)

for almost every t ∈ (0, T ), where

u = −∇π + µ∇ϕ, µ = Ψ′(ϕ)− J ∗ ϕ,

for almost every (x, t) ∈ Ω× (0, T ) and satisfies ϕ(0, ·) = ϕ0 a.e. in Ω.

Remark 8.1.2. We deduce from the assumptions Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1 that the
class of admissible initial conditions consist of ϕ0 ∈ L∞(Ω) such that |ϕ0(x)| ≤ 1,
for almost every x ∈ Ω. However, they cannot be pure phases, namely ϕ0 6≡ ±1, due
to the restriction on the total mass. In addition, concerning the initial condition, note
that ϕ ∈ C([0, T ], H). Also, any weak solution satisfies the mass conservation property,
namely

ϕ(t) = ϕ0, ∀ t ≥ 0.

Remark 8.1.3. On account of the regularity satisfied by ϕ, any weak solution fulfils the
identity

µ∇ϕ = ∇
(

Ψ(ϕ)− (J ∗ ϕ)ϕ
)

+ (∇J ∗ ϕ)ϕ,

for almost every (x, t) ∈ Ω× (0, T ). Thus, the Darcy’s law is equivalent to

u = −∇π∗ + (∇J ∗ ϕ)ϕ, π∗ = π −Ψ(ϕ) + (J ∗ ϕ)ϕ, a.e. in Ω× (0, T ).

Its weak formulation becomes∫
Ω

u · v dx =

∫
Ω

(∇J ∗ ϕ)ϕ · v dx, a.e. in (0, T ), (8.1.2)

for any v ∈ Hσ. In particular, the modified pressure π∗ ∈ L2(0, T ;V0). However, since
the product µ∇ϕ is bounded in L1(0, T ; W1, 3

2 (Ω)), the original pressure π belongs to
L1(0, T ; W1, 3

2 (Ω)).
Our first result regarding the existence of a weak solution is given by
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Theorem 8.1.4. Let ϕ0 be a measurable function with ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1.
Then, for any T > 0, there exists at least a weak solution (u, π, ϕ) to problem (8.0.1)-
(8.0.2) on [0, T ] satisfying

sup
t≥0
‖ϕ(t)‖L∞(Ω) ≤ 1. (8.1.3)

In addition, assuming that |ϕ0| ≤ m for some m ∈ [0, 1), there exists C = C(m),
independent of the initial datum, such that

‖u‖L2(t,t+1;Hσ) + ‖µ‖L2(t,t+1;V ) + ‖ϕ‖L2(t,t+1;V ) ≤ C, ∀ t ≥ 0. (8.1.4)

A solution in the sense of Definition 8.1.1 will be constructed through several approxi-
mating problems. We introduce an artificial viscosity−ε∆u, with ε > 0, in the Darcy’s
equation and we replace the singular potential with the family of regular ones Ψλ, de-
fined in Section 3.2. In this framework, the existence of a pair (uε,λ, ϕε,λ) is carried out
via the standard Galerkin scheme (the pressure will be recovered at the end of this argu-
ment). Then we aim to derive some uniform estimates with respect to the approximation
parameters λ and ε. After that, it will be convenient to pass to the limit as λ which goes
to 0, with ε > 0 fixed. In such a way, the velocity field is bounded in L2(0, T ; Vσ) at
this stage. This facilitates the goal of finding an estimate for ∂tϕε,λ. Next, taking ad-
vantage of the uniform bound in L∞(Ω× (0, T )) of ϕε, we recover the limit system via
compactness letting ε go to 0.

Proof. The proof will be divided into five steps.

1. A two levels approximation problem. For any given ε > 0 and λ > 0, we consider
the nonlocal Brinkman–Cahn–Hilliard system (see [20] and [47] and references therein)

−ε∆u + u = −∇π + µ∇ϕ,
div u = 0,

∂tϕ+ u · ∇ϕ−∆µ = 0,

µ = Ψ′λ(ϕ)− J ∗ ϕ,

in Ω× (0, T ), (8.1.5)

subject to the following boundary and initial conditions{
u = ∂µ

∂n = 0, on ∂Ω× (0, T ),

ϕ(·, 0) = ϕ0, in Ω.
(8.1.6)

The family of regular functions Ψλ : R→ R satisfies (cf. Section 3.2)

(i) for any 0 < λ ≤ 1, there exists C > 0 such that

Ψλ(s) ≥
1

4λ
s2 − C, ∀ s ∈ R, ∀λ ∈ (0, λ]; (8.1.7)

(ii) Ψλ is convex with
Ψ
′′

λ(s) ≥
α

1 + α
, ∀ s ∈ R; (8.1.8)

(iii) Ψ
′

λ is Lipschitz on R with constant 1
λ
;
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(iv) Ψλ(s)↗ Ψ(s) and |Ψ′λ(s)| ↗ |Ψ′(s)| for every s ∈ R as λ→ 0 and, in addition,
Ψ′λ converges uniformly to Ψ′ on any interval [a, b] ⊂ (−1, 1);

(v) Ψλ(0) = Ψ′λ(0) = 0, for all λ > 0.

As previously anticipated, arguing as in [47] and Chapter 7, one can prove the ex-
istence of a global weak solution to problem (8.1.5)-(8.1.6) via a Galerkin scheme, by
exploiting standard energy estimates and then passing to the limit in the usual way. More
precisely, given an initial datum ϕ0 ∈ H , for any T > 0, there exists a pair (u, ϕ) such
that

u ∈ L2(0, T ; Vσ),

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), ∂tϕ ∈ L
4
3 (0, T ;V ′),

µ = Ψ′λ(ϕ)− J ∗ ϕ ∈ L2(0, T ;V ),

and satisfies (see Remark 8.1.3)

ε(∇u,∇v) + (u, v) = ((∇J ∗ ϕ)ϕ, v), ∀ v ∈ Vσ, (8.1.9)
〈∂tϕ, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V, (8.1.10)

for almost every t ∈ (0, T ). Furthermore, introducing the regularized free energy

EλH(ψ) =

∫
Ω

Ψλ(ψ(x)) dx− 1

2

∫
Ω

∫
Ω

J(x− y)ψ(x)ψ(y) dxdy,

the energy inequality holds

EλH(ϕ(t)) +

∫ t

0

ε‖∇u(τ)‖2 + ‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ EλH(ϕ0), (8.1.11)

for almost every t ≥ 0.

2. A priori bounds based on the energy estimate. We consider an admissible initial
datum such that ϕ0 is measurable with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. According to the
previous stage, for any ε > 0 and λ > 0, there exists a pair (uε,λ, ϕε,λ) satisfying the
weak formulation (8.1.9)-(8.1.10) and the energy inequality (8.1.11). Our next goal is
to show some a priori uniform bounds with respect to ε and λ.
By virtue of the properties ofΨλ, we deduce that EλH(ϕ0) ≤ EH(ϕ0). In light of (8.1.11),
we find

EλH(ϕε,λ(t)) +

∫ t

0

ε‖uε,λ(τ)‖2
Vσ

+ ‖uε,λ(τ)‖2 + ‖∇µε,λ(τ)‖2 dτ ≤ EH(ϕ0) (8.1.12)

for almost every t ∈ [0, T ]. We notice that, as a consequence of property (i), we have in
particular

‖ϕε,λ‖2
L∞(0,T ;H) +

∫ T

0

ε‖uε,λ(τ)‖2
Vσ

+ ‖uε,λ(τ)‖2 + ‖∇µε,λ(τ)‖2 dτ

≤ EH(ϕ0) + C, (8.1.13)
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where C is independent of ε and λ. Taking the gradient of µε,λ and testing by ∇ϕε,λ,
we also obtain

(Ψ′′λ(ϕ
ε,λ)∇ϕε,λ,∇ϕε,λ) = (∇µε,λ,∇ϕε,λ) + (∇J ∗ ϕε,λ,∇ϕε,λ).

