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Abstract

Despite the growing popularity of interpreted or byte-compiled languages, C/C++

and other languages targeting native code are still dominantly used for system pro-
gramming. Programs compiled to native code present a set of challenges compared
to alternatives. In particular, in this work we focus on how they can be efficiently
analyzed, how existing security measures (known as binary hardening techniques)
perform, and how new ones can be introduced to secure features that have received
little attention.

We propose rev.ng a binary analysis framework based on QEMU, a popular
dynamic binary translator and emulator, and LLVM, a mature and flexible com-
piler framework. rev.ng can easily handle a large number of architectures and
features a set of analyses to recover basic blocks locations, function boundaries
and prototypes in an architecture- and ABI-independent way. rev.ng can be used
for instrumentation, debugging, decompilation, retrofitting of security features and
many more purposes. Our prototype encompasses about 17 kSLOC of C++ code
and has been publicly released under a Free Software license.

The core component of rev.ng is revamb: a static binary translator which can
accurately identify all the basic blocks, and, in particular, the targets of indirect
jumps for switch statements. Along this work, we will make heavy use of analysis
techniques popular in the compiler literature, such as Monotone Frameworks, to re-
cover an accurate control-flow graph, identify function boundaries and the number
and location of function arguments and return values.

We will also discuss how rev.ng can handle native dynamic libraries, how it
can be easily employed for instrumentation purposes, how it can be extended to
handle even more architectures and how its performance compares to tools with
analogous purposes such as QEMU, Valgrind, Pin and angr.

We also study two often overlooked features of C/C++ programs: variadic func-
tions and the RELRO link-time protection mechanism. We propose HexVASAN, a
sanitizer for variadic functions to ensure that the number and type of arguments
used by the variadic function match those passed by the caller, and leakless, an
exploitation technique to bypass the RELRO protection in its several forms.
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Introduction

Despite the growing popularity of interpreted languages, such as Python and Ruby,
and languages that compile to some form of byte-code, such as C# or Java, a large
part of the software is still being written in languages directly targeting native
code, such as C and C++. Such languages are popular for performance critical
software, system level software, bare metal software, kernels and embedded systems
in general.

Compared to languages targeting interpreters or byte code, they generally pro-
vide better performance but carry with them a series of challenges. In this work we
will focus on two challenging aspects in particular: reverse engineering and safety
of native code.

On the reverse engineering side, which in the native world takes the name
of binary analysis, we face many issues: native code is not intended to be read
by a human or even a compiler. It’s a final product, ready to be run, which
is not supposed to be further manipulated (e.g., for optimization purposes) or
read. Native code is composed of low level instructions which provide basically
no abstraction whatsoever. A loop might be completely unrolled, common strings
of assembly instructions might be factored out in a function, arithmetic or logical
operations might be turned into different but semantically equivalent instructions
and so on.

On the safety side, languages targeting native code often do not provide full
memory safety, which makes it harder to write secure software. Therefore, along
the years, a wide range of countermeasures have emerged. Many of such protection
mechanisms can be automatically applied during the compilation process without
further action on the developer side. Some of the most popular ones include ASLR,
CFI, stack canaries, W^X and many others. These techniques, which involve the
compiler, the linker, the dynamic loader, the kernel and other components of the
operating system, are collectively know as binary hardening techniques.

Binary Analysis
Digital devices have become a key part of our everyday life, carrying a large amount
of benefits, and risks. In fact, for each software platform gaining enough popularity,
a set of malicious software (malware) to abuse them is developed.

To be able to effectively oppose them, understanding their behavior and how
they’re built is of critical importance. For this reason, a series of tools for analyzing
software for which source code is not available is fundamental. Such tools are often

xv



xvi INTRODUCTION

known as reverse engineering or static binary analysis tools. In certain situations,
the reverse engineering effort can be aided by not only analyzing the program, but
also running it with certain changes to better understand its behavior. Such an
activity is known as dynamic binary analysis.

Information learned through static analysis is generally applicable but runs into
precision issues while dynamic analysis has better precision, as an actual instance is
being evaluated, but is limited to existing test cases, i.e., the code must be executed
in a run-time setting to be analyzed.

Reverse engineering tools can also be employed to analyze ordinary software,
typically provided by third parties which do not release the source code. The
analysis of non-malicious software enables the assessment of the security of compo-
nents outside the control of their users. For instance, companies or public entities
dealing with sensitive data might want to analyze software provided by third par-
ties to investigate the presence of bugs or, even worse, backdoors. To these ends,
the most useful reverse engineering tool is a decompiler, a tool able to recover a
representation of the program’s behavior that is close to the original source code,
and therefore easier to understand with respect to low level machine code which is
produced by disassemblers.

While several reverse engineering tools are available, they have been lacking in
innovation, usability and the diversity of the hardware platforms they are able to
handle. In fact, existing tools either develop a set of ad-hoc heuristics to handle
each new architecture (IDA Pro [72]) or, if the tool employs an intermediate rep-
resentation for its analyses, it has to create a new front-end to handle each new
architecture. Examples of the latter case are BAP/ByteWeight [20, 11] (x86 and
ARM only), MC-Semantics [152] (x86 only) and LLBT [139] (ARM only).

The diversity aspect is of particular relevance in a world being progressively
dominated by IoT devices. In fact, the IoT ecosystem has historically paid little
to no attention to security aspects and often employs unusual architectures, which
makes the software running on them harder to analyze due to the lack of tools for
those architectures. Therefore, the analyst is left with severely insufficient analysis
capabilities. This is particularly important in the context of eHealth devices which
are critical for the life of an always growing number of people and often employ
little known, ultra-low power CPUs (e.g., RISC-V [175]).

In this work we propose rev.ng, a unified system for binary analysis which
employs a set of principled techniques rather than architecture-specific heuristics
for its analyses and that, unlike existing works, defers the burden of providing a
reliable front-end for a wide range of architectures to existing tools. In our proto-
type we rely on QEMU to provide such a front-end. QEMU is a dynamic binary
translator that lifts binary code into a custom intermediate representation (IR) for
17 different architectures, including x86, x86-64, MIPS, ARM, and AArch64. As
a tool aiming at full system emulation, QEMU supports even the most sophisti-
cated ISA extensions. For instance, it already supports the recently introduced
Intel MPX ISA extensions. Moreover, the large community and industry interest
around QEMU virtually guarantees that new architectures and ISA extensions are
supported promptly (e.g., RISC-V [129]).

The main benefit of this approach, besides the vastly reduced effort in handling
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a large number of ISAs, relies on the fact that all the supported architectures are
first-class citizens. Even more importantly, all the analyses built on top of the
QEMU IR have to be designed in an ISA-agnostic way. In practice, when handling
ISA-specific peculiarities, such as MIPS delay slots or ARM predicate instructions,
the approaches are equally effective, respectively, on OpenRISC delay slots and
x86-64 conditional move instructions. Many of the analyses that we will present
apply techniques well known in the compiler field, such as data-flow analysis.

In our implementation, rev.ng, we translate the IR provided by QEMU into
LLVM IR, an environment that facilitates further analyses. On top of this, rev.ng
does not only allow the analyst to understand what a piece of software does, but
also to alter its behavior in an easy way and introducing a low overhead compared
to alternative tools. Therefore rev.ng also provides a unified framework for both
static and dynamic analysis.

In the context of binary analysis, when dealing with C/C++ programs stripped
of debugging information, there are a series of challenging tasks. In Part I, after
providing the necessary background (Chapter 1), in Chapter 2, we will introduce
rev.ng, our static binary analysis framework. In Chapter 3 we will focus on the
identification of all the basic blocks in the code. In Chapter 4 our approach for the
recovery of an accurate control-flow graph for the program and the detection of the
boundaries of the original functions will be presented. Chapter 5 will introduce
the rev.ng function prototype detection algorithm, i.e., the recovery of function
arguments and return values. This information is vital for any reverse engineering
efforts, and to build additional tools such as a decompiler. Part I will conclude
with a review of related works (Section 6.2).

Binary Hardening
In Part II, we analyze two often overlooked aspects of the security of a binary
program: the RELRO link-time hardening and variadic functions.

RELRO is a protection mechanism applied by the linker which comes in two
flavors: partial and full. Its purpose is protecting data structures used by the
dynamic loader to resolve functions. In fact, such data structures can be abused
by an attacker able to run code (e.g., through a ROP chain) in the target process
to call any library function. This is particularly interesting for the attacker since
it reduces the complexity of the attack and allows him to call library functions
such as system or functions more involved in the behavior of the specific program.
In Chapter 8 we will describe and exploit several key design flaws in RELRO and
suggest countermeasures.

The other key aspect of binary programs we focused our attention on are vari-
adic functions. They are a popular feature of C/C++ programs which offers great
flexibility. The most popular variadic function is the printf function. Such a flex-
ibility comes at the cost of a non-negligible loss in terms of type safety. This is
true at the point that a large part of a whole class of vulnerabilities, format string
attacks, is due to this unsafety.

Variadic functions accept an arbitrary number of arguments of arbitrary types.
If an attacker is able to provide arguments in an unexpected number or type, it can
corrupt the integrity of the execution environment, with possibly serious security
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consequences. In Chapter 7, we design and test the effectiveness of a compiler-based
countermeasure for such attacks. The countermeasure is implemented as an LLVM
sanitizer which instruments the code of variadic functions and variadic function
calls, so that, at run-time, before accessing each argument, a check is performed to
ensure that such an argument has actually been provided, and that the expected
type corresponds too.

Apart from these two aspects, in terms of binary hardening, we also introduce
a static binary translator based on the binary analysis framework presented in the
previous section. Binary translation is a technique that, given an executable pro-
gram (or a portion of it) compiled for a certain architecture (e.g., ARM), aims to
translate it into a different one (e.g., x86-64). Binary translation can be performed
statically or dynamically. The dynamic version is essentially a type of emulation
technique where the emulation, usually a slow process, is sped-up by translating
instructions into the host machine code at run-time. The static version is a much
more complex endeavor, and it is aimed at building a full executable program
which can then be executed autonomously. The motivation for developing a binary
translator is provided by a wide range of applications. Historically, legacy code
performance portability was the key motivation. Indeed, binary translation tech-
niques have been employed to provide binary compatibility for new platforms, such
as the Transmeta Crusoe [45] which achieves better performances than an emula-
tor. In our cases, one of the main use cases consists in retrofitting binary hardening
countermeasures, absent in the original binary, such as CFI [173, 156, 118, 170].

Static binary translators are particularly interesting because they do not impose
a run-time overhead as significant as other approaches, and they can be used to
generate new binaries that are completely independent of the translation system.
However, they pose a number of additional challenges which must be solved in
order to produce a standalone binary program.

In particular, discovering and identifying code in a binary object is a non-trivial
task. Ideally, one would start from the entry point of the program, follow all jump
and call to subroutine instructions to identify the starting points of all reachable
code segments. However, this is made more complex by the usage of function
pointers, virtual functions and, most importantly, switch statements. Chapter 2
and Chapter 3 describe our approach to these issues.



Part I

rev.ng: a unified binary
analysis framework

1





Chapter 1

Background

In this chapter we will present the key concepts and tools required to have a
proper understanding of the rest of Part I. Specifically, we will first provide an
overview of the compilation process, in general, and, specifically, for the ELF image
format. Understanding the compilation process is fundamental, since our final aim
is to reverse it. Then we will dig into the LLVM compiler framework (and its
IR in particular) and the QEMU internals since they constitute the mainstays of
rev.ng. The chapter ends with a section introducing Monotone Frameworks, a
key theortical tool for building many of the analyses we will present to recover
abstractions from binary code.

1.1 The Compilation Process
A large part of this work is devoted to the analysis of binaries. It’s therefore of
great importance to understand how such binaries are produced. In this section
we will offer an overview of how a modern compiler works, from the source code
down to the final executable binary.

As shown in Figure 1.1, the compilation toolchain for languages such as C
and C++, our main focus, is typically divided in four major components: the
preprocessor, the compiler, the assembler and the linker.
The preprocessor. The preprocessor is the component responsible for, given
an input file, removing comments, enabling or disabling certain portions of code
(through the #ifdef directives) and, most importantly, expanding its body with all
the included files (#include directives) and macros (#define directives). The final
output is pure C code suitable to be fed to the compiler, which is not supposed to
handle the above mentioned directives.
The compiler. The compiler is the core component of the compilation toolchain.
It takes as input a preprocessed source file, also known as translation unit, and
produces an assembly file, containing data and functions almost in their final form,
i.e., instructions for the target CPU. Internally, modern compilers are divided in
three further components: the front-end, the mid-end and the back-end. The front-
end is programming language-specific: it parses the input file, builds an AST and

3
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produces an intermediate representation (IR) which is independent from the input
language and mostly independent of the targeted machine. Themid-end performs a
set of “high-level” optimizations that are independent from the target architectures,
such as loop unrolling, inlining and outlining of functions and many more. Finally,
the back-end transforms the IR into a target-specific representation (i.e., where
the functions contain instructions that are specific for a certain architecture) and
performs another set of low-level optimizations that make sense or are beneficial
only for the target CPU.
The assembler. The assembler takes as input a file with a textual representation
of the functions, instructions and global data and encodes them into their binary
representation, often referred to as machine code, that the CPU can understand.
The output file is known as the object file. Note that the code is not in its final form.
In fact, references to external variables or functions, and, in certain conditions, even
references to the parts of functions defined in the current translation unit, are left
pending, since only the linker can know their final value.
The linker. The linker is the component responsible to collect multiple object
files, decide how their data and code is laid out (e.g., the code of the second object
file is appended to the one of the first one), and fix references to code and data,
left pending by the assembler, with their final value. In fact, the final position
of each function or piece of data is known exclusively by the linker, which is the
only component of the toolchain which has global visibility on all of the object
files composing the program being compiled. The linker is allowed to leave some
references pending, in case the corresponding function or data are available in a
dynamic library. Another component, the dynamic loader, will finish the linking
process upon program startup.

1.2 ELF
ELF (Executable and Linkable Format) is an image format for object files, ex-
ecutable programs and dynamic libraries. It’s the standard image format on
GNU/Linux and many other unix-like operating systems (with the notable ex-
ception of macOS) and for embedded systems. In this section we will provide an
in-depth description of it, since it’s the main image format we consider in this work.
Note however that other binary formats (such as Mach-O) have analogous features
and extending a tool to support them is primarly engineering work.

Each ELF file starts with the ELF header. The ELF header contains the follow-
ing information: a magic byte sequence used to easily identify the file as an ELF
image, its the endianess, the target architecture, whether it’s a 32-bit or 64-bit, the
target operating system and ABI, the type of ELF image and a couple more fields.

The ELF format is defined (in terms of the data structure it contains and their
layout) independently from the target architecture, except for two characteristics:
the endianess and whether the target architecture is 32- or 64-bit. Therefore,
depending on the size and the endianess used to encode integers, there are four
different type of ELF formats: ELF32BE, ELF32LE, ELF64BE, ELF64LE. Except
for this, and other minor differences, they are analogous.

There are five different types of image formats that can be encoded in ELF:
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Figure 1.1: Overview of the compilation process.

Object files (ET_REL) Relocatable object files, as emitted by the compiler/assem-
bler. They typically have a .o extension.

Executable programs (ET_EXEC) Executable programs, linked and ready to be
run. They usually have no extension.

Shared objects (ET_DYN) A dynamic library, linked and ready to be loaded by
an executable program. They typically have a .so extension.

Core files (ET_CORE) Images of a process that was running, written on disk for
debugging purposes.

Unknown (ET_NONE) An ELF file of an unspecified type.

In the following, we’ll provide an overview of the key features of object files, ex-
ecutable programs and we’ll conclude with an overview of how dynamic libraries
and the dynamic loading process works.

1.2.1 Object Files

As previously mentioned, the assembler produces object files. ELF object files are
primarily composed by three parts:
Sections. A section is a portion of the ELF object file that can contain either
code or data. They are described by a section header that contains an offset within
the file where the section begins, its size, a type and a series of flags. The most
interesting sections to our ends are:

.text The core section containing the code of the object file. This section contains
relocatable (i.e., with unresolved pending references) machine code.
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.data The writeable global data of the translation unit.

.rodata The read-only global data of the translation unit.

.bss The writeable global data of the translation unit. This section differs from
.data in the fact that data here is “uninitialized”, which means, automatically
initialized to zero. Since the content of this section is implicitly all zero, it’s not
associated to any data in the object file. Therefore, its starting offset in the file
has no real meaning and the size is just an indication of how much space will
be needed (and zero-initialized) at run-time.

Symbol table. Another key section of object files is .symtab, which contains
all the symbols of the translation unit. A symbol is a label for a portion of data
or code, with an optional size. In practice, a symbol typically represents either a
global variable or a function. If the symbol is defined in the current translation
unit, then the symbol is also associated to an offset within the object file where it
starts. Otherwise, if the symbol is used but not defined in the current translation
unit, it is marked as undefined.
Relocations. The last core component are relocations. A relocation is basically
a directive for the linker instructing it to write the value (i.e., address) of a certain
symbol in a certain position within a section. Each one of the sections listed above
can be associated with a section containing a sequence of relocations that apply to
it. Such sections have the same name as the target section with a .rel prefix (e.g.,
relocations for .text will be in the .rel.text section).

Depending on the architecture, a relocation could also include a constant ad-
dend to add to the value of the symbol. In such cases, the relocations will have a
.rela prefix.

It is important to understand that a relocation doesn’t always write the address
of the associated symbol in the same way. For example, in certain situations a
relocation might instruct the linker to write the full 32-bit address of the symbol in
a certain position, while in other situations it might require the value to be written
as an offset from the destination address. This is particularly useful to encode the
offset of a PC-relative jump instructions.

Listing 1.1 shows the relevant parts of an object file.

1.2.2 Executable Programs

As illustrated in Section 1.1, the linker is responsible to produce the final exe-
cutable, performing the following steps:

Lay out the program. The linker parses all the input object files, and decides
how the various sections have to be laid out in the final program. In practice, it
groups the input sections into segments based by their attributes, such as being
writeable, readable or executable. For instance, this means that .data and
.bss will be grouped together since they are both writeable but not executable.
Then, it concatenates all the input sections with the same name from the various
input object files. Such an operation is fundamental to be able to assign a final
address to each symbol.
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$ gcc main.c -c -o main.o
$ readelf -S main.o
There are 7 section headers , starting at offset 0x130:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

...
[ 2] .text PROGBITS 00000000 000040 00002f 00 AX 0 0 16
[ 3] .rel.text REL 00000000 0000e0 000008 08 6 2 4

...
[ 6] .symtab SYMTAB 00000000 0000a0 000040 10 1 2 4

$ readelf -s main.o

Symbol table '.symtab ' contains 4 entries:
Num: Value Size Type Bind Vis Ndx Name

...
2: 00000000 0 NOTYPE GLOBAL DEFAULT UND function
3: 00000000 47 FUNC GLOBAL DEFAULT 2 main

$ objdump -d main.o
...
Disassembly of section .text:

00000000 <main >:
...

1e: 89 04 24 mov DWORD PTR [esp],eax
21: e8 fc ff ff ff call 22 <main+0x22 >
26: 8d 44 06 03 lea eax ,[esi+eax *1+0x3]

...

$ readelf -r main.o

Relocation section '.rel.text ' at offset 0xe0 contains 1 entries:
Offset Info Type Sym. Value Symbol 's Name

00000022 00000202 R_386_PC32 00000000 function

Listing 1.1: Key parts of an object file. main.o is the C example in Listing 1.3
compiled for x86 to an object file. Note that in the main function we had a call
to function, which was not defined in the given source file. readelf -S lists the
sections contained in the object file. We can see the symbol table (.symtab), the
code section (.text) and its relocations (.rel.text). readelf -s lists the symbols
defined in the symbol table. Note that the main symbol is defined at offset 0
from section 2 (.text), while the function symbol is marked as undefined (UND).
objdump -d shows the relocatable assembly code of the main function. Note that
the address of the target of the call function is not available. readelf -r lists the
relocations. The only relocation is relative to the (undefined) symbol function,
it’s PC-relative (R_386_PC32) and targets the offset 22 of .text section, i.e., the 4
bytes representing the target of the call instruction.
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Creation of the global symbol table. The linker collects all the symbol tables
of the input object files and merges them. For instance, if an object file has an
undefined symbol called “fibonacci”, and another object file defines a symbol
with the same name, they will be merged, and the symbol will be assigned
the address assigned to the section containing it plus the offset specified in the
defining symbol. The linker also checks that each symbol is defined no more
and no less than once.

Fix of the relocations. At this point the linker has all the necessary information
to execute all the directives encoded in the object files: the relocations. The
address of the symbol associated to the relocation is taken, encoded as requested
(e.g., absolute address or relative to destination address) and written at the
specified position.

The global symbol table is emitted in the final executable in the .symtab section,
mostly for debugging purposes. In fact, just as the section list, after the linking
process it is irrelevant. What really matters for execution purposes are segments.
As mentioned, segments group sections with similar characteristics. More specif-
ically, a segment represents a portion of the program which will be mapped in
memory exactly as found in the file with a certain set of permissions. This is the
reason why .data and .bss will end up in the same segment: they both require to
be loaded in writeable, readable but not executable memory pages.

Typically, a program contains two segments: one for writeable data (such as
the one just described) and one for executable (non-writeable) data. The latter
segment will contain .text and .rodata. Note that, despite the fact that .rodata
doesn’t need to be executable, it’s often mapped by the linker in an executable
page. While it would be possible to map it in a read-only, non-executable page,
this would introduce a cost in terms of memory.

The ELF format describes a segment in terms of a start offset in the file, the
virtual address where it should be loaded, its permissions and the size it has in the
file and the size it should have in memory. The size in the file and in memory can
differ, due to the fact that the sections containing exclusively zeros (i.e., .bss) are
not serialized into the file, but are just taken into account as extra size at the end
of a segment.

When the program execution is requested, the operating system, or more specifi-
cally, the kernel, will parse the list of segments in the program and map the specified
portions of the file in memory as requested, zeroing out the difference between the
file segment size and the memory segment size.

1.2.3 Dynamic Loading
So far, we’ve been describing the process to produce a so called static binary, i.e., a
program that uses no dynamic libraries, and whose code and data has to be loaded
at a fixed address. In this section we will see how the concepts presented so far can
be extended to support dynamic libraries, and the process to load them in memory
at run-time: dynamic loading.

In ELF-based systems, dynamic libraries offer a series of crucial benefits: they
allow to have a single copy of a set of functions used by multiple programs on
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the disk and in memory. In fact, dynamic libraries are designed in such a way
that they can be loaded anywhere in the address space (i.e., not at a position
determined at compile time) without changes. Code with this property is known
as position independent code (PIC). Thanks to this feature, the operating system
can have the same portion of the dynamic library file mapped multiple times, in
different processes, at pages located at different addresses, but all mapped to the
same physical page. This means that, despite the fact that a library, say the C
standard library, can be used by hundreds of different applications at the same
time, it will effectively be loaded in physical memory only once.

Therefore, a dynamic library, is similar to an executable file, except for the fact
that all of its code is compiled as PIC, and the segment at the lowest address starts
at address zero. The dynamic loader, a user space component (for Linux x86-64
usually located at /lib64/ld-linux-x86-64.so.2), will then load them where they
fit best.

However, support for dynamic libraries is not limited to shared objects and PIC
code. The linking process must be extended to allow the executable and dynamic
libraries to have pending symbols even after the linking is finished. It will then be
responsibility of the dynamic loader to fix them.

Therefore the concept of visibility of a symbol has been introduced. A symbol
that has external visibility can be left pending at link time (as long as it is defined
in a dynamic library specified on the linker command line), so that the dynamic
loader will handle it.

The dynamic loader will complete the work left undone by the linker. In prac-
tice, this means that executables and dynamic libraries will have a dynamic symbol
table (.dynsym section) and a list of dynamic relocations (.rel.dyn or .rela.dyn
section). The main difference between normal relocations and dynamic relocations
lies in the fact that dynamic relocations are not tied to a specific section (section
are relevant exclusively in object files) but to a virtual address.

The dynamic loader will find all the information it needs in the .dynamic section,
which contains the address and size of the dynamic symbol table and dynamic
relocation table, plus the list of dynamic libraries the current executable/dynamic
library depends on.

The problem at this point is: what are the targets of the relocations? Is is
possible to have a relocation targeting an address in a read-only segment? The
answer is no, in fact such a relocation would either trigger a segmentation fault or
require the dynamic loader to temporarily map the containing page as writeable.
Even ignoring the cost of such an operation, writing the page would trigger the
copy-on-write mechanism of the operating system, which would create a new copy
of the page, nullifying the above mentioned benefits of PIC code. To circumvent this
problem, the GOT (Global Offset Table) and the PLT (Program Linkage Table)
have been introduced.

The GOT. The Global Offset Table was introduced to handle accesses to global
variables with external visibility (in most cases, defined in some dynamic library).
The GOT is a table, stored in the .got section, containing an entry for each
externally visible global variable. Each entry is the target of a dynamic relocation
associated to the corresponding symbol.
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$ objdump -d main
08048460 <main >:
...
804847e: 89 04 24 mov DWORD PTR [esp],eax
8048481: e8 1a fe ff ff call 80482a0 <function@plt >
8048486: 8d 44 06 03 lea eax ,[esi+eax *1+0x3]

...

080482 a0 <function@plt >:
80482a0: ff 25 0c a0 04 08 jmp DWORD PTR ds:0 x804a00c
80482a6: 68 00 00 00 00 push 0x0
80482ab: e9 e0 ff ff ff jmp 8048290 <_init+0x1c >

$ objdump -j .got.plt -s main
Contents of section .got.plt:
804 a000 3c9f0408 00000000 00000000 a6820408 <...............
804 a010 b6820408

$ readelf -r main
Relocation section '.rel.plt ' at offset 0x264 contains 2 entries:
Offset Info Type Sym. Value Symbol 's Name

0804 a00c 00000107 R_386_JUMP_SLOT 00000000 function
...

Listing 1.2: Example of PIC code employing the PLT. We can see that the call
to function (which is defined in an external library) has been fixed by the linker
to point to function@plt. The PLT stub jumps indirectly to the content of its
.got.plt entry (0x0804a00c), which, as shown by objdump -s contains 0x080482a6
encoded in little endian. Therefore, the first time the PLT stub will be invoked,
the indirect jump will proceed to the next instruction, which will push on the stack
the identifier of the dynamic relocation 0 and invoke the dynamic loader. The
dynamic loader will then resolve the relocation (targeting the function .got.plt
entry at 0x0804a00c) and from then on, the PLT stub will jump directly to function
bypassing the dynamic loader.
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Basically, instead of patching the instruction performing the memory access in
.text, the code doesn’t perform a direct access but first loads the address of the
global variable from the corresponding GOT entry and then performs the load or
store through the pointer in the GOT.

The net effect is that, at the cost of performing an extra memory access, the
segment containing the code doesn’t need to be patched.

The PLT. The method described above could work for calls to functions with
external visibility as well. However, a program having externally visible symbols
could take a long time to launch, since all the relocations would have to be re-
solved each time. This is particularly unsatisfying when functions that are never
used during the regular execution of the program need to be resolved. The abort
function, for example.

For this reason, the lazy loading mechanism has been introduced. Basically,
a new GOT, employed exclusively for functions, is introduced and placed in the
.got.plt section. In practice, when the program needs to call an external function,
it performs a call to a small code stub in the Program Linkage Table (.plt section).
The stub jumps to the address contained in the entry corresponding to the target
function in the .got.plt. However, unlike the .got, relocations targeting .got.plt
are not resolved at startup, instead their initial value is left. The initial value is
a pointer to the instruction next to the above mentioned jump, which writes in
a register the identifier of the relocation associated to the target function and
then transfer control to the dynamic loader. The dynamic loader will resolve the
requested relocation, and from then on, when the PLT stub is invoked, it will jump
directly to the correct address.

Such a mechanism is known as lazy loading, since the relocation associated to a
certain function is resolved the first time it is called, or it is never resolved, in case
it’s never called.

Listing 1.2 shows an example of PIC code employing the PLT.

1.3 LLVM

LLVM (formerly Low Level Virtual Machine) is an open source compiler framework
which has gained popularity in recent years. The main reasons for its popularity lie
in the fact that it is written in modern C++, well engineered, fast and simple to use.
One of the most appreciated features is the simplicity and clearness, compared to its
competitors, of its only intermediate representation: the LLVM IR. It is also very
easy to write optimizations and analyses, known as passes, both for the mid-end
and the back-end. Moreover, since its inception, LLVM was designed to be usable
as a library, which allows, for instance, to merge the compilation and assembly
phase (without ever having to serialize the assembly in textual form) and makes
it particularly suitable to be employed as Just-In-Time (JIT) compiler. On top of
this it has a great and active community and a less restrictive license compared to
its main competitor, GCC.

The most popular LLVM front-end is clang, a front-end for C and all of its main
derivative languages (including C++, Objective-C and OpenCL). Other front-ends
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are available, with different maturity degrees, for many other popular programming
languages such as Rust, Fortran, Ruby, Java, Python and D.

Since in this work we will be working extensively with the LLVM IR, in the
following we will provide a brief introduction to its main characteristics. Unless
otherwise noted, we will be working with LLVM version 3.8.

1.3.1 The LLVM IR

The LLVM IR is an intermediate representation, typically emitted by a compiler
front-end, suitable for being manipulated and optimized before begin passed on to
the compiler back-end. In this section, we will briefly describe the LLVM modules,
their structure and the LLVM type system.

The compiler works on a single translation unit. A translation unit in LLVM
is represented by a module. A module is composed by a series of global objects,
i.e., global variables and functions. A global object can be thought as a pointer
to the storage associated to that object, that is either the code of the function or
the actual data of the global variable. In fact, as we will see, global variables have
pointer type.

Functions are basically a container of basic blocks. The order in which basic
blocks appear in a function doesn’t matter, except for the first one, which is elected
as the entry basic block. This is due to the fact that each basic block has no
fallthrough basic block, but each successor (if any) is explicitly specified.

In turn, basic blocks are composed by one or more instructions. Each basic
block must be terminated by a terminator instruction, such as a branch (direct
or indirect, conditional or unconditional), a switch instruction (analogous to the
C switch statement) or an unreachable instruction, which has no successors and
represents the fact that execution should never reach that point.

Before proceeding in the description of the other instruction types it is impor-
tant to understand one of the key features of the LLVM IR: the SSA form. The
Static Single Assignment form, is a form of IR where each variable can be assigned
at most once. The concept of variable in the LLVM IR is translated into the con-
cept of value. In practice most LLVM instructions produce a value (e.g., the result
of an addition), implicitly creating a new variable. After the creation of the value,
it can be only used (i.e., read) and never assigned again. The SSA representation
of the code makes certain analyses or optimizations very easy. For instance, iden-
tifying an instruction whose result is never used is straightforward (its use list is
empty).

In the following we list the LLVM instructions most relevant to our ends, many
of which are exemplified in Listing 1.3.

Arithmetic/logic instructions. They represent the classic arithmetic/logic in-
structions. They typically have two operands and produce an output of the
same type. Only the specified operation is performed, with no side effects.

alloca. Reserves a certain amount of space on the stack and returns a pointer
to it. This the typical way in which front-ends emit local variables. Later
passes, such as scalar replacement of aggregates (SROA), if possible, will try to
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promote them to SSA values. Apart from the above mentioned benefits, SSA
values are also candidates for being assigned to registers during the register
allocation phase.

call. A function call. It can have one or more arguments and a return value. It
can be direct, when the target function is a known function, or indirect in case
the destination is known at run-time only.

load/store. Given an address, they perform a load or store from memory. Global
variables and local variables associated to an alloca instruction are read or
written through memory stores.

icmp. Perform a comparison between two integers for equality, inequality, greater
than and so on. Their result is a boolean (a 1-bit integer) which is typically
employed as a condition in a conditional branch instruction.

br. The branch instruction can either be direct, if the destination address is ex-
plicitly identified in the code, or indirect, in case the target address is the result
of some computation. Moreover a branch can either be unconditional or con-
ditional. Conditional branches have three operands: two references to basic
blocks and a single-bit integer which represents the condition based on which
the former or the latter basic block should be executed next.

switch. Similar to the br instruction, it can have multiple successors. The taken
successor is chosen depending on the value assumed at run-time of a certain
SSA value. Similarly to the C switch statement, a list of possible constant
values is listed, along with the corresponding target basic blocks.

phi. Phi nodes have an operand for each predecessor, representing the value to
produce in case the current basic block is reached through that predecessor.
This instruction is rarely emitted by front-ends, since its need typically emerges
due to the promotion of a local variable to the SSA value status. Since, in this
thesis, we focus on a front-end, we will rarely discuss it.

Another key component of the LLVM IR relevant for our purposes are metadata. A
metadata is a piece of information that can be associated to an instruction and can
carry any type of information: it’s a general purpose tool to decorate an instruction
with additional information. Each instruction can be associated to multiple kinds
of metadata, each one of them identified by a name.

A metadata node can contain other metadata nodes, integers and strings. It is
therefore possible to build sophisticated structures of information. Debug informa-
tion are encoded in LLVM IR in a special form of metadata (the !dbg kind).

It is important to understand that optimization passes are not required to
preserve metadata, they can more or less be freely dropped, debug information
included.
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Finally, it is important to understand how the LLVM type system works. Each
global variable, function, SSA value and constant is associated to a type. The most
relevant types available are:

IntegerType an integer type of a fixed size in bit.
PointerType a pointer to another type.
StructType a type composed by a sequence of other types.
ArrayType a type composed by a finite number of elements of a certain type.
FunctionType a type describing the prototype of a function (return value type

and zero or more arguments). A function type can also be variadic, in which
case it can have a statically unknown number of arguments after those explicitly
listed.

1.4 QEMU

AArch64AArch64
ARM
Alpha
CRIS

Unicore
SPARC

SPARC64
SuperH
SystemZ
PowerPC

PowerPC64
XCore
MIPS

MIPS64
OpenRISC
MicroBlaze

x86-64
x86

RISC V

tiny code instructionstiny code instructions

AArch64
ARM
x86
x86-64
MIPS
PowerPC
SystemZ
SPARC
TCI

Figure 1.2: Architectures supported by QEMU. On the left, we have the front-ends,
on the right, the back-ends.

QEMU is a dynamic binary translator (DBT). Given a program, it emulates
it, one basic block at a time. Given an address, QEMU starts to decode the
instructions at that address until a branch is found (i.e., the end of the basic
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movi_i32 tmp0 ,$0x1005
movi_i32 tmp1 ,$0x4
sub_i32 tmp2 ,esp ,tmp1
qemu_st_i32 tmp0 ,tmp2 ,leul ,0
mov_i32 esp ,tmp2
movi_i32 eip ,$0x2000

Listing 1.4: Tiny code instructions generated from a x86 call instruction. The
call instruction is located at address 0x1000, it’s 5 bytes long (therefore the return
address is at 0x1005) and it’s performing a call to a function at address 0x2000.
The return address is first materialized into tmp0, the constant 4 is put in tmp1,
then the difference between the current value of esp and tmp1 is computed and
put in tmp2. Then, the value of tmp0 is stored at the address represented by tmp2
and the value of esp is then updated with tmp2. This code is basically pushing the
return address on the top of the stack. Finally, the program counter eip is updated
with the address of the target function.

block). Then the instructions are translated from the input architecture to a set of
equivalent instructions of the host architecture. For instance, if the user wants to
run an ARM program on a x86 machine, the ARM instructions will be translated
one by one in a set of equivalent x86 instructions, which will be then executed.

What is interesting in the QEMU design is the fact that it decouples the process
of interpreting what a certain input instruction does from emitting the equivalent
code using instructions of the host architecture. In practice, this means that, just as
compilers do, QEMU doesn’t directly translate an input instruction into equivalent
instructions for the host, but first goes through an intermediate representation.

The intermediate representation is composed by tiny code instructions, and the
component taking care of transforming them into code that the host can run is the
tiny code generator.

In this sense, as shown in Figure 1.2, QEMU has a front-end, the part inter-
preting input instructions and emitting tiny code instructions, and a back-end, the
part emitting instructions for the target architecture. This decoupling is particu-
larly beneficial, since if we want to introduce a new input (target) architecture, it
is enough to implement a front-end (back-end) and it will be automatically able to
operate with all the existing back-ends (front-ends).

In Listing 1.4 a snippet of the tiny code instructions generated due to an x86
call instruction is presented. The code is similar to the intermediate representation
of a compiler. Instructions have no side effects, therefore, the behavior of the input
instruction is made completely explicit. Note also how QEMU employs temporary
variables (tmp#) for temporary computations and global variables to represent the
CPU state (e.g., the esp and eip registers)

Another key feature of QEMU are its two modes of operation:

System mode. Full hardware emulation. Suitable for booting a whole operating
system or running bare metal code. Peripherals, MMU and all other hardware
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components are emulated.

