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Introduction

The concept of biomarker has evolved during time, from the inclusion of

only biological molecules, to the recently updated definition given by the

Food and Drug Administration in collaboration with the National Insti-

tutes of Health of the US [1]: “a defined characteristic that is measured

as an indicator of normal biological processes, pathogenic processes, or re-

sponses to an exposure or intervention, including therapeutic interventions.

Molecular, histologic, radiographic, or physiologic characteristics are types

of biomarkers”. Thus, it is clear that a biomarker can originate from differ-

ent modalities (e.g., biological samples, medical images), be qualitatively

or quantitatively measured, and used for several purposes (e.g. diagno-

sis, prognosis, treatment assessment). In addition, according to the aim

of the study, the specific research design guides how to collect biomarker

measurements (e.g., cross-sectional study, longitudinal study). From the

last decades, all these types of biomarker have become more and more

commonly adopted in the clinical practice and research, and this has also

stimulated in the statistical science an increasing interest in the develop-

ment of new and advanced tools to properly handle the structure of each

dataset [2–4].

In this thesis, we present some non-parametric statistical models and meth-

ods that have been developed and adapted to deal with different types of

biomarker. In particular, Chapter 1 describes the assessment of the res-
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INTRODUCTION

piratory function evolution of Duchenne Muscular Dystrophy (DMD) pa-

tients from childhood to adulthood, where spirometric and opto-eletronic

plethysmographic biomarker measurements are collected longitudinally at

different time points for each subject. We deal with this irregular and

subject-specific timing by adopting a regression model based on natural

cubic splines with mixed effects, that allows to identify specific time points

of respiratory impairment during disease progression, and to investigate

possible effects of scoliosis, nocturnal non-invasive mechanical ventilation

(NIMV) and steroid therapy. This is a joint work with Prof. Andrea

Aliverti and Dr. Maria Antonella Lo Mauro (Department of Bioengineer-

ing, Politecnico di Milano) and Dr. Maria Grazia D’Angelo, Dr. Marianna

Romei and Dr. Sandra Gandossini (IRCCS Eugenio Medea, Bosisio Parini,

Lecco), forthcoming in the European Respiratory Journal as an original ar-

ticle.

In Chapter 2, we characterise the sybtypes of the sporadic Creutzfeldt-

Jakob disease (sCJD) with imaging biomarkers collected in a cross-sectional

design. In this case, the considered biomarkers are the signal hyperinten-

sities of diffusion magnetic resonance imaging (dMRI), that are measured

with a semi-quantitative scoring system devised to visually assess the im-

ages in different brain regions. After validating this scoring system and its

reliability to diagnose the disease, we classify the sCJD patients into their

most compatible subtype according to their biomarker measurements, with

a classification tree-based method. This is a joint work with Dr. Alberto

Bizzi (IRCCS Carlo Besta, Milan) and Dr. Pierluigi Gambetti (Depart-

ment of Pathology, Case Western Reserve University, School of Medicine,

Cleveland OH).

In Chapter 3, using the same data as in Chapter 2, we describe the disease

progression in each sCJD subtype by finding the sequence of brain regions
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INTRODUCTION

that become detectably hyperintense in DWI. To overcome the missing

temporal dependency that is intrinsic in any cross-sectional design, we

adapt the recently introduced event-based model [5, 6], a data-driven sta-

tistical model that assess the disease evolution in terms of its characterising

biomarkers, without relying on a longitudinal dataset. This is a joint work

with Dr. Alberto Bizzi (IRCCS Carlo Besta, Milan), Prof. Daniel Alexan-

der, Dr. Neil Oxtoby, Dr. Alexandra Young and Dr. Sara Garbarino

(Department of Computer Science and Centre of Medical Image Comput-

ing, University College London).

Finally, in Chapter 4 we outline a work still in progress aimed at develop-

ing a function-on-function regression model that can deal with temporal

dependent biomarkers (e.g., from functional magnetic resonance imaging

data). We model a functional response in terms of several functional co-

variates, and we propose a permutation test to identify sub-regions that

exhibit similar statistical differences. Moreover, in case of multiple tests

performed at different locations in the same domain (e.g., the voxels of

the brain MR image), we extend to a three-dimensional setting the closure

multiplicity adjustment method [7, 8] to control the family-wise error rate

of the proposed procedure.
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Chapter 1

Evolution of Respiratory

Function in Duchenne

Muscular Dystrophy from

Childhood to Adulthood

Duchenne muscular dystrophy (DMD) is an X-linked myopathy resulting

in progressive wasting of locomotor and respiratory muscles, with conse-

quent chronic ventilatory failure that is the main cause of death. In these

patients it is extremely important, therefore, to measure lung function and

respiratory muscle action in order to monitor the progression of the disease,

to identify early signs of ventilatory insufficiency, to plan optimal interven-

tions for improving the quality of life and to quantify the effects of novel

gene-modifying strategies and pharmacological therapies [9–17].

At present, the outcome measures consider mainly motor function, namely

of lower and upper limbs. Specific respiratory outcome measures are needed

to objectively evaluate the effects of interventions in DMD, not only re-

garding spirometric and lung volume indexes but also respiratory muscle

function. Forced vital capacity (FVC), when expressed in liters, follows a
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pathognomonic pattern characterized by an ascending phase, a plateau and

a descending phase during the course of the disease [18–23]. When FVC is

instead expressed as percentage of predicted value, it linearly declines with

age indicating a progressive increase of lung restriction [18–21], [23–25].

The deterioration of lung function can be stabilized with steroid ther-

apy [13] [26–29], which helps delaying the loss of ambulation and the conse-

quent development of scoliosis, an additional contributor to the restrictive

lung pattern [13] [29–35].

Spirometry is recommended by current guidelines for routine lung func-

tion evaluation in DMD [9, 10], since FVC has prognostic value for sur-

vival [19] and is a useful guidance for treatment [19,23,36,37]. Nevertheless,

spirometry has inherent limitations. A high level of patient’s cooperation

is needed, thus it cannot be applied in early childhood and it becomes

difficult in adulthood due to the fatigue induced by repeated maximal ma-

neuvers and/or the presence of macroglossia [38–40]. It provides only a

global evaluation of lung restriction, irrespectively of its possible causes,

such as alterations in lung, chest wall, respiratory muscles or a combina-

tion of them. Moreover, it does not provide any specific information on the

impairment of ribcage muscles, diaphragm and abdominal muscles.

The detailed analysis of spontaneous breathing at rest including also thoraco-

abdominal contributions to tidal volume (breathing pattern), represents a

useful approach for noninvasive and non-volitional assessment of respira-

tory function feasible in all patients [18, 41]. Abdominal contribution to

tidal volume progressively decays with age [41] being a strong predictor of

nocturnal hypoxemia [42] and inefficient cough [43].

We hypothesized that breathing pattern can provide information comple-

mentary to spirometry, regarding the natural course of the disease and the

effects of given treatments. The specific aims were to study the natural
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evolution of respiratory function in terms of spirometry, lung volumes and

breathing pattern from childhood to adulthood, to identify possible key

points and to investigate possible effects of scoliosis, nocturnal non-invasive

mechanical ventilation (NIMV) and steroid therapy.

1.1 Material and Methods

1.1.1 Patients

This is a 7-year retrospective study of respiratory function in 115 patients,

with a defined diagnosis of DMD [11], age ranging from 6 to 24 years

and data collected at least at 3 different visits, out of the 167 patients

followed at the IRCCS “E.Medea” Insitute (Bosisio Parini, Lecco, Italy).

Patients were evaluated once/year until wheelchair bounding and there-

after twice/year, for 574 visits. At each visit, anthropometric and clinical

(scoliosis, ambulation, steroid therapy and use of assistive respiratory de-

vices) data were documented. All patients or parents signed a consent form,

approved by the Local Ethical Committee accordingly to the declaration

of Helsinki. Fifty-six age-matched healthy male subjects were enrolled as

control group. The control group was composed by healthy brothers of

DMD patients, relatives of the researches and students of the laboratory

who volunteered to take part to the study.

1.1.2 Pulmonary function test

At each visit, FVC, Forced Expiratory Volume in 1 sec (FEV1), Peak Expi-

ratory Flow (PEF) and subdivisions of lung volume (Functional Residual

Capacity, FRC; Residual volume, RV, and Total Lung Capacity, TLC)

by the nitrogen washout technique were measured (Vmax series 22, Sen-

sorMedics, Yorba Linda, CA). Spirometric data were presented both as

absolute and expressed as percentage of the predicted values [44]. Noc-
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CHAPTER 1. EVOLUTION OF RESPIRATORY FUNCTION IN DUCHENNE
MUSCULAR DYSTROPHY FROM CHILDHOOD TO ADULTHOOD

turnal oxygen saturation (SpO2) was measured in all patients not under

nocturnal non-invasive mechanical ventilation (NIMV) by pulse-oximetry

(Nonin, 8500, Quitman, TX) and only recordings >8 hours were considered

acceptable.

1.1.3 Assessment of spontaneous breathing pattern at rest

Breathing pattern was measured in supine position using opto-electronic

plethysmography (OEP System; BTS, Milan, Italy) and a geometrical

model based on 52 markers [45, 46]. After a short period of adaptation

to the recording conditions, total and compartmental volumes were con-

tinuously measured during five minutes of quiet breathing. An average

period of 90 sec of stable breathing was then selected during which the fol-

lowing parameters were calculated breath-by-breath: tidal volume (VT),

respiratory rate (RR), minute ventilation, rapid and shallow breathing in-

dex (RSBi=RR/VT) and ribcage and abdominal tidal volumes (∆VRC

and ∆VAB, respectively, expressed both in liters and as percentage con-

tribution to VT). Tidal volume was analyzed also normalized according

to weight. The ribcage was in turn split into compartments, namely pul-

monary ribcage and abdominal ribcage [45, 46]. The volume variations of

the two ribcage components were presented both as absolute and percent-

age values.

1.1.4 Effects of scoliosis, steroids and NIMV

To study the effect of scoliosis, patients were grouped accordingly to the

severity of scoliosis: null (NU), mild (MI, Cobb angle < 20◦), moderate

(MO, 20− 40◦), severe (SE, > 40◦) and after spinal fusion (SF). To study

the effect of steroids, patients were grouped as “naive” (N, never treated or

treated for < 1 year), “current” (C, under treatment or stopped since < 1
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year before the visit) or “past” (P, not under treatment, but previously

treated for > 1 year). To study the effect of NIMV, patients were grouped

as “NIMV” (currently under treatment) and “no-NIMV” (patients never

treated with NIMV within the period of the study). Patients who under-

went NIMV treatment within the period of the study were identified and

the data before the start of the treatment constituted a third group called

“pre-NIMV”.

1.1.5 Statistical data analysis

We used a basis of S natural cubic splines built on the time domain 6-

24 years, where S = 5 was chosen by minimizing the PRESS index (i.e.,

Predictive Residual Error Sum of Squares) which is a leave-one-out cross-

validation estimate of the average squared prediction error of the fitted

model when it is used to predict the value of unobserved data.

Data were analyzed by the following regression model:

yiG(t) =
S∑
k=1

βkGφk(t) +
S∑
k=1

bkiGφk(t) + εiG(t) (1.1)

where: i) yiG(t) is the datum that one would have recorded if the i-th sub-

ject in the group G were measured at age t ∈ (6, 24). The group G can

be one of the following: the whole population of DMD patients, the whole

population of healthy controls, or one of the categories of the steroid, the

scoliosis or the NIMV subgroups; ii)
∑S

k=1 βkGφk(t) indicates the popula-

tion mean curve; iii)
∑S

k=1 bkiGφk(t) indicates the subject-specific correc-

tion such that
∑S

k=1 βkGφk(t)+
∑S

k=1 bkiGφk(t) indicates the subject-specific

evolution curve, and finally iv) εiG(t) indicates the session-specific measure-

ment error.

