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Abstract

The objective of the work presented in this thesis is the development of
techniques for the optimal design of sensor networks for Structural
Health Monitoring (SHM). Two methods are here proposed, a deter-

ministic and a stochastic one.
In the first one, the uncertainties associated with both the measurements
and the mechanical parameters to be estimated (e.g. stiffness, Young’s
modulus or damage index) are disregarded. The optimal sensor placement
is obtained by maximizing the sensitivity of the structural response with
respect to a variation of the mechanical properties to be estimated. In order
to guarantee a low computational cost, even for high numbers of problem
unknowns (number of sensors), a topology optimization scheme is adopted.
Moreover, in order to account for the different length-scales of the problem,
i.e., the dimensions of the structure, of the damaged zones and of the sensor
boards, a multi-scale optimization approach is introduced. The procedure
allows to both reduce the computational cost of the optimization problem
and appropriately tune the spatial resolution of the solution. The strategy
is applied both to a benchmark problem, a clamped square plate, and to a
section of stiffened fuselage.
The second method here proposed is based on Bayesian experimental de-
sign: the optimal sensor placement is obtained by maximizing the expected
Shannon information gain between the prior and the posterior probability
distributions of the parameters to be estimated. In order to numerically
solve the optimization problem, the unbearable computational cost of the
employed Monte Carlo estimator is greatly reduced by exploiting surrogate
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modeling techniques based on Polynomial Chaos Expansion (PCE), which
allow to efficiently reproduce the input-output relations of the physics-based
models. Two surrogate modeling strategies are introduced and compared:
these are based either on the definition of a joint input variable, which
takes into account both the parameters and the design variable, or on the
combination of model order reduction methods, i.e., Principal Component
Analysis (PCA), and PCE. In order to handle the noisy objective function,
the adoption of a stochastic optimization method, namely the Covariance
Matrix Adaptation Evolutionary Strategy, is introduced. Since the presented
framework allows to take into account several experimental settings, i.e.,
sensor spatial configuration, number of sensors and measurement noise,
a comprehensive method to optimally design the SHM sensor network is
proposed. Moreover, different sensor network designs can be compared,
taking into account both their cost and effectiveness, through a cost-benefit
optimization approach, by adopting a Pareto frontier multi-objective op-
timization. The procedure is applied to the benchmark problem already
considered for the deterministic approach, and on a large-scale numerical
application, i.e. the Pirelli tower in Milan.
Since the capability of any monitoring system in estimating the mechanical
parameters can be prevented if the parameters result to be practically non-
identifiable, the use of information theory based indices is proposed in order
tomeasure the occurrence of two sources of practical non-identifiability: the
compensation of the effects of the parameters on the measurements is quan-
tified through the conditional mutual information; the lack of sensitivity of
the measured quantities with respect to each parameter is measured through
the mutual information. The effectiveness of these indices is validated on a
non-linear structural problem, i.e., an 8-storey shear-type building.

KEYWORDS: structural health monitoring; optimal sensor placement;
Bayesian inference; sensor networks; damage detection; uncertainty quan-
tification; identifiability; information theory; topology optimization
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Sommario

L’obiettivo del lavoro di tesi qui presentato riguarda lo sviluppo di
metodi per la progettazione ottimale di reti di sensori per il mo-
nitoraggio strutturale. Vengono qui proposte sia una metodologia

deterministica che una stocastica.
Nella prima, si suppone di non considerare nè le incertezze associate alle
misurazioni nè quelle ai parametri meccanici da stimare (ad esempio il mo-
dulo di Young, la rigidezza o l’indice di danno). Il posizionamento ottimo
dei sensori si ottiene massimizzando la sensitività della risposta strutturale
rispetto alla variazione delle proprietà meccanica da stimare. Al fine di
garantire un basso costo computazionale, anche per un elevato numero di
incognite del problema (associato al numero di sensori), viene adottata una
procedura di ottimizzazione topologica. Inoltre, al fine ti considerare le dif-
ferenti scale del problema, ovvero le dimensioni della struttura, della zona
danneggiata e dei sensori, viene introdotto un metodo di ottimizzazione
multi-scala. La metodologia consente di ridurre il costo computazionale
del problema di ottimizzazione e calibrare opportunamente la risoluzione
spaziale della soluzione. La strategia viene applicata sia ad un problema di
riferimento, una piastra quadrata incastrata agli estremi, sia ad un modello
strutturale reale, ovvero una sezione di fusoliera.
Il secondo metodo qui proposto si basa sulla teoria chiamata "Bayesian
experimental design": il posizionamento ottimo dei sensori viene ottenuto
massimizzando il valore atteso della differenza di informazione di Shannon
tra le distribuzioni di probabilità a priori e a posteriori dei parametri da
stimare. Al fine di risolvere numericamente il problema di ottimizzazione,
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l’elevato costo computazionale dello stimatore della funzione obiettivo,
basato sul metodo Monte Carlo, viene ridotto utilizzando modelli surrogati
basati su Polynomial Chaos Expansion (PCE), che consentono di riprodurre
le relazioni tra inputs e outputs del modello agli elementi finiti. Vengono
introdotte e comparate due strategie di modelli surrogati: queste sono basate
alternativamente o sulla definizione di una variabile di input che permette
di considerare congiuntamente sia i parametri che la variabile di progetto, o
sull’applicazione combinata di un metodo di riduzione dell’ordine del mod-
ello (analisi delle componenti principali) e PCE. Al fine di calcolare i mas-
simi della funzione obiettivo anche nel caso di un elevato rumore numerico,
viene altresì utilizzato un metodo di ottimizzazione per problemi stocastici
(Covariance Matrix Adaptation Evolutionary Strategy). Dal momento che
il metodo presentato permette di considerare molteplici parametri speri-
mentali, ovvero la configurazione spaziale, il numero di sensori e l’errore
associato alle misurazioni, è quindi possibile progettare in modo onnicom-
prensivo il sistema di monitoraggio. Inoltre, differenti soluzioni progettuali
possono essere comparate, prendendo in considerazione sia il costo che
l’efficacia associati alla rete di sensori, attraverso un’analisi costi-benefici,
seguendo un approccio di ottimizzazione multi obiettivo. La procedura
viene applicata sia al problema di riferimento introdotto per il caso deter-
ministico che ad un modello strutturale di grande scala, ovvero il grattacielo
Pirelli a Milano.
Dal momento che l’efficacia di ogni sistema di monitoraggio può essere
compromessa se i parametri da stimare risultano essere non identificabili, si
propone l’utilizzo di indici basati sulla teoria dell’informazione, al fine di in-
dividuare le due cause di non identificabilità: la compensazione degli effetti
dei parametri sulle misurazioni viene quantificata attraverso l’informazione
mutua condizionale; la mancanza di sensitività delle quantità misurate
rispetto ad ogni parametro viene misurato attraverso l’informazione mu-
tua. L’efficacia di questi indici viene verificata considerando un problema
strutturale non-lineare, ovvero un edificio a taglio di 8 piani.
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Ū(d∗,ny,σ)

C(ny,σ)
, with (a) C0 = 500

e and (b) C0 = 1000 e. . . . . . . . . . . . . . . . . . . . 122

6.1 Shear-type 8-storey building [De Callafon et al., 2008]. . . 133
6.2 Bi-linear relation between non-linear inter-storey drift and

shear force, as defined in Eq. (6.16). . . . . . . . . . . . . 133
6.3 Conditional Mutual Information I(Θi;Θ j |Y) of each couple

of parameters in Θ = [Ee
1 ; E t

1; I1; Ee
2 ; E t

2; I2] and the mea-
sured top-floor displacement Y, considering the cases (a)
Si < S∗i (b) and Si > S∗i . . . . . . . . . . . . . . . . . . . . 136

XIV



List of Tables

3.1 Mechanical properties of the composite material [Bresciani,
2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Clamped plate problem: approach-dependent number of
analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Clamped plate problem: approach-dependent computational
times of the overall model analyses. . . . . . . . . . . . . . 50

3.4 Fuselage dimensions, see Fig. 3.6. . . . . . . . . . . . . . 52
3.5 Mechanical properties of the composite material. . . . . . . 52
3.6 Mechanical properties of Aluminum 2024-O. . . . . . . . . 52
3.7 Stiffened fuselage section problem: approach–dependent

number of analyses, and relevant number of degrees of free-
dom (DOFs) for each analysis. . . . . . . . . . . . . . . . . 59

3.8 Stiffened fuselage section problem: approach-dependent
computational times of the overall model analyses. . . . . . 59

5.1 Definition of parameters θ (see Fig. 5.11) and related prior
pdf p(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Definition of parameters θ and related prior pdf p(θ). . . . 134
6.2 Mutual Information I(Θi;Y) of each parameter in Θ =

[Ee
1 ; E t

1; I1; Ee
2 ; E t

2; I2] and the measured top-floor displace-
ment Y, considering the cases Si < S∗i and Si > S∗i . . . . . . 135

B.1 List of polynomial functions commonly used in PCE, for
each type of pdf. . . . . . . . . . . . . . . . . . . . . . . . 150

XV





List of Algorithms

1 Algorithm for the deterministic optimization of SHM sen-
sor networks through topology optimization. . . . . . . . . 35

2 Algorithm for the deterministic multi-scale optimization of
SHM sensor networks through topology optimization. . . . 39

3 Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Algorithm for the optimization of SHM sensor networks
through Bayesian experimental design. . . . . . . . . . . . 87

XVII





CHAPTER1
Introduction

1.1 Background and motivation

According to the Buildings Performance Institute of Europe (BPIE), more
than 40% of the residential buildings in the European Union have been con-
structed before the 1960s [Buildings Performance Institute Europe, 2011].
Moreover, more than 50% of the European infrastructures, i.e., railways and
motorways, have been built in the 1950s and 1960s [European Commission,
2014]. Similarly, over 50% of the bridges in the USA where erected before
the 1940s [Stallings et al., 2000].
Since the majority of the structures and infrastructures in the developed
countries are reaching the end of their expected service life (defined as the
time in service until the structure no longer fulfills the functional require-
ments), the public and private investments in the construction sector are
progressively shifting from new projects towards restoration, maintenance
or rehabilitation of existing structures [Costa et al., 2013,Furuta et al., 2014].
In order to support the decision makers and the designers in optimizing the
required interventions, it is fundamental to obtain information about the
actual state of the mechanical or structural systems. For this reason, Struc-
tural Health Monitoring (SHM), which refers to any method for estimating
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Chapter 1. Introduction

the structural properties (or their variation in time) of a certain system, is
becoming crucial in the civil engineering sector.
The main goals of SHM can be summarized as follows [Balageas et al.,
2006]:

• load detection;

• damage detection;

• damage localization;

• damage identification;

• remaining lifetime prognosis.

Damage here reads as any variation in time of the mechanical properties of
the system, due to external conditions to which the structure is subjected.
In order to attain thementioned goals, any SHMstrategy can be conceptually
divided into the following stages [Farrar and Worden, 2007]:

1. the system state is observed through periodic or continuous measure-
ments, collected for a certain period of time. It is possible to refer
to long-time observations when the user is interested in slow varia-
tions of the system, such as those induced by corrosion phenomena or
short-time observations when impacts or high-frequency events have
to be investigated;

2. representatives of features or indices are extracted, in order to appro-
priately describe the phenomena, which have to be investigated;

3. the measured data is analyzed and processed in order to achieve the
aforementioned objectives, either in an on-line or off-line fashion.

In Figure 1.1 a conceptual block diagram representation of the SHM
paradigm is shown.
The first SHM systems were developed in the oil industry during the 1980s
for the monitoring of off-shore structures subjected to extreme environmen-
tal conditions. The first large-scale applications in civil engineering were
strategic infrastructures (WASHMS Hong Kong [Wong et al., 2000]) and
bridges [Brownjohn and Moyo, 2001, Lynch et al., 2003,U.S. Department
of Transportation, 2001] in developed countries, where the additional in-
vestments required for establishing the monitoring system were justified
by the relevant social and economic losses due to potential structural fail-
ures. Thanks to the development of off-the-shelf electronic devices, the
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1.1. Background and motivation

Figure 1.1. Block diagram representation of a SHM system [Balageas et al., 2006]

reduction of cost of both the sensors [National Concrete Pavement Technol-
ogy Center, 2011, Sabato et al., 2017], the data acquisition systems [Basto
et al., 2017,Girolami et al., 2017] and the communication protocols [Cho
et al., 2008, Noel et al., 2017], and the increase in the computational re-
sources of the processing devices, smart and cheap SHM systems can now
be adopted for a wider range of structures and problems, such as aero-
nautical or low-scale civil applications (see [Bimpas et al., 2011,Moser and
Moaveni, 2013,Ubertini et al., 2016,Ferrari et al., 2016,Yin et al., 2016,Liu
and Cao, 2017, Lo Iacono et al., 2017]). Furthermore, SHM applications
in emerging economies are becoming progressively affordable (see [Yang
et al., 2015,Annamdas et al., 2017,Yu et al., 2017]). Due to the aforemen-
tioned reasons, the associated SHM market is expected to expand globally
at an annual growth rate of 25% in the next 5 years, reaching a global market
size of about USD 3.4 billions in 2022 [MarketsandMarkets, 2017].
A new emerging trend in SHM concerns the coupling of SHM technolo-
gies with innovative device-to-cloud connectivity platforms, which allow
to manage, store and process the measured data remotely and automati-
cally. Some recent IoT-based (Internet of Things) SHM solutions are de-
scribed in [Abdelgawad and Yelamarthi, 2016,Abdelgawad and Yelamarthi,
2017,Arcadius et al., 2017].
It is important to underline that SHM may be implemented either as a one-
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time application, or in a continuous fashion. In the first case, the actual
structural conditions of the system are estimated and, therefore, the struc-
tural reliability is quantified at a specific time. This allows, e.g., to evaluate
the associated risk of system failure [Kurata et al., 2005,Wenzel, 2009]
and provides useful data for the insurance and risk management sector [Jia,
2017]. On the other hand, through a continuous monitoring scheme, it
is possible to predict the evolution of the system state and, hence, plan
and optimize the maintenance interventions (Predictive Maintenance, PM)
or performing maintenance when this is needed (Condition-Based Main-
tenance, CBM) [Hoffman, 2007, Ni and Wong, 2012]. These approaches
guarantee an effective decrease in the overall lifetime costs with respect to
the traditional time-based PM, as actions are performed only when war-
ranted.
Over the last years, several procedures and methods [Sohn et al., 2004] have
been developed in order to detect and estimate structural damage. Some of
these [Fan and Qiao, 2011] are natural frequency-based methods [Salawu,
1997], mode shape-based methods [Farrar and Doebling, 1997], curva-
ture/strain mode shape-based methods [Zhang and Aktan, 1998] or other
modal parameters based methods [Farrar and Jauregui, 1998]. System iden-
tification methods, referred to as procedures to estimate the properties of
a structural system defined by means of the parameters of the associated
mathematical model, can be classified into two main groups [Moaveni and
Conte, 2007]: output-only methods [He et al., 2006,Ubertini et al., 2013,Pi-
oldi et al., 2016,Pioldi and Rizzi, 2016,Pioldi et al., 2017], where only the
response of the mechanical system is measured; and input-output meth-
ods [Moaveni and Asgarieh, 2012, Asgarieh et al., 2014], where both the
inputs and the responses of the system are observed. Damage identification
can be then performed by detecting possible changes in the properties of the
structural system over time.
In order to estimate both the structural properties and their associated un-
certainties, the application of the Bayesian framework to structural health
monitoring has been first introduced in [Beck and Katafygiotis, 1998].
Some researchers have focused on the estimation of the parameters of sim-
ple mechanical systems or non-linear constitutive laws of materials. The
identification of non-linear mechanical models has been performed either
through the unscented Kalman filter [Mariani and Ghisi, 2007,Chatzi et al.,
2010], the extended Kalman filter [Corigliano and Mariani, 2004, Yang
et al., 2006] or the particle filter [Eftekhar Azam et al., 2012]. In order
to speed up the estimation, methods based on the combination of model
order reduction strategies and Bayesian recursive filtering have been pro-
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posed in [Eftekhar Azam, 2014, Capellari et al., 2015a, Capellari et al.,
2016d]. Other works regard the estimation of the most likely structural
model that guarantees the best match with the experimental data, following
the Bayesian frameworks [Beck and Au, 2002,Beck and Yuen, 2004].

1.2 Objectives and scope

The capability of any SHM procedure to detect and estimate structural
damages depends on both the employed estimation method used to process
the measured data and on the SHM system itself, in terms of all the hardware
components needed to obtain the observations, which are:

• a set of sensing nodes, which can include several sensors measuring
different physical quantities; these can be powered through a wired
network, batteries or energy harvesting modules;

• a data communication system, which could be either wired orwireless-
based;

• a post-processing unit, which allows to collect, store and process the
measured data.

Any SHM strategy can be, therefore, interpreted as an experimental pro-
cedure, where some quantities are measured and some others have to be
estimated. The experimental setup in SHM corresponds to the definition of
all the characteristics of the sensor network which can affect the measure-
ments, such as:

• the position of the sensors on the structure;

• the physical quantities to be measured;

• the number of sensors;

• the type of sensors.

The objective of the present work is to investigate the problem of optimally
designing sensor networks for SHM applications, such that the monitor-
ing system capability for estimating the properties of the structural system
is maximized. In other words, the aim of the research pertains to a step
which precedes the conceptual phases detailed in the previous paragraph,
but, nevertheless, is crucial for the effectiveness of the SHM application. It
is interesting to underline that, so far, more attention has been paid in the
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research community on the development of mathematical methods for SHM
(as summarized in the previous paragraph), rather than on the optimization
of the sensor networks. With the increasing use of low-cost off-the-shelf
sensors and the continuous spreading of SHM in the civil engineering sec-
tor, it is crucial to develop SHM sensor network design strategies in order to
reduce the overall cost and the uncertainties associated with the estimated
quantities. A review on the existing methods for sensor networks optimiza-
tion will be given in Chapters 2 and 4.
Assuming that the behaviour of the considered structure can be predicted
through a suitable numerical model, all the previously listed experimental
setup parameters can be defined in the model and therefore considered as
unknown variables in the optimization strategy. For instance, supposing to
exploit the finite element method, the position of the sensors can be defined
by taking advantage of the nodal discretization of the structural model and,
therefore, switching from a continuous to a discretized optimization formu-
lation. Regarding the type of sensors, any technological characteristic, such
as sensitivity, signal-to-noise ratio, resolution, etc., can be in principle con-
sidered as an optimization variable. Therefore, the optimal type of sensor
can be chosen among those available on the market, in order to fulfill the
specifications obtained through the optimization procedure.
It should be underlined that the optimization of the sensor network is ben-
eficial from two points of view. Let one first of all assume that, thanks to
the optimization of the sensor network characteristics, the number of sen-
sors can be reduced. This results in a corresponding cost reduction of the
overall SHM system, a simplification of the data acquisition system (e.g.
communication system and conditioning unit) and of the system assembly
phase (with a consequent reduction of the technicians cost).
An additional benefit, which can be achieved concerns the reduction of the
amount of data that has to be handled: in other words, if the SHM sys-
tem is optimized, the resulting measurements are more "informative" and,
thus, less sensors are necessary to guarantee the same estimation accuracy.
Therefore, both the cost and complexity of the data storage system and the
required computational resources can be effectively reduced. Moreover, as
the computational cost of the post-processing phase decreases, the applica-
bility of real-time estimation methods is enhanced.
If, conversely, the number and type of sensors are supposed to be kept
constant, the optimization of the sensor network guarantees the increase of
information provided by the monitoring system and, therefore, a consequent
reduction of the estimate uncertainties.
Two strategies are here proposed to optimally design a SHM sensor network,
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namely a deterministic and a stochastic one.
In the first case, the uncertainties related to the measurement process, i.e.,
the measurement noise, and the uncertainties associated with the parame-
ters to be estimated, are disregarded and, thus, only the model response is
supposed to affect the optimal design. The proposed method relies on the
maximization of the measurements sensitivity with respect to the quantities
to be estimated (e.g. damage indices, stiffness, Young’s modulus). In this
case, the employment of a topology optimization strategy guarantees a very
low computational cost. The formulation allows to handle complex geome-
tries by adopting a flexible multi-scale approach.
The second method here proposed is based on the application of Bayesian
stochastic framework, which allows to naturally account for all the uncer-
tainties in the experimental measurement process. The usefulness of the
sensor network is quantified through an index based on information theory,
originally developed within the computer science research community for
the quantification of uncertainty relating to random variables. The SHM
sensor network is therefore optimized, in terms of number, position and
type of sensors, by maximizing the relevant expected Shannon information
gain, which is a measure of the utility of the measurements with respect
to the quantities to be estimated. As in most of the stochastic approaches,
large computational resources would be needed to take into account the
uncertainties, preventing the applicability of the method to large structural
models. The coupling with surrogate models, which aim at replacing the
original, computationally expensive, numerical model by reproducing the
relation between inputs and outputs, model order reduction strategies and
stochastic optimization methods allow to overcome the latter problem.
The twomethods for the optimization of sensor networks here developed are
applicable to both static and dynamic monitoring applications. Dynamic
systems are referred to structural systems whose properties can vary in time
and their evolution has to be tracked; nevertheless, these methods are only
suitable for applications where the inertial effects on the system responses
can be supposed to be negligible.
It is important to underline that the sensor configurations provided by the
two methods may be sub-optimal solutions of the optimization problem, as
they are obtained using numerical approaches. Moreover, in the stochastic
method, the sub-optimality can be due to the objective function noise, as it
will be discussed in Chapter 4.
In the end, in order to study the practical identifiability of the model pa-
rameters, i.e., to check for uniqueness of solution, the use of information
theory-based indices are proposed.
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The main contributions of the work presented in the thesis are:

• the development of a deterministic multi-scale optimal sensor place-
ment method for SHM applications, based on the maximization of the
measurements sensitivity to damage; the effectiveness of the method
is verified via both a benchmark and a real-case structural model;

• the development of a stochastic optimal sensor placement method
based on information theory, by exploiting the combination of surro-
gate modeling and optimization algorithms for stochastic problems;
the efficiency of the proposed procedures is checked both through the
application to a benchmark and to a large-scale structural model;

• the development of a strategy for the cost-benefit optimization of
sensor networks, both in terms of number, placement and type of
sensors;

• the development of a strategy for studying practical identifiability
through information theory-based indices.

1.3 Organization of the thesis

The thesis is organized as follows.
First, the description of the deterministic optimal sensor placement method
based on the maximization of the measurement sensitivity is theoretically
described in Chapter 2. A multi-scale approach based on topology opti-
mization is here introduced, in order to reduce the overall computational
cost and take into account different scales of the problem.
Then, in Chapter 3, the application of the method to two cases, i.e., a sim-
ple benchmark problem (clamped plate) and a real-case structure (aircraft
fuselage) are presented and the relevant results are discussed.
A stochastic approach, based on the maximization of the information pro-
vided by the sensor network, is introduced in Chapter 4. The concepts of
Bayesian experimental design and Bayesian inference are here introduced
and their application to the SHM problem is proposed and discussed. Two
strategies for the evaluation of the objective function are introduced: the
first one is based on a particular implementation of a surrogate modeling
strategy, the second one to the combined use of model order reduction tech-
niques and surrogate modeling; the relevant advantages and disadvantages
are highlighted. Then, an optimization algorithm for stochastic problems is
introduced and its benefits for the problem at hand are examined.
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The application of the stochastic method to both a benchmark and a real-size
structure is discussed in Chapter 5. Moreover, a scheme for optimizing the
overall SHM system, both in terms of number, type and position of sensors,
is introduced.
Next, the problem of practical identifiability of the parameters is analyzed
and a method based on the information theory is proposed in Chapter 6.
Chapter 7 of the thesis is dedicated to the concluding remarks and sugges-
tions for future work on the topics presented.
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CHAPTER2
Deterministic optimal sensor placement

2.1 Introduction

In this chapter, a method to optimally place sensors on a structure is pre-
sented. The appropriate choice of the sensor positions allows to obtain an
effective sensor network and to reduce its cost. A basic main hypothesis
is put in place: the uncertainties related to the measurement process, such
as the measurement noise, are not considered in the optimization algorithm
and, in this sense, the method is purely deterministic. Moreover, the un-
certainties related with the quantities to be estimated are disregarded, and
these are therefore treated as deterministic variables rather than random
variables. Unlike stochastic approaches, which allow to take into account
the two aforementioned sources of uncertainty, a deterministic strategy is
characterized by a lower computational cost and, thus, it can provide a quick
indication about the optimal sensor placement configuration.
Some thorough reviews of the most used Optimal Sensor Placement (OSP)
methods using deterministic approaches, can be found in [Meo andZumpano,
2005, Yi and Li, 2012,Mallardo and Aliabadi, 2013, Leyder et al., 2015].
These are:

• the Effective Independence Method (EFI) [Kammer, 1996,Yang and
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Lu, 2017], which is based on the maximization of the determinant of
the Fisher information matrix (which is a measure of the information
content of the measured signal with respect to the parameters to be
estimated);

• theEffective IndependenceMethod-Driving-PointResidue (EFI-DPR)
[Imamovic, 1998], was proposed to overcome a typical limitation of
the EFI method, i.e., the selection of sensor locations of low energy
contents; the candidate solutions obtained with the EFI method are
then modified through a weighting coefficient, which takes into ac-
count the energy content at each position.

