
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

PH.D. PROGRAM IN INFORMATION TECHNOLOGY

DISCREPANCY ANALYSIS:
A METHODOLOGY FOR AUTOMATED

BUG DETECTION IN HARDWARE DESIGNS

GENERATED WITH HIGH-LEVEL SYNTHESIS

Doctoral Dissertation of:
Pietro Fezzardi

Supervisor:
Prof. Fabrizio Ferrandi

Tutor:
Prof. Cristiana Bolchini

The Chair of the Doctoral Program:
Prof. Andrea Bonarini

XXX cycle

Abstract

This thesis describes the definition, implementation, and evaluation of a method-
ology for automated bug detection, called Discrepancy Analysis, targeted at hard-
ware designs generated with High-Level Synthesis. Discrepancy Analysis is based
on a notion of equivalence between the execution of the hardware generated with
High-Level Synthesis and the execution of the software obtained from the origi-
nal high-level source code used to generate that hardware. Using this notion of
equivalence, the thesis describes how to compare automatically the two execu-
tions, and how to detect and isolate the first mismatch if present. All these op-
erations are executed without human interaction, relieving users from the time-
consuming and error-prone tasks to select the necessary signals for debugging,
analyzing the signal traces to identify the malfunction, and backtracking it to the
original high-level source code.

The methodology is tightly integrated with the High-Level Synthesis process.
As a consequence, it supports all compiler optimizations available during High-
Level Synthesis. This coupling with the High-Level Synthesis tool also allows to
automatically select in the generated designs the signals necessary for automated
bug detection. Despite the tight coupling with the High-Level Synthesis tool, the
discussion is kept as general as possible and only relies on common features that
are present in all the known commercial and academic tools. The thesis also de-
scribes two extensions of Discrepancy Analysis: one to support automated bug de-
tection in hardware generated with High-Level Synthesis of multithreaded code;
one to support automated bug detection on pointers and memory accesses.

Two bug detection flows based on Discrepancy Analysis are presented. The
first is based on simulation of the hardware at the Register Transfer Level and
performs the automated bug detection process offline after execution. The second
flow is for on-chip bug detection. The generated hardware is instrumented with
dedicated checker components, that analyze the execution on the fly, halting the
circuit if a mismatch occurs and notifying it to users. Both the debug flows have
been implemented and tested with BAMBU, an open source research framework
for High-Level Synthesis developed at Politecnico di Milano.

The results have been evaluated in terms of performance, coverage, and other
advantages brought to the overall debugging experience, like the considerable
reduction of the size of the waveforms files that can be achieved with a heuristic
for automated signal selection. This evaluation showed Discrepancy Analysis to be
fast, accurate, and effective in identifying several different classes of bugs, com-
ing from the original high-level code, from external libraries of components, and
even subtle bugs injected by the High-Level Synthesis tool itself. A thorough and
extensive analysis of these classes of bugs has been carried on, both on the base-
line version and on the presented extensions for multithreaded code, for pointers,
and for on-chip debugging. The technique used to compress the execution traces
for On-Chip Discrepancy Analysis, based on Efficient Path Profiling, also showed
reductions of the memory consumption necessary for on-chip debugging up to
95% compared to previous state-of-the-art.

i

Part of the material contained in this work has been previously published in in-
ternational peer-reviewed conferences and journals:

◦ P. Fezzardi, M. Castellana, and F. Ferrandi. Trace-based Automated Logical
Debugging for High-Level Synthesis Generated Circuits. In 2015 33rd IEEE
International Conference on Computer Design (ICCD), pages 251–258, Oct 2015

◦ P. Fezzardi and F. Ferrandi. Automated Bug Detection for Pointers and Mem-
ory Accesses in High-Level Synthesis Compilers. In 2016 26th International
Conference on Field Programmable Logic and Applications (FPL), Aug 2016

◦ P. Fezzardi, M. Lattuada, and F. Ferrandi. Using Efficient Path Profiling
to Optimize Memory Consumption of On-Chip Debugging for High-Level
Synthesis. ACM Transactions on Embedded Computing Systems, 16(5s):149:1–
149:19, Sept. 2017

ii

Contents

Abstract i

Contents iii

1 Introduction 1

I BACKGROUND 7

2 High-Level Synthesis (HLS) 11

2.1 Introduction to High-Level Synthesis 11

2.2 Memory Allocation and Hardware Synthesis of C Pointers 17

2.3 High-Level Synthesis of Multi-Threaded Programs 19

3 State of the Art of Debugging Methodologies for HLS 23

3.1 Concepts of Hardware Debugging . 23

3.2 Challenges in Debugging Hardware Generated with HLS 25

3.3 Debugging Methodologies for High-Level Synthesis 27

II METHODOLOGY 33

4 Problem Statement and Goals 37

4.1 Description of the Problem . 37

4.2 Fundamental Ideas of the Approach 37

4.3 Objectives, Goals, and Features . 38

4.4 Detected Classes of Bugs . 39

5 Equivalence Between Hardware and Software Execution 43

5.1 Control Flow Level . 43

5.2 Operation Level . 45

5.3 Hardware/Software Equivalence . 47

5.4 A Generic Workflow for Discrepancy Analysis 48

6 Discrepancy Analysis: Two Different Flows 51

6.1 Reference Implementation . 51

6.2 Simulation-Based Offline Discrepancy Analysis 52

6.3 On-Chip Online Discrepancy Analysis 53

7 Simulation-Based Offline Discrepancy Analysis 57

7.1 Generating and Collecting Execution Traces 57

7.2 Comparing Execution Traces with Finite State Automata 59

7.3 Debugging Circuits Generated from Multithreaded Programs 64

iii

8 Debugging Pointers and Memory Accesses 69
8.1 Address Space Translation Scheme . 69
8.2 Address Discrepancy Algorithm . 71
8.3 Refining Address Discrepancy Analysis 72

9 On-Chip Online Discrepancy Analysis of Control Flow 75
9.1 Motivation . 75
9.2 Efficient Path Profiling for Software 76
9.3 Efficient Path Profiling for High-Level Synthesis 79
9.4 Optimization of Memory Usage . 82
9.5 Architecture of the Control Flow Checkers 83

III EXPERIMENTAL RESULTS 87

10 Experimental Setup 91
10.1 Integration with High-Level Synthesis 91
10.2 Experiments and Benchmarks . 92

11 Detected Bugs 99
11.1 Bugs Detected with Simulation . 99
11.2 Bugs Involving Addresses . 101
11.3 Bugs in Multi-Threaded Programs . 102
11.4 Bugs Detected On-Chip . 103

12 Simulation-Based Discrepancy Analysis 107
12.1 Baseline . 107
12.2 Multi-Threaded . 115
12.3 Address Discrepancy Analysis . 118

13 On-Chip Discrepancy Analysis 125
13.1 Memory Usage . 125
13.2 Overhead of the Tracing Logic . 127
13.3 Limitations of the Proposed Approach 129

14 Conclusion and Future Research 131

INDICES I

List of Figures III

List of Tables V

List of Algorithms VII

Bibliography IX

iv

1
Introduction

Field Programmable Gate Arrays (FPGA) are steadily becoming more appealing
in computing. They provide reconfigurability and flexibility similar to software
solutions while guaranteeing low power consumption and massive physical par-
allelism close to what is possible with Application Specific Integrated Circuits
(ASIC). These characteristics are very promising in the current general struggle
to find new computational paradigms that can cope with the end of Moore’s Law.
For these reasons, FPGAs are not under investigation just for prototyping, but
they are increasingly used in datacenters [70], High-Performance Computing and
irregular parallel applications [55] [56].

One of the main obstacles to the mainstream adoptions of such devices is that
the set of skills and competencies necessary to program them effectively is very
broad. Skilled digital circuits designers are harder to find on the market than
software engineers, and the development of a dedicated digital circuit to exe-
cute a given task usually requires considerably more time than a software im-
plementation of the same functionality. FPGAs are traditionally programmed
using so called Hardware Description Languages (HDL), that allow designers
to describe specifically every component of the digital electronics that compose
the system. For their nature, these languages are very tightly related to the un-
derlying devices and electronics, forcing designers to focus at the same time on
the low-level details of the electronics and on the high-level algorithmic level of
their implementations. This close relationship with the underlying hardware also
means that the same HDL design cannot be easily ported from an FPGA device
to another, without significant adaptation to the new characteristics of the board.
These three components – scarceness of skilled engineers, languages that place
multiple heavy responsibilities on the shoulders of designers, and lack of porta-
bility of hardware designs – clearly represent a scalability problem that has to be
overcome to enable FPGA computing to really go mainstream.

In recent years, a promising approach in this field that has received much at-
tention is High-Level Synthesis (HLS). The main insight behind High-Level Syn-
thesis is that the key to removing all the obstacles to FPGA design is to use a
high-level software programming language, instead of HDL, as a starting point
for hardware synthesis. With this approach software engineers could start pro-
gramming FPGAs, ignoring the details of the underlying electronic designs to fo-
cus on algorithms, while at the same time creating designs that are easily portable
on new devices. Today, many different academic and commercial tools are able to
generate HDL design starting from a variety of programming languages: C, C++,
Java, Python, Haskell, Erlang, and many others. However, the most common and
well supported by FPGA vendors are C and C++. These languages are high-level

1

Chapter 1. Introduction

compared to HDL and allow designers to write portable code, while still giving
programmers the capability to control low-level details that might be relevant in
hardware. Moreover, C and C++ are the basis of a large number of standard li-
braries and programming language extension for HPC and multithreading, like
POSIX threads (pthreads), OpenMP, OpenCL, and CUDA. Commercial HLS
tools and academic projects often provide support for High-Level Synthesis start-
ing from these multi-threaded language extensions, providing programmers with
familiar tools to easily exploit the massive physical parallelism available on FP-
GAs. These solutions are also seen as a promising trend to provide well-known
programming paradigms for FPGAs in the cloud.

However, for a programming paradigm to succeed, there is more to be taken
care of besides the programming language. One of the fundamental aspects that
will determine the success or the failure of High-Level Synthesis in the long term
is the ecosystem of development and verification tools that will be built around
it. Indeed, in hardware design, testing and verification typically constitute a sig-
nificant portion of the whole effort for a project. Another important factor is
the support for the integration of multiple components in System-on-Chip (SoC)
design. These components can be either generated with HLS, hand-written by
designers, or provided as Intellectual Property (IP) blocks by third-parties. Ac-
cording to ITRS prediction [1] future SoC architectures will be characterized by
heavy reuse (more than 90% by 2020) of IP blocks for reducing design cost and
time-to-market. To increase productivity and tackle design complexity, design-
ers will need to raise the abstraction level and use Electronic System Level (ESL)
methodologies based on High-Level Synthesis to automatically generate and in-
tegrate the IP descriptions in a suitable HDL design [51]. This will result in a pro-
liferation of IP vendors specialized in the optimization of specific functionalities,
while system designers will focus on the integration of the different components,
posing new threats for the design and verification of complex architectures. At
the same time HLS compilers are growing in complexity, adding more optimiza-
tions passes to generate more efficient accelerators in term of frequency, area, or
power consumption. This complexity is hidden to users and managed by the
tools, but it can become a real burden during testing, debugging and verification.
Given that in SoC design up to more than 50% of the overall time can be spent on
verification [3], the risk is that the speedup HLS gives to development could be
negatively compensated by a slowdown in testing and debugging. HDL gener-
ated by HLS is not intended to be human-friendly, because that is not the purpose
of HLS. This may become a problem if the HLS users are software engineers with
little previous exposure to HDL and to hardware design.

In order to avoid this risk, or even to improve the testing and debugging ex-
perience as much as the development phase has been improved, it is critical for
High-Level Synthesis tools to integrate techniques and workflows to also manage
verification. In particular, the tools need to keep track of the additional complex-
ity introduced and managed by HLS during the design stage, in order to be able
to reason about it later during verification, helping users to unravel the details of
what went wrong in case of bugs. In this way, it is possible to extend the support
that these tools give to the designers beyond implementation phase, up to the
testing, debugging and verification steps.

This thesis focuses on one of the several facets of hardware testing and verifi-

2

cation: bug detection and isolation. Some of the main challenges that need to be
faced in this area are the following:

1. manage complexity on behalf of users;

2. help and guide users in bug detection and isolation;

3. identify relevant signals in hardware and backtrack bugs to high-level code;

4. handle compiler optimizations and bugs introduced by HLS optimizations;

5. handle different hardware/software memory architectures and mappings;

6. handle HLS of multithreaded code;

7. handle integration of external components.

Points 1, 2, 3, and 4 represent the main obstacles users initially face when start-
ing to debug circuits generated with High-Level Synthesis. The designs gener-
ated with HLS are often cryptic and hard to interpret especially if the compiler
performed optimizations. Hence, users need help to understand how the original
source code was mapped to hardware, what are the relevant signals, and what de-
cisions were taken by the HLS tool during the process. Points 4, 5, and 6 involve
some of the most delicate tasks of High-Level Synthesis compilers. It is somehow
natural to expect from a debugging environment for HLS to be able to handle
these scenarios and manage them from the users also during bug detection. After
all, it is only the tool that knows exactly which kind of optimizations, memory
mapping and thread mapping were encoded in the generated hardware. Finally,
points 6 and 7 are necessary because they represent the direction where the in-
dustry is headed in the field of HLS. For these reasons, it is necessary to design
bug detection methodologies in order to provide a good development experience
for the upcoming design scenarios.

The subject of this thesis is a methodology for automated bug detection and
identification in digital circuit designs generated with High-Level Synthesis for
FPGAs. The technique is called Discrepancy Analysis and it is founded upon a def-
inition of equivalence between the execution of the hardware generated with HLS
and the software obtained from the same original source code. When the same
input is provided to these two artifacts, the behavior of the hardware must be
equivalent to the original specification. Discrepancy Analysis performs this com-
parison automatically, without user interaction, and at two levels of abstraction:
Control Flow, and Data Flow. These two levels represent the two fundamental
ways hardware and software execution can differ. The fine-grained checks can
inspect every single operation, providing visibility onto temporary variables in-
serted by the compiler for optimizations. The automated bug detection algorithm
is able to detect the first mismatch between hardware and software execution,
providing to the users all the information available to HLS on the involved sig-
nals and high-level variables. This masks the complexity while giving back to
users only the useful information improving the debugging experience. The ap-
proach is designed to use HLS information to support all the available compiler
optimizations, different memory architectures, as well as multi-threaded code.
The thesis defines the methodology from the ground up, starting with the defini-
tion of equivalence between hardware and software executions, and extending it

3

Chapter 1. Introduction

to support multi-threaded code and C pointers. It also describes the implemen-
tation of two separate flows for automated bug detection based on Discrepancy
Analysis: Simulation-Based Offline Discrepancy Analysis and On-Chip Online Dis-
crepancy Analysis. These two flows show the adaptability of the approach to dif-
ferent scenarios and use cases. Both the implementations have been extensively
tested, showing the effectiveness of the techniques in finding and isolating differ-
ent kinds of bugs: faults coming from user code, bugs in third-party IPs, errors
due to a wrong implementation of compiler optimizations. This showed that the
approach can be very useful both for developers of High-Level Synthesis tools
and for designers using HLS for their work.

The rest of the thesis is divided into three parts: Part I provides the necessary
background concepts and a review of the state-of-the-art; Part II completely in-
troduces Discrepancy Analysis, the methodology proposed in the thesis; Part III
analyzes and discusses the results obtained evaluating Discrepancy Analysis in
a variety of scenarios, ranging from single-threaded to parallel code, and from
simulation-based to on-chip bug detection.

Part I is divided into two chapters. Chapter 2 introduces the fundamental con-
cepts behind High-Level Synthesis and some of its aspects that are more interest-
ing for this work: hardware synthesis of C pointers, and High-Level Synthesis of
multi-threaded programs. Chapter 3, describes the main challenges of debugging
hardware generated with High-Level Synthesis, and provides an overview of the
state-of-the-art techniques that try to solve this problem.

Part II defines from the ground up the methodology that is the core of the
thesis: Discrepancy Analysis. Chapter 4 describes the problems that Discrepancy
Analysis is set to solve, sketching the main ideas, goals, and features. Chapter 5
introduces the concept of equivalence between hardware and software executions
on a given input, which is at the foundation of Discrepancy Analysis. Chapter 6
describes two different flows for automated bug detection with Discrepancy Anal-
ysis: one based on simulation for offline bug detection, the other for online bug
detection directly on-chip. Chapter 7 describes the first flow, based on simula-
tion, describing how to collect and compare execution traces from hardware and
software. It also extends the approach to enable automated bug detection on
hardware generated with High-Level Synthesis from multi-threaded programs.
Chapter 8 further extends the flow, explaining how to resolve the intrinsic differ-
ence between hardware and software memory architectures and address spaces,
to handle bugs involving pointers and memory accesses. Finally, Chapter 9 de-
scribes how to use and adapt a profiling technique called Efficient Path Profiling
to bring Discrepancy Analysis on-chip for online bug detection. The chapter also
describes the architecture of the components that are embedded in the generated
designs to perform the checks.

Part III provides data about the experimental evaluation of Discrepancy Analy-
sis in its different flavors. Chapter 10 describes how the methodology proposed in
Part II has been implemented and integrated into a Free and Open Source High-
Level Synthesis, and the set of benchmarks and tools that have been used to eval-
uate it. Chapter 11 lists the different classes of bugs that the proposed method-
ology can catch in different scenarios, providing some practical examples. Chap-
ter 12 reports and discusses results obtained with the Offline Simulation-Based Dis-
crepancy Analysis, both on the baseline version, on the extension to multi-threaded

4

programs, and on the extension to pointers and memory accesses. Chapter 13,
instead, describes the evaluation of the Online On-Chip Discrepancy Analysis. Fi-
nally, Chapter 14 summarizes the results, highlighting the main advantages of
the approach and outlining possible new directions of investigation.

5

Chapter 1. Introduction

6

PART I

BACKGROUND

7

8

This part provides the necessary introduction to the elementary concepts at the foun-
dations of the work presented in the rest of the thesis.

Chapter 2 introduces High-Level Synthesis, initially describing the process as a whole,
then focusing on some of its aspects that are relevant for this work.

Chapter 3 discusses the state-of-the-art in the field of debugging methodologies for
High-Level Synthesis, pointing out what are the main challenges that the High-Level
Synthesis poses in addition to traditional hardware debugging.

9

10

2
High-Level Synthesis (HLS)

High-Level Synthesis (HLS), sometimes also referred as behavioral synthesis, is an
automated design process for digital electronics that starts from an algorithmic
description expressed in a high-level programming language. The main topic of
this thesis is a methodology for automated bug detection for circuits generated
with HLS. This chapter describes some of the concepts behind High-Level Syn-
thesis that will be used throughout the rest of the work. Section 2.1 outlines the
fundamental steps and operations involved in the HLS process, introducing con-
cepts that will be used in Chapter 5 to define the equivalence between hardware
and software execution. Section 2.2 describes the hardware synthesis of C point-
ers, that will be necessary to extend the proposed methodology to pointers and
addresses, like explained in Chapter 8. Section 2.3 discusses methodologies for
the generation of parallel hardware designs starting from multi-threaded specifi-
cations, that will be used to understand how the Discrepancy Analysis described
here can be adapted to debug circuits generated from multi-threaded programs,
as explained in Section 7.3.

2.1 Introduction to High-Level Synthesis

High-Level Synthesis is a design methodology for digital circuits that automati-
cally generates micro-architectures for hardware components starting from algo-
rithmic specifications expressed in high-level software programming languages.
In a typical HLS flow, the input source language is a restricted dialect of a pro-
gramming language such as C [44] or C++ [45], used to capture the behavioral
description of the design. The output of the flow is a circuit design expressed in a

front-end

High-Level Synthesis

C/C++ parser analysis

optimization

scheduling

allocation

binding

HLS Steps

optimization

code
generation HDL

Figure 2.1: Structure of a typical High-Level Synthesis flow.

11

Chapter 2. High-Level Synthesis (HLS)

Hardware Description Language (HDL), such as VHDL [39] or Verilog [38], that
describes the Register-Transfer Level (RTL) structure of the resulting hardware.

A High-Level Synthesis tool is essentially a compiler. The general structure of
an HLS flow is depicted in Figure 2.1. The process unfolds from left to right. The
input is a program specification in C or C++. The source code is read by a parser
that usually generates an Intermediate Representation (IR), such as an Abstract
Syntax Tree (AST). In general, different kinds of IRs are generated and used in
different steps of the compilation process and HLS. The remainder of this section
describes these steps in detail along with IRs they use, in particular those that are
more relevant for the methodology described in the rest of the thesis.

The AST is passed to the first main stage of the compilation process: the front-
end. Notice that what is called front-end here is actually what is usually called
middle-end in traditional compilers and it includes several different analyses and
optimizations on the IR. The name front-end is used to distinguish it from the core
of the High-Level Synthesis process.

The results of the analyses and optimizations performed by the front-end are
then passed to the HLS engine, which performs three main operations: allocation,
scheduling, and binding. Allocation selects functional units to be used to perform
the elementary operations contained into the IR. Scheduling maps each operation
of the IR to the clock cycle when it will be executed. Binding assigns operations
to specific instances of the functional units used to implement them, as selected
from allocation. These three steps are actually tightly interdependent, and the
overall HLS process is actually composed of other minor tasks. Moreover, there
are some optimizations that can be triggered only after that the results for allo-
cation, scheduling and binding have been calculated, or that are actually part of
the process. As a consequence, it may be necessary to restart the front-end to
propagate some of the new information across the IR, possibly enabling further
improvements to the IR and to the results of HLS.

Finally, the last block of the flow is a Code Generator, which produces an HDL
description of the final architecture of the generated design. Common HDLs used
for this description are Verilog and VHDL, but depending on the HLS tool and on
the target FPGA device they may contain vendor-specific directives to instantiate
proprietary components.

2.1.1 Front-End: Intermediate Representations, Analyses, and Optimizations

The front-end performs program analysis and transformations on the IR with
the aim of producing a representation that is semantically equivalent, but more
suitable for manipulation and that can improve the results of the compilation
process in terms of performance and/or resource utilization on FPGA. The front-
end usually builds common Intermediate Representations starting from the AST:
Control Flow Graphs (CFG) with operations in Static Single Assignment form (SSA).

A Control Flow Graph [4] is a graph that represents the control flow of the
input program. Every node of a CFG is called Basic Block (BB) and is composed
of a sequential list of instructions, with a single entry point at the beginning and
no branches or jump instructions except at the end. An example is shown in
Figure 2.2, where 2.2(a) represents the original source code and 2.2(b) depicts the
Control Flow Graph obtained from it. In the picture, it is easy to see that BBs

12

2.1. Introduction to High-Level Synthesis

int f (int a, int x) {
int i, t, c;
if (a > 0)

t = a;
else

t = init();
i = 0;
c = 0;
while (t != 0 && i < 10) {

i++;
if (c < t)

c = pow(c, 2);
else

c ⁎= x;
}
return c;

}

(a) Source code of a C function.

BBEntry

BB1
a_1 = a;
x_1 = x;
tmp_1 = a_1 > 0;
if (tmp_1)

BB2
t_1 = a;

BB3
t_2 = init();

BB4
t_3 = φ((2,t_1),(3,t_2));
i_1 = φ((2,0),(3,0),(8,i_2));
c_1 = φ((2,0),(3,0),(8,c_4));
tmp_2 = i_1 < 10;
tmp_3 = t_3 != 0;
tmp_4 = tmp_2 && tmp_3;
while (tmp_3)

BB5
i_2 = i_1 + 1;
tmp_5 = c_1 < t_3;
if (tmp_5)

BB6
c_2 = pow(c_1, 2);

BB7
c_3 = c_1 ⁎ x_1;

BB8
c_4 = φ((6,c_2),(7,c_3));

BB8
return c_1;

BBExit

T F

T

T F

F

(b) Control Flow Graph associated to the function f represented in (a)

Figure 2.2: Source code of a C function and the associated Control Flow Graph.

13

Chapter 2. High-Level Synthesis (HLS)

contain lists of instructions and that conditional or unconditional jumps are at
the end.

There is another important thing that can be noticed in Figure 2.2(b): the oper-
ations in the Basic Blocks are not exactly the same as they are in the code in Fig-
ure 2.2(a), but they have been rewritten in another form. This is the Static Single
Assignment form (SSA), which has the property that every variable is assigned
exactly once in the static representation of the IR. SSA is widely used in compil-
ers and it can be constructed efficiently for arbitrary Control Flow Graphs [20].
Without delving into the details of this process, the key idea is that the variables
present in the original IR are versioned, so that operations that update a variable
are converted to operations that assign a different version of the same variable.
The versioning is visible in Figure 2.2(b), where the version number n has been
appended to variable names with the suffix _n. The introduction of the version-
ing poses an additional challenge when different values are assigned to the same
variables in different branches that are mutually exclusive because the values as-
signed in the branches must be reconciled when the branches merge together. In
Figure 2.2 this happens for example with t and c. The key to resolve this issue is
the introduction of the so called phi-functions (or phi-instructions, or phi-operations).
They are represented as φ in Figure 2.2(b), and sometimes they are simply called
phis. The idea is that for every BB with more than one incoming edge, if different
versions of the same variable v are assigned along at least two of these edges,
a phi instruction have to be inserted at the beginning of the BB to reconcile the
values assigned along the different incoming paths. Every phi accepts a variable
length list of pairs ((BB0, v0), . . . , (BBi, vi)). For every k ∈ {0, . . . , i}, BBk is a Basic
Block identifier, while vk is the last version of the variable v assigned on the in-
coming path that comes from BBk. For example, in BB8 there is a phi instruction
to reconcile versions of c: c_4=φ((6,c_2),(7,c_3)). This means that the
value assigned to c_4 in BB8 is c_2 if the execution comes from BB6, c_3 if it
comes from BB7. Phi operations are virtual operations that are part of the IR, but
they are not translated directly into machine code. They are usually translated
into copies by compilers targeting processors, or handled with register allocation
algorithms to reduce the number of copies. HLS compilers can use dedicated
register allocation patterns or directly translate them into multiplexers.

The importance of SSA is that it makes easier to reason about program proper-
ties, enabling efficient implementations of data flow analyses. In the front-end of
an HLS tool, all static analysis and optimization algorithms known from compiler
literature can be used. These include (but are not restricted to) value range anal-
ysis, alias analysis for pointers, code motion, constant propagation, dead code
elimination, common subexpression elimination, partial or total loop unrolling,
and others. Some of these operations come both in intra-procedural and inter-
procedural flavors. There are also some IR transformations that are not relevant
for traditional compilers but that are particularly beneficial for hardware synthe-
sis: bit-width analysis, decomposition of arithmetic operations into smaller ones,
speculation and predication of operations, transformations of integer arithmetic
operations with constants operators in simpler forms. All these transformations
can be performed directly in the front-end at the IR level, before the beginning of
the High-Level Synthesis steps.

14

2.1. Introduction to High-Level Synthesis

CFG

FSM

S
C

H
E

D
U

LIN
G

BB3

a = b + c;

d = e + f;

g = a + d;

h = b / f;

m = g || h;

if (m)

S3_1

h = b / f;

a = b + c;

d = e + f;

S3_1

g = a + d;

m = g || h;

if (m)

Figure 2.3: Scheduling of operations from a Basic Block to Finite State Machine.

2.1.2 The High-Level Synthesis Process

The actual High-Level Synthesis process starts from the IR generated from the
front-end and is mainly composed of three steps: allocation, scheduling, and bind-
ing. These are actually not the only parts of the process, but they are the most
important and are also highly interdependent. During these steps, the informa-
tion necessary for the generation of the final hardware design is computed. In
particular, from the CFG of every function of the original high-level program, the
HLS process generates a component composed of a Finite State Machine (FSM)
and a DataPath (DP). It may be possible to generate different architectures, for
example for streaming computations, but the work described here assumes that
the High-Level Synthesis flow generates an FSM and a DP. The methodology pro-
posed here may not be applicable in other cases.

The scheduling step analyzes all the operations and the Basic Blocks of the CFG
and it builds a State Transition Graph (STG) that models the FSM of the hardware
component that will be generated from it. In the rest of this work, the terms Finite
State Machine and State Transition Graph are often used as synonyms. To gener-
ate this representation, every Basic Block is divided into control steps, and every
operation in the BB is then assigned to one of these control steps. Control steps are
then grouped into states to generate the FSM. In practice, operations scheduled
in the same state of the FSM are executed in the same clock cycle in the gener-
ated hardware. It is important to notice that multiple operations can be executed
concurrently in the same state, even in chaining, as long as data dependencies are
met. Moreover, if there are no data dependencies between operations in the same
BB, they can be reordered during scheduling, like shown in Figure 2.3. The figure
shows only one BB taken from a Control Flow Graph, how it is mapped on two
consecutive states in the generated FSM, and how single operations are sched-
uled in such states. The operation h=b/f is anticipated in state S3_1 because
its inputs are not dependent on previous operations. This kind of reordering is
frequent in scheduling and it aims at minimizing the cycle latency of the final cir-
cuit, while also taking into account other constraints such as resource availability
determined by allocation and binding. For example, in Figure 2.3 the operation
h=b/f could be anticipated because it has a latency of two cycles and scheduling
it in state S3_2 would require an additional state after S3_2 to wait for its termi-

15

Chapter 2. High-Level Synthesis (HLS)

CFG

FSM DP

S
C

H
E

D
U

LIN
G

B
IN

D
IN

G
A

LLO
C

A
TIO

N

BB3

a = b + c;

d = e + f;

g = a + d;

h = b / f;

m = g || h;

if (m)

S3_1

h = b / f;

a = b + c;

d = e + f;

S3_2

g = a + d;

m = g || h;

if (m)

+

+

/

||

Figure 2.4: Scheduling, allocation, and binding mappings. Scheduling assigns every operation in a Basic
Blocks to a state in the Finite State Machine; allocation selects the kind of hardware component in the Data-
Path used to implement the operation; binding identifies which specific instance of a given component type
is used to execute the operation in the DataPath.

nation. Operation g=a+d, instead, could be postponed because it has a latency
of only one cycle and scheduling it in state S3 − 1 would require instantiating an
additional adder to execute it in chaining with a=b+c and d=e+f.

These are only a few examples of the optimizations that can be performed dur-
ing scheduling. One important characteristic that is preserved during scheduling is
that every single BB in the Control Flow Graph is mapped onto a list of sequen-
tial states in the generated FSM, with branches only at the end. This is an obvious
consequence of the fact that all the jump instructions contained in a BB are neces-
sarily at its end. This property is fundamental for the definitions of Control Flow
Traces and of Control Flow Equivalence given in Chapter 5.

As explained above, scheduling is mainly concerned about clock cycles and
timing of execution of the operations. Allocation and binding, instead, are related
to the actual implementation of the operations. Allocation selects functional units
to be used to perform the elementary operations contained into the IR. Usually,
synthesis tools have a library of components to choose from. The library usually
contains multiple modules that can perform an operation of the IR with different
area and timing. The allocation process is generally constrained by some perfor-
mance goal of the design. Binding assigns operations to specific instances of the
functional units used to implement them, as selected from allocation. An exam-
ple of the result of these operations can be seen in Figure 2.4, where the previous
scheduling example is integrated with a schematic representation of components
in the DataPath and of the mappings computed by allocation and binding.

In order to compute these mappings, the HLS engine has to take into account
several different data for every single operation. The first necessary information
is the type of component used to implement the operations, but also the latency is
important. In this respect, HLS considers two kinds of operations: Fixed Latency
Operations (FLO) and Variable Latency Operations (VLO). FLOs are usually small
operations, with a fixed execution time of a few cycles, that is known at com-
pile time. They usually have no side effect and they can be implemented with
pipelined components to improve throughput. VLOs, instead, are used to model
operations with long or unpredictable latency, like accesses to external memories,

16

2.2. Memory Allocation and Hardware Synthesis of C Pointers

function calls, or long operations in general, even if their latency is known. Long
operations could be treated FLOs but, unless there is plenty of other operations
without data dependencies, it would require several waiting states, increasing
the area of the FSM. For VLOs the execution time is assumed to be unknown, so
they are handled with a handshaking mechanism involving a start and a done
signal. The first is used by the caller to initiate the execution of the VLO, while
the second is used by the VLO to notify its termination to the caller. This allows
the caller to wait in an idle state the termination of the VLO, without needlessly
increasing the size of the FSM. Other data used for scheduling, allocation, and bind-
ing are the sharing patterns of the components. If two operations are mapped
onto the same shared component they cannot be scheduled in the same state of
the FSM. Even if they are not in the same state, the execution time of the shared
component must be taken into account for scheduling, along with the pipeline
initiation time if it is a pipelined module. Different sharing patterns can also
enable optimizations of the interconnection logic between different components.
The same holds for memory allocation: if the alias analysis in the front-end can
guarantee that operations performing memory accesses are on separate memory
locations the accesses can be parallelized. All these subtleties of the mappings
between operations and components used for their implementation in hardware
will be reprised in Chapter 5, where they will be used for the definitions of Op-
Traces and Data Flow Equivalence.

All these scenarios are just a subset of the kind of decisions that HLS tools have
to make, but they help to realize how tightly dependent on each other all the HLS
steps are. They also give an idea of how complex can be to debug hardware gen-
erated with HLS, especially if the designer has little knowledge of the internals
of the specific HLS compiler used for the generation. Chapter 5 will show how
to tame this complexity to design a methodology for automated bug detection
without user interaction.

2.2 Memory Allocation and Hardware Synthesis of C Pointers

The semantic of pointers, as defined by the C language, represents the address of
data in memory. This definition starts from the assumption that the target archi-
tecture consists of a single contiguous address space that contains all the data of
the running application. This assumption is not necessarily valid in HLS, which
means that HLS tools need to handle addresses and pointers with particular care.
The reason is that, on FPGAs, data can be stored in separate memory blocks, pos-
sibly with different underlying technology. Moreover, if the address of a variable
is not taken in the program, the HLS tool is allowed to perform optimization so
that the variable may not even be allocated in memory, but its value is held by
a register or a wire. To make all these decisions, the HLS tool have to consider
if the variables are alive on the boundaries of FSM states, along with alias analy-
sis results and scoping. Optimizing memory allocation is very important in HLS.
Several different results show that it leads to significant improvements of the gen-
erated designs [8] [67] [88] [95] [89] [76] [68]. Every technique has benefits and
subtleties. Thus, a flexible methodology for debugging memory allocation and
pointer operations in HLS tools must be kept independent from the underlying
memory technologies and allocation algorithms.

17

Chapter 2. High-Level Synthesis (HLS)

The hardware synthesis of pointers and their optimization has been analyzed
thoroughly by Séméria et. al in [74] [75]. These works define the foundations of
the hardware synthesis and optimization of pointers in the current HLS method-
ologies. In [75], the authors analyze the operations that can be performed through
pointers in the C programming language and propose strategies for their synthe-
sis. The three operations taken into account by this work are loads, stores and
dynamic memory allocation and de-allocation. The authors distinguish between
two situations for the treatment of loads and stores: pointers to a single location
and pointers to multiple locations. Pointers to a single location can be removed
replacing loads and stores operation with equivalent assignment operation to the
pointed object. In the case of pointers to multiple locations, load and store oper-
ations are replaced by a set of assignments in which the location is dynamically
accessed according to the pointer value. Addresses (pointer values) are encoded
using two fields: a tag and an index. The tag is used to represent the memory
module used to access the data. The index is an offset to specify the precise lo-
cation of the accessed data inside the memory module represented by the tag.
With this strategy, loads and stores can be removed using temporary variables
and branching instructions. In [74], the focus is on the analyses and transforma-
tions that can be performed in order to optimize the synthesis of loads and stores
operation through pointers. The dynamic memory allocation and de-allocation
through malloc/free are addressed using both hardware and software mem-
ory allocators. [75] concentrates on the hardware solution giving hints on a pos-
sible software strategy. The proposed solution makes use of a hardware module
implementing the malloc and free functions of the C standard library. The pro-
posed module is able to allocate storage on multiple memories in parallel. As a
consequence of this design choice, the dynamically allocated space is partitioned
into memory segments.

In general, for memory allocation, HLS tools take two decisions:

1. which variables have to be stored in memory, typically arrays, structs,
global variables, and variables with static storage or volatile, but other
can be placed in memory as well;

2. the location where every memory-mapped variable is stored, including dif-
ferent partitioning schemes and position in the memory hierarchy in the final
architecture generated by HLS.

The first point is usually inferred using alias analysis (or points-to analysis [80])
and/or decided with explicit directives. The second option is tightly bound to
the HLS implementation, to the specific memory architecture of the generated
design, and to the set of performed memory optimizations.

For every given combination of these things, the debugging technique pro-
posed in this thesis (Chapter 8) makes a general assumption: every variable must
be mapped to a specific memory location. In this work, a Memory Location is
an unambiguous position in the generated hardware. It can be described with
a unique identifier for the memory module, a position in that memory module
and the size of the object stored in that position. This holds for any underlying
memory technology, being it a ROM, a BRAM, or an external DDR. With this as-
sumption every memory-mapped variable i is associated with a Memory Location.

