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Abstract

In a world more and more connected, there is the opportunity to model
this extreme degree of relationship among people in order to discover new
and more complex patterns. A graph is the mathematical model that can
be better exploited in the Web 2.0 era: the era of social networks. In
fact, it is the model that perfectly fits for representing the interactions
on platforms such as Facebook or Instagram: users can interact in many
different ways, creating posts, putting ”likes” and mentioning other users
and in this way they incrementally build an enormous graph. This graph
becomes much bigger if a set of interacting users, a community, is consid-
ered together.
This work deals with the problem of exploiting the network structure in
order to map similarities between users inside communities detected on
on-line social networks. The objective is the definition of a method to
handle in an efficient way the heterogeneity of a social network, in order
to encode all the data needed in a simpler graph model. The method
presented allows to extract a ”classical” social network, with only user
nodes, from a much more complex network, without losing the necessary
information to effectively capture users behaviour. Using this approach,
two weighted, homogeneous networks are defined: the hashtags network
and the mentions network. For the first network, the weights are given by
the number of common hashtags used by each pair of users, while for the
second they are the number of mentions made by each user. A very re-
cent technique, known as representation learning, is then applied to these
networks in order to describe user nodes in term of a continuous feature
vector, that is used to perform classification and clustering.
In the first experiment, the resulting graphs are used to generate features
that give a description as rich as possible of the users inside the network.
These features are combined to train the model for a classification task
that tries to discriminate between ”consumer” and ”non-consumer” users.
Since the networks reduction allows to minimize the number of nodes, it
is also possible to evaluate the influence of a broader set of users inside
the same classification task: in fact, not labelled users contribute to the
definition of relationship with the labelled ones, increasing the descrip-
tive information of the features. In all the tests performed, the baseline,
defined using features extracted from the account, is always overcome. In
the second experiment, a similar process is developed using an unsuper-
vised method. The objective is to discover sub-communities inside the



principal ones, extending the classical problem of community detection.
The set of features extracted are used as input for the K-means algorithm
and the output defines a set of sub-communities that are validated with
the help of domain experts. Their feedback, combined with a set of la-
bels extracted from the networks, shows that the users can be divided in
meaningful categories, thus verifying the power of the method in discovery
hidden patterns.
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Sommario

In un mondo sempre più connesso, vi è l’opportunità di modellizzare
l’estremo grado di relazione tra le persone in modo da scoprire nuovi e
più complessi patterns. Un grafo è il modello matematico che può essere
meglio sfruttato nell’era del Web 2.0: l’era dei social network. Infatti, è
il modello che si adatta perfettamente a rappresentare le interazioni su
piattaforme come Facebook o Instagram: gli utenti possono interagire in
molti modi diversi, creando post, mettendo ”like” e menzionando altri
utenti e in questo modo costruiscono incrementalmente un enorme grafo.
Questo grafo diventa molto più grande se un gruppo di utenti che inter-
agiscono tra loro, una community, viene considerato insieme.
Questo lavoro affronta il problema di sfruttare la struttura a rete in modo
da mappare similarità tra utenti all’interno di community individuate su
social network on-line. L’obiettivo è la definizione di un metodo per gestire
in modo efficiente l’eterogeneità intrinseca di un social network, in modo
da codificare tutti i dati necessari in un modello a grafo più semplice. Il
metodo presentato permette di estrarre una rete sociale ”classica”, con-
tenente solo nodi di tipo utente, da una rete molto più complessa, senza
perdere le informazioni necessarie per catturare efficacemente il comporta-
mento degli utenti. Usando questo approccio, due reti pesate e omogenee
sono definite: la rete degli hashtag e quella delle menzioni. Per la prima
rete, i pesi sono ottenuti dal numero di hashtag in comune per ogni coppia
di utenti, mentre per la seconda sono dati dal numero di menzioni fatte da
ogni utente. Una tecnica molto recente, conosciuta come representation
learning, è quindi applicata a queste reti in modo da descrivere i nodi
utente come un vettore di feature continue, che è utilizzato per svolgere
classificazione e clustering.
Nel primo esperimento svolto, i grafi risultanti sono utilizzati per generare
feature in modo da avere una descrizione più ricca possibile degli utenti
all’interno della rete. Queste feature sono combinate per svolgere il train-
ing di un modello in modo da risolvere un task di classificazione: la dis-
criminazione tra utenti ”consumer” e ”non consumer”. Poichè la riduzione
delle reti permette di minimizzare il numero di nodi, è anche possibile va-
lutare l’influenza di un gruppo di utenti più ampio all’interno dello stesso
task di classificazione: infatti, gli utenti non classificati contribuiscono
alla definizione di relazioni con quelli classificati, incrementando le infor-
mazioni descrittive delle feature. In tutti i test svolti, la baseline, definita
utilizzando feature estratte dagli account, è sempre superata. Nel secondo



esperimento, un processo similare viene sviluppato usando un metodo
non supervisionato. L’obiettivo è scoprire sotto-community all’interno di
quelle principali, estendendo il problema classico noto come community
detection. Le feature estratte sono utilizzate come input per l’algoritmo
K-means e l’output definisce un insieme di sotto-community che sono val-
idate con l’aiuto di esperti di dominio. Il loro feedback, combinato con
un insieme di label estratte dalle reti, mostra che gli utenti possono es-
sere suddivisi in categorie significative, verificando quindi la potenza del
metodo nello scoprire pattern nascosti.
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Chapter 1

Introduction

1.1 Context and Problem Statement
Graphs can be used to model different domains: the first usage dates back to 1736,
when the mathematician Leonhard Euler used graphs to solve the ”Seven Bridges of
Koningsberg Problem”, proving that it had no solution and laid the foundation of
graph theory. Since then, graphs have become of great importance in many fields:
transportation and distribution problems, network design, production planning, re-
source management, sociology, biology. For the purpose of this work, the focus is
on sociology and in particular on social networks. In fact, a graph is the model that
perfectly fits for representing the interactions on platforms such as Facebook or In-
stagram: users interact in many different ways, creating posts, putting ”likes” and
mentioning other users, building incrementally an enormous graph.
Social Network Analysis (SNA) is the process of investigating social structures through
the use of networks and graph theory [27]. It has its theoretical roots in the work of
early sociologists such as Georg Simmel and Émile Durkheim, who wrote about the
importance of studying patterns of relationships that connect social actors. Social
scientists have used the concept of ”social networks” since early in the 20th century
to connote complex sets of relationships between members of social systems at all
scales, from interpersonal to international. The researches present in literature cover
a very high number of topics, with the common denominator of a quite simple network
structure: nodes represent users and edges represent a specific interaction between
them, which can be messages exchanged on an on-line college platform [4], chat on
on-line games [28] or phone calls made inside the country [3]. Nowadays, the concept
of social network is completely disrupted: inside social media domain, users relate
with each other in forms that where impossible to think before: one can be interested
in all the content produced by another user and so, ”following” its profile, he does not
miss anything, another one wants to explicitly show a content to a friend and so it
can ”mention” the other in the post or directly ”retweet” or ”re-pin” the content, one
can appreciate a content putting a like and share its opinion with a comment. This
set of possibilities generates networks much more complex, in which the standard
techniques cannot be easily applied.
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New techniques and approaches are needed to handle this complexity: representation
learning is a very recent field, that allows to encode the nodes of a graph inside a
continuous feature vector, that can be used to perform machine learning tasks. In
this way, all the results of machine learning can be extended to graphs, providing a
powerful set of strategies to handle this new complexity.
In this context, the problem is formulated as the analysis of communities on on-line
social networks: users network structure is exploited in order to describe patterns and
behaviours that would not be possible to catch using standard features. A method
is developed to handle the overall analysis: specifically, the focus is to encode the
heterogeneous networks, that naturally arise from the data, into simplified versions,
that are able to capture all the needed information in order to effectively model the
user. Machine learning tasks, such as classification and clustering, are then applied
on these networks in order to show the power of the model, along with the possible
new knowledge that can be extracted.

1.2 Structure of Thesis
The thesis is structured as follows.
In Chapter 2 the background for the comprehension of the work is defined.
In Chapter 3 works related to this thesis are presented.
In Chapter 4 there is the description of the method.
In Chapter 5 the main experiments and results are presented.
In Chapter 6 there is the conclusion of the work, including criticality, issues encoun-
tered and possible future works.
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Chapter 2

Background

The focus of this chapter is on the background needed to support the thesis’ work.
First section defines an overview of the main graph theory definitions needed, then
the discussion proceeds with general studies on Social Network Analysis and Graph
Mining, which cover a large variety of tasks and results in literature, that are the basis
the development of the thesis. Then, more specific and recent works are presented:
link prediction, community detection and representation learning, which are the core
elements of this work, too.
In the second part of the chapter, an extremely important result for this work, the
node2vec algorithm [11], is described in detail: it is a flexible representation learning
algorithm used to generate the continuous feature vectors, that are then exploited to
solve a set of machine learning tasks.
Finally, the attention is put on the main technology that is transversal to the thesis,
the SNAP library: it allows to handle big graphs very efficiently and it is used to
build and manipulate all the networks discussed in the next chapters.

2.1 Graph Theory
A graph is a mathematical model defined as an ordered pair G = (V,E), where V is
a set of vertices and E is a set of edges such that E = {(u, v)|u, v ∈ V }. Vertices
correspond to entities and edges correspond to relationships between them. Usually,
a graph is represented by an adjacency matrix A, of dimensions |V | × |V |, such that
each entry is either 1 or 0, indicating the presence of an edge for each pair of nodes.
A graph can be of different types and the most important categories are described:

• undirected: given a pair of nodes u and v, the edge (u, v) is identical to the
one (v, u).

• directed: edges have orientations and so E is a set of ordered pair of nodes.

• weighted: edges have assigned a number wij, the weight, which can represent
different variables, such as a cost, a length or a capacity, depending on the
modelled domain. In this case, the adjacency matrix is extended to consider
the weights and each entry becomes aij = wij.
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• multigraph: multiple edges between each pair of nodes are allowed and la-
belling for each node and edge is introduced.
Formally, it can be defined as an 8-tuple

G = (ΣV ,ΣE, V, E, s, t, lV , lE)

where:

– V is a set of vertices and E is a set of edges,

– ΣV and ΣE are finite alphabets of the available node and edge labels,

– s : E → V and t : E → V are two maps that indicate the source and
target vertex of an edge,

– lV : V → ΣV and lE : E → ΣE are two maps describing the labelling of
the vertices and edges.