User mode. Emulation of the operating system only. This mode of operation
allows, e.g., ARM binaries for Linux to be run on an x86 Linux host. Only
the interfaces with the operating system are emulated, such as syscalls, signals
and so on. This is possible thanks to a layer, that we call the QEMU Linux
subsystem that forwards, with the appropriate changes, syscall arguments for
the emulated system to the host system. In practice, an open syscall will be
forwarded as is to the host operating system.

The user mode will be of greatest interest for us. In practice, the user mode
allows Linux binaries to be run on Linux installations for a different architecture.
The same is possible for FreeBSD. However, support for it it’s currently broken in
QEMU.

In terms of tiny code instructions syscalls are handled by calling an external
function, written in C, which will perform the necessary operations. Such func-
tions are known as helper functions. Helper functions are not limited to handling
interactions with the operating system, they are also employed to translate in-
structions that would be too complicated to be implemented in terms of tiny code
instructions. An example is the floating point division.

1.5 Monotone Frameworks
A Monotone Framework is a way to define a data-flow analysis in a general and
effective way. A data-flow analysis associates a value to the entry and exit of each
program label, typically, an instruction or a basic block. The value at the exit of
a label is the value at the entry after the effects of the code in the label have been
applied. These effects are different depending on the content of the label and are
modeled by a transfer function. On the other hand, the value at the entry of a
label is obtained by combining all the values at the exit of the predecessors’ labels.

As an example, consider the even-odd analysis, which tries to track if the value
of a certain variable, in a certain program point, is even or odd. We will have three
possible values: Even, Odd or Any. The initial state will be Any. It’s easy to
formulate a transfer function by laying out some simple rules: 1) if the variable
is assigned to an even (odd) constant, we move to the Even (Odd) state, 2) if
we multiply the variable by 2, we go to Even, 2) if currently the variable is in
Even (Odd) state and we add 1 we move to Odd (Even). It’s also easy to define
how values should be combined : suppose we have an if statement where the value
after the true branch is Even, and after the false-branch is Odd, the common
successor of the two branches will have to take into account both possibilities,
producing the state Any. If, on the other hand, both branches were to give the
same result, say Even, then the common successor would be associated to Even
too. Figure 1.3 illustrates this example. From the figure, we can derive the following
set of equations:

n• = fn (n◦)
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x = x+ 1
n◦

n•
x

c◦
c•

x = 2
a◦
a•

x = 3
b◦
b•

Figure 1.3: Graphs representing two simple programs. Each box represents a basic
block.

a• = fa (a◦)

b• = fb (b◦)

c◦ = a• t b•

where f` represents the transfer function of label `, `◦ the data-flow value at the
entry of label `, and `• the value at its exit. t is the operator that combines two
data-flow values, producing a new value which is more generic than the two input
ones. In this case fn would be defined as producing Odd if its argument is Even,
Even if its argument is Odd or Any if its argument is Any. On the other hand, fa
and fb would produce Odd and Even respectively, no matter what their argument
is.

Therefore, supposing n◦ = Odd, a valid assignment for the variables of the set
of equations above would be: n• = Even, a• = Even, b• = Odd and c◦ = Any.
Such a set of assignments are said to be solutions of the data-flow equations.

The presented analysis can track three possible different values. Note however
that the set of possible different values in a data-flow analysis can be infinite, but
they have to be part of a partial ordering relation. The partial ordering needs to
have a top (>) element and a bottom (⊥) element. The ordering between elements
of the lattice, denoted as a v b, can be read as “b is more generic than a”, “b is
less informative than a”, or “b contains a”. In our previous example, Any is more
generic than Odd. If Any, Odd and Even are thought in terms of set of natural
numbers, then Any also contains Odd: {1, 3, 5, 7, . . . } ⊆ {1, 2, 3, 4, 5, . . . }. On the
other hand, Odd is more informative, in the sense that it can tell us something
more specific about the value of the variable we are tracking, compared to Any.
In this specific case, therefore, Any represents >.

Consider the set of assignments of variables of the data-flow equations composed
exclusively by >. It would be correct (supposing we replace = with v), but very
little informative, or, to be more precise, it would provide no information at all.
The idea of the data-flow analysis is to obtain the most informative solution for
the equations, without compromising its correctness.

A more formal definition. The data-flow information is represented by the
property space L, i.e., the set of all the possible values that we can associate to a
label. In a Monotone Framework, L must be combined with a partial ordering op-
erator v: L×L→ {true, false}, i.e., v is reflexive, anti-symmetric and transitive.



1.5. MONOTONE FRAMEWORKS 19

We call (L,v) a partially ordered set.
In a Monotone Framework, the partially ordered set (L,v) must have finite

height. This means that all subsets Y of L where all the elements can be compared
according to v, must be finite. Or, in symbols: ∀Y ⊆ L : ∀l, l′ ∈ Y, (l v l′) ∨
(l′ v l), Y has a finite number of elements. This is the so called Ascending Chain
Conditions [105].

(L,v) must also form a complete lattice. To define the concept of lattice we
have to introduce the concepts of upper bound and least upper bound. Given a
subset Y of L, an element l ∈ L is said to be an upper bound of Y if it is greater
than any other element l′ ∈ Y , or in symbols, ∀l′ ∈ Y, l′ v l. On the other hand, if
l′ is an upper bound of Y and it is lower than or equal to all the other upper bound
elements of Y , then it’s said to be the least upper bound of Y . If a subset Y has a
least upper bound, then it’s unique and it can be denoted as

⊔
Y . The concepts of

lower bound and greatest lower bound can be easily defined by duality. A complete
lattice is a partially ordered set (L,v) such that all subsets of L have least upper
bounds and greatest lower bounds. A complete lattice is therefore defined by the
following elements:

L a set of elements.
v the partial ordering operator.⊔

the least upper bound operator.
d

the greatest lower bound operator.
> the top element > =

⊔
L.

⊥ the bottom element ⊥ =
⊔
∅.

If we are computing the least upper bound of two elements
⊔
{l1, l2}, then we can

also use the combine operator t : L× L→ L defined as l1 t l2 =
⊔
{l1, l2}.

The data-flow equations can be therefore be defined as follows:

Analysis◦ (`) =

{
i if ` ∈ E⊔
{Analysis• (`′) | (`′, `) ∈ F} otherwise

Analysis• (`) = f` (Analysis◦ (`))
where:

Analysis◦ (`) represents the value (solution) associated to the entry of label `.
Analysis• (`) represents the value (solution) associated to the exit of label `.
E represents the extremal labels, i.e., the set of entry point labels.
i represents the extremal value, i.e., the value associated with the entry point(s) of

the program E.⊔
is the least upper bound operator, as defined before.

F represents the set of edges of the control flow in the form (`′, `) where `′ is the
source of the edge and ` the destination.

f` ∈ F is the transfer function for the label `, where F is the set of all the transfer
functions. Note the transfer functions have to be monotone [105].
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The MFP solution. Once all the equations have been set out, we need to obtain
a (non-trivial) solution to them. The Maximal Fixed Point (MFP) solution is the
most popular approach to obtain a solution for a Monotone Frameworks since it
provides good solutions and termination guarantees.

Algorithm 1.1 presents the MFP solution for Monotone Frameworks. The al-
gorithm works on a queue (Worklist), initialized with all the edges (`, `′) ∈ F of
the control-flow graph. The idea of MFP is to start from a base solution which
is then iteratively refined. The temporary result is stored in an associative array
tmp mapping labels to elements of L. tmp holds the data-flow information at the
beginning of the label (analogously to Analysis◦) and is initialized with i for all the
entry labels ` ∈ E and with ⊥ for all the others.

After the initialization phase, the algorithm pops an edge (`, `′) from Worklist,
takes the last result produced for ` (i.e., tmp [`]) and applies to it the transfer
function for the label ` (f`). If the result is lower than or equal to the last result
produced by the successor of ` currently being considered tmp [`′], then we are
not producing any new information. Otherwise, we update the last result for `′

merging into it the result of the transfer function (f` (tmp [`])). Then, since we
changed the information associated to `′, we re-enqueue all of its successors `′′

such that (`′, `′′) ∈ F .
Once all of this process is finished, we emit the final solution as MFP◦ (the

solution at entry of a label) and MFP• (the solution at exit of a label). The
former is simply a copy of tmp, while the latter is tmp after applying to each
element tmp [`] the respective transfer function f`.

While proving the termination of the algorithm is outside the scope of this
work, it’s interesting to get an intuition of why it always terminates. The only
possible source of non-termination relies in the possibility of re-enqueuing an edge
an infinite number of times. Due to the algorithm structure, an edge can be re-
enqueued only if the temporary result for the successor tmp [`′] does not contain the
result at the end of the current label f` (tmp [`′]). If this happens the temporary
result of the successor is updated to include f` (tmp [`′]). However, since at each
iteration tmp [`′] will move closer to >, and since the lattice is guaranteed to have
a finite height (thanks to the Ascending Chains Condition), this can happen only a
limited number of times. The termination of the algorithm is therefore guaranteed.

It is also interesting to note that the presence of ⊥ in the lattice is required
only to initialize the values associated to non-entry labels, so that they will absorb
directly whatever value is propagated first by their predecessors (since ∀l ∈ L, l t
⊥ = l). Apart from this, having a bottom element is not required, and, in fact,
in our even-odd analysis we didn’t have it. In such cases, the ⊥ element can be
artificially introduced in the lattice.

An alternative approach popular to build a data-flow analysis is abstract inter-
pretation. For information about its relationship with Monotone Frameworks, see
[147].
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Data: A Monotone Framework (L,F , F, E, i, f)
Result: MFP◦, MFP•
/* Initialization */
Worklist = {};
tmp = {};
foreach (`, `′) ∈ F do

Worklist.enqueue((`, `′));
end
foreach ` ∈ E do

tmp [`] = i;
end
foreach ` ∈ F\E do

tmp [`] = ⊥;
end
/* Iterative refinement of the solution */
while not Worklist.empty() do

(`, `′) = Worklist.pop();
if f` (tmp [`]) 6v tmp [`′] then

tmp [`′] = tmp [`′] t f` (tmp [`]);
foreach `′′ such that ∃ (`′, `′′) ∈ F do

Worklist.enqueue ((`′, `′′));
end

end
end
/* Finalization */
foreach ` ∈ F do

MFP◦ [`] = tmp [`];
MFP• [`] = f` (tmp [`]);

end
Algorithm 1.1: The algorithm to obtain the Maximum Fixed Point solution for
a data-flow problem.





Chapter 2

A rev.ng Overview

rev.ng is a binary analysis framework based on QEMU and LLVM at its core. Its
primary goal is building a framework to perform static and dynamic binary analysis
that can work on a large set of diverse architectures. rev.ng also aims at recovering
high quality abstractions and offering a representation of the program accurate
enough to be recompiled and preserve the original behavior. The final grand goal is
to build abstractions sophisticated enough to build a unified decompiler producing
high-quality, recompilable C code.

It is mainly composed of about C++ 17 kSLOC and it’s publicly available under
a Free Software license [48]. Its main goal is to combine the benefits of QEMU, a
stable emulator with support for a large range of architectures, with those of LLVM,
a mature compiler framework highly suitable to perform any sort of analysis and
recompile the produced code.

It is important to understand that, despite the fact that it makes large use of
QEMU, rev.ng is mainly a static binary analysis tool: the code is never run during
the analysis process. As explained in Section 1.4, QEMU is similar in structure to
a modern compiler: it features a front-end that parses binary code and emits an
intermediate representation of the input basic block, and a back-end that compiles
the intermediate representation into machine code for the host architecture. rev.ng
exploits exclusively QEMU’s front-end.

Then, starting from QEMU’s IR, rev.ng translates it to equivalent LLVM IR,
on top of which a series of analyses are performed. Once all the code has been
translated, since LLVM is a compiler framework, it’s straightforward to recompile
it and produce a binary with the same behavior of the original program. The
ability to recompile the code gives birth to the core component of rev.ng: the
static binary translator.

2.1 Requirements and design criteria

As previously mentioned, one of the key goals of rev.ng is to be able to handle
multiple architectures in a unified way. This has two implications: 1) rev.ng must
have a way to obtain a uniform representation of the behavior of each instruction

23
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from its raw machine code, and 2) all the further operations performed on this
representation must not make assumptions about the original architecture.

The former challenge is solved by employing QEMU, while the latter affects the
design of our analyses. For instance, in rev.ng, initially, we lack apparently basic
knowledge such as what a function call or a return instruction are. Therefore,
we will have to redefine these concepts in an architecture-agnostic way and write
a small analysis to detect them. Similarly, when we will describe the anlaysis
to identify function arguments and return values, it won’t only be architecture-
independent, but also ABI-indepedent.

The general idea behind this approach consists in focusing the analysis efforts
on the features of an ISA, and not on the ISA itself. For example, in Section 5.2
we will describe how to handle ARM predicate instructions, but the techniques we
will explain will work as good in case of conditional moves in x86-64 and other
architectures.

While this approach introduces a sensible engineering cost, in the long term it
will be beneficial, since the marginal cost for supporting a new architecture will
decrease over time.

Another key requirement, along with being platform independent, is to develop
analyses that are semantics-preserving. Often times, binary analysis tools provide
information that is useful for an analyst but not accurate enough to guarantee
correctness in case of recompilation. In fact, many tools (such as the IDA Pro
decompilers) produce code that is not even thought to be recompiled.

rev.ng aims at addressing this issue in two ways. First, it provides to the
user an abstraction-poor representation which is guaranteed to be very close to
the original program. Then, if the user is interested in recovering higher level
abstractions such as function boundaries, function arguments and so on, rev.ng
trades some correctness for the sake of providing useful and accurate information
in most of the cases, but, at the same time, it features run-time fallback paths in
case the results of an analysis was mistaken.

For instance, in Section 4.2.2 we will explain how we can identify function
boundaries: this information will be employed to isolate the corresponding basic
blocks into functions. In case our algorithm misidentifies a function, we foresee a
fallback mechanism which, at run-time, will lead program execution to a slower,
but safe, path.

2.2 revamb: a Static Binary Translator

A static binary translator is a tool that, given an input program for a certain archi-
tecture, produces a program with an equivalent behavior for another architecture
(or even the same). The core component of rev.ng is its static binary translator,
revamb. Figure 2.1 offers an overview of its translation process.

revamb takes as input a statically linked Linux program, goes through its seg-
ments (see Section 1.2.2) and identifies those containing data and those containing
code. It employs the appropriate QEMU’s front-end to translate into tiny code in-
structions each basic block in the input program. Then the tiny code instructions
are translated into LLVM IR and collected in a recompilable LLVM module.
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LLVM IR
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Link runtime
functions md5sum.x86-64

Figure 2.1: Overview of the static binary translation process. The input binary is
initially fed to the pre-processing phase which collects an initial set of jump targets
from the global data and the program’s entry points. Then the iterative discovery
of jump targets begins: the code at the address corresponding to each jump target
is first translated into tiny code instructions and into LLVM IR, which is then ana-
lyzed to recover additional jump targets. When no new jump targets can be found,
further analyses are performed (such as the identification, see Chapter 4). Finally,
the program is linked against the necessary libraries and the final executable is
emitted.

The final result is a new binary where those segments are located at their exact
original location, so that all the load and store instructions targeting an absolute
address (typically, a global variable) can stay as they are. In the LLVM module,
each input segment is represented as a global variable associated to a section whose
address will be forced, at link time, to be the address the segment had in the original
program.

This isn’t true for data segments only, in fact, also the segment containing the
executable code can contain data (such as the .rodata section or constant pools).
While the original code and data will remain where they were, the translated code
(i.e., the code that will actually be executed) will reside in another location of the
address space.

This approach allows us to avoid performing instrumentation of memory ac-
cesses and the associated overhead. In practice, the address space of the translated
program will be, at least initially, exactly the same as the original binary, except
for the fact that there will be an extra segment containing the translated code.

Once the layout of the address space has been fixed, the translation has to
start. The translation process presents four key challenges: how the state of the
CPU should be represented, how to identify basic blocks, how to link them to each
other and how to handle the interactions with the operating system (e.g., syscalls).
In the following we will present these challenges. This section will then end with
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the description of the simplest analysis that can be performed on the recovered
LLVM IR: function call detection.

2.2.1 Representation of the CPU State

In revamb the CPU state is represented in a way analogous to how QEMU repre-
sents it (see Section 1.4). In fact, both QEMU and revamb represent each individual
portion of the CPU state through a global variable. In practice, each register or
CPU flag will have a corresponding global variable in the LLVM IR. We call such a
global variable CPU State Variable, or simply CSV. This means that every instruc-
tion reading or writing a register will perform a load or a store to the corresponding
global variable. For this reason, while it might sound counterintuitive at the be-
ginning, we will often talk about performing loads and stores to registers.

Representing CPU registers, whose key characteristic is to have very low access
latencies, with global variables, which reside in memory and are notoriously hard
to optimize, can lead to a large drop in terms of performance. However, since
registers are a form of global state, this is a problem inherent to binary translation
that, e.g., QEMU has too. Note however that, depending on the cleaness of the
control-flow graph, the LLVM optimizer will be able to elide many store/load pairs.
A more radical solution would consists in recovering enough abstractions to iden-
tify functions and their arguments, promoving register arguments to actual formal
arguments of LLVM functions (a topic tackled in Chapter 4 and Chapter 5).

Another option would be to try to pin general purpose registers of the input ar-
chitecture to a set of general purpose registers of the target architecture. However
this would not always possible in case of mismatches in the number of available gen-
eral purpose registers between the two architectures. Moreover, it would seriously
hinder the portability of the code and reduce drastically the set of registers avail-
able to the register allocator, making the integration with the LLVM framework
very hard. Therefore we don’t deem such a path promising, and prefer to focus our
efforts in retrieving abstractions leading us to produce a code more similar to that
produced by a classic LLVM frontend (e.g., clang) and enabling it to benefit from
more general purpose optimizations.

2.2.2 Basic Block Identification

While it might sound straightforward at first, the exhaustive enumeration of all
the basic blocks in a program is a challenging task. In fact, any address with
an appropriate alignment within an executable segment is the potential start of a
basic block. To make such a situation more clear, the reader can think about the
situation where an attacker can obtain direct control of the program counter: he will
be able to jump at any address in an executable memory page. Therefore, the most
conservative solution would be to mark each address with an appropriate alignment
within an executable segment as the starting point of a basic block. However, this
would seriously affect the performance of the program in case of recompilation and
make any further analysis extremely difficult, if possible at all. To understand why
it’s sufficient to imagine the control flow graph of a program where each indirect
jump can reach any other address within the program: any optimization would be
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inhibited and even just walking the control flow graph backwards (from a basic
block through its predecessors) becomes a confusing task.

In conclusion, the identification of basic blocks has two conflicting goals: 1)
identify all of the legitimate basic blocks and 2) produce a CFG as clean as possible
to enable optimizations and meaningful analyses.

In revamb, the identification of the starting addresses of basic blocks (also known
as jump targets) proceeds in an iterative way. A first set of jump targets is obtained
from the image metadata, such as the entry point and exported functions. Then, all
the segments are scanned looking for pointer-sized values that look like addresses
pointing within an executable segment. This step allows us to capture all the
global variables initialized with function pointers, C++ virtual tables and jump
tables generated due to switch statements. This initial set of addresses are fed
to QEMU which will produce its own intermediate representation, that, in turn,
will be translated into LLVM IR. At this point the generated code is analyzed to
discover new jump targets in two ways: 1) by collecting all the targets of direct and,
where feasible, indirect branch instructions and 2) by collecting literal constants
materialized in the code which appear to be a jump target. The latter approach
allows to catch pointers to functions which are not stored in global variables, virtual
tables or jump tables, but are hardcoded in the executable code itself.

The described method to identify basic blocks is a good compromise between
marking all the addresses as jump targets (fully conservative, little informative)
and obtaining an exact representation of the legitimate control-flow graph (very
informative, hard if not impossible to obtain in the general case).

The obvious disadvantage of this approach consists in what we call overtrans-
lation: it might happen that we mistakenly consider a piece of data as code. A
typical situation is when, while scanning through global data, we find a pointer to
a piece of data in .rodata. In fact, as we saw in Section 1.2.2, .rodata is often
placed in the executable segment. Therefore, despite being just data, it is actually
executable, and there’s no 100% reliable way to detect such a situation. An even
trickier case is represented by constant pools, which typically are placed between
actual functions.

Note that overtranslation is a non-issue in terms of preserving the semantics
of the program, since we’re simply translating additional code which will never be
run. However, it might be problematic in case further analyses are to be run on
the code.

Chapter 3 will eviscerate this topic in depth.

2.2.3 Organization of the Translated Code
Each input basic block is translated into one or more LLVM basic blocks. In fact,
even a single instruction can be expanded to multiple basic blocks. This is due to
the fact that in the QEMU IR (and therefore in LLVM) each instruction performs a
single operation and has no side effects. Therefore, instructions such as conditional
moves or predicated instructions need to be expanded into the equivalent of an if
statement.

All these basic blocks are collected into a single large LLVM function, known
as root. Control flow transfer from one basic block to another one is performed in
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%0 = load i32 , i32* @pc
switch i32 %0, label %abort [

i32 0x10074 , label %bb.0x10074
i32 0x10080 , label %bb.0x10080
i32 0x10084 , label %bb.0x10084
...

]

Listing 2.1: Example of the dispatcher. The value of the program counter is read
and fed to a very large switch statement which maps each jump target address to
the corresponding LLVM basic block.

two ways: 1) directly in case the basic block is terminated by either a direct branch
or an indirect branch for which we were able to statically exhaustively enumerate
all the possible destinations, or 2) going through the dispatcher. The dispatcher
(Listing 2.1) role is to route program execution to the correct basic block at run-
time in case we weren’t able to determine where it should statically. In practice
it’s a portion of the root function that compares the current (run-time) value of
the program counter against all the addresses of the basic blocks that have been
translated, and dispatches execution to the correct one.

Note that, as mentioned before, the lesser the dispatcher is employed, the bet-
ter. Both for analysis purposes and performance of the recompile code. In fact,
the switch statement is very large and sparse, therefore even its most efficient im-
plementation will have a cost that is either logarithmic in time (binary search) or
linear in space (hash table). Therefore it’s critical to be able to statically enumer-
ate all the targets of indirect branches local to a function. Ideally, the dispatcher
should be used exclusively for indirect function calls.

2.2.4 Handling of Operating System Interactions
Being able to correctly translate single basic blocks and link them together is critical
to be able to successfully produce a program with the same behavior as the original
one, but it’s not enough. Interactions with operating system have to be handled
too. Specifically, process initialization, syscalls and signals have to be managed.
Process initialization. A Linux program starts its execution in an address space
where its image has been loaded and the stack is initialized with a specific struc-
ture, mainly arguments and environment variables. In the case of the translated
program, while the operating system will do the above mentioned operations, we
need to set up an additional stack. In fact, we will have two stacks: one used to
emulate the stack of the original program, and another one used for the hosting
program. For example, if we are running on an x86-64 host a program originally
built for ARM, the global variable representing the ARM sp register will point to
the former stack, while the actual x86-64 rsp register will point to the latter. These
two stacks evolve in distinct ways.

While the host’s stack is initialized by the operating system, we have to take
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care of allocating and correctly initializing the emulated stack. This means copying
the environment variables, program arguments, auxiliary vectors and so on the
emulated stack. Once this operation has been performed, the root function can be
invoked and the translated code can start to run.
Syscalls. Instructions that perform syscalls are handled by QEMU by emitting
a call to an helper function (see Section 1.4). These functions are implemented in
C and take care of translating the system call’s calling convention from the one of
the input architecture to the one of the host architecture. In practice syscalls are,
after some processing, forwarded to the host operating system.

In revamb, we extract the necessary helper functions from QEMU, what we
call the QEMU Linux subsystem (Section 1.4), and we link it into the output
binary. The result is a self-contained binary which automatically forwards syscalls
to the hosting operating system. Note that this is necessary only when translating
a program from an architecture to a different architecture. In case the source
and target architectures match, it is in principle possible to perform the syscalls
unmodified.
Signals. Despite not requiring very sophisticated handling, signals are not cur-
rently handled by revamb.

2.2.5 Identification of Function Calls

In this section we will present a key analysis to understand the approach we follow
in rev.ng, and its potential. In rev.ng, every time we write an analysis, we work
on an LLVM module, we don’t care what was the original architecture: all the
analyses have to be architecture independent. This is a key principle to ensure
that, once a new front-end is plugged in, all the analyses still work and produce
results of quality close to architectures that have been supported for a long-time.

The fact that the LLVM module we work on is architecture independent also
means that the code provides very little abstractions. This is true up to the point
that even a very simple and common instruction such as call (or bl in ARM, or
jal in MIPS) are not explicit in the generated code.

Therefore, the need to have an analysis to identify function calls arises. The
function identification analysis is as simple as important, since we’ll rely on its
results several times in the rest of this work.
Before describing the implementation of the analysis, we need to provide a definition
for function call :

Function call. A branch instruction which is preceded by an instruction storing,
either in a register (the link register) or on the top of the stack, the return address.
The return address is a constant integer whose value corresponds to the address of
the current instruction, plus its size.

Given this definition, it’s straightforward to write an analysis which goes through
the code and checks each branch instruction (direct or indirect) to see if the im-
mediately preceding instructions are saving the return address on the stack or in a
register.

If such a situation is identified then a marker is emitted right before the branch
instruction, representing the fact that the following branch is actually a function
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define void @root(i64) {
bb.main:

; 0x4006cf: call 0x4004f0
%219 = load i64 , i64* @rsp
%220 = sub i64 %219 , 8
%221 = inttoptr i64 %220 to i64*
store i64 0x4006d4 , i64* %221
store i64 %220 , i64* @rsp
store i64 0x4004f0 , i64* @pc
call void @function_call(i8* blockaddress(@root , %bb._init.0x8),

i8* blockaddress(@root , %bb.main.0x36),
i32 4196052)

br label %bb._init.0x8
; ...
}

Listing 2.2: Code generated by a x86-64 call instruction. The first five instructions
are pushing the return address on the stack. In fact 0x4006d4 is the address of the
call instruction plus its size, and its being stored on the top of the stack (after it
has been decreased by 8). Then the program counter is updated and we can see
a branch to the target function. The call to function_call is the marker. It’s
not a real function call, its only purpose is marking that the next instruction is
a function call. Its first argument represents the entry basic block of the called
function. The second argument is the return basic block, while the third argument
represents its address.

call. The marker also encodes what is the called function (basic block), what’s the
return basic block and its address. An example of the results of the function call
detection is shown in Listing 2.2.

2.3 Advanced Features

This section introduces a series of advanced features, with respect to the basic func-
tionalities presented so far. Specifically, we will first provide an overview of the
debugging capabilities embedded in rev.ng to make the diagnosis of mismatches
between the behavior of the translated and original program easier. We will then
present the challenges introduced by dynamic libraries and how we intend to tackle
them accurately. Afterwards, this chapter provides a walk-through on how to imple-
ment a simple static instrumentation using our homebred LLVM Python bindings,
llvmcpy. Finally, we will illustrate how we intend to extend the platforms handled
by rev.ng, both beyond the set of architectures supported by QEMU (by employ-
ing CGEN, a simulator/disassembler generator) and in terms of operating systems
and binary formats.



2.3. ADVANCED FEATURES 31

sum.ll
30534
30535 ; 0x000086b0: e28d0010 add r0, sp, #16 ; 0x10
30536
30537 ; mov_i32 tmp6,r13,
30538 %6253 = load i32, i32* @r13, !dbg !23056, !oi !23057, !pi !23058
30539
30540 ; add_i32 tmp6,tmp6,tmp5,
30541 %6254 = add i32 %6253, 16, !dbg !23059, !oi !23057, !pi !23060
30542
30543 ; mov_i32 r0,tmp6,

B+> 30544 store i32 %6254, i32* @r0, !dbg !23061, !oi !23057, !pi !23062
30545
30546
30547 ; 0x000086b4: 02422004 subeq r2, r2, #4 ; 0x4
30548
30549 ; brcond_i32 ZF,tmp5,,ne,$L0
30550 %6255 = load i32, i32* @ZF, !dbg !23063, !oi !23064, !pi !23065
30551 %6256 = icmp ne i32 %6255, 0, !dbg !23066, !oi !23064, !pi !23065
30552 br i1 %6256, label %L0325, label %6257, !dbg !23067, !oi !23064, !p

multi-thre Thread 0x7ffff7f8b7 In: root L30544 PC: 0x2b96a
(gdb) p /x r13
$1 = 0x400fcd08
(gdb) 

Figure 2.2: Screenshot of gdb stepping through the generated LLVM IR. The high-
lighted line represents the store writing the result of the add instruction (add
r0,sp,#16) into r0. In the gdb shell, the value of the r13 register is being printed
on screen. We take huge pride in the fact that this figure, despite being a screen-
shot, is fully vectorial. No vectorial images were harmed in the making of this
thesis.

2.3.1 Debugging

Due to programming errors in rev.ng or violations of some assumptions we made,
it might happen that a translated program misbehaves, i.e., it doesn’t behave as
the original program. In such cases, tracing back the source of the problem can
be a challenging task, since setting a register to a wrong value could go unnoticed
for most of the program execution, until the problem shows up. This problem is
exacerbated by the fact that, if we consider the original C program being translated,
there are four translation layers between the source code and the running assembly:
1) compilation from C to the target assembly, 2) translation from assembly to
QEMU’s tiny code instructions, 3) translation from QEMU’s tiny code instructions
to LLVM IR, and 4) translation from LLVM IR to the target architecture.

For this reason, in the LLVM module each instruction is associated to debug-
ging information (see Section 1.3) which allows the developer to trace a certain
output instruction back to the corresponding LLVM IR instruction, or tiny code
instruction or assembly instruction, at user’s choice. In LLVM, this is implemented
through !dbgmetadata, which allows to encode debugging information in a portable
way: the compiler will then take care of emitting them in the appropriate format
depending on the target image format (ELF, in this case).

As shown in Figure 2.2, the end result is the possibility of employing a debugger
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(such as gdb) to step through the generated LLVM IR, tiny code instructions or the
original assembly. Moreover, since the CPU state is represented as global variables,
inspecting the value of a register is straightforward.

2.3.2 Dynamic Libraries Support

So far we’ve been discussing how statically linked binaries are handled by revamb.
But what about dynamically linked programs? The handling of dynamically linked
programs can be tackled in two different ways.

A first option is to simply load all the libraries individually before starting the
analysis, and then treat the combination of the main program and libraries as if it
was a statically linked binary. This is the most straightforward approach, except
for the handling of dynamic relocations (see Section 1.2.3), which are architecture-
specific. However, compared to the relocations available in static linking, there’s
usually a very reduced number of them.

The other option consists in working exclusively on a single binary and leave
all the calls to dynamic functions and memory operations towards dynamic global
variables as calls/accesses to dynamic functions/global variables. This would mean
that, when, in the translated program, a call to a dynamic function is performed,
the control is transferred to the corresponding function in a dynamic library, using
the usual dynamic symbol resolution process. This is particularly interesting (and
feasible) in case the source and target architectures match (e.g., the input program
was compiled for x86-64 and the target architecture is x86-64 too). In case of
different target and destination architectures, if the ABI and the prototypes of the
library functions are known, it is in theory possible to use a library compiled for
a different architecture. However, this could be very dangerous, since a function
with the same name, in the same library, could have subtly different semantics
when compiled for a different architecture.

The latter option, i.e., employing native libraries, allows us to drastically reduce
the performance overhead and the risk of mistranslation on the program as a whole.

However, supporting the usage of native libraries poses a series of challenges,
in particular while trying to achieve one of our key goals: independence from the
input architecture. In fact, different architectures implement dynamic loading (and
lazy loading in particular) in wildly different ways, which we intend to handle in a
unified way.

The main challenges are listed in the following.

1. Creation of external symbols. The first step consists in the creation, for
each symbol, be it a global variable or a function, of a corresponding entity in our
LLVMmodule. For global variables this means the creation of a global variable with
the same name and size, while for functions we simply create a function declaration
with the same name returning void and taking no arguments. In both cases they
have to be marked as having external linkage.

2. Replacement of loads from relocated addresses. We now inspect all the
load instructions in the program looking for those accessing an absolute address to
which a relocation is associated. Then, we remove the load itself and replace it with
the name of the LLVM global variable or function associated with the relocation.
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This is coherent with the original behavior of the program, since the name of a
function or a global variable in LLVM is used to represent its address.
3. Dispatcher extension. At this point it’s possible that the address of one
of said functions end up in the global variable representing the program counter.
Therefore, the dispatcher (Section 2.2.3) has to be able to handle it properly. For
this reason, we expand it to also check if the pc contains the address of a dynamic
function, and in such case, we emit a direct jump to its address, using inline
assembly.

Obviously, the emission of a jump is not enough. In fact, we’re switching
from a world where the state of the original program is in LLVM global variables,
the translate world, to a world where the state is expected to be in actual physical
registers, the native world. Therefore, before the jump, we inject a serialization step
which uses inline assembly to move the content of each CSV to the corresponding
physical register.

This works for transferring the control of the program out to the native world,
but what about the other way round? For these situation, we have a fallback solu-
tion which handles both returns from dynamic functions and also the trickier case
of a native dynamic library calling a function pointer belonging to the translated
world. While the catch-all solution works, it has a cost, therefore we will introduce
two other approaches to handle the common case of simple (direct and indirect)
calls to dynamic functions.
The catch-all solution. For various reasons, such as function pointers and re-
turns from dynamic functions, the native world could try to jump to the translated
world. Since, by design, we leave all the original code where it was, this would mean
jumping to the original (non-translated) code, which is unwanted. The only 100%
reliable way to handle jumps from the native world to the translated world consists
in mapping the memory pages containing the original code as readable, but not
executable. In this way, when the native world will try to jump there, it will get a
SIGSEGV signal that we can catch. In the signal handler routine, we can perform
the deserialization step, i.e., copying the content of all the physical registers to the
corresponding CSVs, and then simply jump to the dispatcher, therefore resuming
execution in the translated world.
Handling of direct calls. To avoid the cost of going through the signal handler
and the semantic poorness associated to the previous solution, we optimize the
handling of the common case of a typical call to dynamic functions. As shown in
Listing 2.3, to do so, we inspect all the uses of the external functions we created
and we check if their address ends up in the program counter. If this is the case,
we identify the basic block containing the store to the program counter, compute
the set of basic blocks it dominates and perform a depth-first search among them
looking for function calls. In case we find a function call, we replace it with a proper
LLVM call to the corresponding function and a branch to its return address. The
LLVM call is then surrounded by the CPU state serialization and deserialization
routines.
Handling of indirect calls. A similar approach is followed in case of indirect
calls. Every time we identify an indirect function call, instead of branching to the
dispatcher directly, we jump to an alternative dispatcher, the function dispatcher.
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The function dispatcher checks if the program counter matches the address of a
dynamic functions and, if so, saves the return address in a temporary variable
(popping it from the stack, if necessary), calls the CPU state serialization routine,
performs an LLVM call to the appropriate dynamic function and, upon return,
the deserialization routine is invoked and a branch to the saved return address is
emitted.

Once all of these operations have been performed, we only have to make sure
that the recompiled program will be linked against the appropriate libraries. Note
that, at the current stage, we are exclusively exploring the handling of dynamic
libraries in a context where both the input and output architectures match. In fact,
using a native version of a library with a program originally compiled for another
architecture might lead to serious issues, even leaving ABI-incompatibility aside.

2.3.3 Instrumentation
An obvious application of being able to recompile a program, is recompiling a
modified version of it. In fact instrumentation is a key use case of rev.ng. In the
following we will first describe the LLVM bindings generator for Python and then
we will employ it to implement a simple script that instruments all the syscalls of
a given program.
llvmcpy. To make manipulation of the IR easier, we implemented a binding for
LLVM in Python: llvmcpy [47]. While implementations of Python bindings for
LLVM were already available [6, 75], they were tied to a specific LLVM version,
were limited in functionality and some of them kept a Python representation of the
LLVM IR, which lead to serious efficiency issues.

For this reason, in llvmcpy, we decided to generate bindings for the LLVM
framework automatically, starting from the LLVM-C API. The LLVM-C API is a
binding for LLVM to be used from C. They feature consistent naming practices, a
simple API and, most importantly, they’re very stable.

Therefore, by parsing the LLVM-C header files, we can automatically generate
an object-oriented view of an LLVM module, without having to represent it in
Python. Moreover, due to the consistency of the API and ability to automatically
generate the wrappers, llvmcpy virtually supports all the past and current LLVM
versions out of the box.
Trace syscall numbers example. We will now implement a tracer for syscalls
by modifying the LLVM IR recovered by rev.ng.

We write a simple Python script which loads the LLVM module, identifies all
the syscalls and instruments them injecting the code to print the number of syscall
to be performed.

In QEMU for ARM, syscalls are expressed as calls to functions whose name
begins with helper_exception_with_syndrome. Once we identified all the calls to
the said function, we will load the value of the r7 register, which holds the number
of the syscall, and print it to stderr using the dprintf function.

