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Sommario

In ambito Complex Event Processing, regole che descrivono pattern
di eventi primitivi permettono di individuare situazioni di interesse più
complesse, come pericoli o possibili opportunità, a partire da uno stream
di eventi in real-time.

Un approccio alternativo alla definizione manuale di regole per sistemi
Complex Event Processing è l’apprendimento automatico dei pattern che
conducono a eventi complessi. Nel presente lavoro, utilizzeremo tecniche
general-purpose di Machine Learning – ed in particolare l’algoritmo C5.0,
un tool off-the-shelf basato su alberi di decisione – per affrontare le sfide
poste dal contesto Complex Event Processing.

Nel corso di questa tesi, presenteremo il sistema sviluppato, che per-
mette a C5.0 di individuare occorrenze di eventi complessi all’interno di
uno stream di dati, testando la sua accuratezza e valutando il suo grado
di applicabilità in una varietà di situazioni distinte e caratterizzate da
diversi parametri.

III





Abstract

In Complex Event Processing, rules describing patterns of primitive events
allow to detect complex situations of interest, such as threats or oppor-
tunities, from a stream of data and in real-time.

An alternative approach to the manual definition of Complex Event
Processing rules is the automated learning of the patterns leading to
composite events. In the present work, we employ general-purpose Ma-
chine Learning techniques — and in particular C5.0, a supervised learning
off-the-shelf tool based on decision trees — to deal with the challenging
scenarios proposed by Complex Event Processing.

In the course of this thesis, we present the system developed that en-
ables C5.0 to detect occurrences of composite events within streams of
event data, and we test its accuracy and applicability in a variety of
situations.
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Introduction

Complex Event Processing (CEP) is an Event-Driven Architecture that
analyzes and reacts on-the-fly to streams of data coming from multiple
sources. The objective of a CEP system is to detect situations of interest
called complex events, which are expressed as patterns of low-level primi-
tive events. Such patterns, capturing the causality link between primitive
and complex events, are called rules and play a central role in any CEP
architecture.

Traditionally, rules are manually formulated and provided to the system
thanks to the knowledge and experience of domain experts, but a different
and challenging approach consists in trying to learn them from the data
stream itself or, in other words, based on the primitive events observed in
the past. However, to this moment the research conducted on the topic is
still very limited and no commercial system supporting automated CEP
rule learning features is currently available.

In the present work, we aim at finding out if it is possible to employ
traditional and well-known Machine Learning (ML) techniques to au-
tomatically predict future occurrences of complex events without prior
knowledge of the underlying patterns. In order to answer this question,
we concentrated our efforts in the direction of decision tree-based learning
algorithms and we eventually managed to adapt C5.0 - the successor of
the popular C4.5 algorithm - to work inside a CEP context, allowing it
to build classifiers used to label traces of events, discriminating the ones
which lead to composite events from the ones which do not.

In the following chapters, we present the solution developed, describing
it in detail and pointing out its strengths as well as its limitations.
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In particular, in [Chapter 1] we revise some background theory on both
CEP and ML, introducing all the concepts required to understand the
rest of the work. In [Chapter 2] the thesis problem is formally defined,
whereas an high-level overview of our approach at solving it can be found
in [Chapter 3]. The implementation of the solution is detailed in [Chap-
ter 4] where we explain the structure and the function of each component
of the architecture developed. Finally, in [Chapter 5] we evaluate the ac-
curacy of the learning environment implemented, commenting the results
collected and drawing some conclusions on the performance of the system
as a function of different parameters, whereas [Chapter 6] revises some
related work in the field of automated CEP rule learning and pinpoints
many open issues which emerged at the end of the work.
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Chapter 1

Background Theory

In this chapter we explain all the background concepts required to un-
derstand the thesis problem. [Section 1.1] presents a general overview on
CEP, [Section 1.2] introduces CEP languages and Complex Event Recog-
nition with reference to the state of the art in the field, whereas the event
model adopted is illustrated in [Section 1.3]. Lastly, [Section 1.4] revises
some Machine Learning background.

1.1 Overview on Complex Event Processing

During the last two decades, the interest for CEP technologies has been
constantly increasing and the paradigm attracted the attention of both
academia and industry. In fact, with the Big Data explosion, the in-
creasing diffusion of distributed applications, along with greater network
capabilities and the availability of more computing power at lower costs,
today the information is continuously flowing and coming from a poten-
tially unlimited number of sources in massive quantities.

Therefore, a company business is more often than not influenced by fac-
tors (the events) that originate from outside its own environment, such as
from the Internet of Things – real-time sensor networks that can measure
and report on a multitude of situations – and traditional computer sci-
ence approaches, like DBMSs (in which data is mainly static and slowly
changing over time) as well as point-to-point, batch-oriented, request-
reply based solutions (e.g., client-server) are no more suited for reactive
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4 Chapter 1 Background Theory

applications dealing with large amounts of data that has to be processed
in real time (a concept known as real time situational awarness).

Despite being a novel technology, CEP already has a broad variety
of applicative scenarios. Some examples are given by credit card fraud
detection systems, that analyze a series of transactions with the aim
of detecting frauds, software for automated financial trading (in which
a stream of stock trade data is collected and analyzed in order to spot
trends and opportunities), traffic flow supervision with variable toll charg-
ing and speed control, environmental monitoring systems, applications in
the banking field providing support for loan and mortages, Intrusion De-
tection Systems (in which patterns of network traffic data can be used
to prevent threats – for example, DDoS attacks), software for the auto-
mated distribution of products, applications in the automotive field and
many more.

An Event-Driven Architecture, like CEP, is virtually useful in any sce-
nario requiring real-time processing of data and the production of fast
reactions to the occurrences of events; in this way, it can help to avoid
extraordinary conditions that represent a threat (like in fraud detection
systems or environmental monitoring scenarios), but it can also benefit
industries by automating some business processes thus cutting expenses,
helping to avoid worst-case scenarios or even supporting the management
in decision making. CEP architectures are intrinsically better equipped
to handle this sort of situations because they are specifically designed
to process information as a flow, according to some processing rules; in
other words, they are context-aware, i.e. “smart” enough to sense and
react to the environment on-the-fly in order to accomplish some task.

For sure, Event-Driven contexts are very challenging because they re-
quire both high throughput (1.000-100.000 events/s) and low latency
(ms-seconds); in addition, the control flow of the program does not de-
pend on the values of system state variables (as it was the case with
traditional technologies) but on externally generated events, which are
substantially different from a simple user input because not only they are
asynchronous but their timing falls outside the control of the program.
However, the concept of “events” is precisely what makes CEP systems
capable of facing such challenges, enabling them to work with difficult
scenarios that need “just in time” reactions.

In a very informal way, an event can be defined as an action or a change
of state: for example, a door changing its state from “open” to “closed”,
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the temperature going from “low” to “high” or a simple mouse click
in a web application. An event is also required to be either something
observable by an IT component (e.g., the humidity or pressure read by
a sensor), or triggered by it (e.g. the result of a computation, a timer
going off, ...).

CEP systems collect and process a stream of event data, i.e. a time-
ordered sequence of events, with the aim of detecting higher-level com-
plex, or composite events, which can be viewed as a pattern of low-level
raw data (atomic, or primitive events). Such patterns are captured by
CEP rules, which express the occurrence of a complex event as a combina-
tion of primitive events subject to a number of constraints (or operators).

From an architectural point of view, it is possible to identify three basic
components of CEP systems:

• the sources (also called Event Producers) which observe primitive
events, send event notifications and transmit elementary data,

• the sinks (or Event Consumers), that are in charge of reacting to
the occurrence of a complex event, and

• the CEP Engine, which collects data from the sources and – if it
finds a known pattern within the data (i.e., there is a match of a
rule) – it notifies all the sinks that were waiting on that complex
event to happen.

The overall, high-level architecture of a CEP system is showed in [Fig-
ure 1.1]. It is possible to observe how the CEP Engine collects primitive
events, and then – by accessing a proper Rule Base – it notifies possible
occurrences of complex events to sinks.

In order to further clarify the basic concepts expressed so far, we pro-
vide a simple example of events and rules. For instance, a primitive event
could be the presence of smoke inside a room detected by a sensor, or
a temperature reading. A complex event is a combination of primitive
events: for example, the complex event Fire can be expressed as a con-
junction of the atomic events Smoke and HighTemperature. It is also useful
to include a time-frame (window) within which the atomic events need to
happen in order to trigger the complex event. The following rule, written
in almost natural language, summarizes what was said above and catches
the occurrences of the event Fire :
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Figure 1.1: The high-level view of a CEP system. Image taken from [14],
p.1

within 5 minutes: if (Smoke and HighTemperature) then Fire.

In this case the rule is very simple and can be formulated just by com-
mon sense; however, in most real-world scenarios the problem of correctly
identifying the relationships that link primitive events to complex ones
is actually much more challenging. Furthermore, not only it is difficult
to spot all the patterns hidden in the data, but the patterns themselves
may be extremely complicated and definitely hard to express in a human-
friendly form.

About this, the usual approach adopted in the CEP field relies on
the work of professionals called domain experts, who are in charge of
suggesting proper CEP rules based on their knowledge of the applicative
domain of interest. However, this traditional method works only for
relatively simple and well-known domains; in some cases, it becomes
very difficult to catch all the hidden patterns that lead to the occurrence
of a composite event and even domain experts cannot accurately predict
the vast majority of the existing patterns.

Another, more advanced and potentially much more efficient way to
detect complex events is to automatically derive the needed rules start-
ing from some observed event data. This is the point at which Machine
Learning instruments come at hand and could be useful to enhance cur-
rent CEP technologies. In particular, the question that naturally arises
– and that is central in the present work – is whether or not it could be
feasible to employ existing general-purpose ML techniques to learn event
patterns, instead of relying on domain experts or having to develop ad-
hoc learning algorithms to do the job.
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Before proceeding to illustrate our tries in employing such ML tech-
niques, it is useful to clear some more semantics and terminology with
regard to the CEP background. In the next section, events, operators
and rules are going to be formally defined in order to give the reader
a better overview on CEP, removing any ambiguity surrounding such
fundamental concepts.

1.2 CEP Languages and Models for Complex Event Recog-
nition

The problem of choosing a proper model for events, as well as a formal
rule definition language, is crucial for the development of CEP engines,
since it influences both the resulting processing algorithms and the overall
system architecture.

Complex event recognition (CER) refers to the problem of detecting
events in big data streams; during the last two decades, many models were
proposed to represent events and patterns, as well as different strategies
and methods of detection. Traditionally, as pinpointed in [10], the main
techniques employed in CER can be split into two broad categories, based
on the processing strategies and event specification languages adopted:
automata-based techniques and logic-based techniques.

Automata-based are the most widely employed solutions for pattern
matching, being a stream of events conceptually similar to a string of
characters to be recognized either by a Deterministic Finite Automaton
(DFA) or Non-Deterministic Finite Automaton (NFA). Such solutions
aim at working under different degrees of uncertainty, assuming a prob-
abilistic input stream due to noise and missing information and provid-
ing some kind of (approximate) inference. Plenty of pattern languages,
translating an input event stream into regular expressions recognized by
an automaton, have been proposed in the course of the years, starting
from early approaches like the Lahar system [31] or [33]. Noticeable are
also SASE [17] and its extension SASE+ [9], which exploits a buffered
NFA (NFAb model) to detect queries; such systems have been optimized
to deal with expensive queries very common in real-world scenarios [37].
Other similar proposals include CEP2U [16] and the PADUA system [26].

On the other hand, logic-based strategies express complex events in
terms of logic formulas and rely on logical inference to perform CER.
Some examples are given by Markov Logic Networks (MLN), which are
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undirected probabilistic graphic models combining Markov Networks with
first-order logic [35, 18, 32, 25]. Other examples are given by ILED [34],
which adopts a run-time version of the Event Calculus formalism (RTEC)
[20], and [35] exploiting Allen’s Interval Algebra [11] built-in predicates
to represent temporal relations between events.

1.3 An Abstract Event Specification Language

In addition to automata-based and logic-based approaches, a totally dif-
ferent CER technique stems from traditional relational databases and it
employs SQL-like languages, with the addition of new ad-hoc operators
that allow to process input data streams on-the-fly to produce output
streams. These models are known as Data Stream Management Systems
(DSMSs) and are opposed to traditional DBMSs, in which data is static
and indexed. However, as emphasized in [14, 23], such languages usually
fail to capture ordering relationships and show severe limitations in rec-
ognizing complex patterns among events – or they do it in an unnatural
and difficult to support manner (e.g. Esper [3], Oracle CEP [7]).

Finally, many languages have been explicitly designed to deal with event
notifications and not generic streams of data like in the case of DSMSs.
An example is given by T-Rex [14], a CEP middleware offering a lan-
guage, TESLA, which is built around events and deals with them in an
easy way while still providing an efficient processing of rules.

In the present work we refer to the latter kind of models because it
naturally simplifies the task of expressing complex events as patterns
of primitive ones and it is better suited for the task of adapting ML
techniques to CEP. In particular, we adopt an abstract model close to
the one presented in [23], purposely avoiding any specific CEP language
in order to preserve generality. Such model will be detailed in the next
subsections.

1.3.1 Events

Throughout the course of this work, we assume that each event is char-
acterized by a type, a set of attributes and a timestamp.

• The timestamp records the exact time in which the event took place;
in fact, we assume events to happen instantaneously at some point
in time (although this is not necessarily the case in every model).
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• The type is a meaningful unique string describing the event in exam
(e.g, “Fire”, “Smoke”, “ClickOnBanner”, “StockPriceUp”, . . . ).

• Attributes can just be viewed as variables: they have a name and
a type (not to be confused with event types) that can be a char-
acter, string, integer, long, float, double and so on. Like variables,
attributes may assume different values taken from a given domain,
which depends on their type. The role of event attributes is to pro-
vide important additional information about the event of interest
(for example, if the event notification is a temperature reading, we
are also interested in knowing the actual temperature value that
has been recorded, because the notification alone is not useful).

The name, class, number and ordering of the attributes entirely
depends upon the event type; therefore, different event types lead
to different sets of attributes (and, on the other hand, two or more
events of the same type are characterized by the same attribute
structure).

Taking the fire scenario previously introduced, an example of event –
expressed according to our model – could be the following:

Temp@10(area="A1", value=24.5)

Here, Temp is the event type, 10 is the timestamp and area and value
are two attributes: a string which identifies the area of reading and the
actual temperature value (a float).

Some events may be characterized by no attributes at all; for example,
the event Smoke@17() just records the occourence of something (i.e., the
presence of smoke) at some point in time, and does not need to include
any more information. However, the presence of a timestamp associated
with an event is always required.

The model described above is valid both for primitive and composite
events; however, because of their nature – and since we interpret them
as a pattern of primitive events – composite events are usually devoid
of attributes, since they just denote something of interest happening at
some point in time (e.g., Fire() ). Throughout the course of this work, we
will thus consider composite events as a “special” kind of events without
attributes (but this is just an assumption and not necessarily the case
every time).
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1.3.2 Operators

CEP operators (or CEP constraints) are the basic building blocks that
allow to construct complex patterns composed by primitive events.

