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Abstract

IT La mappatura del campo magnetico all’interno dei magneti per acceleratori

è uno dei compiti principali della sezione di misure magnetiche al CERN. Allo

stato dell’arte, la misura del campo all’interno dell’apertura dei magneti viene ef-

fettuata per mezzo di bobine rotanti. Lo scopo di questa tesi è quello di investigare

una soluzione alternativa che permetta di ottenere una mappatura 2D completa

dell’apertura del magnete partendo dalle misure effettuate sul contorno. Le mis-

ure acquisite con la tecnica del filo teso sono processate e usate come condizioni

al contorno per un problema di Dirichlet risolto con il Boundary Element Method

(BEM).

EN The magnetic field mapping in accelerator magnets is one of the main compet-

ences of the magnetic measurements section at CERN. Rotating Coil Magnetometers

are state-of-the-art devices for measuring integrated fields in the magnet aperture.

The aim of this thesis is to investigate an alternative sampling technique which

allows a two-dimensional field map reconstruction in the entire magnet aperture

starting from measured boundary data. Stretched-wire measurements are processed

and used as boundary conditions of a boundary value problem solved by means of

the Boundary Element Method (BEM).
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Chapter 1

Introduction

The European Organization for Nuclear Research, known as CERN, is a research

organization that operates the largest particle physics laboratory in the world. Es-

tablished in 1954, the organization is based in a northwest suburb of Geneva on the

Franco-Swiss border, and its main function is to provide the particle accelerators

and other infrastructure needed for high-energy physics research.

1.1 The accelerators technology

Accelerators were invented in the 1930s to provide energetic particles to investigate

the structure of the atomic nucleus. Since then, they have been used to examine

many aspects of particle physics. Their job is to speed up and increase the energy

of a beam of particles, by generating electric fields that accelerate the particles

and magnetic fields that steer and focus them. These experimental facilities come

either in the form of a ring (circular accelerators), where a beam of particles travels

repeatedly round a loop, or in a straight line (linear accelerators), where the particle

beam travels from one end to the other. The type of particle used depends on the

aim of the experiment. In particular, at CERN, a number of accelerators are joined

together in sequence to reach successively higher energies [1].

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle

accelerator. It consists of a 27 kilometer underground ring, shown in Fig. 1.1, of

superconducting magnets with a number of accelerating structures to boost the en-

ergy of the particles along the way. Inside the accelerator, two high-energy particle

beams travel at close to the speed of light before they are made to collide. The

beams travel in opposite directions in separate beam pipes (two tubes kept at ul-

1



Chapter 1

trahigh vacuum). They are guided around the accelerator ring by a strong magnetic

field maintained by superconducting electromagnets, which are built from coils of

special electric cable that operates in a superconducting state, efficiently conducting

electricity without resistance or loss of energy. This requires chilling the magnets

to -271.3 �, a temperature colder than outer space. For this reason, much of the

accelerator is connected to a distribution system of liquid helium, which cools the

magnets, as well as to other supply services.

Figure 1.1: Layout of the LHC main ring with its physics experiments ATLAS, CMS,

ALICE and LHC-B.

Thousands of magnets of different varieties and sizes are used to direct the beams

around the accelerator. These include 1232 dipole magnets 15 meters in length which

bend the beams, and 392 quadrupole magnets, each 5-7 meters long, which focus

the beams. Just prior to collision, another type of magnet is used to ”squeeze” the

particles closer together to increase the chances of collisions [2].

The eight arcs of the main ring are composed of 23 regular arc cells of the so

called FODO structure, schematically shown in Fig. 1.2. Each cell is made of two

identical half-cells, each one consisting of a string of three main dipoles (MB) and

one main quadrupole (MQ). Sextupole, decapole and octupole correctors are located

at the ends of the main dipoles [3].
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Figure 1.2: Layout of the FODO cells of the LHC main ring. Multipole corrector magnets

are connected to the main dipoles (MBA and MBB).

1.3 The magnetic measurement section at CERN

The Magnets, Superconductors and Cryostats group, as a part of the CERN Techno-

logy Department, manages the development of the technology for accelerator mag-

nets. One of the sections of this group is the magnetic measurement section, which

is responsible for everything that concerns magnetic measurements in accelerator

physics.

There are two principal working areas, the R&D area and the measurement

area. The former deals with the study of the theory that governs the magnetic

field and with the design of future measurements systems; the latter, instead, is

in charge for the measurement of customer’s magnets using well-known and well-

proven techniques. Typical section’s customers are the CERN itself but even external

entities like research centers or private companies.

Different techniques are used to measure the field produced in the magnet aper-

ture depending on the characteristic that has to be evaluated, which can be the

transfer function, the magnetic axis, the field quality and harmonics or dynamic

effects and transients. Here a list of the available techniques [4]:

� Rotating coils: the analysis of the flux intercepted by rotating a coil inside the

magnet aperture provides information about the strength, the direction and

the quality of the field.

� Stretched-wire: a conducting wire is inserted along the magnet aperture. The

voltage induced by a displacement of the wire or the oscillations induced by

an AC current flowing into the wire can be analyzed in order to retrieve a

measurement of some characteristics of the integral field.

� 3D mapper: by means of a Hall sensor precisely driven into the magnet aper-

ture, a map of the field can be drawn.
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� Fluxmeters: one or more coils are positioned in the magnet aperture, and the

voltage induced by a field change is measured.

� Nuclear magnetic resonance: sensors based on this principles are used only on

dipoles. It is the most accurate techniques for measuring the absolute field. It

is often used for the calibration of other sensors.

� 3D survey: by using a laser interferometer, precise measurements of the po-

sition of a geometrical point surrounding the magnet with respect to some

reference points can be exploited.
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The Boundary Integral

Equation Method

Nearly all physical phenomena occurring in nature can be described by differential

equations. Boundary integral equations are reformulations for the solution of partial

differential equations problems. The method is based on a mathematical formulation

which reduces the dimensionality of a problem from Rn to Rn−1. In the following,

preliminary mathematical concepts are developed for a complete characterization of

the boundary integral equation method in two dimensions.

2.1 The Gauss-Green theorem

This theorem is a fundamental identity, which relates the integral of the derivative

of a function f = f(x, y) over a domain Ω to the integral of that function on its

boundary Γ. For the 2D case, consider the plane domain Ω bounded by the curve

Γ [5]. Firstly, the relation for the derivative with respect to x is developed; then,

the one related to the derivative on y is consequently obtained by interchanging the

variables. The integral over Ω may be written as a double integral, for which the

integration is carried out first with respect to x and then with respect to y. It is

possible to writeˆ
Ω

∂f

∂x
dΩ =

ˆ y2

y1

(ˆ x2

x1

∂f

∂x
dx

)
dy =

ˆ y2

y1

{f(x2, y)− f(x1, y)}dy , (2.1)

where x1 = x1(y) and x2 = x2(y).

Considering Fig. 2.1 and focusing on the detail we get

dy

ds
= cosα = nx −→ dy = nxds ,

−dx
ds

= sinα = ny −→ dx = −nyds ,
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where nx and ny are the components of the unit vector n normal to the boundary

Γ. The negative sign is due to the fact that dx and sinα have opposite sign when

the angle α is measured in the counterclockwise sense with respect to the positive

x-direction.

Figure 2.1: Integration over a plane domain Ω bounded by a curve Γ.

Consequently, (2.1) becomes
ˆ y2

y1

{f(x2, y)− f(x1, y)}dy =

ˆ
s2

f(x2, y)nxds−
ˆ
s1

f(x1, y)nxds . (2.2)

The integration on s1 is performed in the negative direction, i.e. clockwise, when y

varies from y1 to y2.

Using uniform direction for the integration over s, both terms in (2.2) can be

combined in a single expression
ˆ

Ω

∂f

∂x
dΩ =

ˆ
Γ
fnxds . (2.3)

Interchanging x with y, the same expression is obtained for the second coordinate
ˆ

Ω

∂f

∂y
dΩ =

ˆ
Γ
fnyds . (2.4)

If another function g = g(x, y) is introduced, then (2.3) and (2.4) result in
ˆ

Ω

∂(fg)

∂x
dΩ =

ˆ
Ω

∂f

∂x
gdΩ +

ˆ
Ω
f
∂g

∂x
dΩ =

ˆ
Γ
fgnxds , (2.5)

ˆ
Ω

∂(fg)

∂y
dΩ =

ˆ
Ω

∂f

∂y
gdΩ +

ˆ
Ω
f
∂g

∂y
dΩ =

ˆ
Γ
fgnyds . (2.6)

Equations (2.5) and (2.6) state the integration by parts in two dimensions and are

known as the Gauss-Green theorem.
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2.2 The divergence theorem of Gauss

The divergence theorem results readily as an application of the Gauss-Green the-

orem. Consider the vector field u = ui + vj, where i and j denote the unit vectors

along the x and the y axes, respectively, while u = u(x, y) and v = v(x, y) denotes

its components. Applying (2.3) for f = u, (2.4) for f = v and adding them together,

results ˆ
Ω

(
∂u

∂x
+
∂v

∂y

)
dΩ =

ˆ
Γ

(unx + vny) ds . (2.7)

If the coordinates x and y are represented by x1 and x2 respectively, then the

components of the vector field u are denoted by ui (i = 1, 2) and those of the normal

vector n by ni. At this point (2.7) can be written as

ˆ
Ω

(
∂u1

∂x1
+
∂u2

∂x2

)
dΩ =

ˆ
Γ

(u1n1 + v2n2) ds , (2.8)

or using the summation convention

ˆ
Ω

(
∂ui
∂xi

)
dΩ =

ˆ
Γ

(uini) ds . (2.9)

Finally, (2.7), (2.8) and (2.9) can be written using vector notation as

ˆ
Ω

(∇·u) dΩ =

ˆ
Γ

(u·n) ds . (2.10)

The quantity ∇·u is referred to as the divergence of a vector field u at a point inside

the domain Ω, whereas the quantity u·n is referred to as the flux of the vector field

directed in the n direction at a single point on the boundary Γ. Equation (2.10) is

known as the divergence theorem of Gauss, and relates the total divergence to the

total flux of a vector field.

2.3 Green’s second identity

Consider the functions u = u(x, y) and v = v(x, y) which are twice continuously

differentiable in Ω and once in Γ. Applying (2.5) for g = v, f = ∂u/∂x and also

(2.6) for g = v, f = ∂u/∂y, and finally adding the resulting equations, results

ˆ
Ω
v

(
∂2u

∂x2
+
∂2u

∂y2

)
dΩ = −

ˆ
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ

+

ˆ
Γ
v

(
∂u

∂x
nx +

∂u

∂y
ny

)
ds .

(2.11)
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Similarly, applying (2.5) for g = u, f = ∂v/∂x and (2.6) for g = u, f = ∂v/∂y,

and finally adding the resulting equations
ˆ

Ω
u

(
∂2v

∂x2
+
∂2v

∂y2

)
dΩ = −

ˆ
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dΩ

+

ˆ
Γ
u

(
∂v

∂x
nx +

∂v

∂y
ny

)
ds .

(2.12)

Subtracting (2.12) from (2.11) yields
ˆ

Ω

(
v∇2u− u∇2v

)
dΩ =

ˆ
Γ

(
v
∂u

∂n
− u ∂v

∂n

)
ds , (2.13)

where the Laplacian ∇2 is defined as

∇2 = ∇·∇ =

(
i
∂

∂x
+ j

∂

∂y

)
·
(
i
∂

∂x
+ j

∂

∂y

)
=

∂2

∂x2
+

∂2

∂y2
, (2.14)

while
∂

∂n
= n· ∇ = (nxi + nyj) ·

(
i
∂

∂x
+ j

∂

∂y

)
= nx

∂

∂x
+ ny

∂

∂y
, (2.15)

is the operator that produces the derivative of a scalar function in the direction of

n. Equation (2.13) is known as Green’s second identity for ∇2.

2.4 The Laplace equation

In mathematics, the second-order partial differential equation

∇2u = 0 , (2.16)

is known as the Laplace’s equation. Defined Ω as an open and bounded subset of

R2, the harmonic function u is a twice continuously differentiable function which

satisfies ∇2u = 0 everywhere on Ω.

2.4.1 Maximum principle

If u is an harmonic function on a bounded domain Ω in R2, then u attains its

maximum value on the boundary Γ

max
Ω

u(x, y) = max
Γ

u(x, y) , (2.17)

where Ω = Ω ∪ Γ. Consequently, if there is a point (x0, y0) ∈ Ω such that

u(x0, y0) = max
Ω

u(x, y) , (2.18)

then u is definitely constant within Ω.
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2.5 The boundary value problem

A boundary value problem is a differential equation together with a set of additional

constraints, called boundary conditions, specified at the extremes of the connected

domain. A solution to a boundary value problem is a solution to the differential

equation which also satisfies the boundary conditions. To be useful in applications,

a boundary value problem must be well posed. This means that given the input

to the problem, there exists a unique solution, which depends continuously on the

input.

In magnetostatics, a common problem is to find a function which describes the

magnetic potential in a given region. If the region does not contain sources, the

potential is a solution of the Laplace’s equation (a so-called harmonic function).

The boundary conditions in this case are the interface conditions for magnetic fields.

Two-dimensional potential problems, defined in the xy-plane, are described by the

equation

∇2u = f(x, y) , (2.19)

whose solution u = u(x, y) represents the potential produced at point (x, y) in the

bounded domain Ω due to a source f(x, y) distributed over Ω.

For f(x, y) = 0, the governing equation translates into the Laplace’s equation,

whose solution is sought in a closed plane domain Ω, having a boundary Γ on which

either the function u or its derivative in the direction normal to the boundary is

prescribed: this solution must satisfy the boundary conditions of the problem. Con-

sequently, one can classify different boundary value problems on Γ, where the quant-

ities denoted by f̄ are known functions defined on the boundary

∇2u = f in Ω



u = ū on Γ ⇒ Dirichlet problem

∂u

∂n
= ∂nū on Γ ⇒ Neumann problem

u = ū on Γ1

∂u

∂n
= ∂nū on Γ2

⇒ Mixed problem

. (2.20)

2.6 The fundamental solution

Consider a source point placed at P (x, y) of the xy-plane. Its density at Q(ξ, η) may

be expressed mathematically by the delta function as

f(Q) = δ(Q− P ) , (2.21)
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and the potential v = v(Q,P ) produced at point Q satisfies the equation

∇2v = δ(Q− P ) . (2.22)

A singular particular solution of (2.22) is called fundamental solution of the potential

equation (2.19) [5]. It is determined by writing (2.22) in polar coordinates with origin

at the source point P , such that it becomes

1

r

d

dr

(
r
dv

dr

)
= δ(Q− P ) , (2.23)

where the absolute value of the vector r is defined as

r = |Q− P | =
√

(ξ − x)2 + (η − y)2 , (2.24)

being the solution axis-symmetric with respect to the source and consequently in-

dependent on the polar angle.

The right hand side of the last equation vanishes at all points of the plane, except

at the origin r = 0, where it has an infinite value

1

r

d

dr

(
r
dv

dr

)
= 0 , (2.25)

which gives, after integrating twice

v = A ln r +B , (2.26)

where A and B are arbitrary constants. Since a particular solution has to be found,

B is set to 0, while A is determined from

A
1

r
=
∂v

∂r
=
∂v

∂n
, (2.27)

and ds = rdΘ. Application of Green’s identity for u = 1 and v = A ln r yields

−
ˆ

Ω
∇2vdΩ = −

ˆ
Γ

∂v

∂n
ds , (2.28)

where Ω is the circle with center P and radius ρ, as shown in Fig. 2.2.

Using (2.22) and (2.26), noting that for points on Γ it is ρ = r, the relation is

written as

−
ˆ

Ω
δ(Q− P )dΩ = −

ˆ 2π

0
A

1

ρ
ρdθ , (2.29)

that is, for the property of the delta function, equivalent to

1 = 2πA ⇒ A =
1

2π
. (2.30)

Hence, the fundamental solution becomes

v =
1

2π
ln r , (2.31)

which is also known as free space Green’s function.
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Figure 2.2: Circular domain with source point P at the center.