A graph has specific characteristics and some of them need to be explained, in order
to better understand the work. First of all, a path is a finite or infinite sequence of
edges that connect a sequence of nodes.
The degree of a node is the number of edges that are connected with the node and it
can be further detailed for directed graphs in in-degree, the number of ingoing edges,
and out-degree, the number of outgoing edges.
The adjacent node of a node v is a node that is connected to v by an edge. This
definition allows to introduce one of the most important concepts in graphs: the
neighbourhood of a node. Given a graph G, the neighbourhood of a node v, NG(v),
is the induced subgraph of G consisting of all nodes adjacent to v.
A graph can also be associated a special class, if there are specific conditions. For the
purpose of this thesis, two main configurations are presented. A graph is complete
if each pair of nodes is joined by an edge, so that it contains all the possible edges.
An undirected graph is connected if, given any pair of nodes u and v, there is a path
from u to v, while a directed graph is weakly connected if replacing all of its directed
edges with undirected edges produces a connected undirected graph. Otherwise, if it
contains a directed path from u to v and a directed path from v to u for every pair
of vertices u, v, the graph is called strongly connected. If only a subgraph has one
of these properties, it is referred to as a connected component.
Finally, centrality measures are another core part for comprehending the main graph
analysis works. They are indexes, defined and analysed widely in literature, that
explains the position of each node with respect to the others, highlighting the ones
that are more central. It follows a brief list of the most important ones:

• Degree Centrality: Given a node v, normalized degree centrality is given by

D(v) =
deg(v)

N − 1

5



where deg(v) is the degree of the node and N is the number of nodes present
in the graph.

• Closeness Centrality: Given a node v, normalized closeness centrality is given
by

C(v) =
N − 1∑
u d(u, v)

where d(u, v) is the distance between node u and v.

• Betweenness Centrality: Given a node v, betweenness centrality is given by

B(v) =
∑

s ̸=v ̸=t∈V

σst(v)

σst

where σst(v) are the shortest path between s and t that pass through v and σst

are all the shortest path between s and t.

For a more detailed description of these and all the other metrics, refer to [9] or any
other graph theory book.

2.2 Social Network Analysis
Social Network Analysis is a quite old discipline, which dates back to the XX century,
when the term ”social network” was coined. Since the fifties, the term has been used
in a systematic way to indicate a kind of analysis that mixed sociology, mathematical
models and, a little bit later, computer science [8]. The work of Mislove et al. [23]
is one of the first that deal with modern social networks, analysing basic metrics and
features for YouTube, Flickr, LiveJournal and Orkut. It describes fundamental prop-
erties of these real-world networks, making a comparison among this websites and
their correspondent network structure. In the study, in-degree, out-degree, average
path length and clustering coefficient are computed and compared with respect to
theoretical graph models, in order to show the most important properties. Further-
more, this work makes some observations about issues that can arise in the design of
the correspondent systems.
In more recent works, graphs are used also as support structure for specific tasks,
such as anomaly detection in the survey of Akoglu et al [1]. They point out that
anomaly detection can be better addressed if the data is structured as a graph, due
to the relational nature of the problem: data are inter-dependent, exhibit long-range
correlations and the fraud is often opportunistic or organized, elements that can be
all captured by the network model.
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2.3 Link Prediction
An extremely important field in graph mining is link prediction. The general idea
is to define a similarity measure between each pair of nodes, in order to predict the
presence of a link in correlation to the magnitude of the similarity. This specific
problem has been largely studied and a lot of techniques are already available, as
pointed out in [2, 19, 21]. The surveys describe in detail a set of possible similarities
that can be selected. In this section, the most important ones are summarized.
Given a pair of nodes (u, v), for node neighbourhood based category, there are several
possibilities:

• Common Neighbours:

CN(u, v) = |N(u) ∩N(v)|

represents the size of common neighbours.

• Jaccard Coefficient:

J(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

represents the common neighbours normalized by the total number of neigh-
bours of the two nodes.

• Adamic/Adar: given a set of features z, shared between u and v,

A(u, v) =
∑

z∈N(u)∩N(v)

1

log(|N(z)|)

which weighs more common neighbours with smaller degree.

• Preferential Attachment:

PA(u, v) = N(u) ·N(v)

represents an aggregated function that follows the rich get richer model.

For path based category, the main similarities are:

• Katz:
katz(u, v) =

∞∑
l=1

βl · |paths<l>
uv |

which is a variant of shortest path distance, but penalizing the longer paths.

• Commuting Time:
C(u, v) = Hu,v +Hv,u

where Hu,v is the hitting time, the expected number of steps for a random walk
to get from u to v.
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Other than these categories, similarities that can be used for each pair of nodes are
based on nodes and edges attributes, which can improve performance in prediction,
but they require some domain knowledge to be exploited. The prediction, then, is
made based on the fact that the more two nodes are similar, the higher is the proba-
bility that a connection should be in the graph between them.

2.4 Community Detection
The idea behind link prediction is that similar nodes are connected or, at least, near in
the graph structure. This concept is emphasized in another research domain, which is
referred to as community detection. This is one of the widest and most important
field in graph mining and its aim is to group together nodes that are near in the
graph, leading to definition of communities.
Everything started from the work of Girvan-Newman[10]. They defined an algorithm
based on the definition of the edge betweenness centrality measure as the number of
shortest paths between pairs of vertices that run along it: the higher this index, the
more important is the correspondent edge for community definition. In fact, if there
are communities that are loosely connected, all the shortest paths will pass through
these specific edges, maximizing the value of this index. So the algorithm iteratively
removes the edge with highest betweenness, recomputes all the betweenness and then
stops when no edges are left. The output of the algorithm is a dendogram, from which
the communities can be extracted. Since this algorithm runs in O(m2n), for recent
networks, with millions and millions of edges, is computationally expensive. Another
important basic result comes from the same authors in a following study [26]. In this
paper there is the definition of the modularity function:

Q =
1

4m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj)

where:

m: number of edges in the networks,

ki, kj: degrees of nodes i and j,

Aij: corresponding entry of the adjacency matrix,

δ(ci, cj) = 1 if node i and j belong to the same community.

The function represents the fraction of edges that falls within a given group minus
the expected fraction if edges were distributed at random. The value spans between
-1 and +1: a high Q for a group of nodes represents a tightly connected set of nodes,
thus a community. An entire class of algorithms is developed on this observation and
it is referred to as modularity maximization: because the search space is exponential,
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greedy solutions and heuristics have been devised [25, 6, 3].
Apart for modularity, many strategies can be implemented to extract communities,
from advanced heuristics to algorithms more related to machine learning, that are
discussed in the next chapter.

2.5 Representation Learning
Community detection and link prediction are strongly correlated with machine learn-
ing techniques and thus rely on user-defined heuristics to extract features encoding
structural information about a graph (e.g., degree statistics, kernel functions, simi-
larity measures). Recently, there have been an increase in approaches that automat-
ically learn to encode graph structure into low-dimensional embeddings, numerical
vectors that represent each node. Some researches have already been made [15], with
a number of techniques defined to map either nodes, edges or entire subgraphs into
numerical vectors with the common objective of easing the subsequent machine learn-
ing task. There is no straightforward way to encode the network structure inside a
feature vector, so the idea behind representation learning is to learn a mapping that
embeds nodes in a low-dimensional vector space Rd, treating this step a machine
learning task itself and using a data-driven approach. Most of these algorithms are
unsupervised and they are divided into two main categories: matrix factorization and
random walk based. The first are inspired by classic techniques for dimensionality
reduction, which optimize loss function of the form

L ≈ ∥ZTZ − S∥22

where S is a matrix containing proximity measures and Z is the matrix of node
embeddings. The goal of these methods is to learn embeddings for each node such
that the inner product between the learned embedding vectors approximates some
deterministic measure of graph proximity.
The other category tries to define embeddings such that nodes have similar vectors
if they co-occur on short random walks over the graph and this results in a flexible,
stochastic measure of graph proximity. The basic idea is to compute the probability
pG,T (vj|vi) of visiting a node vj on a length-T random walk starting at vi, with usually
T ∈ {2, ..., 10}. This leads to minimize the cross-entropy loss

L =
∑

(vi,vj)∈D

−log(pG,T (vj|vi))

In this environment, one of the most interesting works is the node2vec algorithm,
developed by Grover et al.[11], which is selected for the development of this work and
discussed in the next section.
Other works try to take advantage of the incredible amount of data available to train
models based on Artificial Neural Networks. The work of Hamilton et al.[14] exploits
both node structure and node attributes, feeding them to a Convolutional Neural
Network. The idea is to propagate information across the graph to compute node
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features: each node induces a computation graph, which is based on node features
and on node neighbours features. These are combined using an aggregation function
γ, that can be mean, max-pooling, LSTM . The set of parameters W (k) and Q(k)

are fixed and are computed in a supervised way, leading to an extremely scalable
algorithm.
Deep learning approach is also applied for dealing with heterogeneous networks: in
this work [5], a loss function that integrates both structure of nodes and their types
is defined and then it is used to train a Convolutional Neural Network architecture,
composed of 5 convolutional layers and 2 fully connected layers. They take as an
example web graphs composed by images and text nodes, observing that the best
results are obtained when they combine both link and content features. A similar
approach is used in [30], where a deep architecture is developed focusing on each node.
They iterate through relationship types (both in and out-going), encode the neigh-
bours nodes found and the resulting representation is normalized and passed through
an activation function, such as ReLU. The results achieved on RDF networks are
remarkably positive, outperforming the state of the art for this specific category of
graphs (relational graphs). This last set of works extend the basic approach, creat-
ing embeddings directly from heterogeneous graphs, at the cost of a more complex
algorithm applied.

2.6 Node2Vec
The result of Grover et al. [11] is the starting point of this work. The node2vec
algorithm tries to solve a big problem in network analysis: feature representation for
nodes and edges in a task-independent way. The algorithm develops 3 main phases
in order to achieve this goal:

1. Computation of transition probabilities for each edge
The weights are computed to generate a biased random walk of length l. Let ci
be the ith node in the walk, then nodes are selected considering the distribution

P (ci = x|ci−1 = v) =

{
αpq ·wvx

Z
if (v, x) ∈ E

0 otherwise

The α is called the search bias and it depends on the parameters p and q:

αpq(t, x) =


1
p

if dtx = 0

1 if dtx = 1
1
q

if dtx = 2

with dtx denoting the shortest path distance between node t and x. Intuitively,
parameters p and q describe how fast the walk explores and leaves the neigh-
bourhood of the starting node. The variation of these two values allows to
interpolate between Breadth-First Search and Depth-First Search, which are
the two extremes strategies. In the specific, parameter p is called the return
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parameter and it controls the likelihood of revisiting a node in the walk, while q
is the in-out parameter, which allows the search to differentiate between inward
and outward nodes. The choice of the tuple (p, q) defines the strategy S of
sampling the neighbourhood for each node in an extremely flexible way.

