
Tackling Uncertainty in Mobile
Computer Vision Applications

Ana Cecilia López González
Ana Tatiana López González

Supervisor: Prof. Piero Fraternali

Department of Electronics, Informatics and Bioengineering
Polytechnic University of Milan

This dissertation is submitted for the degree of

Master of Science

April 2018

“Mischief Managed”.

Abstract

In this work we present a mobile outdoor augmented reality application,
which uses data coming from the sensors of the mobile device to identify
mountain peaks in the skyline, analyze the uncertainties present in this
type of applications and focus on how they can be overcome so as to make
the digital augmentation of the physical world meaningful. Although uncer-
tainties come in a wide range of possibilities, here we address uncertainties
as imperfect information about what the user is seeing, namely wrong es-
timates of the phone orientation and the presence of objects occluding the
skyline. Leveraging on recent advances in Computer Vision algorithms and
significant progress in object class recognition using Deep Learning tech-
niques, we propose a hybrid model that is able to perform real-time accu-
rate classification of skyline pixels in images captured with a real outdoor
augmented reality application; the proposed approach combines two binary
classifiers in cascade, one for skyline detection and the other categorically
tailored for occlusion detection, so as to provide an accurate alignment be-
tween the panorama the user is seeing through the camera and the virtual
panorama computed from the digital terrain model of the corresponding
location. The final combined model respects the efficiency constraints as-
sociated with low-powered mobile devices and exhibits a good balance be-
tween accuracy, memory consumption and runtime execution overhead. In
addition to the development of the occlusion management module, the the-
sis also reports on the re-design of the sensor capture sub-system for iOS,
which has been used to explore the uncertainties that arise in outdoor mobile
augmented reality applications and set the requirements for the improved
Computer Vision approach.

Sommario

In questo lavoro presentiamo una applicazione mobile di realtà aumentata,
che usa dati dei sensori di dispositivi mobili per identificare vette di mon-
tagne sull’orizzonte, analizziamo le incertezze presenti in questo tipo di ap-
plicazioni e studiamo come esse possano essere corrette per rendere il dig-
ital augmentation del mondo fisico più significativo. Sebbene le incertezze
possono avere diverse forme, noi ci focalizziamo su incertezze intese come
informazioni imperfette su quello che l’utente sta vedendo, specificamente,
errori nella stima dell’orientamento del telefono e la presenza di ostacoli
all’orizzonte. Sfruttando i recenti sviluppi nel campo di Computer Vision e
i progressi nell’identificare classi di oggetti con tecniche di Deep Learning,
presentiamo un modello ibrido in grado di classificare accuratamente e in
tempo reale i pixel sull’orizzonte delle immagini all’aperto proveniente dalle
applicazioni di realtà aumentata; l’approccio descritto contiene due classifi-
catori binari in cascata, uno per l’identificazione dell’orizzonte e l’altro ad-
dattato alla identificazione di ostacoli, per garantire un corretto allineamento
tra l’orizzonte che l’utente sta vedendo attraverso la camera e il panorama
virtuale generato dai modelli digitali di elevazione della corrispettiva zona.
Il modello finale rispetta i requisiti di efficienza richiesti per dispositivi mo-
bili di bassa potenza e ottiene un buon equilibrio tra l’accuratezza, consumo
di memoria e l’overhead del tempo di esecuzione. Oltre allo svilluppo del
modulo di gestione delle occlusioni, la tesi descrive il re-design del sotto-
sistema del sensore per iOS, che è stato usato per esplorare le incertezze
caratteristiche delle applicazioni di realtà aumentata all’aperto e definire i
requisiti per migliorare l’approccio Computer Vision.

Acknowledgements

All of us face victories and defeats, is part of life, it is more important
though, to be able to recognize and celebrate victories, that although few,
keep our engines running. We are more than happy to consider this one
as a victory, so inevitably, as the occasion demands, there are many people
to thank, some were next to us, day by day, others, on the other side of
the pond. For that, this work is dedicated to her, our greatest source of
inspiration, our Mother, the one who kept telling us that we could do it all,
and if not, at least we could try, we blame you Blanquita, we believed in
you, and here we are, seven thousand miles away and about to finish one of
our favorite adventures, with the biggest realization so far, the older we get,
the smarter you become.

This has been quite a ride, with many ups and downs, a journey in which
we have learned so much, and for that we thank you Darian, we know we
are a little bit moody and for that, we apologize. We are extremely grateful
for the time, effort, and enthusiasm you put forward in our work together.

And finally, we don’t know where to begin to start thanking you Prof. Fra-
ternali, you have been the ideal adviser, hands off when the sailing was
smooth and deeply supportive when it wasn’t. The completion of this thesis
couldn’t have been possible without your expertise, watching you work has
been a great joy of our time in the lab. You have honestly made a great
impact on our careers. We thank you for making this experience, the best
experience it ever could be.

Contents

List of Figures . v
List of Tables . vii

1 Introduction 1

2 Related Work 7
2.1 Augmented Reality . 7

2.1.1 AR for Outdoor Applications 8
2.1.2 AR for iOS . 9

2.2 Image Understanding . 10
2.2.1 Computer Vision Overview 12
2.2.2 Traditional Approaches 14
2.2.3 Deep Learning Models 16

2.2.3.1 Feedforward Neural Networks 16
2.2.3.2 Convolutional Neural Networks 22

2.3 Mountain Image Analysis . 27
2.4 The Occlusion Problem . 29

3 Non-Intelligent System 31
3.1 Background . 31
3.2 Overview . 32
3.3 PeakLens-iOS . 33
3.4 Augmented Reality Framework 35

3.4.1 Camera Scene Capture 35
3.4.2 Device Motion Tracking 39

3.5 Peak Detection . 42
3.5.1 Sensor-based Localization 42
3.5.2 Panorama Matching 43
3.5.3 Peak Rendering . 44

3.6 Standardization Module . 46
3.6.1 Android’s Coordinate System 47

ii Contents

3.6.2 iOS’s Coordinate System 48
3.6.3 Cross-platform Generalization 49
3.6.4 Strategy . 50

4 Intelligent System 53
4.1 Occlusion Modeling . 53

4.1.1 Labeling . 55
4.1.2 Image Patch Extraction 56

4.2 Heuristics . 58
4.2.1 Sampling . 58
4.2.2 Column-wise Classifier 60

4.3 ConvNet . 62
4.3.1 Architecture . 65
4.3.2 Hyper-parameters . 68

4.3.2.1 Optimization Method 68
4.3.2.2 Batch Size 69
4.3.2.3 Learning Rate 70

4.3.3 Execution . 70
4.4 Combined Model . 71

5 Evaluation 75
5.1 Dataset Collection and Preprocessing 75

5.1.1 Data Cleansing . 76
5.1.2 Data Preprocessing . 77
5.1.3 Occlusion Statistics 77

5.2 Experimental Setup . 78
5.2.1 Protocol . 79
5.2.2 Evaluation Metrics . 79
5.2.3 Evaluated Baseline . 82

5.3 Experimental Results . 82
5.3.1 Column Patch-wise Evaluation 82
5.3.2 Unconstrained Detection 86
5.3.3 Detecting Occlusion Patterns 88
5.3.4 Efficiency Evaluation 90

5.4 Discussion on the Performance 92
5.4.1 On the Accuracy . 92
5.4.2 On the Efficiency . 103

6 Conclusions and Future Work 105

Bibliography 113

Contents iii

Appendices 123

Appendix A Occlusion ConvNet 123
A.1 Accuracy and Loss . 123
A.2 Learning Rate Decay . 125

Appendix B ConvNet Evaluation 127
B.1 Precision-Recall Curves . 127
B.2 Performance Metrics . 129
B.3 Decision Cutoff . 134

List of Figures

2.1 Computer Vision: Challenging Images 13
2.2 KNN Classical Errors . 15
2.3 Feedforward Fully-Connected Neural Network 17
2.4 Activation Functions . 21
2.5 Primitives: Filter and Feature Maps 24
2.6 Convolution Layer . 25
2.7 Pooling Layer . 26
2.8 PeakLens ConvNet . 28

3.1 PeakLens Capture . 32
3.2 PeakLens Architecture . 34
3.3 AVFoundation Stack on iOS 36
3.4 Camera Capture Flow Diagram 37
3.5 Session’s Inputs and Outputs 38
3.6 iOS Coordinate System . 40
3.7 Azimuth on iOS Devices . 41
3.8 Peaks AR Annotations . 45
3.9 Android’s Coordinate System 48
3.10 Reference Frame in Android vs iOS 49

4.1 Typical Occluded Scenery . 54
4.2 Image - Annotation Pair . 55
4.3 Fine-grained Classes . 57
4.4 Random Square Patches . 61
4.5 Images Height Distribution 62
4.6 Skyline Distribution . 63
4.7 Column Patches . 64
4.8 Proposed ConvNet Architecture 66
4.9 Combined Model . 72

5.1 Dataset Class Distribution . 78

vi List of Figures

5.2 Confusion Matrices . 85
5.3 Performance Metrics in Unrestricted Images 87
5.4 Ordinary Detection . 95
5.5 Occlusion Patterns: Buildings 97
5.6 Occlusion Patterns: Trees . 98
5.7 Occlusion Patterns: Snowy Mountains 98
5.8 Occlusion Patterns: Cloudy Mountains 99
5.9 Occlusion Patterns: People 100
5.10 Challenging Patterns: Sunlight and Illumination 102
5.11 Challenging Patterns: Cloudy Mountains 103

A.1 Loss and Accuracy . 124
A.2 Learning Rate Decay . 126

B.1 Precision-Recall Curves . 128
B.2 Baseline Performance Metrics 130
B.3 Experiment 1 Performance Metrics 131
B.4 Experiment 2 Performance Metrics 132
B.5 Experiment 3 Performance Metrics 133
B.6 Decision Threshold Values . 134

List of Tables

3.1 Technical Specifications . 34

4.1 Sampling Heuristics . 59
4.2 Proposed ConvNet Architecture 67
4.3 Server Specifications . 71
4.4 Execution’s Statistics . 71

5.1 Dataset Class Distribution . 78
5.2 Dataset Segmentation . 79
5.3 Accuracy Metrics at Column-Patch Level 84
5.4 Performance Metrics in Unrestricted Images 88
5.5 Performance Metrics in Occluded Images 89
5.6 Efficiency Performance on Mobile Devices 91

A.1 Validation Metrics . 123
A.2 Learning Rate and Batch Size 125

Chapter 1

Introduction

Augmented Reality (AR) promises to change the way information is con-
veyed, creating an impact in military, industrial, medical, and entertain-
ment domains. Outdoor applications, for instance, represent an interesting
challenge for AR in that they have a world full of objects that could be aug-
mented; nonetheless, having a world to augment also means having a world
full of uncertainties, especially, when little is known a priori about the real
world we wish to augment.

Outdoor applications heavily rely on information provided by mobile de-
vices; exploiting the sensor data and motion patterns is, therefore, the way
to go. Nevertheless, if we only take into account the position and orientation
signals, we are neglecting an important source of information, what the user
is actually seeing, more precisely, the user’s interest. To provide accurate
information, we need to address the limitations of the aforementioned ap-
proaches, not only by considering the stream data received from the camera,
but also tackling the specific uncertainties associated with it.

Uncertainty comes in many shades, however, in an outdoor domain the
primary source of uncertainty is the constant rearrangement of objects com-
posing the scene due to change of viewpoints. These positional uncertainties
directly derive from objects -partially or completely- covering the user’s scene
of interest; hence, handling occlusions is the main challenge for providing
accurate matching between the image of the physical world and the vir-
tual generated model of the world that the application exploits to perform
augmentation. Since the detection of objects composing the scene need to
be computed per frame and achieved in real-time, we focused on solving
the problem of identifying occlusion of the scene while respecting efficiency

2

constraints associated with low-powered mobile devices.

Despite the remarkable progress of recent object class recognition sys-
tems, partial occlusion remains a major challenge to state-of-the-art detec-
tors; constituting one of the main barriers to accurate recognition results
in complex scenes. Furthermore, handling real-time unconstrained images
which are ubiquitous in outdoor augmented reality applications, is a fun-
damental problem in computer vision, given that real world scenes usually
contain more than one object and it is very likely that some parts of an
object are occluded by other objects in the scene; even more, the combi-
natorial nature of occlusion patterns poses an extra significant difficulty.
Furthermore, object recognition becomes more challenging when dealing
with moving cameras in real-time applications. In spite of all the recent
developments and even when significant progress has been achieved in these
tasks, the long-standing problem of partial occlusion is still facing a number
of challenges, one of which is the fast and accurate detection in low-power
devices without having any detrimental effect on memory fingerprint and
battery consumption.

After carefully analyzing the potential issues affecting real world scenes,
we introduce what we call the occlusion problem, consisting in the fact that
occluders -any object occluding the skyline- are treated as second class citi-
zens, when they should be explicitly considered in both problem and solu-
tion, and not simply treated as yet another source of noise.

In this thesis we present an outdoor mobile application for mountain
peak detection that not only accounts for sensor-based data retrieved by
the device, but also uses images captured by the camera to make an ac-
curate alignment between the skyline the user is seeing at and the terrain,
represented by a virtual skyline computed from the the ”Digital Elevation
Model of the Earth” (DEM), the position of the user and the orientation of
the device.

To avoid placing augmented content onto objects that are not visible in
the current camera frame, we need to acknowledge the presence of possible
occluders in the horizon and define an architecture capable of identifying oc-
cluded peaks in phone camera frames, so as to accurately display augmented
content only when relevant.

The proposed approach explicitly represents occlusions by leveraging a
fully convolutional neural network that predicts whether occlusions exist in
the skyline shown in the actual camera frame.

Chapter 1. Introduction 3

As a starting point to understand the current image analysis capability
of PeakLens [10], we performed several experiments to assess the model
presented in [50] -hereinafter referred to as baseline-, which is included in
a Computer Vision module that implements the skyline detection in the
deployed version of PeakLens.

Based on the results of such analysis, we extend the Computer Vision
module so as to handle more informative input data to better understand
the relationship among local spatial features. In addition, we model the
network to learn not only the appearance of different occlusion patterns but
features that directly represent mountainous skylines as well. This network
is later used in a cascade hybridization manner along with the network pre-
sented in [50]. The final combined system is able to perform classification on
images captured in a real outdoor scenery and omni-directional AR mobile
application, using only the information from image sequences retrieved by
the camera phone.

As a result of the analysis presented in this dissertation the main con-
tribution of the thesis is twofold:

First, we have developed an iOS outdoor AR mobile application for
mountain peak detection that takes fully advantage of Apple’s standard-
ized hardware and software with the aim to provide not only a meaningful
user experience but hit more accurate readings by leveraging on the device’s
on-board sensors. Using specific operating system frameworks, the appli-
cation effectively tracks the user’s position in space in real-time by means
of the Device Motion Tracking Service, and collect events coming from the
accelerometer, gyroscope and magnetometer, in this way we are able to rec-
ognize motion with a significant degree of accuracy. For AR applications
in which interacting with virtual objects is innate, effective motion tracking
is key, thus, we account for the distance between the motion sensors and
cameras as well as the device’s place in the world by relying on the Sensor
Fusion Algorithm to remove bias such as the effect of gravity. Once the pose
is estimated, a panorama based on the acquired user’s position is obtained,
later, an alignment wrt the orientation and field of view of the device is per-
formed, consequently, mountain peaks are located in the refined panorama.
We collect data at every frame so as to compute the tilt of the device to
efficiently update the position of the augmented content that will be pre-
sented to the user. Accordingly, the augmentation experience is successfully
provided by placing on the screen tags with pertinent information about the
mountain peaks the user is seeing through the camera.

4

As one of the main aims in this stage was to extend the existent Com-
puter Vision module used in [10], and guarantee that it will work indistinctly
in both iOS and Android devices, an in-depth study was conducted to iden-
tify the mandatory means in order to use framework-specific data, such as
the device’s attitude (in any of its mathematical representations: Euler an-
gles, quaternions or rotation matrices), indistinctly of the operating system.
To provide a standard representation of the device’s true orientation, a series
of procedures were carried out on the mathematical representations of the
device’s attitude, to standardize the reference coordinate system between
both platforms.

Promising results were obtained and we succeeded at locating and ren-
dering peaks into the camera view, providing the user with a complete AR
experience. Through the analysis and development of this application, we
explored the uncertainties that arise in outdoor AR applications such Peak-
Lens and the implications involved in relying solely on sensor-based data.

Second, we have used Deep Learning models to address the occlusion
problem and, consequently, enhanced the mobile application capabilities.
In particular, we have proposed a combined model tailored to skyline and
occlusion detection, composed by a skyline detector [50] and a fully convo-
lutional network devised for occlusion handling. The strength of our con-
tribution lies on this model’s acquired knowledge that let it discriminate
accurately skylines from occlusions. Significantly, our technique shows a
clear advantage over the skyline detector presented in [50] as we are able
to improve their performance by almost 15% in the detection of occlusions
over a large dataset of challenging mountainous images depicting all sorts of
uncertainties such as sunlight, clouds, bushes, buildings and people occlud-
ing the skyline. These results support the validity of our approach to tackle
occlusions in the skyline.

The sequential nature of the proposed combined model results in less
than 70% increase in the execution time in mid-range devices, as such, we
are able to process around 3 images per second. We stress the fact that this
rate is totally compatible with the usability requirements of a real-time AR
application.

In this sense, we evidence that learning a deep ConvNet effectively han-
dles the occlusion problem inherent to outdoor AR applications. Further-
more, throughout the course of this study, we have experimented with dif-
ferent sampling techniques to address the imbalanced nature of the occlu-
sion problem, additionally, we have demonstrated that image information

Chapter 1. Introduction 5

arranged in non-conventional shapes (columns instead of squares) can pro-
vide a deeper context to the network and consequently, make it learn to
discriminate among features that better define occlusions.

The rest of the thesis is structured as follows:

• In the following chapter we present an extensive literature review of
the state-of-the-art approaches to tackle uncertainties in outdoor aug-
mented reality applications.

• In Chapter 3 we explain the task of the non-intelligent system and
discuss the limitations that are involved.

• In Chapter 4 we present the proposed heuristics in the intelligent sys-
tem and we give a detailed explanation of the various components
conforming it.

• In Chapter 5, we first describe the design of the experiments and then
demonstrate the experimental results.

• Finally, in the last chapter, we summarize our work and discuss future
extensions and improvements.

Chapter 2

Related Work

In this section we report the current state of the art of the areas involved
in this work, more specifically, we are interested in: Augmented Reality
applications, the Computer Vision problem and the Analysis of Mountain
Images.

2.1 Augmented Reality

Augmented reality is the integration of virtual content into the user’s en-
vironment in real-time, its main objective is then, to enhance the user’s
current perception of reality by superimposing virtual objects in such a way
that the virtual objects appear to be part of the real world [96]. AR en-
hances the physical world adding graphics, sounds and haptic feedback, in
that sense, it differs from Virtual Reality, which is purely synthetic and has
no direct correlation with the natural environment the user inhabits [44].

Traditionally, AR has been viewed as a wearable technology, yet the
greatest uptake recently has been on mobile platforms, such smartphones
and tablets, due to increase in computational power and a sort of hard-
ware standardization –camera and location and motion sensors– to run AR
applications. AR has evolved enormously since its beginning in 1968, when a
head-mounted display showed, now rudimentary, computer-generated graph-
ics [93]. Today’s trend is to include Machine Vision, object recognition and
gesture recognition technologies into AR applications so as to let them not
just see the world, but understand it; therefore, Computer Vision has be-
come essential for AR growth.

8 2.1. Augmented Reality

2.1.1 AR for Outdoor Applications

Outdoor applications represent an interesting challenge for AR, in contrast
to indoor AR applications they face problems strictly related with being out-
doors; for instance, accurate tracking indoors is quite challenging, however,
accurate tracking outdoors is even more challenging mainly for 2 reasons,
first, we do not have control over the physical environment and, second,
AR devices posses limited resources such battery life and computational
power [22], thus, outdoor AR applications should be aware that memory
efficiency and power consumption are key, when working outdoors.

Irrespective of the type of industry –from gaming to tourism– the pos-
sibilities of outdoor AR applications are endless, for instance, the Apple
Design Award winner Star Walk [14], is an augmented reality astronomy
guide that shows celestial objects in their exact position in the sky, its AR
view overlays useful information by harnessing the device’s GPS capabili-
ties to present an on-screen view of what stars and constellations should be
visible on a clear night from the user’s current location. The augmentation
respond to the device’s tilt i.e if the device is pointing towards the sky, it
shows all the stars and constellations in the sky above, instead, if it points
towards the ground, it shows what all the stars are in the other hemisphere.
Another good example is CityViewAR [74], a mobile outdoor AR applica-
tion that provides augmentation on a city scale, it was developed to provide
geographical information about the city of Christchurch, which was hit by
several major earthquakes in 2010 and 2011. CityViewAR presents infor-
mation about destroyed buildings and historical sites that were affected by
the earthquakes. The augmentation is provided in different formats, for in-
stance, it includes 2D map views, AR visualization of 3D models of buildings
on-site and immersive panorama photographs.

In this work we present an interesting type of outdoor AR application,
one that identifies points of interest (POI) in nature scenarios. In our con-
text, a POI is a mountain peak, and the augmentation is done by overlaying
relevant information on top of the identified peaks. For instance, Peak-
Finder [9], an application that let users to explore mountains and peaks
with a 360° panorama display, its AR view shows names, heights and loca-
tions of just about any peak in the world. ShowMeHills [13], an application
that superimposes the names of mountains and hills, each peak can show
its name, height, distance and bearing, all happening in real-time. PeakVi-
sor [12], a mountain guide that uses AR to display, in real-time, elevation
markers atop nearby mountain summits. Peak.AR [8], an application that

Chapter 2. Related Work 9

displays a panoramic augmented reality view of the surrounding peaks with
their respective name and elevation. Although these applications, roughly
speaking, target our goal, we do not only consider data coming from the lo-
cation and motion sensors, but we also consider the user’s interest i.e what
the user is seeing through the camera.

2.1.2 AR for iOS

When interacting with virtual objects as if they are in the real world, a
device has to accurately identify the position of the object in relation to
itself, thus, effective motion tracking is key to make an AR application a good
AR application. Standard hardware and software let Apple devices provide
a good AR experience, furthermore, the newest iOS has been designed to
precisely account for the distance between the motion sensors and cameras
as well as the device’s place in the world, letting it for a far more interactive
experience.

Prior to iOS 111, building AR applications with iOS was done either us-
ing third-party frameworks, such as Vuforia [16] or Wikitude [17], or building
iOS native frameworks i.e integrating data coming from the gyroscope, ac-
celerometer, compass or any other sensor, with cameras and microphones,
and overlaying 2D/3D graphics. Although time consuming, the latter ap-
proach is a viable choice when simple augmentation is needed.

Within iOS 11, Apple has included many features and technologies, un-
doubtedly one of the most interesting is its own AR SDK ARKit [4], Apple’s
proprietary framework specifically designed to build unparalleled augmented
reality applications. ARKit leans on Apple’s powerful hardware to bring the
virtual world seamlessly into the real world. ARKit makes it easy for de-
velopers to create vivid AR experiences and by combining information from
the device’s motion sensors with data from its cameras, ARKit helps to an-
alyze the surroundings more accurately. One of the key benefits of ARKit
is a feature called scene understanding, in charge of finding horizontal and
vertical planes within the scene, and tracking and placing objects. However,
since tracking is not the only thing needed for AR applications, the render-
ing of virtual objects is done natively via three main frameworks: SpriteKit,
SceneKit, and Metal.

ARKit includes world tracking through Visual Inertial Odometry (VIO),
plane detection, real world hit testing, and light estimation.

1iOS 11 was released on September 19, 2017.

10 2.2. Image Understanding

• VIO tracks the environment and places virtual objects with great ac-
curacy and without any calibration. VIO uses several sensors to track
where the device is: the camera, accelerometer, and gyroscope.

• Boasts advanced scene analysis capabilities. ARKit can estimate the
amount of light in each scene and adjust the lighting of virtual objects
accordingly.

• The performance can be optimized by popular third-party tools such
as Unity and Unreal Engine. These tools allow developers to create
compelling virtual objects with advanced graphics.

• Enables revolutionary face tracking capabilities.

Although new, ARKit has already been used to create interesting aug-
mented reality applications, for instance, MeasureKit uses ARKit to measure
almost anything using just an iPhone or iPad camera, it measures dimen-
sions, angles, it can also verify if something is perfectly level. Another
successful example of an application using ARKit is Ikea Place, an applica-
tion that helps people to decide what to shop by overlaying Ikea’s furniture
in any space.