According to literature, as observed in [15], it is possible to recognize
at least 5 fundamental CEP operators: selection, conjunction, sequence,
window, and negation.

• The selection operator filters events according to the value of their
attributes (e.g., Temp(value>50) selects events of type Temp if and
only if their attribute value is greater than 50).

• Sequences regard the order of arrival of events and they are mean-
ingful whenever events are required to take place in a certain order,
according to their timestamps. For instance, Temp -> Smoke is a se-
quence constraint implying that the event Temp must always precede
the event Smoke.

• Conjunction is a logical operator analogous to the logical AND;
a conjunction of events is satisfied if and only if all the events in
the conjunction have been detected. Here, no ordering relationship
among the events is considered – what matters is only whether
they are all detected or not (in any order). A simple example of
conjunction is given by the constraint Smoke() AND Temp(value>50),
which also includes a selection operator on the event Temp.

• Windows determine which portions of the input flow have to be
considered while evaluating other operators, i.e., they define the
maximum timeframe of a given pattern. Sliding windows are the
most common type of windows; they are characterized by a fixed
size and their lower and upper bounds advance whenever new events
enter the system. In other words, the timestamp advances by one
unit at every iteration, thus selecting one new event every time
while removing a previously included one.

Windows can also be defined in terms of timestamps (e.g., a window
of 10 seconds contains all the events recorded within a time interval
of 10 seconds)

• Lastly, the negation operator selects all the events that are have
not been detected; in this case what matters is not the presence,
but the absence of such events.
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• Other minor but worth mentioning operators are parameterization
and aggregation; the first one involves constraints on the attributes
of different event types (e.g., Temp.area = Smoke.area), whereas the
second one filters events according to some aggregated function
(typically, minimum, maximum, average, count and sum).

To understand how it is possible to exploit the operators presented
above in order to build complex patterns defining composite events, just
consider the following example:

within 5m. Smoke() and Temp(value>50) and not Rain(mm>2)
where Temp -> Smoke

The pattern is composed by a negation (not Rain), a conjunction (Smoke
and Temp and not Rain), two selections (Temp(value>50),
Rain(mm>2)) and a sequence constraint (Temp → Smoke).

It is possible to express the same pattern with a rule written in any
specific CEP language (e.g., TESLA) having an equivalent degree of ex-
pressiveness. The expressiveness of different languages can be evaluated
with regard to the type and number of supported operators: some specific
languages may employ variants of the operators described above or in-
clude additional operators; in this work, we choose to employ once again
the same simple and intuitive syntax showed in [23], including almost all
the original operators.

Lastly, it is not always necessary to exploit a rule in order to detect
composite events: for example, in our case we employed decision trees
instead of rules. To better understand the different method of detec-
tion proposed, it is first required to study the capabilities offered by the
Machine Leaning discipline; therefore, we present some ML background
in the next section, which is necessary to understand why the ML tools
ultimately chosen constitute a feasible option for CEP learning.
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1.4 Machine Learning Background

1.4.1 Introduction to Machine Learning

Machine Learning is the computer science subfield that aims at giving
machines the ability to learn without being explicitly programmed. In
other words, computers are not instructed about how to execute a specific
task, but rather about how to learn the task themselves starting from
some experience which is provided to them. As already known, we are
concerned with ML algorithms to automatically find patterns in data;
for this reason, we will focus on supervised learning methods, which aim
at predicting the value of a target variable starting from a set of data
points that have a known outcome.

There exist two kinds of supervised learning techniques, which in turn
depend on the type of the outcome: if it is continuous (or numerical), we
talk about regression, while if it is a category (i.e., a discrete value, or
label) then we are faced with a classification problem. For the purposes
of the current work we will explore the latter kind of supervised learning,
in which a set of labeled instances is provided as input and the output
is a model that will be used to predict the outcome of new unlabeled
instances.

Figure 1.2: Supervised learning overview. Image source: [4].

Instances are individual, independent examples of a concept to be
learned; different aspects of an instance are measured by attributes, which
are a fixed predefined set of features characterized by a type. According
to the analysis performed in [36], attributes can belong to four main
categories: nominal, ordinal, interval and ratio.
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• Nominal attributes assume values which are just distinct symbols
taken from a finite set (e.g., "A1", "A2", "A3" for the attribute Area)
without any ordering or distance relation implied among them.

• Ordinal attributes impose an order on values but no distance (e.g.,
hot > mild > cool for the attribute Temperature).

• Interval quantities are ordered and measured in fixed and equal
units (e.g., Temperature expressed in degrees Fahrenheit): here, the
difference of two values makes sense, but sum or product do not.

• Lastly, ratio quantities define a zero point for the measurement and
hence they are treated as real numbers, supporting all mathematical
operations.

However, a simpler categorization of attributes which is largely em-
ployed in many algorithms (and it is enough for the scope of the present
work) simply divide them into two broader classes: discrete (i.e., nom-
inal) and numerical or continuous, with the latter ones being just like
ordinal attributes but also including mathematical continuity.

A value for an attribute of a given instance may be missing (because it
may be unknown or unrecorded, e.g., due to malfunctioning equipment
or a measurement not possible), in which case it must be treated in a
special way – usually, by employing a separate attribute value indicated
with the character ?.

As already mentioned at the beginning of this section, in order to allow
learning we need to gather some experience beforehand. Such experience
usually comes in the form of a training dataset, which, in the case of su-
pervised learning methods, is a list of already correctly labeled instances
and includes all the values assumed by the attributes of the instances.

It follows, in [Table 1.1] below, an example of a dataset containing only
nominal attributes. As it can be easily noticed, the classification attribute
is “Recommended lenses” and every instance is labeled according to this
attribute (credits for the public dataset go to [22]).

Generally speaking, the supervised learning process is composed by two
fundamental steps: learning and testing. We have already seen that the
first one aims at learning a model using training data (where the input
scheme is provided with actual outcomes), whereas the second one tests
the previously built model in order to assess its accuracy. In fact, a
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Age Spectacle prescription Astigmatism Tear production rate Recommended lenses

Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal Hard

Pre-presbyopic Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope No Normal Hard

Table 1.1: First 12 entries of the contact lenses dataset.

model not only summarizes what we know (i.e., the training dataset) but
hopefully it will also be able to correctly classify new cases. Therefore,
when building classification models one should have access both to train-
ing data (used to build the model) and test data (or evaluation data) to
verify how well the model actually performs.

Such evaluation usually exploits two fundamental metrics: precision
and recall, which are the reference point for all the experimental eval-
uations in the present work. In order to understand them, we should
first define the concepts of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN).

All of them are relative to a particular class and it is possible to calcu-
late the number of TP, FP, TN, FN for each existing class. In particular,
TP are instances belonging to a class that are correctly identified with
the label of that class, TN are instances correctly identified as not be-
longing to a given class, FP are instances not belonging to a class but
incorrectly classified with that class label, and finally FN are instances
belonging to the class of interest but incorrectly classified as they were
not.

Given the definitions above, precision is expressed as:

P =
TP

TP + FP

In other words, it specifies the fraction of relevant instances among the
retrieved instances.

On the other hand, recall is defined as:
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R =
TP

TP + FN

Which is the fraction of relevant instances that have been retrieved over
the total amount of relevant instances.

There exist other metrics measuring the accuracy of a test besides pre-
cision and recall; for example, we often employed the F-score or F1-
measure, which is the harmonic average of precision and recall:

F1 = 2 ∗ P ∗R
P +R

All the metrics mentioned above reach their best value at 1 (where we
have a perfect precision/recall/F-score) and worst at 0; in order to obtain
a perfect F-score, both precision and recall must be perfect as well.

In the next subsections, we describe many supervised learning strategies
in greater detail.

1.4.2 Decision Tree Learning

Decision tree learning follows a “divide-and-conquer” approach and it
adopts a decision tree structure as predictive model with the aim of de-
ciding the value of a target variable by exploiting a number of input
variables. In this work we refer to classification trees because the pre-
dicted outcome is a class (which is not necessarily the case with generic
decision trees). In short, a classification tree is just a flowchart-like struc-
ture characterized by the following elements:

• internal nodes (also called decision nodes), which represent a test
on a single attribute value (e.g. Temperature>25);

• branches, that follow from the outcomes of a test (namely, a corre-
sponding subtree is associated with each branch);

• leaves, containing class labels.

When testing nodes, attribute values are usually compared to con-
stants, but it is also possible to compare the values of two attributes
or to use a function of one or more attributes. On the other hand, leaves
assign a classification (or a probability distribution) on instances.
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In order to classify an unknown instance, the instance itself is routed
down the tree, checking all the conditions found in the path until a leaf is
found and the instance is classified. If the test yielded in a node returns
true, the case will proceed down the left branch, otherwise it will follow
the right branch and the process is repeated until a leaf is found (assuming
to employ binary splits and therefore to only have two branches).

With nominal attributes, the number or children of an internal node is
usually equal to the the number of different values (hence the attribute
will not get tested more than once); on the other hand, with numeric
attributes the test is about whether the given value is greater or lesser
than a constant (so the attribute is likely to get tested several times).

The following [Figure 1.3] shows a simple example of a classification
tree, which refers to the dataset already introduced and presented in
[Table 1.1], representing a possible solution for the problem of prescribing
contact lenses to patients. The tree has been obtained by running the J48
algorithm of the Weka Data Mining Tool 3.9.1, which can be downloaded
for free under GPL license at [8].

Figure 1.3: Decision tree for the contact lenses dataset
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Here, the Recommended Lenses are classified with three labels ("None",
"Soft" or "Hard"), whereas the internal nodes split on nominal attributes
(Tear Production Rate, Astigmatism, Spectacle Prescription).

The entire tree structure can be linearized into a series of classification
rules, which are usually put in OR with each other. A rule is composed
by an antecedent containing a series of tests (the ones of the internal
nodes) logically ANDed together, and by a consequent which is a class
label.

To convert a classification tree into a set of rules, we just extract one
rule for each leaf; the antecedent will contain a condition for every node
on the path from the root to the leaf, whereas the consequent simply
consists of the class indicated by the leaf. For example, it is possible to
convert the classification tree previously showed into the following rules:

1. if Tear Production Rate = Reduced then None
2. if (Tear Production Rate = Normal and Astigmatism = No) then Soft
3. if (Tear Production Rate = Normal and Astigmatism = Yes

and Spectacle Prescription = Myope) then Hard
4. if (Tear Production Rate = Normal and Astigmatism = Yes

and Spectacle Prescription = Hypermetrope) then None

The rules above are unambiguous (it does not matter in which order they
are executed) and very simple. However this is not always the case, so
whenever the resulting rules appear unnecessarily complex a tree pruning
is usually performed in order to remove redundant tests/rules.

The “value” of a rule is measured thanks to two metrics, support and
confidence; the former is simply the count of the number of correctly
predicted instances, whereas the latter is the number of correct predic-
tions, as a proportion of all the instances that the rule applies to. Poorly
relevant rules can then be eliminated by pre-specifying thresholds for
support and confidence.

The problem of building optimal binary decision trees is NP-complete,
since it would require to generate all the possible trees and then to select
the best one (which is unfeasible due to the fact that the number of
possible decision trees is finite but very large) and hence the research
has looked for efficient heuristics with the aim of building near-optimal
decision trees. For this reason, every decision tree learning algorithm
is based on heuristics, which on one hand always provides a solution in
reasonable time, but it cannot guarantee that better trees have not been
overlooked in the process.
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1.4.3 C4.5 and C5.0

Many learning algorithms were designed with the aim of generating a
classification model in the form of a decision tree starting from a set of
examples. We decided to focus on the most widely-used one which is the
popular C4.5, developed by Ross Quinlan as an extension of his earlier
ID3 algorithm; C4.5 implementation is open source and written in C for
UNIX environments and its Java implementation is known as J48 in the
Weka Data Mining Package.

Unlike ID3, C4.5 supports continuous attributes, efficiently deals with
missing or unavailable values, avoids overfitting the data by determining
how deeply to grow a decision tree, and, among the other things, it sup-
ports post-pruning of trees and rules, provides better attribute selection
measures while also improving the overall computational efficiency.

The input of C4.5 is simply a set of already classified data in which
each instance consists of a n-dimensional vector containing the attribute
values. One of these attributes represents the category of the record,
and such category attribute contains the possible class values through
which instances are cassified. Usually, the category attribute takes only
the values “true”, “false”, or something equivalent: in the CEP case, the
values are “positive”, “negative” and they refer to traces of events.

The problem is to determine a decision tree that based on the out-
comes of the tests on the non-category attributes correctly predicts the
value of the category attribute. To accomplish this task, C4.5 employs
binary splits (e.g., Temperature < 24.5) for numeric attributes and every
attribute has many possible split points. The splitting criterion (i.e., de-
ciding which attribute has to be selected for the split) is the normalized
information gain, which is an information theory measure defined as the
difference in entropy, useful to understand how informative is the pres-
ence of an attribute in the tree. In order to build a “good” decision tree,
the most informative attributes should be selected first and less informa-
tive attributes are disregarded and not included in the tree, or included
only if no better choice is available. The interested reader may find out
more about entropy and information gain in [29] and [30].

An important feature included in C4.5 but absent in ID3 is the ca-
pability to successfully classify unknown, missing, or previously unseen
instances. In fact, when the outcome of a test cannot be determined, C4.5
goes down the tree exploring all the possible subtrees and arithmetically
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combines the encountered outcomes, thus being able to provide a clas-
sification even when dealing with missing values. The basic assumption
behind this method is that unknown test outcomes are distributed prob-
abilistically according to the relative frequency of known outcomes.

The direct successor of C4.5 is C5.0; its Unix single-threaded version
(including source code) is released under GPL license and can be down-
loaded for free at [2]. Although commercial, multi-threaded and opti-
mized implementations of C5.0 are available (along with the Windows
release, See5), the author ensures that ultimately the classifiers built are
exactly the same both for free and commercial releases [5].

Quinlan proved C5.0 to be much better than its predecessor while also
offering new important functionalities. In fact, according to many tests
conducted on different datasets [5], C5.0 heavily outperformed its pre-
decessor in all ways, showing better accuracy (i.e. a reduced error rate
on unseen instances), better speed and lower memory consumption (with
one order of magnitude less of memory required). Also, C5.0 usually pro-
duces less rules without hindering the accuracy and the performance of
the learned rules; and lastly, C5.0 decision trees turn out to be ultimately
faster and smaller as well, and their considerable lower number of leaves
leads to faster classifications.

