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Abstract

IN this thesis we analyse the problems of evaluating the power of play-
ers in different voting situations and of creating a ranking among
them.

We start our analysis in the classical set of cooperative game theory.
We present a theorem to characterize the family of semivalues, a class of
solution concepts, by means of their behaviour on unanimity games and
to establish a connection between semivalues and completely monotonic
sequences. Then, we provide a new formula to compute the Shapley
value due to a different interpretation of the value that is particularly
meaningful in the voting context.

Secondly, we examine the model of games with abstention. We in-
troduce some properties for the indices for games with abstention and
generalize to this set some of the properties that have been provided
in literature to characterize the corresponding power indices for simple
games. We use these results to provide two different axiomatizations for
the Banzhaf index for games with abstention and a characterization of
the Shapley-Shubik index for games with abstention.

We then focus on multichoice cooperative games, an extension of the
classical model of cooperative games, to describe situations in which
players can have different levels of participation in the cooperation (or
they have to vote among different alternatives). We analyse and compare
the different models studied in literature and we define a new value for
multichoice cooperative games in the spirit of the Shapley value. As a
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consequence of our result, we provide an explicit formula to compute
the Shapley-Shubik index for games with abstention.

In the last part of the thesis, we consider the problem of ranking play-
ers from a new perspective: we remove the structure of coalitional game
and suppose that only an ordinal ranking among players is available. We
present two functions that associate a ranking over the players, given a
preference profile over the subsets formed by those players. We also
provide an axiomatic characterization of these two functions by means
of a set of axioms we introduce and discuss.



Riassunto

QUESTA tesi si occupa di studiare il problema di creare ordinamenti
tra i giocatori, sia utilizzando gli indici di potere all’interno di
un gioco cooperativo, sia affrontando il problema da un punto di
vista più generale.

I primi risultati ottenuti sono nell’ambito classico della teoria dei
giochi cooperativi. Viene presentato un teorema che caratterizza i semi-
values, una famiglia di soluzioni per i giochi cooperativi, descrivendo
il loro comportamento sui giochi di unanimità e stabilendo un collega-
mento tra i semivalues e le successioni completamente monotone. In
seguito, viene presentata una nuova formula per calcolare l’indice di
Shapley, che è dedotta da una diversa interpretazione di questo indice,
particolarmente significativa nel contesto delle situazioni di voto.

Come secondo argomento, vengono esaminati i modelli di giochi con
astensione. Vengono introdotti alcuni nuovi assiomi e generalizzate al-
cune delle proprietà presenti in letteratura per caratterizzare gli indici di
potere. Questo permette di dimostrare due diverse assiomatizzazioni per
l’indice di Banzhaf per i giochi con astensione e una caratterizzazione
dell’indice di Shapley-Shubik per i giochi con astensione.

Successivamente, si sposta l’attenzione sul modello dei giochi mul-
tichoice, un ampliamento del modello classico di gioco cooperativo per
permettere ai giocatori di cooperare a diversi livelli (o di votare tra di-
verse alternative). I diversi modelli presenti in letteratura vengono con-
frontati tra loro, dopodiché viene definito un nuovo valore, come con-
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cetto di soluzione per i giochi multichoice, in linea con lo spirito della
definizione indice di Shapley. Come conseguenza di questo risultato,
si ottiene una formula per calcolare esplicitamente l’indice di Shapley-
Shubik per i giochi con astensione.

Infine, nell’ultima parte della tesi, il problema di ordinare i giocatori
è affrontato da una prospettiva diversa: la struttura di gioco cooperativo
viene rimossa e si suppone che ci sia a disposizione solo un ordine qual-
itativo tra i giocatori. In questo contesto vengono definite due funzioni
che creano un ordinamento dei giocatori a partire da un ordinamento dei
sottoinsiemi dei giocatori stessi. Inoltre vengono introdotti e discussi
alcune proprietà utilizzate successivamente per fornire una caratteriz-
zazione assiomatica di queste due funzioni.
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CHAPTER1
Introduction

IN many real-life situations that are studied in voting theory or, more
generally, in social choice theory, it is necessary to rank individuals
or objects. For instance this problem might arise when it is neces-

sary to have a unifying preference profile over employees in a working
group, or to evaluate the power of each voter in a decision making pro-
cedure or to give different marks to some students after a workshop...

A classical approach to this problem is provided by cooperative game
theory; in particular, voting situations can be modelled as simple games,
a particular family of games with transferable utility and power indices,
that are values restricted to the family of simple games, provide a natural
ranking among players.

From this classical approach many different questions may arise: is
the use of a cooperative solution concept legitimate in the context of sim-
ple games? Are there any solution concepts more suitable than others?
Why? Is it possible to use power indices also with different models of
games, for instance in order to take into account the possibility of ab-
stention in a voting procedure? Which indices can be generalized and
what aspects of the decision process do they represent? Which different
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approach can be studied, besides cooperative game theory, to solve this
problem?

In this thesis we analyse this topic and try to provide answers to some
of these questions.

Cooperative theory with transferable utility was introduced in Von
Neumann and Morgenstern (1945) to model situations in which players
can cooperate, and reach different goals forming coalitions. A coop-
erative game with transferable utility is a function that assigns to each
coalition, i.e. group of player, a number representing the worth of that
coalition.

The Shapley value was introduced by Shapley (1953) as a solution
concept for this class of games; the main idea of the value is to assign
to each player a real number that represents his contribution to the game
or what he is expecting from taking part to the cooperative game. The
Shapley value was introduced as the unique function satisfying some
reasonable axioms: linearity, anonymity, i.e. the value of a player does
not depend on his name; null-player, i.e. the value for players that do not
bring a contribution to any coalition should be zero; and efficiency, i.e.
what players get all together is distributed among all of them.

Games in which the outcomes are only 0 or 1 are called simple games
and are used as a model for binary voting situations: the idea is that play-
ers in favour of a proposal group together in coalitions, if a coalition is
winning, i.e. it is formed by players that being in favour can pass the
discussed bill, its value is 1, otherwise it is 0. Power indices are used
to measure the power of each player in the decision-making procedure.
Shapley and Shubik (1954) defined the Shapley-Shubik power index as
a restriction to simple games of the Shapley value; the other popular
power index in this context is the Banzhaf index, defined independently
in Penrose (1946) and in Banzhaf (1964). The first axiomatic founda-
tion of the Shapley-Shubik and the Banzhaf indices are due to Dubey
(1975) and Dubey and Shapley (1979), respectively. These works in-
troduce five axioms that are the correspondent for simple games of the
classical axioms for cooperative games defined in Shapley (1953): null
player, anonymity, transfer, efficiency for the Shapley-Shubik index and
Banzhaf total power for the Banzhaf index. However, the interpretation
of some of these axioms is not intuitively clear in the context of simple
games; for instance: why should we impose efficiency, when we just
want to compare the power of players? And, on the other hand, what is
the theoretical relevance of the Banzhaf total power property, which is
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extremely tautological?
The discussion of the classical approach and the related axioms brought

other ideas to define larger families of values, such as in Dubey and We-
ber (1977) and Weber (1988), or different indices more suitable for the
voting context, that take into account other aspects of the voting pro-
cedure as in Deegan and Packel (1978), Johnston (1978), and Holler
(1982). For a comparison among the different measures of power we re-
fer to Felsenthal and Machover (2005), Laruelle and Valenciano (2008),
and Bertini, Freixas, Gambarelli, and Stach (2013).

On the other hand, the classical approach was improved by other
characterizations such as Laruelle and Valenciano (2001), Feltkamp (1995)
and Felsenthal and Machover (1996) for the Shapley value,while Nowak
(1997), Lehrer (1988), Albizuri (2001), and Barua, Chakravarty, and
Roy (2005) refer to the Banzhaf value. Moreover, the Shapley value
gained more credibility thanks to different analysis and applications,
see for instance Roth (1988), Monderer and Samet (2002), and Moretti
and Patrone (2008). Finally due to an increasing interest for coopera-
tive game theory, other models of games were defined to capture dif-
ferent aspects of real-life decision making process, for instance if vot-
ers can abstain as in Bilbao, Fernández, Jiménez, and Lebrón (2000)
and Felsenthal and Machover (1997). In many of these models, val-
ues were defined as solution concepts that generalize the ideas behind
the classical ones, see for instance Hsiao and Raghavan (1993), Bolger
(1993), Albizuri, Santos, and Zarzuelo (1999), Amer, Carreras, and Ma-
gaña (1998a), Freixas (2005a), Freixas (2005b), and Bilbao, Fernández,
Jiménez, and López (2008a).

In this work we start our analysis in the classical cooperative theory
context, where the Shapley and the Banzhaf values are two of the most
common solution concepts, especially in the voting situations in which
we want to evaluate the influence of players. Actually these two values
have some common properties: they both satisfy the linearity, anonymity
and null player properties; these three properties characterize a larger
family of values, called semivalues, that are a subfamily of probabilistic
values, as discussed in Weber (1988), Dubey and Weber (1977), and
Dubey, Neyman, and Weber (1981).

Different works focus on semivalues, providing either a theoretical
interpretation, see Carreras and Freixas (1999) and Carreras, Freixas,
and Puente (2003), or some practical applications, as in Lucchetti, Moretti,
and Patrone (2015) and Moretti, Patrone, and Bonassi (2007). In particu-
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lar in Lucchetti, Radrizzani, and Munarini (2011) a new family of values
were defined with the idea of finding some values with an intermediate
behaviour between the Shapley and the Banzhaf values, at least for some
classes of games. Values can be defined, for a fixed set N of players, on
the class of unanimity games, and extended to all games by linearity. On
the unanimity game uS , where the unique minimal winning coalition is
the coalition S, the Shapley value assigns the same power (thanks to the
anonymity axiom) to the members of the winning coalition, which is in-
versely proportional to the size of the coalition; and it assigns zero to all
other players (since it satisfies the null player property).

On the other hand, the Banzhaf value also fulfils the symmetry and
null player properties, but it assigns a positive power to players in S,
which is inversely exponential to the size of the coalition. The new val-
ues considered in Lucchetti, Radrizzani, and Munarini (2011) were de-
fined assigning a power inversely proportional to some power of the size
of the winning coalition to non-null players; moreover, it was proved that
these values are actually regular semivalues. This approach raised the
following question: suppose to define a value by assigning the positive
value αs to the players in S in the unanimity game uS , where s = |S|,
and zero to all other players, then we suppose to extend the value by
linearity on the whole space of games; under which conditions the as-
signment of the positive number αs actually defines a semivalue? In
chapter 2 we provide an answer to this question.

In the same chapter we also provide a new formula for computing the
Shapley value, deduced from a bargaining procedure different from the
classical one. Actually, in the last section of Shapley (1953), there is a
description of a bargaining procedure which produces the value of the
game as an expected outcome. In the bargain process players agree to
play the game and form the grand coalition N in the following way: (1)
starting with a single player, the coalition adds one player at a time un-
til everyone has been admitted. (2) The order in which players join the
coalition is determined by chance, with all arrangements equally prob-
able. (3) Each player, on his admission, demands and is promised the
amount of adherence he contributes to the value of the coalition (as de-
termined by the characteristic function). In the bargaining procedure
underlying the model of simple games all players are assumed to vote
“yes”, and only the order in which they cast their votes is allowed to
vary. Shapley and Shubik interpret the order of “voting” as an indica-
tion of the relative degrees of support by the different members, with the
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most enthusiastic members deciding first, etc. In their work Shapley and
Shubik adapted the bargaining procedure proposed by Shapley (1953) to
simple games. This means that players are willing to vote for some bill,
they vote in a randomly chosen order and all n! orderings are equally
likely. As soon as the proposal is approved, the last voter is the pivotal
player who takes the credit for having passed it. The Shapley-Shubik in-
dex is then the ratio of the number of times the player is pivotal to n!, the
total number of orderings. This index is indeed the probability of each
player of being pivotal and thus it is always a number between 0 and 1.
Moreover, Shapley and Shubik noticed that their index is also a measure
of the power of players in blocking a resolution: if we suppose players
are queuing in all the possible orderings and vote against the proposal,
then the Shapley-Shubik index is the ratio of the number of times the
player is the last needed in order to block the bill to n!.

In simple games, considered as binary voting systems, coalitions are
either winning or losing. Players are supposed to be in favour or against
the bill. The characteristic function assigns the value of 0 to losing coali-
tions and, somewhat arbitrarily, the value of 1 to winning coalitions. In
this voting context it does not seem natural to expect all voters to vote in
the same way (either all of them “yes” or all of them “no”). According
to Felsenthal and Machover (1996), the natural bargaining procedure in
this context should allow voters to vote for any of the two options, and
the idea of pivotal voter, as the one who clinches the outcome, should
still be the same. They fixed this gap in 1996 and established the appro-
priate bargaining procedure for simple games regarded as binary voting
systems. Although their approach is also valid for cooperative games, it
is in simple games where the bargaining model has the most trustwor-
thy interpretation. Thus, it seems more natural to let players vote in any
ordering in favour or against the proposal, with equal probability, and
then consider how many times their vote is pivotal, either in approving
or in blocking the bill. This alternative characterization of the probabil-
ity space in which players are voting is provided by the space of binary
roll-calls, in which players are ordered in all the possible ways and can
vote either yes or no. Roll-calls take into account all the 2nn! possible
orderings in which players can vote either in favour or against a bill. In
Felsenthal and Machover (1996) a power index of a player is defined as
his expected probability of being pivotal in the space of roll-calls, under
the uniform discrete distribution.

Felsenthal and Machover proved the equivalence of their index with
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the Shapley-Shubik power index showing that their value for cooper-
ative games satisfies the axioms of the Shapley value. As they wrote
in their paper they avoided a “direct” proof by proving the equivalence
of the two expressions derived from the two bargaining procedures for
the Shapley-Shubik index. This direct approach, as noted by Felsenthal
and Machover (1996), implies a “combinatorial fact that is certainly
non-trivial, and may be of some independent interest”. In chapter 2 we
provide two different direct proofs of this result and deduce the explicit
formula to compute the Shapley value that can be derived from Felsen-
thal and Machover’s bargaining model. The main interest of this result,
however, is not the formula itself to compute the Shapley value for co-
operative games, but the possibility to generalize the value to non-binary
voting system, as we will discuss in chapter 4. Actually the model of
roll-call can be easily generalized to situations in which players can vote
among many different alternatives, while it is not clear how to extend the
classical bargaining procedure described in Shapley (1953).

In chapter 3 we focus on one particular extension of simple games:
games with abstention, that have been defined by Felsenthal and Ma-
chover (1997) to describe voting procedures in which abstention is a
third, separated option, different from being in favour or against a bill.
In literature there are different examples in which the model of games
with abstention is more realistic and appropriate than the classical model
with simple games to describe some voting procedures (see, for instance,
Chapter 8 in Felsenthal and Machover (1998)). Our interest in this fam-
ily of games is related to the evaluation of the power for each voter. So
we focus on the extension of the Banzhaf and the Shapley-Shubik in-
dices from simple games to games with abstention.

In particular, the Banzhaf index for games with abstention was de-
fined in Felsenthal and Machover (1998) and extended to games with
multiple levels in Freixas (2005a). Also the Shapley-Shubik index for
games with abstention is discussed in Felsenthal and Machover (1997)
and Felsenthal and Machover (1998) and extended to games with mul-
tiple levels in Freixas (2005b), following the Felsenthal and Machover
bargaining procedure for simple games. More recently, Freixas and Luc-
chetti (2016) provided an axiomatization of the Banzhaf index for games
with abstention as a two component power index. Their idea is to split
the index in two parts in order to highlight the power of players in two
different cases: when they are crucial in switching from voting in favour
to abstaining and when they switch from abstaining to voting no.
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In our work we want to provide a new axiomatization of the Banzhaf
index for games with abstention characterizing the index and its two
components, with the purpose of highlighting some of its properties, and
of the Shapley-Shubik index for games with abstention, thus enforcing
the idea of using these indices to evaluate the power of players in these
situations.

We use two different approaches to characterize the two indices. The
first one follows the classical axiomatization for simple games, see Dubey
(1975) and Dubey and Shapley (1979). The axioms used to character-
ize the indices are anonymity, transfer, null player, efficiency for the
Shapley-Shubik index, and Banzhaf total power for the Banzhaf index.
We provide a similar characterizations for the Shapely-Shubik and the
Banzhaf indices for games with abstention. However, these classical ax-
ioms, generalized in the context of (3,2)-simple games, are not sufficient
to uniquely characterize the indices on the space of games with absten-
tion. It is necessary to add another property. As we present in chapter 2,
the behaviour on unanimity games is crucial in order to uniquely char-
acterize an index on simple or coalitional games. For this reason the
new axiom we are going to introduce, describe the behaviour of a power
index on unanimity games.

Since in a game with abstention players can vote in three different
ways, given a tripartition S, in the unanimity game uS there are three
different types of players: players in S3 are null-players, while players
in S1 and in S2 are not. Of course, the role of players voting yes and of
those abstaining in a minimal winning tripartition is different, thus, also
the power of these two types of non-null players should be different.
The axioms we propose compare the power of a player in a unanimity
game when he votes “yes” in a minimal winning tripartition and when he
abstains in the same situation, i.e. all other players do not change their
vote. We give different conditions for the differences of power in the
two situations and use these conditions to deduce the Shapley-Shubik
and the Banzhaf indices for games with abstention. We also prove that
the five axioms used are independent, and thus all of them are necessary
to characterize the indices.

In the second approach we focus only on the Banzhaf index for games
with abstention. We follow and merge the works of Freixas and Luc-
chetti (2016), regarding games with abstention, and Laruelle and Va-
lenciano (2001), that is about values for cooperative games. Actually
in this second work, a new set of axioms is introduced and the crucial
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element is the modified game, resulting from dropping a minimal win-
ning coalition from a given game. In their work they translate the four
classical axioms using this modified game, to define new axioms that
have a clear meaning and make sense one by one, independently from
each other. Thus, we generalize Laurelle and Valenciano’s axioms from
simple games to the context of games with abstention; then we charac-
terize the (raw) Banzhaf index for games with abstention and each of its
two components using the modified game in which a minimal winning
tripartition has been removed. Unfortunately this approach can not be
used also to characterize the Shapley-Shubik power index, since there
is not an explicit formula that can describe the change of power when
comparing a game with its modified version.

In chapter 4 we look for such an explicit formula to at least compute
the Shapley-Shubik power index for games with abstention. Actually,
we present a more general result and adopt the bargaining procedure de-
scribed by Felsenthal and Machover to define a value for multichoice
games. In the roll-call model for simple games players are allowed to
vote either yes or no, and this can be naturally generalized with players
queueing in a random order and then voting any of the possible alterna-
tives. In Hsiao and Raghavan (1993) a value for multichoice games is
defined, this value is a matrix in which each element represents the effort
of a player with respect of an action. Instead the value we are providing
is a vector, in which each component represents the value associated to
each player in taking part to the game, since we do not want to discrimi-
nate among different actions. Our idea is to give a unified measure of the
power or influence that each player has in taking part to the decision pro-
cedure associated to the game. For this reason we avoid the axiomatic
approach, that is used by Hsiao and Raghavan (1993) (and also by Bil-
bao, Fernández, Jiménez, and López (2008a) and Bolger (1993) to define
extension of the Shapley value in context with more than one alternative
in the input), but we rather to follow the bargaining approach described
in Felsenthal and Machover (1996).

The result we are providing is then an explicit formula to compute the
Shapley-Shubik power index for (j, 2)-simple games and, at the same
time, a formula to define the Shapley value for cooperative games under
the Felsenthal and Machover’s roll-calls models. Our result is particu-
larly interesting in the family of games with abstention since it allows to
compute the Shapley-Shubik index explicitly without using the concept
of pivotal player in a roll-call. For instance, one of the improvements the
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explicit formula provides is the possibility of using generating functions
to compute the indices in a weighted majority game. We discuss these
aspects in chapter 4 and provide also a comparison among our value and
other values defined in analogous context.

In the last chapter, we examine the problem of ranking players from
a completely different point of view. We remove the structure of coali-
tional game and suppose that only an ordinal ranking among players
is available. A similar situation can not be represented by a coalitional
games and power indices can not help, since, in general, changing power
index can change the ranking among players, see for instance Carreras
and Freixas (2008) and Freixas (2010). Moreover, in many situations
it is possible to have an ordinal ranking over groups, without a spe-
cific characteristic function to have a cardinal comparisons among the
groups. In these situations to select a random characteristic function to
represent the ordinal relation would be a bad idea, since it is well known
that the same ordering on the subsets, when described by different util-
ity functions, can provide different ranking among players, as shown in
Lucchetti, Moretti, and Patrone (2015). For all these reasons, we want
to construct a procedure which is purely ordinal.

Thus the problem becomes to define a function on the set of the com-
plete pre-orders on the non-empty subsets of a given finite setN and val-
ued on the complete pre-orders onN . A similar problem has been inves-
tigated in Moretti (2015), where the author studies an alternative notion
of power index for cooperative games that is invariant to the choice of
the characteristic function representing the ranking over the coalitions.
However, such invariant power index is properly defined for a limited
class of total pre-orders (over the set of all the coalitions). Alternatively,
in Moretti and Oztürk (2016) the authors analyse the ranking function
problem using a property-driven approach, and they prove several im-
possibility theorems showing that no ranking function satisfies a given
set of attractive properties.

Our approach is different, even if we use a classical tool in Social
Choice and Game Theory: we propose a small set of properties that such
a function should satisfy, and we prove that these properties are enough
to identify a unique function.

Some of the properties we consider are, in some sense, classical prop-
erties in the context of social choice and game theory: they recall some
form of anonymity and monotonicity. To these properties we add a new
one that reflects the philosophy underlying our procedure and our idea
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of solution. It is clear that different criteria can affect the ranking, since
the focus can be put on different aspects: for instance, one can decide
that outstanding performance of a group should be very important, thus
people in the first groups should also be ranked in the first positions;
dually, it could be preferable to punish groups with bad performances
and rank in the last positions those people. Also, according to the given
context, it is conceivable that the size of the groups plays a role. For
instance groups neither too small nor too large could be encouraged, and
thus people participating in groups of a prescribed size and well ranked
should get a good individual ranking. We want to stress this aspect, to
underline that the function we propose is interesting, but for sure it is not
the only one potentially available; rather, it is likely that our function is
not the best one in every possible context. As for cooperative games we
have many solution concepts, and each one of them can be of interest and
preferable to others in some situations, in the same way in this context
we believe that several useful functions can be defined and studied.

The thesis is organized as follows. At the beginning of each chapter
one or two sections are devoted to introduce all the necessary preliminar-
ies to understand our contribution. This means that every chapter is more
or less self-contained from a notational and conceptual point of view. At
the end of each chapter a brief conclusion shows the links between the
different contributions. Moreover, a small abstract at the beginning of
each chapter should help the reader to orientate in the setting and in the
original works presented.

After this general introduction, chapter 2 is devoted to the study of
values for coalitional games, the new formula for the Shapley value is
presented and the characterization of the family of semivalues using una-
nimity games.

The central part of the thesis, chapter 3, deals with some properties
for power indices for games with abstention, and provides two different
axiomatizations for the Banzhaf index for games with absention and one
characterization of the Shapley-Shubik index for games with abstention
that allow to compute the index by means of a recursive formula.

In chapter 4 we present the new formula to compute a value for multi-
choice cooperative games following the Felsenthal and Machover’s bar-
gaining model for simple games; we discuss the differences among our
value and the others values defined in literature for games with several
levels of approval.
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Finally, in chapter 5 we discuss the problem of ranking players start-
ing from an ordinal relations among the coalitions. We provide a char-
acterization of two different solution ideas in this setting.

We present some general conclusion of our work and possible future
developments in chapter 6.



CHAPTER2
Values for coalitional games

AMONG the different solution concepts for coalitional games, the
Shapley and the Banzhaf values are two of the most known and
used, in particular as power indices for simple games. Both val-

ues are actually semivalues, a family of solution concepts that satisfy the
linearity, anonymity and null player properties.

In this chapter we provide a new formula to compute the Shapley
value due to a different interpretation of the value, proposed by Felsen-
thal and Machover that is particularly interesting in the voting context.
Moreover, we present a theorem to characterize all semivalues by means
of their behaviour on unanimity games.

2.1 Cooperative and simple games

Let us introduce some definitions and notations that we are going to use
in the following. We refer to Maschler, Solan, and Zamir (2013) for a
more accurate illustration of these concepts.

Definition 2.1. A coalitional game with transferable utility (TU-game)

12
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is given by the pair (N, v) where v : 2N → R and v(∅) = 0.

The elements of the set N are the players of the game. We denote
with n the cardinality of N , its subsets are called coalitions and 2N is
the set of all coalitions. The function v is the characteristic function of
the game that assigns to any coalition of players S, a real value v(S).
The dual v∗ of a game v is defined as v∗(S) = v(N)− v(N r S).

We denote with GN the set of all TU-games on the finite set N .

Definition 2.2. For any coalition S 6= ∅ the unanimity game (N, uS) is
defined by

uS(T ) =

{
1 if S ⊆ T

0 otherwise.

The set GN is isomorphic to the Euclidean space of dimension 2n−1,
thus GN is a vector space. A basis for this space is given by the collection
of the unanimity games {uS : S ∈ 2N , S 6= ∅}. Moreover, given two
games v, w ∈ GN the game v + w is defined as

(v + w)(S) = v(S) + w(S) for any S ∈ 2N .

Given a game v ∈ GN and a real number α the game αv is defined as

(αv)(S) = αv(S) for any S ∈ 2N .

Example 2.1. Three friends wants to share a taxi ride. This situation can
be modelled with a coalitional game with set of players N = {a, b, c}
and where the value of each coalition is the cost of the ride for players
belonging to it.

For instance, we can have v({a}) = v({b}) = 10; v({c}) = 14 to
represent the cost of the ride for each player by themselves; v({a, b}) =
12 and v({a, c}) = v({b, c}) = 18 if two of them share the ride and
v(N) = 20 if they go all together.

A subclass of the TU-games is the family of simple games.