It is worthwhile noting that in despite of ARKit many advantages, we
did not use it in this work, mainly for 2 reasons, first, the augmentation
needed for the AR application is not complex as no placement of 3D virtual
objects within the scene nor plane detection is needed. Therefore, all the
augmentation created for the AR view was handled with the native frame-
work we developed throughout this work. Second, by the time ARKit was
released, the development of the AR module was finished.

2.2 Image Understanding

Human brain and eyes’ senses are unimaginably advanced. Within fractions
of seconds, we are able to identify objects inside our field of view. Not only
can we easily name objects we are looking at, but we are perfectly capable
of perceiving their depth, discriminate their contours, colors, textures, and
infer objects even when they blend into the background. Our eyes take in
raw voxels of color data and pass them to our brain, which later translates
this information into more significant primitives, such as lines, curves, and
shapes, that might indicate, for instance, that we are looking at a car rather
than a truck.

Chapter 2. Related Work 11

It emerged then the desire of mimicking the human visual system, fur-
thermore, letting machines do it. One early breakthrough came in the mid
1950’s [100], when Computer Vision pioneers started working on recogni-
tion tasks using single images of 2D scenes, such as photomicrographs and
high altitude views of the Earth’s surface. In the late 1950’s scientist tried to
break the enigma of Computer Vision by analyzing how brains process visual
inputs from the eyes, a study conducted by Hubel and Weisel [60] showcased
the importance of edge detection to understand visual mechanics, to achieve
this, they experimented on cats; they were awarded the Nobel Prize for this
work. In the late 1960’s, discussions on the possibility of extracting 3D infor-
mation from 2D perspective views [20], opened the possibility of endowing
robots with intelligent behavior [95].

From a biological science point of view, Computer Vision aims to repli-
cate the functionality of components responsible for the human sense of
sight. Recognizing animals, describing a view, differentiating among visible
objects are things that us humans do without thought or hesitation, fur-
thermore, we are able to recognize objects under all kinds of variations in
illumination and viewpoint, our brain and eyes’ senses are simply too good
at this task which allow us, for instance, to recognize a friend in a photo-
graph taken many years ago a really cake-walk. Conversely, it took many
years of research to grant the ability of detecting objects to a computer with
reasonable accuracy, by all means, Computer Vision systems still suffer by
comparison. Programming machines to replicate human vision has huge im-
plications, all lie on the inherit perception of an object, us humans possess,
where we automatically see lines, contours, and objects, computers just see
large matrices of numbers.

Nonetheless, since the early attempts and efforts done back in the 1950’s,
there have been remarkable improvements in device’s capabilities, such as,
computational power, memory capacity, power consumption and image sen-
sor resolution, all these have improved the performance and cost-effectiveness
of Computer Vision applications. These advancements are accompanied by
the development of sophisticated algorithms for tasks such as face recogni-
tion, image classification, object detection, etc.

For instance, Machine Learning is driving a revolution in vision-based
applications. More recently, the breakthrough of Deep Learning has enor-
mously influenced improvements in Machine Learning techniques, in par-
ticular Computer Vision, subsequently, new scenarios arose for Computer
Vision applications and its usage on trending fields such as Augmented Re-

12 2.2. Image Understanding

ality. Compared to traditional Computer Vision techniques, Deep Learning
provides greater accuracy in tasks such as image classification. Given that
neural networks used in Deep Learning are trained and not programmed,
applications relying on it take better advantage of the enormous amount of
imaging and video data available in the websphere. By leveraging on the
sophistication and versatility of Deep Learning, frameworks, possibly, can
be utilized in any kind of domain, compared to Computer Vision algorithms
that tend to be more purpose-specific. Nowadays, Deep Learning-powered
image recognition is performing better than human vision on many tasks,
making applications of Deep Learning in vision such as self-driven cars pos-
sible in near future.

Before diving into Deep Learning models, let us take a quick review of the
challenges associated with Computer Vision and the traditional approaches
used before Deep Learning became popular.

2.2.1 Computer Vision Overview

The most basic application -yet the building block for others- of Computer
Vision is Object detection. On a daily basis, us humans unconsciously detect
objects by the mere action of opening our eyes, it is intuitive as it is innate,
it is very simple for us and we do it with such utter ease. However, several
challenges arise when trying to design systems similar to the human vision
sense, issues directly associated with the recognition of objects, we explain
them as follows:

• Viewpoint variations The same object can have different positions
inside an image, furthermore, it can be seen from different angles de-
pending on the relative position between the object and the observer.
Figure 2.1a shows an example of this condition. Although it is obvious
that these pictures contain the same object, to impart this knowledge
to a computer, it is not a trivial task.

• Difference in Illumination The same object can be portrayed under
different light conditions as shown in Figure 2.1b, however, we will still
be able to recognize the same object, making a computer capable of
understand this phenomenon the way we do, is a difficult challenge.

• Occluded parts Occlusions depict a major problem, humans can in-
tuitively infer an occluded object, we fill out the missing parts by
using our previously acquired knowledge, we tend to see complete im-
ages even when they are clearly not. However, when small or large

Chapter 2. Related Work 13

portions of images are hidden as illustrated in Figure 2.1c, computers
tend to misinterpret what they are seeing.

• Background Clutter Figure 2.1d shows a good example of clutter,
that basically is images blending into the background. We humans,
may fail to recognize the man in the picture in a first attempt, but
when observing carefully, we see there is a man in the image. As simple
as it may seem, it is an uphill task for a computer to learn.

(a) (b)

(c) (d)

Figure 2.1: Challenging Images: (a) Cat observed from different viewpoints. (b)
Ambient light changes. (c) A dog’s head partially occluded. (d) Man blending into
the background.

Nonetheless, by means of Computer Vision existent techniques, we are
able to solve most of these challenges individually, unfortunately, we are still

14 2.2. Image Understanding

decades away from a system which can get close to the human eye, in this
sense, Computer Vision systems will continue suffering by comparison.

2.2.2 Traditional Approaches

Several techniques exist, other than Deep Learning, that could possibly en-
hanced Computer Vision achievements. Albeit useful when dealing with
simple problems, when data and task complexity increase, these approaches
are no longer suitable alternatives to Deep Learning. In the following, we
discuss three simple approaches to image classification, please note that
other -more- sophisticated techniques can be used but they would rarely
outperform a Deep Learning model.

Linear Classifiers

A linear classifier uses the characteristics of a given object to identify to
which class it belongs to, it is called linear since its decision is based solely
on a linear combination of the object’s characteristics. To classify an image,
it uses a parametric approach in which each pixel value is considered a
parameter. Broadly speaking, we could interpret it as a weighted sum of
the pixel values with the dimension of the weights matrix depending on
the number of outcomes. To this end, the weighted sum of pixels forms
a sort of template image that is later contrasted again all images awaiting
classification. It becomes clear then, that this approach is not generalizable,
not only it will face difficulty in overcoming the challenges discussed in
Section 2.2.1 but it will pose an extra difficulty when designing one single
template for all the different cases.

K-Nearest Neighbors

K-Nearest Neighbors or simply KNN [40] [43] is a supervised learning tech-
nique used to classify objects based on closest training samples in the feature
space. During the image classification process, each image is matched with
all remaining images in the training set. The top k with minimum distances
are selected. The majority class of those top k is predicted as output class of
the image. Several distance metrics are used to select the top k, for instance
L1 distance (sum of absolute distance) and L2 distance (sum of squares).

Although KNN performs well with multi-modal classes because the basis
of its decision is based on a small neighborhood of similar objects, a major
disadvantage is that it uses all the features equally in computing for similar-
ities. This can lead to classification errors, especially when there is only a

Chapter 2. Related Work 15

small subset of features that are useful for classification [64], meaning KNN
may fail when classifying an image containing the same object under the
same light conditions and orientation, but, for instance, in different regions
of the image as seen in Figure 2.2. Despite being the same object, KNN is
likely to give highly non-zero distance for these 2 images.

Figure 2.2: KNN Classical Errors. A classical error for KNN is to give non-zero
distance for the same object but in different positions.

Support Vector Machines

Despite being mainly used in other real world problems like voice and tone
recognition and text categories, SVMs [39] are also used in image classifica-
tion and object detection. In the late 2000s gained popularity in Machine
Learning as it showed practical performance [79].

SVMs produce a model, based on the training data, which will be able
to predict class labels of the test data accurately. It works by using optimal
hyperplanes produced via maximum margin between two different classes
in a high dimensional feature space [69]. When used as an image classifier,
it applies this classification process to all the features extracted, then the
test points are subsequently mapped into that same space and predicted to
belong to a category based on which side of the gap they fall.

A main advantage of SVMs is that perform well on high-dimensional
datasets even when available data to train is scarce. However, feature-based
classifiers such SVMs, although usually outperform KNN classifiers for image
classifications tasks [64], do not substantially improve their performances
after reaching a plateau, and usually no gain is shown when introducing
more data, whereas other techniques such neural networks are able to fully
take advantage from additional data and constantly outperform feature-
based classifiers. Furthermore, not only it will face the issues described in

16 2.2. Image Understanding

Section 2.2.1 but additional limitations arise regarding size and speed during
training and testing, and the selection of the kernel function parameters.

With this overview, we introduced some intuition into the challenges
faced by approaches other than Deep Learning. We have further examined
how human and computer vision extract features from raw pixels, and sug-
gested how Deep Learning could be of good use to tackle the problem of
learning more complex features out of raw pixel values.

2.2.3 Deep Learning Models

Before exploring into more specialized concepts and models such as Con-
volutional Neural Networks, we will briefly discuss the basics of artificial
neural networks.

2.2.3.1 Feedforward Neural Networks

A Neural Network is a computational model that works in a similar way to
the neurons in the human brain, in the sense that each neuron takes an input,
performs seldom operations then passes the output to the following neuron,
and so on and so forth. In 1957, an early breakthrough appeared in the form
of the Perceptron machine, a very early artificial neural network capable of
sorting images into very simple categories like triangles and squares, inven-
tion of psychologist and Computer Vision pioneer Frank Rosenblatt [85].
Broadly speaking, learning emerges from the firing of neuron cells in the
brain, thus, it happens when links among neurons get significantly stronger,
and to get stronger connections neurons need to connect more often. Rosen-
blatt’s insight was that the same process could be applied in computers.

Despite being a very promising idea, it was demonstrated that the Per-
ceptron would fail to recognize different classes of patterns. However, later
it was brought to the attention of researchers that more layers of percep-
tron could be stacked along each other in the form of a feedforward neural
network, furthermore, insights arose suggesting that not only training them
using the back-propagation algorithm [86] would be possible but likely to
yield significant results.

We call these models feedforward because their topology is defined so that
information flows from the input a1, through the intermediate computations
used to define f, all the way to the input aL as can be seen in Figure 2.3. We
can observe that there are no feedback connections -links- in which functions
being evaluated from input a1 are fed back into the model. As we will learn

Chapter 2. Related Work 17

later back-propagation posed a major advancement in how networks are,
nowadays, modeled.

Source: Analytics vidhya. Fundamentals of Deep Learning.

Figure 2.3: Feedforward Fully-Connected Neural Network. L layers: 1 input layer,
1 output layer and L-2 hidden layers. Ni is the number of neuron in i-th layer
excluding the bias unit, and a(j)

i is the output of the j-th neuron in ith layer.

Neural Network models are arranged into several layers composed by
many units performing in parallel where each of them resembles a human
brain neuron as they also receive input from many other units and compute
its own activation value. A neural network transforms the information car-
ried through a series of hidden layers -those that are neither input or output
layers- turning it into a new representation that better addresses the, for
instance, classification task. Samples in the training set denoted as (xi, yi)
pairs, are very important since they establish the behavior of the output
layer associated to each input sample but only that, in any case the behav-
ior of the remaining layers are not directly specified by the training data.
Thus, the learning algorithm must decide how to use the intermediate layers
to produce the desired output. Given the fact that the training data does
not have a saying on the desired output for each of the intermediate layers,
these are called hidden layers. The term Deep Learning comes from the

18 2.2. Image Understanding

analogy this process posed, piling several layers all together to later train
them jointly. There is a rather remarkable intuition when we talked about
Deep Learning, and that is that is based on the evidence that a deep, hier-
archical model can be exponentially more efficient than a shallow one [27]
as recent research supporting this intuition shows [70] [42] [81].

Designing a feedforward network involves taking decisions about the
hyper-parameters we use to design a network, this however, is no differ-
ent for any other Machine Learning technique. Among the most important
parameters to be considered when designing a feedforward network are the
optimizer, the cost function, the kind of hidden and output units, the ac-
tivation functions of each hidden layer and the depth and topology of the
network. We proceed to briefly explain some major concepts behind these
hyper-parameters.

Gradient Based Learning

Training neural networks is typically done by means of iterative, gradient-
based optimization methods that try to drive the cost function to very low
values. This being said, the cost function these methods intend to lower
is very sensitive to nonlinearities and high dimensionality, which causes for
it to be highly non convex, making the optimization very hard. With this
understanding, various mutations of the classic gradient descent algorithm
have emerged, basically, they are improvements of the Stochastic Gradient
Descent (SGD) algorithm [83] [63] [32], which is an approximation of the
classic gradient descent algorithm that uses an estimate of the gradient of
the loss function based only on a single example of the training set.

New optimization methods trying to ameliorate the performance of the
SGD algorithm variants using adaptive learning rates and second-order cur-
vature informations such as Quasi-Newton methods have been proposed [65]
[102]. Luckily, deep networks optimization is a very active area of research,
which poses quite a promising horizon.

Weight Initialization

In order to properly let the optimization algorithm to rapidly converge to
a good solution, selecting a robust initialization method for the parameters
of the network becomes of greater importance. Some heuristic approaches
have been proposed, let us discuss some of them:

• All Zeros Although biases can generally be initialized to zero, weights

Chapter 2. Related Work 19

need to be initialized carefully to break the symmetry between hidden
units of the same layer, otherwise all the neuron will generate the
same output initially and similar gradients would flow back in back-
propagation [26].

• Gaussian Random Variables The weights can be initialized with
a zero-mean Gaussian with a small standard deviation around 0.1 or
0.01. This works for shallow networks, i.e. around 5 hidden layers but
not for deeper networks where small weights make outputs also small
and while moving towards the end, the values become even smaller.
Thus, the gradients will also become small resulting in gradient harm
at the end. [59]

• Fan-in, Fan-out Techniques based on the activation of the hidden
units such as the ones proposed by [52] and [58] have been well received.
[71] and [52] recommend scaling by the inverse of the square root of
the fan-in. For hyperbolic tangent units an-in is the number of inputs
of the unit, in such like manner, for sigmoid units, fan-in is also the
number of inputs of the unit.

Back-Propagation Algorithm

Introduced by Rumelhart in the 1980’s [86], was conceptualized to opti-
mize multi layered neural networks by determining the loss (or error) at the
output and then propagating it back into the network. Interestingly, Fully-
connected Feedforward Neural Network became very popular after the in-
troduction of this algorithm. Broadly speaking, back-propagation provides
an efficient and exact way of computing the gradient of the cost function in
order to train a neural network.

Training neural networks is done in a feedforward fashion, where infor-
mation flows forward from the input layer passing through the hidden units
and producing the output prediction. This process goes under the name
of forward propagation. After the forward is complete, the cost function is
evaluated and the parameters of the network (weights) are updated to min-
imize the error resulting from each neuron. The first step in minimizing the
error is to determine the gradient of each node wrt the final output, here,
the algorithm is exploited by allowing the information given by the cost
function to flow backwards through the network in order to compute the
gradients. Given that it is a gradient-based learning method, it minimizes
the error function by looking at the direction of the gradient. Once the
gradient of the cost function is computed, the gradients are used to update

20 2.2. Image Understanding

the parameters, hence, weights are learned propagating back, through all
the layers of the network, the prediction error.

Cost Functions

Another important aspect when designing a deep neural network is deciding
the cost function to use J(Θ). When using deep neural networks as classi-
fiers, the model defines a distribution p(y|x; Θ) over a set of classes, hence,
the maximum likelihood can be used to estimate the parameters required.
This means using the cross-entropy cost function to measure the error be-
tween the training set and the predictions thrown by the model. What cost
function to use depends on various factors, such as the domain, the complex-
ity, the data distribution, and the output; for instance, if the outputs are
real numbers we are likely to be estimating the parameters for a regression
task, thus, a usual choice would be the classic Mean Squared Error.

Activation Functions

Hidden units as well as deep network optimization are a very active area of
research. In recent years various nonlinear activation functions have been
proposed aiming to improve the performance and trying to simplify the
optimization. Let us discuss some of the most popular options:

• Sigmoid Function Sigmoidal units 2.1 saturate to a high value when
their input is very positive and saturate to a low value when the in-
put is very negative. As we know, gradients get multiplied during
back-propagation causing this small gradient stop back-propagation
into further layers, thus, harming the gradient. Such trait makes sig-
moidal units inoperative, as they function only in a very narrow range
around 0, hence, gradient-based learning very hard. For this reason
they have been substituted by other kind of hidden units in feedfor-
ward networks, such as linear units.

g(z) = σ(z)
σ(z) = 1/(1 + ex)

(2.1)

As can be seen in Figure 2.4 all the outputs are between 0 and 1,
meaning sigmoidal units are not zero-centered. As these become inputs
to the next layer, all following gradients -belonging to next layer- will

Chapter 2. Related Work 21

be either positive or negative, causing the path to optimum to be a
zig-zag.

• Tanh Activation It is simply a hyperbolic tangent function 2.2 as
shown in Figure 2.4. It is always preferred over sigmoid when outputs
fall in the range [-1,1]. However, it will still harm the gradient, thus,
nowadays they are mostly used as output units and other settings, for
instance, auto-encoders or Recurrent Neural Networks.

g(z) = tanh(z) (2.2)

• ReLU (Rectified Linear Unit) First proposed for restricted Boltz-
mann machines [78] it finds its way into neural networks [41] [53] prov-
ing to be very successful.

g(z) = max(0, z) (2.3)

It is the most commonly used activation function for Convolution Neu-
ral Networks since typically avoid the vanishing gradient problem [28]
given that their derivative is 1 for positive values and 0 elsewhere,
thus, the gradient would not saturate in the positive region. It is also
computationally very efficient as simple thresholding is required. Em-
pirically found to converge faster than sigmoid or tanh. However, its
outputs are not zero-centered and always positive, furthermore, gra-
dients at z < 0 and z = 0 are tricky. If the caveats are kept in mind,
ReLU can be used very efficiently.

(a) Sigmoid unit (b) Tanh unit (c) ReLU unit

Figure 2.4: Activation Functions. Sigmoid non-linearity (a) squashes real numbers
to range between [0, 1]. Tanh non-linearity (b) squashes real numbers to range
between [-1, 1]. Rectified Linear Unit (ReLU) activation function is zero when
x < 0 and then linear with slope 1 when x > 0

22 2.2. Image Understanding

2.2.3.2 Convolutional Neural Networks

One of the most popular techniques used in improving the accuracy of im-
age classification is Convolutional Neural Networks (CNNs or ConvNets for
short). Its breakthrough dates back to 1989, when a group of researchers
demonstrated they were very effective at classifying hand-written images
[72].

Along the years, deep convolutional networks have outperformed state
of the art classifiers in many visual recognition tasks. However, it is the
recent availability of both large datasets and massive amounts of computa-
tional power that have made them the crux of Deep Learning applications in
Computer Vision. Popularized by the outstanding results obtained by [67],
where a network with 8 layers trained with one million samples proved to be
specially successful in the Computer Vision field while breaking records in
the ImageNet Large Scale Visual Recognition Competition [87] back in 2012.
Consequently, ConvNets have become the default choice for almost every
Image Classification problem. Since then, even larger and deeper networks
have been trained, such is the case of GoogleNet [94], ResNet [57], among
others.

ConvNets are a special type of neural network that work in the same
way of a regular feedforward networks except that they include convolu-
tion layers at the beginning of the network topology. Deep ConvNets work
by consecutively modeling small pieces of information and combining them
deeper into the network. Instead of feeding the entire image as an array of
numbers, the image is broken up into a number of tiles, the machine then
tries to predict what each tile is. One way to understand this concept is
by picturing, for instance, that the first layer is trying to detect edges and
form templates for edge detection. Then, all subsequent layers will try to
combine them into simpler shapes and eventually into templates of different
object positions, illumination, scales, etc. At the end, the final layers will
match an input image with all the templates and the computer will predict
what is in the picture based on the prediction of all the tiles, as a sort of
weighted sum of all of them. Such trait enables the computer to parallelize
the operations carried out and detect the object regardless of where it is
located inside the image.

Fully ConvNets use a special architecture that exploits the spatial struc-
ture of the images. More in general these kind of neural networks are spe-
cialized in processing data that has a grid-like topology such as time-series
(1D grid) or images (2D grid) [54]. In particular, a ConvNet is a neural

Chapter 2. Related Work 23

network that instead of using a matrix multiplication uses convolution oper-
ations to compute the activation of a layer. It is called fully convolutional
since the neural network is only composed of convolutional layers without
any fully-connected layers or MLP usually found at the end of the network.
A fully convolutional net tries to learn representations and make decisions
based on local spatial input [76].

Another kind of neural network exist called Fully-Connected Neural Net-
work that has shown to perform well in many different fields, however, they
are not really used in practice for image recognition tasks since given its full
connectivity, the number of parameters grow exponentially and is likely to
lead to overfitting. Furthermore, in contrast with Fully Convolutional Neu-
ral Networks, they do not take into account the inherent spatial structure
of an image, thus, input pixels far apart and close together are treated in-
stinctively, which means that appending a fully connected layer enables the
network to learn something using global information where the spatial ar-
rangement of the input falls away and need not apply. The main difference
however, is that the fully convolutional net is learning filters everywhere,
even in the decision-making layers at the end of the network are filters.

In order to function, ConvNets use 2 major constructs as primitives:

• Filters, also known as feature detectors, and

• Feature Maps, also known as pre-activations or convolved features.

A filter is represented by a small matrix that conveys a feature that
we are interested to find in the original image. In Figure 2.5, the filter on
the top attempts to discover the parts of the original image with vertical
lines, while the filter on the bottom tries to discover parts of the image with
horizontal lines.

The actual detection process works by taking the convolution of the filter
with the original image. Figure 2.5 shows us the results of performing the
convolution on the right side. The outputs of the convolutions, which locate
the positions of the features in the original image, are the feature maps.

Refer to Figure 2.3 as we will use it as a scheme to describe how these
primitives are turned into concrete structures. Layers of neurons in a feedfor-
ward neural network represent either the original image or a feature map.
Filters represent combinations of connections or links that get replicated
across the entirety of the input. Finally, the output layer at each stage, is
the feature map generated by these filters. A neuron in the feature map

24 2.2. Image Understanding

Figure 2.5: Primitives: Filter and Feature Maps. Filters drawn in green. The filter
on the top attempts to discover the parts of the original image with vertical lines,
while the filter on the bottom tries to discover parts of the image with horizontal
lines.

is activated if the filter contributing to its activity detected an appropriate
feature at the corresponding position in the previous layer.

A typical ConvNet architecture consists in a pipeline of three opera-
tions: (a) a convolution represented by means of a convolutional layer, (b)
a nonlinear transformation, represented using activation functions and (c)
a pooling stage. First and foremost, the ConvNet computes several parallel
convolutions to produce a set of feature maps. Later, the nonlinear activa-
tion function is applied to the generated feature maps. Finally, a pooling
layer may be inserted in-between successive convolutional layers in a deep
ConvNet architecture. Let us discuss these operation-facilitators in detail.

Convolution Layer

The primary purpose of convolution in case of a ConvNet is to extract
features from the input image. Convolution preserves the spatial relationship
between pixels by learning image features using small structures of input
data. The convolution creates a map of where certain features appear in the
input. Moving the object in the input, its representation will move the same
amount in the output. This is important for tasks such as image recognition
where the same local feature is useful everywhere in the input. For instance,

Chapter 2. Related Work 25

when object’s edges appear along the image, as one might expect in any
sort of image, it is very useful to have the network learned a robust edge
detector. On the contrary, in face recognition tasks for instance, we might
want to extract features at different locations without paying attention to
soft edges, thus, the network subset in charge of processing the top of the
face, it also needs to be very cautious to the eyes, in contrast, the network
subset processing the bottom of the face needs to look after the mouth.

(a)

(b)

Source: Analytics vidhya. Deep Learning for Computer Vision.