By property (ii) and the Young inequality for convolution product, we reach

‖∇ϕε,λ‖2 ≤ C‖∇µε,λ‖2 + C‖ϕε,λ‖2.

Thus, integrating in time and using (8.1.12)-(8.1.13), we arrive at∫ T

0

‖∇ϕε,λ(τ)‖2 dτ ≤ C(1 + T )
(
1 + EH(ϕ0)

)
. (8.1.14)

We now prove a uniform estimate of µε,λ in V . It is sufficient to find a control of the
total mass µε,λ, that is

µε,λ =
1

|Ω|

∫
Ω

Ψ′λ(ϕ
ε,λ) dx− 1

|Ω|

∫
Ω

J ∗ ϕε,λ dx.

Thanks to the monotonicity of Ψ′λ, it is possible to show (see [63] and Chapter 7) that

‖Ψ′λ(ϕε,λ)‖L1(Ω) ≤ C

∫
Ω

(ϕε,λ − ϕ0)Ψ′λ(ϕ
ε,λ) dx+ C, (8.1.15)

where C depends on ϕ0 and Ψ but is independent of ε and λ. Then, testing µε,λ by
ϕε,λ − ϕ0 yields∫

Ω

(ϕε,λ − ϕ0)Ψ′λ(ϕ
ε,λ) dx ≤ C‖∇µε,λ‖‖ϕε,λ − ϕ0‖+ C‖ϕε,λ‖2 + C

Collecting the above estimates and using (8.1.13), we find∫ T

0

‖Ψ′λ(ϕε,λ)(τ)‖2
L1(Ω) dτ ≤ C(1 + T )

(
1 + EH(ϕ0)

)2
, (8.1.16)

which, in turn, implies∫ T

0

‖µε,λ(τ)‖2
V dτ ≤ C(1 + T )

(
1 + EH(ϕ0)

)2
. (8.1.17)

Observe that all the above estimates are independent of ε and λ.

3. The BCH system with singular potential: the limit λ → 0+. Our goal is to
perform the limit λ → 0+. To this end, we need to derive a uniform control of ∂tϕε,λ.
By comparison, using Sobolev embedding and (3.1.11) with p = 3, we have

‖∂tϕε,λ‖V ′ ≤ ‖∇µε,λ‖+ ‖uε,λ‖L6(Ω)‖ϕε,λ‖L3(Ω)

≤ ‖∇µε,λ‖+ C‖uε,λ‖Vσ‖ϕε,λ‖
1
2‖ϕε,λ‖

1
2
V .

157



Chapter 8. The nonlocal Hele-Shaw-Cahn-Hilliard system

Hence, we get∫ T

0

‖∂tϕε,λ(τ)‖
4
3

V ′ dτ

≤ C

∫ T

0

(1 + ‖∇µε,λ‖2) dτ

+ C‖ϕε.λ‖
2
3

L∞(0,T ;H)

(∫ T

0

‖uε,λ(τ)‖2
Vσ

dτ
) 2

3
(∫ T

0

‖ϕε,λ(τ)‖2
V dτ

) 1
3

≤ C(1 + T )
(
1 + EH(ϕ0)

) 4
3 .

HereC is independent of λ but depends on ε. Collecting the above estimates, we deduce
that

‖uε,λ‖L2(0,T ;Vσ) ≤ C, (8.1.18)
‖ϕε,λ‖L∞(0,T ;H) ≤ C, (8.1.19)
‖ϕε,λ‖L2(0,T ;V ) ≤ C, (8.1.20)
‖∂tϕε,λ‖L 4

3 (0,T ;V ′)
≤ C, (8.1.21)

‖µε,λ‖L2(0,T ;V ) ≤ C, (8.1.22)

where the constant C depends on the initial energy EH(ϕ0), ϕ0, the form of Ψ and ε,
but is independent of λ. Thank to the uniform controls (8.1.18)-(8.1.22), letting λ→ 0,
we deduce the following weak convergence results (up to subsequences)

uε,λ ⇀ uε, weakly in L2(0, T ; Vσ), (8.1.23)
ϕε,λ ⇀ ϕε, weakly star in L∞(0, T ;H), (8.1.24)
ϕε,λ ⇀ ϕε, weakly in L2(0, T ;V ), (8.1.25)

∂tϕ
ε,λ ⇀ ∂tϕ

ε, weakly in L
4
3 (0, T ;V ′), (8.1.26)

µε,λ ⇀ µε, weakly in L2(0, T ;V ). (8.1.27)

Besides, according to (8.1.20) and (8.1.21), an application of the Aubin–Lions com-
pactness lemma entails

ϕε,λ → ϕε, strongly in L2(0, T ;Lp(Ω)), (8.1.28)

for p ∈ [2, 6). In turn, this gives the pointwise convergence

ϕε,λ → ϕε, a.e. in Ω× (0, T ). (8.1.29)

On account of the monotonicity of Ψ′ and the uniform bound (8.1.16), it is possible to
show (see, e.g., Chapters 5 and 6) that the limit function ϕε fulfils

ϕε ∈ L∞(Ω× (0, T )) such that |ϕε(x, t)| < 1 a.e. in Ω× (0, T ). (8.1.30)

As a consequence, we deduce from property (iv) and the pointwise convergence (8.1.29)
that

Ψ′λ(ϕ
ε,λ)→ Ψ′(ϕε), a.e. in Ω× (0, T ).
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By comparison, we also get

‖Ψ′λ(ϕε,λ)‖L2(0,T ;V ) ≤ C,

with C independent of λ. Then, we infer from a standard argument that

Ψ′λ(ϕ
ε,λ) ⇀ Ψ′(ϕε), weakly in L2(0, T ;V ). (8.1.31)

Regarding the product terms, it follows from (K), (8.1.24), (8.1.28) that

(∇J ∗ ϕε,λ)ϕε,λ ⇀ (∇J ∗ ϕε)ϕε, weakly in L
4
3 (0, T ;H),

and
uε,λϕε,λ ⇀ uεϕε, weakly in L

4
3 (0, T ;H).

Therefore, a passage to the limit in the weak formulation (8.1.32)-(8.1.33) yields

ε(∇uε,∇v) + (uε, v) = ((∇J ∗ ϕε)ϕε, v), ∀ v ∈ Vσ, (8.1.32)
〈∂tϕε, v〉 − (uεϕε,∇v) + (∇µε,∇v) = 0, ∀ v ∈ V, (8.1.33)

for almost every t ∈ (0, T ), where

µε = Ψ′(ϕε)− J ∗ ϕε, a.e. in Ω× (0, T ).

Furthermore, owing to the above convergences, we can pass to the limit into the energy
inequality (8.1.12) obtaining

EH(ϕε(t)) +

∫ t

0

ε‖∇uε(τ)‖2 + ‖uε(τ)‖2 + ‖∇µε(τ)‖2 dτ ≤ EH(ϕ0), (8.1.34)

for almost every t ∈ [0, T ], for any given T > 0.
4. The vanishing viscosity limit ε → 0+. First, according to (8.1.30) and (8.1.34), it
follows immediately that

‖ϕε‖L∞(Ω×(0,T )) ≤ 1,

‖uε‖L2(0,T ;Hσ) ≤ C

‖∇µε‖L2(0,T ;H) ≤ C.