• the Kinetic Energy Method (KEM) [Heo et al., 1997,Heo and Jeon,
2016], which is based on the maximization of the kinetic energy of
the observations; the method is a modification of the EFI algorithm,
where the Fisher information is weighted through the mass matrix of
the associated finite element model;

• theVarianceMethod (VM),which is an evolution of theMost Informa-
tive Subset (MIS) technique introduced in [Fedorov and Hackl, 1994]
(that is a strategy developed for the approximation of phenomena,
through a finite number of observations);

• theEigenvalueVector Product (EVP) [Doebling, 1995], which is based
on the maximization of the vibration energy of the mode shapes;

• theNon-optimalDriving Point (NODP) [Imamovic, 1998], which con-
sists in deselecting the sensor locations characterized by the smallest
target mode shape displacements.

The goal of most of these methods is to obtain the optimal sensor placement
of the network configuration on a structure in order to estimate the targeted
mode shapes of the considered system, relying on the maximization of
different objective functions.
Let one assume now that the SHM system is placed in order to detect
damage, which could in principle occur in any position on the structure.
The sensors’ spatial configuration can be optimized by maximizing the
sensitivity of the SHM network to the damage to be detected. As shown
in [Mariani et al., 2013a,Mariani et al., 2013b, Caimmi et al., 2014], the
sensor placement optimization problem can be formulated as a topology
optimization problem; therefore, well-established algorithms suitable for
this kind of problems [Bendsøe and Sigmund, 2003] can be adopted for
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obtaining the optimal solution. A multi-scale optimization strategy, based
on the same rationale, is herein presented. Its purpose is twofold [Capellari
et al., 2017a]:

1. the problem of optimal sensor placement can be split into two stages:
the first one aims at identifying the regions of higher sensitivity to
damage, while the second one allows to optimize the sensor position
within the selected zones. In this way, the difference in the length-
scales related with the dimensions of the structure, with the damaged
zone and with the sensor itself are, thus, taken into account;

2. the overall computational cost of the optimization procedure can be
reduced, enabling consideration of the unknown damage position,
even for large and complex structures.

The chapter is organized as follows: in Section 2.2, the theoretical formula-
tion is introduced and discussed, then the multi-scale approach is explained
in Section 2.3.

2.2 Theoretical formulation

The aim of the optimal sensor deployment strategy herein proposed is to
place the sensors on the structure so that the sensitivity of the monitoring
system with respect to the variation of mechanical properties due to dam-
age is maximized. Mechanical damage is the set of all micro and macro
phenomena which induce changes in the mechanical properties of a certain
material. A broad discussion on mathematical models for DamageMechan-
ics in different materials can be found in [Krajcinovic, 1996] and [Lemaitre,
1996]. The degradation of the material stiffness is here assumed to be
modeled as a reduction of the Young’s modulus, for isotropic materials
(see [Krajcinovic, 1996]).
The sensitivity of the structural response with respect to changes in the
material properties can be directly obtained through a numerical model of
the structure, by comparing its response to the external loads between the
undamaged original structure to be analyzed and its damaged counterpart,
featuring a local stiffness reduction. In order to take that into account, in
principle, damage can be located anywhere within the system, the struc-
ture is conceptually divided into n subdomains, thereby assuming that the
mechanical properties vary homogeneously and simultaneously over time
in each subdomain. n auxiliary damaged structures are considered, each
one characterized by having an undamaged material in all the regions apart
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from the j-th region, in which a damage is fictitiously assumed. The choice
of the number of regions depends on the resolution required for damage lo-
calization in the problem at hand. For instance, if point-wise or very small
damages are supposed to occur, then a very fine resolution is needed and,
thus, n is assumed to be equal to the number of elements in the numerical
discretization (e.g. finite elements). If, otherwise, the stiffness degrada-
tion is supposed to affect a large portion of the structure (e.g. material
aging), n would correspond to the number of sub-structures in which the
system can be divided to account for the different structural components
(see [Corigliano et al., 2013,Corigliano et al., 2015]).
As previously mentioned, damage is here assumed to bemodeled as a reduc-
tion in the Young’s modulus: therefore, calling E the mechanical property
of the original healthy material, the Young’s modulus of the damaged ma-
terial is defined as E j = E(1− d j), where j = 1, ..., n identifies the region to
which this reduction is associated. d j is a scalar damage index 0 ≤ d j < 1,
which allows to treat the stiffness reduction as a dimensionless quantity.
For instance, if d j = 0, the Young’s modulus in the j-th region is E j = E
(the material is undamaged). Conversely, assuming d j → 1, the associated
Young’s modulus is E j → 0: this represents the upper-bound of the damage
index, as it would correspond to a zero-stiffness material.
As previously stated, the goal of the method is to position the sensors so
that the sensitivity of the measurements with respect to the damage index
(or to the Young’s modulus) is maximized. The objective function of the
associated optimization problem would then be a function of the difference
between the responses (in terms of, e.g., displacements and rotations, or
accelerations in case of dynamics) of the undamaged and all the damaged
structures.
Unlike standard optimization methods used for deterministic optimal sensor
placement, such as genetic algorithms (employed in [Swann and Chattopad-
hyay, 2006]) or greedy algorithms (as in [Kammer, 1996]), the problem
is here formulated as a topology optimization procedure [Mariani et al.,
2013a, Mariani et al., 2013b], in order to boost the computational effi-
ciency. The problem can then be treated by following a standard strategy
in topology optimization, i.e., by defining an appropriate field variable
0 ≤ ξ(x1, x2, x3) ≤ 1, where x1, x2 and x3 are the relevant reference axes.
The higher is ξ, the larger is the sensitivity of the structural response, at
the coordinate {x1, x2, x3}, with respect to damage. Moving from the con-
tinuous to the discrete space, the variable ξ(x1, x2, x3) is re-formulated in
the corresponding vectorial form ξ ∈ Rn, with n denoting the number of
aforementioned regions. Each component of the unknown variable of the
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optimization problem ξi (with i = 1, ..., n) is then associated with the i-th
region. While the previously defined index j is referred to the damage
locations (and, therefore, to the auxiliary structures), the index i is related
with the sensors locations.
By formulating the topology optimization problem as described in [Bend-
søe and Kikuchi, 1988], the resulting objective function to be maximized is
defined as follows:

ψ =

n∑
j=1

n∑
i=1

ξ
p
i ‖v ji − vi‖ (2.1)

In Eq. (2.1), the symbol ‖2‖ is an appropriate norm (e.g. L2 norm) of the
argument 2. vi is the response (e.g., in terms of displacements, rotations,
etc.) associated with the i-th element of the undamaged structure, while vi j
is the response associated with the i-th element of the j-th damaged struc-
ture, i.e., with a damage located at the j-th element, ξi is the i-th component
of the unknown variable ξ, p is a penalty coefficient.
The optimal sensor configuration is defined in the following way: if ξi = 0,
no sensors have to be placed in the i-th region, if ξi = 1 one sensor should
be placed at the i-th region. Otherwise, if 0 < ξi < 1 for some regions,
it implies that an optimal solution, compliant with the assigned number of
sensors, cannot be obtained. In other words, as ξi is defined in the do-
main of the real numbers, it may happen that the number of regions with
non-zero values are greater than the chosen number of sensors. Typically,
this problem can arise for symmetric geometries, as shown in [Bruggi and
Mariani, 2013,Mariani et al., 2014]: in these cases, a sub-optimal solution,
in fulfillment with the constraint on the number of sensors and physically
relevant to the optimal solution, should be chosen. In order to mitigate the
latter problem, a usual strategy in SIMP-based (Solid Isotropic Material
with Penalization) [Bendsøe, 1989] approaches of topology optimization is
followed: the exponent p ≥ 1 is introduced in order to penalize intermediate
densities (i.e., between 0 and 1) and attain pure 0 − 1 distributions of the
unknown variables.
It should be underlined that, unlike other types of structural optimization,
such as shape or size optimization [Christensen and Klarbring, 2008], topol-
ogy optimization allows to explore all possible spatial configurations, as the
candidate solutions are not limited only to a subset of allowable shapes.
Therefore, both adjacent and nonadjacent optimal regions can be selected.
According to the formulation in Eq. (2.1), the effects of damages of sim-
ilar magnitude but placed in different locations could produce consistent
changes in the structural response in some areas and small changes in some
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others. Therefore the variation of response in the latter case would be hidden
by the other one in the sum, driving accordingly the sensor placement. This
formulation can lead to ineffective sensor networks if the damages which
provoke small sensitivities are located in structurally unsafe locations. In
other words, by applying this approach, the sensors tend to be placed where
large variations of the structural response are observed, independently on
the damage location; since damage identification is the goal of the monitor-
ing system, this would result in an inefficient sensor network. In order to
counter-balance these unwanted effects, the formulation can be modified by
weighting all the contributions in the sum, through their maximum values,
as follows:

ψ =

n∑
j=1

∑n
i=1 ξ

p
i ‖v ji − vi‖

maxi
[
ξ

p
i ‖v ji − vi‖

] (2.2)

The resulting optimization statement is defined as:
ξ∗ = arg max

ξi∈[0,1]


n∑

j=1

∑n
i=1 ξ

p
i ‖v ji − vi‖

maxi
[
ξ

p
i ‖v ji − vi‖

] 
subject to

n∑
i=1

ξi ≤ ns

(2.3)

where one constraint is taken into account, namely the total number of
sensors ns to be located.
The formulation here employed for the problem of optimal sensor placement
is analogous to the topology optimization problem for volume-constrained
minimum compliance (see [Bruns and Tortorelli, 2001,Bruggi and Venini,
2008]), which aims at optimizing the topology of a structure such that its
compliance is minimized for a fixed constrained volume. In the optimal
sensor placement problem, the field ξ would define the topology of the
optimized structure and the constraint on the total number of sensors ns
would correspond to the total volume of material to be employed.
The optimization is performed through the well-known Method of Moving
Asymptotes (MMA) introduced in [Svanberg, 1987,Bendsøe and Sigmund,
2004]. The procedure is based on the convex linearization of the objective
function ψ with respect to the density field ξ. A well-established general
approach for the solution of constrained optimization problems, relies on
the solution of a sequence of linearized sub-problems, according to the
following algorithm steps:

1. choice of the initial value of the first iteration ξ0;
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2. computation of ψ(ξk) and ∇ψ(ξk), where the nabla symbol ∇ is re-
ferred to the gradient operator and the index k is related with the
procedure iteration;

3. generation of an optimization sub-problem, by replacing the original
function ψ with its approximated linearized version, as computed in
step 2;

4. setting of the initial point of the next iteration k + 1 as the solution of
the sub-problem in step 3.

TheMMA is a generalization of the latter algorithm, where the linearization
is performed with respect to variables of type 1

Ui−ξi
and 1

ξi−Li
, where Ui and

Li are called "moving asymptotes". It is demonstrated in [Svanberg, 1987]
that, by allowing Ui and Li to change during each iteration, depending on
ψ(ξk) and ∇ψ(ξk), a more efficient and stable method can be obtained. The
sub-problem of each iteration is solved through a dual method for convex
programming, as described in [Fleury, 1979, Svanberg, 1982]. In order to
perform the MMA algorithm, the sensitivity of the objective function ψ to
the density unknowns ξi are required. In the problem at hand, these are
computed from Eq. (2.2) as:

∂ψ

∂ξi
=

n∑
j=1

∑n
i=1 pξp−1

i ‖v ji − vi‖

maxi
[
ξ

p
i ‖v ji − vi‖

] (2.4)

The optimization procedure for solving the optimal sensor placement de-
fined in Eq. (2.3), is summarized in Algorithm 1.

Algorithm 1Algorithm for the deterministic optimization of SHM sensor networks
through topology optimization.
Compute response of the undamaged structure: v
for j = 1 : n do

Compute response of the j-th auxiliary structure: vj
end
Compute sensitivities according to Eq. (2.4)
Solve Eq. (2.3) through MMA algorithm

2.3 Multi-scale optimization

TheMMA algorithm allows to efficiently solve the constrained optimization
problem defined in Eq. (2.3), even for high numbers of sensors ns. As
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stated in Section 2.2, in order to allow considering any possible damage
position, the undamaged structure and all the n auxiliary structures have
to be examined, resulting in n + 1 computations of the corresponding FE
model responses.
Let one assume that the optimization problem discretization coincides with
the FE discretization and, thus, the number of regions n corresponds with
the number of finite elements. Therefore, calling tFE the computational
time required for the response evaluation of one auxiliary structure, the
overall computational time of the pre-processing phase, i.e., related with
the calculation of vi j and vi, with i = 1, ..., n and j = 1, ..., n, is (n + 1)tFE .
Thus, the applicability of the method to large-scale problems, so of high
number of finite elements n, is troublesome since the overall computational
cost increases due to the increment of both the number of FE analyses to be
solved and the computational cost of each of them.
A possible solution would be to discretize the structure, such that n < nel ,
where nel is the number of FE elements: in other words, each region of the
optimal sensor placement problem would include several finite elements,
thus obtaining a coarser discretization. In this way, the number of FE
model responses would be reduced, while keeping tFE constant. This, of
course, would result in a trade-off between the accuracy of the optimal
sensor placement solution and the computational cost.
If geometrically complex or large-scale structures have to be analyzed,
a multi-scale optimization approach allows to solve the aforementioned
problems, without loosing accuracy [Capellari et al., 2016a].
The procedure consists of two phases:

1. macro-scale: the structural model is discretized in nM parts and the
NM regions with higher sensitivity to damage are selected;

2. meso-scale: each optimal region selected from the macro-scale phase
is considered as a new optimization problem, by imposing as boundary
conditions the relevant responses obtained at the macro-scale; the Nm
optimal elements at the meso-scale are selected among the nm FE
elements of the associated sub-problem.

In this way it is then possible to first define a certain number of regions,
which are more sensitive to damage, and subsequently to select the precise
position of the sensors on each of them.
The procedure is beneficial not only from the computational point of view,
but also for handling complex problems, e.g. structural regions or unimpor-
tant details at the macro-scale, but still dangerous for the overall structural
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safety. For instance, local stress amplifications, due to geometric, loading
or material discontinuities, can cause inception and subsequent growth of
damage.
The parameters n and N can be chosen separately for each length-scale: the
first one defines the space discretization of the optimization problem; the
second one determines the number of regions with higher sensitivity to be
selected among the n possible ones. Therefore, the discretization at each
scale can be conveniently tuned in order to account for the different length-
scales which characterize the problem. For instance, considering complex
geometries characterized by several structural components, the system can
be discretized at the macro-scale in order to select the components with
higher sensitivity. Then, each selected component can be discretized at
the micro-scale in order to finely tune the sensor position. This approach
is particularly useful when micro-sensors, such as MEMS-based (Micro
Electro-Mechanical Systems) devices, are employed: the exact spatial sen-
sor placement can be obtained by setting the mesh size as equal to the sensor
packaging dimension only at the meso-scale, while retaining a coarser mesh
at the macro-scale. Such very fine discretization would be computationally
unbearable, if the single-scale approach described in the previous paragraph
was adopted.
The whole procedure is graphically summarized in Fig. 2.1, where Ω and
f are respectively the domain where the boundary conditions are defined
and the loads applied to the model to be analyzed. It is important to un-
derline that the optimal sensor placement does depend on the loading and
boundary conditions; in other words, the solution of the optimization prob-
lem is computed for a specific type and magnitude of loads. Therefore, in
order to obtain an optimal sensor placement consistent with a multiplicity
of different loading scenarios, the optimization scheme here described has
to be performed by considering the model responses vi j for all the possible
conditions. Moreover, if the loads are supposed to be not known, the op-
timal solutions can be obtained by solving several optimization problems
with a combination of different input loads, generated by assuming a cer-
tain probability density function, following a Monte Carlo approach. The
optimal solution would then be the one that guarantees the maximum value
of ψ, among all the considered ones. It is important to highlight that while
the nM damaged auxiliary structures and the undamaged structure of the
macro-scale problem are subjected to f, the nm damaged auxiliary struc-
tures and the undamaged structure of the meso-scale problem are subjected
to both the boundary conditions obtained by the relevant structure of the
macro-scale problem and to the external loads acting only on those regions.
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Step 1:
macroscale optimization

Eq. (2.5)

Step 2:
mesoscale optimization

Eq. (2.6)

Figure 2.1. Graphical representation of the proposed multi-scale optimization
strategy.

From Eq. (2.3), the optimization formulation at the macro-scale is defined
as:


ξM = arg max

ξi
M∈[0,1]

ψM = arg max
ξi

M∈[0,1]


nM∑
j=1

∑nM

i=1(ξi
M)p‖v ji

M − vi
M ‖

maxi
[
(ξi

M)p‖v ji
M − vi

M ‖
] 

subject to
nM∑
i=1

ξi
M ≤ NM

(2.5)
where ψM is the objective function of the associate optimization problem,
ξM is the unknown function which defines the optimal regions, vM

ji is the
response of the i-th element of the auxiliary structure with damage at the
j-th element, and vM

j is the response of the i-th element of the undamaged
structure. Once the solution at the macro-scale ξM is obtained and the NM
optimal regions are selected, the respective problems at the meso-scale are
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Algorithm 2 Algorithm for the deterministic multi-scale optimization of SHM
sensor networks through topology optimization.
Macro scale optimization
begin

Compute response of the undamaged structure: vM
for j = 1 : nM do

Compute response of the j-th auxiliary structure: vMj
end
Compute sensitivities according to Eq. (2.4)
Solve Eq. (2.5) through MMA algorithm

end
Meso scale optimization
begin

for k = 1 : NM do
Select k-th region of macroscale problem
Enforce boundary conditions from vM and vMj
Compute response of the undamaged structure: vkm
for j = 1 : nm do

Compute response of the j-th auxiliary structure: vm
jk

end
Compute sensitivities according to Eq. (2.4)
Solve Eq. (2.6) through MMA algorithm

end
end

considered. For each region, the following optimization is then performed:
ξm = arg max

ξi
m∈[0,1]

ψm = arg max
ξi

m∈[0,1]


nm∑
j=1

∑nm
i=1(ξi

m)p‖v ji
m − vi

m‖

maxi
[
(ξi

m)p‖v ji
m − vi

m‖
] 

subject to
nm∑
i=1

ξi
m ≤ Nm

(2.6)
where ψm is the objective function of the associated optimization problem,
ξm is the unknown function which defines the optimal sensors positions, vm

ji
is the response of the i-th element of the auxiliary structure with damage at
the j-th element, and vm

i is the response of the i-th element of the undam-
aged structure. Analogously to the one-scale problem defined in Eq. (2.3),
a constraint on the number of sensors is defined by choosing the parameter
Nm, which corresponds to the number of sensors to be deployed for each
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macro region.
The whole multi-scale optimization procedure is summarized in Algo-
rithm 2.
In order to investigate the computational benefits of adopting a multi-scale
optimization scheme, the computational complexity is here studied in terms
of the order of required floating-point operations. The single-scale proce-
dure described in Algorithm 1 is characterized by two main phases: the
computation of the model response for each auxiliary structure and the
optimization of the SHM sensor network. Assuming a FE solver for lin-
ear problems (Gauss-Jordan procedure), its computational complexity is
O[n3

do f ] [Farmaga et al., 2011, Sharma et al., 2013], where ndo f is the
number of degrees of freedom of the FE model. As the optimization pro-
cedure scales at least quadratically with the number nel of model elements
(O[n2

el]) [Svanberg, 1987], the overall computational complexity of the
single-scale approach is:

O[(n + 1)n3
do f + n2

el] (2.7)

The same considerations introduced for the single-scale method can be
adopted for analyzing the computational complexity of the multi-scale pro-
cedure (as described in Algorithm 4). Assuming two scales, the overall
computational burden is due to both the macro and the meso scale opti-
mizations. The first phase is characterized by a O[(nM + 1)(nM

do f )
3 + (nM

el )
2]

complexity, where nM
el is the number of elements of the FE model at the

macro scale and nM
do f the associated number of degrees of freedom. Then,

for each selected optimal region, the associated optimization problem at
the meso-scale is endowed with a O[(nm + 1)(nm

do f )
3 + (nm

el)
2)] complexity,

where nm
el is the number of elements of the FE model at the meso scale and

nm
do f the associated number of degrees of freedom. Therefore, the overall

computational complexity of the multi-scale procedure is:

O{(nM + 1)(nM
do f )

3 + (nM
el )

2 + N M[(nm + 1)(nm
do f )

3 + (nm
el)

2]} (2.8)

One can point out that the computational complexity scales linearly with the
number of FEM analyses to be performed, quadratically with the number of
elements and cubically with the number of DOFs. Thus, one can conclude
that the multi-scale approach is computationally more efficient than the
single-scale method, as, despite an associated increase in the number of
FEM analyses, it allows to reduce both the number of finite elements and
the number of DOFs in each model.
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2.4 Conclusions

In the present chapter, a multi-scale optimization strategy for the optimal
placement of sensors for damage detection (where damage is considered as
a local reduction of stiffness) has been introduced.
The method rationale is the maximization of the sensitivity of the response
(e.g. in terms displacements or rotations) with respect to the variation of
mechanical properties due to damage to be detected. Since themeasurement
errors and the uncertainty related with the quantities to be estimated are not
taken into account, the method is purely deterministic. The employed for-
mulation allows to account for damages located anywhere in the structure.
The multi-scale approach consists in splitting the problem in multiple
phases: first, a certain number of optimal regions, whose response is mainly
due to the presence of damage of any value and location, are selected, then
the location of sensors is finely optimized at each of them. The advantage
of this top-down technique is twofold: the computational cost for complex
problems is reduced; the discretization size of the associated regions can
be appropriately tuned at each scale, in order to preserve accuracy and take
into account the relevant length-scales, such as structural details and micro-
sensors size.
In Chapter 3 the application of the single-scale and multi-scale approaches
to two numerical examples will be discussed.
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CHAPTER3
Deterministic optimal sensor placement:

numerical experiments

3.1 Introduction

In this chapter, the optimization methods introduced in Chapter 2 are ap-
plied to two numerical examples and the resulting optimal sensor placement
solutions are discussed.
First, both the single-scale (see Algorithm 1) and the multi-scale strategies
(see Algorithm 2) are adopted on a simple 2-dimensional benchmark prob-
lem, i.e., a clamped square plate. Two cases are considered: a uniform
material (with only 1 possible type of damage), a composite material (with
different damage types).
Then, the multi-scale algorithm is applied to a real structure, a fuselage
section model, characterized by a complex geometry and different damage
scenarios. The benefits of the proposed algorithm, in terms of required
computational time, are highlighted.
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3.1.1 Optimal sensor placement on a thin square plate

In order to appropriately assess the deterministic optimal sensor placement
method introduced in Chapter 2, the application of the single-scale (Al-
gorithm 1) and multi-scale (Algorithm 2) strategies to a thin square plate
clamped along the edges and subject to a force applied at its center, directed
orthogonally to its mid-plane is considered. This application case has been
already considered in [Capellari et al., 2015b,Capellari et al., 2016d] as a
benchmark problem for damage detection. The load is supposed to be static
or varying quasi-statically, such that the inertial effects can be disregarded.
The in-plane dimensions of the plate are 200 mm × 200 mm and its
thickness is 5 mm. It is assumed to be uniformly made of Aluminium
6061 − T6 [Association, 2000, ASTM International, 2014]. The Young’s
modulus is E = 68.9 MPa and the density is ρ = 2.5 · 103 kg/m3. The
boundary conditions, the external load and the reference system are depicted
in Fig. 3.1.

Figure 3.1. Boundary conditions and loads of the considered square plate.

