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Introduction

MUltidimensional problems represent a great issue in the financial industry and an
interesting research area in academy. In particular the mathematical and numer-
ical difficulties issued by this class of problems are relevant even for the "sim-

ple" reference models, where the underlying processes are correlated Geometric Brown-
ian motions with parameters eventually deterministic functions of time, such as the Black
model [6] for Equity derivatives and Hull and White model [21] for interest rates where
Zero Coupon Bonds’ terminal distributions are described by multivariate log-normals. In
this thesis we tackle two different multidimensional problems related to Basket Options:
the first is the pricing and hedging European Basket Options in Equity markets and the
second is related to the pricing of illiquid corporate Bonds. In the latter case we show that
the problem can be modeled as a Lookback Basket Option. Both Basket Option problems
can be dealt with Lower and Upper Bounds that in some cases can be very close to the
exact solution but present several analytical and numerical disadvantages. The thesis is
divided in two parts where each one is related to one of these two applications of Lower
and Upper bounds to Basket Options.

European Basket Options considered in the first part, hereinafter also standard Basket
Options, are a particular class of derivatives that can be viewed as Plain Vanilla European
options on the weighted sum of a certain number of assets. In a standard Basket Option,
as an index Option like Eurostoxx50 or SP500, tens or hundreds of underlyings can be in-
volved and thus the computation of prices and Greeks can be extremely time consuming,
inaccurate and numerically unstable with standard Monte Carlo techniques. For this rea-
son it is common among practitioners to rely on closed formula Lower and Upper Bounds
which admit also simple closed formulas for all sensitivities. As already underlined in the
literature [9], even if is well known that constant volatility is not sufficient to describe real
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market data, the Black formula is still considered a landmark and hence studying its gener-
alization on a multidimensional framework can be considered an interesting research area
by itself. In this thesis we show that is already challenging the problem where one models
the underlyings as Geometric Brownian Motions. In particular we focus our research on
Lower and Upper Bounds that present a simple analytic form and show sensitivities similar
to the Black ones. This problem has been first tackled by the seminal paper of Curran [10]
and nowadays the best performing Lower Bound can be constructed starting from some
intuitions of Carmona and Durrleman [9] and Lord [30].

Carmona and Durrleman derive a set of Lower Bounds with an analytic form equal to
weighted sums of Black call like formulas. They also consider the problem of picking the
best Lower Bound in the set introduced. This is a constrained optimization problem that
is numerically solved by the authors using a gradient based method.

In this thesis we follow a similar approach with a different Lower Bound that admits
Carmona and Durrleman one as a subcase.

This functional form comes from the idea developed by Lord in [30]. According to
Lord the Lower Bound functional form is a weighted sum of Black like calls and puts.
He considers the Lower Bound for a selected set of parameters. In this thesis we show
that while the two functional form are both very simple, in general considering the second
approach gives a significantly better Lower Bound in several cases and it can result in
a more accurate approximation.We also show the equivalence of the two approaches for
some particular cases.

In this thesis also the set of Upper Bounds introduced by Deelstra et al. in [12] is
considered. Likewise the Lower Bound this set result in a very simple analytical form
that reminds a linear combination of Black like calls. This set is then interesting for two
reasons: first because of its simple analytic form and then because numerical comparisons
with other set of Upper Bounds (Chapter 2) show that it is often the best performing.

Two are the innovative contributions of this first part of the thesis to the existing litera-
ture.

First we introduce this optimization problem for the Lower Bound and for the Upper
Bound. We are able to characterize the problem in terms of existence and uniqueness for
some financially relevant situations.

Second we we show that in general the optimization problem for the Lower (Upper)
Bound presents several maxima (minima). Unfortunately the standard global optimization
tools (e.g. GA in Matlab) sometimes do not reach the global maxima (minima) and it
is always extremely slow for problems of financial interest. For this reason an ad-hoc
optimization algorithm has been developed that is fast and accurate.

This first part of the thesis is divided as follows. In Chapter 1, after introducing the
notation, we define the Lower and Upper Bound and related optimization problems. We
also discuss the relations of such bounds with the literature. Chapter 2 is devoted to an
analytical study of the two optimization problems. We show that both Upper and Lower
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Bounds global and local minima are in relation with the matrix that describes the assets’
correlation which characterizes the constraint geometry. In particular we show that the
columns of such matrix play a relevant role. We also compare the performance of the
optimal bounds with the literature via numerical examples. In Chapter 3 we develop a new
algorithm for the numerical computation of the optimal Upper and Lower Bounds. We
discuss the numerical issues presented by the optimization problems and we describe in
detail the implementation of the algorithm proposed. The performance of such algorithm
is then compared with GA of Matlab with numerical examples.

The second part of the thesis is devoted to study the problem of pricing a corporate
illiquid coupon bond in a defaultable setting assuming an Hull and White dynamic for the
Zero Rates. Following the seminal work of Longstaff [28] the estimation of the illiquidity
premium is related to the running maximum (like a Lookback option) of the Bond during
a time window, the time-to-liquidate the position, that estimates the time when the trader
is able to liquidate his position. This problem has been extended to the Zero Coupon
(hereinafter ZC) case of a default free Bond. The main contribution of this thesis is to
propose a simple closed formula for a defaultable Coupon Bond in presence of illiquidity.
In this case the approach proposed in [25] cannot be extended and we show that this
approach is related to a Lookback Basket Option. Also in this case, as in the one of the
first part, a closed formula solution would be desirable since the problem is strongly path
dependent and Monte Carlo simulations can be inaccurate and time consuming. In this
thesis we show that the price of such an illiquid Bond can be evaluated via a Lower Bound
and an Upper Bound technique. We also show that, for all practical purposes, these two
Bounds coincide and show two examples in the European market.
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Part I

Basket options: a pricing and hedging
problem
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CHAPTER1
Upper and lower bounds for basket options

1.1 Introduction

Pricing an European call option written on a linear combination of different underlyings
is not a trivial task even in the basic log-normal framework, where the assets risk neutral
dynamics are described by a multidimensional geometric Brownian motion. Within this
framework when the underlying is one single asset the price of a European call is given
by the celebrated Black formula, while when the number of underlyings increase a closed
formula cannot be derived anymore because the distribution of the sum of log-normal
variables is unknown. This task can be performed only via Monte Carlo techniques but
the computation of the price and the sensitivities can be extremely demanding in terms of
computational time. For this reason closed formula Lower and Upper Bounds similar to
the Black formula have been developed. The literature on Basket Option bounds is quite
extensive. Let us mention some of the relevant results to the present thesis. After the
seminal work of Curran [10], sets of Lower Bounds obtained making use of the technique
of conditioning with respect to a generic Gaussian variable and the Jensen inequality has
been introduced in [9, 33, 34]. At the same time similar Lower Bounds were obtained first
in [23] and then in [11–13,39] using the so called technique of conditional comonotonicity.
To the best of our knowledge the best approximations, in the sense that always outperforms
all the others approximations from below, known so far can be found in [30] by Lord where
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Chapter 1. Upper and lower bounds for basket options

the author derive a set of Bounds which reminds a linear combinations of Black call and
put Plain Vanillas and in [9] by Carmona and Durrleman where they consider a Lower
Bound obtained by picking the best element in a set of Lower Bounds which reminds a
weighted sum of only Black Plain Vanilla calls. Also a several approximations from above
have been studied. In particular in [12] the Improved Comonotonic Upper Bound and the
Partially Exact Comonotonic Upper Bound that we consider in this thesis are introduced
while other upper bounds can be found in [12,30,34,40]. Closed formula bounds for basket
and spread options are also studied in non Gaussian models in [8], where the indicated
bounds depend on the multivariate characteristic function of the process; when considering
Gaussian models the lower bound they propose is the same of [34]. It is also worthwhile
to mention the model free approach for the upper bound, where assets’ dynamics are not
specified, first proposed in [26].

In this Chapter we introduce the notation and we define the two sets of Lower and
Upper Bounds we recall the main results in the literature on the subject. For the Lower
Bound we introduce a new approximation combining the idea of Lord [30] of considering
sets of formulas with Black Plain Vanilla calls and puts and the idea of Carmona and
Durrleman [9] of the taking the best element within the set. For the Upper Bound we recall
the Improved Comonotonic Upper Bound of [12] giving a slightly more precise definition
where the difference is that in our formulation a set of irregular points are well defined.
Moreover at the end of Chapter we discuss the cases in which the two approximations
default to the true value and the Greeks.

1.2 Basket call in a log-normal framework

Similarly to Carmona and Durrleman we consider a multidimensional Geometric Brow-
nian Motion dynamics for n stocks S1, . . . , Sn whose risk neutral dynamics is given by

dSi(t)

Si(t)
= (r − qi)dt+ vidWi(t) (1.1)

with some initial values Si(0), . . . , Sn(0), where Wi(t) are some correlated Brownian mo-
tions such that

dWi(t)dWj(t) = ρijdt (1.2)

and ρ is a positive definite correlation matrix. Under the assumption of deterministic
interest rates, the risk neutral price of a standard Basket Option is

C = B(0, T )E

[(
n∑
i=1

Si(T )−K

)
+

]
(1.3)
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1.2. Basket call in a log-normal framework

with B(0, T ) the discount factor up to T , B(0, T ) = e−rT . Let us introduce a simplified
notation that puts in evidence the relevant free parameters in this pricing problem. We
can consider the set of forwards with expiry T associated to the n stocks whose value in
t ∈ [0, T ] is

F T
i (t) = e(r−qi)(T−t)Si(t) i = 1, . . . , n; t ∈ [0, T ]. (1.4)

Their martingale dynamics is

dF T
i (t) = F T

i (t)vidWi(t) i = 1, . . . , n; t ∈ [0, T ], (1.5)

whose solution in t = T with initial condition F T
i (0) is

F T
i (T ) = F T

i (0)e−
1
2
v2i t−viWi(T ) (1.6)

that is equivalent in law to

F T
i (T )

”law”
= F T

i (0)e−
1
2
v2i T−vi

√
Tgi (1.7)

with {gi}i=1,...,n a set of correlated standard normal random variables such that

E [gigj] = ρij. (1.8)

Call Option (1.3) is then equivalent to

C = B(0, T )F T (0)C (1.9)

with F T (0) =
∑n

i=1 F
T
i (0) the basket forward at value date and

C := E[(X −K)+] (1.10)

and

X =
n∑
i=1

ωie
− 1

2
σ2
i−σigi , (1.11)

where we have defined the weights ωi and the cumulated volatilities such thatωi :=
aiF

T
i (0)

F T (0)
σi := vi

√
T .

(1.12)

According to this notation C (1.10) is, a part a set of constants, the quantity that we price
that depends via (1.11) only on the 2n parameters {ωi}i=1,...,n and {σi}i=1,...,n.
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Chapter 1. Upper and lower bounds for basket options

Remark. It is straightforward to show, as in Merton [31] that the problem is equivalent
when both interest rates r, dividend yields {qi}i=1,...,n and volatilities {vi}i=1,...,n are de-
terministic functions of time. The European Basket Option depends only on the two sets
{ωi}i=1,...,n, {σi}i=1,...,n.

Hereinafter we will always refer to the adimensional pricing problem (1.10). When
n = 1 (1.10) becomes the celebrated Black formula. Even if it is probably the most
popular formula in mathematical finance, in the following we want to write and derive it in
a slightly different analytic form involving an optimization problem. The reason is that the
derivation of the Lower Bound in the next section is conceptually similar to the following
derivation of the Black formula. We start with a technical lemma (see [9], Proposition 2
pag.4).

Lemma 1.2.1. For any integrable random variable V and given the set A of random
variables taking values in [0, 1]

E[V+] = sup
Y ∈A

E[Y V ]. (1.13)

Proof. Being Y ∈ [0, 1] then

E[Y V ] = E[Y V+]− E[Y V−] ≤ E[V+].

and, denoting by 1{·} the characteristic function, the equality is attained for Y = 1{V >0}.

We can now write the Black formula, normalized for the forward and the discount, in
a revisited analytic form. Defining the density function of the standard normal variable
with ϕ(x) = e−x

2/2/
√

2π and the cumulative function φ(x) =
∫ x
−∞ ϕ(t)dt, the following

proposition holds

Proposition 1.2.1 (Black76 adimensional formula). For n = 1 it holds that

C = sup
y∈R

[φ(y + σ1)−Kφ(y)] . (1.14)

Proof. Defining V =
(
e−

1
2
σ2
1−σ1g1 −K

)
, we have

C = E [V+] .

Then defining the subset G of A, which contains the random variables Y (y) defined as
Y (y) := 1{g1<y} with y ∈ R, we have that, being V monotone with respect to g1, the
element 1{V >0} belongs to G. Then we can exploit Lemma 1.2.1 restricting to the set G
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1.2. Basket call in a log-normal framework

and we obtain

C = sup
Y (y)∈G

E [Y V ]

= sup
y∈R

∫ ∞
−∞

dtϕ(t)
(
e−

1
2
σ2
1−σ1t −K

)
1{t<y}

= sup
y∈R

[φ(y + σ1)−Kφ(y)]

which is the result.

Explicitly computing the supremum over y the usual analytic form of the Black formula
is obtained.

Proposition 1.2.2 (Black76 adimensional standard formula). For n=1 it holds that

C = φ(y? + σ1)−Kφ(y?), (1.15)

where y? = − logK
σ2
1
− 1

2
σ1 is the solution of the equation

e−
1
2
σ2
1−σ1y −K = 0. (1.16)

Proof. Imposing the derivative w.r.t y of eq.(1.14) equal to zero, eq.(1.16) is obtained.
This equation has only one zero which corresponds to a maximum.

The value of the adimensional put option with strikeK can be obtained via the adimen-
sional put call parity

P = C − 1 +K (1.17)

Let us stress stress that the key element in obtaining a closed form exact solution to the
trivial one dimensional pricing problem is to define a simple subset of A, which contains
only elements with Gaussian measure and which also contains the element 1{(X−K)>0}.
When n > 1, it is impossible to define such a subset and a Lower Bound is obtained. This
is indeed the technique used in [9] for obtaining their Lower Bound and that we also use
in the next section. In addition all the others Lower Bound can be obtained by considering
different sets G over which the supremum is computed. Let us also remark that, as shown
by Caldana et al. in [8], this technique can be also generalized to non Gaussian models
to obtain closed formula Lower Bounds to Basket options in terms of the characteristic
function.
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Chapter 1. Upper and lower bounds for basket options

1.3 Lower Bound

In this section we introduce a Lower Bound for the Basket Options 1.10 relating with the
existing literature on the subject. As discussed in the above section, the idea of [9] for
obtaining a Lower Bound to the price of a basket call is to restrict the set over which the
supremum of Lemma 1.2.1 is computed. In particular, instead of the set A containing
all the random variables taking values in [0, 1], we restrict to the subset 1{G} where G
contains only variables with Gaussian measure. Here we exploit the same technique but we
consider a wider set. Picking the best element within G results in a nonlinear constrained
programming problem, hence we start defining the objective function of the optimization
problem, the constraint and then we show the solution of such optimization problem is
actually a Lower Bound.

Definition 1.3.1 (Lower Bound objective function). Let us consider x ∈ Rn and y =
(y1, y2) ∈ R2, then we define

LB(x, y) :=

{∑n
i=1 wi [φ (y1 + σixi) + φ (−y2 − σixi)]−K [φ (y1) + φ (−y2)] y1 ≤ y2

(1−K)+ y1 > y2

(1.18)

We also introduce the domain where the supremum over x is computed.

Definition 1.3.2 (Ellipsoid Q). Given x ∈ Rn and ρ ∈ Rn×n positive definite we define

Q := {x ∈ Rn : x ·
(
ρ−1x

)
= 1} (1.19)

The domainQ is clearly an hyper-ellipsoid in Rn (hereinafter ellipsoid) because ρ−1 is
a positive definite squared matrix in Rn×n. The Optimal Lower Bound is defined as the
solution of the following problem

Definition 1.3.3 (Optimal Lower Bound). Given the basket call (1.10) we define the Opti-
mal Lower Bound through the following optimization problem:

LBopt := sup
x∈Q

sup
y∈R2

LB(x, y). (1.20)

In the next proposition we show that formula (1.20) is a Lower Bound.

Theorem 1.3.1. Given the call C in (1.10), then LBotp is a Lower Bound for C, i.e.

LBopt ≤ C. (1.21)

Proof. Lemma 1.2.1 implies that for every subset G of the set A of of all the random
variables taking values in [0, 1] and any integrable variable V(

sup
Y ∈G

E [V Y ]

)
+

≤ E [V+] .

8



1.3. Lower Bound

We then consider the subset G containing all the elements of the type
Y (β, y) = 1{β·g≤y1∪β·g≥y2} parametrized by β and y where β ∈ Rn/{0} and y ∈ R2.
When y1 ≥ y2, Y (β, y) is the variable constant equal to 1 and then

(E [V Y (β, y)])+ = (E [V ])+ .

Then taking V = X −K we obtain

(E [X −K])+ = (1−K)+

The non trivial cases are obtained using the total probability formula. Defining x ∈ Rn

the vector whose components xi are the correlations between β · g and gi,

xi =
E[giβ · g]

E[g2
i ]E[(β · g)2]

=
(ρβ)i√
β · ρβ

,

we have
sup
Y ∈G

E [(S −K)Y ] = sup
β∈Rn

sup
y∈R2

E
[
E [S −K|β · g]1{β·g<y1}1{β·g>y2}

]
= sup

x∈Q
sup
y∈R2

E

[(
n∑
i=1

ωie
− 1

2
σ2
i x

2
i−σixiβ·g −K

)
1{β·g<y1}1{β·g>y2}

]
= sup

x∈Q
sup
y∈R2

LB(x, y).