In detail, φk(t) is the value at age t of the k-th natural cubic spline

(k = 1, . . . , S), βkG is the regression coefficient related to φk and to the
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group G, bkiG is the random regression coefficient related to φk and to the

i-th subject in the group G, and εiG(t) is the measurement error at age t re-

lated to the i-th subject in the group G. We assumed that bkiG ∼ N (0, σ2
k)

for each subject i in the group G, allowing a different variance σ2
k for each

natural cubic spline, and that the measurement errors εiG(t) ∼ N (0, σ2)

for each subject i in the group G for every time t. Moreover, we assumed

all random terms in the models to be independent.

For every acquired datum of the subjects, we computed by maximum-

likelihood estimation the population mean curve µTOTG(t) =
∑S

k=1 βkGφk(t)

for each time t ∈ (6, 24) and group G, and its 95% pointwise asymptotic

confidence intervals. In addition, we performed asymptotic likelihood-

based tests (based on the same set of five spline coefficients) to find whether

and at which age t there was a significant difference between the mean curve

of a specific group G and the mean curve of another group (or with respect

to a known reference curve). Within this procedure, we identified three set-

tings: i) when considering yiG(t) as the percentage of predicted value of a

parameter (i.e. FVC, FEV1, ∆VAB), we used 100% as its reference value;

ii) when considering yiG(t) as one parameter of the breathing pattern in its

original unit of measure, we compared the mean curve of the DMD patients

to the mean curve of the control population; iii) instead, when considering

yiG(t) as one parameter of the spirometric test in its original unit of mea-

sure, first we computed the pairwise difference between the ideal and the

observed values of each subject; then we constructed the population mean

curve of these differences with the model (1.1) and we tested whether and

at which age t the resulting mean curve is significantly non-zero.

Finally, for every acquired datum and for every group G, we assessed the

significance of the random effects related to the subject with a likelihood

ratio test, which compared the full model with the one that excluded all the

14
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random effects. Significance was determined by p < 0.05. The proposed

model was implemented in R (version 3.2.3) with the package lme4.

1.2 Results

1.2.1 Patients

In Table 1.1, anthropometric and clinical data of the 115 enrolled DMD

patients are reported for each age. At the age of 13 yrs all patients but

one were wheelchair bound. More than one third of the patients older than

14 yrs were using cough assistive-devices. In the study group, 28 patients

were regularly using nocturnal NIMV (since a mean age of 19.1 ± 3.5).

The youngest patient using NIMV was 15.6 years old. Scoliosis worsened

with age. Steroid treatment was prevalent among younger patients. In the

course of the study, 9 patients died, 4 due to respiratory and/or swallowing

insufficiency (mean age 16.7 ± 2.3) and 5 to cardiac failure (mean age

17.6± 4.5). Median (interquartile range) of the control group age was 16.1

(7.7-22.7) yrs, of the height was 1.7 (1.3-1.8) m, of the weight 60 (29-75)

kg and of the body mass index 19.6 (16-23) kg·m−2.

1.2.2 Spirometry, lung volumes and nocturnal oxygen satura-

tion

Evolutions with age of FVC, FEV1 and PEF are shown in Figure 1.1.

These parameters, when expressed as percentage of the predicted values,

linearly declined by 4.6%/yr (age range 11-22), 5.4%/yr (age range 11-22)

and 3.8%/yr (age range 6-20), respectively. All absolute and predicted

values were significantly reduced after the age of 7. The reduction of FVC

was due to both inspiratory capacity and expiratory reserve volume, being

significantly lower than predicted after the age of 6 and 8, respectively

(Figure 1.2). The reduction of TLC and FRC began at the age of 7.7 and

15
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Figure 1.1: Evolution with age of the maximum-likelihood estimation population mean curve
(thick line) and its 95% pointwise asymptotic confidence intervals (thinner lines) of forced vital
capacity (FVC), forced expiratory volume in one second (FEV1) and peak expiratory flow
(PEF) expressed as percentage predicted (A, C, E, respectively) and absolute values (B, D,
F, respectively) in DMD patients. Black lines: measured values; grey lines: predicted values.
Dotted areas: values significantly different from predicted with 0.01 < p < 0.05. Grey areas:
values significantly different from predicted with p < 0.01.
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MUSCULAR DYSTROPHY FROM CHILDHOOD TO ADULTHOOD

Figure 1.2: Evolution with age of the maximum-likelihood estimation population mean curve
(thick line) and its 95% pointwise asymptotic confidence intervals (thinner lines) of total lung
capacity (TLC, A), functional residual capacity (FRC, B), residual volume (RV, C), inspiratory
capacity (IC, D) and expiratory reserve volume (ERV, E) expressed as absolute values in DMD
patients. Black lines: measured values; grey lines: predicted values. Dotted areas: values
significantly different from predicted with 0.01 < p < 0.05. Grey areas: values significantly
different from predicted with p < 0.01.
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Age (yrs) Visits (N) Pts (N) Weight (Kg) Height (cm) Wheelchair bound pts (%) Pts using CAD (%) Pts under NIV (%) Current steroid users (%) Pts with scoliosis (%)

NU M MO S SF

6 23 23 21.1 (20.6-24.9) 116.5 (112.6-121.5) 9 0 0 78 100 0 0 0 0

7 31 28 25.0 (22.5-30.5) 121.0 (118.5-125.0) 11 4 0 79 96 4 0 0 0

8 28 25 29.0 (25.2-35.0) 127.0 (122.0-131.0) 24 12 0 80 88 12 0 0 0

9 31 28 31.0 (27.0-36.0) 132.0 (129.8-135.5) 43 4 4 68 79 14 4 4 0

10 33 28 37.0 (31.5-45.0) 140.0 (134.0-142.0) 68 11 4 50 54 32 11 4 0

11 37 35 45.0 (38.0-51.5) 144.0 (138.0-149.0) 80 17 0 49 40 34 20 6 0

12 39 34 49.0 (38.0-57.0) 151.0 (138.0-155.5) 85 24 0 26 29 32 18 18 3

13 41 35 54.5 (44.0-66.5) 155.0 (148.0-158.5) 97 29 0 20 26 29 17 23 6

14 42 35 55.0 (50.0-65.0) 160.0 (155.0-165.0) 97 31 3 9 14 17 20 26 23

15 35 27 57.0 (48.3-65.0) 162.0 (157.0-165.0) 96 41 11 4 4 26 33 11 26

16 34 28 56.5 (42.0-68.8) 164.0 (159.3-167.3) 96 57 21 4 7 18 29 25 21

17 39 26 60.0 (47.5-70.0) 165.0 (160.5-168.0) 96 54 27 4 8 19 31 12 31

18 37 26 53.0 (44.0-63.0) 165.0 (160.0-167.0) 100 46 35 4 8 12 23 27 31

19 27 20 58.0 (45.3-73.5) 166.0 (162.8-171.0) 100 60 35 5 10 10 25 35 20

20 37 24 58.0 (46.0-67.9) 165.5 (164.0-168.3) 100 54 33 4 4 17 13 50 17

21 26 18 57.0 (50.0-72.3) 166.5 (165.0-170.3) 100 33 17 6 6 11 17 56 11

22 27 18 54.0 (46.1-64.0) 165.0 (164.0-168.8) 100 83 50 6 0 17 22 44 17

23 19 15 58.0 (42.0-78.0) 167.0 (164.5-176.5) 100 73 33 0 0 27 27 47 0

24 11 8 64.5 (46.5-78.8) 174.5 (165.0-177.3) 100 75 63 0 0 13 38 38 13

Table 1.1: Anthropometric and clinical data of DMD patients. CAD: cough assisted device; NIV: non-invasive ventilation; NU: null; M: mild; MO: moderate; S: severe;
SF: spinal fusion.
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9.3, respectively, while RV became greater than predicted after the age of

11.3 (Figure 1.2).

In Figure 1.3 the mean curves of nocturnal saturation data are reported

in terms of night time spent with SpO2 in the ranges 95-100%, 90-94%

and < 90%, number and average time of desaturation events. Peripheral

oxygenation during sleep worsened with age. Desaturation events were

already present in childhood.

Figure 1.3: Evolution with age of the maximum-likelihood estimation population mean curve
(thick line) and its 95% pointwise asymptotic confidence intervals (thinner lines) of the night
time spent with nocturnal saturation in the ranges 95-100%, 90-94% and < 90% (A), of the
number (B) and the average time (C) of desaturation events in DMD patients.

1.2.3 Spontaneous breathing pattern at rest

The evolution curves of minute ventilation, RSBi and their two compo-

nents (i.e., RR and VT) are shown in Figure 1.4. When compared to

healthy peers, DMD patients started to hypoventilate at the age of 18.1

because of a reduced VT (after the age of 17.2), being RR similar between

the two groups almost all throughout the considered age span. RR be-

came significantly higher than normal after 22.1 yrs and rapid and shallow

breathing occurred after the age of 20.7 years. When normalized to actual

body weight, tidal volume was similar between DMD and healthy peers in

the whole considered age range. The mean curves of ∆VRC and ∆VAB,
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Figure 1.4: Evolution with age of the maximum-likelihood estimation population mean curve
(thick line) and its 95% pointwise asymptotic confidence intervals (thinner lines) of minute
ventilation (V̇E , A), tidal volume (VT , B), respiratory rate (RR, C), rapid and shallow breathing
index (RSB, D), and tidal volume normalized to body weight (E), during spontaneous breathing
in supine position in DMD patients (black lines) and healthy controls (grey lines). Dotted
areas: values significantly different from predicted with 0.01 < p < 0.05. Grey areas: values
significantly different from predicted with p < 0.01.
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both expressed in liters and as %VT, are shown in Figure 1.5. When ex-

Figure 1.5: Evolution with age of the maximum-likelihood estimation population mean curve
(thick line) and its 95% pointwise asymptotic confidence intervals (thinner lines) of ribcage
volume variations (∆VRC) and abdominal volume variation (∆VAB) expressed in liters (A and
C, respectively) and as percentage contribution to tidal volume (B and D, respectively) during
spontaneous breathing in supine position in DMD patients (black lines) and in healthy controls
(grey lines). Dotted areas: values significantly different from predicted with 0.01 < p < 0.05.
Grey areas: values significantly different from predicted with p < 0.01.

pressed in liters, ∆VRC was similar between DMD and healthy controls

at all ages, whereas ∆VAB became lower in DMD after the age of 16 yrs.

Thoraco-abdominal volume variations in DMD, when instead expressed as

%VT, showed a pattern starting to be significantly different than normal

after the age of 14.8 years, when ribcage and abdominal contribution be-

came significantly greater and lower than normal. The predominance of

rib cage compared to abdomen in the relative contribution to tidal volume

progressively increased with age. Similarly, to the ribcage considered as a
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whole, the expansion of both pulmonary and abdominal ribcage in DMD

was almost similar to healthy subjects. The expansion of the abdominal

ribcage became lower than controls starting from the age of 22. The per-

centage contribution of pulmonary and abdominal ribcage started to be

significantly higher than the control group at the age of 13.2 yrs and 19

yrs, respectively.

1.2.4 Effect of scoliosis, steroids and NIMV

The mean curves of FVC (%pred) and ∆VAB (%VT), grouped by the

severity of scoliosis, are shown in Figure 1.6. Both parameters were neg-

Figure 1.6: Evolution with age of the maximum-likelihood estimation population mean curve
of the percentage predicted forced vital capacity (A) and percentage abdominal contribution
to tidal volume during spontaneous breathing in supine position (B) grouped by scoliosis clas-
sification (NU: null; MI: mild; MO: moderate; SE: severe; SF: spinal fusion). Data are reported
in the age range in which the asymptotic confidence intervals is ¡40%. Bottom panels: pairwise
comparisons of the population means between all categories of scoliosis (Dotted areas: values
significantly different from predicted with 0.01 < p < 0.05. Grey areas: values significantly
different from predicted with p < 0.01.)

atively associated with the severity of scoliosis, with patients with severe
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scoliosis and spinal fusion showing the lowest values.