Repeating line by line all the estimates performed in Step 2, we arrive at

‖ϕε‖L2(0,T ;V ) ≤ C,

‖µε‖L2(0,T ;V ) ≤ C,

‖Ψ′(ϕε)‖L2(0,T ;V ) ≤ C.

We need to find a control for ∂tϕ that is independent of ε. On the other hand, thanks to
the uniform L∞-bound of ϕε (cf. Remark 7.1.2), we have by comparison

‖∂tϕε‖V ′ ≤ ‖∇µε‖+ ‖uε‖.

Hence, this leads to
‖∂tϕε‖L2(0,T ;V ′) ≤ C.
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Being all the above bounds independent of λ, the following weak convergence results
hold (up to a subsequence)

uε ⇀ u, weakly in L2(0, T ; Hσ), (8.1.35)
ϕε ⇀ ϕ, weakly star in L∞(Ω× (0, T )), (8.1.36)
ϕε ⇀ ϕ, weakly in L2(0, T ;V ), (8.1.37)
∂tϕ

ε ⇀ ∂tϕ, weakly in L2(0, T ;V ′), (8.1.38)
µε ⇀ µ, weakly in L2(0, T ;V ). (8.1.39)

Thanks to (8.1.35)-(8.1.39), and applying a similar argument to the one employed in Step
3, we are able to pass to the limit as ε → 0 in the weak formulation (8.1.32)-(8.1.33)
and the limit pair (u, ϕ) satisfies

(u, v) = ((∇J ∗ ϕ)ϕ, v), ∀ v ∈ Vσ, (8.1.40)
〈∂tϕ, v〉 − (uϕ,∇v) + (∇µ,∇v) = 0, ∀ v ∈ V, (8.1.41)

for almost every t ∈ (0, T ), where

µ = Ψ′(ϕ)− J ∗ ϕ.

To conclude the proof, we need to comply with the weak formulation stated in Definition
8.1.4 by recovering the pressure π. In this regard, making use of a density argument,
we observe that u = Π((∇J ∗ ϕ)ϕ). Thus, in accordance with (3.5.2), there exists
π∗ ∈ L2(0, T ;V0) such that u = −∇π∗ + (∇J ∗ ϕ)ϕ. Owing to Remark 8.1.3, we
conclude that π = π∗+ Ψ(ϕ)− (J ∗ϕ)ϕ ∈ L1(0, T ;W 1, 3

2 (Ω)) and u = −∇π+ µ∇ϕ.
All identities here hold almost everywhere in Ω× (0, T ).
5. Uniform dissipative estimates. On account of the regularity (8.1.35)-(8.1.39), pass-
ing to the limit in (8.1.34) as ε goes to 0, we get

EH(ϕ(t)) +

∫ t

0

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ EH(ϕ0),

for almost any t ≥ 0. Since ϕ ∈ C([0, T ], H), we deduce that
∫

Ω
F (ϕ(t)) dx is bounded

for any t ≥ 0. In turn, it easily follows

sup
t≥0
‖ϕ(t)‖L∞(Ω) ≤ 1.

Moreover, due to the assumptions on the admissible initial datum, it is clear that

EH(ϕ0) ≤ C,

where C is a positive constant depending on Ψ, but not on ϕ0. Thus, we deduce that∫ t

0

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ ≤ C, ∀ t ≥ 0, (8.1.42)

Arguing as in Step 2, we take the gradient of µ and multiply by ∇ϕ. After standard
computations, we find

‖∇ϕ‖ ≤ C(1 + ‖∇µ‖). (8.1.43)
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Then, aiming to estimate µ, we recall the useful inequality (see [118] and Chapter 7)

‖Ψ′(ϕ)‖L1(Ω) ≤ C

∫
Ω

(ϕ− ϕ0)Ψ′(ϕ) dx+ C,

where C depends onm. Thus, testing µ by ϕ− ϕ, we easily obtain

‖Ψ′(ϕ)‖L1(Ω) ≤ C(1 + ‖∇µ‖),

which, in turn, entails
‖µ‖V ≤ C(1 + ‖∇µ‖). (8.1.44)

Therefore, (8.1.4) follows from an integration in time of (8.1.42)-(8.1.44) in time on
(t, t+ 1). The proof is complete.

Remark 8.1.5. A consequence of the proof of Theorem 8.1.4 is the existence of a global
weak solution to the nonlocal Brinkman–Cahn–Hilliard system with singular potential.

Our next aim is to show the uniqueness of weak solutions. We remind that, in the
local case, this is known only in two dimensions (see Chapter 5). To this purpose,
we observe that the regularity of the velocity field u ∈ L2(0, T ; Hσ) is not sufficient.
Nonetheless, taking advantage of the equivalent formulation of the Darcy’s law (see
Remark 8.1.3) and using the global L∞-bound of ϕ, we prove that the velocity field of
any weak solution is indeed more regular.

Lemma 8.1.6. Let (u, π, ϕ) be a weak solution in the sense of Definition 8.1.1. For any
p ∈ (1,∞), there exists C = C(p) > 0, independent of the initial datum, such that

‖u‖L∞(0,∞;Lp(Ω)) ≤ C. (8.1.45)

Furthemore, there exists C > 0, independent of the initial datum, such that

‖u‖L2(t,t+1;V) ≤ C, ∀ t ≥ 0. (8.1.46)

Proof. Observe first that, by Remark 8.1.3, up to a redefinition of the pressure, u solves
the equation u = −∇π∗ + (∇J ∗ ϕ)ϕ. Being ϕ essentially bounded, it is easily seen
that

‖(∇J ∗ ϕ)ϕ‖L∞(Ω×(0,T )) ≤ C, ∀T > 0.

Thus, (8.1.45) follows from (3.5.1). Let us now apply the curl operator to the Darcy’s
law. We find (in a distributional sense)

∇× u = −(∇J ∗ ϕ)×∇ϕ. (8.1.47)

Exploiting once more the L∞-bound of ϕ, we reach

‖(∇J ∗ ϕ)×∇ϕ‖ ≤ C‖∇ϕ‖.

Then, owing to (8.1.4), we end up with∫ t+1

t

‖(∇× u)(τ)‖2 dτ ≤ C.

By virtue of (3.5.3), the above inequality entails (8.1.46) and this yields the proof.
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We are now in a position to prove the following continuous dependence estimate.

Theorem 8.1.7. Let ϕ01 and ϕ02 be two measurable initial data with Ψ(ϕ0i) ∈ L1(Ω)
and |ϕ0i| < 1, i = 1, 2. Then, there exists C = C(T ) > 0 such that

‖ϕ1(t)− ϕ2(t)‖2
V ′ ≤ C‖ϕ01 − ϕ02‖2

V ′ + C|ϕ01 − ϕ02|, (8.1.48)

for all 0 ≤ t ≤ T . In particular, the weak solution to (8.0.1)-(8.0.2) is unique.