2.7 The representation formula

The next step is to represent the solution of the partial differential equation in the

domain Ω by means of boundary conditions defined along Γ. We assume a problem

with mixed boundary conditions

u = ū on Γ1 ,

∂u

∂n
= ∂nū on Γ2 ,

where Γ = Γ1 ∪ Γ2.

Applying Green’s second identity for the functions u and v that satisfy (2.16)

and (2.22) in Ω, respectively

∇2u = 0 ,

∇2v = δ(Q− P ) ,

and assuming that the source lies at point P , follows

−
ˆ

Ω
u(Q)δ(Q− P )dΩQ =

ˆ
Γ

[
v(q, P )

∂u(q)

∂nq
− u(q)

∂v(q, P )

∂nq

]
dsq , (2.32)

where P , Q ∈ Ω and q ∈ Γ.

The last equation can be written also in the following formulation

u(P ) = −
ˆ

Γ

[
v(P, q)

∂u(q)

∂nq
− u(q)

∂v(P, q)

∂nq

]
dsq , (2.33)

called representation formula (or integral representation) for the solution of the

partial differential equation. The solution u is represented as the sum of two parts,

called simple-layer and double-layer potential, respectively.
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The terms related to the fundamental solution are both known quantities at any

point q on the boundary

v =
1

2π
ln r ,

∂v

∂n
=

1

2π

cosφ

r
,

with r = |q − P | and φ = ∠(r,n).

In order to solve the boundary problem and then find a solution for the entire

domain starting from boundary conditions, it is necessary to extend the integral

representation to the general case of P belonging to any position in the 2D plane.

The general equation is defined as

ε(P )u(P ) = −
ˆ

Γ

[
v(P, q)

∂u(q)

∂nq
− u(q)

∂v(P, q)

∂nq

]
dsq , (2.34)

where ε(P ) is a coefficient which depends on the position of point P

ε(P ) =


1 for P inside Ω

α/2π for P on the boundary Γ

0 for P outside Ω

, (2.35)

where α is the angle between the tangents of the boundary Γ at point P .

The general formulation constitutes a compatibility relation between the bound-

ary values of the potential u and its derivative with respect to the normal direction,

meaning that only one of the two quantities can be prescribed at each point of the

boundary.

2.8 The boundary value problem in magnetostatics

In Appendix C it is proved that both the scalar potential φm and the vector potential

A obey the Laplace’s equation (2.16). Consequently, the solution at any point of a

bounded domain Ω can be written in terms of (2.34). Follow

ε φm = −
ˆ

Γ

[
v
∂φm
∂n
− φm

∂v

∂n

]
ds , (2.36)

ε Az = −
ˆ

Γ

[
v
∂Az
∂n
−Az

∂v

∂n

]
ds . (2.37)

Important relations with the magnetic field B are derived applying (C.3) and

(C.10) in 2D Cartesian coordinates

B = i
∂φm
∂x

+ j
∂φm
∂y

, (2.38)
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B = i
∂Az
∂y
− j

∂Az
∂x

, (2.39)

that lead to

Bx = +
∂φm
∂x

= +
∂Az
∂y

, (2.40)

By = +
∂φm
∂y

= −∂Az
∂x

. (2.41)

This means that, for a boundary value problem formulated in φm or A, one can

compute the magnetic field B at any point P by means of the solution of (2.16) in

the neighborhood of P .
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The Boundary Element Method

For practical applications, an exact solution of the integral equation (2.34) is not

achievable. However, a numerical solution is feasible by employing the Boundary

Element Method (BEM), which is able to solve the problem by the discretization

of the boundary into a finite number of elements. This translates into the decom-

position of Γ into a finite number of subsets, each of which has a regular parameter

representation by some parameter domain in R1 [6]. Two approximations are carried

out: one is about the geometry of the boundary, while the other has to do with the

variation of the boundary quantities over the element. Depending on the degree of

the polynomials used for these kind of approximations, the formulation can be clas-

sified as Sub-parametric, Iso-parametric or Super-parametric elements. The finitely

many parameters determining the approximated solution are computed from finitely

many linear equations. There are two methods to generate this system of discrete

equations, Collocation and Galerkin method:

1. For the Collocation method, one chooses a suitable set of collocation points

{pi|i = 1, ..., I} ⊂ Γ and requires that the equation (2.34) is satisfied in these

points.

2. For the Galerkin method, one multiplies (2.34) for the approximated solution

with test functions from a finite dimensional function space, integrates over Γ

and equates the integrals.

As we will see, the collocation method is the simplest one because it involves only

one integral, whereas the Galerkin requires two integrations. This may be the reason

why collocation is the most frequently used in applications.
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3.1 Collocation method

For the collocation method, one can distinguish, for each element, the end points

and the nodal points. The first ones define the position of the element in the xy-

plane, whereas the latter are the points at which values of the boundary quantities

are assigned [5].

The discretized form, assumed J elements numbered in the counter-clockwise

sense, is expressed for a given point pi on Γ as

ε(pi)u(pi) = −
J∑
j=1

ˆ
Γj

[
v(pi, q)

∂u(q)

∂nq
− u(q)

∂v(pi, q)

∂nq

]
dsq , (3.1)

where Γj is the j-th element over which integration is carried out, pi is the reference

nodal point and ε(pi) is the coefficient computed from (2.35).

It is possible to re-write (3.1) in a different form

εiui = −
J∑
j=1

ˆ
Γj

v∂nuds+

J∑
j=1

ˆ
Γj

u∂nvds . (3.2)

The last equation is applied consecutively for all the nodes pi, yielding a system

of linear algebraic equations.

3.1.1 Constant BEM

In case of constant boundary elements, the boundary element is approximated by a

straight line, which connects its two extreme points. The node is placed at the mid

point, while the boundary quantity is assumed to be constant along the element and

equal to its value at the nodal point. Since the geometry is represented with high

order polynomial than that used to approximate the boundary quantity, it is said to

be depicted super-parametrically [7].

Given the last considerations, (3.2) becomes

−1

2
ui +

J∑
j=1

(ˆ
Γj

∂nvds

)
uj =

J∑
j=1

(ˆ
Γj

vds

)
∂nu

j . (3.3)

This result arises due to the fact that it is always α = π for the i-th boundary node

placed at the mid-point, while the quantities u and ∂nu are constant over the j-th

element. The integrals involved in the above equation relate the node pi, where the

fundamental solution is applied, to the node pj , where the boundary condition is
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defined; they are often referred to as influence coefficients and defined as

Ĥij =

ˆ
Γj

∂v(pi, q)

∂nq
ds , (3.4)

Gij =

ˆ
Γj

v(pi, q)ds , (3.5)

where the reference point pi remains constant while the integration point q varies

over the j-th element.

Introducing the influence coefficients in (3.3), the solution becomes

−1

2
ui +

J∑
j=1

Ĥiju
j =

J∑
j=1

Gij∂nu
j . (3.6)

Moreover, setting

Hij = Ĥij −
1

2
δij

{
δij = 0 for i 6= j

δij = 1 for i = j
, (3.7)

results the following liner system of equations

J∑
j=1

Hiju
j =

J∑
j=1

Gij∂nu
j ⇒ [H] {u} = [G] {∂nu} . (3.8)

3.1.2 Linear BEM

For linear elements, the boundary element is approximated again by a straight line

connecting its end points. Two nodes are placed at the extreme points of the element

and the boundary quantity is assumed to vary linearly between the nodal values.

Since the geometry and the boundary quantity are approximated over the element by

polynomials of the same degree, the former is said to be depicted iso-parametrically.

In order to establish the expression for the variation of the boundary quantity

over the j-th element, it is convenient to introduce a local coordinate system, as

shown in Fig. 3.1. In the local system of axes

− lj
2
≤ x′ ≤ +

lj
2

, y = 0 ,

whereas in the global system of axes

x =
xj+1 + xj

2
+
xj+1 − xj

lj
x′ ,

y =
yj+1 + yj

2
+
yj+1 − yj

lj
y′ .
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Figure 3.1: Global and local system of axes for the element j.

The interval [−lj/2,+lj/2] is then normalized by the introduction of a parameter ξ

defined as

ξ =
x′

lj/2
,

and it finally results the expression of the global coordinates as a function of ξ

x =
xj+1 + xj

2
+
xj+1 − xj

2
ξ

y =
yj+1 + yj

2
+
yj+1 − yj

2
ξ
⇒

x(ξ) =
1

2
(1− ξ)xj +

1

2
(1 + ξ)xj+1

y(ξ) =
1

2
(1− ξ)yj +

1

2
(1 + ξ)yj+1

,

where

−1 ≤ ξ ≤ +1 .

Since a linear element is defined iso-parametrically, the same considerations hold

for the variation of the boundary quantity, leading to a general equation

f(ξ) = ψ1(ξ)f1 + ψ2(ξ)f2 , (3.9)

where f1and f2 are the values of the function f(x) at the nodes 1 (or j) and 2

(or j + 1), and f(ξ) represents any of the functions x(ξ), y(ξ), u(ξ) or un(ξ). The

remaining terms are referred to as linear shape functions

ψ1(ξ) =
1

2
(1− ξ) ,

ψ2(ξ) =
1

2
(1 + ξ) .

(3.10)
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Using the linear approximation (3.9) for the boundary quantities, the line integ-

rals appearing in (3.2) become

ˆ
Γj

v∂nuds =

ˆ +1

−1
v
[
ψ1(ξ)∂nu

1 + ψ2(ξ)∂nu
2
] lj

2
dξ = gij1 ∂nu

1 + gij2 ∂nu
2 , (3.11)

ˆ
Γj

u∂nvds =

ˆ +1

−1
∂nv

[
ψ1(ξ)u1 + ψ2(ξ)u2

] lj
2
dξ = hij1 u

1 + hij2 u
2 , (3.12)

where the coefficients are

gij1/2 =
lj
2

ˆ +1

−1
vψ1/2(ξ)dξ , (3.13)

hij1/2 =
lj
2

ˆ +1

−1
∂nvψ1/2(ξ)dξ , (3.14)

and the fundamental solution

v =
1

2π
ln(r) ,

∂v

∂n
=

1

2π

cosφ

r
,

considering the radius r =
√

[x(ξ)− xi]2 + [y(ξ)− yi]2 as the distance between the

source point and the boundary integration point.

Substituting (3.11) and (3.12) back into (3.2), the latter yields

−εiui +
J∑
j=1

Ĥiju
j =

J∑
j=1

Gij∂nu
j , (3.15)

where

Ĥij =

{
hi11 + hiJ2 for j = 1

hij1 + hij−1
2 for j = 2, 3, . . . , J

,

Gij =

{
gi11 + giJ2 for j = 1

gij1 + gij−1
2 for j = 2, 3, . . . , J

.

Equation (3.15) may be written in matrix form as

[H] {u} = [G] {∂nu} , (3.16)

defined

[H] = − [ε] +
[
Ĥ
]
,

where [ε] is a diagonal matrix with elements the coefficients εi = αi/2π (αi is the

angle between the elements i and i− 1).
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3.1.3 Quadratic BEM

Constant and linear elements cannot approximate with sufficient accuracy the geo-

metry of curvilinear boundaries. For this reason, it is recommended to use curvilinear

elements, for which the polynomials are of degree higher than one.

For quadratic elements, the geometry is approximated by a parabolic arc, con-

necting the two end points with the mid one. Thus, each element has three nodes

placed at the extreme and mid points, while the boundary quantity is assumed to

vary quadratically between the nodal values. Since the geometry and the boundary

quantity are approximated over the element by polynomials of the same degree, the

former is said to be depicted iso-parametrically.

When a quadratic variation is assumed, the boundary quantities are expressed

by a polynomial of the form

f(s) = α0 + α1s+ α2s
2 . (3.17)

The coordinates of the point (x, y) lying on the boundary Γ are also functions of

s, i.e. x = x(s) and y = y(s). Consequently v = v(s) and ∂nv = ∂nv(s) too.

In order to perform line integrations, the interval is normalized with respect to

the intrinsic coordinate ξ, leading to the transformation

I =

ˆ
Γj

w(s)ds ⇒ I =

ˆ +1

−1
w∗(ξ)|J(ξ)|dξ , (3.18)

where |J(ξ)| is the Jacobian of the transformation, which maps the parabolic arc Γj
of the xy-plane onto the straight line segment with η = 0 and −1 ≤ ξ ≤ +1 of the

ηξ-plane

ds =
√
dx2 + dy2 =

√
[x′(ξ)]2 + [y′(ξ)]2 dξ ,

the expression of the jacobian is

|J(ξ)| =
√

[x′(ξ)]2 + [y′(ξ)]2 . (3.19)

Fig. 3.2 shows graphically the normalization and the mapping of the quadratic

element.

The boundary quantity is approximated directly in the interval [−1,+1] by a

second order polynomial in ξ, according to (3.17)

f(ξ) = α0 + α1ξ + α2ξ
2 . (3.20)

The coefficients α0, α1 and α2 are determined from the requirement that the function

takes the nodal values f1, f2 and f3 at points ξ = −1, 0,+1, respectively. Results
f(−1) = f1 = α0 − α1 + α2

f(0) = f2 = α0

f(+1) = f3 = α0 + α1 + α2

⇒


α0 = f2

α1 =
f3 − f1

2

α2 =
f1 − 2f2 + f3

2

.
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Figure 3.2: Quadratic element in global and local coordinate system.

Introducing the resulting coefficients in (3.20), the expression of the boundary

quantity in terms of the three nodal values becomes

f(ξ) = f2 +
f3 − f1

2
ξ +

f1 − 2f2 + f3

2
ξ2 = ψ1(ξ)f1 + ψ2(ξ)f2 + ψ3(ξ)f3 ,

where the shape functions for the quadratic element are

ψ1(ξ) = −1

2
ξ(1− ξ) ,

ψ2(ξ) = (1− ξ)(1 + ξ) ,

ψ3(ξ) = +
1

2
ξ(1 + ξ) .

Since a quadratic element is depicted iso-parametrically, the same considerations

hold also for the geometry, which leads to

x(ξ) = ψ1(ξ)x1 + ψ2(ξ)x2 + ψ3(ξ)x3 ,

y(ξ) = ψ1(ξ)y1 + ψ2(ξ)y2 + ψ3(ξ)y3 .

Finally, the Jacobian can be expressed as

|J(ξ)| =
√

[x′(ξ)]2 + [y′(ξ)]2 =

√
(b1 + 2b2ξ)

2 + (c1 + 2c2ξ)
2 , (3.21)

where

b1 =
x3 − x1

2
, b2 =

x1 − 2x2 + x3

2

c1 =
y3 − y1

2
, c2 =

y1 − 2y2 + y3

2

.

Taking into account the quadratic variation of the boundary quantities on the ele-

ments, the line integrals of (3.2) yields

ˆ
Γj

v∂nuds =

ˆ +1

−1
v
[
ψ1(ξ)∂nu

1 + ψ2(ξ)∂nu
2 + ψ3(ξ)∂nu

3
] lj

2
dξ

= gij1 ∂nu
1 + gij2 ∂nu

2 + gij3 ∂nu
3 ,

(3.22)
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ˆ
Γj

u∂nvds =

ˆ +1

−1
vn
[
ψ1(ξ)u1 + ψ2(ξ)u2 + ψ3(ξ)u3

] lj
2
dξ

= hij1 u
1 + hij2 u

2 + hij3 u
3 ,

(3.23)

where, for α = 1, 2, 3

gijα =

ˆ
Γj

vψαds ,

hijα =

ˆ
Γj

ψα∂nvds .

In order to evaluate the above integrals, their integrands are expressed in terms

of the variable ξ

gijα =

ˆ +1

−1
ψα(ξ)

ln r(ξ)

2π
|J(ξ)|dξ ,

hijα =

ˆ +1

−1
ψα(ξ)

cosφ(ξ)

2πr(ξ)
|J(ξ)|dξ .