In order to demonstrate that the method is completely non-intrusive
and it does not require custom manipulations of the solver, a commercial
software has been exploited. Thus, the plate is modeled using the com-
mercial FE code Abaqus (Abaqus/CAE 6.10-1 ©Dassault Systemes, 2010),
and discretized through a 20 × 20 mesh with S4R elements, which are 4-
node general-purpose shell elements, able to take into account transverse
shear deformations. Each node is characterized by 6 DOFs, namely 3
displacements (ux1 , ux2 and ux3) and 3 rotations (ϕx1 , ϕx2 and ϕx3) about
the 3 orthogonal axes x1, x2 and x3 of the reference system. The chosen
discretization corresponds to the resolution of the damage size which is
supposed to be investigated, i.e., approximately 10 mm. Furthermore, it
guarantees a good accuracy in the computation of the plate response.
The single-scale procedure (Algorithm 1) is first applied: the resulting opti-
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(a) (b)

(c) (d)

Figure 3.2. Clamped plate problem for homogeneous material: plane (top) view
of the optimal sensor placement corresponding to (a) ns = 1, (b) ns = 4,

(c) ns = 8 and (d) ns = 16.

mal configurations for different numbers of sensors ns = 1, 4, 8, 16 are shown
in Fig. 3.2. In this example, rotations ϕ =

√
ϕ2

x1 + ϕ
2
x2 are supposed to be

measured by the sensors to be deployed, as their variations can be efficiently
used for damage identification (as shown in [Capellari et al., 2015b,Capel-
lari et al., 2016d]). These quantities could be measured through a set of
3-axis MEMS micro-accelerometers [Capellari et al., 2016b]: as discussed
in [Łuczak, 2011,STMicroelectronics, 2014], any rotation of the mid-plane
of the plate can be observed using the capability of the accelerometers of
sensing the gravity acceleration g. Alternatively, low-cost tiltmeters can be
employed [Kim, 2008] in order to measure rotations.
Owing to the problem geometry, the resulting optimal regions are located
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symmetrically with respect to the two symmetry axes passing through the
center of the plate. For ns = 1 (Fig. 3.2a) and ns = 2 (Fig. 3.2b), the density
variable ξi assumes no-pure 0 − 1 values: as discussed in Chapter 2, this
is due to the geometrical symmetry of the problem, since the highlighted
"grey" elements present the same sensitivity to damage.
It should be underlined that the optimal configuration depends on the type
of damage which is supposed to be detected. In Fig. 3.2, the material is
supposed to be homogeneous and, therefore, the damage is supposed to be
accounted for only as a reduction of the Young’s modulus. The plate in Fig.
3.1 is supposed to be made of a cross-ply carbon-epoxy composite material,
featuring 9 layers [Bresciani, 2013]. The relevant mechanical properties of
the transverse isotropic material are listed in Table 3.1, where Eii are the
Young’s moduli, νi j is the Poisson’s ratio and Gi j are the shear moduli. The
indexes i and j define the relevant directions of the reference system, as
specified in Fig. 3.1. Each ply of the laminate is assumed to be 0.3125 mm
thick and the stacking sequence design is [0/90]s.

Property Value

E11 [MPa] 1.61 · 105

E22 [MPa] 1.14 · 104

ν12 0.32
G12 [MPa] 5.17 · 103

G13 [MPa] 3.98 · 103

Table 3.1. Mechanical properties of the composite material [Bresciani, 2013].

Two cases are considered: a damage throughout all layers (Fig. 3.3), to
simulate aging [Monnier et al., 2000,Barbero and Damiani, 2003,Mouzakis
et al., 2014]; a damage at the central layer (Fig. 3.4), to simulate delamina-
tion [Geubelle and Baylor, 1998,Mariani and Corigliano, 2005]. It is then
shown that the resulting optimal configurations are dependent on the type of
damage and, if multiple damage types have to be considered, the outcomes
of the algorithms should be fused, in order to obtain a sensor deployment
which is robust with respect to the damage type. In both damage scenarios
in Fig. 3.3 and 3.4, the optimal solutions are not double symmetric as in the
homogeneous material case (Fig. 3.2). As concerning the first case, since
5 out of 9 layers are characterized by fibers parallel to the x2 axis (vertical
symmetric axis in Fig. 3.2), the damage-induced stiffness reduction causes
larger rotations about the axis x1, rather than about the axis x2.
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(a) (b)

Figure 3.3. Clamped plate problem with composite material and damage
throughout all layers (see Fig. 3.1): plane (top) view of the optimal sensor

placement corresponding to (a) ns = 8, (b) ns = 16.

(a) (b)

Figure 3.4. Clamped plate problem with composite material and damage at the
central layer (see Fig. 3.1): plane (top) view of the optimal sensor placement

corresponding to (a) ns = 8, (b) ns = 16.

Therefore, the resulting optimal sensor positions tend to be distributed
more along the axis x2 rather than along the axis x1. A similar result can
be observed for the second case (Fig. 3.4), as the fibers of the central layer
are parallel to the x2 axis. It is interesting to underline that, in this case,
the sensors tend to be located close to each other, since the measurements
correlation is not taken into account by the algorithm. In order to overcome
this problem, an additional constraint on the minimum distance between
each sensor could be embedded in the algorithm.
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Figure 3.5. Clamped plate problem: plane (top) view of the optimal sensor
placement at the meso-scale (with Nm = ns = 1) and sensitivity maps for

selected meso-scale regions.
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It can be underlined that both in the homogeneous material case (Fig.
3.2) and in the composite material case (Figs. 3.3 and 3.4), the computa-
tional cost can be reduced by taking advantage of the symmetry about the
vertical and horizontal axes.
Let us consider again the homogeneous material case, and assume that the
single-scale optimization is considered as the macro-scale phase, i.e., the
first step of the multi-scale approach. Once the most sensitive regions have
been selected at themacro-scale (Fig. 3.2), the second step of themulti-scale
optimization can be performed. The number of regions NM to be optimally
selected should be set equal to the number of sensors ns, if only one sensor
is supposed to be placed at each of them. Each previously defined macro
element is discretized through a new 20× 20 mesh, in order to obtain a very
fine resolution on the position of the sensor.
In Fig. 3.5, the optimal sensor placement with Nm = ns = 1, for three
different optimal regions in the macro-scale, is shown. The elements which
are zoomed in red correspond to the optimal regions obtained through the
macro-scale optimization, while the blue one corresponds to the non-optimal
position. The latter one has been chosen in order to check the capability
of the optimizer to move the optimal sensor location towards the highest
sensitivity regions (see the sensitivity maps of themeso-scale regions in Fig.
3.5). The corresponding colored images represent the values of the objec-
tive function ψ, which determines the optimal solutions at the meso-scale.
As expected, the resulting solutions reflects the geometrical symmetry.
It is important to highlight that a crucial aspect for obtaining consistent
results in a multi-scale approach is the link between each phase of the pro-
cedure, which in this case corresponds to the application of the appropriate
constraints at the meso-scale regions. As previously specified, the plate is
modeled through shell elements, characterized by 6 degrees of freedom per
each node, namely 3 displacements and 3 rotations. It can be pointed out that
using 4-node (S4R in [SIMULIA, 2013]) shell elements, the reconstruction
of the correct rotation field from themacro-scale to themeso-scale problems
cannot be guaranteed, leading to a wrong response field. On the other hand,
the additional points at the mid-edges of the 8-node (S8R in [SIMULIA,
2013]) elements allows to enforce the necessary constraints to the shell.

3.1.1.1 Computational time

The benefit of adopting the multi-scale approach can be highlighted by
comparing the computational time of the single-scale and the multi-scale
strategies, for the isotropic homogeneous material case. It is possible to
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easily assume that the computational time for finding the optimal configu-
ration (i.e. running the MMA algorithm) is negligible with respect to the
one associated with the response computation of the auxiliary structures.
Therefore, the two-scale approach requires 20×20+1 = 401 analyses at the
macro-scale phase and 20×20+1 = 401 analyses for each region to be con-
sidered at the meso-scale step. This results in a total of 802 analyses, if one
sensor has to be placed (see Table 3.2). In this particular application where
an isotropic homogeneous material and a symmetric geometry are consid-
ered, no additional analyses are required if ns = 4 and ns = 8, as optimal
solutions can be easily obtained by appropriately exploiting the symmetry.
On the other hand, for ns = 16, at least 1203 analyses are required.
If the single-scale formulation defined in Eq. (2.3) is assumed to have the
same resolution employed in the multi-scale approach, namely applying the
mesh of the meso-scale level at all the elements of the structure, the total
number of auxiliary structures would be 400 × 400 + 1 = 160, 001 (see
Table 3.2). Furthermore, each FE model of the auxiliary structures in the
single-scale approach would be characterized by 400×400 = 160, 000 finite
elements in the mesh, resulting in an increased computational time for each
analysis from about 0.2 s to about 49 s using an Intel Core i7-4790 CPU
@ 3.60 GHz processor, 16 GB RAM and running on Windows 10 64 bit.
The overall speedup between the single and the multi-scale approach can be
therefore estimated as 160,001×49

401×2×0.2 ≈ 50, 000 (see Table 3.3).

numerical model Number of analyses

single-scale model 160,000+1
macroscale model 400+1
mesoscale model 400+1

Table 3.2. Clamped plate problem: approach-dependent number of analyses.

Approach CPU time (s)

single-scale 7,480,049
multiscale 160.4

Table 3.3. Clamped plate problem: approach-dependent computational times of
the overall model analyses.
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3.1.2 Optimal sensor placement on a fuselage

In order to assess the capability of the proposed approach not only for the
benchmark problem described in the previous section, but also for a real-
size structure, the stiffened aircraft fuselage described in [Zak et al., 2012]
is considered. The fuselage consists of a cylinder section, made of a com-
posite curved shell, and a set of equally spaced aluminum rings. By taking
advantage of the geometrical symmetries of the problem, only one quarter
of the whole section is sufficient to be modeled and symmetry boundary
conditions are applied to the vertical edges (namely only the radial dis-
placements and the rotations about directions orthogonal to the symmetry
axis are allowed). Moreover, in order to slightly simplify the problem, the
window holes, which have been explicitly taken into account in [Zak et al.,
2012], have not been considered; nevertheless, their structural effect could
be taken into account introducing a pass-through damage. The geometry
and the acting load of the problem are shown in Fig. 3.6 and the respective
dimensions are detailed in Table 3.4.
While in the plate problem considered in Section 3.1.1 the material was
assumed isotropic and homogeneous, and the resulting optimal sensor con-
figuration was not affected by the employed elastic properties in the healthy
state, in the case at hand, the solution can depend on the difference between
the properties of the materials.

Figure 3.6. Stiffened fuselage section problem: geometry and notation.
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Parameter Value

L [mm] 1000
B [mm] 1000
l [mm] 600
b [mm] 30

Table 3.4. Fuselage dimensions, see Fig. 3.6.

The cylinder shell is made of a composite material, which is usually used
in aeronautical applications (as described in [Guida and Marulo, 2014]),
whose mechanical properties are listed in Table 3.5. The indices i and j
define the relevant directions of the local reference system, where axis x1 is
aligned with the fiber direction and tangent to the cylinder, x2 is transverse
to it and parallel to the symmetry axis of the shell and x3 is orthogonal to
the shell-mid-plane (radial direction). Each ply of the laminate is assumed
to be 0.625 mm thick and the stacking sequence design is [90/0/∓45]s.
The circular stiffener rings are supposed to be homogeneous and made of
Aluminum 2024-O, whose properties are listed in Table 3.6.

Property Value

E11 [MPa] 1.51 · 105

E22 [MPa] 8.44 · 103

ν12 0.018
G12 [MPa] 4.20 · 103

G23 [MPa] 2.71 · 103

Table 3.5. Mechanical properties of the composite material.

Property Value

E [GPa] 73.1
ν 0.33

Table 3.6. Mechanical properties of Aluminum 2024-O.

The multi-scale approach defined in the previous section is applied to
the fuselage structure. The discretization at the macro-scale is depicted in
Fig. 3.7, with the relevant element labels (defined as index i in Section 2.3).
A coarse 10 × 8 mesh has been used for the cylinder, while the stiffeners
are discretized following the same mesh size, in order to match the nodes
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(a) (b)

Figure 3.7. Stiffened fuselage section problem: (a) external and (b) internal views
of the discretization at the macro-scale.

of different elements for both the types of structural components. The
resulting discretization size (approximately 100 mm) sets the dimension
of the damaged zones which aims to be investigated through the sensor
network. Following the discussion regarding the choice of element types in
Section 3, S8R shell elements are employed.
The optimization procedure allows to account for any type of damage of the
structure to be analyzed, at any possible position. In this application, only
two different scenarios are here considered:

1. a part-through damage on the composite cylinder, in order to account
for aging; this damage is simulated by a reduction of the Young’s
moduli E11 and E22 of all the plies;

2. a delamination between plies 4 and 5, modeled by decreasing the
Young’s modulus E11 in the mid-plane plies of the composite, in the
direction parallel to the composite fibers [Geubelle and Baylor, 1998].

The auxiliary damaged structures are defined featuring the Young’s moduli
reductions, nominally assumed to be 50% of the Young’s moduli of the
healthy virgin material. Since the material behavior is supposed to be linear,
the choice of the reduced stiffness value for the evaluation of the sensitivity
does not affect the resulting optimal sensor solution. As in Section 3.1.1,
rotations are supposed to be measured through the sensor network.

53



Chapter 3. Deterministic optimal sensor placement: numerical experiments

Figure 3.8. Stiffened fuselage section problem, case 1, macroscale analysis:
contour plot of the objective function ψM .

(a) (b)

(c) (d)

Figure 3.9. Stiffened fuselage section problem, case 1, macroscale analysis:
optimal sensor placement corresponding to: (a) NM = 1, (b) NM = 2,

(c) NM = 3 and (d) NM = 4.
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(a) (b)

(c) (d)

Figure 3.10. Stiffened fuselage section problem, case 1, mesoscale analysis:
(a) / (c), contour plots of the objective function ψm and relevant optimal

sensor placement with ns = Nm = 1 for (b) i = 69 and (d) i = 100.
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Figure 3.11. Stiffened fuselage section problem, case 2, macroscale analysis:
contour plot of the objective function ψM .

(a) (b)

(c) (d)

Figure 3.12. Stiffened fuselage section problem, case 2, macroscale analysis:
optimal sensor placement corresponding to: (a) NM = 1, (b) NM = 2,

(c) NM = 3 and (d) NM = 4.
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(a) (b)

(c) (d)

Figure 3.13. Stiffened fuselage section problem, case 2, mesoscale analysis:
(a) / (c) contour plots of the objective function ψm, and relevant optimal

sensor placement with ns = Nm = 1 for (b) i = 69 and (d) i = 63.

Considering case 1, the objective function ψM at the macro-scale is
shown in Fig. 3.8. As it can be expected, the regions with higher sensitiv-
ity lie near the point of application of the external load, where the change
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in rotations due to a variation of the Young’s modulus is maximum. The
corresponding optimal regions selected through the optimization algorithm
at the macro-scale are shown in Fig. 3.9, for NM = 1, NM = 2, NM = 3 and
NM = 4.
At themeso-scale, the selected optimal regions have been discretized using a
finer mesh, as shown in Fig. 3.10. The regions of the composite cylinder are
discretized through a 6× 9 mesh, while the regions of the stiffeners through
a 1 × 6 mesh; in this way, the resulting discretization at the micro-scale
(elements size approximately equal to 10 mm) reflects the micro-sensors
dimensions to be deployed.
The objective function ψm values, for both the central and the external re-
gions, are respectively shown in Fig. 3.10a and 3.10c. The relevant optimal
sensor placement solutions for ns = Nm = 1 are depicted in Fig. 3.10b and
3.10d. It turns out that two regions, i.e. internal and external to the stiffen-
ers, are more sensitive to damage. The internal optimal location results to
be on the circumference, where the load is applied (see Fig. 3.10b), while
the external one is located near the model edge (see Fig. 3.10d).
Regarding case 2, the objective function ψM and the related optimal re-
gions are respectively shown in Fig. 3.11 and 3.12, for NM = 1, 2, 3, 4.
The objective function ψm values at the meso-scale are shown in Figs.
3.13a and 3.13c, while the relevant optimal sensor placement solutions for
ns = Nm = 1 are displayed in Figs. 3.13b and 3.13d.
By analyzing the solutions provided by the optimization procedure for
cases 1 and 2, it can be noted that the optimal configurations depend
on the type of damage to be detected through the sensor network. Never-
theless, if no priority is given to the type of damage, the optimization could
be performed by simply taking into account in the pre-processing phase all
the auxiliary structures associated with the relevant damages.

3.1.2.1 Computational time

As in Section 3.1.1, the overall computational cost is mainly attributed to
the computation of the responses associated with the auxiliary structures.
In the single-scale case, the computational burden is larger for two reasons:
first of all, the required number of auxiliary structures is higher than in
the meso-scale case; moreover, each FE model features a larger number
of degrees of freedom and, hence, a larger dimension of the associated
problem to be solved. In Table 3.7, the number of required analyses for
each approach, e.g. single-scale and multi-scale, are reported. The CPU
computational time required for each simulation is 3.3 s in the single-scale
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analysis, 0.2 s for each macro-scale analysis and 0.1 s for each meso-scale
analysis. Therefore, the resulting total computational time is calculated in
Table 3.8: an overall speed-up of approximately 200 is reached.

numerical model Number of analyses Number of model DOFs

single-scale model 3720+1 68,430
macroscale model 100+1 2046
mesoscale model 100+1 1158

Table 3.7. Stiffened fuselage section problem: approach–dependent number of
analyses, and relevant number of degrees of freedom (DOFs) for each analysis.

Approach CPU time (s)

single-scale 12276
multiscale 60.6

Table 3.8. Stiffened fuselage section problem: approach-dependent
computational times of the overall model analyses.

3.2 Conclusions

In the present chapter, the applications of the single-scale and multi-scale
optimal sensor placement methods presented in Chapter 2 have been dis-
cussed.
Two problems have been considered: a clamped square plate and a fuse-
lage section. The first benchmark problem is characterized by a homoge-
neous material and symmetric boundary conditions, while the second one is
characterized by multiple structural components with different mechanical
properties.
It can be highlighted that the resulting optimal configurations depend on
the type of damage (e.g. impact, delamination, etc.) which can occur, but
its unknown position on the structure is naturally taken into account by the
algorithm. In both cases, the benefit resulting by the adoption of the multi-
scale procedure are underlined in terms of computational cost, with respect
to the single-scale approach. Moreover, as the problem is split in steps, with
increasing mesh resolution, it is possible to account for the different scales
of the SHM system, i.e. the macroscopic one, associated to the dimensions
of the structural system to be monitored, a mesoscopic one, related to the
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characteristic size of the damaged region, and a microscopic one, linked to
the size of the micro-sensors to be deployed.

60



CHAPTER4
Stochastic optimal sensor placement

4.1 Introduction

In Chapter 2, a deterministic approach for optimally positioning sensors
on a structure has been introduced. The main assumption at the basis of
this method is that no uncertainties are taken into account and a purely
deterministic relation between the physical quantities to be measured and
those to be estimated (e.g. Young’s modulus, damage index, etc.) is
exploited. Despite the adoption of these assumptions guarantees a high
computational efficiency, it is not possible to consider in the optimization
process neither the uncertainties relating to the measurement process (e.g.
related with the sensors accuracy), nor those associated with the quantities
to be estimated.
Any SHM procedure can be viewed as an experiment, where some physical
quantities have to be measured in order to obtain some insights on the
mechanical properties of the structure. In practice, any experimental process
is always affected by a large variety of physical phenomena that cannot be
controlled and predicted, which leads to a discrepancy between the structural
response and the observed measurements. Some of them are [Taylor, 1997]:

• measurement noise: it is mainly due to the mode of operation of the

61



Chapter 4. Stochastic optimal sensor placement

sensors and to the measurement chain, i.e. all the components of the
monitoring system which allow to handle and manage the raw data
(e.g. data acquisition system, data storage);

• imperfect realization of the measurement setup;

• effects of the environmental conditions;

Moreover, once the measurements are acquired, another source of error is
associated with the post-processing phase, when the structural conditions
have to be estimated (e.g. through some damage indexes), due to the nu-
merical error of the associated mathematical model. For instance, using
a FE model for predicting the structural response, sources of uncertainties
can be due to the model discretization (mesh size) or the employment of
linearization approaches for non-linear structural problems.
In principle, all these effects could be taken into account from a determinis-
tic point of view, if it would be possible to model and, therefore, predict all
the physical phenomena inducing uncertainty. In practice, it is possible to
handle these uncertainties by treating the measurements and the parameters
to be estimated as random variables. Within this stochastic approach, the
Bayesian statistical framework allows to take into consideration these un-
certainties and back-propagate them on the quantities to be estimated, i.e.,
the mechanical properties of the structural system to be investigated, such as
Young’s modulus or structural stiffness. The variation of these parameters
can then be used as a possible indication for damage growth. It is straight-
forward to assume that the higher the effectiveness of the SHM system is,
the lower the uncertainties associated with the estimated parameters are.
It is important to underline that the uncertainties relating to the parameter
estimates depend not only on the measurement noise (related with the type
of sensors employed), but also on the "amount of information" provided
by the sensor network, i.e., the number and the spatial configuration of the
sensors. Therefore, these experimental settings can be treated as unknown
variables to be optimized, in order to obtain an effective SHM system, which
guarantees a low uncertainty related with the quantities to be estimated.
A stochastic approach for the optimal sensor placement was introduced
in [Heredia-Zavoni and Esteva, 1998], relying on the minimization of a
Bayesian loss function: the instrumentation settings are chosen such that
the expectation of the squared error loss function between the estimated
and the target values of the quantities to be estimated is minimized. The
idea of using the concepts of entropy and mutual information for evaluating
the amount of information which can be inferred from an experiment and,
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hence, in the design of sensor networks, was first introduced in [Sobczyk,
1987].
In [Papadimitriou et al., 2000,Papadimitriou, 2004], a strategy for designing
the SHM system, in terms of optimal spatial configuration, was proposed:
the sensors positions are selected such that the information entropy is min-
imized. The information entropy is defined as follows [Shannon, 1948]:

H(D) = −
∫

p(θ |D)lnp(θ |D)dθ (4.1)

where θ represents the parameters to be estimated, D the measured data
and p(θ |D) the conditional probability of observing θ, given D. In or-
der to numerically evaluate the objective function defined in Eq. (4.1),
the integral terms araising from an analytical manipulation of the informa-
tion entropy, were approximated through the Laplace method of asymptotic
expansions [Bleistein and Handelsman, 1975], which allows to obtain an
associated algebraic formulation. In practice, the objective function is ap-
proximated through a smooth function centered on a nominal value of the
parameters, which has to be a priori chosen.
To what it concerns the optimization methods for inferring the optimal
configuration, in most of the studies proposed in literature, the problem
has been treated as a discrete optimization problem and, therefore, Genetic
Algorithms (GAs) have been exploited in [Yao et al., 1993, Chisari et al.,
2017]. According to an alternative greedy approach proposed in [Kammer,
1991, Papadimitriou, 2004], the optimal configuration can be obtained by
splitting the optimization problem into a number of sub-problems, where
only one sensor is added at each step, so that the increase in the objective
function value is maximized.
In the present work, the optimal SHM design is treated as an optimal
Bayesian experimental design, where the experimental settings have to be
determined so that the information on the quantities to be estimated, as
provided by the measurements, is maximum with respect to the parameters
to be estimated. From a Bayesian viewpoint, the prior knowledge (defined
through an appropriate probability density function) of the parameters is
updated through the measurements and the resulting posterior probability
density function is obtained. The optimal sensor configuration corresponds,
then, to themaximization of the expected Shannon information gain between
the prior and the posterior [Lindley, 1956], i.e., the difference between the
information entropy associated to the assumed probability distributions of
the parameters to be estimated, before performing themeasurements (prior),
and the updated ones, through the observed data (posterior).
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The numerical computation of the aforementioned objective function is per-
formed through aMonte Carlo sampling approach [Ryan, 2003]. Compared
to the aforementioned Laplacian approach [Papadimitriou et al., 2000], there
is no need of approximating the objective function in correspondence with
a certain value of the parameters: therefore, the whole variability of the
parameters to be estimated (defined through the associated prior probability
distribution) can be exploited. In order to implement a Monte Carlo-based
approach, the repeated evaluation of the system response is needed, leading
to a high computational cost. Since this approach would be unfeasible,
especially for large structures or non-linear problems, surrogate modeling
allows to replace the original computationally demanding model with a
cheaper one, by mimicking the relations between the mechanical param-
eters and the model response. Two strategies for building the surrogate
models are here presented and compared: one, which is based on the
Polynomial Chaos Expansion (PCE) [Ghanem and Spanos, 1990,Blatman
and Sudret, 2010, Spiridonakos et al., 2016], is suitable for 1-dimensional
problems [Huan and Marzouk, 2013], the second one, which relies on the
synergy of surrogate models and model order reduction methods, is suitable
for complex high-dimensional systems. The PCE-based surrogate models
allow to naturally take into account the uncertainties related with the input
variables of the model, by assigning the relevant probability distributions,
and to efficiently compute the associated outputs.
The resulting stochastic objective function can be maximized by exploiting
some suitable optimization evolutionary strategies [Hansen, 2006].
If not only the sensor configuration, but also other experimental settings,
i.e., the number and type of sensors, have to be optimized, the theoretical
framework can be extended, according to a cost-benefit approach.
The remainder of the chapter is organized as follows: first, the theoretical
framework of optimal Bayesian experimental design, for the OSP problem
in SHM, is presented in Section 4.2. Then, the strategies for numerically
approximating the objective function are presented in Section 4.3 and the
optimization procedure is described in Section 4.4. In the end, a compre-
hensive method for the optimal design of the SHM system is described in
Section 4.6.
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4.2 Theoretical framework

4.2.1 Bayesian inference

Two events H and D are considered. The conditional probability of occur-
rence of event H, given that D takes place, is defined as follows:

P(H |D) =
P(H ∩ D)

P(D)
(4.2)

where the symbol P(2) refers to the probability of 2 and ∩ indicates the
intersection of the two events H and D.
Considering an experiment, suppose that H is an experimental hypothesis
and D represents the data which can affect the hypothesis. Bayes’ rule
allows to compute the conditional probability P(H |D) as follows [Jeffreys,
1973]:

P(H |D) =
P(D |H)P(H)

P(D)
(4.3)

where P(H |D) is the posterior probability and P(H) is the prior probability
of H, which represents the probability of occurrence of H, before D is avail-
able, i.e. before performing the measurements. P(D |H) is called likelihood
and it represents the plausibility of outcome D, given the hypothesis H;
P(D) is named as model evidence or marginal likelihood and it is a neutral
factor with respect to the values of H.
Bayes’ rule, here defined for the discrete events H and D, can be applied to
continuous-valued parameters, i.e., variables characterized by an uncount-
ably infinite number of possible values. The following random vectors are
defined: the parameter vector θ = [θ1 θ2 · · · θnθ ] ∈ R

nθ to be estimated, and
the data y ∈ Rny obtained through a set of sensors, where nθ is the number
of parameters and ny is the number of measurements. A prior pdf p(θ) is
assumed to represent the prior knowledge on θ. The prior pdf can be suit-
ably chosen in order to take into account past information, such as previous
experiments or the subjective belief of an experienced expert. If no previous
information is available on the values of the parameters, an uninformative
distribution can be considered. The pdf associated with the parameters can
be updated, taking into account the data y, through the following:

p(θ |y) = p(y|θ)p(θ)
p(y) (4.4)

The expression p(·|·) represents the conditional pdf of the first term with
respect to the second one. Thus, p(θ |y) is the posterior pdf, i.e. the prob-
ability density function of θ, given y, p(y|θ) is the likelihood (also called
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sampling distribution), and p(y) is the evidence, i.e., the distribution of the
observed data marginalized over θ.
The Bayes’ theorem is particularly suitable for structural health monitoring
problems: given a structure, a class of mathematical models can be de-
fined to describe the structural behaviour of the system . In this view, the
aforementioned parameters θ are the model parameters, i.e., geometrical or
mechanical properties (such as Young’s modulus, bending stiffness, etc.),
and y are the data which are provided through the monitoring system.
Bayesian model updating was first introduced for structural applications
in [Beck and Katafygiotis, 1998,Katafygiotis and Beck, 1998] and it allows
to update the prior knowledge of θ, which is represented by p(θ), and com-
pute the posterior probability density function p(θ |y), i.e., the maximum a
posteriori estimate θ∗ = arg maxθ[p(θ |y)] and the related uncertainty.