Figure 2.6: Convolution Layer. (a) This filter is a set of: 5x5x3 = 75 + 1bias =
76weights. At each position, the weighted sum of the pixels is calculated and a
new value is obtained. A single filter will result in a volume of size 28x28x1 (b)
Multiple filters are run at each step. In the image 10 filters are used.

The filter slides by 1 or more pixels -called stride- over the input image
to produce a feature map, for every position, an element wise multiplication
is computed and later added to get the final integer which forms a single
element of the output matrix. If we were to choose a different filter, the

26 2.2. Image Understanding

convolution over the same image would give a different feature map as can
be seen in Figure 2.6. It is worth noticing that this convolution operation
captures the local dependencies in the original image.

Pooling

Spatial Pooling (also called subsampling or downsampling) reduces the di-
mensionality of each feature map but retains the most important informa-
tion. Spatial Pooling can be of different types: Max, Average, Sum etc. The
most widely used type of pooling is called Max Pooling, it works under a
simple approach, it defines a spatial neighborhood or window and take the
largest element from the rectified feature map within that window. Instead
of taking the largest element we could also take the average, called Average
Pooling. In practice, Max Pooling has proved to work better.

Pooling layers work by sampling in each layer using filters. Consider
the layer presented in Figure 2.7. If we use a 2x2 filter with stride 2 and
max-pooling, we get the response illustrated in the Figure 2.7.

(a) (b)

Figure 2.7: Pooling Layer. Input volume of size 224x224x64 is pooled with filter size
2, stride 2 into output volume of size 112x112x64. The volume depth is preserved
(b) A 2x max pooling operation where each max is taken over 4 numbers on a patch
of dimension 2x2.

The important fact behind the use of pooling is that it helps to make the
representation invariant to small transformations, distortions and transla-
tions in the input image, meaning a small distortion in input will not change
the output of pooling. Furthermore, it helps us arrive at an almost scale
invariant representation of the input image. This particularly is very pow-
erful as it allows us to detect objects inside an image regardless where they
are located.

Putting all these concepts together, we are ready to tackle any interesting
Computer Vision problem.

Chapter 2. Related Work 27

2.3 Mountain Image Analysis

Mountainous sceneries analysis is quite ambitious, since they have little
structural information, furthermore, season, weather and geographical loca-
tion have a deep impact in the appearance of mountains, making the stan-
dard approaches not adequate for this purpose. Nonetheless, this problem
has been addressed from different viewpoints, some using traditional Ma-
chine Learning algorithms with Dynamic Programming, others, Computer
Vision with Deep Learning techniques.

Mountain peak detection has been a research topic of some interesting
papers, for instance, in [75] Support Vector Machines are used to predict pos-
sible skyline segments, additionally, linking incomplete fragments of skyline
is treated as a shortest path problem, hence, Dynamic Programing is used to
solve it, furthermore, to identify peaks a 2D curve matching is carried out on
the extracted skylines. In [48], the authors perform an edge-based matching
between the visual content of each photo and a terrain view synthesized from
the DEM that uses the location coordinates included in the geo-tags of each
photo. Both approaches show significant results, however, the estimation of
the position of the peaks in [48] is more accurate than the one proposed by
[75], since contextual information is included in the geo-tags. A system for
the annotation and augmentation of mountain photographs is presented in
[24], the proposed technique is able to automatically derive the pose of the
camera relative to the geometric terrain model by using an edge detection
algorithm, the technique searches for the best match with silhouette edges
rendered using the synthetic model, although interesting, this approach fo-
cuses on applications for annotation of the mountains and not in building
environmental models. A similar approach is presented in [84], the authors
introduce an approach to identify mountain peaks and their corresponding
edges based on the estimation of the field of view and the direction of the
camera using also a matching algorithm on the edge map and the mountain
silhouettes, in contrast with previous works, they include an algorithm to
extract the visible part of the identified mountains.

PeakLens [10] has already addressed the problem of mountain peak de-
tection in mobile applications, by using the framework proposed in [47] to
detect mountain peaks considering as an input not only the position and
orientation of the user’s device but also the content of the current view and
the DEM, they estimate the virtual panorama visible from the user’s view-
point. The framework proposed in [47] has been improved for mobile AR
applications in which the captured images can be taken in adverse weather

28 2.3. Mountain Image Analysis

conditions, more importantly, as the presence of transient occlusions in the
skyline is even more frequent in these conditions, an approach based on only
edge filtering is not longer the best choice, since objects occluding the skyline
can produce misleading edges, consequently, erroneous classification that
may harm the alignment with the DEM and the positioning of peaks may
be thrown, for that matter, the Convolutional Neural Network for pixel-wise
skyline detection presented in [50] has been included as a filtering procedure
that retains only edge pixels of the skyline so as to improve the alignment
wrt the terrain. The ConvNet presented in [50] is used as a binary classifier
at pixel level, a set of scores –or probabilities– for each pixel is obtained; a
threshold that maximizes accuracy is chosen and a further post-processing
step is done, one that only retrieves a single pixel per column, as shown in
Figure 2.8.

(a) Photo (b) Photo

Figure 2.8: PeakLens ConvNet. Left: Test image. Right: The ground truth
is represented in white. Correctly predicted skyline is represented in green. Miss-
classified skyline is represented in red [50].

The approach presented in [50] may contribute to the detection of oc-
clusions, after the alignment of the landscape skyline and the skyline pixels
classified by the ConvNet, the skyline-interrupted fragments could be consid-
ered as occlusions, thus, occlusion detection can be achieved to some degree
of accuracy. In contrast, the approaches presented in [24] and [23] rely on
edge-based heuristics using Dynamic Programming to connect edges, such
approach has proved to work poorly on images taken in bad conditions, in
which a cloud, a high voltage cable, or a building could negatively impact
on the heuristic edge filter, what is more, some of these objects’ edges could
possibly be recognized as skyline leading to occlusion segments being mis-
interpreted. As it will be further discussed in this work, these approaches
leave a big room for improvement when the problem is to detect occlusion
segments.

Chapter 2. Related Work 29

2.4 The Occlusion Problem

Many approaches used in image classification and object detection simply
ignore occlusions and treat them as outliers, which may be reasonable when
the main purpose of the modeling is to simply recognize an object. However,
by ignoring occlusions we are blurring features that given its singular ap-
pearance are just hard to detect, for instance, in PeakLens [10] the extracted
skyline is used to perform an alignment wrt the terrain, therefore, ignoring
occlusions would be detrimental.

Another common approach to model occlusions is to treat them in a
post-process step, thus the occlusion-detection stage is no longer part of the
learning process, this is certainly true for some techniques used in Computer
Vision, where visibility is treated as a binary variable that could be inferred
later in the process. Other examples include those in which the stereo
matching problem [15] -also known as correspondence problem- is preva-
lent, making the formal prediction then, through dynamic programming, as
in [55].

Although the former techniques are quite successful, there are others
that do include the occlusion-detection stage as part of the learning pro-
cess, to do so, for starters, all the occlusion-hypotheses could be captured,
nonetheless capture all the occlusion-hypotheses for mountain peak detec-
tion is infeasible due to its sole nature i.e. in this type of scenarios there are
an infinite number of occluders and their positioning is entirely arbitrary.
Whereas some part-detection models have successfully captured and scored
all of these hypotheses as in [49] and [99], this is not realistic for scenarios
that are far less constrained.

Models though, can explain features generated by occlusions as in the
case of [51], when pose estimation is coupled with segmentation, however,
such models require several orders of magnitude for parameters as for train-
ing. Conversely, in this work, we propose a model that does not required
such orders of magnitude for parameters nor for training, but instead relies
on the shape of the input data we are feeding to our network, and as it
will be demonstrated, the approach presented in this work is able to provide
more meaningful context to our network, thus, making it able to recognize
occlusions in the horizon.

Chapter 3

Non-Intelligent System

In this chapter we introduce what we call the non-intelligent system, an
outdoor mountain peak detection application for iOS devices. We describe
in detail the architecture of the system and further design choices, the system
modules and submodules, and all main functionalities to finally present the
working prototype named PeakLens-iOS.

3.1 Background

PeakLens [10] is an AR Android application for mountain peak detection
in real-time. Within PeakLens, peak detection can be achieved either using
GPS and compass signals, or exploiting a Computer Vision module specif-
ically tailored to identify mountain peaks. The former, uses raw data from
the Sensor API provided by Android, the latter, fixes data errors coming
from the sensors –misreadings introduced by the sensor’s hardware– by lever-
aging a ConvNet able to classify skyline pixels.

In this chapter we present the iOS version of such application that takes
fully advantage of Apple’s standardized hardware and software with the
aim to provide not only a meaningful user experience but hit more accurate
readings by leveraging on the device’s on-board sensors, so as to explore the
specific uncertainties that arise in outdoor mobile augmented reality appli-
cations. However, since data coming from the device’s physical hardware
are entirely dependent on the operating system from which are obtained,
developing the iOS application is far from trivial, simple porting code
cannot be done, instead, a complete redesign of the application architecture
is needed.

32 3.2. Overview

Figure 3.1 shows a scene capture, using the PeakLens Android appli-
cation, in which the augmentation was done using only sensor’s data. In
this example we can observe that, although the application is able to detect
mountains peaks (Pizzo del Tre Termini and Monte Colmegnone) and place
them on the AR view, there are some obvious misplacements, for instance,
the alignment of the peak Monte Colmegnone is not 100% correct, although
the displacement of the virtual tag with respect to the actual skyline is not
completely detrimental to the AR experience, is evident that inaccurate sen-
sor readings do affect at some degree the final outcome and can reflect on
the user’s perception of the correctness of the application. A very noticeable
error in this example is the alignment of the peak Pizzo del Tre Termini,
although the peak is present in the scene, is not visible from the user’s view-
point as there is a house occluding it, this specific misalignment also affects
the outcome results and is detrimental to the overall AR experience. As we
will learn through this chapter, this particular scenario cannot be overcome
using only sensor data but additional task needs to be carried out in order
to handle it.

Figure 3.1: PeakLens Capture. A scene capture made with PeakLens Android
application.

3.2 Overview

As a first attempt to detect mountain peaks inside a scene and provide users
with meaningful augmented content of the peaks seen through their device’s
camera, we have developed an iOS application that takes fully advantage of

Chapter 3. Non-Intelligent System 33

Apple’s standardized hardware and software with the aim to improve not
only the user experience but hit more accurate readings by leveraging on
the device’s on-board sensors. Additionally, the massive number of users1,
and consequently, user’s feedback, comes just as a bonus.

However, as we will show throughout the course of this study, empower-
ing an AR mobile application for mountain peak detection with only sensor-
based data is not sufficient, although useful to explore the uncertainties that
arise in outdoor mobile AR applications, can fairly provide a meaningful user
experience as we are undoubtedly neglecting the actual user’s interest -what
the user is seeing though the camera, for this reason, we consider this first
approach as Non-Intelligent as no learning step is included to correctly un-
derstand the interest of the user. Nonetheless, we validate the usefulness of
this approach as a way to examine uncertainties related with the physical
world we are trying to augment, foremost, based on the findings of this ap-
proach we set the requirements for the improved Computer Vision technique
discussed in Chapter 4.

3.3 PeakLens-iOS

PeakLens-iOS is and outdoor AR mobile application designed for moun-
tain peak detection, developed for Apple devices. To ensure proper func-
tioning, devices running PeakLens-iOS must be shipped with a minimum set
of required hardware, for instance, a camera, an accelerometer, a gyroscope
and a compass must be present.

As for the technical specifications, to build PeakLens-iOS we used Swift,
a general-purpose, multi-paradigm programming language created by Apple,
currently considered the default choice when building iOS and Mac applica-
tions. Given the nature of PeakLens-iOS, some specific built-in sensors are
considered mandatory, to fulfill this constraint, PeakLens-iOS runs strictly
on iOS 72 -or later-, iPhone 43 -or later-, iPad 24 -or later- and any version
of iPad Mini and iPad Air. As can be seen in Table 3.1, devices running
prior operating systems do not complied with PeakLens-iOS hardware con-
straints, thus, compatibility is not guaranteed.

Figure 3.2 shows a high-level architecture diagram of the PeakLens-iOS
and the modules it interacts with. PeakLens-iOS is built upon 3 main com-

1By the end 2016 there were over 700 million iPhones in use worldwide [6]
2iOS7 was released on September 18, 2013.
3iPhone 4 was released on June 24, 2010.
4iPad 2 was released on March 11, 2011.

34 3.3. PeakLens-iOS

Device Model Sensors Compatibility
Accel. Gyro. Compass (>= iOS 7)

iPhone
<= 3G 3 7 7 7

3G 3 7 3 7

>= 4 3 3 3 3

iPad

1 3 7 7 7

>= 2 3 3 3 3

Mini 3 3 3 3

Air 3 3 3 3

Table 3.1: Technical Specifications. The information shown above was collected
from Apple’s products technical specification [3].

ponents, each responsible of well-defined functionalities, named as follows:
the augmented reality framework, the mountain peak detection module and
the standardization module.

Figure 3.2: PeakLens Architecture. A high-level architecture diagram of the appli-
cation presented in this chapter.

• The Augmented Reality Framework, that is in charge of over-
laying augmented content of detected peaks, responsive to the device

Chapter 3. Non-Intelligent System 35

positioning and user’s movements.

• The Mountain Peak Detection module, that is in charge of iden-
tifying mountain peaks present in the live camera images, using the
current user’s location.

• The Standardization module, that is in charge of generating stan-
dardized data that can be used in the scene replay of Android devices
running PeakLens [31], as well as to be used in the application’s Com-
puter Vision module.

3.4 Augmented Reality Framework

When an application adds additional content, such as 2D or 3D elements,
to the live camera image, users experience augmented reality, which is noth-
ing but the illusion that those elements are part of -or inhabit- the real
world. In that way, AR applications give us an enhanced version of reality
by bringing elements of the virtual world into our real world. As discussed
in the previous chapter, outdoor applications present a perfect scenario to
include augmentation, since they provide the user an experience that lies in
that spectrum, just in between what is real and what is virtual i.e. it does
not diminish the activity been held but enhances the things the user sees,
hears or feels.

In PeakLens-iOS, the augmentation is made by superimposing informa-
tion about the mountains seen through the camera, to provide such aug-
mentation on iOS devices, we must create a framework that allows us to use
all resources needed from the device on-board hardware, as well as from the
operating system itself. In order to set-up an augmented reality environment
in our application, we combined the camera scene capture and the device
motion tracking service, so as to accurately track the world around us and
blend all virtual content smoothly into the user’s environment. Our main
goal then, is to bring the virtual world seamlessly into the real world in such
a way that a realistic experience can be provided to the user.

3.4.1 Camera Scene Capture

In order to provide an augmented reality environment, we first need to stream
a live view of what the user is seeing at the moment, to then add virtual
elements on top of this view, to do so, we must be in full control of the
device’s camera. iOS provides access and control of the media physical

36 3.4. Augmented Reality Framework

devices such as cameras and microphones, by means of the AVFoundation
framework [2].

AVFoundation captures, processes and controls all the audiovisual media
on Apple platforms, specifically AVFoundation includes a Camera and Media
Capture subsystem that is needed for applications that require a full control
of the physical hardware. Figure 3.3 shows the architecture of AVFoundation
for iOS, a similar architecture is provided for OS X.

Source: Apple’s Developer Documentation. About AVFoundation.

Figure 3.3: AVFoundation Stack on iOS. It lets access to input streams from devices
and manipulate video during real-time capture and playback.

To handle photo and video capturing within our application, we have cre-
ated a controller named BasicCameraViewController. Likewise, to manage
the capture from the camera we need to gain access to the physical device,
create an input, setup the session using this input and then save it on an
output. Figure 3.4 shows a diagram depicting this process.

While recording input from the camera, a session is required, this session
is in charge of coordinating data flow from input devices such the camera,
to desired outputs, such movie files and photos. PeakLens-iOS constantly
provides the user a preview of what the camera is recording, in order to so,

Chapter 3. Non-Intelligent System 37

Figure 3.4: Camera Capture Flow Diagram. Sequence of objects needed during a
capture session, following the specification of the AVFoundation architecture.

it outputs a video stream by attaching it to a preview layer. So as to be able
to properly handle the Camera Scene Capture, we use the following objects:

• An instance of AVCaptureDevice to represent the physical capture
device and configure the properties of the underlying hardware as well
as to provide input for capture sessions.

• An instance of AVCaptureDeviceInput to configure the ports from
the selected input device i.e to provide media from a capture device
to a capture session.

• An instance of AVCaptureVideoDataOutput to process uncompressed
frames from the video being captured or to access compressed frames
to output or stream them to a movie file.

• An instance of AVCapturePhotoOutput to provide an interface for cap-
ture workflows related to still photography, such Live Photo, RAW-
format capture and more.

• An instance of AVCaptureSession to manage all capture activities, on
real-time or off-line, as well as to coordinate the data flow from input
devices to capture outputs.

• An instance of AVCaptureVideoPreviewLayer to manage the image-
based content by showing the user a preview of the video as it is being
captured by the selected input devices.

Figure 3.5 shows the configuration of the capture session on PeakLens-
iOS, given that we do not need to record the audio, we have only considered

38 3.4. Augmented Reality Framework

one input for the video data coming from the rear camera, however, not only
do we need to stream the images captured by the camera but we also need
to take pictures that include all the virtual elements rendered on the user’s
view as well, therefore, we have included 2 outputs.

Source: Apple’s Developer Documentation. Still and Video Media Capture.

Figure 3.5: Camera Capture Flow Diagram. A single session can configure multiple
inputs and outputs, in our application, one single input AVCaptureDeviceInput and
2 outputs, AVCaptureVideoDataOutput and AVCapturePhotoOutput are needed.

After the session has been properly configured, we need to process the
video frames by setting a delegate for the AVCaptureVideoDataOutput ob-
ject, in order to ensure that frames are delivered to the delegate in the proper
order, we need to specify a serial queue for the video output as well. Frames
are delivered as instances of the CMSampleBuffer, by default the buffers are
created with the camera’s most efficient format, however, we have specified a
custom output format of kCVPixelFormatType_32BGRA or BGRA that better
suits our purposes.

As explained in Section 3.3, we established iOS 7 as the minimum op-
erating system version, given the fact that from this version and on iOS
introduces high frame rate video capture support, thus AVFoundation sup-
ports full 720p (1280 x 720 pixels) resolution at 60 frames per second (fps)
which is more than an ideal delivery rate for augmented reality applications

Chapter 3. Non-Intelligent System 39

[5]. It is worth noticing that when no data generation is required i.e we do
not need to save images from every frame plus additional meta-data such
values from sensors, device’s information and image specifications, compul-
sory for the scene replay functionality (see Section 3.6 for further details),
PeakLens-iOS is able to attain 60 fps, in contrast, when data generation is
required, we can only process 35 fps, nonetheless, we guarantee smoothly
mixed scenes in both scenarios.

The second output we have included in the session handles the photo
output, we have preset the session with a HD 1280x720 resolution. Pho-
tos are also delivered as instances of the CMSampleBuffer, for this purpose
we created a JPEG representation of the buffer and we have also included
all the 2D elements rendered on the user’s camera view, such elements are
represented as tags on top of the mountain peaks, displaying pertinent in-
formation such as names, elevation and more.

3.4.2 Device Motion Tracking

For the sake of tracking the device’s motion, we must capture environment-
related data from the built-in sensors and trigger events accordingly. In
PeakLens-iOS, events coming from the accelerometer, gyroscope and mag-
netometer are extremely important for capturing motion, these events are
used to control the magnetic field, the rotation in °/s and the acceleration
in m/s2 of the device at some degree of accuracy. Each sensor provides the
following specific data:

• Accelerometer. A motion sensor that detects the change in move-
ment relative to the current device orientation, in 3 dimensions along
the x, y, and z axis, see Figure 3.6.

• Gyroscope. A motion sensor that detects the rotation with respect
to Earth gravity, in 3 dimensions along the x, y, and z axis, see Figure
3.6.

• Magnetometer. A motion sensor that measures the strength of the
Earth’s magnetic field relative to the device, determining the heading
and acting as a digital compass.

When interacting with virtual objects, effective motion tracking is key,
so, to accurately report the position of the object wrt the device, iOS ac-
counts for the distance between the motion sensors and cameras as well as
the device’s place in the world. For such purposes, iOS includes CoreMotion,

40 3.4. Augmented Reality Framework

Figure 3.6: iOS Coordinate System. The X-axis runs through the device from left
(-) to right (+), the Y-axis through the device from bottom (-) to top (+) and the
Z-axis runs perpendicularly through the screen from the back (-) to the front (+).

a framework that makes easy to harness the sensors by reporting all motion
events and exposing both raw and a processed values -those that do not in-
clude bias. Additionally, CoreMotion offers a service called DeviceMotion
that uses the so called Sensor Fusion Algorithm to remove bias such as the
effect of gravity, in the raw data coming from the Accelerometer and Gy-
roscope. Thus, the device motion data contains the exact attitude, rotation
rate, gravity and user acceleration of the device at a specific point in time.
It is much easier and safer then, to work with the device motion data, than
to compute the values from the raw data.

PeakLens-iOS uses the Device Motion service to handle all motion events
and collect all the environment-related data, to do so, we must include an
instance of CMMotionManager in order to get the latest sample of device-
motion data at every frame. Once the data has been collected, we compute
the tilt of the device to efficiently update the position of the virtual objects
in the camera view, such information is present on the device’s attitude. The
attitude is included in the CMDeviceMotion object within CMMotionManager
in 3 different mathematical representations: a quaternion, a rotation matrix
and Euler angles (roll, pitch and yaw), we use the rotation matrix to ob-
tain the correspondent 2D point to re-locate the virtual components in the
camera view.

An additional element in the camera view exist, that although it is not
considered within the augmented reality framework, it does get affected by

Chapter 3. Non-Intelligent System 41

the device’s motion, the Compass. The Compass presented in the camera
view uses the sensor’s data to show the user’s location wrt to the north,
however, since the device is not used in portrait mode, which is the default
mode for tracking location on iOS devices, the heading needs to change from
the top of the device -when is held in portrait orientation-, to the left or right
side -when is held in landscape orientation-, in order to update the Compass
with the right values so as to show the true heading, we do not longer use
the Y-axis but the Z-axis to reflect the true heading, Figure 3.7 depicts this
new configuration.

(a) (b)

Figure 3.7: Azimuth on iOS Devices. (a) Device held in portrait orientation and
azimuth measured wrt to the Y-axis (roll). (b) Device held in landscape orientation
and azimuth measured wrt to the Z-axis (yaw); the final landscape orientation, say
left or right, changes the offset.

Once the heading has been aligned, what remains to be done is merely
computing the azimuth, that is, the angle between the device’s reference
frame and a reference vector pointing towards the north. Further explana-
tion about the reference frames used on iOS devices will be given in Section
3.6, for now, it is enough to understand how the azimuth is computed.

• When handling the device on landscape-left -home button on the right
side-, yaw goes from -PI to PI, with north at 0° and going to PI,
counterclockwise, and to -PI, clockwise [2], therefore only a basic nor-
malization is needed.

• When handling the device on landscape-right -home button on the left
side- all measures have an offset of 180°, from PI to -PI [2].

42 3.5. Peak Detection

3.5 Peak Detection

The Peak-detection stage comprises (a) the localization, based on the de-
vice’s on-board sensors, (b) the panorama matching, to align the user’s
current location and obtain the peaks inside the panorama, and (c) the
rendering, to display a 2D element for each matched peak.

3.5.1 Sensor-based Localization

Sensor-based localization describes the process of getting the device’s ge-
ographic location and orientation based only in the device’s built-in hard-
ware, which includes the GPS, WiFi, Bluetooth and others. On iOS, the
location information is available through the CoreLocation framework and
CLLocationManager is the entry point to all its functionalities [2], however,
unlike CMMotionManager, CLLocationManager do not expose the sensors
nor their raw data in any form, instead, it provides processed data consid-
ering only what best suits the request i.e if the desired accuracy, in kilo-
meters or meters, is big enough, the CLLocationManager has the flexibility
to turn off GPS hardware and rely solely on the WiFi or cell radios, which
can lead to considerable power savings. Although we are not permitted
to choose the sensors used during the triangulation of the user’s location,
CMMotionManager guarantees algorithms that effectively capture data con-
sidering not only accuracy but speed and energy efficiency, which is crucial
for applications that are constantly monitoring the user’s location.

PeakLens-iOS uses an instance of CLLocationManager to configure, start,
and stop all location services, and accounts for the following location-related
activities:

• Tracking changes in the user’s current location.

• Reporting heading changes from the on-board compass.