18

2.3. High-Level Synthesis of Multi-Threaded Programs

A Memory Location can be defined as a triplet 〈Mi, Bi, Si〉, where Mi is a unique
identifier for a memory module (independent of the memory technology), Bi is
an offset in bytes in that memory module, and Si is a size. In general, the size
Si must be expressed in multiples of the memory alignment. In the rest of this
thesis, Memory Locations are assumed to be byte aligned, but any other alignment
can be used without loss of generality.

This concept of Memory Location is similar to the location sets introduced by
Wilson and Lam [91] and also used by Séméria and De Micheli [74]. In compilers,
alias analysis works on pointers, trying to recover the set of memory locations
where they can point to: the points-to set, or location set. The results of the analysis
can be used to tune the hardware memory partitioning. Notice that the points-to
sets, like the Memory Locations, are abstract concepts, independent of the target
architecture. Hence, the same strategies described in [75] and [74] can be used for
hardware synthesis and optimization of addressing logic.

The only thing necessary for the implementation of the Address Discrepancy
Analysis described in Chapter 8 is that it must be possible to identify the sig-
nals representing the addresses in hardware using HLS information. The values
of those signals will be used by the Address Discrepancy Analysis algorithm.
Like in [74], Mi is an abstract identifier, that may actually not be translated in
hardware, depending on optimizations and static analysis. In particular, when
a memory operation can be attributed to a single local/private memory module,
Mi can be completely optimized away. In cases where Mi is not translated to
hardware, only Bi and Si can be used for Discrepancy Analysis. When Bi and Si
are optimized away,Mi is sufficient to retrieve the Memory Location.

The proposed approach aims at handling complex memory allocation pat-
terns. To support array partitioning, the assumption must be slightly restricted.
Requiring a variable to be mapped on a single Memory Location is clearly not
enough. Instead, the assumption is restricted to require that every element of the
array itself (or field in a struct) is associated with a single Memory Location. To
summarize, this means to be able to compute the inverse function of the mapping
of high-level variables onto hardware Memory Locations. In case of arrays and
structs, this inverse function needs to have per-element granularity. In the rest
of the discussion on automated bug detection on C pointers, the term ‘variable’
will be used loosely, with the meaning of ‘scalar variable or field in a struct or
element of an array’. The goal is to avoid to weigh down the terminology during
the discussion of what will be called Address Discrepancy Analysis. In this way, the
discussion can be kept general while focusing on the approach, treating all the
data types in the same way.

2.3 High-Level Synthesis of Multi-Threaded Programs

The debugging methodology described in the thesis was initially conceived to
debug circuits generated with HLS from single-threaded programs. However,
Section 7.3 shows how it can be extended to handle hardware and software multi-
threading. For this reason, this section gives an overview of the methodologies
and the approaches used to support parallel programming languages in HLS.

As FPGAs become more competitive for the acceleration of parallel workloads
and irregular applications, the necessity for suitable programming models grows.

19

Chapter 2. High-Level Synthesis (HLS)

High-Level Synthesis accepting multi-threaded programs as input is seen as a
way to exploit the available physical parallelism while keeping the useful high-
level abstractions that make HLS competitive. The current trends are investing
on high-level programming languages, mostly based on the C programming lan-
guage, that are already industry standards for programming parallel general pur-
pose processors, such as CPUs and GPUs. Recent HLS tools support one or more
paradigms among C extensions like OpenCL [46], CUDA [63] and OpenMP [83],
or standard C libraries like pthreads (POSIX Threads [2]).

Efforts on OpenCL are leaded by the main FPGA vendors Xilinx: [92] and In-
tel [41] (formerly Altera [21]). Hosseinabady and Nunez-Yanez [35] have pro-
posed improvements to the synthesis of OpenCL workgroups in hybrid ARM-
FPGA devices. Owaida et al. [64] [65] have created a Finite State Machine with a
DataPath model suitable for the execution of an OpenCL kernel, with a stream-
ing unit to allow fast access to global data. The main work on CUDA consists
of the FCUDA CUDA-to-RTL compiler (Papakonstantinou et al. [66]) and the
efforts to use it in the construction of complete System-on-Chips with the gen-
eration of the necessary interconnections, memory interfaces and resource man-
agement components (Nguyen et al. [62]). Cabrera et al. extend OpenMP direc-
tives to target more closely FPGA-specific characteristics [11]. They propose a
target device pragma to instruct the compiler about the target device for the
synthesis, a label-name clause to mark data as input/output/inout, and a
block pragma to control resources in loops. OpenMP loops are supported by
the BAMBU compiler [16] based on GCC [79] and by the LegUp compiler [17],
based on LLVM [48], which also supports nested parallelism using pthreads.
LegUp and BAMBU exploit physical parallelism, instantiating multiple copies of
the components, one for every thread on FPGA.

Another idea is to maximize the utilization of a single hardware accelerator,
extending its functionality to support hardware threads and hide latencies in
pipelined loops. Halstead and Najjar extend the ROCCC HLS compiler [86] to
generate multi-threaded accelerators starting from loops constructs [30]. The pro-
gramming model is similar to OpenMP for loops, and the generated architecture
uses hardware context switches to hide variable latencies due to memory accesses
in irregular applications. The idea is somewhat similar to a more recent work by
Tan et al. [82], but the generated architecture is different. Halstead and Najjar use
deep FIFOs to realize context switch, which results in enforcing in-order termina-
tion of threads. Tan et al., instead, give an Integer Linear Programming formula-
tion for the problem and they explore a more general approach to avoid stalls, en-
abling out-of-order execution of threads in the pipeline. Huthmann and Koch [37]
further explore the same idea to reduce resource consumption on FPGA, using
heuristics and profile-guided optimizations to change the number of supported
threads at different stages of the pipeline.

There are also other works more focused on system integration, on Operating
System supports for hybrid hardware/software threads, and on how to migrate
threads to FPGA transparently in heterogeneous systems. Andrews et al. [6] de-
fine Hthreads, a multi-threaded programming model based on pthreads, where
individual threads can be mapped to FPGA and provide the necessary runtime
infrastructure in hardware and software for making this possible in a transpar-
ent way. Korinth et al. [47], instead use an OpenCL-like model. These last two

20

2.3. High-Level Synthesis of Multi-Threaded Programs

works define different ways to map high-level thread directives onto instances
of hardware accelerators. However, what is important for the purposes of this
thesis is that they are actually agnostic about this mappings and they are focused
on providing the necessary system-level integration once the mapping has been
computed.

Wang et al. [90] even consider dynamic reconfigurability for instantiating dif-
ferent hardware accelerators at runtime to run heterogeneous threads. The ap-
proach described in this work does not support dynamic reconfigurability. An-
other thing not considered here is threading support provided by means of mul-
tiprocessors System-on-Chip completely placed on FPGA, like proposed for ex-
ample by Ma et al. [50]. This kind of approach is actually not even HLS because
threads are not translated into hardware accelerators, but they run as software on
the softcores on the FPGA.

With such a large variety of methodologies and implementations, it may seem
hard to find a single technique for automated bug detection in multi-threaded
hardware. The task is not simple because the HLS of multi-threaded code can
take different decisions on three subjects. The first is the nature of the threads
in hardware: physical or logical. Some approaches duplicate hardware compo-
nents, others add logic to suspend and resume multiple logical threads on the
same accelerator to hide memory latencies. The second is whether the assign-
ment of a task to a certain hardware accelerator is decided statically at compile
time or dynamically during the execution. The third is about the homogeneity of
the threads, i.e. if they all execute the same high-level function (even if they may
follow different branches during execution), or they execute different functions.
Independently of how a specific implementation answers to these questions, to
debug digital designs generated with HLS from parallel programs as described
in this thesis it is necessary to make an assumption: that using HLS information
and observing the right signals in the design during execution it must be pos-
sible to tell which task is in execution on a certain physical copy of a hardware
accelerator. If the mapping of tasks onto components is static, this is trivial using
HLS information. Otherwise, depending on the implementation, it may be nec-
essary to use the values of signals to reconstruct this information at runtime. This
may seem restrictive, but approaches based on the analysis of the discrepancies
between hardware and software are intrinsically tightly coupled with HLS tools,
because it is the HLS tool that defines the mapping between hardware and soft-
ware. Hence, it is enough that the HLS tool exports the necessary information to
the debuggers. This is actually also one of the major advantages of techniques
based on discrepancy analysis because it allows them to know all the optimiza-
tion performed during HLS without user interaction, making possible to spot
subtle bugs that are usually easy to understand only to developers of the com-
piler itself.

Summary

This chapter introduced the background concepts necessary for the understand-
ing of the thesis. Section 2.1 provided an outline of the High-Level Synthesis,
its steps and the optimizations it can perform to generate optimized hardware
from high-level C code. Section 2.2 delved into the details and the subtleties in-

21

Chapter 2. High-Level Synthesis (HLS)

volved in the process of hardware synthesis of C pointers, while Section 2.3 fo-
cused on describing the current state of the art in the field of High-Level Synthesis
of multithreaded programs. The main topic of the thesis is Discrepancy Analysis, a
methodology for automated bug detection in circuits generated from High-Level
Synthesis. Two of its main features are the support for bug detection on point-
ers and the capability to analyze designs generated from multithreaded code.
Hence, the three topics described in this Chapter will be very useful throughout
the work. Chapter 3 digs more in details on different methodologies for hard-
ware debugging, initially from a broad perspective and then focusing on circuits
generated with High-Level Synthesis.

22

3
State of the Art of Debugging
Methodologies for HLS

This chapter describes the current state of the art of debugging techniques for
circuits generated with High-Level Synthesis. Section 3.1 introduces hardware
debugging in general, describing the fundamental characteristics of a good de-
bug methodology and the main categories of techniques. Section 3.2 outlines
the specific challenges of debugging hardware designs generated with HLS. Sec-
tion 3.3 describes different classes of state of the art debugging methodologies for
circuits generated with High-Level Synthesis. The methodologies are grouped
together for the similarity of the approach they use and according to how they
tackle some of the challenges described in Section 3.2 and to the categories in-
troduced in Section 3.1. A particular attention is given to the results of various
different research efforts that are relevant for comparisons with different aspects
of the methodology proposed later in the thesis.

3.1 Concepts of Hardware Debugging

Hardware debugging is known to be a complex and time-consuming process.
Typically it involves selecting a large number of signals in the design, tracing
their values concurrently during the execution, and analyzing them to find mis-
behavior. To do this effectively, hardware debugging technique needs to provide
three main features [42]

1. signal observability;

2. hardware controllability;

3. limited turnaround times.

Signal observability is the ability to observe the values of the largest number of
signals, registers and memories in the design, with the finest granularity, across
the largest time span as possible. This is necessary to actually see what is hap-
pening in the design during its execution.

Hardware controllability is the fine control on the design execution during the
debug operation. It is necessary to detect not only the wrong signal but also
the exact time when that happens and possibly the values of a number of other
signals in a surrounding time frame.

Turnaround time, in general, means the time between a request to the debugger
and the attainment of the result. This time must be short enough not to slow
down the whole development and verification process.

23

Chapter 3. State of the Art of Debugging Methodologies for HLS

Achieving these goals usually requires different kinds of trade-offs between
the accuracy of a debugging methodology, provided by observability and con-
trollability, and the resulting turnaround time.

3.1.1 Simulation-Based VS On-Chip Debugging

Research efforts and state of the art practices in this field can be subdivided
mainly into two groups, both with intrinsic advantages and drawbacks:

• approaches for debugging the circuit directly on-chip;

• debugging techniques based on RTL simulations.

Debugging on-chip, also called in-circuit, means synthesizing the RTL design
and running it on an FPGA while observing its behavior. This is the only way
to spot malfunctions due to hardware faults (power-supply noises, environmen-
tal interference, damaged gates). However, for logical bug detection, in-circuit
debug is usually worse than simulation in providing observability and control-
lability. Indeed, to guarantee these two properties it is necessary to insert addi-
tional control or tracing components in the design or to enforce restrictions on the
memory layout of the hardware accelerators. This does not scale with increasing
design complexity and it also imposes limits on the number of traced signals and
on the time frame that can be captured. The main reason is that logic and mem-
ory available on an FPGA are limited by the device. The extra logic or the forced
memory layout may also modify the original design, compromising crucial tim-
ing characteristics of the accelerator, or making the bug impossible to reproduce.
Even when the insertion of the debugging components is harmless, finding and
analyzing the interesting signals can be a hard task and requires deep knowledge
of the HDL and the underlying electronics characteristics of the target technol-
ogy. Another problem of in-circuit debugging is related to the turnaround time.
Debugging is an iterative process by its nature, and it usually requires several
trials and errors. If users have to modify the hardware debugging components or
change the place where they are inserted at each iteration a lot of time is wasted
just for these operations instead of focusing on the analysis of the hardware be-
havior. reconfiguration of the bitstream is always necessary.

On the other hand, simulation-based debugging involves simulating the design
under test on a host machine, without actually running it on FPGA. In general,
simulation is far slower than hardware execution, but this does not inevitably
lead to longer turnaround times. Indeed, the simulation takes much more time
than real hardware execution, but incremental trials and errors can be done dur-
ing the debug process without altering the design. No extra circuits or dedicated
memories have to be inserted to provide signal observability since area and mem-
ory limits on FPGA are not an issue with simulation. Controllability can be guar-
anteed using simulators’ Application Programming Interfaces (API), enabling to
execute the design until a determined point, stop it, analyze variables and then
resume the execution (or even roll it back) without affecting the logic of the sim-
ulated circuits. If the values of the signals are dumped to a file there is even no
need for controllability at all, because the hardware can be simulated and the
values inspected later. In this way, simulation succeeds in achieving complete
observability of the signals, while keeping reasonable turnaround times.

24

3.2. Challenges in Debugging Hardware Generated with HLS

3.1.2 Online VS Offline debugging

There is another distinction that can be made for hardware debugging method-
ologies. The techniques can be subdivided according to the actual time when the
debugging operations happen, compared to the execution or the simulation of
the circuit. The two categories are following:

• Online debugging - the behavior of the design under test is observed directly
during its execution;

• Offline debugging - the behavior of the design under test is recorded in some
way during the execution and analyzed later.

Notice that these categories are independent of and orthogonal to the dis-
tinction between simulation-based and on-chip methodologies described in Sec-
tion 3.1.1. This means that there are techniques for both online and offline on-chip
debugging.

Offline on-chip debugging usually requires dedicated components to register
execution traces during the execution of the circuit. These traces are collected in
some memories or sent directly off-chip and analyzed in a second stage. Online
on-chip debugging, instead can involve additional components that are able to
check assertions on the fly and/or some control logic that allows halting the cir-
cuit during its operation to analyze values in registers and memories. However,
this last strategy may potentially disrupt the interactions with other parts of the
system, making impossible to continue the execution of the circuit and potentially
introducing other bugs.

There are also techniques for online and offline debugging based on simu-
lation. Offline simulation-based debugging consists of collecting execution traces
during the simulation, in some waveform format. The waveforms are then ana-
lyzed manually to find bugs. Online simulation-based debugging, instead is possi-
ble through simulators’ Application Programming Interfaces (API). The user can
interact with the simulation kernel, asking to inspect values of signals, memories,
and register during the operations. With some simulators, it is also possible to ar-
tificially change the value of a signal. All these things are not possible or do not
allow the same flexibility with online debugging on-chip, because they would
need dedicated debugging components or because the underlying technology
simply does not allow it. In this respect, online debugging based on simulation
provides a workflow that is more similar to software debugging.

3.2 Challenges in Debugging Hardware Generated with HLS

Section 3.1 describes hardware debugging from a broad perspective, helping to
understand some of the fundamental concepts. It introduces ideas and categories
necessary to the discussion, but it does not focus on High-Level Synthesis and
the specific challenges that arise in case of bugs in HLS-generated circuits.

In traditional hardware design, engineers write HDL code and are very well
aware of the quirks of the digital electronics that will run on FPGAs. This means
that in case of bugs in the circuit they have most of the information that is neces-
sary for debugging. Debug is known to be a complex process, but it can be easier
if who debugs the circuit is also who designed it in the first place because he or

25

Chapter 3. State of the Art of Debugging Methodologies for HLS

she is usually more familiar with the design. Even in this case, the process typ-
ically involves various trials and errors to understand what are the parts of the
circuits involved in the malfunction, and especially to pinpoint the original root
cause. The behavior of the design must be explored manually and this is very
time consuming and error-prone.

With the introduction of HLS, all these issues are exacerbated. On one hand,
the design process is improved: it is faster and it requires less expertise in hard-
ware design so that even software engineers can contribute. The complexity of
the HDL and of the underlying digital electronics are masked by the HLS layer.
On the other hand, these same things make debugging harder: the designers may
not be proficient in HDL, the generated designs are not necessarily intended to
be human-friendly, and given that they were not written by hand it is hard for a
designer to understand what may be the cause of a bug. Things are even more
complicated by the fact that modern HLS tools are able to apply a wide range of
optimizations. These same optimizations are what makes possible to obtain very
good results in HLS, but they can heavily modify the circuit, making even more
complicated to correlate the HDL with the original high-level source code. More-
over, the only possible way to accurately reconstruct this relationship is to access
all the information available to the HLS engine, and to have a deep knowledge of
the internal of the used HLS tool. This is actually not realistic because, except for
academic open source software, it’s extremely rare that HLS users have access to
the HLS internals.

An additional degree of complexity is introduced by hardware synthesis of
pointers and by HLS of multi-threaded programs.

Pointers and addresses complicate debugging because there is no direct map-
ping between the single address space in software and the memory layout in the
generated hardware. The reason is that different variables are usually allocated in
physically separated memory modules on FPGA. Like explained in Section 2.2,
every module has its own addressing logic that can be optimized in different
ways depending on the memory allocation step of HLS. Practically, this means
that in order to understand what is actual object allocated in a memory module,
and to understand the real meaning of an addressing signal passed to a memory
unit, it is necessary to exploit HLS memory allocation information.

Threads increase the complexity in another dimension. Like explained in Sec-
tion 2.3, they can be implemented in different ways by HLS tools, either exploit-
ing physical parallelism or using logical parallelism to hide latencies. Despite the
approach adopted by an HLS tool, this means that the architecture of the compo-
nent generated from multi-threaded programs is different from those generated
from single-threaded programs. Developers have to be aware of the mapping
between software and hardware threads to perform accurate debugging. Again,
this means that they need to have access to information that is only available to
the HLS tool. The more advanced are the multi-threaded hardware implementa-
tion, the highest performance can be squeezed out of the same FPGA and, at the
same time, the hardest is to debug the designs without HLS information.

In this scenario, it is possible to identify the main challenges of debugging
hardware generated with High-Level Synthesis, compared to digital circuits de-
signed with more traditional methodologies. They all stem from the two folded
nature of HLS: on one hand the high-level abstraction simplify development and

26

3.3. Debugging Methodologies for High-Level Synthesis

enable the tools to perform smart optimization; on the other hand, the masked
information is vital for effective debugging and must be brought back to develop-
ers when debugging, without necessarily requiring HDL expertise or knowledge
about HLS internals. For these reasons, an effective methodology for bug de-
tection targeting HLS-generated designs must necessary deal with the following
challenges.

• Reduction of user interaction, to avoid the need of HDL expertise or expo-
sure to HLS internals from users.

• Automatic identification in the generated design of the signals necessary for
debugging.

• Backtracking of the relationships between high-level source code and gener-
ated HDL.

• Supporting front-end compiler optimization at the level of Control Flow
Graph, with observability of temporary variables introduced by the com-
piler.

• Supporting architectural optimization of the generated designs, like chain-
ing, pipelining, and sharing, but limited to them.

• Supporting for different memory layout and partitioning, while providing
support for automatic HW/SW address space translation, to enable debug-
ging pointers and addresses.

• Supporting different schemes for HLS of multi-threaded programs, while
retaining all the previous points in this list.

Part II of the thesis is dedicated to the definition and the implementation of
a methodology that addresses these points. The proposed technique tries to
provide all these features, with a debug workflow for HLS-generated circuits
that relieves the users from the burden of manual debugging, leaving the time-
consuming task of bug detection and isolation entirely to the machine.

3.3 Debugging Methodologies for High-Level Synthesis

In recent years, many results have been pushing the limits of the debugging ca-
pabilities for electronic circuit designs generated by HLS tools. Industrial High-
Level Synthesis frameworks now integrate environments for verification and de-
bugging [81] [61] [53]. The idea they all have in common is to take advantage of
the additional information present in the original high-level specification and to
use it improve debugging. In addition to what said in Section 3.1 about hardware
debug methodologies, the approaches targeted to HLS-generated designs can be
roughly grouped into three main classes.

1. Approaches focused on architectural support for the debugging of compo-
nents generated with HLS. These techniques use HLS information for auto-
matic and efficient implementation of debugging components. Such compo-
nents are embedded in the designs and can provide observability, tracing the
behavior of the circuits during execution, of controllability allowing users

27

Chapter 3. State of the Art of Debugging Methodologies for HLS

to suspend the execution on the fly. In general, these methodologies pro-
vide the building blocks for the others and are often composable with them:
an optimized component that enables debugging operations can be used by
other methodologies to achieve higher level goals and implement innovative
debug flows.

2. Approaches focused on providing a software-like user-friendly debugging
experience. These methods provide to users the means to insert breakpoints,
to observe values of signals, and to perform a variety of operations that are
familiar to software developers. To this end, they either rely on simulators’
API or they use dedicated component to do it directly on-chip. Some of these
approaches also show the relationships between the HDL and the original
source code, but this is possible only with variables that were already present
in the original source code and not with those inserted by the compiler opti-
mizations. These means that the more compiler optimizations are active, the
less these methods are accurate and useful.

3. Approaches based on the instrumentation and execution of the Intermedi-
ate Representation (IR) of the HLS compiler or of the original source code,
which is used to generate a golden reference for the behavior of the circuit.
This golden reference is then used to check automatically if the design is
working properly at a functional level, and to report useful source-level in-
formation to the users. This last class of techniques has seen a wide number
of contributions in the past few years. The Discrepancy Analysis described in
this thesis belongs to this family.

3.3.1 Optimized Component for Architectural Support of On-Chip Debug

An example of the first type of approach has been proposed by Monson and
Hutchings [58] [59], which use source level transformations to insert tracing logic
(Event Observability Port and Buffers) for the output signals of operations. The
architecture of these components is tuned using HLS information about the Con-
trol Flow Graph and the Finite State Machine, to maximize the number of events
that can be registered in a buffer. In [58] and [59] the authors used simulation
for their evaluation of the results. This methodology has been ported on-chip
in a subsequent work [57]. However, the approach does not focus on the Finite
State Machine (FSM) used to control the circuit, but only on the DataPath, and
is thus not suitable to detect bugs involving control flow. The challenges of how
to maintain the relationships between high-level source code and the generated
hardware are not in the scope of the methodology. In addition, given that the
trace buffers are per-signal, additional processing is required to reconstruct the
time relationships between the traces. This becomes very hard when the neces-
sary variables are not stored in a register, or even impossible when heavy com-
piler optimizations are activated.

Goeders and Wilton [26] [29] generate a component aimed at managing the
debugging operation, and at saving the execution traces on FPGA. They show
different techniques to reduce the memory usage necessary to store the trace at
runtime, and to support compiler optimizations [27]. In a successive work, the
authors also adapt the architecture of their components to debug circuits gener-

28

3.3. Debugging Methodologies for High-Level Synthesis

ated from multi-threaded programs [28]. In this latter work, the hardware accel-
erators used to implement each thread share a single debug component used to
store all the execution traces in a compact way. However, due to the nature of the
compression they implement, this approach does not give significant benefits in
case of homogeneous threads, exploiting physical parallelism to execute multiple
instances of the same task. The reason is that the sharing of the component used
to store the traces generates contention and slowdowns when there are concur-
rent accesses to save traces from different threads during the same cycle. Hence,
the methodology is not beneficial in case of homogeneous threads, like for ex-
ample OpenMP for loops or pthreads executing the same function. This is in
contrast with the current trend of starting HLS from these input specifications.

3.3.2 Software-Like User-Friendly Debug Flows

The goal of Goeders and Wilton [26] [29] is also to build a higher level debug
framework, that provides a user-friendly debug flow. The components they de-
scribe are used to perform on-chip debugging both online and offline, with differ-
ent modes. Users can manually inspect the traces after execution or can suspend
the hardware to analyze its state. Unlike what is proposed in this work, they do
not provide the automated selection of the signals necessary for debugging, but
it is up to users to decide what has to be analyzed by the debugger. For what con-
cerns online debugging, they also note that suspending the execution may break
interactions with other components of the system and potentially introduce other
bugs. For this reason, in multi-threaded hardware the analysis of the traces is per-
formed offline [28].

Other works try to provide different flavors of software-like debug flows. One
of the first works to discuss it is from Hemmert et al. [34], but it does not describe
an actual implementation.

Calagar et. al [12] tackled this limitation, bringing to HLS some of the typ-
ical debugging operations: stepping, breakpointing, and dynamic variable in-
spection. Their debugger, Inspect takes a double approach: both on-chip and
simulation-based. For on-chip analysis, the authors use Altera SignalTap leading
to high memory usage, as also reported by [26]. For simulation-based debugging,
they run at the same time a simulation of the generated design and the binary ob-
tained by the original source code in a debugger. Using APIs of the simulator
and of the software debugger, they are able to insert breakpoints, watchpoints
and provide source-level information to the users. Unfortunately, this approach
suffers from one of the known limits of software debugging: the temporaries
introduced by compiler optimizations cannot be inspected and the accuracy de-
creases with the increase of the optimization level. Moreover, several other con-
straints are imposed to High-Level Synthesis. Namely, inlining is disabled, local
RAMs are made global, and constants cannot be stored on ROMs.

3.3.3 High-Level Synthesis of Assertions

Another trend in on-chip debugging is based on hardware synthesis of ANSI-C
assertions, that are translated into assertion checker circuits. This group con-
tains methodologies that try to merge ideas from the two previous groups: work-
flows focused on providing software like debug environments, and techniques to

29

Chapter 3. State of the Art of Debugging Methodologies for HLS

provide architectural support for debugging HLS-generated circuits. Performing
HLS of assertions requires, on one hand, to design the architecture of the asser-
tion checkers components, and on the other hand, to provide users the useful
high-level abstraction of source-level assertions.

In the work of Ribon et al. [71] the checkers are synchronized directly by the
checked FSM, making impossible to trigger the assertion if the accelerator enters
in a hanging state. In other works, the checker’s FSM is executed concurrently to
the controlled module. Curreri et al. [19] duplicate shared data between checkers
and checked FSM, to avoid conflicts, leading to large memory consumption. Ben
Hammouda et al. [9] [31] [32] describe and implement a complete HLS flow using
HLS information for the automated construction and insertion of checkers with
considerably small footprint. The methodology is effective, but the main problem
of assertions is that they can only check malfunctions foreseen by the developers.
The assertion must be manually inserted in the original C specification. This fails
to spot bugs that are not guarded by assertions. Finally, if the circuit happens to
enter in a hanging state, the relevant assertion trigger point may be never reached
at all. In addition, none of the discussed works on assertion-based verification for
HLS mentions support for coarse-grained parallel programming paradigm.

HLS of assertion checkers is also used for Runtime Verification. Selyunin et.
al [73] use HLS to generate runtime verification checkers in automotive chip de-
sign. Runtime Verification differs from the automated bug detection proposed in
this thesis because it generates checkers for temporal logic properties that must
hold for all the possible executions of the circuit. Another difference is that in
runtime verification the properties to be checked must be specified in some way
by the designer. Runtime verification checkers guarantee that some properties
hold during all the lifetime of the checked system, and they are even embedded
in final products. The approach described here, instead, helps HLS developers
to efficiently and accurately find bugs, without the need of specifying temporal
logic properties and automatically backtracking bugs to the original source code.

3.3.4 Automated Bug Detection

All the results mentioned until now still leave aside most of the challenges out-
lined in Section 3.2. In particular, they still leave to the designer the burden of
finding out the interesting signals and to step through the execution to find bugs.
These tasks can be overwhelming with increasingly larger designs. Things are
even more complicated if the circuit description is generated by an HLS tools
because the developer has no knowledge of the signal naming conventions and
how the signals are related to high-level variables.

From these needs has arisen an entire class of debugging methodologies, that
focus on providing automated bug detection in circuits generated with HLS.
These approaches use the software obtained from the original high-level code
as a golden reference for the behavior of the generated hardware. The software
or the front-end IR after optimizations is instrumented and executed to generate
the reference execution traces. These traces are then used in different ways to
ensure that the generated hardware exhibits an equivalent behavior. Common
approaches either rely on simulation to generated hardware traces that are then
compared with software, or they use the software traces to create and integrate

30

3.3. Debugging Methodologies for High-Level Synthesis

dedicated hardware checkers in the generated circuits. The challenge in this latter
case is to ensure that the checkers do not alter the execution of the design.

Approaches for automated bug detection have grown considerably in recent
years. The methodology described in this thesis belongs to this family. Part II
introduces the methodology, while Part III shows experimental results and com-
parisons with other works in the same family. Here, such approaches are sum-
marized to provide an overview for the reader. This is useful to follow the rest
of the discussion and to have an idea of how the methodology proposed in the
thesis relates to others in the same field.

Campbell et al. [14] focus on Application Specific Integrated Circuit. They
generate both a golden reference for the hardware execution from HLS IR and a
set of components that are used to extract the equivalent execution traces from
the circuit, which they call hardware signature. The golden reference and the
hardware signature are then compared at the end of the execution and bugs are
automatically detected. Campbell et al. [13] use the same methodology on FPGA,
but differently from [14], they rely on simulation for the generation of the hard-
ware signatures. Yang et al. [93] [94], instead, actually use the golden reference
obtained from the IR to generate the RTL instrumentations, but the whole de-
bugging flow still relies on simulation. However, differently from [13], the com-
parison between hardware behavior and software behavior is not performed at
the end of the execution but is executed concurrently by the RTL instrumentation
during simulation. The same does Carrion Schafer in [72]. On the contrary, Cala-
gar et al. [12] analyze the discrepancies online, during the executions of hardware
and software. Their proposed work exploits both simulation and on-chip debug-
ging. They do not generate the golden reference but they use a conventional
debugger to observe the software on the fly, the Application Programming In-
terfaces of the simulator to analyze the simulated RTL, and Altera SignalTap for
in-circuit debugging. Their work, however, does not support most of the com-
piler optimizations performed during the HLS and the use of SignalTap causes
a high memory usage for the trace buffers, as reported also in [58]. Iskander et
al. [43] propose an approach composed of two parts: a High-Level Validation,
and Low-Level Debug. For the High-Level Validation they run the golden refer-
ence software on a softcore on the FPGA, saving the results and comparing them
with the results obtained from the accelerators. The main intent of this stage is
to create a workflow that is easily embeddable in automated regression testing
and unit testing. The Low-Level Debug, instead, uses partial reconfigurability
to provide observability, to insert breakpoints and to build an environment for a
software-like debugging experience.

3.3.5 Debugging Designs Generated with HLS from Multi-Threaded Programs

Hardware designs generated with HLS from multi-threaded programs have not
received the same attention. Despite the innovations in the field of hardware syn-
thesis of threads, most efforts are still only focused on how to make it possible in-
stead of how to make it practical to debug. Besides the work of Goeders et al. [28]
mentioned in Section 3.3.1, one of the few contributions is a work by Verma et
al. [85], targeting OpenCL for FPGAs. The authors describe open-source debug
components, modeled both in the OpenCL language and in Verilog [38] Hard-

31

Chapter 3. State of the Art of Debugging Methodologies for HLS

ware Description Language (HDL), that can be used for manual inspection of
OpenCL kernels running on FPGA. The work focuses on the architecture and on
providing these components as a key enabling technology for increasing visibil-
ity on signals during execution. They do not discuss if and how the information
collected with their method can be analyzed automatically for bug detection and
source-level backtracking.

Automated bug detection has attracted much interest, as demonstrated by
the variety of different flavors described above. Unfortunately, these works do
not consider the problem of debugging hardware generated from multi-threaded
parallel programs. This scenario introduces a number of challenges when try-
ing to compare the execution of the multi-threaded software with the execution
of the parallel hardware implementation generated with HLS. The reason is that
the number of threads and the actual mapping between task and threads can be
different in software and in hardware. Depending on the configuration and the
optimizations implemented by the HLS tool, two tasks that are executed by the
same thread in the original software could be mapped onto two physically dis-
tinct instances of the hardware component executes that task. On the other hand,
the software could launch a large number of threads, while the design gener-
ated from HLS could throttle physical parallelism to contain area consumption
on FPGA. All these problems are not taken into accounts by existing discrepancy
analysis approaches. In [28] and [85], the task of unraveling this complexity is
delegated to users, that have to figure out the particular thread mapping decided
by HLS. Things are complicated by the fact that for certain programming mod-
els the thread mapping in software is decided by the language runtime and is
not necessarily deterministic. The approach described in this thesis belongs to
the category of traced-based discrepancy analysis techniques, but it also targets
thread parallel programming models, trying to tackle these problems.

Summary

This chapter started focusing more closely on the specific research fields of the
thesis. Section 3.1 described general concepts of hardware debugging, provid-
ing a classification of debugging methodologies and highlighting their strengths
and weaknesses. Section 3.2 then restricted the discussion to the debugging of
hardware generated with High-Level Synthesis, explaining the challenges that
HLS introduces on top of the typical problems of hardware debugging. Finally,
Section 3.3 provided a broad review of the most recent advances in research on
debugging and automated bug detection for HLS-generated hardware designs.
This discussion gives a picture of the current state-of-the-art of the field and sets
the frame for the definition of Discrepancy Analysis is Part II.

32

PART II

METHODOLOGY

33

34

This part introduces and describes a methodology for automated bug detection in hard-
ware designs generated with High-Level Synthesis, called Discrepancy Analysis, which
constitutes the fundamental contribution of the thesis.

Chapter 4 introduces the problem that Discrepancy Analysis is set to solve.
Chapter 5 provides a definition of equivalence between hardware and software execu-

tions. This definition is then used throughout the rest of the work to decide if there is a
mismatch between the execution of a hardware design generated with High-Level Synthe-
sis and the software it is derived from.

Chapter 6 describes two different workflows for automated bug detection based on
Discrepancy Analysis: Simulation-Based Offline Discrepancy Analysis, and On-
Chip Online Discrepancy Analysis. These two approaches show that the methodology
is flexible and adaptable to different scenarios.

Chapter 7 focuses on the details of Simulation-Based Offline Discrepancy Analy-
sis, describing how to implement it and how it can handle both single- and multi-threaded
input specifications.

Chapter 8 extends it to handle C pointer and address arithmetic.
Chapter 9, instead, gives a complete and detailed picture of On-Chip Online Dis-

crepancy Analysis.

35

36

4
Problem Statement and Goals

This chapter describes the motivation of the Discrepancy Analysis methodology
proposed in the thesis. Section 4.1 outlines the problems that Discrepancy Analy-
sis is set out to solve, along with the shortcomings of previous state-of-the-art that
has to be overcome. Section 4.2 introduces the principal ideas and insights that
led the choices for the design of the methodology. Starting from these ideas, and
form the limitations of other approaches, Section 4.3 describes the goals of the
work described in the thesis. Finally, Section 4.4 discusses the different classes of
bugs that the approach presented in this work aims to detect.

4.1 Description of the Problem

Most of the approaches described in Chapter 3 focus on methodology for en-
abling users to debug digital designs. This is certainly useful and it can improve
the development workflow for traditional hardware design processes. However,
leaving the burden of manual analysis of the hardware entirely to users poses
some additional challenges and complications when the designs are generated
with HLS, as explained in Section 3.2. The single main reason of these complica-
tions is due to the nature of the High-Level Synthesis process: hiding complexity
and architectural details from designers. While this is good in general for de-
velopment, it makes debugging more complicated, because that very same com-
plexity and architectural details have to be understood to detect bugs effectively.
High-Level Synthesis tools take a lot of intertwined decisions to generate the opti-
mal architecture for a given high-level specification. These decisions may involve
multi-objective optimizations and design space exploration, and sometimes even
small changes to the original source code can result in consistent modifications
to the generated architecture. It is not reasonable to expect that users understand
or reverse-engineer all the steps of the HLS process in order to be able to debug
the circuits that it generates. Actually, sometimes it is not even possible. Main-
stream HLS tools are closed source and their licenses are very restrictive about
reverse-engineering. Moreover, hardware designers are not necessarily aware of
how HLS works and of the optimizations it can do. Finally, if HLS users are sim-
ple software engineers that want to exploit FPGA computing resources they may
not even be able to understand HDL.

