
Politecnico di Milano

Department of Electronics, Information and Bioengineering

Doctoral Programme in Computer Science and Engineering

M U LT I C O R E R E S O U R C E
M A N A G E M E N T

A H O R I Z O N TA L P E R S P E C T I V E

Doctoral Dissertation of
simone libutti

Supervisor
prof . william fornaciari

Tutor
prof . andrea bonarini

The Chair of the Doctoral Program
prof . andrea bonarini

2017 – cycle xxx november

Simone Libutti
Multicore Resource Management: a Horizontal Perspective
© July 2017

"The very paradigm of explication, dear friends. Cogent, clear, if somewhat
quaintly couched. Precision is a precise art. Poignancy is pre-eminent and

precludes prevarication. Truths are no trivial thing, after all—"

— Steven Erikson, Memories of Ice

A B S T R A C T

Modern computing systems strive to provide ever increasing perfor-
mance levels despite increasingly strict system-wide optimization ob-
jectives. This is a vast problem that spans over a wide variety of ar-
chitectures: due to the wild technological development caused by the
spread of devices such as Smartphones, high-end embedded systems
are quickly closing the gap with desktop computers; similarly, high
performance and cloud-based systems are scaling up towards exa-
scale to serve increasingly demanding workloads.

Indeed, this technological trend poses several, nontrivial problems:
embedded systems are usually subject to thermal and energy con-
straints in order to maximize battery life, to minimize faults and, at
least in the case of hand-held devices, to provide a comfortable user
experience (users want to hold a long lasting, ever charged and cold
device), while bigger systems are typically subject to thermal and
power constraints in order to minimize supplying/cooling costs and,
again, to prevent faults. On the other hand, users do not care about
system optimization objectives: they just want their applications to
comply with some Quality of Service requirement.

This problem does not have a simple solution, because system and
user goals are orthogonal and increasingly demanding; however, it
can be addressed by employing resource managers, which are soft-
ware layers that act as brokers between computing systems and ap-
plications. Resource managers decide which and how many resources
will be allocated to each application so that, whenever it is possible,
both system-wide and user goals are complied with.

This dissertation explores the problem of resource management
from a horizontal perspective. That is, we analyze the problem of
CPU resource management spanning from high-end embedded to
High Performance Computing systems. For each of those architec-
tures, we try to understand what is yet missing to obtain an optimal
resource management and how we can fill some of those gaps.

v

S O M M A R I O

Gli odierni sistemi di calcolo mirano ad offire prestazioni sempre più
aggressive nonostante sempre più stringenti vincoli di ottimizzazione
di sistema.

Tale problema è complesso e riguarda una vasta gamma di archi-
tetture: a causa del selvaggio sviluppo tecnologico causato dalla dif-
fusione di dispositivi come gli Smartphone, ad esempio, i circuiti in-
tegrati di fascia alta stanno rapidamente colmando il divario con i
dispositivi desktop, in termini sia di prestazioni sia di complessità.
Allo stesso modo, i sistemi ad alte prestazioni (supercomputer, cloud
. . .) stanno cercando di raggiungere potenze computazionali nell’or-
dine dell’exa-FLOP (1018 operazioni in virgola mobile al secondo),
in modo da poter servire carichi di lavoro sempre più esigenti. Ciò
comporta problemi non banali: i circuiti integrati sono solitamente
soggetti a vincoli termici ed energetici per massimizzare la durata
della batteria (ove presente), minimizzare i guasti e, per lo meno nel
caso di dispositivi palmari, garantirne un comodo uso (l’utente vuole
un dispositivo che duri anni, che abbia una batteria costantemente
carica e che non sia bollente al tocco), mentre i grandi sistemi di cal-
colo sono soggetti a vincoli termici e di potenza onde minimizzare
i costi di energia elettrica e raffreddamento e, anche in questo caso,
per minimizzare la probabilità di guasto. Purtroppo, gli utenti non
sono assolutamente interessati all’ottimizzazione del sistema; al con-
trario, vogliono soltanto ottenere le migliori prestazioni possibili dalle
proprie applicazioni.

L’evidente ortogonalità tra gli obiettivi di utenti e amministratori
di sistema fa sì che questo problema non sia facilmente risolvibile; tut-
tavia, esso può essere affrontato mediante l’uso di gestori di risorse,
ovvero programmi che agiscono da mediatori tra sistema operativo
e applicazioni. Più nel dettaglio, i gestori di risorse decidono quante
e quali risorse di calcolo allocare a ogni applicazione in modo tale
da soddisfare, ove possibile, sia i requisiti dell’utente sia quelli di
sistema.

Questa tesi espora il problema della gestione di risorse seguendo
un approccio orizzontale. Nel dettaglio, analizziamo il problema del-
l’allocazione di elementi processanti—cores, in questo caso—dai cir-
cuiti integrati fino ai sistemi ad alte prestazioni. Per ognuna di queste
categorie, cercheremo di capire i requisiti fondamentali per una allo-
cazione ottima delle risorse, i maggiori problemi ancora da affrontare
e cosa possiamo fare per risolverli.

vii

P U B L I C AT I O N S

conference proceedings

2017 A. Portero, M. Podhoranyi, Simone Libutti, G. Massari and W.
Fornaciari Just-in-time execution to adapt on demand re-
source allocation in HPC systems 2017 International Con-
ference on Algorithms, Computing and Systems (ICACS), ACM
2017

2017 N. Zompakis, M. Noltsis, L. Ndreu, Z. Hadjilambrou, P. En-
glezakis, P. Nikolaou, A. Portero, Simone Libutti, G. Massari and
F. Sassi
HARPA: Tackling physically induced performance variabil-
ity

2017 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE) 97-102 2017 IEEE

2016 A. Portero, J. Sevcik, M. Golasowski, R. Vavrik, Simone Libutti,
G. Massari, F. Catthoor, W. Fornaciari and V. Vondrák
Using an adaptive and time predictable runtime system

for power-aware HPC-oriented applications

Green and Sustainable Computing Conference (IGSC0) 2016 Sev-
enth International 1-6 2016 IEEE

2016 F. Reghenzani, G. Pozzi, G. Massari, Simone Libutti and W. For-
naciari
The MIG Framework: Enabling Transparent Process Mi-
gration in Open MPI
Proceedings of the 23rd European MPI Users’ Group Meeting
64-73 2016 ACM

2016 C. Bolchini, S. Cherubin, G.C. Durelli, Simone Libutti, A. Miele
and M.D. Santambrogio
A Runtime Controller for OpenCL Applications on Het-
erogeneous System Architectures.
EWiLi 2016

2016 G. Massari, Simone Libutti, W. Fornaciari, F. Reghenzani, and G.
Pozzi
Resource-Aware Application Execution Exploiting the Bar-
bequeRTRM
Proceedings of 1st Workshop on Resource Awareness and Ap-
plication Autotuning in Adaptive and Heterogeneous Comput-
ing (RES4ANT), Dresden, Germany

ix

2015 A. Portero, R. Vavrik, S. Kuchar, M. Golasowski, Simone Libutti,
G. Massari, W. Fornaciari and V. Vondrak
Simulation of a runoff model running with multi-criteria

in a cluster system

Proceedings of the Conference on Summer Computer Simula-
tion 1-8 2015 Society for Computer Simulation International

2015 G. Massari, Simone Libutti, A. Portero, R. Vavrik, S. Kuchar, V.
Vondrak, L. Borghese and W. Fornaciari
Harnessing Performance Variability: A HPC-Oriented Ap-
plication Scenario

Digital System Design (DSD), 2015 Euromicro Conference on
111-116 2015 IEEE

2015 A. Portero, R. Vavrik, S. Kuchar, M. Golasowski, V. Vondrak,
Simone Libutti, G. Massari and W. Fornaciari
Flood Prediction Model Simulation With Heterogeneous

Trade-Offs In High Performance Computing Framework.
ECMS 115-121 2015

2015 D. Rodopoulos, S. Corbetta, G. Massari, Simone Libutti, F. Catthoor,
Y. Sazeides, C. Nicopoulos, A. Portero, E. Cappe and R. Vavrik
HARPA: Solutions for dependable performance under phys-
ically induced performance variability

Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), 2015 International Conference on 270-277

2015 IEEE

2014 D. Gadioli, Simone Libutti, G. Massari, E. Paone, M. Scandale, P.
Bellasi, G. Palermo, V. Zaccaria, G. Agosta and W. Fornaciari
Opencl application auto-tuning and run-time resource man-
agement for multi-core platforms

Parallel and Distributed Processing with Applications (ISPA),
2014 IEEE International Symposium on 127-133 2014 IEEE

2014 Simone Libutti, G. Massari, P. Bellasi and W. Fornaciari
Exploiting performance counters for energy efficient co-
scheduling of mixed workloads on multi-core platforms

Proceedings of Workshop on Parallel Programming and Run-
Time Management Techniques for Many-core Architectures and
Design Tools and Architectures for Multicore Embedded Com-
puting Platforms 27 2014 ACM

international journals/transactions

2017 [Under review]
Simone Libutti, G. Massari and W. Fornaciari
On the Accuracy of CGroups-based CPU bandwidth Con-
trol

x

2017 [Under review]
Simone Libutti, G. Massari, A. Pupykina, G. Agosta and W. For-
naciari
Challenges in Runtime Support for Programming Models

and Resource Management in Heterogeneous High Perfor-
mance Computing

2015 Simone Libutti, G. Massari and W. Fornaciari
Co-scheduling tasks on multi-core heterogeneous systems:
An energy-aware perspective

IET Computers and Digital Techniques Journal

2015 R. Vavrik, A. Portero, S. Kuchar, M. Golasowski, Simone Libutti,
G. Massari, W. Fornaciari and V. Vondrak
Precision-Aware application execution for Energy-optimization

in HPC node system

arXiv preprint arXiv:1501.04557

xi

A C K N O W L E D G M E N T S

I’d like to sincerely thank all the members of my lab. Our group
covers a lot of research areas; in fact, I never had the opportunity to
collaborate with most of my lab fellows. Nonetheless, their constant
presence was duly noted. In the life of a PhD student, good friends
and a serene working environment are what really matters.

If you are willing to indulge me for a moment, I’d like to spend Visit us at http:
//www.heaplab.

deib.polimi.it
a couple of words about our research group (I’m shamelessly copy-
pasting from the website).

HEAP Lab (Politecnico di Milano, Italy) is a cross-disciplinary re-
search team of around 20 people with skills covering Embedded and
Cyber Physical Systems, Design Methodologies, Low-power Design
of Software and Hardware, Compiler Construction, and Embedded
Systems Security and Data Privacy.

The group has been active for over two decades in designing ar-
chitectures and in developing methodologies and prototype tools to
support the automation of different design phases of advanced em-
bedded and computing systems.

I also wish to thank Prof. André Miede, who created the classic- What to use the
template? Check
here: http:
//www.miede.de

thesis Latex template based on Robert Bringhurst’s seminal book on
typography “The Elements of Typographic Style”. Mr Miede, I’ll def-
initely send you a postcard.

xiii

http://www.heaplab.deib.polimi.it
http://www.heaplab.deib.polimi.it
http://www.heaplab.deib.polimi.it
http://www.miede.de
http://www.miede.de

C O N T E N T S

1 introduction 1

1.1 The Resource Management Problem 1

1.1.1 From Single to Multi-Core 2

1.1.2 From Multi to Many-Core 3

1.1.3 Managing computing resources 4

1.2 The dissertation contribution in a nutshell 5

1.2.1 Addressing a real, complex problem 5

1.2.2 Dissertation Organization 7

i single-computing-node systems 11

2 the linux control groups framework 13

2.1 Background . 13

2.2 Control Groups in a nutshell 14

2.3 On the Accuracy of CGroups-based CPU bandwidth
Control . 17

2.3.1 Motivation and Background 17

2.3.2 Towards a fine-grained CPU bandwidth enforce-
ment . 18

2.3.3 Bandwdith allocation using the cgroups cpu con-
troller . 19

2.3.4 Simulating CPU bandwidth enforcement 21

2.3.5 Validation . 28

2.3.6 Conclusions . 34

3 resource allocation : system-wide vs application-
specific 37

3.1 Tailoring allocation to applications 37

3.1.1 From brute force prediction to application char-
acterization . 37

3.1.2 Selecting metrics to characterize resource con-
tention . 39

3.2 Energy-efficient co-scheduling using Performance Coun-
ters . 40

3.2.1 A performance-counters-aware BarbequeRTRM 40

3.2.2 Experimental Results 44

3.2.3 Conclusions . 48

3.3 Making applications adapt to allocations 48

3.3.1 Motivation . 50

3.3.2 Methodology . 52

3.3.3 Experimental Results 52

3.3.4 Conclusions . 56

4 single-isa heterogeneous processing : big .little

architectures 59

xv

xvi contents

4.1 Resource Contention in big.LITTLE Architectures . . . 59

4.1.1 Related Works . 60

4.1.2 Methodology . 61

4.1.3 Experimental Results 69

4.1.4 Conclusions . 74

4.2 A heterogeneity-aware OpenCL support 74

ii multiple-computing-nodes systems 81

5 enabling a transparent process migration in open

mpi 83

5.1 Motivation . 83

5.2 Related Works . 84

5.3 Design and Implementation 87

5.3.1 Open MPI architecture 87

5.3.2 Open MPI extension 88

5.3.3 CRIU . 90

5.3.4 Migration phases 91

5.4 Evaluation . 92

5.4.1 Overheads due to multiple ORTE daemons per
node . 94

5.4.2 Overheads due to migration 98

5.5 Conclusions . 102

6 cpu resource management in hpc systems 105

6.1 Harnessing Performance Variability in HPC 106

6.1.1 Background . 107

6.1.2 The HARPA Operating System 108

6.1.3 A feedback-based, performance-aware allocation
policy . 111

6.1.4 Experimental Setup 112

6.1.5 Conclusions . 116

6.2 A Workload-Agnostic Resource Usage Optimization . 117

6.2.1 Background . 118

6.2.2 Summary of the Work 119

6.2.3 A partially de-centralized resource management 120

6.2.4 Defining a throughput goal 121

6.2.5 Computing the ideal resource budget 123

6.2.6 The PerDeTemp Scheduling Policy 126

6.2.7 Resource allocation policy validation 128

6.2.8 Resource mapping policy validation 135

6.2.9 Conclusion . 140

7 resource management support for deeply-heterogeneous

hpc 143

7.1 Overview . 143

7.1.1 Resource Management 144

7.1.2 Memory Management 145

7.1.3 Programming Model Support 145

contents xvii

7.2 Programming Model Support 148

7.2.1 Message Passing Model 149

7.2.2 Shared Memory Model 150

7.2.3 Data Flow Model 151

7.2.4 Hybrid Models 152

7.2.5 Heterogeneous Platforms 152

7.2.6 Host-side low-level runtime 154

7.2.7 Device-side low-level runtime 155

7.2.8 Discussion . 156

7.3 Runtime Management 157

7.3.1 Run-time resource manager 158

7.3.2 Distributed Management 160

7.3.3 Developing runtime-manageable applications . 161

7.3.4 Profiling runtime-manageable applications . . . 163

7.4 Memory Management 165

7.4.1 The MANGO approach 166

7.4.2 Choosing the most suitable memory. 167

7.4.3 Concurrent, thread-safe memory allocation and
deallocation. 168

7.4.4 Runtime optimization. 169

7.5 Conclusions and Future Developments 169

8 conclusions 171

8.1 Subjects covered by the dissertation 171

8.2 Contributions of the dissertation 172

8.2.1 Single-Computing-Node Systems 172

8.2.2 Multiple-Computing-Nodes Systems 173

iii appendix 177

a the barbeque run-time resource manager 179

a.1 User-Space Resource Management 179

a.2 The BarbequeRTRM approach 180

a.2.1 Managed Applications Execution Flow 181

a.2.2 Integrating applications 182

a.3 Defining Resource Allocations 184

bibliography 187

L I S T O F F I G U R E S

Figure 1 Evolution of microprocessors over time. 2

Figure 2 The end of Dennard scaling: active power vs
Vdd. 3

Figure 3 Summary of HiPEAC Visions 2015 and 2017. . 6

Figure 4 Subjects covered by the dieesrtation. 7

Figure 5 The Linux Control Groups: cpuset inclusion. . 15

Figure 6 Dividing an application into monitorable Exe-
cution Cycles. 19

Figure 7 The Linux Control Groups: the cpu controller. 21

Figure 8 Enforcing CPU bandwidth on applications whose
CPU usage is irregular over time. 22

Figure 9 Enforcing CPU bandwidth on applications whose
CPU usage is regular and composed by bursts. 23

Figure 10 Execution Cycle usage profiles used during the
simulation. 24

Figure 11 Bandwidth enforcement simulation: homoge-
neous scenario. 26

Figure 12 Bandwidth enforcement simulation: heteroge-
neous scenario. 27

Figure 13 Hardware setup. 30

Figure 14 Experimental results: equivalent core usage. . 31

Figure 15 Experimental results: equivalent core usage (av-
erage). 33

Figure 16 Spearman’s rank correlation coefficient for each
performance counter, along with correlation ρ
for each application. 42

Figure 17 Off-line applications characterization: correlat-
ing performance counters with energy consump-
tion. 42

Figure 18 Off-line applications characterization: allocated
CPU bandwidth vs performance. 43

Figure 19 Performance and energy speedups induced by
CoWs on YaMS. 45

Figure 20 Linux scheduler compared to CoWs: workload
execution time, system wide energy consump-
tion and EDP. 47

Figure 21 Application and platform domain of the pro-
posed methodology. 51

Figure 22 Design Space Exploration phase. 53

xviii

List of Figures xix

Figure 23 Throughput and percent disparity error for a
plain Linux implementation and for the pro-
posed run-time management strategy. 54

Figure 24 Dynamic workload analysis under a variable
number of Stereo-Matching instances. 56

Figure 25 Schema representing the proposed approach. . 63

Figure 26 Flowchart describing the co-scheduling policy. 68

Figure 27 Stakes function examples on the big cores, with
increasing number of co-running threads. . . . 72

Figure 28 Enforcing a custom system view on the OpenCL
runtime. 76

Figure 29 Architecture of Open MPI modules. 88

Figure 30 Open MPI modules architecture used in the
mig approach. 90

Figure 31 The mig framework: migration phases. 93

Figure 32 Execution time of each benchmark (input class
= B) when running 16 processes using 1 to 16
ORTE daemons. 95

Figure 33 Execution time of each benchmark (input class
= C) when running 16 processes using 1 to 16
ORTE daemons. 96

Figure 34 Execution time of each benchmark (input class
= D) when running 16 processes using 1 to 16
ORTE daemons. 96

Figure 35 Experimental scenario used to asses the over-
heads induced by migration. 99

Figure 36 Size of the compressed process image normal-
ized to the uncompressed size. 100

Figure 37 Time required to migrate a group of four pro-
cesses. For each application, we list migration
times for datasets type B and C, with and with-
out compression. 101

Figure 38 Migration time composition (percentage). . . . 102

Figure 39 Overall view of HARPA-OS (applications side). 110

Figure 40 Main catchments and outlet hydrographs. . . . 113

Figure 41 Four instances of the Uncertainty application
running on a system that features 48 cores. . . 115

Figure 42 Power consumption of a single instance of Un-
certainty, in HARPA-OS-managed and unman-
aged mode, on a 16-cores NUMA machine. . . 116

Figure 43 Example of interaction between BarbequeRTRM
and the runtime library. 122

Figure 44 Runtime-library-side resource allocation. . . . 123

Figure 45 The PerDeTemp allocation policy. 127

Figure 46 Maximum throughput of the applications over
100 execution cycles. 129

xx List of Figures

Figure 47 Runtime Library overhead over 100 execution
cycles. 130

Figure 48 Managed application forwarding runtime pro-
files over 200 cycles. 131

Figure 49 Error with respect to performance goal and
CPU allocation over 100 execution cycles. . . . 132

Figure 50 Error with respect to performance goal and
CPU allocation over 100 execution cycles, un-
der runtime-variable performance requirements. 134

Figure 51 CPS over time for the three concurrently run-
ning applications 134

Figure 52 CPS and allocated CPU over time for the three
co-running applications. 135

Figure 53 Schema of the blade. Since the fan is on the
right of the blade, there is an air cooling gradi-
ent between socket 1 and socket 0. 136

Figure 54 Results for α scenarios, listing number of allo-
cated cores and level of satisfaction. 138

Figure 55 Results for β scenarios, listing number of allo-
cated cores and level of satisfaction (the closer
to 100%, the better). 139

Figure 56 Heatmap of the computing node in managed
and unmanaged configuration. In both experi-
ments, we used the cpufreq performance gov-
ernor. 141

Figure 57 The MANGO architecture. 146

Figure 58 The MANGO Software Stack. 147

Figure 59 Hierarchical and distributed run-time resource
management strategy. 160

Figure 60 The synchronization mechanisms between the
application execution and the resource man-
ager (BarbequeRTRM) control actions. 163

Figure 61 Example of user-space-managed environment. 179

Figure 62 Example of BarbequeRTRM-managed environ-
ment. 180

Figure 63 The BarbequeRTRM: execution flow of a man-
aged application. 182

L I S T O F TA B L E S

Table 1 Applications used during the tests. 29

Table 2 Average Power and energy consumption of the
applications on the ODROID-XU3 board (big
cluster). 66

Table 3 Results of the application characterization: CPU
demand and minimum/maximum memory sen-
sitivity. 70

Table 4 Summary of the big and LITTLE test scenarios. 73

Table 5 Summary of the big.LITTLE test scenarios . . . 78

Table 6 Experimental results. 79

Table 7 Problem data sizes (MB) for the A, B, C, and D
classes of each benchmark. 94

Table 8 Static overhead of IS and MG with increasing
migration granularity. 97

Table 9 Static overhead of BT, SP, and LU with increas-
ing migration granularity. 98

Table 10 For each experiment, number of Monte Carlo
samples to be performed by the instance that
models each catchment. 137

Table 11 Allocation and access capabilities of both host
and devices on the four OpenCL memory ad-
dress spaces . 153

xxi

L I S T I N G S

Listing 1 Pseudo-code of the performance-aware resource
allocation policy. 112

Listing 2 Example of HLR use: a FIFO communication is
set up between the host and the single kernel,
which is loaded from an external file. 156

Listing 3 Example of DLR use: the DLR API is used to
access the shared memory region, which is then
read by the parallel tasks that are spawned
from the main executor. 157

Listing 4 Example of MANGO application Recipe. . . . 164

Listing 5 Simplified example of a frame processing ap-
plication in its non-integrated version. The ap-
plication parses the arguments, initializes some
data structure and selects a parallelism level.
Then, it processes the frames in “threads_number”-
sized bursts. Finally, it checks the results, joins
the threads and terminates. 183

Listing 6 Main file of the integrated version of the appli-
cation from Listing 5. The application initial-
izes the RTLib and uses it to instantiate the
class whose methods encapsulate the process-
ing code. Then, it launches the processing and
waits for it to terminate. 183

Listing 7 Simplified code of the integrated version of the
application from Listing 5 (header). 184

Listing 8 Simplified code of the integrated version of the
application from Listing 5 (implementation). Un-
derlined functions are calls to the RTLib APIs. 185

Listing 9 Example of application recipe. A recipe is an
XML file that contains a static list of Appli-
cation Working Modes (AWMs). When com-
puting the resource allocation for an applica-
tion, the scheduling policy chooses an AWM
between those that are listed in its recipe. . . . 186

xxii

A C R O N Y M S

AEM (BarbequeRTRM) Abstract Execution Model

API Application Program Interface

AWM (BarbequeRTRM) Application Working Mode

BarbequeRTRM The Barbeque Run-Time Resource Manager
framework

BLCR Berkley Lab’s Checkpoint/Restart kernel-space tool

cgroups The Linux Control Groups framework

CPS (BarbequeRTRM) Execution Cycles Per Second

CPU Central Processing Unit

C/R Checkpoint/Restart

CRIU The Checkpoint/Restore In Userspace tool

DSE Design Space Exploration

DVFS Dynamic Voltage and Frequency Scaling

EC (BarbequeRTRM) Execution Cycle

EDP Energy-Delay Product

FPGA Field Programmable Gate Array

FLOP Floating Point OPeration

GN (MANGO) General Purpose Computing Node

GPGPU General-purpose computing on GPU

GPU Graphic Processing Unit

HARPA (EU Project) HARnessing Performance vAriability

HARPA-OS (HARPA) HARPA Operating System

HARPA-RTE (HARPA) HARPA Run-Time Engine

HiPEAC European Network on High Performance and Embedded
Architecture and Compilation

HMP Heterogeneous Multi-Processing

HN (MANGO) Heterogeneous Computing Node

xxiii

xxiv acronyms

HNP (OpenMPI) Head Node Process

HPC High Performance Computing

HSA Heterogeneous System Architecture

I/O Input/Output

ISA Instruction Set Architecture

JPS (BarbequeRTRM) Executed Jobs Per Second

LLC Last Level Cache

MANGO (EU Project) Exploring Manycore Architectures for Next
GeneratiOn HPC systems

MCA Modular Component Architecture

MC MonteCarlo

MPI Message Passing Interface

NP Nondeterministic Polynomial time

NUMA Non-Uniform Memory Access

OMPI (OpenMPI) OpenMPI application-side API

OPAL (OpenMPI) Open Portable Access Layer

ORTE (OpenMPI) Open Run-Time Environment

PE Processing Element

RAM Random Access Memory

RTRM Run-Time Resource Manager

RTlib (BarbequeRTRM) The application Run-Time Library

R/R Rainfall-Runoff

SoC System on Chip

SMT Simultaneous Multi-Threading

TBB Intel Threading Building Blocks

QoS Quality of Service

VM Virtual Machine

VPS Virtual Private Server

1
I N T R O D U C T I O N

This chapter provides an introduction for the dissertation. In Section
1.1, we describe the factors that drove the evolution of processors
towards multi and many-core and we explain the role of resource
management in modern multi/many-core systems. In Section 1.2, we
further detail the motivations of this dissertation and we provide a
high-level overview of our original contributions.

the resource management problem

In 1965, the Intel co-founder Gordon Moore observed that, during the
following decade, the number of transistors that could cost-effectively
fit in a single chip would double once per year [1]. In 1975, he cor-
rected the pace to a doubling every two years [2]. This market and
technological trend, which proved to be true and drove the evolution
of processors design and manufacturing for decades, became widely
known as the Moore’s law.

In 1974, the IBM researcher Robert H. Dennard co-authored a pa-
per according to whom transistors power is proportional to their area
because the smaller the transistor area, the lower current and operat-
ing voltage a transistor needs to properly work [3]. This law, which
allowed manufacturers to drastically raise clock frequencies from one
generation to the next without significantly affecting the overall cir-
cuit power consumption, became widely known as Dennard scaling.

Moore’s law and Dennard scaling had a tremendous effect on the
evolution of processors, inasmuch as they led to chips that featured
ever higher frequencies and transistors numbers. However, starting
from the first decade of this millennium, keeping up with this trend
became increasingly difficult. On one hand, Moore’s law is begin-
ning to slow down. As shown by Figure 1, the number of transis-
tors per chip (red circles) continued sticking to the doubling trend;
however, as recently stated by Intel, shrinking the transistors in a
cost-effective way is becoming more difficult, and, starting from 2017,
the pace between successive generations of processors will be offi-
cially slowed down to a doubling every three years [4]. It is worth
remarking that, regardless of the production costs, a Skylake tran-
sistor is already around 100 atoms across; although emerging tech-
nologies are pushing towards even lower transistor sizes [5], we are
clearly reaching the limits imposed by physics. On the other hand,
Dennard scaling already ended, and this is the reason that initially
drove processors design towards multi-cores. The transistor power

1

2 introduction

Single-thread performance (SpecINT)

Frequency (MHz)

Typical power (watts)

Number of cores

Transistors (thousands)

1E+6

1E+5

1E+4

1E+3

1E+2

1E+1

1E+0

1975 1985 1995 2005 2015

MULTI-CORE

MANY-CORE

Figure 1: Evolution of microprocessors over time [7]. From the first years of
this millennium, the end of Dennard scaling caused frequency to
stagnate and led to the rise of multi and many-cores.

consumption as computed by Dennard takes into account only the
dynamic power, i.e., the power consumed by the transistor to switch
state. However, due to miniaturization, the leakage power, which is
the power consumed because of leakage current, is no longer negli-
gible (see Figure 2). Consequently, scaling threshold voltage—hence
operating voltage—became difficult if not unfeasible [6], and frequen-
cies could not be further raised without affecting power consumption.

From Single to Multi-Core

When the Dennard scaling started to falter, the potential benefits of
parallelism (at least when employing multiple independent proces-
sors) were already a well established concept. This explains why, in
the early 2000s, processors design went multi-core (light blue dia-
monds in Figure 1). The main idea was to provide each chip with
multiple energy-efficient—hence slower—processing cores instead of
an increasingly powerful one [9]. In a typical multi-core processor,
the cores share the last level cache and the memory hierarchy, so that
threads from different cores can locally cooperate in executing appli-
cations. This way, even though each core is less performing than that
of a typical single-core processor, the overall performance is higher
due to the concurrent execution of parallel threads.

1.1 the resource management problem 3

a
ct

iv
e
 p

o
w

e
r

Vdd(V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Dynamic Power

Leakage Power

Figure 2: Active power vs Vdd at constant frequency [8]. As the Vdd gets
smaller, active power gets higher due to the rise of leakage power.

Indeed, producing multi-core processors is only half of the solution:
applications and operating systems must be specifically designed to
leverage parallelism. Developers had to learn how to split applica-
tions into suitable pieces that could be locally executed by multiple
cores, and this, obviously, had a tremendous effect on the complexity
of the applications source code.

Even though it added complexity to both the hardware and the
software side, multi-core processing proved very effective in boosting
processors performance while avoiding harsh increments of power
consumption. However, due to the presence of multiple processing
elements and of shared resources such as the memory hierarchy, se-
lecting a suitable amount of parallelism for each application and un-
derstanding how the execution of an application affects the perfor-
mance of the rest of the workload became increasingly important.

From Multi to Many-Core

In 1967, well before the advent of Dennard scaling, the IBM researcher Amdahl’s law states
that if P and 1− P
are respectively the
parallel and serial
portions of a system
or program, then the
maximum speedup
achievable by using
N processors is

1
(1−P)+(P/N) .

Gene M. Amdahl formulated what became known as the Amdahl’s
law [10]: the speedup obtainable by splitting a task among multi-
ple devices affects only the parallel parts of the applications code,
whereas the serial parts are not affected. That is, there are limitations
to the maximum amount of parallelism an application can benefit
from. Multi-core processors introduce yet another degree of complex-
ity, as the Amdahl’s law refers to applications that are split among
several single-core processors. In the case of multi-core processing,
the presence of shared resources—and hence of resource contention—
further limits the potential parallelism-induced speedup [11].

4 introduction

Given these premises, how far can we push the multi-core approach?
According to the Amdahl’s law, the limitations of parallelism-induced
speedup depend on the applications code. In case of embarrassingly
parallel applications, i.e., applications that can be effortlessly paral-
lelized into a massive amount of independent tasks (e.g. graphical
processing), the multi-core approach can be indeed pushed to its lim-
its, and this led to the design of processors that featured tens to hun-
dreds of cores (e.g. GPUs, which are manycore vector processors). Ob-
viously, in order to cope with the subsequent increase of complexity,
such cores are usually kept as simple as possible: most of the com-
plexity is instead moved to the software level by introducing ad-hoc
programming models that support explicit parallelism (e.g. OpenCL
and CUDA).

Nowadays, the typical setup of high-end embedded to High Per-
formance Computing systems consists of one or more multi-core pro-
cessors and one or more many-core accelerators, the latter used to
execute only specific kinds of tasks. For small systems such as Smart-
phones and Desktop computers, the common trend is to have a multi-
core processor and a GPU.

Managing computing resources

The problem of improving performance while guaranteeing a low
power consumption is not yet solved. Indeed, multi and many-cores
proved to be a very effective mean to mitigate this issue, but they
also introduced a non-negligible degree of complexity both at hard-
ware and at software level. Moreover, generation after generation of
processors, the increasing performance caused the chips power con-
sumption to constantly raise up to the point where it is not possible to
power on all the components of a chip without causing a burnout [12].
This problem is referred to as dark silicon problem, meaning that some
parts of the chip must be switched off (made dark) in order for the
remaining ones to be able to work.

To summarize, modern systems are subject to multiple problems:
first of all, the available computing resources consist in several and
possibly heterogeneous cores. Each application may have a different
Quality of Service requirement to comply with, a different degree of
parallelism and, due to the presence of shared resources, a different
interference on the performance of concurrently running applications.
Second, the high power consumption of modern systems causes se-
rious issues such as thermal hot-spots [13], performance variability
induced by aging [14] and, in case of large systems, unsustainable
supplying and cooling costs [15].

Addressing the aforementioned issues is paramount; however, do-
ing so requires to add a huge degree of complexity to either (or all)
hardware, operating system or software side. A valid alternative ap-

1.2 the dissertation contribution in a nutshell 5

proach is instead to employ a software layer that acts as a broker
between operating system and applications and that hides the com-
plexity of orchestrating hardware configuration (e.g. setting cores fre-
quencies according to system status and current workload) and re-
source allocation. These layers are called Resource Managers.

the dissertation contribution in a nutshell

This dissertation analyzes the problem of multi and many-core re-
source management from a horizontal perspective. We analyze the
main goals and issues regarding the allocation of CPU resources (pri-
marily cores), ranging from high-end embedded to HPC systems.

Addressing a real, complex problem

Figure 3 shows the most recent research road-maps suggested by the
European Network on High Performance and Embedded Architec-
ture and Compilation (HiPEAC). These road-maps, which are also
called HiPEAC visions, deal with the most critical challenges that are
faced by academia and industry and that are currently driving the
European research activity. One of the main topics of the HiPEAC
vision 2015 (Figure 3a) was achieving power and energy efficiency
by developing formalisms, methodologies and tools to deal with the
“desired Quality of Service” of applications: by assigning to appli- Most applications

are not interested in
executing “as fast as
possible”. Rather,
they are content
with being executed
“at least that fast”.
The same thing
happens with QoS,
which, in any case,
can be often related
to performance.

cations only the computational resources that they need to comply
with their Quality of Service goals, it is indeed possible to reduce
over-specification. In the HiPEAC vision 2017 (Figure 3b), energy ef-
ficiency still remains a major challenge, and not only for the environ-
ment sake: in order to stay functional and economically viable, both
Exaflops computers and battery-based embedded systems need sig-
nificant improvements to energy efficiency. The HiPEAC vision 2017

also stresses the fact that, in order to address the aforementioned
challenges, it is paramount to successfully master the parallelism and
heterogeneity opportunities that are offered by modern systems.

This dissertation specifically tackles those challenges. Figure 4 pro-
vides an immediate representation of the different subjects and sce-
narios that we address in the dissertation. From the resource man-
agement perspective, we mostly focus on scheduling policies. That
is, we try to understand, depending from the target architecture and
the optimization goals, how the resource manager can compute the
most suitable resource allocation for each application. We also ana-
lyze how the Linux operating system supports resource management
across different architectures, and, when needed, we implement new
mechanisms to support resource allocation.

We exploit resource management techniques to address the prob-
lems described in Section 1.1: maximizing performance and minimiz-

6 introduction

Dependability,
Security

Managing
system

complexity

Power and
energy

efficiency

Entanglement
between physical
and virtual world

Multidisciplinary
Technological
evolution

TOOLS

ARCHITECTURES

ABSTRACTIONS

(a) The HiPEAC vision 2015 [16].

Guaranteeing
trust

Improving performance
and energy efficiency

Mastering
complexity

Security, safety,
privacy

Mastering parallelism
and heterogeneity

Predictability
by design

LO
C
A
L

CO
M

PUTING CUSTOM HARD
W

A
R

E

IN
T
E
R

O
P

E
R

A
B
ILITY COMPOSABILITY

 C
OGNIT

IV
E

S
O

LU
T
IO

N
S

COMPUTE INTENSIV
E

E
N

T
A

N
G

L
E
D

 SMART CO
N

N
E
C

T
E
D

Increasing ICT
workforce

Reinventing
computing

(b) The HiPEAC vision 2017 [17].

Figure 3: The latest High Performance and Embedded Architecture and
Compilation (HiPEAC) visions, listing power/energy efficiency
and the exploitation of parallelism and heterogeneity as major
challenges for the European research community.

ing power (mostly HPC) and energy consumption (mostly battery-
based embedded), but also minimizing thermal hot-spots and miti-
gating the effects of memory contention and performance variability.
We do this by trying to understand which is the minimum amount
of resources that applications need to comply with their Quality of
Service goals.

Regarding architectures, we evenly focus on embedded, desktop
and HPC systems. For each of those, we address both homogeneous
and heterogeneous scenarios.

1.2 the dissertation contribution in a nutshell 7

SCHED
U

LIN
G

 P
O

LICIES NEW

MECHANISMS

ALLOCATIONSUPPORT

S
Y
S

T
E
M

A
N

A
LY

S
IS

RUNTIME
RESOURCE

MANAGEMENT

PER
FO

R
M

A
N

C
E

VARIABILITY

TH
E
R

M
A

L
EN

ERGY / POWER

M
E
M

O
RY

C
O

N
TE

N
TI

O
N

OPTIMIZATION

OBJECTIVES

E
M

B
E
D

D
E
D

 S
YS

TE
MS

H
ET

E
R

O
G

E
N

E
O

U
S

HOMOGE

NEOUS

HOMOGENEO
U

S
MANYCORE

DEEPLY
HETEROHIGH PERFORMANCE COMPU

TI
N

G

DESKTOP M
U
LTIC

O
R

E
HOMOGENEO

U
S

W
IT

H
G

P
U

GENEOUS

ARCHITECTURE

TYPE

SI
N

G
LE

-I
S

A
 (

b
ig

.L
IT

TL
E)

Figure 4: A horizontal perspective of multi and many-core resource manage-
ment. The pie charts provide an immediate representation of the
distribution of management-related subjects in the dissertation.

Dissertation Organization

This dissertation is split in two parts. The first one, which is com- When dealing with
distributed systems,
resources must be
suitably managed at
both system and
node-level, hence the
division into “single
vs multi-node
approaches” instead
of “embedded and
desktop vs HPC”.

posed by Chapters 2 to 4, bundles all the works that pertain to single
computing node architectures. Part of those works are indeed appli-
cable also to HPC systems, which usually consist of multiple inter-
connected computing nodes and can therefore benefit from a suitable
node-level resource management support.

First of all, we analyze the resource manager problem from the op-
erating system standpoint. We do that in order to understand how
the resource allocation choices of the resource manager are actuated
on the system. In particular, we present the Linux Control Groups
(also referred to as cgroups), which is a Linux framework that is used
to allocate computing resources or to put constraints on their usage.
After a brief introduction on the structure of cgroups, we present a
study on the accuracy of cgroups-based CPU bandwidth control. We

8 introduction

show that, in order for CPU time enforcement to be accurate, the con-
figuration of cgroups needs to be set for each application separately.

Second, we move to the resource management layer. In particu-
lar, we deal with application characterization, i.e., how to extract ap-
plication features that can be effectively exploited by resource man-
agers to perform clever allocation choices. We also try to understand
how to suitably distribute the management logic among the resource
manager and applications. In particular, we investigate the synergies
between system-wide resource management and application-specific
auto-tuning.

Finally, we focus on big.LITTLE architectures, which are multi-core
heterogeneous single Instruction Set Architecture processors that, by
featuring different types of cores in the same chip, allow operative
systems to exploit the trade-off between performance and power con-
sumption. We try to understand how such architectures are dealt
with by modern systems. More in detail, we study how to support
the Linux Heterogeneous Multi-Processing scheduler in performing
energy-aware scheduling and how to provide the OpenCL runtime
with heterogeneity-awareness when using big.LITTLE processors as
heterogeneous OpenCL devices.

Once having achieved a suitable resource management support at
node level, we go multi-node. The second part of the dissertation,
which is composed by Chapters 5 to 7, specifically targets distributed
systems such as those used in HPC. Such systems are usually com-
posed by interconnected computing nodes, and this poses questions
that are not present in multi-node scenarios, such as how to efficiently
migrate applications and their data from one node to another; how to
minimize power consumption in order to mitigate the high supply-
ing and cooling costs of large systems; and how to minimize (or deal
with) the presence of faults, whose probability gets higher as the size
of the system increases.

First of all, we perform and interesting study on how the freeze/
restore-based process migration of MPI applications, which is usu-
ally performed at node granularity to address faults, can be made
fine-grained in order to migrate only parts of the application on a
different computing node. This allows resource managers to perform
optimizations such as load balancing, resource consolidation, or also
to counteract the effects induced on the hardware by aging (i.e., mi-
grating processes from faulty to healthy nodes).

Second, we present a resource management approach that exploits
the trade-off between power consumption and performance when ex-
ecuting HPC applications that must comply with runtime-variable
Quality of Service requirements. In this context, we will employ an
approach composed by an application-agnostic, feedback-based re-
source allocation and a performance and resource-aware mapping
strategy. The goal of such approach is to make applications comply

1.2 the dissertation contribution in a nutshell 9

with their quality requirements while minimizing the effects of per-
formance variability and evenly spreading temperature throughout
the chip.

Finally, we perform the first steps towards an unified runtime man-
agement support for deeply heterogeneous HPC systems.

We close the dissertation with the conclusion (Chapter 8) and the
Appendix. In the former, we summarize the problems we encoun-
tered during our study and how we choose to solve them; in the latter,
we describe the BarbequeRTRM, the runtime resource manager that
we extensively used, improved and developed during our work.

Part I

S I N G L E - C O M P U T I N G - N O D E S Y S T E M S

The first part of this dissertation deals with single comput-
ing node systems.

First of all, we will study how the Linux Control Groups All the works
presented in this
disseration actuate
the allocation of
CPU cores by using
Control Groups

actuate CPU time allocation in multi-core processors. We
will show that, in order for the enforcement of CPU time
allocation to be accurate, the configuration of cgroups must
be separately set for each application.

Second, we will address CPU resource management in
homogeneous nodes, and we will do so with a dual ap-
proach. On one hand, we will study how the computation
of resource allocation can take into account the character-
istics of applications. On the other hand, we will try to un-
derstand how applications can change their behavior in
order to optimally exploit a resource allocation. We will
show that the synergistic collaboration between system-
wide resource managers and application-specific applica-
tion auto-tuners leads to quite promising results.

Finally, we address single-ISA heterogeneous processing. Single-ISA
heterogeneous
processors feature
different computing
cores that share the
same Instruction Set
Architecture. This
means that an
application binary
can be indifferently
executed on (or
migrated to) any
available core.

In particular, we will study how to support the Linux
Heterogeneous Multi-Processing scheduler in performing
energy-aware scheduling and how to provide the OpenCL
runtime with heterogeneity-awareness when using single-
ISA heterogeneous processors as heterogeneous OpenCL
devices. Those works specifically target big.LITTLE pro-
cessors, i.e., processors that feature a cluster of performing
but power-hungry cores and a cluster of low-performance
and power-efficient ones. Given that the two clusters share
the same ISA, threads can be freely migrated between clus-
ters at runtime in order to leverage the trade-off between
performance and power efficiency.

2
T H E L I N U X C O N T R O L G R O U P S F R A M E W O R K

In this chapter, we will briefly introduce the Linux Control Groups
(also referred to as cgroups), a Linux kernel feature that allows system
administrators to limit the amount of resources that can be used by
any group of processes.

background

In 1979, the chroot (from “change root”) system call was introduced
in Unix. The purpose of chroot is to create and host a virtualized
copy of the software system and to use it for testing, recovery and
security purposes. In 1992, in a quite interesting paper where chroot

was used to isolate the activities of a cracker, Bill Cheswick created
the term “chroot jail” [18]. This term—and some years later, also the
term “jailbreak” [19]—quickly become quite popular, and that is whyJailbreaking is a well

known term,
especially for Apple

users: it refers to the
process by which an
iPhone firmware is

modified to allow
unsigned code to

gain privileged
access to the

system’s files.

the virtualization mechanism introduced in 2000 in FreeBSD is called
jail [20]. The chroot approach, however, is subject to two major limita-
tions: first of all, the isolation provided by chroot can be bypassed by
tasks that have root privileges; second, chroot offers limited resource
allocation capabilities, e.g., it does not support memory quotas, I/O
and CPU quota limiting and network isolation.

In order to overcome those limitations, several companies endowed
each physical server with a hypervisor, which could be either native
(type 1) or hosted (type 2) and allowed multiple Virtual Machines
to run on the same physical system. Indeed, each VM had its own
dedicated resources (e.g., CPU, memory, I/O). This approach is often
referred to as Server Virtualization.

As the number of Virtual Machines increased, there was a strong
push towards more lightweight virtualization techniques. This led to
the concept of software container, i.e., a way to encapsulate applica-
tions into lightweight virtualized boxes that run on top of a single op-
erating system. In 2001, Jacques Gélinas created the VServer project,
which aimed at separating the user-space environment into distinct
units called Virtual Private Servers (VPS), so that each VPS could be
seen as a real server by the processes that it contained. Running multi-
ple servers on the same kernel allows system administrators to avoid
virtualization overheads and to dramatically enhance the efficiency
of resource usage by allowing a single kernel to dynamically allocate
resources to each VPS [21].

The Linux Control Groups were originally introduced in 2006 un-
der the name “process containers” [22]. In 2008, the process contain-

13

14 the linux control groups framework

ers mechanism was merged into the Linux kernel mainline (kernel
version 2.6.24). The name was then changed to “Control Groups” in
order for it not to be confused with the concept of software container.
Control Groups are not containers themselves: they are a mechanism
that can be used in Linux-based systems to perform resource isola-
tion, and this in turn enables the creation of containers [23].

Control Groups enforce a specific view of the system on applica-
tions: access to resources such as processing elements, memory nodes
or external accelerators can be totally denied to some applications,
thus partially isolating a subset of resources from the rest of the sys-
tem; access to inherently shared resources such as memory, network
and CPU time, conversely, can be limited in order to minimize re-
source contention or to guarantee different Quality of Service levels
to each class of applications.

At the time of writing, there are two orthogonal implementations
of Control Groups: cgroup-v1 and cgroup-v2. In this dissertation we
focus on the former, which is more widespread (cgroup-v2 has been
declared non-experimental starting from Linux Kernel 4.5 [24]).

control groups in a nutshell

A control group is a collection of processes that share the same view
of the available resources, i.e., each of the processes that belong to the
same control group is subject to the same parameters and resource
usage constraints.

Control Groups are hierarchical: the children of a cgroup explicitly
inherit the constraints of their parent. Figure 5 shows a typical ex-
ample of parent-to-child inheritance. In this case, cgroups are used
to allocate a subset of the available processing elements to different
classes of tasks. The root cgroup, which is mounted by default and has
got no parent, is able to access all the available processing elements;Usually, the terms

“Processing
Element” and “core”
are interchangeable.

In case of
hyper-threading,
however, a core

features two PEs
instead of one.

therefore, depending on the chosen configuration, all its children may
be also able to use them. Control Group A, which is a child of the root
cgroup, has been configured so that it can access all the processing
elements but PE 5 and PE 8 (according to the cgroup notation, the
cpuset of A is composed by PEs 0− 4, 6− 7). Its children will therefore
inherit this constraint: regardless of the chosen configuration, each of
the children of cgroup A will be unable to use PE 5 and PE 8. The
allocation of cgroup B must be therefore equal or stricter than that of
cgroup A: in this case, B is able to access PEs 0− 4, which are a subset
of the ones that are accessible by A.

The set of constraints a cgroup is subject to is provided by one or
more subsystems, which are modules that rely on the cgroups task
grouping facilities to treat groups of tasks in a particular way. For
instance, the control hierarchy that is shown in Figure 5 is constrained

2.2 control groups in a nutshell 15

C
O

N
S

T
R

A
IN

T
S

 S
T
R

IC
T
N

E
S
S

C
G

R
O

U
P

S
 H

IE
R

A
R

C
H

Y
 D

E
P

T
H

Root cgroup
parent: none
cpuset: 0-8

cgroup A
parent: root

cpuset: 0-4, 6-7

cgroup B
parent: A

cpuset: 0-4

cgroup B

cgroup A

root

CGROUPS CONFIGURATION

Figure 5: Control Groups hierarchy example: cpuset inclusion. The root
cgroup is able to access all the nine processing elements that com-
pose the system. Its child (cgroup A), conversely, has been con-
figured so that it can access only some of them. The child of A
(cgroup B) inherits the limits of its parent: all the processing ele-
ments that are not accessible by A are therefore explicitly denied
to B. In general, the resource allocation of a child is always equal
or stricter than that of its parent.

by a single subsystem, i.e., cpuset. Indeed, each of the resources that
are handled by cgroups is managed by a specific subsystem.