It has to be highlighted that, in this formulation, the angle φ appearing in the

kernel depends on ξ both for the radius r and the normal vector n, due to the fact

that the latter is a function of the position over the element for geometries with

order higher than 1.

The boundary integral equation, for quadratic elements, is discretized as

εiui +

J∑
j=1

3∑
α=1

hijαu
j
α =

J∑
j=1

3∑
α=1

gijα ∂nu
j
α , (3.24)

where J is the total number of elements, the index i refers to the source point while

the index j here refers to the boundary element. Since for the quadratic elements

the number of nodes per element is three, the closed boundary is characterized by

I = 2J nodes [8].

Keeping in mind the last statement, important considerations follow. The index

j, which until now has been associated to the j-th element, must be considered

instead as the index that refers to the node q where the boundary condition is

prescribed. In this way, even for quadratic elements, i and j are the row and column

counters, respectively, while I ×J is the size of square matrices. Results the general

system

[H] {u} = [G] {∂nu} , (3.25)
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where, applying previous considerations

Ĥij =


hi11 + hiJ3 for j = 1

hij2 for j even (j = 2, 4, . . . , J)

hij1 + hij−1
3 for j odd (j = 3, 5, . . . , J − 1)

, (3.26)

Gij =


gi11 + giJ3 for j = 1

gij2 for j even (j = 2, 4, . . . , J)

gij1 + gij−1
3 for j odd (j = 3, 5, . . . , J − 1)

. (3.27)

As a result, for quadratic elements the coefficients at the element end points have

two terms, related to the forward and backward incidence, while those at element

center points have only one term. As already mentioned, these influence coefficients

relate node pi, where the fundamental solution is applied, to the node pj , where the

boundary condition is prescribed.

3.1.4 Rearrangement of matrices

Since only one of the two boundary quantities is supposed to be known at each

node, the resulting system of equations in the form (3.25) has to be rearranged on

the basis of the boundary conditions. If the value of {u} is unknown at a node, then

the respective column of [H] remains at the left hand side of (3.25), otherwise this

column is multiplied by the known value of {u}, its sign is switched and is shifted

to the right hand side of the equation. Similarly, if the value of {∂nu} is unknown,

then the respective column of [G] is shifted with opposite sign to the left hand side

of the equation. The unknowns are rearranged by examining all the nodes of the

boundary. After completing this process, the right hand side of the equation contains

only known quantities and, thus, the matrix multiplication results in a single vector

[A] {z} = {b} . (3.28)

The system (3.28) is solved for z, which is the vector of unknown boundary values.

3.1.5 Evaluation of line integrals

The matrices [G] and [H] appearing in the boundary integral equation require the

computation of line integrals, whose integrands are products of the fundamental

solution or its normal derivative. Two cases are dictated by the behavior of this

solution: outside and inside integration.

In the former case, the line integrals are evaluated numerically using a standard

Gaussian quadrature ˆ +1

−1
f(ξ)dξ =

K∑
k=1

ωkf(ξk) ,
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where K is the number of integration/Gauss points, whereas ξk and ωk are the

abscissas and weights of the Gaussian quadrature of order k. This is the most

suitable method for the numerical evaluation of BEM integrals, since it approximates

the integral with great accuracy. The accuracy depends not only on the number

of integration points, but also on how the integrand varies within the integration

interval (a smooth variation of the integrand gives more accurate results).

In the latter case, the source lies on the element over which the integration is

performed. As the integration point runs along the whole element, it will coincide

inevitably with the source point. There, the distance r vanishes and the integrands

exhibit a singular behavior, because the factors ln r and cosφ/r become infinite for

r = 0. These integrals are known as singular integrals, their value exists and is

determined by special integration techniques. They are distinguished in integrals

with logarithmic singularity and those with Cauchy singularity.

Constant BEM

� Outside integration (i 6= j)

In this case the point pi lies outside the j-th element, which means that the

distance r = |qj−pi| does not vanish and, consequently, the integral is regular.

The numerical evaluation, after the transformation that maps the global co-

ordinates onto the integration interval [−1,+1], is carried out in the following

way

Gij =

ˆ +1

−1

1

2π
ln r(ξ)

lj
2
dξ =

lj
4π

K∑
k=1

ln r(ξk)ωk . (3.29)

The first integral in (3.29) can also be evaluated analytically. Referring to the

Fig. 3.3 and noticed that

ds cosφ = rdα ,

which can be used to derive

Ĥij =

ˆ
Γj

1

2π

cosφ

r
ds =

ˆ
Γj

1

2π
dα =

αj+1 − αj
2π

, (3.30)

where the angles are computed as

tanαj+1 =
yj+1 − yi
xj+1 − xi

,

tanαj =
yj − yi
xj − xi

.

� Inside integration (i = j)
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Figure 3.3: Definition of angles involved in the numerical integration over constant ele-

ments.

In this case node pi coincides with node pj , and r lies on the element. Con-

sequently, it is φ = π/2 or φ = 3π/2, which yields to cosφ = 0 in both cases.

Follow

xpj =
xj+1 + xj

2
,

ypj =
yj+1 + yj

2
,

and the distance r

r(ξ) =

√
[x(ξ)− xpj ]2 + [y(ξ)− ypj ]2 =

lj
2
|ξ| .

Hence the influence coefficient can be computed as

Gjj =

ˆ
Γj

1

2π
ln rds = 2

ˆ lj/2

0

1

2π
ln rdr =

1

π
[r ln r − r]lj/20

=
1

π

lj
2

[
ln

(
lj
2

)
− 1

]
,

(3.31)

Ĥjj =
1

2π

ˆ
Γj

cosφ

r
ds =

1

2π

ˆ +1

−1

cosφ

|ξ|
dξ =

2

2π
[cosφ ln |ξ|]10

= 0 .

(3.32)

It has to be highlighted that, for higher order elements, analytical integration

is not applicable for the case of Cauchy singularity and, for this reason, other

integration techniques are employed.
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Linear and Quadratic BEM The case of linear and quadratic BEM must be

treated carefully, since over each single element more than one node is defined.

Consequently, in these cases, the inside integration has to be differentiated in two

sub-cases, i.e. when p and q are in the same element but p 6= q or when p and q are

in the same element and p = q [8].

In the first case, the kernels are singular, i.e. they tend to infinity as point q is

approached, but the shape function ψα(ξ) in the vicinity of p is of the order r(p, q)

and tends to zero. Therefore, the integrals of the product of the kernels and the

shape function tend to a finite value instead of being singular and the evaluation

can be carried out using the standard Gaussian quadrature.

In the second case the kernels still tend to infinity whereas the shape function

tends to unity. This leads to an infinite, or singular, integral of the product .

� Cauchy singularity

The matrices [G] and [H] are affected only by the boundary geometry, its dis-

cretization and the employed type of element. Hence, these matrices do not

depend on the boundary conditions. The indirect evaluation of the diagonal

influence coefficients Hii for linear and quadratic BEM is based on this prop-

erty. Considering a closed domain Ω, the diagonal element in the i-th row of

matrix [H] is equal to the negative sum of the remaining elements in this row

Hii = −
J∑
j=1
j 6=i

Hij .

Therefore, this method avoids the evaluation of any singular integral for the

coefficients of matrix [H].

� Logarithmic singularity for linear BEM

This kind of singularity, for the linear BEM, can be threated analytically by

solving the integrals by parts in the local coordinate system, yielding the fol-

lowing analytical expression for the influence coefficients

Gjj = gjj1 + gjj−1
2 ,

and the two terms are calculated as [5]

gjj1 =
lj
4π

[ln(lj)− 1.5] ,

gjj−1
2 =

lj
4π

[ln(lj−1)− 1.5] ,

where

lj =

√
(xj+1 − xj)2 + (yj+1 − yj)2 .
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� Logarithmic singularity for quadratic BEM

This kind of integrals, for quadratic BEM, can be computed thanks to the

subtraction and series expansion method [9]: it deals with the singularity by

subtracting it out, using a function that is found from an appropriate series

expansion and which has the same singular properties. This yields to the sum

ˆ +1

−1
F (ξ)dξ =

ˆ +1

−1
F (ξ)∗ +

ˆ +1

−1
{F (ξ)− F (ξ)∗}dξ , (3.33)

where F (ξ)∗ has a singularity of the same type as F (ξ), so that the remainder

F (ξ) − F (ξ)∗ is not singular and its integral can be evaluated using ordinary

numerical quadrature methods such as Standard Gaussian quadrature.

Concerning the construction of the function F (ξ)∗, a general procedure is

provided by considering the series expansion of F (ξ). As is known, only the

integrands appearing in (3.33) with the form

ψα(ξ) ln |p(ξ)− pα| |J(ξ)| , (3.34)

need a special treatment. Each of the three terms of (3.34) can be expanded

separately as a Taylor series about the point pα, where α = 1, 2 or 3.

The latter procedure allows to identify and isolate the singular part of integ-

rand F (ξ), and thus F (ξ)∗ can be defined. At this point, the resulting integrals

can be evaluated in a similar way to the linear elements case.

3.1.6 Solution at internal points of the domain

The solution of (3.2) yield the unknown boundary quantities u and ∂nu. Therefore,

knowing all the boundary values on Γ, the solution u can be computed at any point

P (x, y) in the domain Ω still by virtue of (3.2) for ε(P ) = 1

u(P ) =
J∑
j=1

Hiju
j −

J∑
j=1

Gij∂nu
j , (3.35)

where the influence coefficients are computed again from integrals, but in this case pi
is replaced in the expression by the internal point P , avoiding any singular integrals.

3.2 Galerkin method

For the Galerkin method [6], one can write (2.34) as

Au = f on Γ , (3.36)
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where A is the boundary integral operator and f is the harmonic function, or its

derivative, defined along the boundary Γ. We look for the approximated solution

u(x) =

J∑
j=1

γjµj(x) , (3.37)

with basis functions {µj |j = 1, ..., J} and unknown coefficients {γj |j = 1, ..., J}.
Since u is an approximation of the real solution, substituting it in the initial equation

(3.36) will result in an error

Au− f = e . (3.38)

We assume the weighted average error of the approximation to be zero over Γ. Hence,

results the system of equations

J∑
j=1

(µk, Aµj) γj = (µk, f) for k = 1, ..., J , (3.39)

where the brackets (·, ·) denote the L2(Γ) inner product

(f, g) =

ˆ
Γ
f(x)g(x)do(x) (3.40)

3.2.1 HILBERT library

The MATLABr BEM library HILBERT [10] allows the numerical solution of the

2D Laplace equation, on some bounded domain with mixed boundary conditions,

by means of the Galerkin Boundary Element Method.

3.2.2 Representation formula

Each solution of (2.16) can explicitly be written in the form

u(P ) = Ṽ φ(P )− K̃g(P ) , (3.41)

where φ = ∂u/∂n|Γ and g = u|Γ. The involved integral operators read

Ṽ φ(P ) =− 1

2π

ˆ
Γ

log |P − q|φ(q)dΓ(q) , (3.42)

K̃g(P ) =− 1

2π

ˆ
Γ

(q − P ) · nq
|P − q|2

g(q)dΓ(q) , (3.43)

where nq denotes the outer unit vector of Ω at some point q ∈ Γ, whereas r = P − q
is the distance between the evaluation point P in Ω and the integration point q on

Γ.
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3.2.3 Boundary discretization

The closed boundary Γ is partitioned into a finite number of open and disjoint

boundary pieces, e.g. in a Dirichlet boundary ΓD and a Neumann boundary ΓN ,

that is, Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Let εl = {E1, ..., EJ} be a finite set of line

segments Ei ∈ εl and κl = {z1, ..., zJ} be the associated set of nodes of the mesh εl.

Here, element Ei is identified by its extreme points zj and zk. Elements and nodes

are numbered anticlockwise.

For mixed boundary value problems, missing Neumann data are approximated

by an εl-piecewise constant function Φl ≈ φ and missing Dirichlet data are approx-

imated by an εl-piecewise and continuous function Gl ≈ g. Throughout, HILBERT

uses the canonical bases, i.e., characteristic functions χj associated with elements

Ej ∈ εl to represent discrete fluxes Φl and nodal hat functions ζk associated with

nodes zk ∈ κl to represent discrete traces Gl.

3.2.4 Dirichlet problem: Symm’s integral equation

The Laplace problem with Dirichlet boundary condition is equivalently recast in

Symm’s integral equation [10]

V φ =

(
K +

1

2

)
g , (3.44)

with g being the known Dirichlet data and φ being the unknown Neumann data.

To discretize (3.44) we first replace the continuous Dirichlet data g by its nodal

interpolant

Gl =

J∑
j=1

g(zj)ζj . (3.45)

Then, we define the unknown vector {x} ∈ RJ and the vector {g} ∈ RJ from

Φl =
J∑
j=1

xjχj and Gl =
J∑
j=1

gjζj . (3.46)

The Galerkin formulation is thus equivalent to the linear system

(V x)k =
J∑
j=1

xjVkj =
J∑
j=1

gj

(
Kkj +

1

2
Mkj

)
=

(
Kg +

1

2
Mg

)
k

, (3.47)

that is solved for {x}, with k = 1, ..., J .
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3.2.5 Computation of matrices [V], [K] and [M]

The matrices [V ] , [K] , [M ] ∈ RJ×J defined in (3.47) are implemented in the pro-

gramming language C via the MATLABr-MEX-Interface.

The simple-layer potential matrix [V ] is returned by call of ”buildV.m”. Its

entries read

Vkj = − 1

2π

ˆ
Ek

ˆ
Ej

log |p− q|dΓ(q)dΓ(p) . (3.48)

The double-layer potential matrix [K] is returned by call of ”buildK.m”. Its

entries read

Kkj = − 1

2π

ˆ
Ek

ˆ
supp(ζj)

(q − p) · nq
|p− q|2

ζj(q)dΓ(q)dΓ(p) . (3.49)

The mass matrix [M ] is returned by call of ”buildM.m”. Its entries read

Mkj =

{
0 if zj /∈ {zm, zn} ,
length(Ek)/2 if zj ∈ {zm, zn} ,

(3.50)

where Ek = [zm, zn] ∈ εl.

3.2.6 Neumann problem: hypersingular integral equation

The Laplace problem with Neumann boundary condition is equivalently recast in

the hypersingular integral equation [10]

Wg =

(
1

2
−K ′

)
φ (3.51)

with g being the unknown Dirichlet data and φ being the known Neumann data.

To discretize (3.51) we first replace the Neumann data φ by its L2-projection

Φl|Ej =
1

length(Ej)

ˆ
Ej

φdΓ = pj , (3.52)

such that it holds ˆ
Γ

ΦldΓ =
∑
E∈εl

ˆ
E

ΦldΓ = 0 . (3.53)

and the Gauss Divergence Theorem is satisfied.

Then, we define the unknown vector {x} ∈ RJ and the vector {p} ∈ RJ from

Gl =

J∑
j=1

xjζj and Φl =

J∑
j=1

pjχj . (3.54)
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The Galerkin formulation is thus equivalent to the linear system

((W + S)x)k =

J∑
j=1

xj (Wkj + Skj) =

J∑
j=1

pj

(
1

2
Mjk −Kjk

)

=

(
1

2
MT p−KT p

)
k

,

(3.55)

that is solved for {x}, with k = 1, ..., N .

3.2.7 Computation of matrices [W] and [S]

The matrices [W ] , [S] ∈ RJ×J defined in (3.55) are implemented in the programming

language C via the MATLABr-MEX-Interface.

The hypersingular integral operator [W ] is returned by call of ”buildW.m”. Its

entries are computed with the help of Nedelec’s formula [10], which gives a direct

link between the matrices [W ] and [V ], namely, each entry of [W ] is the weighted

sum of four entries of [V ].