But the crucial aspect that convinced us to choose C5.0 over C4.5 in
the current research is represented by many new important functionalities
offered by the algorithm. First of all, C5.0 introduces variable misclassi-
fication costs that allow to construct classifiers minimizing the expected
missclassification costs rather than error rates; the reason behind the in-
troduction of the feature is that, in many scenarios, some errors are more
serious than others and hence they should not be treated equally like it
was the case with C4.5. This new functionality assumes a very important
role in our work, since we dedicated an entire component of the architec-
ture developed just to provide a good estimation of the misclassification
costs for C5.0.

Other worth mentioning new features offered by C5.0 (but not much ex-
ploited in the present work) are the provision for a case weight attribute
that quantifies the importance of each case (useful when dealing with
cases of unequal importance, aiming at minimizing the weighted predic-
tive error rate), and new data types available (including dates, times,
timestamps, ordered discrete attributes and case labels; attributes can
be even defined as functions of other attributes). Finally, C5.0 supports
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extended options like sampling and cross-validation, as well as attribute
winnowing, which is useful when dealing with high-dimensionality appli-
cations that include hundreds or thousands of attributes.

Practical details on the C5.0 software can be found at [1], where a brief
tutorial describes how to use the program.



Chapter 2

Problem Definition

I
n this chapter we define the thesis problem. First, in [Section 2.1] the
research question is described in an informal way; then, in [Section 2.2]

it follows a more rigorous definition, and lastly, in [Section 2.3] we clear
and motivate some assumptions adopted which simplify the problem and
make it easier to tackle.

2.1 Problem Statement

From a high-level point of view, our main problem is to enable general-
purpose ML algorithms to work with streams of events in order to detect
situations of interest (composite events).

As already known, any learning or data mining technique require a
training dataset to work; however, in the case of CEP we can only observe
a stream of events, which are complex entities characterized by particular
properties and following a precise structure dictated by a model.

As a consequence, the stream of events must be first translated into
a static dataset to be exploited for learning purposes. More precisely,
we define the training history HT as a time-ordered set of events; then,
our problem becomes to encode all the relevant information contained
in HT as a series of lines (instances, or samples) containing comma-
separated values of properly crafted attributes, thus obtaining a dataset
DT necessary to train the learning model.

21
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In addition, after the learning phase is over, the learned model must be
exploitable for Event Recognition purposes; in other words, it must be
able to correctly detect composite events within new incoming streams.

2.2 Detailed Formulation

In order to provide a more formal definition of the problem, we intro-
duce the concept of traces of events, which are just contiguous portions
(subsets) of the training history characterized by the following properties:

• A trace requires both a starting and an ending timestamp (TSstart
and TSend respectively) and it contains all the events recorded
within the given timeframe. The size W of the trace is defined
as

W = TSend − TSstart
This parameter is also called window size since it relates to the
window operator presented in [Section 1.1], that determines how
long the portion of relevant input must be before evaluating other
operators.

• All the events contained in a trace must be primitive, with the only
exception consisting of the last event of the trace, that can be a
composite event.

If this is the case, we say that the given trace is positive, since its
primitive events ultimately lead to an occurrence of the composite
event. Otherwise, the trace is negative.

As a simple example, consider the following set of traces (where, for
each event, the letter refers to the event type and the number to its
timestamp):

T1: A@0, B@2, C@5, A@8, A@10, D@11, CE@15
T2: D@4, C@8, B@11, A@12, B@13, C@17, CE@19
T3: D@11, B@19, A@26

T1 and T2 are positive traces, because their last event is represented by
the composite event CE, whereas T3 is negative since it does not lead to
CE (which in fact does not appear in it).

It is easy to notice that the following pattern, describing the occurrence
of CE in terms of primitive events, emerges from the traces above:
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within 15s. { A() and B() and C() }
where { A → B }

The pattern (or rule) states that, in any positive trace, an event of
type A, an event of type B and an event of type C must occur (i.e., the
trace must include the conjunction of those events); also, the sequence
operator A → B indicates that events of type A must always precede events
of type B.

The pattern takes place in both the positive traces above (T1 and T2),
but – as expected – it cannot be found within the negative one (T3);
therefore, the rule above makes it possible to discriminate between posi-
tive and negative traces, which in turn allows to correctly predict future
occurrences of composite events.

At this point, we are finally able to give a more detailed formulation of
the thesis problem.

Problem Formulation. Given a starting set of traces θT obtained
from the training history HT , and a set of new, previously unseen and
unlabeled traces θU , the problem is to correctly predict the occurrences
of the complex event CE inside θU or in other words to assign a label
(positive or negative) to each trace of θU .

The problem is further summarized as follows (where θU,p is the set of
positive traces and θU,n the set of negative traces of θU ):

Given θT ∈ 2HT , θU = θU,p ∪ θU,n :
∀ε ∈ θU , decide whether ε ∈ θU,p or ε ∈ θU,n

2.3 Assumptions

To better understand the formal description of the problem just pre-
sented, as well as the solution that we propose in the next chapters, it is
worth remarking some points beforehand:

• The use of the power set 2HT is due to the fact that traces are
contiguous portions of the training history and, therefore, θT is an
element of the set of all the possible subsets of HT ;

• The traces in θU differ from the ones of θT in that they do not
contain occurrences of complex events CE; this represents the fact
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of not knowing whether a trace leads to CE or not (i.e., whether
it is positive or negative). Therefore, a trace ε may belong to θU,p
even if its last event is not CE.

• As a consequence, θU,p and θU,n are not known sets and our goal
consists in building both the subsets in the most accurate way.

In other words, our aim is not only to take a decision about ε, but
also to take a correct one. In order to measure the accuracy of the
predictions, we employ precision and recall (already mentioned in
[Chapter 1.4]).

It should also be noted that the formulation above actually represents
a classification problem, since the goal is to assign a label (“positive” or
“negative”) to each trace. Our approach both at formulating the prob-
lem and at solving it differs from ad-hoc solutions because a decision tree
(and not a rule) is learned starting from HT .

Last but not least, a fundamental assumption that we rely on through-
out the course of this work regards the window size W , which is consid-
ered fixed and already known in advance and hence it is not learned by
the system that we developed.

The reason for this choice is motivated by the fact that in most real-
world scenarios windows do not usually represent a critical issue; if the
applicative domain is well-known – as it often is the case – the order
of magnitude of a proper window size is known as well. For example,
in environmental monitoring systems the timeframe to consider typically
consists of several minutes, whereas in a trading stock scenario it is re-
quired to be much smaller, e.g., in the order of seconds. Therefore, we
consider the assumption above to be reasonable and acceptable at least
from a practical viewpoint.

Moreover, learning window sizes would be a very computationally de-
manding and time-consuming operation, as it would require several exe-
cutions of the machine learning tool employed in order to work. In fact,
the window size parameter is the only one that we did not manage to
learn with a single pass of the algorithm (which on the other hand is a
noticeable advantage provided by our technique). Nonetheless, we would
have faced significant issues even if we executed the program multiple
times adopting different sizes and selecting the best one based on the
precision, recall or F-score obtained after each execution, because it is
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not trivial to decide about the number of possible candidate window sizes
and about which particular values should be tested in the first place; if
we are looking for an exact value – or a very good approximation thereof
– the number of iterations needed is likely to quickly become prohibitive.





Chapter 3

Towards a Solution

After having tried to apply with little success different kinds of Machine
Learning algorithms, such as Inductive Logic Progamming (FOIL,GOLEM)
and Association Rule Mining techniques, we chose to focus our research
on decision trees, and, in particular, on the already presented C5.0 al-
gorithm, since we realized that the decision tree paradigm was better
suited and easier to adapt to the CEP context than the other solutions.
Moreover, the new functionalities and capabilities offered by C5.0, if com-
pared to other algorithms and even its predecessor C4.5, turned out to
be particularly useful in addressing many issues that we encountered.

Basically, our work was driven by a fundamental objective, which is to
allow C5.0 to learn from traces of events. This requires the creation of a
dataset, containing the properties of the events, thanks to which C5.0 can
start building a decision tree oriented at discriminating between positive
and negative traces. In a second step, we aim at employing such decision
tree to classify new traces of events with the best accuracy possible.

Operatively, we managed to accomplish the goals above by taking sev-
eral steps:

1. First, it is necessary to find a way to extract a set of traces, which
constitute the basis for learning, from the training history.

2. Then, the traces so obtained are encoded to generate a dataset that
can be read in input by C5.0.

This encoding step is fundamental, since general-purpose, off-the-
shelf tools are not designed to deal with events, and in particular
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they lack a notion of time and sequence which on the other hand
is fundamental in CEP.

3. The algorithm is finally executed on the dataset and a decision
tree is built consequently. However, such decision tree cannot be
directly employed to label event traces because of the previously
adopted encoding scheme.

Therefore, it was necessary to develop a custom Classifier to allow
the decision tree to label new traces of events; this component also
greatly helps to improve the overall accuracy of the predictions.

4. Lastly, a feature offered by the algorithm itself, which is the possi-
bility to employ misclassification costs, is exploited to further lower
the number of incorrect predictions made by C5.0.

The misclassification costs estimator internally runs C5.0 and per-
forms many cross-validations on the training dataset in order to
produce a proper estimate.

The learning architecture just described is showed in [Figure 3.1]; it
should be viewed as a black-box that receives two inputs: a training
history and the window size, which is needed in order to extract traces
from the training history since it specifies how long a trace should be.
The output of the black-box is the learned decision tree, which is then
exploited to label unseen traces of events working in conjunction with
the Classifier.

The Traces Extractor is the simplest component and it is in charge of
looping throughout the entire training history, providing in output the
set of extracted traces (both positive and negative). To obtain the set T
of extracted traces, we employ the following procedure:

Algorithm 1 Extract Traces

Input: Training history HT , window size W
Output: Set of training traces T
TSstart ← TSmin, T ← ∅, ε← ∅
while TSstart +W 6 TSmax do

ε← GetAllEventsInWindow(HT , TSstart, TSstart +W )
T ← T ∪ {ε}
TSstart ← TSstart + 1

return T
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where TSmin and TSmax are the minimum and maximum timestamps
of events as observed in the training history HT and ε is the current trace
being extracted. The subprocedure GetAllEventsInWindow simply
returns a trace containing all the events of HT that carry a timestamp
included in the time-frame [TSstart, TSstart +W ].

Figure 3.1: Overview of the learning architecture developed.





Chapter 4

System Architecture and
Implementation

In the course of this chapter, we proceed to detail every component of the
learning architecture developed and introduced in the previous chapter.

In particular, the Traces Encoder is described in [Section 4.1], the Clas-
sifier can be found in [Section 4.3] whereas the Misclassification Costs
Estimator is presented in [Section 4.4].

About the remaining parts of the chapter, [Section 4.2] describes the
problem of Event Type Repetitions, an important issue that emerged
during the encoding and that was necessary to fix, whereas [Section 4.5]
and [Section 4.6] extend the basic model developed to deal with more
complex situations, respectively characterized by additional constraints
(negations and aggregates), and multiple rules included within the same
history.

4.1 Trace Encoding

In order to successfully employ C5.0, it is required to encode all the
information about events as a finite set of attributes in a way that allows
the algorithm to discriminate between positive and negative traces.

This is accomplished in two subsequent steps:

• first, all the significant properties of events and traces are precisely
identified;
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• then, an attribute (or a set of attributes) is created to represent
each property.

With reference to the event model adopted, we need to encode at least
the following properties:

• the presence of event types in a trace;

• the values assumed by event attributes;

• the temporal relations taking place between events.

The presence of event types is important because composite events may
be triggered by some other kind of primitive event that happened at the
same time or before (for instance, the event Fire triggered by the events
Smoke and HighTemperature).

A type is relevant if its presence in a trace is required to make a com-
posite event occur; therefore, positive traces must contain at least one
occurrence of each relevant type.

If the universe U of primitive event types in the domain of interest
is finite and fully known, it is rather easy to encode the presence of
event types as it is sufficient to employ a discrete boolean attribute for
each possible type, taking the value "true" if the type has been detected
within the trace and "false" otherwise.

We express this class of attributes in the form EventxDetected, with
1 ≤ x ≤ N , Eventx ∈ U and N = |U |; since an attribute is created for each
type, we need N attributes to fully encode all the information.

In some cases, the presence of event types alone is not very useful.
Take, for example, a scenario composed by sensors periodically emitting
information, such as temperature readings: since events happen at reg-
ular intervals, some types appear in every collected trace and thus they
no longer constitute a peculiar characteristic of positive traces.

This is why it becomes necessary to also encode the values of the at-
tributes of an event and not just its simple occurrence; furthermore, some
composite events only take place if the attributes of a relevant event as-
sume certain values, according to a selection constraint (e.g., the complex
event Fire triggered by the event Temperature(Value > 28.5)).
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Therefore, a different C5.0 attribute is created for each existing event
attribute. These attributes may be either continuous or discrete depend-
ing on the event type, but for simplicity we assume that they are all
continuous, implying that event attributes are integers or real numbers.
If a given event type has not been detected within a trace, all the relative
attributes take the missing value, ?.

Assuming that each event is characterized by A different attributes,
we refer to this class of attributes with the formulation EventxAttributek,
where 1 ≤ x ≤ N and 1 ≤ k ≤ A. If each trace contains at most one
occurrence of a given type, we need to create N ∗A attributes of this kind.

Sometimes, we must take into account the temporal orderings of prim-
itive events in order to detect composite events; as a consequence, we
tried to encode data in a way that allows C5.0 to implicitly spot se-
quence constraints. To do that, we created a number of additional dis-
crete boolean C5.0 attributes, each one representing the mutual temporal
relation intercurring between a couple of events. For example, the at-
tribute EventxPrecedesEventy (where x, y ∈ N) takes value "true" if in a
given trace Eventx is detected before Eventy (i.e. the timestamp of Eventx
is lower than the one of Eventy), and "false" otherwise.

If a trace only contains one out of the two events (or none of them) the
attributes assume a missing value instead, because it does not exist any
ordering relation between them.

The number of this kind of attributes depends once again on the number
N of different event types in the domain of interest. Observing that, given
EventxPrecedesEventy, it is not needed to also encode EventyPrecedesEventx
because one is the logical NOT of the other, the number of required
attributes is

N ∗ (N − 1)

2

Lastly, a category attribute allows C5.0 to assign a label to traces; we
call such discrete attribute Class, and its possible values are "positive"
and "negative".

It follows, in [Table 4.1], a brief summary of the encoding model for
C5.0 just described.

In conclusion of this section, I am going to provide an example showing
how a trace of events can be encoded thanks to the scheme adopted.
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C5.0
Attribute

Type Possible
values

Information
encoded

Constraints
captured

Number of
attributes
needed

Eventx
Detected

discrete true, false presence of
event x

conjunction N

Eventx
Attributek

continuous/
discrete

depending on
the attribute
domain

attribute k of
event x

conjunction,
selection

N ∗A

Eventx
Precedes
Eventy

discrete true,false,? temporal
ordering
between
events x and y

sequence N∗(N−1)
2

Class discrete positive,
negative

label for
traces

/ 1

Table 4.1: Encoding model for C5.0.