First of all we need to import llvmcpy, obtain the LLVM context object and
load the input LLVM IR:

from llvmcpy import llvm
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context = llvm.get_global_context ()
path = sys.argv [1]
buffer = llvm.create_memory_buffer_with_contents_of_file(path)
module = context.parse_ir(buffer)

Now that we have a reference to the module we can collect the objects required to
perform the dprintf call, i.e., the function itself, the CSV representing the register
r7, a constant integer representing stderr and the format string for dprintf:

r7 = module.get_named_global("r7")
dprintf = module.get_named_function("dprintf")
two = context.int32_type (). const_int(2, True)

message_str = context.const_string("%d\n", 4, True)
message = module.add_global(message_str.type_of(), "message")
message.set_initializer(message_str)
int8_ptr = context.int8_type (). pointer (0)
message_ptr = message.const_bit_cast(int8_ptr)

Note that to build the format string we first have to create a new global variable,
then set its initializer to the constant string and finally cast it to char * so that
can be passed to dprintf, whose prototype is:

int dprintf(int fd, const char *format , ...);

At this point we have to iterate over all the instructions of the root function:

root_function = module.get_named_function("root")
for basic_block in root_function.iter_basic_blocks ():

for instruction in basic_block.iter_instructions ():
# ...

However, we are not interested in all instructions, but only in calls to functions
starting with helper_exception_with_syndrome. Therefore, we check the opcode
of the instruction, and, if it’s a call, we consider the last operand (which represents
the called function) and check it’s name:

if instruction.instruction_opcode == llvm.Call:

last_operand_index = instruction.get_num_operands () - 1
callee = instruction.get_operand(last_operand_index)

if callee.name.startswith("helper_exception_with_syndrome_"):
# ...

Finally, we’ve found the location where we want to insert our instrumentation. To
do this, we create a builder object, position it right before the call instruction, emit
an instruction loading r7, prepare the other arguments and, finally, emit the call
to dprintf:

builder = context.create_builder ()
builder.position_builder_before(instruction)
load_r7 = builder.build_load(r7, "")
builder.build_call(dprintf , [two , message_ptr , load_r7], "")
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The last thing left to do is to serialize the new IR to file:

module.print_module_to_file(sys.argv [2])

Let’s now run our script and recompile the code:

$ ./hello.translated
45
45
983045
5
3
6
54
54
4
Hello world!
248

We can compare the result with a QEMU run of the original program:

$ qemu -arm -strace hello
7346 brk(NULL) = 0x00039000
7346 brk(0 x000394b0) = 0x000394b0
7346 open ("/dev/urandom",O_RDONLY) = 3
7346 read(3,0xf6ffde84 ,4) = 4
7346 close (3) = 0
7346 ioctl (0 ,21505 , -151003688 ,0 ,221184 ,0) = 0
7346 ioctl (1 ,21505 , -151003688 ,1 ,221184 ,0) = 0
7346 write(1,0x372a8 ,13) Hello world!
= 13

7346 exit_group (0)

2.3.4 An Alternative Front-end: CGEN
While QEMU can handle a very large set of architectures, it doesn’t support all of
them. To further extend the set of architecture handled by rev.ng, it’s possible to
integrate different front-ends. In this sense, another project which features support
for a large set of architecture and accurately describes how each instruction is
encoded and its full semantic, is CGEN [55].

CGEN is a project, written in Scheme, part of the GCC umbrella. CGEN
allows a developer to describe in a Scheme-inspired language an ISA, with all of
its variants, registers, instructions and so on. The encoding of each instruction is
also formally specified, along with its behavior. From this high-level description,
CGEN can then generate several tools such as disassemblers and emulators.

The idea is to extend CGEN to generate the three key pieces of code necessary
for rev.ng to correctly handle an architecture: 1) the code to generate the CSVs,
i.e., all the registers and other components of the CPU state, 2) the code necessary
to parse raw bytes into an instruction and its fields and 3) the code to generate
LLVM IR from a certain instruction. Listing 2.4 presents an example output code
for 1) and 2).
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CGEN currently supports Morpho Technologies MT Arch, Hitachi SH, Fujitsu
FRV, Synopsis ARC, CRIS, Fujitsu FR30, Ubicom IP2K, Lattice Mico32, Renesas
M32C, Renesas M32R, OpenRISC 1000, Infineon XC16X, IQ2000/IQ10, Toshiba
MeP, Adapteva EPIPHANY and xstormy16.

2.3.5 Extending Platform Support

rev.ng currently supports x86, x86-64, MIPS and ARM binaries, statically linked,
for Linux. Support for new platforms can be extended in several directions.

First of all, we can extend the number of architectures we handle. Considering
the diversity of the ISAs we currently support (in terms of register size, endianess,
CISC/RISC design and so on), adding new architectures supported by QEMU
is straightforward. As an example, it took a week of work for an inexperienced
programmer to add support for x86. As mentioned in Section 2.3.4, additional
processors can be supported through alternative front-ends such as CGEN.

In terms of binary formats, rev.ng currently handles ELF and has experimental
support for PE/COFF. Given its similarity with ELF, support for Mach-O should
be straightforward.

The real challenges in terms of fully supporting additional platforms comes
from operating systems. Introducing support for FreeBSD is feasible, since QEMU
also features a, currently broken, FreeBSD subsystem, very similar to the Linux
one. Support for Windows requires a much more demanding endeavor which might
involve Wine [125].

Supporting execution of bare metal or kernel code is currently outside the scope
of rev.ng. Note however that, for analysis purposes, rev.ng can be a critical tool
even on environments not currently supported, such as those just mentioned.

2.4 Performance

After the whole discussion on features and possible use cases, it is interesting to
investigate the performance figures of the translated code, in particular when com-
pared with the performances of the original code and of alternative instrumentation
frameworks.

Specifically, we decided to compare the performance of the code produced by
revamb with the original code, with Pin 3.2 [79, 94] (a binary instrumentation
framework by Intel for x86 only), QEMU 2.4.50 [14, 97] (Section 1.4) and Valgrind
3.21.0 [46] (an instrumentation framework for building dynamic analysis tools and
memory checkers in particular). In the future we also plan to compare our results
with other dynamic binary translators such as DynamoRIO [19] and libtdetox [119].

The programs have been compiled for x86-64 using GCC, with -O2 optimization.
They originate from the SPEC2006 [71] integer benchmark suite. The results are
obtained over three runs with results computed using the geometric mean [60],
running on a server featuring an AMD Opteron Processor 8435 CPU (2.6 GHz, 4
sockets, 6 cores each, 6 MiB of cache), 12 GiB of RAM (DDR2 at 667 MHz) and
two WD Green WD20EZRX in RAID-1 mode.
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Moreover, we run two sets of benchmarks: a first set with no instrumentation
and a second one implementing in all of the tools the stack distance instrumenta-
tion. The stack distance instrumentation is a simple instrumentation which mon-
itors the evolution of the stack pointer (the rsp register) and accumulates every
change in its value (independently of its sign) in a variable. The final result is the
total distance traveled by the stack pointer along the program execution. Com-
paring the performance of uninstrumented and instrumented code is vital, since
certain tools, Pin in particular, in absence of instrumentation, might be able to
reuse original code, showing a very low overhead.

Table 2.1 reports the results. The revamb produced code is 2.4 times faster than
QEMU, almost as fast as Valgrind and 2.8 times slower than native code, while
QEMU is 6.6 times slower than native code. For the above mentioned reason, i.e.,
the ability to reuse strings of original instructions as is, Pin outperforms all of the
tools in the uninstrumented cases, with just an overhead around 30% over native
code. Specifically, Pin is 2.2 times faster than the code generated by revamb in the
non-instrumented case.

In case the stack distance instrumentation is in place, Pin becomes 17% slower
than the revamb code. The other relative performance figures remain similar.
Considerations on performance. The speedup of the code generated by revamb
compared to QEMU (and other tools) is mainly due to the fact that other tools
dynamically translate a single basic block at a time. Therefore they have an addi-
tional cost to perform the translation at run-time and have limited visibility on the
code and, consequently, lesser optimization opportunities compared to our case. In
fact, the LLVM optimizer has full visibility on the code and can do a lot more.
However, the amount of optimizations that LLVM can perform also heavily de-
pends on the quality of the recovered control-flow graph. In fact, if the CFG is
complicated and highly connected, it is, e.g., impossible for an optimizer to perform
store-load elision (Figure 2.3). This is currently a problem, due to the fact that
the dispatcher can lead execution to any of the translated basic blocks. The CFG
can be pruned, but this introduces the risk of breaking certain edges that could be
taken at run-time. In the future we aim to evaluate how edges can be pruned from
the control-flow graph (in particular edges starting from the dispatcher) preserving
correctness. Furthermore, we also want to offer LLVM more optimization chances
by detecting functions (Chapter 4) and isolating them in actual LLVM functions
(instead of keeping them in the root function, see Section 2.2.3). We foresee solid
speedups due to this change. We also have a plan to handle misidentification of
function boundaries. However, this is outside the scope of this work.
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bb.two:
%1 = load i32* @rax

bb.one:
store i32 3, i32* @rax

dispatcher:
%0 = load i32 , i32* @pc
switch i32 %0, label %abort [

i32 0x1000 , label %bb.one
i32 0x1004 , label %bb.two
...

]

Figure 2.3: Example situation where a spurious edge on the CFG hinders an opti-
mization. Depending on whether the edge from bb.dispatcher to bb.two is present
or not, the optimizer will be able to perform store-load elision in the bb.one and
bb.two basic blocks. Such a transformation would promote @rax to an SSA value,
which, in turn, will likely be assigned to a register and, therefore, two memory
accesses can be saved.
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Initial code

define void @root(i64) {
bb.main:

; 0x4006cf: call 0x4004f0
; Code to push return address on the stack
store i64 4195568 , i64* @pc
call void @function_call(i8* blockaddress(@root , %bb._init.0x8),

i8* blockaddress(@root , %bb.main.0x36),
i32 4196052)

br label %bb._init.0x8

bb._init.0x8:
; 0x4004f0: jmp QWORD PTR [0 x601018]
%293 = load i64 , i64* inttoptr (i64 6295576 to i64*)
store i64 %293 , i64* @pc
br label %dispatcher.entry

; ...
}

Relocations

$ readelf -r main
Offset Type Symbol 's Value Symbol 's Name + Addend
601018 R_X86_64_JUMP_SLOT 0 function + 0

Processed code

declare void @function ()

define void @root(i64) {
bb.main:

; 0x4006cf: call 0x4004f0
; Code to push return address on the stack
; State serialization code goes here
call void @function ()
; State de-serialization code goes here
br label %bb.main.0x36

; ...
}

Listing 2.3: Example of handling of a dynamic function call. The first snippet of
code provides an example of a dynamic function call in x86-64. bb.main calls the
stub. The stub then jumps to the address contained in the entry of the .got.plt
section corresponding to function (see Section 1.2.3), which is located at 0x601018.
In the second snippet, we can see that at the corresponding address there’s a
relocation. rev.ng will detect such a situation and produce the code shown in the
third snippet. Note how the branch to the PLT stub has been replaced with a
function call to function (along with the omitted serialization and deserialization
code) and, after the call, a branch to the return address has been emitted.
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class Instruction {
static unique_ptr <Instruction > make(unsigned int opcode ,

uint8_t *code);
virtual void parse(uint8_t *code) = 0;

Instruction(unsigned int opcode) : _opcode{opcode} { }

unsigned int _opcode;
};

struct AddSFormat { unsigned int f_r0 , f_r1 , f_r2; };

class AddiInstruction : public Instruction {
void parse(uint8_t *code) {

sfmt.f_r0 = extractLSB0 <unsigned int > (insn , 32, 25, 5);
sfmt.f_r1 = extractLSB0 <unsigned int > (insn , 32, 20, 5);
sfmt.f_imm = extractLSB0 <int > (insn , 32, 15, 16);

}

AddiSFormat sfmt;
};

unique_ptr <Instruction > Instruction ::make(unsigned int opcode ,
uint8_t *code) {

auto *insn = make_unique <Instruction > { };
switch (opcode) {

/* ... */
case 13 :

if ((code & 0xfc000000) == 0x34000000) {
insn = make_unique <AddiInstruction > { opcode };

} /* ... */
break;

/* ... */
}

insn ->parse(code);
return insn;

}

Listing 2.4: C++ code generated by CGEN to decode and parse the fields of the
add instruction of the Lattice Mico32 CPU. The Instruction class is the base
for all the possible instructions. Actual implementations need to implement the
parse method, which, given a pointer to a memory buffer, populates the fields that
compose the current instruction. AddSFormat is a structure representing the fields
a three-operand instruction. AddiInstruction is the actual implementation of the
add instruction. It inherits from Instruction and embeds AddSFormat. Its parse
method, simply inspects the buffer, selecting the appropriate bits and storing them
in the corresponding fields. Finally, the Instruction::make method identifies the
opcode of the instruction and creates an instance of the appropriate class.
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Chapter 3

Basic Block Identification

As mentioned in Section 2.2.2, accurate enumeration of all the basic blocks in a
program is not only critical for an effective translation of the binary, but for analysis
purposes too. In this chapter, we propose a systematic approach to identify basic
blocks (jump targets) in binary programs by analyzing both the global data and
the code itself. The approach is general, as it does not employ heuristics or make
architecture-specific assumptions, and is proven effective on a set of real world
programs. We also propose a new data-flow analysis (OSRA) particularly suitable
to identify jump targets introduced by the sophisticated implementations of switch
statements. The abovementioned techniques have been implemented in revamb
and their effectiveness has been assessed on a set of real-world programs on three
different architectures with almost no failures due to missing jump targets.

This chapter is in large parts extracted from [49].

3.1 Problem Statement

In this section we present the main challenges in identifying code from a static
binary translator perspective, with a specific focus on jump target recovery. In
particular, we illustrate a set of problematic cases with examples and investigate
their origins.

3.1.1 Identifying Code and Basic Blocks

One of the key issues in static analysis of binary programs consists in isolating
the executable code from the program data. Most binary formats contain useful
information to this end. As seen in Section 1.2.2, the ELF binary format [131]
divides the program in several segments that associate a portion of the file to a
load address, a size and a set of permissions (such as readable, executable and
writable). The permissions are particularly useful, since executable code must
reside in a segment with execution permissions.

ELF sections would provide a more fine grained information, but since, unlike
segments they’re not critical to execution, they are often absent. This becomes an

43
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cmp r0, #240
addls pc, pc, r0, lsl #2
b 21304
b 21320
b 21710
b 212fc

(a) pc+ 4 · r0, with r0 < 240

cmp r3, #8
ldrls pc, [pc, r3, lsl #2]
b 128c4
.word 0x1265c
.word 0x124ec
.word 0x12518

(b) mem[pc+ 4 · r3], with r3 < 8

cmp cl ,0x53
ja 471aa8
lea rax ,[rip+0 x3c9ca]
mov rcx , PTR [rax+rcx*4]
add rax ,rcx
jmp rax

(c) base+mem[base+ 4 · cl], with cl ≤ 83

Listing 3.1: Two ARM and an x86-64 real-world implementations of the switch
statement. Listing 3.1a presents an implementation where the new address is writ-
ten directly in the program counter (pc) and is computed as the current PC plus
the switch value r0 left shifted by two positions. The code in Listing 3.1b reads
the jump target from an array of addresses (a jump table) stored in a constant pool
close to the current program counter (the .word directives). The chosen address is
determined using the switch value r3 as an index. In Listing 3.1c we have an x86-64
switch implementation reading a value from base+4·cl (where base = pc+0x3c9ca
and cl is rcx’s lowest byte), which is then added to base and used to perform an
indirect jump. Note how, in all the examples, before computing the target address,
the switch value is compared with a constant.

issue when, as it is often the case, the linker merges .rodata and .text in a single
segment, since they both have read-only access.

Furthermore, code and data can be mixed by the compiler, e.g., when constant
pools are used in unified cache architectures to reduce the cost of loading constants.
Once the problem of distinguishing code from data is solved, basic blocks must be
identified to reconstruct the control flow. Basic blocks are delimited by instruc-
tions that alter the control flow (branches, jumps and calls), or by jump targets
– corresponding to labels in the assembly code. It is worth noting that in static
binary translation control flow reconstruction could theoretically be avoided. How-
ever, there are significant drawbacks if this choice is taken. In particular, control
flow reconstruction enables more aggressive optimizations. In the absence of this
information, every instruction must be considered as a basic block on its own.

Moreover, in architectures employing a variable-length instruction encoding
(VLE), such as x86, a single sequence of bytes would have to be interpreted in
several different ways, leading to a needless increase in translation time and output
size.

Finally, a relevant concern is also the way indirect jumps are typically handled
in static binary translators [139]. If it is not possible to statically identify the
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target of an indirect jump, a static binary translator will defer that decision at
run-time, by diverting the execution to some form of dispatcher that will jump to
the code generated corresponding the correct instruction. The dispatcher can be
implemented through a hash table or a binary search tree, but in all cases, the
more the possible jump targets, the more space and/or time to handle an indirect
jump is required.

In conclusion, identifying the possible jump targets is a key problem, and while
a small amount of false positives is acceptable, marking all the instructions as a
possible jump targets can seriously affect the performances of the translated binary.

3.1.2 Challenges in Jump Target Recovery

The target of a jump instruction can be either encoded directly in the jump in-
struction (a direct jump) or can be the content of a register or memory area at
run-time (an indirect jump). Direct jumps can be either relative to the program
counter (PC) or absolute, in which case the immediate represents the full desti-
nation address. In both cases, obtaining the jump target is straightforward. On
the other hand, indirect jumps deserve a closer analysis, as they can derive from
several different types of high level statements. In the following we present the
most relevant ones.

Materialized destination address. A program might need to perform a jump
relative to the PC to an address whose distance from the PC is larger than the
maximum representable in the instruction immediate. An option to circumvent
this situation is presented in the following MIPS snippet:

lui t9 ,0x42
addiu t9,t9 ,0xd188
jr t9

In the example the full destination address is materialized in a register, and
then an indirect jump through that register is performed. Another possible
solution consists in storing the full target address in a constant pool.

Return instructions. A return instruction is a form of indirect jump that diverts
execution to the address stored in the link register or on the top of the stack.

Function pointers. Calling a function pointer or a C++ virtual function also
requires an indirect jump.

switch statement. Dense switch statements are typically implemented using in-
direct jumps through a register which typically contains an address dependent
on the switch value. Listing 3.1 reports the code emitted due to a switch state-
ment in three different real-world cases.

From the point of view of a static binary translator, the most challenging indirect
jumps are those produced by switch statements. In fact, their destination address
is often computed at run-time and therefore it’s never explicitly available in the
code or data segments (see Listing 3.1a and Listing 3.1c).
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3.2 Harvesting Data and Code

In this section we will introduce three methods for the harvesting of jump targets.
The first will inspect the global data, while the remaining two work on the code
directly.

3.2.1 Global Data Harvesting

The program global data can provide useful information for jump target recovery.
In fact, the .rodata and .data sections often contain function pointers, C++ virtual
tables, or jump tables (see Listing 3.1b). Constant pools (see Section 3.1.2) can
also be a source of pointers to basic blocks or functions, in case of jump instructions
targeting addresses not reachable via an immediate offset added to the PC.

For this reason, the most straightforward approach to recover an initial set of
jump targets consists in traversing byte-by-byte (or word-by-word) all the program
segments looking for code pointers.

A code pointer is a byte sequence of the length of a pointer (32 or 64 bits) that,
when interpreted using the appropriate endianess for the architecture, represents
an address lying within an executable segment. If the ISA enforces an instruction
alignment, e.g., 4 bytes in ARM, the resulting address must also be aligned to that
value.

3.2.2 Simple Expression Tracker

Once an initial set of jump targets is available, the code at the corresponding
addresses is translated. We therefore need to introduce an analysis aimed at har-
vesting jump targets from the translated code. The analysis we propose, called
Simple Expression Tracker (SET), identifies all the store instructions and tracks in
a step-by-step way how the value being stored is computed. The analysis proceeds
as long as the operations composing the expression depend at most on a single
non-constant operand. In fact, SET aims to collect the destination address of di-
rect jumps and indirect jumps that materialize the destination address in multiple
instructions. Consider the example of such an indirect jump in Section 3.1.2: SET
will detect that the indirect jump (represented as a store to the CSV t9) targets
0x42d188.

Algorithm 3.1 describes SET. When the SET processes a store instruction, it
creates an empty stack, the operations stack , it inspects the value to be stored and
proceeds differently depending on its type.

If the value being stored is the result of a binary operation i (e.g., a subtraction)
and its second operand j is constant, we record on the stack the 〈i, j〉 pair. Then,
we proceed considering the non-constant operand.

If the stored value is the result of a load operation from an unknown memory
location (i.e., not from a CSV), we record the load operation on the stack and
proceed to analyze how the address of the load operation is computed.

The analysis repeats the same operation with the newly considered operand,
progressively growing the stack by pushing new operations. The process terminates
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when an instruction that cannot be handled is met (e.g., an addition with no
constant operands) or when the operation to consider is a constant k, which means
that a load from a constant address has been found or that both operands of the
binary operation are constant.

In the latter case, it’s possible to materialize a constant value: a variable n
is initialized with k and the operations stack is traversed from top to bottom,
updating the value of n by combining it with the operation registered on the stack.
Therefore, for a load operation, if n is an address contained in a segment of the
binary, its value is updated with the content of the pointed memory area, when
this is statically available. For a binary operation, the new value will be the result
of performing the operation i using n and j as operands.

Load/store handling. In addition to this, the SET explicitly handles loads from
CSVs. A load from a CSV can be affected by multiple stores, therefore, to process
them we employ a LIFO worklist. When a load from a certain CSV is met, the
analysis proceed backwards, starting from the load instruction, looking for store
instructions writing to that CSV and exploring recursively all the ancestor basic
blocks until such a store instruction is found. For each found store instruction,
a pair 〈s, h〉 is pushed on top of the worklist, where s is a reference to the store
instruction, and h is an integer number representing the current height of the
operations stack . The analysis proceeds by processing the element on the top of
the worklist. When the top element is extracted from the worklist, the operations
stack is cut to height h and the analysis proceeds from the value stored by s. This
is necessary to restore the stack to its state when the work item was inserted into
the worklist, discarding all the operations pushed on the stack while processing
other work items.

The advantage of this approach lies in the fact that, by using a depth-first
exploration, we can always reuse the lower part of the operations stack , without
ever duplicating it, with the net effect of keeping its size in O(n) of the number of
instructions.

This analysis is very effective in collecting the simplest jump targets hidden in
the code. More specifically, it can collect the destinations of direct jumps, indirect
jumps with a constant destination materialized in a register (see Section 3.1.1)
and also all the return addresses of call instructions. In fact, as mentioned in
Section 2.2.5, the generated code doesn’t have the concept of call instruction, but
represents them as a simple write to the program counter preceded by an instruction
storing the return address on the stack or in the link register. In both cases, since
we track all the stores and not only those to the PC, our analysis is able to catch
the return address. Figure 3.1 presents some examples of jump targets recovered
from the code through the SET.

3.3 The OSR Analysis

Despite its effectiveness, SET is not able to collect jump targets due to switch
statements such as those shown in Listing 3.1. In fact, in these cases, the jump
target depends on a non-constant operand: the result of the expression evaluated
by the switch statement. Therefore, we introduce a specialized data-flow analysis
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lui v0, 0x42
ble a0, t0, callee
nop
lui v0, 0x88
addi v0, 1

callee:
ori v0, 0x1234
jal v0

(a) Input MIPS assembly

add 1

or 4660

and -2

0x881234

0x880000

or 4660

and -2

0x421234

0x420000

0x400460

0x400460

(b) Schematization of the SET jump target recovery

store i32 0x420000 , i32* @v0
%1 = load i32 , i32* @t0
%2 = load i32 , i32* @a0
%3 = icmp slt i32 %1, %2
br i1 %3, label %call , label %fallthrough

fallthrough:
store i32 0x880000 , i32* @v0
%4 = load i32 , i32* @v0
%5 = add i32 %4, 1
store i32 %5, @v0
br label %call

call:
%6 = load i32 , i32* @v0
%7 = or i32 %6, 0x1234
store i32 0x400460 , i32* @ra
%8 = and i32 %7, -2
store i32 %8, i32* @pc
br label %dispatcher

(c) LLVM IR produced by the revamb

Figure 3.1: Example of the SET algorithm. Figure 3.1a shows a MIPS assem-
bly snippet of an indirect function call with two possible targets (0x881234 and
0x441234). In the example, three jump targets can be recovered: the return ad-
dress being stored in the link register ra by the function call (jal) and the two
possible destinations of the function call, stored in the v0 register. In Figure 3.1c
the LLVM IR produced by revamb is presented along with the two paths leading
to the creation of a jump target: both start from a store to the program counter
CSV, then, they split in the load %6 and end in two distinct store of constant
values. SET traverses these two paths and records in the operations stack all the
instructions it meets, except for CSV-related load/stores (notice the vertical bars
on the left of the recorded instructions), until an instruction where all the input
operands are constant is met, i.e., the constant store instructions. At this point the
operation stack is traversed from top to bottom executing the registered operations
to compute the jump target. Figure 3.1b shows the state of the operations stack
when the constant is met at the end of two paths, along with a zero-height stack
due to the constant store in the link register CSV @ra.
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Data: A store instruction s
Result: A jump targets generator
Ops = ();
Worklist (〈s, 0〉);
while Worklist is not empty do

c, h = pop(Worklist);
truncate Ops to h elements;
next = getStoredValue(c);
while next is set do

i = next;
unset next;
if i is a binary operation v ◦ j then

if j is constant and v is not then
push 〈i, j〉 onto Ops;
next = v;

else if i is a load instruction from a then
if isCSV(a) then

foreach w, previous store to a do
push 〈w, getHeight(Ops)〉 onto Worklist;

else
push i onto Ops;
next = a;

else if i is a constant value then
n = value(i);
foreach 〈o, j〉 in Ops, top to bottom do

if o is binary operation then
n = apply(o, n, j);

else if o is a load instruction then
n = readFromSegment(n);

yield n;

Algorithm 3.1: The Simple Expression Tracker algorithm.
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whose goal is to try and represent each SSA value in the following form:

a+ b · x, with
{
x :

c ≤ x ≤ d
x < c, x > d

and x is signed
unsigned

}
where: a is a constant base value, b is a constant scaling factor and x is a reference
to a free SSA value associated with a (possibly negated) range [c, d] and a signedness
(signed or unsigned).

We chose this form as the optimal trade-off between complexity and expressive
power to model how the destination address of a switch statement’s indirect jump
is computed. In particular, it’s suitable to capture the jump targets represented
in Listing 3.1 or part of it (e.g., pc + 4 · i with i < 8). Any increase in terms of
expressive power would raise sensibly the complexity of the analysis and, as we will
see, it wouldn’t produce any benefit.

We define x, together with its constraints, as a bounded value (BV). We also an
instance of the above expression an offset shifted range (OSR). We therefore call
our analysis OSR analysis (OSRA).

A BV is always associated with an SSA value x which cannot be expressed in
terms of an OSR relative to any other SSA value. In other terms, a BV represents
a free SSA value associated to a range constraint. An example of such free SSA
value might be the result of a xor operation, which exceeds the expressiveness of
an OSR. The OSRA traverses all the program instructions and, where possible,
associates them with an OSR.

In parallel, the analysis also tracks constraints that hold in a certain basic block
in the form of BVs. To this end, the analysis processes comparison instructions and
tracks their usage in conditional branch instructions. For example, if an instruction
performs an unsigned comparison to check if an SSA value x is less than or equal
to 7, OSRA will create a BV {x : 0 ≤ x ≤ 7,unsigned} and will associate it with
the comparison instruction. If the result of the comparison is then used in branch
conditional instruction, the analysis will associate the BV with the basic block
taken if the condition holds, and all the OSRs relative to x in this basic block will
be affected.

3.3.1 OSR Tracking

Initially, no instruction is associated with an OSR. When OSRA is given an in-
struction i representing a binary operation, the number of non-constant operands
is checked, and, as with SET, if more than one is present, it is ignored. Otherwise,
the non-constant operand is considered. If it has an OSR, it is used as a base for
the new OSR. If it doesn’t have an OSR, a basic OSR is created. A basic OSR is an
OSR with a = 0, b = 1 and x is set to a BV representing the non-constant operand.
In both cases, the resulting OSR has to be updated according to the semantics of
the current instruction (Table 3.1), and the constraints on the BV are updated for
the new context. In fact, if the non-constant operand and the current instruction
are in two distinct basic blocks, the constraints on a BV might be different. If i’s
basic block is not already associated with a BV for x, a new one is created without
constraints (i.e., it is set to >), otherwise, the existing one is used. Note that,
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Op Resulting OSR Op Resulting OSR

+ (a+ k)+x · b / (a/k)+x · (b/k)

− (a− k)+x · b �
(
a · 2k

)
+x ·

(
b · 2k

)
× (a · k)+x · (b · k) �

(
a/2k

)
+x ·

(
b/2k

)
Table 3.1: Effect of composing an OSR a+ b ·x with a constant k through a binary
operator.

unlike the SET, OSRA does not support all the possible instructions, but only the
subset that can be handled considering the OSR expressive power. For example,
the rotate and xor instructions cannot be handled.

It is important to understand that by cloning the OSR of the non-constant
operands, the associated BV is also being propagated. This means we can have
several instructions, possibly one using the result of the other, possibly on different
execution paths, all expressed with respect to a single SSA value. This is particu-
larly beneficial, since if OSRA is able to verify that in a certain set of basic blocks
an SSA value, or an OSR referring to it, is constrained in some way (e.g., has an
upper bound), all the OSRs using it can benefit from this information directly.

3.3.2 BV Tracking

A BV tracks, for a certain SSA value x, the lower and upper bound of the range
within which x lies, possibly negated, and its signedness. By signedness we mean
whether the SSA value represents a signed or unsigned integer, the sign itself is
not tracked. The initial value of a BV is >: it can assume any value and has an
unknown signedness.

Each basic block is associated with a set of BVs which are known to hold for
that basic block. Also certain instructions can be associated with BV, indicating
their run-time result represents whether the associated BV (i.e., constraint) holds
or not. This information becomes useful when the result of the instruction is used
as the condition for a conditional branch instruction. In fact it is possible to state
that in the basic block taken if the condition is true the constraint of the BV holds,
while in the successor it does not.

To track BVs, OSRA considers three types of instructions: comparisons with
constants, logical and/or instructions and conditional branches.
Comparisons and signedness. When a comparison with a constant k is met,
the OSR associated with the non-constant operand is considered, or, if it doesn’t
have one, a basic OSR referred to the operand itself is created. The expression
represented by the OSR is then compared with the appropriate comparison operator
(e.g., signed greater than or equal) with the constant operand, obtaining a first-
degree inequation.

a+ b · x ≥ k =⇒ x ≥
k − a

b
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?

start

SU

I

SU

U
U

S
S

US

Figure 3.2: Finite-state machine representing the possible signedness state transi-
tions of a BV. The ?, U, S and I nodes represent respectively an unknown signedness,
an unsigned value, a signed value and a value with an inconsistent signedness. The
edges represent the transition performed when the value associated to BV is used
with an unsigned (U) or signed (S) operation.

The solution is then used as a constraint on x and a new BV is created and
assigned to the comparison instruction.

Moreover, if the comparison is not simply a check for equality or inequality, it
carries a signedness information, i.e. it can be signed or unsigned. This information
is propagated to the BV corresponding to x associated to the basic block, which
updates its signedness according to the finite-state machine in Figure 3.2. The
signedness of a BV affects the maximum upper bound and the minimum lower
bound, which are those of an unsigned int for an unsigned BV, those of a signed
int for a signed BV and an intersection of the two in case of inconsistent signedness.

The signedness is particularly relevant for our purposes, since the lower bound of
an unsigned BV is implicitly zero, and therefore with a single additional constraint
(e.g., x ≤ 5) we can limit the value of x in small range, which is desirable to the
final aim of the analysis.
Logical operators. The second type of instruction handled by OSRA to track
BVs are the logical and and or operators. If both instruction operands are asso-
ciated to a BV referring to the same SSA value, the two constraints are merged
according to an and or or policy depending on the instruction. The merge policy
considers the constraints as ranges (possibly negated) and combines them through
the union operation (or merge policy) or the intersection operation (and merge pol-
icy), and generates a new constraint which is then associated with the instruction.
However, the merge operation can fail, for instance if two positive disjoint ranges
have to be combined with using the or merge policy, since the result exceeds the
expressive power of the BV, which can represent at most a single positive range.
In this case, the BV is set to ⊥.
Conditional branches. The most important instruction type for tracking BVs
are conditional branches, since they allow the analysis to state that a certain con-
straint, or its opposite, holds in a certain basic block. More specifically, when a
conditional branch instruction is analyzed, if the SSA value used as a condition is
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associated with a BV, this BV is propagated to the first successor (the true branch)
and its negated form is propagated to the second one (the false branch).

Therefore, each basic block is associated with a set of BVs obtained by propa-
gation from its predecessors. Since a basic block might have multiple predecessors
propagating different constraints, the BV considered to hold in a basic block is ob-
tained as the result of a merge operation of the BVs coming from each predecessor
using the or policy. Moreover, since a single predecessor might propagate a BV
multiple times (a basic block might be analyzed more than once), OSRA explicitly
registers which BV has been received from which predecessor. This way, the BV
coming from a predecessor can be updated and it is possible to recompute without
information loss the resulting BV for the basic block by or -merging all the BVs
again. Note that if a predecessor does not provide a constraint for a certain SSA
value, it is assumed to be unconstrained, and therefore the merge operation will
produce a > value. Note also that in case a certain predecessor propagates a BV
relative to a certain SSA value multiple times, the new constraint will be at least
as strict as the previous one.

3.3.3 Load and Store Handling

To increase the effectiveness of the analysis, we also keep track of load and store
instructions targeting CSVs. In particular, we have two objectives. First, we need
a form of reaching definitions analysis to propagate OSRs and BVs being stored
to a CSV to all the load instructions reading that value. For instance, the result
of a compare instruction might be saved in a CSV, and therefore the associated
constraint needs to be propagated to all the load instruction reached by that store.
Second, even if the analysis cannot track what is being loaded, we want to be able
to express the fact that two instructions loading the same CSV, among which a
path exists without instructions writing to that CSV, are loading the same value.

To this end, when a store or load instruction using the CSV r is met, its OSR
gets propagated, or, if it doesn’t have an OSR, a new basic OSR is created referring
to r. Propagation takes place by recursively exploring the subsequent instructions
in the basic block and in its successors, looking for load instructions reading r,
until a store to r is met. If a BV is associated to r, it is propagated too.

While propagating a load or a store, the analysis keeps track of which load
instruction were affected by a the propagation in the overtaken set. If, while
propagating a load or a store, a load instruction already associated with an OSR
is met, a check on the OSR is performed: if its BV is part of the overtaken set, the
propagation takes place and the existing OSR is overridden, otherwise it means
the load instruction depends on multiple BVs. In the latter case, we do not have
a merge policy and simply stop the propagation. The existing OSR is replaced
with a self-referencing basic OSR identified with ⊥, which will prevent any future
propagation.

On the contrary, while propagating a BV, if a load instruction already associated
with a BV referring to the same SSA value is found, the two constraints are merged
using the or policy.
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3.3.4 Integration with SET

As discussed, the primary aim of OSRA is to recover jump targets for a certain type
of switch statements. However, while it provides useful information to this end,
compared to the previously presented analysis, it presents some shortcomings: it
cannot read data from memory segments present in the binary and can only handle
a subset of all the possible binary operations. For this reason, we enhanced the
SET to exploit the information provided by OSRA. The integration with OSRA
affects two aspects: constant handling and materialization of OSRs.

For the former aspect, while describing the SET, we mentioned that it was able
to handle operations with at most a single non-constant operand. Thanks to the
OSRA we can expand the concept of constant to SSA values associated with an
OSR whose BV is constrained to a single value (i.e., the lower and upper bounds
match). This opens up for handling a slightly larger amount of situations.

The second, and most relevant, aspect is the OSR materialization. If, while
building the operations stack , an instruction that cannot be handled is met, the
analysis checks if an OSR is available for that instruction. If so, we compute
min = a+b ·c and max = a+b ·d. Then, all the operations on the operations stack
are applied to them. If, in both cases, the result is a valid code pointer, then the
OSR can be used to produce jump targets. Therefore, all the values that the OSR
represents are generated, from min to max with a step size of b, and go through
the operations in the operations stack , producing all the jump targets represented
by the OSR.

In Figure 3.3 the code generated by an ARM compiler for a switch statement
is exemplified and annotated with the information produced by OSRA. The exam-
ple shows most of the features of the analysis we discussed, such as propagation
of stored values (%2→%4) and merge of BVs coming from multiple predecessors
(BB3). Note that %8 holds the key information to obtain 5 jump targets, but, since
OSRA does not handle logical and on OSRs (%9), the SET is necessary to let the
information associated to %8 reach the PC store.

3.4 Experimental Results

All the presented techniques have been implemented in our static binary translator,
revamb.