The available subsystems are:

blkio

The Block Input/Output controller. At the time of writing, there are
two I/O control policies. The first one uses the Linux Completely
Fair Queuing (CFQ) I/O scheduler [25] to perform a weighted time-
based division of disk access. The second policy, conversely, allows
system administrators to specify upper I/O rate limits on devices,
and it enforces the allocation by performing throttling.

16 the linux control groups framework

cpu

The CPU bandwidth controller. It imposes constraints on the Linux
Completely Fair Scheduler (CFS) [26], thus limiting the CPU time
that is allocated to a group of tasks during a given time frame. This
controller can also be used to assign a relative priority to a cgroup,
so that its tasks are scheduler more often with respect to the tasks
of other cgroups. The cpu controller also supports the Linux Real
Time scheduler.

cpuacct

The CPU accounting controller. By using this subsystem, system
administrators are able to bundle multiple tasks together, so that
their CPU usage can be jointly monitored.

cpusets

The cpuset controller. It allows system administrators to assign a
set of CPUs and — usually in NUMA systems — memory nodes
to groups of tasks, hence isolating the tasks in a subset of the
available resources. It is worth noticing that system calls such as
sched_setaffinity and mbind can be used in conjunction with this For more

information about
sched_setaffinity
and mbind, see
http://man7.org/

linux/man-pages/

man2/sched_

setaffinity.2.

html and http://

man7.org/linux/

man-pages/man2/

mbind.2.html.

controller, but such requests are filtered through the cpuset of the
invoking task.

devices

Device whitelist Controller. It associates a device access whitelist to
a group of tasks.

freezer

The checkpoint/restart subsystem. It is usually used in HPC clus-
ters to define the set of tasks that must be started/stopped by the
batch job management system, but it can also be used to stop tasks
in order for them to be either restarted after a fault or migrated to
another computing node.

hugetlb

The HugeTLB controller, which limits the usage of huge pages. It
is worth noticing that, as for the memory controller, tasks that sur-
pass their limit will receive an error signal. Tasks must therefore
be aware of their limit and behave accordingly. It follows that the
usage of this controller is not transparent to tasks.

memory

The memory controller. It limits the amount of memory that can
be used by a group of tasks, and it is mostly used to prevent a
group of memory-hungry tasks from monopolizing the entire sys-
tem memory. As for the hugetlb controller, tasks must be aware of
their limit; otherwise, depending on the controller configuration,
they could be either killed or stopped until the system administra-
tor chooses to grant them additional memory.

http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html
http://man7.org/linux/man-pages/man2/mbind.2.html

2.3 on the accuracy of cgroups-based cpu bandwidth control 17

net_cls

Network packets classifier subsystem. Its only purpose is to tags
packets with a class identifier. This subsystem must be used in
conjunction with the Linux Traffic Controller (tc), which uses the For more

information avout
the Linux Traffic
Controller, see
https://linux.die.

net/man/8/tc.

identifiers to enforce the selected bandwidth limit on the packets.

net_prio

The Network priority subsystem. It dynamically sets the priority of
network traffic generated by a set of tasks on a given interface.

pids

The process number controller. It is used to stop any new tasks
from being forked or cloned after a certain limit is reached.

rdma

The RDMA controller. It allows system administrators to limit RD-
MA/InfiniBand specific resources for a given set of tasks.

on the accuracy of cgroups-based cpu bandwidth con-
trol

In this section, we analyze how the Linux Control Groups perform The contents of this
section are partially
submitted in a
Transaction. They
are currently under
review.

CPU bandwidth control. First of all, we employ simulation to demon-
strate that, depending on the CPU demand of the applications, Con-
trol Groups may dramatically fail in limiting CPU bandwidth. Then,
we perform tests using real applications to show how Control Groups
can be properly configured to achieve an accurate enforcement accu-
racy.

Motivation and Background

Modern architectures feature a high number of shared resources that
are used to concurrently run multiple tasks or to accelerate parallel
ones. Performance increase, however, comes at a cost: the power con-
sumption of those architectures is becoming unbearable in terms of
supplying and cooling costs [27, 28] (mostly in HPC) and chip reli-
ability [29]. Moreover, contention on shared resources has negative
effects on both performance and energy efficiency [30].

Managing such systems is indeed challenging: on the applications
side, performance and Quality of Service (QoS) are paramount. This
is not surprising, given that users usually pay for computation by
either renting computational power or directly buying the hardware.
System-side goals, conversely, are completely orthogonal: minimizing
power consumption, maximizing energy efficiency, and counteracting
aging/thermal issues.

The Control Groups framework is usually employed to monitor
resource usage [31] or to execute applications in lightweight virtual-

https://linux.die.net/man/8/tc
https://linux.die.net/man/8/tc

18 the linux control groups framework

ization environments [32]; however, they can also be used in an adap-
tive fashion: the allocation can be adapted to the runtime-variable
demand of applications [33, 34], thus minimizing resource usage—
hence power consumption, heat and resource contention—while let-
ting applications comply with their QoS requirements. For instance,
the CPU time allocated to an application can be shrunk as far as the
QoS goal allows, thus reducing the system load and allowing multi-
ple applications to peacefully co-run on the same set of cores [35].

When allocating CPU cores, a resource manager can perform three
kinds of allocation:

cpuset-centric

The resource manager allocates an exclusive set of cores (also called
cpuset) to each application;

bandwidth-centric

The resource manager allocates a suitable share of CPU time to
each application—hence the term “CPU bandwidth”, i.e., “CPU
time used over a given period”;

mixed

The resource manager allocates a cpuset to each application. In case
of overlapping cpusets, it also allocates a suitable share of CPU time
to each application.

When the resource manager allocates CPU resources in a cpuset-
centric fashion, it isolates each application on an exclusive set of cores;
hence, inter-application interference is limited to inherently shared re-
sources such as the last level cache and memory. Conversely, in the
case of bandwidth-centric allocation, resource contention happens at
all the levels from memory hierarchy to cores pipeline. An applica-
tion that uses less CPU bandwidth than expected may be unable to
comply with its QoS requirements, while an application that uses too
much bandwidth will steal CPU time from its co-runners, thus induc-
ing performance degradation on the entire workload. It follows, then,
that it is paramount to choose a suitable bandwidth for each task
and to make sure that it is accurately enforced. We specifically tackle
the aforementioned problem by studying how the configuration of
the cgroups cpu controller affects the accuracy of CPU bandwidth
enforcement.

Towards a fine-grained CPU bandwidth enforcement

The term “CPU bandwidth” refers to the amount of CPU time that is
used by an application over a given time frame. Therefore, in order
to enforce an accurate bandwidth on applications, the CPU time they
effectively use must be monitored at regular intervals during their

2.3 on the accuracy of cgroups-based cpu bandwidth control 19

Start Stop

EC 1

task

task

task

...

EC N

task

task

EC 2

task

task

task

Processing

Figure 6: Dividing an application into Execution Cycles to enable a fine-
grained CPU bandwidth monitoring. The division (dashed lines)
can be performed time-wise, using barriers or with other synchro-
nization mechanisms.

execution. To do that, we split applications into sequential processing
windows that can be monitored individually. We call these windows
Execution Cycles (ECs). Enforcing an accurate CPU bandwidth means
making sure that each EC of an application uses no more and no less
than the allocated CPU bandwidth, which is very useful both to min-
imize resource contention and to ensure the compliance with power
and thermal budgets throughout the entire execution of a workload.

The division of applications into ECs follows the schema presented
in Figure 6. It can be performed periodically, on an event basis or
using barriers or other synchronization mechanisms (e.g. heartbeat).
For instance, a video encoding application may divide its processing
into 25-frame ECs, so that CPU bandwidth can be evaluated for each
group of 25 frames. Please note that the schema presented above can
be applied to a huge variety of applications, e.g. image processing
(EC = “a group of frames”), web servers (EC = “a group of requests”),
number-crunching (EC = “a given amount of calculations”), or stream-
ing applications.

It is worth noticing that bandwidth-centric allocation is typical of
embedded systems, which feature a limited amount of cores and
therefore are often unable to reserve an isolated set of cores for each
application. Nonetheless, in order to make the system comply with
thermal and power constraints, bandwidth-centric allocation (in its
mixed variant) can be also used in HPC scenarios [36]. Thus, ourIn the second part of

the disseration, we
will prove that

bandwidth allocation
is indeed very

effective in HPC.

study also applies to big systems, where applications that use less
bandwidth than expected will suffer quality losses, while applications
that use too much bandwidth are likely to make the hardware violate
some thermal or power budget.

Bandwdith allocation using the cgroups cpu controller

The cpu controller limits the CPU time that the Linux scheduler may
allocate to tasks. This is not about isolating tasks on a subset of the
available CPU cores (something that pertains to the cpuset controller):

20 the linux control groups framework

it is about setting a constraint on the maximum amount of time that
tasks can spend running on the allocated cores. Please note that there
is a subtle difference between allocating and limiting CPU bandwidth.
The cpu controller does not allocate CPU time to applications: its goal
is to make sure that each application does not use more than the
“target” CPU bandwidth in a given time frame.

The bandwidth allocated to an application is specified using a quota
and a period, both expressed in microseconds. During each period, the
application is allowed to run up to “quota” microseconds. We define To keep numbers

small, all our
examples will be
expressed in
milliseconds.

the ratio between period and quota as “equivalent cores usage”. For
instance, let us consider an application that runs on four cores but
can use them no more than half of the time: in this case, given that
in Linux systems the default period is 100ms, the total CPU time
provided by four cores is 400ms per period (each core provides 100ms
worth of execution time). An application that uses those cores only
half of the time has a quota of 200ms, which means quotaperiod = 200ms

100ms =

2 equivalent cores.
In the example presented above, using a 50ms period and a 100ms

quota would have resulted in the same usage. This is due to the fact
that a single constraint—that is, CPU bandwidth—is set by using two
knobs: period and quota. The motivation behind this choice is that,
on equal equivalent cores usage, long periods result in increased burst
capacity, i.e. the application can run more without being interrupted;
conversely, short periods ensure a consistent latency response, i.e., the
application will not suffer from long interruptions.

Figure 7 details how the cpu controller enforces bandwidth. Time
is divided into periods, and the accounting of CPU time is re-set
at the end of each period. A managed application is free to use the
allocated cores as long as its cumulative running time within a period
does not reach the target quota. Then, the cpu controller throttles the
application and prevents it from running until the next period.

The application from Figure 7 is CPU bound and features a con-
stant CPU demand (i.e., the light and dark gray slopes overlap); how-
ever, such applications are not common: usually, CPU usage is at least
control and data-dependent. Moreover, the enforcement is poorly pre-
dictable due to the decoupling between bandwidth demand and ac-
counting (i.e. Execution Cycles and enforcement periods are not syn-
chronized).

Concerning the first point, Figure 8 shows the effects of differ-
ent periods on applications whose CPU usage is not constant (8a).
The cpu controller does not take into account the fact that applica-
tions could under-use the allocated CPU time during certain periods
(which is the difference between allocating and limiting CPU band-
width). Hence, when using short periods, the resulting usage could
be lower than expected (8b). Large periods may be employed to avoid

2.3 on the accuracy of cgroups-based cpu bandwidth control 21

enforcement periods

cu
m

u
la

ti
v
e
 C

P
U

 t
im

e

a
v
a
ila

b
le

ti

m
e

ta
rg

e
t

ti
m

e

p0 p1 p2

A B period
q

u
o
ta

Max bandwidth
given the period

Enforced bandwidth

App
status

RUN IDLE RUN IDLE RUN IDLE

Figure 7: Cpu controller bandwidth enforcement. During each period, the
application running time is cumulated until it reaches the target
value (A); then, the application is throttled and it is not allowed to
run until the next period, when the accounting is re-set (B).

under-usage; however, they could lead to several over-usage occur-
rences inside the period (8c).

Unfortunately, larger periods do not always lead to an accurate en-
forcement. Figure 9 shows how the decoupling between bandwidth
demand and accounting affects the enforcement: especially for appli-
cations whose CPU usage is constant (9a), the resulting usage could
be quite higher than expected (9b). For instance, bursts that happen
across consecutive periods are able to use both quotas, resulting in
high equivalent cores usages.

Simulating CPU bandwidth enforcement

Regardless of how an application is divided into Execution Cycles, syn-
chronizing CPU bandwidth accounting and ECs is not trivial, inas-
much as it would require to modify either (or both) kernel or ap-
plications source code and it would also introduce synchronization
overheads. Therefore, we chose to investigate whether it is possible to
achieve an accurate CPU bandwidth allocation by selecting a suitable
enforcement period for each application. To do that, we developed a
cpu controller simulator that benefits from the following simplifica-
tions:

• the applications execution is split in ECs, and the accuracy of
bandwidth allocation is computed at EC level;

• the CPU usage of the ECs is discretized into arbitrarily small
constant-usage slots. This does not decrease the accuracy of our Slots size can be set

via procfs:
/proc/sys/ker-
nel/sched_cfs_
bandwidth_slice_us.

simulator, given that the accounting performed by cgroups is
also discretized;

22 the linux control groups framework

time [ms]
10 20 30 40 50 60 70 80 90 1000

u
se

d
 c

o
re

s

(e
q
u
iv

a
le

n
t)

1

2

3

4

0

Average usage

(a) No quota enforcement.

time [ms]
10 20 30 40 50 60 70 80 90 1000

u
se

d
 c

o
re

s

(e
q
u
iv

a
le

n
t)

1

2

3

4

0

Average usage

Ideal usage

Enforcement period

(b) Enforcing 20ms CPU time (2 squares) every 10 ms.

time [ms]
10 20 30 40 50 60 70 80 90 1000

u
se

d
 c

o
re

s
(e

q
u
iv

a
le

n
t)

1

2

3

4

0

Average usage

Ideal usage

Enforcement period

(c) Enforcing 80ms CPU time (8 squares) every 40 ms.

Figure 8: Enforcing an average usage of two equivalent cores by using dif-
ferent periods. The CPU demand of the application is not constant
(8a); hence, short periods lead to an average resource under-usage
(8b). Large periods, conversely, lead to an average optimal usage
but also to several instantaneous over-usages, i.e. first, third and
last 10-ms slot (8c). Shaded areas indicate consecutive enforcement
periods.

2.3 on the accuracy of cgroups-based cpu bandwidth control 23

time [ms]
10 20 30 40 50 60 70 80 90 1000

u
se

d
 c

o
re

s

(e
q
u
iv

a
le

n
t)

1

2

3

4

0

Average usage

(a) No quota enforcement.

time [ms]
10 20 30 40 50 60 70 80 90 1000

u
se

d
 c

o
re

s

(e
q
u
iv

a
le

n
t)

1

2

3

4

0

Average usage

Ideal usage

Enforcement period

(b) Enforcing 80ms CPU time (8 squares) every 40 ms.

Figure 9: Enforcing an average usage of two equivalent cores. The applica-
tion CPU demand is composed by bursts (9a). In case of large peri-
ods, lack of synchronization between enforcement and processing
leads to resource over-usage (9b). Shaded areas indicate consecu-
tive enforcement periods.

• ECs of the same application feature the same CPU demand and
execution time. This allows us to analyze the enforcement mech-
anism with disregard of any data variability-induced effect;

• nothing happens between ECs: management overheads are neg-
ligible with respect to the EC execution time. This is typical of
resource management scenarios.

Simulation setup

We set up the simulator according to the following scenario: a multi-
threaded application that is isolated on four cores. For the sake of
simplicity, let us assume that the application uses four threads, which
means that, even when no constraints are applied, its average equiva-
lent cores usage is always less than four by construction (each thread
cannot use more than one core at a time). We refer to the average
unconstrained usage as γ. Please note that we assume the ECs to be

24 the linux control groups framework

time slice

0 25 50 75 100

u
se

d
 c

o
re

s
(e

q
u
iv

a
le

n
t)

1

2

3

4

0
Average CPU Demand

(a) Homogeneous CPU usage profile.

time slice

0 25 50 75 100

u
se

d
 c

o
re

s
(e

q
u
iv

a
le

n
t)

1

2

3

4

0
Average CPU Demand

(b) Heterogeneous CPU usage profile

Figure 10: Execution Cycle usage profiles used during the simulation. The
first one (10a) features an homogeneous demand, i.e., the demand
is often close to the average one. The second one (10b), conversely,
is heterogeneous: the CPU demand is often far from the average.

equal in terms of CPU usage; hence, γ is also the average usage of
each EC. We run three simulations, enforcing a maximum CPU usage
equal to γ, 34γ and 1

2γ, respectively. The output of each iteration is
the average CPU usage of the application until the end of each EC up
to the tenth.

We performed the simulation using two randomly generated CPU
usage traces, which are shown in Figure 10. The first one features a
homogeneous CPU demand, whose average value is 3.0 equivalent
cores (10a). The second, conversely, features a heterogeneous CPU
demand with an average value of 2.2 equivalent cores (10b).

Simulation results

Results for the homogeneous and heterogeneous scenarios are shown
in Figures 11 and 12, respectively. Each Figure shows the percent al-
location error for the three scenarios, i.e., the enforcement of γ, 34γ
and 1

2γ CPU bandwidth. Negative errors indicate resource under-
usage, which means that the application uses less bandwidth than ex-

2.3 on the accuracy of cgroups-based cpu bandwidth control 25

pected; on the contrary, positive errors indicate resource over-usage.
The length of enforcing periods is normalized to the EC execution
time.

Some considerations apply to both scenarios: first of all, resource
over-usage is not possible when enforcing a CPU bandwidth equal
to γ. This is always true, because the average CPU usage of an EC
does not exceed γ by construction. Second, please note that errors are
represented as “up to the Nth EC”, which means “average value of
all the errors up to the Nthone”. Hence, after a few cycles, the union
of under and over-usage errors caused by the decoupling between
periods and ECs makes the errors converge to low values even if the
error of each EC does not; on the contrary, since they are compulsory,
under-usage errors do not converge.

In case of homogeneous bandwidth demand (Figure 11 on page 26),
the under-usage effect caused by short enforcing periods is present
only when the controller enforces a CPU bandwidth equal to γ (Fig-
ure 11a). This is not surprising: as shown in the usage trace (Fig-
ure 10a), the bandwidth demand of the application is indeed always
greater than 2 equivalent cores, i.e., 34γ: when the enforced CPU band-
width is greater than that, resource under-usage is not possible by
construction. Conversely, as already anticipated by the example from
Figure 9 on page 23, large enforcement periods cause resource over-
usage: while the average CPU usage of the application does not ex-
ceed γ by construction (11a), in case of lower bandwidth (11b, 11c)
the allocation gets more inaccurate as the period increases. Overall,
the shorter periods with respect to the EC execution time, the more
accurate the bandwidth enforcement.

In case of heterogeneous bandwidth demand (Figure 12 on page
27), conversely, short enforcement periods lead to compulsory re-
source under-usage. We already addressed this problem in the exam-
ple from Figure 8 on page 22: the cpu controller resets the usage statis-
tics after each period; hence, the CPU bandwidth that the application
is not able to use during a period is permanently lost. Obviously, this
effect gets minimized in the test from Figure 12c because the instan-
taneous CPU usage of the application (Figure 10b) is almost always
greater than 1

2γ (1.1 equivalent cores). Even in the heterogeneous sce-
nario, large enforcement periods lead to over-usage. As shown in Fig-
ure 12a, this is not a problem when enforcing a CPU bandwidth equal
to γ. In case of smaller allocations (12b, 12c), instead, the trend is simi-
lar to the one observed in the homogeneous scenario. Overall, periods
close to the ECs execution time lead to more accurate results.

Discussion

Simulation results confirm that, to maximize the enforcement accu-
racy of the cpu controller, each application should be subject to a
different enforcement period.

26 the linux control groups framework

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p

e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(a) Enforced bandwidth = γ.

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p

e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(b) Enforced bandwidth = 3
4γ.

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p

e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(c) Enforced bandwidth = 1
2γ.

Figure 11: Homogeneous scenario: allocation error (percent) when limiting
CPU usage using different enforcement periods. Period length is
normalized to EC execution time. γ is the average CPU usage of
the application when not using the cpu controller.

2.3 on the accuracy of cgroups-based cpu bandwidth control 27

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p
e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(a) Enforced bandwidth = γ.

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p

e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(b) Enforced bandwidth = 3
4γ.

2.25 EC time

2.00 EC time

1.75 EC time

1.50 EC time

1.25 EC time

1.00 EC time

0.50 EC time

0.20 EC time

0.10 EC time

le
n
g

th
 o

f
e
n

fo
rc

e
m

e
n

t
p

e
ri

o
d

percent distance between used and expected CPU bandwidth

-15 0 15 30

1stup to EC

2ndup to EC

3rdup to EC

4thup to EC

5thup to EC

10thup to EC

(c) Enforced bandwidth = 1
2γ.

Figure 12: Heterogeneous scenario: allocation error (percent) when limiting
CPU usage using different enforcement periods. Period length is
normalized to EC execution time. γ is the average CPU usage of
the application when not using the cpu controller.

28 the linux control groups framework

Periods that are larger than the average Execution Cycle lead to CPU
usages that are typically bigger than the expected ones. In case of
coarse-grained allocations (i.e. when having accurate CPU bandwidth
enforcement in the long term is enough), this is not necessarily a prob-
lem because the average error tends to decrease over time. However,
it is worth noticing that, given the runtime-variable delay between
bandwidth demand and accounting, CPU bandwidth enforcement is
accurate only on average, while the enforcement performed in each
single period can be quite inaccurate. An application that over-uses
the available resources is potentially stealing bandwidth from its co-
runners and, even in case of isolation, it is causing more contention
than expected on shared resources.

On the other hand, periods that are shorter than the average Exe-
cution Cycle often lead to accurate allocations. However, the cpu con-
troller resets the accounting statistics after each enforcement period
(and rightly so, because this minimizes overheads and ensures fair-
ness in multi-application scenarios); hence, applications whose CPU
demand is often lower than the enforced one will not be able to com-
pletely exploit the allocated bandwidth even if, by using larger peri-
ods, it would indeed be possible. This phenomena could trick the re-
source manager into thinking that an application is not able to exploit
the allocated resources. Differently from over-usage, whose average
effect gets smaller over time, under-usage is compulsory; hence, it
would lead to inaccurate enforcements also in case of coarse-grained
allocations.

Validation

According to the simulation results, the effect of CPU bandwidth en-
forcement on the CPU usage of applications is greatly affected by the
enforcement period length. In particular, the optimal period must be
smaller than the EC execution time, but not short enough to cause
bandwidth under-usage. In this subsection, we validate the results
using real applications.

We reproduced the simulation scenario: a multi-threaded applica-
tion that runs in isolation on four cores and uses four threads. This
time, the resource manager caps the allocated CPU bandwidth to
three equivalent cores. That is, the new allocation consists in four
cores, but this time they can be used at most 75% of the time.

The applications used during the tests are described in Table 1.
We selected a subset of the PARSEC benchmark suite [37], focus-

ing on applications that represent different domains. We carried out
the tests without characterizing the CPU demand of applications be-
cause:

• CPU demand can be data-dependent, which, in turn, makes the
ideal enforcement period data-dependent;

2.3 on the accuracy of cgroups-based cpu bandwidth control 29

Table 1: Applications used during the tests. We divided the processing part
of each application into Execution Cycles, for which we list descrip-
tion and average execution time when using four threads.

Name Description EC Division

Average EC
duration

[ms]

Blackscholes
Option pricing with
Black-Scholes PDE

Each thread computes a
single option value

77

Bodytrack
Body tracking of a person
using multiple cameras

Process a single frame
from each camera

96

Ferret
Content-based similarity
search server

A single step in the
parallel search pipeline

120

Fluidanimate
Animate fluid dynamics
with SPH method

Produce a frame 118

Streamcluster
Online clustering of an
input stream

Find a center in a
fixed-size chunk of points

104

Swaptions
Prices a portfolio of
swaptions using a MC
simulation

Price one swaption per
thread.

180

x264

H.264/AVC (Advanced
Video Coding) video
encoder

Process a burst of 5

frames
135

• according to the simulation, heterogeneous CPU demand can be
simply inferred from the presence of bandwidth under-usage in
case of short enforcement periods;

• addressing uncharacterized workloads widens the applicabilityPlease note that EC
length is computed
during runtime by

the resource
manager.

of this study.

We performed the tests on a Linux-based system that features an In-
tel i7-6700K CPU (4 Simultaneous Multi-Threading cores @ 4.00GHz,
for a total of 8 hardware threads). The operating system is Arch Linux
kernel 4.9.11.

Figure 13 shows our hardware setup: we used cgroups to divide the
available hardware threads into two subsets of four threads each. The
first subset hosted the operating system along with all the tasks not
related to the tests, while the second one hosted the tests. We chose
to operate this partition in order to run the managed applications on
four hardware threads while allowing each thread to exploit its own
private cache. This way, we minimized the effects of cache contention
on the applications execution.

30 the linux control groups framework

L3 (LLC)

L2 L2 L2 L2

L1d/L1i L1d/L1i L1d/L1i L1d/L1i

Cpuset 0-3
(system)

Cpuset 1-4
(tests)

Figure 13: Hardware setup. The processor is partitioned in two cgroups
cpusets. The former (cpuset 0− 3) is used to host the operating
system, while the latter (cpuset 4− 7) is used to host the tests in
isolation.

Figures 14 and 15 respectively report the CPU usage of each sin-
gle EC and the average CPU usage of the whole applications. In both
figures, we use increasingly dark gray lines to indicate increasingly
small enforcement periods. Moreover, we use colored lines to indi-
cate periods that are equal to 1

5EClength (dark green) and EClength
(light red). According to the simulation results, those periods are in-
deed most suited in case of homogeneous and heterogeneous CPU
bandwidth demand, respectively.

The effect of large enforcement periods on the CPU bandwidth of
each EC is clearly shown in Figure 14 on page 31. In those cases (light
gray lines), each period is large enough to fit several Execution Cycles.
This has negative effects on bandwidth usage: during a single pe-
riod, the application is allowed to execute multiple ECs using all the
available resources, followed by a single EC whose CPU usage is ex-
tremely limited because there is not any more bandwidth to be used
in that period. This causes the CPU bandwidth to wildly oscillate
around the expected one, alternating under and over-usage. In case
of power/thermal-related constraints or applications co-running on
a set of cores, the positive effects of bandwidth allocation are totally
lost: applications never use the allocated bandwidth because they al-
ways use either all or almost none of the available CPU time. The
effect of short enforcement periods (dark gray lines) is instead clearly
shown in Figures 14a, 14b, 14d and 14f: in those cases, the observed
CPU bandwidth seldom surpasses the enforced one (i.e., 3 equiva-
lent cores); however, given that CPU time accounting does not span
over multiple periods, bandwidth usage is often lower than that, thus
leading to under-usage.

2.3 on the accuracy of cgroups-based cpu bandwidth control 31

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(a) Blackscholes.

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(b) Bodytrack.

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(c) Ferret.

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(d) Fluidanimate.

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(e) Streamcluster.

Figure 14: Experimental results. For each application and for each period,
we list the equivalent core usage of all the Execution Cycles up to
the 100th one. Accurate allocations are those that are closer to
3 equivalent cores. Thick lines indicate the ideal period bounds
as found using simulation: a fifth of EC length (light green) and
EC length (dark red). Increasingly dark lines indicate increasingly
small enforcement periods.

32 the linux control groups framework

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(f) (cont.) Swaptions.

0 20 40 60 80 100
0

1

2

3

4

Execution Cycle

U
se

d
co

re
s

(e
qu

iv
a

le
nt

)

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(g) (cont.) x264.

Figure 14 (cont.): Experimental results.

Overall, Figure 14 confirms the simulation results: enforcement pe-
riods whose length is equal to EClength (red lines) lead to an accu-
rate enforcement, which, however, may be subject to oscillations due
to the runtime-variable delay between ECs and enforcement periods.
Moreover, periods whose length is equal to 1

5EClength (green lines)
lead to quite stable results, and, in some cases, oscillations are also
mitigated (see Figures 14d and 14e). Finally, periods that are too short
or too large with respect to the above mentioned boundaries respec-
tively lead to under and over-usage.

Figure 15 on page 33 offers a different view on the aforementioned
results: the average bandwidth usage of the applications over a hun-
dred Execution Cycles, that is, in a time frame of several seconds. Un-
fortunately, even in this case, all the enforcement periods that are
larger than EClength (light gray lines) lead to average CPU band-
widths that are higher than the enforced ones (up to 25% error). This
means that the observed CPU bandwidth is over-sized not only at
EC granularity, where the measured bandwidth wildly oscillates un-
der and over the enforced one, but also on average. Even in case
of coarse-grained allocations, applications may use more bandwidth
than expected despite the cgroup-based enforcement. Similarly, peri-
ods that are shorter than 1

5EClength (dark gray lines) often lead to
bandwidth under-usage, as clearly shown in Figures 15a, 15b, 15d
and 15f (up to 10% error).

Overall, even in this case, simulation results are confirmed: en-
forcement periods whose length is equal to EClength (red lines) lead
to an accurate average enforcement (less than to 1% error). At the
same time, these periods (see the instantaneous views from Figures
14 and 14) hide an oscillatory behavior: the enforcement is accurate
only on average, but the real usage oscillates between slight under
and over-usage. On the other hand, periods whose length is equal to

2.3 on the accuracy of cgroups-based cpu bandwidth control 33

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(a) Blackscholes.

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(b) Bodytrack.

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(c) Ferret.

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(d) Fluidanimate.

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(e) Streamcluster.

Figure 15: Experimental results. For each application and for each period,
we list the average allocation error measured at the end of the
first 100 Execution Cycles. The error is defined as the percent dis-
tance between the allocated CPU bandwidth and the measured
one. Thick lines indicate the ideal period bounds as found us-
ing simulation: a fifth of EC length (green) and EC length (red)
Increasingly dark lines indicate increasingly small enforcement
periods.

1
5EClength (green lines) lead to results that are accurate in the aver-
age case (less than 1% error) but also in the instantaneous one. Indeed,
1
5EClength is not a magic number: as also shown by the simulation
results (see Figure 12 on page 27), the smallest enforcement period

34 the linux control groups framework

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(f) (cont.) Swaptions.

0 20 40 60 80 100
-20%

-10%

0%

10%

20%

30%

Execution Cycle

E
rr

or
 w

rt
 a

llo
ca

tio
n

0.05 EC
0.07 EC
0.10 EC
0.20 EC
0.50 EC
0.75 EC

1.00 EC
2.50 EC
5.00 EC
7.50 EC

10.00 EC

(g) (cont.) x264.

Figure 15 (cont.): Experimental results.

that provides a good accuracy while avoiding over-usage is applica-
tion dependent. In the case of swaptions, 15EClength is too short and
makes the application suffer from bandwidth under-usage (Figure
15f).

Conclusions

Whereas Control Groups are mostly used to perform isolation, i.e.,
they are used to run applications on a subset of the available CPU
cores (cpuset), they also allow CPU usage to be throttled over time
inside the allocated cpu set, hence enabling both application-specific
and system-wide optimizations. While cpuset allocation is accurate
by definition (because a thread either can or cannot be scheduled
on a given core), CPU time enforcement is performed through CPU
bandwidth control, which does not guarantee that applications will
really exploit the allocated resources. So, why is accuracy

so important?
The answer is
strightforward: once
a resource manager
allocates resources,
it must be sure that
its decision will be
accurately actuated.
If not, creating
refined scheduling
policies would make
no sense at all.

In this section, we studied how to achieve an accurate CPU band-
width enforcement. First of all, we analyzed how the cgroups cpu
controller limits bandwidth. We discovered that, in certain scenarios,
the CPU bandwidth that is effectively exploited by the applications
could potentially be not only lower than the expected one, but also
notably higher.

To accurately enforce bandwidth usage on applications, we pro-
posed to split each application into computation units, so that band-
width usage could be individually monitored for each unit. We called
these units Execution Cycles. We then developed a cpu controller sim-
ulator to understand the relationship among applications CPU de-
mand, enforcement period length and enforcement accuracy, and we
discovered that selecting the enforcement period while taking into

2.3 on the accuracy of cgroups-based cpu bandwidth control 35

account the Execution Cycles length leads to a very accurate enforce-
ment.

Finally, we performed a validation using real applications. We con-
firmed that, depending on the enforcement period, cgroups-based
CPU bandwidth control may be inaccurate not only on Execution Cycle
granularity, but also on average, i.e., throughout the entire application
execution. This issue can be tackled quite effectively by employing a
period that is shorter than the Execution Cycle length, but not so short
that it leads to bandwidth under-usage.

Our approach, which does not require applications to be profiled
and can therefore be easily adopted by any cgroups-based resource
manager, led to a very accurate bandwidth enforcement (< 1% error)
with respect to the period-agnostic scenarios (more than 25% error in
the worst case).

3
R E S O U R C E A L L O C AT I O N : S Y S T E M - W I D E V S
A P P L I C AT I O N - S P E C I F I C

In this chapter, we focus on the most common high-end computing
systems. That is, we address devices that feature a multi-core het-
erogeneous processor and, optionally, an accelerator. Multi-core sys-
tems feature computational resources that are limited in number—
usually a few cores plus the memory hierarchy—and must hence be
shared among multiple applications. Conversely to many-core sys- Isolating an

application in a
subset of the avaiable
computing cores also
means allowing it to
exclusively access
the associated
portion of the cache
hierachy.
Unfortunately, it is
not possible in small
systems.

tems, where the problem of CPU resource allocation can be often
reduced to “how many processing elements will be allocated to each
task”, multi-core systems must often face the problem of co-running
multiple tasks on the same processing elements. Indeed, in this case,
allocating resources also means choosing “how much time will a task
spend on the available processing elements with respect ot the other
tasks”.

First of all, we study how to take into account the characteristics
of applications to optimize resource allocation. Second, we will show
that the resource manager, which has a global view of the system,
can rely on application-specific auto-tuners, which lack the aforemen-
tioned global view but got a specific knowledge of the application
goals, in order to make applications exploit the allocated resources in
an optimal way.

tailoring allocation to applications

Concurrently running multiple threads on a set of shared resources
leads to resource contention, which, in turn, negatively effects both
performance and energy efficiency [30, 38, 39, 40]. A common way to
tackle this issue is to employ applications-aware co-schedulers.

Standard schedulers operate choices that are mostly based on fair-Viewing
applications as black

boxes does reduce
the management

complexity; however,
it also leads to

sub-optimal
scheduling choices.

ness, i.e. they allocate a fair amount of resources or computing time
to each thread; and load balancing, i.e. they evenly distribute threads
among the available resources [41]. Conversely from standard sched-
ulers, co-schedulers mitigate resource contention by identifying the
threads that are best suited to be concurrently executed on the same
set of resources.

From brute force prediction to application characterization

Identifying the optimal co-scheduling (i.e., the allocation of threads
that minimizes resource contention) is a feasible task: it can be done

37

38 resource allocation : system-wide vs application-specific

by evaluating the performance degradation resulting by all the possi-
ble combinations of threads on all the available subsets of cores. This
process is often referred to as brute force prediction, and, unfortunately
but not unexpectedly, theoretical analyses proved it to be NP-completeAn NP-complete

problem is both NP
(nondeterministic

polynomial) and
NP-hard (cannot be

reduced to NP in
polynomial time).

[42]. Obviously, as the number of applications to be run gets higher,
this kind of approach is not viable at all.

Near-optimal predictions can be instead achieved with a lower com-
plexity. Tian et al. [43] propose two approaches—A*-cluster and local-
matching—that approximate the optimal schedules with good scalabil-
ity. The A*-cluster algorithm treats the optimal co-scheduling problem
as a tree-search problem, applying the well-known A*-search algorithmThe term tree

traversal (or tree
search) refers to the
process of analysing

each node in a tree
in a systematic way,

without visiting a
node more than once.

to efficiently find optimal co-schedule combinations. Clustering tech-
niques are exploited to reduce the frequency of re-scheduling by ini-
tiating a co-schedule only when an entire cluster of applications has
terminated, which avoids the generation of sub-schedules that are
similar to one another, thus shrinking the number of possible map-
pings at the cost of accuracy. The time complexity is O(N), where N
is the number of remaining jobs. The clustering is based on execu-
tion time, i.e., jobs with a similar execution time are clustered. More
efficiency is achieved with the local matching algorithm, where the
problem of co-scheduling is solved with a graph-based approach that
allows to find local optimum choices. Such approach does not involve
clustering, thus incurring in a complexity of O(N4). Moreover, on sys-
tems with more than two cores per chip, the approach is once again
NP-complete.

A following study by Jiang et al. [44] proposes an Integer Program-
ming (IP) co-scheduling algorithm that is based on the observationIn an IP problem,

the complexity is
reduced by

restricting some
variables to be

integers.

that co-scheduling N jobs into M chips is equivalent to partitioning
N jobs into M = N/U sets, where each set contains U jobs and the
total co-run degradation of all jobs has to be minimized. Once again,
the complexity of the algorithm is not polynomial on systems with
more than two cores per chip; nevertheless, its lower bound can be
computed through the Linear Programming (LP) version of the model.In an LP problem,

the objective
function and the

non-integer
constraints are

linear.

The same study presents two of heuristics-based algorithms. The first
one, which is called hierarchical matching algorithm, generalizes the IP
algorithm by partitioning jobs in a hierarchical way with a complexity
ofO(N4). The second algorithm is called greedy algorithm; it schedules
jobs giving priority to the most sensible to cache contention, with a
complexity of O(N

(
N
U

)
).

Given the increasing number of cores and concurrent applications,
in addition to the growing number of threads per application, brute
force prediction proves to be too complex to be effectively exploited.
Moreover, executing a workload on a new architecture or inserting
a new application into a workload would be costly due to the high
number of tests to be performed.

3.1 tailoring allocation to applications 39

In recent years, several works proposed low-complexity algorithms
that allow co-scheduling decisions to be computed in a more reason-
able time. Each application is analyzed singularly to extract metrics
that represent its resource usage; the resulting information is then ex-
ploited by co-schedule algorithms to compute co-scheduling choices
that are sub-optimal yet effective. The analysis process is often referred
to as application characterization and has a complexity of O(N), thus
providing a trade-off between prediction accuracy and characteriza-
tion effort [45, 46, 47]. Application characterization can be performed
either through runtime monitoring [48, 49, 50, 51] or, if the applica-
tions are known a priori, through an off-line analysis [52, 46, 53].

Selecting metrics to characterize resource contention

The term resource contention is rather vague. Co-schedulers make deci-
sions according to the resource usage of the running threads, but which
resources are to be taken into account varies from architecture to ar-
chitecture. Given the wide variety of applications and architectures,
this is not surprising: previous studies have demonstrated that sub-
stantial speed-ups can be achieved by characterizing threads basing
on L1 usage [54, 55]; last level cache (LLC) usage (where the LLC is
either an L2 [56, 57, 58] or L3 [59, 60] cache); available bandwidth at
each cache level [61]; data locality [62]; off-chip bandwidth [63, 64];
or micro-architectural events such as front side bus stalls [65, 38, 66],
floating point units usage [52, 67], and stall cycles [68].

Blagodurov et al. [45] show that contention on shared floating point
units leads to substantial performance degradations and provide nu-
merical results for floating point unit contention of SPEC CPU2006

benchmarks running on a UltraSPARC T1 microprocessor. The sub-
stantial performance degradation induced by co-scheduling floating
point intensive applications is imputable to the fact that T1 processors
feature eight cores which share a single floating point unit. While
this is clearly a limitation that is not the norm in modern processors,
such scenario is nonetheless emblematic: the problem of resource con-
tention is not architecture independent, nor is its solution. Despite
the great variety of metrics, it is clear that one the most severe and
architecture-independent bottlenecks to be taken into account when
co-scheduling applications is the memory.

There also approaches [69, 64] that treat the problem of contention
in an indirect way: whereas all the other characterization-based ap-
proaches exploit resource usage (the cause of resource contention) as
a metric to achieve effective co-scheduling decisions, in this case the
chosen metric is the performance degradation suffered by co-running
threads (the effect of resource contention). Such approaches are exclu-
sively based on the performance degradation experienced by each
thread when executed in a high resource contention environment.

40 resource allocation : system-wide vs application-specific

Such metric is computed by co-running each thread with benchmarks
that stress a number of chosen resources. The sensitivity of the thread
to resource contention, i.e. the slowdown caused by co-running, can
be computed by comparing the execution time of the thread when
co-running with the benchmarks and when running alone.

energy-efficient co-scheduling using performance coun-
ters

In this section, we show how taking into account the characteristics ofThe contents of this
section are partially

published in [67].
You may want to

consult Appendix A
before venturing

forth.

applications can improve the allocation choices of a resource manager.
This work serves two purposes: first of all, we will give you an idea
of the effort that is needed to suitably characterize applications on
a target architecture; second, we will show that allocating resources
is only half of the problem: applications that are aware of their own
resource allocation and tune their parameters accordingly are indeed
able to further optimize their resource usage. That is, applications
should cooperate with the resource manager to enable an optimal
resource management.

Our contribution is two-fold: first, we developed a Design Space
Exploration (DSE) flow that is integrated with the resource manager
and automatizes the characterization of applications. Second, we de-
signed a resource mapping policy that exploits characterization infor-
mation to select which processing elements will be allocated to each
application.

The resource manager we used and extended in this work is the
Barbeque Run-Time Resource Manager (BarbequeRTRM), which is
described in Appendix A.

A performance-counters-aware BarbequeRTRM

The BarbequeRTRM bases resource allocations on a set of “golden
configurations”. That is, each managed application must be analyzed
during an off-line characterization phase whose output is a set of
pareto-optimal allocation choices. Each choice is called Application An allocation is

pareto-optimal if
there are not
alternative
allocations that
improve one
objective without
worsen any of the
others.

Working Mode (AWM) and is described by a set of resources—e.g.,
an AWM could require “two processing elements and a GPU”—and
by an integer number that is used to explicitly order the AWMs from
the least to the most performing. The list of AMWs of an application
is contained in an XML file that is called recipe.

The main idea behind this work is to characterize memory usage
and energy consumption of applications and to insert the obtained
information into the AMWs description, so that the BarbequeRTRM
allocation policy is able to take that information into account dur-
ing the process of AWM mapping (i.e., when mapping the allocated
resources on the hardware). The work consisted in three steps:

3.2 energy-efficient co-scheduling using performance counters 41

performance counters selection

The goal of this step is to find out which performance counters are
most related with memory contention and energy consumption on
the target architecture.

off-line applications characterization

This step consists in performing an automatized characterization of
applications in order to create an enriched application recipe. The
Design Space Exploration (DSE) engine computes which are the
best configurations for the application. Moreover, it characterizes
each of the selected allocations by monitoring both the obtained
quality level and the values of performance counters.

runtime resource allocation

During runtime, the BarbequeRTRM selection policy is able to per-
form a contention and energy-aware resource mapping by exploit-
ing the additional information that is contained in the enriched
recipes. We extended the BarbequeRTRM allocation policy by im-
plementing a resource mapping heuristic that tries to evenly spread
energy consumption over the whole chip while minimizing mem-
ory contention.

Performance counters selection

In order to monitor the values of performance counters, we relied When correlating
performance
counters to energy,
the analysis process
should be performed
anew for each target
architecture, new
application and new
dataset.

on the monitoring facilities offered by the BarbequeRTRM Runtime
Library (see Subsection A.2.1). Regarding energy consumption, we
instead used the Likwid tool [70].

We performed the analysis by executing 10 applications from the
Parsec benchmark suite [71] on a system that featured an Intel Core
i7-2670QM quad-core SMT processor. Each core had independent L1

and L2 caches, while the L3 cache was shared between all the cores.
The relationship between performance counters and memory con-

tention is well known: as already discussed in literature, performance
degradation induced by memory contention is correlated to the num-
ber of last level cache misses generated by applications [72, 52]. Re-
garding energy consumption, instead, we compiled a list of suitable
counters, and, starting from that list, we used a correlation test to ex-
tract the counters that are the best suited to characterize energy con-
sumption. Figure 16 reports the correlation results for the most suit-
able performance counters: Last Level Cache misses, resource stalls,
retired/issued micro-operations, retired instructions and floating point
operations. In order to minimize the number of counters and to avoid
biasing, we further shrunk the list of selected counters to resource
stalls, retired instructions and floating point operations.

42 resource allocation : system-wide vs application-specific

B
la

ck
sc

ho
le

s
B

od
yt

ra
ck

Fa
ce

si
m

Fe
rr

et
Fl

ui
da

ni
m

at
e

Fr
eq

m
in

e
R

ay
t r

ac
e

Sw
ap

t i
on

s

V
ip

s

X
26

4

LLCM

STALLS.ANY

UOPS.RET

UOPS.ISD

INSTR.RET

FP.X87

ρ
va

lu
e

Uncorr.

Corr.

Figure 16: Spearman’s rank correlation coefficient for each performance
counter, along with correlation ρ for each specific application.
We show the results for the most correlated counters: Last Level
Cache misses, resource stalls, retired/issued micro-operations, re-
tired instructions and floating point operations.

Off-line applications characterization

We created a Design Space Exploration flow to detect and profile
the best resource allocations of applications. The output of the ex-
ploration is an enriched recipe that can be then used by the Barbe-
queRTRM to perform resource allocation at runtime.

The exploration schema is shown in Figure 17: the main component
is the DSE engine, which uses ad-hoc management APIs to drive re-
source allocation in place of the BarbequeRTRM scheduling policy.
The DSE engine runs the target application multiple times to test

HARDWARE
OS (KERNEL-SPACE)sysfs, cgroups

THE BARBEQUE RTRM

managed
application

RTLIB

DSE
ENGINE

DRIVE ALLOCATION

MONITOR QUALITY
COLLECT COUNTERS

ALLOCATE RESOURCES

ENRICHED
RECIPE

XML
</>

Figure 17: Off-line applications characterization. The DSE engine drives the
resource allocation and collects the characterization information
from the Runtime Library. At the end of the exploration, the
DSE engine selects the best resource configurations and translates
them into the enriched AWMs that will compose the application
recipe. Our contributions are highlighted in green.

3.2 energy-efficient co-scheduling using performance counters 43

different resource allocations. During each execution, it also collects
the characterization information that is computed by the Runtime Li-
brary. Finally, after the exploration process is complete, the engine
computes which are the best allocations in terms of memory pres-
sure, Quality of Service and energy consumption, and it translates
them into enriched AWMs.

In the context of this work, we chose to use the throughput of ap-
plications as the main metric to compute Quality of Service. Figure 18Performance is often

a proxy to quality:
the more performing
an application is, the
more computation it
can perform during
a given time frame.

shows the relationship between parallelism level, allocated CPU time
and performance for bodytrack and ferret, which respectively exploit
data parallelism (i.e. it process data using multiple parallel threads)
and task parallelism (i.e. it distributes the computation on a pipeline
whose stages are implemented by one or more threads). In this exper-
iment, the applications run on a single multi-threaded core, i.e., on
two processing elements that share L1 cache, L2 cache and part of the
pipeline. We run bodytrack with a number of threads ranging from
1 to 5. We instead run ferret with a number of threads-per-pipeline-
stage equal to 1 and 2, which respectively mean 4 and 8 threads in
total. It is worth noticing that, in both applications, communication
overheads and cache contention cause performance to drop when the
allocation passes from one to two processing elements (i.e., when the
allocated CPU bandwidth gets slightly higher than 100%). This effect
is especially severe in the case of bodytrack, which is more memory
bound than ferret.

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

allocated CPU bandwidth

b1

b2

b3

b4

b5

f1

f2

th
re

a
d

s
ch

o
ic

e

0.4

0.6

0.8

1.0
p

e
rf

o
rm

a
n

ce
 l

e
v

e
l

Figure 18: Off-line applications characterization: performance of bodytrack
and ferret for different parallelism levels and allocated CPU band-
width. The selected level of parallelism is referred to by using the
notation AX, where A is the first letter of the application name
and X is the number of threads. CPU bandwidth is instead ex-
pressed in percentage, e.g., 150% bandwidth means “one process-
ing element and a half” worth of CPU time.

44 resource allocation : system-wide vs application-specific

Runtime resource allocation

We extended YaMS, which, at that time, was the default scheduling
policy if the BarbequeRTRM [73], in order to endow it with a energy-
and memory contention-aware resource mapping support. We called
the extension CoWs, which stands for “CO-scheduling WorkloadS”.CoWs has its own

name because it is
an independent

extension module
that can be plugged

into the YaMs policy.