Now we only need to show that actually x ∈ Q. Via direct computation we have

x ·
(
ρ−1x

)
=

(ρβ)√
β · ρβ

·
(
ρ−1 (ρβ)√

β · ρβ
= 1

)
.

We can observe that LBopt is a multidimensional extension of the Black formula: it
is a linear combination of Black call and put formulas (1.14) where the volatilities σi are
scaled by the factors xi. Being the main goal of this part of the thesis the computation
of the optimal Lower Bound LBopt defined as the solution of the problem (1.20), it is
interesting in first instance to look at the first order conditions. Defining the Lagrangian
function

L(x, y, µ) = LB(x, y)− µ

2

(
x
(
·ρ−1x− 1

))
, (1.22)

where µ is a Lagrange multiplier, the first order conditions

∂L(x,y,µ)
∂y1

= 0
∂L(x,y,µ)

∂y2
= 0

∂L(x,y,µ)
∂xi

= 0 i = 1, . . . , n
∂L(x,y,µ)

∂µ
= 0

(1.23)
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Chapter 1. Upper and lower bounds for basket options

reads as

∑n
i=1 ωie

− 1
2
σ2
i x

2
i−σixiy1 = K∑n

i=1 ωie
− 1

2
σ2
i x

2
i−σixiy2 = K

ωiσi [ϕ(y1 + σixi)− ϕ(−y2 − σixi)] = (ρ−1x)i

x · (ρ−1x) = 1

(1.24)

This set of equations will be used in Chapter 3 for the numerical computation of the supre-
mum and also in the next section when obtaining the Lord lower bound [30] as a non
optimized formulation of our Lower Bound.

1.4 Connections with existing Lower Bounds

In this section we show the relation between the Lower Bounds defined in [9] and in [30]
with the one derived in the above section. We also discuss the relation with the extension
of the Lower Bound for non Gaussian models derived in [8].

Carmona and Durrleman

In the derivation of the Lower Bound of [9] the authors consider the subset GCD of the
random variables 1{β·g≤y1} with β ∈ Rn and y ∈ R which is clearly a subset of G contain-
ing 1{β·g≤y1∪β·g≥y2} with β ∈ Rn and y ∈ R2 that we consider. Moreover they also define
the optimal Lower Bound picking the best element within the set introduced. Roughly
speaking their subset can be retrieved from ours fixing the value of y2 (i.e. not taking the
supremum over it) and then taking the limit for y2 → ∞. Thus considering such limit in
our definition of the objective function 1.3.1 we obtain their definition:

Definition 1.4.1 (Carmona and Durrleman objective function). Given x ∈ Q and y1 ∈ R
we define

CDLB(x, y) :=
n∑
i=1

wiφ (y1 + σixi)−Kφ (y1) . (1.25)

From this definition they define their Lower Bound as the optimal one:

Definition 1.4.2 (Carmona and Durrleman Lower Bound).

CDLBopt := sup
x∈Q

sup
y1∈R

lim
y2→∞

LB(x, y)

= sup
x∈Q

sup
y1∈R

n∑
i=1

wiφ (y1 + σixi)−Kφ (y1)
(1.26)
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1.4. Connections with existing Lower Bounds

The advantage of their approach is twofold: first their lower bound has a simpler an-
alytic form and second it can be generalized for negative weights ωi (negative weights
correspond to spread options). The drawback is that their formula is clearly less accurate
and sometimes it results in a not accurate approximation to the true price. In particular in
section 2.4 we are able to show that the contribution of the additional terms that appears in
the formula we consider (which are similar to put Black formulas) have a dramatic impact
when negative correlations appears.

Lord

Lord in [30] considers continuously sampled Asian options on an underlying that follows
a Geometric Brownian Motion. This case is qualitatively similar to the case we consider
in this thesis, because a discretely sampled Asian Option is equivalent to a standard Basket
Option. Let us introduce the Lower Bound in [30] for a standard Basket Option, showing
that is equivalent to our objective function (1.18), where it has been specified the sup w.r.t.
y ∈ R2, i.e.

Definition 1.4.3 (Lord Lower Bound).

LBL(x) := sup
y∈R2

LB(x, y). (1.27)

In order to obtain his formula we need to compute the supremum over y and thus we
must solve the first two equations of (1.24). For this purpose we consider the function
`(λ) :=

∑n
i=1 ωie

− 1
2

(σixi)
2−σixiλ and, for any given vector x ∈ Rn/{0}, the equation in λ

`(λ) = K. (1.28)

The analytic form of the Lord lower bound is then strictly related to the following lemma.

Lemma 1.4.1. For any given a vector x ∈ Rn/{0}, eq. (1.28) could have two, one or no
solutions. There are two relevant sets of cases.

1) All components in x have the same sign and :

a. xi ≥ 0 ∀i and infλ `(λ) < K. Eq.(1.28) has one solution;
b. xi ≥ 0 ∀i and infλ `(λ) ≥ K. Eq.(1.28) has no solution;
c. xi ≤ 0 ∀i and infλ `(λ) < K. Eq.(1.28) has one solution;
d. xi ≤ 0 ∀i and infλ `(λ) ≥ K. Eq.(1.28) has no solution.

2) At least one component of x is greater than zero and one is lower than zero. In this
case there exists and it’s unique λ̂ s.t. λ̂ = minλ `(λ) and

a. λ̂ < K. Eq.(1.28) has two solutions;

11



Chapter 1. Upper and lower bounds for basket options

b. λ̂ = K. Eq.(1.28) has one solution;
c. λ̂ < K. Eq.(1.28) has no solution.

Proof. A straightforward generalization of Lemma 1 and Lemma 2 in [30, sect. 4.3]

In the following statement the function LBL(x) is defined.

Definition 1.4.4 (LBL(x)). For every x ∈ Rn let us define the function LBL(x), depend-
ing on the different solutions in the cases of the above Lemma

LBL(x) :=



c1(λ?) case : 1a

c2(λ?) case : 1b

c1(λ−) + c2(λ+) case : 2a

1−K cases : 1b, 1d, 2b, 2c

0 forx = 0

(1.29)

where λ? is the solution of eq.(1.28) in the unique solution cases, while λ− and λ+ are
respectively the smallest and the largest solutions in the two solutions case and

c1(λ) ≡
n∑
i=1

ωiφ(λ+ σ̃i)−Kφ(λ)

c2(λ) ≡
n∑
i=1

ωiφ(−λ− σ̃i)−Kφ(−λ)

λ ∈ R (1.30)

where φ(·) is the standard normal cumulate function.

Theorem 1.4.1. Given the call C in (1.10) and x ∈ Q, LBL(x) is a lower bound for C,
i.e. LBL(x) ≤ C.

Proof. A straightforward generalization of the proof in [30, sect. 4.3] or by observing that

LBL(x) ≤ sup
x∈Q

LBL(x) = LBopt ≤ C (1.31)

where the last inequality is from theorem 1.4.1.

Let us state some remark on the formula obtained. The equality

LBopt = sup
x∈Q

LBL(x) (1.32)

tells that we could either retrieve the optimal Lower Bound LBopt we defined in (1.20)
by optimizing LBL(x) in the variable x ∈ Q. Despite the optimal value are equal, our

12
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formulation is clearly favorable in terms of computational effort required for numerical op-
timization. In fact, the computation of LBL(x) for some x ∈ Q requires an unconstrained
two dimensional optimization. This means that if we want to compute the supremum in
(1.32) we need to perform such optimization for each value of x ∈ Q explored. On the
contrary with our definition of the objective function (1.18) we can compute LBopt by a
joint optimization of x ∈ Q and y ∈ R2.

Default of LBopt to CDLBopt

We conclude this section showing a relevant relation between the Lower Bound we intro-
duced and the Lower Bound of Carmona and Durrleman.

Proposition 1.4.1. Suppose that x? := arg maxx∈Q LBL(x) has all positive components,
i.e. x?i > 0 for i = 1, . . . , n, then LBopt = CDLBopt.

Proof. We observe from Lemma 1.4.1 that the optimal y1 exist and it’s finite while the
optimal y2 →∞, which is exactly the definition 1.4.2.

This proposition states that if the optimal x is in the first hyperoctant, then we can
consider only the simpler formula of Carmona and Durrleman and compute CDLBopt.
However at this point we cannot know a priori if this hypothesis is met. In Chapter 2 we
tackle this problem and give some conditions under which x? is in the first hyperoctant.

1.5 Upper bounds: ICUB and PECUB

After the introduction of a simple Lower Bound, this subsection is devoted to recall two
upper bounds that are common in the literature and can be written as linear combina-
tions of Black formulas ( see e.g. [11–13, 23, 39, 40]): the improved comonotonic up-
per bound ICUB(x) first introduced in [23], and the partially exact comonotonic up-
per bound PECUB(x, d) introduced in [12] as an improvement of ICUB(x) in some
particular cases. The formal definition of the objective function ICUB(x) presented in
this subsection allows to highlight a difference with the original definition in [23]: as
discussed in section 2.4 this difference is significant in some relevant cases. Similarly
to the Lower Bound of Lord previous subsection we consider the function u(λ, ϑ) :=∑n

i=1 ωie
− 1

2
σ2
i−σixiλ−σi

√
1−x2i θ(λ) where θ(λ) is defined as the equation in θ

u(λ, θ) = K. (1.33)

The definition of ICUB(x) is limited to a region of Rn delimited by the unitary cube. We
first define this region and then, as in the lower bound case, state a lemma strictly related
to the analytic form of ICUB(x).

13



Chapter 1. Upper and lower bounds for basket options

Definition 1.5.1 (Unitary cube). Let us define the unitary cube as

B := {x ∈ Rn : −1 < xi < 1 ∀i}

and denote its boundary with ∂B.

Lemma 1.5.1. Given x ∈ B ∪ ∂B and λ ∈ R eq. (1.33) could have one or no solutions.
More precisely

1) if x ∈ B eq.(1.33) has one solution for each λ ∈ R;

2) if x ∈ ∂B, then:

a. if infϑ u(λ, ϑ) < K, then eq.(1.33) has one solution;
b. if infϑ u(λ, ϑ) ≥ K, then eq.(1.33) has no solution.

Proof. First notice that u(λ, ϑ) is decreasing in ϑ for each λ ∈ R. Case 1) follows from
infϑ u(λ, ϑ) = 0 for each λ ∈ R. Case 2) from infϑ u(λ, ϑ) > 0 for each λ ∈ R

The improved comonotonic upper bound (ICUB(x)) is defined as follows.

Definition 1.5.2 (ICUB(x)). For x ∈ B ∪ ∂B let us define the function ICUB(x), de-
pending on the different solutions in the cases of the above Lemma

ICUB(x) :=

∫ ∞
−∞

dλφ(λ) c(λ) (1.34)

where φ(·) is the standard normal density function and

c(λ) :=


n∑
i=1

ωie
− 1

2
σ̃2
i−σ̃iλ φ(θ(λ) + σ̂i)−K φ(σ̂i) cases : 1, 2a

n∑
i=1

ωie
− 1

2
σ̃2
i−σ̃iλ −K case : 2b

being θ(λ) the solution of eq.(1.33).

Theorem 1.5.1. Given the stop-loss premium C in (1.10) and x ∈ Q, ICUB(x) is an
upper bound for C, i.e. ICUB(x) ≥ C.

Proof. Straightforward applying Lemma 1.5.1.

Let us underline that Definition 1.5.2 differs slightly from the one in [23]. This defini-
tion is more precise than the one in [23] for x on the boundary of the cube ∂B, because for
x ∈ ∂B eq. (1.33) can have no solution. We show in the next section that these correlation
values are extremely relevant for the ICUB(x). The set of upper bounds ICUB(x) can
be written in a revisited analytic form which is more suitable for the purpose of numerical
optimization.
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Proposition 1.5.1. Given x ∈ Q, ICUB(x) can be written as

ICUB(x) =

∫ ∞
−∞

dλ sup
θ(λ)∈R

[
n∑
i=1

ωiφ(λ+ σixi)φ

(
σi

√
1− x2

i + θ(λ)

)
−Kφ(λ)Φ(θ(λ))

]
(1.35)

Proof. Observe that c(λ) of (1.34) can be written in terms of an optimization problem
exploiting Lemma 1.2.1

Thanks to theorem 1.5.1 we can now define the upper bound as the of the solution of
the following constrained optimization problem

Definition 1.5.3 (Upper Bound). Given a basket call of the type (1.10) we define the upper
bound through the following optimization problem:

UBopt := inf
x∈Q

ICUB(x) (1.36)

Let us state an important remark on the formula above. The numerical computation of
the infimum would be extremely time consuming because the computation of the objective
function for each value of x ∈ Q requires the solution of a control problem. This issue
will be overcome in Chapter 3 where we are able to deal with the optimization problem as
it was a joint optimization of (x, θ(λ)).

Another upper bound that, in some particular cases, plays a crucial role is the PECUB(x, d)
introduced in [12].

Definition 1.5.4 (partially exact). Given x ∈ Rn and defining the β ∈ Rn as

β = ρ−1x (1.37)

and the Gaussian variable

Λ = β · x (1.38)

then x is partially exact if there exist d ∈ R s.t. Λ < d implies S > K.

Definition 1.5.5 (PECUB(x, d)). Given x ∈ B ∪ ∂B partially exact we define

PECUB(x, d) :=

∫ d

−∞
dλφ(λ) (`(λ)−K) +

∫ ∞
d

dλφ(λ) c(λ) (1.39)

Theorem 1.5.2. Given x ∈ Q

PECUB(x, d) ≤ ICUB(x).
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Chapter 1. Upper and lower bounds for basket options

Proof. A straightforward generalization of the proof in [12, sect. 4.2.1]

The above theorem, states that, whenever PECUB(x, d) exists for a given x and d,
this upper bound is always better than the corresponding ICUB(x). However, let us
stress that in literature PECUB(x, d) can be computed only for three discrete values of
the vector x [12], while, likewise the Lower Bound of the previous section, ICUB(x) can
be optimized for x ∈ Q. In section 2.4 we show via numerical examples that UB should
be preferred not only due to its simplicity, but also because performs even better than the
three PECUB(x, d).

1.6 Equality cases

In this section we discuss the cases in which the approximations introduced equal the true
price. A first simple case is when n = 1 where both the Upper and Lower Bounds share
the property of defaulting to the Black formula (1.14). This result can be trivially obtained
by observing that the constraint in dimension 1 is x2 = 1 and then substituting one of the
two solutions (e.g x = 1) in Definitions 1.4.2 and 1.5.2. It is possible to show that also in
dimension 2 the Upper Bound equals the true price. The derivation of this original result
requires some preliminary results of Chapter 2, hence we refer to section 2.3 for it. A third
case is when assets are perfectly correlated (positively or negatively). In [9] Carmona and
Durrleman examined this point, but, in the context of basket options, their result holds
only for positive correlated assets. Here we extend this result allowing negative entries of
the correlations matrix. In the following proposition we indicate with η a vector whose
first component is η1 = 1, other components ηi 6=1 = ±1 correspond to the correlation
of asset i with the first asset. Moreover with ηηT we mean the row-column product, i.e.
(ηηT )ij = ηiηj .

Proposition 1.6.1. If ρ = ηηT then the price C has a closed formula formulation. In
particular C = LB = UB.

Proof. The proof consists in showing that the lower bound LB and UB coincide and then
both coincide with the exact price C. We start observing that the matrix ρ is singular and
henceQ cannot be defined and we shall use the definition of the optimization problems in
terms of β = ρx. Choosing β = η as guess solution we obtain x = η and hence

LB = sup
y∈R2

E

[
n∑
i=1

ωie
− 1

2
σ2
i−σiηiβ·g1{β·g<y1}1{β·g>y2}

]

=

∫ ∞
−∞

dλφ(λ)

(
n∑
i=1

ωie
− 1

2
σ2
i−σiηiλ −K

)
+

(1.40)

16



1.7. Greeks

On the other hand, always choosing x = η, for the UB we have

sup
θ(λ)∈R

n∑
i=1

ωie
− 1

2
σ2
i−σiηiλΦ (θ(λ))−KΦ(θ(λ))

= sup
s∈[0,1]

n∑
i=1

ωie
− 1

2
σ2
i−σiηiλs−Ks

=

(
n∑
i=1

ωie
− 1

2
σ2
i−σiηiλ −K

)
+

(1.41)

Hence by definition we have

UB =

∫ ∞
−∞

dλφ(λ)

(
n∑
i=1

ωie
− 1

2
σ2
i−σiηiλ −K

)
+

(1.42)

which is equal to (1.40).

Let us state a remark on the result obtained. In [9] the authors approximate the price of
a basket call with a combination of only Black call style terms, the equality of LB with the
true price holds only when all the correlations are positive. This result hence shows that
adding Black put style terms is necessary when some assets are negative correlated with
others.