Consider the following trace, in which U = {E1, E2, E3, E4, E5}, R =
{E1, E2, E5}, A = 2, W = 10, N = |U | = 5 where R ⊂ U is the set
of relevant events. The occurrence of the complex event is denoted with
CE whereas the usual syntax @ indicates the timestamp.

T: E1[A1=1,A2=2]@1, E2[A1=0,A2=5]@5, E5[A1=6,A2=6]@8, CE@10

First of all we look at which event types were observed within the trace
and we set the corresponding attributes accordingly:

Event1Detected = true
Event2Detected = true
Event3Detected = false
Event4Detected = false
Event5Detected = true

Then, we proceed to encode event attributes and sequences (notice how
missing values are assigned to events not detected within the trace):

Event1Attribute1 = 1
Event1Attribute2 = 2
Event2Attribute1 = 0
Event2Attribute2 = 5
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Event3Attribute1 = ?
Event3Attribute2 = ?
...
Event1PrecedesEvent2 = true
Event1PrecedesEvent3 = ?
Event1PrecedesEvent4 = ?
Event1PrecedesEvent5 = true
...

Lastly, since the composite event CE is the last event of the trace, we
can conclude that the trace is positive:

Class = positive

The result of the encoding procedure is the following instance:

t,t,f,f,f,1,2,0,5,?,?,?,?,6,6,t,?,?,t,?,?,?,?,?,?,positive

The pseudocode of the procedure Encode is showed in the next page;
by printing the comma-separated values of the encoded instance I it is
possible to obtain a line to be added to the training dataset for C5.0.

Instead of a single one, the procedure can be generalized to work with
a set of traces (i.e., an history); we call such procedure EncodeSet.
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Algorithm 2 Encode

Input: trace ε
Output: encoded instance I
Types← GetEventTypesInTrace(ε).
for each t ∈ U do

if t ∈ Types - {CE} then
I.EventxDetected← true

else
I.EventxDetected← false

for each e ∈ ε do
t← e.Type
if t ∈ Types - {CE} then

Attcurrent ← GetAttributesOfEvent(e)
for each a ∈ Attcurrent do

I.EventxAttributek ← a
else

for all 1 ≤ k ≤ A do
I.EventxAttributek ← ?

for each e1 ∈ ε do
for each e2 ∈ ε do

if x < y then
t1← e1.Type, t2← e2.Type
if t1, t2 ∈ Types - {CE} then

if e1.Timestamp ≤ e2.Timestamp then
I.EventxPrecedesEventy ← true

else
I.EventxPrecedesEventy ← false

else
I.EventxPrecedesEventy ← ?

if CE ∈ Types then
I.Class ← “positive”

else
I.Class ← “negative”

return I



4.2 Event Type Repetitions 37

Variable/Procedure Description

ε Input trace (a set of time-ordered events)

U Universe of primitive event types (not including CE)

A Number of attributes of each event

Types Set of event types present in trace ε (possibly including
CE)

CE A string denoting the complex event type

1 ≤ x, y ≤ N Indexes of event types, assumed to be known at every
step of the algorithm

1 ≤ k ≤ A Indexes of event attributes

Attcurrent A set containing the values of the attributes of the
current event

I Encoded instance returned by the procedure

GetEventTypesInTrace(ε) Returns the set of event types detected in trace ε

GetAttributesOfEvent(e) Returns the values of the attributes of event e

Table 4.2: Definitions for the Encode algorithm.

4.2 Event Type Repetitions

The encoding strategy explained works under the assumption that traces
only contain a single occurrence of each event type.

However, it is fairly common for a trace to present multiple occurrences
of events sharing the same type. Such events are generally not identi-
cal, because their attributes may as well assume different values (e.g.,
Temperature(value=20) and Temperature(value=25)).

Since it does not exist a concept of “occurrence” in the encoding scheme,
we are currently unable to deal with traces containing event type repeti-
tions.

Solutions for this issue are possible, but they come at the cost of in-
cluding incorrect information in the dataset. To understand the concept
of incorrect information, we should first define what we mean by correct
information instead, distinguishing between positive and negative traces.

Positive traces are characterized by the following property: for each
operator included in the pattern leading to the composite event, they
must contain at least one event that satisfies the operator; if there are
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different operators concerning the same event type, each of them should
be satisfied by at least one event of the trace.

As an example, consider the universe U = {E1, E2, E3} and the fol-
lowing CEP rule, according to which there are two relevant event types,
E1 and E2, each subject to a selection equality constraint on the only
attribute A1, which is discrete and takes values from the domain DA1 =
{x, y, z}:

R:[E1[A1=x],E2[A1=y]]

Now consider the following trace, with the * character denoting an event
occurrence satisfying a rule operator, i.e. in which A1 assumes the correct
value (‘x’ or ‘y’ depending on the type):

p: *E1[A1=x]@1, E1[A1=z]@2, *E2[A1=y]@3, E3[A1=z]@4, E2[A1=z]@5, CE

The trace is positive because it contains at least one event satisfying
each constraint (E1[A1=x]@1, E2[A1=y]@3). It does not matter if other oc-
currences of the event types involved (e.g., E1[A1=z]@2, E2[A1=z]@5) violate
the constraints, as long as there is at least one occurrence in the trace
satisfying them.

On the other hand, negative traces require at least one rule operator
to be never satisfied by the events of the trace (other operators may be
satisfied, but not all of them at the same time).

For example, in the following trace the selection constraint on E1 is
satisfied by the occurrence E1[A1=x]@1, but not the one on E2, which
always appears with the wrong value z for the attribute A1 (E2[A1=z]@3,
E2[A1=z]@5):

n: E1[A1=x]@1*, E1[A1=z]@2, E2[A1=z]@3, E3[A1=z]@4, E2[A1=z]@5

The considerations above lead to an important conclusion: only positive
traces are affected by the problem of event type repetitions.

To see why this is the case, it should first be observed that while the
encoding scheme do not work with traces containing repetitions, it can
still be applied to all the sub-traces characterized by a single occurrence
of each event type.

In order to generate a sub-trace we must pick only one occurrence
for each repeated type, but if we select a wrong occurrence (i.e., not
satisfying any constraint) from a positive trace the encoding would be
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incorrect, because the instance gets labeled as “positive” even if it is not.
By unknowingly removing events which are necessary to satisfy the rule,
false positives are introduced into the training dataset before even having
tried to run the algorithm.

For instance, with reference to the previous trace p, the sub-trace

p1: *E1[A1=x]@1, *E2[A1=y]@3, E3[A1=z]@4, CE

leads to a proper encoding, but the sub-trace

p2: E1[A1=z]@2, *E2[A1=y]@3, E3[A1=z]@4, CE

introduces a false positive into the dataset.

With negative traces we do not face the same problem, since in this
case:

• either a relevant type is not present in the trace, or

• all its occurrences violate a rule operator.

Therefore, regardless of which occurrence we choose to encode into the
dataset, a false negative can never happen (all the possible sub-traces are
true negatives).

For example, the following sub-traces of n:

n1: *E1[A1=x]@1, E2[A1=z]@3, E3[A1=z]@4

n2: *E1[A1=x]@1, E3[A1=z]@4, E2[A1=z]@5

are both correctly labeled as negative, regardless of the choice made be-
tween the occurrences E2[A1=z]@3 and E2[A1=z]@5 (none of them satisfies
the rule R).

As anticipated, we managed to find a solution for the problem of event
type repetitions at the cost of introducing some false positives into the
dataset; nonetheless, this solution exploits the original encoding scheme
without needing to introduce additional attributes, which is a better
option if compared to different alternatives that we tried to employ and
that modify the encoding scheme.

In short, our approach proceeds as follows:
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• first, traces with repetitions are split into multiple sub-traces con-
taining a single occurrence of each event type;

• then, each sub-trace is encoded independently according to the
usual scheme.

• In order to preserve all the original information, we need to generate
every possible sub-trace of minimum length which can be extracted
from the original trace; therefore, all the possible combinations of
the occurrences of events having the same type must be computed.

Thanks to the method above, we are guaranteed that at least one of the
sub-traces included in the dataset after the split is correct. However, as
already explained, most of the sub-traces extracted from a positive trace
are actually false positives and unluckily we cannot avoid to encode them
into the dataset.

In fact, since we do not know the rule leading to composite events we
cannot exploit it to correctly label sub-traces. We can only observe that
a composite event happened at the end of the original trace, and all the
sub-traces must be labeled as positive because we have no idea about
which are the actual event occurrences in the trace that triggered the
composite event.

The example below is useful to understand how the “splitting” method
works in practice, as well as to see how false positive sub-traces are
generated as a consequence.

Consider the following CEP rule, with U = {E1, E2, E3}, DA1 =
{x, y, z}, A = 1:

[Rule:
EventConstraints: [E1[A1=x],E2[A1=y],E3[A1=z]
Sequence Constraints: [E1->E2]]

Now we take a positive trace containing event type repetitions (as usual,
asterisks denote an event occurrence satisfying some operator of the rule):

*E1[A1=1]@1, *E2[A1=y]@2, E1[A1=z]@3, E1[A1=z]@4,
*E3[A1=z]@5, E2[A1=z]@6, CE@7

The trace is split into the following sub-traces:

*E1[A1=x]@1 *E2[A1=y]@2 *E3[A1=z]@5 CE %% True Positive
*E1[A1=x]@1 E2[A1=z]@6 *E3[A1=z]@5 CE %% False Positive
E1[A1=z]@3 *E2[A1=y]@2 *E3[A1=z]@5 CE %% False Positive
E1[A1=z]@3 E2[A1=z]@6 *E3[A1=z]@5 CE %% False Positive
E1[A1=z]@4 *E2[A1=y]@2 *E3[A1=z]@5 CE %% False Positive
E1[A1=z]@4 E2[A1=z]@6 *E3[A1=z]@5 CE %% False Positive
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These sub-traces are then encoded according to the usual attributes:

E1A1: continuous
E2A1: continuous
E3A1: continuous
E1PrecedesE2 : true,false
E1PrecedesE3 : true,false
E2PrecedesE3 : true,false
Class: positive, negative

The result of the encoding are six different instances to be included in
the dataset for C5.0:

*x ,*y,*z,*true,true,true,positive %% True Positive
*x*, z,*z,*true,true,false,positive %% False Positive
z ,*y,*z,false,true,true,positive %% False Positive
z , z,*z,*true,true,false,positive %% False Positive
z ,*y,*z,false,true,true,positive %% False Positive
z , z,*z,*true,true,false,positive %% False Positive

It can be observed that the first line generated with the “splitting”
strategy is a true positive, so the correct information is preserved. On
the other hand, five (partially) incorrect instances are introduced into
the dataset as well. Considering the correctness of the individual values
encoded for each attribute, it can be noted that only 1/3 of the total
information about E1, half the information about E2, and 2/3 of the
information concerning the sequence constraint is correct.

The pseudocode of the procedure Split Trace, employed to split
traces with repetitions, is showed in the next page. Please note that,
if the input trace is positive, the composite event type CE is treated like
a regular type by the procedure and therefore it is included at the end of
all the sub-traces generated.

4.3 Classifying Traces

By executing C5.0 on the dataset built according to the encoding scheme
described, a decision tree classifier is generated by the algorithm and it
can be employed to label unseen traces, allowing to detect new occur-
rences of composite events in real-time.

To classify a new trace, we follow the same procedure already adopted
for the training traces, i.e. we split the trace (if it contains type repeti-
tions) and then we proceed to encode all the sub-traces. At this point,
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Algorithm 3 Split Trace

Input: trace ε
Output: set of sub-traces Esub obtained by splitting ε
Types← GetEventTypesInTrace(ε)
Oall ← ∅
Esub ← ∅
for each t ∈ Types do

Ocurrent ← GetAllEventOccurrencesOfType(t)
Oall.add(Ocurrent)

Esub ← ComputeCombinations(Oall)
return Esub

Variable/Procedure Description

ε Input trace, possibly containing event type
repetitions

Types Event types present in ε

Ocurrent Set containing all the event occurrences of
the current type t

Oall A set of sets of occurrences, containing
every Ocurrent computed

GetEventTypesInTrace(ε) Returns all the event types detected in
trace ε

GetAllEventOccurrencesOfType(t) Returns all the occurrences of events of
type t in ε

ComputeCombinations(O) It picks a single occurrence from each set
of occurrences in O in every possible way,
returning the set of all the possible
sub-traces that can be built starting from ε

Table 4.3: Definitions for the Split Trace algorithm.

C5.0 can assign a label to every encoded sub-trace thanks to the previ-
ously computed decision tree.

However, classifying sub-traces does not actually make sense per se,
since it is the original trace (i.e., the one containing type repetitions)
that ultimately has to be classified, even if this cannot be done directly
because of the limits of our encoding model.

To overcome this problem, we assumed that if at least one of the sub-
traces is classified as positive by C5.0, then the original trace is also
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classified as positive. In other words, if we look at the “positive” and
“negative” labels as boolean “true” and “false” values respectively, this
method of detection is equivalent to a logical OR performed on the labels
assigned to sub-traces.

The strategy brings two important consequences:

• it is easier to detect positive traces because this only requires a
single sub-trace labeled as positive, and therefore it is harder to
incur into false negative detections;

• it is harder to detect negative traces because in this case all the sub-
traces must be given a negative label; C5.0 needs to be extremely
accurate because a single incorrect classification of a sub-trace in-
evitably leads to a false positive detection.

It is possible to eliminate the drawback of the solution remembering
that only true negatives can be obtained from the split of a negative
trace. Therefore, it is not necessary to encode every negative sub-trace
since they are equivalent to the initial trace in terms of correctness and
validity, even if containing only a subset of the original information. In
fact, the split of a positive trace is required only to be sure to include at
least one true positive in the dataset (along with the false positives), but
we do not have to worry about this issue for negative traces.

Hence, we opted to encode only one randomly selected negative sub-
trace; in this way, we add to the dataset a valid instance but the chances
of getting a false positive detection are significantly lowered. Of course,
different datasets are built depending on the choice of the sub-trace but
we argue that the statistical impact of the choice is negligible, given a
large set of training traces and as confirmed by many experimental eval-
uations conducted.

As usual, it follows the pseudocode of the procedure Classify Trace,
employed to classify traces.

4.4 Reducing False Positives

The “splitting” method employed for traces with repetitions actually
leads to the construction of a less accurate decision tree, but this is
true only on a per sub-trace/dataset instance basis. As we have seen,
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Algorithm 4 Classify Trace

Input: trace ε, decision tree DT
Output: label L assigned to ε
Lsub ← ∅
Esub ← Split Trace(ε)
for each σ ∈ ESub do

Lsub.add(l)
if Lsub.contains(“positive”) then

L← “positive”
else

L← “negative”
return L

Variable/Procedure Description

ε Input trace, possibly containing event type repetitions

DT : Decision tree built by C5.0 during the learning phase

L Label returned by the procedure and assigned to ε

Esub Set of all the possible sub-traces of ε

Lsub Set of labels assigned to every trace in Esub

Encode(σ) Encodes the trace σ as an instance compatible with C5.0

Classify(DT ,I) Exploits the C5.0 built-in classifier to assign a label to the
encoded instance I thanks to DT

Split Trace(ε) Returns all the possible sub-traces obtained by splitting ε

Table 4.4: Definitions for the Classify Trace algorithm.

the classification strategy employed afterwards improves the situation,
bringing a much higher number of correct predictions for the original
starting traces and a resulting overall lower false positives count.