The stabilization term matrix [S] is returned by call of ”buildHypsingStabiliza-

tion.m”. It is assembled as [S] = {c}{c}T , with

ck =

ˆ
Γ
ζkdΓ =

J∑
i=1

ˆ
Ei

ζkdΓ , (3.56)

where ˆ
Ei

ζkdΓ =

{
0 if zk /∈ Ei ,
length(Ei)/2 else .

(3.57)

3.2.8 Mixed problem

We consider the mixed boundary value problem

∇2u = 0 in Ω ,

u = uD on ΓD ,

∂u

∂n
= φN on ΓN .

(3.58)

The missing boundary data are the values of the unknown boundary conditions

uN and φD on the boundary portions ΓN and ΓD, respectively

uN = u− uD and φD =
∂u

∂n
− φN . (3.59)

The Galerkin discretization is performed for the two separate problems on ΓD
and ΓN . We replace the continuous Dirichlet data by its nodal interpolant and the
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Neumann data by its L2-projection

UD,l =
J∑
i=1

giζi and ΦN,l =
J∑
i=1

piχi , (3.60)

where the representation for ΦN,l shrinks to a sum over all elements on ΓN , whereas

UD,l takes into account all nodes in order to satisfy the continuity of the problem.

The unknowns are defined as

UN,l =
n∑
i=1

xiζi and ΦD,l =
d∑
i=1

xn+iχi . (3.61)

where n and d are the dimensions of the Neumann and Dirichlet boundary problem,

respectively.

We write the linear system of equations as

[A] {x} = {b} , (3.62)

where [A] ∈ R(n+d)×(n+d) and {b} ∈ Rn+d are computed accordingly to the data

representation (3.60). Introducing j = 1, ..., n and k = 1, ..., d, the right-hand side

vector {b} is assembled as

bj =

(
1

2
MT p−KT p−W T g

)
j

,

bn+k =

(
1

2
Mg +Kg − V p

)
k

,

such that, results

{b} =


(

1

2
pTM − pTK − gTW

)T
|ΓN(

1

2
Mg +Kg − V p

)
|ΓD

 . (3.63)

Consequently, the Galerkin matrix [A] is written as a combination of operators

[A] =

[
[W ] |ΓN×ΓN

[K]T |ΓN×ΓD

[−K] |ΓD×ΓN
[V ] |ΓD×ΓD

]
. (3.64)

Finally, (3.62) is solved for {x}.

3.2.9 Solution at internal points of the domain

Once the vector of the unknowns {x} is retrieved, one can compute the solution u at

any internal point P of Ω. Evaluation of the simple-layer potential Ṽ and the double-

layer potential K̃ in (3.41) at arbitrary evaluation points in R2 is provided, as soon

as g and φ are computed at any point q of Γ, by the MEX-functions ”evaluateV.m”

and ”evaluateK.m”.
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3.3 Maximum error

The solution u in (3.35) and (3.41) is only an approximation of the real solution u′

in Ω = Ω ∪ Γ. Since both of them are harmonic functions which satisfy the Laplace

equation everywhere on Ω, consequently even the absolute error e = |u − u′| is an

harmonic function with the same properties in Ω. The maximum principle (2.17)

max
Ω

e(x, y) = max
Γ

e(x, y) , (3.65)

states that the maximum error introduced when we approximate u′ with u lies on

the boundary Γ.
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Validation of the Numerical

Implementation of Collocation

BEM

In this chapter, the BEM is applied to the 2D case study of a infinite straight wire.

This is useful to validate the MATLABr BEM code, to identify and evaluate the

features of the MVP and MSP formulation, and even to compare the linear and

quadratic elements results. A boundary value problem defined over a rectangle is

considered.

4.1 The Biot-Savart law

The Biot-Savart law is used for computing the magnetic flux density B generated

by a steady state current I at a position identified by r in 3D space. The problem is

fixed in a cylindrical coordinate system, where the current is pointing in the direction

of the wire element dl.

The differential form of the equation is expressed as

dB(r) =
µ0

4π
I
dl× r

|r|3
, (4.1)

and is then integrated over the wire path C

B(r) =
µ0

4π

ˆ
C

Idl× r

|r|3
. (4.2)

For the infinite straight wire case, the problem reduces to a 2D case since the

field does not depend on the z coordinate, due to the symmetry of the problem.

Results

B(r) =
µ0I

2π

l× r

|r|
=
µ0I

2πr
α , (4.3)
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where I is the intensity of the current flowing into the wire, r is the absolute value

of the distance between the wire and the point at which B is computed, and finally

α is the direction of the field resulting from the cross product dl× r.

At this point, starting from the analytical expression of the magnetic flux density

in (4.3), it is possible to derive the expressions of the magnetic potential:

� Magnetic Vector Potential

Given the relation (C.10) and knowing the expression of the curl in cylindrical

coordinates

µ0I

2πr
α =

(
1

r

∂Az
∂α
− ∂Aα

∂z

)
r +

(
∂Ar
∂z
− ∂Az

∂r

)
α

+
1

r

(
∂ (rAα)

∂r
− ∂Ar

∂α

)
z ,

(4.4)

leads to

Az = −µ0I

2π
ln r + d , (4.5)

where d is the integration constant and has to be set in order to get the

appropriate reference value.

� Magnetic Scalar Potential

Given the relation (C.2) and knowing the expression of the gradient in cyl-

indrical coordinates

µ0I

2πr
α =

∂φm
∂r

r +
1

r

∂φm
∂α

α +
∂φm
∂z

z , (4.6)

leads to

φm =
µ0I

2π
α+ c , (4.7)

where the angle α is defined in the interval [0, 2π) and the integration constant

c establishes the reference for the computation of the potential.

4.2 The test problem

For the case study, a current I of 1000 A, with direction pointing out of the plane,

is considered as the source of a magnetic flux density B. Once the geometry of

the boundary is established, one can compute analytically, using (4.5) and (4.7), the

values of the vector and scalar potential at the nodes of the boundary value problem,

in order to be able to use them as boundary conditions for the BEM implementation.

The geometry of the problem is represented in Fig. 4.1: the left side of the

rectangular boundary {−200 mm ≤ x ≤ +200 mm, −30 mm ≤ y ≤ +30 mm} is

placed at 100 mm from the source.

36



Validation of the Numerical Implementation of Collocation BEM

Figure 4.1: Geometry of the boundary value problem. K nodes are numbered anticlock-

wise, as shown for the corner points.

Fig. 4.2 shows the equipotential lines of the vector and scalar potentials in the

xy-plane. As can be noticed, the equipotentials of the MVP are the streamlines of

the vector field B , or better, the magnetic flux lines. The equipotentials of the MSP

are those lines that cross perpendicularly the field streamlines.

Figure 4.2: Equipotential lines in the two dimensional plane.

4.2.1 Dirichlet boundary conditions

The MVP and MSP values are computed at K = 92 equidistant points over the rect-

angular boundary, progressing in counter-clockwise sense starting from the corner

(−200 mm,−30 mm) (see Fig. 4.1).

Fig. 4.3 and Fig. 4.4 show the trend of the two quantities over the rectangu-

lar boundary. The scalar potential φm is not a single-valued function of position.

Looking at (4.7) with c = 0, we notice that only if any current I is enclosed by the

computed path, then a single-potential function can be defined. In this case, the

reference, or better the integration constant c of (4.7), is fixed such that the scalar
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potential φm equals zero at the first corner of the boundary. Contrarily, for the

magnetic potential Az, the integration constant d of (4.5) is the value that has been

set to zero.

Figure 4.3: MVP trend along the boundary.

4.3 Dirichlet to Neumann map

As a first step, the BEM computes, at the nodes of the boundary, the unknown Neu-

mann boundary conditions from the Dirichlet ones (Dirichlet to Neumann map). We

know from Appendix C that the relations between the derivatives of the potentials

and the field B in a two-dimensional space are

B = i
∂Az
∂y
− j

∂Az
∂x

, (4.8)

B = i
∂φm
∂x

+ j
∂φm
∂y

, (4.9)

in particular we refer to normal and tangential derivatives with respect to the bound-

ary. Clearly, for a rectangular boundary, one can easily relate the x and y Cartesian

components of the field with the normal and tangential ones over each of the four
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Figure 4.4: MSP trend along the boundary.

sides

B
(1)
t = +B(1)

x = +
∂Az
∂y

(1)

= −∂Az
∂n

(1)

, B(1)
n = −B(1)

y = −∂φm
∂y

(1)

= +
∂φm
∂n

(1)

,

B
(2)
t = +B(2)

y = −∂Az
∂x

(2)

= −∂Az
∂n

(2)

, B(2)
n = +B(2)

x = +
∂φm
∂x

(2)

= +
∂φm
∂n

(2)

,

B
(3)
t = −B(3)

x = −∂Az
∂y

(3)

= −∂Az
∂n

(3)

, B(3)
n = +B(3)

y = +
∂φm
∂y

(3)

= +
∂φm
∂n

(3)

,

B
(4)
t = −B(4)

y = +
∂Az
∂x

(4)

= −∂Az
∂n

(4)

, B(4)
n = −B(4)

x = −∂φm
∂x

(4)

= +
∂φm
∂n

(4)

.

Sides are numbered anti-clockwise starting from the lower one. Finally, it results

that over the whole boundary holds

Bt = −∂Az
∂n

, Bn = +
∂φm
∂n

, (4.10)

from which is possible to deduce that the Neumann boundary conditions for the

MVP and MSP formulations are reconstructions of the field tangential and normal

components, respectively, at the nodes of the boundary. In order to prove that, a

comparison is carried out in Fig. 4.5 - 4.6 between the values obtained from the
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BEM, for both the formulations, and the field components computed by Biot-Savart

at the same points.

Figure 4.5: Comparison of the tangential field component computed and reconstructed by

quadratic BEM at the nodes of the boundary.

As can be seen in Fig. 4.7 and Fig. 4.8 an higher error occurs on the right side

of the contour and, from the comparison, the error is significantly bigger for the

tangential component. This is due to the high variation of the field in this part of

the boundary, as shown in Fig. 4.5 - 4.6. Furthermore, it can be noticed that the

error at the corners, i.e. at the nodes number 1, 41, 47 and 87, is smaller. This is due

to the fact that a tangential ,or normal, component can’t be defined in these points,

and for this reason the value is computed as the average between the components of

the interested sides. This procedure is similar to the one carried out by BEM, and

consequently the reconstructed and computed values tend to be close to each other.

A further proof of the correctness of the results can be derived from the com-

putation of the Gauss’ and Ampere’s law over the closed boundary. Obviously, a

discretized form is employed in this case, since the field is known at a finite number
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Figure 4.6: Comparison of the normal field component computed and reconstructed by

quadratic BEM at the nodes of the boundary.

K of points, i.e. at the nodes of the boundary

K∑
k=1

B(k)
n · S(k) = 0 , (4.11)

K∑
k=1

B
(k)
t

µ0
· l(k) = Ie , (4.12)

where the current Ie enclosed in the domain should be zero since the field source,

that is the filamentary current, is placed outside the bounded domain. Note that,

since the nodes are placed at equidistant points, the length l(k) and consequently

the unitary surface S(k) = l(k) · 1 are equal for all the k-th points. The results are

computed numerically as relative values

∑K
k=1B

(k)
n · S(k)

Bref
n · S

= 1.5719e− 13 , (4.13)
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Figure 4.7: Absolute error associated to Fig. 4.5.

∑K
k=1

B
(k)
t

µ0
· l(k)

Bref
t

µ0
· l

= 0.0714 , (4.14)

where the reference values Bref
n and Bref

t are the maximum values of the normal and

tangential field components computed by Biot-Savart over the boundary. The results

prove that an bigger error arises when the Ampere’s law is computed. This can be

explained looking at the approximations made in (4.11) and (4.12), since the field,

computed point-wise, in these discretized forms is assumed to be constant over the

element length l. This assumption works well with the normal component, because

the error in this case is balanced by the horizontal sides variation, whereas the same

is not true for the tangential component, which is highly varying quadratically on

the right side only.
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Figure 4.8: Absolute error associated to Fig. 4.6.

4.4 Solution at internal points of the domain

Since the main goal is to find the solution of the Laplace equation inside the bounded

domain, the reference values of the MVP and of the MSP are computed with the

Biot-Savart law over the mid-line {−180 mm ≤ x ≤ +180 mm, y = 0}. Fig. 4.9

- 4.10 show the trend of the MVP and MSP, respectively, over the mid-line. It is

worth noting that, according to (4.5) and (4.7), the vector potential trend behaves

as − ln r, while the scalar potential remains constant for computations on y = 0 (α

is constant).

At this point, the errors arising in BEM reconstruction can be evaluated com-

paring the Biot-Savart values to the ones computed by BEM at the same points of

the domain. However, this evaluation does not allow to compare directly the two

formulations. For this reason, it is necessary to refer to the magnetic flux density

reconstruction. Fig. 4.7 show the trend of the magnetic flux density computed with

the Biot-Savart law over the mid-line.

Since the source current I is placed at point (−300 mm, 0), that is, on the X

axis, the field is entirely directed towards the y-direction. The y component of the
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Figure 4.9: MVP trend over the mid-line y=0.

field B can be computed by differentiation as

By = −∂Az
∂x

, By = +
∂φm
∂y

. (4.15)

Fig. 4.12 and Fig. 4.13 show the relative error εR arising in the magnetic flux

density reconstruction over the line y=0, defined as

εR = 100

∣∣∣∣By −B′yB′y

∣∣∣∣ , (4.16)

where By is the field computed by differentiation (4.15) starting from the reconstruc-

ted potential, while B′y is the one directly computed by the Biot-Savart law (4.3).

The comparison is carried out between the MVP and MSP formulation using both

the linear and quadratic elements. The following considerations can be noticed as

a conclusion

� Field variation

As can be seen both in Fig. 4.12 and Fig. 4.13, the error is not symmetric over

the mid-line. These results derive from the fact that the field, as expressed in

(4.3), is not varying linearly but like 1/r. This means that an high variation
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Figure 4.10: MSP trend over the mid-line y=0.

of the field occurs on the left side, whereas it decreases towards the right side.

This behavior is verified even in the different variation of the potentials along

the two vertical sides: along the left side the functions change much more than

on the right one, as Fig. 4.9 - 4.10 show.

� Linear and quadratic elements

The relative error defined in (4.16) is computed both for linear and quadratic

elements, allowing the comparison between the two methods. As can be seen

comparing Fig. 4.12 - 4.13, the error computed with the quadratic elements

results the smaller one. This is mainly due to the fact that this method is

able to approximate better the quadratic behavior of the potentials over the

boundary

� MVP and MSP

The reason of the different behavior of the error for the MVP and MSP formu-

lations in the linear BEM results, shown in Fig. 4.12, has to be found in the

trend of the potentials over the boundary. As Fig. 4.10 displays, the MSP is

varying linearly over the vertical sides, allowing the linear BEM to approxim-

ate the function with an high precision. The latter is not true for the remaining

45



Chapter 4

Figure 4.11: Magnetic flux density trend over the mid-line y=0.

horizontal sides and for the MVP, for which the quadratic function is not well

approximated. This is why the error associated to the MSP reconstruction is

overall slightly smaller.

Concerning Fig. 4.13, similar considerations can be done. The quadratic BEM

is able to replace in a good way the variation of the potentials over the whole

boundary. However, as it is shown, the error of the MSP reconstruction at the

edges is lower. This arises from the fact that the linear variation of the MSP

over the vertical sides is easier to approach then the quadratic one.

� BEM solution

The variation of the error at the edge of the mid-line is due to the proximity

to the sides of the boundary. In fact, is known that the BEM computation is

highly affected when the distance between the boundary nodes and the inner

points is close to zero.
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Figure 4.12: Relative error over y=0 (Linear elements).

4.5 Convergence analysis

In this section, a convergence analysis is carried out in order to investigate the

behavior of the errors appearing in BEM reconstruction when the length of the

boundary elements decreases, that is, when the number of nodes increases. Starting

from the standard case of K = 92, the number of nodes is doubled at each step,

such that other three cases, i.e. K = 184, 368 and 736, can be evaluated.