4.2 Fundamental Ideas of the Approach

In this scenario, it is clear that users have to be helped with development tools.
The key idea is the following: HLS tools hide complexity to users during the de-
sign process; given that users cannot manage this complexity on their own for

37

Chapter 4. Problem Statement and Goals

debugging purposes, it is necessary to devise a methodology that has complete
access to the HLS information and that is able to handle it instead of users. One
of the trending ideas is automated bug detection, and the Discrepancy Analysis de-
scribed in this thesis falls in this category. They rely on the fact that if the hard-
ware presents a bug it does not behave like the original specification, which is
constituted by the original high-level source code. The workflow adopted in all
the approaches based on automated bug detection is roughly the same. Initially,
the software obtained from the original source code (or some form of executable
IR after optimizations) is executed on a given input, to extract the golden refer-
ence for hardware execution. Then this golden reference is compared in various
ways with hardware execution, to detect bugs in a completely automated fashion
using HLS information on the relationships between hardware and software.

This idea is extremely powerful because it delegates to the machine all the
work that it is entitled to do best, while providing to users only the final results
in a form that they can understand and reason about. This is actually feasible
thanks to the fact that the original source code represents the specification for the
generated hardware and it can be used to generate a golden reference to evaluate
the correctness of the circuit. All the necessary information is already present in
the HLS IR, across all the different steps of the compilation process.

4.3 Objectives, Goals, and Features

The concept of automated bug detection based on comparison of hardware and
software behaviors has inspired many efforts in recent years, as shown by the
discussion in Section 3.3.4. Most of these works were not available when the
effort behind this thesis was started, and they have evolved concurrently find-
ing similar answers to the same problems. However, this thesis presents original
contributions even compared to all the others approaches for automated bug de-
tection:

• it provides a detailed description of the model used to determine the equiv-
alence between software and hardware execution;

• it details this equivalence at two independent levels Control Flow Level and
Operation Level, which represent two fundamentally different ways the hard-
ware execution can differ from software;

• it keeps the whole model of equivalence independent of the encoding of
the execution traces used for the comparison, and agnostic about how these
traces are actually collected;

• it also keeps the approach independent of all the front-end and architectural
optimizations that are performed during the High-Level Synthesis process;

• it demonstrates that the same methodology can be effectively used on-chip
and with simulation, implementing two different workflows based on the
same model;

• it explicitly explains how this model can support the analysis of discrepan-
cies on addresses and pointers, despite the intrinsic difference of hardware
and software address spaces;

38

4.4. Detected Classes of Bugs

• it extends the approach to support the debug of circuits generated with HLS
from high-level multi-threaded program specifications;

• it significantly reduces the memory footprint for debugging components
when debugging on-chip, while providing at least the same level of accuracy
as with simulation and with negligible effects on the achievable frequency.

In addition, there are a number of useful features that are part of the method-
ology and that make the design/debug cycles more productive. These features
can be considered as a byproduct of the approach proposed here because they are
all necessary for its implementation. However, they also contribute to the overall
improvement of the debugging experience. These features are the following:

• automatic selection in the design of all the signals necessary for debugging,
relieving users from their identification;

• no direct interaction with the user during the debugging operations, making
the methodology suitable to be used in continuous integration servers and
extensive regression testing;

• preservation of the information on the relationships between the original
high-level source code and the generated HDL, that is shown to users with
useful details if a discrepancy is found.

Clearly, all the points mentioned in this section cannot be achieved in practice
without relying on the internals of the HLS framework used for the implementa-
tion, but the approach described in the rest of the thesis is generic enough to be
applied to any HLS tool.

Another thing to stress is that, even if at first sight the approach can resemble
equivalence checking, it does not try to guarantee formal equivalence between
the high-level source code and the generated hardware. Rather, for a given input
set, the goal is to extend the granularity of debugging operations to find bugs
at every level in the component hierarchy. The goal is to identify the exact time
of malfunctions and to isolate the faulty operation/component. This allows val-
idating the HLS engine as well. Discrepancy Analysis cannot guarantee formal
equivalence because it works on an input test set. What it does, instead, is, given
an input triggering a bug, to detect the misbehavior automatically, selecting all
the necessary signals to reach per-operation granularity and providing useful in-
formation on the location and the cause. A topic that was not investigated in this
work is how to generate test inputs to increase the coverage. This would make
possible to reduce the chances that, after using Discrepancy Analysis a bug is still
lurking in some hidden corner of the code. However, this is actually an orthog-
onal problem per se, especially because there is no straightforward relationship
between coverage metrics for high-level languages and for HDLs. The topic is
extremely vast and it would deserve a separate analysis.

4.4 Detected Classes of Bugs

The classes of bugs that the proposed approach aims to find are strictly related to
how the “correct behavior” is modeled in all the methodologies based on discrep-
ancy analysis. When using High-Level Synthesis, the original high-level source

39

Chapter 4. Problem Statement and Goals

code is considered as the specification, i.e. it represents the intended behavior
of the circuit to generate. This intrinsically means that the input code is always
considered to be “correct”, hence, by common sense, it cannot have bugs. As
a consequence, one might be induced to think that if behavior of the generated
hardware does not match the original specification it must be due to a bug in
the HLS compiler. This intuition is partially true, but it does not encompass the
full complexity of the situation, and neglects large and important classes of bugs
that the methodology described in this thesis is able to detect. Specifically, it is
necessary to make some considerations on the fact that HLS is increasingly used
for system integration with third-parties components and around the intrinsic
differences between hardware and software execution semantics.

Clearly, one of the main goals of the methodology proposed here is to catch
bugs introduced by HLS tools. This is increasingly useful for developer of HLS
frameworks, because the implementation of aggressive optimizations to squeeze
the most performance out of the smallest designs can often lead to malfunctions
that are hard to detect. Some of these bugs can go undetected and be shipped
to users if there are no tools to identify them. Among other characteristics, the
approach described in this thesis is a valuable tool for testing and improving the
quality of modern HLS toolchains. However there are other classes of bugs that
this methodology is designed to catch, making them relevant and beneficial also
for hardware designers that have no access or knowledge about the internals of
HLS tools.

First of all, the use of HLS for system integration is becoming increasingly pop-
ular, because it helps designers to manage complexity. In this scenario, hardware
designers create complex SoCs designs using a mix of HLS, hand written HDL,
and IP components provided by third parties. This is good for the industry and
improves productivity boosting component reuse. However, it also introduces
an entirely new class of bugs, caused by errors in the integration of the compo-
nents, or by faulty components that have not been thoroughly tested in the same
conditions as where they are being reused. Moreover, most modern HLS tools
allow to integrate black boxes component, providing libraries of IP blocks used
to implement common functionalities. If something goes wrong in this process,
the designers are left with little clue of what the problem could be. The situation
is also aggravated by the fact that they know little about the reused components
and about the external libraries of IP blocks. Therefore, this is an important class
of bugs that must be handled properly in order to create a user-friendly experi-
ence for bug detection coupled with HLS.

Secondly, the fact that hardware and software have intrinsically different exe-
cution models and semantics poses two additional challenges: the first is related
to Undefined Behavior and Unspecified Behavior in C, which is the main input lan-
guage for HLS tools; the second concerns post-synthesis bugs, that are unique to
hardware execution and cannot be observed in software.

Two of the two main design goals of the C language were performance and
ease of implementation. For this reason, the C language specification leaves the
semantics of its constructs undefined or unspecified. The subtle difference between
unspecified and undefined is that the former defines a set of valid behaviors as-
sociated to a construct, leaving the choice of which to actually implement. The
latter, instead, does not define any precise semantics, therefore an implementa-

40

4.4. Detected Classes of Bugs

tion is considered standard-conforming independently of what it does when it
encounters an Undefined Behavior. This allows implementors to choose the most
efficient implementation on a given platform. At the same time, a recent study
by Memarian and Sewell [52] have demonstrated how C developers have started
to silently rely on deterministic ‘reasonable’ behaviors of programs containing un-
specified and undefined behaviors. The reason is that in most cases most compilers
always do the same ‘expected’ thing, but there is no guarantee of compatibility be-
tween different compilers, or between different versions of the same compiler, or
even between the exact same compiler with different optimization flags. This is-
sue is well-known among low-level C programmers but, given that it is part of the
standard, there is very little to do solve it. This is exacerbated when such C pro-
grams are translated to HDL using HLS, because this translation is not expected
to preserve the semantics of undefined and unspecified behaviors that developers
are silently relying upon. Actually, to run code of FPGA, most of the obvious
choices for undefined and unspecified behaviors in software can have entirely differ-
ent outcomes, leading to inconsistent hardware implementations. These issues
are always puzzling for designers, and very hard to backtrack to a root cause.
The methodology described in this thesis aims at finding these bugs as well.

For what concerns post-synthesis bugs, the issue is well known in the field [36]
[54]. Obviously these bugs only affect hardware designs, not software. For this
reason, they can be very hard to observe if they arise late in the design cycle. This
class of bugs can be associated to situation where particular RTL coding styles
lead to different semantics pre- and post-synthesis, but also to specific real-world
conditions, such as interferences, that are only observable on-chip. Due to their
nature, not only they are difficult to reproduce, but they are also difficult to ana-
lyze, because the necessary information needs to be collected from the chip when
the design runs at full speed. The work described in this thesis also demonstrate
how Discrepancy Analysis can be successfully brought to on-chip debugging,
with minimal overhead.

To summarize, the goal of this work is to showcase a methodology for auto-
mated bug detection in hardware generated with High-Level Synthesis, that is
able to handle the following classes of bugs:

• bugs introduced by HLS tools;

• bugs introduced in system integration, due to wrong interconnections, to
faulty modules from external IP libraries, or to bad wrong use of the reused
components;

• bugs coming form intrinsic differences between hardware and software se-
mantics in case of undefined behavior or unspecified behavior in C;

• post-synthesis bugs of different kinds, ranging from electrical problems on
chip, to bad RTL that leads to mismatches between pre- and post-synthesis
behaviors.

These classes of bugs will be discussed in detail in the results of the thesis, in
Chapter 11.

41

Chapter 4. Problem Statement and Goals

Summary

This chapter provided a high-level overview of the ideas behind the work de-
scribed in the thesis. Section 4.1 introduced the problem, Section 4.2 the key in-
sights on how Discrepancy Analysis tries to solve it, and Section 4.3 clearly stated
the goals and the intended features of the approach. Finally, Section 4.4 focused
on the classes of bugs that the proposed approach has been designed to solve.
Chapter 5 will now define the concept of equivalence between hardware and
software execution, which is at the basis of all the rest of the work. This Hard-
ware/Software Equivalence is the conceptual framework that allows to decide if
two executions are equivalent and to identify mismatches. It is the core of two
different flows for automated bug detection, described in Chapter 6. The details
of how the high-level concepts introduced in this chapter are used in each flow
are expanded in Chapter 8, 7, and 9.

42

5
Equivalence Between Hardware and
Software Execution

The approach described in this thesis is based on the idea of automated compari-
son between hardware and software executions, to find mismatches without user
interaction. In order to do this, it must be possible to define when hardware and
software executions are equivalent on the same inputs. This chapter introduces
this notion of equivalence, at two levels: Control Flow Level, in Section 5.1, and
Operation Level, in Section 5.2. Section 5.3 summarizes the two levels in a single
definition of equivalence that encompasses both of them. In addition, Section 5.4
describes a generic workflow for Discrepancy Analysis, showing how these con-
cepts can be used in practice.

Part of the material composing this chapter was originally published in inter-
national peer-reviewed conference proceedings [22]: P. Fezzardi, M. Castellana,
and F. Ferrandi. Trace-based Automated Logical Debugging for High-Level Syn-
thesis Generated Circuits. In 2015 33rd IEEE International Conference on Computer
Design (ICCD), pages 251–258, Oct 2015.

5.1 Control Flow Level

The first important way to compare hardware and software executions is looking
at control flow. For software, control flow is represented statically by the Control
Flow Graph (CFG), built by the compiler front-end and used for all the front-end
optimizations. For hardware, the same information is represented by the Finite
State Machine (FSM) generated during the HLS process, along with a DataPath.
HLS can also perform several non-trivial modification and optimization on the
IR to generate FSM and DataPath, like explained in Section 2.1. In order to define
Control Flow Traces and Control Flow Equivalence, what is important is that during
HLS every Basic Block in the CFG is mapped onto a chain of states in the FSM,
with jumps and branches only at the end of the last state in the chain. This is
not strictly true if the FSM implementation used in HLS tool is based on guard
conditions [18], but the definitions can be refined to support also this case. An
example of this mapping is shown for example in Figure 5.1.

The equivalence at control flow level is defined per-function. Consider a func-
tion f described in a high-level language such as C, its Control Flow Graph af-
ter front-end optimizations, and the Finite State Machine generated from it with
HLS. With the appropriate conventions, the two graphs (CFG and FSM) can ac-
cept the same inputs. On a given input, the CFG represents the control flow of
the execution of the software and the FSM the execution of the generated hard-
ware. The two flows have different semantics for operations: sequential in BBs;

43

Chapter 5. Equivalence Between Hardware and Software Execution

concurrent or chained in a state of the FSM. However, from a control flow stand-
point, the execution can be described as an ordered list of nodes visited on the
graph, being it BBs for CFG or states in FSM. Intuitively, hardware and software
execution are equivalent if the Basic Blocks traversed during execution by soft-
ware match the state traversed by the Finite State Machine on the same given
input. From this observation are ensued the definitions of Software Control Flow
Traces and Hardware Control Flow Traces. Control Flow Equivalence is then defined
operationally starting from the concept of traces.

Definition 1. Given the Control Flow Graph of a high-level function f, the Soft-
ware Control Flow Trace (SCFT) of f on a given input I is the ordered sequence of
Basic Blocks traversed on the CFG during the execution of f.

Definition 2. Given the Finite State Machine generated with High-Level Syn-
thesis from the same function f of Definition 1, the Hardware Control Flow Trace
(HCFT) of f on the input I is the ordered sequence of states traversed by the Finite
State Machine during the execution.

Definition 3. Software Control Flow Traces and Hardware Control Flow Traces
together are called with the general term Control Flow Traces (CFT).

CFG FSM

BB0

BB1

BB2

BB3

S0_0

S0_1

S0_2

S1_0

S1_1

S2

S3

S
C

H
E

D
U

LIN
G

Figure 5.1: Relationship between Control Flow
Graph and Finite State Machine. Purple thick ar-
rows show the HW and SW executions.

According to the definitions, the
CFG can be regarded as a function
Scf that associates a Software Con-
trol Flow Trace Scf(I) to every in-
put I. In Figure 5.1 the SCFT is
<BB0,BB0,BB1,BB2,BB3>. Similarly,
the FSM can be considered as a func-
tion Hcf that associates a Hardware
Control Flow Trace to every input I.
In Figure 5.1 the Hardware Control
Flow Trace is <S0_0, S0_1, S0_2, S0_0,
S0_1, S0_2, S1_0, S1_1, S3, S3>.

Control Flow Traces are the elemen-
tary components used to define equiv-
alence between the execution of a
function f in software and the hard-
ware component generated with HLS
to implement f on an FPGA.

Definition 4 (Equivalence of Control
Flow Traces). Consider the Control
Flow Graph and the Finite State Ma-
chine generated during High-Level Synthesis from a high-level function f. Let
be fixed an input I for both the CFG and the FSM. Let then be Scf(I) =
<BB0, BBk1, BBk2, . . . , BBK(I)> and Hcf(I) = <S0, Sj1, Sj2, . . . , SJ(I)> the Software
and Hardware Control Flow Traces of f on input I. Scf(I) is equivalent to Hcf(I) if
Hcf(I) can be produced from Scf(I) substituting (BBk) with the states associated
with it through scheduling. The control flow equivalence between the Control
Flow Traces is represented with the notation Scf(I) ≡cf Hcf(I).

44

5.2. Operation Level

CFG

FSM DP

S
C

H
E

D
U

LIN
G

B
IN

D
IN

G
A

LLO
C

A
TIO

N

BB3

a = b + c;

d = e + f;

g = a + d;

h = b / f;

m = g || h;

if (m)

S3_1

h = b / f;

a = b + c;

d = e + f;

S3_2

g = a + d;

m = g || h;

if (m)

+

+

/

||

Figure 5.2: Scheduling, allocation, and binding mappings. Scheduling assigns every operation in a Basic
Blocks to a state in the Finite State Machine; allocation selects the kind of hardware component in the Data-
Path used to implement the operation; binding identifies which specific instance of a given component type
is used to execute the operation in the DataPath.

Definition 5 (Control Flow Equivalence). Consider a high-level function f, its
Control Flow Graph and the Finite State Machine generated from it with High-
Level Synthesis. The software version of f is Control Flow Equivalent on a given
input I to the hardware version generated with High-Level Synthesis if and only
if Scf(I) ≡cf Hcf(I).

This defines Control Flow Equivalence between hardware and software execu-
tion on a given input I. Notice the dependency on the input, which means that
hardware and software can be equivalent on a given input I and not on another
input J. This is part of the methodology, which aims at automated bug detection
when a bug is present but is not concerned on how to define the input values to
ensure that there are no bugs. An interesting but orthogonal direction of research
could investigate how to carefully choose a technique to generate the input data
sets to increase the coverage of the tests, but it is beyond the scope of this work.
Ideally, the approach described here can be coupled with existing methods to
increase code coverage, in order to reduce the chances of bugs hidden in deep
corners of the code and that are not exercised by the tests.

5.2 Operation Level

Control Flow Level can be a good starting point for automated bug detection. It
is already enough to tell if two executions are not equivalent but it cannot pin-
point the root cause. Moreover, if a bug does not alter the control flow it is in-
visible at Control Flow Level. To overcome these limits it is necessary to refine
the granularity up to single operations, considering also HLS information from
binding and allocation. Figure 5.2 shows how the list of statements in a BB can
be reordered and assigned to operations scheduled in different states of the FSM.
The dashed arrows on the right represent how the operations are bounded to al-
located components in the DataPath. Note that the mapping of operations on
hardware components is many-to-one, meaning that components can be shared
by multiple operations if their execution does not overlap. Instead, there is a one-
to-one mapping between the statements in a BB and all operations scheduled in

45

Chapter 5. Equivalence Between Hardware and Software Execution

the related states. The fundamental assumption for the definition of execution
traces at the data level is that every statement cannot be scheduled twice in a
chain of states representing a single BB. In hardware synthesis it is common prac-
tice to schedule a single operation in multiple states in the FSM, to reduce the
number of execution cycles. The key observation is that, when a single opera-
tion is duplicated in more than a state, the states where it is scheduled must be
distinguishable from a control flow standpoint. Another way to state this, is that
all the duplicated copies must be executed under different conditions, even with
speculation and guard conditions. If this was not true, so that two copies were
executed under the same conditions, then the behavior would not be consistent
with the high-level specification, where the operation was executed only once.

With this assumption it is possible to define execution traces at the data level:
OpTraces (OT).

Definition 6. Let Oi be an operation in a Basic Block. The Software OpTrace (SOT)
ofOi is the list of the results s1,i, . . . , sk(i),i of the operation across all the execution.

Definition 7. Let Oi be the same operation scheduled in a state S(Oi) of the as-
sociated FSM. Let also C(Oi) the component in the DataPath that was allocated
and bounded in HLS to execute the operationOi. The Hardware OpTrace (HOT) of
Oi is the list of values of the output signal(s) of C(Oi) collected during hardware
execution when the FSM was in the state S(Oi).

Definition 8. Software OpTraces and Hardware OpTraces together are often des-
ignated with the general term OpTraces in the following.

Notice that in these definitions the dependence on the input I provided to
the function has been omitted, to avoid to weigh down the notation. However,
just like for Control Flow Traces, OpTraces depend on the input provided to the
function where the operations belong. Likewise, they also depend on the whole
execution of the rest of the application, which also depends on the input. The
reason is that the exact result of a single operation could depend on some global
state that is changed by previous operations. This is why High-Level Synthesis
tools and compilers in general usually rely on Control Data Flow Graphs, which
are Control Flow Graphs extended with data dependencies between operations.
Control Data Flow Graphs are not used in this thesis because they do not pro-
vide additional information that is useful for the methodology. However, one of
the groups of bugs that Discrepancy Analysis is able to catch is caused by the
wrong reordering of operations due to missing data dependencies. More details
are given in Part III.

As stated above, multiple operations can be mapped onto the same component
in the DataPath. This represents a challenge in detecting the correct value for the
result of a given operation. The reason is that the output signal of the underlying
component can represent values related to different operations at different times
in hardware execution. However, if a component is shared between multiple
operations, they must be scheduled in different states, so it is enough to pick the
output value of the component when the FSM is in the correct state to retrieve
the correct result for the operation. In order to do this, it is necessary to cross-
correlate OpTraces with Control Flow Traces. This has to be done in two different

46

5.3. Hardware/Software Equivalence

ways depending on the nature of the operations: Fixed Latency Operations (FLO)
or Variable Latency Operations (VLO).

For FLOs the execution time is fixed and known to the HLS tool, as are the
states of the FSM where operations are scheduled and where their execution fin-
ished. These data are all that is necessary to untangle different HOT from output
signals of components shared among FLOs.

VLOs, instead, are handled with a handshaking mechanism as described in
Section 2.1.2. The handshaking signals can be easily used with control flow in-
formation to infer the real start and end time of VLOs, as well as to untangle
multiple HOTs from the output signals of components shared among VLOs.

Definition 9 (Equivalence of OpTraces). Let Oi be an operation in a Basic Block
BB(Oi) of a CFG. Consider a Finite State Machine constructed from the CFG dur-
ing the HLS process and call S(Oi) the state where Oi is scheduled. Let also
C(Oi) be the component in the DataPath that was allocated and bounded in HLS
to execute the operation Oi. The Software OpTrace Sop(Oi) and the Hardware
OpTrace Hop(Oi) are equivalent if they are equal through some equality function.
The operation equivalence between the OpTraces is represented with the notation
Sop(Oi) ≡op Hop(Oi).

Notice that the equality function can be as simple as bitwise equality for plain
integer data, but it can be complicated in case of floating points or custom data
formats, up to involving context-dependent address translation tables for point-
ers and addresses, as will be described in Chapter 8.

Similarly to what happens for Control Flow, Operation Equivalence on a given
input can be defined in terms of equivalence between OpTraces. Here the depen-
dency on the input I is explicitly stated, to make it stand out.

Definition 10 (Operation Equivalence). Consider a high-level function f, its Con-
trol Flow Graph and the Finite State Machine generated from it with High-Level
Synthesis. The software version of f is Operation Equivalent on a given input I
to the hardware version generated with High-Level Synthesis if and only if for
every operation Oi in f Sop(Oi) ≡op Hop(Oi).

5.3 Hardware/Software Equivalence

Using the notion of Control Flow Equivalence and Operation Equivalence on a single
function, it is now possible to define equivalence between hardware and software
executions in general terms. First, the equivalence is defined for a single function.

Definition 11 (Hardware/Software Equivalence for a single function). Consider
a high-level function f, its Control Flow Graph and the Finite State Machine gen-
erated from it with High-Level Synthesis. The execution of the software version
of f on a given input I is Equivalent to the execution of the hardware version gen-
erated with High-Level Synthesis if and only if for every operation they are both
Control Flow Equivalent and Operation Equivalent on the same input I.

Hardware/Software equivalence between a design generated with High-Level
Synthesis and the software application used as specification can then be defined
composing equivalence on the single functions.

47

Chapter 5. Equivalence Between Hardware and Software Execution

hardwaresoftware

Original C Source Code

High-Level
Synthesis HardwareSoftware

HW TracesSW Traces

Hardware
Execution

Software
Execution

comparison

HLS Information

Bug Reports

Figure 5.3: Outline of a generic Discrepancy Analysis debug workflow. White boxes represent data, while
black boxes represent steps of the workflow.

Definition 12 (Hardware/Software Equivalence for an Application). Consider a
program written in a high-level language, used as starting point for High-Level
Synthesis. Let F = { f1, . . ., fn } be the set of functions composing the application.
The execution the program is Equivalent to the execution of design generated from
it with High-Level Synthesis if and only if ∀ f ∈ F, the software and hardware
version of f are Control Flow Equivalent and Operation Equivalent.

5.4 A Generic Workflow for Discrepancy Analysis

The previous sections set up the operational definitions necessary to define Dis-
crepancy Analysis. These definitions allow to clearly identify two complemen-
tary ways to analyze the behavior of hardware and software executions, to tell if
they are equivalent or not. They have the big advantage of being agnostic about
the actual encoding of the traces, and about how these traces are collected in prac-
tice. This makes them suitable to be used with traces collected in different ways,
and allows to describe a generic design workflow for Discrepancy Analysis.

Figure 5.3 represents a generic workflow for Discrepancy Analysis, that can be
created composing the notions introduced up to this point. In the figure, boxes
with white background represent data, while boxes with black background rep-
resent steps of the workflow that manipulate the data. The flow starts from the
original high-level C code that is the input to the High-Level Synthesis tool. This
code is compiled, producing two outputs: hardware and software. Both are then
executed to generate the respective traces, described in the previous sections. Fi-
nally, at the bottom, Software Traces and Hardware Traces are compared to gen-
erate bug reports useful for users.

This high-level outline of the process can then be customized and adapted for
different scenarios. For example, it is possible to generate hardware designs at the
RTL level and execute them in a simulator to extract the traces, or to go directly
on chip and execute the design in a real environment. Another choice concerns
when to execute the actual comparison. One can decide to compare the traces on

48

5.4. A Generic Workflow for Discrepancy Analysis

the fly while they are still being generated, or to wait until the end of execution to
compare them offline. Depending on these choices it is possible to create different
debug flows based on Discrepancy Analysis, some of which are more suitable for
use in certain environments or to find specific classes of bugs. Chapter 6 will
describe how this

Summary

This chapter laid the foundation of the Discrepancy Analysis, defining the funda-
mental concept of equivalence between hardware and software execution. Dis-
crepancy Analysis exploits this model to compare the executions at two levels,
Control Flow and Operation, as described in Sections 5.1 and 5.2 respectively.
These two levels are then stitched together to provide a global concept of equiv-
alence, described in Section 5.3. These concepts can be used to outline a generic
workflow for automated bug detection with Discrepancy Analysis, like explained
in Section 5.4. Chapter 6 describes two different flows, showing that Discrepancy
Analysis can actually be used in different scenarios, with workflows using traces
with a variety of encodings and collected in various ways. At the same time, the
definitions provided in this chapter are quite abstract and it may be difficult to
understand how they can be used without practical examples. The two flows
described in Chapter 6 also serve this purpose.

49

Chapter 5. Equivalence Between Hardware and Software Execution

50

6
Discrepancy Analysis: Two Different Flows

The definitions of equivalence described in Section 5 do not depend on how the
execution traces are collected, nor from the fact that their analysis happens on-
line or offline. For this reason, this chapter introduces two separate Discrepancy
Analysis workflows that employ the same underlying equivalence model to im-
plement two different debug frameworks. In this chapter, the two workflows are
described in general terms at a high-level, for a better understanding of the two
modes of operation. Section 6.1 briefly introduces the High-Level Synthesis tool
that was used to build a reference implementation of both the debug flows, as a
proof-of-concept of the approach and to measure its effectiveness. The details of
both of them are discussed later in this thesis.

Section 6.2 describes a workflow for offline bug detection, which collects the
hardware traces with simulation. Using simulation, it is trivial to achieve com-
plete observability of all the signals throughout the entire hardware execution.
This allows showcasing the full potential of the Discrepancy Analysis without
worrying about resource constraints on FPGA. Performing offline analysis of the
traces also avoids the necessity to guarantee real-time comparison of the traces.
Chapters 7 and 8 describe the details of this workflow.

Section 6.3, instead, shows a flow for on-chip online Discrepancy Analysis. This
allows to demonstrate the flexibility of the Discrepancy Analysis, proving that it
can be used online on FPGA with minimal impact in terms of area and frequency.
In addition, it shows and that it actually has some advantages in terms of memory
footprint compared to other state-of-the-art techniques. The techniques underly-
ing this online on-chip workflow will be described in detail in Chapter 9.

6.1 Reference Implementation

Both the workflows have been implemented in PandA, an open source framework
for Hardware/Software codesign, developed at Politecnico di Milano. The PandA
framework includes a High-Level Synthesis compiler, called BAMBU [60], based
on GCC [79]. BAMBU has an advanced approach to memory allocation [67] and it
implements fairly complex state-of-the-art front-end optimizations [49]. BAMBU
accepts C as input language, with support for a subset of the OpenMP specifica-
tion [83]. It is capable of generating designs in Verilog and VHDL, targeting a
wide range of modern FPGA devices from multiple vendors: Xilinx, Altera (now
Intel FPGA) and Lattice Semiconductors.

The support for advanced optimization is important for this work because it
allows showing that the Discrepancy Analysis algorithm can handle all the possible
optimizations performed during HLS, without imposing unrealistic restrictions.

51

Chapter 6. Discrepancy Analysis: Two Different Flows

Discrepancy
Analysis

Original C Source Code

HLS
BAMBU

HLS information
instrumentation
to dump traces

C + SSA

signals selected
to dump traces

HDL

execution

SW traces

simulation

HW traces

Figure 6.1: Outline of the offline Discrepancy Analysis debug flow based on simulation.

At the same time, the advanced memory allocation engine allows to stress-test
the extension of Discrepancy Analysis to pointers and addresses, described in Sec-
tion 8. The OpenMP support is another important component because it allows
to validate the approach in case of debugging of parallel hardware designs gen-
erated with HLS from multi-threaded programs.

These were the main reasons that drove the choice of BAMBU among other
open source HLS tools. In addition, BAMBU features an extensive regression
test suite, based on the GCC C-torture tests [25] and on the CHStone bench-
marks [33]. The C-torture tests [25] are a broad set of self-contained C pro-
grams, specifically designed to “torture” compilers, to ensure that they are com-
pliant with all the most obscure parts of the C standard. The CHStone bench-
marks [33], instead, are composed of 12 examples representing different typical
use cases of HLS. Using these two sets of benchmarks allowed to explore all the
capabilities of the methodology proposed in the thesis. It also allowed spotting
most of the early stage limitations, allowing various subsequent improvements.

6.2 Simulation-Based Offline Discrepancy Analysis

The debug flow for offline Discrepancy Analysis based on simulation is depicted
in Figure 6.1. The original C source code is initially processed by the BAMBU HLS
compiler. During the HLS process, the compiler gathers information about all the
optimizations and transformations it performs. Then, it originates two separate
flows for the collection of hardware and software traces.

The portion involving software is in blue on the left. BAMBU prints back the
IR after front-end optimization, along with instrumentations for the generation
of the software traces. The IR is printed back in C, using a code generator that
is designed to maintain the closest resemblance to the original source code. At
the same time, the variables are versioned in Static Single Assignment form (SSA,
see Section 2.1.1). Phi operations, that have no direct representation in C, are
converted into assignments, as explained by Briggs et al. [10]. Using SSA allows

52

6.3. On-Chip Online Discrepancy Analysis

constructing a bijective relationship between SSA variables and assignments be-
cause with SSA every variable is only assigned in a single statement. This greatly
simplifies the analysis of the software traces, as will be explained in Chapter 7.
The C code instrumented for trace generation is then compiled and executed, and
the traces are written to a file in a machine-readable format. More about their
content is described in Chapter 7. The generation of software traces concludes
the software flow.

The portion involving hardware is in orange on the right. BAMBU generates an
HDL design for the input program, along with a list of the signals selected in the
design for the generation of the traces. Notice that the generated HDL is exactly
the same that would be generated by BAMBU without the Discrepancy Analysis.
This design is used for RTL simulation with cycle accuracy. The experiments
shown in Part III have been executed with ModelSim SE-64 version 10.5 from
Mentor Graphics, but in general the approach does not depend on the simulator
used for the generation of the traces. The input values used for the simulation
are the same used for the software counterpart. The traces are extracted during
simulation, printing them in some waveform format, like Value Change Dump
(VCD). This operation completes the hardware flow.

Finally, the software and the hardware traces are fed into the Discrepancy Anal-
ysis automated bug detection algorithm (in green in Figure 6.1). The bug detec-
tion is executed offline, but it has access to all the information coming from HLS.
In this way, it can manage all the complexity of bug detection, without requir-
ing any intervention from users. If a mismatch is found, all the HLS information
are provided to the designer, along with other data useful to reconstruct what
went wrong. Some of these data are for example: the first mismatch between
hardware and software executions, the name of the involved signal and its hier-
archical path, start and end time of the failing operation in hardware, the corre-
sponding variable and operation in the high-level source code, the state of the
FSM when the mismatch happened, and the value of the wrong signal in hard-
ware compared to the expected value from C. This greatly simplifies the job of
designers looking to fix their designs.

6.3 On-Chip Online Discrepancy Analysis

For on-chip online Discrepancy Analysis, the debug flow shown in Figure 6.1 has
been modified to run on-chip. In particular, the details of the new workflow
are explained in Chapter 9 and the proposed methodology only focus on Control
Flow Level. This is already enough to show the feasibility of on-chip Discrepancy
Analysis. Moreover this already shows relevant advantages in terms of memory
footprint, area overhead and frequency implications, compared to other state-of-
the-art approaches for on-chip debugging. Another reason is that the technique
used to achieve these improvements is intrinsically well suited for Control Flow,
but not to handle Discrepancy Analysis the Operation Level. The reasons are ex-
plained in detail in Chapter 9.

The online on-chip debug flow is depicted in Figure 6.2. The portion on top
with the purple background runs on the host computer, while the portion below
with the orange background executes directly on the FPGA. The software traces
are generated in the same way described in Section 6.2, but the High-Level Syn-

53

Chapter 6. Discrepancy Analysis: Two Different Flows

Host Computer

FPGA

C HLS IR execution
software

trace

generation of
control flow checkers

HDL w/
Control Flow Checkers

High-Level Synthesis Flow

On-Chip Execution
Real-Time Checking

Automated Bug Detection

Backtrack to
Source Code

bug
reports

Figure 6.2: Modified Discrepancy Analysis flow for online on-chip debugging.

thesis flow, enclosed in the dashed box, has been extended to use the software
traces to generate dedicated components, called Control Flow Checkers, that per-
form the control flow checks on-chip.

A customized instance of Control Flow Checker is integrated alongside the Fi-
nite State Machine of every functional module. This enables a fine-grained cus-
tomization of the checkers, to use the smallest number of bits necessary for every
function. The optimal number of bits and the dimension of the necessary mem-
ory depend also on the software reference trace. Given that all these factors can
be evaluated on the IR, before the generation of the checkers, it is possible to
explore the optimal values of the parameters for every checker before synthe-
sis, as explained in Chapter 9. Control Flow Checkers contain memories that are
initialized with the expected control flow trace computed starting from software
execution (see Chapter 9). This is one of the differences between previous works
and the methodology proposed here: the debugging logic is not used to memo-
rize information on the hardware execution, but to compare it in real-time with
a golden reference. Others have adopted this strategy [13] [94] relying on sim-
ulation instead of debugging on-chip. In this work, the debugging components
are integrated into the design by the HLS engine and then synthesized and exe-
cuted on FPGA. As soon as a checker detects a mismatch between the expected
execution and the real behavior, it notifies is to the host. Only little information
needs to be extracted by the chip and exposed outside: a unique identifier of the
checker instance (that is uniquely determined during HLS and embedded in ev-
ery checker), and the offset in the trace execution where the mismatch happens.

With this approach, the quality of debugging is at least as good as with offline
Discrepancy Analysis based on simulation. This means that all the control flow
bugs detected with simulation are also visible with the hardware checkers, while
with on-chip debugging it is potentially possible to detect post-synthesis bugs
and mismatches that come from problems on system integration. The method-
ology proposed here allows to reduce the memory necessary for the traces while

54

6.3. On-Chip Online Discrepancy Analysis

providing two advantages:

1. improving visibility of bugs that only arise on-chip;

2. automatically backtracking bugs to the original source code.

The first point is an advantage compared to approaches that only rely on simu-
lation [13] [94]. The second is not possible with other approaches that focus only
on providing architectural support for the collection of the traces [26], leaving the
burden of their manual analysis entirely to users.

Summary

This chapter started by briefly introducing, in Section 6.1, the High-Level Syn-
thesis tool that has been used as a reference implementation for the work de-
scribed in the thesis: BAMBU. Then two different flows implemented in BAMBU
and based on Discrepancy Analysis have been outlined. The first, Simulation-Based
Offline Discrepancy Analysis, was explained in Section 6.2. The second, On-Chip
Online Discrepancy Analysis was outlined in Section 6.3. The possibility to use
the hardware/software equivalence shown in Chapter 5 to perform Discrepancy
Analysis in such different debug flows shows the flexibility of the approach.

The remainder of Part II is divided into three chapters. Chapters 7 and 8 are
about Simulation-Based Offline Discrepancy Analysis. Among other details, they
also explain how it can be used to debug hardware designs obtained from mul-
tithreaded program specifications (Chapter 7), as well as pointers and memory
accesses (Chapter 8). Chapter 9, instead completely describes the On-Chip Online
Discrepancy Analysis, based on a software profiling technique called Efficient Path
Profiling [7], that has been adapted to Finite State Machines.