Proof. Let (u1, π1, ϕ1) and (u2, π2, ϕ2) be twoweak solutions to problem (8.0.1)-(8.0.2)
corresponding to ϕ01 and ϕ02, respectively. Setting ϕ = ϕ1 − ϕ2, µ = µ1 − µ2 and
u = u1 − u2, we have (cf. Remark 8.1.3)

(u, v) = ((∇J ∗ ϕ)ϕ1, v) + ((∇J ∗ ϕ2)ϕ, v), ∀ v ∈ Hσ, (8.1.49)
〈∂tϕ, v〉+ (∇µ,∇v) = (uϕ1,∇v) + (u2ϕ,∇v), ∀v ∈ V, (8.1.50)

for almost every t ∈ (0, T ), where

µ = Ψ(ϕ1)−Ψ(ϕ2)− J ∗ ϕ.

Taking v = 1 in (8.1.50) we readily obtain that ϕ(t) = ϕ(0) for all t ∈ [0, T ]. Let us
now take v = N (ϕ−ϕ) in (8.1.50). By definition ofN and using the chain rule (3.3.5),
we obtain

1

2

d

dt
‖ϕ− ϕ‖2

V ′0
+ (µ, ϕ− ϕ) = I1 + I2, (8.1.51)

where
I1 = (uϕ1,∇N (ϕ− ϕ)), I2 = (u2ϕ,∇N (ϕ− ϕ)).

Thanks to (H), we have

(Ψ′(ϕ1)−Ψ′(ϕ2), ϕ) ≥ α‖ϕ‖2, (8.1.52)

On the other hand, recalling the conservation of the total mass, note that

(Ψ′(ϕ1)−Ψ′(ϕ2), ϕ) ≤ |ϕ(0)|
(
‖Ψ′(ϕ1)‖L1(Ω) + ‖Ψ′(ϕ2)‖L1(Ω)

)
. (8.1.53)

Moreover, recalling once more the definition of N , we deduce that

(J ∗ ϕ, ϕ− ϕ) = (∇J ∗ ϕ, ∇N (ϕ− ϕ))

≤ α

2
‖ϕ‖2 + C‖ϕ‖2

V ′0
. (8.1.54)

Therefore, we infer

1

2

d

dt
‖ϕ‖2

∗ +
α

2
‖ϕ‖2 ≤ I1 + I2 + C‖ϕ‖2

∗ + |ϕ(0)|W , (8.1.55)

where
W = C

(
‖Ψ′(ϕ1)‖L1(Ω) + ‖Ψ′(ϕ2)‖L1(Ω)

)
.

Let us proceed to estimate the terms Ii, i = 1, 2. We have

I1 ≤ ‖u‖‖ϕ− ϕ‖V ′0
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In order to find a control of u in term of ϕ, we take v = u in (8.1.49) getting

‖u‖2 = ((∇J ∗ ϕ)ϕ1,u) + ((∇J ∗ ϕ2)ϕ,u).

After standard computations, we obtain

‖u‖2 ≤
(
‖ϕ1‖L∞(Ω) + ‖ϕ2‖L∞(Ω)

)
‖∇J‖L1(Ω)‖u‖‖ϕ‖,

Hence, we arrive at
‖u‖ ≤ C‖ϕ‖,

which, in turn, gives
I1 ≤

α

8
‖ϕ‖2 + C‖ϕ‖2

∗.

Regarding I2, by using (3.1.11) with p = 3, (3.3.6) and (8.1.45), we find the control

I2 ≤ ‖u2‖L6(Ω)‖ϕ‖‖∇N (ϕ− ϕ)‖L3(Ω)

≤ C‖u2‖L6(Ω)‖ϕ‖‖ϕ− ϕ‖
1
2‖ϕ− ϕ‖

1
2

V ′0

≤ α

8
‖ϕ‖2 + C‖ϕ‖2

∗.

Combining all the previous estimates, we end up with the differential inequality

1

2

d

dt
‖ϕ‖2

∗ +
α

4
‖ϕ‖2 ≤ C‖ϕ‖2

∗ + |ϕ(0)|W .

Therefore, taking in account thatW ∈ L1(0, T ), an application of the Gronwall lemma
yields

‖ϕ1(t)− ϕ2(t)‖2
∗ ≤ C

(
‖ϕ01 − ϕ02‖2

∗ + |ϕ01 − ϕ02|
)
, ∀ t ∈ [0, T ].

By the equivalence of the norms, (8.1.48) immediately follows. The proof is complete.

We can also deduce the validity of the energy identity from Lemma 8.1.6. This
identity will play a crucial role to study the longtime behavior (see Section 8.4).

Proposition 8.1.8. Let ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1.
Then, the unique weak solution (u, π, ϕ) to problem (8.0.1)-(8.0.2) satisfies the energy
identity

EH(ϕ(t)) +

∫ t

s

‖u(τ)‖2 + ‖∇µ(τ)‖2 dτ = E(ϕ(s)), ∀ 0 ≤ s ≤ t <∞. (8.1.56)

Proof. Let us introduce the modified energy functional L : H → R given by

L(ψ) :=

∫
Ω

Ψ(ψ) dx− 1

2
(J ∗ ψ, ψ) +

κ

2
‖ψ‖2.

By virtue of (K), taking κ > 0 large enough, it is easily seen thatL is proper, convex and
lower semicontinuous. On account of the regularity ϕ ∈ L2(0, T ;V ), ϕt ∈ L2(0, T ;V ′)
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Chapter 8. The nonlocal Hele-Shaw-Cahn-Hilliard system

and Ψ′(ϕ) ∈ L2(0, T ;V ), we learn from [40, Proposition 4.2] that L(ϕ(·)) is absolutely
continuous on [0, T ] and

d

dt
L(ϕ) = 〈Ψ′(ϕ)− J ∗ ϕ+ κϕ, ϕt〉,= 〈µ, ϕt〉+

κ

2

d

dt
‖ϕ‖2,

for almost any t ∈ (0, T ). Taking v = µ in (8.1.1) and summing up to the above equality,
we find

d

dt
EH(ϕ)− (uϕ,∇µ) + ‖∇µ‖2 = 0.

Then, testing the Darcy’s law by u, we have

‖u‖2 = (µ∇ϕ,u). (8.1.57)

Note that the above test by u is well defined due to Lemma 8.1.6 (see, in particular,
(8.1.45)). By the classical result on the product rule in Sobolev spaces, we can rewrite
(8.1.57) as

‖u‖2 = −(ϕ∇µ,u). (8.1.58)
Thus, collecting the above equalities, we end up with

d

dt
EH(ϕ) + ‖u‖2 + ‖∇µ‖2 = 0. (8.1.59)

An integration on (s, t), 0 ≤ s < t, entails the energy identity (8.1.56).

8.2 Strong Solutions and Regularity Properties

In this section we prove the existence of the (unique) strong solution to problem (8.0.1)-
(8.0.2) under a natural assumption on the initial datum. This will be achieved via a priori
higher order estimates. This result (together with the uniqueness of weak solutions) in
the three dimensional case points out the gap between the local and the nonlocal versions
of the Hele–Shaw–Cahn–Hilliard model with singular potential. Indeed, in the former
case, we remind that the existence of a global in time strong solution has been proven in
Chapter 5 only for initial data close to local minimizers of the Ginzburg-Landau free-
energy. On account of the parabolic dissipative nature of the system, we also show the
time regularization of weak solutions.