To handle all location and motion activities within our application, we
included a tracking manager component named TrackingManager which
acts as a delegate of CLLocationManager i.e it receives all location-related
events. Events triggered by the built-in sensors work under the following
settings:

• Desired accuracy, that tells the framework what level of accuracy
we expect, the higher uses GPS information, the lower, only cell tower
data, although the receiver does its best to achieve the requested ac-
curacy; the actual accuracy is not guaranteed. We have considered

Chapter 3. Non-Intelligent System 43

necessary to use as desired accuracy kCLLocationAccuracyBest i.e to
use GPS information whenever possible.

• Distance filter, that tells the framework the minimum distance -
measured in meters- a device must move horizontally before an update
event is generated, this distance is measured relative to the previously
delivered location. We have set this property to 50 meters, since the
peaks included in the panorama -on 360° - do not change significantly
in smaller distances.

Once a location-related event that fits the previous configurations is re-
ceived, the following step is to send the location data, said, altitude, latitude
and longitude, to the panorama matching service defined in Section 3.5.2, to
obtain all peaks inside the field of view, to later draw their correspondent
augmented content. Certainly, we do not call this service indistinctly, in-
stead we carefully filter out the events that do not reflect a real change in
the user’s panorama, to do so, we discard all events coming from the cached
measurements and we only consider those in which the radius of uncertainty
for the location is less than 60 meters.

3.5.2 Panorama Matching

We refer to Panorama Matching as the process of identifying the moun-
tain peaks inside the current panorama. We heavily rely on the framework
presented in [47], that proposes a sensor data matching algorithm by per-
forming an initial estimation based only in the raw sensor data to later
refine the peak’s positioning using the 3D model of the Earth. Additional
algorithms are included in this framework to better align the digital skyline
coming from the sensors and camera, and the real panorama coming from
the Earth’s model, however, we have not included them in this work due to
timing constraints.

We reckon the need of an additional module in charge of executing
the Panorama Matching process, to fulfill such requirement we have im-
plemented PeakLensCV-iOS, an iOS framework thought to work with align-
ments based on sensor’s and motion data to then use some Computer Vision
techniques to refine the peaks positioning in the extracted panorama, at this
point we want to remind the reader that we have not developed the Com-
puter Vision module at its fullest, however, we designed PeakLensCV-iOS
architecture in such a way that can be easily extended.

The most widely used library for Computer Vision tasks is OpenCV,

44 3.5. Peak Detection

an open source computer vision and machine learning software library used
to provide a common infrastructure for computer vision applications [7].
Currently, OpenCV offers interfaces for C++, Java, MATLAB and Python,
to work with OpenCV in iOS or OS X, we need to create an Objective-C or
C wrapper so as to be able to use the C++ interface.

PeakLensCV-iOS uses an online service, hereinafter PeakLensRenderer
[11], that retrieves a list of peaks given a latitude, longitude and the desired
panorama width e.g 360° (a panorama is a representation of the skyline with
all the peaks included in their respective positions). To this end, a reliable
Internet connection is required for proper functioning. Each returned peak
includes name, elevation, distance from the user and position in the skyline.
It is worth noticing that the peak’s position in the skyline is retrieved in 2D
space, however, its position in the real world is estimated in the 3D space.

PeakLensCV-iOS is invoked in 2 different times. First, when a location-
related event is received, at this point, takes the data coming from the service
PeakLensRenderer to get the peaks inside the panorama. Second, on every
frame captured by the camera, in this particular case, takes the device’s
orientation as well as the rotation matrix that represents it, to correctly
align all peaks inside the panorama, and discard those that lie out of the
camera view, this information is later used in the previously described AR
framework described so as to make the augmentation precise.

3.5.3 Peak Rendering

When the application starts, the panorama matching service retrieves a set
of peaks -if any- based on the user’s current location, the following step is
then, add this information and smoothly blend it into the camera view so
as to provide the augmented reality experience.

In PeakLens-iOS we call Peak Rendering the process of displaying such
additional information as 2D virtual objects called annotations, Figure 3.8
illustrates how annotations are rendered on the screen.

Each annotation is created using the augmented reality framework intro-
duced in Section 3.4, thus, to represent the peak in the virtual environment
we need to use an instance of ARAnnotation. The ARAnnotation object
contains the peak’s id, name, elevation and its position as a 2D point that
represents the position of the peak in screen coordinates, however, to actu-
ally render the annotation on the screen, every ARAnnotation needs to be
embedded in an ARAnnotationView. All ARAnnotationView are added to

Chapter 3. Non-Intelligent System 45

Figure 3.8: Peaks AR Annotations. Camera view containing a single annotation
for every detected peak, each annotation shows the peak’s position, name and
elevation.

a data source, named ARViewController, that at any moment is able to
retrieve the list of views that are currently visible in the camera image.

As mentioned before, the user’s location and device motion are con-
stantly monitored, consequently, what is shown in the screen should also
be constantly updated, we manage to do this in a very simple but effec-
tive way, the ARViewController updates in every frame what is shown and
what is not. When new information of the matching service is received,
the ARViewController verifies if new peaks are present within the set re-
trieved by the service, if so, adds them to the data-source, it also verifies
if the peaks present in the data-source have changed their position wrt the
previous recorded information, in any case, since annotations keep a strong
reference to their respective ARAnnotationView, the (re)positioning of the
views runs smoothly.

ARViewController contains all annotations subsequently fetched after
the initialization of the application, furthermore, annotations that are not
currently within the device’s field of view are not removed but only their
visibility status is changed. Although keeping all annotations in memory
could be perceived as costly or detrimental to the application’s performance,
it is not, keeping the annotation’s view and updating its position is less
costly than removing the views and creating them from scratch after each

46 3.6. Standardization Module

frame, this of course works under the assumption that the number of peaks
inside the user’s field of view will never grow exponentially causing memory
crushes, which is intuitively true since the panorama is not likely to change
drastically within the same scene.

3.6 Standardization Module

Android devices running the debug version of PeakLens [10] have a very
interesting feature called capture and replay, which is nothing but the ca-
pability of storing an outdoor usage session as a set of geo-tagged images
to later reproduce them simulating their performance in controlled condi-
tions for debug purposes. The meta-data included in the images as geo-tags
is used to feed the external Computer Vision module -meant to be used in
PeakLens-iOS as well- presented in Section 3.5.2. The device’s orientation,
the user’s location and additional information are used to identify the peaks
in each frame and to display the augmented content as annotations. This
functionality becomes of greater importance for evaluation purposes since
it allows for a visual inspection of the results thrown by the application in
lab conditions, by means of a simulation of the application execution on the
field, taking in as input all captured data streams [31]. For the purposes of
this study, the development of a complete capture and replay module was
not required, thus, PeakLens-iOS does not include such feature.

To let the Computer Vision module presented in Section 3.5.2 be capable
of processing data indistinctly from the operating system it comes from,
and to be able to replay usage sessions taken with both Android and iOS
applications, and examine all captured meta-data, we should tag images in
a standardized format so as to guarantee that the Android application, for
instance, can recognize and understand the information inside the meta-data
files and vice-versa. Although some information included in the meta-data
is generic, for instance, the FOV, latitude, longitude and altitude among
others, there is other information that cannot be used directly in any other
operating system since its raw values are meaningful only in the operating
system in which they were generated, thus, further processing is required.

To draw 3D/2D geometry on the screen, both operating systems use the
device’s attitude in any of its mathematical representations, such Euler an-
gles, quaternions or rotation matrices, since conceptually this information is
standard there should not be a need for major processing on this informa-
tion, however, there is a mismatch in how these values are computed and it
lies on the reference frame used by each operating system. A reference frame

Chapter 3. Non-Intelligent System 47

is a basic orientation of the device’s coordinate system taken as a reference.
Both frameworks, iOS and Android, see the world in different ways, thus,
the device’s attitude cannot be used indistinctly. In the following section we
review in detail how each operating system use the reference frame so as to
provide a cross-platform representation of the os-specific data.

3.6.1 Android’s Coordinate System

In Android, the framework in charge of monitoring positioning and three-
dimensional device movements is called Sensor, the coordinate system used
by the Sensor API is defined relative to the device’s frame of reference and
it is always based on the natural orientation of the device (some devices
include screens with orientations that are naturally landscape e.g. tablets),
hence, the sensor’s coordinate system never changes.

Figure 3.9 illustrates Android’s coordinate system in which the axes are
distributed as follows:

• The X axis is horizontal and points to the right.

• The Y axis is vertical and points up.

• The Z axis points toward the outside of the screen face.

In the context of its sensors, the Android operating system is set up to
calculate a rotation matrix R which is defined as follows:

R =
[-Ex -Ey -Ez

Nx Ny Nz

Gx Gy Gz

]
(3.1)

In the Rotation matrix defined in equation 3.1, E represents a unit vector
that points East, N a unit vector that points North and G a unit vector
that points away from the center of the earth (Gravity vector).

In Android, the rotation matrix from SensorManager.GetRotationMatrix
translates from device to world coordinates [1], therefore R transforms a
vector from the device’s coordinate system to the world’s coordinate system
which is defined as a direct orthonormal basis, where:

• X is defined as the vector product Y.Z (It is tangential to the ground
at the device’s current location and roughly points to the East).

48 3.6. Standardization Module

Source: Android’s Developer Documentation.

Figure 3.9: Android’s Coordinate System. Device in portrait-mode.

• Y is tangential to the ground at the device’s current location and
points towards the magnetic North Pole.

• Z points towards the sky and it is perpendicular to the ground.

R would be the identity matrix if the device is aligned with the world’s
coordinate system, that is, if the device’s X axis points towards the East,
the Y axis points towards the North Pole and the device is facing the sky.

3.6.2 iOS’s Coordinate System

As mentioned in Section 3.4, iOS provides access to its sensors through
the CoreMotion framework. We can obtain data directly from the gyro-
scope, accelerometer or magnetometer (suited for our purposes), however
CoreMotion also includes a Device Motion service in charge of processing
and refining the raw sensor data coming from both, the accelerometer and
gyroscope, by measuring the device’s attitude, rotation rate and the gravity
metrics using the so called Sensor Fusion Algorithm.

The device’s true orientation in space is represented using 3 different
models: Euler angles (roll, pitch, and yaw), quaternion, and rotation matri-
ces, each of these is outputted under full concordance to a given reference

Chapter 3. Non-Intelligent System 49

frame from which all attitude samples are referenced, a sort of “zero ref-
erence point” [2]. To retrieve the device’s orientation, the iOS framework
provides 4 different pre-set configurations, which we explain as follows:

• xArbitraryZVertical. The Z axis is vertical and the X axis points
in an arbitrary direction in the horizontal plane.

• xArbitraryCorrectedZVertical. As above but the magnetometer
is used to improve long-term yaw accuracy.

• xMagneticNorthZVertical. The Z axis is vertical and the X axis
points toward magnetic north.

• xTrueNorthZVertical. The Z axis is vertical and the X axis points
toward true north.

3.6.3 Cross-platform Generalization

Both, Android and iOS, use the same device coordinate system, however,
when obtaining data from their sensors, the reference frame in which these
data are based is different, therefore the rotation matrices retrieved, and
subsequently the Euler angles and/or quaternions cannot be used inter-
changeably in both operating systems, at least not without any adjustment.

Figure 3.10: Reference Frame in Android vs iOS. Android translates from device
to world coordinates. iOS translates from world to device coordinates

The configuration presented in Figure 3.10 assumes that the reference
frame used by iOS is either xMagneticNorthZVertical or xTrueNorthZVertical

50 3.6. Standardization Module

(the remaining configurations are meaningless for our purposes) whereas the
reference frame used by Android is the only one provided by its framework.
Once we start the sensors readings the reference frames cannot change, thus,
the data obtained from the APIs at any moment is, in fact, the actual de-
viation of the device with respect to its reference frame i.e if we want to
use data provided by the framework, such as the rotation matrix, of one
operating system on the other one, we need to apply some transformations.

3.6.4 Strategy

To let the framework presented in Section 3.5.2 be used indistinctly in An-
droid or iOS devices and, to effectively use data coming from one operating
system into the other one, the standardization of the rotation matrices is
mandatory, thus, we need to consider some important facts:

• In iOS the rotation matrix comes from CMDeviceMotion and translates
from world to device coordinates.

• In Android the rotation matrix comes from SensorManager and trans-
lates from device to world coordinates.

For our purposes, we want all device’s orientation data in an absolute
frame of reference, such as relative to the earth. To transform the device’s
orientation data to use an earth coordinate base, we need to use a change of
basis matrix. This is also referred to as a rotation matrix. Rotation matrices
hold an important property, they are orthogonal, thus, their columns and
rows are orthogonal unit vectors, a property that allow us to easily invert a
matrix by transposing it.

In order to make a unique representation of the rotation matrices, we
need to use either the rotation matrix provided by Android or the one pro-
vided by iOS as the standard rotation matrix, and apply a series of trans-
formations to the other one, so as to make them compatible. To this end,
we have chosen Android’s rotation matrix as the standard rotation matrix
to be used in the Computer Vision module, therefore, the following trans-
formations will be applied to the iOS rotation matrix.

First we inverse iOS rotation matrix (so we can change base from device
to world), this operation is rather simple considering that matrices provided
by both frameworks are indeed rotation matrices, meaning they are orthogo-
nal, transposing them will have the same effect. Additionally, we must align
the reference frame in both operating systems, that is, changing iOS device’s

Chapter 3. Non-Intelligent System 51

motion manager reference frame to be in full concordance with the Android’s
sensor manager, to this end, we must have the North on the Y axis and
the gravity aligned with the Z axis, the remaining axis is, therefore, aligned
with the East. We will achieve this result by applying a rotation of 90° on
the Z axis (yaw) to each reading of the device’s attitude.

The transformations are applied in the following order:

R = Zθ × AT (3.2)
where:

AT : iOS original rotation matrix transposed.
Zθ: Rotation matrix of θ on the Z axis.

Applying the rotation of 90° in 3.2 we obtain:

R =
[cos 90 -sin 90 0

sin 90 cos 90 0
0 0 1

]
×
[a11 a21 a31

a12 a22 a32

a13 a23 a33

]
(3.3)

From 3.3:

R =
[-a12 -a22 -a32

a11 a21 a31

a13 a23 a33

]
(3.4)

The matrix obtained in 3.4, named correctedRotationMatrix, is the
only rotation matrix used in PeakLens-iOS, and it is used to process each
frame received by the camera, so as to align the peaks accordingly. Addi-
tionally, the correctedRotationMatrix is also used when the data needed
for the replay is being recorded, thus, data produced by iOS can safely be
reproduced on the replay function of Android devices running PeakLens.

Chapter 4

Intelligent System

In this chapter we describe the intelligent system build to enhanced the
augmented reality application we have described in Chapter 3 by comple-
menting the ConvNet proposed in [50] with a second-ConvNet that is able
to improve the detection of occlusions in the skyline.

4.1 Occlusion Modeling

The ConvNet described in [50] uses a Fully Convolutional Network that has
been trained to recognize skylines, this ConvNet is able to achieve consider-
able results while detecting skylines, however, it clearly has some limitations
when dealing with unconstrained images in which a significant percentage of
the skyline is occluded. A very obvious explanation of such phenomenum is
given by the fact that when modeling ConvNets, occlusions, represent a very
challenging task, for instance, a basic intuition is that an occlusion could be
virtually anything, from buildings to transmission lines -or the combination
of both- and even when the object that is occluding the skyline is known
such as in Figure 4.1, there is a enormous variety of possible representations
i.e. the disposition of the occlusion wrt the object being recognized -the
skyline- is entirely unconstrained.

In this study, we do include the occlusion-detection stage in the learning
process, unlike the former approaches, and unlike the latter approach we
heavily rely on how we train our ConvNet, therefore, before the inference
and learning is done, we carefully consider 2 main aspects:

• First, when extracting the occluded regions, we try to find all figure-
ground cues that best serve as positive proof for occlusion events,

54 4.1. Occlusion Modeling

Figure 4.1: Example of a Typical Occluded Scenery. The figure above depicts a
skyline in the background interrupted by a steeple in the foreground, notice that the
background contains other steeples, however those are not considered occlusions.
The ground-truth (manual annotation) is shown in red.

therefore, instead of treating occlusions as part of the background
objects, such is the case of terrain and sky -that are also part of our
model as negative samples-, we try to model the visual aspect of an
occlusion, this means that after training, a pixel is classified as an
occlusion if it falls under a threshold, otherwise it is consider as a
skyline.

• Second, we do not use square patches to feed our ConvNet -as is
regularly done-, instead we propose the use of non-square patches to
provide a better context to our ConvNet, as explained in Section 4.2.2.

We are aware that occlusions can be confused with background objects,
as stated in [51], however, we strongly believe that by combining these 2
key aspects we can overcome most of the miss-predictions that could be
generated in other models of such kind.

Chapter 4. Intelligent System 55

4.1.1 Labeling

A crowd-sourcing task has been conducted to manually annotate the images
on the dataset [50] used in this work. As shown in Figure 4.2 the ground-
truth only annotates skylines, all remaining pixels are considered negative,
which means, there is no knowledge of what constitutes an occlusion.

(a) Photo (b) Annotation

Figure 4.2: Image - Annotation (Ground-Truth) Pair. (a) A typical scenery inter-
rupted by a set of trees in the most right part of the picture. (b) The annotation
or ground-truth -marked in red- of the picture on the left.

The ConvNet presented on [50] is a pixel-level classifier that has been
trained to learn whether there is a skyline -positive samples- or not -negative
samples, all possible negative samples are treated indistinctly, it is fair to
say then, in that context, the annotation of occluders was not considered
necessary. Although this approach has proven to be quite successful when
detecting skylines, such broad definition of negative samples has place for
improvement in order to predict occlusions with better accuracy.

We have not conducted any extra process for explicitly labeling occlu-
sions, however, in order to introduce a fine-grained definition of negative
samples, we take heed of the data preparation stage, as it will be explained
in Section 4.1.2.

Within the scope of mountain peak detection applications, we propose
the following definitions of negative samples:

• Sky. All pixels that lie above the skyline.

• Terrain. All pixels that lie bellow the skyline.

• Occlusion. All pixels that lie within a fixed region. Dimension of
such region is delimited on the left by the previously found column

56 4.1. Occlusion Modeling

with skyline and on the right, by the immediately following column
with skyline, and with parameterizable height.

4.1.2 Image Patch Extraction

As stated in the previous section, we do not explicitly label occlusions in
the ground-truth, nevertheless, we fed our ConvNet with different types of
negatives samples that were extracted considering the new negative classes
introduced before.

Our ConvNet was fed with image patches instead of whole images, for
each image patch, we located it on the edge map -annotation- and picked the
value at its center column as the corresponding ground-truth label. Intu-
itively, our ConvNet will learn to differentiate patches with occlusion, terrain
or sky pixels close to the center.

For this purpose, we have implemented a sampling tool that carefully
labels the different types of samples as positive and both, generic and in-
detail negative. Further characteristics of each type of extracted patch are
explained as follows:

• Positive. Patches that contain one or more skyline-pixels across the
center column.

• Negative. Patches that do not contain any skyline-pixel across the
center column.

Edge maps cannot provide further information than the one previously
presented, since their classification is binary i.e an edge is a skyline, every-
thing else is not, such broad classification is not sufficient when the occlusion
problem is prevalent, therefore, we need to extend the above configuration
to introduce the new set of negative classes defined earlier in this section.
Figure 4.3 shows an example of how patches are extracted using the new
configuration.

Patches will be labeled with these new negative classes if one of the
premises presented below is true.

• Sky. There is one or more skyline-pixels in the center column below
the region the patch is enclosing.

• Terrain. There is one or more skyline-pixels in the center column
above the region the patch is enclosing.

Chapter 4. Intelligent System 57

• Occlusion. There exist a bounding box -with parameterizable height-
in which one of the following premises is true.

– There is one or more skyline-pixels on the right of the region the
patch is enclosing but none on the left.

– There is one or more skyline-pixels on the left and on the right
of the region the patch is enclosing, with a gap greater or equal
than the patch’s width.

– There is one or more skyline-pixels on the left of the region the
patch is enclosing but none on the right.

Figure 4.3: Fine-grained Classes. An example of the patch extraction process. In
green, positive patches. In blue, sky patches. In white, terrain patches. In red,
occlusion patches.

Our sampling tool considers padding and margin as parameterizable
properties among other properties.

• Padding. Excludes all skyline pixels that lie in the space between the
patch content and its boundaries.

• Margin. Adds the number of pixels to be considered on top and
bottom when creating the bounding boxes for occlusions classes.

58 4.2. Heuristics

4.2 Heuristics

Common heuristics to detect horizon lines are heavily based on edge de-
tection, which can be done using traditional Computer Vision algorithms
or using learning techniques such as ConvNets. The former heavily re-
lies on the pixel’s gradient magnitude [21] but is usually combined with
other techniques to yield a better result, such is the case of canny detection
[35]. However, assuming that changes on color intensity are a good mea-
sure to detect horizon lines is not always true, a large color gradient can
appear within an object and a small color gradient can also appear on its
boundaries, thus, such assumptions could lead to non-stable results due to
parameter choices. Conversely, ConvNets can learn hierarchical feature rep-
resentations and encode very particular feature representations within their
multiple layer structure. Very interesting approaches have been presented
in [19] and [98] demonstrating that the extraction of the horizon line can be
made from the classification map.

Within the occlusion problem scope, feature-based heuristic methods
may work adequately, however, we need to specifically address this hypoth-
esis, otherwise obstacles such buildings, trees, or even sunlight could be
detected as edges of the skyline, negatively impacting on the performance
of our model. To overcome such problems, we introduce 2 techniques that
we consider are key in the occlusion detection problem.

4.2.1 Sampling

As mentioned in Section 4.1.1, we have introduced a fine-grained definition
of negative samples, thus, our ConvNet is fed with 4 different classes of
patches: positive, sky, terrain and occlusion. In the following, we further
analyze how we carefully selected the sampling heuristics we used in this
study.

Table 4.1 depicts the heuristics used to sample our data, we have consid-
ered 3 experiments named Experiment 1, Experiment 2 and Experiment 3,
and we introduced 2 different heuristics for sampling the negative classes of
each experiment, random and distributed, we have also considered balance
our data with 3 different factors, detailed as follows:

• Experiment 1, in which patches were sampled as a {positive : nega-
tive} ratio of 1:1 e.g one positive sample for each negative sample. In
this way, positives and negatives are balanced, meaning we extract the

Chapter 4. Intelligent System 59

same amount of positives and negatives as a whole with no discrimi-
nation among negatives subclasses, thus, it is possible some negative
subclasses are under-represented.

• Experiment 2, in which patches were sampled as a {positive : negative-
sky : negative-occlusion : negative-terrain } ratio of 1 : 1

3 : 1
3 : 1

3
e.g three positive samples for each negative subclass. In this way,
the presence of positives takes precedence, meaning we extract more
positives patches than specific-negative patches, but we guarantee the
same amount among negative subclasses.

• Experiment 3, in which patches were sampled as a {positive : negative-
sky : negative-occlusion : negative-terrain } ratio of 1:1:1:1 e.g one
positive sample for each subclass of negative sample. In this way, we
ensure the same amount of positives and each negative subclass.

Name Type Factor
Positive Sky Terrain Occlusion

Experiment 1 random 1 1
Experiment 2 distributed 3 1 1 1
Experiment 3 distributed 1 1 1 1

Table 4.1: Sampling Heuristics. Selection of 3 subsets (statistical samples) of
patches from within the entire dataset.

Type. Defines the way in which negatives samples are extracted.

• Random. All 3 negative classes -sky, terrain and occlusion- are cre-
ated from each image when possible, however, since the discrimination
of negatives subclasses is not needed, patches are extracted randomly
and no guarantee of the same distribution among negative subclasses
is provided. When using a random distribution, the 3 different nega-
tive subclasses are grouped and labeled as one, therefore, our ConvNet
learns to differentiate 2 classes only, positive and negative.

• Distributed. All 3 negative classes -sky, terrain and occlusion- are
evenly extracted from each image when possible. We ensure the final
distribution of negative subclasses to be the same. When using a
balanced distribution, our ConvNet learns to differentiate 4 classes,
positive, sky, terrain and occlusion.

60 4.2. Heuristics

Factor. Defines the amount of generated patches for each class, this num-
ber determines if a dataset is balanced aka even -when all the classes are
evenly represented- or imbalanced -when the distribution among the differ-
ent classes is imbalanced- [92]. It has been empirically demonstrated that
balanced datasets outperform imbalanced datasets [56] [97] by reducing the
bias towards the most-represented classes, however, most learning techniques
assume a balanced distribution, thus, when the training data and the un-
known data that needs to be classified have a different distribution they usu-
ally under-perform [56], for instance, if we only aim to minimize the overall
error rate, the under-represented classes, occlusions, would be discarded.