1.7 Greeks

It is quite common in literature to deal with approximated analytic solutions to the prob-
lems (1.3.3) and (1.5.2). A drawback of this approach is that Greeks of both closed formu-
las could strongly depend on the variation of the optimization parameters. This point has
been already highlighted in [9], hence in the following we will show the computation only
for the ∆ of LB. Extensions to other Greeks and to UB are analogous. In order to com-
pute the variation of the approximated price in terms of the variation of one the underlying
forwards F T

i (0) it is convenient to explicitly write the non adimensional lower bound

LB =B(0, T )F T (0)LB

=B(0, T )F T (0) sup
x∈Q

sup
y∈R2

n∑
i=1

wi [Φ (y1 + σixi) + Φ (−y2 − σixi)]−K [Φ (y1) + Φ (−y2)]

=B(0, T ) sup
x∈Q

sup
y∈R2

n∑
i=1

aiFi(0) [Φ (y1 + σixi) + Φ (−y2 − σixi)]−K [Φ (y1) + Φ (−y2)]

=B(0, T ) sup
x∈Q

sup
y∈R2

LB(x, y)
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(1.43)

having defined the cost function LB(x, y) in the last equality. Then the first order condi-
tions for this optimization problem reads as

∑n
i=1 aiFi(0)e−

1
2
σ2
i x

2
i−σixiy1 = K∑n

i=1 aiFi(0)e−
1
2
σ2
i x

2
i−σixiy2 = K

aiFi(0)σi [ϕ(y1 + σixi)− ϕ(−y2 − σixi)] = (ρ−1x)i

x · ρ−1x = 1

(1.44)

The formula for the sensitivity is given by the following proposition

Proposition 1.7.1. Denoting by x? and y? the global solution of the problem (1.3.3), then

∆i =
dLB
dF T

i (0)
= aiB(0, T ) (Φ(y?1 + σix

?
i ) + Φ(−y?2 − σix?i )) (1.45)

Proof. From the first equality of (1.43) we observe that x? and y? are optimal for both LB
and LB. Then from the last equality of (1.43) we have

dLB
dF T

i (0)
=

∂LB
∂F T

i (0)
+
∂LB
∂y?

· ∂y?

∂F T
i (0)

+
∂LB
∂x?

· ∂x?

∂F T
i (0)

=
∂LB
∂F T

i (0)
+ αρ−1x? · ∂x?

∂F T
i (0)

=
∂LB
∂F T

i (0)
+
α

2

∂

∂F T
i (0)

(
x? · ρ−1x?

)
=

∂LB
∂F T

i (0)

where α is a Lagrange multiplier and the second equality is obtained thanks to the first
order conditions ∂LB

∂y?
= 0 and ∂LB

∂x?
= αρ−1x?. Then explicitly computing ∂LB

∂FTi (0)
via

simple differentiation, the result is obtained.

The former proposition shows that the lower bound sensitivity to the movement of one
of the underlying forward prices is completely analogous to the ∆ of the Black model.
Moreover, being stationary (i.e not depending on the variation of the optimization param-
eters x and y) we expect it to give a very good approximation of the real value of the
sensitivity. We stress also that this property holds only if we define the lower bound as a
solution of an optimization problem. On the contrary if we define the lower as the value
of the cost function in some point (x, y) different from (x?, y?), the value of the sensitivi-
ties could significantly diverge from the real one even if the price approximation performs
well. For a detailed numerical study of the convergence of the Greeks we refer to [9].
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CHAPTER2
Optimal bounds: analytical results

2.1 Introduction

This chapter is devoted to obtain some analytic results on the two optimization problems
related to the computation of the Upper and Lower Bounds introduced in the previous
Chapter. The aim of the Chapter is showing that the two optimization problems are non
trivial because they can show multiple local optimal points and, for the Upper Bound, also
irregular points. We also guess that for some particular market conditions the problem is
"easy", i.e. admits a unique solution which can be then computed using local optimization
tools like gradient based methods. Even if we are not able to find an exact condition, we
focus on our guess of non-negative ρ, i.e. the case in which the correlation matrix has
non negative entries, a financially relevant case that characterizes most baskets with equity
stocks, one of the derivative markets where Basket Options are mostly used.

We show how optimal bounds are related to some characteristics in the geometry of
the problem and in particular to {ρi}i=1,..n, the column vectors of ρ. In a nutshell the
main results are: i) for the optimal Lower Bound LBopt we prove the existence of an
optimal solution on the part of the ellipsoid delimited by the positive linear span of {ρi};
we also show some sufficient conditions for uniqueness of the global maximum ii) for the
ICUB(x) upper bound, {ρi} are the only points where the bound has an angular point. In
n dimensions for a ρ with a simple shape we prove that these points are local minima and
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Chapter 2. Optimal bounds: analytical results

this result looks to hold for a more general ρ.

2.2 Optimal upper and lower bounds: Preliminary results

This section is devoted in showing some preliminary results on the two optimization prob-
lems related to LBopt and UBopt some geometric properties of the constraint that will be
used in the next section. Hereinafter we will always refer to the Lord formulation of the
problem because it is more suitable for an analytical study.

2.2.1 Regularity

The following two lemmas on the regularity of the bounds hold.

Lemma 2.2.1. LBL(x) defined in Definition 1.4.4 is a continuous and differentiable func-
tion for x ∈ Rn except in the origin when K = 1.

Proof. See Appendix A

Lemma 2.2.2. ICUB(x) defined in 1.5.2 is a continuous and differentiable function in
the cube B and continuous but not differentiable on the boundary ∂B.

Proof. See Appendix A

A direct consequence of these two lemmas is that the optimization problems (1.3.3)
and (1.5.3) are well defined because the bounds are continuous in a neighborhood of Q,
which is a compact set. Another property shared by both LBL(x) and ICUB(x) is given
by the following lemma.

Lemma 2.2.3. LBL(x) and ICUB(x) are symmetric functions of their argument. Both
bounds share the property LBL(x) = LBL(−x) and ICUB(x) = ICUB(−x).

Proof. Straightforward via direct computation

2.2.2 Geometric properties of the constraint

The results in this thesis on the optimization problems (1.3.3) and (1.5.3) are strictly related
to some geometric features of Q. In this subsection we point out the main ones. Denoting
with ρi the ith column of ρ, let us define some useful quantities.
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2.2. Optimal upper and lower bounds: Preliminary results

Definition 2.2.1 (Relevant geometrical sets).

πi ≡

{
x ∈ Rn : x =

n∑
j 6=i

αjρj

}

π+ ≡

{
x ∈ Rn : x =

n∑
j=1

αjρj, αi > 0 ∀i

}
π− ≡ {x ∈ Rn : −x ∈ π+}

and the relative intersections with the quadric

Qi ≡ πi ∩Q Q+ ≡ π+ ∩Q Q− ≡ π− ∩Q .

Given the above definitions it is possible to state two lemmas which characterize the
ellipsoid Q.

Lemma 2.2.4. For a positive definite matrix ρ the quadric Q is entirely contained in the
cube B ∪ ∂B and it is tangent to ∂B only in the points {±ρi}i=1,...,n.

Proof. See Appendix A

Lemma 2.2.5. Defining D as the elliptical cylinder having its axis on the vector ei and
tangent to Q, Qi is the set of points in which D is tangent to Q.

Proof. See Appendix A

Figure 2.1: The figure on the left shows that the ellipsoid Q is included in the unitary cube B (see Lemma
2.2.4); the red dots are the points ±ρi, the only points lying on ∂B. The figure on the right shows in red
the boundary of π+, in cyan we plot the tangent cylinder D having e3 as axis and in orange π3, the set
of points where D is tangent to Q (see Lemma 2.2.5).
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2.3 Lower Bound: Domain of existence for the maximum and uniqueness

In this section we consider a non-negative correlation matrix ρ, i.e. the matrix ρ has all
positive coefficients. In this case, the main result on the maximization problem (1.20) is
provided by the following proposition.

Proposition 2.3.1. Let ρ be a non-negative matrix then:

i) there exists one point xM ∈ Q+ solution of eq. (1.24) which corresponds to a local
maximum point.

ii) there exists one point xm ∈ Q/(Q+∪∂Q+∪Q−∪∂Q−) solution of eq. (1.24) which
corresponds to a local minimum point.

Proof. See Appendix A

A consequence of the symmetry property LBL(x) = LBL(−x) (see Lemma 2.2.3)
implies that there exists a local maximum point even inQ−. Let us state some remarks on

Figure 2.2: We show in cyan Q+ (and Q− on the other side) while in red ∂Q+ (and ∂Q−). Proposition
2.3.1 states that there exists a maximum point in each one of the two cyan zones while two minima are in
the yellow zone.

the above proposition. We have shown that, when the correlation matrix is non negative a
maximum exists in the first hyperoctant. If we could state that this maximum is also global
we could state, thanks to Proposition 1.4.1, that when ρ is non negative it is possible to
consider only the simple formula of Carmona and Durrleman. Unfortunately this is not
true in general. However analyzing numerically LBL(x), one observes that the maximum
is unique for x ∈ Q+ when total volatilities are not larger than 1 and for options not
deeply ITM or OTM. This uniqueness can be understood qualitatively considering, for
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K = 1, the first order Taylor expansion in {σi}i=1,··· ,n for LBL(x). In this case we get 1

LBL(x) = (2π)−1/2σω·x+o(σ). When considering this linear approximation, uniqueness
is guaranteed being Q concave. The solution for x is ρσω/

√
σω · ρσω which corresponds

to the point xFA2 proposed in [12] and justified in [39]. This explains why often xFA2

is a good first guess for the optimal solution for positive ρ and it’s expected to perform
reasonably well for strikes “around" the ATM. For a generic ρ uniqueness is not granted
as we show in a numerical example in the next section. For a non-negative ρ in most cases
of financial interest one observes numerically a unique maximum. In proposition 2.3.2 of
this section we are able to state a condition for the uniqueness of the lower bound focusing
on n = 2. We start defining the function ψ : Rn → Q, then after two technical lemmas we
state the proposition.

Definition 2.1. The function ψ : Rn → Q is defined as

ψ(x) ≡ ρ∇LBL(x)√
∇LBL(x) · ρ∇LBL(x)

.

Lemma 2.3.1. A point x is a solution of the Lagrange eq. (1.24) iff it is a fixed point for
the function ψ(x).

Proof. See Appendix A

Remark. In the above definition we should have first shown that the codomain of ψ is Q,
however by direct inspection it is esay to verify that ψ(x) · (ρ−1ψ(x)) = 1 for all x ∈ Rn.

In the above lemma we have shown that the eq. x = ψ(x) is equivalent to eq. (??). In
the next chapter is pointed out that the (discrete-time) map xi+1 = ψ(xi) plays a crucial
role in a fast selection of local maxima for the lower bound. In particular looking for a
fixed point of this map and applying the contraction principle, the following lemma holds.

Lemma 2.3.2. Given ρ a non-negative matrix, the Jacobian matrix of ψ(x) is singular.
For n = 2 the non-null eigenvalue is

l(x) = −(1− ρ2)
σ2

1σ
2
2ω̂1(x)ω̂2(x)

α̂(x)3/2

[
σ̃1σ̃2

σ̃1ω̂1(x) + σ̃2ω̂2(x)
+ λ?

]
where

ω̂i(x) ≡ ωi
e−

1
2
σ̃2
i−σ̃iλ?

K

with α̂(x) ≡ σω̂(x) · ρ σω̂(x) and λ? the solution of eq. (1.28).
1The notation σω with σ and ω both in Rn indicates a vector v ∈ Rn with components vi = σiωi
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Proof. See Appendix A

Finally bounding |l(x)| from above ∀x ∈ Q we can state the desired proposition.

Proposition 2.3.2. Given a non-negative matrix ρ and supposing, with no loss of general-
ity, that σ1 ≤ σ2, a sufficient condition under which LB(x) has a unique maximum point
in Q+ is l? < 1. Furthermore if K ≥ 1 the condition can be improved by l?I < `? < 1,
with

l? = (1− ρ2)
√
σ2

1 + σ2
2

[
σ2 +

1

ρσ1

max

{
− log(K),

∣∣∣∣∣log

(∑2
i=1 ωie

− 1
2
σ2
i

K

)∣∣∣∣∣
}]

l?I = (1− ρ2)
√
σ2

1 + σ2
2 max

{
σ2,

σ2
2 + log(K)

σ̄

}
where σ̄ = min{σω · ρ1, σω · ρ2}.

Proof. See Appendix A

We want to stress that the condition for option parameters indicated by proposition
2.3.2 are rather intuitive: they are satisfied for a wide set of interesting financial parameters
which are, as expected, strikes not so far from ATM (but even significantly OTM and ITM)
and when each asset total volatility is small (and in particular it holds for small time-to-
maturity). Furthermore for assets highly correlated (ρ ' ±1) the condition is always
satisfied.

2.3.1 Upper bound

Even for the minimization problem (1.5.3) the columns of the correlation matrix play an
important role. The main object here is not the positive linear span Q+ generated, but the
columns themselves. We claim that these points are local minima points and often one of
them is the global one.

We start showing some interesting features of these points.

Lemma 2.3.3. {±ρi}i=1,..,n are the only points inQ where equation (1.33) has no solution
for some λ. In particular there is no solution for

λ ≤ λ∗i ≡ −
ln (K/ωi)

σi
− σi

2

and one solution for λ > λ∗i .

Proof. Lemma 1.5.1 states that no solution appear iff some component of x equals 1. As a
direct consequence of Lemma 2.2.4 this happen only in ±{ρi}i=1,..,n, the only points that
belong to ∂B. The value of λ∗i follows from direct calculation
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2.3. Lower Bound: Domain of existence for the maximum and uniqueness

The fact that x = ±ρi allows to prove a relevant property that holds for PECUB(x, d)
on the columns of ρ.

Proposition 2.3.3. Considering x = ρi and i = 1, · · · , n, it always exists a d = λ∗i s.t.
PECUB(ρi, λ

∗
i ) is well defined and

PECUB(ρi, λ
∗
i ) = ICUB(ρi) .

Proof. See Appendix A

Now we deal with the optimization problem for the ICUB(x). We start with the two
dimensional case which is fully characterized by the following proposition.

Proposition 2.3.4. For n = 2, considering ICUB(x) with x ∈ Q, the true price C is
equal ICUB(x) when x /∈ Q+ ∪Q−.

Proof. See Appendix A

It can be useful to show in a plot the above result. For n = 2, Q can be parameterized
via the angle ϑ in the following way

x1(ϑ) =
cos(ϑ)

r(ϑ)

x2(ϑ) =
sin(ϑ)

r(ϑ)

where r(ϑ) =
√

[cos(ϑ), sin(ϑ)] · ρ−1[cos(ϑ), sin(ϑ)] . In figure 2.3 we show that outside
Q+ ICUB(x) is constant and equals the true price.

Finally we deal with the n−dimensional case. First for a non-negative ρ we show that
ρ columns are the only irregular points for the ICUB(x). Furthermore, in a particular but
relevant case from a financial point of view, we show that this points are local minima.
These results are stated in the two following propositions.

Proposition 2.3.5. The points {ρi}i=1,··· ,n are angular points for ICUB(x).

Proof. See Appendix A

Proposition 2.3.6. Let all the out of diagonal elements of ρ be equal, i.e. ρij = ρ̂ ∀i 6= j,
then ρ columns ρi are local minima.

Proof. See Appendix A

In the above proposition we have shown, for a class of ρ that is often chosen by mar-
ket makers for equity index baskets, that ρ columns are local minima, so they are good
candidates for being the solution of the optimization problem. Our claim is that, for a
generic non-negative ρ, the global minimum is one of these local minima, in most cases of
financial interest.
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Chapter 2. Optimal bounds: analytical results

Figure 2.3: All possible values for ICUB(x) in a 2 assets basket with x in half of the ellipseQ. We consider
the case with ω = [0.5, 0.5] σ = [0.2, 0.2], K = 1.2, ρ = −0.3. The yellow line and the red line
represent the two boundary points of Q+, i.e. the values that correspond to ρ columns. The function is
constant outside Q+ (defined in Definition 2.2.1) as stated by proposition 2.3.4.

2.4 Numerical examples

In this section we show some numerical examples. We report the exact prices computed
via Monte Carlo (MC) simulations with 106 paths using the lower bound as control variate
and the antithetic variable technique. The error reported is the standard error.

In Table 2.1 we consider a basket of 2 assets positive correlated. One observes nu-
merically that the maximum in Q+ is always unique. The improvement with the optimal
solution is less pronounced w.r.t. considering the conditioning variable FA2 near the
ATM as expected, for other strikes the optimization brings a substantial improvement, in
some cases of several basis points2.

In Table 2.2 an example of a basket of two assets negatively correlated is shown. In
the negative correlation cases we observe that the difference between the optimal point
and xFA2 is higher. When ρ has some negative values, for a generic n, it can be noticed
numerically that, even if the performance of the lower bound LB is not as good as in the
positive correlation case, a very good performance for the UB is observed.

The example shown in figure 2.4 presents a non-unique local maximum for LBL(x):
this problem arises frequently when the assets are negatively correlated.