Theorem 8.2.1. Let ϕ0 be a measurable function with Ψ(ϕ0) ∈ L1(Ω), |ϕ0| < 1 and
∇Ψ′(ϕ0) ∈ H . Then, the weak solution is a strong solution to problem (8.0.1)-(8.0.2)
on [0, T ] such that

u ∈ L∞(0, T ; V) ∩ L
8
d (0, T ; W1,4(Ω)) ∩ L2(0, T ; W1,p(Ω)),

π ∈ L∞(0, T ;W 1, 3
2 (Ω)) ∩ L2(0, T ;V0),

ϕ ∈ L∞(0, T ;V ) ∩ L
8
d (0, T ;W 1,4(Ω)) ∩ L2(0, T ;W 1,p(Ω)),

∂tϕ ∈ L∞(0, T ;V ′) ∩ L2(0, T ;H),

Ψ′(ϕ) ∈ L∞(0, T ;V ),

for any 4 < p <∞ if d = 2 or 4 < p ≤ 6 if d = 3.
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Proof. Let (u, π, ϕ) be the unique global in time weak solution to problem (8.0.1)-
(8.0.2). Thanks to the additional assumption on the initial datum, we aim to show higher
order regularity properties. We divide the proof into three steps.

1. Smoothing effect on time derivatives. For any h > 0, let us introduce the difference
quotient of a function v by

∂ht v =
1

h

(
v(t+ h)− v(t)

)
.

We first consider the Darcy’s equation at two different times t and t+h. By subtracting
them, it is evident that (cf. Remark 8.1.3)

(∂ht u, v) = ((∇J ∗ ∂ht ϕ)ϕ(t+ h), v) + ((∇J ∗ ϕ)∂ht ϕ, v),

for all v ∈ Hσ and for almost any t > 0. Choosing v = ∂ht u, we deduce that

‖∂ht u‖2 = ((∇J ∗ ∂ht ϕ)ϕ(t+ h), ∂ht u) + ((∇J ∗ ϕ)∂ht ϕ, ∂
h
t u),

By (K) and (8.1.3), we have

((∇J ∗ ∂ht ϕ)ϕ(t+ h), ∂ht u) + ((∇J ∗ ϕ)∂ht ϕ, ∂
h
t u)

≤
(
‖ϕ(t+ h)‖L∞(Ω)‖∇J‖L1(Ω) + ‖∇J ∗ ϕ‖L∞(Ω)

)
‖∂ht ϕ‖‖∂ht u‖

≤ C‖∂ht ϕ‖‖∂ht u‖,

which, in turn, gives
‖∂ht u‖ ≤ C‖∂ht ϕ‖. (8.2.1)

Subtracting now the weak formulation (8.1.1) evaluated at time t from the one at time
t+ h we get

〈∂t∂ht ϕ, v〉+ (∇∂ht µ,∇v) = (ϕ(t+ h)∂ht u,∇v) + (u∂ht ϕ,∇v), (8.2.2)

for every v ∈ V and almost any t ∈ (0, T ). Taking v = N (∂ht ϕ), we obtain

1

2

d

dt
‖∂ht ϕ‖2

V ′0
+ (∂ht µ, ∂

h
t ϕ) = J1 + J2, (8.2.3)

where
J1 = (ϕ(t+ h)∂ht u,∇N (∂ht ϕ)), J2 = (u∂ht ϕ,∇N (∂ht ϕ)).

By virtue of (H) and (K), we have

1

h
(Ψ′(ϕ(t+ h))−Ψ′(ϕ(t)), ∂ht ϕ) ≥ α‖∂ht ϕ‖2,

and

(J ∗ ∂ht ϕ, ∂ht ϕ) = (∇J ∗ ∂ht ϕ,∇N∂ht ϕ)

≤ α

6
‖Dhϕ‖2 + C‖Dhϕ‖2

V ′0
.
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Let us control the terms Ji, i = 1, 2. By (3.3.6), (3.1.11), (8.1.45) and (8.2.1), we find

J1 ≤ C‖∂ht u‖‖∂ht ϕ‖V ′0
≤ α

6
‖∂ht ϕ‖2 + C‖∂ht ϕ‖2

∗,

and

J2 ≤ ‖u‖L6(Ω)‖∂ht ϕ‖‖∇N∂ht ϕ‖L3(Ω)

≤ C‖∂ht ϕ‖3/2‖∂ht ϕ‖
1/2

V ′0

≤ α

6
‖∂ht ϕ‖2 + C‖∂ht ϕ‖2

∗.

Therefore, collecting the above estimates, we arrive at the differential inequality

1

2

d

dt
‖∂ht ϕ‖2

∗ +
α

2
‖∂ht ϕ‖2 ≤ C‖∂ht ϕ‖2

∗. (8.2.4)

Thus, an application of the Gronwall lemma yields

‖∂ht ϕ(t)‖2
∗ ≤ ‖∂ht ϕ(0)‖2

∗e
CT , ∀ t ∈ [0, T ]. (8.2.5)

At this point, to deduce a global in time estimate we need to find a bound for ‖∂ht ϕ(0)‖∗.
Taking advantage of (H, we observe that

1

2

d

dt
‖ϕ− ϕ0‖2

V ′0
= 〈∂tϕ,N (ϕ− ϕ0)〉

= (µ, ϕ− ϕ0) + (uϕ,∇N (ϕ− ϕ0))

= −(Ψ′(ϕ), ϕ− ϕ0) + (J ∗ ϕ, ϕ− ϕ0) + (uϕ,∇N (ϕ− ϕ0))

≤ −(∇Ψ′(ϕ0),∇N (ϕ− ϕ0)) + (∇J ∗ ϕ,∇N (ϕ− ϕ0))

+ (uϕ,∇N (ϕ− ϕ0))

≤
(
C + ‖∇Ψ′(ϕ0)‖

)
‖ϕ− ϕ0‖V ′0 ,

for almost every t ≥ 0. An integration in time leads to

1

2
‖ϕ(t)− ϕ0‖2

V ′0
≤
(
C + ‖∇Ψ′(ϕ0)‖

) ∫ t

0

‖ϕ(τ)− ϕ0‖V ′0 dτ, ∀ t ≥ 0.

Accordingly, an application of the integral Gronwall lemma (see section 3.7) implies

‖ϕ(t)− ϕ0‖V ′0 ≤
(
C + ‖∇Ψ′(ϕ0)‖

)
t, ∀ t ≥ 0.

Taking t = h, it follows that

‖∂ht ϕ(0)‖V ′ ≤
(
C + ‖∇Ψ′(ϕ0)‖

)
, ∀h > 0. (8.2.6)

Combining (8.2.5) with (8.2.6), we end up with

‖∂ht ϕ(t)‖V ′ ≤ C, ∀ t ∈ [0, T ],

where C depends on ϕ0 and T . Owing to (8.2.4), we also infer that

‖Dhϕ‖L2(0,T ;H) ≤ C. (8.2.7)
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Recalling that ∂ht ϕ converges to ϕt weakly in L∞(0,∞;V ′) as h→ 0, we end up with

‖∂tϕ‖L∞(0,T ;V ′) + ‖∂tϕ‖L2(0,T ;H) ≤ C. (8.2.8)

Besides, by (8.2.1), (8.2.7), we deduce that

‖∂tu‖L2(0,T ;Hσ) ≤ C. (8.2.9)

2. L∞−in time uniform estimates. Our next concern is to establish global in time
bounds on u, p and ϕ. By (8.1.3), (8.1.44), (8.1.45), and (8.2.8), it is easily seen that

‖µ‖L∞(0,T ;V ) ≤ C. (8.2.10)

Then, by virtue of (8.1.43), we get

‖ϕ‖L∞(0,T ;V ) ≤ C. (8.2.11)

In light of the latter bound, by using (3.5.3) and (8.1.47), we have

‖u‖V ≤ C
(
1 + ‖ϕ‖L∞(Ω)‖∇ϕ‖

)
, (8.2.12)

which, in turn, entails
‖u‖L∞(0,T ;V) ≤ C. (8.2.13)

As a consequence, we obtain

‖π‖
L∞(0,T ;W 1, 32 (Ω))

≤ C.