Definition 2.3. A game (N, v) is simple if v : 2N → {0, 1}, v(N) = 1
and v is monotonic, i.e. if S ⊆ T then v(S) ≤ v(T ).

Simple games can be used as a model for voting situation, in which
there is a group of people discussing to take a decision, for instance to
approve or reject a bill. In this context, players are usually called voters
and we say that a coalition S is winning if v(S) = 1 and it is losing
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otherwise. A simple game can be described only by the set of its winning
coalitions:

W = {S ∈ 2N : v(S) = 1}
or by the set of its minimal winning coalitions:

Wm(v) = {S ∈ 2N : v(S) = 1 and v(T ) = 0, for any T ⊂ S}.1

We denote with SGN the set of all simple games on the finite set N .
It is possible to define operations on SGN in the following way. Given

two games v, w ∈ SGN , we define the disjunction v∨w as the game such
that

(v ∨ w)(S) = max{v(S), w(S)} for any S ∈ 2N ,

and the conjunction v ∧ w as

(v ∧ w)(S) = min{v(S), w(S)} for any S ∈ 2N .

Remark 2.1. Let v, w ∈ SGN , then W(v ∨ w) = W(v) ∪ W(w) and
W(v∧w) =W(v)∩W(w). This implies that if v is a simple game with
Wm(v) = {S1, . . . , Sk} then v = uS1 ∨ · · · ∨ uSk

.
Furthermore, given two unanimity games uS and uT , then their con-

junction is still a unanimity game and in particular uS ∧ uT = uZ where
Z = S ∪ T .

Example 2.2 (UN Security Council). A resolution is approved by the
United Nation Security Council if the five permanent members (China,
France, Russia, UK, and US) are not against it and there are at least nine
members in favour.

This situation can be described by a simple game with 15 players,
in which P ⊆ N is the set of permanent members and a coalition S is
winning if and only if |S| ≥ 9 and P ⊆ S.

Actually this model does not take into account the possibility of a
permanent member to abstain without explicitly express his veto against
a proposal. If the UNSC is modelled as a simple game, the abstention
of a permanent member is interpreted as a vote against the bill, however
in the following chapter we will discuss the model of voting games with
abstention that can give a more realistic representation of the voting pro-
cedure within the UNSC, as discussed for the first time in Felsenthal and
Machover (1998).

1We use S ⊂ T if S ⊆ T and S 6= T .
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A special class of simple games is the one of weighted majority game
that are usually used to model voting situation in which there is a quota
to reach in order to approve a bill.

Definition 2.4. A simple game (N, v) is a weighted majority game if
there is a number q called quota and a vector w = (w1, . . . , wn) of
weights such that

v(S) =

{
1 if

∑
i∈S wi ≥ q

0 otherwise.

A weighted majority game is denoted by v = [q;w1, . . . , wn]. Of
course, every weighted majority game is a simple game, however not all
simple games can be represented as weighted majority games.

Example. The UNSC can be represented as a weighted majority game:

v = [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The weight of a coalition is greater than 39 if and only if there are at
least four players plus the five permanent members.

Example 2.3. A corporation has three different stockholders: a, b and c.
Suppose the first one has 50% of the stocks, the second the 49% and the
third the 1%; decision are taken by majority according to the number of
shares each player has. This can be modelled as the weighted majority
game

[51; 50, 49, 1].

The winning coalitions are {a, b}, {a, c}, {a, b, c}. Even if players b and
c have different weights their role in the game is the same.

2.2 Values and power indices

Among the different solution concepts, we focus on values for coali-
tional games and power indices for simple games, since they both pro-
vide a natural ranking among players.

Definition 2.5. A value is a function ϕ : GN → Rn that assigns to every
coalitional game a vector (ϕ1, . . . , ϕn(v)), where ϕa(v) is the value of
player a according to ϕ.

A power index is a function ϕ : SGN → Rn that assigns to every
simple game a vector (ϕ1, . . . , ϕn(v)), where ϕa(v) is interpreted as the
a priori power of player a according to ϕ.
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The most general approach to the problem of defining family of val-
ues as solution concepts for coalitional games can be found in Dubey
and Weber (1977) and Weber (1979). In these works the family of prob-
abilistic values is introduced.

Definition 2.6 (Probabilistic values). Given a player a, let {paS, S ⊆
N r a} be a probability distribution over the set of coalitions not con-
taining a, that is a family of constant such that S ⊆ N r a, paS ≥ 0 and∑

S⊆Nra p
a
S = 1. Then a probabilistic value ψ on GN is defined as

ψa(v) =
∑

S⊆Nra

paS[v(S ∪ {a})− v(S)].

for every game v.

Probabilistic values can be seen as the expected payoff of player a
if we see his participation to a game as consisting of joining a coali-
tion S with probability paS and then receiving as a reward his marginal
contribution v(S ∪ {a})− v(S).

It is possible to give a characterization of the probabilistic values by
means of some properties, that in this context are also called axioms,
since they form a basis for the theory developed from them. First of all,
a player a in a game v is called a null player if v(S ∪ {a}) = v(S) for
any S ∈ 2Nr{a}. Then it is reasonable to assume that a null player will
not get anything by playing a game.

Null player A value (or a power index) ϕ satisfies the null player prop-
erty if given a null player a for the game v, then

ϕa(v) = 0.

Positivity Given a monotonic game v, i.e. a game such that v(S) ≤
v(T ) for any S ⊆ T , a value ϕ satisfies positivity if

ϕa(v) ≥ 0

for any a ∈ N .

The second axiom is quite natural from a mathematical point of view:

Linearity A value ϕ satisfies linearity if it is a linear operator on GN ,
i.e. ∀v, w ∈ GN , λ ∈ R it holds

ϕ(v + w) = ϕ(v) + ϕ(w) and ϕ(λv) = λϕ(v).
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These axioms characterize the family of probabilistic values, as the
following theorem shows.

Theorem 2.1 (Dubey and Weber (1977)). Let ψ : GN → Rn be a value
on GN that satisfies linearity, positivity and the null player properties.
Then ψ is a probabilistic value and the following formula holds

ψa(v) =
∑

S⊆Nra

paS[v(S ∪ {a})− v(S)]

for some paS such that paS ≥ 0 for all S ⊆ Nr{a} and
∑

S⊆Nra p
a
S = 1.

Moreover, every probabilistic value satisfies these properties.

Other properties that have been defined in order to characterize values
and power indices are the following (see Shapley and Shubik (1954),
Dubey (1975), and Dubey and Shapley (1979)).

Transfer A power index ϕ satisfies transfer if ∀v, w ∈ SGN , it holds

ϕ(v ∨ w) = ϕ(v) + ϕ(w)− ϕ(w ∧ v).

Anonymity A value (or a power index) ϕ satisfies anonymity if for every
permutation ϑ on N , every game v and every player a, it holds

ϕa(ϑv) = ϕϑ(a)(v)

where (ϑv)(S) = v(ϑS) for any S ∈ 2N .

Efficiency A value (or a power index) ϕ satisfies efficiency if∑
i∈N

ϕi(v) = v(N)

for every game v.

The Banzhaf power index was defined independently by Penrose (1946)
and by Banzhaf (1964). This index was considered as a measure of the
power of players in voting committee, thus it was initially defined only
for simple games.

Definition 2.7 (Banzhaf value). The Banzhaf value β is defined as

βa(v) =
∑

S⊆Nr{a}

1

2n−1
[v(S ∪ {a})− v(S)]

for any game v ∈ GN and every a ∈ N .
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The Banzhaf value can be seen as a probabilistic value for which a
player a is equally likely to join any coalition in N :

paS =
1

2n−1
.

Moreover the Banzhaf value (index) satisfies linearity (transfer), anonymity
and null player property.

2.3 The Shapley value and the Shapley-Shubik index

The Shapley value for cooperative games, introduced by Shapley (1953)
and the Shapley-Shubik index for simple games, introduced by Shapley
and Shubik (1954), are recognized as a very important solution concept
for coalitional games and have attracted enormous attention by schol-
ars, see for instance: Roth (1988), Monderer and Samet (2002), Winter
(2002), Moretti and Patrone (2008).

In the original work, Shapley defined the value following a deductive
approach, as the unique function satisfying three axioms that he called
anonymity, efficiency and law of aggregation (equivalent to linearity).
From these axioms, Shapley derived the explicit well-known formula
for his value in terms of the marginal contributions of players.

Definition 2.8 (Shapley value). The Shapley value φ is defined as

φa(v) =
∑

S⊆Nr{a}

s!(n− s− 1)!

n!
[v(S ∪ {a})− v(S)] (2.1)

for any game v ∈ GN and every a ∈ N 2.

Following the model of probabilistic values, the Shapley value arises
from the belief that a player a will join a coalition that is equally likely
to be of any size s = 0, . . . , n− 1 and all coalitions of size s are equally
likely:

paS =
1

n

1(
n−1
s

) =
s!(n− 1− s)!

n!
.

The Shapley-Shubik index, introduced in Shapley and Shubik (1954),
is the restriction of the Shapley value to simple games. In their work
Shapley and Shubik adopted the bargaining procedure proposed by Shap-
ley (1953) for cooperative games to simple games. This means that play-
ers are willing to vote for some bill, they vote in a randomly chosen

2We denote with s the cardinality of S.
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order and all n! orderings are equally likely. As soon as the proposal
is approved, the last voter is the pivotal player who takes the credit for
having passed it. The Shapley-Shubik index is the ratio of the number of
times the player is pivotal under this scheme to n! (the total number of
orderings). However, it is not clear why, in order to model a voting situa-
tion, players are supposed to vote only in favour of the proposal and then
they receive credits when the proposal is approved thanks to their vote.
It would seem more reasonable to count the number of time a player is
pivotal either in approving or blocking a resolution. Felsenthal and Ma-
chover (1996) proposed an alternative bargaining model to capture these
ideas.

2.3.1 The Shapley value under the Felsenthal and Machover bar-
gaining model

Let us present the bargaining model described by Shapley (1953) in the
last section of his seminal work and the bargaining model introduced by
Felsenthal and Machover (1996). To do so, we are going to define the
space of binary roll-calls and the idea of pivotal player in a roll-call. We
mainly use the notation from Felsenthal and Machover (1996). Let s
and d (short for sinister and dexter) denote the left-hand and right-hand
projection from the Cartesian product of two finite sets A × B, that is
s(a, b) = a and d(a, b) = b.

A roll-call is a map R : N → {1, 2, . . . , n} × {−1, 1}, such that sR
is a bijection from N to {1, 2, . . . , n}. Thus sR induces a total order on
N , we refer to it as the queue of players inR. If dR(a) = 1 we say that a
is positive in R and it means that a votes “yes" in R; if dR(a) = −1 we
say that a is negative in R and it means that a votes “no". We interpret
the roll-call R as the players ordering according to sR and voting “yes"
or “no" according to their left-hand projection: sR(a) = i means that a
is the ith to vote and dR(a) = 1 (or dR(a) = −1) means that a votes
“yes" (or “no").
LetR be the set of all roll-calls,R+ be the set of roll-calls for which all
players are positive, andR− be the set of roll-calls for which all players
are negative. It holds |R| = 2nn! and |R+| = |R−| = n!. Note that in
the bargaining model introduced by Shapley both sets R+ and R− are
considered with a uniform probability distribution over their elements.

Given a roll-call R the sets of positive and negative players in R are
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the following:

Y(R) = {x ∈ N : dR(x) = 1} N (R) = {x ∈ N : dR(x) = −1}.

For any player a, we will also use the sets of positive and negative players
who do not vote after a:

Y(R, a) = {x ∈ N : dR(x) = 1 ∧ sR(x) ≤ sR(a)}
N (R, a) = {x ∈ N : dR(x) = −1 ∧ sR(x) ≤ sR(a)}.

Given a roll-call R and a player a, the marginal contribution of a to
v(Y(R)) (or to v∗(N (R)) ) is defined as

M(v,R, a) =

{
v(Y(R, a))− v(Y(R, a) r {a}) if dR(a) = 1

v∗(N (R, a))− v∗(N (R, a) r {a}) if dR(a) = −1.

In the last section of Shapley (1953), it is showed that the Shapley
value φa(v) is the expected value of M(v,R, a) in the space of positive
roll-calls,R+.

Theorem 2.2 (Shapley (1953)). The Shapley value of player a ∈ N in
the game v ∈ GN is

φa(v) =
∑
R∈R+

M(v,R, a)

n!
.

On the other hand, Felsenthal and Machover (1996) proved that φa(v)
is the expected value of M(v,R, a) in the probability space of roll-calls,
R.

Theorem 2.3 (Felsenthal and Machover (1996)). The Shapley value of
player a ∈ N in the game v ∈ GN is

φa(v) =
∑
R∈R

M(v,R, a)

2nn!
. (2.2)

The new interpretation given by Felsenthal and Machover is particu-
larly interesting in the context of simple games modeling a voting situa-
tion.

Observe that for each R ∈ R there is a unique voter a such that
M(v,R, a) = 1, while M(v,R, x) = 0 for all x 6= a. We say that a
is the pivotal player in R for the game v and we write a = piv(v,R).
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The pivotal player can be characterized also as the first player a such
that if Y(R) wins in v then Y(R, a) wins in v, and if Y(R) loses in v
then N rN (R, a) loses in v. In other words, piv(v,R) is the first player
a in the queue of R such that for any roll-call R′ with sR′ = sR and
dR′(x) = dR(x) for any x that precedes a, then Y(R′) wins in v if and
only if Y(R) wins in v.

Shapley and Shubik (1954) defined the Shapley-Shubik index as the
restriction of the Shapley value to the class of simple games, in order to
measure the power of a player in a simple game. From Theorem 2.2 and
the definition of pivotal player it follows:

Corollary 2.1. The Shapley-Shubik index of player a ∈ N in the game
v ∈ SGN is

φa(v) =
|{R ∈ R+ : a = piv(v,R)}|

n!
.

On the other hand, as a consequence of Theorem 2.3, Felsenthal and
Machover (1996) proved the following.

Corollary 2.2. The Shapley-Shubik index of player a ∈ N in the game
v ∈ SGN is

φa(v) =
|{R ∈ R : a = piv(v,R)}|

2nn!
. (2.3)

Felsenthal and Machover (1996) remarked that equations (2.2) and
(2.3) are not useful from a practical computational point of view, while
their value is conceptual. The only interest they have in (2.2) is to de-
duce (2.3), which they do regard as conceptually more attractive than the
result in Corollary 2.1.

As (2.1) is the explicit formula to compute the Shapley value (and the
Shapley-Shubik index) associated to the bargaining procedure described
by Shapley (1953), in Felsenthal and Machover (1996) there is not such
an equivalent expression to explicitly compute the Shapley value.

We fill this gap providing the the explicit formula associated to the
Felsenthal and Machover bargaining model. In order to do so, we define
a value Φ for any a ∈ N as follows.

Φa(v) =
∑

S⊆Nr{a}

Γn(s)[v(S ∪ {a})− v(S)] (2.4)
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where s = |S| and

Γn(s) =
s!

2nn!

s∑
k=0

(n− k − 1)!

(s− k)!
2k+

(n− s− 1)!

2nn!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k

(2.5)
for any s = 0, . . . , n− 1.

Then, the main result is the following.

Theorem 2.4. The explicit formula (2.4), which describes a value Φ in
terms of marginal contribution, is associated to the bargaining model
described by Felsenthal and Machover. In particular, formula (2.4) can
be deduced from Theorem 2.3 for cooperative games and from Corol-
lary 2.2 for simple games.

Proof. In the following proof, we focus on simple games, but the same
argument can be easily generalized to describe any coalitional game
since in our reasoning it does not matter which are the values of the
marginal contributions.

We start considering two different situations, according to player a
voting either yes or no.

If a is a positive player in a roll-call R, then dR(a) = 1 and

M(v,R, a) = v(Y(R, a))− v(Y(R, a) r {a}) = 1.

If we take S = Y(R, a), then there is a correspondence between the roll-
calls for which a is a positive pivotal player and the coalitions S such
that a ∈ S and v(S)− v(S r {a}) = 1. In particular, any S of this type
is associated to all the roll-calls in which all the players in S vote yes
before a, while the players not in S vote no if they are before a or vote
either yes or no if they are after a in the queue of R. This means that
for any S such that a ∈ S and v(S) − v(S r {a}) = 1 the number of
associated roll-calls is

n−s∑
j=0

combinations
of players /∈ S

before a︷ ︸︸ ︷(
n− s
j

)
(s− 1 + j)!︸ ︷︷ ︸
orderings of voters

before a

orderings
of voters
after a︷ ︸︸ ︷

(n− s− j)! 2n−s−j︸ ︷︷ ︸
ways to vote

for players
after a

def
= γn(n− s).
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Thus, if a is a positive player, the number of roll-calls for which a is
pivotal is given by

φ+
a (v) =

∑
S⊆N :a∈S

γn(n− s)[v(S)− v(S r {a})]

or equivalently

φ+
a (v) =

∑
S⊆Nr{a}

γn(n− s− 1)[v(S ∪ {a})− v(S)]. (2.6)

Consider now the other situation in which player a votes no. If a is a
negative pivotal player in a roll-call R, then dR(a) = −1 and

M(v,R, a) = v∗(N (R, a))− v∗(N (R, a) r {a}) = 1.

Using the definition of dual game v∗, we have

M(v,R, a) = v((N rN (R, a)) ∪ {a})− v(N rN (R, a)).

If we take S = N r N (R, a) ∪ {a}, then there is a correspondence
between the roll-calls for which a is a negative pivotal player and the
coalitions S such that a ∈ S and v(S)− v(S r {a}) = 1. In particular,
any S of this type is associated to all roll-calls in which all players not
in S (i.e. players in N (R, a) r {a}) vote no before a, while players in
S vote yes if they are before a and vote either yes or no if they are after
a in the queue of R. This means that for any S such that a ∈ S and
v(S)− v(S r {a}) = 1 the number of associated roll-calls is

s−1∑
j=0

combinations
of players ∈ S

before a︷ ︸︸ ︷(
s− 1

j

)
(n− s+ j)!︸ ︷︷ ︸
orderings of voters

before a

orderings
of voters
after a︷ ︸︸ ︷

(s− 1− j)! 2s−1−j︸ ︷︷ ︸
ways to vote

for players
after a

def
= γn(s− 1).

Thus, if a is a negative player, the number of roll-calls for which a is
pivotal is given by

φ−a (v) =
∑

S⊆N :a∈S

γn(s− 1)[v(S)− v(S r {a})]
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or equivalently

φ−a (v) =
∑

S⊆Nr{a}

γn(s)[v(S ∪ {a})− v(S)]. (2.7)

According to (2.3) the Shapley-Shubik index of a player a is given by
the number of roll-calls for which a is a pivotal player divided by 2nn!.
Thus,

φa(v) =
φ+
a (v) + φ−a (v)

2nn!
.

Using equations (2.6) and (2.7) we have

φa(v) =
∑

S⊆N :a∈S

γn(s) + γn(n− s− 1)

2nn!
[v(S ∪ {a})− v(S)]

that is equivalent to (2.4) thanks to definition of Γn(s) given in (2.5).

The next result establishes the expected coherence between the two
bargaining models for the Shapley value, i.e., the two formulas to com-
pute the value in terms of marginal contributions under the two associ-
ated bargaining models are equivalent.

Theorem 2.5. The values Φ and φ for cooperative games coincide.

We want to directly prove the equivalence of formulas (2.1) and (2.4)
this will be done with two different proofs: the first one by induction and
the second one using generating functions. Note that the two equations
have the same structure and the only difference is the coefficient mul-
tiplying the marginal contribution to each coalition S such that a /∈ S.
Thus, to prove Theorem 2.5 we just need the following lemma regarding
the combinatorial identity between the two coefficients.

Lemma 2.1. For any n and any s = 0, . . . , n− 1, it holds

s!(n− s− 1)!

n!
=

s!

2nn!

s∑
k=0

(n− k − 1)!

(s− k)!
2k+

(n− s− 1)!

2nn!

n−s−1∑
k=0

(n− k − 1)!

(n− s− 1− k)!
2k.

Proof. First of all, simplifying the identity, the thesis is equivalent to the
following equation

s!(n−s−1)!2n = s!
s∑

k=0

2k
(n− k − 1)!

(s− k)!
+(n−s−1)!

n−s−1∑
k=0

2k
(n− k − 1)!

(n− s− k − 1)!

(2.8)
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for all n and 0 ≤ s ≤ n− 1.
Observe that if n = 1, then s = 0, then this equality reduces to

2 = 1 + 1, that is trivially true. Since we are dealing with voting games,
we assume that there is not only one player and so n ≥ 2.
We proceed in proving (2.8) using induction on n.

If n = 2 and s = 0 we have 22 = 1 + 1 + 2. If n = 2 and s = 1 we
have 22 = 1 + 2 + 1. So the thesis is true for n = 2.

Now, we assume that (2.8) is true for n and all 0 ≤ s ≤ n− 1 and we
prove it for n+ 1 and 0 ≤ s ≤ n.
We first consider the extreme cases s = 0 and s = n and prove them
directly. Secondly, we prove the statement for each s with 0 < s < n,
using the induction hypothesis for n with s and s− 1.

First step: For n+ 1 and s = 0 (or s = n), equality (2.8) becomes

2n+1n! = n! + n!
n∑
k=0

2k.

Thanks to the induction hypothesis (for n and s = 0 ) we have

2n(n− 1)! = (n− 1)! + (n− 1)!
n−1∑
k=0

2k.

Then we can write the right side of our claim as

n! + n!
n∑
k=0

2k = n! + 2nn! + n!
n−1∑
k=0

2k

= n! + 2nn! + n[2n(n− 1)!− (n− 1)!]

= n! + 2nn! + 2nn!− n! = 2n+1n!

and this proves the first part.
Second step: We now want to prove the thesis for n + 1, thus, we

have to show that the following is true

2n+1s!(n−s)! ?
= s!

s∑
k=0

(n− k)!

(s− k)!
2k+(n−s)!

n−1∑
k=0

(n− k)!

(n− s− k)!
2k. (2.9)

Thanks to induction, if we take n and s we have

s!(n−s−1)!2n = s!
s∑

k=0

2k
(n− k − 1)!

(s− k)!
+(n−s−1)!

n−s−1∑
k=0

2k
(n− k − 1)!

(n− s− k − 1)!

(2.10)
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and if we take s− 1

(s−1)!(n−s)!2n = (s−1)!
s−1∑
k=0

2k
(n− k − 1)!

(s− 1− k)!
+(n−s)!

n−s∑
k=0

2k
(n− k − 1)!

(n− s− k)!
.

(2.11)
We work on the right-hand side of equation (2.9) and rewrite each of the
two addends in the following way

s!
s∑

k=0

(n− k)!

(s− k)!
2k = s!(n− s)!2s+s!

s−1∑
k=0

(n− k)!

(s− k)!
2k

= s!(n− s)!2s+s!
s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k
n− k
s− k

,

writing n−k
s−k as n−s

s−k + 1,

= s!(n− s)!2s + s!
s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k
(n− s
s− k

+ 1
)

= s!(n− s)!2s + s!(n− s)
s−1∑
k=0

(n− k − 1)!

(s− k)!
2k+

+ s!
s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k,

the first term can be moved inside the sum, to get

= s!(n− s)
s∑

k=0

(n− k − 1)!

(s− k)!
2k + s!

s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k.

Analogously the second term in (2.9) can be written as

(n− s)!
n−s∑
k=0

(n− k)!

(n− s− k)!
2k = s(n− s)!

n−s∑
k=0

(n− k − 1)!

(n− s− k)!
2k+

+ (n− s)!
n−s−1∑
k=0

(n− k − 1)!

(n− s− k − 1)!
2k.
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If we now sum these expression the right-hand side of (2.9) becomes

s

[
(s− 1)!

s−1∑
k=0

(n− k − 1)!

(s− k − 1)!
2k + (n− s)!

n−s∑
k=0

(n− k − 1)!

(n− s− k)!
2k

]
+

(n− s)

[
s!

s∑
k=0

(n− k − 1)!

(s− k)!
2k + (n− s− 1)!

n−s−1∑
k=0

(n− k − 1)!

(n− s− k − 1)!
2k

]
.

Using the induction hypothesis and in particular (2.10) and (2.11) and
replacing everything in the right-hand side of (2.9), we finally get

2n+1s!(n− s)! = s[2n(s− 1)!(n− s)!] + (n− s)[2ns!(n− s− 1)!]

= 2ns!(n− s)! + 2ns!(n− s)!
= 2n+1s!(n− s)!.

We are going to provide another proof of Theorem 2.5 using the tool
of formal series and generating function. Let us recall the results we are
going to use. Given a sequence {un}n the formal serie of {un}n is

U(t) =
∑
n≥0

unt
n = u0 + u1t+ u2t

2 + . . .

The multiplication of two formal series U(t) and V (t) is given by

U(t) · V (t) =
(∑
n≥0

unt
n
)
·
(∑
n≥0

vnt
n
)

=
∑
n≥0

( n∑
k=0

ukvn−k
)
tn.

Moreover, differentiating k times the geometric serie 1
1−t =

∑
n≥0 t

n,
we get the following identity:

1

(1− t)k+1
=
∑
n≥0

(
n+ k

k

)
tn.

Thanks to the previous identities we can prove the following.

Lemma 2.2. Let m and s be non-negative integers, then
s∑

k=0

(
m+ s− k

m

)
2k +

m∑
k=0

(
m+ s− k

s

)
2k = 2m+s+1. (2.12)
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Proof. Let us consider the sequence am,s =
∑s

k=0

(
m+s−k
m

)
2k, the formal

series of am,s is

∑
m≥0

{∑
s≥0

[ s∑
k=0

(
m+ s− k

m

)
2kts

]
um
}

=
∑
m≥0

[∑
s≥0

2sts
∑
s≥0

(
m+ s

m

)
ts
]
um

=
∑
m≥0

[ 1

1− 2t
· 1

(1− t)m+1

]
um

=
1

1− 2t

∑
m≥0

1

(1− t)m+1
um

=
1

1− 2t
· 1

1− t− u
.

The two addends on the left-hand side of Equation (2.12) are symmetri-
cal, thus we get

1

1− 2t
· 1

1− t− u
+

1

1− 2u
· 1

1− t− u
=

2

(1− 2t)(1− 2u)
.