The mean curves of FVC (%pred) and ∆VAB (%VT), in the different

steroid therapy groups, are shown in Figure 1.7. In currently steroid-

Figure 1.7: Evolution with age of the maximum-likelihood estimation population mean curve
of the percentage predicted forced vital capacity (A) and percentage abdominal contribution to
tidal volume during spontaneous breathing in supine position (B) grouped by corticosteroids
treatment groups (C: currently under treatment; P: “past”, i.e. treated in the past for at least
one year and not currently receiving steroids; N: näıve, i.e. never treated with steroids). Data
are reported in the age range in which the asymptotic confidence intervals is ¡40%. Bottom
panels: pairwise comparisons of the population means between all categories of steroid sub-
groups (Dotted areas: values significantly different from predicted with 0.01 < p < 0.05. Grey
areas: values significantly different from predicted with p < 0.01.)

treated patients, FVC (%pred) was significantly higher than naive and

past patients in the age range 15.1-21.3 and ∆VAB (%VT) in the age

range 13-17.3.

The mean curves of FVC (%pred) and ∆VAB (%VT), grouped by the

NIMV use, are shown in Figure 1.8. Compared to no-NIMV group, pa-

tients belonging to pre-NIMV group were characterized by lower values of

both FVC (%pred) and ∆VAB (%VT) from the age of 13 years. After

the start of NIMV, FVC (%pred) and ∆VAB (%VT) in treated (NIMV

group) and untreated (no-NIMV) patients remained significantly different

until 21.1 and 18.4 years, respectively.
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Figure 1.8: Evolution with age of the maximum-likelihood estimation population mean curve
of the percentage predicted forced vital capacity (A) and percentage abdominal contribution to
tidal volume during spontaneous breathing in supine position (B) grouped by nocturnal non-
invasive mechanical ventilation (NIMV) groups (NIMV: currently under treatment; pre-NIMV:
patients who underwent NIMV treatment within the period of the study. The curve refers to
the visits before the start of NIMV; no-NIMV: patients never treated with NIMV within the
period of the study). Pre-NIMV data are reported in the range that contains at least six visits
in each age. Bottom panels: pairwise comparisons of the population means between pre-NIMV
and no-NIMV and between NIMV and no-NIMV (Dotted areas: values significantly different
from predicted with 0.01 < p < 0.05. Grey areas: values significantly different from predicted
with p < 0.01.).
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1.3 Discussion

In the present study an original and comprehensive description of the evo-

lution of respiratory function in patients with DMD over the age span 6-24

years is provided. Non-invasive measurements were taken on a group of 115

subjects during 574 observations. The main result is that a detailed anal-

ysis of breathing pattern is able to provide information regarding specific

key time points during the natural course of the disease. While predicted

values of FVC, FEV1 and PEF decline since childhood, during spontaneous

breathing the following parameters become significantly different than nor-

mal in sequential order: contribution of abdominal compartment to tidal

volume (lower after 12.3 yrs), tidal volume (lower after 17.3 yrs), minute

ventilation (lower after 18.1 yrs) and respiratory rate (higher after 22 yrs).

The progressive decline of minute ventilation observed during awake spon-

taneous breathing at rest, that becomes significant after the age of 18.1, is

due to progressively reduced tidal volume caused, in turn, by a decreased

abdominal expansion with ribcage volume variations similar to normal all

over the considered age span. As a result, the percentage contributions

of ribcage and abdomen to tidal volume become increasingly higher and

lower, respectively, after the age of 14.8. It must be noted that, when nor-

malized to weight, the differences in tidal volume are no longer present.

This is presumably due to the pathological thinness that can develop in

adulthood, rather than to a preserved ventilatory pump.

Another novel feature provided by the present study is that both spirom-

etry and lung volumes have been longitudinally measured and analyzed in

a large cohort of patients. This allowed assessing the determinants of the

decay of FVC, namely the relevant reduction of TLC, IC and ERV since

childhood, suggesting that the impairment of both inspiratory and expira-

tory muscles as a whole represents a clear hallmark of DMD.
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It is important to emphasize that both spirometry and lung volume assess-

ment, which are traditionally used to evaluate respiratory impairment in

DMD patients, represent volitional tests that require a high level of pa-

tient’s cooperation that is not always possible. In addition, these tests do

not evaluate the patient under his normal conditions, represented by spon-

taneous breathing at rest, but only during maximal maneuvers. In addi-

tion, they provide global indexes of respiratory system function, without

being able to differentiate between decreased respiratory system compli-

ance and/or increased respiratory muscle weakness. Finally, they cannot

be specific also in differentiating the relative impairment of each respiratory

muscle functional group, namely ribcage muscles, diaphragm and abdomi-

nal muscles.

During inspiration, rib cage expansion is the result of the action of all in-

spiratory rib cage muscles, namely the scalene, the external intercostals,

the parasternals and the sternocleidomastoid whilst abdominal expansion

is due to the action of the diaphragm. Therefore, although in our DMD

patients the rib cage expansion remains within the normal range, it can

be supposed that inspiratory rib cage muscles are also impaired, being

unable to compensate for the insufficient action of the diaphragm that be-

comes unable to provide an adequate tidal volume. In this scenario, the

impairment of the inspiratory muscles is unbalanced with the diaphragm

impacted more substantially than the inspiratory rib cage muscles.

A further evidence of the earlier impairment of the diaphragm with respect

to the ribcage muscles derives from the analysis of the abdominal ribcage

expansion that becomes significantly lower only at late ages. This is proba-

bly due to the fact that this compartment is submitted to both inspiratory

ribcage muscles and diaphragm. Therefore, diaphragmatic impairment is

masked in the age range 15-22 by the relatively preserved ribcage muscles
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becoming evident also in this compartment only after the age of 22.

The diaphragmatic action in DMD can be affected in opposite directions by

the presence of scoliosis and by corticosteroid therapy. Regarding scoliosis,

we have now demonstrated that the worsening of scoliosis exacerbates not

only the restrictive lung pattern, but also the action of the diaphragm as

well. The reduced contribution of abdominal compartment to tidal vol-

ume with increasing severity is a result somehow surprising, as the main

effects were expected to be on the rib cage. However, we can speculate

that the presence of scoliosis determines a compression of the abdomen

and increases diaphragmatic load, shifting chest wall expansion toward the

ribcage. Regarding steroids treatment, our results are in agreement with

those reported by several recent studies [13,14,23,47], which demonstrated

that currently corticosteroid user patients have better spirometric values

than the other two groups. In the present study we report that, in addi-

tion, there is a significant effect on abdominal contribution to tidal volume

in the age range between 13 and 17.3 years.

A limitation of the study is related to the lack of complete availability

of measurements at the extremities of the considered age range of DMD

patients, i.e. children younger than 6 and adults older than 24. In these pa-

tients, although breathing pattern was easily evaluated by opto-electronic

plethysmography, the availability and/or reliability of spirometry and lung

volumes was very poor due to the lack of collaboration in the youngest and

the presence of macroglossia and/or facial muscular weakness in the oldest.

In addition, most of the patients under current steroid treatment were the

younger ones, with very few old patients. The reason of this bias is that in

the clinical practice steroid treatment is gradually stopped after the loss of

ambulation because of the side effects [11,28,48].

Nevertheless, the study has several strengths. This is the largest data
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set to date including serial spirometry, lung volumes, nocturnal oxygen

saturation and breathing pattern assessment, with data collected at dif-

ferent time points for each subject in the interval 6-24 years. Although

this did not allow a direct time-matched data comparison, we dealt with

this irregular and subject-specific timing by adopting a regression model

based on natural cubic splines with mixed effects. Similar models have

been employed in the longitudinal data analysis literature and used in a

wide range of applications [49, 50]. Our proposed regression model allows

to obtain estimated values at any time point of our domain taking into

account the possible effects of scoliosis and steroids (i.e. fixed effects), the

specific temporal evolution of each subject (i.e. random effects), and the

session-specific measurement errors (i.e. error term).

The study has clinical implications. Firstly, we have shown that after the

age of 14.8 yrs the diaphragm shows early evidence of weakness, starting

to be unable to contribute to an adequate tidal volume and minute ven-

tilation. Noteworthy, in the same period the percentage of patients under

NIMV becomes significant (Table 1). Moreover, we have shown that those

patients who started NIMV during the period of the study were charac-

terized by a faster decline of FVC (%pred) and ∆VAB (%VT). After the

start of NIMV, FVC (%pred) and ∆VAB (%VT) continued to decline for

about 3 years, then these parameters increased until the age of 21 years,

and then declined again, similarly to untreated patients.

On the basis of these results, we believe that the specific involvement

of the diaphragm should be considered in addition to the FVC decline

for the definition of treatment guidelines, including the timing of start-

ing NIMV [9–12]. Our results, therefore, suggest that technological de-

velopments should be addressed in order to provide simple but accurate

measurement of abdominal kinematics during spontaneous breathing that
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could be available in all clinical centers.

In addition, we have shown original evidence that scoliosis represents a

burden to the dystrophic diaphragm of these patients and that steroid

treatment has efficacy on spirometry and diaphragm’s contribution to tidal

volume, supporting the relevance of steroid treatment as part of DMD pa-

tients’ care.

In conclusion, the evolution curves of spirometry, lung volumes and breath-

ing pattern parameters here presented might be considered to better define

outcome measures in the forthcoming clinical trials both in non-ambulant

and ambulant DMD patients.
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Chapter 2

Diagnosis of Subtypes with

Diffusion Magnetic Resonance

Imaging in Sporadic

Creutzfeldt-Jakob Disease

Early and accurate diagnosis is increasingly recognised as critical to achieve

an effective treatment of neurodegenerative diseases. This notion applies

especially to prion diseases that often have a rapid course. MRI has re-

cently gained a high degree of reliability in the diagnosis of prion diseases

with the introduction of diffusion-weighted imaging (DWI) in the diagnos-

tic criteria, as well as the increasing experience acquired by image readers

despite the rarity of prion diseases [51–53]. Diagnostic sensitivity and speci-

ficity values of over 90% have recently been reported [51, 54–56]. Another

recent test, the Real-Time Quaking-Induced-Conversion (RT-QuIC), has

attained high degree of sensitivity and specificity in the diagnosis of prion

diseases based on the detection of minute amounts of disease-associated

prion protein (PrPD) in body fluids and olfactory epithelium non-invasively

obtained [57,58]. However, magnetic resonance imaging (MRI) remains the
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test of choice at the initial clinical evaluation when the diagnosis is open

and requires timely identification of treatable conditions [53].

The clinical diagnosis of prion diseases is further compounded by the di-

versity of their phenotypes [56,59,60]. Sporadic Creutzfeldt-Jakob diseases

(sCJD) alone comprises five distinct clinical and histopathological pheno-

types or subtypes, which are associated with distinctive pairings of the

genotypes at the methionine (M) and valine (V) polymorphic codon 129

(MM, MV, and VV) with the PrPD types 1 and 2. The five histopatho-

logical phenotypes are characterised by the anatomical distribution and/or

type of the spongiform change, distribution and shape of PrPD deposits

and severity of astrogliosis and loss of neurons [61].

The distinction of sCJD subtypes is clinically relevant not only because

individual subtypes may significantly differ in disease duration, but also

because they may respond differently to drug treatment, once effective

treatments will be developed. This suggests that treatment may need to

be tailored to individual sCJD subtypes.