2. Execution of the biased random walks
For each node v, a neighbourhood NS(v) is sampled, based on the nodes ex-
tracted in the walk execution, which depends on the strategy S defined in the
initial step. In order to offset the bias, the random walk is executed multiple
time for each node.

3. Run of the optimization problem to compute node embeddings
The embeddings are extracted maximizing the log-probability of observing a
network neighbourhood NS(v) for node v, conditioned to its feature represen-
tation f(v):

max
f

∑
v∈V

log(P (Ns(v)|f(v))

Assuming that the likelihood of observing a neighbourhood node is independent
of observing any other neighborhood node given the feature representation of
the source and that source node and neighbourhood node have a symmetric
effect over each other in feature space, the final optimization problem becomes:

max
f

∑
v∈V

[−logZv +
∑

ni∈NS(v)

f(ni) · f(v)]

with the per-node partition function Zv =
∑

u∈V exp(f(v) · f(u)) approximated
using negative sampling. The equation is optimized with Stochastic Gradient
Ascent over the model parameters to define the features f .

The resulting output is a feature vector f(v) for each node v, that can be used as
input to any kind of machine learning task and that is extensively used in this work.

2.7 SNAP
Graphs are complex and expensive objects to be represented and analysed and, re-
cently, the dimensions of networks reach up to millions and millions of nodes and
edges: an efficient library is needed in order to make analysis in this environment.
The Stanford Network Analysis Platform (SNAP) [20] is a general-purpose system
that allows to easily manipulate and analyse large networks, implemented in C++,
but with a Python interface (SNAP.py [34]), the one used in this work.
SNAP library is selected for this work for a number of reasons. First of all, the per-
formances: the library allows to efficiently manage big graphs in main memory. For
instance, a 4 GB machine is needed in order to generate and manipulate a graph of 1
million nodes and edges. This optimized representation eases the definition of local
tests, without too much computational power. Moreover, provided to SNAP the edge
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and node tables, little time is needed to build such networks, which makes even easier
to repeat the analysis. Flexibility is another important point: the library allows not
only insertion and deletion of nodes and edges, but also extraction of subgraphs from
the original one in a very straightforward manner. This last feature, specifically, has
been extensively used in the thesis work, in order to build graphs filtering the type
of edges, or using only nodes that belong to a specific cluster identified.
SNAP implements 2 main types of models: graphs are the basic model, they can be
directed or undirected and they use numeric ids to identify each entity, while net-
works allow to add attributes on edges and nodes. Moreover, there is a third model,
the multimodal networks, that includes a modular definition of heterogeneous graphs.
Except for this last one, graph models can take advantage of all the algorithms that
are already implemented, which are 140: they span from basic centrality measures, to
more sophisticated algorithms, from community detection to search algorithms, from
neighbourhood analysis to graph model generators.
During the development of the thesis, given the possibility to use the already defined
algorithm, the second model is implemented and all the possible edges and nodes
types are manually defined.
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Chapter 3

Related Work

The objective of this chapter is to describe the scenario in which this work is inserted.
The main studies and papers that show similar methodologies and similar objectives
are presented in detail. Specifically, the focus is about studying social media com-
munities using advanced features extracted from the network structure, along with
other features that characterize the users, in order to describe communities in differ-
ent ways.
The chapter is divided in three sections, that analyse groups of different works: the
ones that encode user in a specific vector to map its behaviour, the ones that exploit
more the network structure and, finally, the ones that use representation learning.

3.1 User Features and Behaviours
Users are the most important target of all the works at social media level and there
are many strategies possible to manage this core entity. One of the most used in
literature is to describe the user with a set of characteristics, called features, over
which a comparison is made. Usually, a similarity measure is then implemented in
order to compare the users and group them together in clusters or classes.
The general task of ”user classification on on-line social networks” very often becomes
”malicious users detection”, as happens in [40]. The approach is to extract a set of
very specific features in order to represent the user as a vector, which is the input
of the classifier that discriminate between normal users and malicious ones. Also
[36] uses a combination of features in order to solve the problem of spam detection.
As previously, the main features consider domain specific information for solving the
task, such as presence of links in consecutive tweets. Anyway, these works define a
similar machine learning task with respect to this thesis, because detecting if a user
is a regular one or a spambot is comparable to discriminate between consumer and
non-consumer users.
The work of Pennacchiotti et al. [29] defines a general machine learning framework
for social media user classification, testing different set of features extracted from
Twitter. They analyse in detail 4 set of features (user profile, user tweeting behavior,
linguistic content of user messages and user social network features), pointing out
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that user features alone are not enough descriptive, while content-based feature are
more valuable. The work of Yu et al. [38] wants to achieve a different goal, User
Identity Linkage (UIL), on social media platforms, exploiting a feature vector rep-
resentative of the user. This vector is computed based on topics: each topic is a
vector projected in a latent space and the users are represented in the same space,
based on the relationship in time with these topics. The work of Yamak et al. [37]
develops a complex framework for SockPuppets detection, exploiting both machine
learning and network structure. It is different in the execution of the overall pipeline:
first, specific domain features are extracted from the social media accounts in order
to detect the malicious users via machine learning techniques and then two different
weighted graphs are processed. The action and the relationship graphs are then used
as input for a community detection algorithm, in order to cluster the users previously
identified. This other set of works defines a similar approach, since the idea of encod-
ing the user characteristics in a feature vector is exploited extensively in the thesis.
Generally speaking, there are a couple of differences between the works presented in
this section and the thesis. First of all, the features extracted are extremely domain-
specific, which means that they cannot be generalized, while the point of extracting
features directly from the network structure is to have general features, that are able
to map hidden behaviours on social media and thus be applicable for multiple ma-
chine learning tasks. Also, some of these works claim to use ”network” features, but
in fact they are referring to friendship relationship, such as number of friends and fol-
lowers. So, they consider only quantitative values representative of the network, not
the entire social graph that is built around the users, which, instead, is extensively
exploited in this work.

3.2 Network Features and Structure
The focus of this section is to highlight works that try to make better use of the
network structure itself for describing the users.
Moving in this direction, the clustering task can be easily exchanged with the com-
munity detection task, where the position of nodes in the network gives the definition
of the groups, as already described in the previous chapter. Here the aim is to present
studies that use this approach in different settings and with different types of net-
works. [32] defines a method to detect overlapping communities in a robust way,
combining tensors and ego-net in order to obtain groups that are not ”susceptible to
resolution limits”. In this setting, Sheikholeslami and Giannakis extract hidden com-
munities from networks, considering only the pure network structure. The method
presented, on the other hand, is not biased toward a limit in the number of com-
munities discovered, while is even more flexible since it considers different types of
networks. [17] is another study that deals with overlapping community detection, in a
complementary way, with a bottom-up technique. It devises a complex heterogeneous
network, composed by both directed and undirected edges, to represent semantic in-
terests and social interactions. They claim that the vector space representation has
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weaknesses that the ontology-based one can overcome and the resulting graph is used
as input for community detection algorithm: this is ”helped” by multiple seeds, that
guide the definition of groups. In the work of Mosavi et al.[24], the observation is
that a community is composed by a number of leaders and followers and that the
first are often easier to detect, due to their strong activity inside the network. They
run a frequent pattern mining algorithm on the action table of each user, extracting
small groups of users, who are similar in term of operations they perform. Then,
these groups are filtered by the ones that are not strictly correlated on the graph
(some users perform the same actions but they are far away in the graph) and the
communities are built, starting from these small sets of ”leaders”. A different ap-
proach is proposed by He et al.[16], who define a new method in order to discover
hidden communities with respect to the dominant ones. The idea is that hidden
communities are overlapped with the dominant ones, but can be highlighted when
the first are ”weakened”, using different methods: removing edges, which removes
all intra-community edges, reducing edges, which removes randomly some edges of
the block to match the edge probability of the block, reducing weights, which scales
the weights of edges in a community to match the edge probability of the block. In
this other work [35], they try to optimize the detection using a weighted graph. The
weights are computed for each edge, considering the node attribute similarity: for
discrete attributes, the weight is the sum of shared attributes between the two nodes,
while for continuous attributes, the arithmetic difference of normalized values is com-
puted, in order to obtain a similarity measure. This approach allows to encode all
the needed information for the definition of communities inside the weights, so that
a simple algorithm, that maximizes the modularity, can be applied with meaningful
results: the communities are sharply defined by the combination of network structure
and node features. Moreover, the method is extremely simple and thus scalable to
networks with millions of nodes.
These works extend the ”community detection” task, trying to consider hidden dy-
namics in order to define user groups with different levels of granularities. Similarly,
in the thesis, the clustering approach has the same target, having a tunable number of
groups that can be extracted: the further advantage, in the method presented, is that
it can be applied to different types of networks. Moreover, the method presented ex-
tends the basic idea of community to cluster thanks to representation learning, which
leads to the definition of sub-communities simply increasing the number of clusters
extracted.
The other important element is about heterogeneous networks: usually, social net-
work analysis is run on homogeneous graphs, with nodes that correspond to users
and edges that correspond on specific relationships, dependent of the domain. In this
work, the attention is moved on graphs that have different types of nodes, such as
users, posts, tags. Shi et al [33] propose a survey on heterogeneous networks anal-
ysis, describing around 100 papers that deal with this new structure. They argue
that heterogeneous networks are spreading more and more, such as social networks,
knowledge graphs, gene networks, while most of the works still try to use homoge-
neous networks. Recently, there have been many studies that try to directly encode
the rich properties of these networks inside the classical algorithms, creating new ver-
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sions of classification, clustering, link prediction, recommendation, and many more.
This shift is given by the fact that heterogeneous networks are becoming more and
more popular and a set of applications that deal directly with these are needed. De-
spite this, there is no reference to the field of representation learning, which is even
a newer field: the thesis tries to address the problem, combining both heterogeneous
network analysis and node embeddings.