4.5.1 Field reconstruction along the boundary

The analysis is developed for the error in the reconstruction of tangential and normal

field components, i.e. the computation of Neumann boundary conditions from the

Dirichlet ones. The error norm is defined as

‖ε‖L2 =

√∑K
k=1 |B(k) −B′(k)|2

K
, (4.17)

where B(k) is the field component reconstructed by BEM, that is the retrieved Neu-

mann boundary condition, while B′(k) is the field component computed by the Biot-

Savart law, at node k. The sum is extended to all the nodes of the boundary and,
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Figure 4.13: Relative error over y=0 (Quadratic elements).

clearly, it is divided by the number of nodes K in order to correctly compare the val-

ues. Result are shown in Fig. 4.14. According to previous results, the error is smaller

for the computation of normal field components. The reason why the quadratic ele-

ments works better than the linear ones has to be investigated in Fig. 4.5 - 4.6,

where the trend of the tangential and normal field components over the boundary

is plotted.

4.5.2 Field reconstruction at internal points of the domain

The analysis is developed for the error in the reconstruction of the magnetic flux

density B, calculated from its Cartesian components as

|B| =
√
B2
x +B2

y , (4.18)

where Bx and By are computed from the derivatives of the BEM solution. In this

way, we can correctly compare the results. The error is computed at J = 121 points

inside the domain {−25 mm ≤ x ≤ +25 mm,−25 mm ≤ y ≤ +25 mm} as

||ε||L2 =

√√√√ J∑
j=1

∣∣∣∣B(j) −B′(j)
B′(j)

∣∣∣∣2 , (4.19)
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Figure 4.14: Convergence analysis for the error norm related to the BEM reconstruction

of normal and tangential components over the boundary. The evaluation is performed for

the MSP and MVP formulation, both with linear and quadratic elements.

where B(j) is the magnetic flux density derived from the BEM solution and B′(j) is

the value computed by the Biot-Savart law, both at the j-th point of the grid.

4.6 Neumann boundary conditions

Until now, the boundary value problem has been solved starting from Dirichlet

boundary conditions, that are Az for the MVP formulation and φm for the MSP

formulation. However, it is worth noting that, known the relations of (4.10), the

problem can be solved even starting from Neumann boundary conditions, i.e. start-

ing from the tangential, or normal, component of the field computed with the Biot-

Savart law at the K = 92 nodes of the boundary. Clearly, since the Neumann

boundary conditions refer to the normal derivatives of the potential, the solution

is not unique, and for this reason at least one nodes has to be defined with a Di-

richlet boundary condition. For the following case, the first node is chosen, which

means that at the left-down corner of the rectangle we compute the potential in-

stead of its normal derivative. The field is reconstructed by BEM over the line
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Figure 4.15: Convergence analysis for the error norm related to the BEM reconstruction of

the field B at J points of the domain {−25 mm ≤ x ≤ +25 mm,−25 mm ≤ y ≤ +25 mm}.

{−180 mm ≤ x ≤ +180 mm, y = 0} and subsequently compared with the field

computed with Biot-Savart at the same points. Results are shown in Fig. 4.16.
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Figure 4.16: Relative error in field reconstruction with quadratic BEM over the mid line

{−180 mm ≤ x ≤ +180 mm, y = 0} starting from K − 1 Neumann boundary conditions.
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Processing Simulated Data

In order to validate the BEM implementation and estimate the expected accuracy

in the field reconstruction, we first process data simulated by ROXIE for the two-

dimensional numerical model of a C-shaped dipole magnet, shown in Fig. 5.1. The

ROXIE (Routine for the Optimization of magnet X-sections, Inverse field calculation

and coil End design) software program package is an important tool that has been

developed for the design of the superconducting magnets for the LHC at CERN.

The software is used as an approach towards the integrated design of supercon-

ducting magnets including feature-based coil geometry creation, conceptual design

using genetic algorithms, optimization of the coil and iron cross-sections using a

reduced vector-potential formulation, 3-D coil end geometry and field optimization

using deterministic vector optimization techniques, tolerance analysis, production of

drawings by means of a DXF interface, end-spacer design with interfaces to CAD-

CAM for the CNC machining of these pieces, and the tracing of manufacturing errors

using field quality measurements [11].

5.1 2D ROXIE computation

The 2D computations that are used neglect the field variation along the magnet axis

{x, y, −1650 mm ≤ z ≤ +1650 mm}, avoiding the evaluation of fringe field effects

at the magnet extremities, as shown in Fig. 5.2. The integral along the z-axis of

the field simulated by Roxie in the 3D case is calculated with the trapezoidal rule

at eleven points over the x-axis and compared with the trend of the field values

simulated by 2D Roxie at the same points. Results are shown in Fig. 5.3.
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y

x

Figure 5.1: Cross section of the calibration dipole and magnetic flux density simulated by

the BEM-FEM package ROXIE.

5.2 Implementation of collocation BEM

The MATLAB code developed for the collocation BEM and validated with the test

problem is used to process two-dimensional ROXIE simulations.

5.2.1 Dirichlet to Neumann map

Magnetic vector potential values are simulated at equidistant points (5 mm) over the

rectangular boundary {−160 mm ≤ x ≤ +160 mm,−30 mm ≤ y ≤ +30 mm}, and

used as Dirichlet boundary conditions for the collocation BEM implementation. The

solution of the boundary integral equation provides Neumann data from Dirichlet

data; therefore the tangential components can be computed from the normal com-

ponents to the boundary (i.e., the outward fluxes) and can be compared with the

ROXIE simulations (Fig. 5.4). The absolute error plotted in Fig. 5.5 shows that the

error in the BEM reconstruction increases when the field variation is high. However,

it can be noticed that the error at the corners is smaller. This is due to the fact that a

tangential component can’t be defined in these points, and for this reason the value

is computed with Roxie as the average between the components of the interested

sides. This procedure is similar to the one carried out by BEM, and consequently

the reconstructed and computed values tend to be close to each other.
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Figure 5.2: Magnetic flux density trend along the magnet axis {x = 0, y = 0} for the 2D

and 3D case. The magnetic length for 2D simulation (hard-edge model) is calculated such

that the two integrals coincide.

A convergence analysis is shown in Fig. 5.6 for the relative error norm defined as

ε =

√∑K
k=1

∣∣∣B(k)
t −B

′(k)
t

∣∣∣2√∑K
k=1

∣∣∣B′(k)
t

∣∣∣2 , (5.1)

where B
(k)
t and B

′(k)
t are the tangential components reconstructed by BEM and

computed by Roxie, respectively, at the k-th node of the boundary. K is the total

number of boundary nodes.

5.2.2 Field reconstruction

The vertical component of the magnetic flux density is reconstructed, over the cent-

ral line {−155 mm ≤ x ≤ +155 mm, y = 0}, from the boundary data and is sub-

sequently compared with the direct solution from the ROXIE package. The resolu-

tion limit is investigated by different levels of discretization, that is, element nodes

equidistantly positioned every 1, 2, 5, and 10 mm. Using quadratic shape functions,
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Figure 5.3: Roxie simulation, for the 2D and 3D cases, at eleven points over the central

line {−150 mm ≤ x ≤ +150 mm, y = 0}.

a sufficient resolution (better than 0.3 units in 10000) is obtained for element sizes

of 5 mm (Fig. 5.7).

In order to prove the stability of the method to random noise on the measured

fluxes, a repeated run analysis (103 simulations) is carried out. Gaussian noise of

zero mean is superimposed on the simulated magnetic flux density values at the BEM

nodes. The standard deviation is considered to be 1.86 · 10−5 T, a value motivated

by the uncertainty in the measurements. Since the BEM reconstruction inside the

domain is a linear combination of the magnetic flux density values on its boundary,

the mean value of the error converges to zero. Fig. 5.8 shows the standard deviation

of the relative error in the reconstruction of the main component of the magnetic

flux density, defined as

e (x) =
B (x)−B′ (x)

B′ (x)
, (5.2)

where B and B′ are the field values reconstructed and simulated, respectively. It

is about one order of magnitude lower than the standard deviation of the Gaussian

noise added to the boundary data. This demonstrates the averaging effect of the

BEM reconstruction on random noise on the boundary data.

Since the BEM allows to reconstruct the MVP values, and consequently the field,

at any points inside the domain, a field vector plot is represented in Fig. 5.9. Mag-
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Figure 5.4: Tangential component of the magnetic flux density along the contour of the

rectangle. Nodes are numbered counter-clockwise with the first node positioned in x = −160

mm, y = −30 mm., i.e., the lower left corner of the rectangle.

nitude and direction of the field are computed as combinations of the reconstructed

field Cartesian components.

The field reconstruction can be evaluated in terms of field quality

Q(x, y) =

√
[By(x, y)−By0]2 + [Bx(x, y)−Bx0]2√

B2
y0 +B2

x0

, (5.3)

where By and Bx are the field components reconstructed by BEM at any point

(x, y) inside the domain, while the subscript ”0” denotes the ones reconstructed

in the center of the magnet, that is at point x = 0 , y = 0. As shown in Fig. 5.9,

the field is not varying significantly with respect to the reference value defined at

the center of the aperture. Furthermore, it tends to be quite higher in the central

region and, clearly, smaller when the vertical sides are approached. The two ”holes”

identify the border between these two regions.
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Figure 5.5: Absolute error associated to Fig. 5.4. Values are plotted in 10−4 Tesla. Bound-

ary corners are located at nodes number 1, 65, 77 and 141.

5.2.3 Field harmonics computation

The theory explained in Appendix A is now applied to the simulated data. We con-

sider a circle with reference radius r0 = 22 mm, centered firstly in x = 0 , y = 0 and

then shifted to x = 100 mm , y = 0. Values of relative normal multipole coefficients

bn are computed directly by Roxie, until the 20-th order, for the two different posi-

tions. At the same time, the Cartesian components of the field B are reconstructed

by BEM (quadratic elements, 5 mm) at N = 120 points over the same circles. The

radial field component Br is then calculated as

Br(r0, ϕ) = Bx(r0, ϕ) cos(ϕ) +By(r0, ϕ) sin(ϕ) , (5.4)

and then expanded until the 20-th harmonic in order to retrieve the interested multi-

pole coefficients. A comparison of the results for the two different positions is shown

in Fig. 5.10 and Fig. 5.11.

Different levels of BEM discretization are investigated in this case too, that

is, element nodes equidistantly positioned every 1, 2 and 10 mm, as well as the

”standard” evaluation at 5 mm. The analysis is carried out in Fig. 5.12 for the circle

centered in x = 100 mm , y = 0.
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Figure 5.6: Convergence analysis in the L2 relative error norm. Different levels of discret-

ization are employed, i.e. nodes equidistantly positioned every 10, 5, 2 and 1 mm, i.e. for

an increasing number of boundary nodes.

5.3 Implementation of Galerkin BEM

Until now only collocation BEM has been considered. We compare at this point

the results obtained with linear elements with the ones obtained by means of the

Galerkin method.

Fig. 5.13 compares the vertical component of the magnetic flux density sim-

ulated by ROXIE along the line {−150 mm ≤ x ≤ +150 mm, y = 0} with the one

reconstructed by collocation and Galerkin BEM at the same points of the internal

domain. Results can be analyzed from Fig. 5.14, where the relative error of the BEM

reconstruction, with respect to the simulated values, are displayed for the two meth-

ods. As we can see, collocation BEM is most accurate method in this evaluation.

Coherent results are obtained in Fig. 5.15, where the convergence analysis of the

relative error is performed for different levels of boundary discretization.
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Figure 5.7: Relative error in the BEM (quadratic elements) reconstruction

of the vertical component of the magnetic flux density along the central line

{−155 mm ≤ x ≤ +155 mm, y = 0}, given as a function of the mesh size.
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Figure 5.8: Standard deviation of the relative error in the reconstruction of the main com-

ponent of the magnetic flux density over the central line {−155 mm ≤ x ≤ +155 mm, y = 0}.
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Figure 5.9: Top: Vector representation of the magnetic flux density inside the domain

{−160 mm ≤ x ≤ +160 mm,−30 mm ≤ y ≤ +30 mm}. Bottom: Field quality representa-

tion in the same domain. Values are limited at 5 · 10−4 units.
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Figure 5.10: Comparison of relative normal multipole coefficients bn, computed over a

circle with radius r0 = 22 mm centered in x = 0 , y = 0. Values are normalized with respect

to the main field component at the center of the circle and plotted as units in 10+4.
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Figure 5.11: Comparison of relative normal multipole coefficients bn, computed over a

circle with radius r0 = 22 mm centered in x = 100 mm , y = 0. Values are normalized with

respect to the main field component at the center of the circle and plotted as units in 10+4.
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Figure 5.12: Convergence analysis in the reconstruction of relative normal multipole coef-

ficients bn, computed over a circle with radius r0 = 22 mm. Values are normalized with

respect to the main field component at the center of the circle and plotted as units in 10+4.
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Figure 5.13: Magnetic flux density reconstructed by two different BEM methods along the

mid-line {−150 mm ≤ x ≤ +150 mm, y = 0}. Comparison with ROXIE simulated data.
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Figure 5.14: Relative error associated to Fig. 5.13.
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Figure 5.15: Convergence analysis in the L2 relative error norm for the BEM reconstruc-

tion over the line {−150 mm ≤ x ≤ +150 mm, y = 0}. Different levels of discretization are

employed, that is, nodes equidistantly positioned every 10, 5, 2 and 1 mm.
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Processing Measured Data

In the previous chapters the proposed BEM processing technique has been validated

by means of a test problem and ROXIE simulated data. We finally process meas-

ured data in order to prove the correctness and the usefulness of the method. For

this purpose, a stretched-wire system is employed for the measurements inside the

aperture of the MCB22 dipole magnet (Fig. 6.1). This kind of magnets, available in

the Magnetic Measurement section’s lab, are mainly used as reference magnets for

the calibration of magnetic field transducers.

Figure 6.1: Single-stretched-wire system, in translating mode, mounted on the MCB22

reference dipole magnet.
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6.1 The single-stretched-wire system

The stretched-wire based system can be considered as reference equipment to meas-

ure main field strength and direction in static field dipole and quadrupole with high

accuracy [12]. This method is based on a single, Copper-Beryllium (Cu-Be), con-

ducting wire of 0.125 mm in diameter, guided by two precision displacement stages

at which the two end-points of the wire are fixed by ceramic ball bearings and kept

electrically on a floating potential. The wire is displaced within the magnet aperture

and pulled taut by means of a servo motor (Fig. 6.2). The relative position of the

wire is known with an accuracy of 1 µm. Finally, the return wire is routed through

a field free region.

Figure 6.2: Precision displacement stage and wire-tension motor for the stretched-wire

system.

The voltage drop across the connection terminals, when the wire is moving inside

the magnetic field, is measured and directly integrated by a fast digital integrator

(FDI) in order to get the flux linked with the surface that is traced out by the wire

displacement. The advantage of this technique concerns mainly the possibility to

take measurements on magnets with small apertures and large aspect ratio. In fact,

this is a limit for another standard device used for measuring integrated magnetic

fields, namely, the rotating coil magnetometer. In this system, the coil intercepts the

magnetic flux at a radius given by the dimensions of the measurement shaft, that

comprises a set of induction coils. For magnets of a rectangular aperture with aspect

ratio larger than 3:1, the cylindrical domain will cover only a portion of the magnet

aperture [13]. We therefore investigate on an alternative sampling technique which

is able to extend the covered domain and which is not bound to specific trajectories.
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6.1.1 Theoretical aspects

The voltage at the terminals of a moving conductive loop can be calculated with the

Faraday law in global form

U = −dΦ

dt
, (6.1)

where Φ is the magnetic flux through a surface S and U is the voltage induced along

its boundary ∂S. The global Faraday law is related to the Maxwell equation by

E = −∇φ− ∂A

∂t
, (6.2)

via

Φ =

¨
S
B · dS =

˛
∂S

A · dr . (6.3)

This can be proved as follows: the Lorentz force on a moving particle with charge

Q in a static magnetic field is given by

F = Q(E + v ×B) , (6.4)

where the integral of v ×B along the wire is called electromotive force (EMF) and

can be written as ˆ
∂S

(v ×B) · dr = −
ˆ
∂S

B · (v × dr) , (6.5)

where (v × dr)dt = dS is the surface traced by the line element dr over the time

interval dt, as shown in Fig 6.3. Therefore results

Figure 6.3: Surface traced by the moving line element over dt.