55

Chapter 6. Discrepancy Analysis: Two Different Flows

56

7
Simulation-Based Offline Discrepancy
Analysis

The Simulation-Based Offline Discrepancy Analysis debug flow introduced in
Section 6.2 is described in general terms. This is useful to have a big picture of
what is going on, but it does not give any practical technical detail about the
underlying operations involved in the process. Moreover, the theoretical defi-
nitions in Chapter 5 do not explain how the traces can be extracted from hard-
ware and software execution. This is good because they do not depend on the
specific method used to generate and collect the traces, making them suitable to
use with simulation-based methodologies as well as with traces directly collected
from FPGA trace buffers. However, in order to understand how to automatically
detect bugs, it is necessary to provide a description the format and the encoding
of the traces, and an algorithm to compare them.

The aim of this chapter is to fill these gaps, for what concerns the Simulation-
Based Discrepancy Analysis debug flow. Section 7.1 briefly explains how to gen-
erate and collect execution traces from hardware and software execution, along
with a method for automatic identification of the necessary signals in the gen-
erated designs. The format and the encoding of the traces are also described.
Section 7.2 describes an algorithm for the comparison of the traces to check for
equivalence between hardware and software executions. The comparison can be
performed separately on control flow and data level. Separating the two levels
makes the algorithm easier to understand and faster to execute. However, the
two levels are based on the same method for fast pattern-matching, leveraging
Finite State Automaton (FSA). Finally, Section 7.3 extends the pattern-matching
algorithm to hardware generated with HLS from multi-threaded programs.

Part of the material composing this chapter was originally published in inter-
national peer-reviewed conference proceedings [22]: P. Fezzardi, M. Castellana,
and F. Ferrandi. Trace-based Automated Logical Debugging for High-Level Syn-
thesis Generated Circuits. In 2015 33rd IEEE International Conference on Computer
Design (ICCD), pages 251–258, Oct 2015.

7.1 Generating and Collecting Execution Traces

Like explained in Section 6.2, hardware and software traces are generated and
collected separately. Hardware traces are obtained from the simulation of the
design generated with High-Level Synthesis, while software traces are printed
from instrumentations during the execution of the high-level source code. These
two flows are discussed here in detail.

57

Chapter 7. Simulation-Based Offline Discrepancy Analysis

7.1.1 Software Traces

For the generation of the Software Traces, the high-level source code must be
instrumented to print the necessary information during the execution. The in-
strumentations are added directly in the IR to have a finer granularity and gain
control on compiler temporary variables introduced for optimizations. Then the
IR with instrumentations is printed back in C. The code generator is designed to
structure the instrumented code like the CFG. It starts from the IR of the compiler
in Static Single Assignment form (SSA [20]), and it prints it back in C splitting
SSA’s φ operations as described in [10]. In this way, all the operations that are not
control flow instructions can be printed as assignments. In the IR in SSA form,
every variable is assigned only once, in the same way as every printed state-
ment assigns only one variable. In this way, to generate the Software OpTraces it is
enough to print the value of every variable (which has a unique identifier) after
its assignment in software. To generate the Software Control Flow Traces a print
instruction is placed at the beginning of every BB, to print the identifier of the
BB itself each time its execution stars. In practice, the traces are written to a file,
that is then parsed and fed into the bug detection engine for comparison with the
hardware traces. The details of the comparison are explained in Section 7.2, while
here the format of each trace is discussed.

A Software Control Flow Trace is generated for every function in the program.
For every function, the associated Software Control Flow Trace is a list containing
all the identifiers of the Basic Blocks traversed during the entire execution.

A Software OpTrace instead is associated with every operation. Given that the
program is restructured in SSA, this is equivalent to associating a Software OpTrace
to every SSA variable identifier. Every Software OpTrace is a list of all the values
assigned dynamically to that SSA variable during the execution of the program.
Thanks to the SSA form, this is equivalent to the list of results of all the executions
of that operation at runtime.

Notice that neither Software Control Flow Traces nor Software OpTraces contain
timing information. Hardware Traces, instead, contain timestamps of signals vari-
ation, as explained later. This is an intrinsic difference due to the two execution
models. It is also an issue that must be dealt with when reconstructing the rela-
tionships between hardware and software traces.

7.1.2 Hardware Traces

The first fundamental operation necessary to generate and collect hardware traces
is to identify in the design the relevant signals. Indeed, not all the signals in the
design have meaningful counterparts in software. Tracing all the signals during
all the simulation of the circuit have significant drawbacks. One of the main prob-
lems is that modern simulators perform optimizations on their own IR before the
actual simulation. If some signals have to be traced during simulation, this limits
the number and the effectiveness of these optimizations, slowing down the sim-
ulation process. Another issue is that simulators usually write the traced signals
to files in waveform formats. Increasing the number of analyzed signals means
increasing I/O operations during simulation and enlarging the size of the trace
files. This results in even bigger slowdowns, and it can even lead to generate
trace files that are unmanageable because they are too big.

58

7.2. Comparing Execution Traces with Finite State Automata

For all these reasons, it is a common practice to select only a restricted number
of signals to trace during simulation and debugging. When High-Level Synthesis
is involved it is clearly unpractical to ask users to select those signals manually.
The approach described here performs the selection entirely without user interac-
tion because all the necessary information is already available in the HLS engine.

First of all, the clock source of the design must be extracted. This is necessary
to drive the whole comparison, to understand the timing and the duration of all
the others signal variations. This signal is named clock in the following.

Similarly to what happens with software, a Hardware Control Flow Trace must
be generated for every high-level function. According to the definitions of Chap-
ter 5, Hardware Control Flow Traces are lists of states traversed by the FSM during
execution. Hence, the signal used to produce them is basically the signal repre-
senting the state of the FSM. It is denoted as state in the remainder of this work.
Handling the execution of a function typically requires two other signals: one,
asserted by the caller, to start the execution; another one, asserted by the called
function, to notify the caller that the execution ended. The signals involved in this
handshaking mechanism are called start and done respectively. Usually, every
functional module stays in its initial state when it is not executed. Then it may be
necessary to check for start and done to have the full information on the exe-
cution. Summarizing, the necessary signals to produce all the Hardware Control
Flow Traces are state, start and done, for all the synthesized functions.

For OpTraces the identification of the signals relies heavily on the binding in-
formation coming from HLS. According to the definitions in Chapter 5, Hardware
OpTraces are composed of the values of the output signals of the hardware com-
ponents in the DataPath used to implement the operations in the FSM, which
in turn are associated with operations in the CFG. But these things are part of
what is computed in HLS during binding and allocation. The details of the sig-
nal naming are strictly implementation dependent and vary from an HLS tool to
another, but every HLS compiler must know this particular piece of information.
The only additional signals to be traced are the start and done signals used for
the handshaking mechanism of Variable Latency Operations (VLO).

Once all the necessary signals have been detected in the design, it is possible
to generate the Hardware Traces. The proof-of-concept described in this chap-
ter relies on simulation because it is the easiest way to provide full observabil-
ity on the necessary signals and registers without altering the design. However,
the approach described in this work could be applied to traces directly collected
on-chip, as long as it is possible to provide observability on the necessary sig-
nals, as demonstrated in Chapter 9. With simulation, the design is executed with
the same input as the C program and the signal variations are dumped in Value
Change Dump format (VCD [38]). The necessary signals are just a small portion
of the total and are selected automatically, reducing the VCD only to what is re-
ally needed for the Discrepancy Analysis. This yields a considerable reduction of
I/O time and VCD size, with obvious benefits.

7.2 Comparing Execution Traces with Finite State Automata

This section describes how to compare the traces to check for equivalence. The
comparison can be performed separately on Control Flow Level and Operation

59

Chapter 7. Simulation-Based Offline Discrepancy Analysis

INIT UPDATE
C and HW

ended?
NODISCR

ERR Y

READY

OK

is later than
discrepancy?

CHECK

N

C ended?

N FAIL_C_END

FAIL_C_CONT

Y

N

AFTER
Y

FOUND
MISMATCH

MATCH

Figure 7.1: Finite State Automaton for the comparison of the traces. Notice that strictly speaking this is not
an FSA because it is composed by a mixture of state nodes (with sharp edges) and algorithmic nodes (with
rounded edges), resembling a flow diagram. This shows the algorithmic structure of the comparison more
clearly. The classical FSA structure can be recovered substituting the nodes with rounded nodes with simple
edges with the proper conditions.

Level. Separating the two levels makes the algorithm easier to understand and
faster to execute. This section discusses a method for fast pattern-matching of
hardware and software traces, based on Finite State Automaton (FSA). Please
bear in mind that this terminology is purposely used to avoid confusion with the
Finite State Machine of the hardware controller. Notice that the word status is
always referred to the FSA in the following, while the word state always refers to
the FSM. Using this kind of automata has two advantages:

1. it makes possible to define a unified algorithm for Discrepancy Analysis of
both Control Flow Traces and OpTraces;

2. using stateful checkers can be easily extended to multi-threaded programs
later in Section 7.3.

7.2.1 Finite State Automaton for the Comparison of the Traces

Despite the fact that control flow and data traces are fundamentally different in
the meaning and in the format, the basic algorithm for their comparison can be
based upon a Finite State Automaton with the same structure, depicted in Fig-
ure 7.1. Please notice that the automaton depicted in the figure is not strictly
speaking a Finite State Automaton, since it mixes states (nodes with sharp edges)
and algorithmic nodes (with rounded edges). This is to make the algorithmic flow
of the comparison easier to follow, without clobbering the edges of the graph with
verbose conditions. The reader can recover a classical FSA substituting the algo-
rithmic nodes with plain edges annotated with the proper conditions. However,
the following discussion refers to the graph portrayed in Figure 7.1 as is.

An FSA of this kind works on a pair of associated traces, one for hardware and
one for software. The possible statuses of the FSA are represented by rectangular
nodes: INIT, READY, NODISCR, FAIL_C_CONT, FAIL_C_END, AFTER and FOUND. There are three
kinds of statuses represented by different type of nodes:

60

7.2. Comparing Execution Traces with Finite State Automata

1. gray with dotted borders – the FSA has not yet checked the next entry in the
traces looking for a discrepancy;

2. green – success (only NODISCR), the FSA completed the analysis of the traces
and no mismatches were found.

3. red with dashed borders – ending state representing failures, i.e. a discrep-
ancy was detected.

Among the last group, FOUND is when an actual mismatch between hardware
and software is actively detected. FAIL_C_CONT is when the Software Trace contin-
ues even if the Hardware terminates and FAIL_C_END is when C ends prematurely,
while hardware keeps going. In the figure, the blue diamond-shaped nodes are
functions that manipulate the traces. These are the only parts of the automaton
that operate differently for control flow and data (for details see Section 7.2.2).

For every couple of hardware and software traces, the FSA starts in status
INIT and operates as follows. UPDATE slides through the traces, selecting the next
value available in the software trace. It then uses is with HLS information to
compute the next relevant time when the hardware trace must be compared with
software. Remember that the software trace is untimed, while the hardware trace
has timing information. UPDATE returns ERR when some of the data necessary for
the evaluation of the mismatch cannot be computed. In this case, the kind of error
is determined and the FSA terminates. If all the data necessary for the evaluation
of the following mismatch are available, UPDATE returns READY. If the timing of
the next entry in the hardware traces is later than another discrepancy previously
detected by another automaton for another couple of traces, the FSA suspends the
checks, entering in AFTER. Indeed, if a discrepancy is detected on an operation, the
following are likely affected, so only the first discrepancy is important. Skipping
checks on traces with higher timestamps makes the comparison faster. If no prior
discrepancy was found, the CHECK function is executed. CHECK operates on the two
next ready values identified by UPDATE on the hardware and software traces. These
two values are compared to decide if they actually match. If they do, the cycle
restarts with the next entries, otherwise, the FSA enters FOUND and terminates.

7.2.2 Algorithms for Comparison of the Traces

The two algorithms to compare Control Flow Traces and OpTraces are very similar
and share the same structure represented by the FSA described in Section 7.2.1.
The only difference between the two algorithms is represented by different oper-
ations executed by the UPDATE and CHECK functions in the FSA. Here these opera-
tions are described in detail for both the cases.

Control Flow

The comparison of Control Flow Traces is performed one function at a time. The
HCFT for a single function consists of four signals: clock, start, done and
state. The SCFT for the same function is simply a list of Basic Block identifiers.
An example is shown in Figure 7.2 on traces referred to Figure 5.1. From the
figure, it is straightforward to understand how the CFTs can be compared. In this
case, the UPDATE and CHECK functions can be unified in a single one, that operates

61

Chapter 7. Simulation-Based Offline Discrepancy Analysis

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14

HCFT

SCFT

clock

start

done

state S0_0 S0_1 S0_2 S0_0 S0_1 S0_2 S1_0 S1_1 S2 S3 S0_0

BB id BB0 BB0 BB1 BB2 BB3

Figure 7.2: Relationship between Control Flow Traces. The HCFT is represented by the first four signals,
while the SCFT is the list of Basic Block identifiers. The traces are referred to the CFG and FSM shown in
Figure 5.1. The red dashed lines between state and BB id represent the scheduling relationship between
states and basic blocks.

Algorithm 1 Discrepancy Analysis for OpTraces.

Input: Hardware and Software Traces
Output: discr_status_map
1: discr_status_map[] = empty;
2: for all (Oi operations in the program) do
3: select the following:

f – the function whereOi belongs
CH – Hardware Control Flow Trace for f
CS – Software Control Flow Trace for f
OH – Hardware OpTrace forOi
OS – Software OpTrace forOi

4: cur_status = NODISCR;
5: repeat
6: cur_status= FSA(CH,OH,CS,OS);
7: until (cur_status != NODISCR and

cur_status != FOUND and
cur_status != FAIL_C_END and
cur_status != FAIL_C_CONT and
cur_status != AFTER)

8: discr_status_map[vi] = cur_status;
9: end for

CFG

FSM

BB0
op1;
op2;
· · ·

BB1
· · ·

BB2
· · ·

S0_0
op1;
· · ·

S0_1
op2;
· · ·

S1
· · ·

S2_0
· · ·

S2_1
· · ·

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14

HCFT

HOTs

SCFT

SOTs

clock

start

done

state S0_0 S0_1 S1 S0_0 S0_1 S0_0 S0_1 S1 S0_0 S0_1 S2_0 S2_1 S0_0

out_op1 0001 0010 0100 1000

out_op2 1110 1101 1011 0111

SCFT BB0 BB1 BB0 BB0 BB1 BB0 BB2

op1 1 2 4 8

op2 14 13 11 7

Figure 7.3: Visualization of Hardware and Software
Traces, with the CFG and FSM, used to generate them.

in the following manner. First, it considers the next BB id in the SCFT and it
uses the scheduling map computed during HLS to obtain the list of states in the
FSM associated with that basic block. This mapping is depicted with red dashed
arrow in the figure. Finally, it checks that the state signal in the hardware traces
are coherent with the identifiers computed from scheduling. The clock, start,
done signals are used to ensure that the FSM is actually in execution.

Operations

The analysis of the OpTraces is performed one operation at a time. Figure 7.3
shows an example of CFG and FSM with the traces related to two operations (op1

and op2). These are the data manipulated by the FSA for the comparison of Op-
Traces. The comparison is depicted in Algorithm 1. It works on hardware and
software traces, and it fills a map of discrepancy reports for every operation. The
main loop works on a single variable at a time, selecting hardware and software
traces and passing it to the FSA described in Section 7.2.1. The result of the ex-

62

7.2. Comparing Execution Traces with Finite State Automata

Algorithm 2 Pseudocode for the UPDATE function
Input: Same as the FSA
Output: OK if ready for next comparison, ERR otherwise

1: select next value in SOT;
2: start_time = time of the next starting state for operation;
3: if (no starting state was found or SOT is empty) then
4: return ERR;
5: end if
6: if (is FLO) then
7: end_time = start_time + exec_time;
8: else
9: end_time = (first time after start_time when done == 1);

10: if (done is never asserted) then
11: return ERR;
12: end if
13: end if
14: return OK;

ecution of the FSA on the traces of an operation is a terminating status cur_status,
representing information on the discrepancies for that operation. At the end of
the analysis of all the operations, if even a single element in discr_status_map reports
a mismatch the bug is reported to the user.

The UPDATE function updates the traces using different strategies for Fixed La-
tency Operations (FLO) and Variable Latency Operations (VLO). FLOs can be
simple operations, chained operations and also pipelined modules. Their execu-
tion time is fixed, known at compile time and used by the scheduling algorithm
to decide how to structure the FSM. VLOs are typically used to model function
calls, external memory accesses or operations with long execution times. Long
operations could be treated FLOs but, unless there is plenty of other operations
without data dependencies, it would require several waiting states, increasing
the area of the FSM. For VLOs the execution time is assumed to be unknown, so
they are handled with a handshaking mechanism involving a start and a done
signal, which are part of the OpTraces for this kind of operations.

The UPDATE function is described in Algorithm 2. It starts flowing through the
SOT to get the next assigned value in C (line 1), and through the HCFT to get
the start_time of the new hardware execution (line 2). Lines 3 to 5 perform some
sanity checks on the new start time and on the SOT. If the SOT is empty there is
nothing to compare the hardware execution with. Moreover, if the detection of
the start_time fails, it means that the HCFT of the FSM never enters in a starting state
for the operation again. This means that the operation is executed in C but not in
hardware, so it is marked as an error. From line 6 to 13, the end_time in hardware
of the newly started operation is computed. This is necessary to compare the
output signal with the value in C only after the operation is complete. For FLOs,
execution time is fixed and known, so it is simply added to start_time (lines 6-8). For
VLOs the done port must be checked (lines 9-11). If it is never asserted before the
end of the simulation, UPDATE returns ERR, otherwise OK.

As explained in Section 7.2.1, CHECK accepts as input the two next values iden-
tified by UPDATE on the hardware and software traces. The CHECK operates in dif-
ferent ways depending on the type of the variables associated with the OpTrace.

63

Chapter 7. Simulation-Based Offline Discrepancy Analysis

For integer variables it is a simple bitwise comparison, but for other types it re-
quires more complex operations. A notable example are floating point variables.
Floating point data they have two separate representations for zero, with differ-
ent values for the sign bit. Another subtlety is that the IEEE754 standard allows
certain classes of mathematical functions to return results that are wrong up to 1
Unit in Last Place (ULP). This means that it is not necessarily a bug if the results
of these operations differ in software execution and in hardware. The implemen-
tation described in this work allows specifying the max error allowed in terms of
ULPs for floating point operations.

The other main type of variables that cannot be compared directly is repre-
sented by addresses and pointers. The reason is that there is an intrinsic differ-
ence between the address spaces in hardware and in software. Indeed, during
software execution, all the variables allocated in the program stay in the same
address space, and if two pointers are equal (i.e. they have the same underlying
bitwise representation) they forcibly point to the same object allocated in mem-
ory. In hardware, this is not true. As explained in Section 2.2, HLS tools perform
memory optimizations, including partitioning and restructuring. Hence, high-
level variables and objects often end up to be allocated in physically separate
memory modules on FPGA. For these modules, the natural counterpart of point-
ers are the signals used for addressing them. If two different variables reside on
two separate memory modules, they can, in theory, be addressed using the same
address on the two modules. This means that it is often the case that two “hard-
ware pointers”, i.e. two addressing signals used to access different memories on
FPGA, have actually the same underlying bitwise representation, but they actu-
ally point to two different objects. The pointed objects can even have different
types. This situation makes Discrepancy Analysis of pointers more complicated.
Chapter 8 describes the additional information and data structures that must be
extracted from the HLS process in order to be able to debug pointer operations.

The algorithm on its own may not be enough to understand how the checker
FSA works in practice. A simple example can be demonstrated with the traces
sketched in Figure 7.3. Consider op1. It is in BB0 and it is scheduled in S0_0, so S0_0

is a starting state for op1. Assume it is an FLO with execution time of 2 cycles.
The FSA starts in state INIT. It then runs the UPDATE function. The SOT of op1 is not
empty, and its first value is 1. The start_time is computed looking at the HCFT. S0_0

starts at t = 0, but given that it is the initial state, the real computed start_time is t =

1. Adding the execution time the end_time results 3. Then the value of out_op1 is
checked at time t = 3. The binary value (0001) is compared with the SOT, using
the CHECK function. In this case, the comparison is straightforward and MATCH is
returned. Then the UPDATE function is called again, iterating this process other 3
times to check all the 4 assignment. The fourth time the UPDATE function is called,
it returns ERR, since the SOT is empty and there are no new starting states in the
HCFT. The FSA enters the NODISCR status, and the analysis of this trace ends. The
same operations are performed on all the other traces to completion.

7.3 Debugging Circuits Generated from Multithreaded Programs

Discrepancy Analysis as described in Section 7.2 does not support multi-threading,
actually not even procedure cloning [84]. The reason is that it silently makes the

64

7.3. Debugging Circuits Generated from Multithreaded Programs

int A[8], B[8]; int g(int x);
int f(int a, int b) {

#pragma omp parallel for \
reduction(+:a,b)
for (int i = 0; i < 8; i++) {

a += g(A[i]); b += g(B[i]);
}
return a - b;

}

(a) Example of a C function containing using an
OpenMP parallel for loop to speedup computation.

body0 body1

g0 g1 g2 g3

f

(b) Structural layout of the parallel hardware archi-
tecture generated starting from (a).

Figure 7.4: A snippet of C code using OpenMP for parallelization and one of the possible parallel architec-
tures that can be generated from it with High-Level Synthesis.

assumption that there is a one-to-one mapping between software and hardware
traces. This is equivalent to the assumption that there is always only one hard-
ware accelerator for every high-level function and that every accelerator only
executes one task to its completion before starting a new one. But this is not what
happens when HLS starts from parallel programming directives.

Consider for example the code in Figure 7.4(a). The function f contains an
OpenMP for loop with memory accesses and multiple calls to g, without data
dependencies. Without support for multi-threading, a typical HLS tool would
generate a component for f and a component for g, instantiating the second in
the first. If the alias analysis can tell that the memory accesses on A[i] and B[i]
are on disjoint memory locations it could duplicate the instances of g and exe-
cute them in parallel inside the loop body. Otherwise, it would generate a single
instance of g and serialize the calls inside the loop, which is suboptimal for per-
formance. If the HLS tool supports for OpenMP, instead, there are a number of
possible optimizations. The loop body could be treated as a separate module
and physically replicated multiple times, resulting in physical parallelism. This
is what is done by LegUp [17] and BAMBU [16]. Otherwise, a parallel architecture
could be generated for the loop body, allowing simultaneous executions of differ-
ent threads at the same time, using context switching to hide memory latencies
due to the accesses to A[] and B[] in the loop body. This is what is done by the
CHAT compiler [30] based on ROCCC [86] and by Tan et al. [82]. Theoretically,
the two techniques could be used together: it could be possible to physically du-
plicate the loop body and to enable context switching on all the duplicate copies,
depending on some design space exploration trade-offs. At the moment of this
writing, no known technique adopts this combined approach, but the rest of this
section is going to assume that is possible, in order to show the flexibility of the
proposed methodology for automated bug detection. This scenario should settle
the more general assumptions as possible: physical and hardware-thread paral-
lelism with dynamic scheduling. In this way, if these assumptions are restricted
by a particular HLS implementation (like only allowing physical duplication with
static scheduling or other combinations) the approach still works.

Suppose that the HLS tool instantiates two physical copies of the loop body,
body0 and body1, like in Figure 7.4(b). Suppose then that the memory accesses
are recognized as separate memory locations and the tool also instantiates two

65

Chapter 7. Simulation-Based Offline Discrepancy Analysis

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

clock

taskid it0 it4 it7 it4 it7 it0 it7 it0

g0start

g0done

g0out XXXX 0111 0001 0101

g1start

g1done

g1out XXXX 0011 0100 0000

thread0_taskid it0 it1 it2 it3

thread0_operation g0 g1 g2 g3 g2 g3 g2 g3

thread0_g_out 0101 0000 0010 0110 1000 1010 1001 1011

thread1_taskid it4 it5 it6 it7

thread1_operation g0 g1 g2 g3 g2 g3 g0 g1

thread1_g_out 0111 0011 1100 1101 1111 1110 0001 0100

(a) Execution traces as they are obtained directly from software and hardware depicted in Figure 7.4.

task_id it0 it1 it2 it3 it4 it5 it6 it7

operation g0 g1 g2 g3 g2 g3 g2 g3 g0 g1 g2 g3 g2 g3 g0 g1

g_out 0101 0000 0010 0110 1000 1010 1001 1011 0111 0011 1100 1101 1111 1110 0001 0100

Discrepancy
Analysis

FSA g0 it0

XXXX 0001 0101

FSA g0 it4

XXXX 0111

FSA g0 it7

XXXX 0111 0001

FSA g1 it0

XXXX 0011 0000

FSA g1 it4

XXXX 0011

FSA g1 it7

XXXX 0011 0100

(b) Preprocessed execution traces ready for Discrepancy Analysis.

⇒

Figure 7.5: Visualization of the comparison of the traces generated from Figure 7.4.

66

7.3. Debugging Circuits Generated from Multithreaded Programs

physical copies of g inside every copy of the loop body. In addition, suppose that
the assignment of iterations of the loop onto body0 and body1 is not statically
assigned but decided at runtime from some kind of dispatcher components de-
pending on some policy. Finally, suppose that both the copies of the loop body
support dynamic context switching, so that they can request another iteration to
the dispatcher if the currently executed iteration stalls waiting for variable mem-
ory latencies on accesses to A[] or B[]. For example, it could happen that iter-
ations 0, 4, and 7 of the loop are assigned to body0, while iterations 1, 2, 3, 5,
and 6 are assigned to body1. Let us focus on body0. With dynamic scheduling
and context switch it may be possible that iteration 0 starts, it stalls on memory
request for A[i] and B[i], and it is context switched to yield the DataPath to it-
eration 4. The same stalls happen then for iteration 4 and 7, for example because
the memory for A[] and B[] is off-chip and has irregular latency. For the same
reason, it may happen that the memory requests of these iterations are served
out-of-order and that the context switch logic decides to wake up the three itera-
tions in reverse order to mask latencies. An example of this reordering is depicted
in Figure 7.5(a).

The top portion of the figure represents the hardware. The dashed vertical
lines marked by the small arrows on the bottom (t=1, 2, 3, 6, 8, 10, and 11), are
the instant where body0 performs a context switch. The taskid represents the
iteration in execution at any given moment. The other 6 lines, grouped into two
blocks of 3 with the same background, represent the start, done and the output
signal of each instance of g inside body0. It is possible to see that the executions
of g0 g1 in the same iteration can overlap, as in g0 at time t=4, where g1 starts
even if g0 has not yet finished. Also, the execution of g0 and g1 can be suspended
if the iteration is context switched, and they are resumed later when the proper
iteration returns in execution. As an example of this pattern see the call to g1 of
iteration 7 is started at t=7, suspended at t=8 and finally terminated at t=10.

The lower part of Figure 7.5(a) portrays what happens in software. In this part
there is no timing information, the actual number of threads in execution is differ-
ent, and the assignment of tasks to threads is not the same as in hardware. With
all these differences, the key information to perform Discrepancy Analysis is the
task id (or iteration id). In software, it is the iteration that is executed by a certain
thread at a given moment and it can be dumped during execution with additional
dedicated instrumentation. In hardware, it is the task currently executed by an
accelerator and it can be extracted with an appropriate signal selection guided
by HLS, by inspecting the components that manage the assignment of the tasks
and the context switch. Using this information, the traces are preprocessed before
Discrepancy Analysis. The preprocessing is different for hardware and software.
The software traces are merged and filtered according to the sequence of task ids,
like shown in Figure 7.5(b). In this way, it is possible to obtain a single trace from
all the traces scattered across the different software threads. The hardware traces
are filtered, again using the task id. In this phase, if there are some task ids that
are executed in software but not in hardware it is already possible to detect a bug.
If all the task ids executed in software are also executed in hardware, instead, a
single hardware trace is extracted for every executed task id. The result, shown
in Figure 7.5(b), is that there is a single software trace to be compared with a set
of hardware traces. Hardware traces have lost part of the timing information,

67

Chapter 7. Simulation-Based Offline Discrepancy Analysis

but they maintain consistency of the internal ordering. They just happen to have
“jumps forward” in time, when the task was suspended and another one was
in execution on the accelerator. With this setup, the algorithm described in Sec-
tion 7.2.2 can be adapted instantiating a separate FSA for every task id. This FSA
works only on its filtered vision of the hardware trace, but the inner functioning
is exactly as described in Section 7.2.2. The comparison starts from the software
trace, looking for the iteration id and using it to decide which FSA has to handle
the next comparison. Given that the FSA is stateful, it is not a problem if the trace
associated with a certain task id is not checked consecutively from beginning to
end. When the software trace ends, the analysis reports the detected errors as
well as if there are still some values in the hardware traces to be checked, mean-
ing that the hardware has executed more operations than the software.

Summary

This chapter was focused on Simulation-Based Offline Discrepancy Analysis. Sec-
tion 7.1 described how to generate and collect the execution traces for software
and for hardware, also explaining how to automatically select in the design the
signals necessary to perform automated bug detection. Section 7.2 discussed the
algorithm for automated bug detection. The algorithm was described in a generic
fashion, based on a Finite State Automaton that is suitable for the comparison
of both Control Flow Traces and OpTraces, requiring only a few dedicated cus-
tomizations to handle the two cases. Finally, Section 7.3 showed how the algo-
rithm can be extended to handle hardware designs generated with HLS from
multithreaded program specifications.

Chapter 8, will explain how this baseline implementation of Discrepancy Anal-
ysis can be extended to perform automated bug detection on pointers and mem-
ory accesses. Chapter 8 concludes the discussion of Simulation-Based Offline Dis-
crepancy Analysis, while Chapter 9 will later describe On-Chip Online Discrepancy
Analysis, concluding Part II of the thesis.

68

8
Debugging Pointers and Memory Accesses

This chapter focuses on the extension of the Discrepancy Analysis to support the
debugging of operations involving pointers and addresses. As explained in Sec-
tion 7.2.2, this requires defining additional information and data structures that
must be extracted from the High-Level Synthesis process, in order to be able to
compare software pointers with signals representing addresses in hardware. To
this end, Section 8.1 introduces the Address Space Translation Scheme (ASTS), that
uses the concept of Memory Locations introduced in Section 2.2 to construct a table
used to implement the CHECK function for pointer types. Then, Section 8.2 actu-
ally describes how the comparison is performed using the ASTS, while Section 8.3
discusses a set of techniques that can be used to avoid false positives.

Part of the material composing this chapter was originally published in inter-
national peer-reviewed conference proceedings [23]: P. Fezzardi and F. Ferrandi.
Automated Bug Detection for Pointers and Memory Accesses in High-Level Syn-
thesis Compilers. In 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), Aug 2016.

8.1 Address Space Translation Scheme

The main purpose of this section is to define the Address Space Translation Scheme
(ASTS). The ASTS is a table that allows comparing Hardware Memory Locations
with Software Memory Locations, despite their different underlying address spaces.
Its construction is entirely based on the concepts of Memory Locations introduced
in Section 2.2. The notation used here is the same.

In the High-Level Synthesis process, memory allocation has to decide for every
variable i a Hardware Memory Location 〈Mi, Bi, Si〉 and to instantiate the necessary
memory modules. In software, the same variable i will be allocated at runtime
at a certain Memory Location, not known at compile time. This Memory Location
can be represented in a shorter form for software: 〈CBi, CSi〉. Here CBi is simply
the address of the variable and CSi its size. However, in software, the Memory
Location where a variable is allocated at runtime, does not depend only from the
identifier i. Moreover, different executions of the same program could be mapped
at different offsets in the virtual memory by the Operating System. In practice,
this means that Software Memory Locations are not deterministic and it complicates
the problem of their comparison with Hardware Memory Locations.

Consider a program where the main() calls another function fun() multiple
times, and fun() has a local stack-allocated variable accessed by address. In this
case, at every call to fun(), the Software Memory Location for the same variable
will be different. On the other hand, multiple strategies can be adopted from

69

Chapter 8. Debugging Pointers and Memory Accesses

Address Space Translation Scheme (ASTS)

Hardware Address Table (HAT) Software Address Table (SAT)

i 〈Mi, Bi, Si〉 j 〈CBi, CSi〉 i

i : variable identifier
〈Mi, Bi, Si〉 : HW Memory Location

j : SW Call Context ID
〈CBi, CSi〉 : SW Memory Location

i : variable identifier

Figure 8.1: Representation of the Address Space Translation Scheme

the HLS engine for the synthesis: fun() could be inlined; a separate module for
fun() could be generated; the module used for the implementation of fun()
could be duplicated and instantiated once for every different call site. Depending
on this decision the Hardware Memory Location for the local variables of fun()
may vary. However, this decision must be taken during the HLS allocation step,
and it is fixed at the end of the HLS flow itself.

This inherent difference between hardware and software is very much sim-
ilar to the issues described in Sections 2.3 and 7.3 about the different possible
mappings between hardware and software threads. For this very same reason, it
can be resolved with a similar mechanism. The key observation is that memory
locations are fixed for hardware, but they can vary in software, either between
different executions of the same program or between different calls to the same
function during a single execution of the program. From this observation, it be-
comes clear that it is necessary to collect runtime data about the Software Memory
Locations from software in order to resolve the hardware/software address map-
ping. For this reason, the same strategy adopted for multi-threaded programs
can be used here: enriching software traces with information about memory lo-
cations. Another important observation is that Software Memory Locations can be
actually created and destroyed only when a function is called or when it returns.
The reason is that stack memory in software is only allocated and freed on func-
tion calls and returns. This also means that the model described here does not
consider dynamic memory allocation with malloc/free functions. This is not
a severe limitation because dynamic memory allocation is rarely used in High-
Level Synthesis. With this additional assumption, additional memory profiling
instrumentations are injected into the C code, before it is compiled for the gen-
eration of the software traces. In this way, it is possible to dump the software
memory mapping at runtime and to extract the data necessary to build the ASTS.

In particular, for every function call, the instrumentations generate and collect
the unique context id j. Then, for every memory-mapped variable visible in that
scope, they print its identifier i and its Software Memory Location, composed of
its base address CBi and size CSi. To support array partitioning across memory
modules, this must be refined. In particular, i must be a unique identifier for an
element in the array (or field in a struct).

Starting from this information, it is possible to define the Address Space Trans-
lation Scheme. An outline of its structure is shown in Figure 8.1. The ASTS is
subdivided into two tables, which can be implemented efficiently as hash tables.

70

8.2. Address Discrepancy Algorithm

The first table is called Software Address Table (SAT). In the figure, it is on the right,
with an orange header, and it contains data on Software Memory Locations. One
row is in the form [j, 〈CBi, CSi〉, i]. Here j is the primary key and 〈CBi, CSi〉 is
the secondary key. They allow, for any given call context, to retrieve efficiently
the mapping of software addresses on variables. This means that for every given
call context j and for every pointer p in that context, a fast lookup in the SAT is
enough to determine the variable i where p points. The second table is the Hard-
ware Address Table (HAT). In the figure, it is represented on the left, with a light
green header. It is composed of the fields [i, 〈Mi, Bi, Si〉]. The HAT is built dur-
ing the memory allocation step of the HLS process. It maps every variable i to a
Hardware Memory Location 〈Mi, Bi, Si〉.

An important thing for both hardware and software Memory Locations is that
even if they are expressed in this formal notation, they are easily convertible to
bit sequences and back to Memory Locations. For software, this is trivial, given
that CBi is actually an address. For hardware, the mechanism strictly depends
on the implementation, but it is necessarily computed during HLS for memory
allocation and to build the address decoding logic.

Another important consideration is that the construction of these tables hap-
pens after HLS, so that all the compiler optimizations have already finished. This
is particularly important for memory-to-register and register-to-memory trans-
formation passes that could alter the construction of the ASTS, as well as complex
partitioning or restructuring optimizations performed during HLS. Building the
tables after HLS allows to treat these optimizations.

8.2 Address Discrepancy Algorithm

The Address Discrepancy Analysis algorithm consists of a dedicated implementa-
tion of the CHECK function in the FSA described in Section 7.2.1. The structure of
the FSA is the same, and also all the other functionalities, but the implementation
of CHECK needs to take into account the ASTS to compare the traces. Pointers are
variables, so the Address Discrepancy Analysis actually extends the comparison of
OpTraces, while leaving the Control Flow Traces unaltered. Also, for non-pointer
variables, the Discrepancy Analysis of the OpTraces works just like described in
Chapter 7. For pointers, a bit-per-bit comparison would obviously lead to a mis-
match, even if the synthesized address decoding logic is correct, because of the
different address spaces.

The implementation of the CHECK function for FSA-based Address Discrepancy
Analysis algorithm is depicted in Algorithm 3. In the description in Section 7.2.1,
the only inputs to the CHECK function were the two next available entries in hard-
ware and software traces. In this case, to support pointers, Algorithm 3 shows
that the inputs must be extended to include the software call context j and the
Address Space Translation Scheme. In Algorithm 3, sw_address represents the
next entry in the Software OpTrace, i.e. the value of a virtual address assigned to
a pointer p in the context j. The value of hw_address is the next entry in the
associated Hardware OpTrace, that must be compared with software. This value
is actually the bitwise representation of a signal used in hardware to address a
memory module. This signal is the ‘hardware pointer’ associated with p.