However, the only way to have a confirmation of the sCJD subtype is by

tissue examination either at biopsy or, more definitely, at autopsy. Until

recently, no clinical test had been shown to reliably diagnose sCJD subtype,

with the only exception of the RT-QuIC test, that has been reported to dis-

tinguish MM and VV sCJD subtypes when the prion protein 129 genotype

is known [62]. Regarding the use of imaging biomarkers, few attempts have

been made to distinguish sCJD subtypes on MRI examination [63,64]. Al-

though significant differences were observed between some sCJD subtypes,

no comprehensive attempt was made to adapt these findings to the clinical

diagnosis. Morover, the resuls of those works on the subtype identification

were based on a classification scheme of 1999 [61], while recently a revi-

sion of the classification of sCJD histopathological phenotypes has been
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provided [60]. Establishing in vivo biomarkers that could predict sCJD

subtype would thus be relevant for patient management and clinical trials.

MRI is an ideal candidate for providing such biomarker in vivo because

it evaluates the whole brain rather than just a few small specimens, as

neuropathology does. MRI has great potential to be established as the

method of choice to assess regional extension of brain lesions in the early

stage of prion diseases. Among different MRI modalities, diffusion MRI

(dMRI) has been shown the most sensitive to peculiar brain microstruc-

tural alterations such as spongiosis and PrPD deposition. dMRI measures

microstructure by using the random walk of water molecules as a probe.

Entrapment of water within vacuoles and/or slowing of water diffusivity in

the interstitium enriched with prion protein aggregates is likely responsi-

ble for the signal hyperintensity detected with diffusion-weighted imaging

(DWI) in affected regions of the brain [65,66].

In this study, variations of the MRI signal were rated and compared over

12 brain anatomical regions in a cohort of patients in which the histologi-

cal, genetic and PrPD examinations allowed for the definitive diagnoses of

prion diseases as for form, type and subtype of prion disease. We report on

the diagnostic accuracy and lesion distribution of the MRI examinations

carried out on 306 patients with sCJD. One hundred twenty three patients

in which prion disease was definitively rule out were used as controls. The

MRI rating profiles generated with this procedure revealed significant dif-

ferences which enable the diagnosis of individual sCJD subtypes.

2.1 Materials and methods

2.1.1 Study design

We considered a retrospective and a prospective study for this analy-

sis. The cohort of subjectsd́ata belonging to the retrospective study was
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collected by the National Prion Disease Pathology Surveillance Center

(NPDPSC) of Cleveland (Ohio), that received the biological material (i.e.

encephalon, CSF, blood) of patients to diagnose the prion disease for these

subjects. Subsequently a MRI was requested and it was sent to a neuro-

radiologist (AB) for a consultation. Blindly to the preliminary diagnosis,

AB reviewed and assessed the MRI. The prospective study is composed of

all the suspected cases of prion disease, for which the doctor of the patient

asked the NPDPSC for consultation to confirm the diagnosis. Thus, a MRI

was sent to the Center and, often, also biological material while the patient

was still alive. Then the NPDPSC tried to retrieve the encephalon after

the patient’s death to make the brain cutting and the definite diagnosis on

tissue with neuropathological examination and Western Blot technique. In

this study arm there is the possibility of not having a confirmed diagnosis

(positive or negative) on a relatively high number of subjects (about 30%

in our cohort).

Patients eligible for inclusion were subjects with suspected prion disease,

having at least one brain MRI collected by the NPDPSC. For both the

retrospective and the prospective study, we excluded patients if they did

not have at least a DWI (or ADC) of the brain and if they did not have

a confirmed diagnosis of sCJD or a confirmed diagnosis of non prion dis-

ease, made through a neuropathological examination. Here, the subtype

identification is based on a recent classification of sCJD histopathological

phenotypes [60].

2.1.2 Test methods

We proposed a semi-quantitative index test to grade the hyperintensities

of 12 brain regions of the DWI magnetic resonance images collected in
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our study on a four-point (i.e., 0-3) ordinal scale. This proposed index

test, used to classify the levels of hyperintensities of the DWI signal, is as

follows: a score “zero” is assigned to a brain region where clearly there

are no hyperintensities; a score “one” is assigned to a brain region where

the presence of a hyperintensity is questionable; a score “two” is assigned

to a brain region where the signal is obviously hyperintense in a restricted

area of the region considered; a score “three” is assigned to a brain region

where the hyperintensity is clearly present and it is spread over a large

part of the brain region considered. A neuroradiologist (AB) blind to the

subject diagnosis was enrolled to score all the MRI of our study, according

to this index test. The ordered set of the scores given to the MRI of a

subject defines the lesion profile that describes the visual assessment of

the hyperintensities pattern of that subject. As reference standards in

prion disease diagnosis, we considered the measurements of 14-3-3 and tau

proteins concentration in the CSF, since these two tests are quite often

assessed in the common clinical practice to support the diagnose of sCJD.

We also considered the recently introduced second generation Real-Time

Quaking-Induced Conversion (RT-QuIC) technique, that has been reported

having high sensitivity of detecting prion seeds in CSF specimens from CJD

patient [67]. Our proposed index test is considered positive when at least

one of the 12 regions is graded with a score greater than or equal to “two”,

otherwise negative. The tau protein test is considered positive when the

measurement is greater than 1,150 pg/mL, otherwise negative. The 14-

3-3 protein test is qualitative and identifies three diagnostic categories of

positive, negative, and ambiguous outcomes. We adopted the same decision

criteria described in [68] to classify the results of both tau and 14-3-3

protein tests. Moreover, we considered RT-QuIC responses as positive or

negative following the criteria given in [69].
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2.1.3 Statistical analysis

The MRI of 797 patients were blindly reviewed and scored by one neu-

roradiologist (AB) according to the index test proposed in the previous

section. Four hundred twenty nine patients with a definitive diagnosis and

diffusion weighted MR imaging were retained for the study: 306 patients

with the diagnosis of sCJD and 123 with a non prion disease diagnosis were

pathologically confirmed. Demographics of the sCJD patients are reported

in Table 2.1.

Subtype MRI FN Age at death (years) Disease duration (months) Path. proven
Median (Range) Mean (SD)

MM1 76 4 65 (39-91) 3.5 (3.1) 108
MM2C 28 1 63 (46-89) 14.7 (11.4) 29

MM1+2C 23 0 64 (45-86) 8.3 (12.1) 37
MV1 20 3 68 (49-88) 8 (7.8) 20

MV2C 15 0 68 (46-89) 17.6 (13.4) 15
MV2K 23 1 63 (47-85) 12.4 (7.4) 23

MV2C+2K 14 1 64 (56-82) 12.1 (7.4) 14
MV1+2C 11 1 69 (57-77) 16.6 (11.1) 11
MV1+2K 8 0 62 (54-75) 13.7 (5.1) 9

MV1+2C+2K 3 0 62 (62-63) 11.7 (4.8) 3
VV1 16 1 60 (35-88) 9 (6.5) 16
VV2 55 6 65 (45-80) 5.6 (2.3) 55

VV1+2 4 1 63 (60-72) 7 (4) 4
sCJD-nos 10 0 72 (64-80) 8.8 (10.9) 11

Table 2.1: Demographics for the sCJD patients involved in our study, divided by subtype.
“MRI”: number of cases with available DWI or ADC; “FN”: number of false negative MRI;
“Path. proven”: number of cases with confirmed diagnosis (some of them could not have an
available MRI, see the MRI column); “sCJD-nos”: sCJD not otherwise specified, meaning that
a definite diagnosis of sCJD is pathologically confirmed, but it is not yet available the subtype
classification.

We assessed the validity and reliability of our proposed index test on

these data calculating its diagnostic reliability (i.e. computing accuracy,

sensitivity, specificity) and its inter-rater reliability. As a further step,

we selected the 217 patients with positive MRI and pure sCJD subtype

(e.g. MM1, VV2 and not MM1+2, VV1+2), and pairwise compared their

mean lesion profiles to find the brain regions that mainly characterise each

subtype. Finally, based on the individual MRI profile scores of these 217

patients with pure sCJD subtype, we built a classifier to assist the radiol-

ogist/neurologist in predicting the pure sCJD subtype while assessing the
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MRI of a new patient. Further details about the methodology are given in

the following lines.

First, the comparative analysis of MRI diagnostic reliability (i.e., compar-

ison of accuracy, sensitivity and specificity) with those of CSF tests used

in routine diagnosis of prion diseases was carried out in a subset of 215

patients (170 sCJD and 45 non prion patients) that had undergone MRI,

14-3-3 and tau tests. Since 14-3-3 test can give an ambiguous outcome,

we assessed the accuracy, the sensitivity and the specificity of this test

considering two scenarios: i) the ambiguous cases were considered as false

negatives or false positives respectively in the CJD group and in the non

prion group, obtaining a lower bound for accuracy, sensitivity and speci-

ficity; ii) the ambiguous cases were considered as true negative or true

positive respectively in the non prion group and in the CJD group, obtain-

ing an upper bound for accuracy, sensitivity and specificity. This choice

of calculating an interval estimation of the diagnostic statistics allowed us

not to discard many observations from the comparison (61 over 215 [28%]),

and at the same time including the uncertainty of this test (i.e. the am-

biguous outcome). We compared also the diagnostic accuracy of the DWI

scoring and RT-QuIC test on a subgroup of 39 patients (33 sCJD and 6

non prion) having both exams available. The relatively small number of

patients with second generation RT-QuIC is due to its introduction in the

clinical practice only in the last few years. We computed for each diagnos-

tic statistic (i.e., accuracy, sensitivity, specificity) an exact binomial 95%

confidence interval using the method of Clopper and Pearson [70, 71], for

which the nominal coverage is guaranteed since its construction is based

directly on the binomial distribution.

Second, in order to assess the inter-rater reliability (IRR) of this MRI scor-

ing system, other two neuroradiologists (MG, RL) blind to the subject
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diagnosis were enrolled to score the images collected in our study, accord-

ing to the 4-point scoring system described above. In total, a common pool

of 128 MR images (80 sCJD and 48 non prion patients) were scored by all

the three raters. We assessed the IRR using a two-way mixed, consistency,

average-measures intra-class correlation (ICC) coefficient [72] to assess the

degree that raters provided consistency in their ratings across subjects,

being the ICC one of the most commonly-used statistics appropriate to

assess IRR for ordinal scales [73]. Following the cutoffs given by [74], we

considered the IRR being poor for ICC values less than 0.40, fair for values

between 0.40 and 0.59, good for values between 0.60 and 0.74, and excellent

for values between 0.75 and 1.0.

Third, we selected 233 MRI examined patients who harbored a PrPD type

pure sCJD subtype (e.g. MM1, VV2 and not MM1+2, VV1+2) and we

analysed and pairwise compared the profiles of these groups - excluding

the 16 patients with a false negative MRI result - to identify the discrim-

inant brain regions with significantly different scores. We performed the

analysis at two levels: with the permutational Hotelling T-squared test for

two samples, we first tested for the global difference between the mean

scores of two given subtypes (e.g. MM1 vs. VV2); this test is the multi-

variate extension of the t-test for two independent samples, adopted when

the number of response variables are at least two (e.g. in our case, the 12

brain region scores). Since the assumptions of normally distributed data

are not met in our case (i.e. we have ordinal data on the scale 0-3), we

used a permutational version of the standard T-squared test to obtain a

non-parametric inference tool. Subsequently, consistently with the previ-

ous hypothesis test, we performed a non-parametric univariate test (i.e.

Wilcoxon rank-sum test for ordinal data) for each of the 12 brain regions

scored, to find the areas that exhibited the most significant differences be-
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tween the two groups. We adjusted the p-values of these univariate tests

for multiple comparison with the Holm-Sidak correction, that provides a

conservative familywise error control [75, 76] when the tests are not inde-

pendent, as in our case where we compared the same group multiple times

(e.g. MM1 vs VV2, MM1 vs. MV1).