YaMS implements a heuristic that aims at (sub-optimally) solv-
ing the Multidimensional Multiple choice Multiple Knapsack prob-
lem (MMMKP) [74]. Basing on a multi-objective evaluation that takes
into account performance, fairness and load balance, YaMS computes
which AWM will be selected for each application. The goal of the
CoWs extension is to perform a clever mapping of the selected AWMs
on the available resources. In particular, after the AWMs have been
selected, CoWs maps the allocated cores and memory nodes on the
hardware while trying to spread both energy consumption and mem-
ory pressure evenly throughout the entire chip.

Experimental Results

In order to exhaustively evaluate our approach, we chose to carry out
the tests using all the workloads that feature at least three applica-A workload is a

group of
applications that
must be executed

(possibly in parallel)
on the target system.
Its execution time is

the time elapsed
between the start of
the first application

and the end of the
last one. Its size is

the number of
applications it

contains.

tions and are composed by 0 to 4 instances of bodytrack and 0 to 4
instances of ferret. The execution time of the workloads spans from
30 to 60 seconds.

We performed two different set of tests: first of all, we compared
CoWs (i.e., YaMs using the CoWs extension) with YaMs in terms
of workload execution time, energy consumption and Energy Delay
Product. Second, we extended the comparison to the plain Linux case.

Figure 19 compares YaMs and CoWs in terms of execution time, en-
ergy efficiency and EDP. We tag workloads according to their compo-
sition: BX FY indicates a workload that is composed by X instances of
bodytrack and Y instances of ferret. Being aware of the memory pres-
sure that is generated by each application, CoWs is able to perform
a memory contention-aware resource mapping, which leads to per-
formance speedups up to 19% with respect to YaMs. However, given
that CoWs tries to aggressively isolate memory intensive applications
on subsets of the available resources, the speedups tend to decrease
as the number of applications that compose the workload increases.
In the case of B4 F1 and B3 F4 (5 and 7 applications, respectively),
the isolation proves to be excessively aggressive and leads to a slight
performance degradation. Overall, the average performance speedup
induced by CoWs equals to 5.63%. From the energy efficiency per-
spective, CoWs outperforms YaMs in all scenarios. In this case, the
improvement is quite homogeneous, and it is positive even in the con-
gested scenarios. Overall, the average energy consumption speedup
equals to 7.43%. Regarding EDP, which equally takes into account ex-

3.2 energy-efficient co-scheduling using performance counters 45

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

− 0.05

0.00

0.05

0.10

0.15

0.20

0.25
execution time

sp
ee

du
p

energy consumption

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

− 0.05

0.00

0.05

0.10

0.15

0.20

0.25

sp
ee

du
p

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

− 0.05

0.00

0.05

0.10

0.15

0.20

0.25
energy-delay product

sp
ee

du
p

average speedup

31%

Figure 19: Execution time, energy consumption and EDP speedups induced
on the CoWs extension on YaMS. Workloads are tagged according
to their composition: BX FY means “X instances of bodytrack, Y
instances of ferret”.

ecution time and energy, CoWs provides an average speedup equal
to 13%, with a peak of 30% in the B2-F2 scenario. Overall, the results
show that characterizing the applications in terms of power consump-
tion and memory intensiveness allows scheduling policies to allocate
resources more efficiently than in characterization-agnostic scenarios.

46 resource allocation : system-wide vs application-specific

Before presenting the comparison between the managed approaches
(i.e., those that employ the BarbequeRTRM) and the plain Linux one,
it is worth remarking that, in the latter case, applications do not rely
on a resource manager and are therefore unable to configure their par-
allelism level according to the system load. Unmanaged applications
suppose to be running alone; hence, they usually spawn one thread
per active core, which can possibly result in a system congestion if
the workload is composed by many applications. In order to perform
a fair comparison between managed and unmanaged approaches, we
chose to split the Linux scenario in three cases, each one employing
a different approach to select the parallelism level of applications:

aggressive (aggr)
each application supposes to be running alone on the system and
hence spawns one thread per online processing element;

conservative (cons)
applications are aware of the workload size and hence select a
threads number equal to the number of online processing elements
divided by workload size;

oracle (orac)
we manually selected an optimal number of threads for each appli-
cation according to the workload composition.

Please note that, in the Linux scenarios, applications select a paral-
lelism level and are not able to change it throughout their entire exe-
cution. Conversely, in the managed scenarios, applications are aware
of the amount of resources that they have at their disposal and are
therefore able to tune their parallelism level accordingly.

Figure 20 shows the comparison results. We plotted performance,
energy consumption and EDP of the workloads for each scenario.
Moreover, in order to provide a high level view of the effects of re-
source management, we also plotted the average results for managed
(YaMs and CoWs) and unmanaged (AGGR, CONS and ORAC) sce-
narios.

From a high level perspective, managed scenarios lead to better
results than unmanaged ones. The main advantage of letting Linux
orchestrate the resource management is that applications are poten-
tially able to better exploit the available CPU time. Indeed, each of the
threads that compose the workloads is free to migrate to any unused
processing element, thus minimizing resource under-usage. However,
this approach also has a disadvantage: allowing threads to freely mi-
grate on any processing element induces cache thrashing phenom-
ena, which in turn negatively affect performance and hence energy
consumption. Relying on a resource manager leads instead to results
that consistently outperform those of the unmanaged scenarios. In
fact, selecting a suitable parallelism level for applications is only half

3.2 energy-efficient co-scheduling using performance counters 47

en
er

g
y

[J
]

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

0

50

100

150

200

250

300

350

400

450

0

5e3

10e3

15e3

20e3

25e3

30e3

E
D

P
 [J

s]

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

B4 F
0

B3 F
1

B4 F
1

B2 F
2

B3 F
2

B4 F
2

B1 F
3

B2 F
3

B3 F
3

B4 F
3

B0 F
4

B1 F
4

B2 F
4

B3 F
4

B4 F
4

0

10

20

30

40

50

60

70

ex
ec

ut
io

n
tim

e
[s

]

Plain Linux: average

CONS AGGR ORAC

The BarbequeRTRM: average

YAMS COWS

Figure 20: Linux scheduler compared to CoWs with respect to workload ex-
ecution time, system wide energy consumption and energy-delay
product. We employed three parallelism levels (AGGR, ORAC
and CONS) for the standard Linux experiments, and we com-
pared them with both YaMs and the CoWs.

of the problem: mapping threads to the most suitable processing el-
ements is also paramount in order to avoid cache thrashing and to
allow threads from the same applications to share the same caches.
This in turn leads to an average 12% speed-up in workload comple-

48 resource allocation : system-wide vs application-specific

tion time and to a corresponding 32% reduction on the system-wide
energy consumption. Even more important, this resulted in a 50%
improvement of the EDP metric.

Finally, it is worth noticing that, although it possibly leads to a sys-
tem congestion, selecting the applications parallelism level using an
aggressive approach leads to a lower workload execution time with
respect to both the oracle and conservative scenarios. The reason is
straightforward: given that the applications that compose the work-
loads feature different execution times, some applications are bound
to terminate before the others. Using a high number of threads in-
deed leads to a system congestion; however, as the number of run-
ning application decreases, applications that spawned a high number
of threads and are yet running benefit from a substantial performance
boost with respect to the ones that limited their parallelism level. Tak-
ing into account the system load when selecting the parallelism level
is therefore useful only if applications are able to dynamically tune it
as the composition of the workload changes. It follows that, in those
cases, using a resource manager is paramount to guarantee an opti-
mal parallelism selection.

Conclusions

In this work, we employed Design Space Exploration techniques to
characterize resource usage and energy consumption of applications.
We extended YaMs, which is a multi-objective scheduling policy of
the BarbequeRTRM, in order to provide it with memory-contention
and energy consumption-aware mapping capabilities. Experimental
results show that, by exploiting the characterization information to
suitably map applications, the resource manager is indeed able to
optimize its scheduling decisions.

We also stressed the fact that the relationship between performance
counters and energy consumption primarily depends on the target
architecture and on the workload that we must execute. Hence, using
performance counters as a proxy to energy is possible, but it also
requires a significant effort on the characterization side.

Finally, we shown that, in order to maximize the Quality of Service
that can be squeezed out from the available resources, applications
need to constantly update their software parameters in order to con-
tinuously adapt them to the system status.

making applications adapt to allocations

In the previous section, we tried to understand how resource man- The contents of this
section is partially
published in [75].
You may want to
consult Appendix A
before venturing
forth.

agers can exploit the characteristics of applications to optimize the
resource allocation. However, there are still open issues: first of all, in
order for the characterization problem not to be NP-complete, each

3.3 making applications adapt to allocations 49

application should be characterized separately from the others. This
means that, although the characterization information provides at
least a general idea of how an application will behave when run-
ning on shared resources (e.g. a memory bound application will suf-
fer from cache sharing), we cannot know a priori how the applica-
tion will behave at runtime. Second, even if an application is running
alone on the available resources, using different input data or even
changing the frequency of some cores may dramatically change how
the application will exploit the allocated resources. Third, while a
resource manager exactly knows which are the system-wide goals
that must be complied with (e.g., minimization of power consump-
tion, energy consumption and number of thermal hot-spots), it is
not always clear what applications expect from the resource manager.
Not surprisingly, the satisfaction of running applications is usually re-
ferred to with the umbrella-term “Quality of Service”, which does not
necessarily mean “the more allocated resources, the better”. Given a
sub-optimal resource allocation, managed applications can complain
with the resource manager, which, as already stated, may not be com-
pletely aware of what each application really wants; or they can try to
tune their behavior (e.g., parallelism level or accuracy of the results)
in order to maximize their Quality of Service despite the sub-optimal
allocation.

Given the premises, is it feasible to move part of the optimization
effort to the applications side?

The term “dynamic auto-tuning” refers to the ability of applica-
tions to dynamically change their behavior in order to adapt to the
runtime-variable system status. Basically, some of the static software
parameters of applications (e.g. number of threads or accuracy of the
results) can be transformed into dynamic knobs that can be manipu-
lated to maximize the Quality of Service of the application despite
a runtime-variable resource availability [76]. The concept of auto-
tuning is also a central component of approximate computing: by
dynamically changing their configuration, applications are able to se-
lect the optimal trade-off between accuracy of the results and perfor-
mance [77].

As already discussed in Section 3.2, allowing applications to au-
tonomously compute their configuration could lead to instability. For Achieving an

optimal system-wide
resource usage
withouth recurring
to an arbiter is
difficult if not
unfeasible.

instance, two applications that run on the same processor could ini-
tially choose to employ one thread per core. Then, noticing that the
processor is congested, both of them would scale down their threads
number. Finally, noticing that the system is now less loaded, each
of them would be tricked into thinking that it can again scale the
number of threads up, thus creating a periodical oscillation between
resource under-usage and congestion. This kind of problem is well
known, and it derives from the fact that application-specific auto-
tuners lack a global system view and therefore suppose that the ap-

50 resource allocation : system-wide vs application-specific

plication that they are managing is running alone on the available
resources – which, by the way, is usually a feasible assumption, since
auto-tuning approaches are mostly employed in HPC scenarios.

In this Section, we will study how a resource manager and an ap-
plication auto-tuner can cooperate in order to achieve an optimal re-
source utilization on a multi-core platform. Whereas a resource man-
ager has a system-wide view of both resources and applications and,
most importantly, is able to allocate a set of exclusively owned re-
sources to each application, the auto-tuner is application-specific and
is therefore able to configure applications so that they efficiently ex-
ploit the allocated resources.

We propose a framework that is based on the combination of run-
time resource management and OpenCL application auto-tuning. We
show that application auto-tuning, which, in this case, is based on a
design-time analysis, can become synergistic with run-time resource
management. In the proposed framework, the system-wide resource
manager is in charge of allocating resources; however, each applica-
tion autonomously takes runtime decisions in order to optimally ex-
ploit the available resources.

Motivation

Modern architectures expose ever increasing parallelism capabilities.
On one hand, the number of processing elements on the same chip
is constantly growing. For instance, the Intel Xeon Processor E7 v4

Family features up to 24 cores [78], while the Nvidia Titan Xp GPU
leverages 3840 CUDA cores [79]. A similar trend can be also observed
for embedded computing platforms, e.g. Nvidia Tegra X1 [80] or the
Adapteva’s Parallela board [81]. On the other hand, it is also common
to integrate different types of accelerators on the same platform, thus
providing better energy efficiency and a higher throughput to the ap-
plication developers. This trend is common to different architectures
that target embedded systems on one side, and high-performance
computing (HPC) on the other.

In order to facilitate the exploitation of the aforementioned paral-
lelism capabilities, applications developers are supported by special-
ized programming models. Although the industrial players proposed
custom paradigms that target their own many-core platforms, the
convergence of architectures is now pushing towards more generic
and portable programming models, and, among those, the OpenCL
industry standard is regarded as one of the most established solu-
tions [82].

Indeed, the increasing computational power of many-core acceler-
ators and the availability of portable parallel programming models
enable a new set of challenging possibilities at the software level. In
particular, from a system-level perspective, it is now possible to con-

3.3 making applications adapt to allocations 51

Figure 21: Application and platform domain of the proposed methodology.
The OpenCL runtime is leveraged on top of a run-time resource
manager, for efficient allocation of platform resources.

currently run multiple applications that have different priorities and
requirements, and this enables multi-application scenarios where all
types of applications compete for the usage of computing resources.
This is true even in the case of mixed-critical systems on embedded
computing platforms: in this case, whereas the workload is usually
known at design-time, its run-time variability is still unpredictable.
It follows, then, that in order to enable a system-level optimization,
resource allocation and application auto-tuning should take into ac-
count the dynamic resource and quality demands of each application.

For the application domain (see Fig. 21), we target “stream process-
ing applications” such as video processors and augmented reality. In
this kind of scenarios, the set of possible applications is known at
design-time, while the run-time workload mix is unpredictable: each
application could start and terminate at different time instants. More-
over, each application can exhibit a different criticality, thus being
associated to a corresponding priority level or, depending on the sys-
tem status or application-specific resource requests, being subject to
time varying requirements.

52 resource allocation : system-wide vs application-specific

Methodology

In order to address both system-wide and application optimization,
we propose an approach based on the synergy between design-time
and run-time techniques. System-wide resource management is oper-
ated by the Barbeque Run-Time Resource Manager (BarbequeRTRM),
which is described in Appendix A.

At design-time, we exploit Design Space Exploration (DSE) tech-
niques to profile the behavior of applications that run on the target
platform and to identify a set of optimal application configurations.
The main idea behind the exploration is that, for any given resource
allocation, the application may be able to achieve different trade-offs
between performance and accuracy by dynamically changing its con-
figuration. Accordingly, the output of the DSE is a BarbequeRTRM ap-
plication recipe (see Section A.3), and each of the Application Work-
ing Modes defined in the recipe is associated to a set of optimal con-
figurations. The DSE follows the schema presented in Figure 22. First,
the application is executed multiple times under different configura-
tions; second, each configuration is evaluated against the others in
order to identify the most efficient configurations for a given set of
quality metrics (e.g., performance and accuracy). Finally, the efficient
configurations are clustered basing on their resource usage, thus iden-
tifying the AWMs that will compose the application recipe.

At run-time, the methodology is based on the cooperation of the
BarbequeRTRM with an Application-Specific auto-tuner [83]. Depend-
ing on the resource allocation, i.e., on the Application Working Mode
selected by BarbequeRTRM, the auto-tuner is able to dynamically
tune the application software parameters by picking one of the con-
figurations that are associated to the selected AWM.

Experimental Results

To evaluate our approach, we implemented an OpenCL version of
the area-based local stereo matching algorithm described in [84]. We
designed the application so that it exposed a set of software parame-
ters that affects both application and platform metrics. Basically, the
algorithm computes “stereo disparity”, i.e., the difference in position
between corresponding points in multiple images; hence, we used
the percent disparity error as a proxy for assessing the quality of the
results.

First, we performed an experiment to evaluate the capability of
applications to auto-tune their configuration in order to achieve a
constant throughput (at the cost of accuracy) despite a runtime vari-
able resource availability. This is a common practice when dealing
with multimedia streaming applications: a typical example is that
of a web-based movie-player that reduces the frame resolution in

3.3 making applications adapt to allocations 53

accuracy

p
e
rf

o
rm

a
n
ce

Explored
configuration

accuracy

p
e
rf

o
rm

a
n
ce

Pareto efficient
Pareto inefficient

Configuration is:

accuracy

p
e
rf

o
rm

a
n
ce

WORKING MODE 0
WORKING MODE 1

WORKING MODE 2

WORKING MODE 3
WORKING MODE 4

WORKING MODE 5

WORKING MODE N

PARETO
EFFICIENCY
ANALYSIS

CLUSTERING

Figure 22: Design Space Exploration phase. The application is executed us-
ing multiple times using different configurations. Each configu-
ration is then checked for Pareto efficiency. The resulting config-
urations are then clustered basing on the resources they require,
thus creating the Application Working Modes that will compose
the BarbequeRTRM recipe for the target application.

order to maintain a frame-rate that is comfortable for the user. We
started multiple instances of the Stereo-Matching application at dif-
ferent time instants: 0, 20, 60 and 100 seconds. We performed the test
in two configurations: in the first one, the applications employed a

54 resource allocation : system-wide vs application-specific

constant configuration and were able to exploit all the available re-
sources as in a plain Linux scenario. In the second one, conversely,
applications employed our framework.

The results are shown in Figure 23. In the plain Linux scenario (23-
a), the applications employed a constant configuration; therefore, the
accuracy of their results was constant (approximately 45%) and their
throughput varied according to the system load: as can be clearly
seen in Figure 23-a, the throughput of applications wildly changes
as the number of active instances of Stereo-Matching increases. On
the contrary, in the runtime-managed scenario (23-b), the resource
manager and the application auto-tuner collaborate to achieve an op-
timal throughput for each instance (in this case, 4 frames per second).
Each time an application starts or terminates, the resource manager
updates the resource allocation and the auto-tuner, which is aware of
the selected allocation, tunes the application configuration in order to
comply with the throughput goal.

In the second experiment, we analyzed how the framework fares
when managing dynamic workloads. By dynamic workload, we mean
a set of applications with different schedules (start time), amount of
data to process (number of frames in Stereo-Matching) and perfor-
mance requirements (frame rate). This experiment aims at mimicking

d
is

p
a
ri

ty
 e

rr
o
r

[%
]

time [s]
0 50 100 150 200 250 300 350

0
10
20
30
40
50
60
70
80
90

100

time [s]
0 50 100 150 200 250 300 350

0
10
20
30
40
50
60
70
80
90

100

th
ro

u
g

h
p

u
t

[f
ra

m
e
s/

s]

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12
app 1
app 2
app 3
app 4

(a) plain Linux (b) runtime managed

Figure 23: Throughput and percent disparity error for a plain Linux imple-
mentation and for the proposed run-time management strategy.
In the Linux scenario, the applications run with a constant qual-
ity and a resource-availability-dependent throughput; in the man-
aged scenario, instead, the applications are able to achieve a con-
stant throughput by trading off quality with performance.

3.3 making applications adapt to allocations 55

the typical workload of resource consolidation scenarios, where mul-
tiple heterogeneous applications are confined in a small subset of the
system computational resources [85]. Although we use only one type
of application (Stereo-Matching), we mimic a dynamic workload by
exposing the following parameters:

start delay

the start time of an application instance;

amount of input data

the number of frames to be processed;

frame-rate goal

the target throughput, as demanded by the user.

Figure 23 shows the results of a scenario where we executed four
concurrent instances of the Stereo-Matching application. In the Linux
scenario, the applications run with a constant quality and a resource-
availability-dependent throughput; in the managed scenario, the ap-
plications are instead able to achieve a constant throughput by trad-
ing off quality with performance.

Finally, Figure 24 shows the results with a number of concurrent
instances that ranges from 1 to 6. The first plot shows the average per-
cent distance from the throughput goal (the lower the better). Due to
resource contention, indeed, the distance from the performance goal
increases with the number of active applications. However, by exploit-
ing the trade-off between accuracy and performance, the managed ap-
proach delivers a higher throughput with respect to the plain Linux
one. The second plot focuses instead on performance predictability.
Given that the managed scenario relies on a resource manager to
ensure that each application is able to use its own set of resources,
contention is limited to inherently shared resources such as intercon-
nect and last level cache. Moreover, applications that run in the man-
aged scenario feature a tunable configuration, so that the application-
specific auto-tuner is able to make them execute at a constant through-
put. It follows, then, that the managed approach is able to deliver a
very high performance predictability with respect to the plain Linux
scenario. The last plot reports the average error of the applications re-
sults. As expected, the plain Linux scenario is generally characterized
by a higher accuracy (i.e., a lower error) with respect to the managed
scenario. However, in scenarios that feature up to two concurrent ap-
plications, the available resources are enough for applications to tune
their configuration in order to achieve a higher accuracy than in the
plain Linux scenario, while complying with their throughput goal at
the same time.

56 resource allocation : system-wide vs application-specific

p
e
rc

e
n
t

d
is

ta
n
ce

 f
ro

m
th

ro
u
g
h
p
u
t

g
o
a
l
[%

]

10

20

30
40

50

60

10

20

30

10

20

30
40

50

60

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

p
e
rc

e
n
t

e
rr

o
r

w
rt

p
ro
fi
le

d
 t

h
ro

u
g
h
p
u
t

[%
]

a
v
e
ra

g
e
 e

rr
o
r

o
f

th
e
 r

e
su

lt
s

[%
]

number of Stero-Matching instances

plain Linux
managed

Figure 24: Dynamic workload analysis under a variable number of Stereo-
Matching instances.

Conclusions

In this section, we shown the benefits that come from allowing a
system-wide resource manager and an application-specific auto-tuner
to work in a synergistic way. The main idea behind this work is that,
whereas resource managers allocate resources to applications accord-
ing to precise and known system-wide optimization goals, they are

3.3 making applications adapt to allocations 57

often unaware of what applications (and users) really need. That is,
each application defines its Quality of Service in its own way. We
tackle this problem by moving part of the management complexity
to the applications side: each application relies on an application-
specific auto-tuner, i.e., a component that is specifically configured
for the target application and is able to tune the application software
parameters at runtime in order to make it comply with its quality of
service goal despite a runtime-variable resource availability.

Our approach proved to be very effective in allowing applications
to comply with their Quality of Service goal, which, in this case, con-
sisted in maintaining a constant throughput at the cost of accuracy,
with respect to a plain Linux scenario.

4
S I N G L E - I S A H E T E R O G E N E O U S P R O C E S S I N G :
B I G . L I T T L E A R C H I T E C T U R E S

As already mentioned in Chapter 3, multi-core systems must face
the problem of co-running multiple tasks on the same processing el-
ements. Heterogeneity introduces yet another degree of complexity,
since tasks are allowed to execute on processing elements that have
different characteristics. In this context, we will deal with Single-ISA
heterogeneous processing, which, from a resource management per-
spective, is the most challenging flavor of heterogeneity: given that all
the processing elements feature the same Instruction Set Architecture,
tasks are able to migrate between them during runtime.

We will specifically address big.LITTLE architectures, which are My current
Smartphone features
a MediaTek helio
X20 deca-core
processor, which is

“big-medium-little”.
That is, it features
three clusters of
cores. Indeed,
heterogeneity proved
to be a good asset for
energy-efficient
devices.

multi-core systems that feature two clusters of cores: the one called
“big”, which is performing; and the one called “little”, which is en-
ergy efficient. First, we will study how to dynamically migrate threads
among the two clusters in order to maximize the usage of the big
cluster while minimizing the performance losses that are induced by
resource contention. Second, we will use the two clusters of cores as
a heterogeneous OpenCL device. In this context, we will present a
mechanism that forces the OpenCL runtime to view the big.LITTLE
processor as a custom set of heterogeneous devices instead of viewing
it as a single device.

resource contention in big .little architectures

Single-ISA heterogeneous processors allow operating systems to ex- The contents of this
section are partially
published in [35].

ploit the trade-off between power and performance. An example is
given by ARM big.LITTLE architectures, which exploit two clusters of
cores: the LITTLE cluster, which features low performance, low power
cores; and the big cluster, which features high performance, power
hungry cores. Exploiting cores from either the big or LITTLE clusterFrom now on, with

“big” and “little”
cores we will refer to

cores from the high
performance and low
performance cluster,

respectively.

according to the requirements of the running tasks allows big.LITTLE
architectures to achieve energy efficiency [86, 87].

In heterogeneous processors, different clusters are characterized by
different processing capabilities; and different memory hierarchies in
terms of cache size and, possibly, coherency protocols [88]. Moreover,
as each cluster is itself a multi-core processor, it incurs in the well
known problem of resource contention, which induces negative ef-
fects on performance and energy efficiency [89, 90]. Thus, heteroge-
neous schedulers must deal with two activities: thread-to-cluster allo-
cation (i.e. mapping threads to clusters), which has a great impact

59

60 single-isa heterogeneous processing : big .little architectures

on both performance and energy efficiency [57, 91]; and thread-to-core
allocation (i.e. mapping threads to cores inside the chosen cluster),
which should mitigate resource contention by suitably co-scheduling
threads on shared resources [61, 92].

We propose an approach to optimize co-scheduling on heteroge-
neous processors. In detail, we introduce the concept of stakes func-
tion, which represents the trade-off between isolation and sharing of
resources. We demonstrate that isolating an application in a suitableMulti-core

architectures feature
few cores. Is
isolating an

application on a
couple of cores

preferrable to
making it contend

for all the resources?

subset of cores leads to benefits in terms of mitigation of resource
contention and optimization of resource usage. Finally, we exploit
stakes functions to drive a resource allocation policy that imposes con-
straints to the Linux HMP scheduler, achieving speed-ups in terms of
both performance and energy efficiency.

We validated our approach using an ODROID-XU3 development
board, which is based on the ARM big.LITTLE architecture and fea-
tures two clusters of cores: a big cluster composed by four ARM COR-
TEX A15 cores; and a little cluster composed by four ARM CORTEX
A7 cores.

Related Works

In a heterogeneous multi-threading scenario, the process of schedul-
ing can be defined as a two-fold process:

thread-to-cluster allocation : scheduling each thread on the
most suitable cluster of cores

thread-to-core allocation : allocating each thread to the most
suitable core in the selected cluster

Thread-to-core allocation is also typical of homogeneous multi-core
processing and is a NP-complete problem[93]; however, low complex-
ity algorithms compute sub-optimal but effective allocations by esti-
mating performance degradation when multiple known applications
run on a set of shared resources [94, 95, 96].

To do this, each application has to be characterized. Several previ-
ous works characterize applications using performance counters. Re-
source usage of applications can be computed using the number of
Last Level Cache misses [97, 98], L2 cache misses [57], L1 cache misses
[61], or micro-architectural events such as Front Side Bus stalls, branch
misses, stall cycles [99, 95, 100, 96]. A given set of performance coun-
ters, however, may not always be optimal to characterize the resource
usage of an application: for example, L1 misses may be preferred to
Last Level Cache misses in case of particular architectures [61].

To tackle this problem, several works characterize applications us-
ing performance degradation [69, 64]. Each application is co-run with
resource-hungry benchmarks that purposely create contention on mul-
tiple resources; the resulting performance degradation represents the

4.1 resource contention in big .little architectures 61

sensitivity of the application to resource contention. The estimated re-
source contention is used by co-scheduling algorithms to perform a
resource-aware thread-to-core allocation.

Thread to cluster allocation is typical of heterogeneous processors,
where the resources consist in multiple clusters of cores, each cluster
with different capabilities.

Several previous works compute thread-to-cluster allocation deci-
sions using retired instruction rate as a metric: big cores are exploited
to run threads that have the highest average Instructions per Cycle
value[101] or the highest local Instructions per Second value[91, 102],
while the other threads run on the little cores.

A previous work proposes fairness as an optimization target for co-
scheduling choices [103]. They propose two scheduling algorithms:
equal-time scheduling, where each thread runs on each cluster in a
round-robin fashion; and equal progress scheduling, where the threads
that are experiencing the higher slowdown are dynamically allocated
to the big core.

The work presented in [104] proposes a task scheduler that consists
of a history-based task allocator and a preference-based task sched-
uler. The history-based task allocator allocates tasks with heavy work-
loads to fast cores, and tasks with a light workload on slow cores. The
task-to-cluster allocation is static and takes into account the historical
statistics that are collected during the execution of each application.
The preference-based task scheduler dynamically adjusts the alloca-
tion to ensure load balance and to correct sub-optimal scheduling
choices.

To the best of our knowledge, co-scheduling algorithms for het-
erogeneous processors are still too focused on the choice of the best
cluster on which executing each thread. Thread-to-core allocation,
which was a central issue in multi-core co-scheduling policies, is giv-
ing ground to thread-to-cluster allocation; however, as extensively
shown in previous literature[105, 106, 107, 61], mitigating resource
contention also at cluster level (i.e. performing thread-to-core opti-
mizations) leads to benefits in terms of both performance and energy
efficiency, both of which are essential in heterogeneous processors.

Methodology

Our co-scheduling policy sets constraints on the Linux HMP sched-
uler, allowing it to perform scheduling choices that are implicitly
resource and energy-aware. The scheduling policy provides thread-to-
cluster allocation and only a partial thread-to-core allocation: it does not
allocate threads to cores; instead, it allocates threads to subsets of
cores.

In Figure 25 on page 63 we present an overview of the proposed
flow. The core of the approach is the concept of stakes function, which

62 single-isa heterogeneous processing : big .little architectures

is exploited during runtime by the co-scheduling policy to dynami-
cally compute the size of the subset of cores in which each application
will be isolated. Once selected a subset of cores, thread-to-core allocation
is performed, as usual, by the standard Linux HMP scheduler. Dur-
ing design time, we analyze each application separately and build its
stakes functions, one for each cluster. The characterization process is
composed by two phases—CPU demand analysis and memory sen-
sitivity analysis—which characterize the application in terms of both
required CPU bandwidth and sensitivity to memory contention.

We define CPU demand (γ) as the average CPU bandwidth usage of
an application.

The performance of an application is strongly dependent from its
γ and the number of cores at its disposal: for example, an application
with γ = 1.5 CPUs can reach its maximum performance if scheduled
on two cores. Conversely, it would suffer if scheduled in a single core,
regardless of memory contention or similar side-effects: a single core
is not enough to provide that bandwidth to the application.

The CPU demand analysis profiles the CPU demand of each appli-
cation At (application A, t threads), both on big and LITTLE clus-
ters. During the analysis, we run At alone on the chosen cluster (solo
run), while we isolate all the other applications in the unused cluster.
The profiled CPU bandwidth, which we compute using performance
counters, is the CPU demand of At (γAt).

The computational complexity of this first characterization step is
O(NT), where N is the total number of applications, T is the average
number of configurations (number of threads) per application.

The memory usage behavior of an application is called memory in-
tensiveness. Memory intensive applications bring a lot of data in the
caches, an this can lead to memory contention with the co-runners (if
any). An application is memory sensitive if it experiences a substantial
performance degradation when co-running with memory intensive
applications. In the next sections, µ will refer to the memory sensitivity
of applications.

During the memory sensitivity analysis, we co-schedule each ap-
plication At with a synthetic memory intensive benchmark that per-
forms a set of memory accesses denoted by a high memory accesses
count and a poor cache line reuse. The benchmark we implemented
is very simple: it continuously and randomly accesses all the cache
lines of the Last Level Cache, contending memory with At.

Weexecute each test in two configurations: a) stress run, where AtEven if isolated on
different cpusets,
applications will

contend on the LLC,
hence the stress

isolated run.

and the benchmark can migrate on any core of the cluster; and b) stress
isolated run, where the At and the benchmark are isolated each on a
subset of cores, thus incurring in memory contention only in the Last
Level Cache, which is shared among all the cores of each cluster.

4.1 resource contention in big .little architectures 63

Figure 25: The proposed approach: each application is analyzed separately
to build its stakes functions, one for each cluster. The characteri-
zation process, which is carried out at design time, is composed
by two phases: CPU demand analysis and memory sensitivity
analysis. Stakes function are exploited during runtime by the co-
scheduling policy, which set constraints to the standard Linux
HMP scheduler.

64 single-isa heterogeneous processing : big .little architectures

The maximum and minimum memory sensitivities (µMAt , µ
m
At

) are the
performance degradations experienced by At during the two stress
runs, with respect to the results of the solo run.

We perform the analysis once for each application, both on the big
and the LITTLE cores. The computational complexity of this second
and last characterization step is again O(NT).

To better understand how we compute stakes functions, we first
introduce two concepts: dynamic bandwidth and exposure to memory
contention.

dynamic bandwidth The dynamic bandwidth of an application
At (γ̂At) is the fair quantity of CPU quota that we allocate to AtIf a resource

manager decides
that multiple

applications will run
concurrently, it

expects all of them
to comply with their
quality requirement.

In this context,
“fair” does not mean
“all the applications

have the same
amount of

resources”: it means
“all the applications
are equally content

with their
allocation”.

during runtime. We compute dynamic bandwidth for an application
At as shown in Equation 1, where Nc is the number of cores in the
current cluster (big or little) and Γc is the total CPU bandwidth of the
applications running on the cluster, including the bandwidth of At.

γ̂At = min
(
γAt ,

γAt
Γc
Nc

)
(1)

Example. Let Nc = 4, γAt = 2.5 and Γc = 5.5, that is, we are comput-
ing γ̂ on a quad-core cluster, for an application that requires 2.5 CPUs
and runs in a workload that requires 5.5 CPUs in total. Given that the
cluster features 4 CPUs, we allocate to At only Nc

Γc
γAt =

2.5
5.5 ∗ 4 = 1.81

CPUs.

exposure to memory contention Exposure to memory con-
tention (E) represents how an application is exposed to memory con-
tention when scheduled on a subset of cores of size γs. We define
exposure of an application At as the CPU bandwidth that is offered
by the subset of cores but is not used by At, with respect to the case
where At is not isolated at all. Exposure to memory contention is
computed as shown by Equation 2, where Nc is once again the clus-
ter size.

E = max

(
0,
γs − γ̂At
Nc − γ̂At

)
(2)

Example. The application from the previous example (At) will be
allocated 1.81 CPUs. If At is not isolated, its co-runners will use 4−
1.81 = 2.19 CPUs, possibly triggering memory contention on all the
caches. In this case, E = 4−1.81

4−1.81 = 1. Conversely, isolating At on a
set of two cores, its co-runners will use only 2 − 1.81 = 0.19 CPUs
from the subset, leading to an exposure of E = 2−1.81

4−1.09 = 0.08. In
this case, the data of At will be concentrated in few caches, and few
applications will execute in the same subset of cores due to the fact
that the CPU bandwidth offered by the subset of cores is mainly used
by At.

4.1 resource contention in big .little architectures 65

computing stakes functions Stakes functions evaluate the pos-
sibility to isolate each application in a subset of the available cores,
instead of leaving it free to run on any core. The higher the function
value, the better is the choice of the subset size.

Stakes functions do not take into account the memory intensiveness of
the specific workload (i.e. the applications that are co-running with
At): they represent the risks At is incurring into if running on a sub-
set of cores while other applications are co-running on the same pro-
cessor. In other words, stakes functions give a hint on how much an
application would suffer, in the worst case, if scheduled on a subset
of cores of a given size.

We compute stakes functions as shown in Equation 3. SAt,c is the
stakes function for application At, cluster c ("big" or "LITTLE"). The
arguments of the function are γs, which is the CPU bandwidth quota
under evaluation (i.e. the size of the core subset under evaluation),
and Γc, which is the total CPU bandwidth required by the applica-
tions running on the cluster c.

SAt,c(γa, Γc) = min

(
γs

γ̂At
, 1

)
︸ ︷︷ ︸

A

(
1− µ̂At

)
︸ ︷︷ ︸

B

(3)

The stakes function is composed by two distinct contributions. The
first contribution (A) estimates how performance is affected by iso-
lating the application on the subset of cores, regardless of memory
contention. The numerator is the number of cores that will be allo-
cated to At, while the denominator is the dynamic bandwidth, that
is, the number of cores that should be allocated to At.

Example. The application from the previous example (At) can use
1.81 CPUs. If allocated on two cores, At will be able to reach its max-
imum performance (min(2.0

1.81 , 1) = 1). Conversely, if allocated on a
single core, the performance of At can be estimated as min(1.0

1.81 , 1) =

0.55. That is, regardless from memory contention, At will be expe-
rience at least 45% of performance losses due to resource under-
assignment.

The second contribution (B) represents how the performance of
At is affected by resource sharing in the worst case scenario. µ̂At is
the expected memory sensitivity of At, and represents the performance
degradation of At in case of memory intensive workloads. As a con-
sequence, 1− µ̂At estimates the performance of At when sharing re-
sources in case of high memory contention.

The expected memory sensitivity is computed as shown in (4), and
is a function of the exposure to memory contention. Each application
At suffers the maximum performance degradation when it is totally

66 single-isa heterogeneous processing : big .little architectures

exposed to memory contention (E = 1), while it suffers the minimum
performance degradation when totally isolated (E = 0).

µ̂At =

(
µMAt − µ

m
At

)
E+ µmAt (4)

We already know the minimum and maximum performance degra-
dation of At from the memory sensitivity analysis: µmAt and µMAt , respec-
tively. For the sake of simplicity, we assume the degradation to be
linear between E = 0 and E = 1. The assumption is certainly not accu-
rate, but please note that µ̂At is in any case always greater than µmAt
and lower than µMAt by definition.

Example. From the previous example, isolating At on two cores
would give E = 2−1.81

4−1.09 = 0.08. Let the performance degradation of
At (worst case) be always greater than µmAt = 5% and lower than
µMAt = 25%. The estimated performance degradation of At is µ̂At =
(0.25− 0.05)0.08+ 0.05 = 6.6%.

The proposed policy is based on two concepts: applications accelera-
tion and resource contention mitigation. The first concept is straightfor-
ward: the big cluster is usually exploited as an accelerator, while most
of the applications execute on the LITTLE cluster for energy efficiency
purposes. However, a sub-optimal usage of the big cores may not be
the most energy efficient choice. As shown in Table 2, co-running
multiple threads on the accelerator leads to a lower power consump-
tion per thread; therefore, we propose to allocate the accelerator to as
much threads as possible, provided that the consequent performance
degradation does not lead to energy inefficiency.

Table 2: Average Power [W] and energy consumption [J] of applications
from the PARSEC benchmark suite on an ODROID-XU3 develop-
ment board (big cluster). Number in parentheses in the first col-
umn indicate the number of threads. The last column indicates the
energy saving achieved by co-running the applications instead of
running them sequentially.

Solo run Co-run

Application power energy power energy

energy

speed-up

bodytrack (1) 3.011 56.364

5.343 278.489 9.82%
fluidanimate (2) 4.876 222.123

swaptions (1) 4.925 252.137

5.526 388.752 17.15%
facesim (2) 3.771 136.614

freqmine (3) 4.030 24.939

5.458 130.992 13.22%
blackscholes (3) 5.147 126.001

4.1 resource contention in big .little architectures 67

Concerning resource contention mitigation, we propose to isolate the
applications with high memory sensitivity into CPU partitions (sub-
sets of cores), leaving the Linux HMP scheduler free to make schedul-
ing decisions inside each partition. By doing so, the data of the appli-
cations is concentrated into a subset of the cache hierarchy and is less
sensible to cache trashing induced by co-runners. On the other hand,
applications with low memory sensitivity do not require to be iso-
lated, and are completely subject to the Linux scheduler choices. This
fosters a better utilization of the processing resources. The amount of
cores to be allocated to an application comes from the configuration
reporting the highest stakes function score.

The policy is activated each time a task starts or terminate. The first
phase is called thread-to-cluster allocation and provides application ac-
celeration. We want to avoid unacceptable performance degradations,
and we do this by allocating tasks to the big cluster until a load or sen-
sitivity threshold are reached. The load threshold limits the number of
threads concurrently running on the big cluster to avoid congestion.
The sensitivity threshold represents the number of threads that have
been scheduled on the big cluster and are sensible to memory con-
tention: due to the limited cluster size, only few tasks can be isolated
at the same time.

The thread-to-cluster allocation phase is detailed in Figure 26a on
page 68. Ready tasks are sorted by memory sensitivity to ensure that
the first tasks to be served will be the ones that most benefit from
isolation. Each task is then allocated to the big cluster or, if one of
the two thresholds is reached, to the little cluster. Due to the sorting
process, the complexity of this phase is O(n logn), where n is the
number of ready applications.

The policy then proceeds with the thread-to-core allocation phase,
where we achieve resource contention mitigation by isolating all the
memory sensitive tasks. Note that, while congestion is easily avoided
in the big cluster, this is not necessarily true for the LITTLE one. In
case of congestion in the LITTLE cores, only the most sensitive appli-
cations are isolated. The core allocation phase is illustrated in Figure
26b on page 68. Each task is assigned a CPU partition, whose size
is the one reporting the highest stakes function score. If there are not
enough resources or the selected partition equals the entire cluster,
the task is not isolated. Otherwise, the partition is mapped to the real
hardware and the resulting set of cores is set as a constraint to the
Linux scheduler when scheduling the task. Due to the stakes func-
tion computation, the complexity of this phase is O(nc cc), where nc
and cc are the number of applications and the number of cores in the
cluster c, respectively.

68 single-isa heterogeneous processing : big .little architectures

(a) Thread-to-cluster allocation phase.

(b) Thread-to-core allocation phase.

Figure 26: Flowchart describing the co-scheduling policy.

4.1 resource contention in big .little architectures 69

Experimental Results

We validated our approach on real Hardware using a ODROID-XU3

development board, which features a Samsung Exynos5422 Octa Core
System-on-Chip. The board is an example of ARM big.LITTLE archi-
tecture: the big cluster features four Cortex A15 cores (2.1Ghz, 32KB
L1 cache, 2MB L2 cache), while the little cluster features four Cortex
A7 cores (1.5Ghz, 32KB L1 cache, 512KB L2 cache). When comment-
ing the results, the LITTLE cores will be numbered from 0 to 3, while
big cores will be numbered from 4 to 7. The board provides sensors
for monitoring the CPU power consumption at cluster and memory
level, and we used them to monitor power consumption during each
test. Some of the tests take place on a single cluster (i.e. only big or
only little); in that case, we only report power consumption for that
cluster and for the memory.

Regarding applications, we used blackscholes, bodytrack, facesim, fer-
ret, fluidanimate, freqmine, swaptions and vips from the PARSEC bench-
marks suite 3.0 [108].

We implemented the co-scheduling algorithm as a user-space pro-
cess that exploit the Linux Control Groups framework [109] to enforce
the exclusive assignment of cores and the maximum CPU bandwidth
available to the applications.

Regarding the parameters of the policy, we used a load threshold of
of 1.5 threads per core, and we allowed a maximum of four memory
sensitive threads to concurrently run on the accelerator. We defined a
memory sensitive thread as a thread that suffers more than µM = 5%
degradation due to memory contention.

We characterized each application in both clusters to build their
stakes functions. Then, we performed two tests: first, we ran work-
loads separately on the two clusters to demonstrate the benefits of
thread-to-core allocation. Second, we run workloads on the entire pro-
cessor to show also the benefits of resource-aware thread-to-cluster al-
location. During the last test, we isolated all the processes that were
not involved in the analysis on cores 0 and 4 to minimize interfer-
ences; therefore, we exploited only three cores per cluster: 1 to 3 for
the LITTLE cluster, 5 to 7 for the big cluster.

application characterization We executed each application
with a number of threads that ranges from 1 to 3, for a total of three
configurations per application. The only exceptions are fluidanimate,
whose number of threads is required to be a power of 2; and fer-
ret, which exploit pipeline parallelism and therefore was analyzed in
two configurations: 1 and 2 threads per stage. Note that most appli-
cations use additional threads for synchronization and output collec-
tion; with number of threads we refer only to the threads that perform
the actual execution.

70 single-isa heterogeneous processing : big .little architectures

Table 3: Results of the application characterization: CPU demand (γ) and
minimum/maximum memory sensitivity percentage (µm, µM). We
report applications in red if their execution consumes more energy
on the big cluster than on the little cluster.

At big cluster little cluster

Application threads γAt
µm µM γAt

µm µM

blackscholes 1 1.00 0.79 1.47 1.00 0.30 0.35

blackscholes 2 1.86 1.02 7.93 1.80 0.33 0.40

blackscholes 3 2.63 4.91 5.01 2.42 0.00 0.01

bodytrack 1 1.01 15.87 35.05 1.01 16.54 30.17

bodytrack 2 1.81 8.00 27.50 1.90 9.91 17.83

bodytrack 3 2.35 2.36 11.02 2.65 6.32 12.79

facesim 1 0.99 12.09 38.57 1.00 2.96 7.66

facesim 2 1.67 7.07 30.12 1.79 2.00 8.73

facesim 3 2.17 11.66 16.15 2.39 1.27 15.86

ferret 1 1.11 3.97 5.15 1.13 11.03 14.10

ferret 2 2.20 11.04 11.27 2.22 8.01 8.25

fluidanimate 1 1.00 4.98 10.72 1.00 2.12 2.74

fluidanimate 2 1.95 10.29 20.45 1.96 1.53 2.32

freqmine 1 1.00 7.82 23.46 1.00 4.54 11.55

freqmine 2 1.62 8.84 20.92 1.67 5.89 9.82

freqmine 3 2.05 2.87 3.01 2.03 7.03 8.00

swaptions 1 1.00 1.64 10.23 1.00 3.09 5.84

swaptions 2 2.00 9.89 15.63 1.99 1.27 2.46

swaptions 3 2.97 7.11 7.61 2.95 0.38 2.72

vips 1 0.90 8.74 24.79 0.97 1.98 4.25

vips 2 1.60 9.85 21.90 1.83 0.00 0.01

vips 3 2.04 6.90 14.01 2.58 0.00 2.88

Results are summarized in Table 3 on page 70. It is very interesting
to note that during solo run, executing applications on the big cluster is
usually more energy efficient. We reported exceptions in bold: the only
applications whose execution is more energy efficient on the little
cluster are the ones that: a) use only one thread. This result validates
our observations from Table 2 on page 66, according to which the
energy efficiency of the big cluster substantially improves with the
number of scheduled threads; b) use resources from the little core
in an efficiency way, e.g. use one thread and have γ ∼ 1.0. This val-
idates the basic idea underlying our scheduling policy, according to
which an optimal usage of the accelerator is crucial to achieve en-

4.1 resource contention in big .little architectures 71

ergy efficiency; and c) are more memory sensitive on the big cluster
than on the little cluster, meaning that an efficient memory usage is
also crucial to achieve energy efficiency. This last point is not true for
ferret, but please note that ferret exploits pipeline parallelism and its
memory behavior is therefore different from those of the other appli-
cations.

Regarding memory intensiveness, it is worth to notice that some
applications are more sensible to memory contention when running
on a certain cluster (either big or little), with respect to the other. The
reason behind this phenomena is that the sensitivity of an application
is correlated to the number of cache misses and the entity of the
cache miss penalties. It is well known how this is dependent from
the processor operating frequency and the parameters of the cache
hierarchy.

Figure 27 on page 72 shows two examples of stakes function on
the big cluster, both in 3-threads configuration. facesim (Figure 27a on
page 72) is memory sensitive: even if its CPU demand is 217%, therefore
needing at least three cores to meet the maximum performance level,
an allocation of three cores is advantageous only if there is at most
one other thread running on the cluster. Otherwise, the optimal sub-
set choice would be 2 cores. Conversely, blackscholes (CPU Demand
263%) is less memory sensitive: as shown in Figure 27b on page 72,
the application can run in 4 cores even in high congestion scenarios
without incurring in serious performance degradations.

co-scheduling policy validation Instead of testing all the
possible combinations of applications, we decided to focus on a lim-
ited number of randomly created cases. This allows us to show, along
with the results, all the choices taken by the policy. Moreover, to make
the descriptions more understandable, we chose to start all the appli-
cations belonging to the same scenario at the same time. In this way,
the starting status of the system is known. Being the applications
characterized by different execution times, the dynamism of the pol-
icy is nonetheless shown because the termination of each application
causes the policy to be reactivated and to modify its previous deci-
sions.

The scenarios are summarized in Table 4 on page 73 and Table 5 on
page 74. We named each scenario according to the cluster involved in
the test: big and LITTLE scenarios involve big and little cores respec-
tively, while big-LITTLE scenarios involve the whole device. For each
scenario we list the applications belonging to the workload, along
with their number of threads, from the most to the least memory sen-
sitive. For each scenario we also report the degree of congestion in-
duced on the device, i.e. the ratio between number of running threads
and number of available cores.