The function initially performs a lookup in the SAT to compute the variable

71

Chapter 8. Debugging Pointers and Memory Accesses

Algorithm 3 CHECK Algorithm for Address Discrepancy Analysis.
Input: j call context identifier

sw_address: SW address assigned to a pointer p in j
hw_address value of the signal associated to p in hardware
ASTS = (HAT, SAT)

Output: true if sw_address and hw_address mismatch
false othewise

1: i = search(j, sw_address) in SAT;
2: if (i is found) then
3: 〈Mi, Bi, Si〉 = search(i) in HAT;
4: if (〈Mi, Bi, Si〉 is found) then
5: expected_hw_address = decodeHW(〈Mi, Bi, Si〉);
6: if expected_hw_address 6= hw_address then
7: return true
8: else
9: return false

10: end if
11: else
12: /⁎ i is not allocated in memory in hardware⁎/
13: return true
14: end if
15: else
16: /⁎ sw_address is not in range for any variable ⁎/
17: return false
18: end if

i pointed to by the address sw_address (line 1). If the lookup fails, it means
that the address is not in range for any variable in software. This means that
sw_address does not point to any valid Software Memory Location. Hence the
Discrepancy Analysis cannot give conclusive results because there is no Software
Memory Location to compare with hardware (lines 15-18). If the lookup in the
SAT succeeds, then the variable i is used as a key for a second lookup, this time
in the HAT (line 2-3). If this second lookup fails, it means that there is a vari-
able i in software whose address is taken but that is not mapped to memory in
hardware. In this case, the function returns an error (lines 11-14). Instead, if also
this second lookup succeeds, the computed Hardware Memory Location 〈Mi, Bi, Si〉
is converted to an integer with the decodeHW function (line 4-5). The decoded
value expected_hw_address represents the expected value of hardware ad-
dress that would point to the Hardware Memory Location equivalent to the Soft-
ware Memory Location pointed to by the software address sw_address. Thus,
if expected_hw_address 6= hw_address, a mismatch is detected, otherwise,
CHECK returns false.

The decodeHW is strictly dependent on the implementation. Hence, it is dif-
ferent for every HLS tool since it uses a lot of HLS information on memory allo-
cation, and on how hardware addresses are actually mapped to hardware.

8.3 Refining Address Discrepancy Analysis

The presented approach has to be refined to avoid false positives. The first class
of such false positives happens when the synthesized hardware performs a spec-
ulated READ. This is perfectly possible in hardware, but in software it may access

72

8.3. Refining Address Discrepancy Analysis

extern int something(int ⁎p);
int main() {

int ⁎p, a[32], b[32], res = 0;
for (p = a; p < a + 32; p++)

res += something(p);
for (p = b; p < a + 32; p++)

res += something(p);
return res;

}

Figure 8.2: A C program causing a false positive

an invalid address, causing a segmentation fault. Hence READ speculation must
be avoided. This is not really a problem since none of the currently available
High-Level Synthesis tools actually perform it.

Other problems arise when the points-to set for a given address contains two
arrays contiguously allocated in memory by the C code. An example is the code
in Figure 8.2, where a and b are contiguous. After the last iteration of the first
loop, p points to b[0], thus it is in-range for b. The reason is that, after the last
iteration of the first loop, p is set to &a[32], which causes the loop to end. This
assignment is actually performed before the second loop and before setting p to b.
This means that there is a time when p evaluates to &a[32], which in C overlaps
with &b[0] but in hardware it may not. This is not a problem in C, but in hard-
ware a and b could even be mapped onto different memory modules. At this
point, if the value of p in software is compared with hardware, it is likely to gen-
erate a false positive. A possible solution is to insert poisoned redzones between
different memory-allocated areas in C, using the AddressSanitizer (ASAN) mem-
ory error detector [77], deployed in both GCC and LLVM. The C code used for
Discrepancy Analysis is compiled using ASAN. ASAN consists of a compiler in-
strumentation pass and a run-time library which replaces the malloc function.
Using ASAN results in two advantages: it avoids memory bugs in the original
high-level code used to generate the traces; it avoids false positives cause by con-
tiguously allocated data. Algorithm 3 cannot really say anything about out-of-
range addresses because only in-range addresses are actually used for lookups
in the HAT. ASAN is a complementary solution to this problem: mismatches
for out-of-range addresses are not reported, but ASAN ensures that there are no
dereferences. Another option would be to perform static range checking directly
in the HLS tool, which is partially done by most compilers with the correct flags.
However, static range checking is not always exhaustive in all the cases. Hence,
the instrumented code for trace generation would still need to be compiled with
a dynamic range-checking library. ASAN solves all these issues at once and it
is guaranteed to improve with time, following the development of mainstream
compilers.

Summary

This chapter described the theory behind Address Discrepancy Analysis, complet-
ing the discussion on Simulation-Based Offline Discrepancy Analysis. Section 8.1
initially introduced the Address Space Translation Scheme (ASTS), a data structure

73

Chapter 8. Debugging Pointers and Memory Accesses

constructed during High-Level Synthesis using memory allocation information
that is at the core of Address Discrepancy Analysis. Section 8.2 then described the
algorithm used to compare software pointers and hardware addresses, relying
on the ASTS. Finally, Section 8.3 described a few precautions that can be taken to
make the results of the analysis more sound.

This chapter is the last that is focused on Simulation-Based Offline Discrepancy
Analysis. Chapter 9 will now discuss On-Chip Online Discrepancy Analysis, to com-
plete the description of the methodology proposed in the thesis and to conclude
Part II. Part III will then describe the experimental setup and the results obtained
during the evaluation of the different flavors of Discrepancy Analysis.

74

9
On-Chip Online Discrepancy Analysis of
Control Flow

This chapter shows how the Discrepancy Analysis described in Chapter 7 can be
adapted to on-chip debugging. Section 9.1 outlines the motivation behind this
choice. The approach proposed throughout the rest of this chapter aims at pro-
viding automated bug detection based on Discrepancy Analysis directly on-chip
and during online operation of the circuit. To this end, it exploits the HLS infor-
mation and the structure of the Finite State Machines to generate and integrate
optimized components, called Control Flow Checkers, for online on-chip debug-
ging. The generated checkers analyze on-the-fly the execution of the Finite State
Machines, automatically halting the circuit when a bug is detected, localizing it
and providing data about its cause. The approach proposed here only works at
the Control Flow Level. To reduce memory usage and save precious resources on
FPGA, Software Control Flow Traces are compressed with a technique coming
from software profiling. This technique, called Efficient Path Profiling (EPP) [7],
is described in Section 9.2. Section 9.3 explains how EPP can be extended and
adapted to work on Finite State Machines and used to find bugs automatically in
hardware accelerators generated with High-Level Synthesis. Section 9.4 outlines
an additional compression strategy that can be composed with EPP to further re-
duce the memory footprint of the Control Flow Checkers on FPGA up to two orders
of magnitude compared to state-of-the-art. Finally, Section 9.5 provides a detailed
description of the architecture of the Control Flow Checkers.

Part of the material in this chapter was published in an international peer-
reviewed journal [24]: P. Fezzardi, M. Lattuada, and F. Ferrandi. Using Efficient
Path Profiling to Optimize Memory Consumption of On-Chip Debugging for
High-Level Synthesis. ACM Transactions on Embedded Computing Systems, 16(5s):149:1–
149:19, Sept. 2017.

9.1 Motivation

On-chip debugging is one of the fundamental components of every full-fledged
development environment for FPGA applications. Indeed, in hardware debug-
ging, there are some faults that only exhibit on-chip: damaged gates, environ-
mental interference, power supply noises, and in general bugs involved in inter-
faces with external components. Moreover, High-Level Synthesis is increasingly
used for system-level design and to integrate black box Intellectual Property (IP)
blocks and hand-written components. IPs provided by vendors may not have
been tested for some corner cases of the end users, and hand-written HDL may
yield different results in simulation and after synthesis [36] [54]. This scenario fur-

75

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

ther complicates debugging when High-Level Synthesis is used for system-level
design with integration of third-parties IPs, and calls for a system-level method-
ology to debug HLS-generated systems directly on-chip.

However, the flow described in Chapter 7 only provides offline simulation-
based Discrepancy Analysis. At the same time, the definitions of Chapter 5 are
agnostic about how the traces are collected for comparison. Hence, this chapter
aims to demonstrate mainly three things:

1. that the Discrepancy Analysis methodology described in the thesis can be
actually used for on-chip debugging;

2. that this is possible with optimized dedicated components that enclose all
the necessary logic, without imposing restriction to front-end or architectural
modification during HLS;

3. that the implementation also has advantages compared to other widespread
state-of-the-art techniques.

These goals are very important in validating the proposed Discrepancy Anal-
ysis technique because their achievement shows that the methodology is sound
and mature enough to be adapted to new and different scenarios.

In particular, in this work the focus is on Control Flow Discrepancy Analysis.
There are two main reasons for this choice. The first is that even with only Control
Flow it is already possible to demonstrate the feasibility and to show significant
improvements compared to state-of-the-art. The second is that the Efficient Path
Profiling algorithm, used to compress Control Flow Traces, is by its nature only
applicable to control flow. OpTraces should be handled separately and treated
with dedicated algorithms that are not described here.

9.2 Efficient Path Profiling for Software

The main idea behind online Discrepancy Analysis on-chip is to automatically
generate and integrate into the designs some dedicated components, called Con-
trol Flow Checkers. These components will be designed to compare the Software
Control Flow Traces representing the golden reference with the Hardware Con-
trol Flow Traces generated during the execution of the circuit. In this way, the
HCFTs do not even have to be stored on-chip. In order to do this, the Control
Flow Checkers use an approach based on a software profiling methodology, called
Efficient Path Profiling [7]. EPP is described here and extended in Section 9.3. The
goal here is to understand how EPP describes in compact form the control flow
paths executed by software, so that it will be easier to understand how it can be
used for hardware debugging.

In general, tracing the control flow of designs generated with High-Level Syn-
thesis corresponds to observing the state signals of the Finite State Machines, as
seen in Section 5.1. Finite State Machines are typically built starting from Control
Flow Graphs, which in turn represent the structure of the high-level specifica-
tions. Every Basic Block in a CFG contains a list of instructions that are executed
sequentially in software, while edges are branches and loops. In this way, the
CFG statically represents all the possible paths of execution of the software at run-
time. The dynamic information about executed paths can be collected by means

76

9.2. Efficient Path Profiling for Software

BB1 cond = a > 0;
if(in1)

BB2 target = a;
else

BB3 target = init();
BB4 while(target != current && iter < 10){
BB5 iter++;

if(current < target)
BB6 current = pow(current,2);

else;
BB7 current ⁎= coeff;
BB8 temp[iter] = current;

}
BB9 return current;

Figure 9.1: Example of source code to be synthesized, with Basic Blocks ids.

BBEntry

BB1

BB2 BB3

BB4

BB5

BB6 BB7

BB8 BB9

BBExit

T F

T

T F

F

Figure 9.2: Control Flow Graph of the example in
Figure 9.1. The dashed arrow is a feedback edge.

BBEntry

BB1

BB2 BB3

BB4

BB5

BB6 BB7

BB8 BB9

BBExit

0

0 3

0 0

0

0 1

0 0

2

00

6

Figure 9.3: Path Graph of the example in Fig-
ure 9.1. The dotted arrows are the auxiliary edges.

of Efficient Path Profiling (EPP) [7]. EPP is typically used to collect runtime infor-
mation about paths in a Control Flow Graph, but in Section 9.3 it will be adapted
to hardware generated with High-Level Synthesis.

Intuitively, in software, a path is a sequence of Basic Blocks executed consec-
utively. Since one specific execution of a function is a sequence of Basic Blocks,
it can be efficiently described by means of a path. However, if the Control Flow
Graph of a function contains at least one uncountable loop, the number of pos-
sible paths which can be executed is potentially infinite, since the loop can be
repeated an arbitrary number of times. To overcome this issue, the set of paths
which can be extracted from a Control Flow Graph must be restricted, so that
the execution trace of a function is described by means of a sequence of paths.
Ball and Larus, in their seminal paper on EPP [7], proposed a possible restriction
to the paths which can be extracted from a Control Flow Graph and an efficient
technique to compute and compress information about them.

Figure 9.1 shows the source of the example used in the rest of this section
to describe the Efficient Path Profiling. The corresponding CFG is shown in

77

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

Id Path

0 BBEntry BB1 BB2 BB4 BB5 BB6 BB8 (BBExit)
1 BBEntry BB1 BB2 BB4 BB5 BB7 BB8 (BBExit)
2 BBEntry BB1 BB2 BB4 BB9 BBExit
3 BBEntry BB1 BB3 BB4 BB5 BB6 BB8 (BBExit)
4 BBEntry BB1 BB3 BB4 BB5 BB7 BB8 (BBExit)
5 BBEntry BB1 BB3 BB4 BB9 BBExit
6 (BBEntry) BB4 BB5 BB6 BB8
7 (BBEntry) BB4 BB5 BB7 BB8
8 (BBEntry) BB4 BB9 BBExit

Figure 9.4: Valid paths of the Control Flow Graph in Figure 9.2.

Figure 9.2. The function contains a loop [78] composed of by the Basic Blocks
<BB4,BB5,BB6,BB7,BB8>. The only feedback edge (i.e., the edge which closes a
cyclic path with origin in the BBEntry, see [78]) is <BB8,BB4>.

Ball and Larus, in [7], define the valid paths as all the acyclic paths in the
Control Flow Graph in the form <BBi,. . . ,BBj> such that:

1. BBi is the BBEntry of the CFG or the target of a feedback edge;

2. BBj is the BBExit of the CFG or the source of a feedback edge.

This is modeled by building a modified version of the Control Flow Graph: the
Path Graph (PG). The Path Graph can be built starting from the CFG and applying
the following steps:

• for every feedback edge <BBi,BBj>, add an auxiliary edge <BBEntry,BBi>;

• for every feedback edge <BBi,BBj>, add an auxiliary edge <BBj,BBExit>.

Notice that this procedure is well defined and terminates in a finite number of
steps. This is possible because BBEntry and BBExit are not real Basic Blocks, but
just placeholders, and, for this reason, they cannot be the origin or the target of
feedback edges in the original CFG.

As a result of this construction, the valid paths of the CFG correspond to the
paths from BBEntry to BBExit in the Path Graph. The Path Graph derived from
the Control Flow Graph in Figure 9.2 is shown in Figure 9.3. Dotted edges are the
added auxiliary edges.

Let N be the number of paths in the Path Graph, Efficient Path Profiling uses
the number from 0 to N − 1 to identify them. It also associates a weight Wi,j

(also called edge increment) to each edge < BBi, BBj >, so that the identifier of
a path is equal to the sum of the weights of the edges which compose it. In
Figure 9.3 the edges are labeled with the weights computed with EPP. Accord-
ing to these weights, each path is associated with an identifier from 0 to 8. Fig-
ure 9.4 lists the identifiers for the valid paths in Figure 9.3. As an example, the
execution trace <BBEntry,BB1,BB2,BB4,BB5,BB6,BB8,BB4,BB9,BBExit> can be
compressed in the sequence of paths <0,8> without loss of information. For the
details of how path identifiers and edge weights are computed see [7].

In adopting this technique for software profiling, there are three advantages
that are relevant for this work:

78

9.3. Efficient Path Profiling for High-Level Synthesis

1. the number of bits necessary to represent paths is minimal;

2. at every point in the execution, the information about the currently executed
path is represented by a single integer (i.e., it can be put in a register);

3. to update the counter that is used to store the currently executed path, it is
only required to increment a local variable by the weight of the last edge
traversed during the execution.

9.3 Efficient Path Profiling for High-Level Synthesis

This section describes how to adapt and extend Efficient Path Profiling to Finite
State Machines controlling digital circuits. The aim is to enable online on-chip
Discrepancy Analysis for HLS-generated hardware on FPGA, with small memory
footprint. In particular, the focus is on control flow, i.e. on the state of the FSMs
that control the generated hardware. In this respect, the proposed approach is
applicable to all HLS flows that generate functional modules composed of a Finite
State Machine and a Datapath. It may not be applicable to other models, like HLS
of streaming computations.

Section 9.3.1 describes how the reference traces for the generated design are
computed starting from software execution. Section 9.3.2 shows how Efficient
Path Profiling is adapted to the debugging of FSMs generated with HLS. Sec-
tion 9.3.3 illustrates how to guarantee the correct identification of the first bug
even when running on concurrent hardware.

9.3.1 Efficient Path Profiling for Hardware Trace Generation

The main idea for the design of the Control Flow Checkers is to keep the reference
traces small, in order to minimize the memory usage. To this end, Efficient Path
Profiling must be adapted to work on FSMs. The advantage of EPP is that a single
path represents a list of Basic Blocks. In most cases, storing a path identifier is
cheaper than storing the list of identifiers of BBs that compose that same path. To
use EPP on Finite State Machines it is necessary to rely on information extracted
from the HLS process. During HLS, the Control Flow Graph of the original source
code is translated into an FSM. The precise scheduling of the single operations is
not really relevant here because the focus is on control flow. What is important
is that during the HLS every BB is mapped onto a consecutive list of states in the
FSM, like depicted in Figure 9.5. This mapping is called M in the following and
it has some useful properties.

• For every Basic Block BBi in the CFG, there is one and only one ordered
sequence of connected states in the FSM such thatM(BBi) = 〈Si,1, . . . , Si,n〉.

• As a consequence, for every given path on the Control Flow Graph p =
〈BBi, . . . , BBj〉, it exists one and only one path on the FSM p ′ = M(p) =
〈M(BBi), . . . ,M(BBj)〉.

This intuitively means that the CFG and the FSM have the same branch struc-
tures. Thanks to this properties and to the algorithm used in EPP for path num-
bering and edge weight computation, EPP can be used without modifications
also on the Finite State Machine. This is possible while guaranteeing that the

79

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

CFG FSM

BBEntry

BB1

BB2 BB3

BB4

BB5

BB6 BB7

BB8

BB9

BBExit

0

0 3

0 0

0

0 1

0 0

2

0
0

6
SEntry

S1

S2 S3S3

S4

S5

S6 S7A

S7B

S8A

S8B S9

SExit

0

0 3

0 0

0

0 1

0
0

0

0

2

00

6

Figure 9.5: Two Path Graphs obtained applying EPP respectively to the Control Flow
Graph of Figure 9.2, and to its associated Finite State Machine. Notice the similarities
between the graphs, and the equivalence of the edge increments.

algorithms on the CFG and on the FSM calculate the same identifiers for every
path p and for the associated path p ′ =M(p). Finally, in the CFG the edges with
weight W 6= 0 are only the outgoing edges from BB with branches. This means
that for every Basic Block BBi the edges on the FSM that are internal to M(BBi)
will always have weight 0.

All these properties make possible to compute the expected list of paths iden-
tifiers for the hardware simply starting from software execution. Efficient Path
Profiling is used directly on the Control Flow Graph of the software. The code
is instrumented to print the list of identifiers of the traversed paths, that can be
directly used as a golden reference trace for the generated hardware.

9.3.2 Efficient Path Profiling for Finite State Machines

In Sections 9.2 and 9.3.1 the discussion is focused on Path Graphs, computation
of the edge weights for EPP on FSMs, and how to generate the golden reference
from software. However, during the actual execution, the hardware follows the
Finite State Machine, not the Path Graph. Feedback edges, that were excluded
from the computation of the increments, can be taken during execution. In [7],
Ball and Larus select a minimal set of edges in the Control Flow Graph and add
instrumentations to increment and reset the EPP counter along the edges, includ-
ing feedback edges. In FSMs, the edges model the state transitions. For effective
debugging, the structure of the FSM generated by HLS cannot be altered adding
new states or transitions. For this reason, increments, resets, and checks must be
scheduled in the existing states. In the following, the discussion is simplified de-

80

9.3. Efficient Path Profiling for High-Level Synthesis

scribing the instrumentations as if they were actually inserted in the FSM. How-
ever, bear in mind that they are actually isolated from the FSM and completely
encapsulated in the checker component. The FSM only exposes its current and
next state to the checker as explained in Section 9.5.

To understand where to insert instrumentations in the FSM, it is useful to make
a comparison with software. In software, ensuring that the current execution
matches the expected path means ensuring that the path up to that point is cor-
rect. To do this, it is enough to check that the counter used to accumulate edge
weights matches the identifier of the expected path. Ideally, to have a strong guar-
antee it would be necessary to check this condition at every cycle, but in practice
it is not necessary. Indeed, the only places when the execution path may diverge
from the expected are branches and feedback edges. Given that path identifiers
are unique, it is enough to check that the current path is correct only on feed-
back edges and upon the termination of the execution of a function. In hardware,
this means that the checks must be performed in states that are destinations of
feedback edges, and in terminal states of the FSM.

Final states in the FSM represent the termination of the execution of the associ-
ated function. In software, the path counter can be checked after the termination
of the function and before returning control to the caller. In hardware, instead,
the check is anticipated to the final state itself. This is possible thanks to the fact
that a final state of an FSM is a leaf of the graph and has no outgoing edge, which
means that the last increment of the EPP counter is computed in the previous
cycle and is already available.

Feedback edges have to be treated separately. The reason is that the EPP
counter is reset on feedback edges to the value of the weight of the auxiliary edge
connecting the entry state to the destination state of the feedback edge. At the
same time, the checker must ensure that the path before taking the edge was cor-
rect, in the first state after the feedback edge. In order to do so, the path identifier
before the reset along the feedback must be registered, and the check deferred to
the following clock cycle.

9.3.3 Detection of the First Mismatch

One of the goals of Discrepancy Analysis is to automatically find the first mis-
match between hardware and software execution. With simulation, this property
is easy to achieve: the simulated design executes concurrently, but the automated
bug detection routine can analyze the whole traces and determine the first mis-
match. To keep this property on hardware it is necessary that checkers can spot
a mismatch with a latency of a single cycle. This is one of the subtle differences
between EPP for software and for hardware. The main reason is that software
runs sequentially, and only a single function is in execution at any given time.
Thus, if a mismatch is detected it is clearly the first. This is not necessarily true on
concurrent hardware when multiple FSMs execute concurrently, which happens
quite often in HLS. The reason is that function calls are modeled with concur-
rent communicating FSMs. A handshaking mechanism between caller and callee
allows the caller to wait in an idle state until completion of the callee.

Consider for example the FSM in Figure 9.5, and suppose that a call to another
function is scheduled in state S2. The additional idle state is not depicted here

81

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

to avoid to overcrowd the picture. The function call is executed conditionally,
only if a certain branch is taken. Assume now that the expected path identifier
calculated with EPP is <5>, meaning that the expected states executed by the FSM
are <S1, S3, S4, S9>. In this situation, according to what explained in Section 9.3.2,
the control flow checker would wait to check the execution path until state S9,
because no feedback edge is taken. However, if the control flow diverges earlier
and it takes the wrong branch from S1, this would result in the execution of S2
instead of S3, triggering the function call scheduled in S2. Given that the called
function was not expected to execute, its associated control flow checker would
detect a failure, but the root cause is actually a failure in the caller. In this scenario,
if the checks are limited to what is described in Section 9.3.2, the detection of the
first bug and the automatic identification of the cause would be wrong.

This problem can be circumvented by ensuring that the running execution
path is always checked in all the state with function calls. Doing this makes pos-
sible to catch control flow mismatches in the current scope before passing control
to other FSMs. The mismatch is hence detected in the proper location in all the
cases. If the mismatch is detected in the caller, this means that the path has di-
verged before the call and the current EPP counter can be used to identify the
origin of the divergence. If the mismatch is detected by the callee, instead, it is
guaranteed that the caller control flow was correct until the call, ensuring that any
mismatch detected by the checker in the callee is actually located in that FSM.

9.4 Optimization of Memory Usage

The strategy of adapting EPP for debugging of FSMs explained in Section 9.3 al-
ready shows advantages compared to the state-of-the-art (see Chapter 13 for a de-
tailed discussion). This is a consequence of the fact that previous approaches [26]
typically encoded control flow traces as a list of states, and then focused on their
compression. EPP, instead, represents an entire path with a single identifier.
Hence, a single entry in an EPP-encoded trace already represents a compressed
list of states without loss of information. This is enough to give better baseline
memory usage in most cases (see discussion in Chapter 13), but there are some
situations where this is not necessarily true. This happens when the FSM contains
a large number of branches and loops, in proportion to the number of states. In
such situations two conditions are verified:

1. the total number of valid paths computed by EPP is high, possibly higher
than the number of states;

2. the number of times each loop is executed is also high. When both these
circumstances are verified, the result is that every single entry in the EPP
trace is large (because of the large number of possible paths) and every en-
try is repeated multiple time in the trace (due to the large number of loop
iterations).

In these cases, storing the traces as lists of states does not incur the same penal-
ties as EPP. The reason is that if the number of states is smaller than the number of
paths they can be represented with fewer bits. This is especially useful if the bod-
ies of the loops are composed of short lists of states, because a short list of states

82

9.5. Architecture of the Control Flow Checkers

may be stored in fewer bits than a single path. This advantage is less significant if
the bodies of the loops are long lists of states. However, Goeders et al. [26] show
a simple strategy that can be used to compress traces of states specifically in this
case. They notice that in the inner loop body the FSM typically traverses a list
of states with consecutive identifiers. So they add a fixed number m of metadata
bits to every trace entry. These bits are used to store the number of consecutive
cycles for which the FSM state simply increases by one. This permits to compress
a serial list of states, representing every loop iteration in a single packed entry of
the state trace with metadata. The actual size of the metadata is determined with
profiling and is fixed for all the FSMs. This approach has a limitation: it directly
depends on the encoding of the state signal and the ordering of the states. If the
state signal is one-hot encoded, every entry in the state trace is very large and it
may need to be re-encoded in a smaller format to reduce the traces. Moreover, to
support the compression scheme described in [26] it may be necessary to change
the state enumeration. These operations are not necessary with EPP encoding.

EPP does not suffer from these drawbacks because the edge increments are
not dependent on the FSM encoding or ordering. However, the problem of com-
pression of multiple iterations of loops with high path weights is still relevant. A
loop iteration is represented by a single entry in the EPP trace. Hence, multiple
iterations of the same loop are lists of repeated entries, each one representing an
iteration. A simple way to compress this kind of traces it to add a fixed num-
ber of metadata bits to every trace entry. For every entry in the EPP trace, the
metadata represents the number of times the path is repeated after the first time.
In this way, every entry in the EPP trace can represent up to 2k iterations of the
same path, where k is the number of bits used for the metadata. Moreover, the
determination of the optimal value for k is determined before the generation of
the control flow checker. This is a consequence of the fact that the proposed ap-
proach aims at finding bugs arising from a predefined input sequence. In this
way, once the uncompressed reference traces are generated starting from soft-
ware, the compression ratio is evaluated as a function of k to generate the control
flow checker with the best value for k to minimize memory footprint. This pro-
cess is performed separately for each checker, so that the optimal value for k is
determined for each FSM, depending on its intrinsic characteristics and on the
specific trace that must be checked. With this procedure, it is possible to greatly
reduce the memory usage on FPGA as discussed in Chapter 13.

9.5 Architecture of the Control Flow Checkers

A dedicated instance of control flow checker is created for the FSM of every func-
tion. All the functionalities described in Sections 9.3, and Section 9.4 are imple-
mented in a single component. The checker is separated from the FSM, which is
not altered by the instrumentation. The only signals used by the checker are the
input and output signal of the state register of the FSM. They are called respec-
tively next_state and present_state in the following and they drive all the
operations of the checker. However, directly using the next_state signal may
have timing implications, because it is likely to place the checker on a potential
critical path. To avoid problems the inputs of the checker are registered so that
all the operations of the checker are executed with a delay of one cycle. This does

83

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

not prevent the methodology to correctly identify the first fault, because all the
checkers are subject to this delay, guaranteeing that the first mismatch notified
outside is actually correct.

Every checker contains a read-only memory, called trace memory, initialized
with the expected EPP trace. It is a single port memory, accessed with a constant
fixed alignment and a registered address: cur_off. The value in the trace mem-
ory at cur_off is next entry in the EPP trace, containing the identifier of the next
expected path. This identifier is also stored in a register called prev_trace, used to
check feedback edges that are delayed by one cycle as described in Section 9.3.2.
A second read-only memory, called increments memory, contains the edge incre-
ments and is addressed using the union of present_state and next_state.
The value of the edge increment read from this memory is added at every cycle
to a register holding the current EPP counter accumulator. This EPP counter is
compared directly with the value in the trace memory at offset cur_off, for states
that are checked directly. The value of EPP counter is also reset on feedback edges
while registering its value for the delayed check with the mechanism described
in Section 9.3.2. The registered value is compared in the next cycle with the value
of prev_trace. This completes the checking mechanism.

It is worth to notice that the theoretical dimension of the increments memory
would be quadratic with the number of the states of the FSM. However, this
memory contains very sparse data, since present_state and next_state can only
represent valid transitions of the FSM. In addition, even on valid edges, most
of the increments computed by EPP are zero, because only states before branch
instructions have outgoing edges with weights 6= 0. Hence, the number of in-
crements stored in this memory is actually

∑
s∈FSM(out_degree(s) − 1), where the

out_degree of a state is the number of outgoing edges. The terms of this summa-
tion are actually zero for every state s with only one outgoing edge. Practically,
this means that the synthesis tool will optimize it and will implement it using
combinational logic instead of Block RAM (BRAM).

What remains is the notification mechanism, by means of which the checker
notifies to the outer world when it finds a mismatch. The checker detects if the
mismatch is related to the current state or to a delayed check on a feedback edge.
If both kinds of mismatches are detected in the same cycle, the one that is no-
tified outside is that related to the delayed check, because it actually happened
in the previous cycle. After the selection, the checker writes on output signals
the following three data: a bit asserting that a fault was detected, an identifier
determined at design time that uniquely identifies the hardware scope where it
was detected, and the offset in the EPP trace where that happened. Using this
information, the debug environment running on the host machine can unroll the
execution traces, map them on the CFG and the FSM, and backtrack the fault to
the original source code using HLS information.

It is possible to estimate the area required for a checker in terms of BRAMs and
logic. Let trace_nbits be log2(PathMax), where PathMax is the largest path
identifier computed by Efficient Path Profiling for the checked FSM, and off_nbits
be log2(trace_len), where trace_len is the length of the golden reference trace
for the checker.

The main contribution to the area increase on FPGA is given by the BRAMs
used for the traces. The trace memory must requires checker_mem_bits bits,

84

9.5. Architecture of the Control Flow Checkers

where checker_mem_bits = trace_len × trace_nbits bits. This value can be
used to compute the total number NRAM of BRAMs that will be used on FPGA,
but the result depends on the size of the memories available on the specific tar-
get platform, and on the total number of checkers that are added to the design.
To give a worst-case estimation it has to be assumed that every trace needs its
own BRAM, hence NRAM =

∑
checkers(ceil(checker_n_bits/BRAM_size)). If

the traces are small and the available BRAMs are true dual port memories, the
actual number could be lower if two traces are stored in a single memory block.
This strictly depends on the device and on how the memories are inferred by the
synthesis tools.

For what concerns the combinational logic necessary for the checker, the ac-
tual area occupied on FPGA depends on the target device and on the results of
technology mapping and place-and-route. However, this is the list of elementary
components necessary for the checker: 3 registers with a width of trace_nbits;
one adder with a width of trace_nbits; one register, off_nbits wide; one incre-
menter; two trace_nbits wide comparators. The state machine of the checker is
very simple: the state register is only one bit. In addition, there are a handful of
bitwise logic gates and an off_nbits wide multiplexer for the notifier. What cannot
be estimated is the area of the increments memory because it is tightly dependent
on the structure of the checked FSM and on the sparsity of transitions. The same
holds for frequency estimation because the critical path uses the registered in-
puts of the checker and the increments memory to compute the new the curr_off
that is then used to address the trace memory. Anyways, the critical path is mainly
dominated by the memory latency, so the maximum clock frequency for a checker
is not far from the BRAM maximum frequency.

Summary

This chapter described in detail the On-Chip Online Discrepancy Analysis flow,
based on the adaptation of a software profiling technique called Efficient Path Pro-
filing (EPP). Section 9.1 briefly outlined the reasons that motivate the necessity of
this extension. Section 9.2 provided an outline of EPP for software, while Sec-
tion 9.3 explained the subtleties involved in porting it to hardware debugging.
Then, Section 9.4 described a strategy to further compress the Hardware Control
Traces on top of the compression already granted by EPP. Finally, Section 9.5 gave
an overview of the overall architecture of the Control Flow Checkers that are em-
bedded in the HLS-generated designs when using On-Chip Discrepancy Analysis.

This concluded Part II of the thesis, which was focused on the definition of
the whole proposed methodology. Part III will now focus on the evaluation of
Discrepancy Analysis, providing results obtained on different benchmarks to mea-
sure different features of the various flavors of Discrepancy Analysis described in
Part II.

85

Chapter 9. On-Chip Online Discrepancy Analysis of Control Flow

86

PART III

EXPERIMENTAL RESULTS

87

88

This part describes the results obtained during the experimental evaluation of the pro-
posed methodology.

Chapter 10 introduces the experimental setup, explaining how Discrepancy Analysis
were integrated into the High-Level Synthesis flow, as well as the other tools used for the
evaluation and the benchmark.

Chapter 11 provides a wide and detailed discussion of the detected classes of bugs,
involving different steps of High-Level Synthesis process and different flavors of Discrep-
ancy Analysis in different scenarios.

Chapter 12, and Chapter 13 then focus on the performance, the coverage and the other
advantages provided by Discrepancy Analysis. Chapter 12 concentrates on Simulation-
Based Offline Discrepancy Analysis, whereas Chapter 13 is focused on On-Chip Online
Discrepancy analysis.

Finally, Chapter 14 summarizes the results, pointing out the achievements of this
work, its limitations, and discussing some of the possible future direction of research.

89

90

10
Experimental Setup

This chapter describes the general setup used to evaluate the methodology pro-
posed in this thesis. Section 10.1 discusses the HLS framework used for the
reference implementation of the two workflows described in Chapter 6. Sec-
tion 10.2 lists the different sets of benchmarks and tools used to stress-test the
implementations of the different flavors of the approach: simulation-based online
Discrepancy Analysis, bug detection for multi-threaded code, Address Discrep-
ancy Analysis, and on-chip online Discrepancy Analysis for Control Flow.

10.1 Integration with High-Level Synthesis

The reference implementation for the automated bug detection based on Discrep-
ancy Analysis was built upon the BAMBU High-Level Synthesis compiler. BAMBU
is developed at Politecnico di Milano as part of the PandA Framework for Hard-
ware/Software Codesign (https://panda.dei.polimi.it). It is Free and Open
Source Software, released under the GPLv3 License. The BAMBU compiler is
modular so that it can be easily extended with custom passes for specific opti-
mizations. It features a novel memory architecture that supports a wide range of
C constructs, limiting as much as possible code rewriting and simplifying system-
level integration. It accepts inputs in C and C++, and it can generate Verilog and
VHDL designs for a range of target FPGA devices from different vendors: Xilinx,
IntelFPGA (former Altera), and Lattice. It also allows to seamlessly add support
for new boards if necessary.

The choice of BAMBU, among other available alternatives, as a starting point
for the research effort described here, has various motivations.

First of all, its modular design and its open source license were the most suit-
able to understand its inner operations, and to extend the compiler passes to
extract the information necessary to enable Discrepancy Analysis. At the same
time, BAMBU can generate accelerators with an advanced memory architecture
and it performs several state-of-the-art optimizations, resulting in a quality of the
obtained results (in terms of frequency and area) that is comparable to produc-
tion ready and widely used industrial HLS tools (see https://panda.dei.
polimi.it/?page_id=317). In addition, BAMBU provides support for a sub-
set of the OpenMP pragmas, which allowed testing the reference implementation
for bug detection on multi-threaded code, like explained in Section 7.3. The ad-
vanced memory model, instead, was one of the key features necessary to test
the Address Discrepancy Analysis described in Chapter 8. The modular design of
BAMBU’s HLS flow also played a key role in the extension for On-Chip Discrep-
ancy Analysis described in Chapter 9. Indeed, to generate the fine-tuned hard-

91

https://panda.dei.polimi.it
https://panda.dei.polimi.it/?page_id=317
https://panda.dei.polimi.it/?page_id=317

Chapter 10. Experimental Setup

ware checkers described, it is necessary to exploit information gathered with the
execution of the instrumented software. The modular design allowed to integrate
all the different components and flavors of the Discrepancy Analysis directly into
the HLS flow, providing a consistent user experience. It also allowed making all
the HLS information accessible to the bug detection algorithm, to guarantee vis-
ibility on compiler temporary variables, to hide the internals from the users, and
to manage complexity for them.