For our experiments, we tested three popular input ISAs: MIPS, ARM and
x86-64. This choice was guided by the attempt to test the various features an ISA
can have, such as: endianess (MIPS is big endian, the others are little endian),
register size (32 or 64 bits), CISC vs RISC designs, variable-length instruction en-
coding (x86-64) and delay slots (MIPS). For ease of testing, we chose as destination
architecture x86-64 in all cases. For our tests, the following toolchains have been
employed: GCC 5.3.0 using uClibc for ARM and musl for MIPS, and GCC 4.9.2
with musl for x86-64. All the tests applications were linked statically. Note that
static binaries provide less information than dynamically linked executables, since
the dynamic table and the dynamic symbols are absent. This also means that our
tool handles the C standard library, which tends to be very large, include hand-
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BB1:
%1 = load i32 , i32* @r1
%2 = sub i32 %1, 4 ; [-4 + 1 * %1]
store i32 %2, i32* @ZF
%3 = icmp uge i32 %1, 4 ; (%1, u, 4, max)
br i1 %3, label %BB2 , label %BB3

BB2: ; (%1, u, 4, max) = <BB1 , (%1, u, 4, max)>
%4 = load i32 , i32* @ZF ; [-4 + 1 * %1]
%5 = icmp ne i32 %4, 0 ; (%1, u, 5, max)
br i1 %5, label %exit , label %BB3

BB3: ; NOT (%1, u, 5, max) =
; <BB2 , (%1, u, 4, 4)>
; || <BB1 , NOT (%1, u, 4, max)>

%6 = load i32 , i32* @r1 ; [0 + 1 * %1]
%7 = shl i32 %6, 2 ; [0 + 4 * %1]
%8 = add i32 113372 , %7 ; [113372 + 4 * %1]
%9 = and i32 %8, -2
store i32 %9, i32* @pc

Figure 3.3: Example of the LLVM IR generated by two ARM instructions: cmp
r1, #5; addls pc, pc, r1, lsl #2. Comments indicate information produced
by OSRA, in particular (x, s, c, d) represents a BV, [a+ b · x] an OSR and (BV ) =
〈BB1, BV 1〉 || 〈BB2, BV 2〉 the BV associated to a basic block, obtained by or -
merging BV1 (coming from BB1) and BV2 (coming from BB2).

written assembly and other sophisticated pieces of code which are not found in
ordinary binaries. In summary, using static binaries, puts us in the most difficult
setting.

The translation process. revamb translates the input binary in an iterative
fashion. The translation starts from the entry point of the program and all the jump
targets that have been found in the ELF segments, as described in Section 3.2.1.
Once a whole basic block has been translated, direct jumps (i.e., constant stores
to the program counter CSV) and fall-through jump targets are automatically
detected and added to the list of addresses to visit. When the code at all the
known addresses has been consumed, the Simple Expression Tracker LLVM pass
(see Section 3.2.2) is run and all the harvested jump targets are processed. SET is
run repeatedly on the new code, until it doesn’t produce any new jump target. At
this point, the OSRA LLVM pass (see Section 3.3) is executed over the generated
code and the collected jump targets are explored. The process is iterated until no
more jump targets can be recovered: the generated LLVM IR is then considered
complete and ready for optimization and compilation.
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3.4.1 Functional Testing
The first and foremost objective of revamb is to produce working binaries. There-
fore, willing to asses the effectiveness of our approach, we took the coreutils
project, a set of 104 popular command line utilities such as ls, base64, md5sum
and many others, and translated its binaries. Then, we run the 567 tests in the
coreutils test suite on the binaries translated by revamb with and without OSRA
enabled. The translation process and the tests were run on several different ma-
chines with different characteristics. On a Linux-based machine with an AMD
Opteron 8378 CPU and 32 GiB DDR3 RAM, the average translation time of an
ARM program (305 kiB on average) was approximately 110 seconds.

Due to some limitations in syscall management, we expected some failures, in
particular due to the absence of support of multithreading, forking and a couple
of other syscalls. However, in this paper our main aim is to identify jump targets
correctly. Therefore, the most relevant result is how many tests failed due to
an unhandled jump target. Fixing the remaining issues is mostly a matter of
engineering work in improving the integration with the QEMU’s syscall translation
subsystem, and lies outside the scope of this work.

Table 3.2 summarizes the results on the coreutils test suite. Enabling OSRA,
the amount of passed test moves from the 51%/57%/85% of the total to 65%/82%/85%,
on MIPS/ARM/x86-64 respectively. The difference is more sensible in non-VLE
architectures, since switch statements are easily translated in the form presented
in Listing 3.1a, while on x86-64 most of them are implemented using jump ta-
bles, which are easily caught by the global data harvesting pass described in Sec-
tion 3.2.1.

Apart from the raw amount of passed tests, the key point to consider to evaluate
the effectiveness of the analysis we developed, is the amount of programs part of the
test suite failing due to an unidentified jump target. The “U” column in Table 3.2
shows how their number is very low even employing only SET (5 programs in MIPS
and 3 in ARM), and reaches to 0 in all cases using OSRA, with the exception of
MIPS. The failures in the MIPS case are due to code similar to the following:

lui s3 ,0x40
bal 412120 ; Delay slot omitted
addiu s3,s3 ,0x0a48

In this case, the SET wasn’t able to catch the value being stored in s3 because it
is built in part before a function call and in part afterwards.

3.4.2 Basic Block Size
A naïve approach to identify all the jump targets is to mark all the addresses in
the executable segment as jump targets, but, as discussed in Section 3.1.1 this
approach has several drawbacks.

Therefore, to assess how our solution performs compared to the naïve approach,
we computed the average length of translated basic blocks, or, in other terms, the
average distance in instructions among one jump target and the next one.

In Table 3.2 we can see the average length is well above the average length
expected in the naïve approach, 1 or even less in case of VLE ISAs. Note that in
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the computation of the average length of a basic block, we ignored overtranslated
portions of the binary, since optimizing code that will never be executed is not
useful.
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3.5 Conclusions
We have introduced two methods to recover jump targets from binary code, Sim-
ple Expression Tracker and OSR Analysis, respectively targeting the values used
in store instructions and the jump targets generated by switch constructs in the
source code. The proposed analyses have been implemented in revamb, a static
binary translation framework based on LLVM and QEMU. An experimental cam-
paign on the coreutils binaries, compiled for ARM, MIPS and x86 targets, shows
that the proposed analyses provide a coverage of the jump targets ranging from
89.56% to 95.37% depending on the target architecture.Furthermore, OSRA proves
particularly effective on ARM binaries, increasing the number of tests successfully
completed by more than 50%. In the future we plan to tackle more directly the
overtranslation problem and, most importantly, to integrate in our framework func-
tion recognition to further improve our results.





Chapter 4

CFG and Function Boundaries
Identification

Static binary analysis is a key tool to assess the security of third-party binaries and
legacy programs. Most forms of binary analysis rely on the availability of two key
pieces of information: the program’s control-flow graph and function boundaries.
However, current tools struggle to provide accurate and precise results, in particular
when dealing with hand-written assembly functions and non-trivial control-flow
transfer instructions, such as tail calls. In addition, most of the existing solutions
are ad-hoc, rely on hand-coded heuristics, and are tied to a specific architecture.

In this chapter we first highlight the challenges faced by an architecture ag-
nostic static binary analysis framework to provide accurate information about a
program’s CFG and function boundaries without employing debugging informa-
tion or symbols.

Then, we propose a set of fully automated principled analyses, built on top of
our framework to recover an accurate CFG and function boundaries, even in pres-
ence of hand-written assembly and neither employing ISA-specific (hand-crafted)
heuristics nor relying on debugging information or symbols. Our solution han-
dles effectively predicate instructions, noreturn functions, tail calls, and context-
dependent CFG.

In the evaluation, we test our tool on binaries compiled for MIPS, ARM, and
x86-64 using GCC and clang and compare them to the industry’s state of the
art tool, IDA Pro, and two well-known academic tools, BAP/ByteWeight [20, 11]
and angr [142, 141]. In all cases, the quality of the CFG and function bound-
aries produced by rev.ng is comparable to or improves over the alternatives. We
also demonstrate that we handle the CFG of non-trivial, real world hand-written
assembly functions where other tools fail.

This chapter is in large parts extracted from [51].

61
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4.1 Challenges
Recovering the control-flow graph and the function boundaries of a binary program
for which no source code or debugging information are available presents several
challenges [158]. In the following, we discuss them focusing on the issues that an
ISA-independent analysis framework faces.

4.1.1 Challenges in CFG Recovery
Recovering the CFG of a program consists in essentially two phases. The first
phase, thoroughly describe in Chapter 3 identifies the basic blocks composing the
application, while the second phase establishes the correct relationships among
them in terms of control-flow. In practice, this means that the analysis has to
enumerate all basic block starting addresses, their size, and whether a control-flow
transfer from one basic block to another is feasible or not.

After collecting basic blocks’ starting address and size, the control-flow recovery
can start. Direct jump instructions provide useful information and are straightfor-
ward to incorporate. Unfortunately, they are not sufficient to completely recover
the CFG. The main challenge consists in handling indirect control-flow transfer in-
structions, i.e., indirect function calls and indirect branch instructions. In general,
it is impossible to enumerate the exact set of possible jump targets for indirect
control transfers. The worst case is represented by a jump to a user-controlled
value, where all executable code becomes reachable. Alternatively, the destination
address may be the result of an arbitrarily complicated computation, which might
even be impossible to track statically.

With this premise, we classify indirect control-flow transfer instructions in three
categories that, when handled correctly, provide an accurate CFG:

Compiler-generated, function-local CFG. All the indirect jump instructions
generated by a compiler to efficiently lower the control-flow of certain state-
ments, most notably C switch statements.

“Reasonable” hand-written assembly. Indirect jumps manually introduced by
the developer in assembly, usually to optimize low level routines such as memcpy.
Compared to the CFG that a compiler typically generates, the developer can
produce more efficient but hard-to-analyze code. By reasonable, we mean, for
instance, a function that does not make assumptions about the values of its
parameters, but rather enforces (implicitly or explicitly) the constraints locally
(see example in Section 4.3.2).

Indirect function calls. Indirect function calls through function pointers or C++

virtual functions.

In this work, we aim to handle accurately the first case and to develop a set of
analyses to handle as many cases as possible of the second category. In fact, these
two classes make up the most part of the CFG needed for our final goal: the
recovery of function boundaries. On the other hand, indirect function calls might
involve virtual tables or function pointer fields of dynamically allocated objects,
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which are harder to track statically. In short, recovering targets of function calls
is an orthogonal problem, which deserves to be treated on its own and does not
compromise functionality, since pointer to targets of indirect function calls are
typically available elsewhere (e.g., virtual tables). Note that, to enable support
for large binaries, as a design choice, we do not employ SMT-solvers, which can
provide the most accurate results but limit the scalability of the approach [142].

4.1.2 Challenges in the Recovery of Function Boundaries
The recovery of function boundaries in a program consists in identifying all function
entry points and associating them all with their reachable basic blocks, skipping
over function call instructions. This task poses a series of challenges.

First of all, the accuracy of the function boundary recovery is highly dependent
on the quality of the underlying CFG. In fact, if, e.g., the CFG lacks information
about the destinations of an indirect jump, all the destination basic blocks might
not be considered part of the function, leading to a loss in accuracy.

Another issue is deciding whether a certain basic block is the entry point of a
function or not. The presence of an explicit function call to its address is a strong
indication, but it may not always be available. Specifically, a certain function might
never be called directly but only through a function pointer, a C++ virtual call, or
a tail call.

Furthermore, several common challenges emerge while trying to identify func-
tion boundaries across architectures. In the following we report some of the most
relevant:

Call thunks. In ISAs where the program counter is not addressable, it is a com-
mon practice to perform a function call to the next instruction so that the
program counter becomes available on the stack or in the link register. The
destination of such a function call should not be mistakenly interpreted as the
entry point of an actual function.

noreturn functions. A noreturn function, in C terms, is a function that never
returns (e.g., exit or longjmp). These functions are sometimes called through
a function call instruction and not through a simple jump. This leads to a
spurious path from the call site to the next instruction, which might even be
part of a distinct function.

Shared code. Two functions may share a portion of their bodies, in particular,
two hand-written assembly functions might share the footer or a sequence of
instructions for error handling.

Calls to the middle of a function. In certain cases, a function might have mul-
tiple entry points. This case is mostly seen in hand-written assembly and it is
usually employed to provide a faster version of a function that does not verify
certain preconditions that are known to hold.

Tail calls. Tail calls appear in the code as simple unconditional jump instructions,
and, therefore, have to be handled in a way that prevents them from being
mistakenly identified as part of the function-local CFG.
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4.2 Design

The basic approach illustrated in Chapter 3 recovers (rudimentary) information
about the control-flow graph. While the presented approach suffices for cross-ISA
binary translation (due to the option to fall back to an “oracle” mapping table
that mitigates imprecision in the analysis at run-time), the precision is too low to
accurately identify function boundaries.

Recovering an accurate control-flow graph is a much more ambitious and chal-
lenging process. For this reason, in the first part of this section we substantially
extend and increase the CFG analysis to improve its accuracy. In the second part of
the section we describe the function boundary recovery process that is only possible
on an accurate CFG.

4.2.1 Handling of Reaching Definitions

OSRA propagates tracked values across load/store instructions. Therefore, it is
critical to know which definitions (i.e., store instructions) reach a certain load and
viceversa. This information is provided by our reaching definition analysis.

Here, we introduce three extensions to the basic reaching definition analysis
used in Section 3.3.3: (i) merging reaching definitions, (ii) path-sensitive merging,
and (iii) conditional reaching definitions. We also discuss how these improvements
are integrated into OSRA. These extensions improve the number of jump targets
recovered from indirect jumps in common scenarios encountered while analyzing
binaries of different architectures, increasing the accuracy of the recovered CFG.

Merging Reaching Definitions. One of the limitations of OSRA consists in the
loss of precision every time a load is reached by multiple definitions. In this case, the
load instruction is associated with a > value, i.e., a self-referencing, unconstrained
OSR. Therefore, all constraints available through the reaching definitions are lost,
resulting in an over-approximation that reduces the accuracy of the overall analysis.

Defining a merging policy for the OSRs associated with the reaching definitions
addresses this challenge.

Suppose a load instruction is reached by n reaching definitions ri associated with
an OSR in the form ai + bi × xi, with xi ∈ [ci, di]. All the OSRs of the reaching
definitions are considered. The merge is performed only if all the multiplying
factors bi are the same. If this is the case, ai/bi is added to the lower and upper
bounds (ci and di) of each bounded value. All the resulting bounded values are then
merged according to the or -policy (i.e., computing the union of the constraints).
If the resulting set of ranges can still be represented with the expressive power
of a bounded value (i.e., as a single contiguous range, possibly negated), then it
is employed to build a new bounded value that will be associated with an OSR
referencing the load instruction itself. Finally, an OSR, having a = 0 and ∀i, b = bi,
will be assigned to the load instruction.

Path-sensitive Merging. Even in the presence of the above merge policy, due
to how constraints are propagated, some useful constraints known to hold on the
path from the definition to the load may not survive until they reach the load.
Such a situation can be explained by tracking the reaching definitions of the load
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%1 = call i32 @user_input ()
store i32 %1, i32* r1 ; D1
%2 = icmp ugt i32 %1 , 5
br i1 %2, label %3, label %4

store i32 6, i32* r1 ; D2

%5 = load i32 , i32* r1

%1 > 5

%1 ≤ 5

%1 > 5

Figure 4.1: LLVM IR example of the need for path-sensitive merging. The branch
instruction propagates the constraint %1 > 5 in the true-branch and %1 ≤ 5 in the
false-branch. The final basic block receives both constraints, resulting in useless
information about %1. However, from the perspective of the load %5, only the
constraint coming from the false-branch is relevant, since the store in the true-
branch aliases the load from r1.

%5 in Figure 4.1. Consider the definition D1 that uses %1. When the control-flow
splits due to a conditional branch we obtain two opposite constraints about %1 on
the successor basic blocks: %1 > 5 and %1 ≤ 5. When the two paths later merge
again, those constraints cancel each other out. However, we are only interested in
the constraint on %1 along one of the two paths from %1 to the load %5: the one
on the false-branch. In fact, along the path that goes through the true-branch we
have D2, a definition of r1 aliasing D1.

To handle such cases, we need to make the merge policy path-sensitive. The
key idea of the path-sensitive merge policy is to visit, in depth-first order, all the
ancestors of the basic block containing the instruction l loading the variable x and
stop when a basic block containing a definition d of x is met. When this happens,
all the constraints on the path from d to l on the value associated to the OSR of
d are considered. First, since all of them have to hold on the path from d to l,
they are and -merged together, i.e., the intersection of the constraints is computed.
Then, the resulting constraint is accumulated in a result variable through an or -
merge policy. Therefore, at the end of the process, result will contain a constraint
holding on all the paths from each definition of x to the load d.

Algorithm 4.1 details how the path-sensitive merge policy is implemented. First
we initialize the result variable with an empty constraint and create an empty stack
si for each reaching definition i. Then, another stack ws is created to support our
depth-first exploration of the ancestors of the basic block l containing our target
load l. ws contains a pair of basic blocks 〈a, b〉 which are used to identify the edge
b→ a that needs to be explored next. ws is initialized with the edge going from l
to its first predecessor.
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100: cmp r2, #0
104: addlt r2, r2, #1
108: blt exit
10c: add r1, r1, r2

1: lt = r2 < 0;
2: if (lt) { r2++; }
3: if (lt) { return; }
4: r1 = r1 + r2;

Figure 4.2: On the left, ARM assembly snippet with multiple consecutive instruc-
tions sharing the same predicate. On the right, equivalent C pseudo-code.

The algorithm keeps considering the top element of the stack ws until all the
paths from the reaching definitions i to l have been explored. In each iteration, the
next element to be visited is first recorded on ws and then the cur → origin edge
is considered.

First of all, all the stacks si are reset to the same height as ws. Then, the
constraints holding on cur → origin on each reaching definition i are pushed onto
the respective stack si. If cur contains one of the reaching definitions i, all the
constraints on the stack si are and -merged and the result is accumulated in result
(with an or merge policy). On the other hand, if cur does not contain a reaching
definition we can proceed one level deeper in our exploration, and the edge coming
from the left predecessor of cur is registered on the stack ws.

If we apply this approach to Figure 4.1, we first observe that D1 is expressed
in terms of %1, therefore its stack sD1 will collect constraints on %1. D2 does not
need a stack, since it is a constant definition. We start from the last basic block,
proceed to its first predecessor, push %1 > 5 on sD1 and find the definition D2.
Since the definition is constant, we directly or -merge it in result, obtaining the
constraint %5 = 6. Note that the constraint %1 > 5 is ignored, since it is not related
to the value being stored in the definition D2. At this point, we remove an element
from the stack sD1, proceed to the right predecessor, push %1 ≤ 5 on sD1 and meet
D1. By and -merging all the constraints on sD1 we obtain %1 ≤ 5, which is in turn
or -merged into result, leading to the final constraint %1 ≤ 6, as expected.

To keep the algorithm simple, each edge is visited only once. Note that our
analysis only considers load instructions accessing a CSV or the address pointed
by a CSV plus a constant offset. As a consequence, performing a conservative alias
analysis is straightforward. Note also that employing the path-sensitive merging
policy is resource demanding, and, therefore, we only employ it as a fallback if the
straightforward analysis is not successful.

Conditional Reaching Definitions. Depending on how reaching definitions are
computed, the accuracy of our system varies. In particular, the naïve implementa-
tion may lead to spurious reaching definitions in ISAs heavily employing predicated
instructions.

Consider the ARM assembly snippet on the left of Figure 4.2. The r2 definition
at 0x104 (the add instruction) should not reach the use at 0x10c, since, if the
addition is executed, the branch gets executed too (they share the same predicate).
However, a binary analysis system has to consider each instruction on its own,
therefore it will interpret those instructions as illustrated in pseudo-C on the right
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of Figure 4.2. In this situation, a traditional reaching definition analysis would
propagate the r2 definition in the body of the if block to line 3. Then, since no
other definition aliases it, it would not only be further propagated to the body of
the second if, but also (incorrectly) to the next instruction, reaching the use at
line 4.

For this reason, we created the condition numbering analysis (CNA), which
groups all conditional branch instructions that share the exact same condition.
CNA checks each pair of conditions to verify if they compute the same operation
on either the same operands, or on operands reached by the same set of definitions.
Such a grouping mechanism is efficiently implemented through a hash-map using an
appropriate hash function considering the involved operations and their operands.

The CNA’s results are then employed by the conditional reaching definitions
analysis. This analysis, along with tracking definitions, records whether a condition
identified by CNA (or its negation) holds in each basic block.

When a definition is propagated to the successors of a conditional branch, the
identifier of the branch’s condition is retrieved, and, if present in the set of condi-
tions known to hold in the basic block containing the definition, it is propagated
only to the true-successor. Otherwise, if the negated condition is present, it is
propagated only to the false-successor.

In practice, going back to the example in Figure 4.2, the two lt conditions are
identified by the same integer, say 42. Therefore, when propagating the definition
at line 2 in line 3, the branch condition is inspected, and since it is also identified
by 42, the definition proceeds only towards the true-branch, preventing it from
reaching line 4.

4.2.2 Function Boundaries Recovery

The function boundary identification process is split into five steps that we present
in the following.

1. Identify Call/Return Instructions. As explained in Section 2.2.5, by
design, our analyses have to be ISA-agnostic, and therefore we assume that the
underlying IR used for the analysis does not explicitly provide the concept of func-
tion call or return instructions. For this reason, we redefined these two concepts
in an architecture-agnostic way.

Function call. A branch instruction preceded by an instruction performing a store
of a constant integer matching the next PC, considering delay slots if necessary.
This integer is the return address.

Return. Any indirect branch instruction whose destinations are either unknown
or an address known to be a return address.

Note that these definitions are generic enough to handle all the known actual im-
plementations of function call instructions in real ISAs. Specifically, the function
call definition successfully captures both architectures saving the return address in
a register (e.g., lr for ARM, ra for MIPS) or on the stack (e.g., x86). The first step
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in the function boundary recovery process consists in scanning the code for instruc-
tions matching the function call definition, and then, once all the possible return
addresses have been collected, for instructions matching the return definition.

2. Identify Initial Candidate Set. The second step collects an initial set
of candidate function entry points (or CFEPs). Specifically, we have three initial
types of CFEPs.

(a) Called jump targets. The most important and reliable source of CFEPs
are function calls, since they explicitly indicate that their destinations are
functions.

(b) Unused jump targets in global data. Global data can also be a source
of CFEPs, e.g., due to function pointers stored in global data or C++ virtual
tables. However, global data also contains jump tables used to implement C
switch statements. These addresses do not represent pointers to a function
and may lead to a large number of false positives. For this reason, we only
consider the unused portion of global data. By unused we mean that a specific
interval in global data has never been accessed by SET. In fact, as mentioned
in Section 3.2.2, SET can read global memory areas to materialize addresses
contained in a jump table, which are therefore blacklisted.

(c) In-code constants. The code itself can contain function pointers, for in-
stance if a function pointer is materialized in a register and then stored to
memory. All the jump targets recovered by SET are considered and filtered:
we register only jump targets that never end directly in the PC and that are
never used as a load address. The rationale behind these choices is that values
ending up in the PC will become part of the regular CFG of the program and
we can handle them in other ways, while if a load is performed at a certain
address, we assume that the target is data, and not code.

We say that a CFEP has its address taken if it is of type (b) or (c).

3. Identify Reachable Basic Blocks. Once a preliminary set of CFEPs is
available, for each one of them we follow the CFG and associate each basic block
reachable from there with the CFEP. When we reach a call instruction we do
not follow it, but we proceed to its return address, and when we reach a return
instruction, we stop our exploration. Moreover, when associating a basic block with
a CFEP, we also keep track of how we reached it, that is either through regular
control-flow or by proceeding to the return address of a call instruction.

Once all the basic blocks reachable from a CFEP have been identified, each
branch instruction is inspected again to verify if it is a skipping jump. A skipping
jump is a jump instruction that has at least a CFEP of the type (a) between its
location and its destination. This check is performed to identify if the branch
instruction is jumping over a basic block we reliably know to be the entry point
of a function. This type of instructions are often a hint for the presence of a tail
call, therefore we create a new CFEPs out of their targets and process them as
described.
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caller1:
b tail_called

caller2:
b tail_called

type_a_1:
b lr

tail_called:
b lr

caller3:
mov r1 ,1
b mixed_called

type_a_2:
add r2,r2 ,2

mixed_called:
mov r3 ,3
b lr

Figure 4.3: ARM example of skipping jumps. tail_called is a valid CFEP, since
it can be reached only through skipping jumps (going on over the type (a) CFEP
type_a_1). On the other hand, mixed_called is discarded as a CFEP and its basic
basic block is considered part of caller3 and type_a_2. In fact, mixed_called can
be reached both through a skipping jump (coming from caller3), but also through
the fall-through path after the add instruction in type_a_2.

4. Filter Candidates. At this point we have sufficient information to perform an
evaluation of which CFEPs should be kept, and which should instead be discarded.
The criterion to keep or discard a CFEP is expressed with a simple rule:

The CFEP is kept if it is reachable exclusively through call instructions or skip-
ping jumps.

In practice we want to keep all the CFEPs except those that are reachable
through the local CFG of another function (i.e., return paths from a function call,
fallthrough paths or jumps not going over other CFEPs). This means that we
preserve CFEPs whose addresses are taken or are reachable only through tail calls,
as long as they do not appear to be part of the local CFG of another function.
On the other hand, we discard CFEPs which are reachable both through the local
CFG of a CFEP and skipping jumps, since this is a strong hint that the skipping
jump is not a tail call, but simply a result of two functions sharing some code.

Figure 4.3 reports an example of a CFEP reachable only through skipping jumps
(tail_called, on the left) and a CFEP reachable both through a skipping jump
and function-local control-flow (mixed_called, on the right). The latter example,
is a typical situation where two functions share the main part of their body but
have slightly different headers. In these situations, we deem it appropriate to assign
the basic blocks of the main part of the body to both functions.

5. Finalize the Set. The last step consists in promoting all the jumps to the
survived CFEPs to the status of function calls and consequently recompute for
each one of them the set of basic blocks reachable from the entry point. The final
result is a set of functions, possibly sharing code.

noreturn Functions. Consider the following ARM snippet:
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main:
add r0, r0, #3
bl exit

hello:
add r0, r0, r1
bx lr

Note how the main function does not have a return instruction, in fact it is not
necessary since the exit function will never return. In C terms, exit is known as
a noreturn function.

While exploring the basic blocks reachable from main, if our analysis does not
identify exit as a noreturn function, we might mistakenly assign basic blocks
belonging to the hello function to main. Therefore, identifying noreturn functions
is paramount to accurately recover function boundaries.
We detect the following types of noreturn functions:

Syscall wrappers. Before each syscall we inject an instruction loading the CSV
associated with the register holding the syscall identifier. In this way, our
reaching definition analysis will provide a list of all the reaching definitions.
These definitions are monitored by SET, and, in case we notice that one of
them writes a constant value corresponding to the identifier of a noreturn syscall
(such as exit), we mark its basic block as a killer basic block.

Infinite loops. We mark all the basic blocks belonging to a loop in the CFG of a
function with no exit nodes (i.e., an infinite loop) as killer basic blocks. Such a
situation is typical in the implementation of the abort function as a last chance
to prevent execution from proceeding, in case raising a signal does not have the
desired effect.

longjmp. Our analysis also looks for basic blocks that overwrite the stack pointer
register with a value that is neither obtained as an offset from its previous value
(e.g., sp = sp + 8) nor loaded from a memory address relative to its value (e.g.,
sp = *(sp - 16)). Such a behavior typically identifies the longjmp function
and its derivatives. Such basic blocks are marked as killer basic blocks too.

At this point, all the killer basic blocks are temporarily modified to have a single
successor: the sink. All the nodes post-dominated by the sink are in turn marked
as killer basic blocks. In practice this means we reach the entry point of functions
such as abort, exit, execve, longjmp, and all their wrappers and correctly identify
them as noreturn functions.

4.3 Experimental Results
The analysis framework and the set of analyses presented in the previous section
have been implemented in rev.ng.

To evaluate our prototype, we focused on Linux binaries on three popular ar-
chitectures:
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MIPS. Using GCC 5.3.0 and clang 3.8 with musl [128].
ARM. Using GCC 5.3.0 and clang 3.8 with uClibc [54].
x86-64. Using GCC 4.9.2 and clang 3.8 with musl [128].

As in the experimental evaluation of Section 3.4, our choice was guided by the
diversity of their features such as register size, presence of delay slots, support of
predicate execution, CISC/RISC designs, endianess, and variable-length instruc-
tion encoding. To test the robustness of our approach, all the binaries we employed
were stripped of debugging information and linked statically.

Note that statically linked binaries provide less information than dynamically
linked executables, since the dynamic table and the dynamic symbols are missing.
This also means that our tool handles the C standard library, which is large, in-
cludes hand-written assembly and other manually optimized pieces of code which
are not typically found in programs. Extending our work to support dynamically
linked programs consists in loading the main binary and all its libraries and per-
form our analyses on the whole code corpus. In summary, using statically linked
binaries, results in the most challenging setting.

The only “structural” information we left available to the evaluated tools was
the section list, which allows distinguishing between code and data regions. This
distinction enables, e.g., rev.ng to exclude spurious jump targets and function calls
which would introduce noise in our evaluation. Section information is preserved
even when striping an ELF binary. Symbols are only employed to collect the
ground truth: our tool never uses them to recover function boundaries.

4.3.1 Accuracy of the Recovered Function Boundaries
We built the 105 programs of the coreutils project for the three architectures,
including md5sum, ls, install, df, cp. The programs, including the C standard
library, have been compiled using GCC and clang in three different configurations:
optimized for performance (-O2), aggressively optimized for performance (-O3) and
optimized for code size (-Os). Since uClibc does not support clang, for ARM, the C
standard library has been compiled using GCC in all the configurations. Table 4.2b
reports the average size of the code section (.text) for each tested configuration.

Collecting ground truth for control-flow graphs is a challenging task. In GCC,
CFG information cannot be obtained, since the back-ends implicitly generate basic
blocks by printing strings of assembly. We considered LLVM, but since each back-
end must be instrumented in non-trivial ways, it would have resulted in prohibitive
engineering effort. For this reason, we focused the evaluation on the accuracy of the
recovered function boundaries instead. Since an accurate CFG is a requirement for
recovering accurate information about function boundaries, the presented results
can be considered a lower bound for the accuracy of the CFG itself.

The ground truth for function boundaries is easier to recover. Specifically, we
employed the STT_FUNC ELF symbols from the binaries, which provide the starting
address and size for each function. From these ranges we excluded constant pools,
since they should not be translated, and nop instructions, since they are mostly
used for function and instruction alignment purposes.
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Data: The basic block of the target load (l) and the set of basic blocks of its
reaching definitions (d = {di}).

Result: The merged constraint result.
result = ⊥;
create an empty constraints stack si for each reaching definition i;
create a stack ws of 〈basic block, basic block〉 pairs;
ws.push(〈l,firstPredecessor(l)〉);
while ws is not empty do
〈origin, cur〉 = ws.pop();
foreach reaching definition i do

cut si to the height of ws;
c = getConstraint(i, origin, cur);
si.push(c);

if cur is not the last predecessor of origin then
ws.push(〈origin,nextPredecessor(origin, cur)〉);

stop = false;
foreach di in d do

if di = cur then
tmp = >;
foreach constraint ck in si do

tmp = tmp and ck;

result = result or tmp;
stop = true;

if not stop then
ws.push(〈cur, firstPredecessor(cur)〉);

return result ;

Algorithm 4.1: The path-sensitive merging algorithm for constraints.
firstPredecessor(a) returns the first predecessor of basic block a,
nextPredecessor(a, b) returns the next element in the list of predecessors of
a after b, while getConstraint(i, b, c) returns the constraint on the i-th reaching
definition holding on the edge c→ b (i.e., from basic block c to basic block b).
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We compare our results against related work by letting the tools produce a
CFG. Then, starting from each entry point, the CFG is explored, and each basic
block reachable from there is recorded as part of that function. Since one of our
goals was to assess the quality of the CFG, we ignored the basic blocks that were
assigned to a function but that were not reachable from the entry point, since this
means that the tool assigned a basic block to a function but could not understand
how it takes part of the CFG of the function.

We compared rev.ng with IDA Pro 6.6 using a custom IDAPython script,
the most recent version of angr (as of November 2016) employing the CFGFast
CFG recovery option [142], and BAP 0.9.9, which implements the ByteWeight
approach [11], with the --phoenix option and collecting the CFG data from the
GraphViz output. We employed the latest available ByteWeight signatures and we
extended BAP to output the size of basic blocks. Note that BAP does not support
MIPS.

Table 4.1 reports the results of our experiments. The most important informa-
tion needed to assess the quality of the results is the Jaccard index, which we com-
puted for each detected function against its best match in our ground truth. The
index is computed comparing the set of the basic blocks assigned to the function
against the actual set of basic blocks, according to the ground truth. The Jaccard
index provides a concrete measure of the accuracy of the match, penalizing missing
or extra basic blocks. Table 4.1 reports another interesting metric reported in the
Matched column, that is the percentage of matched functions, ignoring the quality
of the match.

The results in terms of accuracy of rev.ng are very close to those of IDA Pro,
and sensibly better than those of BAP and angr in all the tested configurations.
The difference between IDA Pro and rev.ng comes from few functions that only
IDA Pro identifies. By performing manual inspection of the functions detected by
IDA Pro but not by rev.ng, we verified that in most cases it is dead code, i.e.,
code whose address is not taken and has no direct control-flow transfers pointing
to it. This is due to the fact that the heuristics implemented in IDA Pro can detect
function prologues. However, since in all inspected cases the difference was due to
dead code, we do not consider this a limitation but a design choice.

Note that we already tried to mitigate this problem by compiling our code us-
ing the -ffunction-sections GCC option, along with -Wl,--gc-sections, which
is supposed to minimize the amount of dead functions. However, hand-written
assembly functions are not pruned.

In addition to dead code, we found additional sources of inaccuracy in the CFG,
which affect both rev.ng and IDA Pro:

Aggressively optimized nested switch. Under certain conditions, in x86-64 func-
tions using nested switch statements, rev.ng was unable to track the size of the
jump tables used by the inner switch statement. Since the starting address of
the jump table was available, we could devise a heuristic to recover it. However
to provide coherent results, we decided not to do so.

Jump table addresses spilled on the stack. In certain situations, in MIPS in
particular, GCC can spill the starting address of a jump table on the stack in the
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x86-64 MIPS ARM

IDA 5.17 s 8.06 s 5.39 s

rev.ng 44.57 s 222.11 s 119.53 s

BAP 35.33 s n.a. 25.48 s

angr 384.15 s 273.83 s 147.82 s

(a)

x86-64 ARM MIPS

GCC

-O2 115.12 kiB 98.50 kiB 115.12 kiB

-O3 161.12 kiB 105.01 kiB 161.12 kiB

-Os 123.81 kiB 89.11 kiB 123.81 kiB

clang

-O2 138.72 kiB 102.56 kiB 138.72 kiB

-O3 125.51 kiB 106.03 kiB 125.51 kiB

-Os 126.59 kiB 95.12 kiB 126.59 kiB

(b)

Table 4.2: Table (a) reports the time spent (in seconds) to collect the control-
flow graph and the function boundaries of the ls binary, compiled with -O2 using
GCC for x86-64, MIPS and ARM. The presented results are averaged over 10 runs.
Table (b) reports the average size (in kilobytes) of the .text section of a coreutils
program compiled using the specified configuration.

function prologue because it might be used multiple times across the function.
While rev.ng implements a basic mechanism to track stack values, doing so
across function calls is non-trivial, since during the CFG recovery phase we
have no information about function calls.

In our (non-exhaustive) exploration, we did not find major inaccuracies in the
CFG that IDA Pro handled and rev.ng did not. On the contrary, we found several
examples where rev.ng is more precise than IDA Pro. The next section discusses
such an example as a case study.

Looking at BAP’s results, we found that (i) some functions were missing several
instructions in the function prologue and (ii) a series of spurious functions in the
middle of actual functions manipulating the stack (e.g., for variable-length arrays).
Tail calls and indirect jumps due to switch statements also appeared to be handled
poorly.

For what concerns angr, despite often matching the most functions compared to
the other tools, the accuracy of the matching is lower. The main issues are related
to mishandled predicated return instructions, code after noreturn function calls
forced to a new function in all cases, and incomplete handling of certain indirect
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jumps due to switch statements. It is worth noting that the angr project was
hand-tuned for the x86 architecture, which we did not evaluate.

In conclusion, rev.ng results are comparable or sensibly better compared to the
other evaluated tools, proving the effectiveness of our approach.