72 single-isa heterogeneous processing : big .little architectures

(a) facesim, 3 threads configuration.

(b) blackscholes, 3 threads configuration.

Figure 27: Stakes function examples on the big cores, with increasing num-
ber of co-running threads. facesim and blackscholes, both in three
threads configurations (γ = 2.17 and γ = 2.63 CPUs respectively),
run with an increasing number of co-runners. The co-runners are
instances of swaptions in 1 thread configuration (γ = 1.00 CPUs
each).

The big.LITTLE 3 scenario offers a good example of how the policy
works: the applications involved in the test are ordered by memory
sensitivity, then each application is allocated to the big cluster until
the sensitivity or load thresholds are reached. In this example, being
the load threshold equal to 1.5ThreadsCore , only four threads can be as-
signed to the big cluster. According to their stakes functions, bodytrack
has to be isolated on one core while vips can run on the remaining
ones. The other applications are assigned to the little cluster where,
according to their stakes function, swaptions is isolated on one core

4.1 resource contention in big .little architectures 73

Table 4: Summary of the big and LITTLE test scenarios. M1
α−→ M2 means

that an application mapping is changed from M1 to M2 after appli-
cation α has terminated.

Description of the workload Cores allocation

Scenario
Application Threads Threads

Cores HMP
HMP
w/policy

LITTLE 1

ferret† 1

1.00

0− 3 0

vips 3 0− 3
1− 3

†−→
0− 3

LITTLE 2

freqmine† 2

1.25

0− 3 0− 1

blackscholes 3 0− 3
0− 3

†−→
0− 3

LITTLE 3

bodytrack† 3

1.25

0− 3 0− 1

facesim 2 0− 3 0− 3

LITTLE 4

facesim 3

1.50

0− 3
0− 1

†−→
0− 3

blackscholes† 3 0− 3 2− 3

big 1

vips 3

1.00

4− 7
4− 5

†−→
4− 7

ferret† 1 4− 7 6− 7

big 2

freqmine† 2

1.25

4− 7 4− 5

blackscholes 3 4− 7
6− 7

†−→
4− 7

big 3

facesim 2

1.25

4− 7 4− 5

bodytrack 3 4− 7 4− 7

big 4

facesim 3

1.50

4− 7
4− 5

†−→
4− 7

blackscholes† 3 4− 7 4− 7

while blackscholes is not isolated When bodytrack terminates, the policy
is reactivated and vips and blackscholes are assigned to the big cluster.
The policy then re-allocates cores according to the stakes functions
of each application, and the entire process is repeated until there are
ready applications in the workload.

We show the benefits of our co-scheduling policy in Table 6 on
page 75, where we report the energy consumption for all the scenar-
ios. Given that this work is focused on energy efficiency but also on
performance, we reported also the execution time, along with its stan-
dard deviation. Finally, we report the Energy-Delay product (EDP) for
all the scenarios. EDP is a well known metric that rewards the con-
figurations that bring benefits in terms of both execution time (delay)
and energy, and equals the product of energy and execution time.

74 single-isa heterogeneous processing : big .little architectures

Our policy does not degrade the performance of the Linux HMP
scheduler. Even workloads that exhibit a small number of threads
benefit from this support. For instance, in big 2 scenario the policy
isolates the two applications into separate core sets. Indeed, accord-
ing to their stakes functions, a not negligible degradation would occur
in case of co-scheduling. Even if there is plenty of CPU bandwidth
for each thread to execute, isolating the two applications leads to per-
formance and energy efficiency improvements.

Moreover, our policy shrinks the list of processors where each thread
can be scheduled, thus making the scheduling process more deter-
ministic; therefore, the execution times present a lower standard de-
viation with respect to the HMP scheduler alone.

The results validate the proposed approach, showing that the big
processor can be exploited to accelerate concurrent applications with
good speed-ups in terms of both performance and energy efficiency.
Imposing few constraints to the Linux HMP scheduler, the policy
achieves up to 12.88% performance speed-up, 13.65% energy speed-
up and 28.29% EDP speed-up with respect to the standard Linux
HMP scheduler.

Conclusions

In this Section, we introduced the concept of stakes function, which
represents the trade-off between exclusive allocation and sharing of re-
sources in multi-core processors. We introduced a co-scheduling pol-
icy that exploits stakes functions as a metric to take co-scheduling de-
cisions on heterogeneous processors.

We validated the policy on an octa-core big.LITTLE processor, achiev-
ing up to 12.88% performance, 13.65% energy and 28.29% EDP speed-
up with respect to the standard Linux HMP scheduler.

Our approach has still open limitations: a) it relies on a design
time characterization, and therefore can not manage unknown appli-
cations or data dependent performance variability; b) stakes functions
address the worst case scenario and are therefore conservative; and
c) the usage of the big cluster could be farther optimized by allowing
some applications from the little cluster to partially run on the big
cluster while they wait for their turn to be accelerated.

While the last limitation can be addressed by implementing a more
refined policy, the first two limitations could be addressed by em-
ploying online learning techniques to compute CPU bandwidth and
memory sensitivity of applications dynamically during runtime.

a heterogeneity-aware opencl support

Heterogeneous System Architectures (HSAs) [110] are nowadays an The mechanism
described in this
subsection is part of
the work published
in [33], which has a
broader scope. Here,
we will only focus
on our contribution.

attractive solution to exploit the trade-off between performance and

4.2 a heterogeneity-aware opencl support 75

energy efficiency. Those architectures feature different kind of resources,
such as Central Processing Units (CPUs)—possibly integrating het-
erogeneous cores—Graphic Processing Units (GPUs), Digital Signal
Processors (DSPs) and other kinds of hardware accelerators. Exam-
ples of HSAs are the Samsung Exynos 5 Octa [111], which hosts an
ARM big.LITTLE asymmetric octa-core CPU and a Mali GPU; and
the Xilinx Zynq [112], which features an ARM dual-core CPU and a
reconfigurable Field Programmable Gate Array (FPGA) unit.

The increase of heterogeneity comes at the cost of programmabil-
ity: exploiting multiple kinds of processing elements implies dealing
with different type of programming languages and models, and this
introduces new challenges in implementation and integration. More-
over, this abundance of resources has to be properly managed and
allocated, since each type of processing unit delivers a different level
of performance/power efficiency to each application.

In 2009, the Khronos Group, which includes Apple, ARM, Samsung
and many other industrial partners, has defined OpenCL [82], a cross-
platform programming model that leverages the Single Instruction
Multiple Thread (SIMT) computational paradigm in order to exploit
the data parallelism capabilities of heterogeneous accelerators.

OpenCL is implemented as an extension of the C/C++ language
and allows application developers to program and use a large vari-
ety of processing units using a single programming model. However,
although it provides functional portability between different process-
ing units, the OpenCL API still requires the application developers
to explicitly select and configure the resources that will be used to
execute applications.

Especially when executing on CPUs, OpenCL applications can gain
performance advantages by carefully choosing which computational
units will be used. In oder to allow that, the OpenCL 1.2 specifica-
tion introduced the concept of Device Fission [113]. Basically, Device
Fission allows application developers to partition an OpenCL device
(i.e., a multi-core CPU, a GPU or a hardware accelerator) into multiple
sub-devices. On Intel CPUs, moreover, the partition can be performed
by name. That is, developers can manually select which processing el-
ements will be part of the same partition.

Indeed, the Device Fissure feature is especially useful on CPUs,
e.g. to deal with cache contention or to minimize memory overheads
in NUMA systems. However, this feature could also be handy in
big.LITTLE architectures: in this case, applications would indeed be
able to execute OpenCL kernels on a wide variety of devices: GPU,
big cluster, little cluster or on a mix of big and little processing ele-
ments. However, this goal poses multiple challenges: a) big.LITTLE
architectures feature ARM cores, which, at the time of writing, do
not support named partitions; and b) as already mentioned in the Due to the lack of

named partitions
support, it is not
possible, say, to
select all the big
cores. It is possible
to create partitions,
but it is up to the
OpenCL runtime to
chose which
processing elements
will be selected.

previous sections, in order to address multi-application scenarios, the

76 single-isa heterogeneous processing : big .little architectures

resource manager should be in charge of actually choosing (and con-
figuring, e.g. using DVFS) which subset of processing elements will
be allocated to each application. In this scenario, named partitions
would be useless unless the applications source code is changed in
order to retrieve the IDs of the allocated cores from the resource man-
ager before actually requesting the device fissure.

Figure 28 summarizes our approach to OpenCL sub-device alloca-
tion. The lower layer represents the big.LITTLE processor, which con-
sists in two heterogeneous clusters of Processing Elements (PEs). The
abstraction performed by the Operating System, however, exposes a
single cluster of processing elements, and this is exactly what the
OpenCL runtime detects when not managed by the resource man-
ager. In managed scenarios, conversely, the resource manager uses
the Linux Control Groups to enforce a specific system view on the
application (and hence, on the OpenCL runtime). This means that
managed applications that exploit the OpenCL runtime to retrieve

operating system
abstraction

resource
allocation
process

OpenCL runtime
CPU device
retrieval
(clGetDeviceIDs)

hardware:
1 big cluster,

1 little cluster

OpenCL
CPU device

(unmanaged)

OpenCL
CPU device
(managed)

CGroup partition
for application /

OpenCL runtime

Figure 28: Enforcing a custom system view on the OpenCL runtime. The
lower layer represents the big.LITTLE processor, which consists in
two heterogeneous clusters of Processing Elements (PEs). The ab-
straction performed by the Operating System, however, exposes
a single cluster of processing elements, and this is exactly what
the OpenCL runtime detects when not managed by the resource
manager. In managed scenarios, conversely, the resource manager
uses the Linux Control Groups to enforce a specific system view
on the OpenCL runtime, thus tricking it into detecting only the
selected processing elements.

4.2 a heterogeneity-aware opencl support 77

the available platform devices will see a single CPU device that is
composed by only the processing elements that have been allocated
to the application.

Although the approach presented in this Section is extremely sim-
ple and is not based on novel tools and frameworks, it is based on
a clever insight: given that the Linux Control Groups framework en-
forces a custom system view on applications, it can be also used to
trick the OpenCL runtime into detecting only the processing elements
that the resource manager allocated to an application. Our novel con-
tribution can be therefore summarized as follows:

• we enabled a CPU device partitioning process that is akin to de-
vice fissure but is performed at resource manager level instead
of at application level, hence enabling OpenCL multi-application
managed scenarios;

• we provided the resource manager with the ability of perform-
ing named device partitions (i.e., OpenCL sub-devices that con-
tain only the selected processing elements) on any type of sys-
tems, including ARM-based ones.

78 single-isa heterogeneous processing : big .little architectures

Table 5: Summary of the big.LITTLE test scenarios. M1
α−→ M2 means that

an application mapping is changed fromM1 toM2 after application
α has terminated.

Description of the workload Cores allocation

Scenario
Application Threads Threads

Cores HMP
HMP
w/policy

big.LITTLE 1

blackscholes 2

1.00

0− 3,4−
7

1− 3
†−→

5− 7

swaptions 1
0− 3,4−
7

5

facesim 3
0− 3,4−
7

5− 7

big.LITTLE 2

vips 3

1.17

0− 3,4−
7

5− 6
†−→

5− 7

swaptions 1
0− 3,4−
7

7

blackscholes 3
0− 3,4−
7

1− 3

big.LITTLE 3

freqmine † 2

1.33

0− 3,4−
7

5− 6

ferret ‡ 2
0− 3,4−
7

5− 7
†−→

5− 6

swaptions 1
0− 3,4−
7

1
†−→ 7

blackscholes 3
0− 3,4−
7

1− 3
‡−→

5− 7

big.LITTLE 4

freqmine † 1

1.17

0− 3,4−
7

5

fluidanimate ‡ 2
0− 3,4−
7

6− 7
†−→

5− 6

facesim 3
0− 3,4−
7

1− 2
‡−→

5− 7

ferret 1
0− 3,4−
7

3
†−→ 7

big.LITTLE 5

facesim † 3

1.66

0− 3,4−
7

5− 7

ferret 1
0− 3,4−
7

5− 7
†−→

5− 6

swaptions 3
0− 3,4−
7

1− 3
†−→

5− 7

freqmine 3
0− 3,4−
7

1− 3

big.LITTLE 6

bodytrack † 1

1.83

0− 3,4−
7

5

vips 3
0− 3,4−
7

6− 7
†−→

5− 6
‡−→

5− 7

blackscholes ‡ 1
0− 3,4−
7

1− 3
†−→ 7

swaptions 3
0− 3,4−
7

1− 3

freqmine 3
0− 3,4−
7

1− 3

4.2 a heterogeneity-aware opencl support 79

Table 6: Experimental results: for each scenario, we present execution time
[s] and Energy [J]. For execution time, we also present the standard
deviation (25 runs). The last three columns present the achieved
speed-up in terms of time, energy and Energy-Delay.

Ex
e

c
u

t
i
o

n
t

i
m

e
En

e
r

g
y

Sp
e

e
d

-u
p

%

H
M

P
s
t

d
d

e
v

w
/p

o
l

i
c

y
s
t

d
d

e
v

H
M

P
w

/p
o

l
i
c

y
Ti

m
e

En
e

r
g

y
ED

P

LI
TT

LE
1

4
2
0

.1
9

7
.0
7

4
1
3

.1
8

3
.5
9

3
0
6

.7
4

2
9
9

.5
5

1
.7
0

2
.4
0

4
.1
4

LI
TT

LE
2

7
3

.4
8

0
.3
4

7
2

.6
8

0
.3
5

5
3

.2
7

5
2

.6
9

1
.1
0

1
.1
0

2
.2
0

LI
TT

LE
3

8
0

.3
5

1
.0
6

7
5

.5
4

0
.6
2

4
3

.5
3

4
4

.7
2

6
.3
7

1
.8
2

8
.3
1

LI
TT

LE
4

4
0

.6
0

0
.4
4

4
0

.0
2

0
.1
3

2
5

.6
4

2
4

.9
9

1
.4
5

2
.6
4

4
.1
2

bi
g

1
2
2
6

.0
0

7
.5
5

2
1
8

.5
5

2
.3
7

1
1
0
7

.4
1
0
6
6

.5
5

3
.4
1

3
.8
3

7
.3
7

bi
g

2
4
2

.3
1

1
.8
6

4
1

.1
5

0
.1
8

2
2
3

.8
2

2
1
3

.3
0

2
.8
2

4
.9
3

7
.8
9

bi
g

3
3
7

.7
4

1
.0
7

3
5

.8
8

0
.6
5

1
6
2

.0
2

1
5
6

.3
2

5
.1
7

3
.6
4

9
.0
0

bi
g

4
2
6

.1
6

0
.4
7

2
4

.3
7

0
.2
8

1
3
8

.3
6

1
2
7

.9
7

7
.3
1

8
.1
2

1
6

.0
2

bi
g.

LI
TT

LE
1

1
0
6

.8
4

1
.9
3

1
0
1

.9
8

1
.9
8

4
4
6

.5
8

4
2
8

.3
2

4
.7
6

4
.2
6

9
.2
3

bi
g.

LI
TT

LE
2

2
4
9

.3
5

4
.0
3

2
3
3

.0
2

2
.6
4

1
2
4
1

.7
6

1
1
8
3

.7
4

7
.0
1

4
.9
0

1
2

.2
5

bi
g.

LI
TT

LE
3

1
1
8

.1
5

1
.7
7

1
0
4

.6
6

0
.5
1

4
7
3

.7
7

4
1
6

.8
8

1
2

.8
8

1
3

.6
5

2
8

.2
9

bi
g.

LI
TT

LE
4

7
1

.6
6

0
.6
7

6
5

.4
0

0
.1
5

3
7
5

.0
5

3
4
8

.0
4

9
.5
8

7
.7
6

1
8

.0
8

bi
g.

LI
TT

LE
5

6
6

.5
7

1
.1
0

6
4

.4
4

0
.4
1

3
4
2

.1
5

3
2
7

.3
6

3
.3
0

4
.5
2

7
.9
6

bi
g.

LI
TT

LE
6

2
5
0

.5
1

6
.1
1

2
2
9

.0
0

1
.8
7

1
2
2
7

.5
1

1
1
4
0

.4
3

9
.3
9

7
.6
4

1
7

.7
4

Part II

M U LT I P L E - C O M P U T I N G - N O D E S S Y S T E M S

The second part of this dissertation deals with systems
composed by multiple computing nodes. In particular, we
will focus on HPC systems. Given the

introduction of
HPC-oriented cloud
platforms such as
the Amazon EC2
Cluster Compute
Instances
(CCIs) [114], cloud
systems are
becoming
increasingly
attractive (but not
yet fully comparable
to in-house
solutions) even in
the case of
tightly-coupled
applications such as
MPI
programs [115, 116].

With the term HPC we refer to the practice of using a
massive degree of computational parallelism in order to
accelerate the execution of applications. The typical users
of HPC systems are scientific researchers, academic insti-
tutions and some government agencies, e.g. the military.

As can be guessed by most readers, one of the biggest
problems that must be tackled by HPC resource manage-
ment falls in the area of RAS, which stand for “Reliability,
Availability and Serviceability”.

Detection and tolerance of faults, however, are not the only
problem that must be tackled by resource managers. The
costs of cooling and supplying are today a non-negligible
part of the costs associated to HPC systems, cloud and
data centers [117, 15]. In HPC scenarios, it is therefore
paramount to minimize power consumption, which di-
rectly affects the cost of power supplying, and to avoid
thermal hot-spots, which have negative effects on the life
expectancy of the chips—by both inducing hardware faults
and accelerating the chip aging process—and on the cool-
ing costs.

First of all, we perform and interesting study on how
the freeze/restore-based process migration of MPI appli-
cations, which is usually performed at node granularity
to address faults, can be made fine-grained in order to mi-
grate only parts of the application on a different comput-
ing node. This allows resource managers to perform opti-
mizations such as load balancing, resource consolidation,
or also to counteract the effects induced on the hardware
by aging (e.g. by avoiding to use faulty cores). Then, we
present a resource management approach that exploits the
trade-off between power consumption and performance
when executing HPC applications that must comply with
runtime-variable Quality of Service requirements. Finally,
we perform the first steps towards an unified runtime
management support for deeply heterogeneous HPC sys-
tems.

5
E N A B L I N G A T R A N S PA R E N T P R O C E S S
M I G R AT I O N I N O P E N M P I

Migrating a process among cores of the same processor does not pose The contents of this
subsection are
partially published
in [118].

any specific issue. When going distributed, however, migration be-
comes a complex operation. First of all, all the processes that are com-
municating with the migrating one must be temporarily blocked. Sec-
ond, the process data, which resides in the memory and can possibly
be huge, must be moved from the target to the destination computing
node.

Before dealing with allocation policies, we therefore chose to focus
on inter-node process migration. In particular, we want to provide a
mechanism that allows processes to be transparently migrated by a
resource manager in a totally transparent fashion.

This chapter introduces mig, a framework that enables the trans- We chose to address
MPI applications
because MPI is the
most widespread
distributed
programming model.

parent migration of MPI applications—or even just a subset of their
processes—among different nodes of a distributed HPC system. This
framework, which is implemented as a module of Open MPI, pro-
vides mechanisms that can be exploited by resource managers to react
to hardware faults, to counteract performance variability, to improve
resource utilization or to perform a fine-grained load balancing and
power/thermal management.

Conversely to the other state-of-the-art approaches, mig does not
require changes in the applications source code. Moreover, it is highly
maintainable, since its implementation required very few changes in
the already existing Open MPI modules.

motivation

Given the wild evolution of High-Performance Computing (HPC)
and silicon technology, modern and future parallel systems must deal
with an increasing number of computing nodes and, also due to the
end of Dennard’s scaling (see Section 1.1), with the subsequent power-
related issues. These two aspects are posing new challenges in terms
of performance scaling, efficient utilization of the nodes, power and
thermal management, reliability and fault-tolerance.

As the Mean Time Between Failures (MTBF) of current supercom-
puting systems is already way below 100 hours [119, 120, 121], relying
on fault-tolerance techniques is nowadays paramount. In this regard,
a very common approach is to employ Checkpoint/Restart (C/R) ap-
proaches: the execution state of a managed application is periodically
saved (check-pointed) so that, in case of faults, it can be resumed

83

84 enabling a transparent process migration in open mpi

(restarted) from the last consistent state. An alternative use of C/R is
to migrate the execution of applications from a faulty to a reliable set
of nodes. This is a versatile technique: a system can benefit from task
migration support not only to react to faults, but also for resource
management purposes, e.g. to perform load balancing or to relieve
an overheated node.

Concerning nodes utilization, the efficient exploitation of an ex-
tremely parallel HPC system usually relies on programming mod-
els, e.g. MPI, that allow applications to seamlessly execute in a dis-
tributed environment. As already discussed in the previous chapters,
in order to enable multi-applications scenarios and to perform an ef-
fective system-wide management, the aforementioned programming
models may in turn rely on entities—e.g., resource managers or job
schedulers—that are in charge of driving the task placement over the
wide set of available computing resources.

Our framework allows resource managers to dynamically change
the set of computing nodes that is allocated to a running MPI ap-
plication. This kind of support enables a wide range of possibilities,
such as reacting to faults, adapting the resource assignment to the
time-varying performance requirements of applications, or perform-
ing system-level load balancing in order to evenly spread heat and
power consumption among the available resources.

We implemented a system-level migration schema based on the
idea of partitioning the MPI application processes that are running on
the same node into multiple migratable entities. This schema allows
us to perform transparent fine-grained migrations, i.e., to migrate a
part of an MPI application onto a different node while the remaining
processes are still running.

related works

The state-of-art literature already offers some examples of Check-
point/Restart [120]. Most of the C/R implementations rely on the
Berkley Lab’s Checkpoint/Restart kernel-space tool (BLCR) [122] and the
libckpt user-space library [123].

C/R based approaches usually adopt the following schema:

1. the processes that belong to an application are forced to reach a
global consistent state;

2. the application execution state is check-pointed;

3. the application is resumed;

4. after some time, if no faults are detected, return to point 1.

In case of faults, all the running processes are killed and the appli-
cation execution is resumed from the last checkpoint.

5.2 related works 85

C/R mechanisms can be managed either at application or at system-
level. In the former case, also known as user-level, the application
itself is in charge of synchronizing the execution of its own processes
and performing the checkpoint. This is typically done by calling suit-
able library functions. In the latter case, instead, C/R is accomplished
by the run-time system that controls the application life-cycle, e.g. the
resource manager or the programming model runtime.

Hursey et al. [124] extend the Open MPI stack with additional lay-
ers that provide C/R capabilities in a network-agnostic fashion. The
application processes can be stopped and then restarted on a differ-
ent set of nodes that is potentially characterized by a different net-
work topology. This solution introduces notable code dependencies
between internal Open MPI modules. Moreover, it induces significant
overheads, since it copies the process state images on an external stor-
age server, which therefore becomes the real bottleneck for the system
performance. This drawback, along with the poor maintainability of
the software, led the Open MPI developers to disable these additional
layers since Open MPI version 1.7. In this work, we

used OpenMPI
version 1.10.

As already noted for the work presented by Hursey et al., the com-
mon limitation of C/R-based approaches is the overhead introduced
by performing periodical checkpoints. In some use cases, this over-
head impacts dramatically, even doubling the execution time of ap-
plications [121]. Moreover, the overhead increases exponentially with
the system size, i.e. with the number of computing nodes. Consider-
ing a large HPC system with thousands of nodes and not negligible
power supply costs, the overhead must be carefully evaluated not
only in terms of performance loss, but also in terms of additional
energy consumption [125].

In order to minimize the overheads induced by periodical check-
pointing, some authors propose to employ task migration techniques.
The main idea behind these approaches is that, provided that some
entity is able to predict the imminent fault of a computing node,
all the processes that are running on that node can be pro-actively
check-pointed, migrated on a healthy node and there restored. This
approaches are quite advantageous, inasmuch as that they does not
require applications to be periodically check-pointed.

Task migration techniques can be classified on a granularity ba-
sis: migration can be performed either at Virtual Machine, container or
process-level.

The first two classes are very common, since an easy workload man-
agement and the guarantee of isolation is very appealing in the case
of MPI applications. However, it is worth remarking that the lack of
shared memory communication between processes on different vir-
tual machines heavily impacts on the performance of applications,
and this problem is especially exacerbated in case of I/O intensive
workloads [126]. Although many authors proposed approaches that

86 enabling a transparent process migration in open mpi

tackle this problem, the gap between native and and hosted (VM-
based) execution is still wide, and it leads to latency increments up
to 16x for communication intensive operations [127].

The third class of techniques, i.e. process-level migration, is in-
stead preferable when the main goal is to optimize resource usage:
process-level resource allocation is way more flexible than that of con-
tainers or Virtual Machines. Concerning this class of techniques, the
most promising solution has been proposed by Wang et al. [119]. The
basic idea of the authors is to try to minimize the number of per-
formed checkpoints by using the aforementioned proactive approach:
each computing node is constantly monitored and, in case of immi-
nent fault, all the processes that are executing on that node are mi-
grated on a healthy one. As usual in the C/R approaches, the pro-
posed framework, which is implemented in LAM/MPI (predecessor
of Open MPI), requires all the processes pertaining to the same appli-
cation to synchronize in order for the checkpoint to be performed.

According to our literature review, we chose to focus on the follow-
ing goals:

maintainability

The migration framework must be self-contained.

transparency

The migration support must not require the source code of applica-
tions to be changed.

fine granularity

It must be possible to migrate just a part of the application, i.e. a
subset of its processes. This allows resource managers to perform
load balancing or also to isolate only a subset of a faulty node from
the rest of the system.

asynchronism

Processes that are not going to be migrated must be allowed to
continue executing.

integrability

The migration framework must provide APIs that allow resource
managers to drive the migration of applications.

The solution we propose addresses all the aforementioned issues:

• it is a process-level migration mechanism whose granularity can
be tuned by the resource manager;

• it does not require any change to the applications code;

• the migration is almost completely transparent with respect to
the application execution;

5.3 design and implementation 87

• migration can be triggered by a resource manager through a
suitable API.

We implemented the proposed task migration approach as a non-
invasive Open MPI module that we called mig.

design and implementation

As already mentioned in the previous subsections, we designed mig

as a mechanism that allows resource managers to trigger migrations.
Hence, this work will not deal with with scheduling policies; instead,
we will focus on how to suitably carry out the migration itself.

The main idea behind our approach is that the resource manager
can signal a migration request to the Open MPI runtime by send-
ing a (source node, destination node) pair via the already existent
socket channel. Then, the Open MPI runtime (in particular the mig

module) performs the sequence of actions that are needed to actually
migrate the application processes.

In order to perform C/R on the selected processes, we employ
the Checkpoint/Restore In Userspace (CRIU) tool [128], which is a
C/R tool that is gaining a lot of interest in virtualization environ-
ments [129]. The big advantage of CRIU is that it exploits mechanisms
that have already been integrated in the Linux kernel. CRIU does not
require additional kernel modules to be loaded, and it can be used in
user-space.

Open MPI architecture

Open MPI is a popular implementation of MPI. Its structure, which
is based on the Modular Component Architecture (MCA) [130], is
composed by three kinds of entity:

• MCA: the Modular Component Architecture backbone, which
is in charge of instantiating all the Open MPI modules and ini-
tializing them according to the run-time parameters;

• Modules: the main functional parts of Open MPI. Each module
is devoted to a specific task, e.g., managing the processes life
cycle or forwarding input/output. Please note that, according
to the Open MPI jargon, modules are referred to as frameworks;
since this term is already used multiple times in this disserta-
tion, we chose to avoid ambiguity and call them “modules”;

• Components: a specific implementation of a module. For in-
stance, depending on which component is loaded at runtime,
communication can be based on different protocols (e.g., TCP
or Infiniband).

88 enabling a transparent process migration in open mpi

In order to logically separate the different functional areas, the
modules are bundled into three layers:

• OpenMPI (OMPI): modules that expose the application-level
API;

• Open Run-Time Environment (ORTE): modules that manage
the processes life-cycle and orchestrates the inter-node commu-
nication;

• Open Portable Access Layer (OPAL): a library that provides
OMPI and ORTE with a set of utility modules such as event
manager and memory allocator.

As shown in Figure 29, the structure underlying an MPI application
consists of an application-level ORTE layer, which allocates resources
to the application processes according to the resource manager direc-
tives and orchestrates the communication from/to other nodes; and
multiple process-level OMPI layers, which expose the MPI API to
each process and manage communication among the processes that
are local to the node. In case of multi-node execution, each comput-
ing node is characterized by the same structure: each node features an
application-level ORTE layer and multiple process-level OMPI layers.

The command that is used to launch an MPI application is called
mpirun. The node from which the application is started is defined
as the Head Node Process (HNP) and manages the entire application
execution.

Open MPI extension

Most of the changes involved in our extension are contained in the
new mig module; however, in order to allow mig to suitably orches-

OMPI

MPI Code

Process 1

OMPI

MPI Code

Process 2

MPI Application

OMPI

MPI Code

Process N

ORTER
e
so

u
rc

e
 M

a
n

a
g

e
r

o
r

jo
b

 s
ce

h
d

u
le

r

Operating System

OPAL OPAL OPAL

Figure 29: Architecture of Open MPI modules. OMPI exposes the MPI APIs
to the processes, ORTE controls the processes life cycle, while
OPAL acts as an utility library.

5.3 design and implementation 89

trate migrations, we also had to perform minor additions to the ex-
isting Open MPI modules. The modules involved in our Open MPI
extension are:

• ras (part of ORTE): it provides the communication channel be-
tween the Open MPI runtime and the resource manager. Cur-
rently, Open MPI uses this module only during the application
initialization, and it does so to retrieve the full list of available
nodes. We extended the ras API to allow the resource manager
to send migration requests during the applications execution
and to be notified about the status of the requests.

• oob (part of ORTE): the “out-of-band” framework provides a
low-level API for the communication between the ORTE dae-
mons. This module contributes to the migration process by man-
aging the opening and closure of the pending connections to-
wards the migrating ORTE daemon instance.

• plm (part of ORTE): high-level communication between HNP
and the ORTE daemons. We implemented the protocol neces-
sary to coordinate the orted instances. We also added the ssh

call that spawns the orted-restore daemon on the destination
node. This daemon is in charge of resuming the processes exe-
cution once the checkpoint image transfer is completed.

• btl (part of OMPI): this is the application-level peer-to-peer
communication module. We modified the TCP component to
manage the opening/closure of the TCP socket connections among
migrating application processes.

• mig (part of ORTE): this is the module we implemented to en-
able the migration mechanisms. The provided functionalities
are controlled by ras on behalf of the resource manager. mig
is in charge of coordinating the migration phases via the plm

module by routing commands to the ORTE daemon instances
that are involved in the migration. mig is also responsible of
performing checkpoint/restore and of sending the process sta-
tus image to the destination node.

As already mentioned, at computing node level, processes from
the same application are usually managed by a single ORTE dae-
mon. In order to enable a fine-grained migration support, we instead
force Open MPI to instantiate a tunable number of orted instances,
so that one or more of them—along with the processes that they are
managing—can be migrated on a different node (See Figure 30). That
is, migration happens at orted-granularity.

The number of ORTE daemons that are instantiated on a single
computing node can be selected at runtime by the resource man-
ager. The reason is simple: whereas processes that are managed by

90 enabling a transparent process migration in open mpi

MPI Application

ORTE

Operating System

ORTEORTE

OMPI

MPI
Code

Proc 1

MPI
Code

OMPI

Proc 2

OMPI

MPI
Code

Proc ..

MPI
Code

OMPI

Proc N

OMPI

MPI
Code

Proc ..

MPI
Code

OMPI

Proc ..
MIGRATION UNIT

Figure 30: Open MPI modules architecture used in the mig approach. On
each node, processes are grouped into migratable units. Each unit
is managed by an ORTE daemon, as if it was running on a differ-
ent node.

the same daemon communicate via shared memory, processes that
are running on the same node but are managed by different ORTE in-
stances are forced to communicate using sockets; therefore, especially
in case of communication intensive applications, employing multiple
ORTE daemons per node is bound to induce performance degrada-
tion. This issue can be mitigated by allowing the resource manager
to trade off migration granularity (i.e., number of ORTE daemons per
node) with performance.

It is worth remarking that this issue could be also solved by allow-
ing ORTE daemons from the same node to communicate using shared
memory. Since this would further augment the amount of changes to
the Open MPI modules, we chose to postpone this approach to a fu-
ture work. Indeed, in the context of this work, we will study the over-
heads that are induced by the presence of multiple ORTE daemons
per node.

CRIU

The CRIU library, which is used in the CRIU C/R component of the
mig module, is in charge of performing checkpoint/restart of a single
ORTE daemon and its processes.

The checkpoint stage, which is called dump, freezes the processes
execution and creates a collection of binary files that contain the pro-
cesses state. This collection is composed by three kinds of files: inven-
tory, image, and auxiliary. CRIU uses the inventory and auxiliary files in
order to store the meta-data that is needed to perform the restore. The
image files, instead, contain the memory dump of the processes and
all the OS-level information (e.g., file descriptors, file-system mount-
points, signal masks and ghost files).

5.3 design and implementation 91

The restart stage, which is called restore, reads the binary files pre-
viously generated by the dump stage and restarts the frozen processes.
It is worth remarking that, if the restore operation does not occur on
the node where the processes were dumped (i.e., in case of migration),
program executables, libraries and data files must be present and
identical in the destination node. Moreover, remote file-systems must
be mounted, and the process identification numbers (PIDs) must be
available, since the processes cannot change their PIDs after the re-
store. In order to guarantee the PIDs availability, we exploited the
Linux Namespaces, a feature of the Linux Kernel [131] that allows us
to isolate a set of processes in a detached environment via the unshare

system call. In order to do this, the orted-restore executes the fol-
lowing C call:

unshare(CLONE_NEWNS | CLONE_NEWPID)

The CLONE_NEWNS and CLONE_NEWPID flags respectively detach the
mount and the PID namespaces. In particular, the orted-restore dae-
mon becomes the init process (PID=1) of the new empty PID names-
pace and can restart the application processes with the original PIDs.
The isolated mount namespace is needed to remount the /proc direc-
tory and match the new process identifier configuration. At this point,
the ORTE daemon instance and its children can be safely restarted.

Migration phases

As shown in Figure 31 on page 93, the migration procedure consists
in five phases:

1 – coordination

The mig module of the Head Node Process (HNP) spawns an orted-
restore daemon on the destination node. Then, via plm, it notifies
to all the running ORTE deamons that a migration has been trig-
gered. The btl TCP component of the processes that are not in-
volved in the migration terminates all the ongoing data transmis-
sion towards the migrating processes. Until the end of the migra-
tion, all the future data transmissions towards the migrating pro-
cesses will be cached. At this point, the processes send back an Indeed, processes

that are not
migrating can
continue executing
as normal. However,
they will be stopped
if they try to
communicate with
the migrating
processes.

acknowledgment to their own ORTE daemon instances, ensuring
that no further transmissions towards the migrating processes will
be performed. The ORTE daemons forward the acknowledgment
to the HNP.

2 – criu dump

The HNP issues the MIGRATION_EXEC command, hence starting the
migration procedure. When an application process receives that
command, it waits until all the in-flight packets have been received

92 enabling a transparent process migration in open mpi

by the destination side. Then, all the TCP connections towards the
processes involved in the migration can be safely closed, and an
acknowledgment is sent back to the ORTE daemon. When the mi-
grating ORTE daemon receives the acknowledgment, it uses the
CRIU API to perform the checkpoint of its execution status.

3 – process state migration

The outcome of the CRIU checkpoint (or dump) is a collection of
files. To simplify the transfer of such files over the network, mig
bundles them in an archive. Optionally, the archive can be com-
pressed. For the sake of brevity, we refer to the archive with the
term “image”. The image is now ready to be moved to the destina-
tion node.

4 – criu restore

After having received – and optionally decompressed – the image,
the orted-restore daemon on the destination node uses the CRIU
API to restart the ORTE daemon and its children processes. Then,
the ORTE daemon reopens the connection to the HNP and sends
the MIGRATION_DONE message. The HNP broadcasts this message to
all the other ORTE daemons.

5 – finalization

The migrated processes reopen the connections towards all the
other ones and resume the execution.

evaluation

In this subsection, we evaluate the overheads introduced by our mi-
gration mechanism. We distinguished between two types of overhead:
1) performance loss due to the execution of multiple ORTE daemons
on the same computing node; and 2) time required to actually per-
form a migration.

Before presenting the results, let us describe our hardware and soft-
ware setup.

The hardware consisted in two computing nodes. Each of those
was equipped with two Intel Xeon E5-2640 octa-core hyper-threaded
CPUs in a NUMA configuration (256GB of total memory). As com-
mon in HPC environments, we disabled Hyper-Threading; hence,
each computing node featured a total of 16 processing elements. The
operating system was CentOS 6.7, Linux kernel version 3.18.

Regarding applications, we chose to employ the NAS Parallel Bench-
marks suite (NPB) [132]. In particular, we selected IS and MG, which
are kernels; and BT, SP and LU, which are pseudo-applications. As
shown in Table 7, each application can be executed using different
datasets. We chose to totally exclude type A datasets, since they led to
very short execution times. Similarly, for the pseudo-applications, we

5.4 evaluation 93

C
O

O
R

D
IN

A
T
E

D
U

M
P

R
E
S
T
O

R
E

FI
N

A
LI

Z
E

TR
AN

SF
ER

IM
AG

E

C
O

M
P
R

E
S
S

IM
A

G
E

D
E
-C

O
M

P
R

E
S
S

IM
A

G
E

D
E
S

T
IN

A
T
IO

N
 N

O
D

E

S
O

U
R

C
E
 N

O
D

E

ti
m

e

ti
m

e

C
h
e
ck

p
o
in

t
P
ro

ce
ss

 s
ta

te
 m

ig
ra

ti
o
n

R
e
st

a
rt

ti
m

e
R

E
S

O
U

R
C

E
 M

A
N

A
G

E
R

Figure 31: The mig framework: migration phases. When the resource man-
ager triggers a migration, the application enters a coordination
stage. Then, the migrating processes are dumped and the image
is transferred to the destination node. There, the processes are
restored, and, after a finalization phase, they can resume their
execution.

94 enabling a transparent process migration in open mpi

Table 7: Problem data sizes (MB) for the A, B, C, and D classes of each
benchmark. Application type can be either kernel (k) or pseudo-
application (p-a). Green numbers indicate that we used the configu-
ration (application - dataset) in our experiments.

Dataset Type

Type Name A B C D

k IS 64 256 1024 16793

k MG 128 128 1024 8294

p-a BT 2 8 32 518

p-a LU 2 8 32 518

p-a SP 2 8 32 518

excluded type D datasets, which led to prohibitively long execution
times. Hence, we used datasets of type B, C, and D for the kernels; and
datasets of type B and C for the pseudo-applications.

Overheads due to multiple ORTE daemons per node

As already mentioned, given that Open MPI employs only one ORTE
deamon per node, communication between ORTE daemons is per-
formed using TPC/IP, which is less performing than shared memory
[133]. Indeed, this may become a bottleneck when multiple ORTE
daemons run on a single computing node. To evaluate the overhead
introduced by splitting the control of the MPI processes among multi-
ple ORTE daemon instances, we used one of the previously described
16-core computing nodes.

We executed each benchmark using a number of ORTE daemons
in 1, 2, 4, 8, 16. Given that the benchmarks used 16 processes—i.e., one
process per core—each ORTE daemon respectively managed a num-
ber of processes in 16, 8, 4, 2, 1. It is worth noticing that using only
one ORTE daemon means executing the benchmarks in the standard
Open MPI scenario; hence, we took that case as a golden model.

We measured the execution time of each tuple <benchmark, class,
granularity>, starting after the MPI_Init call and stopping before the
MPI_Finalize call. We repeated the test 20 times to obtain a signifi-MPI init and

finalize belong to the
MPI API and must

be respectively called
at the beginning and

at the end of any
MPI processing.

cant statistics; however, it turned out that the experienced standard
deviation was always within 1% of the total execution time. Therefore,
for the sake of simplicity, we will not report the standard deviation
values.

Figures 32, 33 and 34 provide a visual representation of the over-
heads for type B, C and D datasets, respectively. It is clear that the
overhead increases sub-linearly with respect to the number of ORTE

5.4 evaluation 95

Figure 32: Execution time of each benchmark (input class = B) when running
16 processes using 1 to 16 ORTE daemons.

daemon instances, while it decreases as the problem size increases.
The sub-linear increase is imputable to the fact that, once there are at
least two ORTE daemons, the TCP/IP communication between MPI
processes of different daemons becomes the bottleneck for commu-
nication latencies; therefore, adding more ORTE daemons does not
tend to further degrade performance. The decrease of the overhead
in case of increasing problem sizes, conversely, is due to the fact that
increasing problem size means spending more time on computing
data; therefore, the time spent in communication—which is where
the overhead applies—decreases in percentage.

Tables 8 and 9 summarize the overheads for kernels and pseudo-
applications, respectively. The ORTE daemons granularity poorly af-
fects the application execution time. Considering all the test cases,
the percentage of time loss is always in the 0− 6% range; however,
as already mentioned, the overheads decrease as the dataset size in-
creases. Considering realistic scenarios, i.e. HPC applications with
large datasets, the overhead is always lower than 2%.

Finally, it is also worth remarking that, in multi-node scenarios,
there are always at least two ORTE daemons that are forced to commu-
nicate via TCP/IP; therefore, the above mentioned overhead applies
only in single-node scenarios, which are not frequent in HPC envi-
ronments. This also means that migration granularity affects only the
time required to perform migrations. For example, migrating 8 pro-

96 enabling a transparent process migration in open mpi

Figure 33: Execution time of each benchmark (input class = C) when run-
ning 16 processes using 1 to 16 ORTE daemons.

Figure 34: Execution time of each benchmark (input class = D) when run-
ning 16 processes using 1 to 16 ORTE daemons.

5.4 evaluation 97

Table 8: Static overhead of IS and MG with increasing migration granularity,
i.e. increasing number of ORTE daemons, compared with single
ORTE daemon case. For each kernel, we run the tests using multiple
datasets (B, C, D).

Benchmark Class # orted Overhead %

IS

B

2 4.68

4 5.18

8 4.85

16 4.85

C

2 2.21

4 2.68

8 2.64

16 2.64

D

2 0.87

4 0.96

8 0.79

16 0.64

MG

B

2 1.28

4 4.36

8 1.73

16 3.24

C

2 2.25

4 0.62

8 0.88

16 1.57

D

2 1.13

4 1.25

8 1.79

16 1.50

cesses would require a single migration in case of 8 processes per
ORTE daemon; or up to 8 migrations, as the number of processes per
ORTE daemon decreases.

98 enabling a transparent process migration in open mpi

Table 9: Static overhead of BT, SP, and LU compared with single ORTE dae-
mons case. For each pseudo-application, we run the tests using mul-
tiple datasets (B, C, D)

Benchmark Class # orted Overhead %

BT

B

2 0.92

4 0.93

8 0.93

16 1.17

C

2 0.31

4 0.29

8 0.45

16 0.60

SP

B

2 1.90

4 2.83

8 3.72

16 4.12

C

2 0.31

4 0.40

8 0.52

16 0.79

LU

B

2 2.92

4 4.37

8 5.42

16 6.10

C

2 0.73

4 1.63

8 2.19

16 2.48

Overheads due to migration

We characterized the migration overhead by running the benchmarks
on the two 16-core computing nodes, which were connected via Gi-
gabit Ethernet.

5.4 evaluation 99

In this experimental scenario, which is summarized in Figure 35,
we let each application execute on the two nodes employing 8 pro-
cesses per node. On each node, we spawned 2 ORTE daemons; there-
fore, at node level, each daemon managed 4 processes. During the
application execution, we triggered a migration: in particular, mig mi-
grated four processes from one node to another, so that the new con-
figuration was 4 processes on the first node and 12 processes on the
second one.

To better observe the composition of the migration overhead, we
split the migration time in seven contributions: coordination, CRIU
dump, image migration, CRIU restore and finalization, which are the
migration phases as already described in Subsection 5.3.4; and the
image compression/decompression, which are optional and respec-
tively happen before and after the image migration. The contributions
are therefore the following:

coordination

The ORTE daemons get ready for the migration. All new communi-
cation towards migrating nodes are held. All other communications
happen as usual;

criu dump

The migrating ORTE daemon and its processes are dumped into an
image file;

image compression

In order to save network bandwidth and transfer time, the image
is compressed (optional);

process state migration

Image is transferred to the destination node;

image compression

The image gets decompressed (optional, depends on whether the
image was compressed before being transferred);

Node1 Node2 Node1 Node2

Figure 35: Experimental scenario used to asses the overheads induced by
migration. An application composed of 16 processes is running
on two computing nodes. The processes are equally distributed
among the nodes, and, at node-level, processes are managed by
two ORTE daemons (processes managed by different daemons
are indicated using different colors). At some point, a group of
four processes is migrated from the first node to the second one.

100 enabling a transparent process migration in open mpi

criu restore

Image is restored;

finalization

The ORTE daemons get ready to restart communicating with the
migrated one.

Please note that the execution time of all the aforementioned phases
but coordination and finalization strongly depend from the size of the
image file. In particular, the network that interconnects the computing
nodes may become the bottleneck of migrations, and this is why we
introduced the image compression/decompression phases.

We compressed the images using the GZIP algorithm [134]. Figure
36 shows the size of the compressed images normalized to the un-
compressed one. Overall, compression is quite effective in reducing
the size of the checkpoint image. The reason is straightforward: Open
MPI allocates over 100MB of unused shared memory as ghost files ini-
tialized as zeros, and this makes the compressed images quite smaller
than the compressed ones. In case of big datasets, this phenomenon
is less evident, hence the higher size ratios of the type C datasets.

Figure 37 provides an overview of the measured migration times,
comparing the cases with image compression against cases where no
compression is applied. In case of big datasets (i.e., datasets of type
C), compressing the processes images before transferring them to the
destination node leads to higher execution times. Indeed, although

IS MG BT LU SP

Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
ag

e
si

ze
 r
at

io

Process image size after compression
B
C

Figure 36: Size of the compressed process image normalized to the uncom-
pressed size. For each application, we report the results for input
data classes B and C.

5.4 evaluation 101

time [s]
10 20 30 40 50 60 70 80 90 100 110 120

IS
B
C

MG
B
C

BT
B
C

LU
B
C

SP
B
C

standard migration
migration w/compression

0

Figure 37: Time required to migrate a group of four processes. For each ap-
plication, we list migration times for datasets type B and C, with
and without compression.

the image takes less time to be transferred, compressing the image on
the source node and decompressing it on the destination node takes
time. The sum of the three components, i.e., compression, transfer
and decompression, is higher than the time required to transmit an
uncompressed image. In case of smaller datasets, due to the high
compression ratios, compressing images is often convenient, but it
does not lead to dramatic performance improvement either.

It is worth noticing that, in realistic HPC scenarios, applications
are likely to feature big images, and this makes compression incon-
venient in most cases. Moreover, we performed the aforementioned
on two computational nodes connected via Gigabit Ethernet. Most
recent HPC systems connect nodes using InfiniBand, which is much
faster than Ethernet. In those cases, we do not expect compression
to be needed even when dealing with small datasets: transfer time
would always be in the range of seconds instead of tens of seconds.

Finally, Figure 38 shows the composition of migration times for
the experiments that do not employ compression. In all the scenarios,
archiving and transferring the processes images takes more than 90%
of the total migration time. Moreover, although the time spent archiv-
ing the image gets higher in percentage as the datasets gets bigger,
the migration time is always dominated by transfer time. This is a
good result, since, as already mentioned, transfer time can be dramat-
ically shrank by employing InfiniBand as a communication channel
between computing nodes.

102 enabling a transparent process migration in open mpi

0% 20% 40% 60% 80% 100%

coordination checkpoint archive image transfer
de-archive image restore finalization

SP

MG

LU

IS

BT

B
C

B
C

B
C

B
C

B
C

Figure 38: Migration time composition (percentage).

conclusions

In this section, we introduced a novel approach to support process
migration in the Open MPI framework. The main idea behind the
approach is to execute applications employing multiple ORTE dae-
mons per node instead of a single one. By doing this, we are able to
treat each ORTE daemon, along with the MPI processes it is manag-
ing, as an entity that can be migrated without performing intrusive
changes to the Open MPI framework itself. The application a part of
whom is migrating is not aware of the migration. Processes that are
not migrating just experience a temporary network slow-down (i.e.,
communications towards migrating processes are temporarily held).
Communication towards non-migrating processes can instead be per-
formed as usual.