In practice, the available data is often imbalanced, this is particularly
true in our context where the fraction of occluded columns is minimal wrt
the non-occluded columns. Nonetheless, several methods exist to lessen the
impact of imbalanced datasets, in this work we use sampling techniques
to create balanced distributions by extracting only a portion of the avail-
able classes, such technique is aka under-sampling -removing instances from
over-represented classes-. Although imbalanced datasets may under-perform
balanced datasets, we have also included an experiment with imbalanced
datasets.

• Balanced datasets. Experiment 1 and Experiment 3 consider 1
positive sample for each negative sample e.g. 1:1.

• Imbalanced datasets. Experiment 2 considers 1 positive sample for
each type negative sample e.g. 3:1, this is used only in the distributed
heuristic.

4.2.2 Column-wise Classifier

The baseline ConvNet proposed in [50] has been trained using an imbalanced
dataset 1:2 {positive:negative} composed by square patches in the form of
small RGB images of 29x29 pixels. These patches are sampled using a
random heuristic. A set of patches is shown in Figure 4.4 (images have been
scaled for visualization purposes). As we can observe, constrained by their
fixed dimension, patches hold little information about the scene, and are
labeled based on the positivity of the middle pixel.

In this work, we use our proposed ConvNet as a powerful column classi-
fier that directly operates on non-square patches, hereinafter called column-
patches. Conceptually this is very simple, by feeding our ConvNet with

Chapter 4. Intelligent System 61

(a) Positive patches

(b) Negative patches

Figure 4.4: Random Square Patches. Generated with [50]. (a) Patches that contain
skyline in the middle pixel. (b) Patches that do not contain skyline in the middle
pixel. From left to right: sky, terrain and occlusion.

column-patches we convolve the set of learnable filters across the width and
height of the column, therefore, the network will learn filters that activate
with a certain combination of features in the same region size as our columns,
intuitively, such combination of features will be captured within a larger con-
text if small patches are used. For example, on the first layer, filters will
activate if they see simple interruption among sky pixels within the same
column. On the second layer, filters could look at complex structures in
between sky and terrain, and so forth and so on until occlusions are entirely
captured. At the end, we test our ConvNet on images with height equal
to the column’s height, such the column-wise classifier will output a vector
with width equal to the input image width, each element of the vector will
predict whether there is an occlusion within the correspondent column or
not.

In order to set theminimum height for columns and not having to stretch
the images, we have only considered heights bigger than or equal to 240 pixel,
we carefully selected this number by evaluating the images minimum -114
pixels- and maximum -3456 pixels- height as well as the height distribution
among images in the dataset, Figure 4.5 illustrates this information. After
some inspection we managed to detect and discard only 82 images from the
dataset.

Additionally, in order to choose the most suitable height, we have also
considered the concept of context, previously introduced in this section, for
such matter, we have analyzed the disposition of the skyline pixels within an
image, Figure 4.6 shows that the majority of the skyline pixels are located on

62 4.3. ConvNet

Figure 4.5: Images Height Distribution on Dataset [50]. A pie chart of the height
distribution of all images in dataset [50]. Almost 50% images have a height of 480
pixels. This distribution was used to manually choose the most suitable height for
the non-square patch introduced in this section.

the second and third fourths of the image, this validates the context we want
to provide our ConvNet with, by showing that the extracted columns will
contain skyline pixels evenly distributed along the column height. Figure
4.6 also shows that a significant number of skyline pixels are located in the
first row of the image, starting from the left-top corner, however, this is
handled by means of a parameter called padding defined in our sampling
tool described in Section 4.1.2, that specifically avoids considering skyline
pixels when these are located very close to the column boundaries.

Finally, our columns are RGB images of 29x240 pixels, Figure 4.7 shows
a set of columns extracted by our sampling tool.

4.3 ConvNet

As stated in Section 4.2, ConvNets have an interesting property that make
them suitable in solving problems such edge detection, since edges are usu-

Chapter 4. Intelligent System 63

Figure 4.6: Skyline Distribution on Dataset [50]. The figure above shows the dis-
tribution of skyline pixels across all images in the dataset, we have considered a
standardize height of 240 pixels for demonstration purposes. The row number (from
0 to 240) is shown in the vertical axis and the number of skyline pixels is shown in
the horizontal axis (from 0 to approximately 40k).

ally locally correlated and exhibit specific patterns, such as straight lines,
corners, T-junctions and Y-junctions, ConvNets can capture such hierarchi-
cal patterns within their convolutional layers.

In this section we present a small -in terms of memory footprint- and
easy to follow architecture based on LeNet [73], it is worth mentioning that
we have made some alterations on LeNet’s architecture to better suit our
purposes, such alterations include the transition from 1 to 3 input channels
and from a fully-connected network to a fully-convolutional network.

Fully Convolutional Network (FCN). One of the main characteris-
tics of a ConvNet, when trained with significant and representative amount
of data, is what commonly is referred as translation invariance, which is the
ability of a ConvNet to properly recognize objects regardless if their appear-
ance varies in some way -e.g. translation, rotation, size, illumination, etc.-,
therefore, it allows to abstract an object’s identity from the specifics of the
visual input by operating on local regions, and depending only on relative
spatial coordinates. This is a very attractive property when capturing occlu-
sions, since all occluded pixels lie within the local spatial coordinates, and

64 4.3. ConvNet

(a) Positive columns (b) Negative columns

Figure 4.7: Random Column Patches. (a) Columns that contain skyline in the
center pixel. (b) Columns that do not contain skyline in the center pixel. From left
to right: sky, terrain and occlusion.

do not depend on the full spatial coordinates. Furthermore, fully-connected
layers generally cause loss of local spatial information, since the moment the
inputs are obtained from the last convolutional layer, the spatial arrange-
ment of the feature map is discarded and each convolutional layer output
is connected to each input neuron, therefore, general ConvNets (those that
contain fully-connected layers) learn a general nonlinear function, instead,
FCNs learn a nonlinear filter [76], that is, even the decision-making layers
at the end of the network are filters.

As stated before, the only difference between fully-connected layers and
convolutional layers is how neurons are connected, furthermore, in convo-
lutional layers many of the neurons share parameters, hence, any fully-
connected layer can be converted to a convolutional layer For instance, the
first fully-connected layer in LeNet, ip1, has 500 outputs and is looking for
an input volume of size 7x7x512, it could be equivalently expressed as a
convolutional layer with F=7, P=0, S=1, K=500 where F is the spatial
extent, P is the zero-padding, S is the stride and K is the number of filters.
In other words, we are setting the filter size to be exactly the size of the
input volume to make the output size be 1x1x500 giving an identical result

Chapter 4. Intelligent System 65

as the initial fully-connected layer.

In this study, we did not simply replace the 2 fully-connected layers on
LeNet for one identical convolutional layer, instead we have changed the
number of filters and, therefore, the kernels and their respective strides
which allowed us to keep reasonable computational requirements as shown
in Section 4.3.1. Additionally, by not adding any fully-connected layer in
our architecture, we could potentially use the network on images of virtually
any size as opposite of fully-connected networks that expect inputs of a pre-
determined dimension. However, it is important to stress that our classifier
was thought to work with images of a fixed height (240 pixels), so as to only
perform horizontal convolutions that allow us to have a unique prediction for
each column, to that end, the kernel’s sizes in our model obey a non-square
shape in some convolutional layers to better represent the column-based
patches described in 4.2.2.

4.3.1 Architecture

The architecture of our network is depicted in Figure 4.8, bellow are listed
all the alterations made on LeNet’s architecture along with the main char-
acteristics of our own network:

• Instead of using TANH as activation function, we use RELU since it tends
to give much better classification accuracy due to sparsity and reduced
likelihood of the gradient to vanish i.e. the gradient has a constant
value that results in faster learning.

• Given the non-square shape of our training patches, we have changed
the size of the kernels, from squared ones to rectangular ones, in both,
convolutional and pooling layers.

• We used an input image with 3 channels (RGB images) instead of 1
channel (gray-scale images), given that in the edge detection context,
variation in the color scale can enclose important information regard-
ing the object’s boundaries.

• Instead of inserting a MAX-pooling layer in between convolutions, that
results in a much faster reduction of the spatial size, we have placed a
single MAX-pooling layer in the middle of the architecture.

• We have removed the 2 fully connected layers and replaced them with
a single convolutional layer, making the whole architecture a Fully
Convolutional Network for the aforementioned reasons.

66 4.3. ConvNet

Figure 4.8: Proposed ConvNet Architecture. The proposed architecture consists of
2 sets of convolutional and activation (RELU) layers, followed by a max pooling
layer, another 2 sets of convolutional and activation (RELU) layers followed by
a dropout (for reducing over-fitting), another convolutional layer (as a decision-
making layer) and finally a soft-max classifier (to convert the output of the last
layer into a probability distribution).

Chapter 4. Intelligent System 67

It is worth noting that we have experimented with multiple variations of
different state-of-the-art networks, such as AlexNet [68], FaceNet [89] and
SqueezeNet [61], however, we encountered that in some cases the error curve
converged and in others the error rate on the validation set underperformed
the one already presented in this section, training was stopped in both sce-
narios.

Table 4.2 shows the bias, kernel’s sizes, strides and weights generated
after each convolution for an input RGB image (3 channels) of 29x240 pixels.
After training is completed, the network has a total of 1 001 538 weights
when is trained to predict 2 output classes -positive and negative- and 1 001
732 when is trained to predict 4 output classes -positive, sky, terrain and
occlusion-.

Name Output Bias Kernel Stride WeightsH W C H W H W

INPUT 240 29 3
CONV-1 236 25 16 16 5 5 1 1 1 216
CONV-2 228 21 32 32 9 5 1 1 23 072
POOL-1 38 7 32 33 6 3 6 3
CONV-3 30 5 64 64 9 3 1 1 55 360
CONV-4 1 1 96 96 30 5 1 1 921 696

CONV-5 (a) 1 1 2 2 1 1 1 1 194

1 001 538

CONV-5 (b) 1 1 4 4 1 1 1 1 388

1 001 732

Table 4.2: Proposed ConvNet Architecture. The proposed architecture include
4 Convolutional Layers (CONV-1, CONV-2, CONV-3, CONV-4), 1 Max Pool-
ing Layer (POOL-1) and a final Convolutional Layer (CONV-5) replacing the
commonly used Fully Connected Layer present on architectures such as LeNet.
CONV-5 (a) Final Convolutional Layer of the 2-class predictor. CONV-5 (b)
Final Convolutional Layer of the 4-class predictor.

68 4.3. ConvNet

4.3.2 Hyper-parameters

In order to improve the Accuracy of our model, we have experimented
with several hyper-parameter variations. In these experiments we tuned the
learning rate and batch size accordingly, taking into consideration the rules
of thumb for each optimization method used. Nevertheless, we do not claim
this work to be an in-depth exploration of the space of the hyper-parameters
of our model, however, we attempted to have a reasonable degree of sensi-
tivity on the main parameters. Please refer to Appendix A for more details
on the configuration of the Hyper-parameters.

4.3.2.1 Optimization Method

Gradient descent is one of the most popular algorithms to perform opti-
mization and by far, the default choice for neural networks optimization.
As such, state-of-the-art deep learning frameworks provide several imple-
mentations of common algorithms used to optimize gradient descent. When
choosing an optimizer, specific properties of the addressed problem should
be considered, such as the type of data and their class distribution, the type
of layers composing the network as well as its depth, for instance, we will
probably benefit from per-weight learning rates if the network is deep.

The academic literature seems to mainly suggests SGD and Nesterov
as solid choices when dealing with shallow networks, and Adam and RM-
Sprop for deeper networks. Conversely, choosing one over the other does
not yield significant boost in performance, making them a sort of black-box
optimizers.

In Caffe [62], in order to improve the loss, model optimization is done
through a parameter call Solver Type. The solvers included in Caffe are
listed below.

• Stochastic Gradient Descent (type: SGD).

• AdaDelta (type: AdaDelta).

• Adaptive Gradient (type: AdaGrad).

• Adam (type: Adam).

• Nesterov’s Accelerated Gradient (type: Nesterov).

• RMSprop (type: RMSProp).

Chapter 4. Intelligent System 69

How these Solvers differ among each other lies on how much data are
used to compute the gradient of the objective function, so a trade-off between
the accuracy of the parameter update and the time it takes to perform an
update, needs to be made. Caffe forces Solvers to use the mini-batch strat-
egy in order to overcome performance issues, hence, a proper combination
of learning rate and batch size needs to be addressed.

In our experiments, although convergence was noisier while using SGD,
we managed to obtain good results at Experiment 2 and Experiment 3
using SGD, in contrast, better results in Experiment 1 were shown when
using Nesterov. Although there was an improvement in terms of Accuracy
and loss, it is important to stress that this improvement was minimal, which
led us to conclude that both gradient variances will perform similarly within
the same-ish ConvNet architecture.

4.3.2.2 Batch Size

Batch size defines the number of samples that are going to be propagated
through the network. Typically, networks train faster with mini-batches,
that is because the weights are updated after each propagation. Batches
fully leverage the GPU, hence, have a huge impact not only on memory
consumption but training time efficiency too, thus, using batches instead of
individual training samples allows for greater parallelism.

A common intuition is then, the smaller the batch the less accurate
is the estimation of the gradient i.e gradients will become more unstable.
Conversely, a batch size too big will cause gradients to become less noisy but
it will affect the rate at which the gradient converges as well as the quality of
the final solution [66]. In theory, when you reduce the batch-size by a factor
of X then you should increase the learning rate by a factor of sqrt(X) to
keep the variance in the gradient expectation constant, however, as stated
in [66], using a factor of X yields to promising results despite what theory
suggests.

In our experiments, we have successfully used batches of 512 -for train-
ing- and 256 -for validation- in all our proposed experiments. We did not
benefit from using larger batch sizes, in any case, the performance achieved
was the same as with the smaller ones, thus, we kept the mini batches.

70 4.3. ConvNet

4.3.2.3 Learning Rate

Choosing a proper learning rate poses a rather difficult task. If the learning
rate is low, training is more reliable, however, since the steps towards the
minimum of the loss function are really small, the model would get sensitive
to high-frequency noise in the data, therefore, arriving at the area close to
the minima might cause over-fitting. Instead, if the learning rate is high,
training may not easily converge or even diverge, intuitively, steps will be far
apart enough to possibly miss the area near the local minima and make the
loss worse, furthermore, the model could become insensitive to the data itself
and might cause under-fitting. Consequently, when using batch training, a
common convention is to rescale the learning rate as the batch size changes
[90], such scaling process should be done accordingly.

Given that at the beginning of the training process, random weights
are far from optimal, we could start from a relatively large learning rate.
However, as proposed in [66], we could also start the training process with
a low learning rate and increasing it exponentially for every batch, to then
select the one with the fastest decrease in the loss.

In our experiments, we have followed the suggestions proposed by [66]
and have started with a low value of 0.1 and later, exponentially lower the
values to 0.01 and 0.001. We stopped the iterations when the loss began to
reach an apparent plateau, in all our proposed experiments the best learning
rate was 0.001.

4.3.3 Execution

We deployed our ConvNet using DIGITS [101], since it simplifies the data
management, training, visualization and performance monitoring of the net-
work in real time. DIGITS includes several open-source frameworks for
defining and training ConvNets such as Theano [30], Torch [37], Google’s
TensorFlow [18] and Caffe [62]. Although learning time depends, among
others, on the architecture of the ConvNet, we have chosen to work with
Caffe since it is one of the most matures frameworks.

Due to availability issues, we ran 3 experiments in 3 different servers,
experiment Experiment 1 on Server 1, experiment Experiment 2 on
Server 2, and Experiment 3 on Server 3, a detailed information about
the results of each experiment will be given in Chapter 5. Table 4.3 sum-
marizes information about the servers.

Chapter 4. Intelligent System 71

Server CPU GPU Digits Caffe
Name f Name Mem. # ver. ver.

Ubuntu
i5-7640X 4.0GHz

GeForce
8G 1 5.0 0.16.416.04.1 GTX

1080
Ubuntu

i7-7800X 3.5GHz
GeForce

11G 2 6.0 0.15.1416.04.1 GTX
1080Ti

Ubuntu
E5-2690V3 2.6GHz

Tesla
12G 2 6.0 0.15.1416.04.4 K80

GK210GL

Table 4.3: Server Specifications. 3 different servers were used for training the Con-
vNet presented in this chapter, relevant technical specification about the hardware
and software are shown above.

Table 4.4 illustrates additional information regarding the execution of
the 3 conducted experiments, such as the training time and the size of the
file containing the model weights generated by the framework, named *.caf-
femodel. Experiment 2 and Experiment 3 have the same network archi-
tecture and use similar amounts of data, however, their training time is
significantly different. Although Server 3 -used for Experiment 3 - is the
most powerful server we have used in this work, the training time is slower
than the others because training samples were read from a HDD instead of
a SSD.

Experiment Server Training Model
time size

Experiment 1 1 18:49:00 3.82 MB
Experiment 2 2 14:21:00 4.00 MB
Experiment 3 3 22:07:00 4.00 MB

Table 4.4: Execution’s Statistics. General stats for each experiment. Training time
(in Digits) of the ConvNet proposed in this chapter, and the size in disk of the
model weights file.

4.4 Combined Model

Throughout this thesis, we have reviewed existing skyline detection models
and analyzed their performance, this understanding yielded us to propose

72 4.4. Combined Model

the ConvNet described along this chapter. We now turn to the task of
explaining how we leverage the capability of our model by embedding it
into the model proposed by [50].

Figure 4.9: Combined Model. New work-flow of the learning process including
the proposed Combined Model. The ConvNet specifically tailored for automated
occluded skyline detection is highlighted in red.

As depicted in Figure 4.9, both ConvNets are used in a cascade hy-
bridization fashion that can be analyzed as 2 sequential stages.

• In the first stage, a tailored mountainous skyline detection system -
Baseline ConvNet- is used to produced a coarse binary horizon matrix
identifying the skyline pixels in the form of a heat-map [50]. This
ConvNet has been trained with square patches of 29x29 pixels, possibly
containing a skyline in the center pixel -for positive samples-; since
test images fed into the network have a height of 240 pixels, and a
proportionally variable width, such heat-map is not longer the same
size as the testing image, thus an additional post-processing step needs
to be carried out.

• In the second stage, a tailored occlusion detector system -Occlusion
ConvNet- produces a horizon vector that represent the columns that

Chapter 4. Intelligent System 73

contains a skyline pixel, but also those with occlusions, this occlusion
detector is embedded on top of the previous results in order to clean
all the miss-classified pixels. i.e to filter out all occlusions present
in the image. It is worth mentioning that although the Occlusion
ConvNet has also been trained to recognize skylines, we do not use it
to do so for 2 main reasons, first, the Occlusion ConvNet is not able
to predict the position of the skyline, only whether there is a skyline
or not, second, the skyline accuracy in this ConvNet does not have a
significant improvement over the Baseline ConvNet [50].

The resulting combined system is able to perform classification on images
captured in a real outdoor scenery with omnidirectional augmented reality
applications using only image sequences retrieved by the devices’ camera.

Chapter 5

Evaluation

In the following, we present a detailed analysis of the different ConvNets
implemented based on the notion of occlusion detection in skyline scenes
that we introduced in Chapter 4. In a series of experiments we report both
results according to generalized metrics in unconstrained instances, as well
as a closer look at specific occlusion cases.

5.1 Dataset Collection and Preprocessing

The final goal of an augmented reality system is to enhance user experience
through the accurate placement of virtual objects in virtue of smoothly
generated mixed scenes. In the particular case of an outdoor application
such PeakLens [10], this means being able to recognize the horizon line as
well as segments of interrupted skyline covered by clouds, bushes, buildings,
people, etc. so to be able to correctly align the skyline wrt the terrain and to
overlay pertinent information tags about those peaks only on top of pixels
where a skyline actually exists, making the augmented content precise.

Such compelling task required using a dataset that extends basic seg-
mented labeling of mountains and sky to a finer labeled dataset suited for
training our ConvNet. Although various real-world image datasets, broadly
used in machine vision, are publicly available [23] [33] [38] [46] [80], to
the best of our knowledge, no pixel-wise annotated dataset of diverse non-
continuous skyline images compatible to [50] exists to quantify the general-
ization of the trained networks.

To evaluate the performance of the proposed approach, we have exper-
imented on a large dataset [50] containing mountainous images randomly

76 5.1. Dataset Collection and Preprocessing

collected from over 2,000 publicly available touristic web-cams and fetched
from Flickr. This dataset is suited for our purposes since it is enriched with
pictures showing various viewpoints, geographical and seasonal variations
that add up to the occlusion patterns we require. The dataset comprises a
total of 8,940 mountainous images manually annotated by crowd-sourcing
means, deriving a ground-truth in a skyline binary format.

Despite the dataset being a rich source of interesting cases, a further
step was required to overcome the imbalanced nature of the class distribu-
tion in the pictures, where as expected, skyline pixels are more prominent
than non-skyline pixels. To this end, we have extracted hundreds of rect-
angular tiles from every image in the dataset, supposedly holding sufficient
contextual information along their pixels; such technique bears a close re-
semblance to the one proposed by [36], [98] and [50]. To our purposes, we
have used each image annotation mask to determine the presence of skyline
pixels referenced as positive columns, and terrain, sky and occlusion pixels
referenced as negative columns; later we used these labeled column-patches
for training our ConvNet as outlined in Section 4.2 and evaluate the ability
of our system to detect the presence of occlusions, more details on this will
be given in Section 5.3.

5.1.1 Data Cleansing

Prior to train our ConvNet we identified the need for data cleansing. De-
tecting and removing errors and inconsistencies from the dataset in order to
improve its quality became an essential step given that most of the images
included in the dataset are collected from the web, furthermore, the dataset
we worked on is a consolidation of different sources which increased signifi-
cantly the need for cleansing. In order to feed accurate and consistent data
to our ConvNet, we performed a series of steps which we detail as follows:

• A manual inspection of the data samples and their respective annota-
tion was carried out with aims to correct particular instance problems.
Although this approach is often perceived as naive, several instances
were purged due to major noisy annotations, resulting in a new total
of 8,913 images.

• In order to fulfill the column dimension requirement for all sample
column-patches used during training and validation, as outlined in
Section 4.2.2, images smaller in height than 240 px were discarded
since they were not suited for the chosen network architecture. In total,

Chapter 5. Evaluation 77

57 images were withdrawn from the dataset giving a final amount of
8,856 images and their respective annotations.

5.1.2 Data Preprocessing

Building an effective neural network model requires both careful consider-
ation of the network architecture as well as the input data format. In this
section, we discuss the latter.

There are a number of preprocessing steps we might wish to carry out be-
fore using our dataset as input to the chosen network architecture. However,
for the sake of this work, we perform only one.

Uniform aspect ratio

One of the first steps we took in our experiments was to ensure images hav-
ing the same size and aspect ratio as their annotations. To guarantee that
subsequent evaluations will be carried out on coherent image-annotation
pairs, we further analyzed the dataset to confirm full consistency between
the sample and its ground-truth mask at file level, such analysis highlighted
some discrepancies in the dimension of the images and their correspondent
annotation. A total of 2,556 images exhibited different dimensions with re-
spect to their annotations, the reason for this rather contradictory outcome,
although not confirmed, could yield in the nature of the data acquisition
step, since annotations were crowd-sourced through an online application,
that might have lead to issues during conversion and storage tasks. To solve
this conflict and ensure that all images in the dataset were consistent and
uniform with regard to the ground-truth, a resizing step was performed in
all uneven pairs; so as to not alter the annotation quality, images were re-
sized in respect of their annotation width and height, meaning a conflictual
image was scaled up or down to the dimension ratio of its correspondent
annotation.

5.1.3 Occlusion Statistics

The dataset [50] is a fair source of challenging occlusion cases, as shown
in Table 5.1, it contains thousands of images of which almost half contain
occluded skylines. Nonetheless, at a closer look we can observe that less
than 10% of the columns present in the entire dataset are occlusion objects.
Since our main aim was, as mentioned earlier, to accurately detect occluded
skylines, it is plausible then, that a number of limitations arise due to the
nature of the chosen dataset.

78 5.2. Experimental Setup

%

Occluded Images 4 327 48.86%
Non Occluded Images 4 529 51.14%
Occluded Columns 485 920 8.80%
Non Occluded Columns 5 038 444 91.20%

Table 5.1: Dataset Class Distribution. Half the images present non-continuous
skyline. Interestingly, non continuity seems negligible, less than 10% of columns
are occlusions.