The fourth example in Table 2.3 is a three dimensional basket with a non-negative
correlation matrix. ICUB(ρb) is the lowest among ICUB(ρi): as previously mentioned,
it always corresponds to the heaviest log-normal. ICUB(ρb) is the global minimum. Best
PECUB indicates the best value possible when considering x one of the three values
(called FA1, FA2, GA) for which a PECUB(x, d) solution has been found in [12]. We
also compare the bounds with PERSUB which is a partially exact upper bound based on

2A basis point is equal to 0.01%.
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2.4. Numerical examples

K C (s.e.) LB LBL(xFA2)
0.6 40.096 (0.009) 40.095 40.023
0.7 30.685 (0.009) 30.627 30.383
0.8 22.462 (0.009) 22.288 21.979
0.9 15.947 (0.009) 15.682 15.511
1.0 11.238 (0.009) 10.944 10.918
1.1 8.031 (0.008) 7.776 7.766
1.2 5.905 (0.008) 5.713 5.612
1.3 4.449 (0.008) 4.348 4.127
1.4 3.464 (0.007) 3.410 3.088

Table 2.1: Basket call option prices C (1.10) in % for ω = [0.8, 0.2], σ = [0.2, 1.1], ρ = 0.1. We show MC
prices (with standard errors in brackets), the lower bound in the optimal maximum and the one computed
in xFA2: we observe a significant improvement for all moneynesses and in some cases even of several
basis points.

K C (s.e.) LB LBL(xFA2)
0.6 40.026 (0.016) 40.006 40.000
0.7 30.238 (0.015) 30.162 30.000
0.8 21.559 (0.015) 21.285 20.843
0.9 15.007 (0.014) 14.679 14.592
1.0 10.623 (0.013) 10.453 10.449
1.1 7.770 (0.013) 7.725 7.648
1.2 5.853 (0.012) 5.870 5.707
1.3 4.560 (0.012) 4.556 4.332
1.4 3.588 (0.011) 3.597 3.337

Table 2.2: Basket call option prices C (1.10) in % for ω = [0.6, 0.4], σ = [0.2, 8], ρ = −0.6. We show MC
prices (with standard errors in brackets), the lower bound in the optimal maximum and the one computed
in xFA2. Even for negative correlations we observe a significant improvement for all moneynesses and
in some cases of several basis points.

lower bound of [12]; even in this case, best PERSUB indicates the lowest between the
same three choices for x.

We can mention a counterexample in which the global minimum is not one of the
ρ columns. This is the Asian option example of Table 2 in [40]. However the bound
calculated conditioning on the heaviest log-return, the log-asset value at the last sampling
time indicated with BT , is very close to the optimal one. This behavior appears for assets
highly correlated, as also other numerical examples suggest: in this case ICUB(x) is
substantially constant for x ∈ Q.
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Chapter 2. Optimal bounds: analytical results

Figure 2.4: All possible lower bounds for a two dimensional basket. Q is parameterized via the angle ϑ.
t = 1, ω = [0.5, 0.5], σ = [1, 1], ρ = −0.95, K = 0.9, LB(x?` ) = 23.337, LB(xFA2) = 12.264,
C = 23.892(0.014). The red line is the true price value, with the yellow line and the spot we indicate
the point which corresponds to FA2.

K C (s.e.) ICUB(ρb) best PECUB best PERSUB LB LBL(xFA2)
0.6 43.936 (0.010) 44.125 44.682 44.439 43.886 43.797
0.7 37.258 (0.010) 37.498 38.243 37.938 37.193 37.125
0.8 31.616 (0.010) 31.890 32.828 32.520 31.542 31.499
0.9 26.924 (0.010) 27.183 28.289 28.084 26.814 26.792
1.0 22.978 (0.010) 23.247 24.481 24.516 22.873 22.865
1.1 19.689 (0.010) 19.956 21.290 21.542 19.589 19.588
1.2 16.931 (0.010) 17.200 18.606 18.982 16.849 16.849
1.3 14.647 (0.010) 14.887 16.341 16.861 14.556 14.551
1.4 12.728 (0.010) 12.939 14.419 15.100 12.630 12.618

Table 2.3: Basket call option prices C (1.10) in % for ω = [0.33, 0.33, 0.33], σ = [0.7, 0.6, 1], ρ12 = 0.8,
ρ13 = 0.7, ρ23 = 0.4.

2.5 Conclusions

In this chapter we have considered the problem of finding the optimal values for the bounds
LBL(x) and ICUB(x) of a basket call when assets are lognormally distributed. In the
financially relevant case where we consider a positive correlation matrix ρ we obtain some
interesting results. For the lower bound we show the existence of a maximum on the part of
the hyper-ellipsoid Q delimited by the positive linear span of ρ columns {ρi}; this region
can be very limited in some cases as in presence of high correlations. We also present some
sufficient conditions for the uniqueness of the maximum; as shown via a counterexample,
this result does not hold true anymore in the negative correlation case. For the ICUB(x)
we show some relevant results for x equal to ρ columns. In these points we prove for
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2.5. Conclusions

n = 2 and for some simple correlation matrices if a generic n is considered, that we reach
a local minimum. The global minimum is generally reached choosing x among one of
these points. We claim that this result holds for a generic positive correlation ρ.
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APPENDIXA
Proofs

Proof of Lemma 2.2.1. Let A be first hyperoctant A = {x : xi > 0} and B the opposite
hyperoctant B = {x : xi < 0} and let C be the open set C = Rn/(∂A ∪ ∂B ∪ {0}). In C
one has to observe that the solutions λ? or λ± are infinitely times differentiable functions of
x because of the implicit function theorem applied to (1.28). As a consequence, LBL(x) is
infinitely times differentiable since composition of infinitely times differentiable functions.
Now we want to show that the function is continuous and differentiable even in all the
points x ∈ A/{0} when passing from case 1a to 2a of Lemma 1.4.1. The other cases
can be proven in a similar way. Formula (1.29) and its partial derivative are continuous if
λ+ →∞ as x approaches to A from negative values. In order to show that this holds true
we show that the minimum point λm of `(λ) goes to infinity as x approaches to A from
negative values which, considering that λ+ > λm, brings to the result. Suppose, without
any loss of generality, that only the first component of x is negative, the equation of λm is

|σ̃1|ω1e
− 1

2
σ̃2
1+|σ̃1|λ =

n∑
i=2

σ̃iωie
− 1

2
σ̃2
i−σ̃iλ

Now consider λ̃ solution of the equation

|σ̃1|e|σ̃1|λ = N(x)e−<σ̃>λ
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Appendix A. Proofs

where < σ̃ >= 1
N(x)

∑n
i=2 ωie

− 1
2
σ̃2
i σ̃i and N(x) =

∑n
i=2 σ̃iωie

− 1
2
σ̃2
i . The solution λ̃ has

the property λ̃ < λm since the first term of the second equation is trivially greater of first
term of the first equation while the second term of the second equation is smaller of the
respective in the first equation because obtained via the geometric average. Solving the
second equation one has

λ̃ =
1

|σ̃1|+ < σ̃ >
log

(
N(x)

|σ̃1|

)
which goes to infinity as x1 approaches to 0. The case of more than one component nega-
tive is simply a generalization of the result above. Finally we consider the origin. With a
similar argument it can be shown that if K 6= 1 then LBL(x) is a continuous and differ-
entiable function in x = 0. When K = 1 the solution λ? goes to 0 as x approaches to 0
and therefore the function is continuous but not differentiable in the origin.

Proof of Lemma 2.2.2. Let B be the cube B = {x ∈ Rn : |xi| < 1 ∀i}. For the im-
plicit function theorem the solution ϑλ is a continuous function of x in B and ICUB(x) is
an infinitely times differentiable function. When instead |xi| = 1 for some i it is continu-
ous but not differentiable because of the square root term.

Proof of Lemma 2.2.4. From eq.(1.19) one can immediately see that each component of x
is less or equal than 1. The point x = ρi belongs toQ because ρi ·(ρ−1ρi) = ρi ·ei = 1 and
has the ith component which equals one, so it has to be tangent to the plane xi = 1. Other-
wise via direct computation one has that the equation of the tangent plane to Q in a point
xa is x ·(ρ−1xa) = 1. If xa = ρi then the tangent plane is described by the equation xi = 1.

Proof of Lemma 2.2.5. Fixed a certain direction v, the set of points x ∈ Q in which
a straight line parallel to v is tangent to Q are the intersection between Q itself and the
plane π = {x ∈ Rn : x · (ρ−1v) = 0}. If v = ei then π = {x ∈ Rn : x · ρ−1

i = 0} and
one can notice that the points {ρj}j 6=i belong to π. Furthermore even the origin belongs to
π and so one can parameterize π as a linear combination of {ρj}j 6=i which means π = πi
and its intersection with the quadric is by definition Qi.

Proof of Proposition 2.3.1. Q+ ∪ ∂Q+ is a compact set, so LBL(x) attains extreme
values in it. Now let’s consider a point xb ∈ ∂Q+. By Lemma 2.2.5 the derivative of
LBL(x) along the direction ei is also the derivative of the restricted function, furthermore
∂LBL(x)
∂xi

> 0 and so the function is increasing along the direction ei which goes insideQ+.
This means that for each xb ∈ ∂Q+ there exists a point x′b such that LBL(x′b) > LBL(xb)
and so the maximum point is reached in the interior part of Q+ and it must be a solution
of eq.(1.24). At the same time this argument shows that outside Q+ the function attains a
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local minimum.

Proof of Lemma 2.3.1. Simply observing that the equation x = ψ(x) is equivalent to
the Lagrange equation (1.24) and ψ(x) ∈ Q.

Proof of Lemma 2.3.2. Via direct computation the Jacobian matrix has the form

J(x) =
∂ψ(x)

∂x
=

1

α(x)3/2
[ρ− ψ(x)ψ(x)′]H(x)

where H(x) is the hessian matrix of the lower bound H(x)ij = ∂2LBL(x)
∂xi∂xj

. The vector
v(x) = H−1(x)∇LBL(x) is such that J(x)v(x) = 0 and so J(x) is singular. For n = 2
the other eigenvalue must be real. The value of l is found via direct computation using
that vl = [−∂LBL(x)

∂x2
, ∂LBL(x)

∂x1
] is the eigenvector relative to l and substituting the explicit

expression of the hessian.

Proof of Proposition 2.3.2. The condition is a direct consequence of the contraction
principle. A sufficient condition for the map to be a contraction is that maxx∈Q |J(x)| < 1
where the norm of the matrix is defined as |J(x)| ≡ supv:|v|=1 |J(x)v|. Due to Lemma
2.3.2 this condition simply becomes l? < 1 where l? = supx∈Q |l|. In what follows we
find an upper bound for |l| which gives the desired condition on the parameters.
From 2σ1σ2ω̂1(x)ω̂2(x) ≤ σ2

1ω̂1(x)2+σ2
2ω̂

2
2(x) follows that σ

2
1σ

2
2ω̂1(x)ω̂2(x)

α̂(x)3/2
≤ σ1σ2√

ω̂1(x)2σ2
1+ω̂2(x)2σ2

2

.

Now, using that ω̂1(x) + ω̂2(x) = 1 one has
√
ω̂1(x)2σ2

1 + ω̂2(x)2σ2
2 ≥

√
σ2
1σ

2
2

σ2
1+σ2

2
, which by

substitution gives σ2
1σ

2
2ω̂1(x)ω̂2(x)

α̂(x)3/2
≤
√
σ2

1 + σ2
2 .

Now we have to deal we the term in brackets. The first term is always positive while the
solution λ? can have both signs, so

max
x∈Q

{∣∣∣∣ σ̃1σ̃2

σ̃1ω̂1(x) + σ̃2ω̂2(x)
+ λ?

∣∣∣∣} ≤ max
x∈Q

σ̃1σ̃2

σ̃1ω̂1(x) + σ̃2ω̂2(x)
+ max

x∈Q
|λ?|

Using the normalization as above one has σ̃1ω̂1(x) + σ̃2ω̂2(x) > σ̃m where σ̃m is the
smaller between σ̃1 and σ̃2 and so σ̃1σ̃2

σ̃1ω̂1(x)+σ̃2ω̂2(x)
< σ̃M < σ2.

The upper bound for |λ?| is given by |λ′| solution of the equation

e−σ̃mλ
′

2∑
i=1

ωie
− 1

2
σ̃2
i −K = 0
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Simply solving the equation above one has

λ′ =
1

σ̃m
log

(
K∑2

i=1 ωie
− 1

2
σ̃2
i

)
The final result is finally obtained with inequality

|λ′| ≤ 1

ρσ1

max

{
− log(K),

∣∣∣∣∣log

(∑2
i=1 ωie

− 1
2
σ2
i

K

)∣∣∣∣∣
}

If K ≥ 1 the condition for uniqueness can be improved first noticing that λ? is negative
and so

max
x∈Q

{∣∣∣∣ σ̃1σ̃2

σ̃1ω̂1(x) + σ̃2ω̂2(x)
+ λ?

∣∣∣∣} ≤ max

{
max
x∈Q

σ̃1σ̃2

σ̃1ω̂1(x) + σ̃2ω̂2(x)
, −min

x∈Q
λ?
}

The lower bound for the solution λ? required above can be found using that λ? ≥ λGA
where λGA is the solution obtained using the geometric average instead of S

|λGA(x)| = logK

< σ̃ >
+

1

2

< σ̃ >2

< σ̃ >
≤ logK

σ̄
+

1

2

σ2
2

σ̄

where < σ̃ >= σ1ω1 + σ2ω2, < σ̃2 >= σ1ω
2
1 + σ2ω

2
2 .

Proof of Proposition 2.3.3 First we show that for x = ρi it is possible to compute
PECUB(x, d) for some d. The associate conditioning variable is Λ = gi. The value
of d is found via the trivial inequality S ≥ ωie

− 1
2
σ2
i−σigi which implies d = − ln(K/ωi)

σi
− σi

2
.

Now consider ICUB(ρi). From Lemma 2.3.3 follows d = λ∗i , furthermore if λ ≤ λ∗i by
Theorem 1.5.1 c(λ) = `(λ) which implies the result.

Proof of Proposition 2.3.4. For n = 2 basket the true price is

C = E
[
ω1e

−σ
2
1
2
−σ1α1 + ω2e

−σ
2
2
2
−σ2α2 −K

]
+

where α1 and α2 are two normal correlated variables with zero mean, unitary variance and
Corr[α1, α2] = ρ, while ICUB(x) reads as

ICUB(x) = E
[
ω1e

−σ
2
1
2
−σ̃1λ−σ̂1θ + ω2e

−σ
2
2
2
−σ̃2λ−σ̂2θ −K

]
+

where λ and θ are two uncorrelated standard normal variables. Applying now the linear
transformation{

x1λ+
√

1− x2
1θ = λ′

x2λ+
√

1− x2
2θ = θ′
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the argument of the expectation value is the same for both the formulas above, while λ′

and θ′ are normal with zero mean, unitary variance and correlation Corr[λ′, θ′] = x1x2 +√
(1− x2

1)(1− x2
2). Now using the constraint one has Corr[λ′, θ′] = x1x2 ± |ρ − x1x2|

that equals ρ in Q/Q+ which means that ICUB(x) and the exact price coincide in that
zone.

Proof of Proposition 2.3.5. We start showing that the first derivative of ICUB(x) along
an arbitrary coordinate direction ej is discontinuous in ρi. Around ρi we can write xi =

q(xj), where q(xj) = 1− γ2ij
2

(xj−ρij)2 with γ2
ij = 1/(1−ρ2

ij). Considering the restriction
to the curve

cij(t) =


xj = t+ ρij

xi = 1−
γ2
ijt

2

2
xk 6=i,j = ρik

we can compute the first derivative along the direction ej

lim
t→0±

d

dt
ICUB(cij(t)) = − ρij√

1− ρ2
ij

ψ
(1)
j (ρi)− ψ(2)

j (ρi)± γijψ(1)
i (ρi)

where

ψ
(1)
j (x) = σjωj

∫ ∞
λ∗i

dλ φ(λ+ σ̃j)φ(ϑλ + σ̂j)

ψ
(2)
j (x) = σjωj

∫ ∞
λ∗i

dλ φ(λ+ σ̃j)φ(ϑλ + σ̂j)
∂θλ
∂λ

and ψ(1,2)
j (x) > 0. Finally we show that the right and left limits are finite also along a

generic direction. We consider the curve c(t) = α1cij(t) + α2cik(t) with α1 + α2 = 1.
From direct computation it follows:

lim
t→0±

d

dt
ICUB(c(t)) = α1∇j(ρi) + α2∇k(ρi)±

α1γ
2
ij + α2γ

2
ik

γ
ψ

(1)
i (ρi)

where γ = α1γ
2
ij + α2γ

2
ik and ∇j the jth component of the gradient.

Proof of Proposition 2.3.6. Consider the set of curves of the proposition above. In the
particular case in which all the out of diagonal elements of the correlation matrix are equal
to ρ̂, substituting the term ∂ϑλ/∂λ via the implicit function theorem we have

lim
t→0±

d

dt
ICUB(c(t)) =

σiωi√
1− ρ̂2

∫ ∞
λ∗i

dλ φ(λ+ σi)φ(ϑλ)

{
±1 +

ωλj∑
k 6=i ω

λ
k

}
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where

ωλk ≡ ωk σk φ(λ+ σ̃k)φ(ϑλ + σ̂k) ∀k 6= i .