The only negative effect of employing multiple ORTE daemons
per node is that communication between processes that are in the
same node but are managed by different ORTE daemons happens via
socket instead of shared memory. Usually, this is not a problem: in the
standard scenario, applications run on several computing nodes, and
inter-node communication is the real bottleneck. Through experimen-
tal tests, we shown that applications executing on a single computing
node suffer from a performance degradation that is limited (up to 5%
in communication-intensive applications), gets smaller as the applica-
tion dataset increases (bigger datasets means a lower communication
ratio), and does not depend on the number of employed ORTE dae-
mons. The last characteristic is quite useful, since it means that the
migration granularity, i.e., the number of employed ORTE daemons,
can be tuned at will without impact the performance of applications.

Compared to other state-of-the-art solutions, one of the major ad-
vantages of our approach is the maintainability. The extension intro-
duced in the Open MPI runtime has a minimal impact on the other

5.5 conclusions 103

Open MPI modules. Furthermore, it does not require any change on
the applications code, and it does not rely on any virtualization layer.
The latter characteristic enables gains in terms of performance with
respect to approaches that are based on virtual machine allocation.
In this regard, our proposal allows us to perform fine-grained migra-
tions, since the resource manager can decide to migrate either an en-
tire application or a subset of its processes. This feature also increases
the controllability of the workload execution.

The major limits of the proposed process migration mechanism are
similar to those of the other C/R based systems: the nodes of HPC
systems must be homogeneous, i.e. the operating system (and kernel
version), libraries version and application binaries must be perfectly
identical. Moreover, performing the checkpoint with CRIU requires
administration level permissions (root user in Linux) in all the nodes.
As a future work, we may allow ORTE daemons to spawn application
processes without such a requirement. From the MPI communication
standpoint, the lack of InfiniBand support is currently the most im-
portant missing feature. However, the development of this component
is currently ongoing.

6
C P U R E S O U R C E M A N A G E M E N T I N H P C S Y S T E M S

In this chapter, we present our novel contributions in the context of
the HARPA European project, which successfully terminated in 2017. If you are interested

in the HARPA
project, please visit
our website: www.
harpa-project.eu

The goal of HARPA was to support next-generation embedded and
high-performance many-cores in cost-effectively providing depend-
able performance, i.e., correct functionality and timing guarantees,
throughout the expected lifetime of a platform and under thermal,
power, and energy constraints. The HARPA novelty was in seeking
synergies in techniques that have been considered to be virtually ex-
clusive for the embedded or high-performance domains (worst-case
tailored, partly proactive techniques in embedded, and best-effort
reactive techniques in HPC). HARPA demonstrated the benefits of
merging concepts from these two domains by evaluating key applica-
tions from both segments running on embedded and HPC platforms.

The framework proposed by HARPA is composed by two layers:
the first one is low level (i.e., closer to the hardware) and is charac-
terized by a very high responsiveness. It is called HARPA Run-Time
Engine (HARPA-RTE). The second layer, which acts as a middle-ware
between the RTE and applications, is the HARPA Operating System
(HARPA-OS), which has a responsiveness in the order of tens or even
hundreds of milliseconds and is composed by a system-wide resource
manager (the BarbequeRTRM, see Appendix A) and a set of monitors
and hardware faults prediction modules.

This section will deal only with the HARPA-OS layer. In partic-
ular, we will focus on the resource management part, since it was
our contribution to the Project. Section 6.1 presents a feedback-based
approach that allows the BarbequeRTRM scheduling policy to dy-
namically tune resource allocation according to the runtime-variable
system status. Resource allocation is based on a set of Pareto-optimal
configurations (i.e., resource allocations under which the application
can optimally execute) that we identify at design time using Design
Space Exploration techniques. By taking into account the feedback
coming from applications, the scheduling policy is able to infer how
different runtime conditions impact on the profiled relationship be-
tween allocated resources and applications quality level.

During the aforementioned work, we noticed the limitations of
what we call discrete allocation, i.e., choosing a resource allocation
among a limited set of pre-defined choices. Therefore, we chose to de-
sign and implement a new and more refined BarbequeRTRM schedul-
ing policy that can allocate resources in the continuous domain. In
Section 6.2, we present a scheduling policy that is again feedback-

105

www.harpa-project.eu
www.harpa-project.eu

106 cpu resource management in hpc systems

based but does not need applications to be profiled at design time.
This means that the scheduling policy is able to handle even com-
pletely unknown applications. Moreover, the scheduling policy uses
the information coming from monitors and fault prediction modules
in order to tackle performance variability and to level power con-
sumption and temperature throughout the chip. Hence, it fully ex-
ploits the capabilities of the HARPA-OS in order to achieve a perfor-
mance, temperature and variability-aware resource allocation.

Please note that, since the BarbequeRTRM is the central component
of the HARPA-OS—which is composed by the BarbequeRTRM and a
set of monitor and fault prediction modules—we will thereon inter-
changeably use the terms HARPA-OS and BarbequeRTRM.

harnessing performance variability in hpc

Nowadays, thanks to the progress of silicon manufacturing processes,The contents of this
section are partially
published in [135].

You may want to
consult Appendix A

before venturing
forth.

multi-core processors can be found in High-Performance Computing
(HPC) systems as well as in embedded and mobile devices. Modern
laptops offer computational capabilities that are comparable to those
of 70’s supercomputers, and we expect this trend to hold in the future.

According to the technology road map and despite all the chal-
lenges described in Chapter 1, the silicon manufacturing will soon
rely on a 10nm integration process, and such transistor density is
bound to increase performance variability and the probability of sili-
con defects.

Due to the very high worst-case cost impact for technology nodes,
the current solutions for hardware errors detection/recovering (e.g.,
checkpoint/restore) and the possible guard-bands to battle interfer-
ence variations may not be scalable enough. For instance, in the case
of HPC systems, when a computing node fails, it can be rebooted
or, if the errors are persistent, it can be replaced. In the case of inte-
grated chips, when a processor core fails, it cannot be replaced. This
means that such systems must be able to properly work even though
some cores are temporarily or permanently unavailable. In order to
address the aforementioned issues, we need to introduce new attenu-
ation techniques that increase the lifetime of the system.

In this Section, we present a novel approach to High Performance
Computing. The main idea behind this work is to provide applica-
tions with resource and performance-awareness, so that they are able
to negotiate resource allocation with a centralized resource manager.
Being aware of the amount of resources that they have at their dis-
posal (i.e., which as well as how many processing cores and accelera-
tors), applications are able to tune their behavior in order to maximize
their quality. Moreover, being able to assess their own quality, applica-
tions are able to provide the resource manager with feedbacks about
the current allocation. By doing so, they are therefore able to min-

6.1 harnessing performance variability in hpc 107

imize their resource usage while nonetheless complying with their
Quality of Service goal, and this induces system-wide benefits such
as optimal resource exploitation (more applications can fit the avail-
able resources), and the minimization of power, heat and aging.

Background

Given the increasing importance of performance variability, the sole
maximization of throughput cannot anymore be the only concern
of High Performance Computing. HPC systems must begin tackling
problems that, until today, were exclusive of the embedded domain,
such as optimizing the applications resource usage. This is exactly
what we do in this work. In particular, our approach is based on the
idea of allocating to applications the minimum amount of resources
that allows it to satisfy its performance and Quality-of-Service re-
quirements.

Similar practices are well known in scenarios such as cloud com-
puting and multi-core based embedded systems.

In cloud computing, the term elasticity refers to the ability of a
system to dynamically adapt to workload changes in order to match
current available resources to current performance demand [136, 137].

Regarding multi-core embedded scenarios, Pusukuri et al. introduce
ADAPT, a scheduling framework that monitors the resource usage of
multi-threaded applications and dynamically selects both the schedul-
ing and the thread-to-core mapping policies in order to reduce inter-
application interference [50]. This in turn allows the framework to
consolidate workloads on few resources and to put the unused re-
sources in a low power state. The authors validated their approach
on a 64-core Supermicro server, thus creating a strong link between
multi-core systems—on whom resource-aware co-scheduling policies
are usually focused—and High Performance Computing.

Allocating an optimal amount of resources to each application may
not be enough: in order to optimize both resource usage and appli-
cation performance, several previous works dynamically adapt the
applications behavior to the available resources. A typical example is
the concept of adaptive parallelism [138, 139], where the parallelism of
an application (i.e., the number of threads) adapts itself to the current
resource availability.

Bhadauria and McKee present the HOLISYN co-scheduling policy,
which aims at optimizing resource usage of applications by using
adaptive parallelism [140]. Their policy samples resource usage for
each application during the initial part of their execution: during this
phase, each application is executed with a varying number of threads.
The applications that scale well with high numbers of threads are
then executed in isolation to achieve a very efficient resource uti-
lization. Conversely, the remaining applications are paired so that

108 cpu resource management in hpc systems

high-resource-usage applications are co-scheduled with low-resource-
usage ones.

Adaptive parallelism has been studied also in the field of transac-
tional memory [141, 142]. Mohtasham and Barreto devise an adaptive
parallelism scheme that is fully decentralized. The set of processes
cooperate to reach an efficient and fair configuration. This aspect is
very important: adapting applications to the current system status,
e.g. to the system load and the available resources, needs a strong
coordination between applications, since applications that take opti-
mization decisions independently (i.e., without being aware of what
the other applications are doing) will likely cause instabilities (see
also the work presented in Subsection 3.3).

HPC scenarios also benefit from the dynamic tuning of applica-
tions. Several previous works present frameworks that are application-
specific: ATLAS [143] for matrix multiplication, OSKI [144] for sparse
matrix kernels, SPIRAL [145] for digital signal processing, SEPYA [146]
for stencil computations.

To the best of our knowledge, there are not previous works that
exploit the synergy between optimal resource usage and application
adaptivity. We aim at coordinating the execution of applications by
making HARPA-OS act as an arbiter that assigns an optimal amount
of resources to each application. Applications are isolated in well de-
fined groups of resources, so that: a) each application is aware of the
amount of resources at its disposal, b) such amount of resources is
exclusively owned by the application, and c) applications are able to
configure themselves in order to make an optimal usage of the re-
sources they have at their disposal. The amount of resources that is
allocated to each application is dynamically selected among a set of
predefined ones by taking into account the current performance of
the application as opposed to the required one.

The HARPA Operating System

The HARPA-OS is the topmost layer of the HARPA software stack. Its
role is to manage resource allocation while taking into account both
the status of the system resources and the requirements of applica-
tions. This is done by combining pro-active and reactive strategies.

By the application side, the performance requirements can vary not
only among different applications, but also during the execution of
the same application. This is a common scenario in HPC systems,
where the workload is mainly made by scientific applications. For
instance, monitoring systems that aim at preventing natural disasters
may need to dynamically tune the accuracy (or throughput) of their
computation according to the environmental conditions.

In HPC environments, the common approach to guarantee the re-
quired level performance to applications is to statically reserve them

6.1 harnessing performance variability in hpc 109

computational resources. This is usually done by employing virtual-
ization techniques. Since the resource demand of applications may
vary over time, however, the allocated resources are likely to be over-
provisioned most of the time. Scaling the problem to the whole sys-
tem, the amount of under-used resources may be substantial, and
this would lead to two issues: 1) the available resources may be frag-
mented, and this limits the space for new applications; 2) power man-
agement techniques may be less effective because without a proper
consolidation of the allocated computational resources, there can be
processors or single cores that are not fully exploited, but they cannot
be put in deep sleet state either.

The next paragraphs provide an overview of how the HARPA-
OS addresses those issues. In particular, we will focus on the Bar-
bequeRTRM, which is the central part of HARPA-OS and supports
the execution of the applications in an adaptive and performance-aware
fashion.

We already introduced the BarbequeRTRM application execution
flow in Subsection A.2.1; however, for the sake of clarity, we will again
remark the most important aspects. The BarbequeRTRM comes with
an application library (RunTime Library, RTLib) that is in charge of
synchronizing the resource allocation with the application life-cycle.
In order to benefit from the RTLib support, applications must be
adapted to the BarbequeRTRM application execution flow, which is
represented in Fig. 39. In particular, the application execution must
be modeled as a state machine that features the following states:

setup

the application performs a set-up, e.g., it initializes variables and
spawns threads. This action is performed only once;

configure

the application adapts itself to the current resource allocation, e.g.,
by modifying its parallelism level accordingly. This action is op-
tional (i.e., it can be left unimplemented), and it is performed once
every time the resource manager changes the resource allocation of
the application;

run

the application processes a chunk of data. This action is repeated
until the termination of the application. If an application wants to
declare a throughput goal, the goal must be expressed as desired
number of run actions per second;

monitor

the application exploits the run-time library API or some custom
logic in order to asses the current performance and quality. If one
or both of those are not satisfactory, the application can use the run-
time library API to send a feedback to the resource manager. In this

110 cpu resource management in hpc systems

H
A

R
P
A

-O
S

(B
a
rb

e
q

u
e
R

T
R

M
)

managed flow main()runtime library

Y

SETUP

CONFIGURE

RUN

MONITOR

RELEASE

allocation
changed

application
terminated

N

Y
N

NEW ALLOCA-
TION INFO

APPLICATION + HARPA-OS RUNTIME LIBRARY

ALLOCATION
FEEDBACK

REGISTER MANAGED FLOW

UNREGISTER MANAGED FLOW

Figure 39: Overall view of HARPA-OS (applications side). From its main()
function, the application instantiates the part of code that has to
be managed and triggers its execution. From there on, the exe-
cution is transparently managed by the BarbequeRTRM runtime
library, which drives the execution flow according to an internal
state machine. Methods that are in dashed boxes are optional;
that is, they can be left unimplemented.

stage, the application may also evaluate the possibility of changing
its own performance/quality goals. This action is optional (i.e., it
can be left unimplemented), and it is performed once after each run
action;

release

the application terminates, e.g., it frees memory and joins threads.
This action is performed only once.

When a managed application is not satisfied with its current per-
formance or Quality of Service, the BarbequeRTRM can react in three
ways:

• Migrating the application towards a different set of resources.
This can be done using the already existent checkpoint/restart
techniques. In the case of MPI applications, please refer to the
work detailed in Section 5;

• Selecting a more performing configuration (i.e., resource allo-
cation) from those that, according to a design-time application
profiling, have been selected as the optimal ones for this appli-
cation. This is exactly what we will deal with in this subsection;

6.1 harnessing performance variability in hpc 111

• Tuning the current resource allocation by adding some resources
or by moving the computation to more performing or more
healthy cores. We will deal with this approach in the next sub-
section.

A feedback-based, performance-aware allocation policy

In the context of this work, we designed and implemented an allo-
cation policy that performs a performance-aware resource allocation.
The main idea behind this scheduling policy is that each application is
known a priori—which makes sense, as applications must be adapted
to the BarbequeRTRM execution flow in order to be managed—and
features a set of optimal resource allocations from whom the alloca-
tion policy can choose. This set, which, as already explained in Sec-
tion A.3, is called recipe, is built during an off-line application char-
acterization and contains resource allocations (Application Working
Modes, AWMs) that are Pareto-optimal for the application.

Indeed, information that comes from an off-line analysis is often in-
accurate: at runtime, co-running applications that contend on shared
resources; hardware faults; performance variability induced by aging;
or simply different datasets, may cause the application to behave dif-
ferently from what was observed during the off-line analysis. Our This work leverages

the concept of
feedback but still
employs a static set
of allocation choices.
This approach will
be refined in Section
6.2, where we will
present a completely
application-agnostic
scheduling policy.

scheduling policy is therefore based on the following idea: instead of
inserting in the recipe only the AWMs that are Pareto-optimal with
respect to the application objectives, we insert also some AWMs that
are close to the optimal ones. For instance, if an optimal AWM fea-
tures 10 cores, we may also insert in the recipe AWMs that feature 11
or 12 cores. The set of sub-optimal AWMs and the optimal AWM to
which they refer create therefore a cluster from which the scheduling
policy can dynamically choose configurations during runtime in or-
der to perform a fine-grained tuning according to the current system
status.

Listing 1 illustrates what happens to running applications that send
a feedback to the BarbequeRTRM. We call the feedback “performance
gap”, as, in order for the HARPA-OS to correctly interpret it, it must
be computed as the percent distance between the current performance
and the desired one. Given the throughput of the application under
the current AWM (line 4) and the current performance gap (line 6),
the policy estimates the desired performance level as reported (in a
simplified form) in line 7. In lines 11–17, the policy looks for the Ap-
plication Working Modes whose profiled performance value is closest
to the expected one. Finally, the resources that are requested in the
selected AWM are mapped on the hardware (line 19).

112 cpu resource management in hpc systems

Listing 1: Pseudo-code of the performance-aware resource allocation policy.

1 Data: R: list of RUNNING applications

2

3 for app in R do

4 curr_awm ← GetCurrentAWM(app)

5 // Percent gap is in (-1.00, 1.00]. Closer to 0 is better.

6 gap ← GetPerformanceGap(app)

7 exp_value ← GetValue(curr_awm) / (1 + gap)

8 max_score ← 0

9 available_awms ← GetWorkingModes(app)

10

11 for awm in available_awms do

12 score = evaluateAWM(curr_awm, awm, gap)

13 if max_score < score then

14 max_score ← score

15 found_awm ← awm

16 fi

17 done

18

19 MapResources(found_awm)

20 done

Experimental Setup

We validated our approach using a Rainfall-Runoff (RR) model that
is as a part of the Floreon+ system [147]. The model, which is one
of the application use-cases of the HARPA project, predicts the water
discharge levels of a geographical area by analyzing the recent precip-
itations information. Inasmuch as that such information is inaccurate,
the model projects any inaccuracy on the output by constructing con-
fidence intervals using the Montecarlo (MC) method. For each area,
there are three flood warning levels: Flood watch, Flood warning and
Flooding.

The quality of service (QoS) of the RR model is expressed in terms
of accuracy and is therefore proportional to the number of performed
Montecarlo iterations [148, 149]. Each of the three flood warning lev-
els can be mapped to a given quality of service level:

no warning

The water level did not exceed any warning level; therefore, there
is no need for the output to be highly accurate. The model must
perform 1250 MC iterations every 60 minutes.

flood watch

The water exceeded the first warning level; there is not a strict
need of increasing accuracy, but the water level information will
be checked more frequently. The model must perform 1250 MC
iterations every 10 minutes.

flood warning

The water exceeded the second warning level; in order to correctly

6.1 harnessing performance variability in hpc 113

Figure 40: Main catchments (left) and outlet hydrographs (right). In the hy-
drographs plots, black lines show the measured discharge, or-
ange lines show the simulated one. X-Axis: time in hours t(h),
Y-Axis: Discharge, cubic meters per hour, Q(m3/h)).

predict a potential flooding, the model must be quite accurate. The
model must hence perform 2000 MC iterations every 10 minutes.

flooding

The water exceeded the third warning level; in this case, the model
output must be very accurate. The model must perform 3000 MC
iterations every 10 minutes.

The experiment monitors the run-time behavior of 4 concurrent
instances of the uncertainty module. Each of these instances models
the RR uncertainty for a different catchment of the Moravian-Silesian
region: the Opava, Odra, Ostravice and Olza catchments [147] (see
Figure 40). The catchments are ordered according to the impact in
case of flooding (the lower the index, the higher is the importance):

• C1: Ostravice - Functional urban areas with high population den-
sity and industrial areas in floodplain zones.

• C2: Olza - Flood sensitive zones in urban areas.

• C3: Odra - Mountains in the upper part of the catchment can
cause significant runoff. Less exposed urban areas.

• C4: Opava - Soils with low infiltration capacity.

Each catchment is simulated independently, and individual instances
do not interact with each other.

In order to enable the HARPA-OS support, we partitioned the ap-
plication source code as follows: during the setup phase, the applica-
tion computes the initial RR model; then, in the configure phase, it

114 cpu resource management in hpc systems

activates a suitable number of threads basing on the amount of allo-
cated CPU cores. At this point, the application also chooses how to
suitably divide the input data into chunks that will be independently
analyzed by the active threads. During each run phase, the results of
the RR model are incrementally refined by running a high number of
Monte-Carlo iterations on a chunk of samples. After each run phase,
the monitor phase monitors the quality of the execution by estimat-
ing the remaining execution time of the RR model and by comparing
it with the ideal completion time (e.g. 10 minutes in Flood warning
level). If the estimated execution time is too high, i.e., if the deadline
is going to be violated, the application notifies it to the HARPA-OS,
which will evaluate whether a more performing AWM must be allo-
cated to the application. When the resource allocation changes, the
application enters again in the configure stage, where it can tune its
parallelism level and the input chunk size accordingly.

We executed the four application instances on an HPC system that
featured twelve 6-core AMD Opteron 8425HE processors, for a total
amount of 48 CPU cores. The results are shown in Figure 41. For each
instance, we can observe the achieved throughput normalized to the
ideal one (the closer to 100%, the better), and the number of cores
that are allocated to each instance.

As can be easily observed from the charts, all the instances termi-
nate executing close to the deadline (600s). This is exactly the goal of
our approach: by minimizing resource allocation while taking into ac-
count performance, we provide applications with only the resources
that are strictly needed to make them comply with their performance
goal. This means that applications do indeed terminate before their
deadline, but their termination will be as close to the deadline as
possible.

Whereas some instances feature a throughput that is often close to
the ideal one (instances 1 and 4), other instances alternate execution
phases whose throughput is either lower or higher than the ideal one.
The reason is straightforward: since resource allocation is discretized,
the scheduling policy is not able to allocate any custom amount of
resources to each application; conversely, it may be forced to alter-
nate AWMs that are either under- or over-provisioned for the applica-
tion. An application whose resource allocation is under-provisioned
will soon experience an over-provisioned allocation, which is likely
to temporarily steal resources from the other instances, thus creating
further oscillation in the experienced throughput. This problem can
be solved by switching from discrete to continuous resource alloca-
tion (we will deal with that in the next Section).

The 48-core system which we used to validate our approach does
not provide means to measure power and energy consumption; there-
fore, we performed these tests on a 16-core NUMA machine. The ma-
chine was composed by four nodes, each node featuring a Quad-Core

6.1 harnessing performance variability in hpc 115

1
0
0
%

1
5

0
%

7
5

%

2
0

0
%

5
0

%

IN
S

T
A

N
C

E
 1

 (
Q

U
A

L
IT

Y
:

1
2
5
0
 S

A
M

P
L
E
S

 /
 S

IM
U

L
A
T
IO

N
)

5
0

4
0

3
0

2
0

1
0

0

IN
S

T
A

N
C

E
 2

 (
Q

U
A

L
IT

Y
:

2
0
0
0
 S

A
M

P
L
E
S

 /
 S

IM
U

L
A
T
IO

N
)

5
0

4
0

3
0

2
0

1
0

0

IN
S

T
A

N
C

E
 3

 (
Q

U
A

L
IT

Y
:

2
5
0
0
 S

A
M

P
L
E
S

 /
 S

IM
U

L
A
T
IO

N
)

5
0

4
0

3
0

2
0

1
0

0

IN
S

T
A

N
C

E
 4

 (
Q

U
A

L
IT

Y
:

3
0
0
0
 S

A
M

P
L
E
S

 /
 S

IM
U

L
A
T
IO

N
)

5
0

4
0

3
0

2
0

1
0

0
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

achieved throughput with respect to the required one

1
0
0
%

1
5

0
%

7
5

%

2
0

0
%

5
0

%

1
0
0
%

1
5

0
%

7
5

%

2
0

0
%

5
0

%

1
0
0
%

1
5

0
%

7
5

%

2
0

0
%

5
0

%

number of allocated cores

ti
m

e
 [

s]

Figure 41: Four instances of the Uncertainty application running on a sys-
tem that features 48 cores. Red lines represent the amount of
cores that are allocated to each instance. Black lines indicate the
achieved throughput met the expected one, in percentage (the
close to 100%, the better).

116 cpu resource management in hpc systems

AMD Opteron 8378 Processor and 8GB of memory. We measured the
power consumption using ipmitools with a sampling rate of 1 second.

Figure 42 shows the power consumption of the machine during
the execution of one instance of the application (1250 Monte Carlo
samples) in both HARPA-OS-managed and unmanaged mode. Please
note that the power consumption is represented on top of the idle
power consumption of the machine, which is 300W. The figure shows
two important aspects: first of all, HARPA-OS management substan-
tially reduces the peak power consumption of the workload, and, as
already mentioned, such achievement is known to have positive ef-
fects on temperature and mean time to failure of the hardware. Sec-
ond, the total energy consumption, which is the area under the lines,
is roughly the same in the two scenarios. This means that the manage-
ment of application operated by HARPA-OS does not induce energy
inefficiency.

Conclusions

In this subsection, we have applied the adaptive performance-aware
execution model introduced by the HARPA-OS in the context of a real
scientific application domain on a multi-core HPC system. The experi-
mental results shown that this approach is indeed capable of making
applications comply with their runtime-variable QoS requirements

0 100 200 300 400 500 600
Time [s]

300

350

400

450

Po
w

e
r

[W
]

HARPA-OS
Unmanaged

Figure 42: Power consumption of a single instance of Uncertainty, in
HARPA-OS-managed and unmanaged mode, on a 16-cores
NUMA machine. The power consumption is represented on top
of the idle power consumption of the machine, which is 300W.
The energy consumption of the execution, which is represented
by the area under the lines, is roughly the same in the two sce-
narios; however, the managed execution shows far lower power
consumption peaks with respect to the unmanaged execution.

6.2 a workload-agnostic resource usage optimization 117

while also minimizing resource usage and hence power consumption.
Moreover, doing so does not induce energy inefficiency. From the ap-
plication perspective, the minimization of resource usage does not
induce unwanted effects, inasmuch as deadlines are always complied
with. From the system perspective, instead, power consumption is
positively affected. According to the literature, this benefit is easily
translated into a reduction of temperature and aging effects, with a
consequent improvement of the overall system reliability and depend-
ability. Moreover, as a side effect, the reduction of power consumption
and temperature of the processors also leads to benefits in terms of
cooling costs, which are a not negligible expense item for HPC cen-
ters.

a workload-agnostic resource usage optimization

The ever increasing performance requirements of HPC applications The contents of this
section are partially
published in
[150, 151].
You may want to
consult Appendix A
before venturing
forth.

call for architectures with more and more processing resources. Such
architectures are typically subject to thermal and energy budgets, and
running applications are allowed a wild competition for shared re-
sources; as a consequence, making applications comply with their
Quality of Service (QoS) goals is becoming increasingly difficult.

While such concerns can be addressed by knowing the characteris-
tics and, possibly, the arrival time of applications, one does not often
have the luck of knowing the workload composition a priori; more-
over, especially in the case of applications whose behavior strongly
depends on the input data or on unpredictable sources such as the
environmental condition (e.g., the application used to validate our ap-
proach in the previous section), applications resource demand may be
runtime variable.

In this Section, we address the problem of allocating resources to
uncharacterized HPC applications with runtime variable QoS goals
and software parameters. We leverage a runtime-managed execution
flow that provides applications with QoS, performance and resource
awareness.

Experimental results show that our approach makes applications
comply with their performance goals, while allocating them only the
resources that are strictly needed to do that. We also implement our
approach as an extension to the Barbeque Run-Time Resource Man-
ager (see Chapter A) in order to enhance the quality-aware HPC sup-
port introduced in the previous subsection.

Thanks to our management support, the resource manager got at
its disposal a pool of unused resources that can be: put off-line to to
save energy; used to run more applications; or used to temporarily
store faulty and hot cores, so that cooler and healthier cores are used
by active applications. We mainly focus on the latter option: in partic-
ular, we implement a resource mapping policy that avoids the usage

118 cpu resource management in hpc systems

of faulty cores and evenly spreads heat throughout the chip, hence
evenly distributing ageing effects on the hardware.

Background

Modern architectures feature a high number of shared resources that
are used to concurrently run multiple tasks or to accelerate parallel
ones. This is true not only for High Performance Computing (HPC),
but also for middle-to-high end embedded systems, which are quickly
narrowing the gap with desktop computers [152, 153].

Performance increase, however, comes at a cost: the power con-
sumption of such architectures is becoming unbearable in terms of
supplying/cooling costs [27, 28] (mostly in HPC) and chip reliability
[29].

In this work, we address the problem of mitigating power consump-
tion while meeting the performance requirements of the running ap-
plications. We state the problem in terms of dynamically reserving to
applications only the processing resources that they strictly need to
achieve their goals.

This topic has already been addressed in literature: resource man-
agers allocate resources to applications while trying to comply with
both application specific (throughput and Quality of Service) and
system-wide (power, temperature and reliability) goals. Modern re-
source managers are workload-aware, i.e., they take into account the
characteristics of applications to optimize the resource allocation [154].
Such information is well known as application profile and can be ex-
tracted at design-time or at runtime. We refer to the process of ex-
tracting the application profile as application characterization.

Being performed off-line, design time characterization does not in-
duce overheads; however, it suffers from non-trivial issues. First of
all, the contention on shared resources, which cannot be analyzed off-
line if the workload and the arrival times of each application are not
known a priori, causes design time profiles to be inaccurate at run-
time [47]. Second, during their lifespan, applications may undergo
multiple execution phases, depending on input data, external events
or computing stages. Therefore, associating a single profile to one
application may also lead to inaccuracy [155].

There are also applications that add yet another layer of complex-
ity: conversely to number-crunching applications, their configuration,
which we define as the union of their QoS requirements and the value
of their software parameters, is often runtime-variable. For example,
in the case of a video playing application under a constant resource
allocation, the possibility of achieving a given frame rate depends
on parameters that the user may want to configure at runtime, e.g.,
resolution or frame size [156]. In a surveillance system, smart cam-
era applications may reduce frame rate or resolution, hence entering

6.2 a workload-agnostic resource usage optimization 119

a low-power mode, when no moving objects are detected. Medical
applications may require high image processing accuracy only when
needed (e.g. analysis of critical sections of a X-ray plate), otherwise
focusing on the responsiveness of the user interface. These scenar-
ios offer interesting opportunities to reduce power consumption and
boost energy efficiency, and, in turn, this brings benefits in terms of
thermal stress avoidance, reliability and reduction of cooling costs.

Summary of the Work

Our work extends the Barbeque Run-Time Resource Manager (Barbe-
queRTRM). We modified the BarbequeRTRM runtime library, which
is the component in charge of synchronizing the applications execu-
tion with the resource allocation, so that it acts as a decentralized re-
source manager. In the new configuration, the runtime library linked
to each running application negotiates resource allocation with the
BarbequeRTRM. Once the application receives the resources, however,
it is not able to use all of them: conversely, the runtime library directly
handles resource assignment by letting the application use only the
resources that are strictly needed to reach the performance goal. If a
part of the resources results to be unused, the runtime library notifies
the BarbequeRTRM that it can seize it back. If, on the contrary, the
application needs more resources, the runtime library asks for them
to the BarbequeRTRM.

The negotiation between the runtime library and the BarbequeRTRM
is based on the concept of application runtime profile, which is a data
structure that contains useful runtime statistics such as the applica-
tion current resource usage, the maximum expected usage (computed
using confidence intervals), the current application throughput and,
optionally, a custom set of performance counters.

Finally, we developed a new BarbequeRTRM scheduling policy that
is called PerDeTemp. The policy makes use of the applications run-
time profiles and the information coming from temperature sensors
and fault predictor modules in order to minimize resource usage
while evenly spreading heat and power consumption though the chip
and counteracting the effects of performance variability.

Please note that this approach provides a link to most of our pre- Indeed, this work
employs all the
techniques that we
presented in the
previous chapthers
except the ones that
address big.LITTLE
architectures.

vious works. Resource allocation is actuated by using the Linux Con-
trol Groups, whose accuracy is maximized thanks to the approach
presented in Section 2.3. Scheduling choices are based on applica-
tion characterization (see Subsection 3.2) but, this time, the character-
ization is performed during runtime. Moreover, resource allocation
is handled in part by the centralized resource manager and in part
by an application-specific decentralized manager, thus exploiting the
synergies highlighted in Subsection 3.3 and reducing the complexity
of the scheduling policy. Finally, this work enriches and extends the

120 cpu resource management in hpc systems

“resource minimization via late termination” approach that we pre-
sented in Subsection 6.1. It does so by providing a richer information
exchange between the BarbequeRTRM and the runtime library and
by enabling a continuous resource allocation instead of using a dis-
cretized one.

A partially de-centralized resource management

The main idea behind this work is to move a part of the resource
management complexity to the applications side. Indeed, the man-
agement logic remains transparent to applications: it is executed by
the BarbequeRTRM runtime library.

In the typical BarbequeRTRM design, the resource manager allo-
cates resources to an application, and the runtime library, which is
linked by each managed application, performs all the actions that
are needed to drive the application execution flow accordingly. Our
approach modifies the aforementioned design as follows:

• instead of trying to allocate to applications an ideal amount
of resources, the resource manager allocates them a resource
budget, i.e., the biggest set of resources that, according to the
current system status, can be exclusively reserved for the appli-
cation;

• the resource budget is not directly exploitable by applications.
Instead, it is managed by the runtime library, which acts as an
application-specific resource manager and allocates resources to
the managed application according the declared performance
goal;

• the runtime library is in charge of understanding which is the
minimum set of resources that can be exploited by the applica-
tion. If the resource budget results to be over-sized, the runtime
library will return the unused resources to the resource man-
ager. On the contrary, if the budget is under-sized, the runtime
library will ask the BarbequeRTRM to increase it;

• the runtime library also monitors the application execution and
collects statistical information that may help the BarbequeRTRM
to perform system-wide resource mapping. This information is
bundled with the one that is used for resource budget nego-
tiation purposes. The resulting data, which is an accurate de-
scriptor of the application current behavior, is called application
runtime profile;

• the resource manager scheduling policy is only in charge of
computing the resource mapping: the amount of resources that

6.2 a workload-agnostic resource usage optimization 121

are needed by the application is computed by the runtime li-
brary, while the scheduling policy, according to the system sta-
tus (temperature, faults. . .) chooses which resources will be allo-
cated to reach that amount.

The resulting execution flow of applications is shown in Figure 43.
The upper part (APP) represents the execution of application code
during time. The middle part of the figure (RTLIB) represents the
runtime library, which forces the application to follow the Barbe-
queRTRM applications execution flow (see Subsection A.2.1). Finally,
the lower part (RTRM) shows the actions taken by the runtime re-
source manager (i.e., the BarbequeRTRM).

Once started, the application passes the control to the runtime li-
brary, which notifies the presence of a new application to the re-
source manager. While waiting for the resource manager to allocate
a resource budget to the application, the runtime library proceeds by
invoking the Setup stage to mask communication overheads. Then,
the application enters the Configure stage, where it tunes its software
parameters according to the the amount of resources that the runtime
library allocates from the budget. At this point, the application pro-
ceeds with a bust of Run and Monitor phases that continues until
the runtime library changes the allocation. In that case, the applica-
tion performs the Configure phase and begins a new bust of Run and
Monitor phases. While the application executes, the runtime library
also sends runtime profiles to the resource manager, hence transpar-
ently tuning the resource budget size. Please note that the mapping
of the resource budget (i.e., which resources as opposed to how many
resources) can be modified by the resource manager over time, e.g.
to perform load balancing or to avoid faulty cores. In that case, the
runtime library actuates the mapping change as soon as possible by
employing the Linux Control Groups cpuset controller (see Chapter
2).

Defining a throughput goal

After each Monitor Stage, the runtime library automatically compares
the throughput of the application against the declared performance
requirements. In case of unsatisfactory allocation, the runtime library
updates the resource allocation accordingly. If the current resource
budget results to be unfit (e.g., under or over-provisioned), the run-
time library also sends the current application runtime profile to the
resource manager. To enable the runtime library automatic perfor-
mance monitoring, the application needs register a performance goal.

There are two types of performance goals: Cycles Per Second (CPS)
and Jobs Per Second (JPS). CPS and JPS goals reflect two main types
of Processing Stages: some applications spawn multiple threads that
collaborate to perform a job; in this case, having more resources

122 cpu resource management in hpc systems

RTRMAPP RTLIB

S
C

R
u
n

M
R

u
n

M
R

u
n

M
R

u
n

.
.
.

R

d
e
re

g
is

te
r

a
p
p
lic

a
ti

o
n

n
e
w

 b
u

d
g
e
t

co
m

p
u
te

 b
u
d
g
e
t

p
e
rf

o
rm

a
n
ce

 g
o
a
l
n
o
t

m
e
t

st
a
rt

st
o
p

C
G

ro
u
p
 w

ri
te

C
G

ro
u
p
 w

ri
te

S C
P

M

T

C

ru
n

ti
m

e
 p

ro
fi
le

n
e
w

 b
u

d
g
e
t

co
m

p
u
te

 b
u
d
g
e
t

Figure 43: Example of interaction between BarbequeRTRM and the run-
time library. After the application starts (top-left corner), the run-
time library starts driving the applications execution flow (Setup,
Configure, Run, Monitor, Release). The runtime library locally
updates the resource allocation by using CGroups, hence avoid-
ing synchronization overheads. The runtime library can also send
the application runtime profile to the resource manager, which
may change the allocated resource budget accordingly.

6.2 a workload-agnostic resource usage optimization 123

allocation change
(runtime library)

ID
E
A

L_
C

P
S

C
y
cl

e
s

Pe
r

S
e
co

n
d runtime profile

stats initialization
C

P
U

b
a
n
d

w
id

th

Run phases

CPU bandwidth budget
CPU bandwidth allocated from budget

budget change
(BarbequeRTRM)

Measured and expected CPS
CPS is not likely to violate constraints
CPS is acceptable, variance is high
CPS is likely to violate constraints

Figure 44: Runtime-library-side resource allocation. After each Run phase
of the application, the runtime library computes the current CPS,
and, by computing confidence intervals, it detects whether fu-
ture CPS violations (i.e. Run phases at non-ideal CPS) are likely
to happen. In that case, it tunes the allocation accordingly. CPU
bandwidth allocation cannot exceed the resource budget allo-
cated to the application by the BarbequeRTRM; however, if it de-
tects a resource under or over-provisioning, the runtime library
can prompt the BarbequeRTRM to modify the allocated budget.

means spawning more threads, which results in a shorter Run phase
time. Conversely, other applications spawn multiple threads, and each
thread performs its own job. In this case, the cycle time is more or less
constant; however, having more resources at their disposal, applica-
tions are able to perform an higher number of jobs per second during
the Run phase. JPS goal is best suited for this scenario, and all the
CPS-related queries are also available in their JPS version.

Figure 44 shows how the runtime library checks the current through-
put against the desired one. After each Run phase of the application,
the runtime library computes the current throughput (either CPS or
JPS), and, by computing confidence intervals, it detects whether fu-
ture throughput violations are likely to happen. In that case, it tunes
the allocation accordingly.

Computing the ideal resource budget

In the context of this work, we addressed the allocation of CPU time.
The concept behind CPU time allocation is straightforward: first of

all, one must compute the total CPU time offered by a processor dur-
ing a given period; second, one must divide that time among applica-
tions. For example, an octa-core processor offers 800 ms of total CPU

124 cpu resource management in hpc systems

time over a period of 100 ms; allocating half of the total CPU time
to an application would mean allocating it 400 ms CPU time over
100 ms, i.e. “four equivalent cores” or 400% CPU bandwidth. PleaseFrom now on, with

“bandwidth” we will
refer to CPU

bandwidth.

note that allocating 400% bandwidth to an application does not say
anything about resource mapping. Using either four CPUs full-time
or eight CPUs half-time results in 400% bandwidth. Whereas the al-
located CPU time is computed by the runtime library, the resource
mapping is selected by the scheduling policy by performing a multi-
objective optimization that takes into account:

• the performance of each core (e.g., the amount of unallocated
CPU time and the presence of shared caches);

• the temperature of each core;

• the performance variability due to aging and faults, as com-
puted by the fault prediction modulesThe fault prediction

modules are not part
of our contribution;

therefore, we will
not detail them in

this dissertation.
Please refer to [150].

In order to understand the bandwidth requirement of an appli-
cation, we must compute the distance between current and desired
performance. When an application declares a CPS goal, the runtime
library starts computing the percent distance between the real and
goal CPS. We call such distance CPS gap and define it as:

cpsgap =
CPScurr

CPSgoal
− 1 (5)

where CPScurr and CPSgoal are the current and goal CPS, respectively.In our examples, we
will always use CPS.

Please note that
using JPS leads to

the same equations.

For example, if an application requires a throughput of 20 CPS (i.e.,
20 Run phases per Second) and is executing at 18 CPS, its CPS gap
equals to 18

20 − 1 = −0.1, i.e., the application is 10% too slow.
To address data-induced performance variability, we generalize the

formula by defining a minimum and maximum required performance
value. For example, the application can require a throughput of 20±
5% CPS, i.e., the runtime library will be satisfied as long as the CPS
will stay in the range [19.0–21.0].

The new equation, which is the same of Equation 5 when the mini-
mum CPS goal is equal to the maximum one, is:

cpsgap =


CPScurr
CPSMgoal

− 1 if CPScurr > CPSMgoal
CPScurr
CPSmgoal

− 1 if CPScurr 6 CPSmgoal

0 else

(6)

6.2 a workload-agnostic resource usage optimization 125

where CPSmreq and CPSMreq are minimum and maximum required per-
formance, respectively. Equation 6 can be reused to define a gap for
CPU bandwidth:

bgap =


Bcurr
BMgoal

− 1 if Bcurr > BMgoal
Bcurr
Bmgoal

− 1 if Bcurr 6 Bmgoal

0 else

(7)

where Bmgoal and BMgoal are the bandwidths that would allow perfor-
mance to stay in the interval [CPSmgoal −CPS

M
goal]. As the reader can

guess, the goal of the scheduling policy is to translate a performance
interval [CPSmgoal−CPS

M
goal] into a bandwidth interval [Bmgoal−B

M
goal]. Do-

ing this means translating CPS gaps into bandwidth gaps: if an ap-
plication complains about its current performance, the policy must
understand how to adjust the current (real) CPU usage to solve the
issue.

By construction, each Run phase executes the same code on differ-
ent data, and averaging the CPS throughout the current fixed-configuration
burst mitigates the effects of data variability on performance. There-
fore, at least in the case of CPU bound applications, we can expect
that increasing the CPU bandwidth of an application, its throughput
will increase by the same amount. In other words, giving an applica-
tion X% more CPU time, its performance increase will be roughly X%.
This is not true in the case of memory bound applications, where a X%

bandwidth increase usually leads to Y% performance increase, with
0 6 Y < X. However, given that in this case a X% CPU time increase
cannot cause a performance gain greater than X%, iterating this proce-
dure multiple times allows the scheduling policy to reach the desired
performance level even if the application is memory bound, without
incurring in instabilities.

As a consequence, regardless of the type of application, we can
safely assume a strict relationship between allocated resources and
performance. In the best case, i.e. CPU bound applications, CPS and
bandwidth gaps will be equal. This leads to:

bgap ∼


Pcurr
PMgoal

− 1, if Pcurr > PMgoal
Pcurr
Pmgoal

− 1, if Pcurr 6 Pmgoal

0, else

(8)

which leads to:

126 cpu resource management in hpc systems

Bmideal ∼
Bcurr

1+ cpsgap
if cpsgoal < 0 (9a)

BMideal ∼
Bcurr

1+ cpsgap
if cpsgoal > 0 (9b)

This means that, given a CPS gap, we can estimate the CPU al-
location, being it the minimum or the maximum one depending on
the sign of the CPS goal. In case of memory bound applications, the
reachability of the ideal allocation is nonetheless guaranteed: being
applications able to send feedbacks to the resource manager, alloca-
tions will be continuously refined until an ideal allocation is found.

The PerDeTemp Scheduling Policy

We implemented a scheduling policy that computes resource map-
ping by merging the application runtime profiles with the data that
comes from temperature sensors and fault prediction modules. The
current version of the policy targets the allocation of CPU cores.

When executing a multi-threaded application on a homogeneous
multi-core CPU, we expect each core to be as performing as its sib-
lings. Unfortunately, this is not always true: each core may be subject
to a different degree of performance degradation due to temperature,
aging and possibly faults. Knowing which cores are actually charac-
terized by a homogeneous performance would indeed be useful for
resource management purposes: for instance, this information could
be used to evenly distribute the load (and thus the aging effects) on
the sane cores or to minimize the inter-threads synchronization over-
heads that are induced by performance variability. Given that the
GNU/Linux CPU frequency governors do not handle this informa-
tion, we developed a resource allocation policy that tackles the issue.
The policy focuses on three objectives:

• making each application comply with its performance require-
ments;

• minimizing the effect of degradation on the performance of ap-
plications;

• mitigating the hardware aging process by leveling the tempera-
ture over the whole chip.

Given these objectives, we called the policy PerDeTemp (PERfor-
mance, DEgradation, TEMPerature). The main idea beneath PerDe-
Temp is to allocate to the managed applications the minimum amount
of CPU cores that allows them to comply with their performance re-
quirements. As to mapping, the set of cores that is allocated to each
application is selected so that the cores feature a minimum or at least

6.2 a workload-agnostic resource usage optimization 127

maxThermal map

Running applications list

Application A2

Application A1

- pid
- performance goal

On-chip
sensors

Fault
predictor

Applications
runtime
profile

Performance info

Application A2

Application A1

- pid
- performance goal
- CPU usage

- satisfaction

- throughput

CPU cores topology

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

C10C11 C12C13 C14

C15C16 C17C18 C19

Degradation map max

min

Resource Allocation

min

CPU
bandwidth
budget

Application A2

Application A1

- pid

- bandwidth budget

good

bad

Multi-objective
cores ranking

A1

A1 A1

A1

A1

A1

A1

A2

A2

A2

A2

A2 A2

A2

Allocation
history

Figure 45: The PerDeTemp allocation policy. The CPU cores topology is an-
notated with the information coming from temperature sensors
and fault prediction modules. This results in a multi-objective
cores ranking that will be used to compute the resource map-
ping. CPU bandwidth budget is instead computed by exploiting
the information that comes with the runtime profiles. In particu-
lar, runtime profiles contain a satisfaction metric that is used by
the runtime library to express whether the current CPU budget
is under or over-provisioned. Resource allocation is the union of
bandwidth allocation (i.e., how many resources) and CPU map-
ping (i.e., which resources).

homogeneous degradation. During the process of selection, cool cores
are preferred to hot ones, and the resource allocation is periodically
re-computed to level the heat over the whole chip. To allocate re-
sources in a performance, degradation and temperature-aware fash-

128 cpu resource management in hpc systems

ion, PerDeTemp needs information about the status of both applica-
tions (current performance and current resource usage) and hardware
(current degradation and temperature of each core). As shown in Fig-
ure 45, this is possible due to the BarbequeRTRM, which gathers this
information from multiple sources:

• the Runtime Library that is linked by applications automatically
notifies the BarbequeRTRM about applications statistics such
as current CPU usage and satisfaction with the current CPU
bandwidth budget;

• the fault prediction framework notifies the BarbequeRTRM about
presence and entity of degradation for each CPU core;

• the on-chip sensors (if available) are used by the BarbequeRTRM
to periodically retrieve temperature values for each core.

The resulting thermal and degradation maps are used to compute
an ideal resource mapping for the running applications.

Resource allocation policy validation

To validate our resource allocation approach, we performed a set
of experiments using multi-threaded applications from the PARSEC
benchmark [108]. We used a NUMA system composed of two nodes,
each one featuring 126 GB of RAM and an Intel Xeon E5-2640 v3 Pro-
cessor. We turned off the hyper-threading, and, given that this work
does not deal with frequency scaling, we set the cpufreq frequency
governor to performance. Overall, the system consisted of 16 cores op-
erating at 2.6 GHz and 252 GB of memory. The system ran the Cen-
tOS (version 6.7) Linux distribution, kernel version 3.18.29. Having
disabled hyper-threading, there were a total of 16 unused hardware
threads; we used them to host the Operating System and the resource
manager.

Regarding applications, as already mentioned, we selected a sub-
set of the PARSEC benchmark [71] that represents computer vision,
video encoding and image processing scenarios. The applications are:
bodytrack, which uses video streams from multiple synchronized cam-
eras to track human bodies; facesim, which computes the animation
of a face by simulating the underlying physics; and x264, a H.264

video encoder. All the applications feature a simple Configure phase,
where the number of threads is changed according to the number of
allocated cores.