Finally, to predict the subtype of a new sCJD patient with MRI lesion

profile, we adopted a method for tree-based classification known as CART

(i.e., Classification And Regression Tree [77]) that provides a classification

algorithm in the form of a decision tree without imposing a specific assump-

tion on the underlying distribution of the data. We used the Gini impurity

index to choose at each step the candidate splits used to grow the tree, and

we pruned the fully grown tree such that the predicted classification error

computed by a leave-one-out cross-validation procedure was minimised.

2.2 Results

2.2.1 Diagnostic reliability

Three neuroradiologists agreed on the final diagnosis of prion disease on

112 of 128 (87.5%) patients. Remarkably the agreed examinations included

six false negative but no false positive. Among the 16 patients with discor-

dant diagnosis there were 12 sCJD patients and 4 non prion subjects. The

inter-rater reliability (IRR) of the scoring system on DWI was excellent for

most of the regions, with ICC values greater than 0.75 for the striatum,

thalamus, neocortex and part of the limbic system (and greater than 0.9

for precuneus, parietal caudate and putamen); ICC was good only for the

cerebellum and for the hippocampus (see Table 2.2).

The first MRI exam of 429 patients (306 sCJD and 123 non-prion sub-

jects) revealed 0.93 diagnostic accuracy, 0.91 sensitivity and 0.98 speci-
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Brain region ICC IRR rating
Frontal 0.88 (0.84-0.91) Excellent

Temporal 0.87 (0.80-0.92) Excellent
Precuneus 0.91 (0.88-0.94) Excellent
Parietal 0.93 (0.90-0.95) Excellent
Occipital 0.80 (0.72-0.86) Excellent
Cingulate 0.84 (0.78-0.88) Excellent

Insula 0.84 (0.78-0.88) Excellent
Hippocampus 0.60 (0.47-0.71) Good

Caudate 0.94 (0.92-0.96) Excellent
Putamen 0.93 (0.90-0.95) Excellent
Thalamus 0.85 (0.79-0.89) Excellent

Cerebellum 0.68 (0.56-0.77) Good

Table 2.2: ICC for the 12 brain regions scored by the three raters (95% confident interval in
brackets), with a qualitative rating of the IRR that follows Cicchetti (1994).

ficity. In seven patients the MRI became positive in a follow-up examina-

tion, therefore when considering all MRI examinations acquired for each

patient, the accuracy and sensitivity increased to 0.95 and 0.94, respec-

tively, while specificity remained unchanged. At first MRI examinations,

the prospective arm of the study (218 patients) showed 0.91 accuracy, 0.89

sensitivity and 0.98 specificity, while the retrospective study (211 patients)

showed 0.96 accuracy, 0.95 sensitivity and 0.97 specificity.

Analyses of 215 patients, including 170 and 45 subjects with confirmed di-

agnoses of sCJD and non prion disease respectively, pointed to MRI as the

most reliable test with 0.94 accuracy, 0.94 sensitivity and 0.98 specificity,

followed by tau in CSF with 0.80, 0.84 and 0.67, respectively while 14-3-3

results were even lower (Table 2.3).

MRI 14-3-3 Tau
Accuracy 0.94 (0.90-0.97) 0.76 (0.68-0.82) (0.55-0.82) 0.80 (0.74-0.85)
Sensitivity 0.94 (0.89-0.97) 0.87 (0.80-0.93) (0.65-0.91) 0.84 (0.77-0.89)
Specificity 0.98 (0.88-1) 0.24 (0.10-0.43) (0.16-0.51) 0.67 (0.51-0.80)

Table 2.3: Comparison of the diagnostic statistics for the DWI scoring system, 14-3-3 and tau
tests, evaluated on a common pool of 215 subjects (of which 170 sCJD patients). For each
statistic, a 95% confidence interval is computed using the method of Clopper and Pearson
(Newcombe, 1998c). For the 14-3-3 protein test, it is provided also another interval to take
into account the presence of “ambiguous” results, as stated in the previous section.

Diagnostic reliability was also compared with that of second generation

RT-QuIC in 33 sCJD cases and 6 non prion disease patients. In this limited
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population, MRI accuracy, sensitivity and specificity were 0.92, 0.91 and

1.0 and 0.80, 0.76 and 1.0 for RT-QuIC (Table 2.4).

MRI RT-QuIC
Accuracy 0.92 (0.79-0.98) 0.80 (0.63-0.91)
Sensitivity 0.91 (0.76-0.98) 0.76 (0.58-0.89)
Specificity 1.00 (0.54-1.00) 1.00 (0.54-1.00)

Table 2.4: Comparison of the diagnostic statistics for the MRI scoring system and the second
generation RT-QuIC test, evaluated on a common pool of 39 subjects (of which 33 sCJD
patients). For each statistic, a 95% confidence interval is computed using the method of
Clopper and Pearson.

2.2.2 DWI topographic lesion distribution in 5 sCJD subtypes

The mean scores of 12 brain regions for each of the sCJD subtypes are

plotted in Figure 2.1.

In MM1 patients, DWI signal hyperintensity mean scores were very high

either in the most of the neocortex with exception of the occipital visual

cortex and in the cingulate, they were moderate in the insula and striatum.

The hippocampus, thalamus and cerebellum scores were very low confirm-

ing that these regions are rarely affected in this subtype. The parietal

cortex was the region with the highest mean score.

In MV1, DWI signal hyperintensity mean scores and lesion distribution

were not statistically different from MM1, however few differences were

found. The cingulate and the caudate were the two regions with the high-

est score followed by the parietal cortex and putamen. Thalamus and

cerebellum obtained a relatively low scores.

In MM2, DWI scores were very high in the most of the neocortex with

exception of the occipital visual cortex, they were moderate in cingulate

and insula, low in hippocampus and very low in striatum, thalamus and

cerebellum. Again the parietal cortex was the region with the highest mean

score.

In MV2C, DWI scores were very high in most of the neocortex with a
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moderate score in the occipital cortex, they were moderate in cingulate

and insula, low in hippocampus and striatum, and very low in thalamus

and cerebellum. The parietal cortex was the region with the highest mean

score.

In VV1, DWI scores were high in the limbic regions (insula, cingulate and

hippocampus) and in most of the neocortex with exception of the occipital

visual cortex, they were moderate in striatum, very low in thalamus and

cerebellum. The insula was the region with the highest mean score.

In MV2K, DWI scores were very different from the previously described

subtypes. Scores were very high in striatum and thalamus, moderate in

cingulate, insula and cerebellum, while they were very low in the neocor-

tex and hippocampus. The caudate was by far the region with the highest

mean score.

In VV2, DWI scores were very similar to MV2K but different from the

other subtypes. Scores were very high in caudate, moderate in putamen,

thalamus, cerebellum and cingulate, low in the insula and hippocampus

and very low in the neocortex. The caudate was by far the region with the

highest mean score.

Then, as a second step of the analysis, we pairwise compared the mean score

lesion profile of each subtype, globally with the permutation T-squared

Hotelling test and region-by-region with a Wilcoxon rank-sum test. MM1

was significantly different from MM2, as well as MV1 from MV2C, in the

caudate and putamen (p<0.001 in both cases). MV1 was significantly

different from MV2K in the thalamus and parietal cortex (p=0.0054 and

p=0.0349 respectively). MV2C was significantly different from MV2K in

the temporal, precuneus, parietal, caudate, putamen and thalamus (all p-

values <0.001). VV1 was significantly different from VV2 in the insula,

precuneus and thalamus (all p-values <0.001), from MM1 in the insula
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Figure 2.1: The mean scores of the 12 brain regions are represented as bars, and a segment represent the corresponding standard deviation. The brain regions are
ordered as follows: from left to right, frontal, temporal, precuneus, parietal, occipital, cingulate, insula, hippocampus, caudate, putamen, thalamus and cerebellum.
From top left to top right are represented the sCJD subtypes MM1 and MV1, MM2C and MV2C, and VV1. From bottom left to bottom right are represented MV2K
and VV2.
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(p=0.0149), from MV1 in the putamen (p=0.0315), and from MV2K in

the temporal cortex (p=0.0245), precuneus (p=0.0445), insula (p=0.0003),

caudate (0.0124), putamen (p=0.0017) and thalamus (p<0.0001).

The lesion profiles of the two most common subtype of sCJD, MM1 and

VV2, had significantly different mean scores in 8 brain regions: the whole

neocortex, caudate, thalamus and cerebellum (all p-values < 0.001, but for

caudate p=0.009), with the exception of the limbic regions and putamen.

The following comparisons did not show any significant different mean

score among brain regions: MM1 vs MV1, MM2C vs MV2C, MM2C vs

VV1, MV2C vs VV1, MV2K vs VV2. For simplicity, when the infor-

mation about the genotype at codon 129 is missing, the two MM1 and

MV1, MM2C and MV2C pairs are combined and thereafter identified as

MM/MV1 and MM/MV2C, respectively, as it is common practice in clin-

ical and histopathological diagnoses of sCJD.

From the data reported above two main subsets of subtypes with simi-

lar lesion profiles emerge: the first subset is characterised by high scores

and consistent involvement of the neocortex and lower scores and relative

sparing of striatum, thalamus and cerebellum, and includes MM/MV1,

MM/MV2C and VV1; the second subset is characterised by high scores

and consistent involvement of striatum, thalamus and cerebellum and lower

scores and relative sparing of the neocortex, and includes MV2K and VV2.

2.2.3 Subtype classification

A third step of the analysis consisted in generating a diagnostic algorithm

to assist the radiologist/neurologist in predicting the subtype in individ-

ual cases with the MRI lesion profile. This algorithm was inspired by the

results of a classification tree built on the scores of the 217 true positive

sCJD patients with a pure subtype of our dataset. In details, we proposed
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Figure 2.2: Decision trees representing the output of the performed classification analysis.
Round blue ovals represent the splitting criteria used to move down the tree: for example,
the first is “Neocortex?” and it is a short question for “Is the neocortex affected?”. If the
answer is positive, goes to the right branch, otherwise to the left. The white-filled squares at
the end of the bottom of the tree represent the terminal nodes of the algorithm (i.e., distinct
phenotypes), in which all the subtypes that follow that branch of the tree are listed, ordered
by their probability of being in that terminal node. In green, it is shown the predicted subtype
that our proposed algorithm assign to a subject that falls into that terminal node. In (a) the
codon is not available, so we always predict one subtype at each node (e.g., a subject with
neocortex not affected and thalamus affected is classified as VV2), while in (b) the codon is
available and therefore in each terminal node we can predict up to three subtypes, according
to the codon 129 polymorphism of the subject (e.g., a subject of the group MV with neocortex
not affected and thalamus affected is classified as MV2K).
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a diagnostic algorithm that provides, for a new subject, the probability of

belonging to each of the five sCJD pure subtypes. This algorithm produced

9 distinct phenotypes, as illustrated in Figure 2.2a, that characterise the

five sCJD pure subtypes (i.e. MM/MV1, MM/MV2C, MV2K, VV1, VV2).

The accuracy in predicting the correct subtype is about 62%, considering

the subtypes with the highest probability in each phenotype as the pre-

dicted outcome of the algorithm for that phenotype (e.g. a patient with

neocortex not affected but with an involvement of the thalamus is classi-

fied as VV2). We remark that this accuracy is calculated weighting the

misclassification errors by their prevalence in the sCJD population. Key

steps in the algorithm are the presence or not of DWI hyperintensity in the

neocortex, striatum, thalamus and cerebellum, as well as the occurrence

of symmetric vs. asymmetric lesions in individual cases and whether the

region showing the most intense hyperintensity was the limbic one.