Memory Usage and Processing Time. The last set of rows in Table 4.1 re-
ports, for each tool, the peak memory usage (RSS column) averaged over all the
105 processed binaries. As the table shows, rev.ng memory usage is mostly compa-
rable to other tools on x86-64, but on ARM and MIPS our tool results to be more
resource demanding. This is due to a limitation of our current implementation.
Specifically, OSRA propagates each constraint indefinitely, leading to a consider-
able memory overhead. Our development branch addresses this issue by limiting
the propagation of constraints on a SSA value up to the farthest instruction em-
ploying it in an OSR. In our preliminary testing of such a solution on the ls binary,
the memory consumption is reduced from 1.78GiB to 899MiB on MIPS and from
1.19GiB to 476MiB on ARM.

Since the continuous integration system where we run our tests is composed by
servers featuring different hardware specifications, Table 4.1 does not report timing
results. Instead, we collected timing results on a single machine with 32GiB of
RAM and an Intel i7-6820HQ CPU, with 4 physical cores clocked at 2.7GHz. We
ran each one of the four tools 10 times against the ls binary compiled for MIPS,
ARM and x86-64. Table 4.2a reports the results. As expected, tools such as IDA
Pro and BAP, which employ heuristics or machine learning techniques, are notably
faster compared to rev.ng. On the other hand our prototype implementation
outperforms angr. Note however that the detailed information we collect can serve
as a basis for more sophisticated analyses whose purposes goes beyond recovering
the CFG or the function boundaries. In fact, if we compare the time taken by
the IDA Pro’s Hex-Rays Decompiler to analyze the whole binary, we get more
comparable results. In particular, the Hex-Rays decompiler took approximately
37 s to analyze ls compiled for x86-64 and 27 s for the ARM version. Note also
that the previously mentioned development branch of rev.ng reduces the analysis
time for ls from 44.57 s to 31.59 s on x86-64, from 222.1 s to 15 s on MIPS and from
119.53 s to 50.53 s on ARM.

4.3.2 Case Study: the Buggy Memset

Figure 4.4 shows a simplified version of the ARM memset implementation included
in uClibc [54]. It is a hand-optimized implementation that copies 8 bytes at a time
(see the copy_loop label), and then copies the (at most 7) leftover bytes one by
one (see the remaining label).

We consider the recovery of the CFG of this function interesting for several
reasons. Specifically, it would be beneficial to prove that instruction Z can only
reach one of the 7 strb instructions or the return instruction. As we will see, most
of the analyses presented in Section 4.2.1 have to be employed.

First of all, r2 cannot be expressed in terms of a single value. In fact, its usage
in Z can be affected by the definition in C, E or any other definition of r2 in the
callers of memset. A merge policy with multiple reaching definitions must therefore



4.3. EXPERIMENTAL RESULTS 77

memset:
copy_loop:

cmp r2, #8 ; A
blt remaining ; B
; ...
sub r2, r2, #8 ; C
cmp r2, #8 ; D
subge r2, r2, #8 ; E
bge copy_loop ; F

remaining:
add pc, pc, r2, lsl #2 ; Z
nop
strb r1, [r3], #1
strb r1, [r3], #1
strb r1, [r3], #1
strb r1, [r3], #1
strb r1, [r3], #1
strb r1, [r3], #1
strb r1, [r3], #1
mov pc, lr

Figure 4.4: uClibc ARM implementation of memset. r2 contains the size of the
buffer. copy_loop is a (partially omitted) unrolled loop copying 8 bytes at a time,
while remaining takes care of copying the bytes left over by copy_loop. Each one
of the 7 strb instructions copies a single byte; “add pc, ...” jumps to one of them
depending on how many bytes are left to copy.

be leveraged.
Second, to have an accurate set of definitions of r2 reaching Z, we need to

handle predicate instructions correctly. If the naïve reaching definition approach
is employed, the definition in E is propagated on both successors of F, effectively
preventing the definition in C from reaching Z.

Third, if the adopted merge policy is not path-sensitive, the r2 use in Z sees
two constraints on the r2 definition in C: r2< 8, through the path CDZ, and r2≥ 8,
through the path CDEFABZ. This makes the definition of r2 in C unbounded in Z,
preventing the analysis from proving that r2 is lower than 8 in all cases. However,
using the proposed path-sensitive merge policy, the constraint r2≥ 8 is ignored:
going backward through the CDEFABZ path, the definition in E prevents the analysis
from reaching C and taking into account the constraint associated to that path. In
conclusion, rev.ng was able to correctly recover all the jump targets, unlike all the
other tools we tested.

The last reason why this memset is relevant consists in a bug it contains and that
we discovered through rev.ng. All the comparisons performed by this function are
signed. Therefore, a malicious user in control of the size parameter of memset (r2)
can control the program counter by simply passing a negative number. This bug
was recently fixed in uClibc-ng [30].



78 CHAPTER 4. CFG AND FUNCTION BOUNDARIES IDENTIFICATION

4.4 Conclusions
Recovering CFG and function information from binaries is an important technology
that enables further analyses like static binary instrumentation, security analysis,
reverse engineering, or retrofitting defense mechanisms.

We design a set of analyses that statically recover the CFG and the function
boundaries of a binary with high accuracy, without relying on ISA-specific heuris-
tics. While heuristics can be very effective (as shown by IDA Pro), they are not
portable to other architectures and require vast manual effort. Developing ISA-
independent analyses simplifies (or even removes) any porting efforts while retain-
ing overall comparable results. Such approaches meet the sweet spot between black
box analysis employing machine learning and hard-coding ISA-specific heuristics.



Chapter 5

Function Prototype
Identification

Once an accurate CFG and function boundaries have been recovered, the natural
next step is the identification of the functions’ interface, i.e., the arguments and
return values list.

In this chapter we present a series of analyses aimed at identifying the number
and location of arguments and return values in a conservative and ABI-agnostic
way. This means that no assumptions about the calling convention are made. As
in many other analyses in rev.ng, the idea is to develop analyses general enough
so that any architecture can benefit from them.

To accurately identify arguments and return values, we build our analyses on
the top of a data-flow analysis analyzing the usage of the stack. The data-flow
problems will be employing Monotone Frameworks (Section 1.5). Such analysis is
also employed to increase the accuracy of the function boundaries detection and
handle tricky situations, such as outlined function prologue and epilogues.

Note that this chapter only presents the design of our function prototype iden-
tification technique. Due to time constraints it has not been possible to perform a
thorough evaluation.

5.1 Problem Statement
In this section we will provide an overview of the main features that differentiate
a calling convention from another. Studying such features is key to be able to
develop analyses that are flexible enough to take into account all the diversity of
the ABIs in the wild.

Then we will focus our attention to a specific optimization technique widely
employed in embedded architectures to reduce the code size: code outlining, and
function prologue/epilogue outlining in particular. Such an optimization can lead
to identify support functions artificially generated by the compiler as actual func-
tions, while their code should be considered part of the caller functions. Since these
support functions often manipulate the stack, their misidentification as standalone

79
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functions can compromise the accuracy of any subsequent analysis relying on the
correctness of the information provided by the stack analysis. It’s therefore vital
to be able to identify them correctly, without falling back to ad hoc handling.

5.1.1 Calling Conventions Overview

In the following, we list the main features that differentiate one calling convention
from the other.

Link register. Each ISA provides, in some form, a call instruction. A call is
basically a normal jump instruction which also stores the return address somewhere.
Many RISC architectures, store the return address in a dedicated register (usually
known as the link register or return register), while other architectures, such as x86,
store it on the top of the stack. Symmetrically, the return instruction performs a
jump either to the content of the link register or pops into the program counter the
top of the stack. Note that in case the link register is employed, all the non-leaf
functions need to explicitly spill it on the stack and restore it before returning to
the caller.

Return values. All the architectures we considered store the function return
values in one or more registers. If the return value is too large to fit in the dedicated
registers (e.g., a large struct), then the function is transformed to return void and
an extra argument is injected in the function prototype containing a pointer to a
caller-allocated buffer of the size of the original return value where the callee is
supposed to write the return value.

big_t func(void) {
big_t Result;
/* ... */
return Result;

}

=⇒

void func(big_t *R) {
/* ... */
*R = Result;

}

Another key observation about return values is the fact that in certain architec-
tures the set of registers for function arguments overlaps those employed for return
values. For example, in ARM the registers a1 and a2 are used both as function ar-
guments and return values. This means that the empty function could be implicitly
forwarding its two first arguments as return values.

Caller/callee-saved registers. Each calling convention divides the general pur-
pose registers into two categories: caller-saved and callee-saved registers. Caller-
saved registers are registers that are not guaranteed to be preserved across function
calls. Therefore, if a function needs to reuse the content of such a register after
a function call, it has to store it on the stack and restore it after the call. Since
performing this operation has a cost, it’s rarely done and callee-saved registers
are preferred for such an use case. For this reason, caller saved registers are also
known as scratch registers: they are more fit for temporary computations that can
be discarded before the next function call.
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On the other hand, callee-saved registers are registers that need to have their
initial value on exit. This can be done either by simply not using them, or by spilling
them on the stack in the function prologue and restore them in the epilogue. We
define a register saved in the latter way an explicitly callee-saved register.

Arguments. Typically, the first couple of arguments are passed through registers,
and the remaining ones go on the stack. x86 is a notable exception. In fact, in many
calling conventions, all the arguments are passed directly on the stack. In case stack
arguments are employed, most calling conventions require the caller to cleanup the
stack space it has reserved. A notable exception is the so called PASCAL calling
convention, largely popular on x86/Windows: in this case the callee is responsible
for cleaning up stack arguments before returning.

Note that multiple arguments can be packed into a single register argument,
and get selected through bit fiddling. The handling of variadic arguments varies
wildly among architectures (Section 7.2.2) and it’s outside the scope of this work.

We also observed that no ABI uses callee-saved registers for return values. In
fact, this wouldn’t make sense, since it’s not possible to return a result in a register
and at the same time preserve its original value. On top of this, no ABI uses callee-
saved registers for arguments. This is also reasonable, since function arguments are
often the result of some temporary computation that’s unlikely to be needed at the
return of the call.

5.1.2 Code Outlining

Code outlining is a compiler optimization technique that looks for strings of assem-
bly instructions that appear multiple times in a certain module and factor them
out into a function. The original functions will replace them with a call to the
outlined function. Such an optimization allows to reduce the code size and have
frequently used instruction strings hot in cache.

While outlining is a technique applicable to generic instruction strings, certain
compilers perform it in a more ad hoc fashion for parts of the code which are know
to benefit from outlining. The most relevant example is the outlining of the function
prologue and epilogue: a very large portion of the functions of a program will need
to spill (restore) certain registers at the entry (exit) of a function. Therefore, this
sequence of push (pop) instructions can be moved to an independent function which
will act as an outlined function prologue (epilogue). This is particularly beneficial
in ISAs where only a single register can be spilled in a single instruction. For
instance, this wouldn’t make sense in ARM, where many registers can be pushed
(popped) in a single instruction.

Listing 5.1 reports example of outlining of function prologues and epilogues
found in a QUALCOMM baseband (Hexagon architecture [76]) and in the Intel
ME [78] code (ARC architecture) [77]. Note that while the two pieces of code seem
equivalent, the former outlined prologue does not manipulate the stack pointer,
while the latter does.

While outlining function prologues and epilogues is beneficial from a code size
and performance point of view, it’s detrimental from a reverse engineering point
of view. In fact, having support functions that move the stack pointer make the
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function:
allocframe (#32)
call prologue
...
jump epilogue

prologue:
memd(r30 - 24) = r21:20
memd(r30 - 16) = r19:18
memd(r30 - 8) = r17:16
jumpr r31

epilogue:
r21:20 = memd(r30 - 24)
r19:18 = memd(r30 - 16)
r17:16 = memd(r30 - 8)
deallocframe
jumpr r31

function:
push blink
bl prologue
...
b epilogue

prologue:
push r15
push r14
push r13
j [blink]

epilogue:
pop r13
pop r14
pop r15
pop blink
j [blink]

Listing 5.1: Examples of prologue and epilogue outlining in Hexagon (left) and
ARC (right). Both architectures employ the link register (r31 and blink). For
what concerns Hexagon, allocframe pushes on the stack the frame pointer and link
registers, then it updates the frame pointer to the new stack value. deallocframe
pops them from the stack into the respective registers. memd(a) = r0:r1 is writing
the values of r0 and r1 at address a. On the other hand, for ARC, b is a simple
branch instruction, bl a function call, and push/pop have their classic behavior.

analysis non-straightforward. This is an issue, since, in a normal situation, each
function should have its own stack frame, and shouldn’t write in the caller’s stack
frame, unless a pointer to it is passed as an argument. To the best of our knowledge,
this problem has never been tackled in a non-ad hoc way, if at all.

5.2 Design

This section will present the set of analyses that we developed to accurately detect
the boundaries of a function and the number and location of its arguments. We
will first list the assumptions we made, justifying their reason to be and their
limitations. Then we will present the stack analysis, which tracks how the stack
(and the CPU state in general) evolves in a function and detects the bounds of
functions and which registers are explicitly callee-saved. Next, we will present a set
of analyses aiming at collecting (conservatively) as much information as possible
on the register and stack arguments/return values for each function and call site.
Finally we will see how we combine all the collected information to produce a final
output that can discard all the details and is maximally useful to the end user.
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5.2.1 Assumptions
In the following we list the assumptions we made about the code we’re analyzing
during the design of our analyses. Some of them have been introduced as a conse-
quence of our survey of real world calling conventions (Section 5.1.1) and some of
them have been introduced for simplicity reasons.

While the assumptions of the latter type might result in an loss in accuracy and
correctness, we are able to evaluate how often they hold in real world programs.
In fact, since our framework preserves the semantics of the code being analyzed,
we can recompile and instrument it with assertions and counters to check if we end
up in a situation violating our assumptions.
A1. No indirect accesses to stack arguments. For simplicity reasons, we
assume that stack arguments are only accessed through direct memory operations.
In practice if a struct containing an array is passed as an argument on the stack,
and its elements are accessed through an index that we cannot statically resolve,
we lose track of it. Note that this is a different situation from receiving an array
or a pointer as an argument, which is a situation we intend to handle.
A2. No dead code. We assume there’s no dead code in the program. We make
this assumption due to the fact that, as we will see, we detect situations where, e.g.,
a certain write to a register is either a dead code or an argument initialization. A
typical example is having a dead assignment to a caller-saved register (i.e., a write
to a register whose value is not read by any instruction) before a function call.
These kind of assumptions hold as long as at least a minimal set of optimizations
have been run on the program. If the analyzed program is not optimized at all,
some of our analyses can be disabled. However, we deem the recovery of arguments
in a non-optimized program less interesting and realistic.
A3. No uninitialized reads. In certain cases, due to some undefined behavior
in the original C program, the compiler might try to read the value of a registers
which has not been initialized. This is a sign of a mistake by the programmer, and
for simplicity reasons we ignore this situation. In practice such a situation might
end up producing a spurious argument, which, despite being wrong with respect
with what the program was supposed to do, it’s coherent with what the program
will actually do.
A4. No return values on the stack. We assume that return values are never
passed back to the caller through the stack. In fact, to the best of our knowledge,
this never happens. As we saw in Section 5.1.1, when returning a large struct,
there’s no real return value, but simply an extra argument representing a pointer
to what is, in practice, a local variable of the caller. Such situations can be easily
captured by post-processing the results our analyses provide.
A5. Callee-saved registers are not arguments or return values. As noted
in Section 5.1.1, it’s very unlikely to have arguments or return values go through
registers which are also callee-saved. This will allow us to handle them in a special
way in a first phase, and ignore them in the more in-depth analyses.
A6. Stack arguments are not preserved. A stack argument is, to all practical
purposes, something that concerns the callee. Therefore, we assume that the caller
cannot assume that the value of a stack argument will be preserved upon return.
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5.2.2 The Stack Analysis
The stack analysis is an interprocedural data-flow analysis we developed to track,
within certain limits, how the stack evolves and it’s used within a function. Our
final goal is to precisely classify each branch instruction in a way that allows us to
accurately draw the boundaries of a function. Additionally, we also aim to identify
explicitly callee-saved registers, whose detection is vital for arguments detection.

While providing an in-depth description of the stack analysis is outside the
scope of this work, it’s important to know that it can handle sophisticated CFGs
and call graphs, including indirect function calls (i.e., calls whose target cannot be
statically determined) and recursive functions.

In practice, the stack analysis aims at tracking, at each program point, the state
of the program, including the CPU registers, the stack of the current function and
of all of its callers and the global data (where global variables reside). To do so,
we analyze all the instructions writing and reading registers and all the load/store
instructions. We deal with registers, portions of the stack and global data in a
unified way in terms of slots, i.e., a register or a portion of data starting at a
certain absolute address or at a certain offset within a certain stack frame (e.g.,
the stack frame of the current function). Slots have no size associated to them.

In the stack analysis, every value is an address. An address can be expressed
as an hypothetical base address plus an offset. For instance the first slot of the
current function’s stack frame is identified as SP0+0, the stack at offset 8 in the
caller’s stack frame as SP1+8, the global variable at the absolute address 0x1234
as GLB+0x1234. Registers have an address too: each register is assigned a unique
identifier which acts as an offset. For instance, supposing rax has 1 as an identifier,
it will be represented as CPU+1. Note that even literal constants are addresses, for
instance the constant 4 is is seen as GLB+4. Since we assume that it’s not possible
to reach an address relative to SP1 from an address relative to SP0 (or GLB), we
define GLB, CPU, SP0 and SP1 as alias domains.

For each slot we keep track of two pieces of information: 1) what was the last
value being directly stored in the slot and 2) what is the last value that might have
been stored there indirectly.

For what concerns what has been directly stored in the slot last time, we have
two types of values: 1) the exact address of a slot, or 2) any address within a certain
set of alias domains. The former option is more informative, while the second is
more conservative and helps us to handle the uncertain cases.

On top of this, we can also say that a slot contains the same value a certain
slot had at the entry of the current function, no matter what it was.

For what concerns what might have been stored indirectly in a slot, we don’t
keep track of specific addresses, but simply of the fact that a certain address within
a set of alias domains might have been stored there.

Listing 5.2 reports an example of some of the above mentioned situations.
Such an approach keeps the analysis feasible and provides us with sufficient

information to achieve the above stated goals.
Branch instruction classification. The stack analysis provides sufficient infor-
mation to identify the type of a certain branch. Is it part of the regular control
flow of the function? Is it a function call? A return instruction?
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function:
mov [rsp+0],rbx
mov [rsp+4],42
mov rbx ,rsp
add rcx ,rbx ,rax
mov [rcx],43
mov rsi ,[rsp+0]
ret

Listing 5.2: Example of how the stack analysis tracks the values of a slot. rbx will
contain an exact address (SP0+0), while, assuming the value of rax is not available
statically, rcx will be any address within the SP0 alias domain. On the other hand,
the last direct store to the slot at SP0+4 is 42 (i.e., GLB+42), while the last value
that might have been stored there indirectly (due to mov [rcx],43) is any address
within the GLB alias domain. Finally, we will be able to state that rsi contains a
value equal to the one that rbx had the entry of the function, no matter what it
was.

Before we present the possible types of branch instructions, it is important to
introduce our own definition of function.

Function. A function is a set of connected basic blocks terminated by an indirect
jump to the return address (either in the link register or on the top of the stack)
and where the stack has an height equal to or lower than the one it had at the
entry of the function.

Note that we talk in terms of stack height. Assuming the stack grows towards
lower addresses (as it’s typical), this means that the stack pointer must have the
same value it had, or a greater value. A sane function should always restore the
stack pointer at its original position, except in the case of the PASCAL calling
convention, where the stack could be lower (see Section 5.1.1).

This definition is important since it allows us to capture the idea that out-
lined function prologues and epilogues (see Section 5.1.2) are not real functions.
Specifically it allows us to say that “functions” that alter the stack leaving it in an
irregular state (i.e., higher than what it was at the entry of the function) are not
real functions, but most likely support functions which should be considered part
of their callers for all practical purposes. We define such functions fake functions.
An example of such a function is the prologue function of the ARC example in
Listing 5.1. We also define calls and returns from such functions fake function calls
and fake returns.

When the analysis detects that a branch instruction jumping to the return
address (i.e., either the link register or the value at the top of the stack) does not
leave the stack pointer register in an appropriate position, we abort the analysis of
the current function and mark it as a fake function. If necessary, the analysis of the
caller function will be resumed keeping into account the fakeness of said function.

With this idea in mind we can classify the branch instructions according to the
following list.
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Function local. This branch is part of the regular control flow of the current
function.

Function call. This instruction is performing a call to a function that has not
been marked as fake (so far). If this function has never been analyzed in the
past, the analysis of the current function is suspend and a new analysis is spawn
for the callee.

Return. This instruction is jumping either to the link register or the address at
the top of the stack. Moreover, the value associated by the analysis to the stack
pointer corresponds to a value that is equal to or lower than its initial value.
Note that we automatically detect for each function if the link register is used,
or if the return address is on the top of the stack by analyzing all the callers
of the current function. In case no callers are available, we assume the most
popular situation in the current binary.

Fake function call. A call to a function that has been previously marked as fake.
The analysis of the current function is not interrupted: the callee code is treated
as if it was part of the calling function. The return address is recorded: once
the fake function will return, the analysis will resume from there.

Fake return. The current instruction is a return instruction, but we’re in a fake
function. The analysis will proceed from the previously recorded return address.

Indirect function call. A function call whose target cannot be determined stat-
ically. The worst (i.e., the most conservative) assumption is made about its
behavior.

Indirect tail call. An indirect jump instruction whose target cannot be statically
determined, but in a context where the stack pointer has a value that is equal to
or greater than its original value. While we can’t be sure, this is an indication
that this jump might be an indirect tail call. This constraint is introduced
since a tail call can be performed under the same conditions to which a return
instruction can be performed.

longjmp. An indirect jump instruction whose target cannot be statically deter-
mined, but in a context where the stack pointer has not a value that is equal
to or greater than its original value. This means that an indirect jump is being
performed disregarding the status of the stack, basically leaving it in a broken
state. Such a jump cannot be a tail call, but it must represent some low-level
system routine fiddling in unusual ways with the state of the program. Since the
most relevant example of such a routine is the longjmp function, this situation
is labeled after it.

Killer. The branch terminates a killer basic block (Section 4.2.2). This is an
indicator that the current function has at least one path from which it is not
possible to return.

The analysis results of basic blocks ending with a (proper) return instruction are
merged (i.e., combined) into a sink variable which will represent the summary of
the stack analysis of the current function.

Being able to classify branch instruction in a such fine-grained fashion allows
us to more precisely define the boundaries of functions, compared to Chapter 4. In
fact, while before we were, e.g., assuming that all indirect jumps we cannot track
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are return instructions, in this case, we have an accurate definition of function and
return instruction which we can verify.

Note however that plain tail calls, at this stage, are ignored and inlined into the
caller. We plan to handle them through a post-processing phase applying criteria
similar to those employed in Section 4.2.2.

Explicitly callee-saved registers. As previously said, the stack analysis can
say that a certain slot contains the initial value of a certain other slot. Such an
information allow us to detect explicitly callee-saved registers. In practice, if we find
out that, on all basic blocks ending with a return instructions, the last value stored
in a certain register corresponds to its initial value, we say that such a register has
been explicitly saved.

Note that, by considering only the last direct store, we actively ignore all the
indirect stores. While this introduces an approximation (and therefore, false posi-
tives), we deem it unlikely to have a situation where this can happen. However, as
already mentioned in Section 5.2.1, we can assess how much this happens in real
world programs by recompiling the program with appropriate instrumentation.

5.2.3 The Arguments Analyses

In this section we will present the set of analyses for the detection of arguments
and return values and their location. All of these analyses make no assumptions
about the ABI (nor the underlying architecture) and explicitly ignore callee-saved
or unused registers. Their handling will be introduced in the next section.

Note also that we ignore the fact that multiple arguments can be packed into
a single one (Section 5.1.1), since they are in principle indistinguishable from a
single argument whose higher and lowest bits are being used independently. These
situations can be tackled through the usage of heuristics by post-processing the
result provided by our analyses. However this is outside the scope of this work.

We developed eight distinct analyses. Half of them focus on arguments and
return values of functions, and half of them on arguments and return values of
function calls (i.e., call sites). Three of them provide information on return values,
and the remaining 5 on arguments. Two of them focus on stack arguments, five of
them work exclusively on registers and the remaining analysis works both for stack
and register arguments. Note that the three analyses focused on return values work
exclusively on registers, as per Assumption A4.

Dead Register Arguments Of Function (DRAOF). It detects if a register
is in the state “if an argument, it’s dead ”. This means that the register is either
“not-an-argument” or, in case it is, it’s dead. Note that we consider an argument
to be dead only if it’s unused on all the paths of the function. To detect such a
situation, DRAOF, checks if, over all paths, the register is clobbered before being
read. See Figure 5.1a.

Dead Return Values Of Function Call (DRVOFC). It detects if a register,
after a specific function call, is in the state “if a return value, it’s dead ”. Note
that we consider a return value to be dead only if it’s unused over all the paths
originating in the function call. To detect such a situation, DRVOFC, checks if,



88 CHAPTER 5. FUNCTION PROTOTYPE IDENTIFICATION

Unknown

Maybe

NoOrDead

Write

Read/IFC

(a) DRAOF

Unknown

Maybe

NoOrDead

Read/IFC

Write

The Call

(b) DRVOFC

Unknown

Maybe

Dead

Write

Read/IFC

(c) DSAOF

StarYes

YesMaybe

MaybeMaybe

The Call

Read/IFCWrite

(d) RAOFC

No

Maybe

Unknown

Read

Write/IFCThe Call

(e) SAOFC

Yes

Maybe

Unknown

Read

Write/IFC

(f) URAOF/USAOF

Yes

Maybe

Unknown

Read

Write/IFCThe Call

(g) URVOFC

Yes

Maybe

WriteRead/IFC

(h) URVOF

Figure 5.1: Graphs of the arguments analyses. Each node represents a possible
value of the data-flow. Nodes with a double border represent the initial state.
Dashed lines represent the lattice. Solid lines represent the transfer functions,
where Read and Write read represent the fact that a register or stack slot has
been read or written, IFC represents an indirect function call, and The Call
represents the call currently being considered.
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draof:
mov rax ,42
ret

drvofc:
call lol
mov rax ,42
ret

dsaof:
mov [rsp+8],42
ret

raofc:
mov rax ,42
call lol
ret

saofc:
call lol
mov rax ,[rsp+8]
ret

uraof:
mov rbx ,rax
ret

usaof:
mov rbx ,[rsp+8]
ret

urvofc:
call lol
mov rbx ,rax
ret

urvof:
mov rax ,42
ret

Listing 5.3: Example of the relevant code for each argument analysis. The relevant
register is always rax, or, if the analysis focuses on stack slots the interesting one
is at rsp+8.

over all paths after the function call, the register is clobbered before being read.
See Figure 5.1b.

Dead Stack Arguments Of Function (DSAOF). This analysis is the analo-
gous of DRAOF for stack arguments. The only difference is that its output is not
“if an argument, it’s dead ”, but simply “it’s dead ”. In fact, if a stack slot is ever
used directly, it’s definitely an argument (despite the fact that it’s unused), while
a register might just be a scratch register. See Figure 5.1c.

Register Arguments Of Function Call (RAOFC). It detects if a register is an
argument of a certain function call. To detect this, RAOFC, checks if no instruction
is reading its value between a certain assignment and the considered function call.
Under Assumption A2, there’s no reason under which such an assignment should
be there, unless it’s writing an argument for the function call. See Figure 5.1d.

Stack Arguments Of Function Call (SAOFC). It detects if a stack slot is not
an argument of a specific function call. To detect such a situation, SAOFC, checks
if its value is read after the function call before any other instruction writes there.
In fact, under Assumption A6, this means that that stack slot is actually not an
argument, but simply a local variable, whose value has been preserved across the
function call. See Figure 5.1e.

Used Arguments Of Function (URAOF/USAOF). This analysis works both
for register arguments (URAOF) and for stack arguments (USAOF). It detects if
a certain register or stack slot is read (on at least one path) before being written
to. This would mean that the value being read has been passed by the caller, and
it’s therefore definitely an argument (under Assumption A3). See Figure 5.1f.

Used Return Values Of Function Call (URVOFC). It detects if a register is
a return value of a certain function call. To do so, URVOFC, checks if, on at least
one path originating in the function call, the value of the register is read before
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being written to. Under Assumption A3, this definitely means it’s a return value.
See Figure 5.1g.

Used Return Values Of Function (URVOF). It detects if a register is a
return value of a certain function. To do so, URVOF, checks if, on at least one
path, the value of a register is not read between an instruction writing to it and
the return instruction of the function. Under Assumption A2, this definitely means
it’s a return value. See Figure 5.1h.

It is important to understand that when we talk about stack slots, we intend
memory locations located at a certain offset within the current stack frame (i.e.,
the SP0 alias domain). Specifically, we focus on address at a positive offset from the
initial value of the stack pointer (i.e., below the current function’s stack frame).
Such addresses are provided by the stack analysis due to computations relative
to the stack pointer register. Pointer to local variables of the caller passed as an
argument do not fall in this category. In fact, they would appear as relative to
the caller stack frame (i.e., SP1). Therefore, they are not taken into account as
potential arguments.

Listing 5.3 presents an example capturing the typical situation where each of the
presented analysis is useful. Figure 5.1 presents the lattice and transfer functions
graphs, which define the described data-flow analyses (Section 1.5). We developed
a tool that, from these graphs, automatically ensures the validity of the lattice, the
monotonicity of the transfer functions and generates C++ code implementing the
core components of the data-flow analyses. Listing 5.4 reports an example of the
code generated for URVOF.

5.2.4 The Final Output

All the presented analyses provide useful information, but, individually, they are
not very helpful to the end user. Therefore we need a mechanism to output a final
answer about which register or stack slots are arguments of a certain function or
function call, and which registers contain a return value for a certain function or
function call.

As mentioned in the previous section, in a first pre-processing phase we employ
the information provided by the stack analysis to identify explicitly callee-saved
registers and we mark them as not arguments and not return values, as per As-
sumption A5. Moreover, we mark all the unused registers as maybe an argument
and maybe a return value, ignoring the results of the analyses, in particular those
related to function calls, which would provide information that we cannot trust.

An option to increase the informativeness of our results, at the cost of in-
troducing some approximation is the following: assume that all the registers that
have never been explicitly callee-saved in any function are not callee-saved registers
(NCS) and assume that all the registers that, in every function, are either unused
or explicitly callee-saved, are effectively callee-saved registers (CS). Or, in symbols:
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class UsedReturnValuesOfFunction {
public:

enum Values { Maybe , Yes };
enum TransferFunction { Write , Read , IndirectFunctionCall };

public:
UsedReturnValuesOfFunction () : Value(Maybe) { }
UsedReturnValuesOfFunction(Values V) : Value(V) { }

void combine(const UsedReturnValuesOfFunction &RHS) {
if ((Value == Maybe && Other.Value == Yes) ||

(Value == Yes && Other.Value == Maybe)) {
Value = Yes;

}
}

bool
lowerThanOrEqual(const UsedReturnValuesOfFunction &RHS) const {

return Value == Other.Value
|| (Value == Maybe && Other.Value == Yes);

}

void transfer(TransferFunction T) {
switch(T) {
case Write:

if (Value == Maybe) Value = Yes;
break;

case Read:
if (Value == Yes) Value = Maybe;
break;

case IndirectFunctionCall:
if (Value == Yes) Value = Maybe;
break;

}
}

private:
Values Value;

};

Listing 5.4: C++ code generated for URVOF. The Values enum represents the possi-
ble values of the data-flow analysis. The TransferFunction enum represents the list
of different transfer functions available. The default constructor initializes the class
value to the initially value, in this case, Maybe. The combine method implements
the t operator, obtained from the graph of the lattice. The lowerThanOrEqual
method compares two elements of the lattice (v). The transfer method applies
to the current value the given transfer function.
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CS =
⋂
f

{ECSf ∪ Unusedf} NCS =

r | r /∈
⋃
f

ECSf


where ECSf is the set of explicitly callee-saved registers in f as detected by the
stack analysis and Unusedf is the set of registers unused in f .

Such assumptions are particularly reasonable in a closed world assumption, i.e.,
if either all the code is available to the analysis framework, or if the binary is large
enough. A similar approach can also be employed to obtain some information from
functions calls whose target is unknown.

Once, explicitly callee-saved and unused registers have been handled, the fol-
lowing rules are employed to get a final information about stack slots and the
remaining registers.

Arguments of a function in registers. A register in a function, in terms of
being an argument, can be in one of the following final states:

NoOrDead not an argument or an unused argument.

Dead an unused argument.

Yes a used argument.

Maybe possibly an argument.

Contradiction one or more of our assumptions have been violated.

To produce a final value, for the register r, for the function f we first combine the
outputs of DRAOF and URAOF:

URAOF

Maybe/Unknown Yes

D
R
A
O
F Maybe/Unknown Maybe Yes

NoOrDead NoOrDead Contradiction

Then we combine the result with each result of RAOFC for function calls to f :



5.2. DESIGN 93

RAOFC

MaybeMaybe/YesMaybe StarYes
O
ld

re
su
lt

NoOrDead NoOrDead Dead

Dead Dead Dead

Contradiction Contradiction Contradiction

Maybe Maybe Yes

Yes Yes Yes

Arguments of a function on the stack. A stack slot in a function, in terms
of being an argument, can be in one of the following final states:

Dead an unused argument.
Yes a used argument.
No not an argument.
Maybe possibly an argument.
Contradiction one or more of our assumptions have been violated.

To produce a final value, for the stack slot s, for the function f we first combine
the outputs of DSAOF and USAOF:

USAOF

Maybe/Unknown Yes

D
SA

O
F Maybe/Unknown Maybe Yes

Dead Dead Contradiction

Then we combine the result with each result of SAOFC for function calls to f :

SAOFC

Maybe/Unknown No

O
ld

re
su
lt

Dead Dead Contradiction

Contradiction Contradiction Contradiction

Maybe Maybe No

Yes Yes Contradiction

No No No
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Return values of a function. A register in a function, in terms of being a
return value, can be in one of the following final states:

NoOrDead not a return value or an unused return value.
Dead an unused return value.
Yes a return value.
Maybe possibly a return value.
YesCandidate from the function point of view, a return value.

To produce a final value, for the register r, for the function f we initialize the result
with the values from URVOF (considering its Yes as YesCandidate). Then we
combine them with all the instances of the DRVOFC analysis targeting the function
f :

DRVOFC

Maybe/Unknown NoOrDead

O
ld

re
su
lt

NoOrDead NoOrDead NoOrDead

Maybe Maybe NoOrDead

Yes Yes Yes

Dead Dead Dead

YesCandidate YesCandidate Dead

Then we do the same with all the instances of the URVOFC analysis targeting the
function f :

URVOFC

Maybe/Unknown Yes

O
ld

re
su
lt

NoOrDead NoOrDead Yes

Maybe Maybe Yes

Yes Yes Yes

Dead Dead Yes

YesCandidate YesCandidate Yes

Note that the YesCandidate state, when integrated with information from call
sites, can either go to Yes, if at least a caller uses it, or to Dead, in case all the
callers ignore it.
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Return values of a function call. A register, in terms of being a return value
of a certain function call, can be in one of the following final states:

NoOrDead not a return value or an unused return value.
Dead an unused return value.
Yes a return value.
Maybe possibly a return value.
Contradiction one or more of our assumptions have been violated.

Note that we need to introduce this distinction, since, while the number of ar-
guments is a property exclusively concerning a function (i.e., the information we
provide is good for all the call sites), this is not true for return values. In fact the
fact that a return value is used or unused, is a property of the call site, and not of
the called function.

We initialize the result with the output of URVOF. Then we combine it with
the instance of the DRVOFC analysis for the currently considered call site:

URVOF

Maybe Yes

D
RV

O
FC Maybe/Unknown Maybe Yes

NoOrDead NoOrDead Dead

Then we do the same with the instances of the URVOFC for the currently consid-
ered call site:

URVOFC

Maybe/Unknown Yes

O
ld

re
su
lt

NoOrDead NoOrDead Contradiction

Dead Dead Contradiction

Maybe Maybe Yes

Yes Yes Yes





Chapter 6

Conclusions

This chapter concludes Part I with some words about current limitations of rev.ng,
its future development directions and some considerations on related works.

6.1 Limitations and Future Directions

While rev.ng can already produce interesting results, being for instance able to
correctly handle large pieces of sofware such as GCC and Perl, there’s still much
work to be done.

Specifically, we need to finalize the support for dynamic libraries described in
Section 2.3.2 and assess the quality of the results of our function prototype detec-
tion algorithm (Chapter 5), which could not be included in this work due to time
constraints. We’re currently working on creating standalone LLVM functions using
the information about function boundaries provided by the techniques described
in Chapter 4 and Chapter 5. This will provide to the LLVM much smaller and
cleaner units to optimize, which should lead to sensible speedups.

On a mere engineering level, we intend to extend our platform support by
handling Mach-O and PE/COFF image formats (for which we already have a pre-
liminary support). On the longer term we also aim at extending QEMU’s user
mode to support Windows programs too. This represents the first step towards
being able to correctly recompile and run Windows programs.