To have an idea of their behavior, we executed each application
separately, allocating it all the available cores. As shown in Figure 46,
bodytrack features a quite constant throughput throughout its entire
execution. Similarly, facesim, apart from some low-throughput cycles
at the beginning of the execution, also features a quite constant (but

6.2 a workload-agnostic resource usage optimization 129

0 20 40 60 8010 30 50 70 905 15 25 35 45 55 65 75 85 95
0
2
4
6
8

10
12
14
16
18
20
22
24
26

execution cycle

C
y
cl

e
s

Pe
r

S
e
co

n
d

bodytrack
facesim
x264

Figure 46: Maximum throughput of the applications over 100 execution cy-
cles.

very low) throughput. On the other hand, due to the difference be-
tween the encoding of I, P and B-frames, x264 features a fast-changing
throughput.

To improve the plots readability, we defined three performance lev-
els for each application: high, medium and low performance, roughly
meaning 75%, 50% and 25% (±5%) of the maximum average through-
put, respectively. In some test, therefore, we will express throughput
in terms of performance level instead of CPS.

We set up three sets of tests: in the first set, we evaluated the over-
head introduced by resource management on the execution of appli-
cations; in the second one, we executed applications one at a time
to show that the resource manager allocates to applications only the
resources that they need to reach the requested performance level; fi-
nally, in the third set, we concurrently executed multiple applications,
thus showing how the resource manager fares in multi-application
and multi-priority scenarios.

Due to the asynchronous execution of resource management-related
activities (budget allocation happens while the application is run-
ning), the resource manager itself does not induce overheads on run-
ning applications. There are only two sources of overhead that hin-
der the execution of managed applications: writing into the Control
Group configuration and locally managing the application execution
at runtime library level.

Regarding the Control Groups, the overhead is more or less con-
stant and known: on the target machine, it floats around 1 millisec-
ond. Conversely, the overhead introduced by the runtime library is
not constant: it may differ from en execution cycle to another, de-
pending on the status of the application and on whether the runtime
library communicates with the resource manager.

130 cpu resource management in hpc systems

0

10

5

15
communication with resource manager yes no

e
xe

cu
ti

o
n
 d

ri
v
e
r

o
v
e
rh

e
a
d

 [
μ

s]

bodytrack

facesim

x264e
xe

cu
ti

o
n
 d

ri
v
e
r

o
v
e
rh

e
a
d

 [
μ

s]

execution cycle

5

15

5

15

5

15

0 10020 40 60 8010 30 50 70 90

Figure 47: Runtime Library overhead [µs] over 100 execution cycles. Results
are first aggregated, then shown separately for each application.
In the aggregated view, white diamonds indicate that there was
a communication towards the resource manager.

To evaluate the runtime library overhead, we executed each appli-
cation for 100 execution cycles, i.e., each application processed 100

chunks of data. To compare the time spent processing data with the
time spent executing the management logic, we evaluated the over-
head separately for each cycle. Moreover, to perform a fair compar-
ison between managed and unmanaged application, we considered
the execution time of the Monitor and Configure stages as a runtime
library-related overhead. Finally, we forced the applications to ask for
a new resource budget multiple times over time, thus showing the ad-
ditional overhead when the runtime library communicates with the
resource manager.

Figure 47 reports the results of the aforementioned experiment.
To facilitate the interpretation of the results, we decided to arrange
the traces both in an aggregated view and separately. Unsurprisingly,
the runtime library overheads are similar for all the applications; in
fact, apart from the Monitor and Configure stages, the executed code
is application-agnostic. When not communicating with the resource
manager, the overhead of the runtime library ranges from 4 to 8 mi-
croseconds. On the other hand, when communicating with the re-
source manager, the overhead doubles, thus ranging from 8 to 16

microseconds.
To understand whether such overhead is reasonable, one must com-

pare it to the duration of the Run phase. This usually depends on
the application: tens of milliseconds for interactive applications, hun-
dreds of milliseconds or more in the case of batch ones. We can state
that even in the worst case scenario, i.e. an interactive application
subject to the maximum overhead at each single cycle, the runtime

6.2 a workload-agnostic resource usage optimization 131

200

150

250
1600

20 40 6010 30 50 705 15 25 35 45 55 650
time [s]

2.2
2.4
2.6
2.8
3.0

2.0

Average CPS (last 10 values in current config)

Goal CPS

Instantaneous CPS

R
u
n
ti

m
e
 P

ro
fi
le

fo
rw

a
rd

in
g

C
P
U

b
a
n
d
w

id
th

C
y
cl

e
s

Pe
r

S
e
co

n
d

Figure 48: Managed application (bodytrack) forwarding runtime profiles over
200 cycles. The goal is 2.9 to 3.1 Cycles Per Second. Average
CPS is computed on the last 10 values of the respective fixed-
configuration loop.

library overhead is in the order of 0.1%, hence negligible with respect
to the execution time of the Run phase.

The second experiment, whose results are shown in Figure 48, eval-
uates the frequency at which the runtime library communicates with
the resource manager. We executed bodytrack for 200 cycles, with a
CPS goal ranging between 2.9 and 3.1 CPS. The central part of the
Figure highlights the execution cycles where the runtime library for-
wards the application runtime profile to the resource manager, thus
asking for a change in the CPU bandwidth allocation (lower part
of the Figure). Please note that, even if the initial resource budget
is over-provisioned, the runtime library constraints the application
bandwidth; therefore, CPS is never higher of its upper limit. This min-
imizes interference between applications: over-assigning CPU band-
width to an application cannot harm the performance of the rest of
the workload.

Let us now present the single-application scenarios. We executed
each application for 100 cycles, in the three configurations: high, medium
and low performance. For each execution cycle, we observed the CPS
goal gap (error percentage between real and required CPS) and the
amount of allocated CPU bandwidth.

In this experimental scenario, the runtime library communicated
with the resource manager about 4.5% of the cycles.

Figure 49 presents the results for the three benchmarks. As ex-
pected, bodytrack (a), which is the most regular application, is charac-
terized by very small errors. That is, the CPS is almost always in the
desired range, while the allocated bandwidth is gradually reduced.
facesim (b) also shows a regular behavior, with the allocated CPU
bandwidth assessing on a constant value, apart from little fluctua-

132 cpu resource management in hpc systems

0%

10%

20%

30%

40%

50%

0 10020 40 60 8010 30 50 70 90

1 000

200

600

1 400

execution cycle

high performance
medium performance
low performance

a
llo

ca
te

d
 b

a
n

d
w

id
th

e
rr

o
r

w
.r

.t
.

g
o
a
l

(a) bodytrack

high performance
medium performance
low performance

0%

10%

20%

30%

40%

50%

1 000

200

600

1 400

0 10020 40 60 8010 30 50 70 90
execution cycle

a
llo

ca
te

d
 b

a
n

d
w

id
th

e
rr

o
r

w
.r

.t
.

g
o
a
l

(b) facesim

60%
58%

57% 59% 55%
57%

0%

10%

20%

30%

40%

50%

1 000

200

600

1 400

a
llo

ca
te

d
 b

a
n

d
w

id
th

e
rr

o
r

w
.r

.t
.

g
o
a
l

0 10020 40 60 8010 30 50 70 90
execution cycle

60%high performance
medium performance
low performance

(c) x264

Figure 49: Error with respect to performance goal (upper part of each sub-
plot) and CPU allocation (lower part) over 100 execution cycles,
for the three configurations high, medium and low performance of
each application.

6.2 a workload-agnostic resource usage optimization 133

tions. Please note that, due to the fact that the first cycles of facesim
are characterized by a low throughput regardless of the allocation, the
corresponding error is (as expected) always high. Finally, x264 also
confirms the expected behavior: due to the fast-changing bandwidth
requirements, it forces the resource manager to change the allocation
multiple times.

We then executed each application with a runtime-variable CPS
goal: high performance during the first third of the execution, low per-
formance during the second third, and low performance until the end of
the execution. We show the results in Figure 50. Apart from the un-
avoidable errors due to the slow start of facesim and the fast-changing
requirements of x264, the performance of the applications is always
close to the required level.

Finally, we evaluated the compliance of applications with their per-
formance goal when concurrently running in a workload. We per-
formed two experiments. In the first one, we analyzed the perfor-
mance of bodytrack while co-running with facesim and x264. We gave
bodytrack an high (BarbequeRTRM-side) priority, and this caused the
resource manager to make it comply with its goals despite the fact
that both the other applications requested a high performance level.
To simulate a realistic scenario and analyze the policy reaction to
new applications entering the system, the arrival time of the three
applications differs.

We show the results in Figure 51: the execution of bodytrack (sec-
ond 6) forces the performance of facesim to drop. x264, which starts
afterwards, is also constrained by the execution of bodytrack, espe-
cially when the latter requests a higher performance level (second
21). Despite the high demanding workload, the resource manager al-
ways guarantees bodytrack the required amount of CPU bandwidth,
thus making it comply with its runtime-variable performance goal.
In presence of performance fluctuations due to inherently shared re-
sources (e.g. last level caches), the resource manager immediately re-
fines the allocation to address the issue. This can be seen at second
15, when x264 enters a high throughput phase, thus causing last level
cache thrashing and an increase of memory bandwidth; in this case,
the resource manager immediately seizes some CPU time from x264
and lends it to bodytrack, which is therefore able to return to its goal-
compliant CPS range. Overall, this test shows that BarbequeRTRM
allows applications to be properly isolated without the need of em-
ploying virtualization environments. Moreover, the applications per-
formance results to be stable even if resource usage is computed lo-
cally to applications by the runtime library, which is not aware of the
system-wide work load.

In the second test, we analyzed the performance of the three co-
running applications; this time, each application has the same priority.
We selected a medium performance level for facesim and x264, and a

134 cpu resource management in hpc systems

Low
Med
High CPS goal

0%
20%
40%
60%

1 000

200

600

1 400

a
llo

ca
te

d
b

a
n
d

w
id

th

e
rr

o
r

w
.r

.t
.

g
o
a
l

C
P
S

g
o
a
l

bodytrack
facesim
x264

0 10020 40 60 8010 30 50 70 90
execution cycle

0 10020 40 60 8010 30 50 70 90

Figure 50: Error with respect to performance goal (upper part) and CPU
allocation (central part) over 100 execution cycles, under runtime-
variable performance requirements (lower part).

0

10

2

4

6

8

12

0

20

10

C
y
cl

e
s

Pe
r

S
e
co

n
d

time [s]
0 20105 15 25

0 20105 15 25

bodytrack

facesim
x264

runtime
variable
CPS goal

Figure 51: CPS over time for the three concurrently running applications.
bodytrack has the higher priority and runtime-variable perfor-
mance requirements, while facesim and x264 have a lower priority
and high performance requirements.

low-to-high performance level (5 CPS) for bodytrack. In this way, we ob-
tained a performance requirement that could not be always satisfied
by the available resources. This allows us to show: 1) that the resource
manager make the applications comply with their performance goal
even in a multi-application scenario; and 2) that applications with the
same BarbequeRTRM-side priority equally suffer when there are not
enough resources to satisfy them all.

We show the results in Figure 52: once again, apart from the slow
start of facesim and the structural oscillations of x264 performance, the

6.2 a workload-agnostic resource usage optimization 135

0 20 4010 30 50
0

1 000

200
400
600
800

1 200
1 400
1 600

time [s]

0

10

2

4

6

8
C

y
cl

e
s

Pe
r

S
e
co

n
d

a
llo

ca
te

d
b
a
n
d
w

id
th

Not enough resources

bodytrack
facesim
x264

free resources
allocated resources

Figure 52: Cycles Per Second and allocated CPU over time for the three co-
running applications. Each application have its own performance
requirement, and the system resources are barely able to satisfy
all the applications.

required performance levels are satisfied. In three cases, the system
was not able to satisfy the demand of all the applications. In that
cases, being all the applications characterized by the same priority,
each application suffered in the same fashion: their distance from the
performance goal was roughly the same in percentage. The lower part
of the figure indicates the free resources: 100 units of free bandwidth
means that one core was not allocated. Thanks to the Linux Control
Groups, we are sure that that cores were really unused; therefore, it
would have been possible to put them in idle or even off-line, or to
use them to round-robin the allocations and mitigate thermal hot-
spots, with evident system-wide benefits. Given that the applications
complied with their performance goals, we are sure that the free cores
were definitely not needed to satisfy the workload demands.

Resource mapping policy validation

In order to evaluate the thermal management capabilities of PerDe-
Temp, we employed the Rainfall-Runoff (RR) model that we already
presented in Subsection 6.1. Just to recap, the model is part of the Flo-
reon+ system [147]. The model predicts the water discharge levels of a
geographical area by analyzing the recent precipitations information,
whose accuracies it projects on the output by constructing confidence
intervals using the Montecarlo (MC) method. For each area, there are
three flood warning levels: Flood watch, Flood warning and Flooding.

flood watch

The water exceeded the first warning level; there is not a strict

136 cpu resource management in hpc systems

Memory DDR3

HDD/SSD
2.5˝ FAN

Socket 0
(cores 0-7)

Intel
Xeon

E5-2600

Air cooling gradient

Memory DDR3

Socket 1
(cores 8-15)

Intel
Xeon

E5-2600

Air cooling gradient

Figure 53: Schema of the blade. Since the fan is on the right of the blade,
there is an air cooling gradient between socket 1 and socket 0.

need of increasing accuracy, but the water level information will
be checked more frequently. The model must perform 1250 MC
iterations every 10 minutes.

flood warning

The water exceeded the second warning level; in order to correctly
predict a potential flooding, the model must be quite accurate. The
model must hence perform 2000 MC iterations every 10 minutes.

flooding

The water exceeded the third warning level; in this case, the model
output must be very accurate. The model must perform 3000 MC
iterations every 10 minutes.

We were not able to use the same computing system of the previ-
ous work. We instead used 16 nodes of an HPC cluster. The nodes,
which are connected through InfiniBand, are part of the Anselm sys-
tem [157]. Each node is a powerful x86-64 computer equipped with 16
cores (two eight-core Intel Sandy Bridge processors), with 64GB RAM
and a local hard drive. Figure 53 shows a simplified representation
of the blades air cooling system. Given that the fan is not equally dis-
tant from the two sockets, one socket is better cooled than the other
one. When the system is idle, the temperature difference between
the two sockets is approximately 10 Celsius degrees. The system has
several monitors tools installed like power meters, ganglia [158] and
likwid [70].

We modified the RR model so that, by using a hybrid OpenMP
and MPI approach [159], it could distribute the computation among

6.2 a workload-agnostic resource usage optimization 137

Table 10: For each experiment, number of Monte Carlo samples to be per-
formed by the instance that models each catchment.

Thousand of MC samples to perform

Experiment C1 C2 C3 C4

α1 1.5 1.5 1.5 1.5

α2 1.5 3.5 5.0 7.0

α3 7.0 7.0 7.0 7.0

β1 3.5 3.5 3.5 3.5

β2 7.0 7.0 7.0 7.0

β3 3.5 7.0 12.0 15.0

γ 80.0 between all catchments

multiple nodes. Given that the performance requirements of the ap-
plication are time-variable (e.g., they are low when sunny, interme-
diate / critical when rainy), in a real scenario, the HPC center may
allocate to the application only some computing nodes and use the re-
maining ones to execute other applications. Therefore, we performed
our experiments in three different configurations: in the first one, we
used only one node (i.e., Flood watch); in the second, we used two
nodes (i.e., Flood warning); in the third, we used all the cluster (i.e.,
Flooding).

Table 10 presents the set of experiments performed in the cluster.
The experiments tagged α refer to the single node scenario, while
those tagged with β and γ respectively refer to the dual node and
entire cluster scenarios.

Figures 54.a.1, 54.b.1, 54.c.1 and 54.d.1 show the number of cores
allocated during the 10 minutes execution for each catchment, while
Figures 54.a.2, 54.b.2, 54.c.2 and 54.d.2 show the perceived satisfaction
of applications (the closer to 100% is the satisfaction, the better).

As shown by the experimental results, the number of allocated re-
sources gets higher as the number of samples of MC samples to be
performed increases. The allocation of resources is satisfactory for α1
and α2 scenarios, but not for α3. As shown by Figure 54.a.2, the per-
formance is below 100%, meaning that the resources required for this
experiment are not enough for the application to reach the desired
quality level. In this situation, a second node should be allocated.

Similarly, Figure 55 shows the results for the dual-node configura-
tions. Please note that β2 has the same computational workload of
α3; however, since in this case we have two computing nodes at our
disposal, the computation is performed without issues. Similarly to

138 cpu resource management in hpc systems

Figure 54: Results for α scenarios, listing number of allocated cores and level
of satisfaction (the closer to 100%, the better).

6.2 a workload-agnostic resource usage optimization 139

Figure 55: Results for β scenarios, listing number of allocated cores and level
of satisfaction (the closer to 100%, the better).

140 cpu resource management in hpc systems

the single-node experiments, we can also observe that the available
resources are not always enough to serve the resource demand: the
performance of β3 (Figure 55.b.2) is below 100%.

In the last experiment of this set, we executed the γ scenario on
16 nodes with a requirement 80K MC samples. Also this time, all
the instances achieved an optimal satisfaction. We repeated the exper-
iment without the HARPA-OS support, and we monitored the sys-
tem power consumption by using the likwid power monitor. Whereas
the HARPA-OS scenario led to a maximum power consumption of
100W, the unmanaged scenario led to a peak of 160W per node. There-
fore, we saved around 44% in maximum power consumption while
nonetheless complying with the deadline.

Figures 56a and 56b present the heat-map of a single node when
running an uncertainty module instance (12K MC samples) with and
without HARPA-OS (with PerDeTemp) scenarios. We obtained the
heat-maps by using the ganglia monitoring tool. In both figures, the
X and Y axes represent time and the IDs of the processing cores, re-
spectively. The Diff per Core metric (see left part of the figures) is the
difference in temperature per each core ci (0 < i < 16). The Diff per
Timestep (lower part of the figures) is the difference in temperature
among all cores given a timestep. The Median (upper part) provides
the median temperature per timestep. As can be seen in Figure 56a,
there is a hotspot in socket 0, which, as already shown in Figure 53, is
the socket that is farther from the fan. Conversely, Figure 56b shows
the execution with HARPA-OS-PerDeTemp. In this case, there are
not hotspots and, thanks to the temperature-aware tasks migration
performed by PerDeTemp, the temperature is perfectly distributed
throughout all the available processing elements.

The presence of hotspots is known to have negative effects on the
Mean Time Between Failures of the system (MTBF), and the aging
acceleration factor depends on the difference (∆) of temperature. Ac-
cording to the MTBF estimation presented in [160], running the appli-
cation in a HARPA-OS PerDeTemp configuration improves the relia-
bility of the system from 17% to 43% in case of bad cooling (socket 0).
With a better cooling (socket 1), the MTBF for the best-effort relatively
grows, but it is still 11% to 30% better if we manage the system with
PerDeTemp instead of using an unmanaged approach.

Conclusion

In this Section, we presented a resource management approach that is
composed of a quality-aware allocation policy and a resource-aware
mapping policy. The allocation policy relies on a partially decentral-
ized resource management and leverages the concept of application
runtime profile to minimize the resource usage of applications while
allowing them to comply with their Quality of Service requirements.

6.2 a workload-agnostic resource usage optimization 141

(a) Plain Linux.

(b) HARPA-OS-managed Linux.

Figure 56: Heatmap of the computing node in managed and unmanaged
configuration. In both experiments, we used the cpufreq perfor-
mance governor.

Minimizing the amount of allocated resources allows the resource
manager to have a set of unallocated resources at its disposal. In this
regard, the resource mapping policy uses the unallocated resources
pool in order to isolate faulty and hot cores, so that: a) the effects of
performance variability on applications are minimized; and b) heat is
evenly spread among the available processing cores even in case of a
non-homogeneous cooling system.

7
T O WA R D S A S U I TA B L E R E S O U R C E M A N A G E M E N T
S U P P O RT F O R D E E P LY- H E T E R O G E N E O U S H P C

The performance/power efficiency wall is one of the major challenges The contents of this
chapter are partially
submitted in a
Transaction. They
are currently under
review.
You may want to
consult Appendix A
before venturing
forth.

that must be faced by modern HPC systems. This issue can be tackled
by leveraging heterogeneity: the closer a computing system matches
the structure of an application, the most efficiently the available com-
puting power will be exploited. It follows, then, that enabling a deeper
customization of architectures is the main pathway towards compu-
tation power efficiency.

In this section, we present our novel contributions in the context
of the MANGO European project [161], which will terminate in late
2018.

The MANGO project aims at developing heterogeneous accelera- If you are interested
in the MANGO
project, please visit
our website: www.
mango-project.eu

tors for HPC systems with requirements targeting performance, power
and predictability. The research investigates the architectural implica-
tions of the emerging requirements of HPC applications, aiming at
the definition of new-generation high-performance, power-efficient,
deeply heterogeneous architectures with native mechanisms for isola-
tion and quality-of-service.

overview

High-Performance Computing is quickly evolving at the hardware,
software and application level.

From the hardware point of view, heterogeneity is emerging as a
dominant trend to boost performance and, most importantly, the per-
formance per watt ratio, as shown by the dominance of such hetero-
geneous architectures in the Green 500 [162] and Top 500 [163] lists.

From the application point of view, new classes of applications are
emerging, as HPC is now regarded as a valuable tool beyond the
traditional application domains of oil & gas, finance, meteorology
and scientific computation.

Finally, from the software point of view, the push towards cloud
HPC [164] follows the hardware and application trends, aiming at
providing computational resources to classes of users that could not
afford them in the past. In this context, applications that are time- As of today,

regardless of the
architecture type
and scale, users and
system needs seems
to be consistently
orthogonal.

critical—such as financial analytics, online video transcoding, and
medical imaging—require a predictable performance. Unfortunately,
this is at odds with the need to maximize resource usage while mini-
mizing power consumption.

143

www.mango-project.eu
www.mango-project.eu

144 resource management support for deeply-heterogeneous hpc

Extending the traditional optimization space, the MANGO project
aims at addressing what we call the PPP space: power, performance,
and predictability.

In this scenario, the objective of MANGO is to achieve extreme
resource efficiency in future QoS-sensitive HPC through an ambi-
tious cross-boundary architecture exploration. The MANGO project
investigates the architectural implications of the emerging require-
ments of HPC applications, aiming at the definition of new genera-
tion high-performance, power-efficient, deeply heterogeneous archi-
tectures with native mechanisms for isolation and QoS compliance.

MANGO follows a disruptive approach that challenges several ba-
sic assumptions, and it explores new many-core architectures that
specifically target High Performance Computing. In particular, it fo-
cuses on deeply heterogeneous architectures, where multiple acceler-
ators coexist and can serve either multiple concurrent applications orIn a MANGO

computing node,
heterogeneous

accelerators share
the same memory.

This makes the
MANGO

architecture a
heterogeneous

NUMA architecture.

a single application composed by multiple kernels. The former sce-
nario is the most critical, inasmuch as it requires to allocate resources
to multiple applications in a way that maximizes resource usage but
also preserves the predictable execution time of critical applications.

We now highlight the technical and scientific challenges that will need
to be tackled at runtime software level as heterogeneity increases its
presence in the HPC field. Indeed, we will also provide an outline of
the proposed solutions.

Resource Management

The biggest challenge for heterogeneous resource management is to
optimize resource allocation while taking into account that:

• each application may be composed by multiple tasks, each of
them possibly having data and timing dependencies with the
other ones;

• executing a task on different computing units of an heteroge-
neous architecture does lead to different throughput, QoS, and
power/energy consumption;

• especially in case of data dependencies, the performance of an
application depends not only on where its tasks are executed,
but also on where the data of the tasks is located in the system;

• requirements coming from each application (performance/QoS)
must be complied with while also addressing the system-wide
(power/thermal/energy) requirements.

To address this very complex problem, we move the hardware-
aware logic from the application source code to the resource man-
agement layer. By doing so, we will provide the managed applica-

7.1 overview 145

tions with a resource-agnostic view of the available resources. Ap-
plication developers will focus on what must be done—optimizing Heterogeneous

computing is seldom
resource-agnostic, as
application
developers tend to
manually select a
device and to
configure the kernels
accordingly.

the implementation of their algorithms and describing the inter-task
dependencies—and how it should be done—defining throughput and
QoS requirements but also providing the resource manager with some
meta-data about the tasks that will be executed. On the other hand,
the resource manager, which has a system-wide view of the available
resources and the current workload, will optimally allocate the tasks
and their data while making both applications and hardware comply
with their requirements.

Memory Management

Taking into account inter-task data dependencies is of paramount im- In the context of the
MANGO project,
the BarbequeRTRM
is acting as a
middleware between
applications and
memory manager.
This enables a
resource-aware
memory allocation.

portance even at memory management level: tasks executing on dif-
ferent parts of an heterogeneous architecture want to be close to their
data in order to minimize communication overheads; hence, memory
and resource management are indeed tightly coupled. The proposed
approach consists in interfacing resource and memory managers, so
that the memory manager will serve memory requests in a resource
allocation-aware fashion.

Programming Model Support

At programming model level, the challenge is to support program-
ming models across a wide range of different accelerators. The pro-
posed approach consists in adopting an intermediate runtime sup-
port that exposes basic features which, while per se not sufficient for
the application programmer needs, easily map on the hardware fea-
tures which are common to all the accelerators (i.e., those provided by
the communication architecture). The intermediate runtime support
must expose basic tools for communication, synchronization and task
spawning. Higher level models will then be built over the intermedi-
ate model, and each accelerator will also be able to expose its own
specific primitives, thus providing the programmer with all the fea-
tures that are needed to achieve performance.

This kind of approach is motivated by the need of exposing to the
application developer an effective and efficient management support
for the deeply heterogeneous accelerator resources developed within
the MANGO project [165]. An example of the MANGO computing
system is shown in Figure 57. Such architecture, which consists in a
mix of general purpose nodes (GN) and homogeneous nodes (HN),
allows us to explore a wide number of scenarios: from single to multi-
node, from homogeneous to heterogeneous.

To reach exascale parallelism, the programming model needs to be
hierarchical much like the runtime management system. Traditionally,

146 resource management support for deeply-heterogeneous hpc

GN 0

GN 1

GN 2

GN 4 GN 5

HN 0 HN 1 HN 2

HN 3 HN 4 HN 5

HN 6 HN 7 HN 8

HN 9 GN 3

Figure 57: The MANGO architecture is composed by a mix of general pur-
pose nodes (light gray), which feature homogeneous computing
resources; and heterogeneous nodes (dark gray), which feature
heterogeneous computing resources.

the programming model for homogeneous HPC systems is based on
a combination of MPI and OpenMP. When heterogeneity comes into
the game, however, the programming model needs to be extended to
allow the exploitation of hardware resources. This can be done us-
ing OpenCL [166], which is an open standard for the development of
parallel applications on a variety of heterogeneous multi-core archi-
tectures.

In OpenCL, heterogeneity is managed explicitly: the applications
developer is in charge of choosing a device among the available ones
and of managing the memory hierarchy. Given that even small vari-
ations in the architecture parameters may dramatically change the
resulting performance, the code must be carefully optimized for the
target device. Moreover, to explicitly handle heterogeneity, the pro-
grammer is forced to write high amounts of boilerplate code, which
reduces the readability of the application [167, 168].

Figure 58 shows the MANGO programming model stack and its
interaction with the underlying architecture and runtime software
components. The programming model employs MPI to enable inter-
node computation. At node-level, we will provide a set of language
options for expressing different types of accelerators and application
features. In particular, OpenCL can be effectively used to manage
heterogeneity.

7.1 overview 147

MPI

OpenCL kernels

High-End
GP-CPU

fine-grained
RISC CPU

GPU-like
core

custom
accelerator

job dispatcher

task scheduler

OpenMP

distributed
memory

(inter - node)

shared
memory

(node - level)
virtual device manager

Low-level RT Low-level RT

Figure 58: The MANGO Software Stack: MPI is employed to express inter-
node computation, while OpenMP and OpenCL are instead used
at node level to exploit the heterogeneous resources.

As already stated, one of the main goals of MANGO is to auto-
mate the selection of the best set of resources instead of leaving the
choice to the application developer. The experience of the 2PARMA
project [169, 170] will help in this regard. The programming model
will be integrated with the runtime management facilities, thus al-
lowing job dispatcher, task scheduler, and virtual device manager to
interact with the corresponding levels of the programming model.
Promising examples of the effectiveness of this approach have been
already shown in the literature [171].

Since the MANGO nodes can concurrently serve multiple applica-
tions with different levels of priority, the project explores innovative
techniques for analyzing the interference between multiple applica-
tions that concurrently run under QoS constraints [172, 173] (see also
Chapter 3).

Regarding the resource allocation policies, we will exploit a mix
of pro-active and reactive strategies. The policies will base their al-
location decisions on information coming from both software and
hardware side. From the application side, the off-line characteriza-
tion of kernels and inter-kernel interference will be used to compute
optimal resource allocation choices; moreover, the feedback coming
from running applications will allow the allocation policies to dynam-
ically adjust the resource allocation according to the real behavior of
the workload (see also Chapter 6). From the hardware side, similarly,
MANGO will exploit a set of custom monitoring interfaces to both
investigate and implement novel resource management policies tar-
geting heterogeneous hardware platforms and to allow the policies
to perform resource-aware decisions at runtime.

Another feature that is worth to remark about the MANGO soft-
ware stack is the combination between the aforementioned fine-grained

148 resource management support for deeply-heterogeneous hpc

configuration and the task isolation mechanisms that are already pro-
vided by operating systems (e.g., Linux Control Groups, see Chap-
ter 2) [34]. This will allow the MANGO runtime resource manager
(RTRM) to enforce resource allocation constraints at multiple levels of
the heterogeneous hardware architecture, from the general-purpose
CPUs to the FPGA based computing devices, passing through the
control of the interconnection infrastructure bandwidth. These mech-
anisms will also enable safe mixed workload executions: the MANGO
run-time resource manager will be indeed capable of guaranteeing
the required QoS to critical tasks while also providing space to best-
effort applications.

In the following sections, we will further discuss the resource man-
agement, memory management and programming model support.
For the sake of clarity, we will start from the applications side—that
is, from the programming model support. Then, we will introduce
the resource and memory management layers.

programming model support

Parallel programming models expose to the application developers a
non-functional aspect of the architecture—i.e., parallelism—as a way
to enable effective target-dependent optimizations starting at the al-
gorithmic level.

There is no unified programming model, since the difference be-
tween architectures (especially those of different architectural fami-
lies) is often substantial, and different models address different hard-
ware or memory hierarchy features. However, all parallel program-
ming models deal with the following problems:

• how to decompose a program into a set of parallel tasks;

• how to map tasks to processing elements;

• how to manage communication between tasks;

• how to manage synchronization between tasks.

Typically, the decomposition is performed by exploiting some kind
of regularity in the behavior of the program: for instance, a loop
which has no dependencies among its iterations can be parallelized
if the index evolves with a regular pattern, such as a fixed-step incre-
ment. In these cases, we can adopt data-parallel programming mod-
els. When no regularities can be found, we can instead adopt a task-
parallel model, that is, the programmer identifies chunks of code as
units of parallelism, then spawns several parallel tasks to execute
them.

When considering communication and synchronization, we can
identify the following main classes of programming models:

7.2 programming model support 149

message passing

The programming model exposes the distributed memory struc-
ture to the programmer. Only local memory is directly accessible,
and communication is achieved through the exchange of messages.
MPI [174] is the most popular example of message passing library.

shared memory

The programming model provides developers with the powerful
abstraction of a global address space. This simplifies the program-
ming effort at the expense of scalability, since maintaining the il-
lusion of a global address space quickly grows infeasible in large
scale systems. OpenMP [175] is an example of library for paral-
lelism that supports the shared memory model.

data flow

The programming model, as in the case of Message Passing, ex-
poses the distributed memory structure to the programmer. In this
case, however, communication among executors is performed via
asynchronous exchange of data through explicit channels. Languages
like StreamIt [176] fall in this category.

Message Passing Model

The Message Passing programming model is typically implemented
by exposing explicit send and receive primitives. In this model, the
programmer needs to explicitly take into account the topology of the
network and the distribution of data among processes.

Most modern Message Passing languages are influenced by the Ac-
tor model [177], where a set of reactive entities (actors) are addressable
via unique names and are endowed with mailboxes to store incom-
ing messages from other actors. In response to messages received
from other entities, actors can send messages, spawn new actors, or
modify their reactions to future messages, according to their current
internal state.

erlang and scala

Erlang and Scala [178, 179] are examples of languages that imple-
ment actor-based concurrency. In Erlang, actors are identified with
(lightweight) processes that are addressed by pid. They employ a
spawn primitive to create new processes. Messages can be sent asyn-
chronously from a process to another through a send primitive,
which takes the message and the destination address as parameters.
A synchronous receive primitive can be used to retrieve messages
from the mailbox, optionally using pattern matching to wait for a
specific type of message. Scala also implements the actor model; it
maps actors to Java threads, but extensions have been proposed to
support synchronous communication [180].

150 resource management support for deeply-heterogeneous hpc

message passing interface

MPI is a portable, efficient and flexible standard for Message Pass-
ing programming. The MPI standard [174] was first released in
1994, and, in the next decade, it underwent a significant evolution
that culminated in the creation of three separate versions that sup-
port different sets of features.

Conversely to the Actor model, MPI supports both synchronous
and asynchronous communication; moreover, it supports broadcast
and multicast communication using Collective Operations. Collective
operations allow communication within a predefined group of pro-
cesses, called communicator object, which defines a virtual topology
and allows complex communication patterns such as reduction and
scattering/gathering.

Shared Memory Model

The shared memory programming model is usually employed to
program symmetric multiprocessors. Since data resides in the same
global address space, communication between executors is achieved
by means of memory read and write operations; therefore, the ex-
ecutors typically assume the properties of threads rather than pro-
cesses. Moreover, given the lack data ownership, the correct ordering
of memory operations must be preserved by using synchronization
mechanisms such as locks and semaphores.

openmp

OpenMP [181] is a well-known example of Shared Memory pro-
gramming model. It supports C, C++ and Fortran, and it consists
of a mix of runtime library, directives, and API. Directives are used
to identify parallel code regions, which can also be nested, and
fork/join points.

Similarly to the weak ordering described in [182], OpenMP imple-
ments a relaxed-consistency shared memory model. Starting with
OpenMP 4.0, it is also possible to offload parallel regions to accel-
erators such as GPGPUs.

cilk/cilk++
Cilk/Cilk++ [183] extends the C/C++ language with keywords that
support the definition and execution of parallel tasks. The keyword
cilk is used to identify functions that can be executed either seri-
ally or in parallel; when such a function is preceded by the keyword
spawn, its execution is delegated to a new thread that is spawned
when the function is called. The sync keyword forces a thread to
wait for the termination of spawned functions.

7.2 programming model support 151

Similarly to OpenMP, Cilk implements a relaxed consistency shared
memory model. To ensure that all memory operations must be com-
mitted at a given point of the code, Cilk provides a primitive called
Cilk_fence(). An abort primitive can be used to force the abrupt
termination of threads, thus supporting speculative execution. Sim-
ilarly to the dynamic loop scheduler featured by OpenMP, the task
scheduler in Cilk uses the work-stealing policy to balance the work- The term

“work-stealing”
refers to the practice
of adopting a pool of
worker entities, each
of whom is endorsed
with a job queue. A
worker whose queue
is empty is allowed
to “steal” works
from the other
queues.

load across the executors.

intel tbb

Intel TBB is a C++ template library intended to support task par-
allelism on multi-core processors. Tasks are scheduled using the
work stealing policy as in Cilk. The library features several spe-
cialized parallel constructs like parallel_for or parallel_reduce,
concurrent containers, scalable memory allocators, mutual exclu-
sion primitives, and a task scheduler.

partitioned global address space

PGAS is a parallel programming model that implements task paral-
lelism with a shared memory model but assumes a logical partition
of the memory. Each portion of the memory is considered local to
each process, so that application developers are able to optimize
the distribution of code and data by exploiting memory locality.

Fortress [184], X10 [185] and High Performance Fortran [186] all
share a similar set of primitives for data distribution and task-data
locality. Fortress makes use of a tree hierarchy of regions to describe
the underlying architecture, whereas X10 only provides a flat view
of the processor space.

Data Flow Model

Data Flow models are data-centric: they allow the programmer to de-
fine a data-flow graph where nodes represent operations (simple or
complex as needed) and arcs represent communication channels. La-
bels on the arcs define the data rate, i.e., the computation in the target
node is triggered only when the specified number of data items is col-
lected in a channel.

streamit

StreamIt is the most popular example of streaming language [176].
A StreamIt application is composed by filters that can be connected
in cascade to generate a pipeline. Special nodes called splitter and
joiner allow data streams to be parallelized.

152 resource management support for deeply-heterogeneous hpc

Hybrid Models

It is also possible to combine multiple programming models. This
is often done with MPI and OpenMP [187] in order to mitigate loadMPI is usually

employed for
inter-node

communication
purposes. At node

level, each MPI
process employs

OpenMP, which is
indeed more suited
for non-distributed

computations.

imbalance and scalability problems in the case of architectures that ex-
pose both shared and distributed memory (e.g. distributed systems).

starss

StarSs is a programming framework that combines the task paral-
lel and data flow models. It is developed at Barcelona Supercom-
puting Center [188, 189]. StarSs targets multi-core and heteroge-
neous accelerators, and, as OpenMP, it is directive based; however,
in this case, directives are used to express data dependencies be-
tween tasks. Tasks are organized in a graph according to their data
dependencies. The runtime system manages the resolution of de-
pendencies, then it moves each ready task to a worker thread. Data
dependencies are expressed as memory regions (via base address
and size).

Heterogeneous Platforms

Especially in the case of heterogeneous platforms, programming mod-
els are essential to abstract from the architecture complexity.

opencl

OpenCL is a framework for programming parallel heterogeneous
platforms [190]. The architecture of the typical OpenCL platform
is composed by a host and one or more devices. The idea is that
the host-side code orchestrates the execution of parallel jobs on the
OpenCL devices.

OpenCL supports data parallelism and, to a lesser extent, task par-
allelism. Programmers can exploit data parallelism by invoking
an explicitly parallel function (kernel), which is performed by an
user-specified number of executors. Contrary to proprietary mod-
els such as CUDA [191, 192], OpenCL does not impose predefined
limits on the number of executors; instead, it relies on a platform
introspection API that allows such limits to be retrieved at run-
time. This allows OpenCL to support compute devices from multi-
ple vendors and to have multiple compute devices attached to the
same host.

Every OpenCL kernel is explicitly invoked by the host-side code
and executed on one of the devices. While the kernel executes, the
host-side code continues ecuting asynchronously; therefore, pro-
grammers can exploit task parallelism by executing multiple serial
kernels (i.e. only one executor per kernel) in parallel. OpenCL also

7.2 programming model support 153

Table 11: Allocation and access capabilities of both host and devices on the
four OpenCL memory address spaces [193].

Global Constant Local Private

Host allocation Dynamic Dynamic Dynamic None

Device allocation None Static Static Static

Host access R/W R/W None None

Device access R/W RO R/W R/W

features a specific synchronizing function, which stalls the execu-
tion of the host-side code while waiting for the kernels to terminate.

In order to abstract from the actual parallelism implemented by the
hardware architecture, OpenCL features the concepts of work-item
and work-group. As mentioned above, once a kernel is launched
from the host-side code, multiple parallel executors are spawned
on the target OpenCL device. The single executor is called work-
item, and all the work-items compose a work-group. Work-items
belonging to the same group always execute the same kernel; more-
over, they share local memory and work-group barriers. Work-items
belonging to different work-groups must instead communicate through
global memory, which is generally mapped to an off-chip memory.
In addition to the local and global memories, each work-item may
access a constant memory, which shared by all work-items in the
kernel, and a private memory, which is private to each work-item.
Table 11 summarizes the allocation and access capabilities of both
host and devices on the four OpenCL memory address spaces.

OpenCL 2.0 introduced some new features, like the support to
shared virtual memory between host and devices, a generic address
space, and the support to dynamic parallelism, i.e., the possibility of
spawning new kernels from a device with no needs for host inter-
action.

openacc , sycl and c++ amp

OpenACC, SYCL and C++ AMP [194, 195, 196] are frameworks
that provide similar features, in some cases aven emitting OpenCL
or CUDA code as a back-end. They attempt to provide easier-to-
use interfaces by leveraging either directives or C++ features.

skepu

SkePU features an approach similar to that of Intel TBB: it pro-
vides a range of pre-defined, generic components implementing
specific patterns of parallel programming. These “skeletons” pro-
vide a high degree of abstraction and portability, since all low level
details are hidden within their implementation. Contrary to TBB,

154 resource management support for deeply-heterogeneous hpc

SkePU supports multi-cores and multi-GPUs systems, leveraging
native support such as OpenCL and CUDA.

The MANGO project aims at allowing developers to easily develop
applications that target different types of accelerator architectures. In
particular, the MANGO architecture will employ three types of accel-
erators: symmetric multiprocessors, which are characterized by good
capabilities in terms of OS support and execution flexibility (i.e., they
are able to run a POSIX-compliant runtime); GPGPU-like accelerators,
which are programmable but are not able to run a fully compliant
POSIX runtime; and hardware accelerators, which do not need or sup-
port any kind of software runtime. Applications, on the other hand,
may be developed either by domain experts with limited knowledge
of parallel computing and programming models, or by more experi-
enced programmers. Thus, the following requirements arise:

• supporting the use of industry-standard programming models
for heterogeneous systems, such as OpenCL, while guarantee-
ing functional portability across different programmable accel-
erators, as well as host-side compatibility for all accelerators;

• supporting a simple fork-join model, on which application de-
velopers not willing to use OpenCL can map their applications;

• supporting future extensions of the MANGO software stack to
support skeleton-based programming.

The low-level MANGO runtime system, therefore, needs to oper-
ate in a way that is akin to an intermediate language in a compiler: it
must allow the software stack developers to easily map high-level pro-
gramming models on the range of supported accelerators, while pro-
viding at least functional compatibility. Depending on the individual
capabilities of each accelerator, the low-level runtime system should
also introduce optimizations or additional features; this would in-
deed cause compatibility issues, but it would also allow developers
to implement specialized versions of their applications application for
any given accelerator.

Host-side low-level runtime

The host-side low-level runtime (HLR) provides the general purpose
nodes with an interface to access the functionalities of accelerators.

kernel loading and launching .
The HLR exposes functionalities and data structures that can be
used to represent and manipulate kernels. Kernels are stored ei-
ther in memory or in external files and are processed in a unit-
specific way – source code for a GPGPU-like accelerator would be

7.2 programming model support 155

dynamically compiled, whereas a hardware accelerator may exe-
cute pre-compiled kernels. The HLR also provides developers with
an interface to set the arguments of kernels and to trigger their
execution.

task graph management.
The HLR API allows developers to indicate to the runtime which
components (kernels, memory objects, and synchronization events)
need to be shared within the heterogeneous node. These compo-
nents are then connected into a task graph, thus providing the re-
source manager with the information needed to generate the best
feasible resource allocation for the requested QoS.

communication and synchronization.
Finally, the HLR provides developers with functions to synchro-
nize with the executing kernels (wait for completion) and for com-
munication purposes. In particular, it supports two forms of asyn-
chronous communication: a simple copy of memory objects, and a
burst copy through a fifo memory object.

The code shown in Listing 2 demonstrates the use of the HLR. In
this case, a FIFO communication is set up between the host and a
single kernel, which is loaded as a binary from an external file. For
the sake of simplicity, the kernel does not return data. The execution
is not unlike that of a native kernel in OpenCL, but the resource
assignment is controlled by the resource manager, which is therefore
able to optimize the use of resources in a multi-application scenario.

Device-side low-level runtime

The device-side low-level runtime support (DLR) serves as a baseline to
implement more complex programming models. It only implements
the minimal functionalities that are needed to work with the hetero-
geneous node, which does not feature a full operating system layer.

The DLR allows developers to spawn tasks from the host-side and
to wait for their completion. It also provides synchronization mecha-
nisms at accelerator level, between different accelerators, and between
the host and the accelerators. Finally, it allows the device-side to per-
form memory mapping of buffers that are allocated in the shared
memory, generating virtual addresses for them.

The code shown in Listing 3 demonstrates the use of the DLR. In
this case, which matches the HLR code shown in Listing 2, the DLR
API is used to access the shared memory region, which is then read
by the parallel tasks that are spawned from the main executor. Once
more, for the sake of simplicity, the actual operation of the kernel and
the generation of results are omitted.

156 resource management support for deeply-heterogeneous hpc

Listing 2: Example of HLR use: a FIFO communication is set up between the
host and the single kernel, which is loaded from an external file.

1 /* Initialization of MANGO library*/

2 mango_init();

3

4 /* Loading a single kernel from file*/

5 kernelfunction *k = mango_kernelfunction_init();

6 mango_load_kernel("./test_kernel_fifo", k, GN, BINARY);

7

8 /* Registration of the task graph */

9 mango_kernel_t *k1 = mango_register_kernel(KID, k);

10 mango_buffer_t *b1 = mango_register_memory(4, FIFO, 1, 1, k1, k1);

11 mango_task_graph_t *tg = mango_task_graph_create(1,1,0,k1,b1);

12

13 /* Resource Allocation */

14 mango_resource_allocation(tg);

15

16 /* Setting the kernel arguments */

17 mango_arg_t arg1 = {

18 (void *)b1->phy_addr,

19 sizeof(uint64_t),

20 FIFO

21 };

22 mango_arg_t arg2 = {

23 (void *)((uint64_t)b1->event->event_id),

24 sizeof(uint32_t),

25 SCALAR

26 };

27 mango_args_t *args = mango_set_args(k1, 2, &arg1, &arg2);

28

29 /* Data transfer and kernel execution */

30 mango_write(argv[1], b1, BURST,strlen(argv[1]));

31 mango_event_t *e2 = mango_start_kernel(k1, args, NULL);

32

33 mango_wait(e2);

34

35 /* Deallocation and teardown */

36 mango_resource_deallocation(tg);

37 mango_task_graph_destroy_all(tg);

38 mango_release();

Discussion

To better explain the choices that drove the selection of the primi-
tives in the MANGO runtime support, we compare them to possible
alternatives, namely POSIX and OpenCL.

With respect to the POSIX API, the set of primitives presented
above is much more restricted. The reason behind this choice is that
communication and synchronization primitives must be homogeneous
among the different accelerators, as they all access the same mem-
ory, communication and synchronization resources. Moreover, some
of the accelerators lack the ability to efficiently support more complex
activities, such as context switching or control divergence. Thus, the
selected primitives focus on a set of functionalities that can easily be
supported in all the accelerators.

7.3 runtime management 157

Listing 3: Example of DLR use: the DLR API is used to access the shared
memory region, which is then read by the parallel tasks that are
spawned from the main executor.

1 char *shared_memory;

2 mango_event_t *fifo;

3

4 void *task(task_args *a) {

5 int i;

6 char d;

7

8 for(i = 0; i < N; i ++) {

9 mango_barrier(a, fifo);

10 d = shared_memory[tid(a)];

11 /* do something with the data */

12 }

13

14 return mango_exit(a);

15 }

16

17 int main(int argc, char **argv){

18 int i;

19 uint64_t phy_addr;

20 uint32_t fifo_id;

21

22 mango_init();

23 mango_get_arg(argv[1], sizeof(uint64_t), FIFO, (void **)&phy_addr);

24 mango_get_arg(argv[2], sizeof(uint32_t), SCALAR, &fifo_id);

25

26 shared_memory = (char*) mango_map(phy_addr,SIZE);

27 fifo = mango_get_event(fifo_id);

28

29 mango_event_t *e = mango_spawn(&task, SIZE);

30 mango_join(e);

31

32 mango_unmap(shared_memory);

33 mango_close(15);

34 }

With respect to the OpenCL API, the set of primitives presented
above lacks introspection capabilities; however, it can rely on the re-
source management support. This is a key goal of MANGO, as there
is a widespread reluctance of users towards the manual selection of
computational resources.

As future development, we plan to map OpenCL on our low-level
runtime, thus allowing the portability of existing applications and the
access to an industry standard programming model. Specifically, the
runtime will report the availability of a special OpenCL device type,
which will be mapped to an actual unit at runtime.

runtime management

The MANGO hardware architecture is based on the idea of build-
ing very energy efficient HPC systems. In this regard, several studies
have remarked the opportunities offered by heterogeneous comput-

158 resource management support for deeply-heterogeneous hpc

ing platforms [197]. In the case of heterogeneous architectures, re-
source management must address the complex problem of distribut-
ing and scheduling tasks over processing resources that are character-
ized by different instruction sets, different architectures, and different
support for the software layer.