To further improve the accuracy of the proposed algorithm and to distin-

guish subtypes with similar phenotypes (e.g. MV2K vs VV2), we recom-

mend analysing the genotype at codon 129 (see Figure 2.2b). With this new

information, the weighted prediction accuracy of our algorithm increases

to 90%. However, in some phenotypes the availability of the codon is not

enough to completely discriminate the subtypes (e.g. MM1 and MM2C

with the neocortex affected and the striatum spared), thus we suggest to

exploit the different duration time of each subtype: for example, MM1 is

the fastest among the sCJD (its mean duration is about 3 months) while

MM2C has a significantly longer mean duration (about 15 months). If

examined within 3 months from the symptoms onset, a patient with the

neocortex affected and the striatum spared will be more likely to be a

MM1, due to its prevalence in the relative frequencies of the disease. On

the other end, a patient with the same lesion profile but examined more
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than 3 months from the symptoms onset will be more likely classified as a

MM2C.

2.3 Discussion

Our study of 429 patients, the largest cohort to date comprising MRI data,

has achieved 0.91 sensitivity and 0.98 specificity with excellent IRR in

most brain regions matching the highest MRI diagnostic values previously

reported [51, 52, 56]. Furthermore, our MRI diagnostic values surpassed

those of the cerebrospinal fluid test and the RT-QuIC performed on the

same patients. While this finding is likely due to the small size of this

subset, our MRI diagnostic values are comparable to the RT-QuIC val-

ues recently reported for the most advanced version of this test on a large

number of patients and far exceed diagnostic values of previous tests like

tau and 14-3-3 either performed on the same patients as in our study or

reported in the literature [62, 68]. The high MRI diagnostic values are es-

pecially relevant because MRI abnormalities are often present at the early

stages of the disease and in at least two instances MRI was reported posi-

tive 2 and 3 months before the disease became symptomatic [56,78–80].

A major goal of this study was determining whether the five pheno-

types of sCJD, which account for approximately 90% of all human prion

diseases and are easily distinguishable because of the distinct types and

distributions of the brain lesions, could be also identified on MRI exami-

nation based on the combinations of the variations in severity and brain

distribution of the abnormal DWI signal [60]. To accomplish this task, in

this study we provided a diagnostic algorithm in the form of a classifica-

tion tree, that related each sCJD subtype to one or more of nine distinct

phenotypes.
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The first split in the tree was identified by the involvement of the neocor-

tical regions. The phenotypes without an affected neocortex were three:

an atypical one, where the main regions characterising the sCJD (i.e., neo-

cortex and striatum) were not affected, and other two composed of mainly

both MV2K and VV2 sCJD subtypes. These two subtypes have similar

MRI pattern distributions and our test did not find any statistical differ-

ence between them, in agreement with other findings in literature [81, 82].

However, the likelihood of MV2K subtype drastically decreases when the

thalamus is not affected.

On the other branch, the prevalent subtypes were MM/MV1, MM/MV2C

and VV1, with the exception of two phenotypes characterised by the in-

volvement of the cerebellum (i.e., the last two terminal nodes on the right

in Figure 2.2) in which the VV2 subtype is the most likely. Among the

phenotypes with abnormal signal detected in the neocortex and not in the

cerebellum, the most likely was MM/MV1, then MM/MV2C and lastly the

rarer VV1 sCJD subtype. However, it is worth nothing that in the case

of a strong involvement of the limbic region, the VV1 is the most likely.

MM/MV1 and MM/V2C are easily separable in the case of both neocortex

and striatum affected, where MM/MV1 is definitely the most likely.

If the genotype at the codon 129 is available, each resulting phenotype

of our classification tree could be then related up to three different sub-

types, i.e. the most probable subtype for MM, MV and VV respectively.

For instance, in the left branch of the tree, VV2 appears with high proba-

bility together with MV2K or, if the thalamus is not affected, with MV1:

in these cases, knowing the genotype (VV or MV) extremely increases the

classification accuracy, allowing to subtype also almost every MV subject.

Instead, the same strategy does not further improve the accuracy when
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only the neocortex is affected: the problem is that in this case the sub-

types MM1 and MM2C (sharing the same codon 129 polymorphism) show

overlapping features at the MRI assessment, thus the two strains are al-

most equally likely and it is impossible to distinguish between them. A

possible feature that could help in separating the two MM subtypes, could

be found looking at the duration of the disease, since MM1 is characterised

by a faster impairment of the patient conditions with respect to MM2C,

thus if a patient is still alive after several months from the symptoms onset,

MM2C is more likely. However, MM2C is still unidentifiable from MM1 if

the MRI exam is taken at an early stage of the disease.

To conclude, we have shown that the overall diagnostic accuracy of MRI

to diagnose prion diseases early in the symptomatic phase of the disorder

is excellent and it is higher than CSF tests such as RT-QuIC, tau and 14-

3-3. Moreover, we provided a simple and effective diagnostic algorithm by

a non-parametric classifier (i.e., the classification tree) that relies on MRI

assessment to predict the sCJD subtype of a patient, with an even higher

prediction accuracy if the codon 129 polymorphism is considered. The

results of the classification tree and the pairwise comparisons between sub-

types have led to a better characterisation of the sCJD subtypes in terms

of their features detectable through MRI. This work provides potential new

diagnostic tools for the early diagnosis of the sCJD patients and subtype

identification, that should be validated reproducing the same methodol-

ogy on a new dataset. Indeed, a limitation of the study is that the same

dataset was used for training the model and assess its accuracy, although

a cross-validation technique was adopted to prune the classification tree

and reduce the overfitting. Moreover, a data collection of new patients has

started recently, in order to build a new test set on which we could validate

our proposed classification model. Further analysis on the characterisation
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of the sCJD subtypes are done in Chapter 3, where we aim at describing

the disease progression for each subtype. Finally, another limitation of

this study consist in the exclusion from the analysis of the complex case of

the co-occurence of the two type of prion protein in the same patient: the

analysis of the brain lesions detectable with MRI and the classification of

these mixed genotypes would be of interest for future works.
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Chapter 3

An Application of the

Event-Based Model in

Sporadic Creutzfeldt-Jakob

Disease

In the previous chapter, we have shown the good performances of MRI for

the diagnosis and characterisation of the sporadic Creutzfeldt-Jakob dis-

ease (sCJD) subtypes. In particular, we have seen that each subtype has

distinctive features that should be always considered when analysing the

whole spectrum of sCJD. In this chapter, we want to move further and

explore the disease progression in sCJD with the use of imaging biomark-

ers such as signal abnormalities on DWI. From the results described in the

previous chapter, it is clear that we have to consider each sCJD suptype

separately, since it is likely that in different strains the propagation could

be different.

Recent studies have dealt with the assessment of the disease evolution

in sCJD using DWI signal abnormalities as biomarkers of the disease: [83]

analysed the MRI of a group of 37 patients, of whom 21 having a confirmed
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sCJD diagnosis postmortem by autopsy, while the others were diagnosed

as probable sCJD. They reported increasing signal abnormality in corti-

cal and subcortical regions at follow-up with respect to the baseline, most

substantially in the striatum. However, they did not take into account the

subtype classification in the analysis, nor provided a real staging of the

disease based on the signal abnormalities. Another study [84] has anal-

ysed retrospectively 36 sCJD patients with MM genotype, of whom only 5

with a definite diagnosis of sCJD based on brain autopsy, while the others

were considered probable sCJD. They classified the subjects a priori into

four disease stages based on their clinical state: vague symptomatic, pos-

sible CJD, probable CJD and chronic vegetative state. They found that

at the first stage, almost all patients had cortical hyperintensities, with a

predominance in the neocortical regions; at the last stage, all the patients

have DWI hyperintensities in the cortical and subcortical regions, meaning

that signal abnormality were spreading from the cortex to the subcortical

regions, as the stages progress. However, a limitation of the study was

ignoring the type of PrPD in each subject and, even if an evolution in the

brain pattern of signal abnormality was detected, it still relied on a priori

staging system, that limits the temporal resolution of progression models.

Here, we consider a novel data-driven model to assess the disease progres-

sion in each sCJD subype: the event-based model [5, 6] has been recently

introduced to study the evolution of Alzheimer’s and Huntington’s disease.

It does not rely on a priori staging system, but reconstructs the disease

progression directly from the data.
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3.1 Materials and methods

3.1.1 Patients

The data collection of the subjects involved in our analysis is described in

Chapter 2, where MRI studies (T2WI, FLAIR, diffusion-weighted MRI),

pathology subtype (codon 129 polymorphism, PrPD type) and demograph-

ical information are collected from more than 400 patients with autopsy

(or biopsy) confirmed diagnosis of prion disease or alternative conditions.

For the purposes of this study, we select all the patients with a confirmed

diagnosis of sporadic CJD having a pure subtype (i.e., MM1, MV1, MM2C,

MV2C, MV2K, VV1, VV2), and all the subjects with a non-prion disease

confirmed diagnosis as a control group.

3.1.2 Image assessment

A distinctive characteristic of sCJD patients is the regional appearance of

the DWI signal hyperintensities in the MRI studies performed after the

symptoms onset. The visual assessment of such diffusion images is one

of the most adopted pre-test for early diagnosis of CJD in many clinical

centres, with a high diagnostic reliability as reported by several authors:

see [85] for a recent review on DWI accuracy in sCJD. In our study, we

consider 12 brain regions that are known to be specifically related to the

presence and the effects of the misfolded prion protein [64]: five neocortical

regions (frontal, parietal, precuneus, temporal, occipital), three regions

belonging to the limbic system (cingulate gyrus, insula and hippocampus),

basal ganglia (caudate and putamen), thalamus and cerebellum. The signal

hyperintensity in DWI of these regions are considered as separate candidate

biomarkers to describe the disease progression in each sCJD pure subtype.

The visual assessment of the diffusion MR images of all the patients is

based on the scoring system proposed in Chapter 2, as a semi-quantitative
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method to evaluate the hyperintensities of DWI: an integer ordinal score

is assigned to each of the 12 brain regions selected, with values ranging

from “zero” (i.e., absence of hyperintensity) to “three” (i.e., high level of

hyperintensity and spread over the region considered). A diffusion MR

image of a subject is considered positive for the diagnosis of prion disease

if there is at least one brain region with a score equal or greater than “two”.

Otherwise, if all the assigned scores are less than or equal to “one”, the

image is considered negative for the prion disease diagnosis.

3.1.3 General theory of the event-based model

In this section, we describe the theory of the EBM, adopting the same nota-

tion as in [5]. The EBM is a data-driven model that provides a description

of the disease progression in terms of a sequence of events. In this frame-

work, an event is the switching from a normal state to an abnormal state

for a biomarker of a patient. We consider a set of N events E1, . . . , EN

related to N corresponding biomarkers of the disease. The EBM finds the

most likely ordering of the events, denoted with S̄ = (s̄(1), . . . , s̄(N)) (i.e.,

a permutation of the integers 1, . . . , N), given the biomarkers measure-

ments {Xij : i = 1, . . . ,M and j = 1, . . . , N} of M subjects. The ordering

S̄ is obtained by maximizing the data likelihood

P (X|S) =
M∏
i=1

N∑
k=0

P (k)

 k∏
j=1

P (xi,s(j)|Es(j))
N∏

j=k+1

P (xi,s(j)|¬Es(j))

 ,

(3.1)

where P (k) is the prior probability of being at stage k in the generic or-

dering S and P (xi,s(j)|Es(j)) and P (xi,s(j)|¬Es(j)) are the likelihood of a

measurement xi,s(j) given that for the i-th subject the event Es(j) has or

has not occurred, respectively. We assume that P (k) is uniform, that is

equivalent to consider all the stages a priori equally probable, and that
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the measurements (conditionally to the occurrence of any event) follow a

discrete distribution, since in our case all the xi,s(j) are integers from 0 to

3.

