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ABSTRACT

One of the biggest scientific achievement of the last few decades in Bioinformatics was the
introduction of High-throughput sequencing (HTS) methods. We can now at a relatively low
cost, reveal the presence and quantity of RNA in a biological sample at any given moment
in time. This, plus the introduction of new analytical techniques, brought us insights in
biological and medical research. Despite all these advances, given the complexity of human
biology, a lot of molecular interactions are still unknown. Pathway is the name given to series
of interactions among molecules in a cell that lead to a change. Some of the most common
biological pathways are involved in the regulation of gene expression and play a vital role in
studies of genomics. The aim of this thesis is to introduce a method that highlights new genes
to target, in particular for cancer research. Since multiple pathways are dysfunctional in
cancer, and cancer accumulates new mutations as it progresses, researchers require research
tools to identify relevant cancer-related genes.

It is here presented a novel way of using deep neural networks to extract gene modules
from gene expression data. The thesis pipeline is divided in two parts. The first focuses
on the validation of the model by comparing the performances to other well-established
methods. The second part instead is concerned with the extraction of gene modules, some
data exploration, and the validation of the results. A Deep Autoencoder is trained with
different types of cancer data taken from The Cancer Genome Atlas project. By leveraging
the autoencoder’s network topology, a ranking is calculated between the most relevant genes
for each reduced dimension to create the modules. The effectiveness of the resulting gene sets
is then tested, by checking for the over-representation of specific genes in each module with
a method called enrichment analysis. Significant enriched terms related to cancer have been
found in the extracted modules. The unknown genes in these modules can be highlighted as
relevant target for functional analysis. The results are promising and are intended to primarily
aid biologists and researchers in the investigation of new gene interactions and pathways.





SOMMARIO

Uno dei più grandi traguardi scientifici degli ultimi anni nel campo della Bioinformatica è
stata l’introduzione di metodi di sequenziamento ad elevato parallelismo. Possiamo adesso, a
relativo basso costo, rilevare la presenza e quantità di RNA in un campione biologico. Questo
fatto, con l’introduzione di nuove tecniche di analisi, ha portato a numerose scoperte nella
ricerca biologica e medica. Nonostante questi traguardi, data la complessità della biologia
umana, molteplici interazioni molecolari sono ancora sconosciute. Via biologica è il nome
dato a una serie di interazioni tra molecole in una cellula che portano a un determinato cam-
biamento. Alcune delle vie biologiche più comuni riguardano la regolazione dell’espressione
genica e svolgono un ruolo essenziale negli studi di genomica. Lo scopo di questa tesi è
illustrare un nuovo metodo che individui geni da analizzare, in particolare per la ricerca
oncologica. Dato che molteplici vie biologiche sono disfunzionali nel cancro e che il cancro
progredendo produce nuove mutazioni, i ricercatori hanno la necessità di acquisire strumenti
per identificare geni rilevanti legati ad esso.

In questo lavoro è introdotta un’applicazione innovativa di reti neurali profonde per
l’estrazione di gruppi di geni da dati di espressione genica. La tesi si divide in due parti.
La prima si concentra sulla verifica della bontà del modello tramite il confronto delle
prestazioni con altri metodi noti. La seconda invece riguarda l’estrazione dei moduli di geni,
l’esplorazione dei dati, e la verifica dei risultati. Abbiamo addestrato un autoassociatore
profondo con dati di differenti tipologie di cancro presi dal progetto "The Cancer Genome
Atlas". Sfruttando la topologia della rete, troviamo un ordinamento fra i geni più importanti
per ogni dimensione ridotta, i quali costituiscono un singolo modulo. L’efficacia di questi
gruppi di geni (moduli) è poi verificata cercando una alta rappresentanza di specifici geni
con un metodo chiamato ’analisi da arricchimento’. Nei moduli estratti sono stati trovati
termini significativi legati al cancro. Gli altri geni all’interno dei moduli possono essere
evidenziati come obiettivi importanti per una successiva analisi funzionale. I risultati sono
promettenti e sono pensati in primo luogo per l’utilizzo da parte di biologi nella ricerca di
nuove interazioni fra geni.
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CHAPTER 1

INTRODUCTION - OBJECTIVE

The discovery of new gene interactions is key to solve problems in medicine and biology.
One of the main difficulties is that a gene interacts with multiple other genes at the same time.
This is because a gene can participate in multiple cell activities. For example gene TP53, a
well known tumor suppressor, regulates the transcription of proteins involved in different
cellular activities [1][2]. Given the high complexity of molecular interactions and the large
number of the elements at play, much is still left to be discovered. In biological research is
important to understand what gene and for which function to focus on.

In this thesis the aim is to present an innovative method for gene grouping (or more
specifically clustering) based on deep neural networks. To do this clustering, a neural network
is built and a way to extract the groups (also called modules) is presented. Each step is
validated from multiple points of view and at the end, the modules are evaluated from a
biological perspective (with software tools, but also aided by a biologist).

The types of neural network used in this thesis are autoencoders [3], which are a class of
neural networks used for efficient codings and dimensionality reduction [4]. The autoencoder
is actually composed of two connected parts: an encoder (Fig. 1.1) and a decoder (Fig. 1.2).
They are trained by approximating the identity function, meaning that the output is forced to
be the same as the input. Where the dimensionality reduction comes at play is the middle
layer of the network where its intermediate result (also known as code) is of a smaller size
than the input. The encoder gives a way of going from the high dimensional space to the
lower dimensional one (n → m, m ≪ n), effectively reducing it in size. The following part of
the network, the decoder, performs the reverse function, returning again the original vectors
to the higher dimensional input space. At the end of the training the weights of the network
contain, in their numerical values and structure, a way of synthesizing the patterns in the
data.
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Each reduced dimension (m in total) is composed by different contribution of the original
variables (n, genes). To each of reduced dimensions correspond a cluster of the input variables
(genes) that are most influencing over the them. These clusters, or gene modules, are intended
to represent specific patterns of the original data. The idea is that it is possible to group
the genes that collaborate to form a single reduced dimension by ranking their individual
contribution.

Fig. 1.1 Dimensionality reduction performed by the encoder

Fig. 1.2 The decoder returns the vector back to the original input space

There are three main sections this thesis is divided into:

1. The autoencoder model is constructed and trained with samples of gene expression of
cancer tissues coming from the TCGA project [5]. Data from healthy and cancerous
samples is used at this stage. The features extracted from the encoder are validated
against other well known methods for feature extraction. Our model features perform
on the same level as the other methods in their ability to discern cancer and healthy
samples in a classification scenario.

2. The autoencoder model is then retrained with only cancerous data to better capture
tumor activity. In order to understand the contribution of each gene to each reduced
dimension, one-hot vectors (vectors with only one non-zero element) are used as
inputs of the decoder. These vectors activate only a specific dimension and not the
others. The dimensions of the output of the decoder are again the genes. By reading the
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decoder’s output we can understand how much each genes affect the said dimension
(Fig. 1.4) and construct a ranking from it. The top genes for each reduced dimension
compose the final gene module relative to that specific dimension.

The main research questions here are:

Can a deep autoencoder group genes which are involved in a shared bi-
ological function? Or simply, given a clustering method built upon an
autoencoder trained on cancer data, is it possible to get useful gene sets?
Furthermore, will these functions be related to the specific cancer used to
train the model?

3. To answer these questions the extracted modules are checked for disproportionately
high presence of genes that are known to participate in a common activity. The method
used is called enrichment analysis. The whole process, from training to enrichment, is
depicted in Fig. 1.3. The enrichment analysis returns for each gene sets (modules) a
list of terms, that represent a specific biological activity, and their associated P-values,
which indicate their statistical significance. Most of our modules have significant terms
(small P-values) associated with them.

These results validate the ability of the deep autoencoder to group related genes.
The last step entails answering our final question: do the modules relate to activities
connected to the specific data used to train the model (cancer)? For this step a manual
biological evaluation of the terms is necessary: that is linking the terms to cancer with
domain-specific knowledge. Hence a subset of modules, having the most significant
terms, is chosen and studied. The findings resulted in numerous modules connected to
cancerous activities with a subset of them strictly related to the type of cancer used
during the training the model.