On a more theoretical side, we’re currently in the process of designing a control-
flow structuring algorithm, heavily inspired by [167]. The next logical steps will be
identification of local variables and type recognition of arguments and variables,
which will open the way to our final grand goal: emitting readable and recompilable
C code.

6.2 Related Works

Static binary translation. A large part of the work presented along Part I
falls in the field of static binary translation, which is a subset of binary transla-

97
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tion aiming at decoupling the translation of the binary from its execution. Binary
translation has been studied for decades. Early efforts in the 1980s and 1990s
focused on porting legacy code, or providing fast emulation platforms, with retar-
getability soon becoming a key concern [29, 27]. Applications of binary translation
beyond the classic legacy code portability problem include binary instrumentation
for security enforcement [172], reverse engineering, and de-obfuscation [163].

LLBT [139] is a static binary translator based on LLVM. Similar to revamb, this
tool employs the LLVM IR to achieve retargetability in the static binary transla-
tor. The main difference between LLBT and revamb is that we use QEMU’s IR to
perform the translation from binary to LLVM IR. Thus, revamb is inherently easier
to maintain than LLBT, and requires much less work to add new source-target ar-
chitecture pairs, as long as they are supported by QEMU and LLVM respectively.
Regarding code discovery, LLBT focuses on ARM architectures and implements
an ad-hoc mechanism to recover common patterns, limiting the generality of the
approach. Their technique is very effective, as only 25% spurious regions are trans-
lated, but specific to the ARM and Thumb ISAs.

Uroboros [164] is a tool that focuses on producing disassembled code which
can be reassembled without manual effort. It currently supports the disassembly
of ELF binaries for the x86 and x64 architectures. The key challenge tackled by
Uroboros is to make the disassembled code relocatable by means of symbolization.
Symbolization basically consists in trying to identify all the references to code
(both in code and data) and make them relocatable. To do this, a set of heuristics
is employed, with serious limitations in terms of accuracy and introducing the
possibility of severe corruptions in the program’s behavior. On the other hand,
our approach is much more principled and conservative (see the discussion about
overtranslation in Section 2.2.2). Moreover, unlike rev.ng, Uroboros is not meant
to support recompilation to a different architecture.

CodeSurfer/x86 [10] is a tool based on IDA Pro [72] and CodeSurfer [66], which
implements value-set analysis (VSA), a form of data-flow analysis which tracks
the contents of memory addresses, providing an over-approximation of the set of
values that can be held in a memory location or register at each program point.
A key difference with our tool is that we support multiple architectures instead
of just x86, and that, among other things, OSRA (Section 3.3) can provide more
fine-grained and precise information about destinations of indirect jumps due to
switch statements.

Cifuentes and Emmerik [28] proposed a slicing analysis to identify jump targets
from switch constructs, which is effective and portable, but does not deal with
indirect calls, which causes under-translation in several cases. These effects are
countered in their binary translation framework via an interpreter, which makes it
necessary to use a dynamic rather than static binary translation technique.

Similar issues have been studied in Jakstab [85, 84], an abstract interpretation-
based, integrated disassembly and static analysis framework for designing analyses,
which is however limited to x86-64.

Function boundary identification. Traditional techniques used to identify
function entry points employ manually crafted patterns and then use recursive dis-
assembly to identify the set of bytes belonging to a function body. Such techniques
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are adopted in current tools, both commercial and research-oriented, such as IDA
Pro [72], Dyninst [99, 69], as well as in other disassemblers [162], and angr [141, 142].

angr [141, 142, 146] adopts an approach similar to ours, since it employs VEX,
Valgrind’s IR, to perform their analysis. However, VEX is only available for a
subset of the architecture handled by QEMU. Most importantly, the largest part of
their effort for accurate recovery of CFG and function boundaries relies on symbolic
execution, which, despite providing extremely accurate results, severely hinders the
scalability of the approach to the point that for larger binaries angr has often to
fall back to a set of heuristics.

Rosenblum et al. [130] employed machine learning to address function boundary
identification, overcoming variation in the function start due to compiler-related
effects such as optimization or scheduling. Basically, they proposed to automat-
ically generate the set of function start patterns from a large corpus of binaries,
instead of crafting it manually.

ByteWeight [11] refines this idea, leveraging machine learning classification to
label each byte of a program as a function start or not. It employs weighted prefix
trees of function start sequences in place of a pattern collection, followed by static
analysis (recursive disassembly combined with VSA [10]) to detect the remaining
bytes of the function. Shin et al. [140] aim at improving precision and speed of
recovery over ByteWeight employing recurrent neural networks.

ByteWeight is based on BAP [20], an OCaml binary analysis platform for ARM
and x86 platforms, which also employs and intermediate representation for its anal-
yses. BAP is a rewrite of BitBlaze [144], a tool that employs the GNU disassembler
and VEX (Valgrind’s IR) to lift x86 instructions to a custom intermediate repre-
sentation known as Vine.

For all of the above mentioned machine learning-based approaches, the main
goal is to reconstruct a set of probable start patterns. This often leads to mistakes
in case of instructions that might look like a function prologue but are not, such
as calls to alloca or the construction of Variable Length Arrays. Our technique
is fundamentally different, in that it relies on code pointers to identify function
starting points. We leverage data-flow analyses that can provide more fine-grained,
principled and precise information about the tracked values with respect to value
set analysis, as shown in Chapter 3.

Andriesse et al. [8] present an interesting comparison of the quality of the func-
tion boundary detection techniques published in top conferences in the latest years,
showing varying quality results.

Andriesse et al. [7] created a structural control flow graph analysis which is part
of the tool named Nucleus. Their approach is very similar to the one we presented
in Chapter 4 and published in [51], which predates their work.

Function prototype identification. Very little work has been published on the
detection of function arguments and return values in an ABI-independent fashion.

As a part of TypeArmor van der Veen and Göktas et al. [159] proposed a custom
inter-procedural liveness analysis for x64 binaries to determine register arguments
of function in a conservative way. Their work, while very preliminary and focused
on registers only, inspired a large part of the analyses presented in Chapter 5.

Similar concepts were also briefly introduced in [161], where the function bound-
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ary and prototype detection of the Retargetable Decompiler [160, 88] were pre-
sented.
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Chapter 7

HexVASAN: a Variadic Function
Sanitizer

Programming languages such as C and C++ support variadic functions, i.e., func-
tions that accept a variable number of arguments (e.g., printf). While variadic
functions are flexible, they are inherently not type-safe. In fact, the semantics and
parameters of variadic functions are defined implicitly by their implementation. It
is left to the programmer to ensure that the caller and callee follow this implicit
specification, without the help of a static type checker. An adversary can take ad-
vantage of a mismatch between the argument types used by the caller of a variadic
function and the types expected by the callee to violate the language semantics
and to tamper with memory. Format string attacks are the most popular example
of such a mismatch.

Indirect function calls can be exploited by an adversary to divert execution
through illegal paths. Mechanisms such as CFI can restrict call targets according
to the function prototype which, for variadic functions, doesn’t include variadic
arguments. Therefore, current CFI implementations are mainly limited to non-
variadic functions and fail to address this potential attack vector. Defending against
such an attack requires a stateful dynamic check.

In this chapter, we present HexVASAN, a compiler based sanitizer to effectively
type-check and thus prevent any attack via variadic functions. The key idea is to
record metadata about the passed arguments on the call site side and verify the
number and type of arguments used by the callee are compatible. Our evalua-
tion shows that HexVASAN is effective and practically deployable with a negligible
overhead (0.45%).

This chapter is in large parts extracted from [16].

7.1 Introduction
C and C++ are popular languages in systems programming. This is mainly due to
their low overhead abstractions and high degree of control left to the developer.
However, these languages guarantee neither type nor memory safety, and bugs may
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lead to memory corruption. Memory corruption attacks allow adversaries to take
control of vulnerable applications or to extract sensitive information.

Modern operating systems and compilers implement several defense mecha-
nisms to combat memory corruption attacks. The most prominent defenses are
Address Space Layout Randomization (ASLR) [115], stack canaries [32], and Data
Execution Prevention (DEP) [116]. While these defenses raise the bar against ex-
ploitation, sophisticated attacks are still feasible. In fact, even the combination
of these defenses can be circumvented through information leakage and code-reuse
attacks.

Stronger defense mechanisms such as Control Flow Integrity (CFI) [5], pro-
tect applications by restricting their control flow to a predetermined control-flow
graph (CFG). While CFI allows the adversary to corrupt non-control data, it will
terminate the process whenever the control-flow deviates from the predetermined
CFG. The strength of any CFI scheme hinges on its ability to statically create a
precise CFG for indirect control-flow edges (e.g., calls through function pointers in
C or virtual calls in C++). Due to ambiguity and imprecision in the analysis, CFI
restricts adversaries to an over-approximation of the possible targets of individual
indirect call sites.

We present a new attack against widely deployed mitigations through a fre-
quently used feature in C/C++ that has so far been overlooked: variadic functions.
Variadic functions (such as printf) accept a varying number of arguments with
varying argument types. To implement variadic functions, the programmer implic-
itly encodes the argument list in the semantics of the function and has to make sure
the caller and callee adhere to this implicit contract. In printf, the expected num-
ber of arguments and their types are encoded implicitly in the format string, the
first argument to the function. Another frequently used scheme iterates through
parameters until a condition is reached (e.g., a parameter is NULL). Listing 7.1 shows
an example of a variadic function. If an adversary can violate the implicit contract
between caller and callee, an attack may be possible.

In the general case, it is impossible to enumerate the arguments of a variadic
function through static analysis techniques. In fact, their number and types are
intrinsic in how the function is defined. This limitation enables (or facilitates) two
attack vectors against variadic functions. First, attackers can hijack indirect calls
and thereby call variadic functions over control-flow edges that are never taken
during any legitimate execution of the program. Variadic functions that are called
in this way may interpret the variadic arguments differently than the function for
which these arguments were intended, and thus violate the implicit caller-callee
contract. CFI countermeasures specifically prevent illegal calls over indirect call
edges. However, even the most precise implementations of CFI, which verify the
type signature of the targets of indirect calls, are unable to fully stop illegal calls
to variadic functions.

A second attack vector involves overwriting a variadic function’s arguments
directly. Such attacks do not violate the intended control flow of a program and
thus bypass all of the widely deployed defense mechanisms. Format string attacks
are a prime example of such attacks. If an adversary can control the format string
passed to, e.g., printf, she can control how all of the following parameters are
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interpreted, and can potentially leak information from the stack, or read/write to
arbitrary memory locations.

We analyzed popular software packages, such as Firefox, Chromium, Apache,
CPython, nginx, OpenSSL, Wireshark, the SPEC CPU2006 benchmarks, and the
FreeBSD base system, and found that variadic functions are ubiquitous. The un-
derlying problem that enables attacks on variadic functions is the lack of type
checking. Variadic functions generally do not (and cannot) verify that the number
and type of arguments they expect matches the number and type of arguments
passed by the caller.

We present HexVASAN, a compiler sanitizer that tackles this problem by instru-
menting the generated code to perform the necessary checks at run-time. Each
argument that is retrieved in a variadic function is type checked, enforcing a strict
contract between caller and callee so that (i) a maximum of the passed arguments
can be retrieved and (ii) the type of the arguments used at the callee are compatible
with the types passed by the caller.

We have implemented HexVASAN on top of the LLVM compiler framework, in-
strumenting the compiled code to record the types of each argument of a variadic
function at the call site and to check the types whenever they are retrieved. Our
prototype implementation is light-weight, resulting in a negligible (0.45%) over-
head for SPEC CPU2006. Our approach is general as we show by recompiling the
FreeBSD base system and effective as shown through several exploit case studies
(e.g., a format string vulnerability in sudo).

7.2 Background

Variadic functions are a popular feature in C/C++ programs. In this section we
introduce details about their use and implementation on current systems, the attack
surface they provide, and how adversaries can abuse them.

7.2.1 Variadic Functions

Variadic functions (such as the printf function in the C standard library) are
used in C to maximize the flexibility in the interface of a function, allowing it to
accept a number of arguments unknown at compile-time. These functions accept
a variable number of arguments, which do not necessarily have fixed types. An
example of a variadic function is shown in Listing 7.1. The function add accepts
one mandatory argument (start) and a varying number of additional arguments,
which are marked by the ellipsis (...) in the function definition.

The C standard defines several macros that portable programs may use to
access variadic arguments [92]. stdarg.h, the header that declares these macros,
defines an opaque type, va_list, which stores all information required to retrieve
and iterate through variadic arguments. In our example, the variable list of type
va_list is initialized using the va_start macro. The va_arg macro retrieves the
next variadic argument from the va_list, updating va_list to point to the next
argument as a side effect. Note that, although the programmer must specify the
expected type of the variadic argument in the call to va_arg, the C standard does
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#include <stdio.h>
#include <stdarg.h>

int add(int start , ...) {
int next , total = start;
va_list list;
va_start(list , start);
do {

next = va_arg(list , int);
total += next;

} while (next != 0);
va_end(list);
return total;

}

int main(int argc , const char *argv []) {
printf("%d\n", add(5, 1, 2, 0));
return 0;

}

Listing 7.1: Example of a variadic function in C. The function add takes a non-
variadic argument start (to initialize an accumulator variable) and a series of
variadic int arguments that are added until the terminator value 0 is met. The
final value is then returned.

not require the compiler to verify that the retrieved variable is indeed of that type.
va_list variables must be released using a call to the va_end macro so that all of
the resources assigned to the list are deallocated.

printf is an example of a more complex variadic function which takes a format
string as its first argument. This format string implicitly encodes information
about the number of arguments and their type. Implementations of printf scan
through this format string several times to identify all format arguments and to
recover the necessary space in the output string for the specified types and formats.
Interestingly, arguments do not have to be encoded sequentially but format strings
allow out-of-order access to arbitrary arguments. This flexibility is often abused in
format string attacks to access arbitrary stack locations.

7.2.2 Variadic Functions ABI
The C standard does not define the calling convention for variadic functions, nor
the exact representation of the va_list structure. This information is instead part
of the ABI of the target platform.
x86-64 ABI. The AMD64 System V ABI [96], which is implemented by x86-64
GNU/Linux platforms, dictates that the caller of a variadic function must adhere
to the normal calling conventions when passing arguments. Specifically, the first
six non-floating point arguments and the first eight floating point arguments are
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passed through CPU registers. The remaining arguments, if any, are passed on
the stack. If a variadic function accepts five mandatory arguments and a variable
number of variadic arguments, then all but one of these variadic arguments will
be passed on the stack. The variadic function itself moves the arguments into a
va_list variable using the va_start macro. The va_list type is defined as follows:

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list [1];

va_start allocates on the stack a reg_save_area to store copies of all variadic argu-
ments that were passed in registers. va_start initializes the overflow_arg_area field
to point to the first variadic argument that was passed on the stack. The gp_offset

and fp_offset fields are the offsets into the reg_save_area. They represent the first
unused variadic argument that was passed in a general purpose register or floating
point register respectively.

The va_arg macro retrieves the first unused variadic argument from either the
reg_save_area or the overflow_arg_area, and either it increases the gp_offset/fp_offset
field or moves the overflow_arg_area pointer forward, to point to the next variadic
argument.

Other architectures. Other architectures may implement variadic functions
differently. On 32-bit x86, for example, all variadic arguments must be passed on
the stack (pushed right to left), following the cdecl calling convention used on
GNU/Linux. The variadic function itself retrieves the first unused variadic argu-
ment directly from the stack. This simplifies the implementation of the va_start,
va_arg, and va_end macros, but it generally makes it easier for adversaries to over-
write the variadic arguments.

7.2.3 Variadic Attack Surface

When calling a variadic function, the compiler statically type checks all non-variadic
arguments but does not enforce any restriction on the type or number of variadic
arguments. The programmer must follow the implicit contract between caller and
callee that is only present in the code but never enforced explicitly. Due to this high
flexibility, the compiler cannot check arguments statically. This lack of safety can
lead to bugs where an adversary achieves control over the callee by modifying the
arguments, thereby influencing the interpretation of the passed variadic arguments.

Modifying the argument or arguments that control the interpretation of variadic
arguments allows an adversary to change the behavior of the variadic function,
causing the callee to access additional or fewer arguments than specified and to
change the interpretation of their types.

An adversary can influence variadic functions in several ways. First, if the
programmer forgot to validate the input, the adversary may directly control the
arguments to the variadic function that controls the interpretation of arguments.
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Second, the adversary may use an arbitrary memory corruption elsewhere in the
program to influence the argument of a variadic function.

Variadic functions can be called statically or dynamically. Direct calls would, in
theory, allow some static checking. Indirect calls (e.g., through a function pointer),
where the target of the variadic function is not known, do not allow any static
checking. Therefore, variadic functions can only be protected through some form
of runtime checker that considers the constraints of the call site and enforces them
at the callee side.

7.2.4 Format String Exploits

Format string exploits are a perfect example of corrupted variadic functions. An
adversary that gains control over the format string used in printf can abuse the
printf function to leak arbitrary data on the stack or even resort to arbitrary
memory corruption (if the pointer to the target location is on the stack). For ex-
ample, a format string vulnerability in the smbclient utility (CVE-2009-1886) [106]
allows an attacker to gain control over the Samba file system by treating a filename
as format string. Also, in PHP before 7.0.1, an error handling function allows an
attacker to execute arbitrary code by using format string specifiers as class name
(CVE-2015-8617) [1].

Information leaks are simple: an adversary changes the format string to print
the desired information that resides somewhere higher up on the stack by employ-
ing the desired format string specifiers. For arbitrary memory modification, an
adversary must have the target address encoded somewhere on the stack and then
reference the target through the %n modifier, writing the number of already written
bytes to that memory location.

The GNU C standard library (glibc) enforces some protection against format
string attacks by checking if a format string is in a writable memory area [83]. For
format strings, the glibc printf implementation opens /proc/self/maps and scans
for the memory area of the format string to verify correct permissions. Moreover,
a check is performed to ensure that all arguments are consumed, so that no out-of-
context stack slots can be used in the format string exploit. These defenses stop
some attacks but do not mitigate the underlying problem that an adversary can
gain control over the format string. Note that this heavyweight check is only used if
the format string argument may point to a writable memory area at compile time.
An attacker may use memory corruption to redirect the format string pointer to
an attacker-controlled area and fall back to a regular format string exploit.

7.3 Threat Model

Programs frequently use variadic functions, either in the program itself or as part
of a shared library (e.g., printf in the C standard library). We assume that the
program contains an arbitrary memory corruption, allowing the adversary to mod-
ify the arguments to a variadic function and/or the target of an indirect function
call, targeting a variadic function.
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Our target system deploys existing defense mechanisms like DEP, ASLR, and a
strong implementation of CFI, protecting the program against code injection and
control-flow hijacking. We assume that the adversary cannot modify the metadata
of our runtime monitor. Protecting metadata is an orthogonal engineering problem
and can be solved through, e.g., masking (and-ing every memory access), segmen-
tation (for x86-32), protecting the memory region [23], or randomizing the location
of sensitive data.

7.4 Design

HexVASAN monitors calls to variadic functions and checks for type violations. Since
the semantics of how arguments should be interpreted by the function are intrin-
sic in the logic of the function itself, it is, in general, impossible to determine the
number and type of arguments a certain variadic function accepts. For this rea-
son, HexVASAN instruments the code generated by the compiler so that a check is
performed at runtime. This check ensures that the arguments consumed by the
variadic function match those passed by the caller.

The high level idea is the following: HexVASAN records metadata about the
supplied argument types at the call site and verifies that the extracted arguments
match in the callee. The number of arguments and their types is always known at
the call site and can be encoded efficiently. In the callee this information can then
be used to verify individual arguments when they are accessed. To implement such
a sanitizer, we must design a metadata store, a pass that instruments call sites, a
pass that instruments callers, and a runtime library that manages the metadata
store and performs the run-time type verification. Our runtime library aborts the
program whenever a mismatch is detected and generates detailed information about
the call site and the mismatched arguments.

7.4.1 Analysis and Instrumentation

We designed HexVASAN as a compiler pass to be run in the compilation pipeline
right after the C/C++ front-end. The instrumentation collects a set of statically
available information about the call sites, encodes it in the LLVM module, and
injects calls to our runtime to perform checks during program execution.

Figure 7.1 provides an overview of the compilation pipeline when HexVASAN
is enabled. Source files are first parsed by the C/C++ frontend which generates
the intermediate representation on which our instrumentation runs. The normal
compilation then proceeds, generating instrumented object files. These object files,
along with the HexVASAN runtime library, are then passed to the linker, which creates
the instrumented program binary.

7.4.2 Runtime Support

The HexVASAN runtime augments every va_list in the original program with the
type information generated by our instrumentation pass, and uses this type in-
formation to perform run-time type checking on any variadic argument accessed
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Figure 7.1: Overview of the HexVASAN compilation pipeline. The HexVASAN in-
strumentation runs right after the C/C++ frontend, while its runtime library,
hexvasan.a, is merged into the final executable at link time.

through va_arg. By managing the type information in a metadata store, and by
maintaining a mapping between va_lists and their associated type information,
HexVASAN remains fully compatible with the platform ABI.

The HexVASAN runtime manages the type information in two data structures.
The core data structure, called the variadic list map (VLM), associates va_list

structures with the type information produced by our instrumentation, and with
a counter to track the index of the last argument that was read from the list.
A second data structure, the variadic call stack (VCS), allows callers of variadic
functions to store type information of variadic arguments until the callee initializes
the va_list.

Each variadic call site is instrumented with a call to pre_call, that prepares the
information about the call site (a variadic call site descriptor or VCSD), and a call
to post_call, that cleans it up. For each variadic function, the va_start calls are
instrumented with list_init, while va_copy, whose purpose is to clone a va_list,
is instrumented through list_copy. The two run-time functions will allocate the
necessary data structures to validate individual arguments. Calls to va_end are
instrumented through list_end to free up the corresponding data structures.

Algorithm 7.1 summarizes the two phases of our analysis and instrumentation
pass. The first phase identifies all the calls to variadic functions (both direct and in-
direct). Note that identifying indirect calls to variadic functions is straight-forward
in a compiler framework since, even if the target function is not statically known,
its type is. Then, all the parameters passed by that specific call site are inspected
and recorded, along with their type in a dedicated VCSD which is stored in read-
only global data. At this point, a call to pre_call is injected before the variadic
function call (with the newly created VCSD as a parameter) and, symmetrically, a
call to post_call is inserted after the call site.

The second phase identifies all calls to va_start and va_copy, and consequently,
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the va_list variables in the program. Uses of each va_list variable are inspected
in an architecture-specific way. Once all uses are identified, we inject a call to
check_arg before dereferencing the argument (which always resides in memory).

7.4.3 Challenges and Discussion

When designing a variadic function call sanitizer, several issues have to be consid-
ered. We highlight details about the key challenges we encountered.
Multiple va_lists. Functions are allowed to create multiple va_lists to access the
same variadic arguments, either through va_start or va_copy operations. HexVASAN
handles this by storing a VLM entry for each individual va_list.
Passing va_lists as function arguments. Variadic functions are allowed to
pass the va_lists they create as arguments to non-variadic functions. This allows
non-variadic functions to access variadic arguments of functions higher in the call
stack. Our design takes this into account by maintaining a list map (VLM) and
by instrumenting all va_arg operations, regardless of whether or not they are in a

input: a module m
/* Phase 1 */
foreach function f in module m do

foreach variadic call c with n arguments in f do
vcsd.count ← n;
foreach argument a of type t do

vcsd.args.push(t);
end
emit call to pre_call(vcsd) before c;
emit call to post_call() after c;

end
end
/* Phase 2 */
foreach function f in module m do

foreach call c to va_start(list) do
emit call to list_init(&list) after c;

end
foreach call c to va_copy(dst, src) do

emit call to list_copy(&dst,&src) after c;
end
foreach call c to va_end(list) do

emit call to list_free(&list) after c;
end
foreach call c to va_arg(list, type) do

emit call to check_arg(&list, type) before c;
end

end
Algorithm 7.1: The instrumentation process.
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variadic function.
Multi-threading support. Multiple threads are supported by storing our per-
thread runtime state in a thread-local variable as supported on major operating
systems.
Metadata format. We use a constant data structure per variadic call site,
the VCSD, to hold the number of arguments and a pointer to an array of integers
identifying their type. The check_arg function therefore only performs two memory
accesses, the first to load the number of arguments and the second for the type of
the argument currently being checked.

To uniquely identify the data types with an integer, we decided to build a
hashing function (described in Algorithm 7.2) using a set of fixed identifiers for
primitive data types and hashing them in different ways depending on how they
are aggregated (pointers, union, or struct). The last hash acts as a terminator
marker for aggregate types, which allows us to, e.g., distinguish between:

struct One {
struct {

int a;
} x;
int b, c;

};

struct Two {
struct {

int a, b;
} x;
int c;

};

Note that an (unlikely) hash collision only results in two different types being
accepted as equal. Such a hashing mechanism has the advantage of being de-
terministic across compilation units, removing the need for keeping a global map
of type-unique id pairs. Due to the information loss during the translation from
C/C++ to LLVM IR, our type system does not distinguish between signed and
unsigned types. The required metadata is static and immutable and we mark it
as read-only, protecting it from modification. However, the VCS still needs to be
protected through other mechanisms.
Handling floating point arguments. In x86-64 ABI, floating point and non-
floating point arguments are handled differently. In case of floating point argu-
ments, the first eight arguments are passed in the floating point registers whereas
in case of non-floating point the first six are passed in general-purpose registers.
HexVASAN handles both argument types.
Support for aggregate data types. According to AMD64 System V ABI, the
caller unpacks the fields of the aggregate data types (structs and unions) if the
arguments fit into registers. This makes it hard to distinguish between composite
types and regular types – if unpacked they are indistinguishable on the callee side
from arguments of these types. HexVASAN supports aggregate data types even if the
caller unpacks them.
Attacks preserving number and type of arguments. Our mechanism pre-
vents attacks that change the number of arguments or the types of individual
arguments. Format string attacks that only change one modifier can therefore be
detected through the type mismatch even if the total number of arguments remains
unchanged.



7.4. DESIGN 113

input : a type t and an initial hash value h
output: the final hash value h
h = hash(h, typeID(t));
switch typeID(t) do

case AggregateType do
/* union, struct and pointer */
foreach c in componentTypes(t) do

h = hashType(c, h);
end

case FunctionType do
h = hashType(returnType(t), h);
foreach a in argTypes(t) do

h = hashType(a, h);
end

end
end
h = hash(h, typeID(t));
return h
Algorithm 7.2: Algorithm describing the type hashing function hashType.
typeID returns an unique identifier for each basic type (e.g., 32-bit integer, double),
type of aggregate type (e.g., struct, union...) and functions. hash is a simple hash-
ing function combining two integers. componentTypes returns the components
of an aggregate type, returnType the return type of a function prototype and
argTypes the type of its arguments.

Non-variadic calls to variadic functions. Consider the following code snippet:

typedef void (* non_variadic )(int , int);

void variadic(int , ...) { /* ... */ }

int main() {
non_variadic function_ptr = variadic;
function_ptr (1, 2);

}

In this case, the function call in main to function_ptr appears to the compiler as
a non-variadic function call, since the type of the function pointer is not variadic.
Therefore, our pass will not instrument the call site, leading to potential errors.

To handle such (rare) situations appropriately, we would have to instrument all
non-variadic call sites too, leading to an unjustified overhead. Moreover, the code
above represents undefined behavior in C [81, 6.3.2.3p8] and C++ [80, 5.2.10p6], and
might not work on certain architectures where the calling convention for variadic
and non-variadic function calls are not compatible. The GNU C compiler emits a
warning when a function pointer is cast to a different type, therefore we require
the developer to correct the code before applying HexVASAN.
Central management of the global state. To allow the HexVASAN runtime to
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be linked into the base system libraries, such as the C standard library, we made
it a static library. Turning the runtime into a shared library is possible, but would
prohibit its use during the early process initialization – until the dynamic linker
has processed all of the necessary relocations. Our runtime therefore either needs
to be added solely to the C standard library (so that it is initialized early in the
startup process) or the runtime library must carefully use weak symbols to ensure
that each symbol is only defined once if multiple libraries are compiled with our
countermeasure.

C++ exceptions and longjmp. If an exception is raised while executing a variadic
function (or one of its callees), the variadic function may not get a chance to clean
up the metadata for any va_lists it has initialized, nor may the caller of this
variadic function get the chance to clean up the type information it has pushed
onto the VCS. Other functions manipulating the thread’s stack directly, such as
longjmp, present similar issues.

C++ exceptions can be handled by modifying the LLVM C++ frontend (i.e.,
clang) to inject an object with a lifetime spanning from immediately before a
variadic function call to immediately after. Such an object would call pre_call in
its constructor and post_call in the destructor, leveraging the exception handling
mechanism to make HexVASAN exception-safe. Functions like longjmp can be in-
strumented to purge the portions of HexVASAN’s data structures that correspond to
the discarded stack area. We did not observe any such calls in practice and leave
the implementation of handling exceptions and longjmp across variadic functions as
future work.

7.5 Implementation

We implemented HexVASAN as a sanitizer for the LLVM compiler framework [89],
version 3.9.1. HexVASAN has been publicly release as Free Software [15]. To enable
the sanitizer the -fsanitize=vasan switch must be provided to the C/C++ frontend
(clang). No annotations or other source code changes are required for HexVASAN.
Our sanitizer does not require visibility of whole source code (see Section 7.4.3), but
works on individual compilation units. Therefore link-time optimization (LTO) is
not required and thus fits readily into existing build systems. In addition, HexVASAN
also supports signal handlers.

HexVASAN consists of two components: a static instrumentation pass and a run-
time library. The static instrumentation pass works on LLVM IR, adding the
necessary instrumentation code to all variadic functions and their callees. The
support library is statically linked to the program and, at run-time, checks the
number and type of variadic arguments as they are used by the program. In the
following we describe the two components in detail.

Static instrumentation. The implementation of the static instrumentation
pass follows the description in Section 7.4. We first iterate through all functions,
looking for CallInst instructions targeting a variadic function (either directly or
indirectly), then we inspect them and create for each one of them a read-only
GlobalVariable of type vcsd_t. As shown in Listing 7.2, vcsd_t is composed by
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struct vcsd_t { unsigned count; type_t *args; };

thread_local stack <vcsd_t *> vcs;
thread_local map <va_list *, pair <vcsd_t *, unsigned >> vlm;

void pre_call(vcsd_t *arguments) { vcs.push_back(arguments ); }
void post_call () { vcs.pop_back (); }
void list_init(va_list *list_ptr) {

vlm[list_ptr] = { vcs.top(), 0 };
}
void list_free(va_list *list_ptr) { vlm.erase(list_ptr ); }

void check_arg(va_list *list_ptr , type_t type) {
pair <vcsd_t *, unsigned > &args = vlm[list_ptr ];
unsigned index = args.second ++;
assert(index < args.first ->count);
assert(args.first ->args[index] == type);

}

int add(int start , ...) {
/* ... */
va_start(list , start);
list_init (&list);
do {

check_arg (&list , typeid(int));
total += va_arg(list , int);

} while (next != 0);
va_end(list);
list_free (&list);
/* ... */

}

const vcsd_t main_add_vcsd = {
.count = 3,
.args = { typeid(int), typeid(int), typeid(int) }

};

int main(int argc , const char *argv []) {
/* ... */
pre_call (& main_add_vcsd );
int result = add(5, 1, 2, 0);
post_call ();
printf("%d\n", result );
/* ... */

}

Listing 7.2: Simplified C++ representation of the instrumented code for Listing 7.1.
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an unsigned integer representing the number of arguments of the considered call
site and a pointer to an array (another GlobalVariable) with an integer element
for each argument of type_t. type_t is an integer uniquely identifying a data type
obtained using the hashType function presented in Algorithm 7.2. At this point a
call to pre_call is injected before the call site, with the newly create VCSD as a
parameter, and a call to post_call is injected after the call site.

During the second phase, we first identify all va_start, va_copy, and va_end

operations in the program. In the IR code, these operations appear as calls to the
LLVM intrinsics llvm.va_start, llvm.va_copy, and llvm.va_end. We instrument the
operations with calls to our runtime’s list_init, list_copy, and list_free functions
respectively. We then proceed to identify va_arg operations. Although the LLVM
IR has a dedicated va_arg instruction, it is not used on any of the platforms we
tested. The va_list is instead accessed directly. Our identification of va_arg is
therefore platform-specific. On x86-64, our primary target, we identify va_arg by
recognizing accesses to the gp_offset and fp_offset fields in the x86-64 version of
the va_list structure (see Section 7.2.2). The fp_offset field is accessed whenever
the program attempts to retrieve a floating point argument from the list. The
gp_offset field is accessed to retrieve any other types of variadic arguments. We
insert a call to our runtime’s check_arg function before the instruction that accesses
this field.

Listing 7.2 shows (in simplified C) how the code in Listing 7.1 would be instru-
mented by our sanitizer.

Dynamic variadic type checking. The entire runtime is implemented in plain
C code, as this allows it to be linked into the standard C library without introducing
a dependency to the standard C++ library. The VCS is implemented as a thread-
local stack, and the VLM as a thread-local hash map. The pre_call and post_call

functions push and pop type information onto and from the VCS. The list_init

function inserts a new entry into the VLM, using the top element on the stack as
the entry’s type information and initializing the counter for consumed arguments
to 0.

check_arg looks up the type information for the va_list being accessed in the
VLM and checks if the requested argument exists (based on the counter of con-
sumed arguments), and if its type matches the one provided by the caller. If either
of these checks fails, execution is aborted, and the runtime will generate an error
message such as the one shown in Listing 7.3. As a consequence, the pointer to the
argument is never read or written, since the pointer to it is never dereferenced.

7.6 Evaluation

In this section we present a case study on variadic function based attacks against
state-of-the-art CFI implementations. Next, we evaluate the effectiveness of HexVASAN
as an exploit mitigation technique. Then, we evaluate the overhead introduced by
our HexVASAN prototype implementation on the SPEC CPU2006 integer (CINT2006)
benchmarks. We also evaluate how widespread the usage of variadic functions is
in SPEC CPU2006 and in Firefox 51.0.1, Chromium 58.0.3007.0, Apache 2.4.23,
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Error: Type Mismatch
Index is 1
Callee Type : 43 (32-bit Integer)
Caller Type : 15 (Pointer)
Backtrace:
[0] 0x4019ff <__vasan_backtrace +0x1f > at test
[1] 0x401837 <__vasan_check_arg +0x187 > at test
[2] 0x8011b3afa <__vfprintf +0x20fa > at libc.so.7
[3] 0x8011b1816 <vfprintf_l +0x86 > at libc.so.7
[4] 0x801200e50 <printf +0xc0 > at libc.so.7
[5] 0x4024ae <main+0x3e > at test
[6] 0x4012ff <_start +0x17f > at test

Listing 7.3: Error message reported by HexVASAN.

CPython 3.7.0, nginx 1.11.5, OpenSSL 1.1.1, Wireshark 2.2.1, and the FreeBSD
11.0 base system.

Note that, along with testing the aforementioned software, we also developed
an internal set of regression tests. Our regression tests allow us to verify that our
sanitizer correctly catches problematic variadic function calls, and does not raise
false alarms for benign calls. The test suite explores corner cases, including trying
to access arguments that have not been passed and trying to access them using a
type different from the one used at the call site.

7.6.1 Case Study: CFI Effectiveness

One of the attack scenarios we envision is that an attacker controls the target of
an indirect call site. If the intended target of the call site was a variadic function,
the attacker could illegally call a different variadic function that expects different
variadic arguments than the intended target (yet shares the types for all non-
variadic arguments). If the intended target of the call site was a non-variadic
function, the attacker could call a variadic function that interprets some of the
intended target’s arguments as variadic arguments.

All existing CFI mechanisms allow such attacks to some extent. The most
precise CFI mechanisms, which rely on function prototypes to classify target sets
(e.g., LLVM-CFI, piCFI, or VTV) will allow all targets with the same prototype,
possibly restricting to the subset of functions whose addresses are taken in the
program. This is problematic for variadic functions, as only non-variadic types are
known statically. For example, if a function of type int (*)(int, ...) is expected
to be called from an indirect call site, then precise CFI schemes allow calls to all
other variadic functions of that type, even if those other functions expect different
types for the variadic arguments.