˛
∂S

(v ×B) · dr = −
¨
S

d

dt
(B · dS) = −dΦ

dt
, (6.6)
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that is, the motional EMF given by the line integral of the electric flux density is

the time rate of change of linked flux in the loop. However, closed loops are not

required for the application of (6.5).

6.1.2 Integrated field in dipole magnets

Provided that the loop resistance is sufficiently small compared to the voltmeter

input resistance (and therefore the current in the wire can be neglected) the terminal

voltage is U . The integrated voltage in (6.6) is proportional to the surface swept dS,

which, by moving the straight line segment of the stretched-wire in the x-direction,

yields
ˆ t2

t1
Udt =

ˆ t2

t1

ˆ l

0
(v ×B)dzdt =

ˆ x2

x1

ˆ l

0
Bydzdx =[x2 − x1]I(By) , (6.7)

where l is the magnetic length of the magnet. Given the start and final wire pos-

itions x1 and x2, we can deduce the field integral I(By). For a perfect dipole, the

integration of the measured voltage signal provides the field integrated over l as an

average over x, where x1 ≤ x ≤ x2.

6.1.3 Uncertainty analysis

The integrated field values are measured with an accuracy of 5 units in 10−4 at

nominal field. At each boundary node (xk, yk), three measurement repetitions are

acquired (m
(1)
k ,m

(2)
k ,m

(3)
k ); we computed the field value and its uncertainty as the

average m̄k and the standard deviation σk of these values. Since we know from

previous experiences that the standard deviation is 4.9 · 10−5 Tm, σk values can be

used to roughly verify the correctness of each set of measurements.

An interesting evaluation concerns the statistical distribution of the standard

deviations at the nodes of the horizontal and vertical sides of the boundary. Since on

the vertical sides the processed values are integrated fields B̄x in fringe field regions,

we deal with low signal-to-noise ratio. This is why higher values of uncertainty are

expected with respect to the horizontal side evaluation, as shown in Fig 6.4 - 6.5.

6.1.4 Limitations

The wire in the magnet aperture and the cabling to the integrator creates a loop

sensitive to electromagnetic interferences. In some particular conditions, like small

magnet apertures, the displacement range of the wire is limited, and thus the signal-

to-noise ratio (SNR) of the induced voltage is low. This procure a high uncertainty on

the magnetic center measurement position and on the field harmonics [12]. However,

collecting data closed to the magnet poles is an advantage, since here the measured

signal is high and consequently the SNR is maximized.
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Figure 6.4: Distribution of the standard deviation for B̄y measurements at the nodes of

the horizontal sides of the boundary. Mean value is 5.5 · 10−5 Tm.

Moreover, the measurements that belongs to the x and y displacements cannot

be combined together, since they are carried out in different conditions: During the

acquisition process, both wire sag, fringe fields due to magnetic equipments and

the presence of the earth magnetic field have different effects on the horizontal and

vertical flux linkages. The latter is mainly affected by these effects.

6.1.5 Acquisition of boundary data

The measurements are collected at equidistant points over the boundary (5 mm). At

point (xk, yk) the stage is moved in the sequences {xk, xk + 5 mm, xk − 5 mm, xk +

5 mm, xk} and {yk, yk + 5 mm, yk − 5 mm, yk + 5 mm, yk} in order to measure the

flux linked to the surface traced in the horizontal and vertical direction, respect-

ively. The two long strokes (10 mm) are used for measuring the flux through the

corresponding elements adjacent to the central point. Two strokes are necessary for

correcting the integrator drift. The choice of a swept surface area 10 mm× 2.65 m is

dictated by maximizing the SNR during the acquisition process. As a consequence,

a superposition of the integrated field measurements arises when they are collected
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Figure 6.5: Distribution of the standard deviation for B̄x measurements at the nodes of

the vertical sides of the boundary. Mean value is 6.5 · 10−5 Tm.

along the boundary. This fact is an advantage, since it is possible to retrieve the

flux crossing the surfaces traced between each couple of nodes as differences between

adjacent values.

Notice that, dividing the flux linkage by the traced surface and collocating this

to the point (xk, yk) yields an intrinsic error, because the field distribution cannot

be considered neither constant nor linear. For this reason the implementation is

performed directly by means of the available flux measurements.

The procedure is developed starting from the central measurement m0, since at

this point the flux symmetry condition can be applied correctly

Φ+1 = Φ−1 =
m0 · w

2
=
M0

2
, (6.8)

where w is the wire shift, that is 10 mm. Since [m0]=Tm or Wb/m, it is clear

that M0 is a flux, defined in units of weber. Fig. 6.6 shows the application of the

symmetry condition at the central point. The central measurement M0 is split into

two equal parts. Once the values of the flux Φ±1 at the center of one side are known,
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Figure 6.6: Symmetry of the flux at the central node. This assumption is effective over

each side of the rectangle.

it is possible to retrieve step by step the other values of the flux over that side

Φ±i = M±(i−1) − Φ±(i−1) . (6.9)

This procedure has the further advantage to avoid the use of the measurements taken

Figure 6.7: Step by step computation of fluxes from measurements.

at the edges of each segment, that is, at the corners of the rectangular boundary.

Once all the fluxes Φ are retrieved, it is possible to compute the integrated magnetic

vector potential defined as

Āz (x, y) =

ˆ +z0

−z0
Az (x, y, z) dz , (6.10)

where [Āz]=Wb.

Indicating with Pk, k = 1, . . . ,K, the BEM nodes over the boundary of the

rectangle (with PK+1 = P0 ), when moving from point Pk to point Pk+1 (Fig. 6.8)

the stretched-wire intercepts the flux Φk through the surfaces Sk. Employing Stokes’

theorem, this flux is given by (6.3)

Φk =

ˆ
Sk

B · da =

ˆ Qk+1

Pk+1

Azdz −
ˆ Qk

Pk

Azdz , (6.11)

under the assumption that the wire stages are located in the field-free region, that is,´ Pk+1

Pk
Ax dx =

´ Qk+1

Qk
Ax dx = 0. The set of integrals (6.11) constitutes the following
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PkPk+1

QkQk+1

Sk

nk

P0

x
y

z

Figure 6.8: Parallelepiped traced by the stretched-wire. Actually, the dimension in z is

much larger than in the transverse plane xy.

linear system of equations

Āz (Pk+1)− Āz (Pk) = Φk , k = 1, . . . ,K , (6.12)

which can be solved to obtain the values of Āz at the boundary nodes. In order

to assure the uniqueness of the solution of (6.12), the value of Āz (P0) is set to

zero. The same procedure applies for all the four sides of the rectangle, where the

reference value at the first node is the last one retrieved over the previous side. The

boundary nodes are oriented in the counterclockwise sense: This means that the

measured values have to be arranged consequently, such that they represent fluxes

pointing out of the boundary. Usually, when the magnetic length l is well known,

the magnetic vector potential Az is introduced as the average of its integrated value

Āz over l, where Az = Āz/l.

6.2 Implementation of collocation BEM

Measurements are collected at P = 176 equally spaced points, that is every 5 mm,

along the rectangular boundary {−190 mm ≤ x ≤ +190 mm,−30 mm ≤ y ≤
+30 mm}. The size of the magnet aperture is {−160 mm ≤ x ≤ +160 mm,−30 mm ≤
y ≤ +30 mm}, thus fringe field regions will be evaluated too (Fig. 6.9).

Once the procedure shown in Section 6.1.5 is carried out for the measurements,

magnetic vector potential values Az, where [Az]=Wb/m, are available at the bound-

ary nodes for the implementation as Dirichlet boundary conditions (Fig. 6.10).

6.3 Measurements validation based on Ampere’s and

Gauss’ laws

The discretized forms of Ampere’s and Gauss’ law are evaluated numerically for the

set of measurements gathered along the closed boundary of Fig. 6.9. At each p-th

node, the stretched-wire intercepts the flux linked to the surface w · l, where w is the

wire shift (0.01 m) and l is the magnetic length (2.65 m), tracing movements parallel
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Figure 6.9: Position of stretched-wire measurements (p black crosses), collected on a rect-

angular boundary, with respect to the actual magnet aperture (red line).

to the X and Y axis. Hence, we can retrieve the normal and tangential components

of field B at the nodes of the boundary, assuming a constant field distribution over

the swept surface.

� Ampere’s circuital law

The point-wise value of the field Bt at node p is obtained from the measured

integrated field m as an average value over the length l

B
(p)
t =

mp

l
. (6.13)

At this point we compute

P∑
p=1

B
(p)
t

µ0
· w

2
= 13.04 A , (6.14)

where w/2 is the length of one element of the boundary. The result shows that,

since the magnet aperture is free of any sources, an error is arising from this

computation. In particular, this error is comparable to a fictitious filamentary

current of 13 A placed at the center of the domain and directed along the z

direction.

In terms of relative values, with respect to the reference tangential field meas-

ured at the center of the right vertical side, results∑P
p=1B

(p)
t

Bref
t

= 6.2 · 10−3 . (6.15)
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Figure 6.10: Trend of the magnetic vector potential Az along the rectangular boundary.

Nodes are numbered anti-clockwise starting from the point (-190 mm, -30 mm).

� Gauss’ flux theorem

For this evaluation, we use directly the measured integrated value of the field

component normal to the boundary as

P∑
p=1

B̄(p)
n ·

w

2
= −9.62 · 10−7 Wb . (6.16)

Clearly, the net total flux crossing a closed surface should be zero for solenoidal

fields. This means that the error arising in (6.16) is comparable to a loss of

magnetic flux inside the magnet aperture.

In terms of relative values, with respect to the field at the center of the upper

horizontal side, results ∑P
p=1 B̄

(p)
n

B̄ref
n

= −7.39 · 10−5 . (6.17)

The errors in (6.15) and (6.17) arise mainly due to the assumption of a constant

distribution of the field over the traced surface. As can be seen, this approximation
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affects mostly the computation of the tangential component, since at the vertical

sides of the boundary the field distribution deals with high variations, whereas is

almost constant in the center of the aperture 6.11. With the same principle, we

m

m

Figure 6.11: Measurement of fluxes and collocation of the field values (red points). The red

arrows indicate the displacement sequence of the stretched wire system. The computation of

the tangential component from the flux measurements orthogonal to the boundary is highly

inaccurate.

can compute the Gauss’ flux theorem for the flux values obtained from the proced-

ure shown in Section 6.1.5, which are actually used for the computation of BEM

boundary data
P∑
p=1

Φ(p) = 6.8 · 10−7 Wb . (6.18)

In terms of relative values, with respect to the flux measured at the center of the

upper horizontal side, results ∑P
p=1 Φ(p)

Φref
= 5.2 · 10−5 . (6.19)

These values are acceptable, hence the set of measurements can be considered suit-

able for the implementation.
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6.4 Dirichlet to Neumann map

The values of the magnetic vector potential Az, calculated at each node and plot-

ted in Fig. 6.10, are used as Dirichlet boundary conditions for the collocation BEM

implementation. Since the solution of the boundary integral equation provides Neu-

mann data starting form the Dirichlet ones, we can retrieve the tangential compon-

ent of the field at the same positions along the contour. A comparison is shown in

Fig. 6.12. The values of the field Bt measured by the stretched-wire system (SSW)

are compared to the Neumann data ∂Az/∂n, with the opposite sign, reconstructed

by BEM (BEM-SSW). Both linear and quadratic elements are used, so that we can

evaluate which of the two methods fits better the case under study. As Fig. 6.12

Figure 6.12: Comparison between field tangential values measured and reconstructed by

BEM at the p nodes of the boundary.

and Fig. 6.13 show, linear BEM is the best solution for our case, and for this reason

it will be the only one employed from now on. Furthermore, the absolute error is

particularly higher when the vertical sides are approached: this fact arises because

of the high variation of the field at the extremities of the aperture.
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Figure 6.13: Absolute error related to Fig. 6.12. Boundary corners are located at node

number 1, 77, 89 and 165.

6.5 Reconstruction at internal points of the domain

Since the magnetic vector potential obeys the Laplace equation in the rectangle, it is

possible to reconstruct Az values at any point of the domain starting from boundary

data.

6.5.1 Reconstruction along the central line

The magnetic flux measured through y-oriented surfaces at the mid line {−180 mm ≤
x ≤ +180 mm, y = 0} is compared with the one reconstructed by BEM starting from

boundary data. Since the boundary conditions are potential values [Az]=Wb/m, the

reconstructed fluxes, calculated as Az differences, are defined as per unit (magnetic)

length (p.u.l.) values. This means that the available measured data have been

processed accordingly, that is, they describe the flux crossing y-oriented surfaces

with area 10 mm x 1 m. Results of Fig. 6.14 show a good agreement. From the

zoomed view of Fig. 6.15 it can be observed that the BEM reconstruction filters

random noise from the measurements; this is done by averaging over a large number

of elements and attenuating high-frequency signals through the weighting by the
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Green’s kernel. The same comparison is carried out for the magnetic flux through

Figure 6.14: Magnetic flux (p.u.l.) crossing y-oriented surfaces at the central line

{−180 mm ≤ x ≤ +180 mm, y = 0}. The Az values are reconstructed at the extremit-

ies of elements with length 10 mm and fluxes are assumed to be positioned at the center of

each element. Asymmetry is due to the manufacture features of the magnet.

x-oriented surfaces. We refer here to the x-component of the magnetic field B,

where [B]=T, such that the reconstructed values are computed as differentiation of

the magnetic vector potential. Results are shown in Fig. 6.16. The fact that this

field component is not zero at the magnet center can be explained by a misalignment

of the magnet plane with the horizontal axis of the wire system. The roll-angle of

misalignment can be computed from BEM reconstruction as

φ = arcsin

(
Bx
By

)
= −0.027 mrad , (6.20)

where Bx and By are the field components reconstructed at the center of the magnet,

that is, at point (0,0).
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Figure 6.15: Zoomed view of Fig. 6.14.

6.5.2 Field quality representation

A useful representation of the magnetic field measured, or reconstructed, inside the

rectangular domain, is the field quality Q, defined as

Q(x, y) =

∣∣∣∣B(x, y)−B0

B0

∣∣∣∣ , (6.21)

where B is one of the two Cartesian components of the magnetic field and B0 is the

reference value, at the center of the magnet, for that component.

Note that, for the single-stretched-wire system, due to the earth magnetic field,

fringe field from the magnetic equipment, non-orthogonality of the wire stages, and

calibration errors that have a different effects on the measured horizontal and vertical

flux measurements, the x and y components of the field cannot be combined together.

This is why, in Fig. 6.17 and Fig. 6.18, the field quality is computed for the y and x

component separately. Field quality results shows some asymmetries that can be

consequence of layer jumps in the excitation coils and high current interconnections.

Anyway, the BEM reconstruction can be considered good for both the components.
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Figure 6.16: x-component of the field B over the central line {−150 mm ≤ x ≤
+150 mm, y = 0}. Comparison between measured and reconstructed values.