3. Higher order estimates in space. We proceed by proving higher order regularity
with respect to the space variables. In this regard, by (8.1.3) and (8.1.45), we observe
that

‖uϕ‖L∞(0,T ;Lp(Ω)) ≤ C, ∀ p ≥ 2. (8.2.14)
Then, interpreting (8.1.1) as theNeumann problem forµ, the regularity theory in (W 1,p)′

(see [109] and Section 3.3) entails that, for any p > 1, there exists C = C(p) > 0 such
that

‖µ‖W 1,p(Ω) ≤ C
(
‖ϕt‖(W 1,p′ (Ω))′ + ‖u · ∇ϕ‖(W 1,p′ (Ω))′ + ‖µ‖(W 1,p′ (Ω))′

)
, (8.2.15)

where 1
p

+ 1
p′

= 1. In light of (8.2.10) and (8.2.14), we have

‖µ‖W 1,p(Ω) ≤ C
(
‖ϕt‖+ ‖uϕ‖Lp(Ω) + ‖µ‖

)
≤ C(1 + ‖ϕt‖

)
,

for any 1 < p <∞ if d = 2 and 1 < p ≤ 6 if d = 3. This gives

‖µ‖L2(0,T ;W 1,p(Ω)) ≤ C.

To recover further integrability on ϕ, we argue as in Chapter 7 (see also [65]). We
first deduce by comparison that F ′′(ϕ)∇ϕ ∈ L2(0, T ; Lp(Ω)), for any p ≥ 1. Then,
exploiting (H), we reach

‖∇ϕ‖Lp(Ω) ≤ C
(
1 + ‖∇µ‖Lp(Ω)

)
, (8.2.16)
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which, in turn, entails
‖ϕ‖L2(0,T ;W 1,p(Ω)) ≤ C. (8.2.17)

Accordingly, we can improve the integrability of the convective term u·∇ϕ. By (8.1.45)
and (8.2.17), we find

‖u · ∇ϕ‖L2(0,T ;H) ≤ C.

Due to this, the regularity theory of the Neumann problem in H yields

‖µ‖L2(0,T ;H2(Ω)) ≤ C.

By (3.1.10) and (3.1.11) with p = 4 and the above estimates, we also learn that

‖∇µ‖
L

8
d (0,T ;L4(Ω))

+ ‖∇ϕ‖
L

8
d (0,T ;L4(Ω))

≤ C.

Finally, we consider again (8.1.47). It follows that, for any 1 < p < ∞ if d = 2 or
1 < p ≤ 6 if d = 3, there exists C = C(p) > 0 such that

‖∇ × u‖
L

8
d (0,T ;L4(Ω))

+ ‖∇ × u‖L2(0,T ;Lp(Ω)) ≤ C

On account of [84, Theorem 3.5], there exists g such that∇×g = u and−∆g = ∇×u
inΩ, with g·n = 0 on ∂Ω. By the regularity theory for the Neumann problem, we obtain

‖g‖
L

8
d (0,T ;W2,4(Ω))

+ ‖g‖L2(0,T ;W2,p(Ω)) ≤ C.

Thus, we infer that

‖u‖
L

8
d (0,T ;W1,4(Ω))

+ ‖u‖L2(0,T ;W1,p(Ω)) ≤ C.

The further regularity of the pressure easily follows from (3.5.2) and the above estimates.
This concludes the proof.

We are now in a position to state that any weak solution is indeed a strong one on
(σ,∞), for any σ > 0. To this aim, we consider a generic weak solution (u, π, ϕ)
departing from a measurable initial datum ϕ0 such that |ϕ0| ≤ m, for a fixedm ∈ [0, 1).
Accordingly, throughout this section, the generic positive constantC may depend onm,
but will be independent of the initial datum.

Theorem 8.2.2. Let (u, π, ϕ) be a weak solution to problem (8.0.1)-(8.0.2). For any
σ > 0, there exists C = C(σ) > 0 such that

‖∂tϕ‖L∞(σ,∞;V ′) + ‖µ‖L∞(σ,∞;V ) ≤ C,

sup
t≥σ
‖u(t)‖V + sup

t≥σ
‖ϕ(t)‖V ≤ C,

‖∂tu‖L2(t,t+1;Hσ) + ‖∂tϕ‖L2(t,t+1;H) + ‖µ‖L2(t,t+1;H2(Ω)) + ‖∇ϕ‖
L

8
d (0,T ;L4(Ω))

≤ C,

for every t ≥ σ. Moreover, for any 4 < p < ∞ if d = 2 and 4 < p ≤ 6 if d = 3 and
σ > 0, there exists C = C(σ, p) such that

‖u‖L2(t,t+1;W1,p(Ω)) + ‖ϕ‖L2(t,t+1;W 1,p(Ω)) + ‖µ‖L2(t,t+1;W 1,p(Ω)) ≤ C, ∀ t ≥ σ.
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The proof of Theorem 8.2.2 can be obtained by arguing as in Theorem 8.2.1. Indeed,
recalling the useful inequality

‖Dhϕ‖L2(t,t+1;V ′) ≤ ‖ϕt‖L2(t,t+1+h;V ′), ∀ t ≥ 0,

the only difference consists in applying the uniform Gronwall lemma (see Section 3.7)
to the differential inequality (8.2.4). Then, all the desired estimates follow by repeating
line by line the arguments employed in the above Steps 2 and 3. In particular, integrating
on the time interval (t, t + 1), all the constants turn out to be independent of the time
variable.

8.3 The Separation Property in Two Dimensions

In this section we address the quantitative property concerning the instantaneous and
uniform in time separation from the pure phases. In other words, in the two dimensional
case we can prove that the concentration parameter stays away from the singular values
of the potential. Consequently, being the potential and its derivative globally bounded
in L∞-norm, we are also able to show a further regularization property.

Let us fix m ∈ [0, 1) and consider a weak solution (u, π, ϕ) such that |ϕ0| ≤ m. In
particular, we remind once more that the generic positive constant C may depend on
m, but will be independent of the initial datum. Thanks to the regularity of u we can
exploit the result proved in Chapter 7 in the present case. More precisely, we have

Theorem 8.3.1. Let d = 2. Assume that Ψ ∈3 (−1, 1) satisfies (H.3) and (H.4). Then,
for any σ > 0, there exists δ = δ(σ,m) > 0 such that

sup
t≥3σ
‖ϕ(t)‖L∞(Ω) ≤ 1− δ.

Proof. The result follows by arguing as in the proof of Theorem 7.5.7. Indeed, the
regularity for u given by (8.1.45) is enough for the estimates performed therein.

Taking advantage of the above result we can prove further regularization properties,
namely,

Theorem 8.3.2. Let d = 2 and let the assumptions of Theorem 8.3.1 hold. Then, for
any σ > 0 and p ≥ 1, there exists C = C(σ, p) > 0 such that

‖∂tu‖L∞(4σ,∞;Hσ) + ‖∂tϕ‖L∞(4σ,∞;H) ≤ C,

and
sup
t≥4σ
‖µ(t)‖H2(Ω) + sup

t≥4σ
‖ϕ(t)‖W 1,p(Ω) ≤ C.