4.2.2 Bayesian experimental design

The ability of estimating the uncertainties relating to the parameter vector θ
through Bayesian model updating can be affected by two factors:

• the model, which relates parameters θ and measurements y;

• the experimental settings, such as the position and type of sensors of
the SHM network, or, in other words, the information provided by the
measurements y.

The first issue, i.e., the problem of selecting the optimal class of models,
has been addressed in [Beck and Yuen, 2004]. In other words, the goal is to
choose the type of model which is more compatible with the data, i.e., that
provides a better fit, rather than finding the associated model parameters.
Since in the present work we are interested in optimally designing the sensor
network, we assume that the model class is already specified and, therefore,
its optimal selection will not be here treated.
The second problemcan be tackled by following the general-purpose decision-
theoretic approach introduced in [Lindley, 1956,Raiffa and Schlaifer, 1961]:
in this case the decisions to be taken before performing the measurements
are basically the choice of the experimental setting, in terms, e.g., of the
spatial sensor configuration, the number of sensors, the type of sensors, etc..
To this end, an additional term, the design variable d ∈ Rnd , is introduced
in the formulation, where nd is the dimension of the design variable vector.
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The Bayes’ theorem in Eq. (4.4) is then slightly modified as follows:

p(θ |y, d) = p(y|θ, d)p(θ |d)
p(y|d) (4.5)

Here, all the previously introduced probability distributions are conditioned
with respect to the design variable d, as both the measurements and the
parameters to be estimated depend on the experimental settings.
According to [Lindley, 1956], the expected utility of the associated experi-
ment is a function of the design settings d and it can be quantified through
the following expression:

U(d) =
∫
Y

∫
Θ

u(d, y, θ)p(θ |y, d)p(y|d)dθdy (4.6)

In Eq. (4.6), Y and Θ respectively represent the domains of the measure-
ments y and of the parameters θ. Therefore, p(θ |y, d) is the conditional pdf
of θ, given y and d, while p(y|d) the conditional pdf of y, given d. From
a decision-theory perspective, the expected utility allows to choose which
action should be performed in order to achieve a certain goal, when the con-
sequences of the chosen act are uncertain. Therefore, it can be described
as a weighted average of the utilities of each possible outcomes of a certain
action. The weights reflect the probabilities that an action would lead to a
certain outcome. In the case at hand, the action is represented by the design
of the monitoring system and the goal is the estimation of the parameters.
The function u(d, y, θ) is called utility function and it is a scalar measure
of the usefulness of the experiment, i.e. it quantifies the extent to which
certain measurement values are preferable with respect to the goal of the
monitoring system.
The optimal experimental design d∗ defines the experimental settings for
which the utility of the experiment is maximized:

d∗ = argmax
d∈D

[∫
Y

∫
Θ

u(d, y, θ)p(θ |y, d)p(y|d)dθdy
]
= argmax

d∈D
[U(d)]

(4.7)
whereD is the design space, which is the domain of all the possible exper-
imental settings (e.g. the locations where the sensors could be placed).
The rationale of the optimization problem is to find the experimental set-
tings d for which the usefulness of the experiment is maximum in regards
with its purpose. Since the design of the experiment has to be put in place
before performing the measurements, i.e., under no knowledge of y and θ,
the objective function of the optimization problem is not directly defined as
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u(d, y, θ), but its expectation U(d) with respect to y and θ. In other words,
the optimal point d∗ cannot be found by simply maximizing u(d, y, θ) for
specific values of y and θ since these are random variables. Therefore, the
optimal point should be looked for in the design space D, by exploring the
probability distributions p(θ |y, d) and p(y|d) in the domains Y and Θ.
In the problem here considered, i.e., the Bayesian model updating for SHM,
the design variable d can in principle take into account all the settings of a
sensor network, which can affect the accuracy of the parameter estimation,
such as the position of the sensors on the structure, the number of measure-
ment channels or the measurement error. In the remainder of the chapter,
the number and type of sensors will be assumed to be characteristics of
the sensor network and, therefore, they will be treated as constants in the
optimization problem. Thus, the design variable d will be a function of the
sensor spatial configuration only and, therefore, only the OSP problem will
be considered. Nevertheless, in Section 4.6, the comprehensive optimiza-
tion problem will be taken into consideration and the design of the sensor
network, both in terms of spatial configuration, number and type of sensors,
will be discussed.
It can be underlined that the approach based on the Bayesian experimental
design can be employed also to optimize the excitation [Green and Worden,
2014] such that the accuracy of the parameter estimation is maximized.
This can be obtained by parametrizing the excitation and include its char-
acteristics, such as location and amplitude of the acting loads, in the design
variable d. Although the input-output optimization is of interest for ob-
taining an effective SHM system, the excitation optimization is beyond the
scope of this thesis.
The choice of u(d, y, θ) depends on the purpose of the experiment, e.g.
either estimation of the parameters or prediction of the future states of the
mechanical system. In [Chaloner andVerdinelli, 1995] a thorough review of
utility functions is discussed. In the case at hand, the aim of the experiment
is the inference (estimation) of the parameters θ: according to [De Groot,
1962], a suitable utility function is then the Kullback-Leibler Divergence
(KLD) [Kullback and Leibler, 1951, Kullback, 1959], also called relative
entropy. In the simplest case where the model is supposed to be linear and
the posterior pdfs can be assumed as Gaussian, the optimization problem
results in the so-called Bayesian D-optimality [Bernardo, 1979], i.e. the
maximization of the determinant of the information matrix of the measure-
ments.
Let us now recall the definition of the KLD from a theoretical point of view.
Considering two generic probability distributions P and Q of a random
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variable x, the KLD from P to Q is defined as:

DKL(P | |Q) =
∫
X

p(x) ln p(x)
q(x)dx (4.8)

where X is the domain of x, p(x) and q(x) are the related probability
densities. The KLD represents the measure of information increase from Q
to P. If the two distributions are identical, i.e. P = Q, then DKL(P | |Q) = 0.
For the Bayesian inference problem, the goal of the optimization is to design
the sensor network such that the highest possible information is provided by
themeasurements ywith respect to the parametersθ to be estimated. In other
words, the design variable d has to be chosen such that the information gain
between the prior pdf p(θ |d) and the posterior pdf p(θ |y, d) is maximum.
The resulting utility function is:

u(d, y, θ) = DKL [p(θ |y, d)| |p(θ |d)] =
∫
Θ

p(θ |y, d) ln p(θ |y, d)
p(θ |d) dθ (4.9)

It is important to underline that in Eq. (4.9) the parameter vectorθ represents
a dummy variable in the integral: thus, the utility function is not a function
of θ. Since u(d, y) = u(d, y, θ) and, using Eq. (4.9), the objective function
in Eq. (4.6) becomes:

U(d) =
∫
Y

∫
Θ

u(d, y)p(θ |y, d)dθp(y|d)dy =

=

∫
Y

u(d, y)p(y|d)dy =

=

∫
Y

∫
Θ

p(θ |y, d) ln p(θ |y, d)
p(θ |d) p(y|d)dθdy

(4.10)

The optimization statement in Eq. (4.7) is then re-written as:

d∗ = argmax
d∈D

[∫
Y

∫
Θ

p(θ |y, d) ln p(θ |y, d)
p(θ |d) p(y|d)dθdy

]
= argmax

d∈D
[U(d)]
(4.11)

With this choice of utility function, the resulting objective function U(d) is
called expected gain in Shannon information [Shannon, 1948] or Lindley
information measure [Lindley, 1956]. The rationale of the optimization
formulation is to design the monitoring system such that the decrease of en-
tropy between the prior and posterior distributions, due to themeasured data,
is maximized; in other words, the optimal sensor configuration guarantees
that the associated observations are more informative, for the parameters
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inference, than those obtained from any alternative configuration.
In the optimization approach herein described, the model class is assumed
to be known, i.e., it is implicitly chosen a priori. If one would like to guar-
antee the robustness of the optimal sensor placement with respect to the
model class, a new objective function could be defined as the weighted sum
of the expected Shannon information gain associated to the different model
classes. On the other hand, if the scope of the SHM optimization would
be the selection of the optimal model class, instead of the prediction of θ,
different metrics, such as the Jensen Shannon Divergence (JSD) should be
used, as shown in [Vanlier et al., 2014].
As shown in Appendix A, the expected gain in Shannon information turns
out to be equal to the Mutual Information (MI) I(θ, y) between the parame-
ters θ and the measurements y [Cover and Thomas, 2012]. Since the mutual
information is a measure of "similarity" or, in other words, the amount of
shared information between two random variables, a different interpretation
of the optimization problem can be highlighted: the optimal design d∗ guar-
antees that the reduction of uncertainty related to θ due to the knowledge
of y is maximized. The concept of mutual information will be further
defined and discussed in Chapter 6.

4.3 Numerical approximation of the objective function

In order to solve the optimization problem, a strategy to compute the ob-
jective function U(d) defined in Eq. (4.11) is needed. Since, for general
cases, the double integration cannot be performed analitically, a numerical
procedure has to be followed. Using Eq. (4.5) and applying the quotient
rule for logarithms, the objective function can be re-written as (see [Ryan,
2003,Huan and Marzouk, 2013]):

U(d) =
∫
Y

∫
Θ

p(θ |y, d) ln p(θ |y, d)
p(θ |d) p(y|d)dθdy =

=

∫
Y

∫
Θ
{ln[p(y|θ, d)] − ln[p(y|d)]}p(y|θ, d)p(θ)dθdy

(4.12)

Without loss of generality, the prior distribution is supposed to be indepen-
dent of the design variable d, having therefore: p(θ |d) = p(θ). According
to this assumption, the prior knowledge of the parameters is not affected by
the experimental settings.
The double integration in Eq. (4.12) can be approximated using the associ-
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ated Monte Carlo (MC) estimator [Huan and Marzouk, 2013]:

Û(d) = 1
Nout

Nout∑
i=1

{
ln

[
p(yi |θi, d)

]
− ln

[
p(yi |d)

]}
(4.13)

where Nout is the number of samples θi and yi to be drawn respectively from
the prior pdf p(θ) and the posterior pdf p(y|θ = θi, d). The prior pdf p(θ)
is supposed to be chosen by the designer and it reflects the prior knowledge
on the parameters distributions, before the measurements are performed.
The term p(yi |d) can be computed through an analogous MC estimator as:

p(yi |d) ' 1
Nin

Nin∑
j=1

p(yi |θ j, d) (4.14)

where Nin is the number of samples θ j to be drawn from the prior pdf p(θ).
The computational cost of the MC approach can be reduced by using the
same batch of samples θi = θ j , both for Eqs. (4.13) and (4.14); the
resulting required number of likelihood function evaluations decreases from
Nin × Nout to N = Nin = Nout . On the other hand, the associated estimator
bias increases proportionally to 1

Nin
(see [Ryan, 2003]).

The resulting MC estimator Û(d) is, then:

Û(d) = 1
N

N∑
i=1

ln
[
p(yi |θi, d)

]
− ln


1
N

N∑
j=1

p(yi |θ j, d)

 (4.15)

Considering Eq. (4.15), the estimation of U(d) basically depends on the
evaluation of the likelihood function p(yi |θ j, d). A benefit of this approach
is that no evaluations of the posterior pdf p(θ |y, d), which is unknown prior
to executing the measurements, are required.
Following Appendix A, a possible alternative to the MC estimator here pre-
sented would be to exploit the numerical approaches which are usually used
for evaluating the MI, as reviewed in [Walters-Williams and Li, 2009]. The
most commonMI estimator is the Kraskov estimator, which was introduced
in [Kraskov et al., 2004]. It is based on the k-nearest neighbor method,
which a classification algorithm for pattern recognition [Fix and Hodges Jr,
1951], and it is defined as follows:

Û = −ψ(k) + ψ(N) + log(cnθ + cny) +
nθ + ny

N

N∑
i=1

log ε(i) (4.16)
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In Eq. (4.16) ψ is the Digamma function, N is the number of samples,
nθ and ny are the dimensions respectively of θ and y, cnθ =

πnθ/2

Γ(nθ+1) and
cny =

πny/2

Γ(ny+1) are the volumes of the associated dimensions unit balls (i.e.
the regions enclosed in associated multi-dimensional hyperspheres), Γ is the
Gamma function, ε(i) is twice the distance between the generic point (θ y)
in the joint domain Θ ∪ Y and its k-th nearest neighbors. The reader may
refer to [Altman, 1992]) for more details on the k-th nearest neighbors al-
gorithm.
As it will be highlighted in Section 4.3.1, in theMC estimator the knowledge
of the likelihood function is naturally taken into account. On the other hand,
the MI estimators depend only on the sampled values of θ and y, as the MI
has been developed in the context of machine learning applications [Vergara
and Estévez, 2014], as a purely data-driven method. Therefore, although
the MI estimators are computationally faster, they are intrinsically less ac-
curate, therefore resulting in a noisier objective function. The two different
numerical approaches will be compared in Section 5.3.

4.3.1 Model response

The evaluation of the likelihood function p(yi |θ j, d) in Eq. (4.15), for the
SHM problem, will be now discussed.
Let us consider a structural system, whose SHM sensor network has to be
designed, and assume it is subjected to a set of forces and constraints. Let
us denote as v ∈ Rndof the response of the associated structural model,
obtained through a numerical method, e.g. the FE method. The number of
degrees of freedom ndo f = nnodesndo f /node of the FE model depends both
on the number of nodes nnodes of the structural model and on the number of
degrees of freedom per each node ndo f /node. Having defined an orthogonal
reference system and the associated axes x1, x2, x3, each node can feature
3 displacements ux1 , ux2 , ux3 along the axes and 3 rotations ϕx1 , ϕx2 , ϕx3
about the same axes.
The measurements y can be related with the structural response through the
following model:

y = H(v, ε) (4.17)

where H is a functional which relates responses and observations, ε ∈ Rny

represents the prediction error, which accounts for both the measurement
error, associated with the sensors characteristics, and the model error, asso-
ciated with the numerical approximation introduced by the FE method. The
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associated pdf pε = p(ε) is commonly assumed to be a Gaussian white noise
N(0,Σ), where 0 ∈ Rny is the mean vector and Σ ∈ Rny×ny the covariance
matrix. This assumption is required for the applicability of many Bayesian
inference methods (e.g. Kalman filter [Kalman, 1960]). Nevertheless, other
types of prediction errors, such as coloured noise, should be assumed for
specific applications [Kuhlmann, 2003,Chang, 2014].
Assuming a linear operator H, Eq. (4.17) becomes:

y = Lv + ε (4.18)

ThematrixL ∈ Rny×ndof is an operator which aims at selecting the measured
response components. The generic element of this Booleanmatrix is defined
as follows:

Li j =

{
1 if the i-th observation corresponds to the j-th DOF
0 if the i-th observation does not correspond to the j-th DOF

(4.19)
According to the definition in Eq. (4.19), L depends on the position of
the sensors on the structure, i.e., on the model nodes where the sensors are
placed, as well as on the orientation and physical quantity to be measured,
either displacements or rotations about the directions x1, x2 and x3. In other
words, the operator L = L(d) is a function of the design variable d.
Since the model response v depends on the model parameters θ, then the
measurement model in Eq. (4.19) can be re-written as follows:

y = L(d)v(θ) + ε =M(d, θ) + ε (4.20)

where M(d, θ) : Rnd × Rnθ → Rny is the forward model operator which
relates the model inputs, i.e. the design variable d and θ, with the measure-
ments y.
Following [Yuen, 2010], the likelihood function can then be expressed as:

p(yi |θ j, d) = pε
(
yi −M(d, θ j)

)
(4.21)

By recalling the MC estimator in Eq. (4.15) and the likelihood function in
Eq. (4.21), and knowing that yi = M(d, θi) + εi (from Eq. (4.20)), the
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resulting estimator of the expected Shannon information gain is:

Û(d) = 1
N

N∑
i=1

ln
[
pε

(
yi −M(d, θi)

)]
− ln


1
N

N∑
j=1

pε
(
yi −M(d, θ j)

)
 =

=
1
N

N∑
i=1

ln
[
pε(εi)

]
− ln


1
N

N∑
j=1

pε
(
M(d, θi) + εi −M(d, θ j)

)
 =

=
1
N

N∑
i=1

{
ln

[
pε(εi)

]}
−

1
N

N∑
i=1

ln


1
N

N∑
j=1

pε
(
M(d, θi) + εi −M(d, θ j)

)


(4.22)

According to Eq. (4.22), the MC estimator is obtained through the sum of
two terms: the first one depends on the prediction error only, the second
one also on the design variable and on the parameters.
If the prediction error ε is independent of the design variable d, i.e. p(θ |d) =
p(θ), the first term turns out to be independent on d and, therefore, it can be
dropped from the objective function, as we are not interested in the precise
value of the expected Shannon information gain, but only in the optimal
values d∗. In this case, the resulting estimator would be biased by a constant
term, but the computational time required for the evaluation of the objective
function would be significantly reduced. This case occurs, for instance,
when a unique type of sensor is planned to be installed at all the sensor
nodes. The related prediction error has a constant variance across all the
measurement channels: the covariance matrix results to be Σ = σ2I, where
σ is the standard deviation and I ∈ Rny×ny is the identity matrix.
On the other hand, if the standard deviation σ = σ(d) depends on the design
variable, the first term has to be kept in the objective function as it affects
the optimal solution. Such case could occur when, for instance, the variance
depends on the amplitude of the response: the variance of the c-th response
component is σc = rGc(θ, d), where r is a proportionality ratio. Another
example of design-dependent variance occurs when the prediction errors at
different positions are spatially correlated due the structural response, as it
has been considered in [Papadimitriou and Lombaert, 2012] by expressing
the covariance matrix as a function of the distance between each pair of
sensors.

4.3.2 Surrogate modeling

The computational cost of the MC estimator in Eq. (4.22) is mainly due
to the repeated evaluations of the model response M(d, θi), for each of the
N samples θi = θ j drawn from the prior pdf p(θ). From a practical point
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of view, the computation of Û(d) can become unfeasible either because of
the very high number of degrees of freedom (DOFs) in the FE models,
e.g. for very large real structures, or because of the presence of model
non-linearities, due to geometrical or mechanical reasons.
In order to reduce the overall computational cost of the evaluation of the
model response, the exploitation of surrogate models has been proposed
in [Huan and Marzouk, 2013]. A surrogate model (or metamodel) aims at
rebuilding the relationship between input and output, as computed through
the original model, by means of a more computationally efficient formula-
tion. It is important to underline that these approaches rely on the input-
output data only, in a sort of data-driven black-box approach: thus, the
associated underlying physics of the problem is therefore lost. This means
that, if the physical behavior of the problem changes, a new surrogate model
should be built, using the input-output data of the relevant original model.
One of the most widely exploited types of surrogate models is based on
the Polynomial Chaos Expansions (PCE). The PCE was first introduced
in [Wiener, 1938] for standard Gaussian random variables and then gener-
alized for various other probability distributions in [Ghanem and Spanos,
1990, Xiu and Karniadakis, 2002, Xiu et al., 2002, Xiu and Karniadakis,
2003].
The approach is first of all framed in a general context. The input vectorial
random variable χ ∈ RM is defined, with independent components and a
joint probability density function pχ (with M being the dimension of the
input vector). Let us consider the output vectorial random variableΥ ∈ RnΥ ,
which represents the model response (with nΥ being the dimension of the
input vector).
For the sake of simplicity, a scalar numerical model Υ = M(χ) is now
considered, where Υ ∈ R is the scalar output random variable. The model
is assumed to have a finite variance, such that:

E
[
Υ

2] = ∫
Dχ

M2(χ)pχ(χ)dχ < ∞ (4.23)

where the symbol E [2] stands for the expected value of 2.
The PCE of the scalar modelM is:

Υ =M(χ) =
∑
α∈NM

φαΨα(χ) (4.24)

whereΨα are multivariate polynomials which are orthonormal with respect
to pχ, i.e.:

E
[
Ψα(χ)Ψβ(χ)

]
= δα,β (4.25)
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where δα,β = 1 if α = β and δα,β = 0 otherwise. α = {α1, ..., αM} ∈ N
M

is a multi-index associated with the components of Ψ and φα ∈ R are the
related coefficients. Considering real applications, the sum is truncated
by retaining only those polynomials whose total degree |α| is less than a
certain value p, as follows:

Υ ' MPCE (χ) =
∑
|α|≤p

φαΨα(χ) (4.26)

where |α| =
∑M

i=1 αi, p is the degree of the retained polynomials, andMPCE

is the surrogate model.
For vectorial models M, the response Υ can be approximated component-
wise, by building a set of nΥ PCE surrogate models.
In order to compute the unknown polynomial coefficients φα, both intru-
sive and non-intrusive methods can be adopted [Le Maître and Knio, 2010].
Intrusive approaches rely on the projection of the original computational
model onto the subspace spanned by the PCE, through the Galerkin pro-
jection [Ghanem and Spanos, 2003]. While these methods present some
advantages, e.g. no multi-dimensional Gauss quadrature are needed and
the increase of the computational cost is linear with the number of basis
polynomials, they are not suitable for general cases, since they usually re-
quire the custom modification of the computational solver. According to
these methods, the variables in the governing equations are replaced with
their polynomial chaos expansions. For instance, for linear structural FE
problems, the stiffness matrix and the response vector are approximated
through a truncated PC expansion, leading to a linear system of equations
to be solved [Herzog et al., 2008].
On the other hand, non-intrusive methods allow to compute the bases by
simply processing a batch of sampled input variable χ and the correspond-
ing model evaluationsΥ, which form the so-called experimental design. No
manipulations of the FE solver are needed, making this approach particularly
suitable for general purpose problems. Two methods can be used for com-
puting the coefficients in a non-intrusive way: projection approach [Ghiocel
and Ghanem, 2002,Le Maitre et al., 2002], where the computation of each
coefficient is formulated as a multidimensional integral, and least-square
minimization [Berveiller et al., 2006].
The main advantage of the second approach is that an arbitrary number of
samples can be used in order to estimate the coefficients, while the first one
requires the points to lie according to the chosen quadrature rule. Thus, the
second method will be here employed.
The corresponding formulation of the least-square minimization problem
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is:
φ̂ = arg min

φ
E

{[
φTΨ(χ) −M(χ)

]2
}

(4.27)

where φ̂ is the set of coefficients to be estimated. In order to reduce the
computational cost of the least-square approach, a method based on least
angle regression (LAR) and introduced in [Blatman, 2009,Blatman and Su-
dret, 2011] is here adopted. The method basically relies on the selection of
the most significant coefficients of the PC expansion, allowing to reduce the
number of model evaluations which are required to build the experimental
design for the coefficient estimation.
The types of PCE bases to be employed depend on the type of pdfs of the
input variables, as they have to be orthonormal with respect to them. In
Appendix B, the types of bases and associated pdfs are listed.
The PCE surrogate modeling strategy is here applied to speed up the com-
putation of the model response, needed in order to estimate the objective
function Û(d). Following the non-intrusive method previously described,
a set of NPCE << N samples of the input random variable χ have to be
drawn from the prior pdf pχ, then the corresponding model evaluations Υ
are computed through the FE modelM(θ, d). Once the metamodel is built,
the N samples required for the estimation of Û(d) can be computed through
the computationally efficient surrogate model.
The number NPCE of input-output samples, needed to build the surrogate
model, should be chosen by taking into account the accuracy of the meta-
model in predicting the original model response. More details about this
topic will be given in Chapter 5.
The accuracy of the PCE surrogate model employed for computing the ob-
jective function (through the MC estimator) is assessed through the Leave-
One-Out (LOO) cross-validation error, as defined in [Blatman, 2009]:

εLOO =

N∑
i=1

(
M(xi) −MPCE (xi)

)2

1 − hi

/ (
N∑

i=1

(
M(xi) − µ̂Y

)2
)

(4.28)

where µ̂Y =
1
N

∑N
i=1M(xi) is the sample mean of the experimental design

response and hi is the ith component of the vector defined as:

h = diag
(
A(ATA)−1AT

)
(4.29)

where A is the experimental matrix that contains the values of all the basis
polynomials in the experimental design points, i.e. Ai j = Ψj(χ

i), with
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i = 1, · · · , NPCE and j = 1, · · · , p − 1.
Two possible different metamodeling settings are here introduced in order
to build the surrogate model, as regards to the choice of the input and output
variable in the problem at hand:

1. the input variable χ includes both the parameters θ and the design
variable d, while the output variableΥ corresponds to the components
of the model response v at the observed DOFs;

2. the input variable χ is represented by the parameters θ, while the
output Υ is the reduced-order system response;

The two approaches are respectively explained in Sections 4.3.2.1 and
4.3.2.2.