Being the ratio in braces always positive and lower than 1 it follows that the the ρ columns
are local minima for the restricted function along the coordinate directions. Furthermore
being γij = γik we have

lim
t→0±

d

dt
ICUB(c(t)) = α1 lim

t→0±

d

dt
ICUB(cij(t)) + α2 lim

t→0±

d

dt
ICUB(cik(t))

which implies the result.
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CHAPTER3
Optimal bounds: a new algorithm

3.1 Introduction

In this chapter we describe the new algorithm we design for solving the two optimization
problems (1.20) and (1.36). From a numerical point of view the main issue of both the
problems is to handle together the equality constraint and local optimal points. Two com-
mon algorithms used for global optimization are the Simulated Annealing (SA from now
on) originally proposed by Kirkpatrick et al. [24] and the family of Genetic Algorithms
(GA from now on), for which we refer to [38] for a survey on the topic. These tools can-
not be easily adapted to constrained optimization problems where the main issue is how to
handle the constraint. The most common technique is to employ the penalization method
to transform the constrained problem into an unconstrained one, but in practice setting a
good penalty factor represents a significant disadvantage of this approach, in particular
for equality constraints. Indeed using GA of Matlab for computing the optimal bounds
reveals to be extremely slow and in some cases the global maximum (or minimum) is not
reached. Here we propose a new procedure based on the SA. The key element is that we
tackle the constraint Q by directly exploring only the feasible points. Accuracy of the
solution obtained from SA is then refined through a fixed point map, developed ad hoc
for optimal bounds, which after fews iterations reaches the nearest optimal point. The in-
troduced technique revealed to be fast enough to obtain optimal solutions in a reasonable
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Chapter 3. Optimal bounds: a new algorithm

time for financial applications. In particular the performance of the proposed procedure is
also tested and compared with GA of Matlab with numerical examples.

3.2 Dicretization of ICUB(x)

In this section we explicitly write the objective function we used to approximate the so-
lution of the optimization problem (1.36). In first instance we consider the discretization
of the integral on a given fixed grid (i.e. not dependent on x and θ(λ)). Defining the grid
{λk}Nk=1, θk = θ(λk) and the integration weights {hk}Nk=1 the discretized UBopt, reads as

UBd = min
x∈Q

sup
θ∈RN

n∑
i=1

N∑
k=1

hkωiϕ(λk)

[
e−

1
2
σ2
i x

2
i−σixiλkφ

(
σi

√
1− x2

i + θk

)
− K

n
φ(θk)

]
:= min

x∈Q
sup
θ∈RN

ICUBd(x, θ)

(3.1)

where we have defined the objective function ICUBd(x, θ) and the vector θ ∈ RN with
components θk. The maximization over θ can be further investigated explicitly writing the
first order conditions ∂ICUBd(x,θ)

∂θk
= 0. Using (B.8) it is immediate to verify that solving

the first order equation is equivalent to solve zk(x, θk) = 0 for k = 1, . . . , N , where

zk(x, θk) :=
n∑
i=1

ωie
− 1

2
σ2
i−σixiλk−σi

√
1−x2i θk −K (3.2)

The function is a sum of convex decreasing functions in θk and hence it is convex itself,
which implies that the equation admits only one solution that corresponds to the supre-
mum (when finite). Moreover, thanks to convexity, optimization over θ can be efficiently
performed using the Newton method exploiting the explicit expression for the derivative

∂zk(x, θk)

∂θk
=

n∑
i=1

ωiσi

√
1− x2

i e
− 1

2
σ2
i−σixiλk−σi

√
1−x2i θk (3.3)

Solving problem (3.1) however still require to compute the supremum over θ for each
value of x.

3.3 Algorithm

The following section is devoted to describe in detail the implementation of our procedure.
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3.3.1 Objective functions and initialization of SA

The objective function we minimize are

• fu(x, θ) := ICUBd(x, θ)
1 with x ∈ Q and θ ∈ Rn

• f`(x, y) := −LB(x, y) + (y1 − y2)21{(y1−y2)<0} with x ∈ Q and y ∈ R2

The second term of f`(x, y) is just a penalization term which prevent the function being
flat when y2 < y1. The first stage of our scheme is SA which requires as input a first guess
solution. For both upper and lower bounds we set the same starting guess x0 which is the
vector such that

(x0)i =

∑n
i=1 ρijσiωi√
x · ρ−1x

(3.4)

originally proposed in [12] as a good guess of the optimal solution for both Lower and
Upper Bounds. The vector y0 of the lower bound is initialized as y0 = (−1, 1). For the
upper bound θ is initialized as the vector which maximises fu(x0, θ), given x0:

θ0 = arg max
θ∈RN

fu(x0, θ) (3.5)

which can be efficiently computed performing a Newton procedure to zk(x0, θk) = 0 for
k = 1, . . . , N , where zk(x, θk) and its derivative are given by (3.2) and (3.3).

3.3.2 Generator and acceptance criterion

The SA generator is the function g(p(i)) which generate a new proposal p(p) point given
p(i), p(p) = g(p(i)). In the following we define the functions which generates the couples
(x(p), θ(p)) for the Upper Bound and (x(p), y(p)) for the Lower Bound. The point x(p)

is generated according to the same procedure for both fu(x, θ) and f`(x, y) as follows:
denoting with M the Cholesky matrix of ρ−1, i.e. such that MTM = ρ−1, we compute
the vector z = Mx, then we generate a new point z′ uniformly on the sphere of radius δ
centered in z. Then we project this point on the sphere centered in the origin with unitary
radius z′′ = z′/

√
(z′ · z′) (hence not breaking the spherical symmetry) and the proposal

point is x(p) = M−1z′′. The procedures for generating y(p) and θ(p) are different. The
vector y(p) of the lower bound is generated on the sphere of radius δ and centered in y(i).
The point θ(p) is generated performing one Newton step from the point (x(p), θ(i)), i.e.

θ
(p)
k = θ

(i)
k −

zk(x
(p), θ

(i)
k )

∂zk(x(p),θ
(i)
k )

∂θk

(3.6)

1Actually we will not minimize over θ otherwise we would not obtain an upper bound. However in the following we will explain
how to handle the problem as it was a joint minimization over x and θ.
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Then the new point is accepted with Metropolis criterion at a certain temperature Tk, i.e.
the probability of acceptance is p(x(p), y(p)|x(i), y(i)) = min

(
1, exp

(
−f`(x

(p),y(p))−f`(x(i),y(i))
Tk

))
for the lower bound and p(x(p), y(p)|x(i), θ(i)) = min

(
1, exp

(
−fu(x(p),θ(p))−fu(x(i),θ(i))

Tk

))
for the upper bound. Before going on with the description of the algorithm we want to
make a couple of remarks on the generator of the upper bound. Essentially the θ generator
computes supθ∈RN fu(x

(p), θ) performing one single Newton step using as intelligent start-
ing guess the vector θ(i) of the previous step. However, since at each step we generate the
couple (x(p), θ(p)) from (x(i), θ(i)) the procedure proposed requires the same computational
effort as a joint optimization over x and θ. We want to stress that the generator is the key
element in boosting the performance of our procedure. This generator, in fact, is designed
to explore only the feasible points x ∈ Q consequently it gives two advantages with re-
spect to the penalty method: first the area explored is far less and second we overcome the
issue of setting the penalization factor.

3.3.3 Cooling schedule and stopping criterion

The temperature is decreased according to the schedule Tk+1 = f(Tk) where f(T ) = T
1+T

with T0 = 1, which corresponds to linearly decrease the inverse of the temperature with
∆ 1
T

= 1. SA is then stopped after M consecutive attempt of accepting a worse point
failed. In particular we set M = 20. Using this criterion we stop SA when the probability
of exploring "worse" points is negligible and the system cannot escape anymore from the
(eventually local) nearest minimum. Then it remains only to tune the cooling considering
the trade off between computational time and convergence properties.

3.3.4 The fixed point scheme

Accuracy of the solution is obtained via a fixed point scheme, we first describe the proce-
dure for the lower bound and then the corresponding for the upper bound.

Lower Bound

In this part we consider optimization problem (1.20). The first order conditions are given in
eq.(1.24). The construction of the fixed point map relies on the following two propositions

Proposition 3.3.1. Defining ψ` : Rn → Q as

ψ`(x) =
ρ∇LBL(x)√

∇LBL(x) · ρ∇LBL(x)
(3.7)

then x̂ is a fixed point of ψ` iff is a solution of (1.24).
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Proof. Via direct calculation equations (1.24) can be written as x̂ = ρ∇LBL(x̂)/α. Ob-
taining α from the second equation and substituting we get x̂ = ψ(x̂) which is the re-
sult.

Now if we define our iterative scheme as

x(i+1) = ψ`(x
(i)) (3.8)

The following proposition ensure that we can use use this scheme for the purpose of max-
imization

Proposition 3.3.2. Let x̂ be a solution of (1.24) for some α 6= 0 and suppose that
limi→∞ x

(i) = x̂. Then x̂ is a maximum.

Proof. We call L(x, α) the Lagrangian function of the problem

L(x, α) = LBL(x)− α

2

(
x ·
(
ρ−1x

)
− 1
)

(3.9)

and we define the sequence L(i) as

L(i) = L(x(i), α(i)) = LBL(x(i))− α(i)

2

(
x(i) ·

(
ρ−1x(i)

)
− 1
)

(3.10)

where

α(i) =
(
∇f(x(i)) ·

(
ρ−1∇f(x(i))

)) 1
2 (3.11)

Since x(i) ∈ Q it holds true that L(i) = f(x(i)) and hence

LBL(x(i+1))− LBL(x(i)) = L(i+1) − L(i)

' ∇L(x(i), α(i)) · (x(i+1) − x(i))

= (∇LBL(x(i))− α(i)ρ−1x(i)) ·

(
ρ∇LBL(x(i))√

∇f(x(i)) · ρ∇LBL(x(i))
− x(i)

)

= (∇LBL(x(i))− α(i)ρ−1x(i)) ·
(
ρ∇LBL(x(i))

α(i)
− x(i)

)
= α(i)

(
∇LBL(x(i))

α(i)
− ρ−1x(i)

)
· ρ
(
∇LBL(x(i))

α(i)
− ρ−1x(i)

)
> 0

(3.12)

Then our recipe is: starting from the solution xSA obtained from SA we iterate (3.7)
until a certain accuracy is obtained.
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Upper bound

For the upper bound we define the fixed point map in complete analogy with the lower
bound. Starting from the first order optimal equations{

∇ICUB(x) = αρ−1x

x · (ρ−1x) = 1
(3.13)

we state the following propositions

Proposition 3.3.3. Defining ψu : Rn → Q as

ψu(x) = − ρ∇ICUB(x)√
∇ICUB(x) · ρ∇ICUB(x)

(3.14)

then x̂ is a fixed point of ψu iff is a solution of (3.13).

Proof. Completely analogous to Prop.3.3.1

Then defining the scheme

x(i+1) = ψu(x
(i)) (3.15)

the following proposition holds

Proposition 3.3.4. Let x̂ be a solution of (3.13) for some α 6= 0 and suppose that
limi→∞ x

(i) = x̂. Then x̂ is a minimum.

Proof. Completely analogous to Prop.3.3.2

Then likewise the lower bound our recipe is to iterate the scheme (3.15) until a certain
accuracy is obtained.
Remark. In most of the cases, as we will show in the next section, the solution of problem
(1.5.2) is one columns of the correlation matrix x? = ρk (which means x?i = ρik, i =
1, . . . , n). However these points are angular points and hence gradient based methods like
SQP may fail in actually computing the minimum. The map we defined, even though
depends on the gradient of the function, does not suffer this problem because it holds true
that

lim
x→ρk

ψu(x) = ρk (3.16)

which means that ψu "sees" the columns of the correlation matrix as regular fixed points.
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3.3.5 Summary of the algorithm

The procedure for optimizing upper and lower bounds can be summarized as follows:

Step 1: Set x0 = as in (3.4), y0 = (−1, 1) for the lower bound, θ0 as in (3.5) for the upper
bound and start the SA procedure as described previously, with objective functions
f`(x, y) (or fu(x) for the upper bound).

Step 2: Stop SA when stopping criterion is met and use the rough approximation xSA
given by SA as starting point for the iterative procedure x(i+1) = ψ`(x

(i)) (or x(i+1) =
ψu(x

(i)) for the upper bound).

Step 3: Stop the iterative procedure when desired accuracy µ is achieved, i.e. whenLBL(x(i+1))−
LBL(x(i)) < µ (or ICUB(x(i))− ICUB(x(i+1)) < µ for the upper bound).

3.4 Numerical examples

In this section we will test the effectiveness of the algorithm on different examples of bas-
ket options comparing the performance with a benchmark algorithms: the Genetic Algo-
rithm, the function "ga" of "MATLAB and Global Optimization Toolbox Release 2016b,
The MathWorks, Inc., Natick, Massachusetts, United States". For the benchmark algo-
rithm the constraint is handled employing the penalization method (with constant penalty)
and the size of the initial population has been raised until the global minimum is always
reached. All the codes are implemented in "MATLAB Release 2016b, The MathWorks,
Inc., Natick, Massachusetts, United States" on an intel i7 with processor frequency 2.8
GHz and 8 GB of RAM memory.

3.4.1 A significant high dimensional numerical example: symmetric basket

Here we consider an high dimensional example in which it is possible to explicitly show
the existence of a local minimum for the lower bound located exactly in x0 and hence
test the capability of our algorithm to escape from the local minimum and converge to the
global one. The basket under investigation is composed by n assets with the following
financial parameters:

• ωi = 1
n
∀i

• σi = σ ∀i

• ρ = (1− r)I + rηηT

where I is the identity matrix and η is such that ηi = ±1 for i = 1, . . . , n, depending
on the sign of the correlation of the ith asset with the first one. The eigenvectors of ρ are
η with eigenvalue 1 + (n − 1)r and its orthogonal subspace with eigenvalue 1 − r. The
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starting guess is x0 =
√

1−r
n
v where v is the the vector which has all the components equal

to 1. By symmetry arguments (or via direct computation) we know that x0 is a stationary
point. In the following we show that x0 is a maximum of LBL(x0). The Hessian matrix
(B.6) in x0 reads as

H(x0) = −σ
2

n
h(y?1 + σ̃)

[
I +

y?1 + σ̃

nσ̃
vv′
]

(3.17)

where σ̃ = σ
√

1−r
n

. Let’s for now focus on the matrix in brackets. This matrix is of the

same type of the correlation matrix and its eigenvectors are v with eigenvalue 1 +
y?1+σ̃

σ̃
and its orthogonal space with eigenvalue 1. However the normal vector to the constraint
Q in x0 is ρ−1x0 which is proportional to x0 (since it is an eigenvector) and hence the
direction v must be excluded in the study of the convexity. The eigenvalues are then
all equal to −σ2

n
h(y1 + σ̃) and their sign is determined by the term y1 + σ̃. By explicit

computation we have that y?1 = − logK
σ̃
− 1

2
σ̃ and substituting we have that the condition

for x0 to be a maximum is logK < 1
2
σ2 1−r

n
. We can note that for large values of n we

have that the point is maximum when the option is ITM while it’s a minimum for the ATM
or the OTM. In Tab.3.1 and Tab.3.2 we compare the performance of our algorithm with
the benchmark reporting also the true benchmark price with a confidence interval of 95%
computed performing MC simulation with 105 simulations and employing the antithetic
variable method.

n MC price (%) LB (%) LBL(x0) OP time (s) GA time (s)
50 [1.9690,2.0113] 1.9380 1.3385e-07 1.9 116

100 [1.9484,1.9907] 1.9321 6.6913e-08 2.3 1074
250 [1.9073,1.9489] 1.9347 2.6763e-08 2.7 8318
500 [1.9340,1.9764] 1.9342 1.3381e-08 9.8 -

Table 3.1: Comparison of the performance of our procedure (OP) with GA for computing the lower bound.
The correlation is set to r = 0.9, the volatility is σ = 0.3 and the moneyness is K = 1.

3.5 Conclusions

In this chapter we introduced a new ad hoc technique for the computation of optimal upper
and lower bounds to the price of a basket call. The key element of our procedure is that our
algorithm is able to efficiently explore the feasible points directly moving on the constraint.
The advantages of this approach are two. First we do not face the problem of setting the
penalization term and then we explore only the feasible points with a relevant boost in
performance. Another relevant element introduced is the deterministic map. A possible
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n MC price (%) ICUB (%) ICUB(x0) (%) OP time (s) GA time (s)
50 [1.9690,2.0113] 2.7761 11.9235 18 -

100 [1.9484,1.9907] 2.7922 11.9235 32 -
250 [1.9073,1.9489] 2.8002 11.9235 63 -
500 [1.9340,1.9764] 1.9342 11.9235 95 -

Table 3.2: Comparison of the performance of our procedure (OP) with GA for computing the upper bound.
The correlation is set to r = 0.9, the volatility is σ = 0.3 and the moneyness is K = 1.

direction of research is to test our technique on different objective functions f(x) with
constraints defined via a quadratic form of the type x ·Mx = 1 where M is a symmetric
positive definite matrix.
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APPENDIXB
Explicit derivatives

Derivatives of the LB(x, y)

∂LB(x, y)

∂xi
= ωiσi [φ(y1 + σixi)− φ(−y2 − σixi)] (B.1)

∂LB(x, y)

∂y1

=
n∑
i=1

ωiφ(y1 + σixi)−Kφ(y1) (B.2)

∂LB(x, y)

∂y2

= −
n∑
i=1

ωiφ(−y2 − σixi) +Kφ(−y2) (B.3)

∂2LB(x, y)

∂xi∂xj
= −ωiσ2

i [h(y1 + σixi) + h(−y2 − σixi)] δij (B.4)

Derivatives of LBL(x)

∂LBL(x)

∂xi
= ωiσi (φ(y?1 + σixi)− φ(y?2 + σixi)) (B.5)
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Appendix B. Explicit derivatives

∂2LBL(x)

∂xi∂xj
=σiσjωiωj

(
h(y?1 + σixi)h(y?1 + σjxj)∑n
k=1 ωkσkxkφ(y?1 + σkxk)

− h(−y?2 − σixi)h(−y?2 − σjxj)∑n
k=1 ωkσkxkφ(−y?2 − σkxk)

)
. . .