To further reduce the number of false positives, we decided to rely on
two more techniques: the use of unbalanced training datasets and the
estimation of misclassification costs.

The basic idea behind the first technique stems from simple empirical
findings; in fact, we observed that when the training dataset for C5.0 is
composed by a greater number of negative instances than positive ones,
the algorithm is usually able to assign negative labels more accurately
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and, to an extent, without losing its capability to correctly predict posi-
tive instances.

It is empirically possible to find unbalancing proportions that work well
in every tested scenario (like 1:10, for example); however, we are not able
to show any proof that a given fixed unbalancing proportion is going to
work in every practical case nor we can provide any theoretical way to
estimate the optimal proportion to be employed, so this remains an open
issue.

What we can state for sure, on the other hand, is that the concept
of biased dataset should not raise any concern per se, even in practical
applications. In fact, as long as the training dataset constitutes a good ap-
proximation of the true distribution over samples and labels, it is always
legitimate to employ it; this is the case with CEP, because composite
events usually represent some extraordinary, out of the norm condition
and hence positive traces are intrinsically much more rare than negative
ones. For example, the event Fire in an environmental monitoring sce-
nario is not likely to be observed frequently, so it is not a difficult task
(but the normality) to get a biased dataset in such an applicative context.

The other method employed to deal with false positives is the use of
misclassification costs, which express the cost of an error in predicting
a class label for an instance: if not specified, such errors are all treated
equally by C5.0 but, in some cases, classifying an instance of a class with
an incorrect label carries greater weight than a generic misclassification
error.

For example, if we want to instruct the algorithm about the fact that
misclassifying an actual negative trace as positive is k times more costly
than the opposite we can just write the following line:

positive[Predicted Label], negative[Real Label]: k

By employing different costs, C5.0 is able to build decision trees ori-
ented at minimizing the number of more costly errors. The direct con-
sequence of this fact is that the algorithm becomes biased at accurately
predicting the instances of some class, possibly at the expenses of some
other class.

In terms of quality metrics, what happens in our case (considering
that we only have two class labels) is that either precision or recall gets
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boosted while the other metric is sometimes lowered. The total balance
can be negative or positive, but the bottom line is that we are obviously
interested into boosting the lowest metric without impacting too much
on the other one.

Therefore, adopting misclassification costs becomes particularly conve-
nient in situations characterized by a metric which happens to be very
high (close to 1.0) whereas the other is mediocre (0.5-0.8), like in our
case (high recall, poor precision).

At this point, two questions naturally arise from the considerations
above.

• How to estimate the best possible misclassification costs for a dataset?
(i.e., the ones providing the best accuracy possible in a particular
scenario)

• How to decide whether a given misclassification cost is better than
another one?

The second question is actually instrumental to the first one and, in gen-
eral, the answer heavily depends on the applicative context. For example,
it can happen that in a given CEP application a metric is deemed more
important than the other (for example, in a medical scenario, where a
false negative diagnosis is practically never tolerated but a false positive
is more acceptable).

In such cases the answer is simple: a misclassification cost is better
if it helps to improve the most relevant metric. Here, we either aim at
reducing false positives or false negatives. Otherwise, if precision and
recall are deemed of equal value, a different solution is needed.

It is easy to notice that the F-score metric, being defined as the har-
monic average of precision and recall, is very well suited for this purpose.
In fact, if a misclassification cost provides a gain for a metric which is
greater than the loss of the other, the corresponding F-score is going to
be higher; therefore, we may just decide to choose the costs maximizing
the F-score. Even if in our experiments we mainly had to deal with false
positives (and therefore the estimation could have been driven by pre-
cision alone), we still decided to rely on the F-score metric in order to
preserve generality.

The estimation has been conducted by exploiting a subset of the set
of training traces for learning whereas the rest of the set has been used
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to evaluate C5.0. The entire process is repeated with different misclas-
sification costs and the desired estimate is obtained by comparing the
resulting F-scores provided by the validations conducted on the testing
portions of the set.

To get a more accurate estimate, we decided to perform a cross valida-
tion on the set of traces, which is a useful technique widely employed in
Machine Learning that aims at predicting how well a learned model will
perform and generalize on new data without actually testing it on such
data. The goal of cross validation is to define a dataset to “test” the
model during the training phase, and, in our case, the outcomes of the
predictions are then exploited to choose a proper misclassification cost.

Due to performance issues and computational limits, we opted for a
non-exhaustive method of cross validation (i.e., not considering all the
possible ways of splitting the original samples), which is k-fold cross val-
idation.

With k-fold cross validation, the training dataset is split into k portions
(or folds, or sub-samples) of equal size (i.e. each fold contains an equal
number of instances); then, k-1 folds are used to build a dataset to train
the model and the remaining fold is used to validate the model. The
process is repeated k times, and at each round a different fold is selected
for the evaluation; at the end of the k-th round, every fold has been
selected exactly once.

For instance, with a 3-fold cross validation (which we often employed
in our tests), at each round roughly 2/3 of the instances are used for
training and the remaining 1/3 for the evaluation.

It is important to underline the fact that we performed cross valida-
tion not directly on the training dataset of C5.0, but on the set of traces
extracted from the training history. In other words, we proceeded to
the encoding phase only after having generated k folds of both positive
and negative traces. The reason for this is given by the fact that, if we
encoded traces first and then divided the resulting dataset into k folds,
it could happen that some instances obtained from the split of a cer-
tain trace (containing type repetitions) end up into a fold, while some
other instances deriving from the same trace go into a different fold,
which does not make sense even if the statistical impact would actually
be quite small.
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Now, it is interesting to finally find out how cross validation helps to
provide a proper estimate of misclassification costs: for each fold, we test
a number of different misclassification costs and then we select the one
providing the best F-score for that fold. The final misclassification cost
estimate is simply the average computed on all the best values (one for
each fold).

The system turned out to provide good results, even if not always
optimal. In fact, two factors prevent the optimality of the prediction.

• The number of folds employed: generally speaking, employing too
many folds is impractical both because of the higher number of
iterations of the algorithm required (often resulting in prohibitive
running times) and because the datasets used for learning and test-
ing could end up containing too few samples, which would lead to
bad estimations; however, on the other hand, higher values of k are
able to provide less bias towards overestimating the true expected
error and a more accurate confidence interval on the estimation.

• The choice of the possible “candidate” misclassification costs to
test and the number of such candidates; in fact, if Nfolds is the
chosen number of folds and M the number of misclassification costs
to be tested, the number of C5.0 runs required to provide a final
estimation is equal to Nfolds ∗M . Luckily, even if misclassification
costs could take any value, from a practical viewpoint the range
of worth testing costs is very limited (usually, the optimal costs
are included in the range [1,100] and not rarely even in the range
[1,10], so in our experiments at most we run C5.0 Nfolds ∗100 times
- or less, if we decide to test only a subset of the possible values).
Nonetheless, in order to get a theoretically optimal prediction every
natural number should be tested (until we get a perfect F-score, if
possible) and this is obviously not feasible.

The pseudocode of the procedure Estimate Misclassification Costs
is showed below.
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Algorithm 5 Estimate Misclassification Costs

Input: FP , FN , Nfolds, minimum cost cmin, maximum cost cmax

Output: misclassification cost estimate c
k ← 1
Cbest ← ∅, DatasetT ← ∅, DatasetE ← ∅
do

PosT ←
⋃

j=1...Nfolds,k 6=j

FP .get(j)

NegT ←
⋃

j=1...Nfolds,k 6=j

FN .get(j),

PosE ← FP .get(k), NegE ← FN .get(k)
DatasetT .add(EncodeSet(PosT ))
DatasetT .add(EncodeSet(NegT ))
ccurrent ← cmin

cbest ← cmin

Fbest ← 0
do

DT ← Execute C5.0(DatasetT , ccurrent)
F1current ← Evaluate F1(PosE ∪NegE , DT )
if F1current > F1best then

F1best ← Fcurrent

cbest ← ccurrent
ccurrent ← ccurrent + 1

while ccurrent ≤ cmax

Cbest.add(cbest)
k ← k + 1

while k ≤ Nfolds

c← Average(Cbest)
return c
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Variable/Procedure Description

Nfolds Number of folds employed for cross validation

FP Set of positive folds (it contains sets of positive traces)

FN Set of negative folds (it contains sets of negative traces)

cmin Minimum misclassification cost to be tested

cmax Maximum misclassification cost to be tested

cbest Best misclassification cost for the current fold

ccurrent Current misclassification cost being tested

Cbest Set containing the best costs estimated for each fold

c Final misclassification cost estimated

PosT Set of positive traces currently employed for training

PosE Current fold used for the evaluation, containing positive traces

NegT Set of negative traces currently employed for training

NegE Current fold used for the evaluation, containing negative traces

DatasetT Set of instances obtained after encoding PosT and NegT

DT Decision tree produced by running C5.0 on DatasetT with
ccurrent

F1current F-score obtained by evaluating DT with ccurrent

F1best Best F-score obtained for a fold

EncodeSet(T ) Encodes the set of traces T producing a set of instances

Execute C5.0(D,c) Runs C5.0 on the dataset D using cost c

Evaluate F1(H,DT ) Provides the F-score calculated after the evaluation of DT on
history H (note that the union PosE ∪NegE is considered a
history since it is a set of traces)

Average(S) Computes the average of the values of set S

Table 4.5: Definitions for the Estimate Misclassification Costs algo-
rithm.

4.5 Negation and Aggregate Constraints

Until this point, we considered CEP rules characterized by only selection,
conjunction and sequence constraints. After having observed that our
system is able to excellently deal with them, we asked ourselves if it
could also work in presence of additional rule operators.

The answer is affirmative and we did manage to adapt our system to
deal with more complex patterns and rules which include negation and
aggregate operators.
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We now analyze the semantic of each new constraint introduced.

• Negation constraints require a certain event type to be absent from
a positive trace, or to be present in a positive trace with attributes
not assuming particular values. For example, according to the fol-
lowing rule containing a negation:

[Rule:
EventConstraints:[E1[A1=x]]
NegationConstraints:[E2[A1=x]]]

The following trace is labeled as “positive” since it does not contain
events of type E2:

E1[A1=x]@1, E1[A1=y]@2, CE1@3

Now consider the following trace instead:

E1[A1=x]@1, E1[A1=y]@2, E2[A1=y]@3, CE1@4

Also this trace is positive because, even if it contains an event of
type E2, its attribute A1 does not assume the value x. Therefore,
every trace labeled as “negative” must contain the event E2[A1=x];
otherwise, it is positive (if it satisfies the other rule constraints).

In order to deal with negations, it is not necessary to introduce addi-
tional attributes for the encoding, since the attribute EventxDetected
is already capable of representing the absence of an event type in
a trace, whereas attributes of the kind EventxAttributek can be ex-
ploited to detect the values not to be assumed by an event, working
in the opposite way as they did with selection constraints.

• Aggregate constraints filter events according to some aggregated
function. The functions supported in the present work are min-
imum, maximum, average and sum; therefore, they can only be
applied when events are characterized by numeric attributes (inte-
ger or real numbers).

In our model, a single aggregate constraint apply to a given event
attribute of a given event type and takes into account all the occur-
rences of that type in a trace. The aggregated functions mentioned
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above are self-explanatory; nonetheless, we summarize them in the
following [Table 4.6]

Function Description

Minimum The minimum value of an event attribute
as observed in a positive trace must be
equal, greater than, or lesser than a
specified threshold

Maximum The maximum value of an event attribute
as observed in a positive trace must be
equal, greater than, or lesser than a
specified threshold

Average The average value of a given event
attribute computed over all its occurrences
inside a positive trace must be equal,
greater than, or lesser than a specified
threshold

Sum The sum of the values of a given event
attribute computed over all its occurrences
inside a positive trace must be equal,
greater than, or lesser than a specified
threshold

Table 4.6: Possible functions included in aggregate constraints.

As an example, now consider the following rule:

[Rule:
EventConstraints:[E1[]]
AggregateConstraints:[Average[E1.A1 > 28]]

The rule requires that the average computed on the values assumed
by the attribute A1 in all the occurrences of events of type E1 must
be greater that 28 to make a composite event happen; otherwise,
the trace is negative.

Here, the situation is different from the case of negations, since
the attributes currently employed to encode traces (summarized in
[Table 4.1]) are not sufficient to capture aggregate constraints.

Therefore, we added to the encoding scheme additional attributes
that specifically represent aggregates, with the aim of enabling C5.0
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to also consider this kind of operator when it comes to discriminate
positive traces from negative ones.

In particular, we created a different class of attributes for each
possible kind of aggregate operator:

– For each attribute of each event type, we introduced an at-
tribute of the kind EventxAttributekMinimum and an attribute
EventxAttributekMaximum containing respectively the minimum
and maximum values of the k-th attribute of event x as ob-
served in the current trace being encoded; both the classes
require the creation of N ∗A attributes.

Even if they are somewhat redundant, since some of the in-
formation of EventxAttributek may be repeated, the new at-
tributes showed to be able to greatly increase the performance
of C5.0 while being conceptually more adequate to represent
aggregates.

– Moreover, we created two more classes of attributes,
EventxAttributekSum and EventxAttributekAverage, respectively
containing the sum and the average of all the values assumed
by attribute k in every occurrence of event x within the current
trace. Also these classes of attributes require the creation of
N ∗A attributes.

We show the updated encoding model in [Table 4.7]; this final
model contains all the required attributes to deal both with the
“old” operators (selections, conjunctions and sequences) as well as
the new ones which have just been presented (i.e., negations and
aggregates).
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C5.0
Attribute

Type Possible
values

Information
encoded

Constraints
captured

Number of
attributes
needed

Eventx
Detected

discrete true, false presence of
event x

conjunction N

Eventx
Attributek

continuous/
discrete

depending on
the attribute
domain

attribute k of
event x

conjunction,
selection

N ∗A

Eventx
Precedes
Eventy

discrete true,false,? temporal
ordering
between
events x and
y

sequence N∗(N−1)
2

Eventx
Attributek
Minimum

continuous depending on
the attribute
domain

minimum
value of
attribute k of
event x

aggregate
(min)

N ∗A

Eventx
Attributek
Maximum

continuous depending on
the attribute
domain

maximum
value of
attribute k of
event x

aggregate
(max)

N ∗A

Eventx
Attributek
Average

continuous depending on
the attribute
domain

average of
the values of
attribute k of
event x

aggregate
(avg)

N ∗A

Eventx
Attributek
Sum

continuous depending on
the attribute
domain

sum of the
values of
attribute k of
event x

aggregate
(sum)

N ∗A

Class discrete positive,
negative

label for
traces

/ 1

Table 4.7: Updated encoding scheme for the attributes of C5.0.