3.3 Representation Learning
The most recent research field, in the domain of network analysis, is referred to as
representation learning, as already pointed out in the previous chapter.
This approach is taken in [22] and applied in Content Curation Social Networks
(CCSNs), Pinterest and Huaban. In this work, the feature vector is extracted from
two kind of networks, the one of explicit social relations (”follow” relationship) and
the one of content-based social relations (”re-pins”) and then they are combined in
a unique representation, used for recommendation tasks. This is one of the most
similar works, the main difference stands in the construction of the networks: in this
work, there is no intermediate step, because all the interactions are already encoded
as direct user relationship. Instead, in the thesis, a further step is required to simplify
the heterogeneous networks, before generating the embeddings. Moreover, these are
built using a single optimization problem, while in the thesis the optimization is kept
separated for each network.
[12] has a different target, sentiment analysis, but the approach to achieve it is quite
similar to the thesis one. In fact, the set of users, products, words used in reviews
and polarity of the words are included in a single heterogeneous network: in this way,
using representation learning, these different entities are mapped into the same latent
space. The main advantage is that the context of a word contains also the users that
used it and the products that it is associated with, thus having richer description,
which can be used to accurately describe the interactions between entities.
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Chapter 4

Main Idea

In this chapter, the main method for analysing the networks is presented in detail.
The core idea is to exploit the network structure in order to map the behaviour of
users extracted from on-line social network communities. This structure is intrinsic
in social media domain, but its effective definition and construction is not trivial and
it is part of the knowledge discovery process: the main problem is dealing with the
variety of networks that can be extracted. In this work, the analysis are focused first
around the concept of brands, which use their accounts with specific purposes and
behaviours on social networks, then the perspective is moved on their communities,
where the users that follow the brand are grouped and described. A methodology is
developed in order to handle these bigger heterogeneous networks and to transform
them in a reduced version, so that the definition of the embeddings is easier and more
significant. After this, different set of features are tested, in order to solve both a
classification and a clustering tasks, verifying the different sets of information that
can be extracted.
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4.1 Brand Networks
Brands can take advantage of on-line social network in different ways, from generating
content and check the almost immediate feedback that other users give, to verify its
social influence with respect to the competitors. In this setting, the aim is to build
networks that are able to catch such information, which can be useful to the brand’s
strategy.
The brand network can be a very interesting point of view: its construction is based
on all the content generated by the brand itself, including the connections with other
users. In particular, the main components of the network generated are:

• Brand user node, connected with all its posts

• Location and comment nodes, connected to the correspondent posts

• Tag nodes, linked to all the posts and comments in which they are used

• Other users nodes, which can be users mentioned by the brand or tagged directly
on the picture, users that commented or liked a post and users followers of the
brand

The resulting network is directed and heterogeneous, including different kind of nodes
and relationships. An example of this model is given in figure 4.1: different colours
denotes different node types. In figure 4.2, the edge types are highlighted for the
same network.
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Figure 4.1: Brand Network - Node Types

The figure represents the network of a single brand, where the violet nodes are the users,
the orange ones are the posts, the light blue ones the hashtags, the green ones the comments
and the dark green the locations. It is possible to see the brand, as the central node around
which a lot of other user nodes are connected, the followers.
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Figure 4.2: Brand Network - Edge Types

The figure shows the different types of relationships. The most visible are the most frequent,
that include the like (violet), the follow relationship (light green), and the comment (light
blue). The first two relationships alone cover around 90% of all the edges of the graph. The
other types are author, commenter, tag, mention, picture tag and location.

This representation allows to observe the network topology of each brand, high-
lighting the dimensionality and importance of nodes inside its own model. Moreover,
it is possible to merge this networks and to build a domain network, which models
the brand content and the competitors content together. In this way, the importance
of each node, either user or hashtag, is computed inside the complete domain, giving
insights about who are the most popular brands, what are the most relevant topics
and the niche ones.
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4.1.1 Image Concepts Networks
An extension to the previous model is given by the inclusion of derived information
as nodes of the network. In the context of social media, images play an extreme
important role: regular users usually share images that are very interesting, because
they contain places or things that the user enjoys. On the other hand, brands have the
same potential: use powerful and catching images to impress possible customers about
their products. For these reasons, image tagging nodes are added to the network,
linking, by consequence, posts that share similar pictures. In order to obtain these
taggings, Clarifai API [39] are queried, using the ”general” model: the tags retrieved
focus on the main concepts of the picture, such as the presence or absence of people,
the definition of a specific landscape and many more.
As previously, the network shows the most important topics, with respect to the
images that are used by each brand: the importance can be either defined as the
most used pictures, as the most shared or as the most niche, which can be easily
extracted with centrality measures. This gives more specific information on the type
of messages that a brand and its competitor want to share. Moreover, both the single
brand network and the domain network can be defined, while for simplicity only the
first is presented (figure 4.3). It is evident that there are concepts that fall apart in the
graph, the ones very particular, and then there others more densely connected, since
represent the most used images for the brand. For instance, in the middle of the graph
there are concepts such as ”people”, ”woman”, ”travel”, while in the lower corners
there are two very specific images: the left one has ”bath”,”shower”,”wash closet”,
while for the right the concepts extracted are ”weapon”,”rifle”,”protection”. The main
problem about these tags is the fact that they are very general, while the more specific
filters that the API expose are not so accurate: in some context this could not be a
problem, but moving on the case study of fashion, this becomes a critical issue, that
cannot be ignored and the validity of the process becomes questionable.
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Figure 4.3: Image Concept Network

The graph in the figure represent the image concepts network of a single brand. The posts
are defined in green, while in rose there are the picture tags.
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4.1.2 Mentions Networks
A technique extremely useful to simplify the overall complexity of this kind of models
is the reduction of dimensionality. Networks are non-euclidean models, so the process
is not trivial: a possible approach is working on the type of relationship, filtering only
the ones that are useful for more detailed analysis.
Among all the possibilities, one of the most promising relationship is the ”mention”:
it is implemented as a special tag in the post content, using the ’@’ character, and
it allows to notify another user about the specific post. In a very similar way, it is
possible to insert the target username directly on the picture, with the same purpose.
In the work developed, these two modalities are treated as one, referred to simply as
mention. It is a valuable information because it connects two users not due to its
content, either in the picture or in the hashtags used, but due to a voluntary action,
thus creating a strong link between them.
Mentions networks are built filtering the complete networks described in the previ-
ous section, keeping brand node, posts and comments nodes, and the correspondent
mentioned users. The same network of figure 4.1 is filtered and represented in figure
4.4.
This filter helps handling the dimension of the domain network, defined in the previ-
ous section: figure 4.5 shows the combination of all the mentions networks of brands
in a unique model. The immediate insights that can be made are that brands cre-
ate sharply defined communities, detectable even visually, and also that there are
”bridge” nodes, which are users mentioned by (or that mention) multiple brands.
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Figure 4.4: Brand Mentions Network

daftcollectionofficialdaftcollectionofficial

The network is filtered so to keep only the needed content: violet nodes are still the users
and the brand can be noticed in the middle of the graph, while around it there are its posts
(orange), comments (light green) and all the users mentioned in both these entities.
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Figure 4.5: Domain Mentions Network

The graph represents the dynamics generated by the mentions of each brand: in blue there
are the user nodes, in green the posts and in orange the comments. It is possible to highlight
a small set of users that is mentioned by multiple brands, while most of the other users have
connection with only one. This fact generates the visible densely connected components,
connected to each other by few, shared nodes.

In order to move the focus on users, the last network presented is further simplified,
in another reduction step: all the post and comment nodes are removed and in its
place a single weighted edge eij is defined, where weight wij is the number of times
user i mentioned user j, independent of the fact that mention happens inside the post
or inside the comment. Then, a very interesting model is retrieved, because it puts
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the attention on the set of users that compose the communities, generated by the
mention relationship around each brand (figure 4.6).

Figure 4.6: Reduced Domain Mentions Network

The colour of the edges indicates the weight, from blue (low number of mentions) to red
(high number of mentions). The sparse nodes around the main graph are users that mention
other users in the comments, not correlated at all with the brand. This is a way, in social
media, to show to a friend a specific content of another account.
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4.1.3 Other Networks
The filtering possibilities for the original brand network are many: basically, each
type of node and/or relationship can be kept so to obtain a different ”view” of the
same network, with, possibly, different insights.
Among all the possible entities of the main network (figure 4.1), location cannot be
considered, since each brand uses the ones that better match the company’s view
and very little is shared, leading to an inconsistent definition of graph. The same
reasoning can be applied to brand hashtags. The focus still remain on users: as for
the other possibilities, likes, comments, and followers networks are extracted with
the same procedure described in section 4.1.2, filtering only the nodes and edges of
interest. The analysis that can be run are still the same, but the sparsity of the data
does not allow to extract valuable information.

4.2 Community Networks
The community that grows around a brand has a significant impact: knowing who is
interested in your products and what are the other interests of these users can help
in better defining your strategy, creating something that is appreciated, competitive
and innovative at the same time.
Community networks can be defined similarly to what described in section 4.1 for
brand networks construction, with some constraints about the types of nodes included,
which depends on the data available, explained in section 5.2. The dimensions of these
networks are incredibly high and so two different ”versions” are presented.

4.2.1 Complete Networks
Complete networks are built considering all the posts, hashtags and users mentioned
of a brand’s followers. The number of nodes and edges for the communities analysed
are presented in table 4.1.

Table 4.1: Community Network Dimensions

brand |V| |E|
emporiosirenuse 510767 1892927
daftcollectionofficial 833667 3094603
athenaprocopiou 2135161 9667715

The three communities analysed in detail are presented with their complete graph dimen-
sions.

It is evident that reduction is needed more than previous case and two main net-
works are extracted, keeping only the correspondent edge types and nodes: mentions
network and hashtags network. This allows to focus the attention either on content
shared by followers or on people with whom followers make contacts.
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Since in this setting the users are very important from the brand’s point of view,
because they are followers and thus interested in brand’s products, the objective is
trying to extract similarities among these users, given their position inside the com-
munity network. In order to compute similarity, a representation of the user is needed
and the node2vec algorithm is applied for this purpose: it is run on the two networks,
in order to learn a representation of the user nodes, mapping both the interactions
based on shared content and based on mentioned common users. Then, the features
are normalized and combined in order to define a unique representation of the user,
that encodes the main network aspects already described.
Given this feature vector, it is possible to solve machine learning tasks that allow
to verify the validity of this representation. At the same time, they help in defining
models useful for grouping similar users together, understanding better what is the
underlying structure of the community.
A classification task is developed using these features, following a simple pipeline:

1. Definition of a ground truth set of users

2. Feature extraction and combination

3. Model selection to define the best hyper-parameters

4. Evaluation of the model

Moreover, a clustering task is developed following a similar process: extraction of
features and combination, evaluation of the clusters structure, validation of clusters
content. The main difference is that, given the unsupervised method, feedback by
domain experts is required and to ease this step a set of labels and a ranked degree
of similarity are computed.
The details of these steps and of the experiments are described in chapter 5.