Another important feature in the choice of an HLS tool for the reference im-
plementation was the integrated environment for testing and co-simulation avail-
able in BAMBU. Like many commercial solutions, BAMBU allows to run the origi-
nal high-level source code and to simulate the generated HDL to check that the re-
sults are the same. This workflow is seamlessly integrated with HLS and natively
supports many different commercial simulators, as well as open source alterna-
tives. The availability of this workflow was a nice-to-have because Discrepancy
Analysis can be naturally implemented as an extension to it. The co-simulation
workflow checks only the return values, while the Discrepancy Analysis flow for
automated bug detection compares the complete traces generated by the software
with the hardware traces obtained with simulation.

Clearly, the reference implementation for the BAMBU compiler described in
this work contains some details that are specific to that tool. However, a con-
siderable effort has been made in this thesis to avoid considerations and imple-
mentation details that are strictly related to BAMBU, and to make the approach
suitable to be used with other tools. Sometimes, to test some scenarios supported
by a commercial tool and not by BAMBU, the necessary HLS information have
been gathered manually from simple designs generated with the commercial tool
itself. Then the bug was manually inserted in the design and the bug detection
algorithm run step-by-step, to demonstrate that the bug would have been spotted
with Discrepancy Analysis also in that scenario. When this happened, the details
of the benchmarks, the injected bugs, the specific optimization not supported by
BAMBU, and the precise steps used for the evaluation of the results are explained
in detail in the discussion.

The complete methodology described in this thesis, composed of Discrep-
ancy Analysis, Address Discrepancy Analysis, and On-Chip Discrepancy Anal-
ysis, has been fully integrated into BAMBU. The complete flow based on sim-
ulation for offline Discrepancy Analysis has already been released with BAMBU
and is available for download with the version 0.9.5 of the framework at https:
//panda.dei.polimi.it. On-Chip Online Discrepancy Analysis will be re-
leased with the next version of the framework.

10.2 Experiments and Benchmarks

Several experiments have been carried out to evaluate how the proposed method-
ology performed in different scenarios. In particular, the investigation was aimed
at the following main goals:

• identify at a high-level what classes of bugs the Discrepancy Analysis is able
to detect, both in the HLS process, in external libraries of third-parties com-
ponents, and in hand-written code provided by users;

92

https://panda.dei.polimi.it
https://panda.dei.polimi.it

10.2. Experiments and Benchmarks

• provide a coverage metric for the checks performed by Discrepancy Analysis
at operation level;

• measure the performance and the overhead of the Discrepancy Analysis, as
well as other positive consequences on the whole debugging experience;

• detect potential false positives or false negatives and measure their impact
and frequency in realistic scenarios.

To examine these points, different sets of benchmarks have been used to mea-
sure different properties in the different scenarios described in Part II. Four main
families of experiments can be identified, each of them focused on analyzing a
different aspect of Discrepancy Analysis.

1. Offline bug detection with Discrepancy Analysis based on simulation:

(a) on serial code;

(b) on multi-threaded concurrent code;

(c) on pointers and memory accesses with Address Discrepancy Analysis.

2. Online bug detection with On-Chip Discrepancy Analysis on control flow.

The remainder of this section describes the experiments, the testing procedures
and the tools used to evaluate these four scenarios.

10.2.1 Experimental Setup – Discrepancy Analysis for Serial Code

The principal set of benchmarks used to evaluate Discrepancy Analysis is the
CHStone benchmark suite [33]. The CHStone benchmarks are 12 self-contained C
programs, selected as representative examples of idiomatic code used in High-
Level Synthesis. They are well-known and a de-facto standard for benchmarking
in the High-Level Synthesis community. These benchmarks have been initially
used to evaluate the baseline version of Discrepancy Analysis, without the sup-
port for multi-threaded code, and for pointer operations. They were also used
in the evaluation of the extended versions of Discrepancy Analysis, but often to-
gether with other test cases that were more meaningful for the specific needs of
the investigation.

All the CHStone benchmarks have been translated in Verilog with the default
configuration of BAMBU, targeting a Xilinx Zynq-7000 xc7z020-1clg484, with a
target frequency of 100MHz. Other configurations and target devices were also
tested, to verify the robustness of the approach, but no noticeable differences have
been observed on the effectiveness of the methodology, nor on the quality of the
results, nor on the performance. The results reported in Chapter 12.1 refer to this
baseline configuration.

To evaluate the simulation-based Discrepancy Analysis, the designs were not
synthesized and executed to FPGA. The hardware traces results have been gen-
erated with simulation, using ModelSim SE-64 10.5 from Mentor Graphics, but
there is nothing specific to this simulator in the process. During some prelimi-
nary tests, other commercial and open source simulators supported by BAMBU’s
co-simulation flow have been successfully employed, without affecting the bug
detection capabilities of the Discrepancy Analysis.

93

Chapter 10. Experimental Setup

For the generation of the software traces, the instrumented source code has
been compiled and executed with GCC, version 4.9.

10.2.2 Experimental Setup – Discrepancy Analysis for Multi-Threaded Code

The CHStone benchmarks are constituted by plain serial code, so they were not
suitable to evaluate the methodology with multi-threaded code. This scenario
was evaluated using 7 benchmarks that have already been used to evaluate HLS
of OpenMP programs by Choi et al. [17] with LegUp.

• Black-Scholes (bs): fixed point computation for option pricing with Monte
Carlo approach.

• Division (div): divides a set of integers in an array by another set of integers.

• Floating Point Sine Function (dfsin): adopted from the CHStone benchmark
suite [33], it implements a double-precision floating-point sine function us-
ing 64-bit integers.

• Hash (hash): uses four different integer hashing algorithms to hash a set of
numbers, and compares the number of collisions caused by the four different
hashes.

• Line of Sight (los): uses the Bresenham’s line algorithm to determine whether
each pixel in a 2-dimensional grid is visible from the source.

• Mandelbrot (mb): an iterative mathematical benchmark which generates a
fractal image.

• MCML (mcml): light propagation from a point source in an infinite isotropic
medium.

Some of the benchmarks as they were used in [17] contained a mix of OpenMP
and pthreads, but they have been adapted to only use OpenMP for the pur-
poses of this work. Again, BAMBU was used with its default parameters to gener-
ate Verilog designs for all the benchmarks, simply adding the -fopenmp flag to
enable OpenMP. The default target device is a Xilinx Zynq-7000 xc7z020-1clg484,
with a frequency of 100MHz. The integrated co-simulation flow was executed
before using Discrepancy Analysis, to ensure that the generated hardware was
working properly. Then, different kinds of bugs were manually injected to see if
they could be detected (see Chapter 11). The automated bug detection was also
executed on the unmodified multi-threaded designs, to check for false positives
and to measure its overhead.

Also in this case, the simulation used to generate HW traces is cycle-accurate
and it has been performed with ModelSim SE-64 10.5 from Mentor Graphics, and
the compiler used to compiler the instrumented code for software trace genera-
tion was GCC-4.9.

10.2.3 Experimental Setup – Address Discrepancy Analysis

The analysis of Address Discrepancy Analysis required a broader perspective.
Given that different HLS compilers provide different schemes for memory parti-
tioning, the approach was evaluated on three different tools, to ensure the neces-

94

10.2. Experiments and Benchmarks

int w(struct sockq ⁎q, void ⁎src, int len) {
char ⁎sptr = src;
while (len--) {

q->buf[q->head++] = ⁎src++;
if (q->head == NET_SKBUF_SIZE)

q->head = 0;
}
return len;

}

Figure 10.1: A C function with pointer operations not supported by CTool.

sary level of generality. The experimental results have been evaluated with the
following compilers, with support for C pointers:

• BAMBU;

• LegUp [15], based on LLVM [48] and developed at the University of Toronto;

• a recent version of a production-ready commercial HLS tool targeting Xil-
inx FPGAs, referred in the following as CTool (the license does not allow to
disclose the name).

All of them are able to synthesize pointers, with different memory partitioning
and allocation schemes. Most of the tests were carried out with BAMBU, but some
unsupported partitioning schemes were tested with LegUp and CTool.

For Address Discrepancy Analysis, the evaluation involved two groups of
benchmarks: the CHStone HLS benchmark suite [33] and the GCC C-torture test
suite [25]. The first establishes a common baseline for all the tools, but it has a
big drawback for the scope of the research: it has no complex pointer operations.
They are complicated enough to make alias analysis not trivial, but they really do
not try to push the limits of what can be done with pointers in valid C code. This
is not useful when testing the Address Discrepancy Analysis because the focus is
on seeing how it behaves with exotic pointers manipulation in C. This is the main
reason behind the decision to use also the GCC C-torture tests. These are a large
set of self-contained C programs, specifically designed to exercise corner cases of
a standard-compliant C compiler, including a number of uncommon things with
pointers. From preliminary trials, it turned out that only 216 of such tests were
involving pointer operations. The analysis is restricted to this subset. On 56 of
them, CTool failed to complete the HLS process. An example of a C code snippet
that could not be handled is shown in Figure 10.1. Notice that from the program-
mer standpoint the use of pointers in this function it is not particularly strange.
This kind of syntax is common practice in embedded C code, but still many com-
mercial tools have problems in handling pointer casts and other similar opera-
tions. For this reason, for the extensive tests with the C-torture tests, the choice of
HLS tool still fell on BAMBU, which also has an advanced approach to memory
allocation [67] and it implements fairly complex frontend optimizations [49].

The main obstacle to the evaluation of Address Discrepancy Analysis is that
some of the information for the construction of the Address Space Translation Space
(ASTS) must be extracted from the HLS compiler. This is also necessary to un-
derstand how to design the implementation dependent decodeHW function de-

95

Chapter 10. Experimental Setup

scribed in Section 8.2. For BAMBU and LegUp this is not a real problem because
of their open source licenses. This allows modifying the memory allocation pass
of these compilers to obtain the data. A preliminary feasibility study on both
these open source tools showed that this was possible for both, with the same
fundamental approach. The full-fledged implementation of Discrepancy Analy-
sis was created only for BAMBU, because it has a very complex memory model,
allowing tests in more challenging cases. For this reason, the results on bug de-
tection and on coverage metrics reported in Sections 11.2 and 12.3 are strictly re-
lated to BAMBU. For LegUp, the algorithm was applied manually on the CHStone
benchmarks, to check that the methodology was actually portable even without
deploying the full-fledged automated flow.

For CTool some additional work was necessary to build the ASTS and the
decodeHW function because the HLS flow could not be altered. Some of the CH-
Stone benchmarks that the tool was able to synthesize were compiled using mem-
ory partitioning directives. The chosen designs were test cases for which CTool
generates correct address decoding because, to infer the ASTS and the decodeHW
function from the HDL, one has to be sure that they were correct before inject-
ing the bug. For this reason, the analysis of CTool was restricted to examples
where the generated designs were correct and passing all the functional tests.
This allowed manual analysis of the generated HDL to build the correct ASTS
and the decodeHW function. After building them, the HDL of the address de-
coding logic generated by CTool was altered manually to introduce bugs. This
operation showed that it is possible to use the correct ASTS and decodeHW, built
in advance, to spot a hypothetical bug manually applying the bug detection algo-
rithm to the fault-injected design. Obviously, the problems analyzed in this way
are a subset of all the possible cases. Nevertheless, the results are encouraging
because they show that the method is successfully applicable even to commercial
HLS flows. In the experiments with CTool the investigation was done manually,
but with the access to the source code, it should be easy to adapt the tool to imple-
ment an automated debug flow as described for BAMBU. This has been valuable
to show that the methodology can target commercial HLS tools and that it can
handle memory options not available in BAMBU, like array partitioning.

In all the cases, with BAMBU, CTool and LegUp, the simulation used to generate
HW traces is cycle-accurate and it has been performed with ModelSim SE-64 10.5
from Mentor Graphics, and the compiler used to compile the instrumented code
for software trace generation was GCC-4.9.

10.2.4 Experimental Setup – On-Chip Online Discrepancy Analysis

To evaluate Online Discrepancy Analysis On-Chip, an implementation of the
workflow described in Chapter 6.3 has been integrated into BAMBU. Two main
changes have been applied to the framework:

1. Efficient Path Profiling has been integrated into the generator of software
executable code to generate the SW trace.

2. The Finite State Machine generator has been extended to create the hardware
checkers to be coupled with the FSMs.

The methodology flow has been tested on the CHStone benchmarks [33]. The

96

10.2. Experiments and Benchmarks

benchmarks have been compiled to Verilog using BAMBU with the default config-
uration of the PandA framework. The only modification was to target a Stratix V
device (5SGXEA7N2F45C1) from Intel (former Altera) with a target frequency of
200MHz, to provide a better comparison with state-of-the-art [26]. Quartus Prime
Standard Edition 17.0 was used for synthesis, to generate the bitstreams for the
designs with and without the control flow checkers. All the results concerning
area, frequency and power consumption of the checkers have been computed by
the synthesis tool, after place-and-route to increase the accuracy of the results as
much as possible. They are reported in detail in Chapter 13.

Summary

This chapter opened the discussion of the results, starting with the experimental
setup. Section 10.1 described BAMBU, the HLS framework used for the reference
implementation of Discrepancy Analysis, along with the features that have led to
its choice among other available alternatives. Then, Section 10.2 provided an
overview of the different benchmark suites used later to evaluate the methodol-
ogy, as well as the tools used in different stages of the evaluation. This should set
the frame to help the reader in the understanding of the reported results. Some
of this information will be repeated when necessary to avoid confusion.

Chapter 11 will now provide a complete overview of all the classes of bugs that
can be found with Discrepancy Analysis in different scenarios: bugs in standard
designs generated with HLS from serial C programs, bugs involving addresses
and memory accesses, designs generated from multi-threaded specifications, and
bugs detected online on-chip.

97

Chapter 10. Experimental Setup

98

11
Detected Bugs

This chapter describes the bugs that the proposed methodology was able to find
during extensive experiments. Section 11.1 describes bugs detected with the of-
fline simulation-based Discrepancy Analysis on hardware generated from single-
threaded programs, while Section 11.2 discusses the additional faults that were
detected with the extended Address Discrepancy Analysis. Section 11.3 focuses
on bugs coming from High-Level Synthesis of multi-threaded code. Finally, Sec-
tion 11.4 analyzes the misbehaviors that can be detected with online on-chip Dis-
crepancy Analysis.

Each of these categories is described in detail, providing a high-level discus-
sion of the different classes of bugs detectable with the approach, as well as prac-
tical examples found during the experiments. Some of the discussed faults were
actually found in the RTL generated from BAMBU, and are now fixed in the dis-
tributed version. Others have been manually inserted to test the capabilities of
the methodology.

11.1 Bugs Detected with Simulation

This section analyzes the kind of bugs that can be detected The bugs detected
with the offline simulation-based Discrepancy Analysis described in Chapter 7.
Two classifications of such bugs are provided: the first is focused on the root
cause that originates the bugs, the other is concerned about how these bugs affect
the generated hardware design.

Classification According to the Root Cause

Bugs detected with the offline simulation-based Discrepancy Analysis can be
roughly divided into three classes, according to the their root cause:

(1) bugs already present in the original C specification;

(2) bugs introduced by the HLS tool;

(3) bugs introduced using a library with flawed hardware components for HLS.

In particular, among the bugs in group (1) already present in the original C
code (1), those that can be detected are due to unspecified behavior or undefined
behavior in the C standard. In several places of the C standard, the definition of
the semantics of certain operations is left unspecified, like for example the order
of evaluation of the arguments of a function, but also others. The goal is to leave
the freedom to implementors to choose the most efficient behavior on different
platforms. Where possible, the standard defines a set of allowable behaviors for

99

Chapter 11. Detected Bugs

a given instance of unspecified behavior. These define the non-deterministic as-
pects of the abstract machine that defines the C execution model. They may also
depend on compiler options. On the other hand, undefined behavior regards op-
erations for which the C standard does not define any precise semantics. As a
consequence, an implementation is considered standard-conforming whatever it
does in such cases. This allows compilers to treat undefined behavior with special
measures, possibly enabling very aggressive optimizations.

At the same time, there are cases of unspecified behavior where C most com-
pilers do the same ‘expected’ thing, so that programmers have started to silently
rely on that behavior without even knowing it. This issue is analyzed in a work
by Memarian and Sewell [52], and it represents an issue in HLS, given that the
‘expected’ thing to do on FPGAs is not necessarily the same as on CPUs or what
programmers expect. An example is represented by non-initialized variables or
integer functions with return statements without value. These are allowed by
the C standard, but they cause non-initialized signals to be set to “Z” in Verilog.
Others are just real bugs caused by a wrong implementation of the specifications
in the original C source. In this case, the Discrepancy Analysis does not discover
any mismatch between the high-level source code and the resulting HDL. How-
ever, given that this kind of bugs are already present in the original code, all the
well-known software debugging techniques can be used to find them, without
involving the HW.

Bugs in categories (2) and (3) are becoming increasingly important in the HLS
field, for two different reasons. On the one hand, bugs introduced by HLS tools
(2) are very subtle to identify and analyze for hardware designers that use HLS
without knowing the internals. For this reason, it is critical for the success of
HLS to ensure that they occurrences are almost negligible, possibly non-existent.
Due to recent advances in HLS and industry investments, HLS is thriving and
tools are becoming increasingly complex and using smart optimizations. In this
scenario, Discrepancy Analysis can be a valuable tool to help developers of HLS
frameworks to automatically identify bugs in their tools at early stages, before
shipping flaky implementations to customers. On the other hand, HLS is increas-
ingly being used for system integration, gluing together different components,
some of which might not be designed with HLS. For this reason, bugs in category
(3) are becoming frequent, and the ability to identify them automatically using
Discrepancy Analysis can boost productivity for hardware designers.

Classification According to the Effects on the Hardware

Bugs in categories (2) and (3) tend to affect the final designs in various different
ways. However, they can be classified according to their impact on the design,
which is typically one of the following:

(A) bugs in HW components used to implement operations;

(B) bugs in the FSM controller logic;

(C) bugs causing the design to loop or hang;

(D) errors in the interconnection between components;

(E) bit flips due to aggressive optimizations.

100

11.2. Bugs Involving Addresses

Bugs in all these categories have been successfully detected by Discrepancy
Analysis. Some of them were manually inserted for testing purposes, while oth-
ers were actually found in the BAMBU HLS compiler. An out-of-bound bug was
found in the mips benchmark in the CHStone HLS benchmark suite [33] (version
1.11_150204 and previous). Bugs of group (A) and (E) are the more frequent and
they are detected with per-operation accuracy. When a mismatch occurs, the tool
shows the position of the failing operation in the original C along with the mis-
matching signal and the timestamp. The failing operation may not be present in
the original code, for instance if it was inserted by compiler optimizations. In this
case, the automated bug detection shows the information on the instrumented
code after the optimizations. Bugs in the logic of the generated controller (B) can
be due to wrong state optimizations of the FSM. They can cause a mismatch in
the CFTs or bugs of type (C). In the latter case, the simulator can be set with a
maximum number of cycles to simulate. Then Discrepancy Analysis is performed
on the partial traces. In this way, the same method can be used to find bugs which
normally would cause the design to hang or loop. Finally, bugs of categories (D)
and (E) are actual compiler bugs. It is worth to remark that these experiments
proved that with this approach it is possible to spot bugs which are not visible
outside the design. Moreover, it shows that Discrepancy Analysis can be also
very useful to test HLS compiler implementations.

11.2 Bugs Involving Addresses

Applying extensively the described approach to BAMBU it was possible to find
several bugs involving pointer operations. Interestingly, the bugs detected with
this method are not always strictly caused by errors in memory allocation. In-
stead, they can be generated by problems in other steps of HLS. The one thing
they have in common is that they affect in some way the address decoding logic
of the generated circuit, causing a wrong address to be computed at some point.
Here is an exemplifying but not exhaustive list of the affected steps in HLS, with
some of the found bugs.

Compiler Frontend

Bugs due to wrong static analysis or manipulations of the IR, before the actual
HLS takes place. Among them, a compiler pass in BAMBU performs bit-width
static analysis to reduce the bits necessary for addressing memories. This step
was buggy and sometimes the number of bits that the tool required to be neces-
sary to represent addresses was too high or too low. In both cases, the effect was
that wrong values were used to address the memory, causing bugs that propa-
gated to the rest of the design.

Scheduling

Problems due to wrong scheduling of operations in the FSM. They include wrong
reordering of operations due to missing dependencies, bad scheduling due to
wrong computations of operations’ execution times and others. In some cases,
BAMBU’s frontend lost information about data dependencies among operations.
As a consequence, the scheduling step in HLS decided that an address could be

101

Chapter 11. Detected Bugs

computed in advance, but the data used for the computation was actually not
ready to use, again generating wrong addresses.

Memory allocation

Instantiation of memory modules with wrong characteristics, size or latency. This
happened with BAMBU and it caused different kinds of problems. When the
memory was too small, some data could be lost writing it to an out-of-bound
address. It also happened that the HW tried to read data from an out-of-bound
address, causing the design to hang, waiting for a reply from memory that never
happened. When the memory was too large, the offset calculation in address
decoding was wrong. This caused memory accesses at wrong locations, read-
ing wrong data or writing them in the wrong place. Finally, when the expected
latency was wrong, the HW was using data before the memory replied.

Interconnection

Wrong connection of wirings, causing malfunctions. For instance, the same bug
described at point (1) affected the generation of the interconnection. Thus, the
address bus had the wrong width, causing wrong addressing.

All these bugs were properly detected and isolated in BAMBU by the approach,
without human intervention. The data provided by the Discrepancy Analysis en-
gine allowed to identify the cause and to fix the HLS compiler. Positively, the
approach was able to treat bugs causing the designs to hang or loop forever be-
cause the simulation could be interrupted to perform Discrepancy Analysis up to
a certain point in the execution. Another important thing to stress is that most
of the memory bugs detected with Discrepancy Analysis were also causing errors
in variables that did not represent addresses. Clearly, if a READ loads data from
the wrong location, it is likely to get them wrong. Without the Address Discrep-
ancy Analysis, it would not be possible to know if the problem was the address
or the data in the memory itself. The GCC C-torture tests were very valuable in
this phase, because the CHStone benchmarks did not trigger any of these bugs.

11.3 Bugs in Multi-Threaded Programs

The bug detection algorithm was tested manually inserting three different kinds
of bugs. The first class is composed of bugs located in a single hardware thread. The
second class of bugs involves communication between threads via shared memory.
Bugs in the third class were caused by missed or multiple executions of tasks.

Bugs located in single hardware threads

For these bugs, the capabilities of the bug detection are the same as for the regu-
lar Discrepancy Analysis for single-threaded programs. This means that it finds
bugs affecting each and every single thread with the same accuracy of the single-
threaded version, even if the design is multi-threaded and independently of the
HW/SW task mapping. This holds both for control flow bugs and for faults
involving single operations. For custom data types, the approach can use spe-
cial comparison functions, for instance considering Unit in Last Place for floating
points, or considering the HW/SW address mapping for pointers (see Section 8).

102

11.4. Bugs Detected On-Chip

The approach can also isolate bugs in libraries of external components used as
elementary operators in HLS.

Bugs involving communication between threads

The extended Discrepancy Analysis detects situations where thread accelerators
read or write wrong values to or from memory, as well as when thread accel-
erators access memory at wrong locations. One example is when an accelerator
accesses a portion of the shared memory that is reserved for another thread. An-
other example is when an accelerator accesses a global data structure instead of
its own thread-private copy. The Discrepancy Analysis was always able to find
these bugs when injected. Other reported communication bugs are caused by
thread synchronization and non-deterministic locking order. This last class of
bugs is actually a false positive and is discussed in Section 12.2.3.

Bugs caused by missed or multiple executions of tasks

The Discrepancy Analysis detects if a given task is executed a different number
of times in hardware and in software. This may happen due to bugs in the logic
of the component that decides which task has to be executed on a given physical
copy of the thread accelerator. The detection works if a given task is dispatched
multiple times on different copies of the thread accelerator, as well as on the same
copy. It is also able to detect if a given task executed in software is never executed
in hardware.

Remarks

It is worth to notice that with multi-threaded Discrepancy Analysis the strong
guarantee that the detected bug is the first is lost. One reason is that, in absence
of a serial execution and with possibly different thread models in hardware and
in software, it is possible to give different definitions of ‘first’. The other reason is
that with the trace mangling described in Section 7.3 the absolute global timeline
of the simulation is scattered through the filtered traces. Timing information is
preserved, but every filtered trace maintains only part of it. The result is that at
first it is only possible to identify the first mismatch for each task. Then the global
timestamps of each mismatch for each task have to be compared to decide which
happened first in hardware.

11.4 Bugs Detected On-Chip

On-chip Discrepancy Analysis has shown to be able to detect different kinds
of bugs compared to the simulation-based approach. As shown in Figure 11.1,
the set of bugs detected on chip partially overlaps with the set of those found
with simulation. The set on the left represents the bugs detected with offline
simulation-based Discrepancy Analysis, while the set on the right represents the
bugs detected with online on-chip Discrepancy Analysis. It is interesting to an-
alyze the overlapping and disjoint portions of sets more closely. During the ex-
perimental evaluation, bugs belonging to these three subsets have been manually
crafted and injected in the designs, to assess the real capabilities of Discrepancy
Analysis.

103

Chapter 11. Detected Bugs

Bugs detected offline
with simulation-based
Discrepancy Analysis

Bugs detected on FPGA
with online on-chip

Discrepancy Analysis

Operation Bugs Post-synthesis Bugs

Control Flow Bugs

Figure 11.1: Venn diagram of the classes of bugs detected with Discrepancy Analysis. The set on the left
represents the bugs detected with offline simulation-based Discrepancy Analysis, while the set on the right
represents the bugs detected with online on-chip Discrepancy Analysis.

First, not all the bugs that can be detected with simulation are also visible on
chip. This is not surprising, and it is a direct consequence of the fact that the hard-
ware checkers proposed in Chapter 9 only perform online Discrepancy Analysis
on control flow. For this reason, all the bugs directly involving only results of
operations are not detectable. However, this restriction is not a theoretical limit
of the On-Chip Discrepancy Analysis per se. The only reason of this limitation
is that, in the version showcased here, the checkers only implement Discrepancy
Analysis at control flow level by design. If the checkers are extended to check single
operations this limit could be overcome.

The second thing to notice is that the overlapping portions of the two sets
is constituted by control flow bugs. This means that, for what concerns control
flow bugs, all the bugs detected with simulation can also be detected on-chip
with the same accuracy. This is a direct consequence of the fact that the design
of the control flow checkers is based on the same notion of equivalence used for
checking Control Flow Traces coming from simulation.

Finally, there are also bugs that can only be detected on chip. These bugs are
typically caused either by faulty third-parties IP blocks that may not have been
tested for some corner cases of the end users, or by hand-written HDL coding
styles that may yield different results in simulation and after synthesis [36] [54].
Another common case when they arise is when designers test in integration on
chip some components that have only been tested in isolation, surfacing problems
at the interfaces. Both these two scenarios are becoming increasingly common
due to component reuse and use of HLS for system integration. Being able to
detect such cases is important, and improves the final debugging experience.

Summary

This chapter summarized all the different classes of bugs that can be detected
with Discrepancy Analysis, involving different steps of the HLS process. First, Sec-
tion 11.1 focused on the bugs detected with simulation on designs generated from
standard serial C programs. Then, Section 11.2 provided an overview of bugs in-

104

11.4. Bugs Detected On-Chip

volving pointers and memory accesses. Section 11.3 analyzed the bugs detected
in designs generated from multithreaded specifications. Finally, Section 11.4 dis-
cussed the bugs that can be detected on-chip.

This discussion on the classes of bugs is useful to understand the capabilities
of Discrepancy Analysis, but it is not enough to give a complete overview of how
this methodology can positively affect the debugging experience for circuits gen-
erated with High-Level Synthesis. For this reason, Chapters 12 and 13 provide
extensive measurements gathered on different benchmark sets with Simulation-
Based Offline Discrepancy Analysis and On-Chip Online Discrepancy Analysis.

105

Chapter 11. Detected Bugs

106

12
Simulation-Based Discrepancy Analysis

This chapter discusses a number of experiments aimed at the evaluation of the of-
fline simulation-based Discrepancy Analysis described in Chapter 7 and the Address
Discrepancy Analysis introduced in Chapter 8. In particular, different classes of ex-
periments have been carried on to evaluate different aspects of the methodology.

Section 12.1 focuses on the results obtained with the baseline implementation
introduced in Sections 6.2, 7.1, and 7.2. Section 12.2 reports the results obtained on
multi-threaded benchmarks, hence focusing on the extension to multi-threaded
programs described in Sections 7.3. Finally, Section 12.3 reports data on the ex-
tension to pointers and memory accesses explained in Chapter 8.

12.1 Baseline

This section describes the results obtained with the baseline implementation of
Offline Simulation-Based Discrepancy Analysis, without support for multi-threading
nor for pointers and memory accesses. This is useful to realize the general behav-
ior of the approach, in terms of performance, granularity of the checks, and other
advantages that it brings to the overall debugging experience.

Section 12.1.1 reports results on the performance of the bug detection algo-
rithm; Section 12.1.2 discusses the granularity of the checks performed by Dis-
crepancy Analysis, including temporary variables introduced by the compiler for
optimizations; Section 12.1.3 describes other advantages descending from the au-
tomated signal selection performed, that contribute to improving the overall user
experience.

12.1.1 Performance

Figure 12.1 shows the time overhead of our the Discrepancy Analysis bug detection
algorithm, compared to the execution time of the simulation of the design under

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

0%

5%

10%

15%

Figure 12.1: Time overhead of Discrepancy Analysis, compared to simulation.

107

Chapter 12. Simulation-Based Discrepancy Analysis

test. The simulation is cycle-accurate and it was performed with the ModelSim
SE-64 10.5 simulator. The names of each benchmark are reported below the re-
lated bar, along with the optimization levels. The two levels evaluated here are
-O0 and -O3, depending on the flags passed to the compiler.

From the figure, it is clear that the execution time overhead is negligible: just
above 15% in the worst cases, but much less in most of the others. This is even
more impressive considering that normally the user would have to explore the
designs manually, reconstruct the optimizations performed by the HLS process,
backtrack the HDL description to the original high-level source code, and finally
analyze the signals manually, without good knowledge of the circuit, to iden-
tify and locate the first bug occurred during the execution. In this sense, if the
overhead of the bug detection is compared to the time it would take to a human
designer to perform the same tasks, the little overhead to pay for Discrepancy
Analysis is a great improvement.

The data reported in the figure were gathered executing bug detection on de-
signs that were free of bugs, to measure the full worst-case runtime of the algo-
rithm. In case a bug is present the overhead is much less, about 10 to 20 times less
depending on the location and the timing of the first mismatch.

The data reported in Figure 12.1 do not include support for multi-threading,
nor for automated bug detection of pointers. Handling these special cases re-
quires more work and computation, hence the overhead is higher. Detailed data
are reported in Sections 12.2 and 12.3.

12.1.2 Coverage

Another interesting result to measure is the granularity of the checks performed
by Discrepancy Analysis during the automated bug detection. In order to measure
it, it is necessary to define a good coverage metric.

In this respect, it is important to make a few considerations about what kind
of coverage it is meaningful to measure. There are two main tricky points here:

• the language for which the coverage metric is defined;

• whether the coverage metric has to be static or dynamic.

The first point is specific to the fact that Discrepancy Analysis is a methodol-
ogy for automated bug detection in circuits generated with HLS. Dealing with HLS
means that there are two languages involved in the design process: a low-level
language, i.e. the HDL description of the circuit; a high-level language, i.e. the
input language of the HLS tool. Given that Discrepancy Analysis aims at providing
useful information to HLS users without requiring deep knowledge of the HLS
process itself, the most natural choice here is to define a coverage metric on the
high-level source code.

The second point, whether the coverage metric has to be static or dynamic, de-
pends on the nature of the bug detection operation. Generally speaking, a static
coverage metric measures how many of the overall static instructions in a pro-
gram can be checked with a given methodology. On the other hand, a dynamic
coverage metric measures how many of the overall static instructions in the same
program are actually checked during a given execution of a program (or a set
of executions with different inputs). In general, dynamic coverage metrics are

108

12.1. Baseline

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

0%

20%

40%

60%

80%

100%

ccov vcov

Figure 12.2: Statement coverage for the CHStone benchmarks. The coverage was computed for C (ccov) and
the Verilog designs generated with BAMBU with different optimization levels (-O0, and -O3).

useful to understand how effective is a technique to test exhaustively a design.
However, testing exhaustively a design is not the goal of Discrepancy Analysis.
Discrepancy Analysis aims at providing a fast and effective way to automatically
detect bugs when they arise. For this reason, it is orthogonal to other techniques
that strive to provide exhaustive testing for hardware designs. But exactly for
this reason, it makes little sense to use a dynamic coverage metric of this kind
to measure the effectiveness of Discrepancy Analysis- A static coverage metric is
more suitable for this goal.

The static coverage metric used in the rest of this chapter is called instruction
coverage (icov) and it can be defined as follows:

icov =
of checked static operations

of static operations

It measures the percentage of static operations in the elaborated C program
that can be checked with the Discrepancy Analysis. At first sight, it may resemble
statement coverage, which in general is defined as follows:

scov =
of statements executed at least once at runtime

of static statements
.

In the remainder of the thesis, the notation ccov is used for C statement coverage
and vcov for Verilog statement coverage. For the sake of completeness, Figure 12.2
reports the dynamic statement coverage for C (‘ccov’) and Verilog (‘vcov’). For C,
ccov was computed with gcov, the coverage tool included in GCC-4.9. For Ver-
ilog, vcov was evaluated with simulation, using ModelSim. The data show that
the tests are not covering the whole design, nor the original program. This is
expected, since the data set on which the CHStone operate is fixed and it was
not designed to provide full coverage. Currently, Discrepancy Analysis does not
consider how the inputs for the design under test are generated, and the default
dataset was used for all the experiments with the CHStone. However, the prob-
lem of how to tune the input test is interesting, especially because there is no
straightforward relationship between coverage in C and in Verilog. The topic is
orthogonal to what is described here. It is very vast and it deserves a separate
analysis.

109

Chapter 12. Simulation-Based Discrepancy Analysis

Despite the similarities, instruction coverage is not equivalent to the statement
coverage in the original C code nor in the generated HDL. First of all, icov is a
static metric, while statement coverage is dynamic because it measures the number
of statements that are actually executed at runtime. Instead, icov measures at
compile time the number of high-level statements whose results can be checked
by Discrepancy Analysis, even if at runtime such instructions are not executed,
depending on the test input. Secondly, icov has a finer granularity, because it
considers the values of the intermediate sub-expressions in statements separately.
In this way, it is possible to check variable assignments, but also intermediate
values assigned in composite statements. This metric measures the granularity
of the checks. The goal is to show that Discrepancy Analysis is able to instrument
and check a large majority of the operations, independently of the fact that they
are actually executed at runtime.

Notice that the instruction coverage does not only includes assignment state-
ments, but also control flow instructions. Branch statements, function calls and
return statements cannot be checked directly by Discrepancy Analysis because they
do not assign variables. However, they can be checked indirectly. In fact, func-
tion calls are not directly checked, but the operations in the body of the called
functions are. The same holds for the arguments passed by the caller to function
calls. Return statements are not directly checked inside the body of the returning
function, but the returned values are checked right after their evaluation, before
the return. Finally, branch instructions are not directly checked, but the branch
condition is checked at its evaluation, before the jump. The key is that the checks
enabled with Discrepancy Analysis are on the assigned values. In this sense, it is
actually possible to measure icov on different sets of checks. For the evaluation
of Discrepancy Analysis, it is interesting to measure icov either only on the directly
checked instructions (the assignment statements), only on the indirectly checked
instructions (the control flow statements), or all together as an aggregate.

Figures 12.3 and 12.4 report data on the icov for the benchmarks in the CH-
Stone suite with different level of compiler optimizations. Figure 12.3 refers to
optimization level -O0, while Figure 12.4 refers to optimization level -O3. The
name of each benchmark is reported below every group of bars. For every bench-
mark there is a group of three bars.

The one on the left, composed of two parts labeled op-src and op-tmp, reports
the icov for directly checked operations, i.e. assignments. The total height of the
bar composed of op-src and op-tmp represents the icov for directly checked opera-
tions. The op-src part shows the portion of the covered assignments that directly
assign to a variable that was actually present in the original source code. The
op-tmp part, instead, represents the assignments to temporary variables, i.e. in-
termediate results of compound statements or variables inserted by the compiler
for optimizations. These variable do not really have a counterpart in the original
source code.