On the other hand, the formal series of the sequence bm,s = 2m+s+1 is∑
m≥0

{∑
s≥0

[
2m+s+1ts

]
um
}

= 2
∑
m≥0

[
∑
s≥0

2sts2mum]

= 2
1

1− 2t
·
∑
m≥0

2mum

= 2
1

1− 2t

1

1− 2u

and this complete the proof.

Remark 2.2. Lemma 2.2 and Lemma 2.1 are equivalent: the identity
in Lemma 2.1 can be transformed in equation (2.12) by taking m =
n− s− 1 and rearranging the terms.

2.4 Semivalues

Let us now consider a subfamily of the probabilistic values: semivalues.
We are going to give a way to generate new family of semivalues, but
for a complete overview over this topic refer to Dubey, Neyman, and
Weber (1981), Dubey and Weber (1977), Monderer and Samet (2002),
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and Carreras, Freixas, and Puente (2003) for the restriction of semivalues
to simple games.

Definition 2.9 (Semivalue). A semivalue on GN is a value ψ defined as

ψNa (v) =
∑

S⊂Nr{a}

ps[v(S ∪ {a})− v(S)]

for any a ∈ N, v ∈ GN with ps ≥ 0 for every s = 0, . . . , n − 1 and∑n−1
s=0

(
n−1
s

)
ps = 1.

A semivalue with weighting coefficients pk is regular if pk > 0 ∀k =
0, . . . , n− 1.

Thus a semivalue πN can be identified by an element of the simplex

Σ := {x ∈ Rn−1 : xi ≥ 0 ∧
n−1∑
s=0

(
n− 1

s

)
xs = 1}.

In the sequel, we shall identify the semivalue πN by means of the n-
dimensional vector (p0, . . . , pn−1).

Theorem 2.6. A semivalue is a probabilistic index that satisfies anonymity
and, vice-versa, any probabilistic index that satisfies anonymity is a
semivalue.

Clearly both the Shapley value and the Banzhaf value are regular
semivalues. In particular, they have the following features: the Banzhaf
value is the only one for which ps = pt for all s, t and the Shapley value
is the only one fulfilling efficiency. Another family of regular semival-
ues on GN , defined in Carreras and Freixas (1999), is the family of the so
called binomial semivalues, where ps = qs(1− q)n−s−1, and 0 < q < 1.

In Lucchetti, Radrizzani, and Munarini (2011) a new family of values
on GN is introduced: the c-values. Every value σN,c is defined first of all
on the base of the unanimity games

σN,ca (uS) =

{
1
sc

if a ∈ S
0 otherwise.

and then extended by linearity on the whole space GN .
In the paper it is proved that, when the parameter a ranges over the

non-negative real numbers, the family σN,ci describes a curve in the inte-
rior of the simplex Σ, containing the Shapley value (obtained by c = 1).
Moreover a similar relation holds also for the Banzhaf value:
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βa(uS) =

{
1

2s−1 if a ∈ S
0 otherwise,

and, in general, for any q-binomial value

φa(uS) =

{
qs−1 if a ∈ S
0 otherwise.

The approach used in Lucchetti, Radrizzani, and Munarini (2011),
motivated by a specific application in molecular biology, raises the fol-
lowing natural question: let α = (α1, . . . , αn) ∈ Rn be a given sequence,
and define a linear value πN,α on GN , acting in the following way on the
class of the unanimity games:

πN,αa (uS) =

{
αs if a ∈ S
0 otherwise.

(2.13)

Then the question is: under which conditions on the coefficients αs the
value πN,α is a (regular) semivalue? A discussion of this topic is Car-
reras, Freixas, and Puente (2003). In next section we provide a sufficient
condition, that, as we shall see, allows creating new specific families of
semivalues. Moreover, it is possible to extend to G the concept of semi-
value just by requiring that an operator π on G is a semivalue provided
πN = π|NG is a semivalue for all n. In this case we can characterize the
conditions under which the sequence {αs}s∈N generates a regular semi-
value.

2.4.1 Generating semivalues

In order to prove our results we need the following result (see Carreras,
Freixas, and Puente (2003) and Lucchetti, Radrizzani, and Munarini
(2011).

Proposition 2.1. Suppose, for each t = 1, . . . , n, positive numbers αt
are given and suppose πN : GN → Rn is a linear value assigning αt
to all players of the coalition T in the unanimity game uT , and zero to
all players not in T , for all coalitions T such that |T | = t. Then πN,α

verifies the following formula:

πN,αa (v) =
∑

S⊆N\{a}

(
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1

)
[v(S∪{a})−v(S)].
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Thus πN,α is characterized by the fact that it is of the form

πN,αa (v) =
∑

S⊆N\{a}

pns [v(S ∪ {a})− v(S)],

where

pns =
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1.

It follows that πN,α is a semivalue provided the coefficient αs fulfill:

1. for any s = 0, . . . , n− 1:
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 ≥ 0;

2.
n−1∑
s=0

(
n− 1

s

) n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = 1.

The second item follows immediately from the following result, proven
in Lucchetti, Radrizzani, and Munarini (2011).

Proposition 2.2. Take, for every n ∈ N, real numbers α1, α2, . . . , αn.
Then

n−1∑
s=0

(
n− 1

s

) n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = α1.

Thus the second condition is fulfilled by requiring α1 = 1 and the
problem becomes to provide sufficient conditions under which the first
issue is verified. To analyze this, we need some preliminaries. We start
with the following definition that can be found in Widder (1946), (p.
108).

Definition 2.10. Let µn be a sequence of real numbers, then the back-
ward difference operator ∆k is defined by

∆0µn = µn ∆kµn = ∆k−1µn+1 −∆k−1µn

for n = 0, 1, 2, . . . , and k = 1, 2, . . . The sequence {µn}∞n=0 is com-
pletely monotonic if its elements are non-negative and

(−1)k∆kµn ≥ 0

for every k, n = 0, 1, 2, . . .
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The backward difference operator can be written also as

∆kµn =
k∑
j=0

(−1)j
(
k

j

)
µn+k−j.

The following result, whose proof can be found for instance in Lorch
and Moser (1963), (p. 171), will be used in detecting regularity of semi-
values.

Proposition 2.3. Let {µk}+∞k=0 be a completely monotonic sequence. Then

(−1)k∆kµn > 0

for every n, k = 0, 1, . . . unless µ1 = µ2 = · · · = µn = . . . , that is the
sequence is constant except at most for the first term.

Now we prove the following Lemma, the key ingredient for the main
result.

Lemma 2.3. Given the value πN,α, with associated vector (pn0 , . . . , p
n
n−1)

the following formula holds, for all s = 0, . . . , n− 1:

(−1)n−s−1∆n−s−1αs+1 = pns .

Proof. Observe that, for all l

(−1)l∆lαm = (−1)l
l∑

j=0

(−1)j
(
l

j

)
αm+l−j = (−1)l

0∑
k=l

(−1)l−k
(

l

l − k

)
αm+k

=
l∑

k=0

(−1)k
(
l

k

)
αm+k.

Since this equation holds for every l ≥ 0 and every m ≥ 1 we can set
l = n− s− 1 and m = s+ 1 to get

(−1)n−s−1∆n−s−1αs+1 =
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = pns .

From the above results we get the following Theorem.

Theorem 2.7. Let {αs}s∈N be a completely monotonic sequence such
that α1 = 1 and let πN,α be the value defined on GN as in Equation
(2.13). Then πN,α is a semivalue.
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2.4.2 Semivalues on G
We now consider the space G of all finite games. This means that G =
∪NGN where N is a finite set of players.

Definition 2.11. A semivalue on G is an operator π on G such that its
restriction to GN is a semivalue for all N .

Let moreover S be the space of the real valued sequences:

S = {(α1, α2, . . . , αs, . . . ) : αs ∈ R ∀s ≥ 1, α1 = 1, αs ≥ 0 ∀s}.

Finally, given a sequence α ∈ S define πα on G in the following way:

πα(v) = πN,α(v)

for every v such that v ∈ GN . Thus, to player i in the game v ∈ GN , the
operator πα assigns:

παa (v) =
∑

S⊆N\{a}

(
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1

)
[v(S∪{a})−v(S)].

Putting together the above results we get the following.

Theorem 2.8. πα is a semivalue on G if and only if α ∈ S is completely
monotonic.

We explicitly notice that if πα is a semivalue on G, then it is defined
for every n ∈ N pn = {pnk}n−1k=0 such that pn is the vector of weighting
coefficients associated to π|NG . The coefficients fulfill the formula

pns =
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1.

With the choice of s = n− 1 the formula above shows that

αn = pnn−1

for all n = 1, 2, . . . . So thanks to the previous theorem we have the
following

Corollary 2.3. πα is a semivalue on G if and only if the sequence {pn+1
n }n=0,1...

is completely monotonic.
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The next result we want to prove deals with semivalues which are not
regular. To prove it, we need a preliminary result.

Proposition 2.4. For all s, n such that s ≤ n− 1, the following formula
hods:

pns = pn+1
s + pn+1

s+1 . (2.14)

Proof. Remembering the formula

pns =
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1

we have that

pn+1
s + pn+1

s+1 =
n−s∑
k=0

(−1)k
(
n− s
k

)
αs+k+1 +

n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+2

= αs+1 +
n−s−1∑
k=1

(−1)k
[(
n− s
k

)
−
(
n− s− 1

k − 1

)]
αs+k+1

=
n−s−1∑
k=1

(−1)k
(
n− s− 1

k

)
αs+k+1 + αs+1

=
n−s−1∑
k=0

(−1)k
(
n− s− 1

k

)
αs+k+1 = pns .

We now provide the formal definition of regular and irregular semi-
values on the space G. Remember that on GN regularity of πα means
that pns > 0 for all s.

Definition 2.12. A semivalue on G is regular iff its restriction to GN is
a regular semivalue for all n. A semivalue which is not regular is called
irregular.

In the next definition we introduce two irregular semivalues, extend-
ing the definitions of marginal and dictatorial values given in Carreras,
Freixas, and Puente (2003).

Definition 2.13. The marginal value µ on G is the value such that its
restriction to GN is described by the vector (0, 0, . . . , 1). The dictatorial
value δ on G is the semivalue such that its restriction to GN is described
by the vector (1, 0, . . . , 0).
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Theorem 2.9. The values µ and δ are semivalues on G. Moreover, let
πα be a irregular semivalue on G. Then, there is q ∈ [0, 1] such that pn

is of the form (1− q, 0, . . . , 0, q), for every n.

Proof. The dictatorial value is generated by the sequence α1 = 1, αn =
0 for all n > 1, the marginal value by the sequence αn = 1, for all n ≥ 1.
Both are completely monotonic sequences. Moreover, by definition a
semivalue on G is irregular if and only if its restriction to some set N has
a vanishing element pns . From Theorem 2.8 we know that α must be a
completely monotonic sequence. On the other hand, as Proposition 2.3
shows, the only case when a monotonic sequence allows for a vanishing
coefficient pns , is when the sequence is constant, with the only possible
exception of the first term (always equal to one in our contest). Thus
α = (1, q, . . . , q, . . . ), for some q ∈ [0, 1]. We claim that pn is of the
form (1 − q, 0, . . . , 0, q) for all n. First of all, remember that for all n it
holds that pnn−1 = αn; thus necessarily the last component of the vector
pn is q. So the result immediately follows for n = 2, remembering that
p20 + p21 = 1. Now it is easy to show the claim by induction, just using
formula (2.14). This ends the proof.

Thus a irregular semivalue assigns, for all n a fixed probability to the
fact that the players act alone and the complement to the fact that they
act all together. As a conclusion, we underline that other semivalues, like
the basic semi indices defined in Carreras, Freixas, and Puente (2003),
do not extend to semivalues on the whole G.

Remark 2.3. The following is a natural question to address: since a
semivalue on G automatically (by definition) generates a semivalue on
GN for all N , then conversely given a semivalue on some fixed set N of
players, can it be extended to a semivalue on G? First of all, as it is easy
to see, irregular semivalues can not be extended, with the exception of
those described by Theorem 2.9. Instead given a regular semivalue on
N , it is possible to extend it on all T such that |T | < |N |; but it is not
always possible to extend it on bigger sets. For instance it is not possible
to extend the semivalue given by the vector p3 = (ε, 1

2
− ε, ε) if ε < 1

6
.

Moreover when a semivalue associate to the vector pn can be extended,
the extension is not unique and there is a family of candidates pn+1,
depending from a parameter. For instance consider the Shapley value
for n = 4, that is p4 = (1

4
, 1
12
, 1
12
, 1
4
). Then we can choose p51 = p52 =

p53 = 1
24

and get p50 = p54 = 5
24

. In general we can choose pnj = 1
3·2n−2 if
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j 6= 0, n− 1 and obtain a regular semivalue, with weighting coefficients
different from the ones of the Shapley value.

2.5 Conclusion

There are two new main results provided in this chapter: the first one
regarding the Shapley value and the Shapley-Shubik index and the sec-
ond one regarding the possibility to define new family of semivalues.
We were able to provide a generic description of the family of semival-
ues, using completely monotonic sequences, thus it could be of future
interest to investigate some of these sequences in order to generate new
semivalues with particular properties.

On the other hand, the main interest of the first result is summarized
in equation (2.4), even if the interest is not the new formula itself, but
its consequences. First of all, this equivalent expression to compute the
Shapley value is useful to deduce (2.3) and constitutes an alternative
proof of the Felsenthal and Machover (1996) result, not requiring the use
of axioms. Secondly, the binary formula we propose provides the clue
for obtaining an extension of the Shapley value to ternary games, (j, 2)-
simple games and multi-choice cooperative games, as we will discuss in
details in chapter 4.



CHAPTER3
Power indices for games with abstention

SIMPLE games can be seen as a model for voting procedures where
players in favour of a proposal form a coalition, while players
outside the coalition are voting against it. This idea can be gener-

alized in order to model other voting procedures in which players have
the possibility of abstaining, too. Games with abstention have been de-
fined with this purpose. The Banzhaf and the Shapley-Shubik power
indices for games with abstention can be used as solution concepts and
to evaluate the power of players in the decision making process.

In this chapter we focus our analysis on the properties of these two
power indices for games with abstention and provide different character-
izations of them. Our approach is to generalize to the set of games with
abstention some of the properties that have been provided in literature to
characterize the corresponding power indices for simple games.

3.1 Games with abstention

A game with abstention is a model of a voting situation in which players
have three different possibilities: voting “yes”, voting “no”, and abstain-
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ing. This is a generalization of the standard model of simple games
in which players can only vote in support of or against the status quo.
Felsenthal and Machover (1997) introduced ternary voting games in or-
der to generalize the model of simple games and include the possibility
of abstention. In particular, chapter 8 in Felsenthal and Machover (1998)
presents a complete discussion on the role of abstention in voting pro-
cedure. After some years, Freixas and Zwicker (2003) introduced (j, k)
games to capture voting procedure in which players can choose among
j levels of support and there are k possible outcomes. Felsenthal and
Machover’s model for games with abstention can actually be seen as a
(3, 2)-game. In our work, we refer to these two approaches to describe
games with abstention, since they seem a natural extension of the classi-
cal cooperative approach.

Given a finite set of players N of cardinality n, in simple games the
set 2N represents the set of all coalitions. Actually any coalition T ∈ 2N

can be seen as a bipartition (T1, T2) in which T1 = T and T2 = N r T .
We can view a coalition T as the set of players supporting a decision
and the coalition N r T as the set of players against it. Analogously,
in the context of games with abstention we consider the set 3N of all
tripartitions. By tripartition we denote any element S = (S1, S2, S3),
where S1, S2, S3 are mutually disjoint subsets of N such that S1 ∪ S2 ∪
S3 = N , and any Sk can be empty. An element S = (S1, S2, S3) ∈
3N describes a voting situation in which the players in Sk are voting at
“level k” of approval. It is supposed that level 1 is the highest, level 2
is the intermediate, and level 3 is the lowest. Hereafter, with the idea of
modelling a voting situation, we will say that players in S1 are voting
“yes”, players in S2 are abstaining, players in S3 are voting “no”.

A partial order ⊆ on the set 3N is defined as follows. If S, T ∈ 3N ,
then S ⊆ T means S1 ⊆ T1 and S2 ⊆ T1 ∪ T2. In other words, a
tripartition S is contained in the tripartition T if players in T are either
voting as in S or increasing their level of support. This means that S can
be transformed into T by shifting one or more players to higher levels of
approval. For instance1 (a, b, c) ⊆ (ab, c, ∅), since the second tripartition
is obtained from the first one when player b changes from abstaining to
voting “yes” and player c switches from voting “no” to abstaining. The
tripartition (∅, ∅, N) is the minimum of the order⊆, while the maximum
is the tripartition (N, ∅, ∅).

1To simplify the notation we omit the braces to denote the sets in a tripartition, for instance the informal
notation (a, b, c) stands for ({a}, {b}, {c}).
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Definition 3.1. A game with abstention or (3,2)-simple game is a pair
(N, v) in whichN is the set of players (or voters) and v : 3N → {0, 1} is
a function that is monotonic, i.e. if S ⊆ T then v(S) ≤ v(T ), and such
that v(∅, ∅, N) = 0 and v(N, ∅, ∅) = 1.

We denote by TN the set of all games with abstention on the finite set
N .

As for simple games, any game v ∈ TN can be described by the set
of winning tripartitions

W(v) = {S ∈ 3N : v(S) = 1}

or by the set of minimal winning tripartitions

Wm(v) = {S ∈ 3N : v(S) = 1 and v(T ) = 0, for any T ⊂ S}.2

Definition 3.2 (Unanimity game). For any tripartition S 6= (∅, ∅, N), the
unanimity game uS is defined as

uS(T ) =

{
1 if S ⊆ T

0 otherwise.

Given two games v, w ∈ TN , we define from them the following
games:

Disjunction: the game v∨w defined as (v∨w)(S) = max{v(S), w(S)}.

Conjunction: the game v∧w defined as (v∧w)(S) = min{v(S), w(S)}.

Let us make some remarks about these operations:

1. W(v ∨ w) =W(v) ∪W(w) andW(v ∧ w) =W(v) ∩W(w);

2. ifWm(v) = {S1, . . . , St} then v = uS1 ∨ · · · ∨ uSt;

3. given two unanimity games uS and uT , then their conjunction is
still a unanimity game and in particular uS ∧ uT = uZ with Z1 =
S1 ∪ T1, Z2 = (S2 ∪ T2) r Z1 and Z3 = N r (Z1 ∪ Z2);

4. if we omit the conditions v(∅, ∅, N) = 0 and v(N, ∅, ∅) = 1 in
Definition 3.1, then TN is a distributive lattice with the operations
∧,∨. The game v ≡ 1 in which all tripartitions are winning is its
supremum; the game v ≡ 0 in which all tripartitions are losing is
its infimum.

2We use S ⊂ T if S ⊆ T and S 6= T .
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3.2 Power indices

As for simple games, power indices for games with abstention can be
defined to evaluate the influence of players in a voting procedure and
generate a ranking among voters.

Definition 3.3. A power index for games with abstention is a function
ϕ : TN → Rn, that assigns to every game v a vector ϕ(v).

We denote with ϕa(v) its ath component, representing the measure of
the power of player a according to ϕ in the voting system described by
v.

We focus our attention on the Banzhaf and the Shapley-Shubik in-
dices that have been the first indices generalized from simple games to
games with abstention (see Felsenthal and Machover (1997), Freixas
(2005a), and Freixas (2005b)). Of course, other indices can be con-
sidered, for instance Freixas (2012) focused on probabilistic indices for
games with abstention

3.2.1 The Banzhaf index for games with abstention

Let us now describe the Banzhaf index for games with abstention as de-
fined in Felsenthal and Machover (1998) and in Freixas (2005a). Before
the definition of the index, we introduce some notation.

Given a tripartition S = (S1, S2, S3) and a player a /∈ S3 we denote
with S↓a the tripartition in which player a decreases his support of one
level

S↓a =

{
(S1 r {a}, S2 ∪ {a}, S3) if a ∈ S1

(S1, S2 r {a}, S3 ∪ {a}) if a ∈ S2.

Of course, there is also the possibility that player a ∈ S1 switches from
supporting a decision to vote against it

S↓↓a = (S1 r {a}, S2, S3 ∪ {a}).

In an analogous way, given S and a player a /∈ S1, we define the tripar-
tition in which a increases the support

S↑a =

{
(S1 ∪ {a}, S2 r {a}, S3) if a ∈ S2

(S1, S2 ∪ {a}, S3 r {a}) if a ∈ S3

and if a ∈ S3

S↑↑a = (S1 ∪ {a}, S2, S3 r {a}).
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Definition 3.4 (Banzhaf index for games with abstention). For any game
v ∈ TN and any player a ∈ N , define ηa(v) as the number of yes-no
swings for player a, that is

ηa(v) = |{S : a ∈ S1 and v(S)− v(S↓↓a) = 1}|.

The function η is the raw Banzhaf index for games with abstention, while
the Banzhaf index for games with abstention is the function β : TN →
Rn defined as

βa(v) =
ηa(v)

3n−1
for any a ∈ N.

The previous definition generalizes the classical one from simple games
to games with abstention, assuming that all tripartitions have the same
probability to form. However, it can be observed that in this context a
more explicit approach is to split the index in two components, as de-
scribed by Freixas and Lucchetti (2016).

Definition 3.5 (Banzhaf two components index). For any game v ∈ TN

and any player a ∈ N , define ηY Aa (v) and ηANa (v) as the number of
yes-abstain and abstain-no swings for player a, that is

ηY Aa (v) = |{S : a ∈ S1 and v(S)− v(S↓a) = 1}|,
ηANa (v) = |{S : a ∈ S2 and v(S)− v(S↓a) = 1}|.

Thus, the YA-Banzhaf index and the AN-Banzhaf index are defined as

βY Aa (v) =
ηY Aa (v)

3n−1
βANa (v) =

ηANa (v)

3n−1
.

Remark 3.1. From the two previous definitions it holds that

η(v) = ηY A(v) + ηAN(v)

and β(v) = βY A(v) + βAN(v).

3.2.2 The Shapley-Shubik index for games with abstention

The Shapley-Shubik power index for games with abstention was intro-
duced in Felsenthal and Machover (1997) using the idea of roll-calls,
as an extension of the bargaining model introduced in Felsenthal and
Machover (1996), that we discussed in subsection 2.3.1. As for sim-
ple games, players are supposed to queue in a random order and vote
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either yes or no, then for games with abstention players have also the
possibility of abstaining. The Shapley-Shubik index is still the expected
probability of a player being pivotal, in the sense of fixing the result of
the voting, under this scheme.

Let us introduce the mathematical notation beyond this model. Let
QN be the space of all permutations of N , and let 3N be the set of all
tripartitions of N . The ternary roll-call space RN is defined as

RN = QN × 3N .

Each roll-call R is given by a queue qR and a tripartition tR, that is
R = (qR, tR) where qR represents the order in which players are vot-
ing and tR represents how each one of them is voting. For instance,
qR(a) = i means that a is the ith to vote and a ∈ tR1 means that a is
voting “yes”. The number of the elements in RN is n!3n.
A player a is said to be pivotal in R for the game v (and we write
piv(R, v)) if after a’s vote the outcome is decided, no matter what the
players after a in qR are going to vote. This means that a is the first
player whose vote fixes the outcome of the voting procedure: either as
winning or losing.

The Shapley-Shubik power index for games with abstention is de-
fined as an analogous to the Shapley-Shubik index for simple games
deduced in Corollary 2.2.

Definition 3.6 (Shapley-Shubik index for games with abstention). For
any v ∈ TN and any player a ∈ N , the Shapley-Shubik index for (3,2)-
simple games is defined as

φa(v) =
|{R ∈ RN : a = piv(R, v)}|

3nn!
. (3.1)

Example 3.1. In Table 3.1 the Shapley-Shubik and the Banzhaf indices
are provided for all the games with abstention (up to isomorphism) on
N = {1, 2}.

For the results we are going to discuss in next sections, we introduce
some notation related to roll-calls. Consider the set of roll-calls RN ;
for any player a ∈ N , we define the following subsets which form a
partition of RN :

Ryes
a = {roll-calls in which player a votes “yes”}
Rabs
a = {roll-calls in which player a abstains}
Rno
a = {roll-calls in which player a votes “no”}
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Wm S-S index Bz index

1 (12, ∅, ∅) ( 12 ,
1
2 ) ( 13 ,

1
3 )

2 (1, 2, ∅) ( 23 ,
1
3 ) ( 23 ,

1
3 )

3 (1, 2, ∅) and (2, 1, ∅) ( 12 ,
1
2 ) ( 23 ,

2
3 )

4 (1, 2, ∅) and (2, ∅, 1) ( 16 ,
5
6 ) ( 13 ,

1
3 )

5 (1, ∅, 2) (1, 0) (1, 0)

6 (1, ∅, 2) and (2, ∅, 1) ( 12 ,
1
2 ) ( 23 ,

2
3 )

7 (1, ∅, 2) and (∅, 12, ∅) ( 56 ,
1
6 ) (1, 23 )

8 (1, ∅, 2) and (∅, 2, 1) ( 13 ,
2
3 ) ( 13 ,

2
3 )

9 (∅, 12, ∅) ( 12 ,
1
2 ) ( 23 ,

2
3 )

10 (∅, 1, 2) (1, 0) (1, 0)

11 (∅, 1, 2) and (∅, 2, 1) ( 12 ,
1
2 ) ( 23 ,

2
3 )

12 (1, ∅, 2) and (2, ∅, 1) and (∅, 12, ∅) ( 12 ,
1
2 ) ( 23 ,

2
3 )

Table 3.1: Shapley-Shubik and Banzhaf indices for (3, 2)-simple games with two play-
ers.

Thus,
RN = Ryes

a ∪Rabs
a ∪Rno

a

and |Ryes
a | = |Rabs

a | = |Rno
a | = n!3n−1

Given a player a and a roll-call R = (qR, tR) /∈ Rno
a , we define the

roll-call R↓a in which players are in the same order as in R, all players
in N r {a} vote as in R, while a decreases the support of one level

R↓a = (qR, tR↓a).