3.1.4 Estimation of the event-based model

Similarly to [5], we assume that none of the Ej has occurred for the sub-

jects in the control group, whereas we do not know a priori whether and

which event has occurred for the sCJD patients of a given subtype. Thus,

to compute the data likelihood 3.1, we fit a mixture model whose compo-

nents correspond to P (xi,s(j)|¬Es(j)) and P (xi,s(j)|Es(j)): we fit the former

component only to the data from the controls, and then we fix the esti-

mated parameters while fitting the mixture to the complete data set, using

the Expectation Maximization algorithm. The choice of the discrete dis-

tributions is discussed in the next section.

The final step to estimate the most likely ordering S̄ of the events is the

application of a Markov Chain Monte Carlo (MCMC) algorithm to sample

from the posterior distribution P (S|X) on the possible orderings S, under

the assumption that, a priori, all orderings are equiprobable. We run this

procedure for 1, 000, 000 iterations, obtaining a list of candidate orderings,

from which we find S̄ by selecting the ordering with maximum likelihood

among the MCMC samples. Moreover, we quantify the variability of the

most likely ordering through the positional variance diagram [5], where the

entry of each position (j, k) represents the likelihood that Ej appears in

the k-th position of the sequence, computed from the set of MCMC sam-

ples. As a further step, we provide a more conservative estimation of the

uncertainty by calculating new maximum likelihood event sequences for

100 bootstrapping data samples: for each new sample, first we refit the

mixture model and then we obtain a new characteristic sequence with the
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same procedure as before. Thus, we calculate a second positional variance

diagram, whose entries represent the proportion of bootstrap samples in

which Ej appears in the k-th position of the sequence S̄.

The EBM relies on the fundamental assumptions that the ordering of the

events is common for all the subjects in the cohort. Thus, to reduce the

heterogeneity among the patients, we apply the EBM to each of the seven

sCJD subtypes separately, since they are characterised by clinical and neu-

ropathological differences. However, since many authors, e.g. [60], agree

on considering MM1 and MV1 as a unique subtype called MM/MV1, as

well as MM/MV2C as the union of MM2C and MV2C subtypes, we apply

the EBM also on these two merged subtypes. Then, we compare the EBM

sequences of events among all subtypes, highlighting qualitative differences

(or similarities) in the disease progression for each strain.

3.1.5 Mixture models for the data likelihood

The EBM relies also on the assumption of independence of measurements

from different subjects, thus, we select only one MR image per subject.

For these reasons, we retain from the control group only one MR image

of each non-prion subject having all negative MRI. We use these measure-

ments to directly estimate the event distribution P (x|¬Ej): we choose a

Bernoulli distribution to model this component, since the observed values

of every biomarker are 0 or 1 in this group. Regarding the event distribu-

tion P (x|Ej), we retain only the first positive MRI of each sCJD patient to

model this component. The other follow-ups, if present, are used to assess

the longitudinal consistency of the patient staging in each sCJD subtype.

Since in this group the values of x can range from 0 to 3, we choose a uni-

form discrete distribution with support on the set {0, 1, 2, 3}, that assigns

the same probability to every possible value of the score.
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3.1.6 Patient staging

We assign a disease stage for the i-th subject of each sCJD subtype, iden-

tifying the stage that maximizes the probability of the observed biomarker

measurements for that patient, given the characteristic order S̄ found by

the EBM for that subtype, i.e. the stage

k∗ = argmax
k

P (Xi|S̄, k)

= argmax
k

P (k)
k∏
j=1

P (xi,s(j)|Es(j))
N∏

j=k+1

P (xi,s(j)|¬Es(j))
(3.2)

where the notation in 3.2 is the same as in 3.1, as well as the assump-

tions made on the distributions. The possible stage ranges from 0 (i.e., no

biomarkers are abnormal) to N (i.e., all the biomarkers are abnormal). If

a patient is assigned to a stage k, then our model predicts that all events

appearing before the event k in the sequence S̄ have occurred, while the

others have not yet occurred. The stage assigned to the patients should

be interpreted as the most compatible stage with their biomarker measure-

ments, since the fitting to the model is not exact.

3.1.7 Longitudinal validation

Due to the short time duration of the sCJD and its fast spread in the brain

of the patients, we have few follow-ups in our study, some of them un-

changed with respect to the baseline. Moreover, the images were acquired

at variable time points, since the data come from several medical centres

with no common design of experiment. We evaluate the consistency of

patient staging with the available longitudinal measurements of the pure

subtypes sCJD patients, that have some changes across time points: we

identify 43 suitable sCJD patients (of 71 total) with a first follow-up MRI

scan, seven of them having also a second follow-up and only one patient
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with a third one. We compare the stage assigned to the first positive MRI

scan (i.e., baseline EBM stage) with the EBM stages assigned at the cor-

responding follow-ups.

3.2 Results

3.2.1 Subjects

In this study, we include in the control group 120 subjects having a non-

prion confirmed diagnosis and negative MRI, with scores 0 or 1 for each

brain region. Regarding the sCJD patients, we select 217 cases with con-

firmed pure subtype sCJD diagnosis, their first positive MRI (i.e., baseline)

and, if available, the follow-ups showing changes with respect to the base-

line. Further information about the sCJD patients are illustrated in Table

3.1.

Subtype Positive MRI Age at death (years) Disease duration (months) Follow-ups
Median (Range) Mean (SD)

MM1 72 65 (39-91) 3.5 (3.1) 16
MM2C 27 63 (46-89) 14.7 (11.4) 6
MV1 17 68 (49-88) 8 (7.8) 3

MV2C 15 68 (46-89) 17.6 (13.4) 2
MV2K 22 63 (47-85) 12.4 (7.4) 6
VV1 15 60 (35-88) 9 (6.5) 1
VV2 49 65 (45-80) 5.6 (2.3) 9

Table 3.1: Description of the sCJD patients per subtype. Positive MRI: the number of patients
with a positive diffusion MRI (i.e., baseline). Follow-ups: the number of patients having a
follow-up that presents some changes with respect to the corresponding baseline.

3.2.2 Event sequences

The results on the maximum likelihood sequence and its uncertainty are

shown in the positional variance diagrams in Figures (a-c),(a-c) and (a-c),

separately for each sCJD pure subtype, and in Figure (d-f),(d-f) and (d-f)

their corresponding positional variance diagrams when the bootstrap sam-

ples are considered. All the diagrams show on the y-axis the events ordered

according to the maximum likelihood sequence. For each subtype, all the
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regions not affected in the patient group (i.e., the regions in which no pa-

tient’s image has a score greater than 1) are excluded from the ordering

and thus do not appear in the figures. Finally, it is worth noting that a

general consistence between the two positional variance diagrams can be

observed for each sCJD subtype.

MM1, MV1 and MM/MV1

The MM1 strain is characterised by a first involvement of the cingulate

gyrus and neocortical structures, followed by the striatum (i.e. caudate

and putamen). The other limbic grey-matter structures (i.e. insula and

hippocampus) appear more lately in the sequence, followed by thalamus

and cerebellum (see Figures a and d). Two regions of the limbic grey-

matter (i.e. insula and cingulate) are the first to become abnormal in the

MV1 subtype, followed by the frontal neocortex and the striatum (Figures

b and e). Then, the thalamus appears in the sequence, followed by the

other neocortical regions and eventually the cerebellum and hippocampus.

Considering together the MM1 and MV1 subtypes (Figures c and f), the

ordering is exactly the same as in the MM1 group alone, due to the fact

that the sample size in the two populations is unbalanced (72 MM1 pa-

tients and 17 MV1 patients).

MM2C, MV2C and MM/MV2C

The MM2C strain is characterised by a first involvement of the regions of

the limbic system and subsequently the neocortical structures. Thalamus,

cerebellum and striatum appear only at the end of the sequence (see Fig-

ures 3.2a and 3.2d). The MV2C sequence is similar to the one of MM2C

subtype, besides a shift of the location of the temporal region that appears

later in MV2C, and the absence of thalamus and cerebellum (Figures 3.2b
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Figure 3.1: Positional variance diagrams showing the ordering and the uncertainty of event
sequences in the sCJD subtypes MM1 (a, d), MV1 (b, e) and MM/MV1 (c, f): (ac) are
obtained by using the MCMC samples within the EBM, (df) by the bootstrap samples of
the data. Each entry of a diagram represents the proportion of MCMC samples, in (ac), or
bootstrap samples, in (df), in which events occur at a specific position in the sequence on the
x-axis. The darker the square, the closer the proportion is to 1.

and 3.2e). Considering together the MM2C and MV2C subtypes (Figures

3.2c and 3.2f), the events are ordered in a similar way, with the only excep-

tion that the insula occurs later in the merged group (albeit with a high

uncertainty) and the involvement of thalamus and cerebellum appears only

at the end.

MV2K

The MV2K strain is characterised by a first involvement of regions of the

limbic system and subsequently the striatum, thalamus and cerebellum.

The neocortical regions appear only at the end of the sequence (see Figure

3.3c and 3.3f).

VV1

The VV1 strain is characterised by a first involvement of the regions of

the limbic system, followed by the neocortical regions. The striatum and
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Figure 3.2: Positional variance diagrams showing the ordering and the uncertainty of event
sequences in the sCJD subtypes MM2C (a, d), MV2C (b, e) and MM/MV2C (c, f): (ac)
are obtained by using the MCMC samples within the EBM, (df) by the bootstrap samples of
the data. Each entry of a diagram represents the proportion of MCMC samples, in (ac), or
bootstrap samples, in (df), in which events occur at a specific position in the sequence on the
x-axis. The darker the square, the closer the proportion is to 1.

cerebellum appear only at the end of the sequence, while the thalamus is

absent, since it is negative for every VV1 patient. (see Figure 3.3a and

3.3d).

VV2

The VV2 strain is characterised by a first involvement of the cingulate,

followed by striatum, thalamus and cerebellum. The other limbic regions

(i.e., hippocampus and insula) and all the neocortical regions appear only

later, at the end of the sequence (see Figure 3.3b and 3.3e).

3.2.3 Longitudinal staging

In Figure 3.4, we compare the EBM stage of each subject at baseline with

the EBM stage at follow-ups, separately for all the subtypes. Each plot

is composed of the corresponding positional variance diagram obtained by

the EBM, on which a scatterplot is superimposed: the size of the dots
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Figure 3.3: Positional variance diagrams showing the ordering and the uncertainty of event
sequence in the sCJD subtypes VV1 (a, d), VV2 (b, e) and MV2K (c, f): (ac) are obtained by
using the MCMC samples within the EBM, (df) by the bootstrap samples of the data. Each
entry of a diagram represents the proportion of MCMC samples, in (ac), or bootstrap samples,
in (df), in which events occur at a specific position in the sequence on the x-axis. The darker
the square, the closer the proportion is to 1.

represents the number of subjects having those particular EBM stages at

baseline (x-coordinate) and at follow-up (y-coordinate). For every group,

the longitudinal consistency of the patient staging appears to be excellent:

in almost every subject the EBM stage increases or remains unchanged

at each follow-up. There is only one case having a decreasing stage at

follow-up: it is a VV2 patient with a poor quality MRI scan, for which

the reliability of the visual assessment should be questioned. All the other

points in every plot are on or above the diagonal, generally within the grey

shaded area that depicts the uncertainty estimated by the EBM.

3.3 Discussion

In order to determine the characteristic sequence of biomarkers becoming

abnormal in the sCJD, we have revised the EBM [5,6] for use with discrete

data coming from a semi-quantitative assessment of DWI brain images.