Fig. 1.3 From the data to the extracted modules
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Fig. 1.4 Graphical representation of one-hot ranking with the decoder

1.1 Thesis overview

The process explained above is here presented more in detail. The pipeline for the experiments
done in this thesis is divided in three parts/activities. To guide the reader through all the
various steps a schema of the pipeline was created. The schema can be seen in Figure 1.5,
with each part tagged with its respective number. The first part is about the validation of the
model and model parameters, the second part explains how gene sets are extracted from the
network while the third and final part validates the goodness of the modules from a biological
perspective. Now a more detailed explanation.

The dataset, upon which the models are built, comes from the TCGA project which
collects and analyzes information relative to multiple types of cancer. The data used, in
particular, is a collection of samples from cancer patients represented as expression levels
coming from RNA-seq experiments. Each dimension of the vectors (samples) in the data
represents the expression level of a specific gene at a specific time.

A preprocessing step was performed in which the data was split in two. The TCGA
RNA-seq dataset contains informations relative not only to cancerous cells, but it also
includes control and healthy cell samples for each tissue. For each cancer type it has a
limited amount of samples overall e.g. breast cancer has around 1200 instances with ∼ 1000
of cancerous type. In the model validation part we use all the data available (healthy plus
cancerous) to tune the parameters of the network, both for the scarcity constraints and because
of the underlying assumption that all gene expression data share high level features (biggest
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discriminator). What is of particular interest is identifying modules connected to cancerous
activities and not so much in other (normal) activities. For this reason the autoencoder is
retrained with the data that includes only samples taken from cancerous cells. From this new
autoencoder model the gene modules are extracted. The reader could imagine the healthy
samples as acting as a sort of noise to the true objective of finding tumor-gene interactions.
Healthy cells won’t present cancerous patterns.

Following the pipeline, in the first part 1⃝ (the leftmost section of the picture under
"training" and "model validation") the aim is to build an autoencoder model. This is done
by finding the appropriate parameters, such as: number of layers and activation functions.
The number of layers in particular affects the minimization of the cost function. The cost
function measures the difference between the input and the output, in our case the difference
between the input and the output. What is of interest in this part is the quality of the reduced
features, this is because the features are directly related to the gene sets that are going to be
extracted (a module is extracted from each of them). The goodness of the encoded features
of the model is validated by comparing them to ones found by using a PCA and a k-PCA in a
classification scenario. The two models are, of course, trained on the same data. The reason
for the use of those methods for comparison is because of their popularity in the literature
and known results to be targeted. The extracted features from each of these three models are
fed to a Support Vector Classifier that tries to predict whether a sample comes from a cancer
cell or not, successively the results are evaluated. Similar results are expected across all the
methods and if that is going to be the case it would confirm the ability of the autoencoder to
have learned meaningful features (they would at least preserve the ability to discern cancer
to non-cancer cells).

In the second part 2⃝ of the experiments a new autoencoder is trained using the same
"validated" parameters, but this time using strictly cancer samples. In the diagram this part
is represented by the upper part of the right column. This new training is done because, as
written above, the objective is for the model to capture first and foremost processes related
to tumor activities. By using cancer samples exclusively the attempt is to try to target those
specific functions without noising the model with healthy ones. Only the decoder part of the
newly trained network is used for gene module extraction. The decoder is a generative model,
it can be used to reconstruct a code into its original form. The idea underlying gene module
extraction is of using one-hot vectors to get the corresponding gene expression profile vector
to a specific dimension. This way it is possible to isolate the individual contribution of each
gene (corresponding to one original input dimension) to each reduced feature. After having
done this for each of the reduced dimension, it’s possible to rank individual gene contribution
(Fig. 1.4). The top ranked genes for each outputted vector for the decoder are going to
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constitute the gene modules and are the ones that represent better the specific dimension. In
this part an analysis is done over the genes present across all the modules. Their properties
are visualized to evaluate the appropriate following next steps to take. A promising result
over all the modules, for example, would be an high frequency of gene involved with cancer
activities. Furthermore it would be desirable to have an high degree of separation between
each module (cluster). If the groups have many genes in common it wouldn’t be a good
indication for the method’s ability do discern different functions.

In the third and final part 3⃝ the module are validated from a biological standpoint
(Fig. 1.3). What is interesting here is to discover whether the extracted modules have an
higher representation of genes that are known to participate in a common activity. These
already known gene sets are taken from different knowledge bases and are compiled with
genes that were discovered to be involved in the same/similar function. If our modules have
a significant presence of these genes they could be investigated for their relationship to that
specific activity. Gene set enrichment analysis is the name for the class of methods built
for this specific purpose. In the thesis’ case Enrichr [6], a software tools with a Web API,
is used. The enrichment is done to each module to verify the quality of the grouping. The
results from Enrichr give us an indication of how "valuable" a module is, and which activities
it is involved with, but they do not give an immediate indication if those activities (terms)
are related to cancer. For that purpose, a manual step of verification is necessary. That is:
checking each modules for what the enriched terms actually do (if there is literature that links
them to cancer) and if they’re related between each other. This part will conclude with some
consideration regarding the method’s strengths and weaknesses, especially on the stability of
the extracted modules.

After the previous section, some software tools are produced and presented. These tools
are built to further support third parties’ work (such as biologist) in the exploration/investigation
of the genes in the extracted modules. For example, one could be interested in knowing
whether a particular gene is present in some module or which are the genes which are
differentially expressed in the training data and by how much. The thesis will finish with
some concluding remarks and mentions of possible future developments.

1.2 Summary

In this introductory chapter the objective and main research questions have been discussed.
The pipeline for the experiments (Fig. 1.5) done during the thesis work is also presented in
detail.

The thesis is structured as follows:
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• Chapter 2, lays the ground for the concepts and the theory of the methods used in later
chapters. This overview concerns both Bioinformatics and biological aspects and the
background of machine learning related material.

• Chapter 3, presents the used model, its training and the validation of the results by
comparing it to other well-known tools.

• Chapter 4, shows how to extract the modules from the model, by leveraging the
generative part of the neural network (decoder). Also some data exploration is done to
check from desired properties from a macro-level perspective.

• In Chapter 5, the grouping are validated with enrichment analysis. Enrichment and
the software tool used are discussed. The latter part of the chapter is dedicated to the
in-depth manual analysis of the most significant results.

• In Chapter 6, the method is evaluated with a focus on the stability of the results and a
review of similar methods in literature is presented.

• In Chapter 7, the thesis is wrapped-up with a quick summary and some considerations
for future works.
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Fig. 1.5 Thesis Overview: Pipeline for the experiments



CHAPTER 2

BACKGROUND

Bioinformatics is a field that combines the more classical data science approaches to biology,
hence it requires at the very least a brief overview of its main ideas. It’s very important for
any sound engineering job to have a good understanding of the underlying domain-specific
knowledge.
For this reason Appendix A was created as a glossary of the most used terms related to
biology. A star (⋆) is put next to the first appearance in the text of such terms.

In this chapter the readers are presented to the necessary background material. Several
main concepts are explained which constitute the basis of the thesis. The chapter is structured
in two parts with the first part devoted to the field of Bioinformatics. DNA sequencing is
described with its current uses. Gene expression and its profiling is also introduced, with the
last section of this first part being devoted to the presentation of the dataset over which the
used models are built upon and the project that produced it.

In the second part the readers are exposed to Machine Learning related concepts. The
model of neural networks is introduced, from the mathematical constructs to different possible
typologies. The next part is devoted to autoencoders, the centerpiece to understand this
thesis’ foundation. Autoencoders are a type of neural networks used for efficient codings and
dimensionality reduction, hence an introduction to dimensionality reduction is also given.
In particular, a focus is put on the comparison between different models (PCA and k-PCA)
that try to achieve similar results. These two models will be then used in the next chapter
to assess the training quality of the final autoencoder. In the last part of the chapter, a brief
mention of the tools and library used is also included.
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Part I: Bioinformatics

2.1 Introduction to Bioinformatics

Over the past few decades, and more specifically starting in the mid-1990s, driven by the
Human Genome Project and by advances in DNA⋆ sequencing technology, the field of
bioinformatics experienced explosive growth. Rapid developments in genomics and other
molecular research technologies have combined with developments in computer science to
produce new approaches to get a myriad of biological insights. Bioinformatics is the name
given to these approaches and it is, in fact, a multi-disciplinary field that combines Computer
Science, Biology, Mathematics and Engineering to analyze and interpret biological data. In
other words, it can be seen as Data Science applied to the domain knowledge of biology.
The size and the complexity of biological data, raises many challenges for the scientific
community.