6.6 Reconstruction from Neumann boundary conditions

The fact that the single-stretched-wire system measures fluxes is the reason why,

until now, the BEM has been implemented with Dirichlet boundary conditions, that

are the values of the magnetic vector potential. In this way, any sort of approx-

imation is introduced on the starting data and there is no systematic error on the

total flux through adjacent nodes. However, if the field distribution is assumed to

be constant over the surface traced by the wire, we can determine the x and y com-

ponent of B at the nodes of the boundary, that are, clearly, rough estimates due

to the nonlinear field distribution over the sampled area. This approach allows the

implementation of the BEM with Neumann boundary conditions, which can be the

set of field normal or tangential component if we refer to MSP or MVP formulation,

respectively.

In the following, integrated field values derived from flux measurements are used

as boundary conditions on the boundary and as reference values for the comparison

on the mid line {−100 mm ≤ x ≤ +100 mm, y = 0}. The results in Fig. 6.19

and Fig. 6.20 confirm the outcome of Section 6.3. The approximation of a constant
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Figure 6.17: Field quality representation for the field y component. Comparison between

measured values (top) and reconstructed values from boundary data (bottom), over an

internal grid. Values are limited at 5 units in 10−4.

field distribution can be considered acceptable only for the normal component of the

field. The reason is displayed in Fig. 6.11.

6.7 The ”Dog-Bone” domain

The Boundary element method reconstruction is not limited to rectangular domains.

In order to prove the applicability to more complex domains, measurements have

been collected along the contour shown in Fig. 6.21. Results of the implementation

of Linear elements collocation BEM are represented inside the domain as field map

and field lines (Fig. 6.22).
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Figure 6.18: Field quality representation for the field x component. Comparison between

measured values (top) and reconstructed values from boundary data (bottom), over an

internal grid. Values are limited at 5 units in 10−4.

6.8 Field harmonics computation

The theory developed in Section 6.1.5 is now introduced for the set of measurements

acquired with the stretched-wire system. Flux measurements are collected at N

equally spaced points along circles with reference radius r0=30 mm and centered at

5 different positions on the X axis (y=0). At each point (xk, yk) over the circle, the

stages are moved in the sequence {xk, xk+2.5 mm, xk−2.5 mm, xk+2.5 mm, xk}
and {yk, yk + 2.5 mm, yk − 2.5 mm, yk + 2.5 mm, yk} in order to acquire values

proportional to the field Cartesian components By and Bx, respectively. Clearly,

the field values are retrieved by the flux measurements assuming a constant field

distribution over the swept surface with area equal to 5 mm x 2.65 m. Once the

field Cartesian components are retrieved at point (xk, yk), the radial component can

be calculated as

Br(r0, ϕk) = Bx(r0, ϕk) cos(ϕk) +By(r0, ϕk) sin(ϕk) . (6.22)
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Figure 6.19: Comparison of integrated field values measured and reconstructed by BEM

starting from Neumann boundary data. MSP formulation.

However, as explained before, the combination of the x and y components leads to

an intrinsic error due to the different nature of the measurements.

The fields Bx, By and Br are then expanded and the associated multipole coef-

ficients are retrieve from Table A.1. At the same time, the magnetic potential Az
is reconstructed by BEM at each k-th point of the circle. This allows the computa-

tion of multipole coefficients even from the Az expansion. The computed multipole

coefficients are compared in Fig. 6.23, Fig. 6.24, Fig. 6.25 and Fig. 6.26 for different

number of samples N and for different positions of the circle. The comparison

between the four figures shows that the higher is the number of samples acquired

on the circle, the more the multipole values coincide between each other. For this

reason, from now on we will use only N=64. Moreover, the smaller are the values

of the coefficients, the more difficult is their correct computation; as a consequence,

it is difficult to calculate high order values, and in particular the ones of the Skew

multipole coefficient.

In Fig. 6.27 and Fig. 6.28 we investigate the behavior of An and Bn as a function

of the position. N=64 measurements are acquired at five different circles centered in

points (−120 mm, 0), (−60 mm, 0), (0, 0), (+60mm, 0) and (−120 mm, 0). Note
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Figure 6.20: Comparison of integrated field values measured and reconstructed by BEM

starting from Neumann boundary data. MVP formulation.

that the two set of multipole coefficient An and Bn are obtained by the expansion of

the component Bx and By, respectively. The values of the multipole coefficients are

related to the field asymmetries existing in the associated circular domain. For this

reason, their evaluation can give an estimate of the quality of the field at different

positions inside the magnet aperture. In particular the Normal (Bn) and Skew

(An) multipole coefficients are linked with left/right and up/down asymmetries,

respectively.

Fig. 6.26 displays the trend of the Bn coefficient for a circle centered in (0,0). For

an ideal dipole, only B1 should show up in the harmonic analysis, with a value equal

to the field measured at the center of the magnet. Clearly, in the real case, higher

order coefficients appear, even if with significantly smaller values. As Fig. 6.27

and Fig. 6.28 show, the field asymmetries increase the more we move out of the

center. The coefficients computed in Fig. 6.27 and Fig. 6.28 can be employed for the

reconstruction of the field inside the respective circular domains (see (A.17)). The

field quality defined in (6.21) is computed for the x and y components inside five

distinct domains, covering a large part of the magnet aperture. The comparison of

these representations with the ones obtained in Fig. 6.17 and Fig. 6.18 shows a good
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Figure 6.21: Position of measured boundary data (black crosses) with respect to the

magnet aperture (red line). The ”dog-bone” domain allows to evaluate fringe field regions.

agreement between the results.

The magnetic vector potential can be reconstructed inside the circular domains

as well. For this reason, we can represent the equipotential lines, which coincide

with the field lines. Fig. 6.31 shows the field and potential reconstruction related to

the first four harmonic orders, separately. In this way, the contribution of the n-th

multipole coefficient is displayed individually, for a circle centered at (−120 mm, 0).

The phase angle of the 2n-pole term is computed with the An and Bn retrieved

from the Az expansion, as shown in Table 6.1. As we can see, results coincide with

Fig. 6.31, where the field of the 6-pole term is rotated by approximately π radiants.

n Bn An ψn

1 0.97569 -0.00016399 -0.00016807

2 0.027813 0.0005639 0.020272

3 -0.043832 -0.00071705 -3.1252

4 0.034081 0.00030532 0.0089584

Table 6.1: Computation of the phase angle ψ for the lower harmonic orders.
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Figure 6.22: Top: Magnetic field map from the BEM reconstruction. Absolute value

and direction of the field are obtained as combination of the two Cartesian components

reconstructed individually. Bottom: Field lines obtained as equipotentials of Az.

6.9 Comparison with orthogonal expansion

For a rectangular geometry also an analytic solution based on the separation of

variables method is available (see Appendix B). This solution requires the Fourier

series expansion of the Dirichlet data over the four sides of the rectangle, where,

from the Fourier coefficients, the coefficients of the expansion in eigenfunctions are

retrieved. The solution of the Laplace equation inside the bounded domain, for the

magnetic vector potential Az, is written as the sum of four terms obtained from the

Fourier series expansion of the boundary data over each single side of the rectangle

Az (x, y) =
4∑

k=1

A(k)
z (x, y) . (6.23)

For example, the term corresponding to the side x1 ≤ x ≤ x2 and y = y1, where

x1 = −190 mm, x2 = 190 mm and y1 = −30 mm reads as

A(1)
z (x, y) =

+∞∑
n=1

M(1)
n sinh

(
nπ

y2 − y
x2 − x1

)
sin

(
nπ

x− x1

x2 − x1

)
, (6.24)
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Figure 6.23: Comparison between Skew multipole coefficients An as function of the har-

monic order n. A number of samples N = 32 have been acquired over a circumference with

radius r0 = 30 mm centered in (−120 mm, 0). Absolute values are computed until the 10-th

harmonic order.

where y2 = 30 mm and M(1)
n is the n-th Fourier sine coefficient defined as

M(1)
n =

A(1)
n

sinh

(
nπ

y2 − y1

x2 − x1

) , (6.25)

with

A(1)
n =

2

x2 − x1

ˆ x2

x1

A(1)
z (x, y1) sin

(
nπ

x− x1

x2 − x1

)
dx . (6.26)

The numerical computation of A(1)
n is performed by the Discrete Fourier Transform

applied to the N equally spaced samples of the function A
(1)
z (x, y1) in x1 ≤ x ≤ x2.

In order to satisfy the sampling theorem, the maximum harmonic order that can

be employed is (N − 1). Since a different number of samples is available for ho-

rizontal and vertical sides, that is N=77 and N=13 respectively, the associated

expansion are limited to different harmonic orders. We investigate the correctness

of the sampling theorem considering different limits for the magnetic vector poten-
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Figure 6.24: Comparison between Normal multipole coefficients Bn as function of the

harmonic order n. A number of samples N = 32 have been acquired over a circumference

with radius r0 = 30 mm centered in (−120 mm, 0). Absolute values are computed until the

10-th harmonic order.

tial expansion along the entire boundary. The parameter h is introduced for the

calculation of the employed maximum harmonic order n̄ as

n̄i = h · Ni − 1

4
, (6.27)

where i=1 for the horizontal sides and i=2 for the vertical ones. Table 6.2 shows the

relations for h=1, 2, 4 and 6. Fig. 6.32 compares the MVP, defined over the rectan-

gular boundary, with its orthogonal expansions for different levels characterized by

h.

We define the L2 error norm as

‖e‖L2 =

√√√√ P∑
p=1

∣∣∣A(k)
z −A′(k)

z

∣∣∣2 , (6.28)

where Az is the expansion of the boundary data A′z over the contour; it is com-

puted in order to evaluate the convergence of the error and, consequently, verify the
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Figure 6.25: Comparison between Normal multipole coefficients Bn as function of the

harmonic order n. A number of samples N = 64 have been acquired over a circumference

with radius r0 = 30 mm centered in (−120 mm, 0). Absolute values are computed until the

10-th harmonic order.

correctness of the sampling theorem. The results shown in Fig. 6.33 confirm that

the best solution is obtained when N − 1 Fourier coefficients are employed. For

this reason, the following evaluation is performed for the expansion represented in

Fig. 6.34.

The solution Az(x, y) is now computed inside the interested domain. In Fig. 6.14

the magnetic fluxes, crossing y-oriented surfaces with area equal to 10 mm x 1m,

are computed as differences of Az. The MVP values have been retrieved at the

extremities of elements with length 10 mm lying on the central line {−180 mm ≤
x ≤ +180 mm, y = 0}. The comparison shows that BEM can be still considered

the best exploitable solution. The field quality representation in Fig. 6.35 confirms

that the domain reconstruction is affected by a sort of wave propagation that derives

from the expansion of the function on the four sides.
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Figure 6.26: Comparison between Normal multipole coefficients Bn as function of the

harmonic order n. A number of samples N = 64 have been acquired over a circumference

with radius r0 = 30 mm centered in (0, 0). Absolute values are computed until the 10-th

harmonic order.

6.10 Implementation of Galerkin BEM

Collocation BEM results, for linear elements, are now compared with the alternative

method presented in Chapter 3, namely, the Galerkin BEM. Fig. 6.36 compares the

tangential component of the integrated field measured and reconstructed by BEM,

as Neumann data, at the P nodes of the boundary. Galerkin BEM results much

more regular than collocation BEM on the vertical sides, but at the same time it

shows a displacement of the values at the nodes. Fig. 6.37 shows a good agreement

of both BEM method compared to measured data.
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Figure 6.27: Comparison between Skew multipole coefficients An as function of the har-

monic order n. A number of samples N = 64 have been acquired over a circumference with

radius r0 = 30 mm centered in five different positions (xc, 0). Absolute values are computed

from the expansion of the field component Bx, until the 10-th harmonic order.

h 1 2 4 6

n̄1 19 38 76 114

n̄2 3 6 12 18

Table 6.2: Relation between the parameter h and the value of the employed maximum

harmonic orders n̄1 and n̄2.
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Figure 6.28: Comparison between Normal multipole coefficients Bn as function of the

harmonic order n. A number of samples N = 64 have been acquired over a circumference

with radius r0 = 30 mm centered in five different positions (xc, 0). Absolute values are

computed from the expansion of the field component By, until the 10-th harmonic order.

Figure 6.29: Field quality representation of the y component from five distinct measure-

ments on circular domains inside the magnet aperture.
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Figure 6.30: Field quality representation of the x component from five distinct measure-

ments on circular domains inside the magnet aperture.
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Figure 6.31: Magnetic field B maps and equipotential lines reconstructed from the first four

coefficients of Fig. 6.25 separately. Arrows size and color are proportional to the Magnetic

field absolute value.
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Figure 6.32: Expansion of Az, over the boundary, as a function of h.

99



Chapter 6

Figure 6.33: L2 error norm as a function of h.
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Figure 6.34: Expansion of Az using N − 1 Fourier coefficients for each of the four sides.

Figure 6.35: Field quality representation for the y component of the field B.
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Figure 6.36: Tangential component of the integrated field measured (SSW) and recon-

structed by BEM, with two different methods, at the nodes of the boundary.
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Figure 6.37: Magnetic flux measured (SSW) and reconstructed by BEM, with two different

methods, along the central line y = 0.
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Conclusions

The presented method overcomes the limits imposed by the standard rotating coil

device when the integrated magnetic field is reconstructed in apertures with large

aspect ratio. This alternative technique is not bounded by particular trajectories. In

fact, the boundary can have any continuous shape that best fits the magnet aperture

and its fringe field regions too.

The technique is based on the boundary integral equation method in two di-

mensions, which allows the computation of solutions of boundary value problems in

bounded domains by reducing the dimensionality of the problem from R2 to R.

The numerical implementation is possible by means of the collocation boundary

element method (BEM). A dedicated MATLABr code has been developed for both

linear and quadratic elements. The code was successfully validated through a test

problem and then implemented for simulated and measured boundary data. The

analysis performed with ROXIE simulated data at different levels of discretization

shows the convergence rate of the method. The comparison with the Galerkin BEM

proves the advantage of the collocation method for this application.

Single-stretched-wire measurements are fluxes out-normal to the boundary, sub-

sequently post-processed in order to retrieve magnetic vector potential values at the

BEM nodes. These values are Dirichlet boundary conditions for the boundary value

problem. Starting form this considerations, flux values have been reconstructed at

internal points, showing a good agreement with respect to the measured values. Since

the BEM uses all boundary data for the reconstruction of a single field value within

the domain, the method is robust with respect to the measurements uncertainties.

A systematic comparison has been carried out between the results obtained by

the new BEM approach and those derived from the field harmonics theory and the

expansion in orthogonal eigenfunctions.

Regarding the development of the MATLABr BEM code, there is still room

for improvements. One could extend the study, for example, to a priori error es-

timations, and consequently develop an adaptive scheme in order to optimize the

accuracy with permissible computation time.

The final purpose of this work was the development of the new post-processing
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technique for the stretched wire system. The goal has been successfully achieved with

the installation of the BEM software directly on the measurement system available in

the section’s lab. It will be routinely used for measurements in magnets apertures.

This will save time during the acquisition process and will be an useful tool for

validating measured data.
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Appendix A

Field Harmonics

The field quality in accelerator magnets is conveniently described by a set of Fourier

coefficients, known as field harmonics or multipole coefficients. The method used for

the calculation of field harmonics is based on finding a general solution that satisfies

the Laplace equation in a suitable coordinate system. The integration constants in

the general solution, obtained with the separation of variables technique, are then

determined by comparison with the boundary values; in 2D circular coordinates

these boundary values are given by the field components at a given reference radius.

A.1 Determining multipole coefficients

There are 3 different approaches to the calculation of these coefficients [3]:

� Fourier series expansion of the calculated field component along a circle;

� In the case of an up/down symmetry, comparison of the multipole coefficients

with the Taylor coefficients of a series expansion of the known flux density at

the horizontal median plane;

� Series expansion of the Green kernel in the potentials generated by transport

and magnetization currents, and comparison of the coefficients with the mul-

tipoles.