− σ2
i ωi (h(y?1 + σixi)− h(−y?2 − σixi))

(B.6)

where h(x) = xφ(x).

First derivatives of ICUBd(x, θ)

∂ICUBd(x, θ)

∂xi
= −

N∑
k=1

hkωiσiφ(λk + σixi)

[
xi√

1− x2
i

φ

(
σi

√
1− x2

i + θk

)
+

(λk + σixi)Φ

(
σi

√
1− x2

i + θk

)] (B.7)

∂ICUBd(x, θ)

∂θk
=

n∑
i=1

hkωi

[
φ

(
θk + σi

√
1− x2

i

)
φ (λk + σixi)−Kφ (λk)φ (θk)

]
(B.8)

Second Derivatives

∂2ICUBd(x, θ)

∂θ2
k

= −
n∑
i=1

hkωi

[
h

(
θk + σi

√
1− x2

i

)
φ (λk + σixi)−Kφ (λk)h (θk)

]
(B.9)
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Part II

Pricing illiquid corporate bonds
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CHAPTER4
A closed formula for illiquid corporate bonds and an

application in the European market

4.1 Introduction

The natural question that arises when dealing with liquidity is: “How long does it take to
liquidate a given position?". Despite the relevance of this question, not only a unique mod-
eling framework, but even a standard language for addressing liquidity has not appeared in
the financial industry yet. Unfortunately liquidity problems are - in general - really com-
plicated; several are the aspects of asset liquidity including: tightness (i.e. bid-ask spread,
the transaction cost incurred in case of a small liquidation), market impact (i.e. the aver-
age response of prices to a trade, see e.g. [7]), market elasticity (i.e. how rapidly a market
regenerates the liquidity removed by a trade) and time-to-liquidate a position. In this part
we focus on corporate bonds: in the literature it has been observed a large evidence of a
component in corporate bond spread due to illiquidity in addition to credit spreads, see
e.g. [14, 29].

Traditional liquidity measures have been developed for the equity market within Mar-
ket Impact Models (see e.g. [7,16,27] and references therein) with a particular focus on the
stocks with larger capitalization; execution typically takes place in timeframes of minutes
to hours, only in some cases can have horizons of few days. The theoretical framework is
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the one described by [1] who assume - for the asset of interest - the presence of a marginal
supply-demand curve and the knowledge of its dynamics. However these liquidity mea-
sures are not applicable to securities that do not trade on regular basis as illiquid corporate
bonds. In this case a complete representation of asset liquidity could be meaningless for
several reasons as i) the market is still largely OTC and bid-ask quotes are not available
for many corporate bonds1 ii) time-to-liquidate a position can be of some weeks and even
of some months in some cases2 and iii) trading costs often decrease with trade size, see
e.g. [15] Moreover the bond market can be very differentiated even for the same issuing
institution: some bonds can be very illiquid while some others, even with similar charac-
teristics (e.g. the same time to maturity), are trading every day, with trading activity far
from being uniform over time but mostly concentrated on recently issued bonds (’on-the-
run’ issues).

In view of the above situation observed in the corporate bond market, it is clear the
reason why it is crucial to have a model price for illiquid coupon bonds that takes into
account a precise measure of illiquidity. It can be extremely useful for investors who
could rely on it i) to decide how much to pay for an illiquid security compared to a liquid
security for which the price can be found in the market and ii) to determine the value of
the bonds they either own or receive as collateral.

In this chapter we simplify significantly the problem for corporate coupon bonds ad-
dressing just one single aspect of market liquidity - the time-to-liquidate a given position
(hereinafter ttl)- and we propose a closed formula for the liquidity component of corpo-
rate bond spreads defined as the difference in bond yields between a bond with limited
liquidity and a very liquid bond of the same issuer. Several are the advantages with respect
to the existing techniques (see e.g. [2] and references therein): liquidity is considered an
intrinsic characteristic of each single issue, it can vary over time and it depends from the
size. Liquidity is expressed in terms of a price discount (or equivalently in terms of a
liquidity spread) as a simple closed formula of a single one-dimensional parameter, the ttl,
the time lag that - at a given value date and for a given size - an experienced trader needs
to liquidate the position.

This problem reminds the celebrated work of [28] on non-marketability of some non-
dividend-paying shares in IPOs. More recently [25] tackle a similar problem in the case
of a risk-free zero-coupon (ZC) bond with maturity T . Unfortunately in the most frequent
situations either coupon payments or credit risk are present and it is not straightforward to
extend [25] methodology to these cases. In this chapter we propose an alternative modeling

1Practitioners well know that publicly disclosed quotes are often not true commitments to trade at that price but rather just indications
(i.e. ’indicative’ quotes).

2In the corporate bond market a difference of some orders of magnitude with respect to large cap stocks is observed: “a typical
US large cap stock, say Apple as of November 2007, had a daily turnover of around 8bn USD" with an “average of 6 transactions per
second and on the order of 100 events per second affecting the order book", see [7] pag.76.
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approach that allows this extension.

We consider an application in the European market, where the problem of pricing illiq-
uidity is even more relevant than in the U.S. market, due to regulatory differences. Euro-
pean companies had the equivalent of about e8.4 trillion of bonds outstanding in various
currencies in May 2014, up from e6.3 trillion at the beginning of 2008 [17]. Even if Eu-
ropean bond market is almost as large as the U.S. one, unfortunately the former is more
opaque than the latter. In U.S.A. starting from the 1st of July 2002 information on the
prices and the volumes of completed transactions was publicly disclosed for a significant
set of corporate bonds. The National Association of Security Dealers (NASD, and after
July 2007 the Financial Industry Regulatory Authority, FINRA) mandated transparency in
the corporate bond market through the Trade Reporting and Compliance Engine (TRACE)
program; under TRACE, all trades for corporate bonds in USD must be reported within
15 minutes of execution, see e.g. [5, 14] and references therein. Also the European Union
is seeking to make the credit market more transparent by publicly disclosing bond-trading
prices. After several years of haggling between policy makers, European Parliament ap-
proved an update of its Markets in Financial Instruments Directive (also known as “MiFID
II") in April 2014, and then the European Securities and Markets Authority was given the
task of defining the new terms and rules, proposing changes to the European Commis-
sion by December 2014 [17]. Unfortunately up to now no transparent public information
is available on bonds’ prices in Europe, mainly because large dealers are concerned they
will suffer the same fate observed in the U.S. market after the introduction of the TRACE
reporting scheme, with slumps in their fixed-income revenues and declines in profits, see
e.g. [5]. Moreover in Europe, it is relatively frequent to observe private placements to
institutional investors, where a single issue is detained by a very limited pool of bondhold-
ers, and, especially in the financial sector, there are several bonds with small issue size
aimed either at retail investors or at private-banking clients of a banking institution. Often
no market price is available in these cases.

For these reasons calibration of a liquidity model, especially in Europe, is often a chal-
lenging task. The proposed formula, besides bond characteristics (maturity, coupon, sink-
ing features, etc...), depends on standard market quantities as i) the observed risk-free
interest curve ii) issuer’s credit spread term-structure and iii) bond volatility. We show in
detail model calibration at a given value date t0 for two European issuers in the financial
sector and the liquidity spread curves that are obtained for different values of the time-to-
liquidate.

The contributions of this chapter to the existing literature on illiquid coupon bonds are
threefold. First it provides a simple closed formula for illiquid corporate coupon bonds
that relates the time-to-liquidate a position to the price difference with respect of the cor-
responding liquid bond. Second it clarifies, via a detailed calibration on some examples in
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the European market, the relative importance of model parameters in liquidity spread like
volatility and time-to-maturity compared to some others as credit spreads and bonds char-
acteristics (e.g. coupons, payments dates). Third it allows to quantify the liquidity impact
in terms of prices for corporate debt of a not sufficiently transparent market and it suggest
some policy implications: this study highlights the importance to implement a post-trade
transparency in Europe similar to TRACE in U.S.A. where also information dissemination
is extended to all corporate bonds (while in the TRACE case some restrictions are still
present). Having a transparent market information on both liquid and less liquid bonds
with similar characteristics would allow a complete quantification of liquidity impact on
corporate prices.

The remaining of the chapter is organized as follows. In section 4.2 we briefly de-
scribe the model set up and the liquidity problem formulation. In section 3 we deduce the
closed formula and in section 4 we show in detail how to calibrate model parameters on
real market data for two European bond issuers. In section 5 we state some concluding
remarks.

4.2 The model

The modeling framework includes two main sets of financial ingredients: we should i)
specify the dynamics for corporate bonds introducing the interest rate and the credit com-
ponent dynamics and ii) describe how illiquidity affects corporate bond prices. Our aim is
to consider a model set up as parsimonious as possible due to the presence of not abundant
accurate data sources, as discussed in the introduction.

The next subsection is devoted to describe corporate bonds’ dynamics, while in the
following we focus on the illiquidity modeling.

4.2.1 The model set up

We model interest rates and credits according to a simplified version of the model in [35].
Under the usual hypotheses, we consider the background filtration (Gt)(t≥0) generated by

a d-dimensional Brownian Motion Wt, with dW
(j)
t dW

(l)
t = ρjl dt for j, l = 1, · · · , d

and ρ ∈ <d×d the instantaneous correlation matrix. The risk-free interest rate rt and the
intensity λt are processes adapted to (Gt)(t≥0). Default for an obligor C is modeled via a
Cox process Nt with intensity λt i.e., conditional on the background filtration (Gt)(t≥0),
Nt is an inhomogeneous Poisson process with intensity λt. The quantity dNt indicates the
number of jumps between t− and t; it is equal to 1 if a jump occurs and zero otherwise. We
define

(
FNt
)

(t≥0)
the filtration generated byNt, see e.g. [36]. The full filtration is obtained

by combining this one and the background filtration:

(Ft)(t≥0) = (Gt)(t≥0) ∨
(
FNt
)

(t≥0)
. (4.1)
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Market practitioners model corporate bond spread via Zeta-spreads; this is equivalent -
from a modeling perspective - to consider zero recovery and to state that default probability
models the whole credit risk for the obligor C. We consider a dynamic version of a Zeta-
spread modeling where default follows a Cox process. This assumption is not limiting: it is
straightforward to generalize the results in order to include a finite recovery as considering
a Fractional Recovery model adding one additional parameter, see e.g. [36].

In this study we focus on fixed rate bonds that are not callable, puttable or convertible.
A corporate coupon bond of the obligor C at value date t0 ≥ 0 is

P (t0, T ; c, t) :=
N∑
i=1

ciB(t0, ti) (4.2)

where the defaultable ZC (with zero recovery) B(t0, T ) is related to default time td and
stochastic discount D(t0, T ) := exp−

∫ T
t0
rsds via

B(t0, T ) := E [D(t0, T )1td>T |Ft0 ] . (4.3)

In corporate coupon bond definition (4.2), price depends on the set of flows c := {ci}i=1,··· ,N
and the set of payment dates t := {ti}i=1,··· ,N . The ith payment ci at time ti for i < N is
the coupon payment with the corresponding daycount, while the last payment at tN = T
has bond face value added to the coupon payment. Corporate coupon bond P always
indicates invoice (or dirty) prices as in standard fixed income modeling.

Proposition 4.2.1. The following expressions are equivalent to a defaultable ZC B(t0, T )
defined in (4.3)

i) B(t0, T ) = E
[
D(t0, T )|Gt0

]
ii) B(t0, T ) = E

[
D(t0, τ)1td>τB(τ, T )|Ft0

]
= E

[
D(t0, τ)B(τ, T )|Gt0

]
∀τ s.t. t0 ≤ τ ≤ T

where D(t0, T ) := exp
(
−
∫ T
t0

(rs + λs)ds
)

is called defaultable stochastic discount.

Proof. See Appendix C.

Definition 4.2.1. The forward defaultable ZC bond B(t; τ, T ) with t ≤ τ ≤ T is defined
as the price i) established in t, ii) that should be paid in τ if the obligorC has not defaulted
up to time τ , iii) in order to get 1 in T if the obligor C has not defaulted up to time T (and
zero otherwise)
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Figure 4.1: We show the flows that characterize a forward defaultable ZC bond paid in τ if no default event occurs up
to τ , whose price is established at time t. The contract gives the right to receive 1 if no default event occurs up to T .

Proposition 4.2.2. The forward defaultable ZC bond is related to defaultable ZC via

B(t; τ, T ) =
B(t, T )

B(t, τ)
. (4.4)

Proof. See Appendix C

From def.4.2.1 of forward defaultable ZC we observe that B(τ ; τ, T ) = B(τ, T ) and
the forward defaultable bond price tends to the default bond price as time t tends to τ . We
indicate with P (t; τ, T ; c, t) the forward defaultable coupon bond corresponding to (4.2);
clearly in the forward P (t; τ, T ; c, t) only coupons with payment date ti > τ appear.

Remark 1. A defaultable ZC with Fractional Recovery (FR) is the price of a defaultable
ZC where, if a default occurs in td, then the value of the defaultable asset is 1− q times its
pre-default value, with 0 < q < 1 i.e.

BFR(td, T ) = (1− q)BFR(td−, T ) .

It is useful to remind that a defaultable ZC with zero recovery can be seen as a particular
case of a ZC with FR when q tends to 1 from below, see e.g. [36]. In some cases it is
simpler to use this modeling perspective for a generic q and then considering the limit for
q close to 1.

Assumption 1. The following dynamics under the risk-neutral measure are assumed
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for the risk-free ZC and the defaultable ZC for every t ∈ (t0, T ]
dB(t, T )

B(t, T )
:= rt dt+ σ(t, T ) · dWt

dB(t, T )

B(t−, T )
:= (rt + qλt)dt+ σ(t, T ) · dWt − q dNt

(4.5)

with B(t0, T ) and B(t0, T ) their initial conditions at value date t0; the instantaneous rate
rt and the intensity λt satisfy

rt := −∂ lnB(t0, t)

∂t
+

1

2

∫ t

t0

∂

∂t
[σ(t′, t) · ρσ(t′, t)] dt′ −

∫ t

t0

∂

∂t
σ(t′, t) · dW (t′)

rt + qλt := −∂ lnB(t0, t)

∂t
+

1

2

∫ t

t0

∂

∂t
[σ(t′, t) · ρσ(t′, t)] dt′ −

∫ t

t0

∂

∂t
σ(t′, t) · dW (t′)

(4.6)

where we consider the case with q = 1−. The volatilities σ(t, T ) and σ(t, T ) are d-
dimensional vectors of deterministic functions of time with σ(T, T ) = σ(T, T ) = 0 ∈ <d
and x · y indicates the scalar product between two vectors x, y ∈ <d.3 ♦

The above model is a generalization of [19] model to the defaultable case (see e.g. [36])
and it is named Defaultable (multifactor) HJM model (hereinafter DHJM). Considering a
realization of the processes between t0 and t and using the Generalized Itô lemma (see e.g.
Appendix C), we get that the value of ZC in t starting from the initial condition is

B(t, T ) = B(t0, T ) (1−q)Nt exp

{∫ t

t0

[
rs + qλs −

1

2
σ2(s, T )

]
ds+

∫ t

t0

σ(t, T ) · dWs

}
where we have defined

σ2(t, T ) := σ(t, T ) · ρσ(t, T ) .

With the above assumption it is possible to model exactly the features of a default: the
default of B(t, T ) occurs when the Poisson process jumps and the jump size is

∆B(t, T ) = B(t, T )−B(t−, T ) = −B(t−, T ) q dNt
i.e. the ZC loses a fraction q of its pre-default value; in particular the case with q = 1−

describes the zero-recovery model.

3 It is straightforward to generalize these results considering the volatilities σ(t, T ) and σ(t, T ) as vectors of adapted processes to
the filtration G: the following Lemma 1 and 2 hold even in this case. However the assumption of deterministic volatilities is adequate
for the liquidity model we describe in the next subsection.
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Lemma 4.2.1. Given B(t, T ) following (4.5), the dynamics for the forward defaultable
ZC is

dB(t; τ, T )

B(t−; τ, T )
=
dB(t; τ, T )

B(t; τ, T )
= [σ(t, T )− σ(t, τ)] · [dWt + ρ σ(t, τ) dt] (4.7)

or equivalently ∀ t s.t. t0 ≤ t ≤ τ

B(t; τ, T ) = B(t0; τ, T ) exp

{
−1

2

∫ t

t0

[
σ2(s, T )− σ2(s, τ)

]
ds+

∫ t

t0

[σ(s, T )− σ(s, τ)] · dWs

}
(4.8)

Proof. See Appendix C.

The above lemma states that the dynamics of the forward defaultable ZC bond is, mu-
tatis mutandis, the same of the corresponding dynamics for a risk-free ZC (see e.g. [32])
and it is continuous. This result could seem paradoxical at a first glance, however being
the forward ZC bond a ratio of two defaultable ZC bond with different maturities of the
same issuer (as shown in prop.4.2.1), in case of default before τ both terms are reduced by
a fraction q of their pre-default value generating no jump in the value of the ratio, whatever
is the FR model considered.