4.6 Support for Multiple Rules

So far, we assumed that only one kind of composite event can be triggered
by a single rule at a time. However, in many real-world applications the
number of composite event types of interest is likely to be greater than
one; for example, in the usual environmental monitoring scenario we may
be concerned about being able to detect both the event Fire and the event
Flood.
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As an expansion of our work with C5.0, we tried to enable the algo-
rithm to deal with histories containing multiple types of composite events
instead of only one.

Being C5.0 a classification algorithm, in order to achieve this goal it was
basically sufficient to employ a different label for each different composite
event appearing in the history. Therefore, given Nrules rules leading to as
much composite events, the “positive” label for C5.0 is simply replaced
with Nrules labels (“CE1”, “CE2”, ... “CENRules

”) and the objective
is now to correctly classify traces of events leading to every possible
composite event type (while labeling traces as “negative” only if they do
not lead to any composite event).

In these scenarios, the main issue consists in the fact that more than
one composite event may be recorded at the same time, at the end of the
same trace (even if the triggering rules are different); if this is the case,
then how should the trace be classified?

As an example, consider the following trace, with U = {E1, E2, E3},
DA1 = {x, y, z}, A = 1, Nrules = 2:

E1[A1=x]@1, E1[A1=y]@2, E2[A1=z]@3, E3[A1=z]@4, CE1@5, CE2@5

Where CE1 is triggered by the rule

[Rule1:
EventConstraints:[E1[A1=x]]]

and CE2 by:

[Rule2:
EventConstraints:[E1[A1=y]]]

Here, the composite events CE1@5 and CE2@5 are recorded at the end of
the same trace and at the same timestamp; currently, we do not have
a criterion to choose between CE1 and CE2 labels, so we are unable
to encode the given trace. To model this kind of situations, in which
there are multiple concurrent composite events, we introduce additional
labels representing their simultaneous occurrence. This means that the
previous trace is neither labeled as CE1 nor as CE2 but as a third kind
of composite event, CE1 + CE2:

E1[A1=x]@1, E1[A1=y]@2, E2[A1=z]@3, E3[A1=z]@4, CE1+CE2@5
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The new composite event can be viewed as an independent event trig-
gered by the composite rule:

[Rule1+Rule2:
EventConstraints:[E1[A1=x], E1[A1=y]]]

It is important to underline the fact that CE1 + CE2 represents a
situation which is distinct from both CE1 and CE2, since it expresses
the contemporary occurrence of CE1 and CE2. For this reason, labeling
a trace leading to CE1 + CE2 as simply CE1 or CE2 (indicating that
only one out of the two events is taking place, in mutual exclusion) is
conceptually wrong, since it would not fully represent the real situation
taking place.

In order to generate a proper dataset for C5.0 in a context characterized
by multiple concurrent rules, it was never needed to modify the encod-
ing scheme already presented (except for class labels), nor the splitting
procedure adopted with traces containing type repetitions. However, it
was necessary to perform some changes in the classification procedure
instead.

About that, it should be remembered that, when dealing with a single
composite event, we chose to classify a trace with repetitions as “positive”
if at least one sub-trace obtained from the split was classified as “positive”
by C5.0. In the new scenario, there is not only a single “positive” label
and hence the classification strategy has to be adjusted. In particular,
when sub-traces get classified with labels of n different composite events,
we classify the original trace with a label which is the union of all the
labels observed for its sub-traces (i.e., CE1 + CE2 + ... + CEn). It is
easy to understand the reason for this choice, since, with reference to the
previous example, the classification of the following sub-traces is entirely
correct (if only considering sub-traces and not the original trace):

E1[A1=x]@1, E2[A1=z]@3, E3[A1=z]@4, CE1@5
E1[A1=y]@2, E2[A1=z]@3, E3[A1=z]@4, CE2@5

However, the real label that has to be assigned to the original trace
remains CE1 + CE2. A trace is therefore classified simply as CE1 or
CE2 only if there is at least one sub-trace classified as CE1 (CE2) but
none of the other class (CE2 or CE1, respectively). For instance, the
following set of sub-traces:
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E1[A1=x]@1, E2[A1=z]@3, E3[A1=z]@4, CE1@5
E1[A1=y]@2, E2[A1=z]@3, E3[A1=z]@4, negative

gets (wrongly) classified with the label CE1.

Lastly, if the label CE1 + CE2 directly appears in the set of classified
sub-traces, that label is employed for the original trace; therefore, the
following set of classified sub-traces lead to a correct prediction:

E1[A1=x]@1, E2[A1=z]@3, E3[A1=z]@4, CE1@5
E1[A1=y]@2, E2[A1=z]@3, E3[A1=z]@4, CE1+CE2@5

[Table 4.8] below summarizes and exemplifies the classification strategy
just described.

Labels contained in sub-traces Classification

CEi CEi

CEi, “negative” CEi

CEi, CEj , ..., CEn CEi + CEj + ...+ CEn

CEi, CEj , ..., CEn, “negative” CEi + CEj + ...+ CEn

CEi, CEj , ..., CEn,
CEi + CEj + ...+ CEn

CEi + CEj + ...+ CEn

CEi, CEj , ..., CEn,
CEi + CEj + ...+ CEn, “negative”

CEi + CEj + ...+ CEn

CEi + CEj + ...+ CEn CEi + CEj + ...+ CEn

CEi + CEj + ...+ CEn, “negative” CEi + CEj + ...+ CEn

“negative” “negative”

Table 4.8: Classification with multiple concurrent composite events.

As in the case of a single composite event, a negative classification
only happens if every sub-trace is classified as “negative”. However, the
possibility to get false negatives is higher with many composite events
because, for example, CE1 can be incorrectly labeled as CE2 or CE1 +
CE2, and both the predictions are false negatives w.r.t. the CE1 label.

Nonetheless, this kind of situations was rarely encountered in practice
and C5.0 ultimately showed to be a strong tool to employ even in pres-
ence of multiple composite events.

As a conclusive note, estimating misclassification costs in a multi-label
context becomes more complicated and computationally demanding; to
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keep things simple while allowing to still benefit from the use of the
technique, we opted to only estimate costs involving a composite event
label and the negative label. In other words, for each composite event,
we employed misclassification costs of the type:

CE1, negative: k1
CE2, negative: k2
CE1+CE2, negative: k12

while we avoided to estimate costs like:

CE1, CE2: h
CE1, CE1+CE2: q



Chapter 5

Experimental Results

In this chapter we test the architecture developed with the aim of finding
out how much good it is at performing the learning tasks assigned to it
(i.e., how much accurate it is at classifying traces of events).

For this purpose, we first analyze the overall system accuracy alone
and, in a second step, we compare the results obtained with an ad-hoc
learning algorithm, iCEP [23], which represents the state of the art in
the field of automated CEP rule learning.

To accomplish this task, we require:

• a tool to generate histories of events (both for training C5.0 and
for evaluating it) based on controllable parameters, since we want
to find out how the algorithm performs under a broad variety of
circumstances as well as to detect which are the most influential
parameters affecting it;

• proper metrics that capture and precisely measure the accuracy of
the system.

About the first point, we exploited a slightly modified version of the
iCEP framework for synthetic benchmarking [23]as an artificial history
generator : first, a training history HT of primitive events is randomly
generated, guided by an oracle rule R which is used to detect all the
composite events in it; then, an evaluation history HE , composed by
events that are different from the ones in HT , is also produced according
to R.

59
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At this point, its is possible to quantitatively compare the accuracy of
the decision tree DT built by C5.0 against the oracle rule R as measured
on HE . To do that, we employ the well-known precision, recall and F-
score metrics, already presented in [Section 1.4], and this satisfies the
second point as well.

In our case, the precision of the algorithm can be seen as the fraction
of composite events captured by DT which were also captured by R,
whereas the recall is the fraction of composite events captured by R
which were also captured by DT .

Operatively, C5.0 itself offers the possibility of conducting an evaluation
of the decision tree, either on the training dataset itself or, if provided, on
a different evaluation dataset. In order to do that, the algorithm selects
every instance contained in the evaluation dataset and labels it accord-
ing to the already computed decision tree; then, it simply compares the
predicted label with the real one (i.e., the one observed in the evaluation
dataset).

The result of this process is a confusion matrix that allows a visualiza-
tion of the different error rates for each class and that makes it easy to
calculate the needed quality metrics.

In the confusion matrix:

• each row represents the number of instances in a predicted class,
while

• each column contains the number of instances in an actual class.

Since in our case there are only two possible class labels (“positive” and
“negative”), the matrix is 2x2, and – with reference to the “positive” label
- each cell contains the total number of true positives (TP), false positives
(FP), false negatives (FN) and true negatives (TN), respectively.

An example of a possible confusion matrix produced by C5.0 is showed
below:

717(TP) 299(FP)

3769(FN) 6215(TN)

Table 5.1: Example of a C5.0 confusion matrix.
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With the numbers above, it is possible to calculate precision, recall and
F-score.

Precision = TP
TP+FP = 0.705709; Recall = TP

TP+FN = 0.159831;

F-score = 2 ∗ precision∗recall
precision+recall = 0.260632

Our objective is to perform a similar task with traces of events extracted
from the evaluation history. We cannot directly rely on the confusion ma-
trix obtained by employing an evaluation dataset generated in the same
way of the training dataset, because the method that we use to classify
traces (described in [Section 4.3]) do not proceed on a per instance basis
and we would lose all the advantages provided by the Classify Trace
procedure thus getting a lot of misclassifications consisting of false pos-
itives. Therefore, we take the following steps in order to evaluate the
decision tree generated by C5.0:

1. First, we extract all the available traces from HE according to the
window size W .

2. Then, for each trace we call the procedure Classify Trace to get
the predicted label for the current trace, according to the decision
tree DT ;

3. At this point it is possible to acknowledge if the classification lead
to a TP, FN, FP or TN by simply comparing the predicted label
with the real label of the trace.

In practice, we modify the original architecture developed and showed
in [Figure 3.1] in such a way that it receives an evaluation history instead
of generic “unseen traces”, and we add a component, called Evaluator,
which is in charge of conducting the evaluation tasks just described, pro-
viding in output precision, recall and F-score for the current experiment.

The modified architecture employed for the evaluation is showed in
[Figure 5.1] below.

Since we decided to compare the performance of C5.0 against iCEP, it
is important to underline that in order to allow a fair confront both the
algorithms were trained and evaluated on the same histories, containing
composite events generated from the same oracle rules.
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Figure 5.1: Overview of the architecture employed for the evaluation.

The remainder of this chapter is organized as follows: in [Section 5.1]
we describe the main parameters involved in the experiments conducted
that guided the generation of synthetic histories and of which we investi-
gated the impact on the performance of C5.0, whereas in [Section 5.2] we
present the actual results obtained for each of such parameters. Lastly,
in [Section 5.3] we proceed to comment the results obtained.
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5.1 Experimental Setup

In this section we present all the relevant parameters involved in the tests
conducted.

Given the high number of different parameters, exploring the entire
parameter space is clearly unfeasible; therefore, we were forced to fix
some of them in order to reduce such large space. The following param-
eters were kept constant and constitute the basic environment of every
experiment:

• Distribution of event types: probability distribution of event types
in the history; a uniform distribution has been employed in every
scenario, both for training and evaluation histories.

• Number of positive traces: it corresponds to the number of com-
posite events included in the history. In our experiments, this pa-
rameter is fixed at 3000 positive traces for training histories and at
20000 for evaluation histories; typically, a higher number of positive
traces in the training history brings little improvements in terms of
accuracy whereas a lower number is likely to negatively impact on
the learning capabilities of C5.0.

• Number of negative traces: the number of traces that do not contain
a composite event. We employed 30000 negative traces for training
histories and 100000 negative traces for evaluation histories. As a
consequence, a fixed unbalancing proportion of 1:10 characterizes
the training dataset.

• Window size W : constant and fixed at 10 time units.

• Sequence probability Pseq: the probability of a relevant event type
included in rule R to be subject to a sequence constraint. In our
experiments, it is fixed at 1.0, meaning that every relevant event
in R is involved in at least one sequence constraint.

• Number of sequence constraints Nseq: depends on Pseq and it is
equal to the number of relevant types Nrel [Section 5.1.2], since
Pseq = 1. In other words, in all the tests conducted the rule R
always contains sequence constraints.
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• Distribution of comparison operators in constraints: for each con-
straint that involves a comparison with a threshold value (namely,
selections, negations and aggregates), we assume that the percent-
age of constraints containing an equality comparison is fixed at
20%, whereas the percentage of constraints characterized by “≥”
and “≤” comparisons is 40% in both the cases.

• Number of folds Nfolds employed to estimate misclassification costs,
fixed at 3.

• Range of possible misclassification costs, fixed at [1,20].

For a quick reference, the constant parameters are summarized in [Table
5.2].

Parameter Value

Distribution of event types Uniform

Positive traces in training history 3000

Negative traces in training history 30000

Unbalancing proportion in training
history

1:10

Positive traces in evaluation history 20000

Negative traces in evaluation history 100000

Window size 10

Sequence probability 1.0

Number of sequence constraints Nrel

Percentage of “=” constraints 20

Percentage of “≥” constraints 40

Percentage of “≤” constraints 40

Number of folds 3

Range for misclassification costs [1,20]

Table 5.2: Fixed parameters adopted.

On the other hand, we argue that the following parameters, showed in
[Table 5.3], are the most interesting to investigate both from a theoretical
and an applicative point of view, since by manipulating them it is possible
to simulate a broad variety of different scenarios. In fact, the values
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employed for the tests were properly chosen and are meant to recreate
the settings of many plausible real-world CEP applications.

Parameter Symbol Possible values

Number of event types Ntypes 5, 15, 30

Number of relevant types Nrel 2, 3, 5

Number of values Nval 5, 50, 500

Number of selection
constraints

Nsel 0, 1, 2, 3, 4

Number of attributes Natt 0, 2, 4, 6, 8

Number of negation
constraints

Nneg 0, 2, 3, 5

Number of aggregate
constraints

Nagg 0, 2, 3, 5

Number of rules
(composite events)

Nrules 1, 2-10

Allow collisions of CEs / true, false

Frequency of noisy events Fnoise 3,9,30

Table 5.3: Parameters tested.

In the following sections, we focus on each of these parameters sepa-
rately, describing them in greater detail.

5.1.1 Event Types

The number of event types Ntypes is the total number of different existing
event types in the system; as already explained, we assume that the
universe U of event types is finite and fully known; therefore, the number
of event types Ntypes = |U | is an important parameter to consider since it
may significantly vary depending on the applicative context under exam.