The primary activities of bioinformatics revolve around the creation and betterment of
databases, algorithms, statistical techniques, and theories to solve problems arising from
the management and analysis of biological data, particularly DNA, RNA⋆, and protein
sequences. The main goal being the increase in our understanding of biological processes.
What differentiates bioinformatics from previous approaches is its focus on developing and
applying computationally intensive techniques to achieve the aforementioned goal. The
current primary research efforts in the field include: sequence alignment, gene⋆ finding
(locate a gene within a sequence), drug discovery, protein structure alignment, protein
structure/function prediction, prediction of gene expression and others. Let’s now look at
some of these areas in depth.

2.1.1 DNA sequencing

Thanks to new sequencing methods, the cost of sequencing the genome from a biological
sample is now relatively small in terms of both money and time. As mentioned, the introduc-
tion of rapid sequencing methods has accelerated biological and medical research, but before
any analysis can happen there is the need to extract data from the biological samples.

DNA sequencing is the process of determining the arrangement of nucleotides⋆ within
a DNA strand (guanine, cytosine, adenine, thymine in humans). Sequencing can be used
to determine the sequence of individual genes, larger genetic regions or full chromosomes
of any organism. Despite all the latest advances, the process still remains difficult, as the
extracted data can be noisy or contain missing data (maximum accuracy is of 99%). A
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major research area in computational biology involves developing statistical tools to separate
signal from noise in high-throughput gene expression studies. The main applications of this
technology nowadays are:

• Medicine, e.g. to determine the risk of genetic diseases.

• Forensics, with profiling used extensively in investigations. It’s highly unlikely that
two people have the exact same DNA. Other uses include paternity testing.

• Molecular biology, to study the genomes and the proteins therein encoded. It’s
especially useful in identifying gene-phenotype association and drug targets.

• Evolutionary biology, to study how different organisms are related and (co-)evolved.

• Meta-genomics, which is the identification of organism in certain environments. Partic-
ularly useful in the study of ecology, epidemiology, microbiology.

The high demand for sequencing at a low-cost and major research efforts such as the
Human Genome Project have driven the development of high-throughput sequencing tech-
nologies. This methods parallelize the sequencing process by producing thousands or millions
of sequences concurrently. High-throughput (or next-generation) sequencing technologies
managed to lower the cost of DNA sequencing beyond what was possible with normal
methods. The cost of sequencing the whole genome of a human is going down drastically
to few thousands of dollar (from millions). Let’s compare this trend in the following graph
depicting Moore’s law (Figure 2.1), an observation which illustrates the trend in computer



12 Background

hardware of doubling the power every two years. Every progress as fast as Moore’s Law is
considered to be doing extraordinarily well.

Fig. 2.1 The evolution of the cost of DNA sequencing compared to Moore’s Law.

2.1.2 Genome annotation

DNA or genome annotation is the process of identifying the genes (coding regions) and their
functions in a DNA sequence. It help us make sense of the genome⋆. This process needs to
be automated since the genomes of most animals are too big for manual annotation (there are
6,469.66 Mbp, Mega base-pairs for humans). Annotations are made possible by the fact that
genes have recognizable start and stop regions (start and stop codons). After the end of the
Human Genome Project, a new project started by the National Human Genome Research
Institute: the ENCODE project. The project is a collaborative effort for the collection of the
functional elements of the human genome.

2.1.3 Analysis of gene expression

The expression of genes can be assessed by measuring mRNA⋆ levels. Studies of gene
expression are often used to determine the genes implicated in a particular disorder: one
might compare microarray data (results of microarray experiments) from cancerous cells
to data from non-cancerous cells to determine the genes that are up-regulated and down-
regulated (more or less expressed than usual) in a particular type of cancer⋆. One can then
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apply, for example clustering algorithms to that expression data, to determine which genes are
co-expressed i.e. upstream regions can be searched for over-represented regulatory elements.

Fig. 2.2 Summary of the RNA-Seq process.

2.2 RNA sequencing

What will be of particular interest for this thesis is RNA sequencing and gene expression. The
former is also called Whole transcriptome⋆ shotgun sequencing (WTSS, RNA sequencing
or RNA-Seq)and it is the new technology that is used for gene expression studies, replacing
hybridization-based microarrays. RNA sequencing uses high-throughput sequencing to
reveal the presence and quantity of RNA in a biological sample or determine exon/intron⋆

boundaries (see Figure 2.2). The problems that microarrays had with the quantification of
genes and production of artifacts, are now mostly solved with WTSS which is not anymore
based on chemical tagging, but on cDNA⋆ sequencing. To note here is that RNA-Seq isn’t
only limited to mRNA, but can look at all the different types of RNA such as: tRNA, rRNA,
and tmRNA.
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2.2.1 Gene expression

What is the difference between studying the genome and gene expression levels of some
cells? The genome tells us what the cell can potentially do, while the expression profile
tells us what the cell is actually doing at any point in time. The information contained in a
gene is translated during the synthesis of a gene product in a process called gene expression,
a process used by all known life forms. Gene product the usually refers to proteins, or
functional RNA in non-protein coding (transfer RNA or small nuclear RNA).

Regulation of gene expression is critical to an organism’s development. Cells have several
mechanisms that are used to increase or decrease the amount of gene product synthesized:
transcription, RNA splicing⋆, translation, and post-translational modification of a protein.
Gene regulation gives the cell control and is the basis for cellular differentiation and the
adaptability of any organism (it’s linked with evolutionary functions). Gene expression is the
most basic level at which the genotype gives rise to the phenotype (observable trait). These
traits are often expressed by the synthesis of proteins that control the organism’s shape and
size. In multi-cellular organisms, gene regulation drives, for example, morphogenesis in the
embryo, leading to the creation of different cell types with different gene expression profiles
from the same genome.

Expression is quantified in a RNA-Seq experiment by counting the number of reads that
map to each locus, in a step during the analysis called transcriptome assembly. Expression
can be quantified for exons or genes using contigs⋆ or reference transcript annotations.

Fig. 2.3 Central dogma of molecular biology: from genetic code to proteins.

Gene expression profiling

Genes contain the instructions for making messenger RNA, but at any given moment each
cell makes mRNA only from a fraction of the genes it carries. If a gene is used to produce
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mRNA, it is said to be "on", otherwise it is "off". Many factors determine whether a gene is
on or off: metabolism, its local environment, and chemical signals from other cells.

Gene expression profiling is the name given to the activity that consists in the collective
measurement of thousands of genes, to create a global overview of cellular functions. An
expression profile allows one to deduce a cell’s type, state, environment, etc . . . Expression
profiling experiments consist in measuring the relative amount of mRNA expressed in two or
more conditions/time. The reason for delayed measurements is because altered levels of a
sequence of mRNA suggest a different need for the protein coded by the mRNA (homeostatic
response or pathological condition). Example: if breast cancer cells have levels of mRNA
associated with a particular receptor higher than normal cells, it might be that this receptor
plays a role in breast cancer. A drug that interferes with this receptor may prevent or treat
breast cancer. This example shows how one of the main uses for gene expression profiling
may be as an important diagnostic test.

2.3 TCGA

The Cancer Genome Atlas (TCGA) is a project, started in 2005, with the goal to catalog
genetic mutations causing for cancer, using genome sequencing to demonstrate that advanced
genomic technologies could be utilized to generate biologically significant conclusions from
the genomic datasets generated. TCGA applies next generation genome analysis techniques
to improve the ability to diagnose, treat, and prevent cancer via a better understanding of the
genetic basis of this disease.