4.3.2.1 Joint input PCE

A possible approach is to follow the procedure introduced in [Huan and
Marzouk, 2013] and consider the input variableχ as a joint random variable
of both the parameters to be estimated and the design variable, as follows:

χ =

{
θ

d̃

}
(4.30)

where the design variable d̃ is assumed to identify only one observed DOF,
such that:

d =


d̃1
...

d̃ny

 (4.31)

Each component of the joint input variable χ is sampled from the corre-
sponding pdf (which are assumed to be uncorrelated), i.e. the parameters θ
are sampled from the prior pdf p(θ) and the design variable d̃ from the
related pdf pd̃.
If the sensors are equally likely to be placed all over the structure, then a
uniform distribution over the design space pd̃ = U(D) has to be chosen.
The design spaceD should be carefully chosen in order to reflect the regions
of the structures where the sensors can be practically placed.
Each value of χ uniquely identifies one observed DOF (defined by d̃): the
corresponding output variable is, therefore, the component of the original
FE model response v associated to that DOF. With this choice of the input
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variable, the resulting output variable is 1-dimensional and, therefore, only
one PCE surrogate is needed:

v =MPCE (χ) (4.32)

whereMPCE is the PCE surrogate model and v is the scalar model response,
i.e., the component of the model response vector which corresponds with
the DOF associated to the values of d̃. The whole vectorial model response
M(θ, d) ∈ Rny can be then computed as follows:

M(θ, d) '


MPCE (χ1)

...

MPCE (χny)

 (4.33)

with χs = {θ d̃s}
T and ds being the design variable which corresponds to

the s-th measurement.
According to this formulation, the design variable d̃, which defines the
position and orientation of one sensor, is defined as follows:

d̃s = {x1
s x2

s x3
s δs}

T (4.34)

where x1
s, x2

s, x3
s are the coordinates of the location where the s-th mea-

surement is supposed to be taken; δs ∈ [1 ndo f /node] ⊂ N is a scalar integer
value which defines the measured DOF, with ndo f /node being the number of
DOFs which can be measured for each sensor node (either displacements or
rotations). Therefore, δs can assume one of the values (1, 2, 3, 4, 5, 6), which
respectively correspond to the DOFs (ux1, ux2, ux3, ϕx1, ϕx2, ϕx3).
If only one physical quantity for each sensor node can be measured, then
Eq. (4.33) can be simplified as:

d̃s = {x1
s x2

s x3
s}T (4.35)

It should be highlighted that the definition of the design variable d can
affect the effectiveness of the surrogate modeling. A possible alternative
formulation to those defined in Eqs. (4.34) and (4.35) relies on the nodal
labeling of the FE model DOFs, as follows:

d̃s = ξs (4.36)

where ξs ∈ [1 nnodes] ⊂ N is the integer index of the associated DOF. De-
spite the beneficial dimension reduction that can be reached, the adoption of
this formulation would be detrimental, as the spatial variation of the system
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response would be destroyed by the node labeling. For instance, this would
lead to consistent discontinuities of the objective function in the associated
nd multidimensional space, resulting in a very inefficient optima search.
For all these reasons, in the remainder, the formulations in Eqs. (4.34)
and (4.35), where the design variable is defined through the nodal spatial
coordinates, will be chosen.
As it will be demonstrated in Section 5.2, the formulation proposed in
this section is suitable for simple applications, e.g. when only the sensor
positions have to be optimized and/or only one physical quantity can be
measured for each FE model node.
In the most general cases, where the design variables account for both the
position and the orientation as in Eq. (4.34), the PCE surrogate would have
to represent different physical quantities, i.e., either displacements and rota-
tions in the three directions x1, x2 and x3. The applicability of this method
would become very inefficient, as 6 different response fields should be ag-
gregated in one single surrogate, therefore requiring a very high number
of samples NPCE in the experimental design in order to build a surrogate
model with a high accuracy as compared to the original FE model and, thus,
compromising the attempt of recurring to the surrogate model. One possi-
ble alternative formulation would be to build 6 different surrogate models,
one for each physical quantity.
In addition to the disadvantages here mentioned, this formulation shows to
be particularly troublesome when models representing real structures have
to be considered, where large number of nodes or complex geometries have
to be handled. In these cases, for obtaining an accurate surrogate model, a
large number NPCE of samples d̃ would be required in order the population
of design points to be sufficiently representative of the FE model node po-
sitions.

4.3.2.2 PCA-PCE

As discussed in Section 4.3.2.1, the surrogate model setting based on the
choice of θ and d as input variables is particularly suitable for simple
applications, but its use becomes troublesome whenever complex structures
have to be considered.
While the inclusion of the design variable d in the input variable allows to
reduce the number of PCE surrogate models, it leads to the aforementioned
drawbacks. On the other hand, it is possible to underline that in the original
model the only role of d is the selection of the measured DOFs, through the
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boolean matrix L(d). The computational cost associated with the selection
is negligible with respect to the one due to the computation of the system
response v(θ) through the FE model. On the basis of this consideration, a
possible alternative solution is to use the PCE surrogate model in order to
reduce the computational cost of the FE model only. In other words, the
resulting input variable is simply:

χ = θ (4.37)

as the design variable d is not considered in the surrogate model.
An additional advantage of such a choice lies in the associated dimensional-
ity reduction ofχ, from nθ+4 (Eq. (4.30)) to nθ (Eq. (4.37)). This beneficial
side effect proves particularly important for PCE-based surrogates, which
are affected by the well-known "curse of dimensionality": the number of
PCE basis terms, and, therefore, of the associated PCE coefficients to be
computed, exponentially increases with the dimension of χ [Konakli and
Sudret, 2016].
By adopting the formulation in Eq. (4.37), the output variable is the model
response v, which can be therefore approximated as follows:

v 'MPCE (θ) =


MPCE

1 (θ)
...

MPCE
ndof (θ)

 (4.38)

where the multi-dimensional surrogate model MPCE (θ) gathers all the
scalar surrogate models. According to this choice of input-output variables,
a total number ndo f of PCE surrogate models would be required, thus mak-
ing the computation unbearable. The combination of the surrogate model
with dimensionality reduction strategies allows to overcome this problem.
The Principal Component Analysis (PCA) is a statistical tool for handling
large datasets, first introduced by Pearson [Pearson, 1901] and Hotelling
[Hotelling, 1933] and developed in different formulations [Liang et al.,
2002,Wu et al., 2003] among different fields of research: Karhunen-Loeve
Decomposition (KLD) [Karhunen, 1947,Loeve, 1941] in signal processing,
Proper Orthogonal Decomposition (POD) [Kosambi, 1948] in mathemat-
ics, Singular Value Decomposition (SVD) in mechanical engineering [Mees
et al., 1987]. Some examples of the application of the POD in structural
health monitoring can be found in [Eftekhar Azam, 2014, Capellari et al.,
2014,Mirzazadeh, 2017,Mirzazadeh et al., 2017] where it has been em-
ployed for the order reduction of dynamical models in Bayesian model
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updating.
Considering the problem at hand, let us sample the model parameters
(input variable of the surrogate model) from the prior pdf θi ∼ p(θ),
with i = 1, ..., NPCE and compute the associated response vectors (output
variable of the surrogate model) vi = v(θi) through the FE model, build-
ing, in this way, the so-called experimental design of the surrogate model.
The model response data is now supposed to be gathered in the matrix
V =

[
v1 . . . vNPCE

]
∈ Rndof ×NPCE . V can be projected from the original

space onto a new space of ndo f variables, which are uncorrelated to each
other (i.e. with zero covariance):

T =WV (4.39)

where W ∈ Rndof ×ndof is a square orthogonal matrix, whose lines are
the eigenvectors of the matrix VTV and form an orthogonal basis, T ∈
Rndof ×NPCE is the matrix of the principal component scores, i.e. the repre-
sentation of V in the principal component space.
The dimension of the original response matrix V can be reduced through
the PCA by retaining only the first l << ndo f components:

Tl =WlV (4.40)

where Tl ∈ R
l×NPCE is the reduced order response matrix. Knowing that

Wl ∈ R
l×ndof is an orthonormal matrix, the original full order matrix V

can be computed by projecting it back to the full space according to the
following equation:

V =Wl
TTl (4.41)

The discrepancy between the full and reduced order response and, thus, the
accuracy of the model order reduction, naturally depends on the choice of l
and it can be quantified through the so-called relative information content:

IPCA(l) =
∑l

i=1 λi∑ndof
i=1 λi

(4.42)

where λi are the eigenvalues of the matrix VTV.
The formulation defined in Eq. (4.38) is then modified by setting the output
variable of the PCE surrogate model as the reduced-dimension response
vector tl , as follows:

tl �MPCE (θ) =


MPCE

1 (θ)
...

MPCE
l (θ)

 (4.43)
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The resulting number of required PCE surrogates is reduced to l << ndo f ,
establishing a relation between the parameters θ and the first principal com-
ponents of v.
In conclusion, by combining the PCE surrogate (Eq. (4.43)) and the PCA di-
mensionality reduction technique (Eq. (4.41)), the original response model
M(θ, d) defined in Eq. (4.20) can be approximated through the following
formulation:

M(θ, d) �MMET A(θ, d) = L(d)Wl
TMPCE (θ) (4.44)

whereMMET A(θ, d) refers to the metamodel which combines the PCA and
the PCE surrogates.
From Eqs. (4.44) and (4.22), the resulting MC estimator is then:

Û(d) = 1
N

N∑
i=1

{
ln

[
pε(εi)

]}
−

−
1
N

N∑
i=1

{
ln

[
1
N

N∑
j=1

pε
(
L(d)Wl

TMPCE (θi) + εi−

−(L(d)Wl
TMPCE (θ j)

)]}
(4.45)

4.4 Optimization procedure

In the previous sections, a numerical procedure for the estimation of the
expected information gain U(d), through the MC estimator Û(d) of Eq.
(4.15) and the use of PCE surrogate modeling, has been described. The
procedure requires to draw NPCE samples from the prior pdf p(θ), then to
build the PCE surrogate according to the formulations described in Sec-
tions 4.3.2.1 and 4.3.2.2, and use it for computing the N >> NPCE model
responses to be used in the MC estimator.
In [Papadimitriou, 2004], a sequential strategy for optimal sensor place-
ment was proposed: at each iteration, only the position of one sensor is
optimized, keeping all the other sensors fixed in the positions obtained
through the previous algorithm steps. Two possible strategies have been
highlighted:

• Forward Sequential Sensor Placement (FSSP) algorithm: in the initial
configuration only one sensor is placed and, at each iteration, the
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number of sensors is increased by one, such that the increment of
information is maximized;

• Backward Sequential Sensor Placement (BSSP) algorithm: in the ini-
tial configuration all the model nodes are populated with ndo f sensors
and, at each iteration, the number of sensors is decreased one by one,
such that the reduction of information is minimized.

The algorithm iterations are stopped when the desired number ny of sensors
to be placed is reached.
Since the position of only one sensor at a time has to be optimized, the
adoption of such strategies results in a low computational cost of the overall
optimization algorithm. On the other hand, it cannot be guaranteed that
the optimal solution, i.e., the global maximum of the objective function, is
reached, resulting in possible sub-optimal sensors configurations.
An alternative approach for the maximization of the objective function
would be to compute the MC estimator Û(d) over a search grid in the de-
sign space D, as a brute force optimization approach, and then to select
the optimal solution d which guarantees the maximum expected Shannon
information gain; this strategy is practically unfeasible, for ny > 1, as the
number of required points, for exploring the design space, would increase
exponentially with the space dimensions.
Since the estimator Û(d) is based on a Monte Carlo sampling approxima-
tion, the resulting objective function is noisy, due to sampling of both the
measurement error ε ∼ pε and of the parameters vector θ ∼ p(θ |d). As
discussed in Section 4.2.2, the prior pdf can be assumed to be independent
of the position of the sensors, i.e. θ ∼ p(θ |d) = p(θ). According to this
non-restrictive assumption, the same batch of samples θ can be used for
each value of d, resulting in a less noisy objective function. Moreover,
since there is no need to re-sample θ and re-compute the corresponding
response for each different value of d and at each iteration of the optimiza-
tion procedure, a consistent reduction in the overall computational cost is
achieved.
Due to the noisy objective function, the application of deterministic op-
timization methods [Cavazzuti, 2013] to the problem at hand could lead
to false local optima. For this reason, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) is here adopted: it is an iterative evolution-
ary derivative-free algorithm suitable for stochastic optimization problems,
introduced in [Hansen et al., 1995, Hansen and Ostermeier, 2001]. The
CMA-ES is suitable for non-linear problems and it was applied in many dif-
ferent research areas, such as energy grid optimization [Ramesh et al., 2012],
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Algorithm 3 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algo-
rithm.
Input : m ∈ Rn, σ ∈ R+, Nopt , d0
Output
:

Optimal configuration d∗

Initialize parameters cc, cσ , c1, cσ , dσ , i
while Stopping criteria in Eq. (4.46) is not met do

for j = 1, ..., Nopt do
Sample the design variable: dj = m + σγj , γj ∼ N(0,C)
Evaluate the objective function through (Eq. (4.15): Ûj = Û(dj) )

end
Update parameters
begin

Sort samples: Û(d1:Nopt ) ≤ ...Û(di:Nopt )... ≤ Û(dNopt :Nopt )

Update mean: m =
∑µ

i=1 widi:Nopt = m + σγw , with γw =∑µ
i=1 wiγi:Nopt

Cumulation for C: pci = (1 − cc)pci−1 +
√

1 − (1 − cc)2
√
µwγw

Cumulation for σ: pσ i = (1 − cσ)pσ i−1 +
√

1 − (1 − cσ)2
√
µw(Ci−1)−1/2

Update C: Ci = (1 − c1 − cµ)Ci−1 + c1 + pci−1pci−1T +

cµ
∑µ

i=1 wiγi:Noptγi:Nopt
T

Update σ: σi = σi−1e
cσ
dσ

(
| |pσ | |

E | |N(01)| |−1
)

Update i = i + 1
end

end

Bayesian uncertainty quantification [Hadjidoukas et al., 2015], groundwater
management optimization [Bayer et al., 2009] and computer science [Bliss
et al., 2014], where better performances than other existing optimization
algorithms for stochastic problems were shown [Hansen et al., 2010].
The pseudo-code of the CMA-ES is listed in Algorithm 3. The algorithm
is based on an evolutionary strategy, where, at each iteration i, a total num-
ber Nopt of samples d are drawn from a multivariate normal distribution
d j ∼ m + σN(0,C), where C ∈ Rnd×d is the covariance matrix, m ∈ Rnd is
the mean and σ is the step size. Then, the values ofm, C and σ are updated
in order for the population of new points d1:Nopt to move towards the max-
imum of the objective function Û(d) (computed through Eq. (4.15)). The
search path evolution of the design variable (i.e. the sequence of consecu-
tive steps of the mean m) is performed through the so-called "cumulation"
technique (as detailed in Algorithm 3). The vector d0 defines the initial
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conditions of the optimization procedure, while µ and µw are parameters
needed to control the update phase. The iterations are stopped whenever at
least one of the two following criteria is fulfilled:{ ��Û(dk) − Û(dk−1)

�� ≤ ρU

‖dk − dk−1‖ ≤ ρd
(4.46)

where the symbol |·| stands for the absolute value of the argument, ‖·‖
represents an appropriately chosen norm (in the problem at hand, the L2

norm has been used), ρU and ρd are parameters which allow to control the
accuracy of the solution, respectively either in terms of objective function
or design variable. These parameters cannot be chosen a priori, as they are
dependent on the specific application, on the model discretization and on
the desired accuracy.
For further details on the algorithm the interested reader may refer to
[Hansen, 2006,Hansen, 2016].
The CMA-ES offers several advantages: first of all, it is not necessary to
compute the gradient of the objective function with respect to the unknown
variable, but only the function values. Moreover, thanks to the randomized
search, it is possible to efficiently handle both noisy objective functions and
the presence of local optima.

4.5 Algorithm

The procedure for computing the optimal sensor configuration is listed in
Algorithm 4 and the corresponding flowchart is shown in Fig. 4.1.
First, the parameter vector θ is sampled from the prior pdf p(θ), which is
chosen a priori. For each sampleθi (with i = 1, ..., NPCE ), the corresponding
response vector vi = v(θi) is computed through the FE model. Then, the
dimension of the response vector is reduced from ndo f to l by performing
the PCA of V = [v1 · · · vNPCE ]. A total number l of model surrogates
is built, by considering θ as the input variable and the components of
the reduced-space vector Tl as the output variables. A fresh batch of
N >> NPCE samples θ is drawn from the prior p(θ) and the corresponding
system response is computed through the PCE surrogates, according to
Eq. (4.44). In the end, the optimal configuration is obtained through the
CMA-ES optimization method (listed in Algorithm 3), where the evaluation
of the objective function is performed through the MC estimator defined in
Eq. (4.15).
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Algorithm 4 Algorithm for the optimization of SHM sensor networks through
Bayesian experimental design.
Input : Prior pdf p(θ)
Output
:

Optimal configuration d∗

for i = 1 : NPCE do
Sample parameters values: θi ∼ p(θ)
Compute system response: vi = v(θi)

end
Perform PCA: find Wl, Tl s.t. [v1 . . . vNPCE ] = V � Wl

TTl

Compute surrogate modelMPCE (θ), which links the inputs θ with the output vl
for i = 1 : N do

Sample parameters values: θi ∼ p(θ)
Compute system response: vi =Wl

TMPCE (θi)
end
Optimization: run Algorithm 3

Figure 4.1. Graphical flowchart of the proposed procedure.
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4.6 Optimal SHM system design

In the previous paragraphs, a stochastic strategy to optimally place sensors
on a structure for estimating a set of parameters has been introduced and
discussed. As stated in Section 4.2.2, the optimization problem consisted
in determining the optimal spatial configuration d∗ such that the associated
expected Shannon information gain U(d) is maximized. Up to this point,
one main assumption has been put in place: the number of measurements
ny and the pdf pε of the prediction error have been considered as fixed pa-
rameters. It is now assumed to take into account these settings as additional
variables of the optimization problem.
ε is supposed to be sampled from a zeromeanGaussian noise pε = N(0,Σ),
where Σ is the covariance matrix. The expected Shannon information gain
would in general depend on both the sensor configuration, the number of
measurements and the prediction error, i.e. U = U(d, ny,Σ).
The prediction error accounts for both the modeling error and the mea-
surement error. Assuming independence between these two errors, the
covariance matrix can be then written as:

Σ = Σm + Σn (4.47)

where Σm and Σn respectively account for the model and the measurement
error. In [Papadimitriou and Lombaert, 2012], it has been shown that
the optimal sensor configuration can be affected by the spatial correlation
among different measurements, which is taken into account in Σm. In
practice, supposing that the correlation among any couple of measurements
decays exponentially with the distance between their locations, the spatial
correlation length controls the optimal spatial configuration (i.e., the lower
it is, the closer the sensors turn out to be placed). On the other hand, Σn
can be related with the type of sensor to be employed in the SHM system,
i.e. the instrumental noise which depends on its characteristics (such as
signal-to-noise ratio). For the sake of simplicity, it is now assumed that
there is no correlation between different measurements associated with the
measurement noise and, therefore, Σn = σ

2I.
Let us assume now that the goal of the optimization procedure is the design
of the SHMsystem in amore general setting, i.e., the spatial configuration d,
the number of sensors ny and the type of sensors are unknown and have to
be optimized. The model error Σm is assumed to be kept fixed and treated as
a constant in the optimization problem; therefore, it can affect the optimal
configuration, but it is not an object of the optimization procedure.
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The optimization statement in Eq. (4.7), thus, becomes:
(d∗, n∗y, σ

∗) = arg max
[
U(d, ny, σ)

]
(4.48)

In order to better understand how these additional design variables can
affect the objective function U, let us define the function Ū = U(d∗, ny, σ)
[Capellari et al., 2017b], which corresponds to the maxima values of the
objective function for each value of ny and σ. d∗ is then the optimal
configuration obtained by solving the relevant optimization statement, with
fixed values of ny and σ. Since d∗ depends on the choice of (ny, σ), then it
is possible to conclude that the function Ū = Ū(ny, σ) depends on (ny, σ)
only.
As analytically proven in [Papadimitriou et al., 2000] and numerically shown
in Section 5.3 [Capellari et al., 2016c], the maximum of the objective
function here considered increases as the number of sensors gets higher,
since more information is provided by the SHM system. Moreover, it can be
numerically shown that if the standard deviationσ of themeasurement noise
increases, then the information provided gets lower. Therefore, since the
function U is a monotonically increasing function with respect to ny and a
monotonically decreasing function with respect to σ, additional constraints
should be added to the unconstrained problem in Eq. (4.7).
Three types of constraints can be here highlighted:
(a) identifiability constraint: ny > niden, where niden is the minimum

number of measurements which are required in order to guarantee
identifiability of the parameters θ (see [Katafygiotis and Beck, 1998,
Yuen, 2010] );

(b) technological constraint: σ > σsens, where σsens is the lowest stan-
dard deviation of the measurement noise, associated with the sensors
available on the market which can be used to measure the chosen
physical quantities;

(c) cost constraint: C(ny, σ) ≤ B, where C(ny, σ) is the cost model of the
SHM system and B is the maximum budget which can be spent for
the SHM system.

The complete optimization problem can therefore be defined as:
(d∗, n∗sens, σ

∗) = arg max [U(d, nsens, σ)]

subject to


nsens > nobs

σ > σbest

C(nsens, σ) ≤ B

(4.49)
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The cost of the SHM network is here taken into account through the cost
model C(ny, σ). The simplest cost model consists in a constant sensor
network cost C0, which e.g. accounts for the data acquisition hardware,
database, assemblage, etc., and a variable cost, which accounts for the
sensor cost. The associated cost function is thus:

C(ny, σ) = C0 + c(σ) ny (4.50)

where c(σ) is the unitary cost per sensor. In real applications or when a
small set of sensors is available and a model cost cannot be established, the
continuous optimization problem in Eq. (4.49) is simply re-interpreted as
a discrete problem, with σ ∈ S and S being the set of possible standard
deviations associated with the available sensors.
In order to solve the optimization problem, a possible approach would be
to embed the unknown variables ny and σ in the design variable d; then, to
obtain the optimal solution through the CMA-ES algorithm (see Algorithm
3), setting up the associated constraints.
An alternative procedure, which is particularly suitable for real applications
where only a limited set of sensor types are available, is to explore the
function Ū = U(d∗, ny, σ), i.e. computing the maximum expected Shannon
information gain over a search grid of points {ny, σ}. This approach is
viable since only 2 dimensions, respectively associated with ny and σ, need
to be explored.
The optimization statement discussed so far aims at designing the SHM
sensor network, such that the information provided is maximized, given
a certain budget B. Following a classical decision making approach (see
[Khoshnevisan et al., 2002,Parnell et al., 2011]), a procedure based on cost-
benefit analysis can be alternatively followed. In the problem at hand the
benefit is represented by the expected Shannon information gain. Despite
U(d, ny, σ) cannot be directly traduced in an associated expected monetary
gain (benefit), it is possible to define a relevant utility-cost index (UCI)
[Capellari et al., 2018]:

UCI(d, ny, σ) =
U(d, ny, σ)

C(ny, σ)
(4.51)

where the associated unit of measure is [nat/e] ([nat] stands for natural unit
of information).
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The associated optimization problem would then be:

(d∗, n∗y, σ
∗) = arg max

[
U(d, ny, σ)

C(ny, σ)

]
subject to


ny > nobs

σ > σbest

C(ny, σ) ≤ B

(4.52)

This optimization formulation allows to obtain the most efficient SHM
design, i.e., to maximize the information per unitary cost.
Regarding the solution of the optimization problem, the same considerations
previously presented holds also for the case in Eq. (4.52). The optimal
solutions can be obtained by maximizing the associated objective function
UCI(d∗, ny, σ), whered∗ is the optimal spatial configuration for each {ny, σ}
in the search grid.
The application of the two strategies defined in Eqs. (4.49) and (4.52) will
be discussed in Section 5.4.
It is important to underline that, since the measurements y depend on the
loads to which the structure is subjected, then the optimal sensor placement
is necessarily dependent on the type, location and magnitude of the acting
forces. Therefore, likewise the deterministic method, if one wants to obtain
an optimal sensor placement which is robust with respect to the loading
conditions, several optimizations with different loads should be performed
and the solution should be chosen among them.