The second bar, in the middle of every group of three, is composed of two
parts labeled cf-src and cf-tmp, and it reports the icov for indirectly checked oper-
ations, i.e. control flow operations (branches, function calls, return, statements).
The total height of the bar composed of cf-src and cf-tmp represents the icov for
indirectly checked operations. A branch is considered indirectly covered if the
condition is directly covered, a function call is considered indirectly covered if all

110

12.1. Baseline

ad
pc

m

ae
s bf

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
pe

g2 sh
a0%

20%

40%

60%

80%

100%

op-src op-tmp cf-src cf-tmp tot-src tot-tmp

Figure 12.3: Coverage: icov for the CHStone benchmarks with optimization level -O0.

ad
pc

m

ae
s bf

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
pe

g2 sh
a0%

20%

40%

60%

80%

100%

op-src op-tmp cf-src cf-tmp tot-src tot-tmp

Figure 12.4: Coverage: icov for the CHStone benchmarks with optimization level -O3.

the arguments are covered, and a return statement is considered indirectly cov-
ered if the returned value is directly covered. The cf-src part shows the covered
control flow operations whose conditions or arguments can be directly mapped
onto variables in the original source code. On the other hand, the cf-tmp part
is composed of the control flow operations whose conditions or arguments are
temporary variables.

Bear in mind that for these control flow operations, Discrepancy Analysis at
the control flow level provides additional checks. The static branch coverage of
the Discrepancy Analysis presented here is always full by definition, meaning that
all the branches are instrumented and control flow discrepancies are always de-
tected by construction. For this reason, the static branch coverage is not discussed
further in the thesis.

Finally, the third bar on the right in each group is composed of two parts la-
beled tot-src and TOT-TMP. The total height of this bar represents the aggregated
icov for both directly and indirectly checked operations, i.e. for assignments and
control flow operations respectively. Again, the tot-src portion represents the
statements that are directly backtraceable to the original high-level source code,
while the tot-tmp represents those that are not.

The first thing that appears evident from the bar plots in Figures 12.3 and 12.4
is that the percentage of checks involving temporaries is very high. With opti-
mization level -O0 the weight of operations involving variables that were already
present in the original source code (tot-src) is always less than 20%, often less
than 10%. This percentage is only slightly affected by the optimization levels,

111

Chapter 12. Simulation-Based Discrepancy Analysis

as shown in Figure 12.4. In some cases, the percentage grows, like gsm, while
in other cases it drops, like sha, but always of just a few points. The reason is
that optimizations affect temporaries in two different ways. On one hand, they
introduce more temporary variables, because the act on the compiler’s IR to op-
timize it. This reduces the overall impact of variables directly traceable back to
high-level code. On the other hand, rising the optimization level of the compilers
enables the tools to remove more useless intermediate results, to propagate con-
stants, and to remove dead code. Given that intermediate results are not directly
traceable to high-level variables, removing them increases the impact of variables
directly traceable to high-level code. These two opposite effects result in the fact
that the optimization level used for compilation does not significantly affect the
percentage of checked operations that are related to temporary variables. As Fig-
ures 12.3 and 12.4 clearly show, most of the checks are performed on statements
that involve temporary variables. This clearly shows the potential of Discrepancy
Analysis compared to other approaches to source-level bug detection for High-
Level Synthesis, which are not able to check compiler temporary variables or that
force to disable compiler optimizations.

For what concerns indirectly checked operations, the percentage of checks that
involve source-level variables (cf-src) is a little bit higher, up to almost 30% for
jpeg-O0, mpeg2-O0, and mpeg2-O3, with a huge peak for aes-03. This peak is
caused by the fact that with higher optimization levels, the compiler is able to
remove a very large number of control flow operations, thanks to constant prop-
agation and other transformations on the IR. In this way, in what remains after the
optimizations, the temporary variables involved in indirectly checked operations
are just a few.

On the other hand, the percentages for op-src are roughly the same to tot-src
in all the benchmarks and across all the optimization levels. The reason is that
directly checked operations are way more numerous than indirectly checked op-
erations, meaning that their impact on the aggregated results is predominant.

Consider now coverage. Figures 12.3 and 12.4 show that it is always over 60%,
independently of the optimization levels. This holds for directly checked opera-
tions, for indirectly checked operations, and as a consequence also for the aggre-
gated results. The main reason why the coverage is not full involves C pointers
and address arithmetic. Indeed, pointers represent a challenge for Discrepancy
Analysis, because there is no straightforward relationship between the software
address space of the high-level source code and the different possibly memory ar-
chitectures of the hardware generated with High-Level Synthesis. This problem
has been solved with Address Discrepancy Analysis, and the results concerning it
are reported in Section 12.3.

Remarkably, in most cases the coverage is barely affected by optimization lev-
els. This means that unlike many other bug detection methods, Discrepancy Anal-
ysis does not lose its accuracy and effectiveness when optimizations are active.
This is very valuable because it allows performing bug detection on optimized
designs as they are, without requiring modification to observe bugs. These mod-
ifications could, in theory, change the design up to a point where the bug is not
reproducible anymore. Moreover, in all the cases, the icov shown in Figures 12.3
and 12.4 increases with higher optimization levels. This is a nice side-effect of
the fact that more aggressive optimization remove more nodes from the IR, of-

112

12.1. Baseline

ten substituting pointers and memory accesses with integer arithmetic and scalar
values. This reduces the number of pointer operations, increasing the coverage.

It is interesting to notice that in all the cases except bf-O0, dfadd-O0, dfsin-O0,
and bf-O0, the icov on the indirectly checked statements is higher than on the
directly checked statements. This comes from the fact that it is less common in
the evaluated benchmarks to have branch conditions or control flow statements
that operate on addresses or pointers, and that pointers are the main cause of
missed coverage.

Another interesting data is that it is way more common to have full coverage
on indirectly checked statements. This is a consequence of the fact that in general
for the considered benchmarks the indirectly checked statements are better cov-
ered than the directly checked statements. This property is even more visible in
Figure 12.4, where all the benchmarks but bf, jpeg, and mpeg2 have icov = 100%
for indirectly checked statements. However, this property of icov for indirectly
checked statements is a direct consequence of the use of addresses and pointers
in the CHStone benchmarks and may not hold for other cases.

There are still some cases not covered by the baseline approach, namely checks
on values resulting from pointer arithmetic. This is due to the different address
spaces on the host machine of the software and on the synthesized hardware. As
a result, for memory-intensive benchmarks, the coverage is generally worse than
others, because of the higher number of arithmetic operations between pointers.
Section 12.3 discusses how they are handled by Address Discrepancy Analysis.

12.1.3 Other Advantages

Discrepancy Analysis has a few others interesting effects on the debugging expe-
rience, that can be observed in the following figures. Again, the reported data
were collected on the CHStone benchmarks, and the name of each benchmark is
reported below every bar in the plots, along with the optimization level used to
obtain the results.

Figure 12.5 shows the percentage of signals selected in the design with our
approach. It is evidently very low. It also represents the number of signals needed
to ensure HW/SW execution equivalence using Discrepancy Analysis. Without
automated signal selection, the user would typically need to find out the signals
himself and to reconstruct the relationship with the original high-level source
code. This would take a large amount of time especially if the user is not aware
of the internal signal naming conventions of the HLS tool. This means that the
automatic signal selection alone is already a huge advantage for HW designers.

But there is more. The signal selection automatically identifies in the design
generated with HLS all the signals necessary for Discrepancy Analysis. Then there
is no need to dump all the signals in the design to the VCD file. Only the inter-
esting signals can be dumped, reducing the size of the generated waveform files.
Figure 12.6 shows how much the size of the generated VCD files can be reduced
by the signal selection. In some cases, this means bringing the size of the files
from some GBs down to some MBs. This is also beneficial for the simulation time,
which is always lower with signal selection since the I/O bottleneck to print the
VCD is less significant. As a consequence, Discrepancy Analysis with automated
signal selection significantly improves the manageability of the debugging oper-

113

Chapter 12. Simulation-Based Discrepancy Analysis

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

0%

0.2%

0.4%

0.6%

Figure 12.5: Percentage of signals selected in the design with Baseline Discrepancy Analysis.

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

0%

20%

40%

60%

80%

100%

Figure 12.6: Reduction of the VCD file size using signal selection.

ations, or it can even allow debugging complex designs where the generation of
the waveforms would be too expensive time-consuming to be actually feasible.

Looking at the data more closely it is possible to make some other consid-
erations. Figure 12.5 shows that, except for a few benchmarks (aes, dfsin, and
mips), the automated signals selection identifies higher percentages of significant
signals in optimized design (optimization level -O3). This is reasonable, and it
reflects the fact that with higher optimizations levels the HLS tool is more aggres-
sive in removing the redundant and useless parts of the design. In this way, in
the final design, more signals on the total are important for bug detection. At the
same time, optimizations can considerably reduce the number of intermediate
calculations necessary to compute a result, hence removing lots of intermediate
results that Discrepancy Analysis would need to check. This is the main reason
why the percentage of selected signals drops with higher optimization level in
aes, dfsin, and mips.

It is also interesting to compare Figure 12.5 and Figure 12.6. At first sight, it
may seem surprising not to notice a strict correlation between small numbers of
selected signals and high reductions of VCD size. Indeed, there are cases (dfdiv,
gsm, and mpeg2) where optimization level -O3 yields a better reduction of VCD
size even if the percentage of selected signals is higher. This situation can be ex-
plained by the fact that the size of the VCD file is not only affected by the number
of traced signals but also from the activity of those signals during the whole sim-
ulations. Tracing a signal with many changes during the execution requires much
more space compared to a signal that only changes a few times. For this reason, it
is not straightforward to correlate the number and the percentage of the selected
signals with the reduction of the VCD size.

114

12.2. Multi-Threaded

bf di
v

df
si

n

ha
sh lo
s

m
b

m
cm

l

25%

75%

125%

175%

225%

Figure 12.7: Time overhead of Discrepancy Analysis, compared to simulation.

12.2 Multi-Threaded

This section discusses the results obtained with Discrepancy Analysis on multi-
threaded programs. The set of benchmarks is different from the CHStone suite
used for serial code. Instead, this scenario was evaluated using 7 benchmarks that
have already been used to evaluate HLS of OpenMP programs [17]. Coverage is
not discussed here because there are no significant variations from the serial code.
Instead, Section 12.2.1 discusses the performance and the scalability of the bug
detection for multi-threaded programs. Then, Section 12.2.2 analyzes how the
signal selection is still able to reduce runtimes and waveform sizes even with the
increased complexity due to multi-threading. Finally, Section 12.2.3 describes the
main limitations of the support for multi-threaded code, pointing out the possible
directions of future research.

12.2.1 Performance

The performance of multi-threaded Discrepancy Analysis was evaluated measur-
ing its execution time when the generated design was free of bugs. This enabled
to measure the real execution time of the algorithm because in presence of bugs
the comparison of each trace is skipped after the first mismatch. Without bugs,
the algorithm for automated bug detection is forced to analyze all the traces to
the end. The results are obtained from the designs generated by BAMBU on the
set of benchmarks described in Section 10.2.2. The simulation was executed with
ModelSim SE-64 10.5 from Mentor Graphics. To measure the overhead of this
debugging approach we compared the execution time of the bug detection to the
simulation time.

The results are reported in Figure 12.7. The simulation times for the evaluated
benchmarks were always in the order of a few tens of minutes, so the overhead of
the bug detection was acceptable. However, it is evident that there is a large vari-
ance depending on the benchmark. On div and hash, the overhead is only about
10%. For bf, dfsin, los, and mcml, instead, it grows above 100% up to about 225%.
There are various reasons for these differences, but they are to be attributed to two
main causes. The first is that BAMBU generates very different architectures for the
parallel constructs due to optimizations. In particular, there is a very different
degree of resource sharing. Accelerators with multiple duplicated components
generate a larger number of hardware traces, while for accelerators with heavy

115

Chapter 12. Simulation-Based Discrepancy Analysis

1× 2× 3× 4×

1×

2×

3×

4×

5×

6×

7×

task number increase factor

ex
ec

ut
io

n
tim

e
in

cr
ea

se
fa

ct
or

bs
div
dfsin
hash
los
mb
mcml

Figure 12.8: Correlation between length of execution traces and execution time of Discrepancy Analysis.

sharing this number is limited. With a larger number of traces the work that
the bug detection algorithm has to perform is much bigger, hence the great in-
crease in the overhead. The second reason is related to the memory architecture.
For benchmarks with larger memories and a higher number of shared variables,
the number of memory accesses and pointer operations is also higher. This trig-
gers the address Discrepancy Analysis algorithm implemented by BAMBU and
described in Section 8. This algorithm is more complicated because it keeps track
of context dependent memory locations of stack allocated variables in software to
build tables that are queried by the Discrepancy Analysis to resolve matches and
mismatches on pointer operations. This is the second cause of the large variance
in overhead. However, a large overhead is not necessarily to be interpreted as a
negative outcome. Given that large overheads are measured on complicated de-
signs, this overhead actually measures the amount of work that a designer should
perform manually to find bugs in such designs. The automated bug detection is
clearly an advantage in these cases because it avoids user interaction and it is
suitable for continuous integration and regression testing.

It is also interesting to see how the Discrepancy Analysis scales in case of long
runs. To measure it, we executed it on multiple runs of the same designs, vary-
ing the workload of the multi-threaded part. Figure 12.8 reports data on how
the execution time increases with the increase of the multi-threaded workload.
In general, the execution time grows roughly linearly with the workload, with
slightly different slopes depending on the design.

12.2.2 Other Advantages

Another advantage of the Discrepancy Analysis is that it automatically selects the
signals necessary to generate the Hardware Traces. Without it, developers have
to dump the complete traces of all the signals in the design and to inspect them
manually. This often leads to waveform files of unmanageable size, especially
with multi-threaded hardware designs, where more spatial and logic parallelism
is exploited. With Discrepancy Analysis only the necessary signals are actually
printed, decreasing the impact of the I/O operations on the simulation.

Figure 12.9 reports two datasets:

• the reduction of the size of the VCD files with Discrepancy Analysis;

116

12.2. Multi-Threaded

• the reduction of simulation time.

Both the data come from simulations with ModelSim SE-64 10.5 on the de-
signs generated by BAMBU for the evaluated benchmarks. Clearly, the reduction
of VCD size is always at least 50%, with peaks of more than 80%. In some cases,
this makes the difference between GBytes and MBytes and allows to analyze ex-
ecutions that are otherwise too long. The reduction of VCD size is reflected by
the reduction of simulation times. The correlation between the two values not
always evident, like for div and dfsin. The reason is that the simulator is able to
optimize the design before simulation. Excluding the time spent in I/O for the
creation of VCD, the simulation has some other fixed cost for initialization, static
optimization, and other similar operations. These fixed costs are more signifi-
cant on smaller benchmarks and cannot be avoided with the signal selection. In
fact, the benchmarks whose simulation is sped up more are the biggest. For those
cases, the fixed costs are less significant, and the advantages of signal selection are
heavier. This is good for scalability because the speedups are greater for bigger
designs.

12.2.3 False Positives and Other Limitations

The major limitation of the approach is that the algorithm for debugging multi-
threaded code described in Section 7.3 assumes that tasks assigned to each phys-
ical or logical thread are uniquely identified by a possibly dynamic task identi-
fier. This is reasonable with homogeneous parallelism such as with OpenMP for
loops, OpenCL NDRanges and CUDA warps, but it is not always true in high-
level multi-threaded parallel programs. Imagine a scenario with a single pro-
ducer and multiple consumers, where the producer enqueues non-unique data
to be processed by the consumers. The time necessary to process each element
is not known in advance and can vary. In software as in hardware, thread ids
are not enough to know which thread is actually doing what, even with runtime
data. The reason is that, depending on the latencies, each element in the queue
could be processed by any thread, both in hardware and in software. In order
to know which hardware and software threads are processing a specific element
in the queue, one should not rely on thread ids. Task ids are not even present,
so the only way to know it is to look at the actual data being processed. If the
data in the queue are not unique this is not possible with the approach described
in Section 7.3. The same holds in presence of synchronization directives, like
locks and critical sections, with non-deterministic outcomes, such as a shared

bf di
v

df
si

n

ha
sh lo
s

m
b

m
cm

l

0%

20%

40%

60%

80%

100%
VCD size reduction simulation time reduction

Figure 12.9: Reduction of VCD size and simulation time when Discrepancy Analysis is enabled.

117

Chapter 12. Simulation-Based Discrepancy Analysis

counter incremented atomically by every thread. In this case, the order of the
increments is irrelevant for the correctness, as long as all the increments are ac-
tually atomic and the final value of the counter matches. This practically means
that the results of the increments in hardware and software are not required to
match for correctness, but Discrepancy Analysis has no way to know it. A simple
workaround with OpenMP is to use local counters with the reduction clause
as in Figure 7.4(a), or with user-defined reduction. For more complex use cases
this may not be entirely possible and is definitely worth further investigation.

12.3 Address Discrepancy Analysis

This section reports the results obtained for the evaluation of the Address Discrep-
ancy Analysis described in Chapter 8.

In particular, Section 12.3.1 describes the significance of address operations on
the benchmarks used in the rest of the section. This is important to give a rough
estimate of the amount of work that Address Discrepancy Analysis has to perform
for each example and to shed some light on the other results.

Section 12.3.2 reports report results about alias analysis. This is useful because
Address Discrepancy Analysis partially relies on alias analysis results, and enables
to reason about the other results.

Then, Section 12.3.3 discusses the performance of the extended algorithm for
automated bug detection on pointers and memory accesses introduced in Sec-
tion 8.2, compared to the baseline and to simulation.

Finally, Section 12.3.4 focuses on the coverage, using the icov coverage metric
previously introduced in Section 12.1.2, and showing how Address Discrepancy
Analysis allows to significantly improve the coverage compared to the baseline
reported in Section 12.1.2.

All the results presented in the remainder of this section have been collected
with BAMBU on both CHStone and GCC C-torture tests. For the CHStone the
benchmark names are reported with the used optimization flags. For GCC C-
torture only aggregated data are reported in the results because the benchmark
set is far too broad to entirely fit here.

12.3.1 Significance of Pointers and Address Operations

The first interesting information collected from the experiments concerns the im-
portance of pointer operations on the selected benchmarks. This is important
for two reasons. First, it shows that the problem tackled by Address Discrepancy
Analysis is worth solving because it is common for pointer operations to have
a significant weight in hardware generated with High-Level Synthesis. Second,
these data are very useful to give a clearer interpretation of the results on the per-
formance and on the coverage, reported in Sections 12.3.3 and 12.3.4 respectively.

Figure 12.10 reports the percentage of the operations that involve pointers and
addresses, on the total operations executed at runtime. It is important to stress
that, unlike the coverage results, this measurement is on runtime data. The reason
is that the focus here is not on measuring how well Address Discrepancy Analysis
can check all the possible operations, but actually what is the real amount of work
that it has to execute to run the automated bug detection algorithm. This amount

118

12.3. Address Discrepancy Analysis

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

C
-to

rt
ur

e

0%

10%

20%

30%

40%

50%

Figure 12.10: Percentage of pointer operations on the total operations executed at runtime.

of work is not related to coverage, but it is related to the actual number of pointer
operations executed at runtime, independently of their absolute weight on the
total number of statements measured statically. What is important here is how
many addresses do actually need to be handled by Address Discrepancy Analysis,
because this is related both to the performance of the algorithm and to the amount
of work that a human designer would have to do to solve the same problem.

Figure 12.10 shows that the impact of pointer operations for memory-intensive
applications is often higher than 20%, and it can even be higher than 40%. More-
over, on the C-torture tests, the impact of pointer operations is about 28%. This
shows that it is perfectly possible that applications designed for High-Level Syn-
thesis, like mpeg2 or sha in the CHStone, have higher amounts of pointer opera-
tions than tests designed to stress compilers on pointers. This means that Address
Discrepancy Analysis is solving a non-trivial problem, especially in large designs.

Without Address Discrepancy Analysis, the developers would need to recon-
struct the address translation map manually. This takes a long time and it requires
memory allocation information from the High-Level Synthesis tool, with details
of the addresses, the memory alignment and what are the bit patterns used as ad-
dresses in hardware. Moreover, the software memory map with stack-allocated
data should be retrieved. Finally, the Algorithm 3 would have to be executed
manually. In particular, the user would need to decode manually the values of
the hardware signals to retrieve the memory locations, which is an operation that
requires a good understanding of the internal memory allocation used in High-
Level Synthesis. These operations would need to be performed manually for
each and every one of the pointers manipulated during the execution, to actually
identify and isolate the first bug.

With Address Discrepancy Analysis, instead, all the process can be automated.
This effectively removes user interaction, avoiding the long, burdensome and
error-prone tasks of bug isolation, and leaving to the designers only the task to
figure out what introduced the bug identified automatically. This significantly
improves the debugging experience, cuts time and costs, and is suitable for use
in automated regression testing.

12.3.2 Alias Analysis Results

Figure 12.11 reports the percentage of pointers in the C code for which the alias
analysis is fully resolved at compile time. Alias analysis for a given pointer is
fully resolved if the compiler can prove at compile time that the points-to set for

119

Chapter 12. Simulation-Based Discrepancy Analysis

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

C
-to

rt
ur

e

0%

20%

40%

60%

80%

100%

Figure 12.11: Percentage of pointers for which alias analysis is fully resolved.

that pointer is finite. This means that the compiler knows with certainty all the
possible locations that can be pointed to by a pointer during the entire execution
of a program, for all the possible inputs provided to it. For pointers whose alias
analysis is fully resolved Discrepancy Analysis is more effective. If a bug affects one
of them, the Algorithm 3 is always able to find it by design.

Figure 12.11 shows that for the benchmarks with the most elementary pointer
manipulations (dfadd, dfdiv, dmful, and mips) the alias analysis is always fully re-
solved independently of the optimization levels. For others, like adpcm and dfsin,
higher optimization levels actually increase the fully resolved pointers. The rea-
son is that more aggressive compiler optimizations can effectively remove wild
pointer operations, leaving intact only the fully resolved ones. However, the op-
posite can also happen, like for sha, where optimization level -O3 decreases the
fully resolved pointers. The reason is that one of the optimizations transforms
some pointer arithmetic into more efficient integer operations, thus confusing the
alias analysis.

When the analysis is not fully resolved, Address Discrepancy Analysis may have to
give up in some cases, without being able to decide if there is a mismatch software
and hardware. If the analyzed pointer is not in range for any memory-allocated
variable (a so called wild pointer), Algorithm 3 never returns a mismatch (lines
14-16). The reason is that only in-range memory locations are mapped in hard-
ware, thus out-of-bound addresses cannot be checked. ASAN is used to ensure
that there are no wild pointer dereferences, but it is interesting to measure how
many times Address Discrepancy Analysis actually gives up on a comparison. The
experiments showed that this never happens for the CHStone tests. This means
that even if the alias analysis is non-trivial the Address Space Translation Scheme
(ASTS) is able to check all the addresses. Interestingly the percentage of give up is
very small (0.004%) also for the GCC C-torture, even if they are precisely designed
to stress-test the compiler on pointer arithmetic. The good results on the CHStone
benchmarks show that the approach is perfectly suitable for real use cases. On the
other hand, the fact that even on the GCC C-torture test there are so few give ups
confirms that the ASTS can handle a large variety of situations including several
corner cases of allowed operations with C pointers.

12.3.3 Performance

Knowing the importance of pointer operations on the analyzed benchmarks, it is
now possible to have more insights on the performances of Address Discrepancy

120

12.3. Address Discrepancy Analysis

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

C
-to

rt
ur

e

0%

10%

20%

30%

40%

190% 88% 124% 93% 71%

baseline address

Figure 12.12: Time overhead of Address Discrepancy Analysis, and of the baseline Discrepancy Analysis. Both
the overheads are intended compared to the simulation time.

Analysis. Again, the performance of Address Discrepancy Analysis is measured
in terms of execution time overhead compared to simulation, that was executed
with ModelSim SE-64 10.5. This overhead is reported in Figure 12.12. The darker
bars, labeled baseline, are the overhead of the baseline version of Discrepancy
Analysis, as already reported in Figure 12.1. The lighter bars, labeled address,
are the overhead of the full Address Discrepancy Analysis. The higher bars have
been trimmed to avoid losing visibility on the smaller results, but their actual
value is reported explicitly close to the top of each bar.

As expected, the time overhead for Address Discrepancy Analysis (address in the
figure) is always higher than the overhead for the baseline version measured in
Section 12.3.3 (baseline in the figure).

When the number of address operations is negligible (dfadd, dfmul, dfdiv, dfsin,
mips) the execution time overhead is not significant. This is reasonable because
Discrepancy Analysis is very fast on integers and floating points, since there are
no ASTS lookups. For the GCC C-torture tests, the overhead is also negligible
because they are really small programs.

On the other hand, when the address operations are more than about 20%, it
is harder to find a straightforward relationship between the coverage metrics and
the performance overhead. The main reason is to be attributed to the results of
the alias analysis. Indeed, even if the alias analysis is fully resolved it may be
possible that a single pointer variable points to different memory locations (if the
location set for that pointer has more than one element). Things are even worse
if the alias analysis is not resolved.

One example is represented by adpcm. Pointer operations constitute 22.5% of
the operations in adpcm-O0, but thanks to optimizations they are reduced to 5.6%
for adpcm-O3. At the same time, for adpcm-O0 alias analysis is fully resolved for
78.4% of pointers, whereas for adpcm-O0 alias analysis is fully resolved for 100%
of pointers. As a consequence, Figure 12.12 shows that the performance overhead
for Address Discrepancy Analysis on adpcm-O3 is almost the same as the baseline,
while it is more than double for adpcm-O0.

This kind of interactions explain the difficulties in finding an exact analytical

121

Chapter 12. Simulation-Based Discrepancy Analysis

ad
pc

m
-O

0

ad
pc

m
-O

3

ae
s-

O
0

ae
s-

O
3

bf
-O

0

bf
-O

3

df
ad

d-
O

0

df
ad

d-
O

3

df
di

v-
O

0

df
di

v-
O

3

df
m

ul
-O

0

df
m

ul
-O

3

df
si

n-
O

0

df
si

n-
O

3

gs
m

-O
0

gs
m

-O
3

jp
eg

-O
0

jp
eg

-O
3

m
ip

s-
O

0

m
ip

s-
O

3

m
pe

g2
-O

0

m
pe

g2
-O

3

sh
a-

O
0

sh
a-

O
3

C
-to

rt
ur

e0%

20%

40%

60%

80%

100%

src tmp src-addr tmp-addr

Figure 12.13: Coverage: icov of Address Discrepancy Analysis for the CHStone and C-torture benchmarks.

model to estimate beforehand the execution time overhead of Address Discrepancy
Analysis. Indeed, the combined effect of alias analysis and of the percentage of
pointer operations in a program can have a big impact on the execution time of
Algorithm 3, because several lookups in the ASTS may be required. However,
from the experiments turned out that even in the worst cases the overhead was
less than 200%, which is not a huge overhead considering the complexity of Ad-
dress Discrepancy Analysis and the time saved avoiding user interaction.

12.3.4 Coverage

The most encouraging results about Address Discrepancy Analysis are related to
coverage. Figure 12.13 reports the coverage results measured with the icov metric
introduced in Section 12.1.2. Also in this figure, the bars have been divided into
multiple portions to better discuss the results. Portion src includes the checked
operations that do not involve pointers and that are directly traceable to vari-
ables in the original high-level source code. Portion tmp includes the checked
operations that involve compiler temporary variables but not pointers and mem-
ory accesses. Portion src-addr includes checked operations that involve pointers
and memory accesses and that are traceable to variables present in the original
high-level source code. Finally, portion tmp-addr includes checked operations in-
volving pointers and memory accesses and temporary variables.

The first thing to notice is that with the introduction of Address Discrepancy
Analysis it is possible to achieve full coverage on all the CHStone benchmarks.
Moreover, the icov is very high (99%) also for the C-torture, which is even more
important, given that these tests have been designed to stress test compilers on
the quirks of C pointers.

Another important observation is that the larger part of all the checked oper-
ations (both involving pointers and not) involves compiler temporary variables.
The complete visibility on temporaries still represents one of the main advan-
tages of Discrepancy Analysis compared to other debugging methodologies for
High-Level Synthesis, even if some other research efforts are headed in the same
direction [27].

122

12.3. Address Discrepancy Analysis

Summary

This chapter provided a broad and deep overview of the results gathered dur-
ing the evaluation Simulation-Based Offline Discrepancy Analysis, demonstrating
the improvements it can bring to the debugging experience for circuits gener-
ated with High-Level Synthesis. In particular, Section 12.1 was focused on the
baseline implementation of Discrepancy Analysis, still without considering point-
ers and multithreaded programs. Then, Section 12.2 enlarges the scope to mul-
tithreaded code, showing the scalability of the approach. Finally, Section 12.3
showed how Address Discrepancy Analysis can effectively overcome most of the
biggest limitations of the baseline implementation, concluding the discussion on
Simulation-Based Offline Discrepancy Analysis.

Chapter 13 will now describe the results obtained on the On-Chip Online Dis-
crepancy Analysis, closing the discussion on the results. Chapter 14 then summa-
rizes the main advantages and limitations emerged by the analysis of the results,
along with some possible future direction of research.

123

Chapter 12. Simulation-Based Discrepancy Analysis

124

13
On-Chip Discrepancy Analysis

This chapter discusses the results obtained during the evaluation of the online
on-chip Discrepancy Analysis described in Chapter 9. To evaluate it, the implemen-
tation has been integrated into BAMBU and will be released with a future version
of PandA [69], an open source publicly available framework for High-Level Syn-
thesis developed at Politecnico di Milano. To support it, two main changes have
been applied to the framework:

1. Efficient Path Profiling has been integrated into the generator of software
executable code to generate the SW trace.

2. The Finite State Machine generator has been extended to create the hardware
checkers to be coupled with the FSMs.

The methodology flow has been tested on the CHStone benchmarks [33], a suite
composed of 12 C programs, explicitly collected for representing all the possible
scenarios which have to be addressed by a High-Level Synthesis tool. The bench-
marks have been translated in Verilog with the default configuration of the PandA
framework targeting a Stratix V device (5SGXEA7N2F45C1) from Intel (former
Altera) with a target frequency of 200MHz, using Quartus Prime Standard Edi-
tion 17.0 for synthesis.

Section 13.1 discusses the reduction of memory footprint obtained with op-
timized EPP, Section 13.2 shows the overhead introduced by the checkers, and
Section 13.3 outlines the limits of the approach.

13.1 Memory Usage

The results of the following compression schemes were computed for each CH-
Stone benchmark, to measure the effectiveness of EPP with respect to state-of-the-
art FSM trace compression techniques:

RAW: no compression, i.e., traces are described by means of the list of the tra-
versed states encoded with the smallest number of bits.

SoA: the list of the traversed states is compressed with the technique pre-
sented in [26].

EPP: the list of the traversed states is encoded with the Efficient Path Profiling
as described in Section 9.3.

EOPT: the execution traces are encoded with EPP and then compressed with the
technique described in Section 9.4.

125

Chapter 13. On-Chip Discrepancy Analysis

Benchmark RAW SoA EPP EOPT

adpcm 121553 53328 86760 40977
aes 18130 6648 2982 2406
bf 657402 203654 126658 46560

dfadd 1866 1480 598 324
dfdiv 5676 4428 3972 1194

dfmul 768 627 187 66
dfsin 193748 118629 107336 52086
gsm 25044 13508 21227 3429
jpeg 3692568 1753039 1270590 499085

mips 22904 18918 6336 6130
mpeg2 21274 12690 10443 252

sha 649508 315424 252715 51926

Table 13.1: Memory usage, in bits, for storing the compressed execution traces on-chip.

ad
pc

m ae
s bf

df
ad

d

df
di

v

df
m

ul

df
si

n

gs
m

jp
eg

m
ip

s

m
pe

g2 sh
a

m
ea

n

0.2

0.4

0.6

0.8

1
RAW

SoA EPP EOPT

Figure 13.1: Memory usage normalized with respect to RAW.

Note that the results obtained with the SoA technique depend on the encod-
ing of the states. The states of the FSM produced by PandA are binary encoded
and the states are numbered according to a depth-first visit which increases the
opportunities of compression of the technique used in SoA. In their work, the
authors [26] identify the optimal number of metadata bits to use for compres-
sion, which is 6 for their implementation. Since the optimal value depends on the
structure and the encoding of the FSM, the fixed number of bits identified in [26]
have not been used here. Instead, for a fair comparison, the optimal size of the
metadata was recomputed for every single function also for SoA, otherwise, the
results would be too biased in favor of the approach presented here.

Table 13.1 reports the results obtained with each technique on each benchmark.
Figure 13.1 reports the same data normalized with respect to the non-compressed
trace. The red line marks the RAW results, which represents the baseline.

The results show that SoA compresses better the benchmarks which are char-
acterized by data dominated computation (aes, blowfish, jpeg, mpeg2, sha), while it
does not provide significant benefits on the control dominated benchmarks (ad-
pcm, dfadd, dfdiv, dfmul, dfsin, gsm, mips). Indeed, the latter type of benchmarks
has Control Flow Graphs (and so also Finite State Machines) with very large num-
ber of branches. This means that the number of transitions between states with
consecutive encoding is limited, hampering the compression mechanism. On the

126

13.2. Overhead of the Tracing Logic

other hand, EPP can compress very well data dominated traces, as well as some
of the control dominated benchmarks as expected: dfadd, dfmul, mips. In general,
the results of EPP are in most cases already better than the compressed state-
based traces of SoA. However, on some control dominated benchmarks (like in
dfdiv and dfsin) the benefits are only limited, and on others (like in adpcm and
gsm) there are even significant penalties with respect to SoA. This is mainly due
to the execution trace of loops without internal branches. In this type of loops, all
the states will be encoded with consecutive values, giving a great advantage to
the compression algorithm used in SoA. SoA uses s + m bits to store information
about the execution of one iteration of the loop where s is the number of bits of
the state encoding and m is the optimal number of bits used to store metadata.
EPP, on the contrary, uses p bits to store information about the execution of the
same iteration, where p is log2(PathMax) and PathMax is the largest path iden-
tifier computed by Efficient Path Profiling. If the function containing the loop is
characterized by a significant number of branches, the number of paths is signif-
icantly larger than the number of states, p� s +m. If one or more loops without
internal branches are repeated a significant number of times, the overall size of
the trace compressed by EPP can be larger than SoA. This issue arises also in com-
pressing dfdiv and dfsin, even if their source code does not explicitly contain any
loops with such characteristics. In this case, indeed, the loop executed a signifi-
cant number of times and which does not contain any internal conditional branch
is the loop included in the Finite State Machine of the module implementing the
integer division.

The results about EOPT show that the compression of the EPP traces described
in Section 9.4 is effectively able to overcome this issue: the sizes of the compressed
traces of adpcm, blowfish, dfdiv, dfsin, gsm, jpeg, mpeg2, and sha are significantly re-
duced with respect to EPP. However, the optimization introduced by EOPT pro-
vides benefits not only for the benchmarks characterized by loops without inter-
nal branches. If the execution trace is characterized by the consecutive repetitions
of the same path inside a loop (even if it contains multiple branches), EOPT can
further compress the execution trace. For this reason, a significant improvement
is also noticeable in the compression of the traces for dfmul.

13.2 Overhead of the Tracing Logic

Table 13.2 reports the synthesis results obtained with Quartus Prime [40] after
place-and-route phase for the accelerators produced by the BAMBU High-Level
Synthesis flow, with and without the addition of checkers proposed in this chap-
ter. For each benchmark, the table reports the number of checkers, the obtained
maximum frequency, the area overhead in terms of Adaptive Logic Modules
(ALMs) and the dynamic power consumption.

The first thing to notice is that the number of checkers, reported in the col-
umn #chk, varies across benchmarks. Given that a checker is generated for ev-
ery checked FSM, the actual number corresponds to the number of functions
for which BAMBU generates an FSM and that are actually executed in the ref-
erence trace. The second interesting information is that the variation of achieved
clock frequency when the checkers are integrated into the design is not signifi-
cant. There are cases, like sha and mips, where it decreases of about 30 MHz, but

127

Chapter 13. On-Chip Discrepancy Analysis

Frequency (MHz) Area (ALMs) Power (mW)
#chk nochk chk nochk chk nochk chk

adpcm 1 220.89 213.63 5378 5716 218.22 230.14
aes 5 218.25 216.87 2238 2652 86.96 101.22

blowfish 2 214.32 221.52 1831 2040 106.30 119.26
dfadd 1 237.13 238.83 2421 2497 49.46 54.44
dfdiv 2 228.99 228.41 1879 2031 44.23 56.87

dfmul 1 219.88 219.72 904 993 32.01 36.57
dfsin 3 220.69 205.34 7990 8494 190.79 198.09
gsm 2 217.96 221.38 2316 2717 139.36 153.22
jpeg 6 214.41 209.86 9213 10264 369.47 429.61

mips 1 250.94 223.16 1016 1036 48.32 50.89
mpeg2 4 224.31 223.26 1224 1573 41.09 53.82

sha 2 256.48 221.43 1584 1820 75.22 85.78

Table 13.2: Synthesis results after place and route. Columns nochk and chk refer to the circuit without and
with control flow checkers.

they are also the cases where the achieved frequency without checkers was much
higher than the target of 200 MHz. Despite that for these benchmarks the intro-
duction of the checkers changes the critical paths of the circuit, the newly added
paths do not introduce any timing violation since there is a significant margin
between their delays and the required clock period. In other cases, like blowfish
and gsm, the frequency even increases of a few MHz. In all the cases the circuits
with and without checkers meet the target frequency of 200 MHz.