TCGA is supervised by the National Cancer Institute’s (NCI) Center for Cancer Genomics
and the National Human Genome Research Institute (NHGRI) funded by the United States
government. The first stage of the project lasted three-year, from 2006, and focused on
characterization of three types of cancers: glioblastoma multiforme (GBM), lung cancer
(LC), and ovarian cancer (OV). In 2009 the project expanded to phase 2, which planned to
complete the genomic characterization and sequence analysis of 25 different tumors by 2014.
In this phase, the project was performing whole exome and whole transcriptome sequencing
on 100% of the samples and whole genome sequencing on 10% of the cases. The goal
was surpassed, ending up cataloging 33 types of cancer. Funding is split between genome
characterization centers, which perform the sequencing, and genome data analysis centers,
which perform the bioinformatic analyses. The project scheduled 500 patient samples (more
than most precedent genomics studies). Techniques for the analysis include gene expression
profiling, copy number variation profiling, SNP (single nucleotide polymorphism) genotyping,
genome wide DNA methylation profiling, microRNA profiling, and exon sequencing of at
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least 1,200 genes. TCGA is sequencing the entire genomes of some tumors using hybrid-
capture technology for at least 6,000 candidate genes. The TCGA dataset, comprising
more than 2 petabytes of genomic data, has been made publicly available, and this genomic
information helps the cancer research community to improve the prevention, diagnosis, and
treatment of cancer.

2.3.1 Dataset used in the Thesis

Table 2.1 The largest RNA-seq datasets in TCGA

Dataset Cancer Healthy Σ

BRCA 1102 113 1215
LUAD 513 58 571
LUSC 502 51 553
KIRC 534 72 606
HNSC 521 43 564
THCA 513 59 572
PRAD 498 52 550

4183 448 = 4631

The datasets used in this thesis comes from TCGA public data. The focus here is on the
RNA-seq of breast invasive carcinoma (BRCA), the most common form of breast cancer.
To notice is that TCGA data contains control (healthy samples), and this will be important
when training the model for architecture validation and gene module extraction. The reason
for the decision to focus on breast cancer is that is the dataset with the largest sample size.
Nonetheless, as discussed in Chapter 3, also other types of cancer are used for validation.
Those other type of cancer are:

• LUAD, Lung Adenocarcinoma;

• LUSC, Lung Squamous Cell Carcinoma;

• KIRC, Kidney Renal Clear Cell Carcinoma;

• HNSC, Head-Neck Squamous Cell Carcinoma;

• THCA, Thyroid Cancer;

• PRAD, Prostate Adenocarcinoma.
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This TCGA data in our case is given in a matrix format (genomic matrix) tracking 20,530
individual genes. It can be seen as a two-dimensional matrix with one dimension pertaining
to the gene expression level and the other to the patient. As said before the data contains
tumoral and control data, it’s possible to differentiate cancer samples from controls by parsing
their ID which is structured as follows:

Fig. 2.4 ID tag breakdown for the samples in the TCGA project.

What important is the “Sample” part of the ID, that can be used to discern the two
types of patient sample. Here Tumor types are represented by a range from 01 - 09, while
Normal types from 10 - 19 and control samples from 20 - 29. The gene expression profile
was measured experimentally using the Illumina Hi-Seq 2000 RNA Sequencing platform
by the University of North Carolina TCGA genome characterization center. This dataset
shows the gene-level transcription estimates, as in RSEM normalized count (RNA-Seq by
Expectation-Maximization). The scaled estimate value is the estimated frequency of the gene
amongst the total number of transcripts of each genes that were sequenced (there are multiple
ones, alternative splicing). Newer versions of RSEM, call this value (multiplied by 1e+6)
TPM - Transcripts Per Million. The values are subsequently divided by the 75-percentile and
multiplied by 1000. The reason for this last part is to make the values a bit more comparable
between experiments (discounting outliers). Genes are then mapped onto the human genome
coordinates using UCSC cgData HUGO probeMap.
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Part II: Machine Learning

In this second part the theory of the Machine Learning part is introduced. The model of neural
networks is presented, from the mathematical constructs to different possible typologies.
The next part is devoted to autoencoders, the centerpiece to understand the thesis’ method.
Autoencoders are a type of neural networks used for efficient codings and dimensionality
reduction, hence an introduction to dimensionality reduction is also given. In particular,
a focus is put on the comparison between different models (PCA and k-PCA) that try to
achieve similar results. These two models will be then used in the next chapter to assess the
training quality of the final autoencoder model. Also, in the last part of the chapter, a brief
mention of the tools and library used is also included.

2.4 Neural Networks

Neural networks (or more aptly ANNs, artificial neural networks) are computing devices
inspired by the biological networks found in animal brains. These networks improve perfor-
mance on specific tasks by “observing” a growing number samples, and they work generally
without task-specific programming. The first introduction to this type of models was made by
Warren McCulloch and Walter Pitts [7] in the early 40s. The model was inspired by neurons
and consisted of a single unit with a single output, which quickly demonstrated its limitations.
Nowadays when people talk about neural networks they think about models organized in
layers with different layers possibly performing different kinds of transformations on their
inputs. As an example a model can be found in Fig. 2.5. Each layer of a neural network is
based on a collection of connected units or nodes called “neurons”. Each connection (which
is inspired synapses in brains) between neurons can transmit a signal from one to the other.
Patterns in the form of data are presented to the network via the "input layer" (the group of
red neurons in the figure), which communicates to one or more "hidden layers" where the
bulk of the processing is done via a system of "weighted" connections. The hidden layers
(blue group in the picture) then link to an "output layer" (green) where the output values of
each neuron represent the answer. In image recognition, for example, ANNs can learn to
identify images that have cats in them by taking images that have been labeled (as having a
cat or not having it) and using the results to identify cats in other images.

Usually, the signal/connection between artificial neurons is a real number, and the output
of each neuron is calculated by a function (they’re called activation functions and can be
linear or non-linear e.g. hyperbolic tangent or sigmoid functions) of the weighted sum of
its inputs. The weight increases or decreases the strength of the signal at a connection and
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finding the optimal set of weights for the specific model is the main goal. Additionally,
artificial neurons may sometimes have a threshold such that only if the signal (result of the
summation) crosses that threshold the signal sent (e.g. step function).

Despite at the beginning the goal of the artificial neural network approach was to solve
problems in the same way that a human brain would, nowadays, the research is focused on
matching specific abilities, deviating from biology. ANNs are used on a variety of tasks,
such as: computer vision, speech recognition, machine translation, social network filtering,
playing board/video games and performing medical diagnosis.

Fig. 2.5 Example of a simple neural network having only one hidden layer.

2.4.1 Model description

This section is going to define in a more rigorous way each of the main component in a
neural network:

Neuron A neuron j with label p j(t) receiving an input from predecessor neurons consists
of the following components:

• an activation a j(t), depending on a discrete time parameter, this time dependence isn’t
always present;

• a threshold θ j, which stays fixed unless changed by a learning function;
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• an activation function f that computes the new activation at a given time t +1 from
a j(t), θ j and the net input p j(t) giving rise to the relation

a j(t +1) = f (a j(t), p j(t),θ j)

• and an output function fout computing the output from the activation o j(t)= fout(a j(t)).

An input neuron has no predecessor but serves as input interface for the whole network.
Similarly an output neuron has no successor and thus serves as output interface of the whole
network.

Connections and weights The network consists of connections between layers. Each
connection takes the output of a neuron i and links it to the input of a neuron j (i is said to be
the predecessor of j). To each connection a weight wi j is assigned, this will be what is going
to be trained. Optimal weights of the network minimize the loss function over samples.

Propagation function The propagation function computes the input p j(t) to the neuron
from the outputs oi(t) of predecessor neurons and is basically always in the form

p j(t) = ∑
i

oi(t)wi j

Learning rule The learning rule is an algorithm which modifies the weights of the neural
network, to obtained the desired results. An example of a learning rule is Back propagation,
but more on that later.