Note that if R ∈ Ryes
a , then R↓a ∈ Rabs

a ; if R ∈ Rabs
a , then R↓a ∈ Rno

a .
We also define the roll-call in which a decreases the support of two

levels, changing the vote from “yes” to “no”: if R ∈ Ryes
a , then R↓↓a ∈

Rno
a is

R↓↓a = (qR, tR↓↓a)

For a roll-call R ∈ Ryes
a we analogously define

R↑a = (qR, tR↑a)

and if R ∈ Rno
a

R↑↑a = (qR, tR↑↑a).
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Note that, for instance, if R ∈ Ryes
a we have:

(R↓a)↑a = R

which shows that there is a one-to-one correspondence between Ryes
a

andRabs
a with these changes. In addition, from

(R↓↓a)↑↑a = R

the one-to-one correspondence of the three setsRyes
a ,Rabs

a ,Rno
a follows.

We also introduce the following sets, for any player a ∈ N and any
game v:

Ya,v ={R ∈ Ryes
a : a = piv(R, v) }

Aa,v ={R ∈ Rabs
a : a = piv(R, v) }

Na,v ={R ∈ Rno
a : a = piv(R, v) }.

and the following subsets of Aa,v and Na,v:

AYa,v = {R ∈ Aa,v : R↑a ∈ Ya,v} AY a,v = {R ∈ Aa,v : R↑a /∈ Ya,v}
NYa,v ={R ∈ Na,v : R↑↑a ∈ Ya,v} NY a,v ={R ∈ Na,v : R↑↑a /∈ Ya,v}.

Thanks to the previous notation, the Shapley-Shubik index as defined in
(3.1) can be written as

φa(v) =
1

3nn!
[|Ya,v|+ |Aa,v|+ |Na,v|]

or as

φa(v) =
1

3nn!

[
|Ya,v|+ |AYa,v|+ |AY a,v|+ |NYa,v|+ |NY a,v|

]
.

3.3 Axioms for power indices

Let us present some of the axioms for games with abstention, analo-
gous to the classical axioms that we presented in section 2.2. These
axioms are an extension of the axioms for simple games to the family of
games with abstention and to (j, k) games, see Freixas (2005a), Freixas
(2005b), and Freixas and Lucchetti (2016).

Axiom 3.1 (Transfer). An index ϕ satisfies transfer if for any v, w ∈ TN

ϕ(v) + ϕ(w) = ϕ(v ∧ w) + ϕ(v ∨ w).
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Axiom 3.2 (Anonymity). An index ϕ satisfies anonymity if for any v ∈
TN , any permutation π of N and any a ∈ N

ϕa(πv) = ϕπ(a)(v)

where (πv)(S) = v(π(S)).

In a game with abstention players have three different ways of chang-
ing their vote: when they move from voting yes to abstainining or to
voting no and when they vote changes from abstention to no. For this
reason, we have different types of null players.

Definition 3.7 (Null players). Let v ∈ TN , then a voter a ∈ N is called

• YN-null player if v(S) = v(S↓↓a) for any tripartition S such that
a ∈ S1;

• YA-null player if v(S) = v(S↓a) for any tripartition S such that
a ∈ S1;

• AN-null player if v(S) = v(S↓a) for any tripartition S such that
a ∈ S2.

Note that a is a YN-null player if and only if a is both YA-null and
AN-null, and if and only if a ∈ S3 for any S ∈ Wm(v).

Axiom 3.3 (X-null player). An index ϕ satisfies the X-null player prop-
erty if a is a X-null player in a game v, then

ϕa(v) = 0,

with X=YN, YA, AN .

Axiom 3.4 (Efficiency). An index ϕ satisfies efficiency if for any v ∈ TN∑
a∈N

ϕa(v) = 1.

Axiom 3.5 (Banzhaf total power). An index ϕ satisfies the Banzhaf total
power property if for any v ∈ TN∑

a∈N

ϕa(v) =
1

3n−1

n∑
i=1

∑
S∈3N
a∈S1

[v(S)− v(S↓↓a)].
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In the following lemmas we show which of these properties are satis-
fied by the Shapley-Shubik index for games with abstention and by the
Banzhaf index for games with abstention.

Lemma 3.1. The Shapley-Shubik index for (3, 2)-simple games satisfies
the anonymity, the null player, the transfer and the efficiency axioms.

Proof. Anonymity Let π be a permutation of N . Given a roll-call R =
(qR, tR), define πR = (π(qR), π(tR)). This means that if π(a) =
b then b votes in πR in the same position and in the same level of
approval of a in R.
If a is pivotal in the game v for the roll-call R, then π(a) is pivotal
in the game πv for the roll-call π(R). Then

φa(v) =
|{R : a = piv(R, v)}|

3nn!

=
|{πR : πa = piv(πR, πv)}|

3nn!
= φπ(a)(πv).

So the Shapley-Shubik index for (3, 2)-simple games satisfies the
anonymity axiom.

Null player If a is a null player in a game v, there is not a roll-call R
such that a = piv(R, v). Then φa(v) = 0.

Transfer Let v and w be two games with abstention, then consider the
following sets of roll-calls:

A = {R : a is pivotal in v and in w}
B = {R : a is pivotal in v but not in w}
C = {R : a is pivotal in w but not in v}.

Note that A and B form a partition of the set of roll-calls for which
a is pivotal in v, while A and C form a partition of the set of roll-
calls for which a is pivotal in w. Note also that A is the set of
roll-calls for which a is pivotal in the game v ∧ w, while A,B,C
form a partition of the set of roll-calls in which a is pivotal in the
game v ∨ w. For any a ∈ N we have

φa(v) =
|A|+ |B|

3nn!
φa(w) =

|A|+ |C|
3nn!

φa(v ∨ w) =
|A|+ |B|+ |C|

3nn!
φa(v ∧ w) =

|A|
3nn!

.
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Thus φ(v ∨w) + φ(v ∧w) = φ(v) + φ(w) and the Shapley-Shubik
index satisfies the transfer axiom.

Efficiency In every roll-call there is one and only one player that is piv-
otal, from the definition of the Shapley-Shubik index in (3.1), we
get that it satisfies efficiency.

Remark 3.2. As it is well-known, these axioms for simple games are
independent and they fully characterize the Shapley-Shubik index for
simple games. This is not true for (3, 2)-simple games. For instance,
let φ̄ be the standard Shapley-Shubik index for simple games. Then
consider the index ϕ for (3, 2)-simple games defined as ϕ(v) = φ̄(V )
where V is the simple game associated to the (3, 2)-simple game v and
defined as

V (S) = 1 ⇐⇒ v(S,N r S, ∅) = 1.

Then ϕ satisfies the anonymity, null player, transfer and efficiency ax-
ioms for (3, 2)-simple games since the Shapley-Shubik index satisfies
them on simple games. However, ϕ is different from φ, for instance

ϕ(u(a,b,∅)) = (1, 0)

while

φ(u(a,b,∅)) =

(
2

3
,
1

3

)
.

Lemma 3.2. The Banzhaf index for (3, 2)-simple games satisfies the
anonymity, null player, transfer and Banzhaf total power axioms.

Proof. Anonymity The Banzhaf index for games with abstention sat-
isfies anonymity: actually if a ∈ N and a is yes-no swinger for
tripartition S, then it is clear that πa is a yes-no swinger for πS.

Null player If a is a null player in the game v, then v(S) = v(S↓↓a) for
all S ∈ 3N such that a ∈ S1. So βa(v) = 0.

Transfer Let v and w be two games with abstention and V and W be
the set of their winning tripartitions, then consider the following
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sets:

A = {S ∈ 3N : a ∈ S1, S ∈ V rW,S↓↓a /∈ V }
B = {S ∈ 3N : a ∈ S1, S ∈ W r V, S↓↓a /∈ W}

C = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a ∈ W r V }
D = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a ∈ V rW}
E = {S ∈ 3N : a ∈ S1, S ∈ V ∩W,S↓↓a /∈ V ∩W}.

Note that the sets A,C and E form a partition for the set of yes-no
swings of a in v; B,D and E form a partition for the set of yes-no
swings of a in w. All the five sets form the set of yes-no swings for
player a in v∨w, while E is the set of swings for player a in v∧w.
So the Banzhaf index, which counts the number of yes-no swings,
satisfies the transfer axiom.

Banzhaf total power This axiom is trivially satisfied from the defini-
tion of the Banzhaf index.

Remark 3.3. Again, anonymity, null player, transfer and Banzhaf total
power are independent axioms on simple games, but the Banzhaf index
for (3, 2)-games is not uniquely determined using only these four. For
instance, let β̄ be the standard Banzhaf index for simple games, consider
the index ϕ for (3, 2)-simple games defined as ϕ(v) = β̄(V ) where V is
the simple game associated to the game v and defined as

V (S) = 1 ⇐⇒ v(S,N r S, ∅) = 1.

Then ϕ satisfies the anonymity, null player, transfer and Banzhaf total
power axioms since the Banzhaf index satisfies them on simple games,
but it is different from β, for instance

ϕ(u(a,b,∅)) = (1, 0)

while

β(u(a,b,∅)) =

(
2

3
,
1

3

)
.
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3.4 Classical axiomatizations

3.4.1 A new axiom for the Shapley-Shubik index for games with
abstention

As we have seen in remark 3.2 transfer, anonymity, null player and effi-
ciency are not enough to uniquely determine the Shapley-Shubik power
index for unanimity games. As we shall see, the addition of a new axiom
is sufficient for the characterization. As we discussed in section 2.4, the
behaviour of a value on the family of unanimity games is significant in
order to characterize it. Following this idea, we introduce a new axiom
that describe the behaviour of a power index on unanimity games, and
in particular evaluate how the power of a player changes when he moves
from voting “yes” to abstaining.

This axiom, together with null player, anonymity and efficiency al-
lows to obtain the value for players in every unanimity game with a
recursive procedure. Once the value is defined over unanimity games, it
can be extended to all games with the transfer axiom and thus, it would
be uniquely determined for every player in every game.

Yes-abstain loss on unanimity game An index ψ satisfies the new ax-
iom if for any tripartition S ∈ 3N such that S1 6= ∅ it holds:

ψa(uS)− ψa(uS↓a) = ψa(uS↓a)− f(s1, s2) (3.2)

for any a ∈ S1, where3

f(s1, s2) =
2s2

3s1+s2−1
1

(s1 + s2)
.

Note that g(s1, s2) = 2s2
3s1+s2−1 is the probability, under uniform distri-

bution over tripartitions, of having a winning tripartition in the game uS
with a voting “yes”. On the other hand f(s1, s2) = g(s1, s2)

1
s1+s2

is the
same probability divided by the number of active players (players that
are not null) in the game uS .

Thus, the meaning of the yes-abstain loss on unanimity game is that
the gain player a has voting yes instead of abstaining is equal to the
power of player a if he is in the second level of approval minus the
probability of having an active player in a winning tripartition. Equation

3We use the notation si = |Si| for i = 1, 2, 3.
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(3.2) can be stated also as

ψa(uS↓a) =
ψa(uS) + f(s1, s2)

2

showing that, in a unanimity game uS , the power of player a in case he
abstains is an average between the power of a when he votes “yes” and
the probability of being an active player in a winning tripartition in the
game uS .

First of all, we have to prove that the Shapley-Shubik index for (3, 2)-
simple games satisfies the Yes-abstain loss on unanimity game. From
now on, we fix a tripartition S with a ∈ S1 and consider the game uS .
We want to compute φa(uS) and then compare it with φa(uS↓a).

Lemma 3.3. Let uS be a unanimity game, then player a ∈ S1 is pivotal
in the roll-call R ∈ Rno

a if and only if a is pivotal in the roll-call R↑a ∈
Rabs
a .

Proof. A roll-call is winning in the game uS if and only if all players
belonging to S1 are voting “yes” and all players belonging to S2 are not
voting “no”.
If a ∈ S1 is pivotal by voting “no” in the roll-call R, then the outcome of
R is negative. The roll-call R↓a represents the same situation of R with
the only difference that player a abstains instead of voting no. But a is
still pivotal abstaining and fixing as negative the outcome of the roll-call.
Analogously, if player a is pivotal by abstaining, in the same situation a
is also pivotal by voting “no”.

Remark. Lemma 3.3 implies that |Aa,uS | = |Na,uS |, but also |AYa,uS | =
|NYa,uS | and |AY a,uS | = |NY a,uS |, because of the one-to-one corre-
spondence among each pair of the setsRyes

a ,Rabs
a , andRno

a .

Lemma 3.4. Let uS be a unanimity game, if player a ∈ S1 is pivotal in
the roll-call R ∈ Ryes

a , then a is pivotal in the roll-call R↓a ∈ Rabs
a and

in the roll-call R↓↓a ∈ Rno
a

Proof. A roll-call is winning in the game uS if and only if all players
belonging to S1 are voting “yes” and all players belonging to S2 are not
voting “no”.
If a ∈ S1 is pivotal in the roll-call R by voting “yes”, this means that
after a’s vote the outcome is positive and all the other players in S1 and
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S2 voted before a. This also means that after a only some of the players
belonging to S3 are going to vote, but they are null players and can not
be pivotal.
In the roll-call R, a is the last player who has the power to change the
outcome of the game, thus a is pivotal also in R↓↓a voting “no” and in
R↓a abstaining.

The converse is not true. For instance consider the tripartition S =
(a, b, c) and the game uS . In any roll-call in which a is the first to vote,
he is pivotal abstaining or voting “no”. On the other hand if a votes
“yes” as first player, then b is pivotal: if she votes “no” the outcome is
negative, while if she abstains or votes “yes” the outcome is positive.

Remark. Note that by definition |AYa,uS | ≤ |Ya,uS | and |NYa,uS | ≤
|Ya,uS |. Lemma 3.4 implies that |Ya,uS | ≤ |AYa,uS | and |Ya,uS | ≤ |NYa,uS |.
Thanks to these considerations and Lemma 3.3 we have |Ya,uS | = |AYa,uS | =
|NYa,uS |.

Hence, from the previous remarks, the Shapley-Shubik index for games
with abstention on the unanimity game uS of player a ∈ S1 is

φa(uS) =
1

3nn!

(
|Ya,uS |+ |Aa,uS |+ |Na,uS |

)
=

1

3nn!

(
|Ya,uS |+ |AYa,uS |+ |AY a,uS |+ |NYa,uS |+ |NY a,uS |

)
=

1

3nn!

(
3|Ya,uS |+ 2|NY a,uS |

)
(3.3)

It is possible to calculate the value |Ya,uS | thanks to the following lemma.

Lemma 3.5. A player a ∈ S1 is pivotal in the game uS for the roll-call
R ∈ Ryes

a if and only if all players in (S1 r {a}) ∪ S2 are before him in
qR, they vote “yes” if they belong to S1, and they vote “yes” or abstain
if they belong to S2.
In particular

|Ya,uS | = 2s23s3
(s1 + s2 + s3)!

s1 + s2
.

Proof. A roll-call is winning in the game uS if and only if all players
belonging to S1 are voting “yes” and all players belonging to S2 are not
voting “no”. Thus if a player a ∈ S1 is pivotal in the roll-call R ∈ Ryes

a ,
he is the last player of the set S1∪S2 to vote and he is the last player that
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has the possibility to influence the outcome and fix it as positive. All the
players before him were not pivotal, so they voted “yes” if they belong
to S1, they abstained or voted “yes” if they belong to S2.

players in S1 and in S2
not pivotal

and j players in S3

s3 − j players in S3
can vote anything(

s3
j

)
(s1 + s2 + j − 1)!2s23j (s3 − j)!3s3−j

(s1 + s2 + j)th

a

Figure 3.1: Roll-calls in which a ∈ S1 is pivotal by voting “yes”

To prove the second part of the thesis, we have to count the number
of roll-calls R ∈ Ya,uS . Actually, if j = 0, . . . , s3, player a can vote j
positions after that all the players in S1 r {a} ∪ S2 voted. This means
that j players belonging to S3 vote before a and s3− j players belonging
to S3 vote after a. There are

(
s3
j

)
different ways to choose the j players,

then (s1 + s2 + j − 1)!2s23j possibilities for the players before a and
(s3 − j)!3s3−j for the players after a. Hence,

|Ya,uS | =
s3∑
j=0

(
s3
j

)
(s1 + s2 + j − 1)!2s23j(s3 − j)!3s3−j

=2s23s3s3!

s3∑
j=0

(s1 + s2 + j − 1)!

j!

=2s23s3
(s1 + s2 + s3)!

s1 + s2
.

We can now discuss how the power of a player changes in a una-
nimity game when he decreases the support of one level. We evaluate
the Shapley-Shubik index for (3, 2)-simple games of a player a ∈ S1 in
the unanimity game uS↓a, generated by the tripartition (S1 r {a}, S2 ∪
{a}, S3).
Firstly note that if a is pivotal by abstaining in uS↓a, then in the same sit-
uation a is pivotal also by voting “yes”; this means that |AY a,uS↓a| = 0.
Then observe that if R /∈ AY a,uS and a is pivotal in R for uS , then a is



53

pivotal in R also for uS↓a. This means that

Ya,uS↓a = Ya,uS

AYa,uS↓a = AYa,uS AY a,uS↓a = ∅
NYa,uS↓a = NYa,uS NY a,uS↓a = NY a,uS .

Hence,

φa(uS↓a) =
1

3nn!

(
3|Ya,uS |+ |NY a,uS |

)
. (3.4)

Finally, to establish how the index changes when a player switches
from voting “yes” to abstaining in a unanimity game, we compare equa-
tions (3.3) and (3.4) obtain the following:

φa(uS)− φa(uS↓a) =
1

3nn!
|NY a,uS |. (3.5)

Unfortunately, in general, there is not a clear explicit formula to compute
|NY a,uS |. However, we can make the following comparison with |Ya,uS |
that has been explicitly computed in Lemma 3.5:

2φa(uS↓a)− φa(uS) =
3

3nn!
|Ya,uS |,

that can also be written as

φa(uS)− φa(uS↓a) = φa(uS↓a)−
3

3nn!
|Ya,uS |.

We can finally prove that the Yes-abstain loss on unanimity game is
needed for the characterization of the Shapley-Shubik power index.

Proposition 3.1. The Shapley-Shubik index satisfies the yes-abstain loss
on unanimity game.

Proof. We have seen that

φa(uS)− φa(uS↓a) = φa(uS↓a)−
3

3nn!
|Ya,uS |

and, thanks to Lemma 3.5

|Ya,uS | = 2s23s3
(s1 + s2 + s3)!

s1 + s2
.

Since n = s1 + s2 + s3 we obtain the thesis.
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As a consequence of the yes-abstain loss on unanimity game, it is
possible to derive boundaries for the ratio between φa(uS) and φa(uS↓a)
with a ∈ S1.

Proposition 3.2. Consider the unanimity game uS with S = (S1, S2, S3) 6=
(∅, ∅, N) and a ∈ S1. Then

1 ≤ φa(uS)

φa(uS↓a)
< 2.

Moreover, φa(uS) = φa(uS↓a) if and only if S = (a, ∅, N r {a}).

Proof. From the yes-abstain loss on unanimity game (3.2), we get that
2φa(uS↓a)− φa(uS) > 0 and thus

φa(uS)

φa(uS↓a)
< 2.

Note that the inequality is strict because f(s1, s2) is always positive.
On the other hand from equation (3.5) we have that

φa(uS)− φa(uS↓a) =
1

3nn!
|NY a,uS |.

Since |NY a,uS | ≥ 0, this proves that

φa(uS)

φa(uS↓a)
≥ 1.

To prove the second part of the thesis, note that φa(uS) = φa(uS↓a) if
and only if |NY a,uS | = 0, this means that every time a is pivotal voting
“no”, then he is also pivotal voting “yes”. This happens if and only if a
is the only not-null player in the game, so S = (a, ∅, N r {a}).

We can now state the main theorem to show the uniquely characteri-
zation of the Shapley-Shubik power index for games with abstention.

Theorem 3.1 (Shapley-Shubik index for (3, 2)-simple games). Let ψ :
TN → Rn be an index for (3, 2)-simple games, thenψ satisfies anonymity,
null player, transfer, efficiency and the yes-abstain loss on unanimity
game if and only ifψ is the Shapley-Shubik index for (3, 2)-simple games.
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Proof. In Lemma 3.1 and in Proposition 3.1 it is proved that the Shapley-
Shubik index for (3, 2)-simple games satisfies all the axioms, we just
need to prove that only one index satisfies all of them.
So, let ψ be an index that satisfies the hypothesis. We will prove that it
is uniquely determined on a game v, using induction on the number of
minimal winning tripartitions of v.

First, suppose that |Wm(v)| = 1. Then v = uS for some tripartition
S ∈ 3N and S 6= (∅, ∅, N). We again use induction on the number of
elements in S2.

|S2| = 0 Then S = (S1, ∅, N r S1) for some S1 ⊆ N . All players in
S3 = N r S1 are null players, so if c ∈ S3: ψc(uS) = 0, on the
other hand all players in S1 have the same role, thus, thanks to the
anonymity and efficiency axioms we have ψa(uS) = 1

s1
, for any

a ∈ S1.

|S2| = t+ 1 Suppose now that the thesis is true for any tripartition T
such that |T2| ≤ t, we want to prove it for a tripartition S such that
|S2| = t + 1. Given the tripartition S = (S1, S2, S3), there exist a
player p ∈ S2 and a tripartition T = (T1, T2, T3) such that T↓p = S
and |T2| = t. Since ψ satisfies the yes-abstain loss on unanimity
game:

ψp(uS) = ψp(uT↓p) =
1

2
[ψp(uT ) + f(t1, t2)]

then the induction hypothesis and anonymity imply that ψb(uS) is
uniquely determined for all players b ∈ S2.
Thanks to anonymity and efficiency:

s1ψa(uS) + s2ψb(uS) = 1,

so we can determine ψa(uS) for a ∈ S1. All players in S3 are null,
so ψc(uS) = 0 if c ∈ S3.
Thus, ψ coincides with the Shapley-Shubik power index for (3, 2)-
simple games for any unanimity game uS .

Now, suppose that the thesis holds for any game v such that |Wm(v)| ≤
k − 1; we need to prove it for v such that |Wm(v)| = k.
If Wm(v) = {S1, . . . , Sk}, then v = uS1 ∨ uS2 ∨ · · · ∨ uSk , since ψ
satisfies the transfer axiom:

ψ(v) = ψ(uS1) + ψ(uS2 ∨ · · · ∨ uSk)− ψ(uS1 ∧ uS2 ∧ · · · ∧ uSk).
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The conjunction of unanimity games is still a unanimity game, so all
games in the right-hand side of the previous equation have a number of
minimal winning tripartitions smaller than |Wm(v)|. Using the induc-
tion hypothesis, ψ coincides with the Shapley-Shubik index for all of
them and this ends the proof.

Now, that we proved that the Shapley-Shubik power index for games
with abstention is uniquely characterized by the five axioms we can show
how these axioms allow to compute the index for every unanimity game
by means of a recursive procedure.

Consider the unanimity game uS with the set S3 of people voting no.
Then consider the game uT 0 where T 0 = (∅, N r S3, S3). For every
player a ∈ S3 thanks to null player we have φa(uT 0) = 0, for every
a ∈ N r S3 thanks to anonymity and efficiency it holds

φa(uT ) =
1

n− s3
.

Then consider the game uT 1 where T 1 = (p,Nr (S3∪p), S3)) for some
player p ∈ S1. Thanks to (3.2) we can compute φp(uT 1), then for any
a 6= p ∈ N r S3, φa(uT 1) can be computed using efficiency and players
in S3 are still null players.

It is clear that this process can be reiterated until we reach the games
uS and establish the value for all players in S1 and S2 using the yes-
abstain loss on unanimity game and efficiency.

3.4.2 Independence of the axioms

We now prove the independence of the five axioms used in Theorem 3.1
and show that all of them are necessary to uniquely characterize the
Shapley-Shubik power index for (3, 2)-simple games. We are going to
give examples of power indices for games with abstention that satisfy
only four of them, as summarized in Table 3.2.

Not anonymity Consider the index ψ1 defined on unanimity games
as follows.

• If s3 = n− 2 then for any two players a and b such that a < b,

– if S = (ab, ∅, N r {a, b}), then

ψ1
a(uS) =

1

2
+ ε, ψ1

b (uS) =
1

2
− ε
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Anonymity Null Transfer Efficiency Yes-abstain loss on unanimity game

ψ1 - X X X X
ψ2 X - X X X
ψ3 X X - X X
ψ4 X X X - X
ϕ X X X X -

Table 3.2: Independence of the axioms that characterize the Shapley-Shubik index for
games with abstention

– if S = (a, b,N r {a, b}), then

ψ1
a(uS) =

2

3
+
ε

2
, ψ1

b (uS) =
1

3
− ε

2

– if S = (b, a,N r {a, b}), then

ψ1
a(uS) =

1

3
+
ε

2
, ψ1

b (uS) =
2

3
− ε

2

– if S = (∅, ab,N r {a, b}), then

ψ1
a(uS) =

1

2
+
ε

4
, ψ1

b (uS) =
1

2
− ε

4

where ε > 0;

• if s3 6= n − 2, ψ1(uS) = φ(uS) where φ is the Shapley-Shubik
index for (3, 2)-simple games.

Then extend ψ1 to TN using transfer.
It is clear that this index satisfies null player and efficiency. It also

satisfies the yes-abstain loss on unanimity game, because it coincides
with the Shapley-Shubik index for (3, 2)-simple games when s3 6= n−2
and if s3 = n− 2 the yes-abstain loss on unanimity game is satisfied by
the definition of ψ1, as we can check:

2ψ1
a(u(b,a,Nr{a,b}))− ψ1

a(uab,∅,Nr{a,b}) =
1

6
= f(2, 0)

2ψ1
b (u(a,b,Nr{a,b}))− ψ1

b (uab,∅,Nr{a,b}) =
1

6
= f(2, 0)

2ψ1
a(u(∅,ab,Nr{a,b}))− ψ1

a(ua,b,Nr{a,b}) =
1

3
= f(1, 1)

2ψ1
b (u(∅,ab,Nr{a,b}))− ψ1

b (ub,a,Nr{a,b}) =
1

3
= f(1, 1)
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However, ψ1 does not satisfy anonymity, because for instance

ψ1
a(u(ab,∅,Nr{a,b}))− ψ1

b (u(ab,∅,Nr{a,b})) = 2ε 6= 0.