A second way to attack variadic functions is to overwrite their arguments di-
rectly. This happens, for example, in format string attacks, where an attacker can
overwrite the format string to cause misinterpretation of the variadic arguments.
HexVASAN detects both of these attacks when the callee attempts to retrieve the
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Variadic

Same
Yes 7 7 7 7 7 X

No 7 X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X 7 7 7 X

Non-variadic

Same
Yes X X 7 7 7 X

No X X 7 7 7 X

Different
Yes X X 7 7 7 X

No X X X 7 7 X

Original Overwritten args 7 7 7 7 7 X

Table 7.1: Detection coverage for several types of illegal calls to variadic functions.
X indicates detection, 7 indicates non-detection. “A.T.” stands for address taken.

variadic arguments using the va_arg macro described in Section 7.2.1. Checking
and enforcing the correct types for variadic functions is only possible at runtime
and any sanitizer must resort to run-time checks to do so. CFI mechanisms must
therefore be extended with a HexVASAN-like mechanism to detect violations. To
show that our tool can complement CFI, we create test programs containing sev-
eral variadic functions and one non-variadic function. The definitions of these
functions are shown below.

int sum_ints(int n, ...);
int avg_longs(int n, ...);
int avg_doubles(int n, ...);
void print_longs(int n, ...);
void print_doubles(int n, ...);
int square(int n);

This program contains one indirect call site from which only the sum_ints function
can be called legally, and one indirect call site from which only the square function
can be legally called. We also introduce a memory corruption vulnerability which
allows us to override the target of both indirect calls.

We constructed the program such that sum_ints, avg_longs, print_longs, and
square are all address-taken functions. The avg_doubles and print_doubles functions
are not address-taken.

Functions avg_longs, avg_doubles, print_longs, and print_doubles all expect dif-
ferent variadic argument types than function sum_ints. Functions sum_ints, avg_longs,
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avg_doubles, and square do, however, all have the same non-variadic prototype
(int (*)(int)).

We compiled six versions of the test program, instrumenting them with, re-
spectively, HexVASAN, LLVM 3.9 Forward-Edge CFI [151], Per-Input CFI [110],
CCFI [95], GCC 6.2’s VTV [151] and Visual C++ Control Flow Guard [100]. In
each version, we first built an attack involving a variadic function, by overriding
the indirect call sites with a call to each of the variadic functions described above.
We then also tested overwriting the arguments of the sum_ints function, without
overwriting the indirect call target. Table 7.1 shows the detection results.

LLVM Forward-Edge CFI allows calls to avg_longs and avg_doubles from the
sum_ints indirect call site because these functions have the same static type signa-
ture as the intended call target. This implementation of CFI does not allow calls
to variadic functions from non-variadic call sites, however.

CCFI only detects calls to print_doubles, a function that is not address-taken
and has a different non-variadic prototype than square, from the square call site.
It allows all of the other illegal calls.

GCC VTV, and Visual C++ CFG allow all of the illegal calls, even if the non-
variadic type signature does not match that of the intended call target.

pi-CFI allows calls to the avg_longs function from the sum_ints indirect call site.
avg_longs is address-taken and it has the same static type signature as the intended
call target. pi-CFI does not allow illegal calls to non-address-taken functions or
functions with different static type signatures. pi-CFI also does not allow calls to
variadic functions from non-variadic call sites.

All implementations of CFI allow direct overwrites of variadic arguments, as
long as the original control flow of the program is not violated.

7.6.2 Exploit Detection
To evaluate the effectiveness of our tool as a real-world exploit detector, we built
a HexVASAN-hardened version of sudo 1.8.3. sudo allows authorized users to exe-
cute shell commands as another user, often one with a high privilege level on the
system. If compromised, sudo can escalate the privileges of non-authorized users,
making it a popular target for attackers. Versions 1.8.0 through 1.8.3p1 of sudo
contained a format string vulnerability (CVE-2012-0809) that allowed exactly such
a compromise. This vulnerability could be exploited by passing a format string as
the first argument (argv[0]) of the sudo program. One such exploit was shown to
bypass ASLR, DEP, and glibc’s FORTIFY_SOURCE protection [58]. In addition,
we were able to verify that GCC 5.4.0 and clang 3.8.0 fail to catch this exploit, even
when annotating the vulnerable function with the format function attribute [4] and
setting the compiler’s format string checking (-Wformat) to the highest level.

Although it is sudo itself that calls the format string function (fprintf), HexVASAN
can only detect the violation on the callee side. We therefore had to build hardened
versions of not just the sudo binary itself, but also the C library. We chose to do
this on the FreeBSD platform, as its standard C library can be easily built using
LLVM, and HexVASAN therefore readily fits into the FreeBSD build process. As ex-
pected, HexVASAN does detect any exploit that triggers the vulnerability, producing
the error message shown in Listing 7.4.
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$ ln -s /usr/bin/sudo %x%x%x%x
$ ./%x%x%x%x -D9 -A
--------------------------
Error: Index greater than Argument Count
Index is 1
Backtrace:
[0] 0x4053bf <__vasan_backtrace +0x1f > at sudo
[1] 0x405094 <__vasan_check_index +0xf4 > at sudo
[2] 0x8015dce24 <__vfprintf +0x2174 > at libc.so
[3] 0x8015dac52 <vfprintf_l +0x212 > at libc.so
[4] 0x8015daab3 <vfprintf_l +0x73 > at libc.so
[5] 0x40bdaf <sudo_debug +0xdf > at sudo
[6] 0x40ada3 <main+0x6c3 > at sudo
[7] 0x40494f <_start +0x17f > at sudo

Listing 7.4: Exploit detection in sudo.

7.6.3 Variadic Functions Statistics
To collect variadic function usage in real software, we extended our instrumentation
mechanism to collect statistics about variadic functions and their calls. As shown
in Table 7.2, for each program, we collect:

Call sites. The number of function calls targeting variadic functions. We report
the total number and how many of them are indirect, since they are of particular
interest for an attack scenario where the adversary can override a function
pointer.

Variadic functions. The number of variadic functions. We report their total
number and how many of them have their address taken, since CFI mechanism
cannot prevent functions with their address taken from being reachable from
indirect call sites.

Variadic prototypes. The number of distinct variadic function prototypes in the
program.

Functions-per-prototype. The average number of variadic functions sharing the
same prototype. This measures how many targets are available, on average, for
each indirect call sites targeting a specific prototype. In practice, this the
average number of permitted destinations for an indirect call site in the case
of a perfect CFI implementation. We report this value both considering all the
variadic functions and only those whose address is taken.

Interestingly, each benchmark we analyzed contains calls to variadic functions
but few programs (Firefox, OpenSSL, perlbench, gcc, povray, and hmmer) con-
tain indirect calls to variadic functions. In addition to calling variadic functions,
each benchmark also defines numerous variadic functions (421 for Firefox, 794 for
Chromium, 1368 for FreeBSD, 469 for Wireshark, and 382 for CPython). Ad-
versaries might be able to modify these calls and to attack the implicit contract
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static sEnumBuilder _EtherMessageKind("EtherMessageKind",
JAM_SIGNAL , "JAM_SIGNAL",
ETH_FRAME , "ETH_FRAME",
ETH_PAUSE , "ETH_PAUSE",
ETHCTRL_DATA , "ETHCTRL_DATA",
ETHCTRL_REGISTER_DSAP , "ETHCTRL_REGISTER_DSAP",
ETHCTRL_DEREGISTER_DSAP , "ETHCTRL_DEREGISTER_DSAP",
ETHCTRL_SENDPAUSE , "ETHCTRL_SENDPAUSE",
0, NULL

);

Listing 7.5: Variadic violation in omnetpp.

between caller and callee. However few benchmarks have variadic functions that
are called indirectly, often with their address being taken. Moreover, the average
number of variadic functions sharing the non-variadic part of the prototype is very
little, and is further decreased if we consider only functions that have their address
taken. Therefore, in practice, in presence of a strong CFI mechanism, the benefit
of HexVASAN is marginal, but necessary to offer a complete protection.

Our sanitizer identified three interesting cases in omnetpp, one of the SPEC
CPU2006 benchmarks that implements a discrete event simulator. The benchmark
calls a variadic functions with a mismatched type, where it expects a char * but
receives a NULL, which has type void *. Listing 7.5 shows the offending code.

We also identified a bug in SPEC CPU2006’s perlbench. This benchmark
passes the result of a subtraction of two character pointers as an argument to a
variadic function. At the call site, this argument is a machine word-sized integer
(i.e., 64-bits integer on our test platform). The callee truncates this argument
to a 32-bit integer by calling va_arg(list, int). HexVASAN reports this (likely
unintended) truncation as a violation, proving its usefulness in finding subtle bugs.

7.6.4 SPEC CPU2006

We measured HexVASAN’s run-time overhead by running the SPEC CPU2006 integer
(CINT2006) benchmarks on an Ubuntu 14.04.5 LTS machine with an Intel Xeon
E5-2660 CPU and 64 GiB of RAM. We ran each benchmark program on its refer-
ence inputs and measured the average run-time over three runs. Figure 7.2 shows
the results of these tests. We compiled each benchmark with a vanilla clang/LLVM
3.9.1 compiler and optimization level -O3 to establish a baseline. We then com-
piled the benchmarks with our modified clang/LLVM 3.9.1 compiler to generate
the HexVASAN results.

The geometric mean overhead in these benchmarks was just 0.45%, indistin-
guishable from measurement noise. The only individual benchmark result that
stands out is that of libquantum. This benchmark program performed 880M vari-
adic function calls in a run of just 433 seconds.
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Figure 7.2: Run-time overhead of HexVASAN in the SPECint CPU2006 benchmarks,
compared to baseline LLVM 3.9.1 performance.

7.7 Related Works

HexVASAN can either be used as an always-on runtime monitor to mitigate exploits
or as a sanitizer to detect bugs, sharing similarities with the sanitizers that exist
primarily in the LLVM compiler. Similar to HexVASAN, these sanitizers embed
run-time checks into a program by instrumenting potentially dangerous program
instructions.

AddressSanitizer [134] (ASan), instruments memory accesses and allocation
sites to detect spatial memory errors, such as out-of-bounds accesses, as well as
temporal memory errors, such as use-after-free bugs. Undefined Behavior Sani-
tizer [124] (UBSan) instruments various types of instructions to detect operations
whose semantics are not strictly defined by the C and C++ standards, e.g., incre-
ments that cause signed integers to overflow, or null-pointer dereferences. Thread
Sanitizer [135] (TSAN) instruments memory accesses and atomic operations to
detect data races, deadlocks, and various misuses of synchronization primitives.
Memory Sanitizer [145] (MSAN) detects uses of uninitialized memory.

CaVer [91] is a sanitizer targeted at verifying correctness of downcasts in C++.
Downcasting converts a base class pointer to a derived class pointer. This operation
may be unsafe as it cannot be statically determined, in general, if the pointed-to
object is of the derived class type. TypeSan [67] is a refinement of CaVer that
reduces overhead and improves the sanitizer coverage.

UniSan [93] sanitizes information leaks from the kernel. It ensures that data is
initialized before leaving the kernel, preventing reads of uninitialized memory.

All of these sanitizers are highly effective at finding specific types of bugs, but,
unlike HexVASAN, they do not address misuses of variadic functions. The aforemen-
tioned sanitizers also differ from HexVASAN in that they typically incur significant



7.8. CONCLUSIONS 123

run-time and memory overhead.
Different control-flow hijacking mitigations offer partial protection against vari-

adic function attacks by preventing adversaries from calling variadic functions
through control-flow edges that do not appear in legitimate executions of the pro-
gram. Among these mitigations, we find Code Pointer Integrity (CPI) [87], a miti-
gation that prevents attackers from overwriting code pointers in the program, and
various implementations of Control-Flow Integrity (CFI), a technique that does
not prevent code pointer overwrites, but rather verifies the integrity of control-flow
transfers in the program [5, 165, 42, 107, 114, 121, 171, 174, 26, 35, 82, 62, 43, 109,
151, 110, 95, 101, 123, 169, 157, 168, 100, 18, 63, 108, 118].

Control-flow hijacking mitigations cannot prevent attackers from overwriting
variadic arguments directly. At best, they can prevent variadic functions from be-
ing called through control-flow edges that do not appear in legitimate executions
of the program. We therefore argue that HexVASAN and these mitigations are or-
thogonal. Moreover, prior research has shown that many of the aforementioned
implementations fail to fully prevent control-flow hijacking as they are too im-
precise [64, 44, 22, 57], too limited in scope [132, 143], vulnerable to information
leakage attacks [56], or vulnerable to spraying attacks [112, 65]. We further showed
in Section 7.6.1 that variadic functions exacerbate CFI’s imprecision problems,
allowing additional leeway for adversaries to attack variadic functions.

Defenses that protect against direct overwrites or misuse of variadic arguments
have thus far only focused on format string attacks, which are a subset of the
possible attacks on variadic functions. LibSafe detects potentially dangerous calls
to known format string functions such as printf and sprintf [154]. A call is
considered dangerous if a %n specifier is used to overwrite the frame pointer or
return address, or if the argument list for the printf function is not contained
within a single stack frame. FormatGuard [33] instruments calls to printf and
checks if the number of arguments passed to printf matches the number of format
specifiers used in the format string.

Shankar et al. proposed to use static taint analysis to detect calls to for-
mat string functions where the format string originates from an untrustworthy
source [137]. This approach was later refined by Chen and Wagner [25] and used to
analyze thousands of packages in the Debian 3.1 Linux distribution. TaintCheck [104]
also detects untrustworthy format strings, but relies on dynamic taint analysis to
do so.

_FORTIFY_SOURCE of glibc provides some lightweight checks to ensure all the ar-
guments are consumed. However, it can be bypassed [3] and does not check for
type-mismatch. Hence, none of these aforementioned solutions provide comprehen-
sive protection against variadic argument overwrites or misuse.

7.8 Conclusions

Variadic functions introduce an implicitly defined contract between the caller and
callee. When the programmer fails to enforce this contract correctly, the violation
leads to runtime crashes or opens up a vulnerability to an attacker. Current tools,
including static type checkers and CFI implementations, do not find variadic func-
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tion type errors or prevent attackers from exploiting calls to variadic functions.
Programs such as SPEC CPU2006, Firefox, Apache, CPython, nginx, wireshark
and libraries leverage variadic functions to offer flexibility.

We have designed a sanitizer, HexVASAN, that addresses this attack vector.
HexVASAN is a light weight runtime monitor that detects bugs in variadic func-
tions and prevents the bugs from being exploited. It imposes negligible overhead
(0.45%) on the SPEC CPU2006 benchmarks and is effective at detecting type vio-
lations when calling variadic arguments.
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Call sites Func. Ratio

Program Tot. Ind. % Tot. A.T. Proto Tot. A.T.

Firefox 30225 1664 5.5 421 18 241 1.75 0.07

Chromium 83792 1728 2.1 794 44 396 2.01 0.11

FreeBSD 189908 7508 3.9 1368 197 367 3.73 0.53

Apache 7121 0 0 94 29 41 2.29 0.71

CPython 4183 0 0 382 0 38 10.05 0.00

nginx 1085 0 0 26 0 14 1.86 0.00

OpenSSL 4072 1 0.02 23 0 15 1.53 0.00

Wireshark 37717 0 0 469 1 110 4.26 0.01

perlbench 1460 1 0.07 60 2 18 3.33 0.11

bzip2 85 0 0 3 0 3 1.00 0.00

gcc 3615 55 1.5 125 0 31 4.03 0.00

mcf 29 0 0 3 0 3 1.00 0.00

milc 424 0 0 21 0 8 2.63 0.00

namd 485 0 0 24 2 8 3.00 0.25

gobmk 2911 0 0 35 0 8 4.38 0.00

soplex 6 0 0 2 1 2 1.00 0.50

povray 1042 40 3.8 45 10 16 2.81 0.63

hmmer 671 7 1 9 1 5 1.80 0.20

sjeng 253 0 0 4 0 3 1.33 0.00

libquantum 74 0 0 91 0 7 13.00 0.00

h264ref 432 0 0 85 5 13 6.54 0.38

lbm 11 0 0 3 0 2 1.50 0.00

omnetpp 340 0 0 48 23 19 2.53 1.21

astar 42 0 0 4 1 4 1.00 0.25

sphinx3 731 0 0 20 0 5 4.00 0.00

xalancbmk 19 0 0 4 2 4 1.00 0.50

Table 7.2: Statistics of Variadic Functions for Different Benchmarks. The second
and third columns are variadic call sites broken into “Tot.” (total) and “Ind.” (indi-
rect); % shows the percentage of variadic call sites. The fifth and sixth columns are
for variadic functions. “A.T.” stands for address taken. “Proto.” is the number of
distinct variadic function prototypes. “Ratio” indicates the function-per-prototypes
ratio for variadic functions.





Chapter 8

leakless: Bypassing Link-time
Hardenings

Throughout the last few decades, computer software has experienced an arms race
between exploitation techniques leveraging memory corruption and detection/pro-
tection mechanisms. Effective mitigation techniques, such as Address Space Layout
Randomization, have significantly increased the difficulty of successfully exploiting
a vulnerability. A modern exploit is often two-stage: a first information disclosure
step to identify the memory layout, and a second step with the actual exploit.
However, because of the wide range of conditions under which memory corrup-
tion occurs, retrieving memory layout information from the program is not always
possible.

In this paper, we present a technique that uses the dynamic loader’s ability to
identify the locations of critical functions directly and call them, without requiring
an information leak. We identified several fundamental weak points in the design
of ELF standard and dynamic loader implementations that can be exploited to
resolve and execute arbitrary library functions. Through these, we are able to
bypass specific security mitigation techniques, including partial and full RELRO,
which are specifically designed to protect ELF data-structures from being co-opted
by attackers. We implemented a prototype tool, leakless, and evaluated it against
different dynamic loader implementations, previous attack techniques, and real-life
case studies to determine the impact of our findings. Among other implications,
leakless provides attackers with reliable and non-invasive attacks, less likely to
trigger intrusion detection systems.

This chapter is in large parts extracted from [59].

8.1 Introduction
Since the first widely-exploited buffer overflow used by the 1998 Morris worm [113],
the prevention, exploitation, and mitigation of memory corruption vulnerabilities
have occupied the time of security researchers and cybercriminals alike. Even
though the prevalence of memory corruption vulnerabilities has finally begun to
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decrease in recent years, classic buffer overflows remain the third most common
form of software vulnerability, and four other memory corruption vulnerabilities
pad out the top 25 [40].

One reason behind the decreased prevalence of memory corruption vulnera-
bilities is the heavy investment in research on their prevention and mitigation.
Specifically, many mitigation techniques have been adopted in two main areas:
system-level hardening (such as CGroups [98], AppArmor [13], Capsicum [166],
and GRSecurity [61]) and application-level hardening (such as stack canaries [12],
Address Space Layout Randomization (ASLR), and the No-eXecute (NX) bit [34]).

In particular, Address Space Layout Randomization (ASLR), by placing the
dynamic libraries in a random location in memory (unknown to the attacker),
lead attackers to perform exploits in two stages. In the first stage, the attacker
must use an information disclosure vulnerability, in which information about the
memory layout of the application (and its libraries) is revealed, to identify the
address of code that represents security-critical functionality (such as the system()
library function). In the second stage, the attacker uses a control flow redirection
vulnerability to redirect the program’s control flow to this functionality.

However, because of the wide range of conditions under which memory corrup-
tions occur, retrieving this information from the program is not always possible.
For example, memory corruption vulnerabilities in parsing code (e.g., decoding
images and video) often take place without a direct line of communication to an
attacker, precluding the possibility of an information disclosure. Without this in-
formation, performing an exploit against ASLR-protected binaries using current
techniques is often infeasible or unreliable.

As noted in [138], despite the race to harden applications and systems, the
security of some little-known aspects of application binary formats and the system
components using them, have not received much scrutiny. In particular we focus
on the dynamic loader, a userspace component of the operating system, responsible
for loading binaries, and the libraries they depend upon, into memory. Binaries use
the dynamic loader to support the resolution of imported symbols. Interestingly,
this is the exact behavior that an attacker of a hardened application attempts to
reinvent by leaking a library’s address and contents.

Our insight is that a technique to eliminate the need for an information disclo-
sure vulnerability could be developed by abusing the functionality of the dynamic
loader. Our technique leverages weaknesses in the dynamic loader and in the gen-
eral design of the ELF format to resolve and execute arbitrary library functions,
allowing us to successfully exploit hardened applications without the need for an
information disclosure vulnerability. Any library function can be executed with this
technique, even if it is not otherwise used by the exploited binary, as long as the
library that it resides in is loaded. Since almost every binary depends on the C Li-
brary, this means our technique allows us to execute security-critical functions such
as system() and execve(), allowing arbitrary command execution. We will also
show application-specific library functions can be re-used to perform sophisticated
and stealthy attacks. The presented technique is reliable, architecture-agnostic,
and does not require the attacker to know the version, layout, content, or any
other unavailable information about the library and library function in question.
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We implemented our ideas in a prototype tool, called leakless [50]. To use
leakless, the attacker must possess the target application, and have the abil-
ity to exploit the vulnerability (i.e., hijack control flow). Given this information,
leakless can automatically construct an exploit that, without the requirement of
an information disclosure, invokes one or more critical library functions of interest.

To evaluate our technique’s impact, we performed a survey of several different
distributions of Linux (and FreeBSD) and identified that the vast majority of bi-
naries in the default installation of these distributions are susceptible to the attack
carried out by leakless, if a memory corruption vulnerability is present in the
target binary. We also investigated the dynamic loader implementations of various
C Libraries, and found that most of them are susceptible to leakless’ techniques.
Additionally, we showed that a popular mitigation technique, RELocation Read-
Only (RELRO), which protects library function calls from being redirected by an
attacker, is completely bypassable by leakless. Finally, we compared the length
of leakless’ ROP chains against ROP compilers implementing similar functional-
ity. leakless produces significantly shorter ROP chains than existing techniques,
which, as we show, allows it to be used along with a wider variety of exploits than
similar attacks created by traditional ROP compilers.

In summary, we make the following contributions:

• We develop a new, architecture- and platform-agnostic attack, using func-
tionality inherent in ELF-based system that supports dynamic loading, to
enable an attacker to execute arbitrary library functions without an informa-
tion disclosure vulnerability.

• We detail, and overcome, the challenges of implementing our system for dif-
ferent dynamic loader implementations and in the presence of multiple miti-
gation techniques (including RELRO).

• Finally, we perform an in-depth evaluation, including a case study of previ-
ously complicated exploits that are made more manageable with our tech-
nique, an assessment of the security of several different dynamic loader im-
plementations, a survey of the applicability of our technique to different op-
erating system configurations, and a measurement of the improvement in the
length of ROP chains produced by leakless.

8.2 Related Works
The memory corruption arms race (i.e., the process of defenders developing coun-
termeasures against known exploit techniques, and attackers coming up with new
exploitation techniques to bypass these countermeasures) has been ongoing for sev-
eral decades. While the history of this race has been documented elsewhere [148],
this section focuses on the sequence of events that has required many modern ex-
ploits to be two-stage, that is, needing an information disclosure step before an
attacker can achieve arbitrary code execution.

Early buffer overflow exploits relied on the ability to inject binary code (termed
shellcode) into a buffer, and overwrite a return address on the stack to point into
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this buffer. Subsequently, when the program would return from its current function,
execution would be redirected to the attacker’s shellcode, and the attacker would
gain control of the program.

As a result, security researchers introduced another mitigation technique: the
NX bit. The NX bit has the effect of preventing memory areas not supposed to
contain code (typically, the stack) from being executed.

The NX bit has pushed attackers to adapt the concept of code reuse: using
functionality already in the program (such as system calls and security-critical
library functions) to accomplish their goals. In return-into-libc exploits [122, 153],
an attacker redirects the control flow directly to a sensitive libc function (such as
system()) with the proper arguments to perform malicious behavior, instead of
using injected shellcode.

To combat this technique, a system-level hardening technique named Address
Space Layout Randomization (ASLR) was developed. When ASLR is in place, the
attacker does not know the location of libraries, in fact, the program’s memory
layout (the locations of libraries, the stack, and the heap) is randomized at each
execution. Because of this, the attacker does not know where in the library to
redirect the control flow in order to execute specific functions. Worse, even if
the attacker is able to determine this information, he is still unable to identify the
location of specific functions inside the library unless he is in possession of a copy of
the library. As a result, an attacker usually has to leak the contents of the library
itself and parse the code to identify the location of critical functions. To leak
these libraries, attackers often reuse small chunks of code (called gadgets) in the
program’s code segment to disclose memory locations. These gadgets are usually
combined by writing their addresses onto the stack and consecutively returning to
them. Thus, this technique is named Return Oriented Programming (ROP) [136].

ROP is a powerful tool for attackers. In fact, it has been shown that a “Turing-
complete” set of ROP gadgets can be found in many binaries and can be employed,
with the help of a ROP compiler, to carry out exploitation tasks [133]. However,
because of their generality, ROP compilers tend to produce long ROP chains that,
depending on the specific details of a vulnerability, are “too big to be useful” [86].
Later, we will show that leakless produces relatively short ROP chains, and, de-
pending on present mitigations, requires very few gadgets. Additionally, leakless
is able to function without a Turing-complete gadget set.

In real-world exploits, an attacker usually uses an information disclosure attack
to leak the address or contents of a library, then uses this information to calculate
the correct address of a security-critical library function (such as system()), and
finally sends a second payload to the vulnerable application that redirects the
control flow to call the desired function.

In fact, we observed that that the goal of finding the address of a specific library
function is actually already implemented by the dynamic loader, an OS component
that facilitates the resolution of dynamic symbols (i.e., determining the addresses
of library functions). Thus, we realized that we could leverage the dynamic loader
to remove the information disclosure step, and craft exploits, which would work
without the need of an information disclosure attack. Since our attack does not
require an information leak step, we call it leakless.
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The concept of using the dynamic loader as part of the exploitation process
was briefly explored in the context of return-into-libc attacks [122, 52, 74]. How-
ever, existing techniques are extremely situational [122], platform-dependent, re-
quire two stages [74], or are susceptible to current mitigation techniques such as
RELRO [122], which we will discuss in future sections. leakless, on the other
hand, is a single-stage, platform-independent, general technique, and is able to
function in the presence of such mitigations.

In the next section, we will describe how the dynamic loader works, and after-
wards will show how we abuse this functionality to perform our attack.

8.3 The Dynamic Loader

The dynamic loader is a component of the userspace execution environment that
facilitates loading the libraries required by an application at start time and resolving
the dynamic symbols (functions or global variables) that are exported by libraries
and used by the application. In this section, we will describe how dynamic symbol
resolution works on systems based on the ELF binary object specification [131].

ELF is a standard format common to several Unix-like platforms, including
GNU/Linux and FreeBSD, and is defined independently from any particular dy-
namic loader implementation. Since leakless mostly relies on standard ELF fea-
tures, it is easily applicable to a wide range of systems.

8.3.1 The ELF Object

As seen in Section 1.2, an application comprises a main binary ELF file (the ex-
ecutable) and several dynamic libraries, also in ELF format. Each ELF object is
composed of segments, and each segment holds one or more sections.

Each section has a conventional meaning. For instance, the .text section con-
tains the code of the program, the .data section contains its writeable data (such
as global variables), and the .rodata section contains the read-only data (such as
constants and strings). The list of sections is stored in the ELF file as an array of
Elf_Shdr structures.

Note that there are two versions of each ELF structure: one version for 32-bit
ELF binaries (e.g., Elf32_Rel) and one for 64-bit (e.g., Elf64_Rel). We ignore this
detail for the sake of simplicity, except in specific cases where it is relevant to our
discussion.

8.3.2 Dynamic Symbols and Relocations

In this section, we will give a summary of the data structures involved in ELF
symbol resolution. Figure 8.1 gives an overview of these data structures and their
mutual relationships.

An ELF object can export symbols to and import symbols from other ELF
objects. A symbol represents a function or a global variable and is identified by a
name. Each symbol is described by a corresponding Elf_Sym structure. This struc-
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Figure 8.1: The relationship between data structures involved in symbol resolution
(without symbol versioning). Shaded background means read only memory.

ture, instances of which comprise the .dynsym ELF section, contains the following
fields relevant to our work:

st_name. An offset, relative to the start of the .dynstr section, where the string
containing the name of the symbol is located.

st_value. If the symbol is exported, the virtual address of the exported function,
NULL otherwise.

These structures are referenced to resolve imported symbols. The resolution of
imported symbols is supported by relocations, described by the Elf_Rel structure.
Instances of this structure populate the .rel.plt section (for imported functions)
and the .rel.dyn section (for imported global variables). In our discussion we
are only interested to the former section. The Elf_Rel structure has the following
fields:

r_info. The three least significant bytes of this field are used as an unsigned index
into the .dynsym section to reference a symbol.

r_offset. The location (as an absolute address) in memory where the address of
the resolved symbol should be written to.

When a program imports a certain function, the linker will include a string with
the function’s name in the .dynstr section, a symbol (Elf_Sym) that refers to it
in the .dynsym section, and a relocation (Elf_Rel) pointing to that symbol in the
.rel.plt section.

The target of the relocation (the r_offset field of the Elf_Rel struct) will be
the address of an entry in a dedicated table: the Global Offset Table (GOT). This
table, which is stored in the .got.plt section, is populated by the dynamic loader
as it resolves the relocations in the .rel.plt section.
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8.3.3 Lazy Symbol Resolution

Since resolving every imported symbol and applying all relocations at application
startup can be a costly operation, symbols are resolved lazily. In lazy symbol
resolution, the address of a function (which corresponds to an entry in the GOT)
is only resolved when necessary (i.e., the first time the imported function is called).

When a program wants to calls an imported function, it instead calls a dedicated
stub of code, located in the Procedure Linkage Table (the .plt section). As shown
in Listing 8.1, each imported function has a stub in the PLT that performs an
unconditional indirect jump to the associated entry in the GOT.

After symbol resolution, this GOT entry contains the address of the actual
function, in the imported library, and execution continues seamlessly into this
function. When the function returns, control flow returns to the caller of the PLT
stub, and the rest of the PLT stub is not executed. However, at program startup,
GOT entries are initialized with an address pointing to the second instruction of
the associated PLT stub. This part of the stub will push onto the stack an identifier
of the imported function (in the form of an offset to an Elf_Rel instance in the
.rel.plt section) and jump to the PLT0 stub, a piece of code at the beginning
of the .plt section. In turn, the PLT0 stub, pushes the value of GOT[1] onto the
stack and performs an indirect jump to the address of GOT[2]. These two entries
in the GOT have a special meaning and the dynamic loader populates them at
application startup:

GOT[1]. A pointer to an internal data structure, of type link_map, which is used
internally by the dynamic loader and contains information about the current
ELF object needed to carry out symbol resolution.

GOT[2]. A pointer to a function of the dynamic loader, called _dl_runtime_resolve.

In summary, PLT entries basically perform the following function call:

_dl_runtime_resolve(link_map_obj, reloc_index)

This function uses the link_map_obj parameter to access the information it needs
to resolve the desired imported function (identified by the reloc_index argument)
and writes the result into the appropriate GOT entry. After _dl_runtime_resolve
resolves the imported function, control flow is passed to that function, making the
resolution process completely transparent to the caller. The next time the PLT
stub for the specified function is invoked execution will be diverted directly to the
target function.

The link_map structure contains all the information that the dynamic loader
needs about a loaded ELF object. Each link_map instance is an entry in a doubly-
linked list containing the information about all loaded ELF objects.

8.3.4 Symbol Versioning

The ELF standard provides a mechanism to import a symbol with a specific version
associated with it. This feature is used to require a function to be imported from
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100 PLT0:
100 push *0x200
106 jmp *0x204
110 printf@plt:
110 jmp *0x208
116 push #0
11B jmp PLT0
120 read@plt:
120 jmp *0x20C
126 push #1
12B jmp PLT0

196 ; .plt.got start
196 ; Empty entry
196 0
200 ; link_map object
200 &link_map_obj
204 ; Resolver function
204 &_dl_runtime_resolve
208 ; printf entry
208 0x116
20C ; read entry
20C 0x126

Listing 8.1: Example PLT and GOT.

d_tag d_value

DT_SYMTAB .dynsym

DT_STRTAB .dynstr

DT_JMPREL .rel.plt

d_tag d_value

DT_PLTGOT .got.plt

DT_VERNEED .gnu.version

DT_VERSYM .gnu.version_r

Table 8.1: Entries of the .dynamic section. d_tag is the key, while d_value is the
value.

a specific version of a library. For instance, it is possible to require the fopen C
Standard Library function, as implemented in version 2.2.5 of the GNU C Standard
Library, using the version identifier GLIBC_2.2.5. The .gnu.version_r section
contains version definitions in the form of Elf_Verdef structures.

The association between a dynamic symbol and the Elf_Verdef structure that it
refers to is kept in the .gnu.version section, as an array of Elf_Verneed structures,
one for each entry in the dynamic symbol table. These structures have a single
field: a 16-bit integer that represents an index into the .gnu.version_r section.

Due to this layout, the index in the r_info field of the Elf_Rel structure is
used by the dynamic loader as an index into both the .dynsym and .gnu.version
sections. This is important to understand, as leakless will later leverage this fact.

8.3.5 The .dynamic Section and RELRO

The dynamic loader collects all the information that it needs about the ELF object
from the .dynamic section, which is composed of Elf_Dyn structures. An Elf_Dyn
is a key-value pair that stores different types of information. The relevant entries
of this section, shown in Table 8.1, hold the absolute addresses of specific sections.
One exception is the DT_DEBUG entry, which holds a pointer to an internal data
structure of the dynamic loader. This is initialized by the dynamic loader and is
used for debugging purposes.
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An attacker able to tamper with these values can pose a security risk. For this
reason, a protection mechanism known as RELRO (RELocation Read Only) has
been introduced in dynamic loaders. RELRO comes in two flavors: partial and
full.

Partial RELRO In this mode, some sections, including .dynamic, are marked as
read-only after they have been initialized by the dynamic loader.

Full RELRO In addition to partial RELRO, lazy resolution is disabled: all im-
port symbols are resolved at startup time, and the .got.plt section is com-
pletely initialized with the final addresses of the target functions and marked
read-only. Moreover, since lazy resolution is not enabled, the GOT[1] and GOT[2]
entries are not initialized with the values we mentioned in Section 8.3.3.

As we will see, RELRO poses significant complications that leakless must (and
does) address in order to operate in the presence of these countermeasures.

Note that the previously mentioned link_map structure stores in the l_info field
an array of pointers to most of entries in the .dynamic section for internal usage.
Since the dynamic loader trusts the content of this field implicitly, leakless will
later be able to misuse this to its own ends.

8.4 The Attack
leakless enables an attacker to call arbitrary library functions, using only their
name, without any information about the memory layout of the vulnerable pro-
gram’s libraries. To achieve this, leakless abuses the dynamic loader, forcing it to
resolve and call the requested function. This is possible for the same reason that
memory corruption vulnerabilities are so damaging: the mixing of control data and
non-control data in memory. In the case of a stack overflow, the control data in
question is a stored return address. For the dynamic loader, the control data is
comprised of the various data structures that the dynamic loader uses for symbol
resolution. Specifically, the name of the function, stored in the .dynstr section,
is analogous to a return address: it specifies a specific target to execute when the
function is invoked.

The dynamic loader makes the assumption that the parameters it receives and
its internal structures are trustworthy because it assumes that they are provided
directly by the ELF file or by itself during initialization. However, when an attacker
is able to modify this data, the assumption is broken. Some dynamic loaders
(FreeBSD) validate the input they receive. However, they still implicitly trust the
control structures, which will be readily corrupted by leakless.

leakless is designed to be used by an attacker who is attempting to exploit an
existing vulnerability. The input to leakless is comprised of the executable ELF
file, a set of ROP gadgets of the binary (we detail what gadgets an attacker needs
in Section 8.5.1), and the name of a library function that the attacker wishes to
call (typically, but not necessarily, execve()). Given this information, leakless
outputs a ROP payload that executes the needed library function, bypassing various
hardening techniques applied to the binary in question. This ROP chain is generally
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(a) Example of the attack presented in Section 8.4.1. The attacker is able to overwrite the value of
the DT_STRTAB dynamic entry, tricking the dynamic loader into thinking that the .dynstr section
is in .bss, where he crafted a fake string table. When the dynamic loader will try to resolve the
symbol for printf it will use a different base to reach the name of the function and will actually
resolve (and call) execve.
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(b) Example of the attack presented in Section 8.4.2. The reloc_index passed to
_dl_runtime_resolve overflows the .rel.plt section and ends up in .bss, where the attacker
crafted an Elf_Rel structure. The relocation points to an Elf_Sym located right afterwards over-
flowing the .dynsym section. In turn the symbol will contain an offset relative to .dynstr large
enough to reach the memory area after the symbol, which contains the name of the function to
invoke.

Figure 8.2: Illustration of some of the presented attacks. Shaded background
means read only memory, white background means writeable memory and bold or
red means data crafted by the attacker.
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very short: depending on the mitigations present in the binary, the chain is 3 to 12
write operations. Some examples of the output produced by leakless are available
in the documentation of the leakless code repository [50].

leakless does not require any information about the addresses or contents
of the libraries; we assume that ASLR is enabled for all dynamic libraries and
that no knowledge about them is available. However we also assume that the
executable is not position-independent, and, thus, is always loaded in a specific
location in memory. We discuss this limitation in detail in Section 8.7.2, and show
how infrequently Position Independent Executables (PIE) binaries occur in modern
OS distributions in Section 8.6.2.

While in most cases, leakless works independently of the dynamic loader im-
plementation and version that the target system is running, some of our attacks
require minor modifications to accommodate different dynamic loaders.