As can be seen in Figure 5.1a, a very low occlusion/skyline ratio at
column level prevails in our dataset. In like manner, it is apparent from
Figure 5.1b that most images are occluded to a very small degree, showing
a mode around 10% occlusion, this trait will be explored in detail in Section
5.3.3, where we will unfold the characteristics that lead to a good occlusion
detector.

(a) Occlusion distribution (b) Occlusion histogram

Figure 5.1: Dataset Class Distribution. (a) Many images are occluded, conversely,
few occluder segments are present (b) Occlusions form patterns: the distribution
over relative orientations of occluder-skyline is highly peaked around one mode.

5.2 Experimental Setup

In order to evaluate the effectiveness of our system, we first compare the
performance of the proposed ConvNet in isolation and then proceed to assess
the quality of the combined model described in Section 4.4. In addition, to
provide more insights, the implementation of the various heuristics proposed
in this work are evaluated to investigate the effects of different sampling
techniques on the skyline-occlusion prediction performance.

Chapter 5. Evaluation 79

5.2.1 Protocol

For each experiment designed (refer to Section 4.2.1), we performed a hold-
out segmentation; the dataset D was split into the training set Dtrain, the
validation set Dval, and the test set Dtest. We then trained our ConvNet
with a 80-20 setting, where 80% of the images were used for training and
validation (64% and 16% respectively) and the remaining 20% for testing.

We have successfully trained our networks and evaluate them on the
validation set using various sampling approaches addressed in Section 4.2.1,
afterwards, we tested the results on the level of detections at both, column-
patch and image level. All experiments were carried out on the ConvNet
architecture and optimization settings depicted in Section 4.3. Table 5.2
further details on the segmentation of the dataset.

Dtrain Dval Dtest

(64%=5 668) (16%=1 417) (20%=1 771)

Experiment 1 Positive 1 272 797 317 476 395 853
Negative 1 272 797 317 476 395 853

Experiment 2

Positive 1 278 852 318 972 398 316
N-Terrain 426 284 106 324 132 772
N-Occlusion 426 284 106 324 132 772
N-Sky 426 284 106 324 132 772

Experiment 3

Positive 717 952 179 073 223 617
N-Terrain 717 952 179 073 223 617
N-Occlusion 717 952 179 073 223 617
N-Sky 717 952 179 073 223 617

Table 5.2: Dataset Segmentation. Dtrain to fit the model. Dval to estimate pre-
diction error for model selection and tune hyper-parameters. Dtest to assess the
generalization error of the final chosen model.

5.2.2 Evaluation Metrics

We adopted widely-used metrics from common classification evaluations and
report their results on the 3-experiment configuration depicted in Section
4.2.1. The metrics described below were used during the evaluation at
column-patch level.

80 5.2. Experimental Setup

Accuracy (A); averages all corrected classified test cases:

A = TP + TN

|Dtest|

Precision (P); measures positive predictions against the number of
positive class values predicted. Can be thought of as a measure of
exactness:

P = TP

TP + FP

Recall (R); also called Sensitivity, measures positive predictions
against the number of positive class values in the test data. Can
be thought of as a measure of completeness:

R = TP

TP + FN

F1 Measure (F); conveys the balance between precision and recall.

F = 2×
(
P ×R
P +R

)

True Negative Rate (TNR); also called Specificity, measures pos-
itive predictions against the number of positive class values in the
test data. Can be thought of as a measure of completeness:

TNR = TN

TN + FP

However, as stated by [50], accuracy metrics at column-patch level may
fail to represent the quality of our model on whole full images. Thus, a
series of tailored metrics for skyline detection evaluation that assess quality
at image level are required; the metrics proposed by [50] are suited for this
purpose since their estimations are calculated by contrast, meaning we will
compare the extracted skyline using our ConvNet against the ground-truth.
We proceed to explain in detail how these metrics work.

Let CNN(i, j) be a function that returns 1 if the image pixel at coordi-
nates (i,j) belongs to the skyline extracted by the ConvNet (0 otherwise)
and let GT(i, j) be a function that returns 1 if the pixel (i,j) belongs to
the ground-truth skyline (0 otherwise).

Chapter 5. Evaluation 81

Average Skyline Accuracy (ASA);measures the fraction of image
columns that contains ground-truth skyline pixels and in which at
least one of the positive pixels extracted by the ConvNet matches
one of the ground truth pixels.

ASA =
∑cols
j=1 IGT∧CNN (j)∑cols

j=1 IGT (j)

Average No Skyline Accuracy (ANSA); measures the fraction
of columns that do not contain any ground-truth skyline pixel and for
which also the ConvNet output does not contain positive pixels; this
metric evaluates false positives in images with an interrupted skyline.

ANSA =
∑cols
j=1 IGT∧CNN (i, j)

cols−
∑cols
j=1 IGT (j)

Average Accuracy (AA); measures the fraction of columns in
which the ground-truth and the ConvNet skyline coincides, consider-
ing agreement when none contain pixels or otherwise at least one of
the ConvNet pixels matches one of the ground truth pixels.

AA = 1
cols

cols∑
j=1

Iagree(j)

given that: IGT (j) = 1 if ∃i| GT (i, j) = 1; 0 otherwise
IGT∧CNN (j) = 1 if ∃i| GT (i, j) = 1 ∧ CNN(i, j) = 1; 0 otherwise
IGT∧CNN (j) = 1 if ∀i| GT (i, j) = 0 ∧ CNN(i, j) = 0; 0 otherwise
Iagree(j) = 1 if IGT∧CNN (j) = 1 ∨ IGT∧CNN (j) = 1; 0 otherwise

Although various sampling techniques were used to overcome the imbal-
anced distribution between the different classes in hopes to minimize bias
towards the more frequent class -positive columns- as explained in Section
4.2, negative columns are still under-represented. We recognize then, pure
accuracy-based metrics albeit representative, may not be the most appro-
priate in measuring our model success since they may falsely suggest above-
chance generalizability. When these metrics are applied indistinctly on a
test set that is imbalanced in the same direction, we could possibly yield
unreal pessimistic estimates; under such conditions we reckon the need to
weight the chosen accuracy metrics, in order to do so, we adopt the balanced

82 5.3. Experimental Results

accuracy metric proposed by [34]. The metrics described below were used
during the evaluation of the combined model at image level.

Balanced Accuracy (BA); symmetric about the type of class, it
measures the number of correct predictions divided by the number of
predictions of each class:

BA = 1
2 ×

(
TP

P
+ TN

N

)

It can be extended to include a cost c associated with the misclassi-
fication of one particular class by dropping the symmetry:

BA = c× TP

P
+ (1− c)×

(
TN

N

)
, where c ∈ [0, 1]

5.2.3 Evaluated Baseline

As part of the evaluation protocol of this thesis, we undertake a compar-
ison analysis of the conditions and further achievements of the ConvNet,
presented in Section 4.3, with respect to a fully-working skyline detection
model [50] already deployed as part of an augmented reality application de-
signed for outdoor activities [10] which we consider as a baseline for the
purpose of this study.

5.3 Experimental Results

In this section, we present the experimental results of the proposed ap-
proach. Firstly, we expose the performance achieved by our ConvNet at
column-patch level, as explained in Section 4.3, our whole training was done
effectively by sampling in column-patch-wise like manner, in order to correct
class imbalance and mitigate the spatial correlation of dense column-patches.
Secondly, we unfold the results of our experiments at image level in both
occlusion and unconstrained cases.

5.3.1 Column Patch-wise Evaluation

We commence by evaluating the ability of our ConvNet to correctly classify
patterns as occlusion or skyline labels in isolation. To that end, we fully
trained our ConvNet and reviewed its performance in the test set. This
evaluation is performed contrasting the prediction outputted by the Con-
vNet and the pixels located in the middle column of a sampled rectangular

Chapter 5. Evaluation 83

column-patch. For the purpose of this assessment, no further post-processing
on images was required.

In Table 5.3 we report the results obtained on the first experiment of
the dataset (Experiment 1), in which column-patches were sampled as a
{positive : negative} ratio of 1 : 1. As can be seen in the table, the model
yields considerable performance and it is capable of recognizing occlusions
in almost 91% of the cases, we can also observe that the model achieves
good balance between its capability of detecting occlusions and skylines,
so it is sensitive as it is specific. It is worth noticing that this particular
experiment comprises an implicit binary classification in which both positive
and negative entries were sampled randomly, furthermore, given that the
distribution of negative samples is imbalanced towards occlusion patches,
the ConvNet presumably could learn to discriminate from the features of
more prominent negative classes such as negative-terrain or negative-sky,
and it would not give much importance to the fact that misclassified the
data of the scanty class, negative-occlusion; consequently, we presume that
most of the misclassification errors in the negative class, almost 9%, arise
on instances labeled as occlusions. The values reported in Table 5.3 were
obtained using a cutoff value for positivity of 109 from a [0-255] range.

As shown in Table 5.3, results obtained on the second experiment (Exper-
iment 2), in which column-patches were sampled as a {positive : negative-sky
: negative-occlusion : negative-terrain} ratio of 1 : 1

3 : 1
3 : 1

3 reveal inter-
esting insights; it is worth noticing that, although sampling discriminates
among 3 different negative classes, the reported metrics were computed on
the basis of a binary classification. We observe that the induced balanced
distribution among negative classes only, does not provide a finer dis-
tinction of the features that represent an occlusion, moreover, it harms the
accuracy level in more than 4% with respect to the Experiment 1 ; before
interpreting these results, we remind the reader of our main aim which is
detecting occlusions in a skyline, for that purpose, we are more interested in
assessing the capability of the model to detect negative samples, although
outperformed by the others, this experiment reaches an acceptable level of
performance, achieving almost 85% of negative cases correctly classified.
However, the model exhibits a tendency to be biased towards the positive
class, annotating skylines more often than it should. The values reported
in Table 5.3 were obtained using a cutoff value for positivity of 132 from a
[0-255] range.

Finally, Table 5.3 portrays the results obtained from the third experi-

84 5.3. Experimental Results

ment (experiment 3), in which column-patches were sampled as a {positive
: negative-sky : negative-occlusion : negative-terrain} ratio of 1 : 1 : 1 : 1,
as with the second experiment, here, again, the reported metrics were com-
puted on the basis of a binary classification. We observe that regarding
non-skyline accuracy (TNR), this experiment reaches a better performance
than the others, correctly predicting occlusions in 93% of the cases, sug-
gesting that the induced balanced distribution among all classes, does help
the network to better understand features representing occlusions. Subse-
quently, at the expense of this gain, levels of Precision and Recall fall. The
values reported in Table 5.3 were obtained using a cutoff value for positivity
of 143 from a [0-255] range.

Accuracy Precision Recall F TNR

Experiment 1 0.9258 0.9140 0.9417 0.9396 0.9096
Experiment 2 0.8800 0.8584 0.9101 0.8835 0.8499
Experiment 3 0.8906 0.7909 0.7645 0.7775 0.9326

Table 5.3: Accuracy Metrics at Column-Patch Level. Best results are shown in
bold, lowest estimates are underlined. Comparison against baseline is not mean-
ingful, thus, not performed.

Let us explore these results with more detailed by looking at the confu-
sion matrix derived in each experiment. As we can observe in Figure 5.2a,
Experiment 1 shows around 7% misclassifications of true skylines, further-
more, occlusions are mislabeled as skyline in 10% of the cases. Had we
employed this ConvNet to detect both skyline and occlusions, we consider
it as the best one, as it shows a good balance between TP and TN rates,
however this is not the case. In like manner, less than 10% skyline column-
patches have been misclassified as occlusions and in 18% of the cases the
model in Experiment 2 has failed to correctly distinguished occlusions, as
shown in Figure 5.2b. Interestingly, we observe in Figure 5.2c that Experi-
ment 3 erroneously classified around 30% of the skyline column-patches as
occlusions, however, roughly 7% of true occlusions were mislabeled as sky-
line, showing that this model is the best at recognizing occlusion patterns.
Although the last experiment shows a considerable larger rate of skyline
mispredictions compared to the other 2, this outcome should be assessed
having in mind that the ConvNet we introduced in Section 4.3 is designed
to better detect occlusions as it will later be concatenated to another Con-
vNet that detects skyline quite accurately, as such, the 3% improvement in
no-skyline accuracy gained using Experiment 3 is relevant for our purposes,

Chapter 5. Evaluation 85

whereas the loss in skyline accuracy is not representative.

(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure 5.2: Confusion Matrices. Derived from the conducted experiments. (a)
Experiment 1 results (b) Experiment 2 results (c) Experiment 3 results.

86 5.3. Experimental Results

Taken together, these results point to the likelihood that, based solely
on the sampling technique, Experiment 3 is the most promising setting and
should be the preferred configuration when training our ConvNet, since it
is the one that reaches the best TNR. Interestingly, Experiment 1 does also
present comparable results, showing good balance among TNR, Precision
and Recall. These findings, nevertheless, need to be interpreted with cau-
tion since so far, we have tested our ConvNet with column-patches only.
In the following section we will further investigate if this assumption can
be extended to a more realistic scenario where whole images are assessed.
Please refer to Appendix B for a detailed visualization of the chosen metrics.

5.3.2 Unconstrained Detection

In this section we conduct the evaluation of our various experiments using
a more realistic approach, in which we no longer test prediction in patches
but assess the quality of the proposed model in unconstrained whole images
containing both continuous and non-continuous skyline. For this purpose,
the complete set Dtest was tested. As outlined in Section 4.4, a combined
model -composed of the baseline approach and our ConvNet in a cascade
hybridization fashion- was designed to overcome limitations of earlier works
[50], given that our main goal is to tackle the occlusion problem, we further
explore this new enhanced model and treat it as the subject of all following
evaluations.

It can be seen in Figure 5.3 that, while the baseline approach is com-
parable in terms of ASA and AA, the combined model achieves the best
performance in detecting non skyline patterns ANSA, around 40% in all
experiments, improving over the baseline detector by a significant margin
of 14.14% with Experiment 1, 13.22% with Experiment 2 and 14.50% with
Experiment 3, such results have further strengthened our confidence, validat-
ing the usefulness of the undertaken approach. Detailed results are shown
in Table 5.4.

Interestingly, our model (85.48%, 85.32% and 85.23%) outperforms the
baseline (84.82%) at the AA level as well, with a slight increase of 0.66%
on our best detector. While the latter improvement could be interpreted as
modest at first glance, we point out that this result is significant as it trans-
lates to obtaining almost 4 000 more true positive and negative detections,
which clearly suggests that an occlusion handling-oriented model can boost
the overall detection accuracy significantly. Nonetheless, we also observe
that a slight decrease in ASA is introduced, such result was anticipated and

Chapter 5. Evaluation 87

Figure 5.3: Performance Metrics in Unrestricted Images. Baseline results are shown
in blue. Results of Experiment 1 are shown in orange, results of Experiment 2 are
shown in silver. Finally, results of Experiment 3 are shown in yellow.

lies on the cascade nature of the combined model we proposed, given that
our detector works on top of the baseline predictions, refining the pixels
previously classified as skyline by validating such classification against our
ConvNet, that is tailored to recognize occlusions.

It should be noticed that although the raise in the number of occlu-
sions correctly predicted might seem a windfall, it comes at a price, around
0.75% loss in the skyline detection task. Nonetheless, this result was antic-
ipated and can be explained in part by the significant relationship between
the skyline-occlusion discriminative features our ConvNet was entrusted to
learn, furthermore, although the modeled classes had the same weight in
the loss function during training, the sampling techniques described in Sec-
tion 4.2.1 further encouraged our ConvNet to learn less frequently occurring
classes, such is the case of occlusions, with weights getting a higher value in
the loss function, a drop in the average skyline prediction is to be expected.
Please refer to Appendix B for a detailed visualization of the chosen metrics.

Let us now look an alternative evaluation, in which we take into account

88 5.3. Experimental Results

ANSA ASA AA BA BA BA
c=0.6 c=0.2

Baseline 0.2593 0.8980 0.8482 0.7520 0.7899 0.6382
Experiment 1 0.4007 0.8929 0.8548 0.8007 0.8384 0.6875
Experiment 2 0.3915 0.8927 0.8532 0.7957 0.8350 0.6777
Experiment 3 0.4043 0.8905 0.8523 0.8180 0.8525 0.7142

Table 5.4: Performance Metrics in Unrestricted Images. Best results are shown in
bold, lowest estimates are underlined. Considerable increase in the detection of
occlusions achieved by all 3 different experiments.

the imbalanced nature of our dataset. To this end, we use the Balanced
Accuracy metric discussed in Section 5.2.2. BA allows us to weight the
misclassification errors by providing generic safeguards against reporting
optimistic or pessimistic estimates. If our classifier performs equally well on
either class (skyline and occlusion), this term reduces to the conventional
accuracy. In contrast, if our classifier is taking advantage of the imbalanced
nature of the test set, BA will drop to chance [34].

Table 5.4 depicts further evidence that supports the hypothesis we planted
in this study. All 3 variants of our model are superior than the baseline when
accounting for different numbers of representatives from each class. Further-
more, when dropping the symmetry of the proposed metric and introducing
a mild penalization of 0.4 (when c=0.6) and a severe penalization of 0.8
(when c=0.2) associated with the misclassification of a skyline, we observe
that the generalizability of the combined model is still significant with more
than 85% accuracy in our best predictor when a non-severe penalization
is introduced; furthermore, when more importance is given to the correct
classification of occlusions (when c=0.2), our predictors achieve consider-
able results, surpassing the baseline in more than 5%. Results reported on
Table 5.4 confirm that our ConvNet -at a non-negligible degree- has learnt
to discriminate among samples according to their features rather than be
biased towards the more frequent class.

5.3.3 Detecting Occlusion Patterns

We now proceed to evaluate the ability of our model, to reliably identify
occlusions in the skyline, under a constrained subset of images where only
images containing occluded skylines are evaluated, we call this new set Docc.
This new set of images is built upon the test set (Docc ⊂ Dtest).

Chapter 5. Evaluation 89

In this evaluation, we considered a series of increasingly difficult sce-
narios for comparing the combined model performance, corresponding to
increasing levels of occlusions. Expressly, we look at the following 4 scenar-
ios: the full subset Docc, Docc restricted to at most 10% occluded columns,
Docc restricted to occluded columns between 10% and 30%, and Docc with
more than 30% occluded columns. Table 5.5 reports the results of the eval-
uation, in particular, we contrast the performance of the 3 variants we have
experimented on (Experiment 1, Experiment 2 and Experiment 3) with one
baseline, the standard model proposed by [50], which is partially aware of
occlusions as we will see as follows. We consider this targeted evaluation
essential to our experiments, on account of the fact that this will draw mean-
ingful conclusions about the role of different variants of occluded skylines
inside captured images.

ANSA ASA AA

Baseline

Docc 0.2593 0.8772 0.7771
0-10% 0.3127 0.8930 0.8776
10-30% 0.2978 0.8753 0.7790
30%+ 0.2200 0.8458 0.5892

Experiment 1

Docc 0.4679 0.8601 0.7973
0-10% 0.4902 0.8739 0.8635
10-30% 0.5144 0.8599 0.8021
30%+ 0.4330 0.8316 0.6689

Experiment 2

Docc 0.4402 0.8612 0.7915
0-10% 0.4808 0.8763 0.8655
10-30% 0.5007 0.8575 0.7975
30%+ 0.3825 0.8310 0.6463

Experiment 3

Docc 0.4667 0.8539 0.7903
0-10% 0.4852 0.8706 0.8601
10-30% 0.5254 0.8511 0.7967
30%+ 0.4147 0.8209 0.6525

Table 5.5: Performance Metrics in Occluded Images. Best results are shown in
bold, lowest estimates are underlined. For each evaluation stage, 4 settings were
tested, (a) full occlusion test set (b) test set with: images containing up to 10% of
occluded skyline (c) images containing up to 30% of occluded skyline (d) images
containing more than 30% of occluded skyline.

We observe that the trends from the evaluation in unconstrained images
transfer to the more specific subset of occluded skylines. We then, make
the following observations: firstly, we observe that our 3 detectors achieve

90 5.3. Experimental Results

a relatively higher ANSA with respect to the baseline, the best one reports
an increase in more than 20% of accuracy when images are fairly covered
with occlusions (with a mode around 30%) reaching a remarkable 52% of
accuracy on the non-skyline detection task. Interestingly, our model does
not seem to benefit from higher levels of occlusion inside an image, con-
versely, accuracy drops to 38% when images are largely occluded. Although
the reasons for this result are not yet entirely understood, we believe the
foremost cause of this discrepancy could be explained by patterns present
in these largely covered skylines that were not included in training samples,
or if they were, it was not sufficiently represented. Secondly, we observe our
detectors performing on a comparable level to the baseline ASA, 89.30%
vs 87.63% in the best scenario when images are occluded up to 10%, and
around 2% less in the remaining scenarios, proving that to better understand
occlusions we might have to risk our understanding of skylines. The overall
accuracy AA however, is boosted with the newly introduced rise in ANSA,
nearly 8% of gain in the best predictor. Interestingly, these tests revealed
that the baseline fails to accurately detect occlusions when these are largely
present in an image, classifying only 22% of the occlusion cases correctly.

5.3.4 Efficiency Evaluation

Efficiency is defined as the degree in which software fulfills its purpose with-
out wasting resources [88]. One measure of efficiency is the execution speed
of the various modules that compose the assessed software, such trait be-
comes of high importance in mobile oriented settings, hence, we must guar-
antee that the proposed models are not only reliable (by achieving high
recognition accuracy) but efficient as well.

Executing the proposed model in desktop PCs shows negligible execution
time per image, however, such results are not meaningful since we are more
interested in the suitability of our model on mobile devices. To this end,
we assessed the execution time per image in smartphones with different
hardware specification. Table 5.6 compares the efficiency performance of
the proposed combined model across several devices.

For this reason, we have selected an input image of 320 x 240 pix-
els. Whereas the majority of smartphones in the market support capturing
frames of larger size, after several experimental trials we observed that the
chosen dimension had the best balance of accuracy, memory consumption
(13.44MB on average), and execution time, on a broad spectrum of devices.
To conduct this evaluation the skyline extraction process was repeated 1 000

Chapter 5. Evaluation 91

Time (ms)
Device Baseline Combined

Model

MacBook Pro
2,9 GHz Intel Core i5 (2 cores) 73 90
16GB

Google Pixel
2,15 GHz Qualcomm Snapdragon 821 (4 cores) 199 363
4GB

Nexus 6
2,65 GHz Qualcomm Snapdragon 805 (4 cores) 273 477
3GB

One Plus A0001
2,46 GHz Qualcomm Snapdragon 801 (4 cores) 296 501
3GB

Nexus 5X
1,82 GHz Qualcomm Snapdragon 808 (6 cores) 437 686
2GB

Table 5.6: Efficiency Performance on Mobile Devices. Time required to execute the
skyline extraction component in different low-powered devices.

times on the selected image, in each device tested. Thence, execution times
were averaged and reported in Table 5.6. We make the following observa-
tions: first, naturally, the execution time in low power mobile devices is much
higher than PC’s, where skyline extraction can be performed at a frequency
of 10 images per second, conversely, smartphones could barely achieve 2
images per second. These results thus need to be interpreted with caution,
first and foremost, we need to acknowledge that real-time AR applications
demand special usability requirements that do not compare to PC’s large
capabilities, and secondly, good execution times are consistent among all
mid-range smartphones. On account of the fact that rates shown in Table
5.6 are compatible with AR mobile applications’ constraints, we consider
these results significant, however, a noticeable increase with respect to the
baseline’s reported results [50] is evident, on average around 71% more time
is needed per image. We associate this increase to the sequential nature
of the proposed combined model, although we could decrease the times by
parallelizing the 2 components composing the model, it may not be worth
to put an extra computational effort to the device for what we estimate will
be a mild gain, nonetheless, further investigations in this direction need to
be carried out, in order to explore different ensemble models.

92 5.4. Discussion on the Performance

Devices running PeakLens handle the entire image processing at back-
ground; which means that when no sudden camera movements occur, as
expected in a mountain peak recognition application, the skyline extraction
and the subsequent DEM alignment step could possibly be done at a fre-
quency lower than 15 frames per second, usually considered viable for video
play. Such trait comes at a price in terms of side effects, some jitter in the
camera view when the extraction and alignment is performed, and whenever
an update of the peak positions inside the camera view is required.