Not null player Consider the index ψ2 defined on unanimity games
as follows.

• If S = (∅, a,N r {a}) for some a ∈ N , then

ψ2
a(uS) = 1− ε ψ2

b (uS) =
ε

n− 1

for any b 6= a, with ε > 0;

• if S = (a, ∅, N r {a}) for some a ∈ N , then

ψ2
a(uS) = 1− 2ε ψ2

b (uS) =
2ε

n− 1

for any b 6= a, with ε > 0;

• for any other S ∈ 3N , ψ2(uS) = φ(uS) where φ is the Shapley-
Shubik index for (3, 2)-simple games.

Then extend ψ2 to TN using transfer.
It is clear that this index satisfies anonymity and efficiency. It also sat-
isfies the yes-abstain loss on unanimity game since it coincides with the
Shapley-Shubik index on unanimity games such that s3 6= n − 1 and if
s3 = n− 1 and a ∈ S1

2ψ2(uS↓a)− ψ2(uS) = 1 = f(1, 0).

However, ψ2 does not satisfy null player: any b 6= a is a null player in
the game u(∅,a,Nr{a}) but ψ2

b (u(∅,a,Nr{a})) = ε
n−1 6= 0.

Not transfer Consider the index ψ3 defined as ψ3(uS) = φ(uS) for
any unanimity game uS and for any other game v as

ψ3
a(v) =

{
0 if a is a null player
1
k

otherwise,

where k = |{p ∈ N : p is not a null player in v}|.
The index ψ3 satisfies the null player, the anonymity, and the efficiency
axioms; it also satisfies the yes-abstain loss on unanimity game, since it
coincides with the Shapley-Shubik index on unanimity games. However,
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from its definition, it is clear that ψ3(v) does not satisfy the transfer
axiom.

Not efficiency Consider the index ψ4 defined on unanimity game as

ψ4
a(uS) =


1 if a ∈ S1

1
2

+ 2s2−1

3s1+s2−1(s1+s2)
if a ∈ S2

0 if a ∈ S3

and extended to TN using transfer. Then ψ4 satisfies anonymity, null
player and transfer. It also satisfies yes-abstain loss on unanimity game
since for any tripartition S with a ∈ S1:

2ψ4
a(uS↓a) = 2

[1
2

+
2s2−1

3s1+s2−1(s1 + s2)

]
= 1 +

2s2

3s1+s2−1(s1 + s2)

= ψ4
a(uS) + f(s1, s2)

However, ψ4 does not satisfy efficiency, for instance ψ4(u(N,∅,∅)) =
(1, . . . , 1) so that

∑
a∈N ψ

4(u(N,∅,∅)) = n 6= 1.

Not yes-abstain loss on unanimity game As we explained in re-
mark 3.2, the index ϕ, that is Shapley-Shubik index for simple games
computed on the simple games associated to the game with abstention,
satisfies null player, anonymity, transfer, and efficiency, but does not sat-
isfy the yes-abstain loss on unanimity game.

3.4.3 A similar approach for the Banzhaf index for games with ab-
stention

We want to give a characterization of the Banzhaf index for games with
abstention analogous to the one of the Shapley-Shubik given in the pre-
vious section. In section 3.3 we proved that this index satisfies trans-
fer, anonymity, null player and the Banzhaf total power; however in the
context of games with abstention these four axioms are not enough to
uniquely characterize the index.

Let us start with a preliminary lemma that shows how simple is to
compute the Banzhaf index for (3, 2)-simple games on unanimity games.
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Lemma 3.6. Let S 6= (∅, ∅, N) be a tripartition of N , then the Banzhaf
index for (3, 2)-simple games on the unanimity games uS is

βp(uS) =


2s2

3s1+s2−1 if p ∈ S1

2s2−1

3s1+s2−1 if p ∈ S2

0 if p ∈ S3.

Proof. We have to compute ηa(uS) for any player a ∈ N . Assume that
a ∈ S1. Remember uS(T ) = 1 if and only if S1 ⊆ T1 and S2 ⊆ T1 ∪ T2.
Note that if a ∈ S1 ∩T1, the condition uS(T ) = 1 implies uS(T↓↓a) = 0.
Moreover, if a ∈ S1, the conditions a ∈ T1 and uS(T ) = 1 are equivalent
to S ⊆ T . Hence,

ηa(uS) = |{T ∈ 3N : a ∈ T1, uS(T )− uS(T↓↓a) = 1}|
= |{T ∈ 3N : a ∈ T1, uS(T ) = 1}|
= |{T ∈ 3N : S ⊆ T}| = 2s23s3 .

Assume now a ∈ S2. Analogously, it holds

ηa(uS) = |{T ∈ 3N : a ∈ T1 and S ⊆ T}| = 2s2−13s3 .

Finally, suppose a ∈ S3. Players in S3 are null, so βa(uS) = 0.
Since the Banzhaf index for (3, 2)-simple games is given by

βa(uS) =
ηa(uS)

3n−1

and n = s1 + s2 + s3, we have the thesis.

Remark. Note that, in particular if a ∈ S1 and b ∈ S2, it holds

βa(uS) = 2βb(uS).

In the Dubey and Shapley (1979) characterization of the Banzhaf
power index for simple games, the Banzhaf total power axiom is intro-
duced in order to replace efficiency, that is used for the Shapley-Shubik
power index. However, the Banzhaf total power axiom is not a convinc-
ing axiom; some subsequent axiomatic characterization of the Banzhaf
power index avoided this axiom, see for instance Laruelle and Valen-
ciano (2001), Lehrer (1988), and Albizuri (2001).
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We want to follow the classical approach and use the same set of
axioms to characterize the Shapley-Shubik and the Banzhaf indices for
(3, 2)-simple games. However, we will replace the Banzhaf total power
with a weaker condition that refers only to unanimity games.

Total power on unanimity games For any tripartition S 6= (∅, ∅, N)∑
a∈N

ψa(uS) = (2s1 + s2)
2s2−1

3s1+s2−1

Lemma 3.7. The Banzhaf index for (3, 2)-simple games satisfies the to-
tal power on unanimity games axiom.

Proof. Consider a unanimity game uS , then thanks to Lemma 3.6 and
anonymity we have∑

p∈N

βp(uS) =
∑
a∈S1

βa(uS) +
∑
b∈S2

βb(uS)

= s1βa(uS) + s2βb(uS)

= 2s1βb(uS) + s2βb(uS)

= (2s1 + s2)
2s2−1

3s1+s2−1

with a ∈ S1 and b ∈ S2.

As we have previously done for the Shapley-Shubik index on (3, 2)-
simple games, it is necessary to add another axiom in order to uniquely
characterize the Banzhaf index on (3, 2)-simple games. The new axiom
defined in equation (3.2), describes what a player is losing when passing
from voting “yes” to abstaining; we have an analogous of the yes-abstain
loss on unanimity game for the Banzhaf value that is the following:

Yes-abstain null lost Let uS be a unanimity game and a ∈ S1 then

ψa(uS) = ψa(uS↓a).

The following proposition is the analogous for the Banzhaf index
for (3, 2)-simple games of Proposition 3.1 and Proposition 3.2 for the
Shapley-Shubik index for (3, 2)-simple games.
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Proposition 3.3. Consider the unanimity game uS with S = (S1, S2, S3) 6=
(∅, ∅, N) and a ∈ S1. Then the Banzhaf index for (3, 2)-simple games
satisfies the yes-abstain null lost axiom and

βa(uS) = βa(uS↓a).

Proof. The thesis follows from applying Lemma 3.6 to the game uS and
uS↓a.

We can now prove the characterization of the Banzhaf index for (3, 2)-
simple games following the spirit of Dubey and Shapley (1979).

Theorem 3.2. Let ψ : TN → Rn be an index for (3, 2)-simple games,
then ψ satisfies anonymity, null player, transfer, total power on unanimity
games and yes-abstain null lost if and only if ψ is the Banzhaf index for
(3, 2)-simple games.

Proof. We already proved that the Banzhaf index for (3, 2)-simple games
satisfies all these properties, so we just need to prove that if ψ is a power
index that satisfies the hypothesis, then it is uniquely determined. We use
induction on the number of minimal winning tripartitions of the game v.

Suppose that |Wm(v)| = 1, then v = uS for some tripartition S. So
we start proving that ψ coincides with the Banzhaf index on unanimity
games.

We again use induction, this time on the cardinality of S2.

|S2| = 0. Then S = (S1, ∅, N r S1) for some S1 ⊆ N . Then players
in S3 = N r S1 are null, so ψc(uS) = 0 for all c ∈ S3. Players
in S1 are symmetric and thanks to anonymity and total power on
unanimity game, if a ∈ S1

βa(u(S1,∅,NrS1)) =
1

s1

2s12
−1

3s1−1
=

1

3s1−1
.

So, ψ is uniquely determined on unanimity games with s2 = 0 and
it coincides with the Banzhaf index for (3, 2)-simple games.

|S2| = t+ 1. Suppose now that the thesis is true for any tripartition T
such that |T2| ≤ t, we want to prove this for a tripartition S such
that |S2| = t + 1. Given a tripartition S = (S1, S2, S3) such that
|S2| = t + 1, there exist a player p ∈ S2 and a tripartition T =
(T1, T2, T3) such that T↓p = S and T2 = t. Since ψ satisfies yes-
abstain null lost:

ψp(uS) = ψp(uT↓p) = ψp(uT ),
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then the induction hypothesis and anonymity imply that ψb(uS) is
uniquely determined for all players b ∈ S2.
Using again anonymity and the total power on unanimity game:

s1ψa(us) + s2ψb(uS) = (2s1 + s2)
2s2−1

3s1+s2−1

with a ∈ S1 and b ∈ S2. So, we can determine ψa(uS) for a ∈ S1.
Thanks to null player we have that ψc(uS) = 0 if c ∈ S3. Thus, ψ
coincides with the Banzhaf index for (3, 2)-simple games for any
unanimity game uS .

We suppose that the thesis holds for any game v such that |Wm(v)| ≤
k − 1, and prove it for v such that |Wm(v)| = k.
If Wm(v) = {S1, . . . , Sk}, then v = uS1 ∨ uS2 ∨ · · · ∨ uSk , since ψ
satisfies the transfer axiom:

ψ(v) = ψ(uS1) + ψ(us2 ∨ · · · ∨ uSk)− ψ(uS1 ∧ uS2 ∧ · · · ∧ uSk)

The conjunction of unanimity games is still a unanimity game, so all
games on the right-hand side of the previous equation have a number of
minimal winning tripartitions smaller than |Wm(v)|. Using the induc-
tion hypothesis, ψ coincides with the Banzhaf index for (3, 2)-simple
games for all of them and this ends the proof.

Remark. In the characterization given by the previous theorem the yes-
abstain null lost can be replaced by the following property:

ψa(uS) = 2ψb(uS)

for any a ∈ S1 and any b ∈ S2.

3.4.4 Independence of the axioms

The five axioms for (3, 2)-simple games used in Theorem 3.2 are inde-
pendent. We are going to give examples of power indices on games with
abstention that satisfy only four of them, as summarized in Table 3.3.

Not anonymity Consider the index γ1 defined on unanimity games
as follows.

• If s3 = n− 2 then for any two players a and b such that a < b,
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Anonymity Null Transfer Total power Yes-abstain

γ1 - X X X X
γ2 X - X X X
γ3 X X - X X
γ4 X X X - X
γ5 X X X X -

Table 3.3: Independence of the axioms to characterize the Banzhaf index for (3, 2)-
simple games

– if S = (ab, ∅, N r {a, b}), then

γ1a(uS) =
1

3
+ ε, γ1b (uS) =

1

3
− ε;

– if S = (a, b,N r {a, b}), then

γ1a(uS) =
2

3
+ ε, γ1b (uS) =

1

3
− ε;

– if S = (b, a,N r {a, b}), then

γ1a(uS) =
1

3
+ ε, γ1b (uS) =

2

3
− ε;

– if S = (∅, ab,N r {a, b}), then

γ1a(uS) =
2

3
+ ε, γ1b (uS) =

2

3
− ε;

where ε > 0.

• If s3 6= n − 2, γ1(uS) = β(uS) where β is the Banzhaf index for
(3, 2)-simple games.

Then extend γ1 to TN using transfer.
This index satisfies null player, total power on unanimity games and yes-
abstain null lost. However, γ1 does not satisfy anonymity, because for
instance

γ1a(u(ab,∅,Nr{a,b})) 6= γ1b (u(ab,∅,Nr{a,b})).

Not null player Consider the index γ2 defined on unanimity games
as follows.
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• If S = (∅, a,N r {a}) or S = (a, ∅, N r {a}) for some a ∈ N ,
then

γ2a(uS) = 1− ε γ2b (uS) =
ε

n− 1

for any b 6= a and with ε > 0;

• for any other S ∈ 3N , γ2(uS) = β(uS) where β is the Banzhaf
index for (3, 2)-simple games.

Then extend γ2 to TN using transfer.
This index satisfies anonymity, total power on unanimity games and yes-
abstain null lost. However, γ2 does not satisfy null player: any b 6= a is
a null player in the game u(∅,a,Nr{a}) but γ2b (u(∅,a,Nr{a})) = ε

n−1 6= 0.

Not transfer Consider the index γ3 defined as γ3(uS) = β(uS) for
any unanimity game uS and for any other game v

γ3a(v) =

{
0 if a is a null player
1
k

otherwise

where k = |{p ∈ N : p is not a null player in v}|.
The index γ3 satisfies the null player and the anonymity axioms. It also
satisfies the total power on unanimity games and the yes-abstain null
power, since it coincides with the Banzhaf index on unanimity games.
From the definition of γ3(v) it is clear that this index does not satisfy the
transfer axiom.

Not total power on unanimity games Consider the index γ4 defined
on unanimity game as

γ4a(uS) =

{
1

s1+s2
if a ∈ S1 ∪ S2

0 if a ∈ S3

and extended to TN using transfer.
The index γ4 satisfies anonymity, null player, and yes-abstain null lost.
However, γ4 satisfies efficiency instead of total power on unanimity
game.

Not yes-abstain null lost Consider the index γ5 defined on unanimity
game as

γ5a(uS) =

{
2s1+s2
s1+s2

2s2−1

3s1+s2−1 if a ∈ S1 ∪ S2

0 if a ∈ S3
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and extended TN using transfer.
The index γ4 satisfies anonymity, null player, and total power on una-
nimity games. However, it does not satisfy yes-abstain null lost:

γ5a(uS) =
2s1 + s2
s1 + s2

2s2−1

3s1+s2−1
6= 2s1 + s2 − 1

s1 + s2

2s2

3s1+s2−1
= γ5a(uS↓a).

3.5 Another approach for the Banzhaf index for games with
abstention

The previous axiomatization for the Banzhaf index is unsatisfactory from
different reasons. Even if it is nice to have similar results for both
the Banzhaf and the Shapley-Shubik power indices, it is clear that the
Banzhaf total power, or the Total power on unanimity games, are tauto-
logical axioms not so many interesting from an a priori analysis of the
power of players. Moreover, in the context of games with abstention
the Banzhaf index can be decomposed in two different indices that can
better capture the influence of players in the game.

For these reasons we follow the approach of Laruelle and Valenciano
(2001) for simple games and merge it with the work of Freixas and Luc-
chetti (2016) for games with abstention to provide a new characterization
of the Banzhaf index for games with abstention.

3.5.1 A new set of axioms

In this section we introduce the new axioms to characterize the Banzhaf
index for games with abstention and its two components. We also dis-
cuss their connections with the generalization to the context of games
with abstention of the classical axioms introduced by Dubey and Shap-
ley (1979).

In our axiomatization we describe how a power index changes when
we remove a minimal winning tripartition from a game, the crucial ele-
ment will be the game v∗S defined in the following way.

Definition 3.8. Given a game v 6= u(N,∅,∅) ∈ TN and S ∈ Wm(v), the
game v∗S is such thatW(v∗S) =W(v) r S.

From the previous Definition we have

v∗S(T ) =

{
v(T ) if T 6= S

0 if T = S.
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Some of the axioms we are going to use will propose comparisons among
the value of a power index on the game v and on the game v∗S .

We are going to use Axiom 3.2 and Axiom 3.3, but we replace trans-
fer and the tautological Banzhaf total power with two other axioms that
are a generalization to the family of games with abstention of the two
axioms introduced by Laruelle and Valenciano (2001) for simple games:
transfer* and average balance.

Axiom 3.6 (Transfer*). For any v, w 6= u(N,∅,∅) ∈ TN and any minimal
winning tripartition S for both games (i.e. S ∈ Wm(v) ∩Wm(w)) then

ϕi(v)− ϕi(v∗S) = ϕi(w)− ϕi(w∗S)

for all i ∈ N .

The transfer axiom is a way to translate linearity from the set of coop-
erative games to the set of simple games, but it is not intuitive to see its
interpretation as the exchange of power from the games v and w and the
disjunction and conjunction games. On the other hand, the previous ax-
iom is very clear: when we remove a minimal winning tripartition from
two different games, players’ power should change in the same way. Ac-
tually, Laruelle and Valenciano (2001) proved that transfer and transfer*
are equivalent axioms and this result holds also in our context.

Proposition 3.4. Transfer and transfer* are equivalent.

Proof. Let ϕ be a power index that satisfies transfer. Take v, w ∈ TN

and S ∈ Wm(v)∩Wm(w). Then v = v∗S ∨ uS and w = w∗S ∨ uS , where
uS is the unanimity game generated by the tripartition S. Using transfer
it holds that:

ϕ(v) = ϕ(v∗S ∨ uS) = ϕ(v∗S) + ϕ(uS)− ϕ(v∗S ∧ uS)

ϕ(w) = ϕ(w∗S ∨ uS) = ϕ(w∗S) + ϕ(uS)− ϕ(w∗S ∧ uS).

Since v∗S ∧ uS = (uS)∗S and w ∗S ∧uS = (uS)∗S , ϕ satisfies transfer*.
On the other hand, suppose ϕ satisfies transfer*. ThenW(v ∧ w) =

W(v) ∩W(w) andW(v ∨ w) =W(v) ∪W(w), so it holds that

W(v) rW(v ∨ w) =W(v ∧ w) rW(w).

This means that reaching w from v ∧ w takes dropping one-by-one
exactly the same winning coalitions as reaching v ∨w from v. By trans-
fer* the effect on the index of deleting a minimal winning coalition is
the same in any game; consequently transfer holds:
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ϕ(v)− ϕ(v ∨ w) = ϕ(v ∧ w)− ϕ(w).

Now we introduce some conditions to replace the Banzhaf total power
axiom: the average X-balance (where X stands for yes-no, yes-abstain
and abstain-no). These axioms translate in the context of games with
abstention the average gain-loss balance defined by Laruelle and Valen-
ciano (2001). The average gain-loss balance axiom is the one differen-
tiating the Banzhaf index from the Shapley-Shubik index and from any
other semivalue (for an overview on semivalues we refer to Monderer
and Samet (2002)). In the context of games with abstention, this axiom
is formed by two different conditions. For instance, if we consider the
average yes-no balance there is one condition for players voting “yes”
or “no” and one for players abstaining; the idea is that when we com-
pare the games v and v∗S , players in S1 lose power as players in S3 gain
power. Instead players in S2 gain and lose the same power in changing
game from v to v∗S because they are crucial in both games but in two op-
posite ways: moving from “abstain” to “yes” and moving from “abstain”
to “no”.

Axiom 3.7 (Average yes-no balance). For any v 6= u(N,∅,∅) ∈ TN and
any S = (S1, S2, S3) ∈ Wm(v)

s3
∑
i∈S1

[
ϕi(v)− ϕi(v∗S)

]
= s1

∑
i∈S3

[
ϕi(v

∗
S)− ϕi(v)

]
and

ϕi(v) = ϕi(v
∗
S) ∀i ∈ S2.

In order to characterize the two components of the Banzhaf index, we
also need the following specific axioms.

Axiom 3.8 (Average yes-abstain balance). For any v 6= u(N,∅,∅) ∈ TN

and any S = (S1, S2, S3) ∈ Wm(v)

s2
∑
i∈S1

[
ϕi(v)− ϕi(v∗S)

]
= s1

∑
i∈S2

[
ϕi(v

∗
S)− ϕi(v)

]
and

ϕi(v) = ϕi(v
∗
S) ∀i ∈ S3.
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Axiom 3.9 (Average abstain-no balance). For any v 6= u(N,∅,∅) ∈ TN

and any S = (S1, S2, S3) ∈ Wm(v)

s3
∑
i∈S2

[
ϕi(v)− ϕi(v∗S)

]
= s2

∑
i∈S3

[
ϕi(v

∗
S)− ϕi(v)

]
and

ϕi(v) = ϕi(v
∗
S) ∀i ∈ S1.

The last axiom we introduce states that all players voting in the same
level in S lose or gain the same power when moving from v to v∗S .

Axiom 3.10 (Symmetric gain-loss). For any v ∈ TN and any S ∈
Wm(v), for any i, j ∈ S1 (or i, j ∈ S2, or i, j ∈ S3)

ϕi(v)− ϕi(v∗S) = ϕj(v)− ϕj(v∗S).

The previous axiom describes a symmetry among players, but in the
characterization provided by Laruelle and Valenciano (2001) it is used
as a substitute for transfer. Actually symmetric gain-loss and transfer
are independent, but if anonymity is assumed then there is a correlation
with symmetric gain-loss and transfer*, as the next proposition and the
following counter-example show.

Proposition 3.5. Anonymity and transfer* imply symmetric gain-loss.

Proof. Let v ∈ TN , S ∈ Wm(v), i, j ∈ S1 and π be a transposition
between i and j. Then π(S) = S and S ∈ Wm(v) ∩Wm(πv).
Note that (πv)∗S = π(v∗π(S)) = π(v∗S). Using anonymity and transfer*

ϕi(v)− ϕi(v∗S) = ϕi(πv)− ϕi((πv)∗S) = ϕi(πv)− ϕi(π(v∗S))

= ϕπ(i)(v)− ϕπ(i)(v∗S) = ϕj(v)− ϕj(v∗S).

If i, j ∈ S2 or i, j ∈ S3, the proofs are analogous.

It is possible to find an index that satisfies anonymity and symmetric
gain-loss but does not satisfy transfer*.

Example 3.2. Let N = {a, b} and the games v, w defined by

Wm(v) = {(∅, ab, ∅), (a, ∅, b)}
Wm(w) = {(∅, ab, ∅)}
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If we take S = (∅, ab, ∅) then we haveWm(v∗S) = {(a, ∅, b), (b, a, ∅)};
Wm(w∗S) = {(a, b, ∅), (b, a, ∅)}.
Let ϕ be the index defined as

ϕ(v) = (1, 0.6) ϕ(v∗S) = (0.7, 0.3)

ϕ(w) = (0.5, 0.5) ϕ(w∗S)= (0.3, 0.3)

extended by anonymity to all games that are symmetric to these four and
defined as zero for all the other games.
Then ϕ satisfies symmetric gain-loss (S is the only tripartition for which
there are two players belonging to the same subset). But ϕ does not
satisfy transfer*: if we consider S ∈ Wm(v) ∩ Wm(w) then ϕa(v) −
ϕa(v

∗
S) = 0.3 6= ϕa(w)− ϕa(w∗S) = 0.2.

3.5.2 Characterization of the Banzhaf index

We can now state and prove the main result with the characterization of
the (raw) Banzhaf index for games with abstention and its two compo-
nents. In the characterization of the index there are two different steps:
the existence of a function satisfying the axioms and then the unique-
ness of that function, up to a scalar factor. The following lemma and its
corollary will be used in both part of the proof, they provide a measure
of the difference between the power of players in v and in v∗S , when we
consider the raw Banzhaf index for games with abstention or one of its
two components.

Lemma 3.8. Let v 6= u(N,∅,∅) ∈ TN and S = (S1, S2, S3) ∈ Wm(v),
then

ηY Ai (v)− ηY Ai (v∗S) =


+1 if i ∈ S1

−1 if i ∈ S2

0 if i ∈ S3

and

ηANi (v)− ηANi (v∗S) =


0 if i ∈ S1

+1 if i ∈ S2

−1 if i ∈ S3.

Proof. The games v and v∗S are identical, except for the value of the
tripartition S; so all players will have the same number of swings except
the one concerning S. In particular
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• if i ∈ S1, then i is crucial in v when moving from S to S↓i but
he is not in v∗S because both S and S↓i are losing tripartitions, thus
ηY Ai (v) = ηY Ai (v∗S) + 1 and ηANi (v) = ηANi (v∗S);

• if i ∈ S3, then i is crucial in v∗S when moving from S to S↑i, but he
is not in v, thus ηANi (v) = ηANi (v∗S)− 1 and ηY Ai (v) = ηY Ai (v∗S);

• if i ∈ S2, then he is a Y A crucial player in v∗S when moving from S
to S↑i, but he is not crucial in v; conversely if i moves down from
S to S↓i he is a crucial player in v and not in v∗S . So ηY Ai (v) =
ηY Ai (v∗S)− 1 and ηANi (v) = ηANi (v∗S) + 1.

From the previous lemma and the definition of the raw Banzhaf index
for games with abstention, we immediately have the following.

Corollary 3.1. Let v 6= u(N,∅,∅) ∈ TN and S = (S1, S2, S3) ∈ Wm(v),
then

ηi(v)− ηi(v∗S) =


+1 if i ∈ S1

0 if i ∈ S2

−1 if i ∈ S3.

We can now state and prove our main result regarding the characteri-
zation of the (raw) Banzhaf index for games with abstention.

Theorem 3.3. Let ϕ be a value on the class of (3, 2)-games. Then ϕ sat-
isfies anonymity, YN-null player, transfer* and average yes-no balance
if and only if ϕ = αη for some real number α > 0.