4.7 Conclusions

In the present chapter, a stochastic optimal sensor placement method for
structural health monitoring has been presented.
The goal of the strategy is to determine the optimal sensor network config-
uration such that the Shannon information gain between the prior and the
posterior pdfs of the parameters to be estimated is maximized. The sensor
positions are defined through an appropriate design variable and the corre-
sponding optimal value has to be obtained. The objective function can be
numerically approximated through a Monte Carlo sampling approach: the
resulting estimator turns out to be a double sum of terms, which depend on
the likelihood function. Since a high number of model response evaluations
is required, two procedures based on surrogate models and model order
reduction strategies have been proposed. The PCE allows to build a com-
putationally efficient meta-model in order to mimic the relation between its
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input and output variables. One option is to define a joint input variable
including both the model parameters and the design variable. This choice
implies that only one surrogate model is needed, but it requires a large
number of samples when complex geometries and multiple physical quan-
tities can be measured by the sensors. An alternative approach is to exploit
a model order reduction technique (PCA) and use the surrogate model to
compute the reduced order response as a function of the model parameters.
Since the resulting objective function is affected by noise, leading to pos-
sible undesired local maxima, an evolutionary strategy (CMA-ES) suitable
for stochastic problems has been used.
If not only the sensor configuration, but also other SHM system network
settings, i.e., number and type of sensors, have to be optimized, a compre-
hensive procedure for the optimal design has been proposed. In order to
find the optimal solution, the cost, identifiability of the model parameters θ
and technological constraint have to be taken into account. Moreover, a
different optimization problem can be established by maximizing the infor-
mation gain per unitary cost, in a sort of cost-benefit analysis.
It should be highlighted that the whole strategy is completely non-intrusive,
i.e., it does not require computation of the gradient, but exclusively relies
on model responses. Moreover, the method is general and no restrictive
assumptions, such as linearity or Gaussianity, are placed.
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CHAPTER5
Stochastic optimal sensor placement: numerical

experiments

5.1 Introduction

In this chapter, the stochastic optimal sensor placement method introduced
in Chapter 4 is applied to two structural instances.
First (see Section 5.2), a simple benchmark case, i.e., the clamped square
plate earlier described in Section 3.1.1, is considered. The surrogate for-
mulation introduced in Section 4.3.2.1 is used and its performances are
analyzed with respect to the measurement noise and to the prior pdf of the
parameters θ. The results are then compared with those obtained through
the deterministic OSP method introduced in Chapter 2.
Then, a real-size structure, i.e., the Pirelli tower in Milan, is considered
(see Section 5.3). The two meta-modeling formulations presented in Sec-
tions 4.3.2.1 and 4.3.2.2 are compared, both in terms of accuracy and
computational cost. Next, the two estimators of the expected Shannon
information gain introduced in Section 4.3, namely the Monte Carlo and
the Kraskov estimators, are considered and the associated advantages are
highlighted. In the end, the optimal solutions, in terms of sensor spatial
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configurations, are computed through the CMA-ES algorithm (see Sec-
tion 4.4).
In Section 5.4, a strategy for a comprehensive optimal design (see Sec-
tion 4.6) of the SHM system is applied to the Pirelli tower structural
system.

5.2 Optimal sensor placement on a thin square plate

The first application here considered is the structure described in Sec-
tion 3.1.1, i.e. a clamped square plate subjected to a vertical force applied
at the center point (as shown in Fig. 3.1). Please refer to Section 3.1.1 for
the description of the mechanical properties of the mechanical system.
The plate is modeled through shell elements, whose nodes feature 6 DOFs,
namely 3 displacements (ux1 , ux2 and ux3) and 3 rotations (ϕx1 , ϕx2 and
ϕx3). The same 20 × 20 FE discretization mesh used in Section 3.1.1 is
here exploited. In order to simplify the problem, the plate is supposed to
be divided in 4 regions (as shown in Fig. 5.1), hence reducing the number
of damaged zones and relevant parameters to be handled: the parameters
vector θ, which has to be estimated, includes the Young’s moduli Ei, where
the index i = 1, ..., 4 defines the associated region.
Two cases are here considered:

(a) the position of the damaged zone is assumed to be known and the goal
of the SHM network is the estimation of the Young’s modulus value
E2 at zone 2, where the damage is supposed to occur; therefore, the
parameters vector θ is defined as:

θ = {θ} = {E2} (5.1)

(b) the position of the damaged zone is assumed to be unknown and the
goal of the SHM system is to estimate the values of the Young’s
moduli at zones 1, 2, 3, 4; therefore, the parameters vector is defined
as follows:

θ = {E1 E2 E3 E4}
T (5.2)

In order to assess the OSP strategy for this benchmark problem, only the ver-
tical displacement ux3 is assumed to be measured by the SHM system: thus,
themeasurement orientation, defined through the parameter δ in Eq. (4.34),
is not considered as an unknown value to be optimized. The choice of such
a measurement will allow to easily check for the algorithm correctness,
as compared to the physics of the problem. In Section 5.2.1, the results
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Figure 5.1. Clamped plate: FE model nodes and elements numbering.

obtained assuming to measure rotations ϕx1 or ϕx2 are shown, for sake of
comparison with respect to the deterministic optimization scheme presented
in Chapter 3 (see Section 3.1.1).
The associated design variable is defined as follows:

d = {x1
1 x2

1 ... x1
ny x2

ny}T (5.3)

where ny is the number ofmeasurements. The resultingmeasurement vector
is:

y = {ux3
1 ... ux3

ny}T (5.4)

Since only one physical quantity (displacement ux3) in one direction is
supposed to be measured, the formulation based on the joint input PCE
described in Section 4.3.2.1 is applied.
Let us consider, first of all, that the position of only one sensor has to be
determined (ny = 1): the resulting optimization problem is simply 2- di-
mensional, as the sensor can be placed only in the x1-x2 plane. The input
variable of the surrogate model is defined asχ = {θ x1

1 x2
1}T . The param-

eters θ are supposed to be sampled from the uniform distributionU(0, E),
where E is the Young’s modulus of the undamaged material. No priority
placement zones are considered and, therefore, the sensor can be equally
likely placed on every location on the plate: consequently, the design vari-
able is sampled from the uniform distributionU(D), withD = (0, `)×(0, `),
where ` = 0.2 m is the side length of the plate. The pdf of the prediction
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Figure 5.2. Contour plot of the objective function Û(d) with one sensor for
case (a) and CMA-ES iteration points (NPCE = 104, p = 10, N = 5 · 104).

error ε is further assumed to be Gaussian N(0, σ2), with zero mean and
standard deviation σ = 10−5m, which is approximately equal to 1 % of the
maximum displacement.
The objective function shape can be explored by computing it on a 20 × 20
search grid. The resulting contour plots of the expected Shannon informa-
tion gain, calculated for each possible sensor position and evaluated through
the MC estimator in Eq. (4.15), are shown in Figures 5.2 and 5.3, respec-
tively for cases (a), i.e. only zone 2 is supposed to be damaged, and (b),
i.e. all zones are supposed to be damaged. The corresponding optimal
solution for case (a) is d∗ = {x1

∗ x2
∗}T = {0.4 ` 0.6 `}T , i.e. inside

zone 2, where the material property has to be estimated. On the other hand,
considering case (b), the maximum value of the objective function is at
d∗ = {0.5 ` 0.5 `}T , which reflects the symmetry of both the geometry and
the unknown parameters distribution. This reflects the results obtained in
Chapter 3, where a symmetric configuration has been achieved as well.
In the same graphs, the evolution of the solutions obtained by applying
the CMA-ES optimization procedure described in Algorithm 3 is depicted.
Each path corresponds to an algorithm run with a different initial condi-
tion d0, which is alternatively set at the 4 plate corners. The colored crosses
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Figure 5.3. Contour plot of the objective function Û(d) with one sensor for case
(b) and CMA-ES iteration points (NPCE = 104, p = 10, N = 5 · 104).

represent the values of d at the end of each algorithm step, while the red
circle corresponds to the optimal solution. It is shown that the solution is
stable with respect to the choice of the initial settings and roughly 25 ob-
jective function evaluations are sufficient to reach the maximum.
In Figures 5.4a (case (a)) and 5.4b (case (b)), the values of εLOO defined in
Eq. (5.5), for different number of samples NPCE used for the PCE surrogate
and degree p of the polynomial basis (see Appendix B), are shown. As ex-
pected, the error decreases as NPCE and p increases. Moreover, the error is
higher in case (b), since the dimension of the PCE surrogate input variable
is greater than in case (a) (see Eqs. (5.1) and (5.2)).
As specified in Section 4.2.2, the formulation based on Bayesian experi-
mental design naturally takes into account the uncertainties related with the
problem and therefore the objective function is affected by the pdfs of ε
and θ. The effect of different prediction error pdfs pε and parameters prior
pdfs p(θ) on the objective function is here assessed.
In Fig. 5.5, the contour plot of the objective function Û(d), for different
values of the standard deviation σ, is shown. It can pointed out that as σ
increases, the objective function gets noisier and several local minima and
maxima appear.
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Figure 5.4. LOO error εLOO (see Eq. (5.5)) associated to the PCE surrogate
model for cases (5.4a) (a) and (5.4b) (b).

Moreover, it is worth noting that the difference of Û(d) between the
global maxima, which corresponds to the optimal solution d∗, and the
global minima, which corresponds to the points near the clamped plate
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edges, decreases as σ increases. This means that if the prediction error is
very high (see Fig. 5.6a), the system response is practically "hidden" by
the noise and, therefore, the benefit of placing the sensor in the optimal
position, rather than in a random point, gets progressively lower.
Regarding the choice of the prior pdf p(θ), in Fig. 5.6 the optimal solution
d∗ is shown, for ny = 4 measurements, obtained by running the optimization
algorithm 10 times. The results are shown for p(θ) = U(0, E) and p(θ) =
U(0.75 E, E) respectively in Fig. 5.6a and Fig. 5.6b. It is evident that
stability is largely affected by the choice of prior distribution p(θ), due to
the fact that the support lower bound of the uniform distribution approaches
the singularity condition E = 0.

(a)
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(b)

(c)

Figure 5.5. Contour plot of the expected Shannon information gain with
(a) σ = 10−3 m, (b) σ = 10−4 m and (c) σ = 10−5 m.
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(a) (b)

Figure 5.6. Optimal design d∗ of ny = 4 measurements (NPCE = 5 · 103, p = 10,
N = 5 · 104): results of 10 algorithm runs, with prior pdf (a) p(θ) ∼ U(0, E),

(b) p(θ) ∼ U(0.75 E, E)

5.2.1 Comparisons with the deterministic OSP method

In order to compare the stochastic procedure with the deterministic OSP
method presented in Section 2.2, the values of the objective functions
defined within the two algorithms are compared for the benchmark case
described in Sections 3.1.1 and 5.2. It is here supposed to consider the
clamped square plate, where the location of damage is assumed to be un-
known (case (b)) and only the rotation ϕx2 about the axis x2 is supposed to
be observed through ny = 1 measurement.
In Fig. 5.7 the contour plot of the objective function ψ, defined in Eq. (2.2),
is shown: as expected, the optimal sensor locations reflect the problem
symmetry and the optimal measurement positions correspond to the points
where the largest variations of rotations are experienced, i.e., at points
d∗ = {0.25 ` 0.5 `}T and d∗ = {0.75 ` 0.5 `}T . In Fig. 5.8a and 5.8b
the contour plots of the expected Shannon information gain, respectively for
σ = 10−3 rad and σ = 10−5 rad, are displayed, assuming p(θ) ∼ U(0, E).
In Fig. 5.9a and 5.9b the contour plots of the expected Shannon information
gain, respectively for p(θ) ∼ U(0, E) and p(θ) ∼ U(0.75E, E), are demon-
strated, supposing σ = 10−7 rad.
It is possible to observe that both the deterministic and the stochastic meth-
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ods approximately provide the same optimal solutions in terms of sensor
placement. Nevertheless, the stochastic procedure allows to take into ac-
count additional SHM experimental settings, since the objective function
depends on both the sensor location, the standard deviation σ of the pre-
diction error and on the choice of the prior pdf p(θ). In particular, on one
hand, the maximum expected Shannon information gain increases as σ gets
lower, as more accurate measurements are provided by the sensors. On
the other hand, it decreases if the bounds of the prior (uniform) pdf are
closer, as this corresponds to a high information, which is assumed a priori
taken into account, hence before performing the measurements. As shown
in Fig. 5.8a, 5.8b, 5.9a and 5.9b, the contour plot of the expected Shannon
information gain can be slightly non symmetric due to the noise introduced
by sampling both from pε and from p(θ).
Therefore, despite the higher computational cost of the stochastic method (at
least NPCE required FE model evaluations) with respect to the deterministic
one (nθ + 1 = 5 FE model analyses, see Sections 2.3), the first framework
allows to take into account several experimental settings, i.e., d∗, σ, p(θ),
in the optimal design of the SHM network.

Figure 5.7. Contour plot of the objective function ψ (Eq. (2.2)), where rotations
ux2 are supposed to be observed.
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(a)

(b)

Figure 5.8. Contour plot of the expected Shannon information gain with (a)
σ = 10−3 rad and (b) σ = 10−5 rad (p(θ) ∼ U(0, E)).
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(a)

(b)

Figure 5.9. Contour plot of the expected Shannon information gain with
(a) p(θ) ∼ U(0, E) and (b) p(θ) ∼ U(0.75 E, E) (σ = 10−7 rad).
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5.3 Optimal sensor placement on a tall building

After the initial benchmark application considered in Section 5.2, a real
large-scale structural problem, i.e., the Pirelli Tower, a known 130 m tall
building in Milan (Italy), is here examined. The building consists of 35 sto-
ries out of ground, which are approximately 70 m long and 30 m wide. The
structural system is entirely made of reinforced concrete; 4 symmetric trian-
gular shaped cores at the two extremities are connected by T-shaped beams
(see Fig. 5.10b). The structure has been modeled using the commercial
software SAP2000 v19 (©Computer and Structures, Inc.) and the associ-
ated FE model (Fig. 5.10a) consists of 4106 nodes with 6 DOFs each, i.e.
the 3 displacements ux1 , ux2 , ux3 , and the 3 rotations ϕx1 , ϕx2 , ϕx3 , resulting
in a total number of degrees of freedom ndo f = 24, 500. The structure is
supposed to be subjected to a horizontal force in the x2 direction, applied at
the top floor (see Fig. 5.10b), following the example introduced in [Eftekhar
Azam, 2012, Eftekhar Azam and Mariani, 2018] where an online damage
detection scheme has been applied to the Pirelli tower model. The force is
assumed to be eccentric, as shown Fig. 5.10b, in order to induce a complex
mechanical response of the tower (both displacement and torsional rotation)
and, therefore, allow to better assess the employed OSP method. For further
details on the structural characteristics and on the FE model, the reader may
refer to [Barbella, 2009,Barbella et al., 2011,Eftekhar Azam, 2012].
The sensor placement is assumed to be optimized in order to estimate nθ = 6
parameters, which are specified in Fig. 5.11. The parameters are chosen
in order to make the example as general as possible: both mechanical and
geometrical properties are selected, associated to both vertical and hori-
zontal members. The chosen parameters are the Young’s moduli of the
column groups called LC and RC, the Young’s moduli of the beam groups
LB, CB and RB, the beam thickness of the group CB. The prior pdfs of
each parameter are defined in Table 5.1. The prior pdfs of the concrete
Young’s modulus is assumed to be uniform distributions, with lower and
upper bounds respectively equal to 24GPa and 36GPa. Regarding the beam
thickness, its prior pdf is considered to be a uniform distribution, with lower
and upper bounds respectively equal to 0.7 m and 0.9 m.
Unlike the previous application case (Section 5.2), it is here supposed that
measurements could be either displacements or rotations in the 3 directions;
therefore, the design variable has to be defined such that both the spatial
position of the sensor and the physical quantity to be measured are taken
into account. The associated design variable is thus defined as follows:

d = {x1
1 x2

1 x3
1 δ1 ... x1

ny x2
ny x3

ny δny}T (5.5)

105



Chapter 5. Stochastic optimal sensor placement: numerical experiments

(a)

(b)

Figure 5.10. Structural details of the Pirelli Tower: (a) FE model and (b) plan
representation.
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RCLC

(a)

LB CB RB

(b)

Figure 5.11. Locations of the nθ parameters at the 20th floor: (a) front view, (b)
plan view.

Table 5.1. Definition of parameters θ (see Fig. 5.11) and related prior pdf p(θ).

Position Physical quantity Prior pdf
Left columns (LC) Young’s modulus E [GPa] U(24, 36)
Right columns (RC) Young’s modulus E [GPa] U(24, 36)
Left beams (LB) Young’s modulus E [GPa] U(24, 36)
Right beams (RB) Young’s modulus E [GPa] U(24, 36)
Central beams (CB) Young’s modulus E [GPa] U(24, 36)
Central beams (CB) Beam thickness t [m] U(0.7, 0.9)

For the sake of comparison, both the PCE surrogate formulations de-
scribed in Sections 4.3.2.1 and 4.3.2.2 are here applied. Thus, first,
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NPCE = 1000 samples (θi, di) are respectively drawn from the pdfs p(θ)
andU(D). Thereafter, the corresponding 1000 system responsesM(θi, di),
supposing that ny = 1 (i.e. themonitoring system features only onemeasure-
ment), are computed through the original FE model. In order to compare
the FE model response and the surrogate model response, out of the 1000
input-output samples, 100 are retained for validation.
In Fig. 5.12 the FE responseΥ =MFE (θi, di) is plotted against the response
ΥPC =MMET A(θi, di) computed through the surrogate model: Figs. 5.12a
(NPCE = 20), 5.12c (NPCE = 100) and 5.12e (NPCE = 900) are referred
to the "joint input PCE" formulation defined in Section 4.3.2.1; Figs. 5.12b
(NPCE = 20), 5.12d (NPCE = 100) and 5.12f (NPCE = 900) are related
to the "PCA-PCE" formulation defined in Section 4.3.2.2. In general, the
more accurate a surrogate model is, the more points would cluster on the
bisector of the positive x1-x2 quarter. It can be underlined that the PCA-
PCE formulation outperforms the joint input PCE ones, as even with a low
number of samples NPCE = 20 there is a good agreement between real and
surrogate response. Therefore, the application of the joint input PCE would
be unfeasible for the structural case at hand, since a very large number of
samples in the experimental design of the PCE surrogate would be required.
The error between real and surrogate model can be quantified by computing
the Root Mean Square Relative Error (RMSRE), defined as:

RMSRE =

√√√
1
N

N∑
i=1

(
ΥPCE

i − Υi

Υi

)2

(5.6)

The RMSRE is exploited in this case, instead of the more common Root
Mean Square Error (RMSE) since the response magnitudes widely change
between each DOF and, therefore, the errors associated with small ampli-
tudes DOFs would be incorrectly disregarded. As shown in Fig. 5.13, the
PCA-PCE clearly guarantees a low surrogate model error, which is approx-
imately 6 orders of magnitudes lower than the one associated to the joint
input PCE formulation. Due to the problem complexity, it is possible to
conclude that the joint input PCE formulation cannot be here employed, as
it was done for the benchmark problem in Section 5.2.
In Fig. 5.14, the total computational time required for the assembly of the
surrogate models, using an Intel Core i7-4790 @ 3.60 GHz, with Microsoft
Windows 10 64 bit, are shown. Although the PCA-PCE requires a further
computational step (associated with the PCA analysis) than the joint input
PCE, it turns out to be 5-6 times faster. It is worth noting that the com-
putational complexity of the PCA-PCE is driven by the PCA (O(NPCE )3),
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Figure 5.12. Comparison between the FE model response Υ =MFE (θ, d) and the
surrogate model response ΥPC =MMET A(θ, d), adopting the formulation in
Eq. (4.33), with (a) NPCE = 20, (c) NPCE = 100 and (e) NPCE = 900, or the

formulation in Eq. (4.44), with (b) NPCE = 20, (d) NPCE = 100 and
(f) NPCE = 900.
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Figure 5.13. Root mean squared relative error between Υ and ΥPC .

see [Trefethen and Bau III, 1997], preventing its application for high values
of NPCE . Nevertheless, the removal of d from the input PCE variable yields
to a greater benefit.
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Figure 5.14. Computational time required to build the surrogate model.

While in Fig. 5.12 the response M(θ, d), which depends on both θ
and d, has been considered, the accuracy of the combined PCA-PCE sur-
rogate model only is now assessed. This can be obtained by fixing the value
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of the design variable d and comparing the responseWT
l M

PCE (θ) with the
correspondent FE outcome. The results for the point d = {0 0 130 m 2}
(the index 2 identifies the displacement in the x2 direction) at the top floor
are shown in Fig. 5.15, respectively for NPCE = 20, 50, 100. A good agree-
ment between real and surrogate model responses is demonstrated, even for
a relatively low number of samples NPCE = 50.
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Figure 5.15. Comparison between the FE model response v and the surrogate
model response WT

l M
PCE
(θ), according to the formulation in Eq. (4.44),

with (a) NPCE = 20, (b) NPCE = 50 and (c) NPCE = 100.
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Figure 5.16. Computation of the objective function U(xs3): comparison between
the MC estimator and the Kraskov estimator (N = 2 · 104, σ = 10−7).

As discussed in Section 4.3, the expected Shannon information gain can
be numerically computed either with the MC estimator Û(d) defined in Eq.
(4.15) or with the Kraskov estimator [Kraskov et al., 2004] defined in Eq.
(4.16). The two estimators are now supposed to be compared, where the
Kraskov estimator is implemented through the MATLAB toolbox proposed
in [Szabó, 2014]. In order to effectively compare the estimated values,
only one sensor, which can measure the displacement ux2 , is supposed to be
placed. The design variable is therefore d = {0 0 x3

s 2}T , with x3
s being

the height at which the sensor is placed and δ = 2 identifies the measured
direction x2. In Fig. 5.16 the objective function U(xs

3) computed with both
the methods is shown. Despite the high number of samples N = 2 ·104 here
used, the Kraskov estimator results to be noisier than the MC estimator: as
discussed in Section 4.3, this is due to the inherent different nature of the
estimators. The computation of the Kraskov estimator relies, in fact, only
on the batches of input and output samples, while in the MC estimator also
the knowledge of the likelihood function is naturally taken into account.
In Fig. 5.17, the computational times required for computing the two esti-
mators are reported. Since the MC estimator consists of a double sum (see
Eq. (4.15)), it is less efficient than the Kraskov estimator. Nevertheless, on
equal accuracy, the second estimator requires a higher number of samples in
order to reduce the numerical noise, thus compensating the possible benefit
in terms of computational cost. Therefore, the MC estimator is used in the

112



5.3. Optimal sensor placement on a tall building

0 0.5 1 1.5 2

10
4

0

1

2

3

4

5

6

7

Kraskov

MC

Figure 5.17. Computational cost of the objective function U(xs3): comparison
between the MC estimator and the Kraskov estimator (N = 2 · 104, σ = 10−7).

remainder of the shown results, as it allows to obtain accurate estimations
of the objective function with a low number N of samples.
Next, the effect of the prediction error on the expected information gain

Û(x3
s) is assessed, using the MC estimator. A zero-mean Gaussian noise is

supposed to be added to the system response, with pdf N(0, σ2I). In Fig.
5.18, the values of Û(x3

s) for different levels of standard deviation σ and
different measured directions, are shown. As demonstrated in Fig. 5.16,
Û(xs

3) ' 0 for the measured DOFs ux3 (Fig. 5.18e), ϕx1 (Fig. 5.18b) and
ϕx2 (Fig. 5.18d), as they are not affected by the parameters θ. On the
other hand, for ux1 (Fig. 5.18a), ux2 (Fig. 5.18c) and ϕx3 (Fig. 5.18f), the
related expected Shannon information gain is non-zero, as the associated
measured DOFs do carry information on the parameters to be estimated.
As already shown in Fig. 5.5, the information provided by the measured
quantity increases as the standard deviation gets lower; on the other hand,
for very high values of σ, then Û ' 0 as the system response is practically
hidden by the noise. Of course, since the force is applied in the x2 direction,
any measurement in the same direction guarantees the highest possible in-
formation gain, compared to any other sensor orientation.