5.1.2 Relevant Types

The number of relevant types Nrel is the number of types included in a
conjunction constraint of R; the occurrence of relevant types is required
in order to make a trace positive.
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5.1.3 Attribute Values

The number of values per attribute Nval indicates how many possible
values an event attribute may assume. In our testing scenario, event
attributes can take values from finite domains and Nval express the car-
dinality of such domains. More precisely, attributes may take integer
values included in the range [0,Nval[ , so they are treated and can be
encoded as continuous C5.0 attributes.

5.1.4 Selection Constraints and Number of Attributes

The number of selection constraints Nsel is the number of constraints
on event attributes and it is the same for each relevant type included
in rule R. This parameter is closely related to another parameter, Natt,
that indicates the total number of attributes of each event type (not only
those subject to constraints); this is because, in all our experiments, we
assumed that Natt = 2∗Nsel. In other words, for each type included in R,
the number of attributes of that type subject to a selection constraint is
always half of the total number of the existing attributes, but this is just
an assumption that simplifies the parameter space and not necessarily
the case in general.

5.1.5 Negations

This parameter refers to the number of negation constraints Nneg con-
tained in rule R.

5.1.6 Aggregates

The number of aggregate constraints in R is indicated with Nagg. In the
tests performed, we aimed at including an equal total number of aggre-
gate constraints of each kind (minimum, maximum, sum and average).

Only for aggregates, we opted to change the windows size, doubling it
to 20. The reason behind this choice is to better amplify the impact of
aggregate constraints in traces; in fact, with greater window sizes aggre-
gate functions are calculated on a higher number of event notifications
and therefore they likely to be more influential overall.
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For this reason, we tested both the usual scenario with W = 10 and the
new scenario with W = 20, which represents a more problematic working
condition both for C5.0 and for iCEP.

5.1.7 Multiple Rules

To study the impact of including multiple kinds of composite events and
rules, we distinguished between two different scenarios: in one case, we
allowed concurrent composite events to happen at the same time, while
in the other case we did not.

This means that we introduce an additional parameter, Nrules indicat-
ing the number of different rules in the history, and a boolean parameter
that specifies if such rules may or may not overlap and be triggered con-
currently.

5.1.8 Noise

One interesting thing about the iCEP history generator is that it allows
to simulate uncertainty, which characterizes most real-world CEP scenar-
ios and typically consists of erroneous or incomplete data streams (for
example, this could happen because of inaccuracies in sensor readings,
or a network failure). The introduction of a noticeable degree of noise
adds more solidity to the results obtained, since it better recreates more
realistic conditions that could be faced in practical applications.

The parameter Fnoise denotes the frequency between noisy events and
adds uncertainty to event traces, since it artificially introduces randomly
generated events unrelated to the oracle rule R. By varying Fnoise, we
basically tell the history generator to introduce an erroneous event once
every Fnoise events.

Lower values of Fnoise indicate a higher presence of noise within the
history, and vice-versa; in our case, we decided to test three values for
Fnoise: 3, 9 and 30, representing different working conditions character-
ized by respectively high, medium and low noise. Being the window size
W fixed at 10, with Fnoise = 3, several noisy events are included within
the same trace, for each trace; with Fnoise = 9 every trace contains one
noisy event on average, whereas with Fnoise = 30 only one out of three
traces contains a single noisy event.
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5.2 Experimental Results

The actual results of the tests carried out on C5.0 are presented in the
current section.

To perform the experiments, we adopted two different techniques:

• Method 1. The first strategy defines a default scenario and inves-
tigates the impact of each parameter separately, varying only one
of them at a time (i.e., for each experiment); in this way, we do not
explore much of the parameter space but it is easier to quantify the
influence of a single parameter on the results obtained.

• Method 2. This method tests all the parameters selected in any
possible combination, which allows to explore a significantly larger
portion of space at the cost of testing single parameters less accu-
rately.

It is important to underline that Method 2 could not be applied to all
the parameters of [Table 5.3], because some of the possible combinations
of parameters do not make sense and could not be tested (this includes,
for example, a scenario characterized by Ntypes = 5, Nrel = 3 and Nneg =
3). Therefore, the scope of this method has been limited to the first
four parameters of [Table 5.3] (Ntypes, Nrel, Nval, Nsel), whereas it was
possible to apply Method 1 to all the other parameters as well, due
to a proper choice of our standard scenario. The values assumed by the
parameters in the standard scenario are the ones marked in boldface in
[Table 5.3].

To allow a fair comparison between the two methods, we performed an
equal number of experiments for the four parameters mentioned above.
Based on the number of values tested for each parameter, with Method
2 we needed to perform 5*3*3*3=135 tests in order to run one exper-
iment for each different combination of the parameters; therefore, with
Method 1 we performed 45 tests for each value (27 in the case of selec-
tion constraints), that makes for a total of 135 runs as well.

Since Method 2 was not sufficient to test every parameter, the results
presented in this section have been obtained by employing Method 1.
Nonetheless, all the results obtained with the alternative testing method
can be found in [Appendix B].
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To represent the statistical distribution of the results collected, we de-
cided to employ boxplots. Thanks to this powerful descriptive statistics
tool, we can study and draw conclusions on the results, and in particular:

• we can view the median as a “middle” value which is preferable to
the mean since the distribution of the results may be skewed;

• the Interquartile range (IQR) measures the variability, or statisti-
cal dispersion of the data, which in turn allows us to evaluate the
robustness of the results collected and to identify possible outliers
that may represent interesting situations for us (i.e., particular set-
tings that create troubles for C5.0). In our case, the IQR includes
50% of the values of the distribution in the upper and lower quar-
tiles.

Informally speaking, the higher is the variability of the data, the harder
is for us to draw meaningful conclusions. Luckily, given the reduced
spread of the data observed in almost every tested scenario, we argue
that the number of tests performed is indeed sufficient to provide statis-
tically significant results in most of the cases.

As a last note, we provide a link [6] where the reader can download all
the required .csv files used to obtain the plots included in this section, as
well as the ones of the Appendices, in order to allow data reproducibility.
We do not provide the source code of our architecture (which was devel-
oped in Java), but we do include all the logs produced by our application
while running the tests.

In the following subsections, we will present and comment the results
obtained with reference to each parameter took into account, in the same
order as presented in [Section 5.1]. To improve readability, in the current
section we only show plots containing F-score measurements; however,
the full plots — also including precision and recall — are available in
[Appendix A]. Lastly, [Appendix C] contains other miscellaneous but
interesting plots showing the efficacy of the misclassification cost estima-
tion strategy, the correlation of the parameters with the number of errors
introduced and many more.
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5.2.1 Event Types

About event types, C5.0 was able to provide high steady performance
in presence of 15 or 30 different types, with an average F-score close
to 1.0 and reduced spread; with 5 events, the dispersion is higher but
the median remains close to 1.0. As further explained in [Appendix C],
the reason for the higher variability of the results in presence of 5 types
is due to the fact that with less types – while keeping fixed windows
of 10 – the number of type repetitions and the consequent number of
errors introduced in the training dataset is significantly higher. Even if
the estimation of misclassification costs makes up for this issue, in some
isolated cases the technique is not efficient enough, and this explains the
wider IQR as well as the minimum, below 0.8, reached when dealing with
5 event types.

Figure 5.2: C5.0 and iCEP F-scores based on the number of event types.

On the other hand, iCEP performs as much as well with 15 and 30
types, but its F-score drops in the 0.8 area with 5 types, meaning that the
algorithm encounters issues in this situation, not detecting a significant
number of composite events. Apparently, the presence of a low number
of event types compared to the size of the window is problematic also for
iCEP, which suffers from type repetitions way more than C5.0.
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5.2.2 Relevant Types

This parameter does not negatively influence the performance of C5.0,
which is constantly excellent for every tested value. The same goes for
iCEP, which provides average F-scores above the 0.95 area; however,
despite being good, the algorithm is slightly worse than C5.0 since the
results contain more variability and the medians are lower. Noticeable is
the case of 2 relevant types, in which we can observe the lower quartile
ending below 0.9, a minimum value below 0.8 and several outliers below
0.6, whereas for C5.0 the IQR is contained and even outliers are above
0.9, meaning that no situation encountered caused significant troubles to
the algorithm, as it emerges in [Figure 5.3].

Figure 5.3: C5.0 and iCEP F-scores based on the number of relevant types.

The excellent results yielded by C5.0 demonstrate the efficiency of the
attributes EventxDetected, which in fact were created to capture relevant
events. Such attributes are often exploited in decision nodes by C5.0,
and we verified that the outcome of the tests in such nodes is almost
always in accordance with the oracle rule. This means that C5.0 captures
conjunction constraints with ease, detecting all the relevant types even
when their number is as low as 2, which in general represents a difficult
working condition, as also confirmed by the behavior of iCEP which
shows a progressively improving performance as the number of relevant
types increases.
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5.2.3 Attribute Values

As with relevant types, also the number of attribute values do not to
cripple C5.0 in any tested scenario. The performance is once again very
satisfying with an average F-score always above 0.99. iCEP is once again
only slightly worse, with a steady F-score around the 0.96 area and a bit
higher variability as well as lower minimums.

Figure 5.4: C5.0 and iCEP F-scores based on the number of attribute
values.

About C5.0, the excellent results obtained should not be a surprise: as
remarked many times, in our tests we assume numeric attributes (real or
integer numbers) for the events and we encode them as continuous C5.0
attributes. Since the algorithm generally supports very well this type of
attributes, it is easy to see why the number of possible values in their
domain does not influence the performance in the slightest. In fact, the
algorithm cannot tell the difference and manages the attributes in the
same way regardless of the number of values that they may assume.

In addition, the context of our standard scenario is already a favorable
situation for C5.0, so we can understand why the results yielded are so
much good in this case.
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5.2.4 Selection Constraints and Number of Attributes

The number of selection constraints, along with the number of attributes
of each event type which is closely related to it since Natt = 2∗Nsel, seems
not to affect neither C5.0 nor iCEP, which both provide comparable and
almost perfect F-scores and the robustness of the results is confirmed by
the very small IQR and no outliers in both the cases.

Since the number of attributes belonging to an event is tied to the num-
ber of selection constraints, in [Figure 5.5] we only show the plots relative
to the latter ones, because obviously the plots for the other parameter
would have an identical shape.

By inspecting the decision trees produced by C5.0, we could realize why
the algorithm is so much accurate; in fact, the attributes EventxAttributek,
when employed in decision nodes, are always in accordance with the
oracle rule, thus successfully capturing the required selections.

Figure 5.5: C5.0 and iCEP F-scores based on the number of selection
constraints.

Unluckily, it was impossible to test iCEP in presence of any number
of selection constraints higher than 2 because the algorithm runs out of
memory and it is not able to finish the computation. On the other hand,
the memory consumption and running time of C5.0 were not significantly
influenced by the value chosen for this parameter. This means that, while
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C5.0 supports any number of selection constraints in an efficient way,
iCEP can only handle situations characterized by at most 2 selections
because its computational complexity and memory requirements prevent
us to even try to test the algorithm in these situations.
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5.2.5 Negations

About negations, we observe that their presence makes it even easier for
C5.0 to detect composite events; in fact, its F-score is almost perfect
regardless of the number of negations introduced and the variability is
practically non-existent.

Figure 5.6: C5.0 and iCEP F-scores based on the number of negation
constraints.

The explanation for the particularly satisfying performance of C5.0
can be found by looking at the decision trees built by the algorithm
when dealing with negation constraints. In fact, we observe that the
decision nodes often exploit attributes of the kind EventxDetected, both
to detect relevant types (“true” branches leading to “positive” labels, or
the opposite) and negated types (“true” branches leading to “negative”
labels, or the opposite). In fact, the history generator tends to provide
traces in which negated types are required to be absent from the trace in
order to trigger the composite event, so there is less focus on the value of
their attributes while their presence becomes particularly discriminating.
A possible prompt for future work about negations could be to extend
the generator to produce a higher number of cases in which negations
also involve event attributes, but we argue that the results yielded by
C5.0 would not significantly change thanks to the splitting attributes of
the kind EventxAttributek.



76 Chapter 5 Experimental Results

On the other hand, it has to be underlined that iCEP constantly fails at
dealing with this operator, missing all the occurrences of complex events
in which negations are involved. As a consequence, the precision of the
algorithm drops in the 0.65 area resulting in F-scores around 0.8, which
is considered low for our standards and in any case much worse than
C5.0. Furthermore, the situation gets progressively worse by increasing
the number of negations included in the oracle rule, meaning that it is
precisely this operator that is causing the performance to degrade.
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5.2.6 Aggregates

As already anticipated, for aggregate constraints we tested two different
working conditions: in one case we kept the original window size (W =
10) and in the other case we doubled it (W = 20).

If we choose not to modify the window size, the results remain good
both for iCEP and for C5.0, with average F-scores above 0.95 even in
presence of aggregates, as showed in [Figure 5.7].

Figure 5.7: C5.0 and iCEP F-scores based on the number of aggregate
constraints with W = 10.

We explain this fact considering that, by keeping W = 10 in the stan-
dard scenario, which is characterized by a universe of 15 event types, the
number of repeated types – and therefore, of events involved in aggregate
functions – is likely to be very low.

In particular, C5.0 works very well in the standard scenario adopted
and it does not even need to employ misclassification costs in order to
provide a more than satisfying performance. Nevertheless, it is possible
to observe that aggregates do make the results significantly worse than
usual, suggesting that they have an impact on the performance of C5.0.

Following this line of thought, we aimed at amplifying the effect of
aggregate constraints by increasing the window size, and therefore, the
number of (repeated) types in traces involved in some aggregate function.
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The intuition turned out to be correct, as with W = 20 we observe
a noticeable drop of the F-score provided by C5.0 (going in the 0.8-0.9
area), as showed in [Figure 5.8].

Figure 5.8: C5.0 and iCEP F-scores based on the number of aggregate
constraints with W = 20.

If aggregate constraints, when more influential, constitute a problem
for C5.0, on the other hand they completely cripple iCEP, which could
not deal with them. In fact, the F-score yielded by the algorithm is
terribly low, around 0.6 in the best case and below 0.4 in the worst case,
meaning that aggregates are almost never captured by the algorithm.

C5.0 is able to maintain decent results thanks to the attributes that
have been crafted specifically for aggregate constraints
(namely, EventxAttributekMinimum, EventxAttributekMaximum, ...). This is
confirmed by the fact that, if we look at the decision trees built by C5.0
in presence of aggregates, such specific attributes are usually also the ones
more frequently selected for the splits (i.e., they often appear in decision
nodes). However, they do not work perfectly as showed by the perfor-
mance of C5.0, significantly lower than usual; in addition, it is possible to
observe a trend according to which the algorithm gets progressively bet-
ter as the number of aggregates increases. This reinforces the hypothesis
that C5.0 is less accurate when it comes to precisely detect aggregates,
but if the number of aggregates is high enough and the algorithm has
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more attributes available to discriminate positive traces from negative
ones, then the situation sensibly improves.