Proof. (⇐) If ϕ = αη, then using Corollary 3.1 and the definition of η,
it is trivial to check that ϕ satisfies all the listed properties.

(⇒) Let ϕ be a value that satisfies the four properties. Note that
thanks to Proposition 3.5, ϕ satisfies also symmetric gain-loss.
Define α := ϕi(u(N,∅,∅)) for any player i. Thanks to anonymity α is well-
defined. We will prove that for any v ∈ TN , ϕ(v) = αη(v), proceeding
by induction on the number of winning tripartitions in v.

If |W(v)| = 1 then v = u(N,∅,∅). Anonymity implies ϕi(u(N,∅,∅)) =
ϕj(u(N,∅,∅)) for any i, j ∈ N , moreover ηi(u(N,∅,∅)) = 1 and the thesis
follows from the choice of α.

Suppose now that the thesis is true for any gamew such that |W(w)| <
t and let us prove it for a game v with |W(v)| = t. We consider two
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different situations depending on the number of minimal winning tripar-
titions in v.

If |Wm(v)| = 1 then v = uS for some tripartition S. Since ϕ satisfies
average yes-no balance and symmetric gain-loss we can write

ϕi(uS)− ϕi((uS)∗S) = ϕj((uS)∗S)− ϕj(uS) ∀i ∈ S1, j ∈ S3 (3.6)

but ϕj(uS) = 0 because j ∈ S3 and ϕ satisfies YN-null player. Thanks
to the induction hypothesis and Corollary 3.1, for any i ∈ S1 and j ∈ S3:

ϕi(uS) = ϕj((uS)∗S) + ϕi((uS)∗S)

= αηj((uS)∗S) + αηi((uS)∗S)

= α[ηj(uS) + 1 + ηi(uS)− 1]

= αηi(uS)

since ηj(uS) = 0.
If i ∈ S2 thanks to average yes-no balance, the induction hypothe-

sis and Corollary 3.1 we have ϕi(uS) = ϕi((uS)∗S) = αηi((uS)∗S) =
αηi(uS). If i ∈ S3 then the thesis is trivial thanks to the YN-null player
property.

So far, we proved that ϕ(v) = αη(v) for any v such that Wm(v) =
1. Now, if |Wm(v)| > 1 there are in v at least two minimal winning
tripartitions S and T . Note that if we remove two minimal winning
tripartitions from a game the result does not depend on the order in which
we remove them, i.e. (v∗S)∗T = (v∗T )∗S . To simplify the notation, we use
v∗S,T to denote this game. We also have that S ∈ Wm(v) ∩Wm(v∗T ) and
thanks to transfer* it holds

ϕi(v)− ϕi(v∗S) = ϕi(v
∗
T )− ϕi((v∗T,S)

for any i ∈ N .
Then using the induction hypothesis and Corollary Corollary 3.1, if

i ∈ S1 we have

ϕi(v) = ϕi(v
∗
S) + ϕi(v

∗
T )− ϕi(v∗T,S)

= α[ηi(v
∗
S) + ηi(v

∗
T )− ηi(v∗T,S)]

= α[ηi(v
∗
S) + 1]

= αηi(v).

Analogously if i ∈ S2 and i ∈ S3 we can prove that ϕi(v) = αηi(v) for
any v ∈ TN .
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In the previous theorem we proved that, up to a scalar factor α, there
is a unique function that satisfies anonymity, transfer*, YN-null player
and yes-no average balance. For instance, if α = 1 the value is the raw
Banzhaf index η, while if α = 1

3n−1 we get the Banzhaf index for games
with abstention.

In the following theorem we show that the two components of the
Banzhaf index for games with abstention can be analogously character-
ized.

Theorem 3.4. Let ϕ be a value on the class of (3, 2)−games. Then ϕ
satisfies

1. anonymity, YA-null player, transfer* and average yes-abstain bal-
ance if and only if ϕ = αηY A for some real number α > 0;

2. anonymity, AN-null player, transfer* and average abstain-no bal-
ance if and only if ϕ = αηAN for some real number α > 0.

Proof. 1. (⇒) If ϕ = αηY A, then using Corollary 3.1 and the def-
inition of ηY A, it is trivial to check that ϕ satisfies all the listed
properties.
(⇐) The second part of the proof is very similar to the proof of The-
orem 3.3: we choose α = ϕi(u(N,∅,∅)) then proceed by induction
on the number of winning tripartitions. YN-null player and yes-
no average balance are replaced by YA-null player and yes-abstain
average balance. The correspondent of Equation (3.6) is

ϕi(uS)− ϕi((uS)∗S) = ϕj((uS)∗S)− ϕj(uS) ∀i ∈ S1, j ∈ S2.

From that, following the same steps as in the proof of Theorem 3.3
and using Lemma 3.8 we get the thesis.

2. (⇒) If ϕ = αηAN , then using Corollary 3.1 and the definition of
ηAN , it is trivial to check that ϕ satisfies all the listed properties.
(⇐) This proof is also very similar to the proof of Theorem 3.3:
we we choose α = ϕi(u(N,∅,∅)), proceed by induction and replace
YN-null player and yes-no average balance with AN-null player
and abstain-no average balance. In this case, the correspondent of
Equation (3.6) is

ϕi(uS)− ϕi((uS)∗S) = ϕj((uS)∗S)− ϕj(uS) ∀i ∈ S2, j ∈ S3.
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From that, following the same steps as in the proof of Theorem 3.3
and using Lemma 3.8 we get the thesis.

Remark 3.4. The previous theorems and Definition 3.4 imply that a
value ϕ that satisfies anonymity, YN-null player, transfer* and yes-no
average balance can be decomposed as the sum of two function ϕ1,
which satisfies, anonymity, transfer*, YA-null player, yes-abstain bal-
ance and ϕ2, which satisfies, anonymity, transfer*, AN-null player and
abstain-no balance.

Note that, in general, the opposite is not true: the sum of two func-
tions ϕ1 and ϕ2, as before, satisfies anonymity, transfer* and YN-null
player but does not satisfy yes-no balance. For instance, take ϕ1 = ηY A

and ϕ2 = βAN , then using Lemma 3.8 it is easy to see that ϕ1 +ϕ2 does
not satisfy yes-no balance, actually there is not α > 0 such that αη is
equal to the sum ηY A + βAN .

Let us make some concluding remarks and comparison with our work
and the work of Laruelle and Valenciano (2001) for simple games to
stress the difference among the classical model and games with absten-
tion. Laurelle and Valenciano characterized the Banzhaf index on the
space of super additive games, using the equivalent for simple games
of the axioms we defined in this chapter. However, in our main theo-
rem we use transfer*, the restatement of the transfer axiom, instead of
symmetric gain-loss, which is used by Laruelle and Valenciano (2001).
This is because we were looking for a more general result and wanted
to characterize the index on the whole family of (3,2)-simple games not
only on super-additive games. Super-additivity for simple games means
that it is not possible to have a winning coalition S such that also N rS
is winning. This condition in particular implies that any two winning
coalitions have at least one player in common. It is not clear how to
translate such a condition in the context of tripartition games: what is
the complement set of a tripartition? What is the interpretation of super-
additivity for a game with abstention? Is it meaningful to study just that
class of games? All these questions are still open and could be further
investigated.
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3.6 Conclusion

In this chapter we gave a characterization of the two main power in-
dices extended from simple games to simple games with abstention: the
Banzhaf and the Shapley-Shubik power indices. Firstly, we followed the
classical approach using a generalized version of the transfer, null player,
symmetric, efficiency and total power axioms. Since these axioms are
not sufficient, we added other axioms regarding the behaviour of a power
index on unanimity games in order to uniquely characterize the indices.
However, the interpretation of these new axioms is not clear and their
meaning is not transparent as one would like them to be. It may be in-
teresting for future works to develop new studies about the properties of
these indices in order to increase their use.

We started this new development following the work in Laruelle and
Valenciano (2001) to give a characterization of the Banzhaf index for
games with abstention. Of course, it would be interesting to provide
another axiomatization also for the Shapley-Shubik index for games with
abstention. However, apparently, there is not e a theorem analogous to
Theorem 3.3 for the Shapley-Shubik index for games with abstention
because it was not possible to use the same set of axioms used for the
Banzhaf index. In particular it was not possible to find a relation for
the Shapley-Shubik index for games with abstention analogous of the
ones stated in Corollary 3.1 and in Lemma 3.8 for the Banzhaf index for
games with abstention. The main difficulty is that there is not an explicit
formula to compute the Shapley-Shubik index for games with abstention
that can be used to compare the power of players in a game v and in the
modified game v∗S .

Note that the yes-abstain loss on unanimity game we introduced, to-
gether with the null-player axiom, anonymity and efficiency, allows to
compute the Shapley-Shubik index for (3,2)-simple games on unanimity
games using a recursive formula. This is an improvement with respect
to using the definition of roll-calls and pivotal players. However, in lit-
erature there is still not an explicit formula, even for unanimity games,
to directly compute the Shapley-Shubik index for (3,2)-simple games.
We provide such formula in the following chapter following the ideas
developed in chapter 2 for simple games. This new formula will be
deduced as a special case of a more general result for multichoice co-
operative games and it will provide a somehow explicit way to compute
the Shapley-Shubik index for games with abstention. However it will
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not solve the problem of having a result equivalent to Lemma 3.8 that
provides an effective comparison of the power of players in a game v
and in the modified game v∗S .



CHAPTER4
A value for multichoice cooperative

games

COALITIONAL games with transferable utility describe a situation
in which players are supposed to form coalitions to cooperate
and reach a common goal. This classical model has been gen-

eralized by several authors to describe situations in which players can
have different levels of participation in the cooperation (or vote among
different alternatives).

In this chapter we discuss and compare different approaches to this
problem, and then define a value for multichoice games. The value
we are proposing is deduced from the Shapley-Shubik index for (j, 2)-
games. We provide an explicit formula to compute this index and show
that such formula can be generalized to define a value on the family of
multichoice cooperative games.
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4.1 Multichoice games

In chapter 3 we presented the model of games with abstention to model
voting situation in which players can vote yes, no or abstain. Games with
abstention can be seen as (3, 2)-games, since players have three alterna-
tives and there are two possible outputs (winning or losing). This model
can be generalized to (j, k) games, introduced by Freixas and Zwicker
(2003), in which players vote choosing among j (ordered) different al-
ternatives and there are k possible outcomes. If the outcomes are not a
fixed number of elements, but the result is a real number reflecting the
value that a j-partition can obtain, we have a multichoice game, as de-
fined in Hsiao and Raghavan (1993). In this section we present these two
models.

The following notation is similar to the one introduced in section 3.1
for games with abstention. N is the finite set of players or voters with
cardinality n. A j-partition of the set N is a collection of j mutually
disjoint subsets of N , S1, . . . , Sj , such that S1 ∪ · · · ∪ Sj = N , note that
any Sl can be empty. We also use sl or |Sl|to denote the cardinality of a
subset Sl. We denote with JN the set of all j-partitions on N .

A j-partition describes a division of players among the j different
alternatives, or levels of support to a specific activity, or levels of voting
support to a given proposal. Thus, players in Sl are taking the action
of working at the lth level and players in Sj are not doing anything.
In a voting context, players in S1 are assumed to vote for the highest
level of approval, players in S2 are voting for the second highest level of
approval, and so on until players in Sj who are assumed to vote for the
lowest level of approval.

It is possible to define a partial order ⊆ on the set JN . If S, T ∈ JN ,
then S ⊆ T means Sl ⊆ ∪li=1Ti for any l = 1, . . . , j. In other words, a
j-partition S is contained in a j-partition T if players in T are working
or voting in the same or in a higher level than in S. We use S ⊂ T if
S ⊆ T and S 6= T . The j-partition (∅, . . . , ∅, N) is the minimum of the
order ⊆, while the maximum is the j-partition (N, ∅, . . . , ∅).

Voting situation in which players have more than two input alterna-
tives can be described as a (j, 2)-simple game: voters can vote for j
different levels to approve or reject a resolution.

Definition 4.1. Let N be a finite set and JN be the set of all j-partitions
on N ; a (j, 2)-simple game is a function v : JN → {0, 1} such that
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• it is monotonic: if S ⊆ T then v(S) ≤ v(T );

• v(∅, . . . , ∅, N) = 0 and v(N, ∅, . . . , ∅) = 1.

We denote with SJ N the space of all (j, 2)-simple games on the finite
set N .

Note that simple games are (2,2)-simple games, while when voters
have three ordered alternatives we have (3, 2)-simple games or ternary
voting games as defined by Felsenthal and Machover (1997), when the
middle level is abstention, as we discussed in chapter 3. In a (j, 2)-
simple game, a j-partition S is winning if v(S) = 1, and it is losing
otherwise.

The family of (j, 2)-simple games is a subclass of the family of (j, k)
games introduced by Freixas and Zwicker (2003).

Definition 4.2. Let N be a finite set and JN be the set of all j-partitions
on N ; let w1, w2, . . . , wk be k objects with a strict linear ordering w1 �
w2 � · · · � wk. Then a (j, k)-simple game is a function v : JN →
{w1, w2, . . . , wk} that is monotonic, i.e., for any S, T ∈ JN , such that
S ⊆ T , then v(S) ≤ v(T ).

Given a (j, k)-simple game, it is possible to add a numeric evaluation
α : {w1, w2, . . . , wk} → Rk that assigns to each output a real number,
we write α(wi) = αi, and that preserves the order, that is αi > αi+1. It
is standard to normalize by taking αk = 0

A (j, k)-simple game with a numeric evaluation α can be seen as a
special subclass of multichoice games.

Definition 4.3. Let N be a finite set and JN be the set of all j-partitions
on N ; a multichoice cooperative game is a function v : JN → R such
that v(∅, . . . , ∅, N) = 0.

A multichoice game is nondrecreasing or monotonic, if for any j-
partitions S, T , such that S ⊆ T then v(S) ≤ v(T ).

We denote with J N the space of all multichoice cooperative games
with j ordered alternatives on the finite set N

Ternary games that we described in chapter 3 were defined by Felsen-
thal and Machover (1997). The more general family of multichoice
games was introduced by Hsiao and Raghavan (1993) to describe coop-
erative games in which players have more than one way of acting within
a coalition. Actually Hsiao and Raghavan used the vector notation in-
stead of the notation with partitions that we are using here. It is easy to
see that both languages describe the same object.
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A classical cooperative game is a function v : 2N → R such that
v(∅) = 0. On the other hand, the power set 2N can be identified with
{0, 1}n and any coalition S is associated to the vector x(S) = (x1, . . . , xn)
where

xi =

{
1 if i ∈ S
0 otherwise.

Thus, a cooperative game can be seen also as a function v : {0, 1}n → R
and any coalition as a binary vector in Rn. In an analogous way we can
associate to a finite set of j actions a vector in {0, 1, . . . , j − 1}n. In
particular, Hsiao and Raghavan (1993) use the following elements:

- σ0, σ1, . . . , σj−1 denote j actions, where σ0 is the action of doing noth-
ing;

- β = {0, 1, . . . , j − 1} is a vector representing the actions;

- x ∈ βn is a vector in which xa = l if and only if player a takes action
σl;

- then a mult-ichoice cooperative game is given by the set of actions and
by the characteristic function v : βn → R such that v(0) = 0.

Of course, there is a correspondence among the elements in βn and in a
j-partition of N . In our notation, given a vector x ∈ βn, the associated
j-partition S is such that

a ∈ Sl ⇐⇒ xa = j − l.

Another difference with the seminal work of Hsiao and Raghavan
(1993) is that they also consider a function that associates to every ac-
tion a weight in order to discriminate among actions. In our model,
we assume that the effort and the consequences of each action taken by
players is already captured by the value function v, so weights are not
necessary and all the information they would provide are unified by the
value of the function for any j-partition.

4.2 The roll-call model

In this section we recall the model of roll-calls in order to define the
Shapley-Shubik index. This model was introduced by Felsenthal and
Machover (1996) for simple games and then extended in Felsenthal and
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Machover (1997) to voting games with abstention and in Freixas (2005b)
to (j, k) games.

Given the finite set N , let Q be the space of all permutations of N .
Then the j-roll-call space RJ is defined as

RJ = Q× JN .

Each roll-call R ∈ RJ is given by a pair (qR, jR) where qR is a bijec-
tion from N to {1, 2, . . . , n} and jR is a j-partition of N , i.e. jR =
(jR1, jR2, . . . , jRj). Thus, qR induces a total order on N that we call
the queue of players in the roll-call R, qR(a) = i means that player a
is voting in the ith position. On the other hand, jR represents how each
player is voting in the roll-call R: if a ∈ jRl, then player a votes in the
lth level of approval. In other words, a roll-call describes a permutation
of players in which every player can vote in any of the j possible levels
of support. It is easy to see that the number of elements in RJ is n!jn.

Before dealing with the general case, let us focus again on (j, 2)-
simple games, i.e. games in which the image of the function v is {0, 1}.
These games can be seen as a generalized model for voting situations in
which there are winning and losing j-partitions: according to how each
voter votes and according to the role of each voter in the game. Then a
proposal can be approved or rejected. Voting games with abstention are
a subclass of this family of games.

First of all, we say that a roll-callR is positive (or thatR has a positive
outcome) if v(jR) = 1, and that R is negative if v(jR) = 0. The
interpretation is straightforward, a roll-call is positive if the result of the
voting process is 1 and the bill in discussion is approved, otherwise it is
negative and the bill is rejected.

A player a is said to be pivotal in R for the game v, we write a =
piv(R, v), if after a’s vote the outcome is decided, no matter what the
players after a are going to vote. This means that a is the first player
in the queue of R for which the following holds. For any other roll-
call R′ such that qR′ = qR and jR′(x) = jR(x) for any x such that
qR(x) ≤ qR(a), then R is positive if and only if R′ is positive. We
say that a is positively pivotal if the roll-call has a positive outcome and
negatively pivotal if the outcome of the roll-call is negative. This means
that if a is positively pivotal, then after a’s vote the outcome is fixed and
it will be positive even in the extreme case in which all the players after
a are voting in the last level of approval (i.e. all players after a in the
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queue qR belongs to jRj). Analogously, if a is negatively pivotal, then
the outcome is fixed and it will be negative even in the extreme case that
all voters after a are voting in the first level (i.e. they belong to jR1).

The Shapley-Shubik index for (j, 2)-simple games is defined as the
probability of each player of being pivotal in the space of roll-calls under
the discrete uniform distribution, see Felsenthal and Machover (1997)
and Freixas (2005b).

Definition 4.4. For any v ∈ SJ N and any player a ∈ N , the Shapley-
Shubik index for (j,2)-simple games is defined as

φa(v) =
|{R ∈ RJ : a = piv(R, v)}|

jnn!
. (4.1)

Unfortunately, the previous definition it is not useful from a practical
computational point of view. Note also that this definition can not be
easily extended to define the Shapley value for multichoice cooperative
games, since the idea of pivotal player can not be extended when the
outcomes are more than two real numbers.

Let v be a (j, k) game onN as in Definition 4.2. To define a power in-
dex, with the flavor of the Shapley-Shubik index, for this class of games
we need to extend the concept of pivotal players. We say that a player
a ∈ N is a i−pivot in the roll-call R for the game v, and we write
a = i − piv(R, v), if a is the player whose vote clinches the outcome
to a result that is no less than vi or no more than vi+1. In other words,
independently of how players after a are going to vote if a is the i-pivot,
a is the player who clinches the outcome to vh with vh ≥ vi or vh < vi+1.
We say that a is positively i-pivotal if a’s vote fixes the outcome to be at
least vi, this means that even if all player after a are going to vote for the
last level of support the result is vi or even better than that. On the other
hand, we say that a is negatively i-pivotal if after a’s vote the result can
not be better than vi+1, this means that even if all the players voting after
a are giving the maximum support, the outcome will be vi or worse than
it.

The Shapley-Shubik power index for (j, k)-simple games has been
defined in Freixas (2005b) in the following way.

Definition 4.5. For any (j, k)-simple game v with numeric evaluation
α and any player a ∈ N , the Shapley-Shubik power index for a (j, k)-
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simple game is defined as

φa(v) =
1

n!jnα1

k−1∑
i=1

(αi − αi+1)|{R ∈ R : a = i− piv(R, v)}|. (4.2)

It is easy to see that if k = 2 and we choose a uniform numeric eval-
uation. i.e., α = (1, 0), then the previous formula reduces to Equation
(4.1).

Remark 4.1. In the previous definition there is a factor 1
α1

in order to
define a power index and have a function which take values only in the
interval [0, 1]. In general, we can remove the factor α1 in the denom-
inator if we want to avoid the normalization of the index and define a
general value for (j, k)-games.

4.3 The Shapley value for multichoice games

Let us introduce the following notation, given a j-partition S, we de-
fine the j-partitions Sa↓l and Sa↑l in which player a has moved from the
highest (or the lowest) level to the lth level. In particular, if a ∈ S1

Sa↓l = (S1 r {a}, . . . , Sl ∪ {a}, . . . , Sj)

for any l = 2, · · · , j; and if a ∈ Sj
Sa↑l = (S1, . . . , Sl ∪ {a}, . . . , Sj r {a})

for any l = 1, · · · , j − 1.
We can now introduce the definition of a value with the same flavour

of the Shapley value for cooperative games that extends both: the Shap-
ley value itself and the Shapley-Shubik index for (j, 2)-simple games
as defined in Equation 4.1. The formula we provide depends only on
the characteristic function v that describes the game and has a structure
similar to the classical formula used for the Shapley value in coopera-
tive theory (as defined in Shapley (1953)) in terms of some “marginal
contributions”. The idea of the following value is analogous to the idea
behind the Shapley value in the cooperative context; the value proposes
a division among players of the total benefit v(N, ∅, . . . , ∅) they can get
if they cooperate at the highest action.

Definition 4.6 (Shapley value for multichoice cooperative games). For
any v ∈ J N and any player a ∈ N , the Shapley value for multichoice
cooperative game is defined as
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Φa(v) =
∑
S∈3N :
a∈S1

{
j∑
l=2

γn(s1 − 1)

jnn!

[
v(S)− v(Sa↓l)

]}
+

+
∑
S∈3N :
a∈Sj

{
j−1∑
l=1

γn(sj − 1)

jnn!

[
v(Sa↑l)− v(S)

]} (4.3)

where

γn(t) = t!jt
t∑
i=0

(n− t− 1 + i)!

jii!
(4.4)

for any t = 0, . . . , n− 1.

Let us explain the previous formula starting with the meaning of
Equation (4.4) which defines the coefficients γn(t). Given a subset T
of N and a player a ∈ N r T , if t = |T |, the aim of this coefficient is to
count the number of roll-calls such that

• all players in N r T vote before a in a fixed unique way;

• players in T can vote either before or after a;

• if players in T vote before a, they vote in a unique way, while if the
vote after a they can vote any of the j-possible alternatives.

We can state these considerations in the following general lemma:

Lemma 4.1. Let T be a subset ofN of cardinality t and a ∈ NrT , then
γn(t) as defined in Equation (4.4) counts the number of permutation of
elements such that the elements in N r T precede a, while the elements
in T can be either before or after a and, in the second case, they can be
of j different types.

Proof. In the ordering the element a appears after all players in N r T
and some of the players in T , this means that for any i = 1, . . . , t, player
a is the n− 1− (t− i)th player in the ordering. Note that

• there are
(
t
i

)
ways for choosing the elements in T that are precede

a;

• the elements before a are n − t − 1 + i since there are all players
in N r T , minus a, plus the i players chosen among those in T ;
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• there are t− i elements coming after a;

• there are (n − t − 1 + i)! possible permutations for the elements
before a ;

• there are (t− i)! possible permutations for the elements after a than
can be of jt−i different types.

Thus,

γn(t) =
t∑
i=0

(
t

i

)
(n− t− i+ 1)!(t− i)!jt−i

= t!jt
t∑
i=0

(n− t− 1 + i)!

jii!
.

Now that it is clear what the coefficient γn(t) is counting we can ex-
plain why Equation (4.3) describes the Shapley value for j-cooperative
games and it is a generalization of the Shapley-Shubik index we dis-
cussed in the previous section.

Theorem 4.1. The explicit formula (4.3), which describes a value Φ for
a multichoice cooperative game in terms of marginal contributions, is
associated to the bargaining model described by Felsenthal and Ma-
chover extended to multichoice cooperative games.

In particular, formula (4.3) generalizes formula (4.1) for (j, 2)-simple
games.

Proof. In the roll-call model introduced by Felsenthal and Machover
players are queuing in a random order and each one of them is voting
(or acting) in one of the j possible levels. The Shapley value, under
this scheme, is seen as the expected marginal contribution of each player
when taking part in this process.

In order to compute the value, let us recall that in a (j, 2)-simple
game a player a can be pivotal in two different ways: either fixing the
outcome to be 1 or blocking the outcome to the value 0. Analogously in a
multichoice cooperative game a player has two different pivotal abilities:
block the situation avoiding the j-partition to reach a bigger result or, on
the other hand, guarantee at least a minimum outcome. Thus, in order
to compute the Shapley-Shubik index we have two different situations,
which correspond to the two different addends in equation (4.3).
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Blocking capacity Let us consider the situation in which a player is piv-
otal blocking the j-partition to reach a better result. This means that
there is a j-partition in which player a is voting at level l (for some
l > 1) and he is blocking the part of gain the others would get if he votes
in the maximum level. In other words, there is a j-partition S such that
a ∈ S1 and v(S)− v(Sa↓l) 6= 0, the number v(S)− v(Sa↓l) measures in
some sense the capacity of blocking of player a in the j-partition S.

Moreover, for any j-partition S such that the v(S) − v(Sa↓l) 6= 0,
there are many other associated roll-calls such that player a is pivotal in
the same way. Actually a blocking capacity is v(S)−v(Sa↓l) every time

• a votes after players in N r S1;

• players in S1 can vote either before or after a;

• players before a in the queue vote according to the level they are in
S;

• players after a can vote anything.

This means that for any j-partition S such that a ∈ S1 and v(S) −
v(Sa↓l) 6= 0 the number of associated roll-calls is γn(s1 − 1).