Results about area overhead are reported in terms of ALMs, which are the ba-
sic building blocks of the Stratix FPGA. Every ALM has 8 inputs and it consists
of combinational logic and four registers. It can be configured to implement vari-
ous combinations of two functions with variable numbers of inputs, as described
in [5]. The introduced overhead in terms of ALMs is correlated with the num-
ber of checkers instantiated in every benchmark. This can be inferred by the fact
that jpeg, the benchmark with the highest number of checkers, also exhibits the
largest ALM increase (+1051), while three out of the four benchmarks with only
one checker (dfmul, dfadd, mips) are also those with the lowest ALM increase (+89,
+76, +20, respectively). Clearly, these values have a different impact in percentage
on each benchmark, because their sizes are very different, but the data are concor-
dant with the fact that the main architecture of every checker is the same across
benchmark. The only difference is represented by the number of bits necessary
for the trace and the increments memory as described in Section 9.5. This differ-
ence is also the main cause of noise in the correlation between area and number
of checkers. An example of this effect is that adpcm, which has only one checker,
shows an ALM increase of +338, while mpeg2, with 4 checkers only increases of
+349 ALMs.

Finally, the last two columns in Table 13.2 report the dynamic power consump-
tion of the benchmarks, with and without checkers. The static power dissipation
is not reported because it is always equal to 1515 mW± 2 mW across all the tests,
with and without checkers. The estimation is obtained with the Quartus Prime
PowerPlay Power Analyzer, after place-and-route. Given that the accuracy of
the tool is ± 20% compared with the results that can be obtained on silicon (ac-

128

13.3. Limitations of the Proposed Approach

cording to the documentation), it is difficult to deduce an exact equation to esti-
mate power dissipation before synthesis. However, from the data, it is possible to
see that there are three main contributions to the increase of power consumption
caused by the checkers: the size of the memory used for the traces, the increased
switching activity that is measured when the compression is more aggressive,
and again the number of the checkers. The effect of the number of the check-
ers and the memory used for the traces is evident in jpeg, which has the highest
number of checkers and the largest number of memories and shows a rise of 60.14
mW. The significance of the increased switching activity due to compression can
be seen on mpeg2. This is the case where the EOPT shows the highest compression
rate and, from the table, it is possible to see that the dynamic power consumption
increases by 12.73 mW (30%) even with the insertion of a single checker. In other
cases, these effects are not evident.

13.3 Limitations of the Proposed Approach

The demonstrated proof-of-concept for on-chip online Discrepancy Analysis still
presents limitations. The most evident is that it is restricted only to the control
flow. While this can be important in some benchmarks, it is often not enough
to pinpoint the root cause of a bug and its impact in terms of memory footprint
could be negligible compared to memory for data. However, control flow plays a
strategic role in debugging, because it helps to locate bugs and to give directions
on which data are relevant for debugging. Compression for data traces is beyond
the scope of this work because EPP is not well suited for data compression. It cer-
tainly deserves more investigation and it could be interesting to integrate control
flow with methodologies to debug single operations.

Another issue is the implicit assumption that the software testbench used for
the generation of the golden reference perfectly mimics the actual behavior on
FPGA. This is not necessarily true with asynchronous inputs that might affect the
control flow. If these inputs occur at different times in software and in hardware,
the checkers report false positives. To tackle this issue the methodology could be
integrated with in-circuit assertions.

Finally, some control flow information may not be encoded directly into the
FSM structure, due to architectural optimizations performed during HLS. In this
case, the granularity of the checks performed by the approach is restricted to what
is visible at the FSM level. It may be worth considering how to handle this kind
of control flow information encoded into data. They could be handled like data
as soon as a similar approach to compress data traces is developed. However,
this problem is out of the scope of this work.

Summary

This chapter concludes the discussion on the results, discussing several aspects
of the Control Flow Checkers implemented with On-Chip Discrepancy Analysis. The
reported data include the memory consumption (Section 13.1), and the overhead
of the tracing logic, in terms of area, frequency, and power consumption (Sec-
tion 13.2). The results look very promising, showing that using EPP it is possible
to greatly reduce the memory footprint compared to the previous state-of-the-art,

129

Chapter 13. On-Chip Discrepancy Analysis

with a minimal impact on the area, the frequency, and the power consumption.
However, the methodology still has some limitations, reported in Chapter 13.3,
mainly related to the threading model it assumes, and to the fact that it is only
focused on control flow. Chapter 14 summarizes the results and the features of
the whole work, integrating suggestions on possible future directions of research
to overcome these limitations.

130

14
Conclusion and Future Research

As High-Level Synthesis is steadily becoming more attractive for providing hard-
ware acceleration and for energy-efficient High-Performance Computing, dedi-
cated debugging methodologies for circuits generated with HLS are becoming a
vital component of the ecosystem, essential to really achieve the promises of in-
creasing designers’ productivity and reducing time-to-market. This thesis tries to
lay the foundation for an effective and accurate methodology for automated bug
detection and isolation for designs generated with High-Level Synthesis: Discrep-
ancy Analysis.

In particular, Chapter 5 introduces the concept of equivalence between hard-
ware and software executions, which the rest of the work then builds upon. The
clear explanation of this concept is currently what misses in all the other research
contribution on automated bug detection using ideas similar to Discrepancy Anal-
ysis. Indeed, most of the works on automated bug detection simply rely on in-
tuitive ideas, without clearly explaining what do they mean by equivalence be-
tween hardware and software, or without explaining the granularity of the checks
they implement or the coverage of their methods.

Chapter 6 then shows how this specific model of equivalence can be used
to implement two different flows for automated bug detection: one for Offline
Simulation-Based Discrepancy Analysis and the other for Online On-Chip Discrep-
ancy Analysis. This shows how versatile the concept of equivalence is, and how
the methodology can be adapted to different scenarios.

Chapter 7 then discusses in detail Offline Simulation-Based Discrepancy Analysis,
showing how it can also be extended to support High-Level Synthesis of multi-
threaded code. Chapter 8 explains how to resolve the complicated hardware/-
software address mapping, to support automated bug detection on pointers and
memory accesses. Chapter 13, instead, describes in detail Online On-Chip Discrep-
ancy Analysis, concluding the description of the methodology.

Part III reports the results of a wide number of tests, designed to evaluate and
measure different aspects of the methodology. Chapter 10 describes the different
benchmarks and the different experimental setups used to test different features,
while Chapter 11 discusses the classes of bugs that can be detected by Discrep-
ancy Analysis in different scenarios. Chapter 12 discusses performance, coverage,
scalability, and other advantages of Offline Simulation-Based Discrepancy Analysis,
starting with the baseline implementation and then focusing on support for mul-
tithreaded code and C pointers. Chapter 13, instead, reports results on Online
On-Chip Discrepancy Analysis, its memory footprint and the other effects it has on
the generated designs in terms of area, frequency, and power consumption.

The definition of the methodology and the experimental results show that Dis-

131

Chapter 14. Conclusion and Future Research

crepancy Analysis is accurate and reliable. The evaluations performed in a variety
of scenarios demonstrates that proposed approach successfully tackles the chal-
lenges of debugging circuits generated with High-Level Synthesis:

1. 3 manage complexity on behalf of users;

2. 3 help and guide users in bug detection and isolation;

3. 3 identify relevant signals in hardware and backtrack bugs to original code;

4. 3 handle compiler optimizations and bugs introduced by HLS;

5. 3 handle different hardware/software memory architectures and mappings;

6. 3 handle HLS of multithreaded code;

7. 3 handle integration of external components.

Points 1, 2 and 3 are different aspects of the same design concept behind Dis-
crepancy Analysis. If High-Level Synthesis really wants to improve designers’ pro-
ductivity and reduce time-to-market, it is not enough to abstract away hardware
details during the design stage. Given that most of the time for producing a cir-
cuit is actually spent on testing, debugging and verification, it is necessary to
have a comprehensive methodology that has access to the same information HLS
has access to, so that it can abstract away the details, reduce user interaction, and
really increase productivity. This is what Discrepancy Analysis tries to do, relying
on the definition of equivalence between hardware and software execution, and
using compiler notions internally to provide a consistent and user-friendly inter-
face to users. The definition of equivalence provided in Chapter 5 was designed
with this goal in mind.

The fact that Discrepancy Analysis has access to all the HLS compiler informa-
tion also means that it is possible to achieve goals 4, 5, and 6, as described in
Chapters 7 and 8.

The different classes of bugs identified in Chapter 11 demonstrate that the dif-
ferent flavors of Discrepancy Analysis are able to identify several classes of bugs
in different scenarios. In particular, Discrepancy Analysis can effectively find bugs
related to the original source code, coming from third-party libraries of hardware
components (point 7), as well as subtle bugs introduced by the HLS compiler
itself. These classes of bugs involve different parts of the original C code or of
the generated circuits and are associated with different stages of the High-Level
Synthesis process. All these characteristics suggest that Discrepancy Analysis can
be successfully used in development environment based on regression testing
and continuous integration, both for HLS compilers and HLS-based hardware
designs. As a matter of fact, this is what is already currently done for the devel-
opment of the BAMBU HLS tool used for the implementation of this work.

This obviously is not to say that there is nothing more to investigate. The
experiments reported in Part III also brought to the surface many limitations of
Discrepancy Analysis, that deserve more research.

One of the questions that were not analyzed in this work is how to generate
input tests to provide good dynamic coverage of the designs, so that there is
a higher chance to activate bugs that would otherwise go undetected. This is
a very interesting topic, and the approach described here is actually orthogonal,

132

but it would be very interesting to couple the latest research results on test vectors
generation with Discrepancy Analysis.

Another open problem for Discrepancy Analysis on multi-threaded code is how
to support more parallel execution paradigms. The applications of HLS of multi-
threaded programs are constantly increasing, and it is simply unrealistic to limit
the supported parallelism to what is described in Section 7.3.

The other main limitation of On-Chip Discrepancy Analysis is represented by
the fact that it only supports control flow checks. This restriction is due to the fact
that the compression algorithm used for the traces is only applicable to Control
Flow Traces, but it is not an excuse for not deepening the research on a possible
compression algorithm suitable for OpTraces.

Finally, the model presented in the thesis only applies to High-Level Synthesis
models that generate microarchitectures composed of a Finite State Machine and
a DataPath. It has to be adapted to support more advanced models of compu-
tation, like for example Kahn Process Networks, and it may be not applicable to
HLS of streaming applications.

Despite these limitations, Discrepancy Analysis provides consistent improve-
ments on the overall debugging experience of circuits generated with High-Level
Synthesis, and it is definitely something that could benefit any development en-
vironment based on High-Level Synthesis. Without digging into the open ques-
tions outlined above, it is already possible to see other possible directions of re-
search, that are immediately viable using the infrastructure already present. One
can think of controlling the granularity of the checks, limiting Discrepancy Analy-
sis at the control flow level or at the operation level, to trade off execution times
for precision, and allow to handle even very large designs. Another improvement
would be to design an interoperable format for Discrepancy Analysis, to enable au-
tomated bug detection in complex designs composed of IP blocks coming from
different vendors, and possibly integrating multiple different HLS tools. Work
is ongoing to explore these scenarios, to make Discrepancy Analysis even more
useful and accurate in a field that is still growing.

133

Chapter 14. Conclusion and Future Research

134

INDICES

I

II

List of Figures

2.1 Structure of a typical High-Level Synthesis flow. 11
2.2 Source code of a C function and the associated Control Flow Graph. 13
2.3 Scheduling of operations from a Basic Block to Finite State Machine. 15
2.4 Scheduling, allocation and binding in HLS. 16
5.1 Relationship between Control Flow Graph and Finite State Machine 44
5.2 Scheduling, allocation and binding in HLS. 45
5.3 Outline of a generic Discrepancy Analysis debug workflow. 48
6.1 Offline Simulation-Based Discrepancy Analysis debug flow. 52
6.2 Online On-Chip Discrepancy Analysis debug flow. 54
7.1 Finite State Automaton for the comparison of the traces. 60
7.2 Relationship between Control Flow Traces 62
7.3 Visualization of Hardware and Software Traces. 62
7.4 Example of OpenMP code and hardware generated from it with HLS. 65
7.5 Comparison of traces generated from multithreaded code. 66
8.1 Representation of the Address Space Translation Scheme 70
8.2 A C program causing a false positive 73
9.1 Example of source code to be synthesized, with Basic Blocks ids. . . 77
9.2 Control Flow Graph of the example in Figure 9.1. 77
9.3 Path Graph of the example in Figure 9.1. 77
9.4 Valid paths of the Control Flow Graph in Figure 9.2. 78
9.5 Two Path Graphs obtained with EPP from a CFG and an FSM. . . . 80
10.1 A C function with pointer operations not supported by CTool. . . . 95
11.1 Classification of the bugs detected with Discrepancy Analysis. . . . 104
12.1 Time overhead of Discrepancy Analysis. 107
12.2 Statement coverage for the CHStone benchmarks. 109
12.3 Coverage: icov for CHStone with optimization level -O0. 111
12.4 Coverage: icov for CHStone with optimization level -O3. 111
12.5 Percentage of signals selected with Baseline Discrepancy Analysis. 114
12.6 Reduction of the VCD file size using signal selection. 114
12.7 Time overhead of Discrepancy Analysis, compared to simulation. . . 115
12.8 Correlation between length of execution traces and execution time. 116
12.9 Reduction of VCD size and simulation time. 117
12.10 Percentage of pointer operations executed at runtime. 119
12.11 Percentage of pointers for which alias analysis is fully resolved. . . 120
12.12 Time overhead of Address Discrepancy Analysis. 121
12.13 Coverage: icov of Address Discrepancy Analysis. 122
13.1 Memory usage normalized with respect to RAW. 126

III

IV

List of Tables

13.1 Memory required to store compressed execution traces on-chip. . . 126
13.2 Synthesis results after place and route. 128

V

VI

List of Algorithms

1 Discrepancy Analysis for OpTraces. 62
2 Pseudocode for the UPDATE function 63
3 CHECK algorithm for Address Discrepancy Analysis. 72

VII

VIII

Bibliography

[1] ITRS: The International Technology Roadmap for Semiconductors.
https://www.semiconductors.org/main/2009_international_
technology_roadmap_for_semiconductors_itrs/, 2009.

[2] Standard for Information Technology–Portable Operating System Interface
(POSIX) Base Specifications, Issue 7. IEEE Std 1003.1, 2016 Edition (incor-
porates IEEE Std 1003.1-2008, IEEE Std 1003.1-2008/Cor 1-2013, and IEEE Std
1003.1-2008/Cor 2-2016), pages 1–3957, Sept 2016.

[3] A. Aboagye, M. Patel, and N. Vig. Standing Up to the Semiconductor Verifi-
cation Challenge. McKinsey on Semiconductors, Oct. 2014.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley series in computer science / World student series
edition. Addison-Wesley, 1986.

[5] Altera Corporation (now Intel FPGA). Stratix V Device Hand-
book. https://www.altera.com/en_US/pdfs/literature/hb/
stratix-v/stx5_core.pdf, 2016.

[6] D. L. Andrews, R. Sass, E. K. Anderson, J. Agron, W. Peck, J. Stevens, F. Bai-
jot, and E. Komp. Achieving Programming Model Abstractions for Recon-
figurable Computing. IEEE Transactions on Very Large Scale Integration VLSI
Systems, 16(1):34–44, 2008.

[7] T. Ball and J. R. Larus. Efficient Path Profiling. In S. W. Melvin and S. Beaty,
editors, Proceedings of the 29th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 29, Paris, France, December 2-4, 1996, Washington,
DC, USA, 1996. IEEE Computer Society.

[8] Y. Ben-Asher and N. Rotem. Using Memory Profile Analysis for Automatic
Synthesis of Pointers Code. ACM Transactions on Embedded Computing Sys-
tems, 12(3):68:1–68:21, 2013.

[9] M. Ben Hammouda, P. Coussy, and L. Lagadec. A Design Approach to Auto-
matically Generate On-chip Monitors During High-level Synthesis of Hard-
ware Accelerator. In Proceedings of the 24th Edition of the Great Lakes Sympo-
sium on VLSI, GLSVLSI ’14, pages 273–278, New York, NY, USA, 2014. ACM.

[10] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical Improve-
ments to the Construction and Destruction of Static Single Assignment Form.
Softw. Pract. Exper., 28(8):859–881, July 1998.

[11] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-
Gonzalez. OpenMP Extensions for FPGA Accelerators. In 2009 International
Symposium on Systems, Architectures, Modeling, and Simulation, pages 17–24,
July 2009.

IX

https://www.semiconductors.org/main/2009_international_technology_roadmap_for_semiconductors_itrs/
https://www.semiconductors.org/main/2009_international_technology_roadmap_for_semiconductors_itrs/
https://www.altera.com/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf

[12] N. Calagar, S. D. Brown, and J. H. Anderson. Source-Level Debugging for
FPGA High-Level Synthesis. In Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, pages 1–8, Sept 2014.

[13] K. Campbell, L. He, L. Yang, S. Gurumani, K. Rupnow, and D. Chen. Debug-
ging and Verifying SoC Designs Through Effective Cross-layer Hardware-
software Co-simulation. In Proceedings of the 53rd Annual Design Automation
Conference, DAC ’16, pages 7:1–7:6, New York, NY, USA, 2016. ACM.

[14] K. Campbell, D. Lin, S. Mitra, and D. Chen. Hybrid Quick Error Detec-
tion (H-QED): Accelerator Validation and Debug Using High-level Synthe-
sis Principles. In Proceedings of the 52Nd Annual Design Automation Conference,
DAC ’15, pages 53:1–53:6, New York, NY, USA, 2015. ACM.

[15] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. S. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An Open-Source High-Level Syn-
thesis Tool for FPGA-based Processor/Accelerator Systems. ACM Transac-
tions on Embedded Computing Systems, 13(2):24, 2013.

[16] V. G. Castellana and F. Ferrandi. An Automated Flow for the High Level
Synthesis of Coarse Grained Parallel Applications. In 2013 International Con-
ference on Field-Programmable Technology (FPT), pages 294–301, Dec 2013.

[17] J. Choi, S. Brown, and J. Anderson. From Software Threads to Parallel Hard-
ware in High-Level Synthesis for FPGAs. In 2013 International Conference on
Field-Programmable Technology (FPT), pages 270–277, Dec 2013.

[18] J. Cong and Z. Zhang. An Efficient and Versatile Scheduling Algorithm
Based on SDC Formulation. In Design Automation Conference, 2006 43rd
ACM/IEEE, pages 433–438, 2006.

[19] J. Curreri, G. Stitt, and A. D. George. High-level synthesis techniques for
in-circuit assertion-based verification. In 2010 IEEE International Symposium
on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pages
1–8, April 2010.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-
ciently Computing Static Single Assignment Form and the Control Depen-
dence Graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, Oct. 1991.

[21] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh. From OpenCL to High-
Performance Hardware on FPGAS. In 22nd International Conference on Field
Programmable Logic and Applications (FPL), pages 531–534, Aug 2012.

[22] P. Fezzardi, M. Castellana, and F. Ferrandi. Trace-based Automated Logical
Debugging for High-Level Synthesis Generated Circuits. In 2015 33rd IEEE
International Conference on Computer Design (ICCD), pages 251–258, Oct 2015.

[23] P. Fezzardi and F. Ferrandi. Automated Bug Detection for Pointers and Mem-
ory Accesses in High-Level Synthesis Compilers. In 2016 26th International
Conference on Field Programmable Logic and Applications (FPL), Aug 2016.

X

[24] P. Fezzardi, M. Lattuada, and F. Ferrandi. Using Efficient Path Profiling
to Optimize Memory Consumption of On-Chip Debugging for High-Level
Synthesis. ACM Transactions on Embedded Computing Systems, 16(5s):149:1–
149:19, Sept. 2017.

[25] GCC Developer Community. GCC C-torture Tests. https://gcc.gnu.
org/onlinedocs/gccint/C-Tests.html, 2016.

[26] J. Goeders and S. J. E. Wilton. Effective FPGA Debug for High-Level Syn-
thesis Generated Circuits. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1–8, Sept 2014.

[27] J. Goeders and S. J. E. Wilton. Using Dynamic Signal-Tracing to Debug
Compiler-Optimized HLS Circuits on FPGAs. In Field-Programmable Custom
Computing Machines (FCCM), 2015 IEEE 23rd Annual International Symposium
on, pages 127–134, May 2015.

[28] J. Goeders and S. J. E. Wilton. Using Round-Robin Tracepoints to debug
multithreaded HLS circuits on FPGAs. In 2015 International Conference on
Field Programmable Technology (FPT), pages 40–47, Dec 2015.

[29] J. Goeders and S. J. E. Wilton. Signal-Tracing Techniques for In-System FPGA
Debugging of High-Level Synthesis Circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(1):83–96, Jan 2017.

[30] R. J. Halstead and W. Najjar. Compiled Multithreaded Data Paths on FPGAs
for Dynamic Workloads. In Proceedings of the 2013 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES ’13, pages
3:1–3:10, Piscataway, NJ, USA, 2013. IEEE Press.

[31] M. B. Hammouda, P. Coussy, and L. Lagadec. A Design Approach to Au-
tomatically Synthesize ANSI-C Assertions During High-Level Synthesis of
Hardware Accelerators. In 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 165–168, June 2014.

[32] M. B. Hammouda, P. Coussy, and L. Lagadec. A Unified Design Flow to
Automatically Generate On-Chip Monitors During High-Level Synthesis of
Hardware Accelerators. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 36(3):384–397, March 2017.

[33] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. CHStone: a Bench-
mark Program Suite for Practical C-based High-Level Synthesis. In Circuits
and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pages 1192–
1195, May 2008.

[34] K. S. Hemmert, J. L. Tripp, B. L. Hutchings, and P. A. Jackson. Source
Level Debugger for the Sea Cucumber Synthesizing Compiler. In Field-
Programmable Custom Computing Machines, 2003. FCCM 2003. 11th Annual
IEEE Symposium on, pages 228–237, April 2003.

[35] M. Hosseinabady and J. L. Nunez-Yanez. Optimised OpenCL Workgroup
Synthesis for Hybrid ARM-FPGA Devices. In 2015 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 1–6, Sept 2015.

XI

https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html

[36] H. Howe. Pre- and Postsynthesis Simulation Mismatches. In Proceedings of
the 1997 IEEE International Verilog HDL Conference (IVC ’97), IVC ’97, Wash-
ington, DC, USA, Mar. 1997. IEEE Computer Society.

[37] J. Huthmann and A. Koch. Optimized High-Level Synthesis of SMT Multi-
Threaded Hardware Accelerators. In 2015 International Conference on Field
Programmable Technology (FPT), pages 176–183, Dec 2015.

[38] IEEE. IEEE Standard for SystemVerilog–Unified Hardware Design, Specifi-
cation, and Verification Language - Redline. IEEE Std 1800-2009 (Revision of
IEEE Std1800-2005) - Redline, pages 1–1346, Dec 2009.

[39] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-
2008 (Revision of IEEE Std 1076-2002), pages 1–626, Jan 2009.

[40] Intel FPGA. Quartus Prime Design Software. https://www.altera.
com/products/design-software/fpga-design/quartus-prime/
overview.html, 2016.

[41] Intel FPGA. Intel FPGA SDK for OpenCL – Programming Guide.
https://www.altera.com/content/dam/altera-www/global/
en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_
guide.pdf, May 2017.

[42] Y. Iskander, C. Patterson, and S. Craven. Improved Abstractions and
Turnaround Time for FPGA Design Validation and Debug. In Field Pro-
grammable Logic and Applications (FPL), 2011 International Conference on, pages
518–523, Sept 2011.

[43] Y. Iskander, C. Patterson, and S. Craven. High-Level Abstractions and Mod-
ular Debugging for FPGA Design Validation. ACM Transactions on Reconfig-
urable Technology and Systems, TRETS, 7(1):2:1–2:22, Feb. 2014.

[44] ISO/IEC. ISO/IEC 9899:2011 Information technology — Programming languages
— C. International Organization for Standardization, Geneva, Switzerland,
December 2011.

[45] ISO/IEC. ISO/IEC 14882:2011 Information Technology — Programming Lan-
guages — C++. International Organization for Standardization, Geneva,
Switzerland, Feb. 2012.

[46] Khronos OpenCL Working Group. The OpenCL Specification – Ver-
sion 2.2. https://www.khronos.org/registry/OpenCL/specs/
opencl-2.2.pdf, May 2017.

[47] J. Korinth, D. d. l. Chevallerie, and A. Koch. An Open-Source Tool Flow for
the Composition of Reconfigurable Hardware Thread Pool Architectures. In
2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 195–198, May 2015.

[48] C. Lattner and V. Adve. LLVM: a Compilation Framework for Lifelong Pro-
gram Analysis Transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on, pages 75–86, March 2004.

XII

https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/products/design-software/fpga-design/quartus-prime/overview.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

[49] M. Lattuada and F. Ferrandi. Code Transformations Based on Speculative
SDC Scheduling. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2015, Austin, TX, USA, November 2-6, 2015,
pages 71–77, 2015.

[50] S. Ma, M. Huang, and D. L. Andrews. Developing Application-Specific Mul-
tiprocessor Platforms on FPGAs. In 2012 International Conference on Reconfig-
urable Computing and FPGAs, ReConFig 2012, Cancun, Mexico, December 5-7,
2012, pages 1–6. IEEE, 2012.

[51] P. Mantovani, G. D. Guglielmo, and L. P. Carloni. High-Level Synthesis of
Accelerators in Embedded Scalable Platforms. In 21st Asia and South Pacific
Design Automation Conference, ASP-DAC 2016, Macao, Macao, January 25-28,
2016, pages 204–211. IEEE, 2016.

[52] K. Memarian and P. Sewell. What Is C in Practice? (Cerberus Sur-
vey v2): Analysis of Responses. http://www.cl.cam.ac.uk/~pes20/
cerberus/notes50-survey-discussion.html, 2016.

[53] Mentor Graphics. Catapult C High Level Synthesis,
HLS Verification. https://www.mentor.com/hls-lp/
catapult-high-level-synthesis/hls-verification, 2017.

[54] D. Mills and C. E. Cummings. RTL Coding Styles That Yield Simulation and
Synthesis Mismatches. In SNUG (Synopsys Users Group) 1999 Proceedings,
1999.

[55] M. Minutoli, V. G. Castellana, A. Tumeo, M. Lattuada, and F. Ferrandi. Ef-
ficient Synthesis of Graph Methods: A Dynamically Scheduled Architec-
ture. In 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8, Nov 2016.

[56] M. Minutoli, V. G. Castellana, A. Tumeo, M. Lattuada, and F. Ferrandi. En-
abling the High Level Synthesis of Data Analytics Accelerators. In 2016
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 1–3, Oct 2016.

[57] J. S. Monson and B. Hutchings. Using Shadow Pointers to Trace C Pointer
Values in FPGA Circuits. In 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–6, Dec 2015.

[58] J. S. Monson and B. L. Hutchings. New Approaches for In-System Debug
of Behaviorally-Synthesized FPGA Circuits. In Field Programmable Logic and
Applications (FPL), 2014 24th International Conference on, pages 1–6, Sept 2014.

[59] J. S. Monson and B. L. Hutchings. Using Source-Level Transformations to
Improve High-Level Synthesis Debug and Validation on FPGAs. In Proceed-
ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’15, pages 5–8, New York, NY, USA, 2015. ACM.

[60] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A Survey and Evaluation
of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(10):1591–1604, Oct 2016.

XIII

http://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
http://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-verification
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/hls-verification

[61] NEC. CyberWorkbench: NEC’s High Level Synthesis Solution.
http://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_
technical.pdf, Sept. 2016.

[62] T. Nguyen, Y. Cheny, K. Rupnow, S. Gurumani, and D. Chen. SoC, NoC
and Hierarchical Bus Implementations of Applications on FPGAs Using the
FCUDA Flow. In 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 661–666, July 2016.

[63] NVIDIA. CUDA Parallel Programming and Computing Platform. http:
//www.nvidia.com/object/cuda_home_new.html, 2017.

[64] M. Owaida, N. Bellas, C. D. Antonopoulos, K. Daloukas, and C. Antoniadis.
Massively Parallel Programming Models Used as Hardware Description
Languages: The OpenCL Case. In 2011 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 326–333, Nov 2011.

[65] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. Synthesis of
Platform Architectures from OpenCL Programs. In 2011 IEEE 19th Annual
International Symposium on Field-Programmable Custom Computing Machines,
pages 186–193, May 2011.

[66] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-
M. W. Hwu. Efficient Compilation of CUDA Kernels for High-performance
Computing on FPGAs. ACM Trans. Embed. Comput. Syst., 13(2):25:1–25:26,
Sept. 2013.

[67] C. Pilato, F. Ferrandi, and D. Sciuto. A Design Methodology to Imple-
ment Memory Accesses in High-Level Synthesis. In Proceedings of the 9th
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2011, part of ESWeek ’11 Seventh Embedded Systems Week, Taipei,
Taiwan, 9-14 October, 2011, pages 49–58, 2011.

[68] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. System-Level
Memory Optimization for High-Level Synthesis of Component-Based SoCs.
In 2014 International Conference on Hardware/Software Codesign and System Syn-
thesis, CODES+ISSS 2014, Uttar Pradesh, India, October 12-17, 2014, pages
18:1–18:10, 2014.

[69] Politecnico di Milano. PandA Framework for Hardware/Software Code-
sign. http://panda.dei.polimi.it, 2017.

[70] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), June 2014.

[71] A. Ribon, B. L. Gal, C. Jégo, and D. Dallet. Assertion Support in High-Level
Synthesis Design Flow. In 2011 Forum on Specification & Design Languages,
FDL 2011, Oldenburg, Germany, September 13-15, 2011, pages 1–8. IEEE, 2011.

XIV

http://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technical.pdf
http://www.nec.com/en/global/prod/cwb/pdf/CWB_Detailed_technical.pdf
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://panda.dei.polimi.it

[72] B. C. Schafer. Source Code Error Detection in High-Level Synthesis Func-
tional Verification. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(1):301–312, Jan 2016.

[73] K. Selyunin, T. Nguyen, E. Bartocci, and R. Grosu. Applying Runtime Mon-
itoring for Automotive Electronic Development. In Proceedings of the 16th
International Conference on Runtime Verification(RV) 2016, Madrid, Spain, 2016.

[74] L. Semeria and G. De Micheli. Resolution, Optimization, and Encoding of
Pointer Variables for the Behavioral Synthesis from C. Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on, 20(2):213–233, Feb
2001.

[75] L. Semeria, K. Sato, and G. D. Micheli. Synthesis of Hardware Models in C
with Pointers and Complex Data Structures. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 9(6):743–756, Dec 2001.

[76] J. Seo, T. Kim, and P. R. Panda. Memory Allocation and Mapping in High-
Level Synthesis - An Integrated Approach. IEEE Trans. VLSI Syst., 11(5):928–
938, 2003.

[77] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSani-
tizer: A Fast Address Sanity Checker. In G. Heiser and W. C. Hsieh, editors,
2012 USENIX Annual Technical Conference, Boston, MA, USA, June 13-15, 2012,
pages 309–318. USENIX Association, 2012.

[78] V. C. Sreedhar, G. R. Gao, and Y. Lee. Identifying Loops Using DJ Graphs.
ACM Transactions on Programming Languages and Systems, 18(6):649–658,
1996.

[79] R. M. Stallman and GCC Developer Community. Using the GNU Compiler
Collection: A GNU Manual for GCC Version 4.3.3. CreateSpace Independent
Publishing Platform, 2009.

[80] B. Steensgaard. Points-to Analysis by Type Inference of Programs with
Structures and Unions. In Compiler Construction, 6th International Conference,
CC’96, Linköping, Sweden, April 24-26, 1996, Proceedings, pages 136–150, 1996.

[81] A. Takach. High-Level Synthesis: Status, Trends, and Future Directions.
IEEE Design & Test, 33(3):116–124, June 2016.

[82] M. Tan, B. Liu, S. Dai, and Z. Zhang. Multithreaded Pipeline Synthesis
for Data-Parallel Kernels. In 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 718–725, Nov 2014.

[83] The OpenMP Architecture Review Board. OpenMP Application Program-
ming Interface – Version 4.5. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf, 11 2015.

[84] F. Vahid. Procedure Cloning: a Transformation for Improved System-Level
Functional Partitioning. In European Design and Test Conference, 1997. ED TC
97. Proceedings, pages 487–492, Mar 1997.

XV

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[85] A. Verma, H. Zhou, S. Booth, R. King, J. Coole, A. Keep, J. Marshall, and W.-
C. Feng. Developing Dynamic Profiling and Debugging Support in OpenCL
for FPGAs. In 2017 54nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2017.

[86] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing Modular Hard-
ware Accelerators in C with ROCCC 2.0. In 2010 18th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines, pages
127–134, May 2010.

[87] S. Wagon. The Banach-Tarski Paradox. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1985.

[88] Y. Wang, P. Li, and J. Cong. Theory and Algorithm for Generalized Memory
Partitioning in High-Level Synthesis. In The 2014 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’14, Monterey, CA, USA
- February 26 - 28, 2014, pages 199–208, 2014.

[89] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong. Memory Partitioning for
Multidimensional Arrays in High-Level Synthesis. In The 50th Annual Design
Automation Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June 07, 2013,
pages 12:1–12:8, 2013.

[90] Y. Wang, J. Yan, X. Zhou, L. Wang, W. Luk, C. Peng, and J. Tong. A Par-
tially Reconfigurable Architecture Supporting Hardware Threads. In 2012
International Conference on Field-Programmable Technology, pages 269–276, Dec
2012.

[91] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C
Programs. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), La Jolla, California, USA, June 18-
21, 1995, page 1, 1995.

[92] Xilinx. The SDAccel Development Environment for OpenCL. https:
//www.xilinx.com/products/design-tools/software-zone/
sdaccel.html, 2017.

[93] L. Yang, S. Gurumani, D. Chen, and K. Rupnow. AutoSLIDE: Automatic
Source-Level Instrumentation and Debugging for HLS. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pages 127–130, May 2016.

[94] L. Yang, M. Ikram, S. Gurumani, S. Fahmy, D. Chen, and K. Rupnow. JIT
Trace-Based Verification for High-Level Synthesis. In Field Programmable
Technology (FPT), 2015 International Conference on, pages 228–231, Dec 2015.

[95] P. Zhang, M. Huang, B. Xiao, H. Huang, and J. Cong. CMOST: a system-
level FPGA compilation framework. In Proceedings of the 52nd Annual Design
Automation Conference, San Francisco, CA, USA, June 7-11, 2015, pages 158:1–
158:6, 2015.

XVI

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

	Abstract
	Contents
	Introduction
	I Background
	High-Level Synthesis (HLS)
	Introduction to High-Level Synthesis
	Memory Allocation and Hardware Synthesis of C Pointers
	High-Level Synthesis of Multi-Threaded Programs

	State of the Art of Debugging Methodologies for HLS
	Concepts of Hardware Debugging
	Challenges in Debugging Hardware Generated with HLS
	Debugging Methodologies for High-Level Synthesis

	II Methodology
	Problem Statement and Goals
	Description of the Problem
	Fundamental Ideas of the Approach
	Objectives, Goals, and Features
	Detected Classes of Bugs

	Equivalence Between Hardware and Software Execution
	Control Flow Level
	Operation Level
	Hardware/Software Equivalence
	A Generic Workflow for Discrepancy Analysis

	Discrepancy Analysis: Two Different Flows
	Reference Implementation
	Simulation-Based Offline Discrepancy Analysis
	On-Chip Online Discrepancy Analysis

	Simulation-Based Offline Discrepancy Analysis
	Generating and Collecting Execution Traces
	Comparing Execution Traces with Finite State Automata
	Debugging Circuits Generated from Multithreaded Programs

	Debugging Pointers and Memory Accesses
	Address Space Translation Scheme
	Address Discrepancy Algorithm
	Refining Address Discrepancy Analysis

	On-Chip Online Discrepancy Analysis of Control Flow
	Motivation
	Efficient Path Profiling for Software
	Efficient Path Profiling for High-Level Synthesis
	Optimization of Memory Usage
	Architecture of the Control Flow Checkers

	III Experimental Results
	Experimental Setup
	Integration with High-Level Synthesis
	Experiments and Benchmarks

	Detected Bugs
	Bugs Detected with Simulation
	Bugs Involving Addresses
	Bugs in Multi-Threaded Programs
	Bugs Detected On-Chip

	Simulation-Based Discrepancy Analysis
	Baseline
	Multi-Threaded
	Address Discrepancy Analysis

	On-Chip Discrepancy Analysis
	Memory Usage
	Overhead of the Tracing Logic
	Limitations of the Proposed Approach

	Conclusion and Future Research

	Indices
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