2.4.2 How learning works

Let’s look how does learning works, neural networks are mainly used for pattern recognition
and this learning possibility is the thing that has attracted the most interest. Given a specific
task to solve, there exist a class of functions f ⋆ ∈ F which solves the task with some criteria
of optimality. This implies that there must be a cost function (also loss or error) C : F → R
such that, for the optimal function f ⋆:

C( f ⋆)≤C( f )

∀ f ∈ F \ f ⋆. In other words, there is no solution which has a cost less than the cost of the
optimal solution.
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The cost function C is an important concept, it calculates the difference between the
model output and its desired output or, in other words, how far away a solution is from an
optimal solution to the problem. Learning algorithms search through the solution space: in
ANNs usually usually using gradient-based methods over the surface error, to find a function
(dictated by the set of weights) that has the smallest possible error. Gradient based methods
usually repeatedly minimize the cost function by changing the parameters (weights in the
neural network case) following the opposite direction of the gradient. A two-dimensional
example is given in Fig. 2.6 where the "weight" vector x (xi being the value of the vector x at
time i) is repeatedly updated towards the directions of the local minimum over the surface of
the cost function.

As an example, consider the most widely used of such cost functions, the Mean Squared
Error (MSE):

C = E
[
( f (x)− y)2]

in which the learning problem consists in finding the model f , which minimizes for data
pairs.

Fig. 2.6 Example of the gradient evolution over time on the surface error (contour line).
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Learning algorithm: Backpropagation

Back propagation (or Backprop) is a method to calculate the gradient of the cost function
with respect to the weights in a layers. The name stands for backward propagation of errors,
because the error is calculated at the output and distributed back through the network layers
in a similar way as the chain rule for computing the derivative of the composition of two or
more functions. The weight updates of back propagation can be done via several methods,
the classic being gradient descent which is based on:

wi j(t +1) = wi j(t)+η(t)
1
n

n

∑
i=1

∇wC(zi(t),wi j(t))

where, η is the learning rate (step size), C is the cost function. The method used in the thesis
is a popular variant of the gradient descent method called, mini-batch stochastic gradient
descent. This method has good convergence property, being much faster albeit still a bit
more noisy given the different update rule. The latter being now:

wi j(t +1) = wi j(t)+η(t)∇wC(z(t),wi j(t)).

This is the stochastic version of gradient descent because each iteration (being a batch, subset
of the dataset) updates the value of the gradient and therefore learns "on-line" instead of
waiting for an entire pass-through of the training set.

2.4.3 Deep Neural Networks

A deep neural network is deep learning [8] (hierarchical learning) method that uses a neural
network with multiple hidden layers between the input and output layers to model complex
relationships. The term is actually kind of contentious because there was not much usage of
networks with only one layer overall: the famous McCulloch–Pitts model. This model soon
demonstrated its limitation and the field only got traction with new discovery.

After having parted way with the simple one neuron model the field had a resurgence in
the late 1990s when higher computational power permitted the use of more complex (multi
layered) models. The literature subdivide the neural network category in other two terms:
shallow networks and deep networks. Shallow network refers to ANN with only one hidden
layer, while DNN has multiple ones. See Fig. 2.7 for an example of a simple deep neural
network. This is similar to Fig. 2.5, but with the addition of another hidden layer (there are
two blue groups of layer connected between each other).
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DNNs architectures generate compositional representations of the data where lower
layers map low level (more specific) type of features. For example the first layer would
represent high order feature (such as edges in an image). DNNs are typically feed-forward,
meaning that the data flows from the input layer to the output layer without going backwards,
nonetheless some architecture exists which loop back (e.g. Recurrent Neural Networks,
RNNs). Each architecture is better suited for specific domains, for example Convolutional
Neural Networks are used especially in the field of Computer Vision.

DNNs naturally share, many of the same faults of numerous other machine learning
methods: over-fitting and computation time:

• Over-fitting is an issue for DNNs because of the added layers, by adding too many
layers the risk is to have specific weights dedicated to every single example in the
dataset. To compensate this side-effect there exist several regularization methods such
as weight decay (ℓ1-regularization) or sparsity constraints (ℓ2-regularization) which
can be applied during training. An addition which seemed to have found success is
also using dropout neurons, this consist in randomly omitting, during training, units
from the hidden layers.

• On the computational side, DNNs have several training parameters to consider: num-
ber of layers and number of units per layer, the learning rate, initial weights, loss
function and activation function. Performing a proper grid search through the param-
eters for the optimal values may not be possible considering due to the cost in time
and computational resources. Various speedups are possible, such as using batching
(computing the gradient on a subset of samples rather than on individual ones). One
significant improvement during the last decade was the use of GPU, graphical process-
ing units, to enable quick matrix and vectors operations which are used intensively
during training. To notice here it is also the choice of proper activation functions with
non-linear ones to be treated carefully given the vanishing gradient effect. For this
reason the main function used in deep network is ReLU (rectified linear unit) [9] that
do not suffer from this problem.

2.5 Autoencoders

Autoencoder [3] refers to a particular layout for artificial neural networks which is used
in particular for unsupervised learning of efficient codings. This means that the network
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Fig. 2.7 Example of a deep neural network with two hidden layers.

objective is to learn a representation (code) of a set of data of reduced dimension, hence the
main use of autoencoders is dimensionality reduction [4][10]. Basically after the training
the ANN will be able to take an high input vector and give as an output a vector of smaller
size. Autoencoder usage is not limited to dimensionality reduction, but they’re also used as
generative models, in this thesis both of these aspects are leveraged.

As the name could give out, the autoencoder is actually composed of two parts: an
encoder and a decoder. The first part takes the high dimensional vector and reduce the size,
while the decoder part returns again the high input vector. In fact the training works jointly
between the two parts to approximate the identity function. After that only one of the two
(encoder or decoder) is usually employed. An annotated picture of the model can be found in
Fig. 2.8.

2.5.1 Structure

The whole process of an autoencoder can be defined mathematically as:

φ : X → F,

ψ : F → X,

φ ,ψ = argmin
φ ,ψ

∥X− (ψ ◦φ)X∥2

Let’s take a look more precisely on the simplest case possible, an autoencoder with only one
hidden layer, the encoder part takes the input x ∈ X = Rn and maps it to z ∈ F = Rm (where
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m < n) using this relation:
z = σ(Wx+b)

The image/output z is what it is referred to as code, latent variables, or reduced dimensions.
In the above formula σ is an element-wise activation function such as a sigmoid function
or a ReLU (rectified linear unit). W is a weight matrix and b is a bias vector and are the
parameters to be found via training.

Dimensionality reduction performed by the encoder.

After the encoder, the decoder section of the network maps z to a reconstruction x′ of of
the same size as the input x:

x′ = σ
′(W′z+b′)

where σ ′, W′, and b′ for the decoder may differ, depending on the network architecture,
from the corresponding σ , W, and b of the encoder. Sometimes as a regularization method
Tied Weights (the weight matrices are one the transpose of the other) between encoder and
decoder are used, and that way you trade-off expressiveness for performance.

The decoder returns the vector back to the original input space
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Autoencoders are trained to minimize the reconstruction errors between the input and
output. Let’s take a look at the squared error:

L (x,x′) = ∥x−x′∥2 = ∥x−σ
′(W′(σ(Wx+b))+b′)∥2

where x is averaged over some inputs of the training set. If the feature space F has lower
dimensionality than the input space X, then the feature vector φx can be regarded as a
compressed representation of the input x. If the hidden layers are larger than the input
layer, an autoencoder can possibly learn the identity function (over-fit) and become useless.
Although in this last case some experimental results have shown that autoencoders may still
learn new features.

Fig. 2.8 Layout of an architecture of a deep autoencoder

2.6 Dimensionality reduction

Dimensionality reduction is the process in Machine Learning involving the reduction of the
number of variables to be taken in consideration, and it can be divided in two sub-fields: (1)
feature selection and (2) feature extraction. The former concerns in finding a meaningful
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subset of features from the all with various methods, adding features/dimensions one by one
and making considerations on the information gain or eliminating some of them from the
totality. Feature extraction, the one approach used in the thesis, is all about constructing
new features from a combination of the original ones. These new feature will be fewer and
hopefully maintain the most important properties.

The data dealt with in this thesis is gene expression data which is particularly high-
dimensional (see the Introduction). The typical result from microarray experiments include
around 20,000 genes (sample’s dimensions). These genes interact with each other in a
myriad of way, each gene codes from some proteins and there are about 2,000,000 of them.
The complexity of their interaction is apparent even by just taking in consideration the sheer
numbers.