It can be underlined that by decreasing the standard deviation under a
certain threshold which depends on the orientation of the sensor, the mea-
surements become informative, i.e. U > 0, for x3 > x3θ, where x3θ is the
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Figure 5.18. Expected information gain U(x3), computed through the
MC estimator, (N = 2 · 103, σ = 10−7) measuring (a) ux1 , (c) ux2 , (e) ux3 , (b)

ϕx1 , (d) ϕx2 and (f) ϕx3 .
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Figure 5.19. Optimal sensor configuration d∗, for σ = 10−7, with (a) ny = 1,
(b) ny = 2, (c) ny = 3, (d) ny = 4, (e) ny = 5, (f) ny = 6, (g) ny = 7, (h) ny = 8,

(i) ny = 9, (j) ny = 10, .
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floor height referred to the parameters (see Fig. 5.11 and Table 5.1). This
effect is higher for the measured DOFs ux2 (Fig. 5.18c) and ϕx3 (Fig. 5.18f),
as they are more affected by a variation of the parameters θ. For very low
values of σ, practically unfeasible in real applications, U > 0 also for
x3 < x3θ. In this particular application case, the information gain Û(x3

s)

is monotonically increasing, as the response sensitivity gets higher when
higher floors are considered.
Next, the most general case ny > 1, in which more than one sensor has
to be optimally placed on the structure and all the DOFs can be measured
(δ = 1, 2, 3, 4, 5, 6), is considered. The resulting design variable d is
defined as in Eq. (5.5). The optimization has been carried out by exploiting
the CMA-ES algorithm (see Algorithm 3). Since it is not possible to a pri-
ori explore the shape of the objective function in the ny multi-dimensional
space and, therefore, to predict the presence of local maxima and minima,
the algorithm has been run several times, with different values of d0 and
then only the solution which guarantees the maximum value of ˆU(d), among
all the optimal solutions, has been retained.
The optimal configurations d∗ are shown in Fig. 5.19, for (5.20a) ny = 1,
(5.20b) ny = 2, (5.20c) ny = 3, (5.20d) ny = 4, (5.20e) ny = 5, (5.20f)
ny = 6, (5.19g) ny = 7, (5.19h) ny = 8, (5.19i) ny = 9, (5.19j) ny = 10.
Each bold dot indicates the presence of a sensor in that position, i.e. its
spatial location, while the colors are related with the physical measured
quantity, i.e. the value of δs. As it can be expected, for low ny, the sensors
tends to cluster near the position of the external load (see Fig. 5.10b),
and along the direction x2. Then, by adding more sensors, also the other
directions and the rotations are considered.
In order to sum up the results shown in Fig. 5.19, the resulting maximum
values of the expected information gain Û(d∗) are reported in Fig. 5.20,
as a function of the number of measurements ny and the standard devia-
tion σ. As it can be expected, the objective function Û(d) increases as more
measurements are considered and for lower values of the standard devia-
tion. The objective function oscillations are due to possible local maxima.
Moreover, it is worth noting that the general trend of U (not considering
the numerical oscillations) appears to be a concave function, i.e. ∂2U

∂2ny
≤ 0:

most of the information is provided by the first sensors placed, and, the
more other sensors are added, the lower is the additional information gain.
After a certain number of sensors added, which depends on σ, the increase
in information becomes practically negligible.
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Figure 5.20. Dependence of the expected information gain U(d∗) on the
number ny of sensors, at varying standard deviation σ of the prediction error.

5.4 Optimal SHM system design

In the previous section, the optimization of a sensor network, only in terms
of spatial configuration, has been performed: the number and type of sen-
sors have been supposed to be fixed parameters and, therefore, they have not
been considered as unknown variables in the optimization procedure. The
optimization of the SHM system both in terms of spatial configuration d,
number of measurements ny and standard deviation σ, is now considered.
As discussed in Section 4.6, it is assumed that only the standard deviation
σ, associated with the measurement error, can be varied and is object of the
optimization procedure, while the model error is supposed to be constant.
Moreover, σ is supposed to depend on the sensor characteristics: therefore,
we aim at providing a procedure which allows to choose the optimal type
of sensor.
The same structure described in Section 5.3 is here considered and the re-
sults obtained in the previous section, in terms of optimal sensor placement,
are here employed.
The contour plot of the objective function Ū(ny, σ) = U(d∗, ny, σ) is shown
in Fig. 5.21. As expected, the maximum values of the expected Shannon
information gain increase as the number of sensors gets higher and the stan-
dard deviations decreases.
As stated in the previous section, it can be observed that the increase in
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B1

B2

B3

Figure 5.21. Contour plot of Ū(ny, σ), where lines represents the budget
constraints B = C(σ, ny), with B1 = 2000 e, B1 = 2500 e, B1 = 3000 e.

expected Shannon information gain due to each added measurement gets
lower as more measurements are considered (see Fig. 5.20). In other words,
the quantity ∂U

∂ny
is a decreasing function of ny. From a decision-making

perspective, it is interesting to underline that this behaviour corresponds to
the so-called "law of diminishing marginal utility" (also known as Gossen’s
First Law [Gossen, 1983]), which is used in economics for the optimization
of resource allocation. The law states that the marginal utility of each unit
decreases as the supply of units increases. In the problem of optimal SHM
system design, the utility of the sensor network is quantified by the expected
Shannon information gain (see [Lindley, 1956] and Section 4.2.2) and the
unit is represented by each measurement. Applications of this law to sensor
network optimization in different engineering fields can be found in [Lee and
Kulesz, 2008,Marbukh and Sayrafian-Pour, 2009,Tan and Zhang, 2015].
A simple linear cost model, as defined in Eq. (4.50), is assumed. The red
lines in Fig. 5.21 represent different budget constraints, i.e. the solutions{
σ ny

}
of the equation B = C0 + c(σ) ny, where B is the available budget

(in this example B1 = 2000 e, B2 = 2500 e, B3 = 3000 e). By using
this chart, it is possible to optimally design the SHM network: the optimal
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Figure 5.22. Pareto fronts of the SHM sensor network optimization problem, for
different values of standard deviation σ.

point
{
σ∗ n∗y

}
, for which Ū(ny, σ) is maximum, is ruled by the available

budgetary constraint and it is uniquely associated with the corresponding
optimal configuration d∗.
A different approach for decision making is to define a Pareto-like graph, as
shown in Fig. 5.22: each line corresponds to the optimal design for a certain
standard deviation, i.e. a certain type of sensors. The cost saving is defined
in order to normalize the cost function with respect to the chosen budget.
Any solution point located at the left-hand side of each line represents a
non-optimal design solution, i.e. the associated cost does not correspond
to the best choice of

{
d, ny, σ

}
. The vertical straight line represents the

budget B.
This graph can be particularly useful for the SHMdesigner in order to appro-
priately allocate the economic resources: for a certain chosen budget, it is
possible to select the type of sensors, which turns out to be the most accurate
one in Fig. 5.22, the number of sensors and their location, associated with
the maximum possible expected information gain. The trend of each Pareto
front provides an indication about the change of maximum utility due to a
variation of budget and, thus, it helps to decide if an additional spending is
justified. Moreover, fixed the value of U, it is possible to compare, from an
economic point of view, different solutions in terms of number and type of
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sensors.
The alternative design approach defined in Section 4.6 with Eq. (4.51) is
based on the maximization of the ratio UCI(ny, σ) =

Ū(d∗,ny,σ)
C(ny,σ)

. The result-
ing optimal solution depends on the cost model: in Fig. 5.24a the SHM
system is supposed to have a low initial cost, i.e. C0 = 500 e; in Fig. 5.23b
the SHM system is supposed to have a low initial cost, i.e. C0 = 1000 e. In
both cases, the most efficient employment of resources is reached if the best
sensor, in terms of measurement noise, is chosen, while the optimal number
of sensors depends on the cost model.
It is worth noting that while the objective function Ū(ny, σ) always increases
with ny and σ, the functionUCI(ny, σ) presents a maxima for ny < ∞. This
is due to the fact that, as previously discussed, the increase in information
associated with each additional sensor decreases as more sensors are con-
sidered. From a cost-benefit point of view, it is therefore worthless to add
sensors, i.e. increase the SHM cost, if the resulting benefit (the additional
expected Shannon information gain) is very low.

(a)
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(b)

Figure 5.23. Contour plot of UCI(ny, σ) =
Ū(d∗,ny,σ)
C(ny,σ)

, with (a) C0 = 500 e and
(b) C0 = 1000 e.

5.5 Conclusions

In this chapter, the application of the stochastic optimal sensor placement
method, introduced in Section 4, to two structural systems has been consid-
ered.
In the first benchmark case (Section 5.2), i.e., a clamped square plate sub-
jected to a vertical force (Fig. 3.1), only the vertical displacement has
been supposed to be measured, resulting in a 2-dimensional (coordinates x1
and x2) optimization problem. Since the sensor orientation is not part of the
design variable to be optimized, the meta-modeling formulation based on
the joint input PCE (see Section 4.3.2.1) can be employed. Due to the sim-
plicity of the problem, it has been possible to compute the optimal solution
by evaluating the objective function over a search grid. The outcome has
been compared with the solutions provided by the stochastic optimization
method CMA-ES, both for a known (Fig. 5.2) and unknown (Fig. 5.3) dam-
age location. It is worth noting that just 25 objective function evaluations
are sufficient, thanks to the low dimension of the problem. Nevertheless,
if the standard deviation of the measurement noise is high, local minima
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and maxima can appear and spoil the optimal solution search (Fig. 5.5).
Moreover, the algorithm stability can be affected by the choice of the prior
pdf p(θ) (Fig. 5.6), if near-zero values of the Young’s modulus are sampled.
By comparing the contour plots of the objective functions both for the deter-
ministic (Fig. 5.7) and for the stochastic OSP method (Fig. 5.8a, 5.8b, 5.9a,
5.9b), it is possible to can conclude that similar resulting optimal sensor
placements are obtained (Section 5.2.1). Nevertheless, the stochastic ap-
proach allows to take into account also the prediction error and the prior pdf,
resulting in a more complete optimization procedure. Moreover, it is then
possible to quantitatively compare different sensor network design through
a theoretically sound approach, by taking into account both the number,
location and pdf of the measurements.
In Section 5.3, a tall building has been considered: the problem of OSP
for estimating 6 parameters (both mechanical and geometrical) has been
analyzed (Fig. 5.11).
The accuracy of the twometa-modeling techniques described in Sections 4.3.2.1
and 4.3.2.2 has been considered: it has been shown that (Figures 5.12 and
5.13), due to the problem complexity, the PCA-PCE formulation outper-
forms the joint input PCE used in the previous case. Therefore, just a few
samples (see Fig. 5.15), NPCE ' 50, are sufficient to mimic the response of
the FE model. Despite that the computational cost to build the PCA-PCE
surrogate model increases as O(N3) (with N being the number of samples
to be drawn for the evaluation of the objective function through the MC
estimator), it results to be better than the joint PCE for low numbers of
samples (Fig. 5.14).
Two estimators of the expected Shannon information gain have been con-
sidered, namely the MC estimator (Eq. (4.15)) and the Kraskov estimator
(Eq. (4.16)). While the Kraskov estimator guarantees a lower computa-
tional cost (see Fig. 5.17), the estimated objective function is prone to a
higher numerical noise (see Fig. 5.16). This is due to the type of approach:
while the Kraskov estimator computation is only based on the sampled
points, in the MC estimator the knowledge of the likelihood function is
assumed.
The optimal solutions for different number of measurements ny have been
computed through the CMA-ES (Fig. 5.19). The optimal sensor configura-
tions tends to cluster near the force location; nevertheless, the employment
of the proposed optimization procedure allows to select also different ori-
entations. It has been then shown (Fig. 5.20) that the maximum expected
Shannon information gain of the SHM system increases as more sensors are
added to the system and lower standard deviations of the prediction error
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are considered.
In order to optimally design the sensor network, both in terms of spatial
configuration, number of measurements and type of sensors, a cost-benefit
analysis has been proposed. It has been shown that the optimal solution,
in terms of maximum information gain, does not necessarily correspond to
the most efficient one (see Fig. 5.21). The main reason is that the increase
in information gain, due to additional sensors, gets lower as more mea-
surements are considered. A Pareto-front approach can also be followed in
order to choose the best solution, both in terms of maximum information
and minimum cost (Fig. 5.22).
An alternative procedure based on the maximization of the utility-cost ratio
can be used to optimally allocate the available resources. In this case, the
optimal solution depends on the variation of the sensor network cost with
respect to the number of measurements and to the sensor type (see Figures
5.23b and 5.24a). It is worth noting that the same considerations holds
also if only a few type of sensors are available and, therefore, if it is not
possible to establish a cost model. The optimization can be performed in the
same way, i.e., by computing the maximum values of the objective function
(which correspond to the optimal spatial configurations) over the discrete
search grid.

124



CHAPTER6
Practical identifiability

6.1 Introduction

In Chapter 4, a method for optimally design sensor networks for SHM, based
on Bayesian experimental design, has been proposed. Once the sensor spa-
tial configuration has been optimized, a key factor to be taken into account
in order to obtain an effective monitoring system, in terms of capability of
estimating the structural parameters, is the identifiability of the quantities
to be estimated.
The concept of identifiability was first introduced in [Bellman and Åström,
1970] and further discussed in [Godfrey and DiStefano III, 1987]: it con-
cerns the uniqueness of the estimation problem, i.e. whether a set of
parameters can be uniquely identified, given the experimental data obtained
through the sensors.
The definition of identifiability has been specialized for the problem of
Bayesian model updating in structural mechanics in [Katafygiotis and Beck,
1998]. From a Bayesian perspective, a set of parameters θ are said to be:
globally identifiable if it exists a unique solution of the estimation problem
θ∗ = arg max[p(θ |y)]; locally identifiable if a finite number of solutions
exists, i.e. the posterior pdf presents several local maxima; non-identifiable
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if there is an infinite number of solutions θ∗. In other words, the parameters
are said to be non-identifiable if they cannot be uniquely determined by the
measurement data.
It is possible to define two different types of identifiability: structural (or
model) identifiability and practical identifiability.
The first one is related with the model only, and, thus, it depends on the
relations between parameters and model outputs. As model identifiability is
basically associated only to the mathematical relation between observables
and parameters, i.e. on the locations and number of sensors, it could happen
that a model identifiable parameter cannot be practically identified due to
the lack of information provided by the measurements [Raue et al., 2009].
Several approaches for studying the model identifiability have been pro-
posed, using different methods: differential algebra [Glad and Ljung,
1990, Diop and Fliess, 1991, Ljung and Glad, 1994], power series expan-
sion [Pohjanpalo, 1978], similarity transformation [Walter and Lecourtier,
1981]. A thorough review on the methods can be found in [Miao et al.,
2011] and in [Chatzis et al., 2014]. These methods cannot be exploited for
assessing practical identifiability since only noise-free experimental data
are considered. In [Udwadia and Sharma, 1978, Katafygiotis and Beck,
1998,Mukhopadhyay et al., 2014], some specific algorithms for structural
systems have been proposed. In particular, in [Katafygiotis andBeck, 1998],
the idea was to approximate the posterior pdf using asymptotic approxi-
mation and to study its local curvature by exploiting the Hessian matrix.
Following the same concept, the use of the Fisher information matrix has
been introduced in [Jacquez and Greif, 1985, Papadimitriou, 2004]. These
methods can, sometimes, fail to assess practical identifiability, as they only
rely on local (Gaussian) approximations of the posterior pdf, and, thus, the
exact shape of the posterior pdf cannot be considered.
In [Raue et al., 2009] a method for studying the practical identifiability,
which is based on profile likelihood, was proposed.
In the optimal design of SHM systems, the problem of practical identifia-
bility cannot be ignored: the optimization of the experimental settings (in
terms of location, number and type of sensors) does not guarantee that all
the parameters can be individually identified or distinguished from each
other.
We aim now at proposing a method for investigating the practical identifi-
ability of the parameters by means of information-based measures. Infor-
mation theory has been employed in [Nienaltowski et al., 2015] and [Pant
and Lombardi, 2015] to study identifiability problems in dynamical models;
in [Kam et al., 1987], the concepts of stability and observability have been
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highlighted within an information theory approach.
It can be pointed out that practical non-identifiability can basically arise
due to two causes [Brun et al., 2001,Raue et al., 2009]: lack of sensitivity
of the measured quantities with respect to the parameters and compensa-
tion of the effects of the parameters on the measurements. In order to
address these two issues and measure their occurrences, the employment of
the Mutual Information (MI) and Conditional Mutual Information (CMI) is
proposed [Capellari et al., 2017c].
The chapter is organized as follows: first, a brief overview of the informa-
tion measures and the relevant definitions will be provided in Section 6.2.1.
Then, the problem of practical identifiability within the information theory
will be discussed in Section 6.2.2. A method to numerically approximate
the aforementioned indexes will be explained in Section 6.2.3. In the end,
the application of the proposed approach to a non-linear structural problem
will be given is Section 6.3.

6.2 Theoretical background

6.2.1 Preliminary definitions

In this section, the definitions of MI and CMI will be recalled: all the
variables here employed are purely general and they do not refer to a specific
physical problem. The defined quantities will be then specialized for SHM
applications in Section 6.2.2.
Let us consider two random variablesQ ∈ RnQ and R ∈ RnR , the associated
marginal pdfs p(q) and p(r) and the joint pdfs p(q, r). The MI between the
random variablesQ and R is defined as follows [Cover and Thomas, 2012]:

I(Q;R) =
∫
Q

∫
R

p(q, r) ln
[

p(q, r)
p(q)p(r)

]
dqdr (6.1)

The MI can also be also expressed as the KLD (defined in Eq. (4.8)) from
the product of the marginal distributions p(q)p(r) to the joint pdf p(q, r),
as:

I(Q;R) = DKL[p(q, r)| |p(q)p(r)] (6.2)

Following the interpretation of the KLD, the MI can therefore be viewed
as the difference (or similarity) in information between the joint and the
marginal pdfs, or, in other words, the degree of correlation between the two
random variables Q and R. Accordingly, it can be underlined that, if Q
and R are independent, then the joint pdf is p(q, r) = p(q)p(r) and, thus,

127



Chapter 6. Practical identifiability

the MI becomes I(Q;R) = 0.
The amount of information associated with the random variable Q can be
measured through the Shannon entropy, which is defined as:

H(Q) = −
∫
Q

p(q)ln[p(q)]dq (6.3)

Moreover, the information associated with Q, given R, can be quantified
through the conditional Shannon entropy, defined as:

H(Q|R) = −
∫
Q,R

p(q, r)ln[p(q|r)]dqdr (6.4)

As shown in Appendix A, the MI can therefore be related to the Shannon
entropies through the following expression:

I(Q;R) = H(Q) − H(Q|R) (6.5)

Thus, the mutual information I(Q;R) can also be interpreted as the differ-
ence of Shannon entropy between p(q) and p(q|r).
An additional random variable S is now considered. The Conditional Mu-
tual Information (CMI) is defined as follows [Cover and Thomas, 2012]:

I(Q;R|S) = ES[I(Q;R)|S] =

=

∫
S

p(s)
∫
Q

∫
R

p(q, r|s)ln
[

p(q, r|s)
p(q|s)p(r|s)

]
dqdrds

(6.6)

where the expression ES[2] represents the conditional expectation of the
argument2with respect to the variable S. TheCMI of two randomvariables
Q and R can be interpreted analogously to the MI, whenever the pdfs of the
same variables are conditioned on the third variable S.
As for the MI (Eq. (6.2)), the CMI can be defined through the KLD as:

I(Q;R|S) = ES[DKL[p(s, r|s)| |p(q|s)p(r|s)]] (6.7)

The definition of the Interaction Information (II) is now recalled as [Cover
and Thomas, 2012]:

I(Q;R;S) = I(Q;R) − I(Q;R|S) (6.8)

Considering Eqs. (6.1) and (6.6), the II can be interpreted as the difference
between the MI and the CMI, i.e. the difference between the information
shared by Q and R when S is given, and the same quantity when S is not
given. Whenever the II is positive, it can be concluded that the knowledge
of S enhances the correlation between Q and R (redundancy), while if the
II is negative, the corrlation decreases (synergy) [Pearl, 1988].
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6.2.2 Assessment of the practical identifiability through information
theory

Let us consider the model which describes the relation between the pa-
rameters θ and the measurements y, which are obtained through the SHM
system, as defined in Eq. (4.20). Supposing to make explicit the loading
vector f ∈ Rndof as a model input, Eq. (4.20) can be written as:

y = L(d)v(θ, f) + ε =M(d, θ, f) + ε (6.9)

The model identifiability has been defined within the Bayesian framework
in [Beck and Katafygiotis, 1998]:

• a parameter θi is said to be locally identifiable (where i identifies
the i-th parameter) if θ∗i is uniquely specified by f and y, within a
neighborhood of each of its possible values;

• a parameter θi is said to be globally identifiable if it is uniquely
identified by f and y;

• a parameter θi is model-unidentifiable if none of the previous condi-
tions holds.

In other words, the parameters are non-identifiable if the parameter esti-
mation problem is characterized by an infinite number of solutions [Yuen,
2010].
As specified in Section 6.1, while model identifiability allows to mathe-
matically assess whether the parameters can be estimated, as a function of
the structural model only, we are now interested in studying the sources of
practical non-identifiability, which can compromise the effectiveness of the
sensor network, even if it has been optimized using the procedures presented
in Chapters 2 and 4. It can be pointed out that practical non-identifiability
can be basically due to two main causes [Brun et al., 2001, Raue et al.,
2009]:

(a) compensation of the effects of a parameter by others (also known as
collinearity): this can happen whenever some parameters have the
same effect on the model response and, thus, their discrimination (i.e.
the ability of estimating them separately) can be troublesome.

(b) lack of sensitivity of the measurements with respect to a parameter;
this can occur, for instance, if the amplitude of the model input f is
so small that the dependency of the measurements with respect to a
parameter is basically negligible.
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As regards case (a), it is possible to underline that any couple of parameters
{θi, θ j} can be assumed to be a common cause of the measurement y if they
are highly correlated, given the measurements y. In other words, the higher
the difference in information between the conditional joint pdf p(θi, θ j |y)
and the product of the conditional marginal pdfs p(θi |y)p(θ j |y), the harder
it is to estimate these parameters separately. As suggested in [Pant and
Lombardi, 2015], a way to measure this occurrence is to employ the CMI
I(θi; θ j |Y) between any parameter couple {θi, θ j}: the higher this is, the
more correlated the parameters are, given the measurements, and therefore
the less they are identifiable together. In other words, the CMI quantifies,
after having observed y, to which extent the knowledge of one parameter
provides information about the other one.
It is interesting to underline that the II I(θi; θ j ;Y) could be employed to
assess the extent of correlation between the parameters which may be at-
tributed to the measurements or, in other words, if the correlation increases
or decreases as the model response is measured. Since in all the applications
here presented the parameters are supposed to be not correlated, before per-
forming the measurements, it can be concluded that p(θi, θ j) = p(θi)p(θ j)

and, thus, the MI is I(θi; θ j) = 0. Following Eq. (6.8), it can be concluded
that I(θi; θ j ;Y) = −I(θi; θ j |Y) and, therefore, the II yields the same results
as the CMI.
Considering case (b), the MI I(θi;Y) between each parameter and the mea-
surements is exploited: if I(θi;Y) → 0, then the dependency of Y to θi is
low and, therefore, the measurements carry a low amount of information
about parameter θi. In Section 4.2.2, the same quantity has been exploited
in order to optimize the sensor locations, such that the information pro-
vided by the measurements is maximized with respect to the quantities to
be estimated. While the latter approach allows to increase the practical
identifiability of all the parameters, i.e. θi for i = 1, ..., nθ, we are here
seeking to assess the practical identifiability of each single parameter and
the relations between them.
It is important to underline that, while the method proposed in [Beck and
Katafygiotis, 1998] is valid only for linear structural models and for a large
number of measurements, no assumptions are required for the application
of MI and CMI.
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6.2.3 Numerical approximations of the mutual information and the
conditional mutual information

Since, for general cases, neither the MI I(θi;Y) nor the CMI I(Θi;Θ j |Y)
can be computed analytically, respectively through Eqs. (6.1) and (6.6), a
strategy to numerically evaluate them is now described.
In Section 4.3, two estimators of the MI have been introduced: the MC
estimator [Huan and Marzouk, 2013] in Eq. (4.15) and the Kraskov estima-
tor (based on the k-Nearest Neighbors estimator [Kraskov et al., 2004]) in
Eq. (4.16). While many different methods can be exploited for the evalua-
tion of the MI, the high computational complexity of the CMI prevents the
extension of the same strategies for its evaluation. For this reason and in
order to use comparable estimators for both the MI and the CMI, a Kernel
Density Estimation (KDE) [Moon et al., 1995] based method will be here
exploited.
Considering a generic random variable Q ∈ Rnq), with an associated pdf
p(q, the kernel density estimator p̂(q) is defined as:

p̂(q) =
1
N

N∑
i=1

K(q − qi) (6.10)

where N is the number of samples qi to be drawn. K(q − qi) is the
multivariate Gaussian kernel, defined as:

K(q − qi) = (2π)−
nq
2 |H|−

1
2 exp−

1
2 (q−qi)

TH−1(q−qi) (6.11)

where H ∈ Rnq×nq is called bandwidth matrix and it allows to control the
smoothness of the estimator.
According to [Steuer et al., 2002], theMI I(Q,R) can therefore be estimated
as:

Î(Q,R) = 1
N

N∑
i=1

ln
[

p̂(qi, ri)

p̂(qi)p̂(ri)

]
(6.12)

where p̂(qi, ri), p̂(qi) and p̂(ri) are computed according to Eq. (6.10). In
order to reduce the allocated memory required for the computation, an
ensemble estimator has been used, as suggested in [Kybic, 2004]. The N
samples are thus divided into M groups and the MI is simply computed as:

Î(Q;R) = 1
N

M∑
j=1

Î j(Q;R) = 1
N

M∑
i= j

M
N


jN/M∑

i=( j−1)N/M+1
ln

[
p̂(qi, ri)

p̂(qi)p̂(ri)

]
(6.13)
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where Îi(X;Y ) is the MI estimation related to the i−th group of samples.
The sameKDE-based approach can be used for the computation of the CMI.
Using the definition in Eq. (6.6) and the marginalization rule, the CMI can
be re-written as:

I(Q;R|S) =
∫
S

∫
Q

∫
R

p(q, r, s)ln
[

p(s)p(q, r, s)
p(q, s)p(r, s)

]
dqdrds (6.14)

Thus, the KDE estimator is:

Î(Q;R|S) = 1
N

N∑
i=1

ln
[

p̂(s)p̂(q, r, s)
p̂(q, s)p̂(r, s)

]
(6.15)

As previously highlighted, despite a faster convergence rate of the MC esti-
mator with respect to the KDE estimator, the approach used in Section 4.3
for the optimal sensor placement, based on the MC estimator, would be
practically unsuitable for the computation of the CMI, because of the high
computational cost of the multi-dimensional numerical integration.