4.2.2 Reduced Networks
Reduced networks are built observing the previously presented network in figure 4.6,
where only the user nodes are kept. The idea is to synthesize these enormous hetero-
geneous networks in smaller, weighted and homogeneous ones, which brings several
advantages:

• The lower input dimensions let the manipulation of the networks to be easier
and the computation to be faster.

• Keeping only user nodes allows to work effectively with ”classical” social net-
works, where only the user-user interaction is represented, thus opening all the
results already present in literature.

• A weighted network is a compact and very strong representation, which is ex-
ploited to extract hidden communities.
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Two different algorithms are developed in order to obtain these networks, since hash-
tags and mentions have different characteristics.
For mentions networks it is simpler: the idea is to remove all post nodes and to define
in its place a single weighted edge eij, where weight wij is the number of times user i
mentioned user j, in a similar way to what described in section 4.1.2. Practically, the
implementation uses the complete mentions network as input, iterates over the user
nodes and, for each other user node at distance 2 in the network, which corresponds
to the mentioned user, it computes how many paths are present among the two: this
set of weights are stored and they become the weights of the edges between all pair of
users, thus defining the new reduced network. The diagram 4.7 explains practically
the transformation.

Figure 4.7: Mention Network Reduction Process
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For each pair of user, the nodes between the two entities are removed and, in their place, a
weighted directed edge is defined

The reduction of hashtags network is quite similar, but a pre-processing step
is required: tags, despite of mentions, are massively used on social networks and
connecting each pair of users that have at least one tag in common means creating a
fully connected graph, where every node has an edge with every other node. Three
step of filtering are applied to the complete hashtags network:

1. Stop Words Pruning
There is a set of hashtags that are extremely common on the case study plat-
form, Instagram, such as #picoftheday, #like4like, #nofilter and many more,
and a set of hashtags diffused in the case study domain, fashion, such as #out-
fitoftheday, #ottd, #fashion. These 38 tags are completely removed from the
source network, because they create a lot of connections that do not increase
the effective similarity between users.

2. Tail Pruning
In this step, hashtags that have a low frequency are pruned, as shown in figure
4.8. This allows to reduce the overall number of tags over which running the
effective analysis, removing further noise from the network.
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Figure 4.8: Tags Frequency Distribution
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In figure, the frequency of each hashtag inside a community is presented: on the x-axis
there are the hashtags, while on the y-axis there is the logarithm of the frequency for each
of them. The minimum frequency considered is showed as the horizontal line, correspondent
to 10 in linear scale.

3. TF-IDF Variation
Term Frequency - Inverse Document Frequency is a technique very well known
in data mining literature, used to map a text, described by a set of words, into
a numerical vector. Since hashtags are words, it is possible to compute the
weights defined by the algorithm in a very straightforward way: the idea is to
consider a user as the text, while the hashtags used by that user are the terms
that describe it. The computation of the IDF value for each tag t becomes

IDF (t) =
log2(N)

U

where N is the number of users inside the community and U is the subset that
used tag t at least once. Symmetrically, the TF value for each tag t used by
user u is the total number of hashtags used by u: the set of TF values for each
user is extracted traversing the graph. The final weight is obtained for each tag
of each user, following the basic definition:

TFIDF (t, u) = IDF (t) · TF (t, u)

This value is then used for the final filtering step: only the first top K hashtags,
based on TF-IDF value, are kept for each user. In this way, two users are
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connected if and only if they have at least one of the most important tags in
common, giving a stronger measure of similarity. K = 17 is selected, which is
the value obtained analysing the distribution of hashtags in the communities
considered in the experiments. It is showed that it is constant for all the three
communities and it represents the median value of hashtags per user, normalized
by the logarithm of the community dimension: K = 2·median

log10(N)
.

After the application of these 3 steps, the complete network is effectively reduced:
for each user node, the set of hashtags used is stored, navigating through the edges
of the network and then the weight for each pair of users is wij = |Ti ∩ Tj|, where
Ti,j are the set of tags for user i and j. As before, in figure 4.9 is represented an
example of reduction, while in figure 4.10 there is a hashtags reduced network of an
entire community.

Figure 4.9: Hashtags Network Reduction Process

U1

U2

P1

P2
U1 U2

P3

P4

T1

T2

T3

3

U1

U2

P1

P2
U1 U2

P3

P4

T1

T2

T3

3

For each pair of users, a weighted undirected edge is defined, replacing all the tag
nodes between the two entities.
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Figure 4.10: Hashtags Community Reduced Network

The density of connections for this kind of networks is very high, but the colors show
that most of them are weak: in fact, the number of hashtags in common spans from
blue (low) to red (high).

It is clear that this kind of networks is much more complex to handle, since it
seems that everything is connected and no underlying structure is present, but the
experiments prove the contrary.
In order to give an idea of the dimensionality reduction produced by the algorithms,
since it is not feasible to produce a clear visualization of the complete community
network, table 4.2 shows number of nodes and edges both for mentions network and
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hashtags network, comparing the reduced and complete versions. It is clear that the
reduced networks can take an incredible advantage in terms of computational time
and, on the other side, little information is lost, since the weights encode most of the
data needed to measure similarity.
These networks are used as input again for the node2vec algorithm and the same exact
procedure can be reproduced, leading to the definition of the user feature vector and
to the resolution of the same machine learning tasks, which are extensively discussed
in the next chapter.

Table 4.2: Comparison between complete and reduced community networks

Complete Network Reduced Network % Reduction
brand type |V| |E| |V| |E| nodes edges
emporiosirenuse tag 473128 1754613 1598 56551 99.66 96.77
emporiosirenuse mention 328375 425495 44416 57853 86.47 86.40
daftcollectionofficial tag 788139 2931279 2342 96463 99.70 96.70
daftcollectionofficial mention 567467 681054 47447 59078 91.63 91.32
athenaprocopiou tag 1993850 9110931 8847 1048551 99.55 88.49
athenaprocopiou mention 1523437 1912101 148957 222309 90.22 88.37

The table shows, for each community analysed, the reduction in the number of edges and
nodes obtained from the defined process: it is evident that eliminating more than 90% of
nodes and edges can significantly decrease issues in the overall process.

4.3 Dynamic Networks
Generally speaking, time is often a key component in social media, since distribution
of posts and interactions can vary during different periods of the year and they can
have a valuable meaning in many domains. On the other hand, this kind of data
is complex to handle, because a further information, time, needs to be encoded in
some way inside the graph structure, leading to the definition of dynamic networks.
Actually, there are many ways to include time inside a graph structure.
A simple solution is to consider the date and hour of posts and to build the network
limiting the data to a single day or a single month. In this way, the evolution of the
network itself can be tracked, highlighting specific patterns, such as the growing of
communities around the brand.
Another, possibility is to use a side project of SNAP that allows to combine the
time-series and the graph analysis together, the Time-Varying Graphical Lasso [13].
The algorithm takes as input a set of raw time-series, which correspond to the target
entities of the study, and it estimates a set of sparse time-varying inverse covariance
matrices, which describe the correlation of these time-series in specific time windows.
The matrix can be used to devise an induced and dynamic graph structure, showing
hidden relationships among nodes. In social network domain, time-series can be built
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starting from the users’ timeline: the sequence of posts and comments of each user
can be put together to derive a temporal description of the behaviour of the user
itself. An example of raw time-series, based on the posts of the brands in the case
study, is represented in figure 4.11.

Figure 4.11: Brand Timeseries of Posts
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In this figure, the value is not given by a simple count, but is weighted based on the number
of likes of each post, in order to have a more variated dynamic.

It is clear that the sparsity of the posts during the months makes this kind of
analysis weaker, since the time-series definition itself is weak and the added weighting
cannot entirely fix the problem. Anyway, the algorithm is run against this dataset
and an output graph is presented in figure 4.12.
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Figure 4.12: Induced Dynamic Graph Example
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The weights represent the inverse covariance between each pair of timeseries: if this value
is 0, the edge is not present.

Finally, another possible approach is to extend the definition of a network, includ-
ing a temporal edge: this edge can connect entities that are related within a specific
time window, that can be minutes or hours. Selected a suitable time window, clusters
of nodes based on time could be extracted. Because of computational issues, in the
case study it is not possible to apply this technique, due to the exponential number
of edges that are created in the tests run. In figure 4.13, a test generated in another
domain is presented to give an idea of the possible graph output.
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Figure 4.13: Temporal Graph Example

The colours represent the different days of the test: each group of posts is connected to the
nearest ones in time and groups of posts densely connected are visible.

The increase in connectivity around certain periods of time may indicate a specific
behaviour, that could be further analysed: it could be possible to build a graph like
this for each brand and then check for similarities or specific points of overlap. The
biggest problem is that the generation of these edges grows exponentially and a more
accurate study is needed in order to discover the correct time distances to extract
significant patterns.
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Chapter 5

Experiments

In this chapter the experiments run on the case study are showed in detail.
Firstly, there is the description of the case study itself, which is about emerging fash-
ion brands and their communities. Then, the correspondent data collection process
is presented: both the brands and followers public profiles are scraped, in order to
gather the information needed to build the networks.
In the other sections, the main analysis are discussed along with the results. The
classification task shows that the features extracted from the reduced networks are
representative of the user behaviours and they are compared with quantitative fea-
tures, obtained from user profiles. In the second experiment, set of followers are
grouped together in clusters in order to define meaningful sub-communities, that are
then validated with domain experts.

5.1 Case Study
”Emporio Le Sirenuse” is an Italian fashion brand that produces mainly swimwear
and summer dresses, founded in 1990 by Carla Sersale. As their site points out
”Le Sirenuse, Positano, Collection is a cool Mediterranean sea breeze, a confident
sashay from beach to bar, a sweet taste of India garnished with a tangy splash of
Positano chic” [31]. The case study focuses on this specific brand, its community,
defined as the set of followers on Instagram, and its competitors selected by domain
experts: ”Miguelina Gambaccini”, ”Muzungu Sisters”, ”Daft”, ”Athena Procopiou”,
”Zeus+Dione”, ”Loup Charmant”, ”Dodo Bar Or”, ”Heidi Klein” and ”Lisa Marie
Fernandez”. They are all defined as emerging brands, so they are trying to make their
way through the fashion market, focusing on defining and sharing its own identity.
Fashion domain gets a lot of interesting insights from the social media, in the specific
from Instagram: images are the core element that both domains share and that can
be exploited in many ways. The main research questions are referred to extract
information about lifestyles that are more interesting for the users, so that the brand
can match them with its products and reach a broader number of people: ”what other
things do people that follow my brand like?”, ”what do people that follow competitor
brands like?” are schematic possible question that any brand can try to answer in
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order to improve its marketing.
In this setting, the thesis work exploits extensively the network structure of these
brands, highlighting similarities, differences and recurrent patterns in many different
aspects. Successively, the focus is moved towards the communities, defining models
that allows to characterize in a detailed manner the different groups of people that
are interested in the brand, always keeping the network approach in all the steps.