Dimensionality reduction can be linear or non linear. The linear case is based on
the idea of doing a linear projection of the data over some chosen lower dimensional
hyperplane. While this approach can be very powerful and obtain very good generalization
results, the method is limited in the description of complex data interaction such as in our
genetic case. The non-linear approach instead assumes that the data of interest lie on an
embedded non-linear manifold within the higher-dimensional space. (Fig. 2.9 represent a
two dimensional manifold embedded in a three dimensional space) There are multiple ways
of doing dimensionality reduction in a non-linear fashion. Some of these methods to mention:
Self-organizing map [11], Isomap [12], Kernel principal component analysis (k-PCA) and
finally, Autoencoders.

In the next chapters an autoencoder with non-linear activation functions is used for the
aforementioned purpose. When used for dimensionality reduction, one of the hidden layers
(usually the middle one, output of the decoder) is limited to contain only a small number of
network units. This way, the network must learn to encode the vector into a small number of
dimensions and then decode it back into the original space. The learned encoding is found
by minimizing the loss function therefore by trying to detect regularities between dimensions
(genes) across all the training set. Let’s look now at some other methods which will be used
as a basis for evaluating performance of the autoencoder model which will be then used as a
basis for module extraction.

2.6.1 Principal Component Analysis

One of the staple methods for the analysis of gene expression data is PCA [13]. Principal
Component Analysis is a procedure that uses orthogonal transformations to convert data
belonging to a set of presumptively correlated variables into a new set of values of linearly
uncorrelated variables called principal components. Dimensionality reduction in this case
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Fig. 2.9 Example of a 2-dimensional manifold embedded in a three dimensions

is achieved by using a smaller number of principal components than the original number
of dimensions of the data. The new features in the PCA case are obtained via a linear
transformation of the axes such that that it maximizes the variance of the data (so that it
accounts for as much of the variability in the data as possible). Each of the succeeding
component in turn has the highest variance possible under the constraint that it is orthogonal
to the preceding components. One of the main use of PCA is data visualization, but also to
extract new (fewer) features that can represent the data.

Mathematically, the transformation done by PCA is defined by a set of p-dimensional
vectors of weights or "loadings" wk = (w1 . . .wp)k that map each row vector xi of X (data
matrix, zero-centered) to a new vector of principal component scores ti = (t1 . . . tm)i given
by:

tki = xi ·wk for i = 1 . . .n, k = 1 . . .m

in such a way that the individual variables t1 . . . tm of t considered over the data set successively
inherit the maximum possible variance from x, with each loading vector w constrained to be
a unit vector. In order to maximize variance, the first loading vector w1 thus has to satisfy:

w1 = arg max
∥w∥=1

{
∑

i
(t1)

2
i

}
= arg max

∥w∥=1

{
∑

i
(xi ·w)2

}
= arg max

∥w∥=1

{
wT XT Xw

}
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Since w1 has been defined to be a unit vector, it equivalently also satisfies

w1 = arg max
{

wT XT Xw
wT w

}
With w1 found, the first principal component of a data vector xi can then be given as a score
t1i = xi ·w1 in the transformed co-ordinates, or as the corresponding vector in the original
variables, {xi ·w1}w1.

The k-th component can be found by subtracting the first k− 1 principal components
from X:

X̂k = X−
k−1

∑
s=1

XwswT
s

and then finding the weight vector which extracts the maximum variance from this new data
matrix

w(k) = argmax
∥w∥=1

{
∥X̂kw∥2}

The transformation T = XW maps a data vector xi from an original space of p variables
to a new space of p variables which are uncorrelated over the dataset. See an example in
Fig. 2.10 to visualize the principal components (vectors) of a two dimensional gaussian
distributed data.

Not all the principal components need to be used. This is especially important for
dimensionality reduction purposes, in which only the new dimensions which better explained
the data are kept. Keeping only the first L principal components, produced by using only the
first L loading vectors, gives the truncated transformation

TL = XWL

An autoencoder neural network with a linear hidden layer is similar to PCA. Upon
convergence, the weight vectors of the K neurons in the hidden layer will form a basis for
the space spanned by the first K principal components. Unlike PCA, this technique will not
necessarily produce orthogonal vectors.

One of the limit of PCA for the detection of collaborating genes (dimensions) is that
it’s underlying assumption is linearity, but very rarely in the real world one can make such
assumption. Given the high-dimensionality and complexity of human biology the objective
is to try perform dimensionality reduction (and corresponding features extraction) assuming
non-linearity, in an attempt to better capture the interactions between genes. For this reason
let’s see a variant of PCA that into account.
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Fig. 2.10 PCA of a multivariate Gaussian distribution.

2.6.2 Kernel-Principal Component Analysis

Kernel-principal component analysis [14] (or kernel PCA) is an extension of principal
component analysis that uses techniques of kernel methods. It is therefore a combination
of Principal component analysis and the kernel trick. In PCA XT X can be recognized as
proportional to the empirical sample covariance matrix of the dataset X, so it operates by
diagonalizing the covariance matrix (finding the eigen-decomposition). PCA works by
computing:

C =
1
m

m

∑
i=1

xixTi

. It then projects the data onto the first k eigenvectors of that matrix. Instead k-PCA in the
first step it begins by computing the covariance matrix of the data after being transformed
into a higher-dimensional space,

C =
1
m

m

∑
i=1

Φ(xi)Φ(xi)
T
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It then projects the transformed data onto the first k eigenvectors of that matrix, just like PCA.
Important to notice is that Φ is never explicitly calculated, but it dealt by replacing the inner
product with another function, to each function it’s associated a specific "true" feature space
(Φ(x)-space) corresponding to Φ. So basically it performs a linear projections for the points
in the usually higher dimensional space (Φ), but this results in non linear decomposition in
the original space.

The difference here with respect to linear PCA, it’s possible to use the eigenvalues to
rank the eigenvectors based on how much of the variation of the data is captured by each
principal component. This is useful for data dimensionality reduction and it could also be
applied to k-PCA. However, in practice there are cases that all variations of the data are same.
This is typically caused by a wrong choice of the kernel scale.

2.7 Tools used

The main tools and libraries are given a brief overview in this section. This is by no mean an
exhaustive list of what was used, but it will give an idea of the most important pieces. The
main machine on which the experiments were run, such as the training of the neural networks,
is not equipped with a GPU. This constraint guided some design choices and focus on the
experiment pipeline. Not having the possibility of running experiments on GPUs results in
slower time and less options in the parameter selection. Nonetheless as it is discussed later
this didn’t resulted in significant degraded performances. Let’s have a brief overview of the
main tools:

• Python is an interpreted high-level programming language. It features a dynamic
type system and automatic memory management. It supports multiple programming
paradigms, including object-oriented, imperative, functional and procedural, and has
a large and comprehensive standard library. Python is widely used in any type of
Data Science settings for the wide availability of libraries and frameworks. The fact
that Python is an interpreted language lends itself for quick prototyping and data
exploration.

• Keras [15] is an open source neural network library written in Python. It is an interface
capable of running on top of several neural network frameworks (it’s more of an engine
than an end-to-end machine-learning framework) such as MXNet, Deeplearning4j,
TensorFlow, Microsoft Cognitive Toolkit or Theano. Keras is designed to enable fast
experimentation with deep neural networks being minimal, modular and extensible.
Our implementation relies on TensorFlow, which is an open source software library
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for numerical computation using data flow graphs. Nodes in the graph represent
mathematical operations, while the graph edges represent the multidimensional data
arrays (tensors) communicated between them. The architecture is flexible allowing
to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile
device with a single API.

• Libraries Several libraries were used, but the main ones were: Pandas [16] and
Matplotlib [17]. Pandas is an open source, BSD-licensed library providing high-
performance, easy-to-use data structures and data analysis tools for the Python pro-
gramming language. Matplotlib is a Python 2D plotting library which produces
publication quality figures in a variety of hard-copy formats and interactive environ-
ments across platforms. Matplotlib can be used in Python scripts, the Python and
IPython shell, the Jupyter notebook, web application servers, and four graphical user
interface toolkits.