6.3 Numerical application

In this section, a non-linear structural example is chosen so that the practical
non-identifiability causes described in Section 6.2.2 are clearly manifested
and, hence, the use of the aforementioned information theory based indices
can be validated.
The approach discussed in the previous section is now applied to a shear-
type 8-storey building model (Fig. 6.1), which is a slightly modified version
of the model provided in [De Callafon et al., 2008]. It is assumed that the
flexural rigidity of all the horizontal members to be much higher than that
of the column elements, so that the only relevant degrees of freedom are
the horizontal displacements of each floor. According to this assumption,
the floor stiffness at the i−th storey is k = c 12Ei Ii

h3 , where c is the number of
columns per floor, Ei is the material elastic modulus, Ii is the moment of
inertia in the storey columns and h the floor height.
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Figure 6.1. Shear-type 8-storey building [De Callafon et al., 2008].

Figure 6.2. Bi-linear relation between non-linear inter-storey drift and shear
force, as defined in Eq. (6.16).

133



Chapter 6. Practical identifiability

The inter-story drifts ∆ui depend on the shear force Si according to the
following relation (Fig. 6.2):

∆ui =


h3

c12Ee
i Ii

Si if Si < S∗i
h3

c12Ee
i Ii

S∗i +
h3

c12E t
i Ii
(Si − S∗i ) if Si ≥ S∗i

(6.16)

where a simple bi-linear rule for the modulus Ei is assumed:

Ei =

{
Ee

i if Si < S∗i
E t

i if Si ≥ S∗i
(6.17)

where Ee
i is the elastic modulus, E t

i < Ee
i is the tangent modulus and S∗i

is the shear force value for which the material behavior is no longer linear
elastic.
The building is supposed to be subjected to a horizontal force applied at the
top floor. For the sake of simplicity, only the displacement at the top floor u8
is supposed to be measured and, in order to compare only a limited number
of parameters, the aim is to study the practical identifiability of the param-
eters relevant to the first two floors, i.e. θ = [Ee

1 ; E t
1; I1; Ee

2 ; E t
2; I2]. The

parameters are assumed to be uniformly distributed, as detailed in Table 6.1.

Table 6.1. Definition of parameters θ and related prior pdf p(θ).

Physical quantity Prior pdf
Ee

1 [GPa] U(24, 36)
E t

1 [GPa] U(8, 12)
I1 [m4] U(0.018, 0.022)
Ee

2 [GPa] U(24, 36)
E t

2 [GPa] U(8, 12)
I2 [m4] U(0.018, 0.022)

First, the case in which Si < S∗i ∀i, i.e. the behavior of the material
in each column remains in the linear elastic domain (see Fig. 6.2), is con-
sidered: from Eq. (6.16), it can be pointed out that the displacements
and, hence, the measurement, do not depend on E t

i . The practical non-
identifiability of E t

i shows up in the values of the MI I(Θi;Y) in Table 6.2:
I(E t

1;Y) and I(E t
2;Y) are one order of magnitude lower than the other MI

value. The MI is not exactly zero as one may expect from the definition in
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Table 6.2. Mutual Information I(Θi;Y) of each parameter in
Θ = [Ee

1 ; E t
1; I1; Ee

2 ; E t
2; I2] and the measured top-floor displacement Y,

considering the cases Si < S∗i and Si > S∗i .

I(Ee
1 ;Y) I(E t

1;Y) I(I1;Y) I(Ee
2 ;Y) I(E t

2;Y) I(I2;Y)

Si < S∗i 0.2280 0.0419 0.2256 0.2240 0.0427 0.2233
Si > S∗i 0.1040 0.1336 0.2238 0.1052 0.1353 0.2239

Eq. (6.1), because of the estimation error of the KDE method. The mea-
sured displacement depends only on the flexural stiffness Ee

i Ii: these two
parameters cannot be estimated separately, since they offer a joint influence
to the model response. This is highlighted by the CMI values I(Θi;Θ j |Y)

reported in Figure 6.3a: as expected, the maximum values are reached for
the couples {Ee

1, I1} and {Ee
2, I2}.

On the other hand, if Si > S∗i ∀i, the non-linear mechanical behavior de-
scribed in Eq. (6.16) affects the solution. As noted from Table 6.2, there are
no parameters for which I(Θi;Y) ' 0. However, from Eq. (6.16), it can be
pointed out that the model responses∆ui depends with the same relationship
on Ee

i /E
t
i and Ii, and therefore this prevents identifiability. The related CMI

values stem from the latter fact: in Figure 6.3b, I(Θi;Θ j |Y) is maximum for
the couples {Ee

1, I1} and {Ee
2, I2}. Moreover, I(E t

1,2; I1,2 |Y) > I(Ee
1,2; I1,2 |Y)

as, since E t
i Ii < Ee

i Ii, the resulting displacement is heavily dependent on E t
i .

The same fact can be underlined in Table 6.2, as I(Ee
i ;Y) < I(E t

i ;Y).
From this simple example, it is, therefore, possible to check the validity
of the proposed information theory based indexes to assess the practical
non-identifiability, as its sources (lack of sensitivity and collinearity) can be
easily recognized in the model. These measures provide a way to check the
effectiveness of the monitoring system, in terms of practical identifiability,
before performing the measurements.
Suitable remedies to cope with this occurrence can be:

• increase of the number of measurements ny;

• employment of accurate sensors (increase of σ);

• reduction of the number of parameters to be estimated nθ or change
in their selection.

It should be highlighted that while the method here presented does not allow
to choose the minimum number of measurements needed to guarantee iden-
tifiability, it allows to investigate the causes of practical non-identifiability.
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(a)

(b)

Figure 6.3. Conditional Mutual Information I(Θi;Θj |Y) of each couple of
parameters in Θ = [Ee

1 ; E t
1; I1; Ee

2 ; E t
2; I2] and the measured top-floor

displacement Y, considering the cases (a) Si < S∗i (b) and Si > S∗i .
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6.4 Conclusions

In Chapters 2 and 4, two methods for optimally design a sensor network for
SHM have been proposed: while these methods guarantee the maximiza-
tion of the measurements information content and, hence, the accuracy of
the estimates, they do not guarantee practical identifiability, i.e., that the
estimation problem has a unique solution.
In the present chapter, the problem of practical identifiability in mechani-
cal systems have been addressed through information theory based indexes
(Section 6.2.1). The practical non-identifiability of parameters can arise
due to either lack of sensitivity or compensations in the dependency of mea-
surements on the parameters. Within an information theoretic approach,
identifiability is here detected in terms of these two occurrences, using
respectively the mutual information between each parameter and the mea-
surements, and the conditional mutual information between each couple of
parameters, conditioned on the measurements (Section 6.2.2).
In order to numerically evaluate both the mutual information and the con-
ditional mutual information, two estimators based on the Kernel Density
Estimation are introduced in Section 6.2.3. In Section 6.3, the methodology
is applied to a non-linear mechanical model, namely a shear-type 8-storeys
building model, where the former causes of non-identifiability are easily
recognizable. It is shown that both the MI and the CMI allow to detect and
quantify practical identifiability.
It should be highlighted that these methods do not allow to select a mini-
mum number of sensors to be deployed in order to guarantee identifiability.
Conversely, it is possible to investigate the causes which may lead to practi-
cal non-identifiability, which is critical for the design of an effective SHM
sensor network.
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CHAPTER7
Conclusions

7.1 Summary of contributions

The main objective of the thesis lies in the development of new strategies
for optimally design a Structural Health Monitoring (SHM) system, such
that its effectiveness, i.e., the ability to estimate either damage, or the geo-
metrical or mechanical parameters of a structural system, is maximized.
Two different approaches have been presented and evaluated: a deterministic
Optimal Sensor Placement (OSP) method, which relies on the maximiza-
tion of the sensitivity of the measurements, with respect to the damage
parameters to be estimated, and a stochastic OSP strategy, based on the
maximization of the expected information provided by the measurements.
Themain contributions of this researchworkmay be summarized as follows:

1. The deterministic OSP method has been introduced in Chapter 2.
It relies on the main assumption of disregarding all the uncertain-
ties related with the SHM process, i.e., the error associated with the
measurements and the uncertainty related with the parameters to be
estimated. The rationale of the method is the maximization of the
sensitivity of the structural response with respect to the quantities to
be estimated, e.g. the damage indices relating to a reduction of the
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material stiffness. The optimal sensor configuration is obtained by
adopting a topology optimization framework, which allows to select
the most sensitive regions, in which the structural model is supposed
to be discretized. In order to reduce the computational cost of the
optimization algorithm, whenever large structural models have to be
considered, a multi-scale optimization strategy has been introduced.
In addition to the associated computational speed-up, it allows to ac-
count for the different scales of the problem, i.e., the characteristic size
of the structure, the damage dimensions and the sensor sizes, while
retaining the accuracy of the solution. Such an approach is partic-
ularly beneficial when micro-sensors have to be placed in structures
characterized by complex geometries, as it permits to finely tune their
positions. Thanks to the very low computational cost of the deter-
ministic OSP approach, the optimal sensor spatial configuration can
be obtained by considering that damage can occur anywhere in the
structure.

2. Two applications of the deterministic OSP method have been shown
in Chapter 3. First, the single-scale strategy has been adopted in a
benchmark structural model, i.e., a clamped square plate, subjected to
a vertical force applied at its center. Assuming tomeasure the rotations
about the in-plane axes, the resulting optimal sensor configuration re-
flects the geometric conditions of the structure and, therefore, turns
out to be symmetric. It can be underlined that, due to the particular for-
mulation of the topology optimization problem, some post-processing
techniques, such as the filtering of the objective function, is needed,
for certain sensors spatial configurations, in order to obtain physically
sound solutions. It can moreover be demonstrated that the optimal
sensor locations depend on the damage scenarios which are assumed
to occur: thus, if a robust OSP has to be achieved, all the optimal
solutions, associated to different damage cases, should be considered.
The multi-scale OSP method is applied to a real-size structural model,
i.e., a stiffened composite fuselage section, which is supposed to un-
dergo two different damage scenarios: a part-trough damage, simu-
lating aging, and delamination. The optimal sensor locations turn out
to be highly affected by the position of the external load, as it drives
the zones where the maximum variations of response occur. It is im-
portant to underline that the discretization mesh at each length-scale
allows to appropriately tune both the resolution of the damage to be es-
timated and the position of the sensors. Moreover, it can be concluded
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that the computational speed-up obtained by adopting the multi-scale
strategy, as compared to the single-scale one, is approximately 50, 000
in the plate benchmark structure and 200 in the fuselage case.

3. In order to take into account the uncertainties inherent in the mea-
surement process, i.e., the prediction error (due to the model and
measurement errors) and the uncertainties related with the quanti-
ties to be estimated, in Chapter 4 a stochastic OSP method has been
proposed. Within the Bayesian framework, the sensors spatial con-
figuration can be optimized by maximizing the expected Shannon
information gain, which quantifies the amount of information pro-
vided by the measurements, in order to estimate a set of mechanical
parameters of the structural model. The mentioned objective function
is basically a measure of the increase in information between the prior
and the posterior pdfs of the parameters, i.e. respectively associated
to their knowledge before and after having performed the measure-
ments. Two numerical estimators of the expected information gain
have been discussed, i.e. a Monte Carlo (MC) based estimator and a
k-Nearest Neighbors (kNN) based estimator. While the second one
guarantees a lower computational cost with respect to the first one, the
MC estimator allows to obtain a less noisy objective function, as the
knowledge of the likelihood function is naturally taken into account.
In order to numerically evaluate the MC estimator, which relies on
the repeated computation of the structural model response, the use
of surrogate models, based on Polynomial Chaos Expansion (PCE),
allows to mimic the input-output relations and efficiently reduce the
overall computational cost. Two different strategies have been pro-
posed: one assumes that the model inputs do take into account both
the parameters to be estimated and the design variable, which defines
the sensor positions (joint input PCE); the second one is based on
the synergy between the PCE and the Principal Component Analysis
(PCA), which is a model order reduction technique. Although in the
first formulation the computation of only one PCE surrogate is needed,
the application of the joint input PCE based surrogate becomes trou-
blesome if numerical structural models with large number of nodes
or multiple physical quantities to be measured have to be taken into
account. Conversely, the PCA-PCE approach allows to handle such
problems, as the design variable is not part of the surrogate input and,
therefore, its variability has not to be considered.
Since the numerically computed objective function is noisy, the adop-
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tion of standard optimization algorithms could lead to false optima,
i.e., local optima which are only due to the numerical noise. To this
end, the adoption of a stochastic optimization algorithm, namely the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), proves
to be an efficient way to overcome the mentioned problem.
The main benefit of the stochastic approach, based on the Bayesian
experimental design, is that the expected Bayesian information gain
depends on both the sensor positions, the measurement noise (and
hence the type of sensor) and the number of sensors. Thus, by ac-
counting for all these experimental settings, it is possible to compre-
hensively optimally design the SHM monitoring system. Moreover,
following a cost-benefit approach, also the cost of the SHM system can
be taken into account by maximizing the ratio between the expected
information gain and the cost model and, thus, efficiently allocating
the economic resources.

4. In Chapter 5 two structural models have been considered in order to
assess the stochastic OSP method. First, the strategy is applied to a
benchmark structural case, i.e. the same clamped square plate earlier
introduced in Chapter 3. Two cases have been considered: a damage
located in a known region of the structure, or a damage which can
occur anywhere. It has been shown that, as in the deterministic case,
the resulting optimal spatial configurations depend both on the loading
conditions and on the assumed damage scenarios. The effectiveness
of the CMA-ES is assessed by computing the values of the objective
function on a fine mesh, resulting in about 25 objective functions
evaluations. Moreover, it has been shown that, as the measurement
error increases, the resulting objective function presents several local
optima due to the numerical approximation introduced by the estima-
tor. Thus, it has been shown that, despite the resulting optimal sensor
placement is equal to the one obtained through the deterministic OSP
method, the stochastic method allows to consider additional experi-
mental settings in the optimal design, i.e., the prediction error and the
prior pdf of the parameters.
In order to compare the joint input PCE and the PCA-PCE strategies,
a real-size structural model, i.e., the Pirelli tower in Milan, has been
considered, where 6 model parameters (both mechanical and geomet-
rical) have been supposed to be estimated. It has been demonstrated
that the first approach requires an unbearable number of samples in
order an accurate surrogate model to be built, making therefore its
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employment useless for large structural models. Moreover, the com-
putational cost associated to the PCE-PCE turns out to be 5-6 times
lower than the one related with the joint input PCE, guaranteeing at the
same time a high accuracy in the evaluation of the structural response.
Regarding the numerical computation of the expected Shannon infor-
mation gain, even if the kNN estimator is characterized by a lower
computational cost than the MC estimator (approximately 10 times
faster), its applicability is prevented due to the higher numerical noise
which is introduced in the objective function.
As concerns the optimal sensor spatial configuration, the information-
based approach proves to be dependent on the loading conditions and
on the choice of the parameters to be estimated. It should be high-
lighted that, although the CMA-ES allows to handle the objective
function noise which is due to the numerical approximation, multiple
optimal solutions, arising from the presence of several optima, can
be detected by running the algorithm repeatedly with different initial
conditions.
Then, it has been shown that the expected Shannon information gain,
associated with the optimal solution, increases as more accurate sen-
sors are employed (i.e. with decreasing measurement noise) and as
more sensors are placed, since more information is provided by the
SHM system. Moreover, it has been demonstrated that, fixed the type
of sensors, the additional information provided by each sensor added
to the network, gets progressively lower.
In order to comprehensively design the sensor network, both in terms
of sensor locations, types and number, the Pareto frontiers of themulti-
dimensional optimization problem allow to maximize the information
provided by the sensor network and minimize the overall cost of the
monitoring system.
It should be underlined that, while the deterministic OSP method al-
lows to take into account damages potentially located anywhere in
the structure, the stochastic OSP method can only be applied when a
limited number of damage parameters have to be estimated, due to the
high computational cost needed for taking into account the inherent
variability of the parameters.

5. Despite the optimization of the sensor network allows to maximize
the information provided by the measurements and, hence, the ability
of estimating the parameters, its effectiveness can be prevented when-
ever the parameters result to be practically non-identifiable. For this
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reason, two measures to assess and quantify the sources of practical
non-identifiability of the parameters have been proposed in Chapter 6.
By considering a simple non-linear structural case, it has been shown
that the mutual information between each parameter and the mea-
surements allows to quantify the lack of sensitivity of the data with
respect to the parameters, while the conditional mutual information
provides an indication on possible common effects of the parameters
on the measured data, which can prevent them from being estimated
separately.

To summarize, it can be remarked that the deterministic OSP method allows
to efficiently provide a physically sound optimal sensor spatial configuration
and, thanks to the low computational cost, a damage located anywhere in the
structure can be taken into account. On the other hand, the stochastic OSP
allows to design the SHMmonitoring system in a more comprehensive way,
i.e. determining both the location, the number and the types of sensors, and
taking into account the prior knowledge about the parameters’ distributions;
nevertheless, only a limited number of parameters, hence damage locations,
can be considered.

7.2 Limitations

In Section 7.1, the main contributions introduced in the present thesis are
highlighted. The main limitations of the methods presented in the thesis are
now highlighted:

• Regarding the deterministic OSP method, the main limitation of such
an approach regards the linearity of the structural problemswhich have
to be considered, since the employed topology optimization frame-
work can be applied to linear problems only. By non-linearity, we
refer here to models where the model response varies non-linearly
with respect to a variation of the external load, e.g. geometric non-
linearities; the non-linearity related to the damage, defined as a varia-
tion of stiffness, is instead taken into account.

• Regarding the stochastic approach, its applicability is mainly ruled
by the number nθ of parameters which are supposed to be estimated
through the sensor network. Due to the curse of dimensionality of
the surrogate models and to the high computational cost of the MC
estimator, it cannot be applied when the parameters are of the order of
tens, or whenever the location of the damage is unknown and several
parameters have to be taken into account.
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• Another main limitation of the stochastic method concerns the loca-
tions of the sensors to be placed: the optimal solutions in terms of
spatial configuration can only be obtained among the nodes of the
discretization mesh; therefore, the resolution of the optimal sensor
placement cannot be freely set, but it is ruled by the model mesh.

• As regards the approach for the assessment of the practical non-
identifiability of the parameters, a main limitation is that it does not
provide a yes/no binary outcome, i.e., whether the parameters are
identifiable or not; thus, it is not possible to select a minimum number
of sensors to be deployed in order to guarantee practical identifiability.

7.3 Suggestions for future research

Based on the presented work, some ideas for future research on this topic
are here summarized:

• The applicability of the deterministic OSP method has been here
limited to linear structural models; its extension to non-linear cases
could be taken into account by applying suitable topology optimization
algorithms [Maute et al., 1998, Jung and Gea, 2004].

• The results provided by the two OSP methods in terms of sensor loca-
tions could be experimentally validated both on a simple benchmark
structure (e.g. the clamped square plate here used) and on a real-size
civil structure. Different sensor configurations could be considered
and their effectiveness could be checked by estimating the structural
parameters and the associated uncertainties through, e.g., Bayesian
model updating.

• The proposed stochastic OSP method is valid only for cases where
the inertial effects can be disregarded. The extension of the stochastic
OSPmethod to structural dynamics could be considered by, e.g., using
appropriate surrogate models [Mai et al., 2016].

• The applicability of the stochastic OSP method is limited by the num-
ber of parameters, due to the curse of dimensionality: high number
of parameters or damage located anywhere in the structure could be
considered by employing the stochastic finite elementmethod [Der Ki-
ureghian and Ke, 1988,Sudret and Der Kiureghian, 2000], where the
spatial variability of the material properties can be taken into account
through random fields [Chowdhury and Adhikari, 2010].
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• The stochastic OSP method could be extended by taking into account
the robustness of sensor networks [Hoblos et al., 2000,Kakamanshadi
et al., 2015], in order to obtain efficient fault tolerant optimal SHM
designs.

• Amethod for determining the minimal instrumentation, i.e., the mini-
mum number of sensors to be deployed for guaranteeing identifiability
of parameters, could be studied by combining information theory and
existing methods [Mukhopadhyay et al., 2013,Mukhopadhyay et al.,
2014].
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APPENDIXA
Expected information gain and mutual

information

In this Appendix, some details of the relationship between the expected
gain in Shannon information U(d), as defined in Eq. (4.11), and the mutual
information, defined in Eq. (6.1), are summarized. Further details can be
found in [Cover and Thomas, 2012].
The expected information gain is defined as follows:

U(d) =
∫
Y

∫
Θ

p(θ |y, d) ln p(θ |y, d)
p(θ)

p(y|d)dθdy =

=

∫
Y

∫
Θ
{ln[p(θ |y, d)]}p(θ |y, d)p(y|d)dθdy

−

∫
Y

∫
Θ
{ln[p(θ)]}p(θ |y, d)p(y|d)dθdy

(A.1)
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where, as p(y|d) is independent of θ, the first term of the last representation
of U(d) may be re-written as:∫

Y
p(y|d)

{∫
Θ
{ln[p(θ |y, d)]}p(θ |y, d)dθ

}
dy =

= −

∫
Y

p(ȳ|d)H(θ |y = ȳ, d)dy =

= −H(θ |Y,D)

(A.2)

H(θ |Y,D) being the conditional entropy, i.e., the Shannon entropy of the
conditional probability p(θ |y, d).
Recalling that p(θ, y|d) = p(y|d)p(θ |y, d), and that p(θ |, d) =

∫
Y p(θ, y|d)dy,

the second term in Eq. (A.1) may be re-stated as:∫
Y

∫
Θ
{ln[p(θ)]}p(θ |y, d)p(y|d)dθdy =

= −

∫
Y

∫
Θ
{ln[p(θ)]}p(θ |d)dθdy =

= −H(θ |D)

(A.3)

H(θ |D) being the Shannon entropy of the pdf p(θ |d). We then arrive at:

U(d) = H(θ |D) − H(θ |Y,D) (A.4)

i.e., the expected information gain is equal to the difference in Shannon
entropy between the prior and the posterior pdfs, which is therefore equal
to the MI:

I(Θ,Y) =
∫
Y

∫
Θ

p(θ, y|d) ln p(θ, y|d)
p(θ)p(y|d)dθdy (A.5)
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APPENDIXB
PCE polynomials bases

The polynomial bases employed in the PCE models are here described.
Themultivariate polynomialsΨα(χ) introduced in Eq. (4.24) are computed
as the tensor product of the related univariate polynomials ψ(i)αi (χi) [Marelli
and Sudret, 2014]:

Ψα(χ) =
M∏

i=1
ψ
(i)
αi (χi) (B.1)

In Table B.1, the univariate polynomial families, which are orthonormal
to the most common input probability distributions, are listed [Xiu and
Karniadakis, 2002,Sudret, 2007].
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Table B.1. List of polynomial functions commonly used in PCE, for each type of
pdf.

Type of pdf Orthonormal polynomials

Uniform Legendre ψ
(i)
p (χi) =

1
2pp!

dp

dχ
p
i

[(χi − 1)p]

Gaussian Hermite ψ
(i)
p (χi) = (−1)pe

x2
2 dp

dχp e−
x2
2

Gamma Laguerre ψ
(i)
p (χi) =

∑p
i=1
(−1)i
i!

(p
i

)
χi

Beta Jacobi ψ
(i)
p (χi) =

(−1)p

2pp!
(1 − χ)−α(1 + χ)−β

dp

dχp

{
(1 − χ)α(1 + χ)β

(
1 − χ2

)p}
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