Since this can happen when player a votes at any level l = 2, . . . , j, if
we sum over all the j-coalition and over all the levels of voting we have
that ∑

S:a∈S1

j∑
l=2

γn(s1 − 1)
[
v(S)− v(Sa↓l)

]
(4.5)

is the expected blocking capacity of player a in the game v. If v is a
(j, 2)-simple game, then (4.5) is the number of roll-calls for which a is
negatively pivotal.

Approval capacity Let us now consider when a player is pivotal in guar-
anteeing at least a minimum result to a j-partition. This means that there
is a j-partition in which player a is voting at a level l (with l < j) guar-
anteeing a minimum level that the other would not get if a vote for the
lower level. In other words, there is a j-partition S such that a ∈ Sj and
v(Sa↑l)−v(S) 6= 0, the number v(Sa↑l)−v(S) measures, in some sense,
the capacity of player a of approval in the j-partition S.

Actually a approval capacity is v(Sa↑l)− v(S) every time that:

• a votes after players in N r Sj;
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• players in Sj can vote either before or after a;

• players before a in the queue vote according to the level they are in
S;

• players after a can vote anything.

This means that for any j-partition S such that a ∈ Sj and v(Sa↑l) −
v(S) 6= 0 the number of associated roll-calls is γn(sj − 1).

Since player a can be positively pivotal voting at any level l = 1, . . . , j−
1, if we sum over all the j-coalition and over all the levels of voting we
have that ∑

S:a∈Sj

j−1∑
l=1

γn(sj − 1)
[
v(Sa↑l)− v(S)

]
(4.6)

is the expected approval capacity of player a in the game v. Note that
this is also the number of roll-calls for which a is positively pivotal if v
is a (j, 2)-simple games.

In order to have the Shapley value under the Felsenthal and Machover
bargaining model, we sum (4.5) and (4.6), then divide the result by the
total number of roll-calls jnn! and get equation (4.3).

Formula (4.3) is useful to obtain an explicit formula to compute the
Shapley-Shubik index for (j, 2)-simple games avoiding the count of all
roll-calls. On the other hand, since Φ is expressed in terms of marginal
contribution the formula can also give a hint about how to generalize
other values, such as the Banzhaf value, from the classic cooperative
approach to the family of multichoice games.

Remark 4.2. If we consider simple games as (2, 2)-simple games, then
equation (4.3) reduces to

φa(v) =
1

2nn!

∑
S:a∈S1

γn(s2 − 1)
[
v(S)− v(Sa↓2)

]
+

+
1

2nn!

∑
S:a∈S2

γn(s1 − 1)
[
v(Sa↑1)− v(S)

]
=

∑
T⊆Nr{a}

γn(n− t− 1) + γn(t)

2nn!
[v(T ∪ {a})− v(T )].
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The equivalence with this formula with the standard formula to compute
the Shapley value was stated in Felsenthal and Machover (1996) and a
direct proof of the equivalence is discussed in chapter 2 and proved in
Lemma 2.1.

Remark 4.3. Let v be a (j, k)-game with numeric evaluation α, then
1
α1

Φ(v) is equivalent to φ(v) as defined in (4.2).

4.4 Explicit formulas for games with abstention

In this section we focus on games with abstention, i.e. games in which
players can vote yes, no or abstain. In chapter 3 we discussed this model
and the properties of two power indices for this class of games: the
Banzhaf and the Shapley-Shubik power index for games with absten-
tion. However in this chapter we provided a formula to compute a value
for multichoice games, the restriction of this formula to ternary games
(i.e. multichoice games in which there are three levels in input) pro-
vide an explicit formula to compute also the Shapley-Shubik index for
(3, 2)-simple games.

Formula (4.3) for ternary game v can be written as

φa(v) =
∑
S:a∈S1

[
γn(s3) + γn(s1 − 1)

3nn!

]
[v(S)− v(S↓↓a)] +

+
∑
S:a∈S1

γn(s1 − 1)

3nn!
[v(S)− v(S↓a)] +

∑
S:a∈S2

γn(s3)

3nn!
[v(S)− v(S↓a)]

(4.7)

for any player a ∈ N , where the coefficients γn(t) are

γn(t) = 3tt!
s∑
j=0

(n− t− 1 + j)!

3jj!

for any t = 0, . . . , n− 1.

To compute the Shapley-Shubik index using the definition of pivotal
player it is necessary to check who is the pivotal player in all the roll-
calls, this means that there are 3nn! elements to check. On the other
hand, using the formula we provide it is only necessary to evaluate the
marginal contribution for any tripartition S, that means that there are 3n

elements to consider. Even if this is a huge number, there is a significant
improvement with respect to the factorial numbers.
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s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = . . .

n = 1 1

n = 2 1 4

n = 3 2 5 26

n = 4 6 12 36 240

n = 5 24 42 96 348 2904

n = 6 120 192 372 984 4296 43680

. . .

Table 4.1: Numerical coefficients to compute γn(s) for ternary games for n ≤ 6.

The following example is taken from Felsenthal and Machover (1998).
We use it to explicitly compute the Shapley-Shubik index for games with
abstention using formula (4.7) and comparing this result with the com-
putation deduced using Definition 3.6.

Example 4.1. Felsenthal and Machover (1998) Let N = {a, b, c}, sup-
pose that players can vote yes, no or abstain and that a resolution is
approved if and only if a is in favour and at least one of the other two
players is not against it. This voting process is described by the (3, 2)-
simple game v with minimal winning tripartitions {(a, b, c), (a, c, b)}.

Let us compute the Shapley-Shubik power index for player b using
formula (4.7) and Table 4.1 for the value of the coefficient.

φb = (γ3(1) + γ3(1))[v((ab, ∅, c))− v((a, ∅, bc))] + γ3(1)[v((a, b, c))− v((a, ∅, bc))]

= 3γ3(1) =
5

54

We can directly check this result counting the number of roll-calls for
which player b is pivotal.
Player b is pivotal

• voting yes in the roll-calls in which she votes after a, who votes yes
and c votes no if he is before b:

abc× (ab, ∅, c) abc× (ab, c, ∅) abc× (abc, ∅, ∅)
acb× (ab, ∅, c)
cab× (ab, ∅, c)
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• abstaining in the roll-calls in which she votes after a, who votes
yes and c votes no if he is before b:

abc× (a, b, c) abc× (a, bc, ∅) abc× (ac, b, ∅)
acb× (a, b, c)

cab× (a, b, c)

• voting no in the roll-calls in which she votes after c who votes no,
and a votes yes if he is before b:

cba× (a, ∅, bc) cba× (∅, a, bc) cba× (∅, ∅, abc)
acb× (a, ∅, bc)
cab× (a, ∅, bc)

Thus, the number of roll-calls for which a is pivotal is 15 and the Shapley-
Shubik index is 5

54
. Note that all these roll-calls are associated to the

tripartition S = (ab, ∅, c) that is the only one such that b ∈ S1 and
v(S)− v(S↓↓b) = 1.

In the case of (3, 2)-simple games the formula to compute the Shapley-
Shubik index can be written in a more compact way. First of all, note
that if v is a (3, 2)-simple game, it takes values only in {0, 1}. This
means that all the marginal contributions in formula (4.7) are either 0 or
1, of course we are interested only in tripartitions such that the marginal
contributions are equal to 1. Let S be a tripartition such that a ∈ S1 and
v(S) − v(S↓↓a) = 1. Then thanks to monotonicity one and only one of
the following holds: v(S)−v(S↓a) = 1 or v(S↓a)−v(S↓↓a) = 1. Define
the following sets

CY Aa = {S ∈ 3N : a ∈ S1, S ∈ W,S↓a /∈ W}
= {S ∈ 3N : a ∈ S1, v(S)− v(S↓a) = 1}

CANa = {S ∈ 3N : a ∈ S1, S↓a ∈ W,S↓↓a /∈ W }
= {S ∈ 3N : a ∈ S1, v(S↓a)− v(S↓↓a) = 1}.

We say that CY Aa is the set of all tripartitions such that player a is a yes-
abstention swinger; while CANa is the set of all tripartitions for which
player a is an abstention-no swinger. Of course we can also define the
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set of tripartition for which a is a yes-no swinger

CY Na = {S ∈ 3N : a ∈ S1, S ∈ W,S↓↓a /∈ W }
= {S ∈ 3N : a ∈ S1, v(S)− v(S↓↓a) = 1}
= CY Aa ∪ CANa

Using this notation, we can write formula (4.7) just for simple games
in a more compact way:

φa(v) =
∑
S∈CY A

a

[
γn(s3) + 2γn(s1 − 1)

3nn!

]
+
∑

S∈CAN
a

[
2γn(s3) + γn(s1 − 1)

3nn!

]
(4.8)

As we discussed in chapter 3, the Banzhaf index for games with ab-
stention has been defined as a two component power index in order to
stress the difference of the power of a player when passing from vot-
ing yes to abstaining and from abstaining to voting no. If βa(v) =
βY Aa (v) + βANa (v), using the previous notation we can write the two
components as

βY Aa (v) =
|CY Aa |
3n−1

βANa (v) =
|CANa |
3n−1

.

Thanks to formula (4.8) we can define the Shapley-Shubik index as a
two component index, too. φY A measures the power when switching
from yes to abstention and φAN measures the power when switching
from abstention to no:

φY Aa (v) =
∑
S∈CY A

a

γn(s3) + 2γn(s1 − 1)

3nn!

φANa (v) =
∑

S∈CAN
a

2γn(s3) + γn(s1 − 1)

3nn!

for any player a ∈ N .
Of course, the Shapley-Shubik index for (3, 2)-simple games is then
given by the sum of these two components.

Example 4.2 (UNSC). As noted by Felsenthal and Machover (1998) the
UN Security Council can be modeled as a (3, 2)-simple game: a resolu-
tion is approved if there are at least nine members in favor and perma-
nent members are not against it. Thus, even if some of the permanent
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members abstain, without the veto of some other permanent member,
a resolution can be carried on. The resulting game v has 15 players,
with the subset P of the five permanent member, and a tripartition S is
winning iff

|S1| ≥ 9 ∧ S3 ∩ P = ∅.
We can compute the Shapley-Shubik power index using equation

(4.8). For a permanent member p we have

CY Ap (v) = {S : p ∈ S1, |S1| = 9 ∧ S3 ∩ P = ∅}

and
CANp (v) = {S : p ∈ S1, |S1| > 9 ∧ S3 ∩ P = ∅}.

So

φp(v) =
6∑

s3=0


2γ15(8) + γ15(s3)

31515!

4∑
j=max{0,
s3−2}

(
4

j

)(
10

8− j

)(
j + 2

s3

)+

+
15∑

s1=10

15−s1∑
s3=0


γ15(s1 − 1) + 2γ15(s3)

31515!

4∑
j=max{0,
s1+s3−11}

(
4

j

)(
10

s1 − 1− j

)(
11− s1 + j

s3

)
On the other hand, for a non-permament q we have

CY Aq (v) = {S : q ∈ S1, |S1| = 9 ∧ |S3 ∩ P | = ∅}

and CANq (v) = ∅. Thus,

φq(v) =
6∑

s3=0

2γ15(8) + γ15(s3)

31515!

5∑
j=max{0,s3−1}

(
5

j

)(
9

8− j

)(
j + 1

s3

)
Using these formulas we get

φp(v) = 0.16338987329859317 φq(v) = 0.01830506335070341.

Observe that
φp(v)

φq(v)
≈ 8.93
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4.4.1 Banzhaf value for ternary games

As we discussed in the previous section the Banzhaf index for (3, 2)-
simple games can also be written as

βa(v) =
|CY Na |
3n−1

=
|CY Aa |+ |CANa |

3n−1

If we use the same structure of the formula for the Shapley-Shubik index
(4.8) we can write

βa(v) =
∑
S∈CY A

a

[δn(s3) + 2δn(s1 − 1)] +
∑

S∈CAN
a

[2δn(s3) + δn(s1 − 1)]

where δn(s) = 1
3n−2 .

Thus, as we already noted for the Shapley value, we can then extend
the Banzhaf index and define the Banzhaf value for ternary cooperative
games.

Definition 4.7. Let v be a ternary cooperative game, then the Banzhaf
value for ternary games is given by

βa(v) =
2

3n−2

∑
S:a∈S1

[v(S)− v(S↓↓a)] +
1

3n−2

∑
S:a∈S1

[v(S)− v(S↓a)] +

+
1

3n−2

∑
S:a∈S2

[v(S)− v(S↓a)]

for any player a ∈ N .

4.4.2 Weighted games and generating function

In Freixas and Zwicker (2003) weighted (j, k)-games are described to
model some voting situations. In particular a weighted (3, 2)-simple
weighted majority game consists of a real number, quota, q and a vector
of weights for each voter a, (ωYa , ω

N
a ), where ωYa ≥ 0 is the weight when

a votes yes and ωNa ≤ 0 is the weight when a votes no. A weighted rep-
resentation for the game is then [q; (ωY1 , ω

N
1 ), · · · , (ωYn , ωNn )]1 The game

is then defined as

v(S) = 1 ⇐⇒ ω(S)
def
=
∑
i∈S1

ωYi +
∑
i∈S3

ωNi ≥ q

1Without loss of generality, we assume that when players abstain their weight is 0.
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for all S ∈ JN Since we have the explicit formula (4.8), in case of a
weighted (3, 2)-game we can compute the Shapley-Shubik power index
using the model of generating functions as done by Brams and Affuso
(1976) for simple games and Freixas (2012) for (3, 2)-simple games.

Definition 4.8. Let v = [q; (ωY1 , ω
N
1 ), · · · , (ωYn , ωNn )] be a (3, 2)-simple

weighted game with abstention. For any a ∈ N , the generating function
is defined as

Fa(x) =
∏

p∈N,p6=a

(
yxω

Y
p + 1 + txω

N
p
)

If we do the computations, the function Fa(x) becomes

Fa(x) =
ω∑

k=ω

n−1∑
i=0

n−i−1∑
j=0

bk,i,jy
itjxk

where ω =
∑

i∈N ω
N
i and ω =

∑
i∈N ω

Y
i .

In the previous formula the coefficient bk,i,j counts the number of
tripartitions S of total weight k such that there are i players in S1 and j
players in S3. Using these coefficients Equation (4.8) becomes

Φa(v) =

q−1∑
k=q−ωY

a

bk,i,j
2γn(i) + γn(j)

3nn!
+

q−ωN
a −1∑

k=q

bk,i,j
γn(i) + 2γn(j)

3nn!

for any player a such that ωYa 6= 0 and ωNa 6= 0.

Example 4.3. The UNSC can be represented as a weighted (3, 2)-simple
games v where the quota is q = 9, the weights for a permanent member
p are (1,−6) and for a non permanent member q are (1, 0). Using gen-
erating functions the Shapley-Shubik index that we get is the same as in
Example 4.2.

φp(v) = 0.16338987329859317 φq(v) = 0.01830506335070341.

Example 4.4. A modified version of the United Security Council game
is to add the possibility of approval of a resolution if one permanent
members is against it but all the other members are in favour. This means
that for any permanent member p, we should add (N r p, ∅, p) to the
winning tripartitions.
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This new game can be represented as a weighted game with quota
q = 9 and vector of weights for the permanent members (1,−5) and
(1, 0) for non permanent members.

Using the generating function method, the Shapley-Shubik index for
a permanent member p and a non permanent member r are:

φp = 0.13958034451108942 φq = 0.030209827744455294.

Note that
φp(v)

φq(v)
≈ 4.62

This considerable lower proportion for φp(v)

φq(v)
with respect to the the re-

sults in Example 4.2 would make the UNSC voting system more egali-
tarian.

4.5 A comparison among different values and models

We conclude this chapter with an overview of other models that gener-
alize cooperative games to games in which players can choose among
different alternatives or levels of effort.

4.5.1 Bi-cooperative games

Bilbao, Fernández, Jiménez, and Lebrón (2000) introduced the model
of bi-cooperative games to model voting situation in which players ex-
plicitly vote in favour or against a proposal, but they also have the third
separated option to abstain. Thus, the original idea is very similar to the
model of games with abstention introduced by Felsenthal and Machover
(1997) that we discussed in chapter 3.

As (3, 2)-simple games, also bi-cooperative games are defined on the
set 3N of tripartitions, but in Bilbao’s work a tripartition is denoted just
with two sets (S, T ), players in S are supposed to vote in favour, players
in T are supposed to vote against and all players in N r (S ∪ T ) are
abstaining. A bi-cooperative game is then a function b : 3N → R such
that b(∅, ∅) = 0. This last normalization condition is different to the one
used for games with abstention, in which a tripartition gets zero if all
players are voting no. Behind the bi-cooperative model there is the idea
that the default option for players is to abstain and they should explicitly
vote in favour or against a proposal forming the two disjoint sets.

Several solution concepts for bi-cooperative games have been stud-
ied: Bilbao, Fernández, Jiménez, and López (2007) present the core and
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the Weber set, while Bilbao, Fernández, Jiménez, and López (2008b),
Labreuche and Grabisch (2008), and Bilbao, Fernández, Jiménez, and
López (2010) discuss different kind of values. In particular, in Bil-
bao, Fernández, Jiménez, and López (2008a) a Shapley value for a bi-
cooperative game b is defined as

φa(b) =
∑

(S,T )∈3Nr{a}

{
ps,t[b(S ∪ a, T )− b(S, T )] + p

s,t
[b(S, T )− b(S, T ∪ a)]

}
where

ps,t =
(n+ s− t)!(n+ t− s− 1)!

(2n)!
2n−s−t

and

p
s,t

=
(n+ t− s)!(n+ s− t− 1)!

(2n)!
2n−s−t

Using the notation of tripartition that we introduced in chapter 3 the
Bilbao’s value for bi-cooperative game can be written as

φa(b) =
∑
S∈3N
a∈S1

p(s1, s3)[b(S)− b(S↓a)] +
∑
S∈3N
a∈S3

p(s3, s1)[b(S↑a)− b(S)]

(4.9)
where

p(si, sj) =
(2si + s2 − 1)!(2sj + s2)!

(2n)!
2s2+1.

The main difference with the value defined in Equation (4.7) is that
the marginal contributions considered by Bilbao are only when a player
moves from abstention to voting in favour or against, while we also con-
sider the contribution from being in favour to being against. In Bilbao,
Fernández, Jiménez, and López (2008a) starting with the hypothesis that
the value will depend on the these marginal contributions, the coefficient
ps,t and p

s,t
are deduced using linearity, efficiency, the dummy player

property, symmetry and another axiom they called structural axiom. Of
course, the resulting coefficients are different from ours and so are the
the indices defined by (4.7) and by (4.9).

To conclude this brief comparison between (3, 2)-simple games and
bi-cooperative games, note that there are no other works following the
ideas of bi-cooperative games to generalize the model to games in which
players have more than three alternatives in input, as it has been done
with (j, k)-games and multichoice games.
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4.5.2 Bolger’s model: games with r alternatives

The model of games with r alternatives was introduced in Bolger (1993):
players must choose one, and only one, of the r available alternatives.
The main tools in this model are arrangements and embedded coali-
tions. Given the set of players N and the r alternatives, an arrangement
Γ = (C(1), . . . , C(r)) is the equivalent of a r-partition of the set: play-
ers in C(i) are choosing alternative i, for any i = 0, . . . , r. Given an ar-
rangement Γ, an embedded coalition is a pair (C(i),Γ), whereC(i) ∈ Γ.

To any arrangement Γ is associated a r-dimensional vector of real
numbers, in which the i-th components is interpreted as the value of the
coalition C(i) with respect to the arrangement Γ. Thus the game is a
function v : 2N × RN → Rn which assigns a real value v(C(i),Γ) to
any embedded coalition.

It is clear that this model is different from the one of multichoice
cooperative games, even if the ideas behind the two models are similar:
the second one assigns a unique value to any r-partition, while the first
one assigns a different value to any set of the r-partition with respect to
the partition itself. However, multichoice games can be seen as a special
subclass of games with r alternatives if v(C(i),Γ) depends only on the
arrangement Γ, that is v(C(i),Γ) = v(C(j),Γ) for any i, j = 1, . . . , r.

In Bolger (1983) a Banzhaf-type value for games with r alternatives
was used; this power index was studied also in subsequent works from
the same author: Bolger (1986) and Bolger (2000). On the other hand,
in Bolger (1993) a value in the spirit of the Shapley value is defined
for games with r alternatives, this value is deduced following an ax-
iomatic approach and imposing some properties such as efficiency, sym-
metry and linearly dependence from the marginal contribution. In Bolger
(2000) the value is revised with the discussion of other properties, other
solution concepts for this class of games are presented in Albizuri, San-
tos, and Zarzuelo (1999), Albizuri and Zarzuelo (2000), Amer, Carreras,
and Magaña (1998b), and Amer, Carreras, and Magaña (1998a).

Let us focus on the value defined in Bolger (1993). Bolger’s value is
a matrix which assigns a real number to every player and every action.
In particular for any game with r alternatives v and any player a ∈ N
which is taking action j the value is defined as

ϑja(v) =
∑
S:a∈Sj

r∑
k=0
k 6=j

f(sj, n) [v(Sj, S)− v(Sj \ {a}, Sa↓k)]
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where

f(sj, n) =
(sj − 1)!(n− sj)!
n!(r − 1)n−sj−+1

.

Besides the fact that Bolger’s value is a matrix instead of a vector, the
main difference with the value we are proposing is that here the marginal
contribution of each player is considered only when he moves from the
considered action to another one. Moreover, the coefficient that Bolger
deduced from a set of axioms are different from the one we defined in
equation (4.4).

It is possible to model a multichoice cooperative game as a Bolger’s
game with the same value for any embedded coalition with respect to
the same arrangement, then we can compute Bolger’s value for the max-
imum level of action to get a similar value to the one we are discussing in
this chapter. This approach is followed in Bolger (1993), where the UN
Security Council game is presented and the value obtained are slightly
different from the one we computed in Example 4.2. This may seem just
an approximation problem, but it is not as we will show in Example 4.5:
Bolger’s value and the Shapley value defined in (4.3) give different num-
bers.

4.5.3 Hsiao and Raghavan’s value for multichoice games

Multichoice games were defined in Hsiao and Raghavan (1993) and we
already presented the model in section 4.1. However, in the original
work there is also an axiomatic approach to define a value as matrix φ
such that φla(v) is the value of player a when he takes the action at the
lth level in the game v.

Let us recall the elements in Hsiao and Raghavan’s work:

- let σ0, σ1, . . . , σj−1 be j actions, where σ0 is the action of doing noth-
ing;

- let β = {0, 1, . . . , j − 1} be a vector representing the actions;

- then x ∈ βn is a vector in which xa = l if and only if player a is takes
action σl;

- finally, the characteristic function is v : βn → R such that v(0) = 0.

To define the value, there is also a function w of weight associated to the
vector of actions β: w : β → R+ such that w(0) = 0 ≤ w(1) ≤ · · · ≤
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w(m). The value is then defined as

φla(v) =
l∑

k=1


∑

x∈βnr0:
xa=k

g(x, l, a) · [v(x)− v(x− ea)]

 (4.10)

where

g(x, l, a) =
∑

T⊆Ma(x)

(−1)t
w(xa)

||x||+
∑

r∈T [w(xr + 1)− w(xr)]

and

Ma(x) = {p : xp 6= m, p 6= a}, ||x|| =
n∑
r=1

w(xr),

while ea is a vector with all components equal to 0, except for the ath

position in which there is a 1.
There are many difference with the value defined in formula (4.3).

First of all, in our model we assume that the value function v captures
all the efforts done by player when choosing an action, thus we do not
consider weights and the value is obtained from the characteristic func-
tion v of the game. Secondly, we consider a unique value and do not
make differences according to the action that is chosen, thus our value is
a vector assigning a number to each player and not a matrix assigning a
number to each player and each action. Moreover, the value defined by
Hsiao and Raghavan takes into consideration the marginal contribution
of each player when he changes from one level to the immediate higher
level; our value instead consider the marginal contribution when moving
from any level to the best or to the worst one. Finally, we deduced our
value considering a bargaining procedure of forming j partitions, while
in Hsiao and Raghavan (1993) there is not a probabilistic interpretation
for the value.

In the particular case of (3, 2)-simple games, if we use a linear and
uniform vector of weights, i.e. w = (0, 1, 2), then with the notation of
tripartitions formula (4.10) when player are voting yes (that is taking the
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highest level of action) becomes

φ2
a(v) =

∑
S:a∈S1

{
s2+s3∑
t=0

(
s2 + s3

t

)
(−1)t

2

2s1 + s2 + t
[v(S)− v(S↓a)]

}
+

+
∑
S:a∈S2

{
s2+s3−1∑
t=0

(
s2 + s3 − 1

t

)
(−1)t

2

2s1 + s2 + t
[v(S)− v(S↓a)]

}
(4.11)

The previous formula is clearly different from equation (4.7).

Let us conclude this section with an explicit example to show that the
values of the three models discussed here are different from the value
we are introducing following the Felsenthal and Machover approach for
multichoice games.

Example 4.5. Let us consider again the (3, 2)-simple game introduced
by Felsenthal and Machover (1997) that we discussed in Example 4.1.
The set of players is N = {a, b, c} and the set of minimal winning tri-
partitions is {(a, b, c), (a, c, b)}. We can see this game as a game with
abstention, but also as a special game of the other classes we discussed
so far.

Let us start by considering v as a bi-cooperative game and compute
the value for player b. The marginal contributions in equation (4.9) are
always equal to zero, except for the tripartition (a, ∅, bc) when b moves
to the second level from the third one. Thus

φb(v) = p(2, 1) =
3!2!

6!
2 =

1

30
.

If we consider this game as a Bolger game with three alternatives, we
have to compute the value when players take the best action, i.e. vote
yes (this is analogous to what is done in Bolger (1993) to compute the
index for the UNSC). Again, for player b the only significant marginal
contribution is when player b moves from abstaining to voting no in
tripartition (a, b, c),

θ2b (v) = f(1, 2) =
1

24
.