Lemma 4.2.2. Given equation (4.6), the defaultable stochastic discount between t and
τ ≥ tDq(t, τ) := exp

(
−
∫ τ
t

(rs + q λs)ds
)

is related to the corresponding defaultable ZC
via the relation

Dq(t, τ) = B(t, τ) exp

{
−1

2

∫ τ

t

σ2(s, τ)ds+

∫ τ

t

σ(s, τ) · dWs

}
and in particular the relation holds for D(t, τ) in the limit q ↗ 1.

Proof. See Appendix C.

These two lemmas correspond to the two standard properties of HJM models (see
e.g. lemma 1 and lemma 2 in [20] for the one factor Gaussian HJM case and references
therein); these properties hold also in the defaultable bonds’ case described by assump-
tion 1. Hereinafter we consider uniquely lemma 4.2.1 and 4.2.2 in the limit q ↗ 1 that
corresponds to the Zero recovery model we are interested in.

A consequence of these two lemmas is that it is possible to introduce a τ -defaultable-
forward measure (hereinafter also τ -forward measure), s.t. the process

W
(τ)
t := Wt +

∫ t

t0

ρ σ(s, τ) ds
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is a d-dimensional Brownian Motion under the new forward measure. We indicate with
E(τ) [ • ] the expectation under the τ -forward measure. In the τ -forward measureB(t; τ, T )
is martingale and the dynamics for the forward defaultable ZC has a particularly simple
form

dB(t; τ, T ) = B(t; τ, T ) v(t; τ, T ) · dW (τ)
t (4.9)

with v(t; τ, T ) := σ(t, T )− σ(t, τ).
In the next subsection we describe the modeling framework on how illiquidity affects

corporate coupon bonds (4.2).

4.2.2 Problem formulation

Let us consider a hypothetical investor in t0 who holds an illiquid corporate bond (4.2), i.e.
he needs some time in order to liquidate a position with a given size. We assume that this
investor is an experienced trader with a complete information on that particular corporate
market segment (e.g. he knows all features on bonds of that issuer and all potential clients
that could be interested in buying the bond he holds) at value date t0 and he is able to sell
a position of given size on the illiquid bond after a time-to-liquidate (τ − t0) at the same
price of a liquid bond with the same characteristics (issuer, coupons, payment dates).

This problem reminds the celebrated work of [28], where the author compares the value
in t0 of an illiquid security and of a liquid one with equal future cash flows after (τ−t0). An
additional feature characterizes the hypothetical investor in [28]: he is able to sell the liquid
security “with perfect timing" during [t0, τ ]. The additional value of the liquid security
over the illiquid one is calculated by regarding the optimal strategy of this hypothetical
investor. As an example [28] focuses his attention on a non-dividend paying stock; in this
chapter we consider a coupon bearing bond that could have several payment dates (even
before τ ) with different flows over time. Also for this reason when dealing with fixed
income securities, in order to compare two assets with the same future cash flows in τ it is
better to consider the corresponding forward security. This requirement is equivalent to the
prescription in the paper of Longstaff (see e.g. eq.(2) in [28]) for a non-dividend-paying
security with deterministic interest rates and in absence of default. The selling price for
this hypothetical investor, able to sale with optimal timing the forward coupon bond, is

Mτ := max
t0≤t≤τ

P (t; τ, T ; c, t) ;

this price is paid at time τ as in the forward defaultable bond case. Longstaff idea is very
intuitive: the main limitation of holding an illiquid bond, compared with a comparable
issue of the same corporate entity, is related to the impossibility for a while to sell the
bond and convert its value into cash. The time-to-liquidate is the main exogenous model
parameter: it models the liquidity restriction as an opportunity cost for this hypothetical
investor.
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More recently Longstaff results have been extended by [25] who tackle a similar prob-
lem in the case of a risk free zero coupon bond with maturity T . The authors consider the
illiquidity premium in the case of a risk-free short rate which follows a [41] model. The
ZC can be traded at a given set of dates, established at value date t0; illiquidity price in
their study is obtained via a (numerically intense) Monte Carlo technique. Unfortunately,
as already mentioned in the introduction, [25] approach could not be extended easily to
the case of interest; in this chapter we consider coupon bond prices in presence of credit
risk via a simple closed formula.

Assumption 2. The illiquidity price ∆τ is defined as the value in t0 of the difference
Mτ − P (τ, T ; c, t). Its present value equals

∆τ := E [D(t0, τ)1td>τMτ |Ft0 ]− E
[
D(t0, τ)1td>τP (τ, T ; c, t)|Ft0

]
(4.10)

♦

Let us briefly comment Assumption 2. When considering the expected value at value
date of future cash flows according to Longstaff criteria, we have to include the indicator
function 1td>τ , i.e. uniquely a time-to-default td larger than τ gives a contribution to the
illiquidity price ∆τ in case of zero recovery. In fact, it should be considered in the left term
of the difference in (4.10) because all forward ZC bonds are paid only if td > τ and in the
right term in (4.10), due to the statement ii) in prop.4.2.2 that holds for each defaultable
ZC that appear in coupon bond price P defined in (4.2).

Remark 2. The above definition does not consider hypothetical coupon payments be-
tween the value date t0 and τ . We remind that the time-to-liquidate is, even in the most
illiquid cases, of few months, and then at most one coupon payment could be present in the
time interval (t0, τ). In practice corporate bond traders consider that payment, i.e. within
a short lag in the future, equivalent to cash. We assume that the first coupon, if paid before
τ , maintains its credit risk but it gives the same contribution to both the liquid and illiquid
coupon bonds.4

Lemma 4.2.3. Within the DHJM model of Assumption 1, the price of illiquidity is equal
to

∆τ = E
[
D(t0, τ)Mτ |Gt0

]
− E

[
D(t0, τ)P (τ, T ; c, t)|Gt0

]
=

= B(t0, τ)
{
E(τ) [Mτ |Gt0 ]− E(τ)

[
P (τ, T ; c, t)|Gt0

]}
.

(4.11)

Proof. See Appendix C.
4 It could be possible to include even this coupon in the model description, complicating remarkably the notation, without adding a

significant contribution to the final result.
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Remark 3. Let us observe that in the price of illiquidity ∆τ all quantities of interest do
not depend separately from rt and λt, but depend only from their combination

rt := rt + λt .

The above properties hold for all DHJM model is selected (i.e. whatever σ(t, T ) and
σ(t, T ) are chosen) for the dynamics (4.5) of the risk-free ZC curve B(t, T ) and the de-
faultable ZC curve B(t, T ). As discussed in the introduction the main driver for model
selection is parsimony when dealing with illiquid corporate bonds, due to the poor data
set and model calibration issues. One of the simplest model within this set was proposed
by [35] where both rt and λt follow two correlated 1-dimensional [21] models{

rt = ϕt + x
(1)
t

λt = ψt + x
(2)
t

where x(1)
t and x(2)

t are two correlated Ornstein-Uhlenbeck (OU) processes with zero mean
and zero initial value. This model has the main advantage to allow an elementary separate
calibration on the zero-rates (via ϕt) and the Zeta-spread (via ψt). However the above
remark suggests to consider an even simpler model as stated in the following Assumption.

Assumption 3. We model the rate rt as a Hull-White (HW) model

rt = ϕt + ψt + xt

with ϕt, ψt two deterministic functions of time and xt an Ornstein-Uhlenbeck (OU) pro-
cess with zero mean and initial value{

dxt = −â xt dt+ σ̂ dWt

xt0 = 0

where â, σ̂ are two positive constant parameters.5 ♦

This assumption is in line with day-by-day practice: as we discuss in section 4, in the
market place, generally one cannot observe derivative instruments that allow to calibrate
separately the volatility of the risk-free curve and the volatility of the credit spread and
there is not enough information to discriminate the two dynamics. Conversely, the two
initial curves (risk-free and defaultable) can be easily calibrated separately on market data
and the integrals of ϕt, ψt between t0 and a given maturity T are related to these two curves
up to T . We do not report these relations here because we provide final formulas in terms
of B(t0, T ) and B(t0, T ).

5Also a non-constant σ̂(t), chosen as a deterministic function of time, allows to replicate all the results in this study. Once again it
is preferred the more parsimonious choice.
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Remark 4. The HW model is a one factor DHJM with volatility

σ(t, T ) =
σ̂

â

(
1− e−â(T−t)) ∈ < t ≤ T (4.12)

and then the volatility v(t; τ, ti) is a separable function in the times t and ti, i.e.

v(t; τ, ti) = ξi ν(t) (4.13)

with ξi = (σ̂/â)
[
1− e−â(ti−τ)

]
and ν(t) = e−â(τ−t) with t0 ≤ t ≤ τ ≤ ti, see e.g [32].

In the next section we show that, within Assumption 1, 2 and 3, it is possible to compute
the price of illiquidity ∆τ via a closed formula and it is possible to associate a liquidity
spread as a component of corporate bond spread in addition to credit spread, as observed
in econometric studies, see e.g. [14, 29].

4.3 A closed formula for illiquid corporate coupon bonds

In this section we show the main result of this part: the illiquidity price ∆τ of definition
(4.10) can be evaluated directly via a simple closed-form solution.

This result is far from being obvious. A defaultable forward coupon bond P (t; τ, T ; c, t)
is the sum of forward defaultable ZCs {B(t; τ, ti)}i=1,··· ,N , each one following the dynam-
ics (4.7) and then described as a Geometric Brownian Motion (GBM) process (4.8). No
known closed formula exists for the running maximum of a sum of GBMs.

In order to get the closed formula we proceed taking the following steps. First we
prove that a lower and an upper bound of (4.10) can be computed via closed formulas.
Then we show, calibrating model parameters for two European issuers, that the difference
between upper and lower bounds is negligible for all practical purposes. We can then use
one of the two bounds as the closed-form solution we are looking for; in this section we
prove the existence of these bounds while in the next section we show the tightness of their
difference.

Lemma 4.3.1. The following inequalities hold:∑
i

ciB(t∗; τ, ti) ≤ max
t∈[t0,τ ]

{∑
i

ciB(t; τ, ti)

}
≤
∑
i

ci max
t∈[t0,τ ]

B(t; τ, ti) ∀t∗ ∈ [t0, τ ], ti ≥ τ

where the sum over i is limited to all coupons with payment date ti larger than τ .

Proof. The left inequality is obvious since the maximum value of a function on the time
interval [t0, τ ] is greater than the same function valued in any other time t∗ in the interval.
The right inequality is due to the fact that the maximum of a sum is lower or equal to the
sum of maxima.
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In particular we can choose t∗ equal to the time-location

t∗ = min

{
t′
∣∣∣∣B(t′; τ, tN) = max

t∈[t0,τ ]
B(t; τ, tN)

}
.

The idea is that a coupond bond (4.2) is the sum of ZCs who have different weights ci
with the last one cN (that contains the face value) generally two orders of magnitude larger
than the others. In most cases the forward coupon bond reaches the maximum when the
N th ZC reaches its maximum.

Furthermore, as already observed in remark 4, all ZCs follow a GBM driven by the
same Wiener process with a deterministic volatility that differs only for a multiplicative
constant ξi but it has exactly the same time dependency ν(t) for all i = 1, . . . , N s.t. ti > τ

B(t; τ, ti) = B(t0; τ, ti) exp

[
ξi

(
−ξi

2

∫ t

t0

ν2(s) ds+

∫ t

t0

ν(s) dW (τ)(s)

)]
and then when computing the maximum a different time-location can only be due to the
drift term −ξi/2

∫ t
t0
ν2(s) ds.

For these reasons it is quite rare that the time-location when the coupon bond reaches
the maximum is different from the time when the last ZCB(t; τ, tN) reaches its maximum;
the contribution to the expected value in (4.10) of these cases is negligible.

In the next theorem we show that the expected values of these lower and upper bounds
have simple form; in section 4 that they can be considered equal for all practical purposes.

Theorem 4.3.1. Lower and upper bounds for the illiquidity price (4.10) are:

N∑
i=1

ciB(t0, ti)
(
πLi (τ)− 1

)
≤ ∆τ ≤

N∑
i=1

ciB(t0, ti)
(
πUi (τ)− 1

)
with

πUi (τ) :=
4 + Σ2

i (τ)

2
Φ

(
Σi(τ)

2

)
+

Σi(τ)√
2π

exp

(
−Σ2

i (τ)

8

)
πLi (τ) :=

∫ 1

0

dη
e−

1
8

Σ2
N (τ)

π
√

1− η√η
e−

η
2

Σi(τ) (Σi(τ)−ΣN (τ)){
1 +

√
π (1− η)

2
ΣN(τ) e

1−η
8

Σ2
N (τ) Φ

[√
1− η
2

ΣN(τ)

]}
{

1 +

√
π η

2
(2 Σi(τ)− ΣN(τ)) e

η
8

(2 Σi(τ)−ΣN (τ))2 Φ

[√
η

2
(2 Σi(τ)− ΣN(τ))

]}
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(4.14)

if ti > τ and πUi (τ) = πLi (τ) = 1 otherwise. The cumulate volatility is

Σ2
i (τ) :=

∫ τ

t0

v2(s; τ, ti) ds .

Proof. See Appendix C

This theorem is the key result of this part: it indicates a lower and an upper bound for
the price of illiquidity ∆τ . As we show in section 4.4 these bounds are very tight, their
difference can be considered negligible for all practical purposes. In practice it can be used
indifferently one of the two closed form solutions and in particular the simplest espression
among the two bounds, i.e. the upper bound. This fact allows to define in an elementary
way a Liquidity basis as done in the next subsection.

4.3.1 Liquidity basis

A consequence of the above theorem and of the tightness of the difference between the
two bounds is that the illiquid corporate coupon price is

P τ (t0, T ; c, t) := P τ (t0, T ; c, t)−∆τ =
N∑
i=1

ciB(t0, ti)
(
2− πUi (τ)

)
(4.15)

where πUi (τ) in defined in (4.14). We can also define an illiquid ZC as

Bτ (t0, ti) := B(t0, ti)
(
2− πUi (τ)

)
and the Liquidity basis

Lτ (ti) := − 1

ti − t0
ln
Bτ (t0, ti)

B(t0, ti)
= − 1

ti − t0
ln
(
2− πUi (τ)

)
. (4.16)

We can then decompose the illiquid ZC bond in the three components of risk-free dis-
count, credit and liquidity

Bτ (t0, T ) = e−R(T )(T−t0)︸ ︷︷ ︸
risk−free

e−Z(T )(T−t0)︸ ︷︷ ︸
credit

e−Lτ (T )(T−t0)︸ ︷︷ ︸
liquidity

where R(T ) is the Zero rate and Z(T ) is the Zeta spread. This corresponds to what is
done by practitioners in their day-by-day activities: they add a basis related to liquidity
to bond’s credit spread. The main advantage of the model presented in this study is that,

64



4.4. An application to the financial sector in the European bond market

0.05 0.10 0.15 0.20
Σ(τ)

0.85

0.90

0.95

1.00

Liquidity component

Figure 4.2: We show the liquidity component
(
2− πUi (τ)

)
in an illiquid defaultable ZC bond as a function of the

cumulate volatility Σi(τ) for ti > τ .

given the ttl for the illiquid corporate bond position of interest, it allows to associate a
Liquidity basis given some bond characteristics (e.g. coupon payment dates) and the two
parameters (â and σ̂) related to the volatility of the corresponding liquid bond.

It is useful to underline that the Liquidity basis depends only from volatility parameters
and it is impacted by neither the rates component nor the credit component. The liquidity
component in ZC price

(
2− πUi (τ)

)
is just a function of the cumulate volatility Σi(τ). Its

plot is shown in figure 4.2.
In particular modeling rt according to assumption 3, we get that the cumulated volatil-

ity is

Σi(τ) = ξi

√
1− e−2â(τ−t0)

2â

where ξi has been defined in equation (4.13).

4.4 An application to the financial sector in the European bond market

In this section we illustrate the impact of illiquidity applying formula (4.15) to obligations
with different maturities issued by two main financial institutions in Europe. We also show
that the difference between upper and lower bounds is negligible for all practical purposes.

4.4.1 The dataset

The two European financial institutions in Europe that we consider in this study are BNP
Paribas S.A. (hereinafter BNPP) and Banco Santander S.A. (Santander) on the 10th of
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September 2015 (value date). The settlement date is the 14th of September 2015.6 At
value date the two issuers have rating A for BNPP and A- for Santander according to S&P.

In order to construct the Zeta-spread curve, i.e. the (liquid) credit component in the
spread we consider all senior unsecured benchmark issues (i.e. with issue size larger
than e500 millions) with maturity lower or equal 10 years. Coupons are paid annually
with Act/Act day-count convention for all bonds in both sets. Closing day mid-prices are
reported in tables 4.1 and 4.2.

maturity coupon (%) clean price dirty price
27-Nov-2017 2.875 105.575 107.845
12-Mar-2018 1.500 102.768 103.522
21-Nov-2018 1.375 102.555 103.667
28-Jan-2019 2.000 104.536 105.782
23-Aug-2019 2.500 106.927 107.070
13-Jan-2021 2.250 106.083 107.583
24-Oct-2022 2.875 110.281 112.850
20-May-2024 2.375 106.007 106.779

Table 4.1: BNPP bond data. Coupons are annual with day-count convention Act/Act. Prices are end-of-day
mid prices on the 10th of September 2015. We show both clean and dirty prices.

maturity coupon (%) clean price dirty price
27-Mar-2017 4.000 105.372 107.208
04-Oct-2017 4.125 107.358 111.224
15-Jan-2018 1.750 102.766 103.913
20-Apr-2018 0.625 99.885 100.132
14-Jan-2019 2.000 103.984 105.306
13-Jan-2020 0.875 99.500 100.083
24-Jan-2020 4.000 112.836 115.382
14-Jan-2022 1.125 98.166 98.916
10-Mar-2025 1.125 93.261 93.848

Table 4.2: Santander bond data. Coupons are annual with day-count convention Act/Act. Prices are end-
of-day mid prices at value date.