2.8 Summary

In this chapter the field of Bioinformatics is introduced with its main activities and successes.
Then the concepts of gene expression and gene expression profiling are explained to prime
the reader with the theoretical foundation that underlies the domain knowledge of the data
dealt with. The TCGA project and the data that are taken from it are also discussed before
focusing on the Machine Learning background. This second part introduced what a neural
network is, its mathematical constructs and their different typology. It is explained what
learning is and what it is meant by Deep Neural Networks. Then the specific ANN that was
used in the thesis is introduced: the Autoencoder. They’re a type of neural networks used
for efficient codings and dimensionality reduction. The topic of dimensionality reduction is
discussed, and two alternative methods are presented: Principal Component Analysis and
kernel Principal Component Analysis. These two methods are discussed mathematically and
in comparison between each other since they will be used in the next chapter to assess the
training quality of the autoencoder model. A brief part is then dedicated to discussing the
software tools used for the experiments.
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MODEL

This chapter is devoted to the training and validation of the autoencoder model. Experiments
are made to find the parameters necessary for the definition of the network architecture, such
as, number of hidden layers and activation functions. What is important here is the capability
of the reduced target dimensions of the autoencoder to capture true latent variables. To do
this two stages were undertook: in the first there’s a comparison between different parameters
through model validation. In the second part PCA and k-PCA models are used with the same
number of target reduced variables as comparison in a classification scenario. The reason for
the choice of PCA and k-PCA is because they’re well known methods used in the fields with
known performance targets to be met. It will be shown that the proposed model manages
to perform on the same level as the other two. In the last part the autoencoder trained from
breast cancer data is compared with other autoencoders (fixing the parameters) trained on
other type of cancer. The goal is to see how different dataset impact the performances,
especially for what regards the size. It’s important to remind the reader that the focus to
breast cancer is done for two reasons: the first being that it is the one type with the largest
available dataset and second, because as shown later on, the evaluation of the target modules
requires knowledge of the specific tissue and focusing on more than one at a time would
disperse the efforts.

3.1 Architecture

In the introduction, the mentioned goal is to have a hierarchical model that explain the
complexity of biological data. How should one decide how many layers should our final
model have? Which non-linear activation function should be chosen for the layers’ nodes?
In this and the following sections these questions will be answered. To find the optimal
parameters several training sessions were performed for different types of network parameters
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and have chosen the best performing one. As is going to be discussed it’s not true that the
more the layer the merrier, but we need to be cognizant of over-fitting and diminishing
returns.

Before getting into an explanation of the main parameters for the network and the training
process, here a little notation that is used in the text. When talking about a model of two
layer in the following material, the focus is on the number of layers relative to either the
encoder or the decoder minus the layer they both have in common. The notation does not
refers on the total number of layers of the network which would instead be: 2n+ 1. The
reason for this this is for practicality, reasoning about the size of an individual part rather
than the whole (the network is symmetric). Now an example to clarify what we’ve written in
Figure 3.1. The dense attribute in this case means that the layer are fully connected: there’s
a connection from each neuron of a layer to each neuron of the previous layer. The output
"dense_2" layer is the code, while the "inputLayer" is a placeholder for the input data.

Fig. 3.1 Example of a "two" layer deep autoencoder. It has 3 hidden layers.



3.1 Architecture 35

Important to note here are the constraints the experiments were under. Training a neural
network model, especially a deep one, is a very computational intensive process. For this
reason to perform quick iterations and validations, the setups usually include a computer
provided with a GPU. Unfortunately this was not the case in this thesis and the fine-tuning
suffered a little bit all considering, limiting the training time. Nonetheless as it is going to be
discussed, good results were achieved and future works could involve more model tweaking.

3.1.1 Parameters explained

This subsection will go over the main concepts involving the neural network. Included are
not only parameters descriptive of the network architecture, but also ones which explain the
training process.

Architecture parameters:

• Activation function (also called transfer function) of a node defines the output of that
node given an input or set of inputs. An electronic circuit for example can be seen
as a network of activation functions that can be either 1 or 0. They can be linear and
non-linear, some examples of the most popular are:

– Identity:
f (x) = x

– Sigmoid or Logistic:

f (x) = σ(x) =
1

1+ e−x

– Rectified linear unit (ReLU):

f (x) =

0 for x < 0

x for x ≥ 0

– TanH:

f (x) = tanh(x) =
(ex − e−x)

(ex + e−x)

– etc . . .

• Number of layers refers to how many layers are present in a neural network. In
particular hidden layers are all the layers in between the input (first) and output
(last) layer. In our case, since the network is symmetric, the number of layers in the
autoencoder is defined as the number of layers for the encoder/decoder minus one.
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• Loss function calculates the difference between the model output and its desired
output. Example: Mean Squared Error (MSE) which is given by:

E
[
( f (x)− y)2]

• Connectivity refers to the number of (active) connections between neurons in the
layers. When it’s not mentioned, the default is usually a fully connected (dense)
network.

Training parameters:

• Epoch describes the number of times the algorithm sees all dataset (one pass-through).
Each time the algorithm has seen all samples in the dataset, an epoch has passed.

• Batch size refers to how many samples the algorithm sees before computing the
gradient update. This is quite an important concept. In this case the optimizer to
minimize the objective function used is called Stochastic Gradient Descent method.
Technically though given that new weights are calculated at the end of each batch and
not after each training samples the method is called Mini-Batch Gradient Descent.
This is because it’s really in between Gradient Descent and Stochastic Gradient Descent,
it has overall better properties: more robust convergence, memory and computationally
more efficient.

• Shuffle indicates the shuffling of the training data before the start of each epoch. It can
leads to better generalization properties given that the introduced randomness reduces
the probability of having imbalanced training batches.

• Early stopping policy [18] refers to a policy that stop the training once your loss
changes in a certain way. For example to avoid protracted training times the training
is stopped after the validation loss has stopped improving by a certain margin (see
Minimum delta) after some number of subsequent epochs (see Patience). This does not
necessarily mean that the model will not improve more, but it’s just a computational
issue.

• Validation loss refers to the value of the cost function computed over the validation
set. The latter is the set of samples used to tune the parameters of the model.

• Minimum delta is a threshold that allows us to evaluate a loss at some epoch as an
improvement or not. If the difference of loss is below this delta it is quantified as not
improving.
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• Patience is a parameter that represents the number of epochs before you have to stop
once you obtain the minimum delta. If small batches or large learning rates are used,
the loss will be noisy (jump a lot) so it’s better set a large patience. If instead large
batches’ sizes are used (or small learning rates) the loss will be smoother and one
therefore can use a smaller patience argument.

Here it’s necessary to mention also the target reduced dimensions (number of modules),
or in other words: the size of the middle layer.

Important to note The terms: reduced/target dimensions, latent variables and modules
are here used interchangeably to identify a grouping of genes without consideration to their
biological significance. Each grouping is identified to a reduced dimension because we
will find a one-to-one mapping between the two. The functional analysis that will link
some modules to a correspondent biological activity will be the subject of chapter 5 called
"Enrichment Analysis"

The size of the middle layer was chosen by taking inspiration to a similar paper that used
autoencoders. Comparatively the number of modules (target latent variables) is reduced even
more to 400. The reason this was done is because a latter part of manual verification for each
module was envisioned: aiming for too many modules would have been counter-productive.
Beside the aforementioned problem: there’s a trade-off between the number of modules
and the encoding quality. The less the modules the less the encoding ability (reconstruction
results), but increasing the number of modules, the specificity of each modules (capability of
extract a specific activity) is reduced. In other words, this parameter can balance not only the
quality but also whether one wants to extract high or low level activity.

The dimension of each subsequent layer of the encoder (decoder) was reduced (increased)
linearly until the target was reached. Example: if the starting vector is of 20,000 features and
it’s going to be reduced to 400 with 4 layers then the mid-step sizes for each layers would be:
15100, 10200, 5300.

Important to note is that the effect of decreasing slowly the size of each subsequent layer
generally leads to better performances. [19] It can intuitively be understood that diminishing
the size abruptly wouldn’t let the model learn for non-trivial reduction. The other side of
the medal here would be a greater risk of over-fitting (it’s related to the number of overall
connections) and an increase of compute time.