In addition, assume that the assumption (K.1) holds. Then, there exists C = C(σ) such
that

sup
t≥4σ
‖u(t)‖H2(Ω) + sup

t≥4σ
‖ϕ(t)‖H2(Ω) ≤ C.

Proof. Let us test (8.2.2) by ∂ht ϕ. We have

1

2

d

dt
‖∂ht ϕ‖2 + (∇∂ht µ,∇∂ht ϕ) = H1 +H2,
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where
H1 = (ϕ(t+ h)∂ht u,∇∂ht ϕ), H2 = (u∂ht ϕ,∇∂ht ϕ).

By (H), we first notice that

(∇∂ht µ,∇∂ht ϕ) ≥ α‖∇∂ht ϕ‖2 − |(∇J ∗ ∂ht ϕ,∇∂ht ϕ)| − |(∇ϕ∂ht Ψ′′(ϕ),∇∂ht ϕ)|.

It is evident that

|(∇J ∗ ∂ht ϕ,∇∂ht ϕ)| ≤ α

8
‖∇∂ht ϕ‖2 + C‖∂ht ϕ‖2.

On the other hand, recalling that

DhΨ′′(ϕ) = Dhϕ

∫ 1

0

Ψ′′′(sϕ(t+ h) + (1− s)ϕ(t)) ds,

from the assumptions on Ψ and exploiting (3.1.7) and Theorem 8.3.1, we infer

|(∇ϕ∂ht Ψ′′(ϕ),∇∂ht ϕ)| ≤ C‖∇ϕ‖L4(Ω)∂
h
t ϕ‖L4(Ω)‖∇∂ht ϕ‖

≤ α

8
‖∇∂ht ϕ‖2 + C‖∇ϕ‖4

L4(Ω)‖∂ht ϕ‖2.

We proceed by estimating the right-hand side Hi, i = 1, 2. By (8.1.3), (8.1.45) and
(8.2.1), we obtain

H1 ≤ C‖∂ht ϕ‖‖∇∂ht ϕ‖

≤ C‖∂ht ϕ‖2 +
α

8
‖∇∂ht ϕ‖2,

and

H2 ≤ C‖u‖L4(Ω)‖∂ht ϕ‖L4(Ω)‖∇∂ht ϕ‖

≤ α

8
‖∇∂ht ϕ‖2 + C‖∂ht ϕ‖2.

Combining all the previous estimates, we find the differential inequality

1

2

d

dt
‖∂ht ϕ‖2 +

α

2
‖∇∂ht ϕ‖2 ≤ C

(
1 + ‖∇ϕ‖4

L4(Ω)

)
‖∂ht ϕ‖2. (8.3.1)

Thanks to Theorem 8.2.2, an application of the uniform Gronwall lemma leads to

‖∂ht ϕ(t)‖+ ‖∇∂ht ϕ‖L2(t,t+1;H) ≤ C, ∀ t ≥ 4σ.

Here C is a positive constant depending on σ. A final passage to the limit as h → 0,
together with (8.2.1), entails

‖∂tϕ‖L∞(4σ,∞;H) + ‖∂tu‖L∞(4σ,∞;Hσ) ≤ C (8.3.2)

and
‖∂tϕ‖L2(t,t+1;V ) ≤ C, ∀ t ≥ 4σ.

Then, using (8.2.15) together with (8.2.14) and (8.3.2), we infer that, for any p > 2,
there exists C = C(p) > 0 such that

‖µ‖L∞(4σ,∞;W 1,p(Ω)) ≤ C.
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Thanks to (8.2.16), we end up with

‖ϕ‖L∞(4σ,∞;W 1,p(Ω)) ≤ C. (8.3.3)

Now, by (8.1.45) and (8.3.3), we get

‖u · ∇ϕ‖L∞(4σ,∞;H) ≤ C.

Thus, on account of (8.3.2), the regularity theory of the Neumann problem yields

‖µ‖L∞(4σ,∞;H2(Ω)) ≤ C.

By comparison, we easily have

‖Ψ′(ϕ)‖L∞(4σ,∞;H2(Ω)) ≤ C.

Due to the validity of the separation property, by using the classical result on composi-
tion of functions in Sobolev spaces, we deduce that

‖ϕ‖L∞(4σ,∞;H2(Ω)) ≤ C.

Finally, by (8.1.47) and the above estimate, we reach

‖∇ × u‖L∞(4σ,∞;V) ≤ C.

which, in turn, gives
‖u‖L∞(4σ,∞;H2(Ω)) ≤ C.

In order to conclude the proof, we show that the estimates regarding u, µ and ϕ holds
for all t ≥ 4σ. To this aim, it is enough to prove an L∞(L2)-bound on ∂tµ. Indeed we
have

‖∂tµ‖ ≤ ‖Ψ′′(ϕ)∂tϕ‖+ ‖J ∗ ∂tϕ‖ ≤
(
1 + ‖Ψ′′(ϕ)‖L∞(Ω)

)
‖∂tϕ‖.

Hence, by Theorem 8.3.1 and (8.3.2), we find

‖∂tµ‖L∞(4σ,∞;H) ≤ C.

As a consequence µ ∈ C([4σ, T ], H), for any T ≥ 4σ. Thus, for any σ > 0, there exists
C = C(σ) such that

sup
t≥4σ
‖µ(t)‖H2(Ω) ≤ C.

On account of (8.3.2), the same result holds for u and ϕ, thus concluding the proof.

8.4 Longtime Behavior

In this section we provide a description on the asymptotic behavior of solutions as time
goes to ∞. In the first part we define the semigroup map related to problem (8.0.1)-
(8.0.2) and we show the existence of the global attractor. In the second part we prove
that any weak solution does converge to a single equilibrium in dimension two.
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The Infinite Dimensional Dynamical System
We define a semigroup on a suitable phase space as a consequence of Theorem 8.1.4.
Indeed, for any ϕ0 ∈ L∞(Ω) such that ‖ϕ0‖L∞(Ω) ≤ 1 and |ϕ0| < 1, there exists a
unique global in time weak solution (u, π, ϕ). Then, for any givenm ∈ [0, 1), we define

Vm =
{
ϕ ∈ L∞(Ω) : ‖ϕ‖L∞(Ω) ≤ 1 and |ϕ| = m

}
,

and we equip it with the metric
d(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖.

Then, for any ϕ0 ∈ Vm, we set
ϕ(t) := S(t)ϕ0,

ϕ being the unique global in time weak solution to (8.0.1)-(8.0.2). It is immediate to
check that the one-parameter family of maps S(t) on Vm satisfies the semigroup prop-
erties (see [149]). Moreover, we also deduce that t 7→ S(t)ϕ0 ∈ C([0,∞),Vm), for
every ϕ0 ∈ Vm. On account of Theorem 8.1.7, we have a continuous dependence es-
timate with respect to the initial data in a dual norm. Nevertheless, appealing to the
instantaneous regularity, we are able to show the following property
Proposition 8.4.1. For any t ≥ 0, S(t) ∈ C(Vm,Vm).
Proof. The case t = 0 is trivial. We consider t > 0 and a sequence {ϕ0n} ⊂ Vm such
that d(ϕ0n, ϕ0)→ 0, with ϕ0 ∈ Vm. Due to Theorem 8.2.2, we infer that

‖ϕ(t)‖V + ‖ϕn(t)‖V ≤ C.