Finally to compute the Hsiao and Raghavan value we suppose that
the vector of weights is linear and uniform, and consider the action of
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Model of the game Value

Game with abstention
(
22
27 ,

5
54 ,

5
54

)
Multi-choice game

(
10
12 ,

1
12 ,

1
12

)
Bi-cooperative game

(
14
15 ,

1
30 ,

1
30

)
Game with r-alternatives

(
22
24 ,

1
24 ,

1
24

)
Table 4.2: Comparison among the different values for a game with abstention.

voting yes. Using equation (4.11) we have that

φ2
b(v) =

1∑
t=0

(
1

t

)
(−1)t

1

3 + t
=

1

12
.

All the values we discussed so far satisfy efficiency and symmetry,
thus it is possible to compute the values also for players a and c. All
the different values are summarized in Table 4.2. For this example the
value we obtain is more egalitarian than the others, which assign almost
all power to voter a.

4.6 Conclusion

In this chapter we presented a new value for multichoice cooperative
games. The interest we had at the beginning was to find an explicit for-
mula to compute the Shapley-Shubik index for games with abstention
analogous to the formula for simple games we proposed in section 2.3.
Actually we found a more general result that can be used not only for
(3, 2)-simple games but also for ternary cooperative games and in gen-
eral for multichoice games in which players can choose among different
alternatives.

The new value we provided in this chapter is a generalization of the
Shapley value following the Felsenthal and Machover bargaining ap-
proach extended to multichoice games. The restriction of this value to
(3, 2)-simple games provides an explicit formula to compute the Shapley-
Shubik index for games with abstention by means of marginal contribu-
tion and without having to check all roll-calls and the pivotal players.
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We presented also a brief comparison with other models of games in
which players can choose among different alternatives and show that the
value we define is different from the other values presented in literature
so far. This work could be further developed giving an extension of
other values, or all the family of semivalues, to the family of multichoice
cooperative games.



CHAPTER5
Ranking objects

VALUES and power indices naturally provide a ranking over play-
ers, starting from a value over coalitions. However, in many
real-life situation it can happen that one wants to rank individu-

als starting only from an ordinal ranking over coalitions, without having
a characteristic function describing a game.

In this chapter we discuss this problem, we introduce some proper-
ties that a solution to this problem should satisfy and then we provide a
characterization of a social ranking function.

5.1 Notation and preliminaries

Let us introduce the main definitions for the development of this chapter.
A binary relation < on a finite set X is a subset of the cartesian product
X ×X . For each x, y ∈ X , the notation x < y will be preferably used
instead of the more formal (x, y) ∈ <. The following are some standard
properties for a binary relation <:

• reflexivity: for each x ∈ X , x < x;
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• transitivity: for each x, y, z ∈ X , x < y and y < z⇒ x < z;

• completeness: for each x, y ∈ X , x 6= y⇒ either x < y or x < y;

• antisymmetry: for each x, y ∈ X , x < y and y < x⇒ x = y.

A reflexive, transitive and complete binary relation onX is called a com-
plete pre-order or also, indifferently, a preference relation or a ranking
over X .

A reflexive, transitive, complete and antisymmetric binary relation
on X is called a complete order on X or also a strict ranking over X .
R(X) denotes the set of rankings (or complete pre-orders) on a given
set X . Given a ranking <∈R(X), in general, there are elements x 6= y
such that both x < y and y < x hold: in this case we say that x and y
are indifferent, and we write x ∼ y.

In the following, we consider a finite set N of n elements that should
be ranked and the set of its non-empty subsets is denoted by P(N).

Definition 5.1. A social ranking function under coalition information,
or briefly a ranking function, is a function

r : R(P(N))→R(N).

In other words, r is a function providing a ranking of the objects of
N , starting from any possible ranking on subsets of N .

In the sequel, in order to facilitate the reading, with a little abuse of
notation, given a ranking < and a ranking function r we shall write

r(x) < r(y)

instead of x r(<) y to indicate that, starting from the given ranking <
on P(N), x is in relation with y according to the ranking function r.
Analogously we write

r(x) � r(y)

to denote that r ranks x strictly better than y.
A trivial example of a ranking function is the function p that ranks

the elements in N according to the ranking of the singletons in P(N).
Given a ranking <∈R(P(N)) we have that

p(x) < p(y) ⇐⇒ {x} < {y}.

However, this solution is extremely unsophisticated since all the infor-
mation provided by the ranking over coalitions is not taken into account
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at all. The following example shows that, according to the situation we
are modelling, there can be different criteria useful to select a ranking
among players.

Example 5.1. Consider the set of players {a, b, c} and the following
ranking <

{a, b} ∼ {a, c} � {b} � {c} ∼ {a, b, c} � {a} ∼ {b, c}.

We can suppose that this ranking reflects the scientific works of three
professor. If we consider the ranking p provided by the ranking among
singletons we have p(b) � p(c) � p(a).

However, player a is in the first two position when working with her
colleagues, thus she seems a more important resource if we are inter-
ested, for instance, in a team work project.

We introduce another notation we will use in the following. Suppose
we have a ranking <∈R(P(N)) of the form

S1 < S2 < S3 < · · · < S2n−1.

Unless the ranking is a complete order, some indifferences are present.
We associate to this ranking the following notation

Σ1 � Σ2 � Σ3 � · · · � Σl

in which the subsets Sj have been grouped in the equivalence classes Σk

generated by ∼. We use this notations to stress the strict ranking among
some groups and the indifferences among the others. This means that
all the sets in Σ1 are indifferent to S1 and are strictly better then the sets
in Σ2 and so on. Thus, for every j all coalitions in Σj are ranked at the
same level, and are strictly better than any coalition in Σj+1. It is clear
that < offers, for some l = 1, . . . , 2n−1, l different levels of satisfaction
with respect to the coalitions, with the first level, i.e. coalitions in Σ1

are the best, and so on. For example, such equivalence classes could
represent the levels of scientific productivity reached by different groups
of researchers (for instance given by the best ranked journal on which a
group has published articles). Note that if < is a complete order, then
the two relations are the same and Σi = Si for any i = 1, . . . , 2n − 1.

5.2 Properties for a ranking function

In this section we introduce some properties that in our opinion a ranking
function should reasonably satisfy, and we discuss their importance and
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interpretation.
Let us consider a strict preference relation �:

Σ1 � Σ2 � Σ3 � · · · � Σl

and an element x ∈ N . We denote by xk the number of sets in Σk

containing x:
xk = |{S ∈ Σk : x ∈ S}|.

The first property we introduce is the following

Axiom 5.1 (Equal Treatment of Groups (ETG)). We say that a ranking
function r satisfies the Equal Treatment of Groups property if, for any
strict ranking� and any x, y ∈ N such that xk = yk for any k = 1, . . . , l,
then

r(x) ∼ r(y).

The Equal Treatment of Groups property requires that all groups count
the same. To be more specific, what the above property wants to stress is
the following. The ranking < provides a partition of the groups on l dif-
ferent levels of satisfaction and at each of these levels the objects x and y
are present in the same number of groups. Thus, since we do not assume
that some groups are more desirable than others (for instance according
to some rule related to their cardinality or related to which players are
inside them), the property requires that there cannot be a strict prefer-
ence between x and y. For the sake of the example about professors’
evaluation, let’s say that if two professors belong to an equal number of
equivalent groups for each level of scientific productivity, then the ETG
property imposes to them the same ranking.

The next property is a kind of monotonicity property, and it serves,
as it is clear from its definition, to break ties in a consistent way.

Axiom 5.2 (Monotonicity). We say that a ranking function r is monotone
if for any strict ranking �:

Σ1 � Σ2 � · · · � Σu � Σu+1 � · · · � Σl

and any x, y ∈ N such that r(x) ∼ r(y), then, for any subset Σ ∈ Σu+1

such that {x, y} ∩ Σ = {x} if we consider the strict ranking =:

Σ1 = Σ2 = · · · = Σu ∪ Σ = Σu+1 r Σ = · · · = Σl

it holds r(x) = r(y) i.e. if x and y were indifferent in the ranking
provided by �, then in the second situation x is ranked strictly better
than y.
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The requirement is clear. Suppose that, for a given preference or-
der, the ranking function ranks the two objects x and y at the same level
of satisfaction (e.g., the two professors based on their scientific perfor-
mance over different teams). Then for every pre-order obtained by the
given one just strictly improving the ranking of some coalition contain-
ing x and not y (e.g., due to the fact that the educational quality is con-
sidered as a secondary criterion for the groups’ evaluation, and the edu-
cational offer provided by the group containing professor x and not y is
much more differentiated than the one of other groups with an equivalent
scientific productivity), the ranking function now ranks x strictly better
than y. In other words, since x in the new preference system has an im-
provement (because it belongs to a coalition that now is strictly better
ranked than before), while y is exactly in the same situation as before,
the tie present before between x and y can now be broken. We observe
that this looks like a very reasonable criterion to break ties.

The two previous properties are general request to a ranking function
and do not refer to any specific idea behind the way how to rank peo-
ple looking at their performances when working in different groups. As
far as the next property is concerned, on the contrary, a precise under-
lying idea on how to drive the ranking pops up: to consider the good
performances more important than the bad ones.

Axiom 5.3 (Independence from the worst set). We say that a ranking
function r is independent from the worst set if for any strict ranking

Σ1 � Σ2 � Σ3 � · · · � Σl

with l ≥ 2, x, y ∈ N such that

r(x) � r(y)

then, it holds
r(x) = r(y)

for any partition T1, . . . Tm of Σl and for any order = such that

Σ1 = Σ2 = · · · = Σl−1 = T1 = · · · = Tm.

Let us comment on the property. It claims the following. Suppose
a strict ranking is already reached on a pair of objects, starting from a
given preference relation

Σ1 � Σ2 � Σ3 � · · · � Σl.
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Suppose now to consider a new preference relation = on the subsets
with the property that it is built from the previous one just refining only
the information on the previous worst set Σl. Then the property simply
requires that the ranking of the two objects does not change. Thus the
property proposes to consider as irrelevant a further refinement of the
preferences on the worst group and thus to ignore this further informa-
tion, when a strict ranking among two elements is already defined. In
our example, once a strict ranking between two professors is established
on the basis of their scientific productivity over all groups, the possible
use of a secondary criterion for groups’ evaluation (e.g., the educational
offer of a team) affecting only coalitions with the lowest scientific pro-
ductivity, may not impact a strict ranking defined according to the most
important evaluation’s criteria.

We again stress the fact that, differently from the two previous prop-
erties, that should be fulfilled by any reasonable ranking function, this
last property privileges an idea that, though very reasonable, is clearly
not the unique reasonable criterion. In a subsequent section we shall see
how it is possible to dualize the above property to get another, differ-
ent but equally reasonable criterion, characterizing a different ranking
function.

5.3 Two solutions to the ranking problem

5.3.1 The excellence ranking function

We can now introduce and characterize the ranking function we propose.
First of all, let us recall that given a ranking < and any element x ∈ N ,
xk is the number of sets containing x in Σk, that is

xk = |{S ∈ Σk : x ∈ S}|

for k = 1, . . . , l. Now, let θ<(x) be the l-dimensional vector θ<(x) =
(x1, . . . , xl) associated to <. Consider the lexicographic order among
vectors:

x ≥L y if either x = y or ∃j : xi = yi, i = 1, . . . , j − 1 ∧ xj > yj.

As it is well known, and easy to see, ≥L defines a complete order on
Rl. Now, we are ready for the main definition.

Definition 5.2. The excellence ranking function is the function

e : R(P(N))→R(N)
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defined for any < as

e(x) < e(y) if θ<(x) ≥L θ<(y).

Note that, in general, e provides a pre-order and not an order, even
if ≥L is an order; this is due to the fact that θ< in general is not one-to-
one; however, if < is a complete order, actually e(<) provides an order
and the (2n− 1)-dimensional vector θ<(x) is boolean, i.e. made by only
zeros and ones.

Example 5.2. Consider the set of elements {a, b, c} and the following
ranking <

{a, b} � {c} � {b} � {a, c} ∼ {a, b, c} � {a} ∼ {b, c}.

Then we have

θ<(a) = (1, 0, 0, 2, 1)

θ<(b) = (1, 0, 1, 1, 1)

θ<(c) = (0, 1, 0, 2, 1)

then the excellence ranking function ranks e(b) < e(a) < e(c).

In the remaining of this section we characterize the excellence func-
tion as the unique one fulfilling the three properties: ETG, monotonicity
and independence from the worst set.

Theorem 5.1. The excellence ranking function e satisfies axioms 5.1,
5.2 and 5.3.

Proof. The ETG condition requires that for any ranking <, if θ<(x) =
θ<(y) then x ∼ y. This comes immediately from the definition of excel-
lence function.
Let us consider the monotonicity property. Given a ranking < if e(x) ∼
e(y), this means that θ<(x) = θ<(y). Now consider a new ranking = as
in Axiom 5.2, we have that θ=(x) >L θ<(x), while θ=(y) =L θ<(y). So
θ=(x) >L θ=(y) and e(x) = e(y).
Finally the third property is obvious from the definition of e.

Theorem 5.2. Let ϕ be a ranking function that satisfies axioms 5.1, 5.2
and 5.3. Then for any <∈R(P(N)) and x, y ∈ N

e(x) � e(y) ⇐⇒ ϕ(x) � ϕ(y).
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Proof. (⇒) Let <∈ R(P(N)) such that e(x) � e(y). This means that
θ<(x) >L θ<(y). Let k be the first index such that xk > yk.

Define Σ∗ = {A ∈ Σk : x ∈ A, y /∈ A} and let Σ be any subset of
Σ∗ such that |Σ| = xk − yk. This means that in Σ there are only sets
containing x and not containing y and if we remove Σ from Σk then the
number of elements in Σk containing x is the same of the number of
elements containing y. Note that Σ is not empty and well-defined due to
the hypothesis e(x) � e(y).

Define the strict order = such that

Σ1 = Σ2 = · · · = Σk r Σ = Σ ∪ Σk+1 ∪ · · · ∪ Σl,

then since ϕ satisfies axiom 5.1 we have that x and y are indifferent
according to ϕ: ϕ(x)− ϕ(y).

Consider now the relation > in which Σ is moved up of one level:

Σ1 > Σ2 > · · · > Σk > Σk+1 ∪ · · · ∪ Σl,

then since ϕ satisfies axiom 5.2 , if we compare = and > we have
ϕ(x) > ϕ(y). Finally, thanks to axiom 5.3, when we consider the origi-
nal ranking <

Σ1 � Σ2 � · · · � Σk � · · · � Σl,

we have ϕ(x) � ϕ(y).

(⇐) Let ϕ(x) � ϕ(y). Suppose that e(x) ∼ e(y), then θ�(x) =
θ�(y) but this is impossible since ϕ satisfies axiom 5.1.

Suppose then that e(x) ≺ e(y), then we already proved that this
would imply ϕ(x) ≺ ϕ(y). Thus the only possibility is that e(x) �
e(y).

Corollary 5.1. There is one and only one ranking function satisfying the
properties of ETG, monotonicity and independence from the worst set.
This is the excellence ranking function e.

Proof. The excellence ranking function fulfils the properties, according
to Theorem 5.1. Theorem 5.2 takes care of the uniqueness argument,
since it shows that a preference relation fulfilling the three properties
denotes the same subset of N × N as the excellence ranking function.
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5.3.2 The dual ranking function

It is possible to define a ranking function dual to the excellence func-
tion, in the following way. Given two vectors x,y we define the lexico-
graphic* order ≥L∗ as

x ≥L∗ y if either x = y or ∃j : xi = yi,∀i > j ∧ xj < yj.

Definition 5.3. The dual ranking function is the function w : R(P(N))→
R(N) defined for any < as

w(x) < w(y) if θ�(x) ≥L∗ θ�(y).

It immediately appears that this ranking function acts, in a sense, du-
ally to the excellence function, since it ranks at the last places objects
present in the worst ranked groups. Here mediocrity is punished, before
excellence was rewarded. Let us refer to our usual example: how the
chairman of the department should rank her professors? Which property
should choose? The answer can heavily depend on the way financial
support of the research is distributed in the country. If the department
is rewarded provided there are outstanding research teams, the indepen-
dence from the worst set is a very reasonable assumption to make, thus
the excellence ranking function would be a good choice. On the con-
trary, if a department is punished if there are groups with a very low
scientific production, a competition at the lowest level is natural, as the
dual function proposes, in order to enhance the level of quality of the
worst ranked groups.

It is clear that in general the two ranking functions give different rank-
ing among the elements, as the following example shows.

Example 5.3. Consider the ranking < defined on the power set of N =
{a, b, c} as

{a, b} ∼ {a, c} � {b} � {b, c} � {c} ∼ {a, b, c} � {a}.

We have that θ<(a) = (2, 0, 0, 1, 1), θ<(b) = (1, 1, 1, 1, 0) and θ<(c) =
(1, 0, 1, 2, 0). Then the excellence function ranks e(a) � e(b) � e(c),
while the dual excellence function ranks w(b) � w(c) � w(a).

The function w satisfies ETG and monotonicity. In order to charac-
terize it we need to define a axiom in some sense symmetrical to axiom
5.3.
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Axiom 5.4 (Independence from the best set). We say that a ranking func-
tion is independent from the best set if for any strict order �

Σ1 � Σ2 � Σ3 � · · · � Σl

and x, y ∈ N such that
r(x) � r(y),

then it holds
r(x) = r(y)

for any partition T1, . . . Tm of Σ1 and for any order =

T1 = · · · = Tm = Σ2 = · · · = Σl−1 = Σl.

The requirement of the above property is that if a strict ranking is al-
ready reached on a pair of objects, then it cannot change by refining the
best preferred equivalence class: the ranking remains the same even if
Σ1 is partitioned according to any possible partition. Clearly the require-
ment proposed by this property is to ignore the information provided
from the best ranked coalitions.

Theorem 5.3. The dual ranking function w satisfies axioms 5.1, 5.2 and
5.4.

Proof. From the definition of the w function it is trivial to check that it
satisfies the three axioms.

Theorem 5.4. Let ϕ be a ranking function that satisfies axioms 5.1, 5.2
and 5.4. Then for any < and x, y ∈ N

w(x) � w(y) ⇐⇒ ϕ(x) � ϕ(y).

Proof. (⇒) Let <∈R(P(N)) such that w(x) � w(y). This means that
θ<(x) ≥L∗ θ<(y). Let k be the index such that xk < yk and xi = yi for
all i > k.

This means that in Σk there are some elements containing y and not
x. Let Σ∗ = {A ∈ Σi : i < k, x ∈ A, y /∈ A} and let Σ be any subset of
Σ∗ such that |Σ| = yk − xk. Σ is not empty, since the number of subsets
is fixed and it holds xk < yk and xi = yi for all i > k. This means that
in Σ there are sets containing x and not containing y and if we add Σ to
Σk then the number of elements in Σk containing x is the same of the
number of elements containing y.

Define the order = such that
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(Σ1 ∪ · · · ∪ Σk−1) r Σ = Σk ∪ Σ = Σk+1 = Σk+2 = · · · = Σl,

then since ϕ satisfies axiom 5.1 we have ϕ(x)− ϕ(y).
Consider now the relation ≥ in which Σ is moved up of one level:

Σ1 ∪ Σ2 ∪ · · · ≥ Σk ≥ Σk+1 ≥ · · · ≥ Σl,

then since ϕ satisfies axiom 5.2 we have ϕ(x) > ϕ(y). Finally, thanks to
axiom 5.4, when we consider the original ranking <

Σ1 � Σ2 � · · · � Σk � · · · � Σl,

we have ϕ(x) � ϕ(y).

(⇐) Let ϕ(x) � ϕ(y). Suppose that w(x) ∼ w(y), then θ<(x) =
θ<(y) but this is impossible since ϕ satisfies axiom 5.1.

Suppose then that w(x) ≺ w(y), then we already proved that ϕ(x) ≺
ϕ(y). Thus the only possibility is that w(x) � w(y).

Corollary 5.2. There is one and only one ranking function satisfying
the properties of ETG, monotonicity and independence from the best set.
This is the dual ranking function w.

Proof. The dual ranking function fulfils the properties, according to The-
orem 5.3. Theorem 5.4 takes care of the uniqueness argument, since it
shows that a preference relation fulfilling the three properties denotes the
same subset of N ×N as the dual ranking function.

5.4 Independence of the axioms

Let us prove that axioms 5.1, 5.2, 5.3 (and 5.4) are independent, thus
they all are necessary in order to uniquely characterize the excellence
ranking function and its dual ranking function.

ETG is not satisfied Given a finite set N , take any arbitrary order < on
it. Let e∗ be the ranking function defined as e but if there is a rank-
ing < and there are two elements x, y such that θ<(x) = θ<(y) =
(2n−1, 0, . . . , 0) (i.e. all sets with the elements x and y are in Σ1 ) then
e∗ breaks the tie with e∗(x) � e∗(y) if x < y.
For instance if we take N = {1, 2, . . . , n} and > as the majority rela-
tion among integer numbers, then in case of indifference among all the
subsets, e∗ ranks the elements in increasing order.
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This function satisfies Axioms 5.2 and 5.3, but does not satisfy ETG.

Monotonicity is not satisfied Let f be a ranking function defined as

f(x) < f(y) if xj ≥ yj

where j = min{k : Σk ∩ {x, y} 6= ∅}.
The function f ranks players only counting the number of sets in the

first level containing those players.
It is clear that f satisfies Axioms 5.1 and 5.3, since the ranking only
depends on the number of sets in Σj . However, this function does not
satisfy monotonicity: if we improve the situation of one player but do
not change Σj , then the ranking does not change. For instance consider
the following ranking < on N = {a, b}

{a, b} � {b} ∼ {a}
then f(a) ∼ f(b). Consider now the ranking

{a, b} = {b} = {a},
then it still holds f(a)−f(b), while monotonicity would require f(a) =
f(b).

Independence from the worst set is not satisfied Consider w the dual
function of e as defined in the previous paragraphs. Then it satisfies
ETG since given a ranking < we have that w(x) ∼ w(y) if and only if
xk = yk for any k. It satisfies monotonicity since if w(x) ∼ w(y) and
we take Σ ⊆ Σu+1 for some u such that Σ ∩ {x, y} = {x}, then in the
new ranking we have that xu+1 < yu+1 and thus x will be ranked better
than y.
Of course, w does not satisfy independence from the worst set. For
instance given the ranking

· · · � {a, b} ∼ {a} � {b} ∼ {b, c} ∼ {a, c}
we have w(a) � w(c) � w(b). But if we change the last set in the
following way

· · · = {a, b} − {a} = {b} − {b, c} = {a, c}
we get a new ranking: w(b) = w(a) = w(c).

Independence from the best set is not satisfied The excellence func-
tion e satisfies ETG and monotonicity but of course, it is not independent
from the best set. Thus, it is also clear that the three axioms characteriz-
ing the dual ranking function are independent.
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5.5 Conclusion

In this chapter we have proposed a general way to rank objects when-
ever it is available a ranking between the subsets of these objects. Our
approach was classical, in the sense that we identified a rule by requiring
the fulfilment of some general properties. Having this characterization
in mind, there are other interesting issues to consider: first of all, it is
clear that in practical situations it can happen that having a ranking on
all subsets of N is an unrealistic requirement: in our paradigmatic ex-
ample of the ranking of the professors in a department, it is unreasonable
to expect that all members collaborate forming every possible research
team. Moreover, there may be some specific reason to reward coalitions
of a fixed size for instance or the collaborations with a specific element
or group of elements. In all these situations, there may be a ranking over
only a subset of P(N).

Of course, the excellence ranking can be defined, without any changes,
on subsets of P(N). And clearly the properties that characterize the
function hold if we restrict the domain. However uniqueness is not clear
in this case. For instance, the equal treatment of groups property in a
subset could be totally uninformative, since it is possible, for instance,
that no pair of objects is present in the same number of coalitions. Thus
a characterization in this case must depend from the type of coalitions
that are actually ranked.

Secondly, as usual the main theorem we provide requires the ranking
function to be defined on a very large set, namely the set of all pre-orders
over the subsets of N . But it would be interesting to analyse the same
problem of characterizing a ranking function defined only on (meaning-
ful) subsets of R(P(N)). For instance, there could be only k different
levels to judge the collaboration between the elements, thus we can con-
sider the elements in R(P(N)) for which the number of indifference
sets is fixed. Another interesting point for future developments would be
to consider the restriction to orders over P(N) and provide a characteri-
zation of the excellence ranking function in that framework.



CHAPTER6
Concluding remarks

THE main work presented in this thesis is about the evaluation of
power in different voting situations and the procedure to rank
players in different contexts.

At the beginning of our work we analysed new contributions to the
classical cooperative game theory. We proposed a procedure to gener-
ate other semivalues as solution concepts and examined the well-known
Shapley value from a different point of view.

In the central part of the thesis we examined the model of games with
abstention and of multichoice games. In particular, we provided some
axiomatizations for two power indices for games with abstention and
defined a new value for multichoice cooperative games with in the spirit
of the Shapley value.

In the last part of the thesis, we considered the problem of ranking
players from a new perspective. We presented two functions that asso-
ciate a ranking over players, given a preference profile over the subsets
formed by those players. We also provided an axiomatic characterization
of these two functions.
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Our work can be further developed in different directions. First of
all, it would be interesting to find real life examples and applications for
all the ideas presented in this thesis. An interesting line of application
would be also to establish the connections between a ranking with power
indices and with the lexicographic functions we introduced.

Secondly, a natural extension of our work is to provide other charac-
terizations for power indices for games with abstention or define other
values in the family of multichoice games. To reinforce the use of these
indices as solution concepts, more properties can be studied and other
mathematical aspects can be analysed. The main difficulties to develop
this work is to identify which axioms can be properly generalized from
simple and cooperative games to games with abstention and multichoice
games.

Lastly, the more general approach to the ranking problem given an or-
dinal relation among coalitions seems to be quite innovative and promis-
ing. It is clear that other properties can be defined to capture different
ideas and to extend the range of application of the results presented in our
last chapter. Since there are different approaches and philosophies be-
hind the problem of ranking players, it is possible to define new ranking
functions and new axioms. Moreover, it is desirable to find other proper-
ties, that can also characterize the proposed ranking functions ands that
are more self-explanatory and independent from the functions presented
here.
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