Addressing such a problem requires the cooperation of several ac-
tors, and, among those, the resource manager plays a key role. The
resource manager can be defined as a software framework that is in
charge of applying decisions in terms of task scheduling and resource
allocation (also “mapping”), according to one or more objectives.

In this section, we describe our resource management approach.
Subsection 7.3.1 briefly describes the most valuable state-of-the-art ex-
amples of run-time resource mangers, including the one we selected
for the MANGO project. Subsection 7.3.2 details the resource manage-
ment from a high level point of view, describing how the computing
nodes cooperate to execute applications. Subsection 7.3.3 describes
how applications must be designed and implemented to be runtime-
manageable.

Run-time resource manager

The first resource manager worth considering is StarPU [198]. This
framework has been specifically designed to address the problem of
scheduling tasks on systems that feature heterogeneous processing
devices. The proposed approach is based on the introduction of addi-
tional C-language constructs, with the consequent extensions of the
compiler (GCC) in order to generate code for different architectures.
The allocation policy that is used at runtime can be selected among
a set of pre-defined ones. StarPU features a greedy policy that aims
at balancing the workload over all the available processing devices
while providing performance guarantees to applications (whenever
the target of the selected policy is a real-time workload). StarPU also
features an energy-based scheduler that requires each application to
provide an energy consumption model. The energy-based scheduler
tries to optimize energy at application level by scheduling each task
on the most energy-conservative processing unit. However, even in
this case, maximizing the energy efficiency of a workload while com-
plying with the QoS requirements of each application is not explicitly
considered as an objective.

SLURM, alias “Simple Linux Utility for Resource Management”, is
another widespread resource manager [199]. It is modular and scal-
able, and, Similarly to StarPU, it includes several greedy scheduling
policies; however, from the hardware perspective, it focuses on Linux
cluster systems. Power management can be performed by switching-
off idle computing resources or explicitly setting the CPU frequencies
according to the job input. Overall, this resource manager enforces

7.3 runtime management 159

coarse-grained decisions. Moreover, to the best of our knowledge, it
does not take into account the possibility of controlling the band-
width allocation of a Network-on-Chip (NoC) in a many-core proces-
sor; hence, its capability of isolating applications in the architecture
proposed by the MANGO project would be limited.

Another resource manager worth considering is Nanos++, a run-
time library developed by the Barcelona Supercomputing Center (Bsc)
to support parallel programming environments [200]. The functional-
ities provided by the library range from task scheduling to throttling
policies, plus synchronization mechanisms and a support for profil-
ing. To effectively exploit the run-time library, the application must
be written in OmpSs (an extension of OpenMP) and compiled with
the Mercurium compiler provided by Bsc. From our perspective, the
main limitation of Nanos++ is that the tool aims at optimizing the
execution of a single parallel application without considering the re-
source contention originated by the concurrent execution of multiple
applications in the system.

A further and more recent proposal is SoPHy [201]. The authors
describe the framework as a “hybrid resource management” software
platform, in the sense that the user can specify static or dynamic task
scheduling and mapping policies, or a combination of both. Concern-
ing the target hardware, the resource manager seems to be specifically
designed to control the execution of tasks on a many-core accelerator.
Again, similarly to Nanos++, SoPHy seems to aim at optimizing the
execution of a single parallel application.

Finally, we analyze the BarbequeRTRM (see Appendix A), a run-
time resource management framework developed by Politecnico di
Milano [202]. It is based on a centralized resource manager and tar-
gets run-time adaptive applications, that is, resource-aware applica-
tions that are able to dynamically tune their software parameters to
better exploit the available resources. The BarbequeRTRM includes
several resource allocation policies that drive task scheduling and
power management decisions at the same time. Moreover, it is mod-
ular: new platforms and features can be supported without making
invasive changes to the resource manager itself.

We selected the BarbequeRTRM as the reference resource manager
for the MANGO project. The main idea is to use the BarbequeRTRM
to manage the single computing node, while a Global Resource Man-
ager will be in charge of distributing the applications among the
nodes. MANGO will drive the development of the BarbequeRTRM
in order to support highly heterogeneous multi-node HPC platforms.
In this regard, we plan to extend the resource manager in order to
work in a distributed fashion (i.e., making each node collaborate
with the others), to design and implement novel policies for hetero-
geneous systems, and to enable low-level control capabilities like per-
application interconnect (NoC) bandwidth reservation.

160 resource management support for deeply-heterogeneous hpc

HN 0 ("slave")

fan
thermo-
syphon

GN 0 ("master")

fan
thermo-
syphon

Global Resource Manager

Application
launcher

Application
dispatcher

thermal control

thermal control
Thermal Simulator

(3D-ICE)

Remote application
launcher

Local
storage

To BarbequeRTRM (other nodes)

CPU

RISC accelerator /
GPU-like (FPGA)

Application

Local Resource Manager
(BarbequeRTRM)

H
IG

H
 L

V
L

R
U

N
T
IM

E

H
IG

H
 L

V
L

R
U

N
T
IM

E
LO

W

LV
L

R
U

N
T
IM

E

processing units

HN 1 ("slave")

GN 1 ("slave")

$> run Application ...

memory

interconnect

1

2

3

Figure 59: Hierarchical and distributed run-time resource manage-
ment strategy. The Global Resource Manager runs on a
“master”general-purpose node (GN), while several instances of
BarbequeRTRM run on as many other nodes, general-purpose
or heterogeneous (HN). The managers exchange control in-
formation and statistics about the hardware status and the
application performance/QoS. Colored arrows represent the
typical application launch flow.

Distributed Management

The overall resource management strategy in the MANGO project
relies on the hierarchical and distributed approach shown in Figure
59.

The Global Resource Manager is at the top of the hierarchy, and
it runs on a general purpose node, also referred to as the “mas-
ter node”. The BarbequeRTRM runs on the managed nodes (“slave
nodes”), which can be either general purpose or heterogeneous. Each
instance of the BarbequeRTRM is in charge of managing the resources
of one slave node, thus acting as a local manager.

From a hardware perspective, the master node is equal to the gen-
eral purpose slave nodes. However, it differs in the software setup:
first of all, it hosts the global resource manager instead of the local
one; second, it is the system entry point, i.e., it exposes a shell-like
user interface. This interface, whom we call Application Launcher, al-
lows the user to launch applications and to set their performance re-
quirements. Such requirements are taken as input by the Application
Dispatcher, which computes how many (and which type of) nodes
should be assigned to the application.

To actually launch the application on multiple nodes (step 1 of Fig-
ure 59), the Global Resource Manager performs two actions for each
assigned node:

7.3 runtime management 161

1. it notifies to the local manager the IDs of all the assigned nodes;

2. it triggers the Remote Application Launcher, which is in charge of
loading the architecture-specific binary and starting the execu-
tion on the node.

The first action is needed to implement a lightweight virtualization
mechanism: as long as the application is running, the instances of the
BarbequeRTRM from all the allocated nodes will cooperate in order
to optimize its execution, thus creating a virtual “super-node” for the
application. To allow that, in the context of the MANGO project, we
will extend the BarbequeRTRM framework to enable distributed run-
time resource management strategies.

The second action, instead, matches the runtime support provided
by already known distributed parallel programming paradigms, e.g.,
Message Passing Interface (MPI): an instance of the application is
started on each assigned node (step 2), where the local BarbequeRTRM
instance will manage the resource assignment (step 3).

At slave node level, resource allocation will take into account both
static information, which will be collected during an off-line analysis
of hardware and applications and will be stored locally on each node;
and runtime information, which will be collected from applications
and on-chip sensors and sent as a feedback to the local manager. All
the runtime information that is relevant to understand the status of
the node will also be forwarded to the Global Manager, which, merg-
ing the information coming from all the nodes, will be able to have
a system-wide view of the MANGO architecture. This view will be
used by the Global Resource Manager, in cooperation with the 3D-
ICE framework [203], to adapt the application dispatching and the
thermal management actions to the real system response.

Developing runtime-manageable applications

From the BarbequeRTRM perspective, a managed application is a col-
lection of independent tasks (those that have data dependencies are
merged), each of whom will be allocated a private share of the avail-
able computing resources (e.g. the MANGO units).

Managed application must link to the BarbequeRTRM MANGO
Synchronization Library, which automatizes the process of run-time
management and reconfiguration. More in detail, the launch of a
MANGO application creates an instance of the Execution Synchronizer,
a C++ object in charge of:

1. synchronizing the application tasks execution with the runtime-
variable resource allocation;

2. profiling the task execution through user-defined metric coun-
ters;

162 resource management support for deeply-heterogeneous hpc

3. transparently collecting the task performance/resource usage
statistics and forwarding them back to the BarbequeRTRM, which
will tune the resource allocation accordingly.

The Execution Synchronizer is allocated when the mango_init() func-
tion is called. A suitable control thread is in charge of calling the
member functions of the Execution Synchronizer according to both the
application-side events (e.g., MANGO API function calls) and the re-
source manager actions (e.g., resources re-allocations). The control
thread is started when the mango_resource_allocation() function is
invoked, and it drives the application execution by calling the follow-
ing Execution Synchronizer member functions:The execution

syncronizer is itself
a BarbequeRTRM

application!

Runtime Library

Managed App
Setup

Configure

Run Monitor

Release

The BarbequeRTRM
execution phases

(Setup, Configure,
Run. . .) are indeed

enriched to fully
exploit the

capabilities of the
MANGO hardware.

setup()
called when a task-graph has been built. It checks the consistency
of the provided task-graph, then it forwards it to the resource man-
ager;

configure()
called when the resource allocation changes. The function transpar-
ently allocates the buffers on the HN memory by interacting with
the Memory Manager (see Section 7.4) and offloads the tasks on the
assigned units. Once buffers and kernels are ready, the synchro-
nizer must simply wait for the sequence of mango_start_kernel()
function calls. A kernel execution control thread is spawned to moni-
tor the execution of each kernel;

run()
this function is called once all the tasks are running. It waits for the
current “step” to complete;

monitor()
this function is called after each Run() execution. It forwards appli-
cation profiling information to the resource manager;

release()
by means of this function, the application explicitly releases the
resources. This function also notifies the application termination
to the resource manager. It is invoked when the mango_resource_

deallocation() function is called.

Figure 60 provides a simplified view of the synchronization mecha-
nisms underlying the application execution flow. The Setup() method
is triggered when the managed application creates the task graph.
When the BarbequeRTRM allocates resources to the application, the
Execution Synchronizer can proceed by invoking the Configure() method.
As long as the BarbequeRTRM does not change the resource alloca-
tion, the Execution Synchronizer will stay in the main execution loop,
which is composed of a Run() and a Monitor() stage. Once the task

7.3 runtime management 163

Figure 60: The synchronization mechanisms between the application exe-
cution and the resource manager (BarbequeRTRM) control ac-
tions. The MANGO Execution Synchronizer is a special Barbe-
queRTRM application that wraps the original application and
makes it runtime-manageable.

graph is completed, the Execution Synchronizer invokes the Release()

method and returns.

Profiling runtime-manageable applications

The BarbequeRTRM allows application developers to create a list of
resource assignment options for their applications. This can be done
by compiling a list of Application Working Modes (AWM) for the appli-
cation (see Section A.3). Depending on the BarbequeRTRM configu-
ration, the resource allocation of an application may be:

1. selected from the list of AWMs;

2. selected from the list of AWMs and dynamically tuned accord-
ing to the runtime feedback of the RTLib (see Section 6.1);

3. Computed from scratch according to the runtime feedback of
the RTLib without using Design-time Profiles altogether (see
Section 6.2).

The Design-time profile of a task, i.e., the list of AWMs, is con-
tained in an XML file called recipe. Listing 4 shows an example of
recipe. Each task got a priority level that is used by the resource al-
location policy to prioritize it with respect to the other ones. Please
note that a task is referred to by using the term “application”. The

164 resource management support for deeply-heterogeneous hpc

Listing 4: Example of MANGO application Recipe.

1 <?xml version="1.0"?>

2 <BarbequeRTRM recipe_version=" 0.8 ">

3 <application priority="4">

4 <platform id="org.linux.cgroup" hw="mango">

5 <awms>

6 <awm id="0" value="1" config-time="150">

7 <resources>

8 <cpu>

9 <pe qty="100"/>

10 <mem qty="2" units="MB"/>

11 </cpu>

12 <net qty="50" units="Kbps"/>

13 </resources>

14 </awm>

15 <awm id="2" value="4" config-time="150">

16 <resources>

17 <cpu>

18 <pe qty="200"/>

19 <mem qty="10" units="MB"/>

20 </cpu>

21 <acc>

22 <pe qty="4"/>

23 </acc>

24 <net qty=" 100 " units="Kbps"/>

25 </resources>

26 </awm>

27 </awms>

28 <tasks>

29 <task name="..." id="0" ctime="10" hw_prefs="peak,cpu,nup"/>

30 <task name="..." id="1" ctime="50" hw_prefs="cpu"/>

31 <task name="..." id="2" ctime="30" hw_prefs="nup,peak"/>

32 </tasks>

33 </platform>

34 </application>

35 </BarbequeRTRM>

reason is straightforward: given that tasks do not have data depen-
dencies by construction, the BarbequeRTRM considers each task as
a distinct application. The platform section identifies the target sys-
tem, which, in this case, is a general purpose node of the MANGO
hardware that runs a Linux operating system. The set of Applica-
tion Working Modes is platform-specific; therefore, the recipe format
allows the developer to include several platform sections into a sin-
gle recipe file. The proper section will be parsed at the application
start-time depending on the actual system. The platform in the recipe
example features two AWMs. Each of those defines several attributes:

1. a progressive numeric identifier (id);

2. a descriptive name, which is used only for logging purposes;

3. the aforementioned preference score (value);

4. the profiled configuration time, expressed in milliseconds (config-
time), which keeps track of the time overhead experienced by
the task to adapt to the AWM.

7.4 memory management 165

The <resources> section contains the resource requirements of each
AWM. In the example, such requirements are expressed in terms of
CPU time (cpu→pe, expressed in percent), amount of memory (mem),
number of accelerator cores (acc→pe) and network bandwidth (net).

Concerning the specific case of the CPU time, the values reported
must be read as percentages. Therefore, values greater than 100 sim- As already

mentioned in the
previous chapters,
CPU time allocation
is expressed in terms
of CPU

“bandwidth”.

ply expresses the usage requirement of more than a CPU core. Gener-
ally, a good practice would be to write an application Recipe through
a suitable profiling of the application execution under different re-
source assignment configurations (see Section 3.3).

Especially in the case of multi-tasking applications, it is paramount
to specify the tasks performance requirements to the resource man-
ager. The <tasks> section can be used to define the expected com-
pletion time of each task. Moreover, the developer can drive the al-
location choices by ordering the computing units types in order of
preference. This is done by defining the hw_prefs attribute. Indeed,
such performance requirements can be modified during runtime by
the application.

memory management

Recent advances in memory allocation for homogeneous multi-core
architectures aimed at removing the need for application-specific al-
locators and at improving scalability and allocation speed [204]; nev-
ertheless, memory management for heterogeneous systems is still a
challenge, as those systems often feature separate physical spaces for
the general purpose part of the system and for the heterogeneous ac-
celerators. Moreover, in many kinds of heterogeneous or accelerator-
based systems, there is no dynamic memory allocation at all, with
each accelerator endowed with its own private memory.

The work presented in [205] addresses the adoption of dynamic
memory management for the design of many-accelerator FPGA-based
systems, thus allowing each accelerator to dynamically adapt its allo-
cated memory according to the runtime memory requirements. They
support fully-parallel memory access paths by grouping BRAM mod-
ules into unique memory banks, named heaps, each managed by an
allocator. The approach proves effective in increasing FPGA density.

Similarly, the Accelerator Store [206] framework supports dynamic
provisioning of memory resources in many-accelerator architectures.
Once more, the main advantage is that, since not all accelerators are
in use at all times, a large amount of memory can be saved by shar-
ing. Moreover, the ratio between shared and private memories can
be fine-tuned to limit the subsequent performance penalty. In [207],
global shared address spaces for heterogeneous chip multiprocessors
are supported by means of specialized hardware—essentially modifi-
cations to the Translation lookaside buffer (TLB) to support dynam-

166 resource management support for deeply-heterogeneous hpc

ical migration of memory pages from on-chip to off-chip memory.
This work focuses on transparently supporting legacy applications
on architectures where scratchpad memories are available.

Conversely to the above mentioned approaches, the MANGO ar-
chitecture memories are shared at node level among all the acceler-
ators, which makes the MANGO architecture a heterogeneous Non-
Uniform Memory Access (NUMA) architecture. Such kind of archi-
tecture indeed poses several challenges, as the placement of data on
different memory regions leads to substantial performance variations.
In this cases, memory should be allocated as close as possible to the
target execution units, while also taking into account resource allo-
cation and data-dependencies between tasks; therefore, to efficiently
allocate resources, resource and memory management decisions must
be tightly coupled. Techniques based on prefetching and thread pin-
ning have been developed to this end for use on general purpose
multiprocessors [208, 209]. In the case of heterogeneous architectures,
however, the literature is limited due to the above mentioned total
or partial lack of shared memory. As introduced in Section 7.2, we
address the problem by defining task graphs at programming model
level, which allow the memory allocator to take into account both
the resource allocation choices and the NUMA characteristics of the
underlying MANGO architecture when allocating memory.

Another class of heterogeneous systems that is worth mentioning is
that of embedded many-cores, such as STMicroelectronics STHORM [210]
(originally known as Platform 2012). In those architectures, the avail-
able memory is shared among the processing elements, but it is usu-
ally limited, and this makes custom memory allocators the most effi-
cient choice [211]. In these cases, simplicity and efficiency of the allo-
cator are paramount, and the characteristics of the specific platform
can be exploited by developing a parameterized dynamic memory al-
locator that can be fine-tuned by means of profiling or design space
exploration techniques. We already explored the idea of integrating
memory management in the overall runtime resource management in
the context of the 2PARMA project, on the STHORM platform [212].
However, this kind of solution does not fit well with tasks that vary
widely in latency and resource requests, which is not usually the case
in the embedded domain, but is a common occurrence in high perfor-
mance computing.

The MANGO approach

In the MANGO architecture, all the memory modules in a given Het-
erogeneous Node (HN) share a single physical address space that
can be accessed by all the computational units (ARM-based nodes,
GPU-like accelerators, and hardware accelerators).

7.4 memory management 167

For the proper management of memory resources, we will define a
segmentation process scheme that supports the definition of private
or shared segments for applications. The resource manager will man-
age HN memory by setting segments of variable sizes and assigning
them to incoming applications. Those segments will be set at strate-
gic locations, that is, they will be mapped on memory modules that
are close to the processing elements where the application will be
running. The segments will be defined as either shared or private,
thus enabling the concept of shared memory between applications (if
needed) and between different kernels of the application. Moreover,
some of the accelerators will enforce coherent memory access of the
different threads of the same kernel; this process will be steered by
the QoS requirements of applications, thus enforcing partitions at the
network and memory subsystem levels.

The memory management system runs on a General purpose Node
(GN) and controls memory allocation on the HN. It deals with the
following issues:

• choosing the most suitable memory according to the allocated
processing elements;

• enabling concurrent, thread-safe memory allocation and deallo-
cation while avoiding fragmentation;

• performing translation from virtual to physical addresses and
vice versa;

• performing runtime optimization.

Choosing the most suitable memory.

In order to select the best memory modules, the memory manger will
take into account the following search criteria:

• bandwidth between the allocated processing elements and the
memory module;

• latency of the memory module;

• direction of data transfer (in/out);

• available space on the module;

• load on routing and ports.

More criteria could be added depending on the application require-
ments, which are provided by the BarbequeRTRM. Furthermore, de-
pending on the target architecture, the bandwidth between memory
and processing elements may change.

Another challenge is understanding which is the best memory mod-
ule for a given kernel or group of kernels; in the absence of a single

168 resource management support for deeply-heterogeneous hpc

performance criterion, we plan to employ a fuzzy multi-criteria anal-
ysis. Finally, the choice between equivalent memory banks will be
based on a statistical prediction of the future memory usage.

Concurrent, thread-safe memory allocation and deallocation.

There are many implementations of the malloc function, each one
with its own strengths and weaknesses. The criteria which must be
taken into account when implementing an allocation algorithm in-
clude:

• speed of allocation and deallocation;

• the presence of popular-sized requests;

• utility of memory usage;

• degree of segmentation;

• thread safety.

In general, the first step of allocation is searching for free space.
The most popular algorithms for memory space management are:

best fit : the allocator selects the smallest block of unallocated mem-
ory that is large enough to satisfy the request;

worst fit : the allocator selects the largest block of unallocated mem-
ory;

first fit/next fit : the allocator selects the first block of unallo-
cated memory that is large enough to satisfy the request, start-
ing either from the begin of the memory or from the last se-
lected block;

segregated lists : if the application has one (or a few) popular-
sized request, the allocator keeps a separate list of free segments
to manage objects of that size; all other requests are processed
by another algorithm.

binary buddy allocator : the allocator recursively divides the
unallocated memory by two until a block that is big enough
to accommodate the request is found.

In order to implement the memory management system, these al-
gorithms need to be evaluated basing on their compliance with the
aforementioned criteria. Moreover, we will evaluate the possibility of
implementing flexible memory allocation algorithms that tune their
configuration according to the specifics of running applications.

7.5 conclusions and future developments 169

Runtime optimization.

When free memory becomes available, the memory manager could
evaluate the possibility to migrate the data of running kernels to more
suitable memory modules. This would allow the memory allocator
to optimize the performance of already running kernels and to free
memory for higher priority applications; however, the benefits of mi-
gration should be carefully evaluated, because the kernel that uses
the to-be-migrated data must be stopped while the data is moved.

conclusions and future developments

In this section we have discussed the goals, requirements and solu-
tions for an HPC software stack that targets deeply heterogeneous
architectures composed of general purpose nodes and a variety of
accelerators. In particular, we proposed to employ a combination of
resource management techniques to control the allocation of comput-
ing units and memory resources to different applications under QoS
requirements; and a low-level runtime support to provide a minimum
common base among different accelerators, thus allowing functional
portability of applications and an easier porting of high-level pro-
gramming models on the different accelerators.

During the context of this project, we will heavily rely on the method-
ologies that we introduced in the previous chapters of this disser-
tation. This proves that our work succeeded in providing a set of
tools, best practices and techniques to tackle the resource manage-
ment problem for a quite wide range of architectures.

8
C O N C L U S I O N S

The end of Dennard’s scaling has been one of the most disruptive
events occurring in the evolution of the computing platforms. In
order to cope with the subsequent increase in chips power density,
hardware designers have progressively moved towards solutions that
leverage the concepts of parallelism and heterogeneity. As a consequence,
modern architectures feature an increasing number of shared compu-
tational resources that are power-hungry, can possibly be different in
nature, and can be concurrently used by multiple applications.

This increasing hardware complexity has in turn affected the soft-
ware stack: task scheduling and mapping have become challenging
problems due to the need of maximizing the performance of appli-
cations while minimizing power, temperature, and contention on the
shared resources.

This dissertation directly tackles the above mentioned problem. In
particular, we address resource management from a horizontal per-
spective, trying to identify the challenges and solutions that pertain
the increasingly blurred area between high-end embedded and High
Performance Computing systems.

subjects covered by the dissertation

Most and foremost, we focused on achieving power and energy ef-
ficiency by developing formalisms, methodologies and tools to deal
with the “desired Quality of Service” of applications: by assigning to
applications only the computational resources that they need to com-
ply with their Quality of Service goals, it is possible to reduce over-
specification. In order to address the above mentioned challenges, we
strove to master the parallelism and heterogeneity opportunities that
are offered by modern systems.

From the resource management perspective, we mostly focused on
scheduling policies. That is, we tried to understand, depending from
the target architecture and the optimization goals, how the resource
manager can compute the most suitable resource allocation for each
application. We also analyzed how the Linux operating system sup-
ports resource management across different architectures, and we im-
plemented new mechanisms to support resource allocation.

We exploited resource management techniques to maximize perfor-
mance and to minimize power (mostly HPC) and energy consump-
tion (mostly battery-based embedded), but also to minimize thermal
hot-spots and to mitigate the effects of memory contention and per-

171

172 conclusions

formance variability. We did this by trying to understand which is
the minimum amount of resources that applications need to comply
with their Quality of Service goals and which is the best way to map
resource demand on the hardware.

Regarding architectures, we evenly focused on embedded, desktop
and HPC systems, but we also tried to find synergies between the
two areas. For both these kinds of architectures, we addressed both
homogeneous and heterogeneous scenarios.

During our work, we extensively used, modified and extended
the Barbeque Run-Time Resource Manager, which is an Open-Source
manager developed at Politecnico di Milano. You can find our contri-
butions to this framework at https://bitbucket.org/bosp/barbeque.

contributions of the dissertation

In this section, we summarize our novel contributions, and we draw
the red line that links all the works presented in this dissertation.

Single-Computing-Node Systems

At operating system level, we studied how the Linux Control Groups
perform CPU time allocation in linux-based systems. Indeed, this is
a subject that is hard to find in literature: instead of focusing on how
many and which resources should be allocated to applications, we
analyzed what happens after resource allocation choices have been
made. That is, we studied how CPU time allocation is actually en-
forced on the system. In particular, we analyzed how the cgroups cpu
controller limits bandwidth. We discovered that, in certain scenarios,
the CPU bandwidth that is effectively exploited by the applications
could potentially be not only lower than the expected one, but also
notably higher, which may cause troubles in multi-application scenar-
ios.

Then, we dealt with application characterization, i.e., on how to ex-
tract application features that can be effectively exploited by resource
managers to perform clever allocation choices. We employed Design
Space Exploration techniques to characterize resource usage and en-
ergy consumption of applications. In this context, we extended YaMs,
which is a multi-objective scheduling policy of the BarbequeRTRM, in
order to provide it with memory-contention and energy consumption-
aware mapping capabilities. Experimental results shown that, by ex-
ploiting the characterization information to suitably map applications,
the resource manager is indeed able to optimize scheduling decisions.
We also stressed the fact that the relationship between performance
counters and energy consumption primarily depends on the target
architecture and on the workload that we must execute. Hence, us-
ing performance counters as a proxy to energy is possible, but it also

https://bitbucket.org/bosp/barbeque

8.2 contributions of the dissertation 173

requires a significant effort on the characterization side. Finally, we
shown that, in order to maximize the Quality of Service that can
be squeezed out from the available resources, applications need to
constantly update their software parameters in order to continuously
adapt them to the system status.

As a direct follow-up, we therefore decided to study the benefits
that come from allowing a system-wide resource manager and an
application-specific auto-tuner to work in a synergistic way. The main
idea behind that study is that, whereas resource managers allocate re-
sources to applications according to precise and known system-wide
optimization goals, they are often unaware of what applications (and
users) really need. That is, each application computes its Quality of
Service in its own way. We tackled this problem by moving part of
the management complexity to the applications side: each application
relies on an application-specific auto-tuner, i.e., a component that is
specifically configured for the target application and is able to tune
the application software parameters at runtime in order to make it
comply with its quality of service goal despite a runtime-variable re-
source availability.

In order to better exploit the capabilities of multi-core processors,
we then added another degree of complexity: heterogeneity. We specifi-
cally addressed big.LITTLE architectures, i.e., processors that feature
two clusters of cores—a performing and power-hungry one, which
is called “big”, and a slower and power-efficient one, which is called
“little”—that share the same Instruction Set Architecture. In those sys-
tems, threads are allowed to freely migrate between the two clusters
during runtime. By featuring different types of cores in the same chip,
big.LITTLE processors allow operative systems to exploit the trade-
off between performance and power consumption.

We studied how to dynamically migrate threads among the big and
little clusters in order to maximize the usage of the big cluster while
minimizing the performance losses that are induced by resource con-
tention. We did so by introducing the concept of stakes function, which
represents the trade-off between exclusive allocation and sharing of re-
sources in multi-core processors. We introduced a co-scheduling pol-
icy that exploits stakes functions as a metric to take co-scheduling de-
cisions on heterogeneous processors.

Then, we used the two clusters of cores as a heterogeneous OpenCL
device. In this context, we presented a mechanism that forces the
OpenCL runtime to view the big.LITTLE processor as a custom set of
heterogeneous devices instead of viewing it as a single device.

Multiple-Computing-Nodes Systems

Finally, we dealt with distributed systems, mainly focusing on HPC.
In those scenarios, the objectives of resource management are typ-

174 conclusions

ically different from those of embedded systems. In particular, re-
source management techniques for HPC mostly focus on minimizing
power consumption and thermal hot-spots, detecting and counteract-
ing faults and aging-induced performance variability, and exploiting
heterogeneous accelerators.

First of all, we performed and interesting study of how the freeze/
restore-based process migration of MPI applications, which is usu-
ally performed at node granularity to address faults, can be made
fine-grained in order to migrate only parts of the application on a
different computing node. This allows resource managers to perform
optimizations such as load balancing, resource consolidation, or also
to counteract the effects induced on the hardware by aging. The out-
come of this study was the development of the mig framework, an
OpenMPI module that allows MPI applications—or even just a sub-
set of their processes—to be migrated from a HPC node to another
one without requiring developers to change their applications’ code
nor performing intrusive changes to the OpenMPI framework.

Once having dealt with system-wide mapping, we focused on the
node-level optimization of distributed computation. In particular, we
presented a resource management approach that exploits the trade-
off between power consumption and performance when executing
HPC applications that must comply with runtime-variable Quality
of Service requirements. We applied an adaptive performance-aware
execution model in the context of a real scientific application domain
on a multi-core HPC system. The approach is based on the concept
of “resource minimization via late termination”. That is, we minimize
the amount of resources that the applications can use so that they
are barely able to comply with their Quality of Service requirements.
The unused resources can be therefore used to perform system-wide
optimizations such as minimizing power consumption or isolating
faulty parts of the system. The experimental results shown that this
approach is indeed capable of making applications comply with their
runtime-variable QoS requirements while also minimizing resource
usage and hence power consumption. Moreover, doing so did not
induce energy inefficiency.

Our final step towards a performance, quality and power awareThat of PerDeTemp
was indeed a

successiful story.
The scheduling

policy was used to
cover the HPC

use-case and, for the
thermal standpoint,
one of the embedded

use-cases of the
HARPA European

project.

(but yet homogeneous) HPC resource management consisted in de-
signing a feedback-based and partially decentralized resource man-
agement approach that allowed applications to comply with their
Quality of Service Goals while minimizing resource usage; minimiz-
ing the negative effects of faults-induced performance variability; and
leveling the temperature throughout the available computing cores,
so that hot-spots are avoided and the effects of temperature on MTTF
are equally balanced on the cores. This approach made use of most
of the aforementioned contributions: it employed Control Groups-
based CPU time allocation (configured according to our accuracy op-

8.2 contributions of the dissertation 175

timization approach), which, up to now, was used only in embedded
systems; scheduling choices relied on our novel application charac-
terization and auto-tuning approaches; resource allocation was par-
tially handled by the centralized resource manager and in part by an
application-specific decentralized manager, thus exploiting the afore-
mentioned synergies between system-wide resource managers and
application-specific auto-tuners; finally, the work enriched and ex-
tended our “resource minimization via late termination” approach. It
did so by providing a richer information exchange between the Bar-
bequeRTRM and the runtime library and by enabling a continuous
resource allocation instead of using a discretized one.

To conclude this dissertation, we presented our “work in progress”
in the context of the MANGO European Project, which aims at per-
forming the first steps towards an unified runtime management sup-
port for deeply heterogeneous HPC systems. We discussed the goals,
requirements and solutions for an HPC software stack that targets
deeply heterogeneous architectures composed of both general pur-
pose nodes and a variety of accelerators. In particular, we proposed to
employ a combination of resource management techniques to control
the allocation of computing units and memory resources to different
applications under QoS requirements; and a low-level runtime sup-
port to provide a minimum common base among different accelera-
tors, thus allowing functional portability of applications and an easier
porting of high-level programming models on the different accelera-
tors. We also shown how the methodologies and tools presented in
this dissertation will be of great help during the MANGO project.
In turn, this proves that our work succeeded in providing a set of
tools, best practices and techniques to tackle the resource manage-
ment problem for a quite wide range of architectures and application
domains.

Part III

A P P E N D I X

A
T H E B A R B E Q U E R U N - T I M E R E S O U R C E M A N A G E R

This chapter introduces the Barbeque Run-Time Resource Manager If you are interested
in the BOSP project,
please visit our
website:
https://bosp.dei.

polimi.it

(BarbequeRTRM), an open-source resource manager that may be em-
ployed on any Linux-based system. The modular structure of the
BarbequeRTRM—new scheduling policies are developed as plug-ins
and do not require the existing code to be changed—makes it a very
interesting tool to carry out research on resource management.

user-space resource management

As already discussed in Chapter 1, a resource manager is a software
layer that orchestrates configuration and allocation of computational
resources while taking into account system-wide and user-specific
goals. Relying on a resource manager instead of distributing the man-
agement logic throughout the entire software stack is a very conve-
nient approach for both operating systems and applications develop-
ers, since it allows them to move most of the management complexity
in a black box that is easily portable and maintainable. That is why,
during the last years, there was a strong push towards migrating the
resource management logic into user-space processes [154].

Figure 61 shows a typical example of user-space-managed environ-
ment. Unmanaged applications run, as usual, on top of the operating
system, and they are allowed to use a predefined set of general pur-
pose resources. Managed applications run instead on top of the re-
source manager, which, according to some optimization policy, com-
putes which is the best set of resources that must be allocated to each
application. In order to monitor the system and to enforce the alloca-

HARDWARE
OS (KERNEL-SPACE)monitors knobs

RESOURCE MANAGER

unmanaged
applications

managed
applications

Figure 61: An user-space-managed environment. Unmanaged applications
run on top of the operating system, while managed applications
run on top of the resource manager, which exploits the monitors
and knobs exposed by the operating system for management pur-
poses.

179

https://bosp.dei.polimi.it
https://bosp.dei.polimi.it

180 the barbeque run-time resource manager

tion choices, the resource manager relies respectively on the monitors
and the knobs that are exposed by the operating system.

It is worth noticing that some resource managers move the enforce-
ment complexity to the applications side. That is, the resource man-
ager monitors the resources and computes allocations, while applica-
tions are in charge of enforcing the allocation, e.g. by using thread
affinity to pin their threads on the allocated cores.

the barbequertrm approach

The BarbequeRTRM is an user-space deamon that dynamically allo-
cates computing resources to managed applications (from now on,
only “applications”). With “dynamic allocation” we refer to the abil-
ity of changing the resource allocation during runtime in order to ad-
dress changes in system status, resource availability or applications
QoS requirements. One of the most interesting features of the Barbe-
queRTRM is that, conversely to the typical job schedulers, it endows
applications with an inherently resource-aware and quality-aware ex-
ecution flow: the processing of applications is divided into bursts
whose quality and resource demand are individually monitored. The
allocation may change only between processing bursts; in that case,
applications are notified about the new allocation so that they are able
to reconfigure their own software parameters (e.g. number of threads)
accordingly before the upcoming burst.

Figure 62 shows a typical example of BarbequeRTRM-managed en-
vironment. Applications do not directly communicate with the re-
source manager: they instead rely on the BarbequeRTRM Runtime
Library (RTLib), which transparently negotiates resource allocation
with the BarbequeRTRM. In order to monitor the system and to en-
force resource allocation, the BarbequeRTRM in turn relies on the
available monitors and knobs exposed by the operating system, e.g.
sysfs, cpufreq and the Linux Control Groups.

HARDWARE
OS (KERNEL-SPACE)sysfs, cpufreq, cgroups ...

THE BARBEQUE RTRM

unmanaged
applications

managed
application

RTLIB

Figure 62: A BarbequeRTRM-managed environment. Unmanaged applica-
tions run on top of the operating system, while managed appli-
cations rely on the BarbequeRTRM Runtime Library, which trans-
parently negotiates resource allocation with the BarbequeRTRM.

A.2 the barbequertrm approach 181

Managed Applications Execution Flow

To synchronize their processing with the dynamical resource alloca-
tion, the BarbequeRTRM requires applications to relinquish the con-
trol of their execution flow to the RTLib. That is, the RTLib drives
the execution of running applications by choosing when to execute
processing bursts and reconfiguration routines. To benefit from such
support, the applications code must be moved into a C++ class that
exposes the following methods:

setup Setting up the processing, e.g., spawning threads and per-
forming mallocs;

configure

(re) Configuring the application software parameters ac-
cording to the current allocation;

run Process the next chunk of data;

monitor

Monitor the current Quality of Service. If needed, ask for
a higher or lower one;

release Terminate the application, e.g., join threads and free mal-
locs.

During runtime, the aforementioned methods will be invoked by
the RTLib according to the BarbequeRTRM resource and quality-aware
execution flow shown in Figure 63. When the application starts, the
RTLib asks for resources to the BarbequeRTRM (yellow arrow) and,
while waiting for the allocation to be computed, it invokes the ap-
plication setup method, which will take place in a pre-defined set of
shared resources. While the application performs the setup, the Barbe-
queRTRM allocates it some resources and notifies the decision to the
RTLib (green arrow). After the setup, the RTLib can therefore invoke
the configure method, where the application, being aware of the cur-
rent allocation, is able to configure itself accordingly. After that, the
RTLib lets the application fall into the common execution flow (bold
pattern), which consists bursts of run and monitor methods that are
executed under a constant resource allocation. An allocation change
can be triggered either by external events (e.g. some resources becom-
ing unavailable) or in case of an unsatisfactory Quality of Service. In
the latter case, the RTLib notifies the problem to the BarbequeRTRM
(orange arrow), which will correct the allocation as soon as possible
while letting the application continue its execution bursts.

182 the barbeque run-time resource manager

start

SETUP

CONFIGURE

RUN

RELEASEY N

Y

N

The BarbequeRTRM
RunTime Library

allocation
changed?

stop

Managed Application

still work
to do?

Allocation needed New allocation
informationQoS goal not met

MONITOR

TO RESOURCE MANAGER FROM RESOURCE MANAGER

Figure 63: The BarbequeRTRM: execution flow of a managed application.
The Runtime Library drives the execution and transparently syn-
chronizes it with the runtime-variable resource allocation. Bold
arrows indicate the most common execution flow, i.e, a contin-
uous burst of run and monitor invocations under a constant re-
source allocation.

Integrating applications

In this subsection, we provide an example of application integration.
Listing 5 shows the simplified code of a multimedia unmanaged ap-
plication that processes a stream of video frames. Once started, the
application performs an initialization and selects a parallelism level
equal to the number of online cores (lines 3 – 8). Then, it processes the
frames in bursts of one frame per active thread (lines 10 – 19). Finally,
it checks the results correctness and terminates (lines 21 – 22).

A.2 the barbequertrm approach 183

Listing 5: Simplified example of a frame processing application in its non-
integrated version. The application parses the arguments, initial-
izes some data structure and selects a parallelism level. Then, it
processes the frames in “threads_number”-sized bursts. Finally, it
checks the results, joins the threads and terminates.

1 void main(int argc, char *argv[])

2 {

3 ParseCommandLine(argc, argv);

4 // Load data, initialize structures, ...

5 Initialize();

6 int result = 0;

7 // Using one thread per core (constant!)

8 int threads_number = sysconf(_SC_NPROCESSORS_ONLN);

9

10 while(HaveWorkToDo()) {

11 // Process 1 frame per thread

12 result = ProcessFrames(threads_number);

13

14 // Handle processing errors, if any

15 if (result) {

16 HandleError(result);

17 break;

18 }

19 }

20

21 CheckResult();

22 JoinThreads();

23 }

Listing 6: Main file of the integrated version of the application from Listing
5. The application initializes the RTLib and uses it to instantiate
the class whose methods encapsulate the processing code. Then,
it launches the processing and waits for it to terminate.

1 void main(int argc, char *argv[])

2 {

3 // Initialize the RTLib

4 rtlib rtlib_services;

5 ManagedTask t(rtlib_services, argc, argv);

6

7 // Start the application

8 t->StartExecution();

9 t->WaitTermination();

10 }

Listing 6 shows the main function of the corresponding integrated
application. The original code is moved to a class, i.e. ManagedTask,
that links with the RTLib. As a consequence, the main function is sim-
plified: it just initializes the RTLib and the ManagedTask class (lines 4

– 5), then it starts the processing and waits for it to terminate (lines
8 – 9). Listing 8, instead, shows the implementation of the C++ class
that encapsulates the application code by defining the Setup, Config-
ure, Run, Monitor and Release methods. Apart from the logic that
was added to perform runtime reconfiguration and to check if the

184 the barbeque run-time resource manager

Listing 7: Simplified code of the integrated version of the application from
Listing 5 (header).

1 class ManagedTask: public ManagedApplication {

2 public:

3

4 ManagedTask(rtlib rtlib_services, int argc, char *argv[]);

5

6 int Setup() override;

7 int Configure() override;

8 int Run() override;

9 int Monitor() override;

10 int Release() override;

11

12 int result = 0;

13 int threads_number = 0;

14 };

current QoS is satisfactory, the resulting code is the same of that of
the original application.

defining resource allocations

Given that the execution flow of managed applications is based on the
concepts of Quality of Service compliance and software parameters
reconfiguration, applications are supposed to be profiled at design
time in order to compute a set of static allocations, each of whom
enables a specific Quality of Service level and needs a known set of
software parameters to be appropriately exploited. Accordingly, the
BarbequeRTRM scheduling policies base their allocation choices on a
static set of applications configurations, which are called Application
Working Modes (AWMs).

Relying on a static set of configurations is a reasonable choice, since,
in order to be managed by the BarbequeRTRM, applications must be
re-factored. That is, the typical managed workload is entirely com-
posed of applications that are known and that can therefore be pro-
filed at design time. However, relying on static configurations also
leads to complex issues:

• Profiles that are obtained at design time may be inaccurate at
runtime, e.g., due to different CPU cores frequencies, tempera-
ture variation, aging-induced performance variability, data vari-
ability or presence of concurrently running applications;

• An exhaustive application profiling (i.e. profiling the applica-
tion for each software and parameter combination and for each
possible resource allocation) is complex and time wasting. More-
over, it must be carried out once for each different architecture;

• Discrete allocations may lead to instability. For instance, if the
current resource demand of an application is three cores but the

A.3 defining resource allocations 185

Listing 8: Simplified code of the integrated version of the application from
Listing 5 (implementation). Underlined functions are calls to the
RTLib APIs.

1

2 ManagedTask::ManagedTask(rtlib rtlib_services, int argc, char *argv[]) {

3 init_interaction(rtlib);

4 ParseCommandLine(argc, argv);

5 }

6

7 int ManagedTask::Setup() {

8 Initialize();

9 return RTLIB_OK;

10 }

11

12 int ManagedTask::Configure() {

13 // Using one thread per allocated core (runtime-variable!)

14 threads_number = get_alloc_cores();

15 return RTLIB_OK;

16 }

17

18 int ManagedTask::Run() {

19 if (! HaveWorkToDo()) return RTLIB_WORKLOAD_NONE;

20

21 // Process one frame per thread and update frame count

22 result = ProcessFrames(threads_number);

23

24 if (result) {

25 HandleError(result);

26 return RTLIB_ERROR;

27 }

28

29 return RTLIB_OK;

30 }

31

32 int ManagedTask::Monitor() {

33 if (DontLike(get_throughput()))

34 complain();

35 return RTLIB_OK;

36 }

37

38 int ManagedTask::Release() {

39 CheckResult();

40 JoinThreads();

41 return RTLIB_OK;

42 }

profiled configurations feature two or four cores, the allocation
will continuously switch between the two available allocations.

It is worth noticing that the current version of the BarbequeRTRM
also supports scheduling policies that compute allocations in the con-
tinuous space. That is, resource allocations are computed on-the-fly
with disregard of the profiled configurations. We deal with continu-
ous allocation in the dissertation’s proper, while describing our own
contributions.

Listing 9 shows an example of application recipe, which is an XML
file that contains the static list of AWMs. When computing how many

186 the barbeque run-time resource manager

Listing 9: Example of application recipe. A recipe is an XML file that con-
tains a static list of Application Working Modes (AWMs). When
computing the resource allocation for an application, the schedul-
ing policy chooses an AWM between those that are listed in its
recipe.

1 <?xml version="1.0"?>

2 <BarbequeRTRM recipe_version="0.8">

3 <!-- Priority wrt other managed applications -->

4 <application priority="1">

5 <!-- Allocations for any Linux/CGroups-based multi-core -->

6 <platform id="org.linux.cgroup">

7 <awms>

8 <!-- AWM 0: low quality (got lowest value) -->

9 <awm id="0" name="only_one_cpu" value="10">

10 <resources>

11 <!-- Allocation: a whole core -->

12 <cpu id="0">

13 <pe qty="100"/>

14 </cpu>

15 </resources>

16 </awm>

17 <!-- AWM 1: high quality (x10 wrt AWM 0) -->

18 <awm id="1" name="cpu_and_gpu" value="100">

19 <resources>

20 <!-- Allocation: 20% of a core -->

21 <cpu id="0">

22 <pe qty="20"/>

23 </cpu>

24 <!-- Allocation: a GPU -->

25 <gpu id="0">

26 <pe qty="100"/>

27 </gpu>

28 </resources>

29 </awm>

30 </awms>

31 </platform>

32 </application>

33 </BarbequeRTRM>

and which resources will be allocated to an application, the schedul-
ing policy chooses an AWM between those that are listed in the cor-
responding recipe and tries to wisely mapping it on the available
resources. The recipe can contain multiple platform sections, each of
whom lists the AWMs for a particular architecture. Each AWM is
identified by an ID, a human-readable description, a Quality of Ser-
vice level (expressed as an integer value) and the list of resources that
must be allocated to the application in order to make it reach (ideally)
that QoS level.

B I B L I O G R A P H Y

[1] Gordon E Moore et al. Cramming more components onto inte-
grated circuits. Proceedings of the IEEE, 86(1):82–85, 1998.

[2] Gordon E Moore. Progress in digital integrated electronics
[technical literaiture, copyright 1975 ieee. reprinted, with per-
mission. technical digest. international electron devices meet-
ing, ieee, 1975, pp. 11-13.]. IEEE Solid-State Circuits Society
Newsletter, 20(3), 2006.

[3] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. Design of ion-implanted mos-
fet’s with very small physical dimensions. IEEE Journal of Solid-
State Circuits, 9(5):256–268, 1974.

[4] Tom Simonite. Intel puts the brakes on moore s law, 2016.

[5] Qing Cao, Shu-Jen Han, Jerry Tersoff, Aaron D Franklin,
Yu Zhu, Zhen Zhang, George S Tulevski, Jianshi Tang, and
Wilfried Haensch. End-bonded contacts for carbon nanotube
transistors with low, size-independent resistance. Science,
350(6256):68–72, 2015.

[6] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling
paper. IEEE Solid-State Circuits Society Newsletter, 12(1):11–13,
2007.

[7] Kirk M Bresniker, Sharad Singhal, and R Stanley Williams.
Adapting to thrive in a new economy of memory abundance.
Computer, 48(12):44–53, 2015.

[8] D. Hillman. Integrated power management, leakage control
and process compensation technology for advanced pro-
cesses. https://www.design-reuse.com/articles/20296/

power-management-leakage-control-process-compensation.

html. Accessed: April 11, 2017.

[9] David Geer. Chip makers turn to multicore processors. Com-
puter, 38(5):11–13, 2005.

[10] Gene M Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities, reprinted from the
afips conference proceedings, vol. 30 (atlantic city, nj, apr. 18–
20), afips press, reston, va., 1967, pp. 483–485, when dr. amdahl
was at international business machines corporation, sunnyvale,
california. IEEE Solid-State Circuits Society Newsletter, 12(3):19–
20, 2007.

187

https://www.design-reuse.com/articles/20296/power-management-leakage-control-process -compensation.html
https://www.design-reuse.com/articles/20296/power-management-leakage-control-process -compensation.html
https://www.design-reuse.com/articles/20296/power-management-leakage-control-process -compensation.html

188 bibliography

[11] Mark D Hill and Michael R Marty. Amdahl’s law in the multi-
core era. Computer, 41(7), 2008.

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end
of multicore scaling. In ACM SIGARCH Computer Architecture
News, volume 39, pages 365–376. ACM, 2011.

[13] James Donald and Margaret Martonosi. Techniques for multi-
core thermal management: Classification and new exploration.
In ACM SIGARCH Computer Architecture News, volume 34,
pages 78–88. IEEE Computer Society, 2006.