5.4 Discussion on the Performance

5.4.1 On the Accuracy

We commence by confirming the ability of our system to detect occlusion
patterns in unconstrained mountainous images. Furthermore, our experi-
ments have demonstrated that such statement is still valid when facing not
only complicated but frequent scenarios typical of outdoor applications’ us-
age. Interestingly, we have observed that when moving from the detection
under unconstrained scenarios comprising both occluded and non-occluded
skylines of varying difficulty (refer to Section 5.3.2) to an isolated setting
(refer to Section 5.3.3), the undertaken approach provides additional sup-
port to the occlusion handling requirement, widening our knowledge of the
uncertainties related to real-time AR applications. As reported in Table 5.4,
our model exhibits comparable performance in terms of Average No Skyline
Accuracy ANSA when compared to the original detection method, showing
an increase of almost 15% w.r.t [50]. It is worth noticing that even when
Experiment 2 presents lower accuracy than the other 2 experiments, it still
boosts the baseline model performance, as expected.

The afore-mentioned findings confirm the usefulness of the proposed
combined model. Our technique clearly has an advantage over the base-
line’s capability to accurately detect occlusions without compromising the
true-skyline detection accuracy. Broadly speaking, these results are a direct
outcome of the heuristics followed over the course of this study. Our method
comprises an efficient binary classification model that is able to detect sky-
lines and localize occluded segments out of the visible continuous horizon
line.

Contrary to other research carried out in this area, in which the identifi-
cation estimations seem to treat the scarce class representatives -occluders-
as outliers and ignore image evidence in occluded sections, our ConvNet

Chapter 5. Evaluation 93

leverages the appearance of occlusion boundaries throughout the skyline.
To be precise, our network, as most classification models, do not yield a
binary decision, but rather a continuous decision value, using the decision
values outputted from our model we rank test samples, from ’almost cer-
tainly positive’ to ’almost certainly negative’. Based on the decision value,
we assign for each experiment a probability cutoff that configures the classi-
fier in such a way that a certain fraction of data is labeled as skyline and
the remaining as occlusion; in this way we have introduced a non-arbitrary
cost function into our model to handle the implicit cost of false negatives
to false positives (FN/FP); all sampling techniques applied in our exper-
iments (refer to Section 4.2.1) are orthogonal to this technique. So as to
determine an appropriate threshold we have used receiver operating charac-
teristic (ROC) curves and chose a threshold based on what fits our specific
needs. Please refer to Appendix B for further details on the probability
cutoffs chose for each experiment.

Let us now explore different scenarios that further demonstrate our
model’s strengths, foremost, have let us identify possible opportunities for
improvement. We evaluate the occlusion problem by means of a qualitative
analysis, to this intent, we prepared a handful set of examples that will help
us examine, visually, the results obtained.

Ordinary Detection

Figure 5.4 illustrates the detection quality comparisons of the 3 experiments
we have conducted with respect to the baseline and ground-truth. Before
interpreting our results, we remind the reader of our main aim, that is,
detecting occlusions, focus will be given then, to the improvement achieved
with our model on this basis.

We derive from the output prediction masks, that by coupling our model
to the baseline, we are able to correct its prior inferences in most cases. These
corrections are not negligible and are worth to be highlighted, they vary from
mild to highly noticeable, for instance, we observe that our model corrects
almost 55% of the misclassification done by the baseline in the second scene;
a more noticeable improvement is observed in the seventh scene, in which
the first variant of our model amends almost 90% of the misclassifications.

A very interesting case of correction is depicted in the third scene, the
baseline is able to recognize the true skyline almost perfectly, however, it
fails to detect a tall pointy tree occluding the horizon and misclassifies it as
skyline, our model though, corrects the misclassifications in more than 80%

94 5.4. Discussion on the Performance

by understanding that this tree is in fact, an occluder. Similar conclusions
arise in the fourth, fifth, sixth and seventh scene; we suspect the baseline
fails to discriminate well defined objects such as trees, with similar texture
and color of the peaks they are occluding. By training our ConvNet with
column-patches containing more context we are able to overcome this issue.

Observing the samples shown in Figure 5.4 we reckon that most of the
images have the same structure, i.e., skylines are usually located on the
upper half, and often they are occluded by objects of different nature, being
trees the predominant occluder. There are only few samples in which the
structure of the scene changes, such is the case of the first and last scene in
Figure 5.4. In these cases, it appears that trees are not actually occluding
the peaks, or the horizon they do occlude is not substantially visible and the
region in which the skyline blends with the nature is a bit fuzzy. These cases
are very tricky and apparently, our ConvNet struggles to distinguish these
features, thus, scenes like these are of higher uncertainty for the network.
We fear the reason behind this phenomenon is the small amount of training
samples with this spatial arrangement, but most importantly, it is likely that
the reason for this is that images displaying this pattern were inconsistently
annotated -not surprising though-, if we carefully observe these images, we
will come to the realization that their annotations are highly subjective, and
depends entirely of what a human thinks of an occlusion.

Regardless we encounter visible flaws, inconsistencies or even improve-
ment opportunities, we can easily observe that our experiments provide not
only a generalized improvement with respect to the baseline in all cases,
but pose a significantly powerful technique tailored to the mountain peak
detection task. We fully associate the gain in both ANSA and AA to the
learning process proposed throughout this study.

Chapter 5. Evaluation 95

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.4: Ordinary Detection. Left column shows the ground-truth with the
skyline annotated in red. The second column shows results obtained using the
baseline [50], third, fourth and fifth show our results for experiments 1, 2 and 3
respectively. Skyline matches are shown in green, Skyline misses are shown in white,
occlusion errors are shown in red.

96 5.4. Discussion on the Performance

Occlusion Patterns

Throughout the course of this study we have recognized different highly
frequent patterns in the scenes we used to train our networks and the overall
dataset. We have observed that our model showcases significant results while
inferring them. In such like manner, we encounter some other occlusion
patterns that pose an extra challenge to our model, we will further discuss
them in Section Challenging Patterns. Following, we showcase frequent
patterns in which our model performs very well.

Frequent patterns found in the dataset, for which our model shows a
clear advantage over the compared baseline, are (a) buildings, (b) trees and
bushes, (c) snowy and (d) cloudy mountains. Most of the test scenes that
fall in these categories yield satisfactory results, it can thus be asserted that
the combined model presented in this thesis, will be well for use by a real
application, in which these patterns are highly frequent, which is the case
of an outdoor AR application such PeakLens.

Less predominant are people and power cable towers, albeit present,
their distribution is not sufficiently representative. We are of the opinion
that our model could be better exploited by the inclusion of more images
portraying patterns such these, that represent a real world distribution of
classes, especially people, given that it is very likely to encounter scenes
where people are occluding the landscape when interacting with an aug-
mented reality application. As such, we are aware that our work may have
been limited by the frequency of these desired patterns which could have
prevented us from a good generalization performance. However, we have
observed promising results when assessing the capability of our model to
detect people as occluders, as well as power cable towers.

Buildings

Detecting high frequent occlusion patterns in images is feasible, such
is the case of buildings overlapping the skyline. Achieving both, suf-
ficiently high accuracy while detecting skyline (already provided by
the baseline) and comparable non-skyline accuracy (provided by our
ConvNet). We account these results viable evidence that the com-
bined detector has the potential to aid recognition when occlusions
are present as can be seen in Figure 5.5, all cases shown a remark-
able advantage introduced by the use of our model, which is capable
of recognizing almost every non-skyline pixel accurately. We reckon
buildings to be our model’s most accurate prediction.

Chapter 5. Evaluation 97

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.5: Occlusion Patterns: Buildings. Left column shows the ground-truth
with the skyline annotated in red. The second column shows results obtained using
the baseline [50], third, fourth and fifth show our results for experiments 1, 2 and
3 respectively. Skyline matches are shown in green, Skyline misses are shown in
white, occlusion errors are shown in red.

Trees

Out of all type of occluders, trees are the most common, yet the most
variable objects we can encounter in an outdoor scene. Although
a general structure of a tree can be inferred by our model, their
irregular edges and textures make them a very interesting case of
study. Contrary to buildings for example, trees do not have hard
edges and do not introduce high contrast shifts in the scene, they
blend smoothly with mountains and peaks, specially in non-harsh
seasonal pictures.

Not surprisingly, our dataset contains thousands of images with
various patterns in which we find trees occluding the skyline the most
frequent of all, this fact positively contributed the learning process of
our ConvNet, making it able to learn specific features of this pattern.
Figure 5.6, pinpoints examples of the inference level of the proposed
model when facing trees as occluders. Following the success achieved
using the proposed model in scenes belonging to the Building pattern,
we can observe our model is able to correctly detect occluding trees,
amending almost all misclassifications done by the baseline.

98 5.4. Discussion on the Performance

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.6: Occlusion Patterns: Trees. Left column shows the ground-truth with
the skyline annotated in red. The second column shows results obtained using
the baseline [50], third, fourth and fifth show our results for experiments 1, 2 and
3 respectively. Skyline matches are shown in green, Skyline misses are shown in
white, occlusion errors are shown in red.

Snowy Mountains

Despite not being as frequent as buildings and trees, our model seems
to perform good in the task of recognizing winter-ish pictures. Peaks
and mountains covered with snow, proved to be a challenging case for
the baseline as we can observe in Figure 5.7. The soft lines emerging
from the ground could resemble a horizon line under a cloudy sky,
interfering with the baseline’s knowledge of what defines a mountain
peak.

Although it may be perceived as not remarkable as previous pat-
terns, we consider these results significant as they show that the pro-
posed model has learned to discriminate the soft edges recurrent in
this pattern, and specially, sufficiently better than the baseline.

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 2

Figure 5.7: Occlusion Patterns: Snowy Mountains. Left column shows the ground-
truth with the skyline annotated in red. The second column shows results obtained
using the baseline [50], third, fourth and fifth show our results for experiments 1, 2
and 3 respectively. Skyline matches are shown in green, Skyline misses are shown
in white, occlusion errors are shown in red.

Chapter 5. Evaluation 99

Cloudy Mountains

Another frequent pattern is that of skylines being occluded by clouds.
We have observed this pattern to be quite challenging depending on
the composition of colors with respect to the mountain peaks and the
blurriness of such clouds. The soft lines blending with the peaks may
lead to some mispredictions, however, we confirm our model working
better than the baseline at recognizing these kind of occlusions as can
be seen in Figure 5.8. There are more complex cases of blurry clouds
covering the skyline in which our model evidences some problems, we
will address them in Section Challenging Patterns.

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 2

Figure 5.8: Occlusion Patterns: Cloudy Mountains. Left column shows the ground-
truth with the skyline annotated in red. The second column shows results obtained
using the baseline [50], third, fourth and fifth show our results for experiments 1, 2
and 3 respectively. Skyline matches are shown in green, Skyline misses are shown
in white, occlusion errors are shown in red.

People

As was discussed in the previous section, people -as occluders- are
scanty in our dataset, thus, we feared our model being slightly un-
aware of the intrinsic features that compose a regular non-occluding
people, let alone people as occluders. However, as can be seen in
Figure 5.9, our model seems to have generalized features that char-
acterize more frequent occluders, naturally extending such acquired
knowledge into more specific cases, for instance, people overlapping
the skyline. Despite not being representative in the dataset used for
training and test, this pattern is very common in outdoor mobile ap-

100 5.4. Discussion on the Performance

plications where users tend to heavily interact with the views and
scenes. These images are evidence of the practical usefulness of our
model.

We confirm that the 3 variants of our model are quite capable
of recognizing the occlusions people are causing, performing much
better than the baseline, which, unfortunately, fails to detect these
occlusions and as we can observe, often misinterprets the top of the
humans’ head as being part of a continuous skyline rather than un-
derstand that it belongs to a different object, one that is occluding
the horizon. Although in 2 of the pictures presented (the first and last
picture in the figure), some pixels have been misclassified as skyline,
we noted that, these misclassifications are not related to the intrinsic
difficulty of the occluder, thus, they do not indicate that our model is
not capable of recognizing people occluding the skyline; it is evident
that our model is not confusing humanly shapes with skylines but
the landscape edges present in the background.

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.9: Occlusion Patterns: People. Left column shows the ground-truth with
the skyline annotated in red. The second column shows results obtained using
the baseline [50], third, fourth and fifth show our results for experiments 1, 2 and
3 respectively. Skyline matches are shown in green, Skyline misses are shown in
white, occlusion errors are shown in red.

Chapter 5. Evaluation 101

Challenging Patterns

In the same way we were able to spot patterns in which the proposed model
outperformed the baseline and showed considerable improvement and cor-
rection of misclassified occlusions, we have come to the realization that a
couple of patterns exist that pose an extra challenge for our model, thus,
predictions given on these patterns are not as accurate as in other cases.
Figure 5.10 illustrates some examples of this nature.

The most recurrent scenarios in which misclassifications are high in num-
ber, are those containing blurry clouds covering the mountains and strong
sunlight projected into the peaks present in the scene. The composition of
elements inside images belonging to this category is quite difficult to inter-
pret, it is not always clear -not even for humans- where an element ends and
the other begins, the boundaries of the clouds or illumination are not crys-
tal clear, in fact, not only improving our learning process to better handle
these patterns becomes necessary but the ground-truth manual annotation
process turns into a very complicated task, resulting in the introduction of
some noise, indirectly affecting the overall learning process.

Surprisingly, we found severe misclassifications in scenes where bushes
are covering the skyline (refer to the last picture in Figure 5.10). Such
outcome is contradictory to what we stated before, when we confirmed our
model’s ability to distinguish bushes and trees as occlusions when pertinent;
however, please do take care in observing this pattern as it is not depicting
regular trees overlapping the skyline but hundreds of trees arranged together
as a whole, although we were not able to find a significant amount of im-
ages with this amount of mispredictions, we consider it worth mentioning
given the high false negative ratio per image output in images with this
pattern; the reason for this rather contradictory result may lay in the image
disposition of woods and peaks as well as its semantic difficulty.

We paid special attention to a peculiar pattern in which both the baseline
and our model present a consistent behavior in the sense that they struggle
to detect occlusions. Blurry and Cloudy Mountains. Figure 5.11 illustrates
several pictures containing mountain peaks highly covered by clouds. Our
model in all cases, performs better that the baseline, however, it throws poor
predictions in most of the cases.

Picture number 2 demonstrates that high contrast between the skyline
itself and the occluding cloud provides extra insights about the edges of the
occlusion, thus, prediction becomes somehow manageable. Nonetheless, pic-

102 5.4. Discussion on the Performance

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.10: Challenging Patterns. Left column shows the ground-truth with the
skyline annotated in red. The second column shows results obtained using the
baseline [50], third, fourth and fifth show our results for experiments 1, 2 and 3
respectively. Skyline matches are shown in green, Skyline misses are shown in white,
occlusion errors are shown in red.

tures 1, 3 and 4, are a clear example of uncertainty, we are able to predict
just small segments as occlusions, but whenever clouds blend so naturally
-yet confusing- with the peaks, our model fails to provide consistent predic-
tions, depicting the difficulty of these cases. It is worth pointing out that
all these occlusion cases are very difficult to understand even for us humans,
it is likely that while assessing many of these images, we would not easily
agree in which regions we do find clouds being part of the background rather
than covering the peaks.

These inaccuracies, however, were mildly anticipated. It is likely that
the reason for this is the restricted amount and low variability of samples
of this nature, preventing our ConvNet to learn such peculiarities. Further
data collection would be needed to determine exactly how training samples
depicting these patterns influence our model inference capabilities. Further-
more, a major source of uncertainty comes from the manual annotations
used as ground-truth, in which several cases depicting similar scenes to the
ones presented in Figure 5.10 and Figure 5.11 are erroneously annotated,
due to the subjectivity associated with what defines an occlusion in com-
plex images.

Chapter 5. Evaluation 103

(a) Input (b) Baseline (c) Exp. 1 (d) Exp. 2 (e) Exp. 3

Figure 5.11: Challenging Patterns: Cloudy Mountains. Left column shows the
ground-truth with the skyline annotated in red. The second column shows results
obtained using the baseline [50], third, fourth and fifth show our results for exper-
iments 1, 2 and 3 respectively. Skyline matches are shown in green, Skyline misses
are shown in white, occlusion errors are shown in red.

5.4.2 On the Efficiency

One of the aims of this study, was to enhanced the occlusion detection accu-
racy of an existent model [50], such demand needed to be accomplished while
respecting efficiency constraints associated with low powered devices, hence,
the final component could be of practical use on, for instance, the various
smartphones in the market. Fulfilling these constraints is not a trivial task
and due care must be paid; even when, nowadays, mobile devices are packed
with advanced computing capabilities and connectivity, decreasing the in-
ference time of the proposed model becomes more decisive in PeakLens-iOS,
where the identification, positioning and alignment of peaks are done by
processing camera frames that come at a high frequency, hence, we rely on
the maximum allowed speed.

We would like to remind the reader that the skyline extraction combined
model described in this thesis is embedded in an AR mobile application that
provides real-time mountain peak detection by processing camera frames at
the maximum allowed speed a device can attain. Although, some efficiency
metrics were reported in this work, showcasing results obtained at image
level, it is also very important to account for the final user experience, in

104 5.4. Discussion on the Performance

which not only the speed of inference is assessed but the overall experience.

After inference is done, the application overlays pertinent augmented
content of all visible mountain peaks inside the user’s field of view. In
PeakLens-iOS the initial peak positioning is done using only the DEM and
the GPS and all compass sensors, the virtual panorama in view is estimated
and peaks are projected onto the camera frame. No significant delay is en-
countered in sensor-based applications such PeakLens-iOS, peak positioning
then, is not detrimental to the user experience. However, this method is
extremely prone to errors in the DEM, GPS and compass. To minimize
the effects of such errors on the user’s perception of our application, the
proposed combined model is exploited; by updating all peaks’ position using
the inputs from the camera view, the skyline extracted by our model and
the skyline of the virtual panorama, the application is able to automati-
cally correct substantial errors in the DEM, GPS position and compass, in
real-time.

At what level the ConvNet execution time is perceived by the user is
unknown and rather difficult to assess, however, being the model a vital
component of the AR application pipeline, its inference velocity becomes of
great importance, as we have demonstrated in Section 5.3.4, we are able to
balance accuracy and execution time, hence, non prejudicial impact on the
final user experience is introduced with the proposed approach.

Chapter 6

Conclusions and Future
Work

In this work we have described a method to incorporate the uncertainties
associated with the physical world into an outdoor AR mobile application
for real time mountain peak detection. In AR applications, much of what
the user sees and interacts with are non perfectly arranged physical objects
about which the system has imperfect information, especially regarding their
position and orientation relative to the user. Such uncertainties may either
cause the information presented by the application to be misleading or make
the augmentation meaningless.

The primary source of uncertainty in an application such PeakLens, is
the arrangement of objects composing the scene with respect to the user’s
viewpoint. Positional uncertainties not only derive from noisy sensor-data
readings but more importantly, from objects partially or completely occlud-
ing the skyline, hence, to provide accurate alignment between the virtual
panorama and the physical world the application is trying to augment, we
need to handle these uncertainties very carefully.

This thesis underlines the importance of expressing the aforementioned
task as an image understanding problem in which not only the user’s current
position and device orientation are exploited but the actual scene the user
is seeing at is treated as a rich source from where skyline occluders can be
recognized and explicitly modeled in the solution.

A discussion on different mechanisms to cope with the mountain peak de-
tection problem has been provided. In particular, we proposed alternatives
using both, non-intelligent and intelligent approaches. Our contribution here

106

is twofold. First, PeakLens-iOS, a sensor-based iOS mobile application for
mountain peak detection was developed; exploiting out-of-the-box resources
and frameworks provided by the vendor, we tackle the uncertainties of such
AR applications. Second, we took on the the path of artificial intelligence
and introduced a convolution neural network to tackle the occlusion problem
in the skyline detection task.

We presented a sensor-based application that effectively tracks the user’s
position in space in real-time by means of the Device Motion Tracking Ser-
vice and use the best estimation of the output readings from the accelerom-
eter and the gyroscope to estimate the real user’s pose. Once the pose is
estimated, a panorama based on the acquired user’s position is obtained,
later, an alignment wrt the orientation and field of view of the device is per-
formed, consequently, mountain peaks are located in the refined panorama.
Accordingly, the augmentation experience is successfully provided to the
user by placing on the screen tags with pertinent information about the
mountain peaks the user is seeing through the camera.

Promising results were obtained and we succeeded at locating and ren-
dering peaks into the camera view, providing the user with a complete AR
experience, however, understanding the correct relative position between the
virtual objects and the several real objects composing a scene proved to be
of great importance. Through the analysis of these results we explored the
uncertainties that arise in AR applications such PeakLens, and came to the
realization that estimating the user’s interests based solely on data retrieved
by the device-on-board position and orientation sensors -which tend to be
sensible to errors-, is likely to result in misplaced augmented information
about the peaks, making the whole AR experience less satisfactory. Further-
more, using only data provided by the sensors makes detecting occlusions in
the skyline difficult to achieve, thus, they remained a problem at this stage.
In our view, the main reason behind this, lies on the vision understanding
that this approach fails to provide. In spite of being able to see what the
user is seeing through the camera, pure sensor-based applications are not
able to actually see.

As we learned from the drawbacks of this approach, we explored the
power of artificial intelligence and focus on Deep Learning techniques, specif-
ically ConvNets, that are known to be the default choice in most Computer
Vision applications.

In particular, we have proposed a combined model (integrated in a cas-
cade fashion) for detecting both skylines and occlusions, powered by a base-

Chapter 6. Conclusions and Future Work 107

line skyline detector [50] and a tailored 5-convolutional layer ConvNet de-
vised for occlusion handling, learned from a large annotated training data.
The strength of our work lies on this model’s understanding of what con-
stitutes a skyline and what constitutes an occlusion inside a scene. More
importantly, using the proposed model presented in this work, we have been
able to improve the performance of the skyline detector presented in [50] by
almost 15% in the detection of occlusions, over a large dataset of challeng-
ing mountainous images. These satisfactory results further demonstrate the
validity of our approach to tackle occlusions in the skyline.

The sequential nature of the proposed combined model results in less
than 70% increase in the execution time in mid-range devices, resulting in
around 3 images processed per second. Nonetheless, processing images at
this rate is fully compatible with the usability requirements of a real-time
AR application, since image processing is done in background with respect
to the user interface; if the camera view movements are not too sudden, as
one expects in a mountain peak recognition use case, the skyline extraction
and the subsequent DEM alignment step could be done at a frequency lower
than the 15 frames per second normally considered viable for video play.

Our work has provided further evidence that learning a deep ConvNet
that consecutively models small pieces of information and combines them
deeper in the network effectively handles the occlusion problem inherent to
outdoor AR applications. To this end, we have experimented with 3 different
sampling ratios of positive and negative classes (1:(1), 3:(1:1:1) and 1:(1:1:1))
to address the imbalanced nature of the occlusion problem, throughout the
analysis of the experiments we have conducted, no evidence of the superiority
of one experiment sampling ratio over the others was found; Experiment 3
showed to be slightly better than the other 2 experiments; however, the gain
is not significant.

On this path, our most important findings are: (a) Information arranged
in non-conventional shapes (columns instead of squares) can provide a deeper
context to the network, (b) An occlusion-tailored model can be embedded in
an already working model and (c) Despite all efforts on improving occlusion
detectors, they will remain challenging in terms of dataset annotation.

Finally, our work has led us to conclude that compared to sensor-based
techniques, the introduction of ConvNets in this domain provides greater
support and detection accuracy. The fact that ConvNets are trained rather
than programmed, makes applications using this approach, to take better
advantage of the enormous amount of data available in nowadays’ websphere.

108

However, benefits do not come without trade-offs and challenges. ConvNets
(and other Deep Learning techniques) require non-negligible amounts of
computing resources, for both training and inferencing stages. Furthermore,
ConvNets are quite data hungry, they rely not only on large datasets but
foremost, good quality data. In an image classification task, results depend
directly on the images fed into the network, in order to achieve adequate
performance, it is required to have, if not high, at least good resolution
images and proper ground-truth labels. This becomes especially important
for applications such PeakLens, in which it is necessary to detect objects
(skyline and occluders) in the distance.

Future Work

Future work concerns deeper analysis of particular techniques, trying differ-
ent methods, correcting sources of discrepancy identified during this study,
completing the application cycle or simply curiosity. Due to time limitations
several adaptations and experiments that we would have liked to try during
the implementation of the network architecture in Chapter 4 have been left
for the future. Broadly speaking, this thesis has been mainly focused on the
development of an outdoor AR mobile application and the use of ConvNets
for skyline detection where most of the resources used to achieve compara-
ble results where adapted from previous work, leaving a deep exploration of
several state-of-the-art networks outside the scope of the thesis. In the fol-
lowing, we detail several approaches and suggestions that we consider could
contribute important insights to the findings we presented.

iOS Integration

Throughout this thesis we have emphasized how learning techniques,
such as ConvNets, can improve the mountain peak detection by rec-
ognizing occluders in the skyline, although the proposed combined
model introduced in Section 4.4 has been successfully tested on An-
droid devices running PeakLens, future work should concentrate on
completing the Computer Vision framework introduced in Section
3.5.2, so as to embed the final combined model into PeakLens-iOS
and turning it into an intelligent system.