5.2 Data Collection
The thesis case study dataset is based on a database of posts and users obtained di-
rectly from Instagram, using a manually implemented scraper, which is run in parallel
with two Azure Virtual Machines provided by the Politecnico di Milano.
The process is divided into 4 main steps:

1. Collection of the data about brands official Instagram accounts and all its posts.

2. Collection of additional information for the posts gathered in step 1: tags on
pictures, geolocation, list of comments, list of likes.

3. Collection of the followers’ list for each brand.

4. Collection of accounts data and posts for each user obtained in step 3.

Moreover, a final step is later added, moving all the data inside a MySQL relational
database, that allows to remove consistency errors and that can be used as the basis
for the analysis. In fact, the data collected is extremely rich and all the entities
considered have a number of attributes stored along them:

• user: user id, username, number of followers, number of following, number of
posts, profile picture, privacy flag

• post: post id, timestamp, content, owner id, user mentioned, hashtags, number
of likes, number of comments

• comment: comment id, content, owner id, timestamp, hashtags, user men-
tioned

A temporal constraint is needed to work within the same time window for all the
users: posts retrieved belong to the period between 1st January 2017 and 1st Novem-
ber 2017. Another element to point out is that the data available is only for the
users who have a public profile, indicated by the ”private” flag set to false, otherwise
only little data is stored. Also, for time issues, the additional information, such as
comments, likes and geolocation, are stored only for the brand data, because they are
extremely expensive to obtain.
The final dataset, starting from the 10 fashion brands selected, is composed by 390.698
users and 13.344.030 posts. The set of users and posts are split to define the commu-
nity of each brand. It is important to point out that the analysis needs all the posts
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of the user in order to build its graph model: this is not possible for the users that set
the privacy flag and the ones that do not share anything on the platform. So, for this
work, the number of followers is not indicative of the dimension of the correspondent
network, but it is necessary to consider the number of active users, the ones that
share content on the platform in a public way. Table 5.1 shows the numerics for each
community in the dataset.

Table 5.1: Community Numerics

brand account followers private users no-posts users active users community posts
muzungusisters 66938 34576 3958 28404 2910277
miguelinagambaccini 83848 32186 12930 38732 670195
zeusndione 27624 13540 1694 12390 1170628
dodobaror 89500 40838 6527 42135 2974526
lisamariefernandez 83411 38743 5193 39475 3230855
athenaprocopiou 26591 12229 1434 12928 1301625
emporiosirenuse 3113 1374 0 1739 223376
heidikleinswim 27426 15330 0 12096 983286
loupcharmant 20446 4933 705 14808 1796469
daftcollectionofficial 3782 595 53 3134 458622

The highilighted rows are the communities analysed in detail: Emporio Le Sirenuse and
Daft are the smallest, while Athena Procopiou is an example of a medium community. The
dimension is defined by the column ”active users”, which is the number of followers that
have shared at least one post and that are not private.
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5.3 Classification
One experiment is related with a classification task, which is used to verify the effective
power of the features extracted from the networks. In this test, the purpose is to
discriminate between users that are consumers, and so possible target of the brand,
and non-consumers, which is a macro-category that includes other brands, fashion
bloggers and retailers among all.
The ground truth dataset is defined by domain experts, that manually classified a
set of users, picked from the database as a sample of the domain, for a total of 472
labelled users. A network is obtained from these ground truth users, including all
their posts, tags and user mentioned and it is referred to as ground truth network.
The algorithm selected for classification is the random forest, which is an ensemble
method that allows for flexibility. It is kept fixed for all the tests, in order to effectively
compare the different set of features exploited. Next sections describe in detail each
considered set and then a final comparison is performed.

5.3.1 Social Classifier
The overall approach is to test the features derived from a network structure, but
a baseline is needed in order to verify the validity of the process. For this reason,
a set of features is defined for each user, using the account information: number
of followers, number of following, ratio between followers and following, number of
posts and a boolean value to check the presence of words in the biography, such as
”shop”, ”store” and ”e-commerce”. These are usually referred in literature as network
features, because they quantitatively represent the social networking of each user. A
classifier is trained using these data, creating the baseline for comparison with the
real network features, the ones referred to the entire graph structure around the user.

5.3.2 Complete Network Classifier
The ground truth network is used to extract the correspondent features. First, the
mentions and hashtags networks are defined, as explained in the chapter 4, then, the
embeddings are computed using the node2vec algorithm. A default parametrization
is used and it is better explained in section 5.3.4. Finally, the features coming from
the two networks are combined in order to generate the vector representative of each
user and they are used as input for the classifier.
There is to notice that the complete networks are heterogeneous, so the features
are computed also for the other types of node, but then these are discarded in the
second part of the process. Moreover, number of nodes and edges is extremely high,
which represents a computational problem during the embedding definition, which is
extensively discussed in the last chapter.
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5.3.3 Reduced Network Classifier
In parallel, with the method accurately defined in section 4.2.2, the reduced version of
mentions and hashtags network is computed from the complete ones. As an example,
the reduced network for hashtags is presented in figure 5.1.

Figure 5.1: Ground Truth Reduced Network - Hashtags

The nodes represent the users and the edges connect each pair of user that shares at least
one hashtag used in their posts. This network is a set of users coming from different
communities inside the domain of the case study. It is possible to notice that two users are
separated from the main graph, because they do not have anything in common with the
rest of the users.
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Thanks to the dramatic decrease in the number of edges and nodes for this kind
of networks, the attention can be moved towards the community networks, which
includes all the followers of a specific brand. These networks allow to exploit an
intrinsic characteristics of the graph model: the neighbours of a labelled node, even if
not labelled itself, contributes in the features definition. Non labelled nodes generate
more common elements and, by consequence, an increased similarity between nodes
in the features space. This specific behaviour, from a machine learning perspective,
can be approached as semi-supervised learning and it allows to perform the clas-
sification using both few classified points and a lot of not classified points. This is
exactly the setting in the case study considered, because only a small set of users is
classified with respect to the entire community, since the ground truth is extracted
cross-community. To give the idea of the contribution, the same graph of figure 5.1
is combined with the community network of Emporio Le Sirenuse in figure 5.2.
So, a further experiment is defined and the features of these extended networks are
extracted in addition: the idea is that these ones have richer information, that can
be a benefit for the classification task.
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Figure 5.2: Ground Truth and Community Reduced Network - Hashtags

The green edges are the ground truth edges, the same as in figure 5.1, while the others
(rose) are the not labelled ones, belonging to the Emporio Le Sirenuse community. It is
clear that some of the nodes present in the ground truth network take advantage to the
presence of other users: for example the two separated nodes present in the previous graph
are connected in the lower part of this new one.
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5.3.4 Hyper-Parameters Tuning
In classification, it is extremely important to correctly select the hyper-parameters
of the model, a process also referred to as model selection. In the experiment, the
node2vec algorithm has a lot of parameters that can be changed, increasing the flexi-
bility but also the overall complexity. For this reason, in the pure classification step,
the random forest classifier is defined with a default setting, without performing any
optimization on its parameters: the focus is the comparison of the features, not the
general top performance of the classifier.
For what concern the node2vec algorithm, needed to define the embeddings, the pa-
rameters are:

• return parameter p, already described in section 2.6.

• in-out parameter q, alredy described in section 2.6.

• number of dimensions d for each node embedding.

• walk length l, the number of nodes sampled during each random walk.

• context size k, the maximum number of nodes to be considered in the neigh-
bourhood.

It is clear that the perfect model selection is not feasible, so some assumptions are
made: both d and l are chosen based on the dimension of the network, discriminating
between complete networks (d = 8, l = 40) and reduced networks (d = 4, l = 20),
while k = 30 is kept fixed in all the tests. The focus of the tuning is about the other
two parameters, which are the most important, because they guide the type of search,
thus defining the set of neighbours nodes.
After some preliminary trial, not reported for brevity, two main tests are developed:
the first, which involves the set of social features, complete network features and
reduced network features generated from the ground truth network. In this case,
a standard parametrization is kept for both the complete and reduced features, the
same parametrization used in the reference paper [11]. This is applied to detect,
respectively, communities (p = 1, q = 0.5) and structural roles (p = 1, q = 2) and the
two vectors obtained are merged to describe each user.
In the second test, thanks to the dimensionality reduction, hyper-parameter grid
search, a standard methodology, is applied to select the best set of parameters. A
range of values for p and q is defined, spanning from 0.2 to 5.0, then embeddings
are computed for each pair (p, q) and for each network type, they are combined and
finally used to train the classifier. The final optimal results are based on 4 parameters
p̂tag, q̂tag,p̂mention and q̂mention, which are obtained by the combination of each possible
pair. The top parameters obtained for each test are listed in table 5.3, while in table
5.2 the tests are briefly explained and then correlated with an id, that is used in all
the following results for brevity.
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Table 5.2: Tests Description

id features type description
1.1 social baseline, using quantitative features obtained from Instagram account
1.2 complete network network structure features of ground truth complete network
1.3 reduced network network structure features of ground truth reduced network
2.1 reduced network network structure features of ground truth reduced network (hyper-parameters tuning)
2.2 reduced network network structure features of ground truth reduced network merged with community of Emporio Le Sirenuse
2.3 reduced network network structure features of ground truth reduced network merged with community of Daftcollection
2.4 reduced network network structure features of ground truth reduced network merged with community of AthenaProcopiou

In this table are presented the main test run, performed to exploit the network structure
in different ways.

Table 5.3: Hyper-Parameters Tuning

#test ptag qtag pmention qmention accuracy
2.1 3.4 3.4 3.4 3.4 0.637560
2.1 2.6 3.4 2.6 3.4 0.614448
2.1 0.2 0.2 5.0 3.4 0.673488
2.1 1.8 3.4 1.8 5.0 0.670113
2.2 5.0 1.0 5.0 1.0 0.671251
2.2 2.6 1.8 2.6 1.8 0.655266
2.2 2.6 1.8 0.2 1.8 0.716204
2.2 0.2 1.0 5.0 2.6 0.719166
2.3 5.0 4.2 5.0 4.2 0.669066
2.3 1.0 5.0 1.0 5.0 0.710285
2.3 1.8 5.0 5.0 2.6 0.707002
2.3 4.2 1.8 1.0 5.0 0.729114
2.4 1.8 0.2 1.8 0.2 0.709375
2.4 4.2 0.2 4.2 0.2 0.703125
2.4 4.2 0.2 1.8 0.2 0.743750
2.4 4.2 0.2 1.0 1.0 0.715625

The table presents a set of possible parametrization with the correspondent average accu-
racy: in bold there is the best result obtained for each test.