[14] Shekhar Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and degra-
dation. Ieee Micro, 25(6):10–16, 2005.

[15] Ehsan Pakbaznia and Massoud Pedram. Minimizing data cen-
ter cooling and server power costs. In Proceedings of the 2009
ACM/IEEE international symposium on Low power electronics and
design, pages 145–150. ACM, 2009.

[16] M Duranton, KD Bosschere, A Cohen, J Maebe, and
H Munk. Hipeac vision 2015. high performance and em-
bedded architecture and compilation. http://www. hipeac.
org/assets/public/publications/vision/hipeac-vision-2015_Dq0boL8.
pdf, 2015.

[17] M Duranton, KD Bosschere, C Gamrat, J Maebe, H Munk,
and O Zendra. Hipeac vision 2017. high performance and
embedded architecture and compilation. http://www. hipeac.
org/assets/public/publications/vision/hipeac-vision-2015_Dq0boL8.
pdf, 2017.

[18] Bill Cheswick. An evening with berferd in which a cracker is
lured, endured, and studied. In Proc. Winter USENIX Conference,
San Francisco, pages 20–24, 1992.

[19] Cyrus Peikari and Anton Chuvakin. Security Warrior: Know Your
Enemy. " O’Reilly Media, Inc.", 2004.

[20] M. Riondato. Freebsd handbook chapter 15 jails.
https://www.freebsd.org/doc/en_US.ISO8859-1/books/

handbook/jails.html. Accessed: May 2, 2017.

[21] Benoit des Ligneris. Virtualization of linux based computers:
the linux-vserver project. In High Performance Computing Sys-
tems and Applications, 2005. HPCS 2005. 19th International Sympo-
sium on, pages 340–346. IEEE, 2005.

https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html

bibliography 189

[22] Paul B Menage. Adding generic process containers to the linux
kernel. In Proceedings of the Linux Symposium, volume 2, pages
45–57. Citeseer, 2007.

[23] J. Corbet. Notes from a container. https://lwn.net/Articles/
256389/. Accessed: May 2, 2017.

[24] http://man7.org/linux/man-pages/man7/cgroups.7.html.
Accessed: 2017-02-06.

[25] Jens Axboe. Linux block io—present and future. In Ottawa
Linux Symp, pages 51–61, 2004.

[26] Chandandeep Singh Pabla. Completely fair scheduler. Linux
Journal, 2009(184):4, 2009.

[27] Fulya Kaplan, Jie Meng, and Ayse K Coskun. Optimizing com-
munication and cooling costs in hpc data centers via intelligent
job allocation. In Green Computing Conference (IGCC), 2013 Inter-
national, pages 1–10. IEEE, 2013.

[28] Z. Zhou, Z. Lan, W. Tang, and N. Desai. Reducing energy
costs for ibm blue gene/p via power-aware job scheduling.
In Job Scheduling Strategies for Parallel Processing, pages 96–115.
Springer, 2013.

[29] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. To-
ward dark silicon in servers. IEEE Micro, 31:6–15, 2011.

[30] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via schedul-
ing. In ACM Sigplan Notices, volume 45, pages 129–142. ACM,
2010.

[31] Y. Georgiou, T. Cadeau, D. Glesser, D. Auble, M. Jette, and
M. Hautreux. Energy accounting and control with slurm re-
source and job management system. In International Confer-
ence on Distributed Computing and Networking, pages 96–118.
Springer, 2014.

[32] D. Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239):2, 2014.

[33] C. Bolchini, S. Cherubin, G. C Durelli, S. Libutti, A. Miele, and
M.D. Santambrogio. A runtime controller for opencl applica-
tions on heterogeneous system architectures. 2016.

[34] P. Bellasi, G. Massari, and W. Fornaciari. Effective runtime re-
source management using linux control groups with the barbe-
quertrm framework. ACM Transactions on Embedded Computing
Systems (TECS), 14(2):39, 2015.

https://lwn.net/Articles/256389/
https://lwn.net/Articles/256389/
http://man7.org/linux/man-pages/man7/cgroups.7.html

190 bibliography

[35] S. Libutti, G. Massari, and W. Fornaciari. Co-scheduling tasks
on multi-core heterogeneous systems: An energy-aware per-
spective. IET Computers & Digital Techniques, 10(2):77–84, 2016.

[36] A. Portero, R. Vavrık, S. Kuchár, M. Golasowski, V. Vondrák,
S. Libutti, G. Massari, and W. Fornaciari. Flood prediction
model simulation with heterogeneous trade-offs in high perfor-
mance computing framework. In 29th EUROPEAN Conference
on Modelling and Simulation ECMS, 2015.

[37] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architec-
tures and compilation techniques, pages 72–81. ACM, 2008.

[38] Dakshina Dasari and Vincent Nelis. An analysis of the impact
of bus contention on the wcet in multicores. In High Performance
Computing and Communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on, pages 1450–1457. IEEE,
2012.

[39] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. Bandwidth bandit: Quantitative characterization of
memory contention. In Code Generation and Optimization (CGO),
2013 IEEE/ACM International Symposium on, pages 1–10. IEEE,
2013.

[40] Heechul Yun. Parallelism-aware memory interference de-
lay analysis for cots multicore systems. arXiv preprint
arXiv:1407.7448, 2014.

[41] Josh Aas. Understanding the linux 2.6. 8.1 cpu scheduler. Re-
trieved Oct, 16:1–38, 2005.

[42] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Anal-
ysis and approximation of optimal co-scheduling on chip mul-
tiprocessors. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, pages 220–229.
ACM, 2008.

[43] Kai Tian, Yunlian Jiang, and Xipeng Shen. A study on optimally
co-scheduling jobs of different lengths on chip multiprocessors.
In Proceedings of the 6th ACM conference on Computing frontiers,
pages 41–50. ACM, 2009.

[44] Yunlian Jiang, Kai Tian, Xipeng Shen, Jinghe Zhang, Jie Chen,
and Rahul Tripathi. The complexity of optimal job co-
scheduling on chip multiprocessors and heuristics-based so-
lutions. Parallel and Distributed Systems, IEEE Transactions on,
22(7):1192–1205, 2011.

bibliography 191

[45] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova.
Contention-aware scheduling on multicore systems. ACM
Transactions on Computer Systems (TOCS), 28(4):8, 2010.

[46] Tanima Dey, Wei Wang, Jack W Davidson, and Mary Lou Soffa.
Characterizing multi-threaded applications based on shared-
resource contention. In Performance Analysis of Systems and Soft-
ware (ISPASS), 2011 IEEE International Symposium on, pages 76–
86. IEEE, 2011.

[47] M. Tillenius, E. Larsson, R.M. Badia, and X. Martorell. Resource-
aware task scheduling. ACM Transactions on Embedded Comput-
ing Systems (TECS), 14(1):5, 2015.

[48] Changjiu Xian, Yung-Hsiang Lu, and Zhiyuan Li. A program-
ming environment with runtime energy characterization for
energy-aware applications. In Low Power Electronics and Design
(ISLPED), 2007 ACM/IEEE International Symposium on, pages
141–146. IEEE, 2007.

[49] Seong Jo Kim, Seung Woo Son, Wei-keng Liao, Mahmut Kan-
demir, Rajeev Thakur, and Alok Choudhary. Iopin: Runtime
profiling of parallel i/o in hpc systems. In High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:, pages 18–23. IEEE, 2012.

[50] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan.
Adapt: A framework for coscheduling multithreaded programs.
ACM Transactions on Architecture and Code Optimization (TACO),
9(4):45, 2013.

[51] Alexandros-Herodotos Haritatos, Georgios Goumas, Nikos
Anastopoulos, Konstantinos Nikas, Kornilios Kourtis, and Nec-
tarios Koziris. Lca: a memory link and cache-aware co-
scheduling approach for cmps. In Proceedings of the 23rd inter-
national conference on Parallel architectures and compilation, pages
469–470. ACM, 2014.

[52] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-
conscious scheduling for energy efficiency on multicore proces-
sors. In Proceedings of the 5th European conference on Computer
systems, pages 153–166. ACM, 2010.

[53] Radim Vavřík, Antoni Portero, Štěpán Kuchař, Martin Gola-
sowski, Simone Libutti, Giuseppe Massari, William Fornac-
ciari, and Vít Vondrák. Precision-aware application execution
for energy-optimization in hpc node system. arXiv preprint
arXiv:1501.04557, 2015.

192 bibliography

[54] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato. L1-
bandwidth aware thread allocation in multicore smt processors.
In Parallel Architectures and Compilation Techniques (PACT), 2013
22nd International Conference on, pages 123–132. IEEE, 2013.

[55] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato.
Addressing bandwidth contention in smt multicores through
scheduling. In Proceedings of the 28th ACM international confer-
ence on Supercomputing, pages 167–167. ACM, 2014.

[56] Sébastien Hily and André Seznec. Contention on 2nd level cache
may limit the effectiveness of simultaneous multithreading. PhD the-
sis, INRIA, 1997.

[57] Wei Wang, Tanima Dey, Jason Mars, Lingjia Tang, Jack W David-
son, and Mary Lou Soffa. Performance analysis of thread map-
pings with a holistic view of the hardware resources. In Per-
formance Analysis of Systems and Software (ISPASS), 2012 IEEE
International Symposium on, pages 156–167. IEEE, 2012.

[58] Hossam El Din, Wael Amr, Hany Mohamed ElSayed, and
Ihab ElSayed Talkhan. Reducing shared cache misses via dy-
namic grouping and scheduling on multicores. International
Journal of Advanced Computer Science & Applications, 5(9), 2014.

[59] Deukhyeon An, Jeehong Kim, JungHyun Han, and Young Ik
Eom. Reducing last level cache pollution in numa multicore sys-
tems for improving cache performance. In Computational Science
and Its Applications–ICCSA 2012, pages 272–282. Springer, 2012.

[60] Xin Xu and Manman Peng. Management for shared cmp caches.
Information Technology Journal, 12(7):1366–1372, 2013.

[61] Josue Feliu, Salvador Petit, Julio Sahuquillo, and Jose Duato.
Cache-hierarchy contention-aware scheduling in cmps. Paral-
lel and Distributed Systems, IEEE Transactions on, 25(3):581–590,
2014.

[62] Zoltan Majo and Thomas R Gross. Memory management in
numa multicore systems: trapped between cache contention
and interconnect overhead. In ACM SIGPLAN Notices, vol-
ume 46, pages 11–20. ACM, 2011.

[63] Di Xu, Chenggang Wu, and Pen-Chung Yew. On mitigat-
ing memory bandwidth contention through bandwidth-aware
scheduling. In Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, pages 237–248.
ACM, 2010.

[64] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-up: Increasing utilization in modern

bibliography 193

warehouse scale computers via sensible co-locations. In Pro-
ceedings of the 44th annual IEEE/ACM International Symposium on
Microarchitecture, pages 248–259. ACM, 2011.

[65] Sandro Penolazzi, Ingo Sander, and Ahmed Hemani. Predict-
ing bus contention effects on energy and performance in multi-
processor socs. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011, pages 1–4. IEEE, 2011.

[66] Andreas De Blanche and Thomas Lundqvist. A methodology
for estimating co-scheduling slowdowns due to memory bus
contention on multicore nodes. In International conference on
parallel and distributed computing and networks, 2014.

[67] Simone Libutti, Giuseppe Massari, Patrick Bellasi, and William
Fornaciari. Exploiting performance counters for energy effi-
cient co-scheduling of mixed workloads on multi-core plat-
forms. In Proceedings of Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures and
Design Tools and Architectures for Multicore Embedded Computing
Platforms, page 27. ACM, 2014.

[68] Robert L McGregor, Christos D Antonopoulos, and Dimitrios S
Nikolopoulos. Scheduling algorithms for effective thread pair-
ing on hybrid multiprocessors. In Parallel and Distributed Pro-
cessing Symposium, 2005. Proceedings. 19th IEEE International,
pages 28a–28a. IEEE, 2005.

[69] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou
Soffa. Contention aware execution: online contention detection
and response. In Proceedings of the 8th annual IEEE/ACM in-
ternational symposium on Code generation and optimization, pages
257–265. ACM, 2010.

[70] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A
lightweight performance-oriented tool suite for x86 multicore
environments. In Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, pages 207–216. IEEE, 2010.

[71] C. Bienia and K. Li. Benchmarking modern multiprocessors. Prince-
ton University USA, 2011.

[72] Andreas Merkel and Frank Bellosa. Memory-aware scheduling
for energy efficiency on multicore processors. HotPower, 8:123–
130, 2008.

[73] GIUSEPPE MASSARI. Run-time resource management of
multi/many-core computing systems. PhD thesis, Politecnico di
Milano, 2015.

194 bibliography

[74] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction
to NP-Completeness of knapsack problems. Springer, 2004.

[75] Davide Gadioli, Simone Libutti, Giuseppe Massari, Edoardo
Paone, Michele Scandale, Patrick Bellasi, Gianluca Palermo,
Vittorio Zaccaria, Giovanni Agosta, William Fornaciari, et al.
Opencl application auto-tuning and run-time resource manage-
ment for multi-core platforms. In Parallel and Distributed Process-
ing with Applications (ISPA), 2014 IEEE International Symposium
on, pages 127–133. IEEE, 2014.

[76] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Mis-
ailovic, Anant Agarwal, and Martin Rinard. Dynamic knobs for
responsive power-aware computing. In ACM SIGPLAN Notices,
volume 46, pages 199–212. ACM, 2011.

[77] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir
Hormati, and Scott Mahlke. Sage: Self-tuning approxima-
tion for graphics engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
13–24. ACM, 2013.

[78] Intel. Intel xeon processor v4 family. https://ark.intel.com/

products/family/93797. Accessed: October 2, 2017.

[79] Nvidia. Nvidia pascal. https://www.nvidia.com/en-us/

geforce/products/10series/architecture/#forceLocation=

US. Accessed: October 2, 2017.

[80] Nvidia. Nvidia tegra x1. http://www.nvidia.com/object/

tegra-x1-processor.html. Accessed: October 2, 2017.

[81] Adapteva. The parallela computer. http://www.adapteva.com/
parallella/. Accessed: October 2, 2017.

[82] John E Stone, David Gohara, and Guochun Shi. Opencl: A par-
allel programming standard for heterogeneous computing sys-
tems. Computing in science & engineering, 12(3):66–73, 2010.

[83] E. Paone, D. Gadioli, G. Palermo, V. Zaccaria, and C. Silvano.
Evaluating orthogonality between application auto-tuning and
run-time resource management for adaptive opencl applica-
tions. In 2014 IEEE 25th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 161–
168. IEEE, 2014.

[84] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-based local
stereo matching using orthogonal integral images. IEEE Transac-
tions on Circuits and Systems for Video Technology, 19(7):1073–1079,
2009.

https://ark.intel.com/products/family/93797
https://ark.intel.com/products/family/93797
https://www.nvidia.com/en-us/geforce/products/10series/architecture/#forceLocation=US
https://www.nvidia.com/en-us/geforce/products/10series/architecture/#forceLocation=US
https://www.nvidia.com/en-us/geforce/products/10series/architecture/#forceLocation=US
http://www.nvidia.com/object/tegra-x1-processor.html
http://www.nvidia.com/object/tegra-x1-processor.html
http://www.adapteva.com/parallella/
http://www.adapteva.com/parallella/

bibliography 195

[85] Holger Endt and Kay Weckemann. Remote utilization of opencl
for flexible computation offloading using embedded ecus, ce
devices and cloud servers. In PARCO, pages 133–140, 2011.

[86] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and
Sandip Kundu. Improving performance per watt of asymmet-
ric multi-core processors via online program phase classifica-
tion and adaptive core morphing. ACM Transactions on Design
Automation of Electronic Systems, 18(1):5, 2013.

[87] Rance Rodrigues, Israel Koren, and Sandip Kundu. Perfor-
mance and power benefits of sharing execution units between
a high performance core and a low power core. In VLSI Design
and 2014 13th International Conference on Embedded Systems, 27th
International Conference on, pages 204–209. IEEE, 2014.

[88] Peter Greenhalgh. Big. little processing with arm cortex-a15 &
cortex-a7. ARM White paper, 2011.

[89] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Aleksey
Pesterev, M Frans Kaashoek, Robert Morris, Nickolai Zeldovich,
et al. An analysis of linux scalability to many cores. In OSDI,
volume 10, pages 86–93, 2010.

[90] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan.
Thread reinforcer: Dynamically determining number of threads
via os level monitoring. In Workload Characterization (IISWC),
2011 IEEE International Symposium on, pages 116–125. IEEE,
2011.

[91] Rajiv Nishtala, Daniel Mossé, and Vinicius Petrucci. Energy-
aware thread co-location in heterogeneous multicore proces-
sors. In Embedded Software (EMSOFT), 2013 Proceedings of the
International Conference on, pages 1–9. IEEE, 2013.

[92] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan.
Shuffling: a framework for lock contention aware thread
scheduling for multicore multiprocessor systems. In Proceed-
ings of the 23rd international conference on Parallel architectures and
compilation, pages 289–300. ACM, 2014.

[93] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Anal-
ysis and approximation of optimal co-scheduling on chip mul-
tiprocessors. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, pages 220–229.
ACM, 2008.

[94] R. Knauerhase, P. Brett, B. Hohlt, Tong Li, and S. Hahn. Using
os observations to improve performance in multicore systems.
Micro, IEEE, 28(3):54–66, May 2008.

196 bibliography

[95] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-
conscious scheduling for energy efficiency on multicore proces-
sors. In Proceedings of the 5th European Conference on Computer
Systems, pages 153–166. ACM, 2010.

[96] Josué Feliu, Julio Sahuquillo, Salvador Petit, and José Duato. L1-
bandwidth aware thread allocation in multicore smt processors.
In Proceedings of the 22Nd International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT ’13, pages 123–132,
Piscataway, NJ, USA, 2013. IEEE Press.

[97] Yingxin Wang, Yan Cui, Pin Tao, et al. Reducing shared
cache contention by scheduling order adjustment on commod-
ity multi-cores. In IPDPS Workshops, pages 984–992. IEEE, 2011.

[98] Shin gyu Kim, Hyeonsang Eom, and Heon Y. Yeom. Virtual
machine scheduling for multicores considering effects of shared
on-chip last level cache interference. In Proceedings of the 2012 In-
ternational Green Computing Conference (IGCC), pages 1–6, Wash-
ington, DC, USA. IEEE.

[99] Jun Wei Lam, I. Tan, Boon Leong Ong, and Chang Kian Tan. Ef-
fective operating system scheduling domain hierarchy for core-
cache awareness. In TENCON - 2009 IEEE Region 10 Conference,
pages 1–7.

[100] Yingxin Wang, Yan Cui, Pin Tao, et al. Reducing shared
cache contention by scheduling order adjustment on commod-
ity multi-cores. In Parallel and Distributed Processing Workshops
and Phd Forum, IEEE International Symposium on, pages 984–992,
2011.

[101] Michela Becchi and Patrick Crowley. Dynamic thread assign-
ment on heterogeneous multiprocessor architectures. In Pro-
ceedings of the 3rd conference on Computing frontiers, pages 29–40.
ACM, 2006.

[102] Luca Lugini, Vinicius Petrucci, and Daniel Mosse. Online
thread assignment for heterogeneous multicore systems. In Par-
allel Processing Workshops (ICPPW), 2012 41st International Confer-
ence on, pages 538–544. IEEE, 2012.

[103] Kenzo Van Craeynest, Safia Akram, Wim Heirman, Aamer
Jaleel, and Lieven Eeckhout. Fairness-aware scheduling on
single-isa heterogeneous multi-cores. In Parallel Architectures
and Compilation Techniques (PACT), 2013 22nd International Con-
ference on, pages 177–187. IEEE, 2013.

[104] Quan Chen and Minyi Guo. Adaptive workload-aware task
scheduling for single-isa asymmetric multicore architectures.

bibliography 197

ACM Transactions on Architecture and Code Optimization, 11(1):8,
2014.

[105] Alexandra Fedorova, Margo Seltzer, and Michael D Smith. Im-
proving performance isolation on chip multiprocessors via an
operating system scheduler. In Proceedings of the 16th Inter-
national Conference on Parallel Architecture and Compilation Tech-
niques, pages 25–38. IEEE, 2007.

[106] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
Addressing shared resource contention in multicore processors
via scheduling. SIGPLAN, 45(3):129–142, 2010.

[107] Huanzhou Zhu and Ligang He. A Graph based approach for
Co-scheduling jobs on Multi-core computers. In Imperial College
Computing Student Workshop, volume 35, pages 144–151, 2013.

[108] Christian Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, 2011.

[109] P. Menage, R. Seth, P. Jackson, and C. Lameter. Linux control
groups, 2007.

[110] G Stoner. Hsa foundation overview. HSA Foundation, 2012.

[111] SAMSUNG. Exynos 5 octa (5420). http://www.samsung.com/

semiconductor/minisite/Exynos/w/solution/mobile_ap/

5420. Accessed: May 30, 2017.

[112] Xilinx. Zynq-7000 all programmable soc. https://www.xilinx.
com/products/silicon-devices/soc/zynq-7000.html. Ac-
cessed: May 30, 2017.

[113] Intel. Opencl™device fission for cpu perfor-
mance. https://software.intel.com/en-us/articles/

opencl-device-fission-for-cpu-performance. Accessed:
May 31, 2017.

[114] Amazon. Amazon ec2. https://aws.amazon.com/ec2/. Ac-
cessed: June 5, 2017.

[115] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang,
Wenguang Chen, and Weimin Zheng. Building semi-elastic vir-
tual clusters for cost-effective hpc cloud resource provisioning.
IEEE Transactions on Parallel and Distributed Systems, 27(7):1915–
1928, 2016.

[116] Bartosz Balis, Kamil Figiela, Konrad Jopek, Maciej Malawski,
and Maciej Pawlik. Porting hpc applications to the cloud: A
multi-frontal solver case study. Journal of Computational Science,
2016.

http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5420
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5420
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mobile_ap/5420
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://software.intel.com/en-us/articles/opencl-device-fission-for-cpu-performance
https://software.intel.com/en-us/articles/opencl-device-fission-for-cpu-performance
https://aws.amazon.com/ec2/

198 bibliography

[117] Wu-chun Feng and Kirk Cameron. The green500 list: Encour-
aging sustainable supercomputing. Computer, 40(12), 2007.

[118] Federico Reghenzani, Gianmario Pozzi, Giuseppe Massari, Si-
mone Libutti, and William Fornaciari. The mig framework: En-
abling transparent process migration in open mpi. In Proceed-
ings of the 23rd European MPI Users’ Group Meeting, pages 64–73.
ACM, 2016.

[119] Chao Wang, Frank Mueller, Christian Engelmann, and
Stephen L Scott. Proactive process-level live migration in hpc
environments. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, page 43. IEEE Press, 2008.

[120] Ifeanyi P Egwutuoha, David Levy, Bran Selic, and Shiping
Chen. A survey of fault tolerance mechanisms and check-
point/restart implementations for high performance comput-
ing systems. The Journal of Supercomputing, 65(3):1302–1326,
2013.

[121] Ian Philp. Software failures and the road to a petaflop machine.
In HPCRI: 1st Workshop on High Performance Computing Reliabil-
ity Issues, in Proceedings of the 11th International Symposium on
High Performance Computer Architecture (HPCA-11), 2005.

[122] Paul H Hargrove and Jason C Duell. Berkeley lab check-
point/restart (blcr) for linux clusters. In Journal of Physics: Con-
ference Series, volume 46, page 494. IOP Publishing, 2006.

[123] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Usenix Winter Technical Conference,
pages 213–223, January 1995.

[124] Joshua Hursey, Timothy I Mattox, and Andrew Lumsdaine. In-
terconnect agnostic checkpoint/restart in open mpi. In Proceed-
ings of the 18th ACM international symposium on High performance
distributed computing, pages 49–58. ACM, 2009.

[125] Bryan Mills, Ryan E Grant, Kurt B Ferreira, and Rolf Riesen.
Evaluating energy savings for checkpoint/restart. In Proceed-
ings of the 1st International Workshop on Energy Efficient Supercom-
puting, page 6. ACM, 2013.

[126] Miguel G Xavier, Marcelo Veiga Neves, Fabio D Rossi, Tiago C
Ferreto, Tobias Lange, and Cesar AF De Rose. Performance
evaluation of container-based virtualization for high perfor-
mance computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro International
Conference on, pages 233–240. IEEE, 2013.

bibliography 199

[127] Simon Pickartz, Jens Breitbart, and Stefan Lankes. Impacts of
virtualization on intra-host communication. 2016.

[128] Criu - checkpoint/restore in userspace. https://criu.org/.
Accessed: 2016-04-11.

[129] W. Li, A. Kanso, and A. Gherbi. Leveraging linux containers to
achieve high availability for cloud services. In Cloud Engineer-
ing (IC2E), 2015 IEEE International Conference on, pages 76–83,
March 2015.

[130] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun,
Jack J Dongarra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan
Kambadur, Brian Barrett, Andrew Lumsdaine, et al. Open mpi:
Goals, concept, and design of a next generation mpi implemen-
tation. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 97–104. Springer, 2004.

[131] Rami Rosen. Resource management: Linux kernel namespaces
and cgroups. Haifux, May, 2013.

[132] David H Bailey, Eric Barszcz, John T Barton, David S Browning,
Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Fred-
erickson, Thomas A Lasinski, Rob S Schreiber, et al. The nas
parallel benchmarks. International Journal of High Performance
Computing Applications, 5(3):63–73, 1991.

[133] Richard L Graham, Timothy S Woodall, and Jeffrey M Squyres.
Open mpi: A flexible high performance mpi. In Parallel Process-
ing and Applied Mathematics, pages 228–239. Springer, 2005.

[134] L Peter Deutsch. Gzip file format specification version 4.3. 1996.

[135] G. Massari, S. Libutti, A. Portero, R. Vavrik, S. Kuchar, V. Von-
drak, L. Borghese, and W. Fornaciari. Harnessing performance
variability: A hpc-oriented application scenario. In Digital Sys-
tem Design (DSD), 2015 Euromicro Conference on, pages 111–116.
IEEE, 2015.

[136] Rajkumar Buyya, James Broberg, and Andrzej M Goscinski.
Cloud computing: Principles and paradigms, volume 87. John Wiley
& Sons, 2010.

[137] SAEID Abolfazli, Z Sanaei, MH Sanaei, M Shojafar, and A Gani.
Mobile cloud computing: The-state-of-the-art, challenges, and
future research. 2015.

[138] Fábio Itturiet, Gabriel Nazar, Ronaldo Ferreira, Álvaro Moreira,
and Luigi Carro. Adaptive parallelism exploitation under phys-
ical and real-time constraints for resilient systems. ACM Trans.
Reconfigurable Technol. Syst., 7(3):25:1–25:17, September 2014.

https://criu.org/

200 bibliography

[139] Myeongjae Jeon, Yuxiong He, Sameh Elnikety, Alan L Cox, and
Scott Rixner. Adaptive parallelism for web search. In Proceed-
ings of the 8th ACM European Conference on Computer Systems,
pages 155–168. ACM, 2013.

[140] Major Bhadauria and Sally A McKee. An approach to resource-
aware co-scheduling for cmps. In Proceedings of the 24th ACM
International Conference on Supercomputing, pages 189–199. ACM,
2010.

[141] Mohammad Ansari, Mikel Luján, Christos Kotselidis, Kim
Jarvis, Chris Kirkham, and Ian Watson. Robust adaptation to
available parallelism in transactional memory applications. In
Transactions on high-performance embedded architectures and compil-
ers III, pages 236–255. Springer, 2011.

[142] Diego Didona, Pascal Felber, Derin Harmanci, Paolo Romano,
and Joerg Schenker. Identifying the optimal level of parallelism
in transactional memory applications. In Networked Systems,
pages 233–247. Springer, 2013.

[143] R Clint Whaley and Jack J Dongarra. Automatically tuned lin-
ear algebra software. In Proceedings of the 1998 ACM/IEEE con-
ference on Supercomputing, pages 1–27. IEEE Computer Society,
1998.

[144] Richard Vuduc, James W Demmel, and Katherine A Yelick.
Oski: A library of automatically tuned sparse matrix kernels.
In Journal of Physics: Conference Series, volume 16, page 521. IOP
Publishing, 2005.

[145] Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong,
Jeremy Johnson, David Padua, Manuela Veloso, and Robert W
Johnson. Spiral: A generator for platform-adapted libraries of
signal processing alogorithms. International Journal of High Per-
formance Computing Applications, 18(1):21–45, 2004.

[146] Shoaib A Kamil. Productive high performance parallel pro-
gramming with auto-tuned domain-specific embedded lan-
guages. Technical report, DTIC Document, 2013.

[147] M. Golasowski, M. Litschmannova, S. Kuchar, M. Podhoranyi,
and J. Martinovic. Uncertainty modelling in rainfall-runoff sim-
ulations based on parallel monte carlo method. In International
Journal on non-standard computing and artificial intelligence NNW
. Accepted for publication, 2015. Proceedings, 2015.

[148] Antoni Portero, Stepán Kuchár, Radim Vavrík, Martin Gola-
sowski, Simone Libutti, Giuseppe Massari, William Fornaciari,

bibliography 201

and Vít Vondrák. Flood prediction model simulation with het-
erogeneous trade-offs in high performance computing frame-
work. In 29th EUROPEAN Conference on Modelling and Simula-
tion ECMS 2015, Albena (Varna), Bulgaria. May 26th - 29th, 2015.
Proceedings, 2015.

[149] Antoni Portero, Stepán Kuchár, Radim Vavrík, Martin Gola-
sowski, and Vít Vondrák. System and application scenarios
for disaster management processes, the rainfall-runoff model
case study. In Computer Information Systems and Industrial Man-
agement - 13th IFIP TC8 International Conference, CISIM 2014, Ho
Chi Minh City, Vietnam, November 5-7, 2014. Proceedings, pages
315–326, 2014.

[150] Nikolaos Zompakis, Michail Noltsis, Lorena Ndreu, Zacharias
Hadjilambrou, Panagiotis Englezakis, Panagiota Nikolaou, An-
toni Portero, Simone Libutti, Giuseppe Massari, Federico Sassi,
et al. Harpa: Tackling physically induced performance variabil-
ity. In 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 97–102. IEEE, 2017.

[151] A. Portero, M. Podhoranyi, S. Libutti, G. Massari, and W. For-
naciari. Just-in-time execution to adapt on demand resource al-
location in hpc systems. In Algorithms, Computing and Systems,
2017. ICACS 2005. International Conference on. ACM, 2017.

[152] M. Wolf. High-Performance Embedded Computing: Applications in
Cyber-Physical Systems and Mobile Computing. Newnes, 2014.

[153] H. et al. Mair. A highly integrated smartphone soc featuring
a 2.5 ghz octa-core cpu with advanced high-performance and
low-power techniques. IEEE ISSCC Dig. Tech. Papers, 2015.

[154] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov,
Alexandra Fedorova, and Manuel Prieto. Survey of scheduling
techniques for addressing shared resources in multicore proces-
sors. ACM Computing Surveys (CSUR), 45(1):4, 2012.

[155] P. Gupta, S. G Koolagudi, R. Khanna, M. Ganguli, and A.N.
Sankaranarayanan. Analytic technique for optimal workload
scheduling in data-center using phase detection. In Energy
Aware Computing Systems & Applications (ICEAC), 2015 Interna-
tional Conference on, pages 1–4. IEEE, 2015.

[156] H. E Egilmez, S. Civanlar, and A.M. Tekalp. An optimiza-
tion framework for qos-enabled adaptive video streaming over
openflow networks. Multimedia, IEEE Transactions on, 15(3):710–
715, 2013.

202 bibliography

[157] Roman Sliva and Filip Stanek. Best practice guide anselm. http:
//www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Anselm.

pdf. Accessed: July 7, 2017.

[158] Federico D Sacerdoti, Mason J Katz, Matthew L Massie, and
David E Culler. Wide area cluster monitoring with ganglia. In
null, page 289. IEEE, 2003.

[159] Antoni Portero, Jiri Sevcik, Martin Golasowski, Radim Vavrík,
Simone Libutti, Giuseppe Massari, Francky Catthoor, William
Fornaciari, and Vít Vondrák. Using an adaptive and time pre-
dictable runtime system for power-aware hpc-oriented applica-
tions. In Green and Sustainable Computing Conference (IGSC0<
2016 Seventh International, pages 1–6. IEEE, 2016.

[160] Paul Ellerman. Calculating reliability using fit & mttf: Arrhe-
nius htol model. microsemi, Tech. Rep., 2012.

[161] Jose Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza
Alonso, Alessandro Cilardo, William Fornaciari, Mario Kovac,
Fabrice Roudet, and Davide Zoni. The mango fet-hpc project:
An overview. In Computational Science and Engineering (CSE),
2015 IEEE 18th International Conference on, pages 351–354. IEEE,
2015.

[162] top500.org. Top green 500, november 2016. https://www.

top500.org/green500/lists/2016/11/. Accessed: July 18,
2017.

[163] top500.org. Top 500, november 2016. https://www.top500.org/
lists/2016/11/. Accessed: July 18, 2017.

[164] Bastian Koller, Nico Struckmann, Jochen Buchholz, and
Michael Gienger. Towards an Environment to Deliver High Perfor-
mance Computing to Small and Medium Enterprises, pages 41–50.
Springer International Publishing, Cham, 2015.

[165] Jose Flich, Giovanni Agosta, Philipp Ampletzer, David Atienza,
Carlo Brandolese, Alessandro Cilardo, William Fornaciari, Ynse
Hoornenborg, Mario Kovač, Igor Piljić, et al. Mango: exploring
manycore architectures for next generation hpc system. In De-
sign, Automation, and Test in Europe (DATE2016), 2016.

[166] Khronos Group. The Open Standard for Parallel Program-
ming of Heterogeneous Systems. https://www.khronos.org/

opencl/, (retr. Jul 2015).

[167] Giovanni Agosta, Alessandro Barenghi, Alessandro Di Fed-
erico, and Gerardo Pelosi. OpenCL Performance Portability for
General-purpose Computation on Graphics Processor Units: an

http://www.prace-ri.eu/IMG/pdf/ Best-Practice-Guide-Anselm.pdf
http://www.prace-ri.eu/IMG/pdf/ Best-Practice-Guide-Anselm.pdf
http://www.prace-ri.eu/IMG/pdf/ Best-Practice-Guide-Anselm.pdf
https://www.top500.org/green500/lists/2016/11/
https://www.top500.org/green500/lists/2016/11/
https://www.top500.org/lists/2016/11/
https://www.top500.org/lists/2016/11/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

bibliography 203

Exploration on Cryptographic Primitives. Concurrency and Com-
putation: Practice and Experience, 2014.

[168] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. Towards Transparently Tackling Function-
ality and Performance Issues across Different OpenCL Plat-
forms. In 2nd Int’l Symp. on Computing and Networking (CAN-
DAR), pages 130–136, Dec 2014.

[169] 2PARMA Project. Parallel paradigms and run-time
management techniques for many-core architectures.
http://www.2parma.eu.

[170] C. Silvano, W. Fornaciari, S.C. Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, E. Speziale,
D. Melpignano, J.M. Zins, D. Siorpaes, H. Hubert, B. Staber-
nack, J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-
Couvreur, A. Bartzas, D. Soudris, T. Kempf, G. Ascheid,
H. Meyr, J. Ansari, P. Mahonen, and B. Vanthournout. Paral-
lel paradigms and run-time management techniques for many-
core architectures: The 2parma approach. In Industrial Infor-
matics (INDIN), 2011 9th IEEE International Conference on, pages
835–840, July 2011.

[171] Giuseppe Massari, Chiara Caffarri, Patrick Bellasi, and William
Fornaciari. Extending a run-time resource management frame-
work to support opencl and heterogeneous systems. In Pro-
ceedings of Workshop on Parallel Programming and Run-Time Man-
agement Techniques for Many-core Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms,
PARMA-DITAM ’14, pages 21:21–21:26, New York, NY, USA,
2014. ACM.

[172] D. Zoni, S. Corbetta, and W. Fornaciari. Thermal/performance
trade-off in network-on-chip architectures. In System on Chip
(SoC), 2012 International Symposium on, pages 1–8, Oct 2012.

[173] Simone Libutti, Giuseppe Massari, and William Fornaciari. Co-
scheduling tasks on multi-core heterogeneous systems: An
energy-aware perspective. IET Computers & Digital Techniques,
2015.

[174] Message Passing Forum. Mpi: A message-passing interface
standard. Technical report, Knoxville, TN, USA, 1994.

[175] David Clark. Openmp: A parallel standard for the masses. IEEE
Concurrency, 6:10–12, 1998.

[176] William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
StreamIt: A Language for Streaming Applications. In Proceed-

204 bibliography

ings of the 11th International Conference on Compiler Construction,
CC ’02, pages 179–196, London, UK, UK, 2002. Springer-Verlag.

[177] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[178] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, 2007.

[179] Philipp Haller and Martin Odersky. Actors that unify threads
and events. In COORDINATION’07: Proceedings of the 9th in-
ternational conference on Coordination models and languages, pages
171–190, Berlin, Heidelberg, 2007. Springer-Verlag.

[180] Bernard Sufrin. Communicating scala objects. In Peter H.
Welch, Susan Stepney, Fiona Polack, Fred R. M. Barnes, Alis-
tair A. McEwan, Gardiner S. Stiles, Jan F. Broenink, and Adam T.
Sampson, editors, CPA, volume 66 of Concurrent Systems Engi-
neering Series, pages 35–54. IOS Press, 2008.

[181] ARB. OpenMP Application Program Interface, version 3.0, 2008.

[182] Sarita V. Adve and Kourosh Gharachorloo. Shared memory
consistency models: A tutorial. Computer, 29(12):66–76, 1996.

[183] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
Implementation of the Cilk-5 Multithreaded Language. In
PLDI, pages 212–223, 1998.

[184] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam
Tobin-Hochstadt. The Fortress Language Specification. Techni-
cal report, Sun Microsystems, Inc., 2007.

[185] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 519–538,
New York, NY, USA, 2005. ACM.

[186] CORPORATE Rice University. High performance fortran lan-
guage specification. SIGPLAN Fortran Forum, 12(4):1–86, 1993.

[187] Lorna Smith and Mark Bull. Development of mixed mode mpi
/ openmp applications. Sci. Program., 9(2,3):83–98, 2001.

[188] Pieter Bellens, Josep M. Pérez, Rosa M. Badia, and Jesús Labarta.
Memory – CellSs: a Programming Model for the Cell BE Archi-
tecture. In SC, page 86, 2006.

bibliography 205

[189] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras,
Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and Jesús
Labarta. Productive Cluster Programming with OmpSs. In
Euro-Par (1), pages 555–566, 2011.

[190] Khronos OpenCL Working Group. The OpenCL Specification,
Version 1.2. https://www.khronos.org/registry/cl/specs/

opencl-1.2.pdf, October 2014. Aaftab Munshi eds.

[191] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable Parallel Programming with CUDA. ACM Queue,
6(2):40–53, 2008.

[192] nVidia Corp. CUDA Technology. http://www.nvidia.com/

CUDA, September 2008.

[193] Khronos WG. OpenCL–The Open Standard for Parallel Pro-
gramming of Heterogeneous Systems. http://www.khronos.

org/opencl/, Nov 2011.

[194] OpenACC.org. The OpenACCTM Application Programming In-
terface, Version 2.0. http://www.openacc.org/sites/default/

files/OpenACC.2.0a_1.pdf, August 2013.

[195] Khronos OpenCL Working Group – SYCL subgroup.
SYCLTM Specification, Version 1.2. https://www.khronos.

org/registry/sycl/specs/sycl-1.2.pdf, September 2014.
Lee Howes and Maria Rovatsou eds.

[196] Microsoft Corporation. C++ AMP: C++ Accelerated Massive
Parallelism, Version 1.2. http://download.microsoft.com/

download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/

CppAMPLanguageAndProgrammingModel.pdf, December 2013.

[197] Ehsan Totoni, Babak Behzad, Swapnil Ghike, and Josep Torrel-
las. Comparing the power and performance of intel’s scc to
state-of-the-art cpus and gpus. In Proceedings of the 2012 IEEE
International Symposium on Performance Analysis of Systems &
Software, ISPASS ’12, pages 78–87, Washington, DC, USA, 2012.
IEEE Computer Society.

[198] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and
Pierre-André Wacrenier. StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures. Concurr.
Comput. : Pract. Exper., 23(2):187–198, February 2011.

[199] Morris Jette and Mark Grondona. Slurm: Simple linux utility
for resource management. In ClusterWorld Conference and Expo,
2003.

https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
https://www.khronos.org/ registry/sycl/specs/sycl-1.2.pdf
https://www.khronos.org/ registry/sycl/specs/sycl-1.2.pdf
http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf
http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf
http://download.microsoft.com/download/4/0/E/40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/CppAMPLanguageAndProgrammingModel.pdf

206 bibliography

[200] Judit Planas Carbonell. Programming Models and Scheduling Tech-
niques for Heterogeneous Architectures. PhD thesis, Universitat
Politècnica de Catalunya - UPC, 2015.

[201] Taeyoung Kim, Jintaek Kang, Sungchan Kim, and Soonhoi Ha.
Sophy: A software platform for hybrid resource management
of homogeneous many-core accelerators. In Proceedings of the
3rd International Workshop on Many-core Embedded Systems, MES
’15, pages 17–24, New York, NY, USA, 2015. ACM.

[202] Patrick Bellasi, Giuseppe Massari, and William Fornaciari.
Effective runtime resource management using linux control
groups with the barbequertrm framework. ACM Trans. Embed.
Comput. Syst., 14(2):39:1–39:17, March 2015.

[203] Arvind Sridhar, Alessandro Vincenzi, David Atienza, and
Thomas Brunschwiler. 3d-ice: A compact thermal model for
early-stage design of liquid-cooled ics. IEEE Transactions on
Computers, 63(10):2576–2589, 2014.

[204] Martin Aigner, Christoph M. Kirsch, Michael Lippautz, and
Ana Sokolova. Fast, multicore-scalable, low-fragmentation
memory allocation through large virtual memory and global
data structures. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, pages 451–469, New
York, NY, USA, 2015. ACM.

[205] Dionysios Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris.
Dynamic Memory Management in Vivado-HLS for Scalable Many-
Accelerator Architectures, pages 117–128. Springer International
Publishing, Cham, 2015.

[206] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David
Brooks. The accelerator store: A shared memory framework
for accelerator-based systems. ACM Trans. Archit. Code Optim.,
8(4):48:1–48:22, January 2012.

[207] Carlos Villavieja, Yoav Etsion, Alex Ramirez, and Nacho
Navarro. FELI: HW/SW Support for On-Chip Distributed Shared
Memory in Multicores, pages 282–294. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

[208] Andrea Di Biagio, Ettore Speziale, and Giovanni Agosta. Ex-
ploiting Thread-Data Affinity in OpenMP with Data Access Patterns,
pages 230–241. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[209] Houjun Tang, Xiaocheng Zou, John Jenkins, A David, II Boyuka,
Stephen Ranshous, Dries Kimpe, Scott Klasky, and Nagiza F

bibliography 207

Samatova. Improving read performance with online access pat-
tern analysis and prefetching. In Euro-Par, pages 246–257, 2014.

[210] Julien Mottin, Mickael Cartron, and Giulio Urlini. The
STHORM Platform, pages 35–43. Springer New York, New York,
NY, 2014.

[211] I. Koutras, A. Bartzas, and D. Soudris. Efficient memory alloca-
tions on a many-core accelerator. In ARCS 2012, pages 1–6, Feb
2012.

[212] C. Silvano, W. Fornaciari, S. C. Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, E. Speziale,
D. Melpignano, J. M. Zins, D. Siorpaes, H. Hübert, B. Staber-
nack, J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-
Couvreur, A. Bartzas, D. Soudris, T. Kempf, G. Ascheid,
H. Meyr, J. Ansari, P. Mähönen, and B. Vanthournout. Paral-
lel paradigms and run-time management techniques for many-
core architectures: The 2parma approach. In 2011 9th IEEE Inter-
national Conference on Industrial Informatics, pages 835–840, July
2011.

	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 The Resource Management Problem
	1.1.1 From Single to Multi-Core
	1.1.2 From Multi to Many-Core
	1.1.3 Managing computing resources

	1.2 The dissertation contribution in a nutshell
	1.2.1 Addressing a real, complex problem
	1.2.2 Dissertation Organization

	Single-Computing-Node Systems
	2 The Linux Control Groups Framework
	2.1 Background
	2.2 Control Groups in a nutshell
	2.3 On the Accuracy of CGroups-based CPU bandwidth Control
	2.3.1 Motivation and Background
	2.3.2 Towards a fine-grained CPU bandwidth enforcement
	2.3.3 Bandwdith allocation using the cgroups cpu controller
	2.3.4 Simulating CPU bandwidth enforcement
	2.3.5 Validation
	2.3.6 Conclusions

	3 Resource Allocation: system-wide vs application-specific
	3.1 Tailoring allocation to applications
	3.1.1 From brute force prediction to application characterization
	3.1.2 Selecting metrics to characterize resource contention

	3.2 Energy-efficient co-scheduling using Performance Counters
	3.2.1 A performance-counters-aware BarbequeRTRM
	3.2.2 Experimental Results
	3.2.3 Conclusions

	3.3 Making applications adapt to allocations
	3.3.1 Motivation
	3.3.2 Methodology
	3.3.3 Experimental Results
	3.3.4 Conclusions

	4 Single-ISA Heterogeneous Processing: big.LITTLE Architectures
	4.1 Resource Contention in big.LITTLE Architectures
	4.1.1 Related Works
	4.1.2 Methodology
	4.1.3 Experimental Results
	4.1.4 Conclusions

	4.2 A heterogeneity-aware OpenCL support

	Multiple-Computing-Nodes Systems
	5 Enabling a Transparent Process Migration in Open MPI
	5.1 Motivation
	5.2 Related Works
	5.3 Design and Implementation
	5.3.1 Open MPI architecture
	5.3.2 Open MPI extension
	5.3.3 CRIU
	5.3.4 Migration phases

	5.4 Evaluation
	5.4.1 Overheads due to multiple ORTE daemons per node
	5.4.2 Overheads due to migration

	5.5 Conclusions

	6 CPU Resource Management in HPC Systems
	6.1 Harnessing Performance Variability in HPC
	6.1.1 Background
	6.1.2 The HARPA Operating System
	6.1.3 A feedback-based, performance-aware allocation policy
	6.1.4 Experimental Setup
	6.1.5 Conclusions

	6.2 A Workload-Agnostic Resource Usage Optimization
	6.2.1 Background
	6.2.2 Summary of the Work
	6.2.3 A partially de-centralized resource management
	6.2.4 Defining a throughput goal
	6.2.5 Computing the ideal resource budget
	6.2.6 The PerDeTemp Scheduling Policy
	6.2.7 Resource allocation policy validation
	6.2.8 Resource mapping policy validation
	6.2.9 Conclusion

	7 Resource Management support for Deeply-Heterogeneous HPC
	7.1 Overview
	7.1.1 Resource Management
	7.1.2 Memory Management
	7.1.3 Programming Model Support

	7.2 Programming Model Support
	7.2.1 Message Passing Model
	7.2.2 Shared Memory Model
	7.2.3 Data Flow Model
	7.2.4 Hybrid Models
	7.2.5 Heterogeneous Platforms
	7.2.6 Host-side low-level runtime
	7.2.7 Device-side low-level runtime
	7.2.8 Discussion

	7.3 Runtime Management
	7.3.1 Run-time resource manager
	7.3.2 Distributed Management
	7.3.3 Developing runtime-manageable applications
	7.3.4 Profiling runtime-manageable applications

	7.4 Memory Management
	7.4.1 The MANGO approach
	7.4.2 Choosing the most suitable memory.
	7.4.3 Concurrent, thread-safe memory allocation and deallocation.
	7.4.4 Runtime optimization.

	7.5 Conclusions and Future Developments

	8 Conclusions
	8.1 Subjects covered by the dissertation
	8.2 Contributions of the dissertation
	8.2.1 Single-Computing-Node Systems
	8.2.2 Multiple-Computing-Nodes Systems

	Appendix
	A The Barbeque Run-Time Resource Manager
	A.1 User-Space Resource Management
	A.2 The BarbequeRTRM approach
	A.2.1 Managed Applications Execution Flow
	A.2.2 Integrating applications

	A.3 Defining Resource Allocations

	Bibliography