Dataset distribution

It is worth noticing that the dataset we have worked upon is a fair
source of challenging pictures. Nonetheless, this work has given rise

Chapter 6. Conclusions and Future Work 109

to many insights on the appropriateness of this dataset to handle the
occlusion problem, which is a fundamental issue for future research
on this topic. Thus, we consider future work should concentrate on
the quality of the dataset and variability of images included. It is
recommended to enrich the dataset in such a way that it represents
a real distribution of outdoor scenes, where images have all sort of
obstacles rather than being professional-like, taken under perfect-ish
conditions. To this end, not only more images containing occluded
skyline must be included, but more complex scenes should also be
present.

Fine-coarse Ground-truth Annotation

As with the distribution of the dataset, another interesting insight
emerged in the course of this study. At present, the ground-truth
distinguishes skyline pixels only, everything else is, thus, treated as a
negative pixel, indistinctly of its semantic connotation with respect
to the skyline in the scene. Consequently, a promising step towards
better occlusion detection is the explicit annotation of occlusions.
We foreseen such measure could positively impact the accuracy of
the model. This, however, is not a trivial task as it is costly and
highly subjective when performed by humans.

Class Balancing

We evidence that occlusion handling in the skyline detection task is
inherently an unbalanced classification problem due to the uneven
nature of real world images containing skylines vs occlusions. We
demonstrated that one way to avoid learning a trivial classifier that
always detects skylines, is using a sample technique in which we bal-
anced the dataset by down-sampling the high-occurrence class before
feeding it into the network. In fact, we took a step forward and
experiment with different sampling ratios corresponding to various
non-arbitrary cost functions. An alternative solution will be to work
directly on the loss function and train a more balanced model by re-
weighting each class in the loss function. Median frequency balancing
is often used for this purpose since encourages the network to learn
less frequently occurring classes, for instance, occlusions [25] [45] [77];
it works by assigning in the loss function corresponding weights to ev-
ery class depending on the frequency in which the class occurs in the
train dataset. Other alternative techniques exist, such as optimizing

110

the Intersection-Over-Union, that have been proven to be very help-
ful, however they are most commonly used in segmentation problems
[82].

Exploration of the hyper-parameter space

As stated before, this work did not focus on an exhaustive exploration
of hyper-parameters when learning our model. In fact, we carried out
quite a superficial manual search of the hyper-parameter space, in
which we used our knowledge about the problem, guess parameters
and observe the results. However, this is likely to lead suboptimal
solutions. With computational and time constraints we were not
able to explore more different combinations of hyper-parameters that
could possibly yield better performance. Nonetheless, we believe our
work can be considered a good starting point for further explorations,
a grid search could be applied, or even a random search that usually
works better than other methods [29]. More recent work has been
focused on Bayesian Optimization, in which information gained from
an experiment is later used to decide how to adjust hyper-parameters
for the next experiment [91].

Further Data Preprocessing

Normalizing image inputs

In this work, we have not experimented normalizing images before
feeding them into our ConvNet, however, we do have set up our
experiments to subtract mean pixels in both training and inference
stages. Given that this type of normalization has been proven to
make convergence faster while training a network, an interesting test
should include this preprocessing method and study its consequences,
if any. One of the most common image normalization methods is
mean-centering, it acts by ensuring each input parameter having a
similar data distribution and is done by subtracting the mean from
each pixel, and then dividing the result by the standard deviation.
After mean-centering, each mean-centered pixel shows only how it
differs from the average sample in the original image.

Standard deviation of image inputs

Throughout a visual inspection of our dataset, we have observed that
many images have skylines located in the upper half, it could be use-

Chapter 6. Conclusions and Future Work 111

ful though, to look at the mean image obtained by taking the mean
values for each pixel across all samples. Furthermore, we could take
the standard deviation of all images and analyze where the higher
variance lies. Observing this could give us insight into some un-
derlying structure in the images such as variations in boundaries or
corners. With this understanding, we may choose to augment our
dataset with richer viewpoints so as to not have input images with
only one innate structure.

Outcome Post-processing

Results obtained with our model are very promising, as reported
earlier, around 15% improvement, with respect to the baseline, in
the accuracy of non-skyline detection was introduced with our pro-
posed combined model. Currently, we do not perform any sort of
post-processing on the final outcome. One potential step towards
finer detection could imply post-processing the output of our model.
Throughout a qualitative analysis of the test set predictions, we have
identified that several predictions were made in such a way that nar-
row segments of around 20 pixels surrounded by true non-skyline,
were labeled as skylines. Skylines being that narrow in a real scene,
are almost certainly unreal, to overcome this issue, we could put in
good use a post-processing step in which we eliminate these discrep-
ancies. Despite this would only improve the non-skyline accuracy
slightly, we consider it as a viable course. We estimate this could be
done at a minimal cost in the execution time.

In suchlike manner, we encountered various predictions in which
small sections (around 20 pixels) surrounded by true skyline, were
labeled as occlusions. Occlusions being that narrow in a real scene, is
almost certainly unreal, so the post-processing step could also include
removal of errors of this kind. Although such measure would improve
the overall skyline accuracy rather than the non-skyline accuracy, we
consider it an important step towards a better quality model.

Bibliography

[1] Android developer documentation. https://developer.android.
com/index.html. Accessed: 2017-10-06.

[2] Apple developer documentation. https://developer.apple.com/
documentation. Accessed: 2017-08-14.

[3] Apple products technical specifications. https://support.apple.
com/specs/iphone. Accessed: 2017-09-02.

[4] Arkit. https://developer.apple.com/arkit/. Accessed: 2018-01-
23.

[5] Augmented reality in ios. https://www.apple.com/lae/ios/
augmented-reality/. Accessed: 2018-01-23.

[6] iphone market. http://fortune.com/2017/03/06/
apple-iphone-use-worldwide/. Accessed: 2017-09-11.

[7] Opencv. https://opencv.org/about.html. Accessed: 2017-09-19.

[8] Peakar. https://peakar.salzburgresearch.at. Accessed: 2018-01-
16.

[9] Peakfinder. https://www.peakfinder.org/. Accessed: 2017-11-19.

[10] Peaklens - mountain identification android mobile app. http://
peaklens.com/. Accessed: 2018-01-10.

[11] Peaklens renderer. https://render.peaklens.com/api/
mobilebundle. Accessed: 2017-09-19.

[12] Peakvisor. https://peakvisor.com. Accessed: 2018-01-16.

[13] Showmehills. http://www.showmehills.com/. Accessed: 2018-01-16.

https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.apple.com/documentation
https://developer.apple.com/documentation
https://support.apple.com/specs/iphone
https://support.apple.com/specs/iphone
https://developer.apple.com/arkit/
https://www.apple.com/lae/ios/augmented-reality/
https://www.apple.com/lae/ios/augmented-reality/
http://fortune.com/2017/03/06/apple-iphone-use-worldwide/
http://fortune.com/2017/03/06/apple-iphone-use-worldwide/
https://opencv.org/about.html
 https://peakar.salzburgresearch.at
https://www.peakfinder.org/
http://peaklens.com/
http://peaklens.com/
https://render.peaklens.com/api/mobilebundle
https://render.peaklens.com/api/mobilebundle
https://peakvisor.com
http://www.showmehills.com/

114 Bibliography

[14] Starwalk. http://vitotechnology.com/star-walk.html. Accessed:
2018-01-02.

[15] Stereo matching. http://homepages.inf.ed.ac.uk/rbf/CVonline/
LOCAL_COPIES/OWENS/LECT11/node5.html. Accessed: 2018-01-15.

[16] Vuforia. https://vuforia.com/. Accessed: 2017-10-08.

[17] Wikitude. https://www.wikitude.com/. Accessed: 2017-10-08.

[18] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[19] Touqeer Ahmad, George Bebis, Monica Nicolescu, Ara Nefian, and
Terry Fong. An edge-less approach to horizon line detection. In Ma-
chine Learning and Applications (ICMLA), 2015 IEEE 14th Interna-
tional Conference on, pages 1095–1102. IEEE, 2015.

[20] Yiannis Aloimonos. Guest editorial: Qualitative vision. International
Journal of Computer Vision, 14(2):115–117, 1995.

[21] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
Contour detection and hierarchical image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence, 33(5):898–916,
2011.

[22] Ronald T Azuma. The challenge of making augmented reality work
outdoors. Mixed reality: Merging real and virtual worlds, pages 379–
390, 1999.

[23] Georges Baatz, Olivier Saurer, Kevin Köser, and Marc Pollefeys. Large
scale visual geo-localization of images in mountainous terrain. In Com-
puter Vision–ECCV 2012, pages 517–530. Springer, 2012.

[24] Lionel Baboud, Martin Čadík, Elmar Eisemann, and Hans-Peter Sei-
del. Automatic photo-to-terrain alignment for the annotation of moun-
tain pictures. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 41–48. IEEE, 2011.

[25] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495, 2017.

http://vitotechnology.com/star-walk.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node5.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node5.html
https://vuforia.com/
https://www.wikitude.com/

Bibliography 115

[26] Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural networks: Tricks of the trade, pages
437–478. Springer, 2012.

[27] Yoshua Bengio et al. Learning deep architectures for ai. Foundations
and trends® in Machine Learning, 2(1):1–127, 2009.

[28] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. IEEE transactions
on neural networks, 5(2):157–166, 1994.

[29] James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13(Feb):281–305, 2012.

[30] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in
python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[31] Carlo Bernaschina, Roman Fedorov, Darian Frajberg, and Piero Fra-
ternali. A framework for regression testing of outdoor mobile appli-
cations. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems, pages 179–181. IEEE Press, 2017.

[32] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization meth-
ods for large-scale machine learning. arXiv preprint arXiv:1606.04838,
2016.

[33] Jan Brejcha and Martin Čadík. Geopose3k: Mountain landscape
dataset for camera pose estimation in outdoor environments. Image
and Vision Computing, 66:1–14, 2017.

[34] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and
Joachim M Buhmann. The balanced accuracy and its posterior distri-
bution. In Pattern recognition (ICPR), 2010 20th international con-
ference on, pages 3121–3124. IEEE, 2010.

[35] John Canny. A computational approach to edge detection. In Readings
in Computer Vision, pages 184–203. Elsevier, 1987.

[36] Dan C Cireşan, Alessandro Giusti, Luca M Gambardella, and Jürgen
Schmidhuber. Mitosis detection in breast cancer histology images with

116 Bibliography

deep neural networks. In International Conference on Medical Im-
age Computing and Computer-assisted Intervention, pages 411–418.
Springer, 2013.

[37] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a
modular machine learning software library. Technical report, Idiap,
2002.

[38] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3213–3223, 2016.

[39] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

[40] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[41] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving
deep neural networks for lvcsr using rectified linear units and dropout.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on, pages 8609–8613. IEEE, 2013.

[42] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product
networks. In Advances in Neural Information Processing Systems,
pages 666–674, 2011.

[43] Satyan L Devadoss and Joseph O’Rourke. Discrete and computational
geometry. Princeton University Press, 2011.

[44] Rae A Earnshaw. Virtual Reality Systems. Academic press, 2014.

[45] David Eigen and Rob Fergus. Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architecture.
In Proceedings of the IEEE International Conference on Computer
Vision, pages 2650–2658, 2015.

[46] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

Bibliography 117

[47] Roman Fedorov, Darian Frajberg, and Piero Fraternali. A framework
for outdoor mobile augmented reality and its application to moun-
tain peak detection. In International Conference on Augmented Real-
ity, Virtual Reality and Computer Graphics, pages 281–301. Springer,
2016.

[48] Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. Mountain
peak identification in visual content based on coarse digital elevation
models. In Proceedings of the 3rd ACM International Workshop on
Multimedia Analysis for Ecological Data, pages 7–11. ACM, 2014.

[49] Robert Fergus, Pietro Perona, and Andrew Zisserman. Object class
recognition by unsupervised scale-invariant learning. In Computer Vi-
sion and Pattern Recognition, 2003. Proceedings. 2003 IEEE Com-
puter Society Conference on, volume 2, pages II–II. IEEE, 2003.

[50] Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres. Convo-
lutional neural network for pixel-wise skyline detection. In ICANN,
page 8, 2017.

[51] Golnaz Ghiasi. Recognizing and Segmenting Objects in the Presence
of Occlusion and Clutter. PhD thesis, UC Irvine, 2016.

[52] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[53] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rec-
tifier neural networks. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pages 315–323,
2011.

[54] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep Learning, volume 1. MIT press Cambridge, 2016.

[55] J. Ha and H. Jeong. Occlusion filling in dynamic programming with
simple index treatment. In 2012 12th International Conference on
Control, Automation and Systems, pages 2163–2166, Oct 2012.

[56] Haibo He and Edwardo A Garcia. Learning from imbalanced data.
IEEE Transactions on knowledge and data engineering, 21(9):1263–
1284, 2009.

118 Bibliography

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. corr abs/1512.03385 (2015),
2015.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[59] Geoffrey E Hinton. A practical guide to training restricted boltzmann
machines. In Neural networks: Tricks of the trade, pages 599–619.
Springer, 2012.

[60] David H Hubel and Torsten N Wiesel. Receptive fields of single neu-
rones in the cat’s striate cortex. The Journal of physiology, 148(3):574–
591, 1959.

[61] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level ac-
curacy with 50x fewer parameters and< 0.5 mb model size. arXiv
preprint arXiv:1602.07360, 2016.

[62] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Dar-
rell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[63] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maxi-
mum of a regression function. The Annals of Mathematical Statistics,
pages 462–466, 1952.

[64] JINHO KIM1, Byung-Soo Kim, and Silvio Savarese. Comparing im-
age classification methods: K-nearest-neighbor and support-vector-
machines. Ann Arbor, 1001:48109–2122, 2012.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[66] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[67] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

Bibliography 119

[68] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[69] Eep Kumar, Zeeshan Khan, and Anurag Jain. A review of content
based image classification using machine learning approach. 2012.

[70] Nicolas Le Roux and Yoshua Bengio. Deep belief networks are compact
universal approximators. Neural computation, 22(8):2192–2207, 2010.

[71] Y LeCun, L Bottou, G Orr, and K Muller. Efficient backprop in neural
networks: Tricks of the trade (orr, g. and müller, k., eds.)[j]. Lecture
Notes in Computer Science, 1524.

[72] Yann Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L.D. Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541–551, 1989.

[73] Yann LeCun et al. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, page 20, 2015.

[74] Gun A Lee, Andreas Dünser, Seungwon Kim, and Mark Billinghurst.
Cityviewar: A mobile outdoor ar application for city visualization. In
Mixed and Augmented Reality (ISMAR-AMH), 2012 IEEE Interna-
tional Symposium on, pages 57–64. IEEE, 2012.

[75] Wei-Han Liu and Chih-Wen Su. Automatic peak recognition for moun-
tain images. In Advanced Technologies, Embedded and Multimedia for
Human-centric Computing, pages 1115–1121. Springer, 2014.

[76] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[77] Richard F Lyon and Larry S Yaeger. On-line hand-printing recogni-
tion with neural networks. In Microelectronics for Neural Networks,
1996., Proceedings of Fifth International Conference on, pages 201–
212. IEEE, 1996.

[78] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

120 Bibliography

[79] Kamini Nalavade and BB Meshram. Data classification using sup-
port vector machine. In National Conference on Emerging Trends in
Engineering & Technology (VNCET), volume 2, pages 181–184, 2012.

[80] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. In-
door segmentation and support inference from rgbd images. In ECCV,
2012.

[81] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number
of response regions of deep feed forward networks with piece-wise linear
activations. arXiv preprint arXiv:1312.6098, 2013.

[82] Md Atiqur Rahman and Yang Wang. Optimizing intersection-over-
union in deep neural networks for image segmentation. In Inter-
national Symposium on Visual Computing, pages 234–244. Springer,
2016.

[83] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[84] Fedorov Roman, Martinenghi Davide, Tagliasacchi Marco, and Castel-
letti Andrea. Exploiting user generated content for mountain peak
detection. In 2nd International Workshop on Social Media for Crowd-
sourcing and Human Computation (SoHuman 2013), pages 21–28,
2013.

[85] Frank Rosenblatt. The perceptron, a perceiving and recognizing au-
tomaton Project Para. Cornell Aeronautical Laboratory, 1957.

[86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature,
323(6088):533, 1986.

[87] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Com-
puter Vision (IJCV), 115(3):211–252, 2015.

[88] Stephen R Schach. Software Engineering. McGraw-Hill Professional,
1999.

[89] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A
unified embedding for face recognition and clustering. In Proceedings

Bibliography 121

of the IEEE conference on computer vision and pattern recognition,
pages 815–823, 2015.

[90] Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. Don’t
decay the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017.

[91] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959, 2012.

[92] Yale Song, Louis-Philippe Morency, and Randall Davis. Distribution-
sensitive learning for imbalanced datasets. In Automatic Face and
Gesture Recognition (FG), 2013 10th IEEE International Conference
and Workshops on, pages 1–6. IEEE, 2013.

[93] Ivan E Sutherland. The ultimate display. Multimedia: From Wagner
to virtual reality, pages 506–508, 1965.

[94] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In Computer
Vision and Pattern Recognition (CVPR), 2015.

[95] Richard Szeliski. Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[96] DWF Van Krevelen and Ronald Poelman. A survey of augmented re-
ality technologies, applications and limitations. International Journal
of Virtual Reality, 9(2):1, 2010.

[97] Slobodan Vucetic and Zoran Obradovic. Classification on data with
biased class distribution. In European Conference on Machine Learn-
ing, pages 527–538. Springer, 2001.

[98] Ruohui Wang. Edge detection using convolutional neural network. In
International Symposium on Neural Networks, pages 12–20. Springer,
2016.

[99] Markus Weber, Max Welling, and Pietro Perona. Towards automatic
discovery of object categories. In Computer Vision and Pattern Recog-
nition, 2000. Proceedings. IEEE Conference on, volume 2, pages 101–
108. IEEE, 2000.

122 Bibliography

[100] Joseph N Wilson and Gerhard X Ritter. Handbook of computer vision
algorithms in image algebra. CRC press, 2000.

[101] Luke Yeager, Julie Bernauer, Allison Gray, and Michael Houston. Dig-
its: the deep learning gpu training system. In ICML 2015 AutoML
Workshop, 2015.

[102] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

Appendix A

Occlusion ConvNet

A.1 Accuracy and Loss

The epoch with the best trade-off between accuracy and loss in the validation
set was chosen for generating the weights. Table A.1 shows the selected
Epoch, Accuracy and Loss in the validation set. Figure A.1 depicts the Loss
and Accuracy obtained by the network at each epoch.

Epoch Accuracy Loss

Experiment 1 10 0.9304 0.1924
Experiment 2 6 0.8458 0.4291
Experiment 3 6 0.8305 0.4460

Table A.1: Validation Metrics. Selected epoch, loss and accuracy in the validation
set.

124 A.1. Accuracy and Loss

(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure A.1: Loss (training and validation) and Accuracy (training) reported for all
conducted experiments.

Appendix A. Occlusion ConvNet 125

A.2 Learning Rate Decay

Table A.2 shows the configured learning rate lr and the batch size used in
the training and validation sets. Figure A.2 shows the learning decay.

lr Batch Size
training validation

Experiment 1 0.0010 64 32
Experiment 2 0.0100 512 256
Experiment 3 0.0100 512 256

Table A.2: Learning Rate and Batch Size. Learning rate and batch size used during
training and validation.

126 A.2. Learning Rate Decay

(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure A.2: Learning rate decay for each conducted experiment.

Appendix B

ConvNet Evaluation

B.1 Precision-Recall Curves

Figure B.1 shows the Precision-Recall curves obtained during the evalua-
tion of the Baseline and the Column Patch-wise evaluation of the test set
performed in the 3 experiments presented in this work.

128 B.1. Precision-Recall Curves

(a) Baseline (b) Experiment 1

(c) Experiment 2 (d) Experiment 3

Figure B.1: Precision-Recall Curves. Values obtained in the evaluation of the (a)
Baseline and the evaluation at Column Patch-wise level conducted on (a) Experi-
ment 1 (b) Experiment 2 and (c) Experiment 3.

Appendix B. ConvNet Evaluation 129

B.2 Performance Metrics

Baseline

Figure B.2 depicts the Average Accuracy, Average No Skyline Accuracy and
the Average Accuracy obtained during the evaluation of the test set con-
ducted using the Baseline model.

Experiment 1

Figure B.3 portrays the Average Accuracy, Average No Skyline Accuracy
and the Average Accuracy obtained during the evaluation of the test set
conducted on Experiment 1.

Experiment 2

Figure B.4 depicts the Average Accuracy, Average No Skyline Accuracy and
the Average Accuracy obtained during the evaluation of the test set con-
ducted on Experiment 2.

Experiment 3

Figure B.5 depicts the Average Accuracy, Average No Skyline Accuracy and
the Average Accuracy obtained during the evaluation of the test set con-
ducted on Experiment 3.

130 B.2. Performance Metrics

(a) ANSA

(b) ASA

(c) AA

Figure B.2: Baseline Performance Metrics. Test set results in (a) Average Non-
Skyline Accuracy (b) Average Skyline Accuracy (c) Average Accuracy.

Appendix B. ConvNet Evaluation 131

(a) ANSA

(b) ASA

(c) AA

Figure B.3: Experiment 1 Performance Metrics. Test set results in (a) Average
Non-Skyline Accuracy (b) Average Skyline Accuracy (c) Average Accuracy.

132 B.2. Performance Metrics

(a) ANSA

(b) ASA

(c) AA

Figure B.4: Experiment 2 Performance Metrics. Test set results in (a) Average
Non-Skyline Accuracy (b) Average Skyline Accuracy (c) Average Accuracy.

Appendix B. ConvNet Evaluation 133

(a) ANSA

(b) ASA

(c) AA

Figure B.5: Experiment 3 Performance Metrics. Test set results in (a) Average
Non-Skyline Accuracy (b) Average Skyline Accuracy (c) Average Accuracy.

134 B.3. Decision Cutoff

B.3 Decision Cutoff

Figure B.6 depicts the Threshold-Accuracy ROC curves used to determine
an appropriate threshold (cutoff value) in all our experiments and the base-
line. To configure the classifier, we computed this threshold using samples
from the validation set.

(a) Baseline (b) Experiment 1

(c) Experiment 2 (d) Experiment 3

Figure B.6: Decision Threshold Values. Cutoffs obtained from the validation set
using the (a) Baseline (b) Experiment 1 (c) Experiment 2 and (d) Experiment 3.

	List of Figures
	List of Tables
	Introduction
	Related Work
	Augmented Reality
	AR for Outdoor Applications
	AR for iOS

	Image Understanding
	Computer Vision Overview
	Traditional Approaches
	Deep Learning Models
	Feedforward Neural Networks
	Convolutional Neural Networks

	Mountain Image Analysis
	The Occlusion Problem

	Non-Intelligent System
	Background
	Overview
	PeakLens-iOS
	Augmented Reality Framework
	Camera Scene Capture
	Device Motion Tracking

	Peak Detection
	Sensor-based Localization
	Panorama Matching
	Peak Rendering

	Standardization Module
	Android's Coordinate System
	iOS's Coordinate System
	Cross-platform Generalization
	Strategy

	Intelligent System
	Occlusion Modeling
	Labeling
	Image Patch Extraction

	Heuristics
	Sampling
	Column-wise Classifier

	ConvNet
	Architecture
	Hyper-parameters
	Optimization Method
	Batch Size
	Learning Rate

	Execution

	Combined Model

	Evaluation
	Dataset Collection and Preprocessing
	Data Cleansing
	Data Preprocessing
	Occlusion Statistics

	Experimental Setup
	Protocol
	Evaluation Metrics
	Evaluated Baseline

	Experimental Results
	Column Patch-wise Evaluation
	Unconstrained Detection
	Detecting Occlusion Patterns
	Efficiency Evaluation

	Discussion on the Performance
	On the Accuracy
	On the Efficiency

	Conclusions and Future Work
	Bibliography
	Appendices
	Appendix Occlusion ConvNet
	Accuracy and Loss
	Learning Rate Decay

	Appendix ConvNet Evaluation
	Precision-Recall Curves
	Performance Metrics
	Decision Cutoff