The risk-free curve is the OIS curve as market standard; it has been bootstrapped from
OIS quoted rates. Their quotes at value date are reported in table 4.3 (with market conven-
tions, i.e. annual payments and Act/360 day-count); in the same table we report also swap
rates (annual fixed leg with 30/360 day-count). In table 4.4 we show the FRA rates of
interest and the Euribor 6m fixing on the same value date (both with Act/360 day-count).

6Settlement date is equal to two business days after value date for both interest rate and credit products in the Euro-zone.
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Unfortunately prices on liquid options on BNPP and Santander bonds are not available
in the market at value date. We consider a proxy in order to calibrate volatilities’ param-
eters (HW parameters â and σ̂); we notice that at value date both banks are Systemically
Important Financial Institutions (SIFI) and belong to the panel of banks contributing to
Euribor rate. The dynamics of the spread between Euribor and OIS curve can be consid-
ered a good proxy of the dynamics of the average credit spread for financial institutions
with the above characteristics. ATM swaptions on Euribor swap rates are very liquid in
Europe: we can then use these OTC option contracts at t0 as a proxy in order to calibrate
volatilities’ parameters.

We show swaption ATM volatilities in basis points (bps) in table 4.5 and swaption
market prices are obtained according to the new market standards (normal model) that
allow for negative interest rates. All market data are provided by Bloomberg.

OIS rate (%) swap rate vs 6m (%)
1w -0.132 -
2w -0.132 -
1m -0.132 -
2m -0.133 -
3m -0.136 -
6m -0.139 -
1y -0.147 0.044
2y -0.135 0.080
3y -0.083 0.154
4y 0.008 0.259
5y 0.122 0.377
6y 0.254 0.512
7y 0.392 0.652
8y 0.529 0.786
9y 0.655 0.909

10y 0.766 1.016
11y 0.866 1.109
12y 0.957 1.195
15y 1.160 1.383

Table 4.3: OIS rates and swap rates vs Euribor 6m in %: end-of-day mid quotes (annual 30/360 day-count
convention for swaps vs 6m, Act/360 day-count for OIS) on the 10th of September 2015.

4.4.2 Calibration of model parameters

As discussed in section 3, the closed formula for illiquid bond prices, besides bond char-
acteristics (maturity, payment dates, coupons, sinking features, time-of-liquidate, etc...),
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rate (%)
Euribor 6m 0.038
FRA 1 × 7 0.038
FRA 2 × 8 0.041
FRA 3 × 9 0.043

Table 4.4: Euribor 6m fixing rate and FRA in % (day-count Act/360). FRA rates are end-of-day mid quotes
at value date.

2y 3y 4y 5y 6y 7y 8y 9y 10y
1m 15.16 19.22 27.79 34.90 41.05 47.88 54.35 60.07 63.71
2m 15.38 20.11 29.26 36.31 42.92 50.04 55.76 61.69 65.55
3m 14.89 20.26 29.34 37.10 44.06 51.61 57.56 63.37 67.02
6m 19.40 25.59 32.85 40.02 46.81 53.01 58.23 63.36 67.18

Table 4.5: ATM swaptions normal volatilities in bps with expiry 1m up to 6m and tenor 2y up to 10y on the
10th of September 2015.

includes the observed i) zero-rate curve, ii) credit spread term-structure for the issuer of
interest and iii) bond volatility.

These “ingredients" can be calibrated on market data following standard techniques.
Discount curves B(t0, T ) are bootstrapped following the procedure in [4]. For each

one of the two issuers, its time-dependent Zeta-spread curve

Z(T ) := − 1

T − t0
ln
B(t0, T )

B(t0, T )

can be bootstrapped from liquid bond dirty prices as in [36]. We consider Z(t0) = 0 and
a linear interpolation rule; day-count convention for Zeta-spreads is Act/365 as market
standard.

Finally, the volatility parameters (HW parameters â and σ̂) should be calibrated on op-
tions on corporate bonds. Unfortunately, prices on liquid options on BNPP and Santander
bonds are not available in the market at value date. We consider a proxy in order to cal-
ibrate the volatility parameters; we notice that at value date both banks are Systemically
Important Financial Institutions (SIFI) and belong to the panel of banks contributing to the
Euribor rate. The dynamics of the spread between the Euribor and the OIS curve can be
considered a good proxy of the dynamics of the average credit spread for

nancial institutions with the above characteristics. As mentioned in [18], this spread
models the risk related to the Euro interbank market, and default risk is one important
component of this interbank risk. Let we underline that we use this proxy to calibrate only
volatility parameters, while credit spreads are calibrated on issuer liquid bond market.
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Figure 4.3: Difference between the upper and lower bounds for the illiquidity price ∆τ for BNPP bonds. We conside
illiquid bonds with the same characteristics (e.g. coupons, payment dates) of the bonds in table 4.1 with ttl equal to
2 weeks (red line) and ttl equal to 2 months (yellow line). This difference is of the order of 10−7 times the face value
and then negligible for all practical purposes.

ATM swaptions on Euribor swap rates are very liquid in Europe: we can use these OTC
option contracts at t0 as a proxy, in order to calibrate the volatility parameters. Swaption
ATM normal volatilities are provided by Bloomberg; their values in t0 and the calibration
procedure are reported in [3]. Calibrated values are â = 13, 31% and σ̂ = 1, 27%.

4.4.3 Illiquid bond prices

In this section we show that, considering two sets of illiquid bonds (one set for each issuer)
with the same characteristics of liquid bonds (e.g. coupons and payments dates) and ttl
equal to either 2 weeks or 2 months, the difference between lower and upper bound for the
illiquidity price ∆τ is of the order of 10−7 times the face value. In figure 4.3 we show this
difference for BNPP and in figure 4.4 for Santander.

Moreover we consider the bond with longest maturity within Santander set (i.e. the one
with the largest difference) and in figure 4.5 we plot the difference between the two bounds
with values of â ∈ (0, 10%) and σ̂ ∈ (0, 5%). We observe that this difference is always
of the order of 10−6 times the face value (or lower). This difference is the maximum error
we commit if we value Illiquidity price ∆τ with one of these bounds: it is negligible for
all practical purposes. This fact allows us to consider indifferently the lower or the upper
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Figure 4.4: Difference between the upper and lower bounds for the illiquidity price ∆τ for Santander bonds. We
conside illiquid bonds with the same characteristics (e.g. coupons, payment dates) of the bonds in table 4.2 with ttl
equal to 2 weeks (red line) and ttl equal to 2 months (yellow line). This difference is of the order of 10−7 times the
face value.
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Figure 4.5: Difference between the upper and lower bounds for the illiquidity price ∆τ for Santander bond with the
longest maturity in table 4.2 varing â ∈ (0, 10%) and σ̂ ∈ (0, 5%). We conside an illiquid bonds with the same
characteristics (e.g. coupons, payment dates) with ttl equal to either 2 weeks or 2 months.

bound as closed-form solution for ∆τ .
In section 3 we have shown that a Liquidity basis (4.16) could be added to each ZC in

order to take into account liquidity. Practitioners often consider a Liquidity yield spread as
the term that should be added to the yield in order to obtain the illiquid bond price (4.16)

P τ (t0, T ; c, t) =:
N∑
i=1

ci e
−[y(T )+Lτ (T )] (ti−t0)

where y(T ) is the yield of the corresponding liquid bond P (t0, T ; c, t).
In the figures 4.6 and 4.7 we show the Liquidity yield spread for BNPP and Santander

for different bond maturities and ttl equal to two weeks and two months.

Finally it is useful to observe that Liquidity spreads, obtained with the technique de-
scribed in this part, are of the same order of magnitude of the ones observed in econometric
studies in the U.S. market for bonds of similar maturity (2y up to 10y) and similar ratings.
For example Dick-Nielsen et al. report Liquidity spreads post-subprime crisis in the U.S.
market between 24.7 bps and 105.4 bps for A rated issuers and between 55.0 bps and 175.1
bps for BBB, see e.g. table B2, panel B in [14].
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Figure 4.6: BNPP bond yields. We consider all benchmark issues with maturity lower than 10y described in table 1
and their yields (blue line). We show also the yield obtained for illiquid bonds with the same characteristics (e.g.
coupons, payment dates) with ttl equal to 2 weeks (red line) and ttl equal to 2 months (yellow line).
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Figure 4.7: Santander bond yields. We consider all benchmark issues with maturity lower than 10y in table 2 and their
yields (blue line). We show also the yield obtained for illiquid bonds with the same characteristics (e.g. coupons,
payment dates) with ttl equal to 2 weeks (red line) and ttl equal to 2 months (yellow line).

73



Chapter 4. A closed formula for illiquid corporate bonds and an application in the
European market

4.5 Conclusions

In this chapter we have proposed a closed formula (4.15) for illiquid corporate coupon
bonds when the corresponding liquid credit curve can be observed in the market for the
same issuer. This formula is obtained bounding from above and below the illiquidity price
(10). Calibrating model parameters on market data, we have shown that these two bounds
coincide for all practical purposes.

This formula clarifies that illiquidity is an intrinsic component of bond spread and then
of bond price. In presence of the liquid credit curve it is possible to detangle the two
components of credit and liquidity in the observed spread over risk free rate. In particular
we have shown that the Liquidity spread depends mainly from bond volatility and from
the time-to-liquidate a given position (via a cumulated volatility).

This closed formula (4.15) is very simple: besides a set of parameters that can be
easily calibrated on liquid market data, the model includes just an additional parameter the
“time-to-liquidate". It can be used by practitioners for different possible applications; let
us mention some of them.

This model can support traders in their day-by-day activities. On the one hand, ttl
parameter can be evaluated ex-ante by an experienced trader with a deep knowledge of
the characteristics of that particular illiquid market (concentration, frequency for similar
trades with similar characteristics observed in the recent past) who desires to liquidate a
given position; the formula gives a theoretical background to market practice of adding a
Liquidity spread to bond yields either when pricing illiquid issues or when receiving them
as collateral. On the other hand, the formula can be used also in order to get an “implied
time-to-liquidate" from market quotes if both liquid and illiquid prices are available, trans-
lating observable spreads into a time lag for liquidating a position and then providing an
interesting piece of information to market participants.

Moreover the model can be useful also to risk managers. Ttl can be easily backtested
ex-post by risk managers, who can measure the average time needed for liquidating a
position in an illiquid corporate bond of a given size. It also gives a theoretical background
for setting Vega limits on illiquid bonds’ positions; the proposed approach clarifies that the
cumulated volatility is the key driver of the Liquidity basis.

Finally this study also allows to draw some policy implications for the European bond
market. TRACE reports, on a selected set of bonds, information about executed trades
(trade time, volume and price) in the US market but it does not reveal quotes. In the bond
market the time-to-liquidate is the natural quantity to be estimated from traded volumes
per unit time; on the contrary, bid-ask spread requires quotes and, in many situations,
bid-ask could be a relevant information only for small size trades.

This study gives some insights into the design of the post-trade transparency process
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in order to be truly informative and helpful for investors in the European market, since
it clarifies which are the key ingredients for an effective transparency: collection should
include the same TRACE dataset (trade time, volume and price) but dissemination of
these data should be extended to all executed trades in bonds in Euro, not being limited to
a selection of them as in the US case. This simple policy rule would have implications not
only to liquidity but also to transparency: it can reduce significantly market opaqueness
and then the total cost of debt for corporate issuers.
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APPENDIXC
Proofs

Proof of Proposition 1. Point i) is a straightforward consequence of the filtration (4.1), see
e.g. [36]. Using definition (4.3), well known properties of stochastic discounts and the law
of iterated expectations we get

B(t0, T ) :=E [D(t0, τ)1td>τD(τ, T )1td>T |Ft0 ] = E [D(t0, τ)1td>τE [D(τ, T )1td>T |Fτ ] |Ft0 ] =

E
[
D(t0, τ)1td>τB(τ, T )|Ft0

]
= E

[
E
[
D(t0, τ)1td>τB(τ, T )|FNt0

]
|Gt0
]

=

E
[
D(t0, τ) exp

(
−
∫ τ

t0

λsds

)
B(τ, T )|Gt0

]
,

and then also point ii) is proven.

Proof of Proposition 2. It is enough to use forward defaultable ZC definition and to
impose that the NPV is zero at time t (see also figure 4.1)

E
[
D(t, τ)1td>τB(t; τ, T )|Ft

]
= E [D(t, T )1td>T |Ft] .

The proposition is proven after observing that B(t; τ, T ) is a known quantity in t, since
the forward price is established at time t, and using definition (4.3).

In order to prove Lemma 4.2.1 we need to remind the Generalized Itô’s Lemma.
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Generalized Itô’s Lemma. Let X(t) := {X1(t), · · · , Xd(t)} a d-dimensional semi-
martingale process with a finite number of jumps, Xc(t) it’s continuous part and a function
f : <d → <

df(X(t)) =
d∑
i=1

∂f(X−(t))

∂Xi

dXc
i (t)+

1

2

d∑
i,j=1

∂2f(X−(t))

∂Xi ∂Xj

〈dXc
i (t) dX

c
j (t)〉+∆f(X(t))

where

∆f (X(t)) = lim
h→0+

f (X(t))− f (X(t− h)) .

Proof. A formal proof can be found in [22].

Proof of Lemma 4.2.1. A direct application of the Generalized Itô’s Lemma, using
dynamics (4.5) and equation (4.4).

Proof of Lemma 4.2.2. Given the definition of Dq(t0, T ) and definitions (4.6) in DHJM
models, it is a straightforward computation after integrating rs + q λs for s between t0 and
T .

Proof of Lemma 4.2.3 . It is an application of the Girsanov theorem on the risk neutral
measure and the τ -forward measure. It allows to obtain, using Lemma 4.2.2, that

E
[
D(t, τ) •

]
= B(t, τ) E(τ) [ • ]

proving the lemma.

The following technical lemma is needed in order to prove Theorem 4.3.1
Lemma. The joint probability of i) the maximum y = max[x(t); t ∈ (0, T )] and ii) its

time-location θ ∈ (0, T ), where x(t) = c t+W (t) is a 1-dimensional Wiener process with
drift c t where c ∈ <, is

p(θ, y; c) =
1

π

y√
T − θ θ3/2

e−
c2T
2
− y

2

2θ
+cy

{
1−

√
2π (T − θ) c e

c2(T−θ)
2 Φ

[
−c
√
T − θ

]}
with y = x(θ) > 0 and θ ∈ (0, T ).

Proof. Consider the density p(θ, y, x; c, σ2) in equation (1.5) in [37], where x is the
endpoint x(T ). The marginal distribution is obtained by setting σ = 1 and by integrating
on x < y.

Proof of Theorem 1. The upper bound is obvious given Lemma 4.2.3 and after observ-
ing that each ZC B(t; τ, ti) in equation (4.9) is martingale under the τ -forward measure
and follows a GBM with volatility v(t; τ, ti).
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The lower bound is the sum over i of the expected value of B(t∗; τ, ti) computed at the
time t∗ s.t. B(t∗; τ, tN) reaches its (first) maximum for a given realization of the process.
In this case, using the separability property of the volatility observed in Remark 3, we get

E(τ)
{
B(t∗; τ, ti)

}
= B(t0; τ, ti)E(τ)

{
exp

[
ξi

(
−1

2
ξi

∫ t∗

t0

ν2(s) ds+

∫ t∗

t0

ν(s) dW (τ)(s)

)]}
.

By means of the change of time

t̃ := t̃(t) :=

∫ t

t0

ν2(s) ds ∈ (0, τ̃)

where τ̃ stands for t̃(τ). We get dW (τ)(t̃) = ν(t) dW (τ)(t) and

E(τ)
{
B(t∗; τ, ti)

}
= B(t0; τ, ti)E(τ)

{
exp

[
ξi

(
−1

2
ξi θ +W (τ)(θ)

)]}
= B(t0; τ, ti)E(τ)

{
exp

[
ξi

(
−1

2
(ξi − ξN) θ + x(θ)

)]}
where we have defined x(θ) := −ξN θ/2 + W (τ)(θ) the maximum value reached by the
drifted Brownian Motion x(t̃) and

θ := t̃(t∗) ∈ (0, τ̃) .

Let us observe that

E(τ)

{
exp

[
ξi

(
−1

2
(ξi − ξN) θ + x(θ)

)]}
=

∫ τ̃

0

dθ

∫ +∞

0

dy p

(
θ, y;−ξN

2

)
eξi(−

1
2

(ξi−ξN ) θ+y)

where p(θ, y;−ξN/2) has been deduced in previous technical lemma with a generic drift
c. After computing the integral w.r.t. y and some algebra we get the result.

Let us observe that, from a technical point of view, we have shown that it is possible to
compute the maximum of a GBM with time dependent parameters even when the GBM is
not a martingale process (with a drift of a particular form), contrary to what is generally
considered in the literature where the GBM is always assumed to be martingale in order
to get a running maximum.
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