5.3.5 Evaluation
The classifiers are evaluated using K-fold cross-validation, with K = 4: the data
is split in four chunks, three are used for training and the fourth for validation,
then the process is repeated using another chunk as validation, until all the four are
used. Finally the average accuracy is computed, where the accuracy is the fraction
of correctly predicted samples with respect to the total.
The performance of the classifiers are presented in table 5.4 for the first test.
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Table 5.4: Classification: First Test Results

id feature set accuracy
1.1 social 0.615440
1.2 complete network 0.536343
1.3 reduced network 0.641026

The results of the first test shows that the performance of the features extracted
from the complete network is not satisfying, since the baseline is not outperformed.
On the other side, the accuracy of the reduced version is quite interesting. Given this
observation, the second test is developed, focusing on reduced networks, that allows
to extensively study the hyper-parameters, as discussed in previous section. There is
an important fact to point out: reduced networks focus on strong similarities between
users, but they also eliminate all the users that do not show any similarity. In fact,
if a user has no tag in common with any other user or if it does not use any tag at
all, then it does not appear on the reduced hashtags network, while if it does not
mention any user, then it does not appear in the reduced mentions network. This
means that some users, that are present in the ground truth and that have a network
representation, actually disappear in the correspondent reduced network. Combining
the features help to include more users, because some users can show up only in one
of the two networks: in this situation, the components of missing features are set
to 0. On the other side, it is not possible to classify the users that do not appear
neither in hashtags network, nor in mentions network. This drawback is reflected in
the result table of the second test (table 5.5), as the indication of how many users
are effectively classified.

Table 5.5: Classification: Final Results

id #users network accuracy baseline accuracy
2.1 306 0.673488 0.598727
2.2 313 0.719166 0.649099
2.3 317 0.729114 0.634415
2.4 320 0.743750 0.646875

The ”network accuracy” column is referred to the best performance obtained in the test
using network features, while the ”baseline accuracy” is the performance of the classifier
that uses social features.

In order to have a correct comparison, first the network features are extracted,
verifying what users are present, and then the social features are computed for the
same subset of users. The classifier with network features overperform in all the cases
the social one: the features are able to map very detailed information about the con-
tent and the relationships of each user, much more than the quantitative information
present in the profile. Moreover, the inclusion of not labelled users increase both the
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number of users and the performances: having a set of users well connected allows to
improve the feature vector itself and it introduces also stronger connections, that are
used to include more users in the process. This is obtained, by the way, without any
effort from the classification perspective, because the number of manually classified
users is low, while the performance grows using a higher number of non labelled users.
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5.4 Clustering
The other experiment defines a clustering task, that is strongly related with the clas-
sical community detection described in the previous chapters. The idea is to check
whether there are groups of users, inside the macro-communities of followers, that
form sub-communities and that are interesting for the brand. In fact, the intrinsic
definition of clustering is that the groups defined ”naturally emerge from the data”,
which means that can possibly show unknown but useful insights.
The process follows a similar pipeline with respect to classification, but in this case
the features are always kept separated: there is no need to enrich the description of
the users, because the aim is to capture a hidden common behaviour, which can be
achieved if the focus is on a specific descriptive element of the data.
The steps defined are the standard ones in unsupervised learning and they are de-
scribed in detail:

1. Extract embeddings from the reduced network
There are four possible types of embeddings to be extracted, given by the com-
bination of the two types of networks (hashtags and mentions) with the two
parametrizations, that detect either communities or structural roles. In the
next steps, only the embeddings generated by the hashtags network using the
parameters to extract communities are reported (figure 5.3).

Figure 5.3: Embeddings Distribution
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The distribution of points in this latent space is the mapping of the relative position of nodes
inside the reduced network. The first 2 features components are used for visualization.
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2. Use embeddings as input for the K-means algorithm (figure 5.4)

Figure 5.4: K-Means Output
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The figure shows the output of the K-means algorithm run with K = 7, the one validated
with domain experts

3. Verify cluster structure using internal measures
Inertia is the sum of squared distances between each point and the correspon-
dent centroid, which means it is a decreasing function with the number of
clusters by definition. It allows to detect the best K via the elbow method:
plotting the number of clusters K against the inertia, the best value is obtained
in correspondence of the ”elbow” in the chart. In this specific point, the sum
of squared distance starts to stabilize and so it may be better to stop. In figure

49



5.5, the inertia is plotted against the number of clusters for the target data.
There is no guarantee that is the best result and in some situation it is better
to refer to external measures, too.

Figure 5.5: Inertia
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The inertia is computed for different values of K for the dataset presented in figure 5.3: using
the elbow method it is possible to check that a first net decrement happens at K = 3, then
there is a stabilization after K = 6 and K = 7. The validation with domain experts, used
as an external measure, points out that a higher K value is needed for a more meaningful
definition of the clusters.

As further structural analysis, another internal measure is used: the silhouette
coefficient. The silhouette coefficient is a measure of how similar an object is
to its own cluster (cohesion) compared to other clusters (separation). The sil-
houette ranges from −1 to +1, where a high value indicates that the object is
well matched to its own cluster and poorly matched to neighbouring clusters. If
most objects have a high value, then the clustering configuration is appropriate,
while if many points have a low or negative value, then the clustering configu-
ration may have too many or too few clusters. The configurations are tested for
various K (figures 5.6, 5.7, 5.8, 5.9). In the left plot, the silhouette coefficient
for each data point is showed, with the red line indicating the average value. In
the right there is the visualization of the clusters using the first two features.
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Figure 5.6: Silhouette Coefficient - K = 3
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Figure 5.7: Silhouette Coefficient - K = 5
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Figure 5.8: Silhouette Coefficient - K = 7
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Figure 5.9: Silhouette Coefficient - K = 10
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Also the silhouette coefficient does not give a unique interpretation about what
is the best number of clusters.
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4. Validate the clusters
Validation is the hardest part, since it is an unsupervised method and ground
truth data is not always available. Moreover, labelling for each group is needed
in order to check the effectiveness of the method: in the case study, a support
from domain experts is required in order to manually inspect the clusters ob-
tained. A method to automatically extract labels and similarities from the data
is developed to ease the validation.
For what concern the similarity, the distance with respect to the centroid is
computed and used to rank users inside the clusters. Then, the top 20 users
are extracted for each cluster and used for validation. The label extraction, on
the other hand, is based on how the reduced network is built: it connects users
that share some elements, which are either other users mentioned or hashtags
used in their posts. A cluster is no more than a subset of this graph (e.g.:
a community) and the connections inside are based on the shared elements.
Based on these observation, a possible way to extract a labelling is to compute
the set of common hashtags for the cluster, in order to represent the entities
that effectively increased the similarities of the users inside the clusters. Given
tu and tv the sets of tags of users u and v, the common tags can be defined as
Tuv = tu ∩ tv and the common tags of a cluster c are:

T (c) =
∪
u,v∈c

Tuv

This definition, along with the pruning of tags described in previous chapter,
let only significant hashtags to be extracted, but the overall dimension depends
on the number of users inside the cluster. Having a huge number of words to
describe a cluster is very difficult to be effective, so an inverse process is applied:
the set of users in the cluster is used to re-expand the network, in order to
obtain the original heterogeneous network, zoomed around the users selected.
In that way it is possible to easily compute the most used hashtags as the
ones with highest in-degree, leading to the definition of the labels as the top 10
hashtags by frequency, that belong to T (c), too. In table 5.6 are presented the
set of tags extracted for each cluster of figure 5.4.

Table 5.6: Cluster Labels

cluster hashtags
0 madeinitaly, accessories, hat, handmade, luxury, bikini, bag, earrings, lifestyle, mensfashion
1 food, italianfood, whatitalyis, wedding, photo, delicious, foodlover, roma, summer, prettylittleitaly
2 interiordesign, design, decoracao, interiors, interior, chic, inspiration, art, designer, architecturephotography
3 amalficoast, positano, capri, praiano, villatreville, AmalfiCoast, isleofcapri, browsingitaly, sugokuiievents, costieramalfitana
4 nyc, blessed, london, foodie, family, baby, latergram, nyfw, yum, biarritz
5 malibu, life, wedding, greece, goodvibes, wanderlust, travelgram, photography, hipstamatic, instaday
6 architecture, vintage, happiness, art, ashowroom, beauty, ashowroominparis, illustration, botanicalbeauty, followthebuyers

The table shows an example of labels extracted for each cluster. Some of these are extremely
specific, thanks to the pre-processing phase, in which the stop words of Instagram platform
are eliminated.
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The same methodology can be reproduced with common mentioned users
for the mentions network in the same exact way, even if the results are more
difficult to interpret: the label would be composed by a set of users. Due to this
fact, the clustering effectively validated with domain experts is the one referred
to sub-communities extracted by the reduced hashtags network of Emporio Le
Sirenuse community.
The experts positively rated both the clusters 0, 1, 2, 3 and their correspon-
dent labels: the users inside this clusters are effectively similar, sharing similar
content, and the labels match the kind of content. On the other side, the re-
maining clusters are not well defined: users inside these groups post a variety
of different things and it is difficult to verify if there is any similarity. This
fact depends of profile’s types: in fact, the first three clusters are professionals
and brands, which want to characterize themselves on the social media in a
very specific manner and so are easier to be modelled. Instead, the last three
groups are composed by ”regular” users and so a pattern is more difficult to be
highlighted, because the variety of content increases. There is to point out that
cluster 3, instead, is composed by normal users that are extremely connected,
posting pictures of sea and beaches, sharing the idea of vacation. Given this
feedback, the conclusion is that the process developed, combined with the clus-
tering, is a very good method in order to extract groups of professionals, while
further analysis need to be run for regular users, because only in one case the
match is correct and identifiable.

As final result, the network presented at the beginning (5.2) is visualized using the
clusters validated in figure 5.10.
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Figure 5.10: Community Reduced Network - Clusters

The figure shows the network using the seven clusters obtained in this section.
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5.5 Comparison: Classification and Clustering
The methods presented in the two previous sections are applied to the same set of
users, represented with different features extracted from networks but with the same
general objective: give a description of these users and, possibly, group together the
ones that are most similar.
The idea of comparison arises from the observation that some clusters are more rep-
resentative of other brands, professionals and showrooms, which are basically non
consumer users. This means that clustering output can match the labels of the
ground truth defined in section 5.3, if K is set to 2. In order to verify this possible
overlap, the K-means algorithm is run with K = 2 using the same dataset and fea-
tures represented in figure 5.3 and the correspondent outputs are compared with the
class labels. The resulting comparison is presented in table 5.7.