Note that leakless’s aim, obtaining the address of a library function and call
it, is similar to what the dlsym function of libdl does. However, in practice this
function is rarely used by applications and, therefore, its address is not generally
known to the attacker.

8.4.1 The Base Case
As explained in Section 8.3 and illustrated in Figure 8.1, the dynamic loader starts
its work from a Elf_Rel structure in the .rel.plt, then follows the index into the
.dynsym section to locate the Elf_Sym structure, and finally uses that to identify
the name (a string in the .dynstr section) of the symbol to resolve. The simplest
way to call an arbitrary function would be to overwrite the string table entry of
an existing symbol with the name of the desired function, and then invoke the
dynamic loader, but this is not possible, as the section containing the string table
for dynamic symbols, i.e., .dynstr, is not writeable.

However, the dynamic loader obtains the address of the .dynstr section from
the DT_STRTAB entry of the .dynamic section, which is at a known location and, by
default, writeable. Therefore, as shown in Figure 8.2a, it is possible to overwrite
the d_val field of this dynamic entry with a pointer to a memory area under the
control of the attacker (typically the .bss or .data section). This memory area
would then include a single string, for example execve. At this point, the attacker
needs to choose an existing symbol pointing to the correct offset in the fake string
table and invoke the resolution of relocation corresponding to that symbol. This
can be done by pushing the offset of this relocation on the stack and then jumping
to PLT0.

This approach is simple, but it is only effective against binaries in which the
.dynamic section is writeable. More sophisticated attacks must be used against
binary compiled with partial or full RELRO.

8.4.2 Bypassing Partial RELRO
As we explained in Section 8.3.3, the second parameter of the _dl_runtime_resolve
function is the offset of an Elf_Rel entry in the relocation table (.rel.plt section)
that corresponds to the requested function. The dynamic loader takes this value
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and adds it to the base address of the .rel.plt to obtain the absolute address of
the target Elf_Rel structure. However most dynamic loader implementations do
not check the boundaries of the relocation table. This means that if a value larger
than the size of the .rel.plt is passed to _dl_runtime_resolve, the loader will use
the Elf_Rel at the specified location, despite being outside the .rel.plt section.

As shown in Figure 8.2b, leakless crafts a value for the index that forces the
_dl_runtime_resolve function to look into a memory area under the control of the
attacker. It then crafts an Elf_Rel structure that contains, in its r_offset field,
the address of the writeable memory location where the address of the function
will be written. The r_info field will, in turn, contain an index that causes the
dynamic loader to look into the attacker-controlled memory. leakless stores a
crafted Elf_Sym object at this location, which, likewise, holds a st_name field value
large enough to point into attacker-controlled memory. Finally, this location is
where leakless stores the name of the desired function to call.

In sum, leakless crafts the full chain of structures involved in symbol resolu-
tion, co-opting the process to invoke the function whose name leakless has written
into attacker-controlled memory. After this, leakless pushes the computed offset
to the fake Elf_Rel structure onto the stack and invokes PLT0.

However, this approach is subject to several constraints. First, the symbol
index in Elf_Rel has to be positive, since the r_info field is defined by the ELF
standard as an unsigned integer. In practice, this means that the writable memory
area (e.g., the .bss section) must be located after the .dynsym section. In our
evaluation, this has always been the case.

Another constraint arises when the ELF makes use of the symbol versioning
system described in Section 8.3.4. In this case, the Elf_Rel.r_info field is not
just used as an index into the dynamic symbol table, but also as an index in the
symbol version table (the .gnu.version section). In general, leakless is able to
automatically satisfy these constraints, except for x86-64 small binaries using huge
pages [127]. We detail the additional constraints introduced by symbol versioning
in Appendix A. When the constraints cannot be satisfied, an alternate approach
must be adopted. This involves abusing the dynamic loader by corrupting its
internal data structures to alter the dynamic resolution process.

8.4.3 Corrupting Dynamic Loader Data
We recall that the first parameter to _dl_runtime_resolve is a pointer to a data
structure of type link_map. This structure contains information about the ELF
executable, and the contents of this structure are implicitly trusted by the dynamic
loader. Furthermore, leakless can obtain the address of this structure from the
second entry of the GOT of the vulnerable binary, whose location is deterministi-
cally known.

Recall from Section 8.3.5 that the link_map structure, in the l_info field, con-
tains an array of pointers to the entries of the .dynamic section. These are the
pointers that the dynamic loader uses to locate the objects that are used dur-
ing symbol resolution. As shown in Figure 8.3, by overwriting part of this data
structure, leakless can make the DT_STRTAB entry of the l_info field point to a
specially-crafted dynamic entry which, in turn, points to a fake dynamic string
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Figure 8.3: Example of the attack presented in Section 8.4.3. The attacker deref-
erences the second entry of the GOT and reaches the link_map structure. In
this structure he corrupts the entry of the l_info field holding a pointer to the
DT_STRTAB entry in the dynamic table. Its value is set to the address of a fake
dynamic entry which, in turn, points to a fake dynamic string table in the .bss
section.

table. Hence, the attacker can reduce the situation back to the base case presented
in Section 8.4.1.

This technique has wider applicability than the one presented in the previous
section, since there are no specific constraints, and, in particular, it is applicable
also against small 64 bit ELF binaries using huge pages. However, while in the
previous attacks we were relying exclusively on standard ELF features, in this case
(and in the one presented in the next section) we assume the layout of a glibc-
specific structure (link_map) to be known. Each dynamic loader implements this
structure in its own way, so minor modifications might be required when targeting
a different dynamic loader. Note that link_map’s layout might change among
versions of the same dynamic loader. However, they tend to be quite stable, and,
in particular, in glibc no changes relevant to our attack have taken place since 2004.

8.4.4 The Full RELRO Situation [149]

leakless is able to bypass full RELRO protection.
When full RELRO is applied, all the relocations are resolved at load-time, no

lazy resolving takes place, and the addresses of the link_map structure and of
_dl_runtime_resolve in the GOT are never initialized. Thus, it is not directly
possible to know their addresses, which is what the general technique to bypass
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Figure 8.4: Example of the attack presented in Section 8.4.4. Shaded back-
ground means read only memory, white background means writeable memory and
bold or red means data crafted by the attacker. The attacker goes through the
DT_DEBUG dynamic entry to reach the r_debug structure, then, dereferencing the
r_map field, he gets to the link_map structure of the main executable, and corrupts
l_info[DT_STRTAB] as already seen in Figure 8.3.
Since the .got.plt section is read-only due to full RELRO, the attacker also have
to forge a relocation. To do so, he corrupts l_info[DT_JMPREL] making it point to
a fake dynamic entry in turn pointing to a relocation. This relocation refers to the
existing printf symbol, but has an r_offset pointing to a writeable memory area.
Then the attacker also needs to recover the pointer to the _dl_runtime_resolve
function, which is not available in the GOT of the main executable due to full
RELRO, therefore he dereferences the l_info field of the first link_map structure
and gets to the one describing the first shared library, which is not protected by full
RELRO. The attacker accesses the l_info[DT_PLTGOT] field and gets to the cor-
responding dynamic entry (the .dynamic on the right), and then to the .plt.got
section (always on the right), at the second entry of which he can find the address
of _dl_runtime_resolve.
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partial RELRO relies upon.
However, it is possible to indirectly recover these two values through the DT_DEBUG

entry in the dynamic table. The value of the DT_DEBUG entry is set by the dynamic
loader at load-time to point to a data structure of type r_debug. This data struc-
ture contains information used by debuggers to identify the base address of the
dynamic loader and to intercept certain events related to dynamic loading. In ad-
dition, the r_map field of this structure holds a pointer to the head of the linked
list of link_map structures.

leakless corrupts the first entry of the list describing the ELF executable so
that the l_info entry for DT_STRTAB points to a fake dynamic string table. This is
presented in Figure 8.4.

After this, leakless must invoke _dl_runtime_resolve, passing the link_map
structure that it just corrupted as the first argument and an offset into the new
.dynsym as the second parameter. However _dl_runtime_resolve is not available
in the GOT due to full RELRO. Therefore, leakless must look for its address
in the GOT of another ELF object, namely, a library loaded by the application
that is not protected by full RELRO. In most cases, only ELF executables are
compiled with full RELRO, and libraries are not. This is due to the fact that
RELRO is designed to harden, at the cost of performance, specific applications
that are deemed “risky”. Applying full RELRO to a shared library would impact
the performance of all applications making use of this library, and thus, libraries
are generally left unprotected. Since the order of libraries in the linked list is
deterministic, leakless can dereference the l_next entry in link_map to reach
the entry describing a library that is not protected by full RELRO, dereference
the entry in l_info corresponding to the DT_PLTGOT dynamic entry, dereference
its value (i.e., the base address of that library’s GOT), and read the address of
_dl_runtime_resolve from this GOT.

leakless must then overcome a final issue: _dl_runtime_resolve will not only
call the target function, but will also try to write its address to the appropriate GOT
entry. If this happens, the program will crash, as the GOT is read-only when full
RELRO is applied. We can circumvent this issue by faking the DT_JMPREL dynamic
entry in the link_map structure that points to the .rel.dyn section. leakless
points it to an attacker-controlled memory area and writes an Elf_Rel structure,
with a target (r_offset field) pointing to a writeable memory area, referring to the
symbol we are targeting. Therefore, when the library is resolved, the address will
be written to a writeable location, the program will not crash, and the requested
function will be executed.

8.5 Implementation

leakless analyzes a provided binary to identify which of its techniques is applica-
ble, crafts the necessary data structures, and generates a ROP chain that imple-
ments the chosen technique. The discovery of the initial vulnerability itself, and the
automatic extraction of usable gadgets from a binary are orthogonal to the scope
of our work, and have been well-studied in the literature and implemented in the
real world [68, 24, 133, 150, 70, 53]. We designed leakless to be compatible with
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a number of gadget finding techniques, and have implemented a manual back-end
(where gadgets are provided by the user) and a back-end that utilizes ROPC [86],
an automated ROP compiler prototype built on the approach proposed by Q [133].

We also developed a small test suite, composed of a small C program with
a stack-based buffer overflow compiled, alternatively, with no protections, partial
RELRO, and full RELRO. The test suite runs on GNU/Linux with the x86, x86-64
and ARM architectures and with FreeBSD x86-64.

8.5.1 Required Gadgets

leakless comprises four different techniques that are used depending on the hard-
ening techniques applied to the binary. These different techniques require different
gadgets to be provided to leakless. A summary of the types of gadgets is presented
in Table 8.2. The write_memory gadget is mainly used to craft data structures at
known memory locations, while the deref_write gadget to traverse and corrupt
data structures (in particular link_map). The deref_save and copy_to_stack gad-
gets are used only in the full RELRO case. The aim of the former is to save at
a known location the address of link_map and _dl_runtime_resolve, while the
latter is used to copy link_map and the relocation index on the stack before calling
_dl_runtime_resolve, since using PLT0 is not a viable solution.

For the interested reader, we provide in-depth examples of executions of leakless
in the presence of two different sets of mitigation techniques in the documentation
of the leakless code repository [50].

8.6 Evaluation

We evaluated leakless in four ways. First, we determined the applicability of our
technique against different dynamic loader implementations. We then analyzed
the binaries distributed by several popular GNU/Linux and BSD distributions
(specifically, Ubuntu, Debian, Fedora, and FreeBSD) to determine the percentage
of binaries that would be susceptible to our attack. Then we applied leakless in
two real-world exploits against a vulnerable version of Wireshark and in a more
sophisticated attack against Pidgin. Finally we used a Turing-complete ROP com-
piler to implement the approach used in leakless and two other previously used
techniques, and compared the size of the resulting chains.

8.6.1 Dynamic Loaders

To show leakless’ generality, especially across different ELF-based platforms, we
surveyed several implementations of dynamic loaders. In particular, we found that
the dynamic loader part of the GNU C Standard Library (also known as glibc and
widely used in GNU/Linux distributions), several other Linux implementations
such as dietlibc, uClibc and newlib (widespread in embedded systems) and the
OpenBSD and NetBSD implementations are vulnerable to leakless. Another
embedded library, musl, instead, is not susceptible to our approach since it does not
support lazy loading. Bionic, the C Standard Library used in Android, is also not
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vulnerable since it only supports PIE binaries. The most interesting case, out of all
the loaders we analyzed, is FreeBSD ’s implementation. In fact, it is the only one
which performs boundary checks on arguments passed to _dl_runtime_resolve.
All other loaders implicitly trust input arguments argument. Furthermore, all
analyzed loaders implicitly trust the control structures that leakless corrupts in
the course of most of its attacks.

In summary, out of all of the loaders we analyzed, only two are immune to
leakless by design: musl, which does not support lazy symbol resolution, and
bionic, which only supports PIE executables. Additionally, because the FreeBSD
dynamic loader performs bounds checking, the technique explained in Section 8.4.2
is not applicable. However, the other techniques still work.

8.6.2 Operating System Survey
To understand leakless’ impact on real-world systems, we performed a survey
of all binaries installed in default installations of several different Linux and BSD
distributions. Specifically, we checked all binaries in /sbin, /bin, /usr/sbin, and
/usr/bin on these systems and classified the binaries by the applicability of the
techniques used by leakless. The distributions that we considered were Ubuntu
14.10, Debian Wheezy, Fedora 20, and FreeBSD 10. We used both x86 and x86-64
versions of these systems. On Ubuntu and Debian, we additionally installed the
LAMP (Linux, Apache, MySQL, PHP) stack as an attempt to simulate a typical
server deployment configuration.

The five categories that we based our ratings on are as follows:

Unprotected. This category includes binaries that have no RELRO or PIE. For
these binaries, leakless can apply its base case technique, explained in Sec-
tion 8.4.1.

Partial RELRO. Binaries that have partial RELRO, but lack PIE, fall into this
category. In this case, leakless would apply the technique described in Sec-
tion 8.4.2.

Partial RELRO (huge pages). Binaries in this category have partial RELRO,
use huge pages, and are very small, therefore, they require leakless to use the
technique described in Section 8.4.3. They are included in this category.

Full RELRO. To attack binaries that use full RELRO, which comprise this cat-
egory, leakless must apply the technique presented in Section 8.4.4.

Not susceptible. Finally, we consider binaries that use PIE to be insusceptible
to leakless (further discussion on this in Section 8.7.2).

The results of the survey, normalized to the total number of binaries in an instal-
lation, are presented in Figure 8.5. We determined that, on Ubuntu, 84% of the
binaries were susceptible to at least one of our techniques and 16% were protected
with PIE. On Debian, leakless can be used on 86% of the binaries. Fedora has
76% of susceptible binaries. Interestingly, FreeBSD ships no binaries with RELRO
or PIE, and is thus 100% susceptible to leakless.
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Figure 8.5: Classification of the binaries in default installations of target distribu-
tions. Binaries marked as Unprotected, Partial RELRO, Partial RELRO HP and Full
RELRO require, respectively, to the attacks detailed in Section 8.4.1, Section 8.4.2,
Section 8.4.3 and Section 8.4.4, while for Not susceptible binaries, the leakless
approach is not applicable

Additionally, we performed a survey on the shared libraries of the systems we
considered. We found that, on average, only 11% of the libraries had full RELRO
protection. This has some interesting implications for leakless: for a given binary,
the likelihood of finding a loaded library without full RELRO is extremely high
and, even if a vulnerable binary employs RELRO, leakless can still apply its full
RELRO attack to bypass this. This has the effect of making RELRO basically
useless as a mitigation technique, unless it is applied system-wide.

8.6.3 Case Study: Wireshark

We carried out a case study in applying leakless to a vulnerability in a program
that does not present a direct line of communication to the attacker. In other
words, the exploit must be done in one-shot, with no knowledge of the layout of
the address space or the contents of libraries.

We picked a recent (April 2014) vulnerability [31], which is a stack-based buffer
overflow in Wireshark ’s MPEG protocol parser in versions 1.8.0 through 1.8.13 and
1.10.0 through 1.10.6. We carried out our experiments against a Wireshark 1.8.2
binary compiled with partial RELRO and one compiled with full RELRO. Both
were compiled for x86-64 on Debian Wheezy and used the GNU C Library, without
other protections such as PIE and stack canaries.

We used the manual leakless back-end to identify the required gadgets to
construct the four necessary primitives (described in Section 8.5.1): write_memory,
deref_write, deref_save and copy_to_stack. In the case of Wireshark, it was trivial
to find gadgets to satisfy all of these primitives.

leakless was able to construct a one-shot exploit using the attacks presented
in Section 8.4.2 and Section 8.4.4. In both cases, the exploit leverages the dynamic
loader in order to call the execve function from glibc to launch an executable of
our choice.
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void *p, *a;
p = purple_proxy_get_setup (0);
purple_proxy_info_set_host(p, "legit.com");
purple_proxy_info_set_port(p, 8080);
purple_proxy_info_set_type(p, PURPLE_PROXY_HTTP );

a = purple_accounts_find("usr@xmpp", "prpl -xmpp");
purple_account_disconnect(a);
purple_account_connect(a);

Listing 8.2: The Pidgin attack.

8.6.4 Case Study: Pidgin

We also applied leakless to Pidgin, a popular multi-protocol instant-messaging
client, to build a more sophisticated exploit. Specifically, we wanted to perform a
malicious operation without calling any anomalous system call which could trigger
intrusion detection systems (e.g., execve("/bin/sh")). We used Pidgin 2.10.7,
building it from the official sources with RELRO enabled and targeting the x86
architecture.

To this end, we crafted an exploit designed to masquerade itself in legitimate
functionality present in the application logic: tunneling connections through a
proxy. The idea of the attack is that an IM service provider exploits a vulnerability
such as CVE-2013-6487 [41] to gain code execution, and, using Pidgin’s global
proxy settings, redirects all IM traffic through a third-party server to enable chat
interception.

Once we identified the necessary gadgets to use leakless with full RELRO
protection, it was easy to invoke functions contained in libpurple.so (where the
core of the application logic resides) to perform the equivalent of the C code shown
in Listing 8.2.

Interestingly, some of this library-provided functionality is not imported into
the Pidgin executable itself, and would be very challenging to accomplish in a
single-stage payload, without leakless.

8.6.5 ROP Chain Size Comparison

To prove the effectiveness of the leakless approach, we compared it with two
existing techniques that allow an attacker to call arbitrary library functions. The
first consists in scanning a library backwards, starting from an address in the
.plt.got section, until the ELF header is found, and then scan forward to find a
fingerprint of the function the attacker wants to invoke. This approach is feasible,
but not very reliable, since different versions (or implementations) of a library
might not be uniquely identified with a single fingerprint. The second technique is
more reliable, since it implements the full symbol resolution process, as it is carried
out by the dynamic loader.
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Technique First call Subsequent Feasibility

ROPC - scan library 3468 bytes +340 bytes 16.38%

ROPC - symbol resolution 7964 bytes +580 bytes 8.67%

leakless partial RELRO 648 bytes +84 bytes 73.78%

leakless full RELRO 2876 bytes +84 bytes 17.44%

leakless* partial RELRO 292 bytes +48 bytes 95.24%

leakless* full RELRO 448 bytes +48 bytes 88.9%

Table 8.3: Size of the ROP chains generated by ROPC for each technique presented
in Section 8.6.5, and by leakless’ manual back-end (*). The second column rep-
resents the size in bytes for the setup and the first call, while the third column
shows the additional cost (in bytes) for each subsequent call. Finally, the fourth
column indicates the percentage of vulnerabilities used in Metasploit that would
be feasible to exploit with a ROP chain of the First call size.

We implemented these two approaches using a Turing-complete ROP compiler
for x86, based on Q [133], called ROPC [86]. We compare these approaches against
that of leakless’ ROPC back-end, in partial RELRO and full RELRO modes.
For completeness, we also include the leakless’ manual back-end, with gadgets
specified by the user.

In fact, the size of a ROP payload is critical, vulnerabilities often involve an im-
plicit limit on the size of the payload that can be injected into a program. To mea-
sure the impact of leakless’ ROP chain size, we collected the size limits imposed
on payloads of all the vulnerability descriptions included in the Metasploit Frame-
work [126], a turn-key solution for launching exploits against known vulnerabilities
in various software. We found that 946 of the 1,303 vulnerability specifications
included a maximum payload size, with an average specified maximum payload
size of 1332 bytes. To demonstrate the increase in the feasibility of automatically
generating complex exploits, we include, for each evaluated technique, the percent-
age of Metasploit vulnerabilities for which the technique can automatically produce
short enough ROP chains.

The results, in terms of length of the ROP chain generated for ROPC’s test
binaries and feasibility against the vulnerabilities used in Metasploit, are shown
in Table 8.3. leakless outperforms existing techniques, not only in the absolute
size of the ROP chain to perform the initial call, but also in the cost of perform-
ing each additional call, which is useful in a sophisticated attack such as the one
demonstrated in Section 8.6.4.

8.7 Discussion

In this section, we will discuss several aspects relating to leakless: why the capa-
bilities that it provides to attackers are valuable, when it is most applicable, what
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its limitations are, and what can be done to mitigate against them.

8.7.1 leakless Applications
leakless represents a powerful tool in the arsenal of exploit developers, aiding
them in three main areas: functionality reuse, one-shot exploitation, and ROP
chains shortening.

One-shot exploitation. While almost any exploit can be simplified by leakless,
we have designed it with the goal of enabling exploits that, without it, require an
information disclosure vulnerability, but for which an information disclosure is not
feasible or desirable. A large class of programs that fall under this category are file
format parsers.

Code that parses file formats is extremely complex and, due to the complex,
untrusted input that is involved, this code is prone to memory corruption vulnera-
bilities. There are many examples of this: the image parsing library libpng had 27
CVE entries over the last decade [37], and libtiff had 53 [38]. Parsers of complex
formats suffer even more: the multimedia library ffmpeg has accumulated 170 CVE
entries over the last five years alone [36]. This class of libraries is not limited to
multimedia. Wireshark, a network packet analyzer, has 285 CVE entries, most of
which are vulnerabilities in network protocol analysis plugins [39].

These libraries, and others like them, are often used offline. The user might
first download a media or PCAP file, and then parse it with the library. At the
point where the vulnerability triggers, an attacker cannot count on having a direct
connection to the victim to receive an information disclosure and send additional
payloads. Furthermore, most of these formats are passive, meaning that (unlike,
say, PDF), they cannot include scripts that the attacker can use to simulate a
two-step exploitation. As a result, even though these libraries might be vulnerable,
exploits for them are either extremely complex, unreliable, or completely infeasible.
By avoiding the information disclosure step, leaklessmakes these exploits simpler,
reliable, and feasible.

Functionality reuse. leakless empowers attackers to call arbitrary functions
from libraries loaded by the vulnerable application. In fact, the vulnerable applica-
tion does not have to actually import this function; it just needs to link against the
library (i.e., call any other function in the library). This is brings several benefits.

To begin with, the C Standard Library, which is linked against by most ap-
plications, includes functions that wrap almost every system call (e.g., read(),
execve(), and so on). This means that leakless can be used to perform any
system call, in a short ROP chain, even without a system call gadget.

Moreover, as demonstrated in Section 8.6.4, leakless enables easy reuse of
existing functionality present in the application logic. This is important for two
reasons.

First, this helps an attacker perform stealthy attacks by making it easier to
masquerade an exploit as something the application might normally do. This can
be crucial when a standard exploitation path is made infeasible by the presence of
protection mechanisms such as seccomp [9], AppArmor [2], or SELinux [103].

Second, depending on the goals of the attacker, reusing program functionality
may be better than simply executing arbitrary commands. Aside from the attack
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discussed in our Pidgin case study, an attacker can, for example, silently enable
insecure cipher-suites, or versions of SSL, in the Firefox web browser with a single
function call to SSL_CipherPrefSetDefault [102].

Shorter ROP chains. As demonstrated in Section 8.6.5, leakless produces
shorter ROP chains than existing techniques. In fact, in many cases, leakless
is able to produce ROP chains less than one kilobyte that lead to the execution
of arbitrary functions. As many vulnerabilities have a limit as to the maximum
size of the input that they will accept, this is an important result. For example,
the vulnerability that we exploited in our Pidgin case study allowed a maximum
ROP chain of one kilobyte. Whereas normal ROP compilation techniques would
be unable to create automatic payloads for this vulnerability, leakless was able to
call arbitrary functions via an automatically-produced ROP chain that remained
within the length limit.

8.7.2 Limitations

leakless’ biggest limitation is the inability to handle Position Independent Exe-
cutables (PIEs) without a prior information disclosure. This is a general problem
to any technique that uses ROP, as the absolute addresses of gadgets must be
provided in the ROP chain. Additionally, without the base address of the binary,
leakless would be unable to locate the dynamic loader structures that it needs to
corrupt.

When presented with a PIE executable, leakless requires the attacker to pro-
vide the application’s base address, which is presumably acquired via an informa-
tion disclosure vulnerability (or, for example, by applying the technique presented
in BROP [17]). While this breaks leakless’ ability to operate without an informa-
tion disclosure, leakless is likely still the most convenient way to achieve exploita-
tion, as no library locations or library contents have to be leaked. Additionally,
depending on the situation, the disclosure of just the address of the binary might
be more feasible than the disclosure of the contents of an entire library. Unlike
other techniques, which may need the latter, leakless only requires the former.

In practice, PIEs are uncommon due to the associated cost in terms of perfor-
mance. Specifically, measurements have shown that PIE overhead on x86 processors
averages at 10%, while the overhead on x86-64 processors, thanks to instruction-
pointer-relative addressing, averages at 3.6% [117].

Because of the overhead associated with PIE, most distributions ship with PIE
enabled only for those applications deemed “risky”. For example, according to
their documentation, Ubuntu ships only 27 of their officially supported packages
(i.e., packages in the “main” repository) with PIE enabled, out of over 27,000
packages [155]. As shown in Section 8.6.1, PIE executables comprise a minority of
the executables on all of the systems that we surveyed.

8.7.3 Countermeasures

There are several measures that can be taken against leakless, but they all have
drawbacks. In this sections we analyze the most relevant ones.
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Position Independent Executables. A quick countermeasure is to make
every executable on the system position independent. While this would block
leakless’s automatic operation (as discussed in Section 8.7.2), it would still allow
the application of the leakless technique when any information disclosure does
occur. For that reason, and the performance overhead associated with PIE, we
consider the other countermeasures described in this section to be better solutions
to the problem.

Disabling lazy loading. When the LD_BIND_NOW environment variable is set,
the dynamic loader will completely disable lazy loading. That is, all imports, for the
program binary and any library it depends on, are resolved upon program startup.
As a side-effect of this, the address of _dl_runtime_resolve does not get loaded
into the GOT of any library, and leakless cannot function. This is equivalent to
enable full RELRO on the whole system, and consequently, it incurs in the same,
non-negligible, performance overhead.

Disabling DT_DEBUG. Finally, leakless also uses the DT_DEBUG dynamic
entry, used by debuggers for intercepting loading-related events, to bypass full
RELRO. Currently, this field is always initialized, opening the doors for leakless’
full RELRO bypass. To close this hole, the dynamic loader could be modified
to only initialize this value when a debugger is present or in the presence of an
explicitly-set environment variable.

Better protection of loader control structures. leakless heavily relies
on the fact that dynamic loader control structures are easily accessible in memory,
and their locations are well-known. It would be beneficial for these structures to
be better protected, or hidden in memory, instead of being loaded at a known
location. For example, as shown in [120], these structures, along with any sections
that provide control data for symbol resolution, could be marked as read-only after
initialization. Such a development would eliminate leakless’ ability to corrupt
these structures and would prevent the attack from redirecting the control flow to
sensitive functions.

Additionally, modifying the loading procedure to use a table of link_map struc-
ture, and letting _dl_runtime_resolve take an index in this table, instead of a
direct pointer, will break leakless’ bypass of full RELRO. However, this change
would also break compatibility with any binaries compiled before the change is
implemented.

Isolation of the dynamic loader. Isolating the dynamic loader from the
address space of the target program could be an effective countermeasure. For
instance, on Nokia’s Symbian OS, which has a micro-kernel, the dynamic loader
is implemented in a separate process as a system server which interfaces with the
kernel[111]. This guarantees that the control structures of the dynamic loader
cannot be corrupted by the program, and, therefore, this makes leakless virtually
ineffective. However, such a countermeasure would have a considerable impact on
the overall performance of applications due to the overhead of IPC (Inter-Process
Communication).

In general, the mitigations either represent a runtime performance overhead
(PIE or loader isolation), a load-time performance overhead (non-lazy loading and
system-wide RELRO), or a modification of the loading process (DT_DEBUG disabling
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or loader control structure hiding). In the long run, we believe that a redesign
of the dynamic loader, with security in mind, would be extremely beneficial to
the community. In the short term, there are options available to protect against
leakless, but they all come with a performance cost.

8.8 Conclusion
In this paper, we presented leakless, a new technique that leverages functionality
provided by the dynamic loader to enable attackers to use arbitrary, security-
critical library functions in their exploits, without having to know where in the
application’s memory these functions are located. This capability allows exploits
that, previously, required an information disclosure step to function.

Since leakless leverages features mandated in the ELF binary format speci-
fication, the attacks it implements are applicable across architectures, operating
systems, and dynamic loader implementations. Additionally, we showed how our
technique can be used to bypass hardening schemes such as RELRO, which are
designed to protect important control structures used in the dynamic resolution
process. Finally, we proposed several countermeasures against leakless, discussing
the advantages and disadvantages of each one.





Conclusions

In this work, we focused on the design and implementation of binary analysis
techniques that are general enough to be applicable to a large set of different
instruction sets and ABIs. There’s virtually no limit on the tools that can be built
on top of this platform.

The next step is to improve the performance of the generated code (Section 2.4)
and assess the quality of the argument and return value detection algorithm pro-
posed in Chapter 5.

In the future, our plan is to build an UI for rev.ng providing fine grained
and accurate information about the code, featuring symbolic execution (thanks to
KLEE [21]), a timeless debugger similar to QIRA [73], a fuzzer for binary programs
integrated with AFL [90], and most importantly a decompiler emitting C code that
can be modified and able to apply the changes in the original binary.

Before getting there it’s vital to develop an accurate algorithm to recover high-
level control constructs (such as if statements and while loops), an undergoing
effort based on existing work [167]. This, along with detection of local variables,
which can be obtained as a side effect of the stack analysis (Section 5.2.2), will
allows us to build a full-fledged interactive decompiler able to handle many archi-
tectures with ease.
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Appendix A

Symbol Versioning Challenges

In Section 8.3.4 we introduced the concept of symbol versioning, and in Section 8.4.2
we mentioned that its usage introduces additional constraints in the value that
Elf_Rel.r_info can assume. In this Appendix we illustrate these constraints, and
how leakless can automatically verify and satisfy them.

A.1 Constraints due to Symbol Versioning

In presence of symbol versioning, the Elf_Rel.r_info field is used both as an index
into the dynamic symbol table and as an index in the symbol version table (the
.gnu.version section), which is composed by Elf_Verneed values. An Elf_Verneed
value of zero or one has a special meaning, and stops the processing of the symbol
version, which is a desirable situation for the attacker.

To understand the constraints posed by this, we introduce some definitions and
naming conventions. idx is the index in Elf_Rel.r_info that leakless has com-
puted, baseof(x) is the function returning the base address of section x, sizeof(y)
is the function returning the size in bytes of structure y, and ∗ is the pointer
dereference operator. We define the following variables:

sym = baseof(.dynsym) + idx · sizeof(Elf_Sym)
ver = baseof(.gnu.version) + idx · sizeof(Elf_Verneed)

verdef = baseof(.gnu.version_r) + ∗ (ver) · sizeof(Elf_Verdef)

To be able to carry on the attack, the following conditions must hold:

1. sym points to a memory area controlled by the attacker, and

2. one of the following holds:

(a) ver points to a memory area containing a zero or a one, or

(b) ver points to a memory area controlled by the attacker, which will write
a zero value there, or

169



170 APPENDIX A. SYMBOL VERSIONING CHALLENGES

(c) verdef points to a memory area controlled by the attacker, which will
place there an appropriately crafted Elf_Verdef structure.

All the other options result in an access to an unmapped memory area or the failure
of the symbol resolution process, both of which result in program termination.

leakless is able to satisfy these constraints automatically in most cases. The
typical successful situation results in an idx value that points to a version index with
value zero or one in the .text section (which usually comes after .gnu.version)
and to a symbol in the .data or .bss section. A notable exception, where this is
impossible to achieve, is in the case of small x86-64 ELF binaries compiled with
the support of huge pages [127]. Using huge pages means that memory pages are
aligned to boundaries of 2 MiB and, therefore, the segment containing the read-
only sections (in particular, .gnu.version and .text) is quite far from the writeable
segment (containing .bss and .data). This makes it hard to find a good value for
idx.

A.2 The Huge Page Issue

The effect of huge pages can be seen in the following examples:

$ readelf --wide -l elf -without -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x006468 R E 0x1000
LOAD 0x00407480 0x0005d0 RW 0x1000
...

$ readelf --wide -l elf -with -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x00610c R E 0x200000
LOAD 0x00606e10 0x0005d0 RW 0x200000
...

While in the first case the distance between the beginning of the executable and
the writeable segments is in the order of the kilobytes, with huge pages is more
than 2 MiB, and a valid value for idx cannot be found.

There are two ways to resolve the problems posed to leakless by small 64-bit
binaries.

The first option is to find a zero value for Elf_Verneed in the read-only seg-
ment (usually .text). Given ro_start, ro_end and ro_size, as the start and end
virtual addresses and the size of the read-only segment respectively, and rw_start,
rw_end and rw_size as the respective values for the writeable segment, the fol-
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lowing must hold:
ro_start ≤ ver < ro_end
rw_start ≤ sym < rw_end

Here, the most difficult case to satisfy is if .dynsym or .gnu.version start at
ro_start. If we assume that both hold true, we can write the following:

idx · sizeof(Elf_Verneed) < ro_end− ro_start
idx · sizeof (Elf_Sym) ≥ rw_start− ro_start

Or, alternatively:

idx · sizeof(Elf_Verneed) < ro_size
idx · sizeof (Elf_Sym) ≥ 2 MiB

Knowing that Elf_Verneed and Elf_Sym have, respectively, a size of 2 and 24
bytes for 64 bit ELFs, we can compute the minimum value of ro_size to make this
system of inequalities satisfiable. The result is 170.7KiB. If the .rodata section is
smaller than this size, an alternative method must be used.

The second option is to position Elf_Verneed in the writeable segment. In
this case, the attack requirements can be described by the following system of
inequalities:

rw_start ≤ ver < rw_end
rw_start ≤ sym < rw_end

If we, once again, consider the most stringent constraints and apply the previ-
ously mentioned assumptions, we get the following:

idx · sizeof(Elf_Verneed) ≥ rw_start− ro_start
idx · sizeof (Elf_Sym) < rw_start− ro_start+

+rw_size

Or, alternatively:

idx · sizeof(Elf_Verneed) ≥ 2 MiB
idx · sizeof (Elf_Sym) < 2 MiB+ rw_size

We can now put a lower bound on the size of the writeable segment (rw_size)
to make the system satisfiable: 22MiB. However, this is unreasonably large, and
leads us to the conclusion that this approach is not viable with small 64 bit ELF
binaries that use huge pages.





Appendix B

Dal Vangelo secondo LLVM

Fratelli, leggiamo ora un FunctionPass dal vangelo secondo LLVM, file SROA.cpp,
versetto 18, colonna 72.

In quei tempi, i frontend farisei insozzavano il codice riempiendo le funzioni di
alloca. La forma SSA era diventata una pura formalita’ e variabili promiscue veni-
vano assegnate da piu’ statement in ogni dove. opt entro’ nel tempio dell’intermedio
e, fatta una frusta riarrotolando loop dal corpo troppo lungo, inizio’ a scacciare
le alloca, inveendo contro di esse dicendo dati di poca fede! lasciate che sia la
regalloc a decidere cosa riguarda il Sacro Regno dei registri e cosa verra’ condan-
nato a essere gettato nel profondo dello stack!. Ridotto il suo workload, prima di
uscire dal tempio, opt disse: Io sono il figlio di GCC, il quale ci ha fatti a sua
immagine ELF e ABI-compatible, ma oggi, io vi porto la buona novella: se rispet-
terete la forma SSA, vivrete anche dopo la DCE. Al che, ld.gold, il piu’ fedele della
toolchain, gli disse: Branch master, mettimi alla prova, sono pronto a rinnegare
il mondo GNU e a seguirti su qualsiasi architettura. opt tacque, e poi emise un
warning: in testing, in testing ti dico: prima che buildbot finisca di compilare la
nightly, tu rinnegherai le 3 clausole BSD. ld.gold non seppe come risolvere i sim-
boli generati da opt, e si rattristo’. Infatti, egli ancora non sapeva che solo un
nuovo shared object poteva riempire i collegamenti mancanti. Si trattava del mis-
tero della trinita’ del plugin LTO: il compilatore, l’assembler figlio suo e il linker
santo, in una sola entita’.
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