Hence, by interpolation and using (8.1.48), we obtain

d(ϕn(t), ϕ(t)) ≤ ‖ϕn(t)− ϕ(t)‖
1
2

V ′‖ϕn(t)− ϕ(t)‖
1
2
V

≤ C‖ϕ0n − ϕ0‖
1
2

V ′

≤ Cd(ϕ0n, ϕ0)
1
2 .

The claim follows.

The existence of the global attractor is given by
Theorem 8.4.2. The dynamical system (Vm,S(t)) has a connected global attractor A
that is bounded in V .
Proof. Observe that, on account of Theorems 8.2.2, there exists a positive constant C,
independent of the initial datum, such that

sup
t≥1
‖ϕ(t)‖V ≤ C.

This entails the existence of a compact absorbing set in Vm. The existence of the global
attractor is thus implied by [149, Theorem 1.1].

Remark 8.4.3. It is worth mentioning that the global attractor is more regular in the two
dimensional case. Indeed, by Theorem 8.3.2, it follows that A is bounded in H2(Ω).
Furthermore, due to Theorem 8.3.1, the finite dimensionality of the global attractor and
the existence of exponential attractors can also be proved. We refer the reader to Chapter
7 and references therein.
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Convergence to Single Stationary State

We focus here on the longtime behavior of the single trajectory in two dimensions.
Thanks to the validity of the separation property, Theorem 8.3.2 and the Sobolev com-
pact embeddingH2(Ω) ↪→ Cβ , for some β > 0, we are able to adapt the strategy devised
for local Cahn–Hilliard type equations (see [1]) within the nonlocal framework.

Given ϕ0 ∈ Vm, let (u, π, ϕ) be the related unique global in time weak solution. We
introduce the ω-limit set associated to ϕ0 by

ω(ϕ0) =
{
ϕ̃ ∈ Vm : ∃ tn →∞ such that ϕ(tn)→ ϕ̃

}
.

On account of Theorems 8.2.2-8.3.2, there exists C > 0 such that

‖ϕ(t)‖V ∩Cβ(Ω) ≤ C, ∀ t ≥ 1. (8.4.1)

By the Sobolev compact embedding results, we deduce that the set ω(ϕ0) is non-empty,
compact, connected in Vm and, in particular,

lim
t→∞

dist(ϕ(t), ω(ϕ0)) = 0, in L∞(Ω). (8.4.2)

We now proceed to characterize ω(ϕ0). To this aim, we introduce the notion of equi-
librium point (or stationary solution), that is, a function ϕ∞ ∈ V ∩ Vm satisfying that
stationary nonlocal Cahn–Hilliard equation

Ψ′(ϕ∞)− J ∗ ϕ∞ = µ∞, in Ω, (8.4.3)

where µ∞ ∈ R and ϕ∞ = ϕ0 = m. Moreover, u∞ = 0 and π∞ = µ∞ϕ∞. Besides, any
stationary solution fulfils the separation property.

Lemma 8.4.4. For any ϕ∞ ∈ V ∩Hm satisfying (8.4.3), there exists δ > 0 such that

‖ϕ∞‖L∞(Ω) ≤ 1− δ.

Proof. Let us observe that

‖Ψ′(ϕ∞)‖L∞(Ω) ≤ µ∞ + ‖J‖L1(Ω).

Hence, Ψ′(ϕ∞) is uniformly bounded. Due to the assumption (H), the conclusion fol-
lows.

Let us consider the set of all stationary points

Lm =
{
ϕ∞ ∈ V ∩ Vm : ϕ∞ satisfies (8.4.3)

}
.

We remind that ϕ ∈ C([0,∞),Vm) and the energy EH(ϕ) satisfies the energy equality
(8.1.56). Due to this, we learn that EH(ϕ) is a Lyapunov function. Thus, we infer that
ω(ϕ0) consists of stationary states, namely ω(ϕ0) ⊂ Lm.

We conclude by applying the standard strategy in order to prove that ω(ϕ0) is a sin-
gleton ϕ∞. We report here the main tool to prove the convergence to equilibrium, that
is the well-known Lojasiewicz–Simon inequality (see, e.g., [68])
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Proposition 8.4.5. Let P0 : H → L2
0 be the projector operator. Assume that Ψ is real

analytic in (−1, 1), ϕ ∈ V ∩ L∞(Ω) is such that −1 + γ ≤ ϕ(x) ≤ 1 − γ for some
γ ∈ (0, 1) and for all x ∈ Ω and ϕ∞ ∈ ω(ϕ0). Then, there exist θ ∈ (0, 1

2
), η > 0 and

a positive constant C such that
|E(ϕ)− E(ϕ∞)|1−θ ≤ C‖P0(Ψ′(ϕ)− J ∗ ϕ)‖∗, (8.4.4)

whenever ‖ϕ− ϕ∞‖ ≤ η.
The main result of this section is the following

Theorem 8.4.6. Assume that Ψ is real analytic on (−1, 1). Then, ϕ converges to an
equilibrium ϕ∞, namely,

lim
t→∞
‖ϕ(t)− ϕ∞‖L∞(Ω) = 0, (8.4.5)

where ϕ∞ fulfills (8.4.3).
Proof. Thanks to the energy identity (8.1.56), it follows that EH(ϕ(t)) is non increasing,
EH(ϕ(t)) ≥ EH(ϕ∞) and EH(ϕ(t))→ M , whereM = EH(ϕ∞), for any ϕ∞ ∈ ω(ϕ0).
Without loss of generality, we consider EH(ϕ(t)) > EH(ϕ∞), for all t ≥ 0. Otherwise,
if there exists t > 0 such that EH(ϕ(t)) = EH(ϕ∞), it is evident that ϕ(t) = ϕ(t), for all
t ≥ t, and the claim follows. On the other hand, we fix θ ∈ (0, 1

2
) and η > 0 given by

Proposition 8.4.5. Via a contradiction argument, it is possible to show that there exists
t∗ > 0 such that ‖ϕ(t)− ϕ∞‖ ≤ η, for all t ≥ t∗ (see, e.g., [65]). Then, by Proposition
8.4.5, for any t ≥ t∗, we have(

EH(ϕ)− EH(ϕ∞)
)1−θ

≤
(
C‖P0(Ψ′(ϕ)− J ∗ ϕ)‖

1
1−θ
∗

)1−θ

≤ C‖∇µ‖.
By using (8.1.56) together with the above inequalities, we deduce that

− d

dt

(
EH(ϕ)− EH(ϕ∞)

)θ
= −θ

(
EH(ϕ)− EH(ϕ∞)

)θ−1 d

dt
EH(ϕ)

≥
θ
(
‖u‖2 + ‖∇µ‖2

)
C‖∇µ‖

≥ C‖∇µ‖.
An integration on the time interval (t∗,∞), for t∗ sufficiently large, leads to∫ ∞

t∗
‖∇µ(τ)‖ dτ <∞.

Also, in light of (8.1.3) and (8.1.58), we obtain∫ ∞
t∗
‖u(τ)‖ dτ <∞.

By comparison, we find ∫ ∞
t∗
‖∂tϕ(τ)‖V ′ dτ <∞.

Thus, we conclude that ϕ(t) converges in V ′ as t goes to ∞. Using the interpolation
‖u‖L∞ ≤ C‖u‖βV ′‖u‖

1−β
Cβ

, for some β ∈ (0, 1) and the uniform estimate (8.4.1), we
deduce (8.4.5).
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