As a last note, we should not disregard the fact that increasing the
window size also implies an higher number of false positives added to the
training dataset because of the encoding model (as the number of type
repetitions is greater). Therefore, the strategy of increasing W do not
fully isolate aggregate constraints and also other dynamics are involved
behind the reduced performance of C5.0.
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5.2.7 Multiple Rules

Surprisingly, by increasing the number of rules included in the train-
ing/evaluation histories the performance of C5.0 only seems to be slightly
negatively impacted, even in presence of multiple concurrent composite
events. The fact that C5.0 is able to deal with multiple rules constitutes
a significant advantage if compared to iCEP, which on the other hand
was not designed to work in this kind of situations, thus not supporting
and envisioning them.

In [Figure 5.9] it can be observed that even introducing 10 (non concur-
rent) rules in the standard scenario does not cause a significant drop of
the F-score in terms of median. On the other hand, [Figure 5.10] shows
that 2 or 3 rules with collisions are not a problem for C5.0 either (in this
plot, 2 base rules lead to 3 composite rules and 3 base rules lead to 7
total composite rules).

However, in some isolated cases the performance does get slightly im-
paired because of the increased number of rules. For example, with
non-concurrent rules the we can observe a trend of the F-score, which
decreases as the number of rules increases, although still remaining very
good. The same is not true in the case of concurrent rules, where the
performance is almost identical regardless of the number of basic concur-
rent rules (but it has to be underlined that we did not test any number
of basic rules higher than 3 and hence we cannot draw conclusions about
more complicated scenarios).

As a side note, in [Figure 5.9] and [Figure 5.10] the F-scores presented
refer to the overall F-score of the system of rules, which is defined as:

F1system =
Precisionsystem ∗Recallsystem
Precisionsystem +Recallsystem

Where

Precisionsystem =

∑NRules
n=1 TPn∑NRules

n=1 TPn +
∑NRules

n=1 FPn

Recallsystem =

∑NRules
n=1 TPn∑NRules

n=1 TPn +
∑NRules

n=1 FNn
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Figure 5.9: C5.0, system F-scores in presence of mutliple rules without
collisions.

Figure 5.10: C5.0, system F-scores in presence of mutliple rules with col-
lisions.
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5.2.8 Noise

By varying the frequency of noisy events, we observe that, in general,
both C5.0 and iCEP provide a steady high performance, with F-scores
above the 0.95 threshold.

The performance of C5.0, however, seems to improve as the noise re-
duces: both in terms of medians and minimums, the trend is very clear
in the plot below. On the other hand, iCEP do not correlate with this
parameter; it even seems to be inversely correlated in terms of medians,
which would not make sense per se. However, being the IQR large and
given the fact that minimums do not follow a precise trend, we can con-
clude that iCEP is both noise-tolerant and noise-independent, whereas
C5.0 is only noise-tolerant.

In any case, the important conclusion is that both the systems are able
to deal with uncertainty, that is a crucial feature or real-world applicative
scenarios in which missing or incorrect events are very common.

Figure 5.11: C5.0 and iCEP F-scores based on the frequency of noisy
events.
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5.3 Discussion

From the boxplots presented, it can be observed that – in terms of F-
score – C5.0 is always slightly better than iCEP in every experiment
conducted, so overall we can conclude that the two algorithms are at
least quantitatively comparable. However, in some particular settings
(such as when dealing with a low number of relevant types or with the
presence of negation constraints) C5.0 is much better than iCEP and
therefore, quantitatively speaking, superior.

It is worth remarking that the ability of C5.0 to efficiently detect com-
posite events in presence of negation constraints constitutes a big step
forward if compared to iCEP. In fact, negations were the most crippling
issue for this ad-hoc learning system, as also emphasized many times in
[23]. C5.0, on the other hand, handles negations with ease, despite the
fact that they are for sure a “problematic” operator.

Even in the only situation in which C5.0 encountered issues, namely in
presence of aggregate constraints (only with W = 20), it still somehow
managed to work in a better way than iCEP. In fact, while both the
algorithms were influenced by this operator, iCEP was hit more badly
than C5.0, which maintained an F-score around 0.8-0.9 (not dramatically
low, even if nowhere near being good).

In addition, some scenarios were impossible to test with iCEP due to
the prohibitive computational complexity, time and resources demanded
by the application; in particular, iCEP could not work in presence of any
number of selection constraints greater than 2 whereas C5.0 managed to
do that without significantly worsening its efficiency or running time.

Another noticeable advantage yielded by C5.0 is its support for mul-
tiple rules and multiple types of composite events, where we observe a
satisfying performance even in presence of concurrent rules and noisy
events; on the other hand, iCEP can only learn one rule at a time, for
each history.

In conclusion, a comparison between C5.0 and iCEP is summarized
in the following [Table 5.4], in which we consider good results F-scores
higher than 0.95, mediocre results F-scores higher than 0.9 and bad re-
sults F-scores below 0.9 (based on the average of the medians of the
boxplots presented).
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Parameter C5.0 iCEP

Number of event
types good mediocre

Number of
relevant types good good

Number of
attribute values good good

Number of
selection
constraints

good good

Number of
negation
constraints

good bad

Number of
aggregate
constraints

good (W = 10)
bad (W = 20)

good (W = 10)
bad (W = 20)

Number of rules
good not supported

Frequency of
noisy events good good

Table 5.4: C5.0 and iCEP, final comparison.
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Related Work

This chapter examines some related work in the context of automated
CEP rule learning. Currently, it seems that very little research is going
on about this topic, which mostly remains a new and unexplored field.

There have been many known attempts to employ Inductive Logic Pro-
gramming (ILP) [27] for the automated learning of patterns expressed
through some kind of first-order logic formalism; for example, OLED
[19] allows to learn clauses even in presence of unobserved predicates
thanks to a mix of ILP and abductive-logic programming. According to
the authors, the system is also able to deal with larger datasets while
providing a significant speed-up in training time if compared to other so-
lutions like ILED [34]; furthermore, OLED learns with a single pass over
the training input without revising already learned clauses, thus making
it a good online learning tool.

As OLED, also our system adopts a one-pass strategy for learning, even
if it does not rely on logic and reasoning but on an entirely independent
off-the-shelf machine learning technique (C5.0). While this constitutes
a downside with respect to tools that output pattern predicates, since
they can be analyzed and modified by domain experts, we argue that
decision trees could be successfully employed in online Complex Event
Recognition as well, thanks to their ability to deal with very large training
datasets without a significant impact on speed and performance, which
on the other hand is a common problem among logic-based techniques
exploiting ILP.
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Another possible advantage of employing an hypothetic decision tree-
based CER is represented by its domain-independence (since the under-
lying algorithm is domain-independent as well), as opposed to most of
the available work based on logic which is domain-specific. For instance,
there is plenty of work mostly focused on human activity recognition
[35, 18, 32, 19] which was only tested on datasets coming from that par-
ticular domain. The same goes for other recent works, concerning traffic
management systems [24], maritime monitoring [28] and credit card fraud
detection systems [12].

The work that we propose is distant from the approaches cited above,
and constitutes an unexplored territory in the CEP field. Even iCEP
[23], which we took as a reference point in this thesis, had to employ
ad-hoc learning strategies to learn complex event patterns; nevertheless,
it is probably the closest and most meaningful work for us, as it does
rely on supervised learning concepts and “pure” machine learning while
avoiding the burden of logical formalism. Despite being more efficient
than iCEP, our system do not envision a strategy to learn a single rule
that can be expressed in a TESLA-like syntax [13], and this is probably
the major open issue of possible decision tree-based CER systems, since
it would be difficult to employ them in conjunction with current CEP
engines which rely on specific event definition languages.

About this, an interesting work is represented by autoCEP [21], an
automated tool that generates CEP rules for online monitoring in prod-
uct manufacturing. autoCEP is conceptually close both to iCEP and the
current work but it involves association rule mining techniques instead of
supervised learning strategies like C5.0. However, while being fast and ef-
ficient, autoCEP is both domain-dependent (as it is specifically designed
to support industry processes) and still resorts to ad-hoc adaptations
of generic learning techniques, while we aimed at building a domain-
independent system relying on general-purpose, well-known learning al-
gorithms.

Nonetheless, autoCEP includes an algorithmic processing that trans-
forms the rules extracted through association rule mining into a single
CEP rule, which is something that we did not develop but it could be a
relevant prompt for future work in this sense. In fact, if it were possible
to algorithmically process the output decision tree built by C5.0 (or, in
alternative, an equivalent set of rules obtained from the tree), that would
be the starting point to find out the degree of practical applicability of
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decision tree-based CER systems with regard to current mainstream CEP
engines and languages.





Conclusions

In this thesis we addressed the problem of employing general-purpose
Machine Learning tools for the automated detection of patterns leading
to composite events within streams of data.

We observed that a novel approach, consisting of decision tree-based
classifiers, may be able to provide a feasible solution for the problem.
In fact, we showed how it is possible to encode a series of previously
collected event traces as a training dataset that can be exploited for
learning purposes, given enough assumptions on the underlying model
for events and rules which was adopted throughout the course of this
work.

The encoding strategy developed, along with the method employed to
classify traces of events, apparently succeeded in this task, allowing the
well-known C5.0 algorithm to work in the context of CEP. This has been
confirmed by many experimental evaluations conducted on the algorithm,
in which C5.0 showed respectable performance even when compared with
a framework specifically designed to learn from traces through the means
of ad-hoc techniques and that represents the current state of the art in
the field of automated CEP rule learning.

Our system not only outperformed ad-hoc solutions in almost every
tested scenario, but we found out that its range of applicability is also
much broader, covering a variety of interesting and complex situations
which include, for example, the presence of negation constraints in rules
and the presence of multiple kinds of concurrent composite events, trig-
gered by separate rules but included within the same scenario.
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Undoubtedly the performance measurements of precision, recall and F-
score proved the accuracy and efficiency of the system proposed. Nonethe-
less, it has to be observed that our strategy remains at a very early stage
of development, it is highly dependent on a particular event model which
is distant from many mainstream paradigms and this raises concerns
about the practical applicability of the system to real-world contexts,
which still remains an open issue that we did not investigate.

The problem is even made worse by the fact that decision tree models
are intrinsically distant from rule-based CEP engines, so it is not possi-
ble to integrate the learning architecture developed “as is” into already
existing CEP systems. About this, we argue that a possible prompt for
future development could be an extension of the application that algo-
rithmically processes the output decision tree in order to derive a single
rule meeting the syntactic requirements of CEP engines.

Lastly, a crucial aspect worth investigating concerns the computational
impact of the use of decision trees, which becomes even more important
if the idea is to employ them for online learning, characterized by strict
throughput and latency constraints. As an offline learning tool, however,
the present work showed that decision trees are already adequate, as the
time and computational requirements are much more relaxed if compared
to an online setting.
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Appendix A

Detailed Results

In this appendix we show additional and more precise plots regarding
the basic tests performed on C5.0 and iCEP, which include also precision
and recall measurements instead of F-score only.
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Figure A.1: Detailed plots, number of event types.

Figure A.2: Detailed plots, number of relevant types.
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Figure A.3: Detailed plots, number of attribute values.

Figure A.4: Detailed plots, number of selection constraints.
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Figure A.5: Detailed plots, number of negation constraints.

Figure A.6: Detailed plots, number of aggregate constraints with W = 10.
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Figure A.7: Detailed plots, number of aggregate constraints with W = 20.

Figure A.8: Detailed plots, frequency of noisy events.





Appendix B

Alternative Testing Method

It follows the set of tests conducted with the alternative method de-
scribed; it can be observed that they are very similar to the ones obtained
with the “standard” method. The detailed plots are showed afterwards.

Figure B.1: C5.0 and iCEP F-scores based on the number of event types
(alternative method).
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Figure B.2: C5.0 and iCEP F-scores based on the number of relevant types
(alternative method).

Figure B.3: C5.0 and iCEP F-scores based on the number of attribute
values (alternative method).
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Figure B.4: C5.0 and iCEP F-scores based on the number of selection
constraints (alternative method).
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Figure B.5: Detailed plots, number of event types (alternative method).

Figure B.6: Detailed plots, number of relevant types (alternative method)
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Figure B.7: Detailed plots, number of values (alternative method).

Figure B.8: Detailed plots, number of selection constraints (alternative
method).





Appendix C

Miscellaneous Plots

Here, we present interesting plots which correlate different parameters
not previously taken into account.

For example, it is interesting to notice how the misclassification costs
estimation helps to get high final values of F-score even in settings that
create trouble to C5.0, such as when dealing with universes of 5 event
types:
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Figure C.1: C5.0 performance before and after employing misclassification
costs (based on the number of event types).

Originally, with 5 events the variability is much higher whereas the
median drops in the 0.9 area.

It is easy to see why the number of false positives increases with 5 types,
since events are uniformly distributed and windows are constant and 10
time units large; as a consequence, the number of traces containing type
repetitions is higher as well as the number of repetitions itself, leading
to a greater number of false positive sub-traces obtained from the split
of original traces, resulting in lower precision and F-score.

Furthermore, we should consider the following points:

• the ratio between the number of relevant types and the number of
total event types is generally higher with respect to the other cases;
as a consequence, negative traces are more likely to contain relevant
events as well and it is harder to classify traces by exploiting the
attribute EventxDetected.

• The number of false positives introduced in the dataset is many
orders of magnitude higher when dealing with universes composed
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by only 5 types; hence, the resulting decision trees computed are
less accurate and more likely to perform incorrect predictions.

This is confirmed by the following plot, showing how the number
of event types correlates with the number of errors (false positives)
introduced in the training dataset (it can be observed that such
number is significantly higher with 5 types):

Figure C.2: Number of false positives introduced in the training dataset
as a function of the number of event types.

Another difficult setting for C5.0 corresponds to the particular situation
in which it is not present any selection constraint. In this case, both
precision and recall drop in the 0.9 area, meaning that the overall number
of incorrect predictions significantly increases.

As in the case of event types, the reduced performance is due to the fact
that C5.0 cannot fully exploit all the attributes of the encoding scheme;
here, since there are no selection constraints, the attributes of the kind
EventxAttributek are no longer helpful and the algorithm can only de-
tect positive traces based on the EventxDetected and EventxPrecedesEventy
attributes.
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Once again, the gap between the original and final performance mea-
surements are due to the misclassification costs estimated.

Figure C.3: C5.0 performance before and after employing misclassification
costs (based on the number of selection constraints).

Lastly, it is interesting to see how the average misclassification costs
estimated increase for parameter values in correspondence of which C5.0
is mostly impaired, with regard to both event types and selection con-
straints. Nonetheless, this confirms the efficacy of our method for the
estimation of misclassification costs.
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Figure C.4: Misclassification costs estimated based on the number of event
types.
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Figure C.5: Misclassification costs estimated based on the number of se-
lection constraints.
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