Due to the model assumptions, requiring a homogenous population, we

62



CHAPTER 3. AN APPLICATION OF THE EVENT-BASED MODEL IN
SPORADIC CREUTZFELDT-JAKOB DISEASE

MM1 MV1

MM2C MV2C

VV1 MV2K

VV2

Figure 3.4: Longitudinal consistency of patient staging in each sCJD subtype group over a
variable follow-up period. The size of the dot is proportional to the number of subjects having
those particular EBM stages at baseline (x-coordinate) and at follow-up (y-coordinate). The
largest dot, at (10,10) in the MM1 plot, represents 4 subjects and the smallest dots represent
one subject. The EBM stage is longitudinally consistent for the subjects whose points are on
or above the line y = x and/or within the grey shaded area, that depicts the uncertainty in
the sequence estimated by the EBM. The VV2 patient whose point (circled in green) is below
the line y = x has a poor quality image at the follow-up, for which the reliability of the visual
assessment should be questioned.
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have run the analysis on the data of each sCJD subtype separately. We

have found that the cingulate cortex is one of the first regions appearing

in the characteristic sequence of each subtype. Then, the patterns emerg-

ing from the orderings can be divided in three sets: neocortex affected

before striatum (MM1, MM2, MV2C and VV1); striatum affected before

neocortex (MV2K and VV2); neocortical regions and striatum appearing

together (only MV1, whose ordering seems to have higher uncertainty with

respect to the others). In the first group, the striatum appears right after

the neocortex for MM1 and VV1, but only at the end for MM2 and MV2C.

Moreover, VV1 is the only subtype having all the limbic regions appearing

at the beginning. On the other hand, the subtypes in the second group

have very similar orderings, besides the insula that is in the middle of the

sequence for VV2, while it is the first region for MV2K, even if with high

uncertainty.

Moreover, it is worth noting that the uncertainty has been calculated di-

rectly from the EBM or via bootstrap sampling: the former underestimates

the uncertainty since the variability of the biomarker distribution is not

taken into account, while the latter tends to overestimate the uncertainty

since each bootstrap sample does not include all the cases. The results

from both methods should be used together to better understand the vari-

ability of the orderings and to compare the homogeneity of the subgroups:

for instance, the MV1 ordering (especially looking at the bootstrap results)

appears to be the most variable among all the subtypes, indicating a higher

heterogeneity within the cases of this subgroup with respect to the others.

In general, the heterogeneity of a group could be explained in term of both

natural variability among subjects, and possible mixture of different types

of misfolded prion protein [86] or even different neurodegenerative diseases

(e.g., Alzheimer disease) concurring in the same patient [87]. Besides the
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homogeneity of the group considered, other factors could contribute to the

uncertainty in a sequence of events: for instance, when two or more events

occur close in time, it is unlikely that the data points are acquired exactly

in the middle to separate them, especially when we deal with a rare disease

like sCJD, for which the sample size within each subtype is small. More-

over, we do not take into account when the events are highly correlated

(e.g., caudate and putamen form a single functional structure, the dor-

sal striatum), since in the present formulation of the EBM the covariance

among the measurements is ignored. As future work, it would be impor-

tant to evaluate the relationship among measurements in order to fit this

correlation within the model, relaxing the hypothesis of independence of

each measurement on event occurrence.

Important areas for next study on the progression of sCJD can be tracked

looking at the general disease progression modelling state-of-the-art, that

has been recently reviewed [88], where the authors highlight possible fu-

ture directions of research. In particular, a promising new extension of

the EBM has been recently published and applied to sporadic Alzheimer’s

disease (Young et al., 2015), relaxing the assumption of a unique event

ordering in the population. The authors start considering a generalised

Mallows model, which allows subjects to have a different latent ordering

with respect to a central event sequence. Then, they develop a Dirichlet

process mixture of generalised Mallows models, which is a generative clus-

tering model that gathers together subjects with similar event sequences.

Such a model could be applied also to the sCJD population, without dis-

tinguishing the subtypes a priori and trying to find clusters of patients

according to the ordering of their disease progression. Another interesting

approach would be to enhance existing network models [89] to examine

changes of the brain’s anatomical connectivity network due to sCJD and
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then use relevant network metrics to create an EBM sequence of the re-

gional connectivity across the brain: see [90] for a similar application in

Alzheimer disease. This could offer the unique opportunity to evaluate the

degree of support that image-based network propagation model can pro-

vide in other diseases, in particular dementia, in which evidence continues

to emerge of “prion-like” propagation [91–93]. Our results of the EBM pro-

vide for the first time data-driven models of sCJD progression within each

pure subtype: the characteristic orderings are based on a cross-sectional

dataset and their longitudinal consistency has been validated comparing

the stages at follow-ups with the baseline. However, the interpretation of

these results should be made cautiously: like in any data-driven model,

the events are ordered by the EBM taking into account when the measure-

ment of the biomarkers significantly change between cases and controls [5].

Thus, this may not correspond to the underlying order of the pathology, but

more realistically to the order in which a measurement become detectably

abnormal [94,95].
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Chapter 4

Function-on-Function

Regression Models with

Spatio-Temporal Domains

The functional data analysis (FDA) paradigm has changed the statistical

science of the XXI century: when data are collected to describe a contin-

uous process, it is natural to treat them as functional data (e.g., curves),

to preserve and exploit the continuity property of the phenomenon. This

new idea has led to the development of new methods that generalised the

standard tools of multivariate statistics. Here we focus on the extension

of the multiple regression model, considering the case in which both the

response variable and the covariates are functions. This kind of model is

known as function-on-function regression model in the FDA literature and

there have been several works that have analysed its properties, see for

instance the book [96]. Such a model is potentially useful to compare how

functional responses of different groups react to a set of external functional

inputs, for example in the case of functional magnetic resonance imaging

(fMRI). In this case, the blood oxygenation level dependent (BOLD) signal

that is registered through the fMRI in the brain of a patient is intrinsically
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varying in space and time (i.e., the functional response). The BOLD signal

is usually related to one or multiple stimuli (i.e., functional covariates) in

a task-based fMRI experiment, in order to find brain regions that exhibit

statistical differences among groups of patients. In the next sections we

describe the function-on-function regression model and the corresponding

inferential statistical analysis, on a domain setting compatible with the

characteristics of fMRI data (i.e., 3-dimensional space and finite time in-

terval).

4.1 Function-on-Function Regression Model

Let s ∈ S ⊂ R3 be a point in the 3-dimensional domain S, and t ∈

[a, b] an instant in the time interval [a, b]. Assume that the functional

response y(s, t) is a function of both space and time (e.g., it represents

the BOLD signal registered in a brain subject at point s at time t) and

that the functional covariates x(t) = (x1(t), . . . , xp(t)) are only temporal

dependent (e.g., it represents the external stimuli used in task-based fMRI

experiment, not dependent on the location s). After collecting a sample

{xi(t), yi(s, t)}i=1,...,n of our variables in every s ∈ S and t ∈ [a, b] for each

subject i, we can write the function-on-function regression model as follows:

yi(s, t) = β0(s)+

p∑
j=1

βj(s)xij(t)+εi(s, t), ∀s ∈ S,∀t ∈ [a, b] and ∀i = 1, . . . , n

(4.1)

where the response and the covariates are evaluated on the same interval

and the value of the response at time t depends only on the values of the

covariates at the same time t. The regressor coefficient βj are only function

of the space locations, assuming that the linear relationship between the

response and the covariates is fixed in time (e.g., in the fMRI framework,

this means to consider the brain response to a specific stimulus being the
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same if measured at two different time points). In the functional data

analysis literature, equation (4.1) is a function-on-scalar regression model

in s, while it is a constant coefficient function-on-function regression model

in t because the regressors xi(t) do not depend on s. Note that, in the

latter case, each location s can be analysed separately for fitting purposes:

in this framework, it is easy to obtain the functional representation of

the estimated regression coefficients β̂(s) = (β̂0(s), β̂1(s), . . . , β̂p(s)) with

a ordinary least squares (OLS) method. We now discuss how to perform

hypothesis tests on the functional regression parameters.

4.2 Inference for the concurrent model

In [97] it is proposed a non-parametric procedure for testing a functional-

on-scalar linear model. This method can be easily extended to our model

since it is fitted using the same OLS method. Considering a general combi-

nation matrix C ∈ R(q×(p+1)) that specify 1 ≤ q ≤ p+1 linear combinations

of the p + 1 functional regression coefficients, the general hypothesis can

be formulated as follows:
H0,C : Cβ(s) = c0(s) ∀s ∈ S

H0,C : Cβ(s) 6= c0(s) for some s ∈ S
(4.2)

where c0(s) = (c01(s), . . . , c0q(s))
′ is a vector of fixed functions in L2(S) ∩

C0(S). If we reject the null hypothesis H0 in (4.2), it would be of interest

finding the regions on S that exhibit significant differences. The natural

idea is to test the hypothesis in (4.2) at each s separately, but theoretically

this should be done for an uncountable infinite number of points. Never-

theless, if we manage to control the family-wise error rate that originates

from this family of tests, we can in principle solve the problem. In [97], the

authors adopted the procedure introduced in [98] that provided a control
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of the interval-wise error rate on a mono-dimensional space. A theoretical

extension of this procedure to a three-dimensional setting is outlined in the

following steps.

First, perform the test (4.2) for a given closed interval R ⊆ S, for all the

s ∈ R, computing the statistic

TRC =

∫
R
TC(s)ds, (4.3)

where TC(s) = (Cβ̂(s)− c0(s))
′(Cβ̂(s)− c0(s)).

Second, compute the p-value pRC of the previous test for a given R with

the functional permutation test implemented in [97], that is based on the

Freedman and Lane permutation scheme. Then, define the adjusted p-

value function at point s as the supremum p-value of all the test on the

intervals R that contains s:

p̃C(s) = sup
R3s

pRC , s ∈ S.

Third, select the subregions SRα in S where any of the null hypotheses are

rejected at level α, defined as SRα = {s ∈ S : p̃C(s) ≤ α}.

4.3 Multiple testing procedure in a 3-dimensional do-

main in FDA and perspectives

From the previous section, we obtain for each s ∈ S a specific adjusted

p-value function p̃C(s) of the test (4.2) that allows to find the significant

regions SRα where to reject the null hypothesis at level α. However, com-

putational issues emerge when the number of points is high, due to the

fact that the method relies on a permutational approach. To limit this

problem, an appealing solution come from the works [7, 8]: the authors

proposed an inferential procedure in the functional ANOVA framework
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based on splitting the domain into mutually exclusive and exhaustive sub-

intervals selected a priori. The procedure still relies on permutation tests,

but the number of applications of permutation tests can be reduced in

practice if the number of partitions of the domain is low. This method

has been applied in a functional ANOVA framework, considering a mono-

dimensional domain. Thus, we first have to extend this procedure to a

multi-dimensional domain to select sub-regions where significant differences

are observed between groups, and then adjust for multiple tests. The ex-

tension to a three-dimensional domain appears quite straightforward on a

theoretical point of view, and it resembles the extension we proposed in the

previous section, with the exception that we do not test for each possible

R (that theoretically could have been defined as having any possible geo-

metrical shape, e.g. cubes, spheres), but only on the predefined subregions

of the domain. Moreover, in this case the adjustment for multiplicity is not

based on [98], but on the closure principle as described in [7, 8], that pro-

vides a control of the family-wise error rate within each region in the weak

sense (i.e., the control is guaranteed only when all the null hypothesis are

true). The conclusions of the test depend on the initially chosen partition,

thus, the application of this procedure is recommended when the domain

S has natural sub-regions, for example in the case of the human brain re-

gions. Further analysis are needed to explore the computational feasibility

of both the approaches sketched above, and to provide a method that can

guarantee a strong control of the family-wise error rate (i.e., allowing all

the null hypotheses to be true or false). These tasks will be addressed in

future works, with the aim of applying this methodology on a case study

based on real fMRI data.
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