The first approach is developed and used here, since it is the one that fits better the

case under study.
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A.2 Fourier series expansion of field components

The Fourier series expansion of a function f = f(ϕ), defined over a circle with

reference radius r0, is developed as

f(r0, ϕ) =
C0(r0)

2
+
∞∑
n=1

[Cn(r0) sin(nϕ) +Dn(r0) cos(nϕ)] . (A.1)

The Fourier series coefficients in (A.1) are computed as

C0(r0) =
2

2π

ˆ 2π

0
f(r0, ϕ)dϕ , (A.2)

Cn(r0) =
2

2π

ˆ 2π

0
f(r0, ϕ) sin(nϕ)dϕ , (A.3)

Dn(r0) =
2

2π

ˆ 2π

0
f(r0, ϕ) cos(nϕ)dϕ . (A.4)

In our practical applications, the function f is a generic field component B, which

is measured, or computed, at N equally spaced points in the interval [0, 2π); thus,

the angle ϕ assumes the form

ϕk =
2π

N
k k = 0, 1, 2, 3 . . . N − 1 . (A.5)

By means of the Discrete Fourier Transform, is then possible to compute the set of

Fourier coefficients as

C0(r0) ≈ 2

N

N−1∑
k=0

B(r0, ϕk) , (A.6)

Cn(r0) ≈ 2

N

N−1∑
k=0

B(r0, ϕk) sin(nϕk) , (A.7)

Dn(r0) ≈ 2

N

N−1∑
k=0

B(r0, ϕk) cos(nϕk) . (A.8)

The definition (A.1) translates into

B(r0, ϕk) =
C0(r0)

2
+
∞∑
n=1

[Cn(r0) sin(nϕk) +Dn(r0) cos(nϕk)] , (A.9)

where each integer value n corresponds to a specific flux distribution generated by

ideal magnet geometries (n = 1 dipole, n = 2 quadrupole, n = 3 sextupole. . . ).
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Since only N equally spaced points are available over the circle, the maximum

harmonic order is limited at N − 1. This forced approximation introduces unavoid-

ably an error ε

ε(ϕk) = B(r0, ϕk)−

[
C0(r0)

2
+

N−1∑
n=1

[Cn(r0) sin(nϕk) +Dn(r0) cos(nϕk)]

]
. (A.10)

It is worth noting that the same considerations valid for the field expansion, hold

also for the magnetic vector potential Az.

A.3 Normal and Skew multipole coefficients

Once the Fourier series coefficients have been computed from the samples avail-

able over the circle, it is possible to retrieve the multipole coefficients according to

Tab. A.1, where Bn is the Normal multipole coefficient and An is the Skew multipole

Br Bϕ Bx By Az

Bn Cn Dn Cn−1 Dn−1 − n
r0
Dn

An Dn −Cn Dn−1 −Cn−1
n

r0
Cn

Table A.1: Relations between the Multipole and the Fourier coefficients.

coefficient. These coefficients are, by definition, given in units of Tesla. However,

it is common practice to normalize them with respect to the main field component

BN (r0), which yields to dimensionless relative multipole coefficients

an =
An
BN

, (A.11)

bn =
Bn
BN

. (A.12)

The field components and the vector potential can now be expressed as a function

of the multipoles computed at the reference radius. Moreover, it is possible to

retrieve the values at any radius in the bounded circular domain thanks to the
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following relations

Br(r, ϕ) =
∞∑
n=1

(
r

r0

)n−1

(Bn(r0) sin(nϕ) +An(r0) cos(nϕ)) , (A.13)

Bϕ(r, ϕ) =
∞∑
n=1

(
r

r0

)n−1

(Bn(r0) cos(nϕ)−An(r0) sin(nϕ)) , (A.14)

Bx(r, ϕ) =
∞∑
n=1

(
r

r0

)n−1

(Bn(r0) sin(n− 1)ϕ+An(r0) cos(n− 1)ϕ) , (A.15)

By(r, ϕ) =

∞∑
n=1

(
r

r0

)n−1

(Bn(r0) cos(n− 1)ϕ−An(r0) sin(n− 1)ϕ) , (A.16)

Az(r, ϕ) = −
∞∑
n=1

r0

n

(
r

r0

)n
(Bn(r0) cos(nϕ)−An(r0) sin(nϕ)) . (A.17)

An important parameter that is derived from multipole coefficients is the phase

angle of the 2n-pole term, defined as

ψn =


arctan

An
Bn

if Bn ≥ 0

arctan
An
Bn

+ π if Bn < 0 and An ≥ 0

arctan
An
Bn
− π if Bn < 0 and An < 0

. (A.18)

A.4 Complex representation and Feed-down effect

The solution in Cartesian coordinates could be also obtained from the following

transformation

Bx = Br cosϕ−Bϕ sinϕ , (A.19)

By = Br sinϕ+Bϕ cosϕ , (A.20)

which reads in complex notation

By + iBx = (Bϕ + iBr)e
−iϕ , (A.21)

for z = x+ iy

By + iBx =

∞∑
n=1

(Bn(r0) + iAn(r0))

(
r

r0

)n−1

ei(n−1)ϕ

=
∞∑
n=1

(Bn(r0) + iAn(r0))

(
z

r0

)n−1

.

(A.22)
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This formulation is useful when, in the post processing, the misalignment of the

measurement axis and the real magnet axis has to be identified. This off centering

of the set of measurements is called feed down effect, and can be analytically de-

scribed starting from the last complex representation [3]. The transformation law for

the field harmonics can be derived for a translation of the measurements reference,

relying on the fact that the field components in both the coordinate systems must

be identical

By + iBx = B′y + iB′x . (A.23)

This fact leads to
∞∑
n=1

Cn

(
z

r0

)n−1

=
∞∑
n=1

C ′n

(
z′

r0

)n−1

, (A.24)

where the complex coefficients in the two different reference systems

Cn = Bn + iAn ,

C ′n = B′n + iA′n ,

while the relation between the coordinates

z = x+ iy ,

zd = xd + iyd ,

z′ = z − zd .

Results the transformation law for the complex field harmonics

C ′n =
∞∑
k=n

Ck

(
k − 1

n− 1

)(
zd
r0

)k−n
. (A.25)

If (A.25) is solved for n = 1 (first order feed down effect) and until the 3rd harmonic

order, results the system of equations
B′1 = B1 +

1

r0
B2xd −

1

r0
A2yd +

1

r2
0

B3x
2
d −

1

r2
0

B3y
2
d −

2

r2
0

A3xdyd

A′1 = A1 +
1

r0
B2yd +

1

r0
A2xd +

1

r2
0

A3x
2
d −

1

r2
0

A3y
2
d +

2

r2
0

B3xdyd

, (A.26)

whose solutions xd and yd allows to deduce the displacement between the two refer-

ences. From the previous system of equations, it is possible to evaluate which field

components arises due to the measurement off-centering.
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Solution of the Laplace Equation

with Eigenfunction Expansion

The solution of boundary value problems (bvp), with Dirichlet boundary conditions

fixed over a rectangular boundary, can be developed in terms of Fourier series expan-

sion [14]. This evaluation could be an alternative solution of the boundary integral

equation method, and for this reason it is useful to compare the numerical imple-

mentation of the two methods in order to estimate which one fits better the case

under study.

B.1 The Dirichlet problem

In mathematics, a Dirichlet problem is the problem of finding a function which solves

a specified partial differential equation (PDE) in the interior of a given region that

takes prescribed values on the boundary of that region. In an equivalent way, it is

a problem of finding the connection between a continuous function f(x, y), defined

over the boundary ∂R of a region R ⊆ R, with an harmonic function u(x, y) taking

on the value f(x, y) on ∂R

∇2u = 0 inside R ,

u(x, y) = f(x, y) on ∂R .

In the following we consider a rectangular region {x1 ≤ x ≤ x2 , y1 ≤ y ≤ y2} where

the boundary conditions are given on each edge separately, as shown in Fig. B.1

u(x, y1) = f1(x) ,

u(x, y2) = f2(x) ,

u(x1, y) = g1(y) ,

u(x2, y) = g2(y) .
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Figure B.1: Dirichlet boundary value problem for the rectangular region. Boundary con-

ditions are fixed on each edge separately.

By the principle of superposition, the final solution of the bvp can be written as the

sum of the solutions of four simpler problems

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y) , (B.1)

where each term satisfies the PDE with one of the original non-homogeneous bound-

ary condition and the homogeneous version of the remaining three boundary condi-

tions [14].

B.1.1 Example

The bvp with boundary conditions

u(x, y1) = 0 ,

u(x, y2) = f2(x) ,

u(x1, y) = 0 ,

u(x2, y) = 0 ,

is solved with the method of separations of variables. Setting u(x, y) = X(x) · Y (y)

we get

X ′′ + kX = 0 ,

Y ′′ − kY = 0 ,

X(x1) = X(x2) = 0 ,

Y (y1) = 0 .
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Knowing that the non-trivial solutions for X are given by

X(x) = Xnx = sin[µn(x− x1)] ,

where µn =
nπ

x2 − x1
and k = µ2

n with n ∈ N. The hyperbolic cosine and sine

functions are defined as

cosh y =
ey + e−y

2
,

sinh y =
ey − e−y

2
,

and they satisfy the following identities

cosh2 y − sinh2 y = 1 ,

d

dy
cosh y = sinh y ,

d

dy
sinh y = cosh y .

It follows that the general solution to the Ordinary Differential Equation (ODE)

Y ′′ − µ2
nY = 0 is

Y = A cosh[µ(y − y1)] +B sinh[µ(y − y1)] ,

Using µ = µn and Y (y1) = 0, we find

Y (y) = Yn(y) = An cosh[µn(y − y1)] +B sinh[µn(y − y1)] ,

0 = Yn(y1) = An cosh 0 +Bn sinh 0 = An ,

yields the separated solutions

un(x, y) = Xn(x)Yn(y) = Bn sin[µn(x− x1)] sinh[µn(y − y1)] ,

that combine in the general solution

u(x, y) =
∞∑
n=1

Bn sin[µn(x− x1)] sinh[µn(y − y1)] .

Finally, applying the Dirichlet boundary condition f2(x) at the top edge y = y2

f2(x) = u(x, y2) =
∞∑
n=1

Bn sin[µn(x− x1)] sinh[µn(y2 − y1)] ,

where Bn is a multiple of the sine series coefficient B′n, computed as

B′n =
2

(x2 − x1)

ˆ x2

x1

f2(x) sin[µn(x− x1)]dx ,

Bn =
1

sinh[µn(y2 − y1)]
B′n .
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B.1.2 The overall solution

The procedure shown in Section B.1.1 is applied for all the edges of the rectangular

boundary, leading to the following system of equations

u1(x, y) =
∞∑
n=1

An sin

(
nπ

x− x1

x2 − x1

)
sinh

(
nπ

y2 − y
x2 − x1

)
, (B.2)

u2(x, y) =

∞∑
n=1

Bn sin

(
nπ

x− x1

x2 − x1

)
sinh

(
nπ

y − y1

x2 − x1

)
, (B.3)

u3(x, y) =
∞∑
n=1

Cn sin

(
nπ

y − y1

y2 − y1

)
sinh

(
nπ

x2 − x
y2 − y1

)
, (B.4)

u4(x, y) =
∞∑
n=1

Dn sin

(
nπ

y − y1

y2 − y1

)
sinh

(
nπ

x− x1

y2 − y1

)
. (B.5)

In each case, the coefficients of the solution are independent of the others, and are

just multiples of the Fourier sine coefficients of the non-zero boundary condition.

We compute

An =
2

(x2 − x1) sinh

(
nπ

x2 − x1

y2 − y1

) ˆ x2

x1

u1(x, y1) sin

(
nπ

x− x1

x2 − x1

)
, (B.6)

Bn =
2

(x2 − x1) sinh

(
nπ

x2 − x1

y2 − y1

) ˆ x2

x1

u2(x, y2) sin

(
nπ

x− x1

x2 − x1

)
, (B.7)

Cn =
2

(y2 − y1) sinh

(
nπ

y2 − y1

x2 − x1

) ˆ y2

y1

u3(x1, y) sin

(
nπ

y − y1

y2 − y1

)
, (B.8)

Dn =
2

(y2 − y1) sinh

(
nπ

y2 − y1

x2 − x1

) ˆ y2

y1

u4(x2, y) sin

(
nπ

y − y1

y2 − y1

)
. (B.9)

B.2 Numerical solution

In real applications, the boundary values on each side of the rectangle are available

only at a finite number N of equally spaced points. This means that the integrals

inside the final solution u(x, y) have to be approximated by the trapezoidal method

ˆ b

a
f(ξ)dξ ≈

N∑
k=1

f(ξk−1) + f(ξk)

2
∆ξk . (B.10)

Since the function u is defined at N finite and equally spaced points over each

side, we can refer to the Discrete Fourier Transform (DFT) theory. It is known that
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the DFT of a finite length sequence is linked to the Fourier series coefficients of

the continuous periodic signal obtained by repeating and interpolating the original

samples. More precisely, the DFT of the N samples comprising one period, equals

N times the Fourier series coefficients [15]. In order to satisfy the sampling theorem,

and consequently avoid aliasing, the continuous-time signal must be band-limited to

less than half the sampling rate: this implies that at most N harmonic components

can be nonzero in the original continuous-time signal. For this reason the maximum

harmonic order that can be employed is limited, by the number of available samples,

at the (N − 1)-th order.
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Appendix C

The Magnetic Potentials

In magnetostatics, one could relate the magnetic field to the magnetic potential

by means of two possible formulations, that are the magnetic scalar potential and

the magnetic vector potential [16]. We introduce here the two formulation starting

from well-known laws, and subsequently we derive that both quantities are harmonic

functions which satisfy the two-dimensional Laplace equation.

C.1 The magnetic scalar potential

In classical electromagnetism, the Ampere’s circuital law relates the magnetic field

B, integrated around a closed loop, to the electric current passing through that loop˛
∂S

B · dl = µ0

¨
S
J · dS . (C.1)

The application of the divergence theorem to the integral form (C.1) leads to the

differential form

∇×B = µ0 J , (C.2)

which states that the curl of a vector field B is proportional to the current density

J. At this point one can introduce a potential function φm from which the magnetic

field can be easily determined

B = ∇φm . (C.3)

Since the curl of any gradient is identically zero, in order to do not conflict to the

previous results it must be

∇× (∇φm) = µ0 J = 0 , (C.4)

which means that the magnetic scalar potential must be defined in a region free of

sources

B = ∇φm (J = 0) . (C.5)

121



Appendix C

Another important law for magnetism is the Gauss’ law‹
S
B · dS = 0 . (C.6)

The equivalent differential form of (C.6) is

∇ ·B = 0 , (C.7)

which states that the magnetic field has divergence equal to zero, or in other words,

that it is a solenoidal vector field. Consequently, by definition, the divergence of the

gradient of the scalar potential of (C.5) is also zero

∇ ·B = ∇ · ∇φm = 0 . (C.8)

Follows that, in a region free of sources, the magnetic scalar potential obeys

∇2φm = 0 , (C.9)

where the operator ∇2 is called Laplacian and is defined as the divergence of the

gradient of a function on Euclidean space.

C.2 The magnetic vector potential

From the theorem of divergence-less fields, if the divergence of a vector field B

vanishes, then B can be expressed as the curl of a vector potential A

B = ∇×A . (C.10)

Kelvin-Stokes’ theorem relates the surface integral of the curl of a vector poten-

tial, over a surface S, to the line integral of the vector potential over its boundary

∂S (Fig. C.1) ¨
S

(∇×A) · n dS =

˛
∂S

A · dr . (C.11)

Since the potential A is not uniquely defined by (C.10), an additional condi-

tion must be imposed. In magnetostatics, a convenient condition which makes the

calculations easier is [17]

∇ ·A = 0 . (C.12)

The combination of (C.2), (C.10) and (C.12) with the equality

∇× (∇×A) = ∇ (∇ ·A)−∇2A , (C.13)

yields to the definition of the Laplacian of the vector potential A in a region free of

sources

∇2A = 0 (J = 0) . (C.14)
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Figure C.1: Integral surface and oriented boundary for (C.11).
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