Table 5.7: Cluster comparison with ground truth - K = 2

consumer non consumer
cluster 0 135 (75.84 %) 43 (24.16 %)
cluster 1 46 (38.33 %) 74 (61.67 %)

The percentage is referred to the total number of users in the cluster: cluster 0 can be
correspondent to class consumer, while cluster 1 can be labelled as non consumer. If this
output is considered as the prediction of each class, the obtained accuracy is around 0.70,
which is lower than the one obtained using the feature combination developed in section
5.3.

This comparison shows that clustering is able to identify with a good level of
accuracy, around 70%, the consumer and non consumer users, but the classifiers im-
plemented in section 5.3 perform better. On the other hand, if this result is compared
with the clustering of section 5.4, other interesting insights can be made. In fact, the
seven clusters can be split into two super-groups: the ones more related with pro-
fessionals and brands and the ones with regular users. This means that, increasing
the number of clusters, not only the high-level categorization is still present, but
also sub-categories are retrieved: for instance, cluster 3 is composed by regular users
that enjoy holidays and the sea, while cluster 2 contains professional users belonging
to interiors design domain. The conclusion is that increasing the number of clus-
ters leads to extract specific sub-communities that either belong to the consumer or
non-consumer domain. Using the validated clusters, with K = 7, the distribution of
labelled users verifies this observation: the resulting overlaps are presented in table
5.8.
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Table 5.8: Cluster comparison with ground truth - K = 7

consumer non consumer
cluster 0 10 (24.39 %) 31 (75.61 %)
cluster 1 8 (72.73 %) 3 (27.27 %)
cluster 2 7 (46.67 %) 8 (53.33 %)
cluster 3 1 (50.00 %) 1 (50.00 %)
cluster 4 51 (72.86 %) 19 (27.14 %)
cluster 5 49 (73.13 %) 18 (26.87 %)
cluster 6 55 (59.78 %) 37 (40.22 %)

Cluster percentages show that for 5 clusters the manual validation matches with the la-
belling: clusters 0 and 2 have mostly non consumer users, while in 4, 5 and 6 predominate
the consumers. Nothing can be said for cluster 3, since there is an equally distribution of
the only two users included.

This hypothesis is only partially supported by the results because the numerics
are not high enough for each group. Other studies are needed to have more solid
confirmation: in case of success, these would be of extremely high value for the
brand, because it would have a way to automatically deepen the knowledge of the
hidden communities around the brand itself.
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5.6 Other Results
In this final section, results of minor analysis are presented: they are techniques
applied to the brand networks instead of the community ones, so most of the insights
are much different and cannot be generalized, while some are part of the process that
has led the thesis on community network analysis.

5.6.1 Brand Networks
Brand networks are characterized by more details, because also comments and geolo-
cation are gathered, but with less volumes: the overall number of posts for each brand
is very low, with an average value of 213 posts, which are distributed in 9 months.
The focus of the first analysis is based exactly only on the pure network structure gen-
erated by the brands, in order to compare their dimensions, giving a general insight
on the social activity. In figure 5.11, brands are represented by structural dimensions
and plotted in this space, to check the high level similarities present. Unfortunately,
the results are not very significant, since the network of posts is quite simple and the
values are not so discriminating.

Figure 5.11: Brands Network Structure
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The brand structure is described in function of the effective diameter, the 90th percentile
of the shortest path length distribution of the graph, and the hop exponent, the exponents
that approximate a graph as a power law distribution
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5.6.2 Image Concepts Networks
An interesting result is obtained comparing the general concepts produced by the
brands: it is clear from figure 5.12 that the brands have some common ideas and that
they want to share them in a very clear way. For instance concepts as woman and
people are the top for almost all the brands, while only some brands put the accent
on summer or travel.
This kind of analysis would be extremely important if it was reproduced for the entire
community of users and if the tags extracted was effectively significant in the fashion
domain. The first problem is mostly computational: the Clarifay API have limitations
and processing hundred of thousands of images would require a lot of time. As for
the second problem, the models implemented in the API are quite generic and so a
more specific model is required in order to obtain interesting evidences.

Figure 5.12: Brands Top Image Concepts
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The normalized version of centrality measures allow to compare the importance of image
concepts belonging to the networks of each brand. The degree centrality (x-axis) represents
the frequency of the concept with respect to the total, while the closeness (y-axis) defines
the most shared ones, because a high value means that the other nodes in the network can
be easily reached.

5.6.3 Mentions Networks
The most important result in this section is given by the mentions network: the
presence of other users makes the analysis much more interesting, because connec-
tion points can be highlighted, as long as roles and communities. In fact, this is
the same technique developed for community networks, applying K-means to the fea-
tures generated by the standard parametrizations: in figure 5.13 the communities are
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highlighted, while in 5.14 the structural roles.

Figure 5.13: Brands Mentions Network - Communities

The communities are easily detectable, even visually, because the mentions define a very
specific relationship between users, expecially for brands: they use this feature to highlight
partnership and collaborations.
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Figure 5.14: Brands Mentions Network - Structural Roles

There are two main roles: the brand role (orange) and the mentioned role (blue). Even if
the data is built around brands and this separation is automatical, it is interesting to point
out that there are some nodes that are assigned the same role as brands, bringing them
more attention in the study.

As for K selection, in this setting it is extremely evident using an internal measure:
in figure 5.15 and 5.16 the inertia for the community detection and for the role
detection are presented.
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Figure 5.15: Inertia - Communities
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The ”elbow” is in correspondence of K = 10, which is the expected number of communities.

Figure 5.16: Inertia - Structural Roles
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In this case the identification of the best K is not so evident, but forcing more than 3 roles
defines extremely small clusters, which become not relevant.

It is important to underline that the nodes in the middle of the graph, shared
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among more brands, have a sharply defined cluster: edges weights let the nodes to be
positioned in the latent space much nearer to the brand that makes more mentions
and so the cluster definition is almost unique. For a better understanding, table 5.9
shows the overlap of these nodes ”in the middle”, considering the overlap as the ratio
between the mentions of a brand with respect to the overall mentions received.

Table 5.9: Users shared between communities

user community overlap
amberfillerup miguelinagambaccini 0.214286
amberfillerup athenaprocopiou 0.785714
sorayabakhtiar miguelinagambaccini 0.142857
sorayabakhtiar athenaprocopiou 0.857143
matchesfashion muzungusisters 0.006711
matchesfashion zeusndione 0.040268
matchesfashion dodobaror 0.241611
matchesfashion lisamariefernandez 0.147651
matchesfashion athenaprocopiou 0.268456
matchesfashion loupcharmant 0.147651
matchesfashion daftcollectionofficial 0.127517

The table shows example of users that are mentioned by more than one brand, where overlap
is the ratio of the mentions made by one brand divided by the overall mentions received:
”matchesfashion” is the only example that is effectively shared among more brands and
in fact, in the network it is the node in the centre. Even with these values, the clustering
achieves to put it in the correct community (athenaprocopiou), since the number of mentions
is used in the embeddings definition.

Given these results, the same approach is applied also to other networks, such
as the comments networks and the likes networks. Since likes and comments are
collected only for the brands accounts, as pointed out in section 5.2, the network
information for these users is not defined. For this reason, the models built using this
data are extremely incomplete and a suitable analysis cannot be performed.
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Chapter 6

Conclusions

The work of thesis presented deals with a very powerful model, the graph model,
and it exploits the most recent techniques in order to extract useful information from
on-line social networks. In general, the network approach is applied extensively to
model many different aspects of the users present in the case study, first focusing
on the brands and then on their communities. A set of techniques is applied to
two macro-categories of networks: brand networks and community networks. In the
specific, the focus is on the definition of a method to handle in an efficient way the
heterogeneity of the social network structure, in order to encode all the data needed
in a simpler graph model: the method presented allows to extract a classical social
network, with only user nodes, from a much more complex network, without losing the
necessary information to effectively capture user behaviour. A very recent approach,
representation learning, is applied to these networks in order to describe user nodes
in term of a continuous feature vector, that is used to perform classification and
clustering. The classification task confirms the power of this features, overperforming
the social baseline in all the tests defined: the encoded network structure is able to
capture social behaviours of users more than quantitative features themselves. The
experiment highlights also the importance in the process of not labelled users: they
enrich the graph with more valuable relationships, that can be exploited to build
more meaningful vectors, defining better similarities. The clustering task, on the
other hand, allows to extend the classical community detection problem, introducing
flexibility in the number of communities detected along with content validity. Most
of the groups extracted contain users that are very similar, which is verified with
domain experts. Also the method can be refined in order to extract subgroups more
specific, putting the accent on possible sub-categorizations.
The work done follows standard and verified procedures but some limitations and
drawbacks are encountered. These are presented together with possible solutions and
future works:

• Computational Limits
The generation of the basic networks using SNAP is very efficient, but the
step of embedding generation using the node2vec algorithm is extremely time
and memory consuming. For this reason, the tests are performed only on the
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three smallest communities where all the steps can be performed with the avail-
able resources. Actually, the generation of a single set of embeddings is only
memory-consuming, but time becomes critical during the hyper-parameters
search, where a set of different embeddings needs to be tested to find the optimal
configuration. A possible extension, in this direction, is to study the already
optimized networks in order to discover what is the best underlying model to
represent them and to extend this optimal parametrization to bigger networks.
In this way, this costly step would be skipped, without losing the validity of
the process and including in the analysis the biggest communities.

• Process Limits
The most important drawback of the overall process is the loss of users in the
reduction of the network, because no strong relationship can be obtained from
the data: for this set of users it is impossible to perform any kind of analysis,
since they are not present in the networks. On the other hand, there is to point
out that, if there is no strong relationship, nothing valid can be extracted for
these users. A possible improvement would be to encode other kind of networks,
such as the image concepts network, so to enrich the description of each user,
possibly mapping new similarities.

• Information Limits
The approach used does not take into account the time variable: time is a
key feature that could help to model more specific behaviours. In this work,
some preliminary tests have been defined, consider a set of possible techniques
to encode time into dynamic networks, but none of them has had interesting
results. More studies can be made in this direction, trying to verify what are
the interesting time patterns on social media and what kind of time windows
can be considered in order to to extend the presented method with the dynamic
component.
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