3.2 Training

In the training the "raw" performance (over the cost function) of different network was
evaluated architectures. The comparison is between two activation functions: ReLU (linear)
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and TanH (non-linear). The Sigmoid function was also taken into consideration, but results
are here not included. The performance of this functions in preliminary trials was always
worse than the TanH by at least an order of magnitude. The main reason for this could
be that its output is not zero-centered; antisymmetric activation functions can yield faster
convergence than a similar process with non-symmetric activation functions. [20]

The number of layers tried were: 1, 2, 4 and 8. Conceptually the training stage is
divided in two parts. The first evaluates the performance of different activation functions
while the second one the effect of layers increase. It’s also investigated if keeping all the
parameters frozen but the number of layers would yield better results.

As far as training parameters go, as said the optimizer is Mini-Batch Gradient Descent
with batch size of 64, [21] and the loss function is the mean squared error. The epochs
number chosen is 200. While the epochs’ number is chosen for time constraints the batch
size is chosen following suggestions in related literature. As far as the stopping policy goes:
the minimum delta is chosen to be 5e−5, with patience of 100 to still let fast converging
model the possibility of jumping out of local minima.

3.2.1 Preprocessing

Both healthy and cancer cell samples are used during this part of the training. This choice
was done to use the largest possible set. Since, unfortunately, a vast amount of data is not
available, using all the available data at hand is vital. In the second part of the thesis the
approach is changed and exclusively cancer samples are used, because it’s more interesting
to capture cancer-related interactions. In that case it’s like healthy samples are treated as
"noise", furthering us to the target of identifying mainly tumor activity.

The data is processed before being used in training. One of such operation performed is
min-max normalization on [0,1] to make the training faster and reduce the chances of getting
stuck in local optima. A hold-out set of 20% is removed to verify the results at the end of the
process with unseen data. The split between validation and training set is 10 : 90. The reason
for this choice are similar as above, maintaining the training set as large as possible given the
relatively small dataset.

Important to note, to perform the splits of the data, stratified sampling was used to
balance the amount of cancer and healthy samples present in each set.

3.2.2 Results

The first experiments for what concerns the network architecture were regarding the activation
functions. The aim was to validate our assumption that the RNA-seq data would be better
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suited for non-linear reductions. The training is undertook by keeping all the parameters
the same but the type of activation function in each neuron. The only difference between
the models are the activation functions ReLU and TanH. To get as of a complete picture as
possible the same setup was tried with increasing model depth. Results are reported in Table
3.1, the values are taken for the autoencoder relative to the last epoch. The ∆ indicates
the difference between the Training loss and the Validation loss. See also the training and
validation plots at Fig. 3.2-3.3-3.4-3.5. For the plots on the upper part of each figure, the X
axis represent the epoch number during training and on the Y axis the value of the loss for
both training and validation. For the plots on the bottom of each figure, the X axis represent
the epoch number during training and on the Y axis the value is the difference between the
training and the validation loss.

Important to note here is that the validation loss is smaller than the training loss given
that the sign of ∆ is always positive. At the beginning it seems odd, but it’s mostly due to the
way Keras (the programming library used) calculates the loss. The training loss is calculated
as the average of the losses over each batch of training data. Because the model is improving
over time, the loss over the first batches of an epoch is generally higher than over the last
batches. On the other hand, the validation loss for an epoch is computed using the model as
it is at the end of the epoch, resulting in a lower loss. Furthermore the difference is really
relatively small, hence it could also be due to statistical noise and the inherent difficulty of
having a balanced split between training and test set in unlabeled data. it’s important to
stress more on the focus on the improvement in the trend, see Table 3.1 underneath where
the value of the training loss is reported for various number of layers and activation function:

Table 3.1 Final loss between models with different activation functions.

Layer\Metric
ReLU TanH

Training Loss ∆ Training Loss ∆

1 5.99e-02 1.06e-07 4.08e-02 3.11e-04
2 5.71e-02 3.70e-05 4.47e-03 1.46e-05
4 5.49e-02 1.28e-04 2.97e-03 7.44e-05
8 5.47e-02 1.05e-04 2.92e-03 6.19e-05

It’s possible to observe here that using a shallow autoencoder (1 layer) gives us com-
parable results between the different activation functions. This is to be expected given the
reduction is really simple in both cases. What is surprising though is that by adding layers
for the linear activation the loss improves only slightly, not enough to warrant much attention.
Interestingly the progression observed for the non-linear case by adding multiple layers is
significant. An autoencoder of size 2 improves the loss by an order of magnitude and by
doubling it to 4 another time it’s halved. This significant decrease to the rate of improvement
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Fig. 3.2 One Layer models. Training and test loss plot (above), ∆ evolution (down). On the
left ReLU and on the right TanH.

would suggest that the optimal network size is being reached. By using 8 layers one can see
that the model does not improve by much. It appears that at this points, for our training setup,
significantly diminished returns are reached compared to the training time necessary.

The sweet-spot between performances and training time for our experiment pipeline is
therefore a model with 4 layers.

3.3 Validation through Classification

After having settled with those parameters, the next step is validating the fact that the model
have learned meaningful features. In other words can these reduced features represent the
data in a classification scenario? This is going to be put to test by feeding an Support Vector
Classifier with features obtained from the encoder, a PCA and a k-PCA (a variant of PCA
that enables non-linearity, here with a radial basis function kernel) model. Of course all
of them have the same number of latent variables. The reason why of the use of the other
two models, as mentioned before, is because there are other papers that used them and it’s
possible to have clear targets (performance-wise) that are known to be expected. [22] This
step can be seen as a double verification step for the model after the classic training process,
by using state-of-the-art works. Achieving high accuracies in the results would validate the
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Fig. 3.3 Two Layer models. Training and test loss plot (above), ∆ evolution (down). On the
left ReLU and on the right TanH.

Fig. 3.4 Four Layer models. Training and test loss plot (above), ∆ evolution (down). On the
left ReLU and on the right TanH.
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Fig. 3.5 Eight Layer models. Training and test loss plot (above), ∆ evolution (down). On the
left ReLU and on the right TanH.

ability of autoencoders to extract meaningful new features that can summarize/replace the
original ones.

3.3.1 Support Vector Classifier

In this subsection the concept of a support vector classifier (SVC) [23] is introduced. SVCs
are supervised learning models that construct an hyperplane or set of hyperplanes in a higher
or infinite-dimensional space to separate data of different classes. A good separation is
said to be achieved by the hyperplane that has the largest distance to the nearest training
point belonging to any class (so-called functional margin, see Fig. 3.6 for an example of
classification through different margin). This is done intuitively because the larger the margin
the lower the generalization error of the classifier.

Following an explanation on the case of linear classification. Any hyperplane can
be identified as the set of points x⃗ that lie on it, in other words: w⃗ · x⃗− b = 0 where w⃗
is the normal vector to the hyperplane. The support vector methods can be extended to
cases in which the dataset isn’t linearly separable, by introducing the hinge loss function:
max(0,1− yi(w⃗ · x⃗i −b)). This function is zero if x⃗i lies on the correct side of the margin.
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For data on the wrong side of the margin, the function’s value is proportional to the distance
from the margin.

Fig. 3.6 Separating hyperplanes examples. In this case H3 is the maximum margin classifier.

The maximum margin classifier is then obtained by minimizing[
1
n

n

∑
i=1

max(0,1− yi(w⃗ · x⃗i −b))

]
+λ∥w⃗∥2

where the parameter λ determines the trade-off between increasing the margin-size (more
generalization) and ensuring that the x⃗i lie on the right side of the margin.

For non-linear classification the resulting algorithm is similar, except that every dot
product is replaced by a nonlinear kernel function. (it was explained in the background
section) This allows the SVM to fit the maximum-margin hyperplane in a non-linearly
transformed feature space (of possibly higher dimension). The classifier is a hyperplane in
the transformed feature space, but in the original input space it may be nonlinear. Multiple
kernel functions are possible, but in this case the Gaussian radial basis function is used, itt is
defined as:

k(⃗xi, x⃗ j) = exp(−γ ∥⃗xi − x⃗ j∥2), for γ → 0.

3.3.2 Classification Results

The classifier was trained via 10 fold cross-validation and the confusion matrices was
computed over an hold-out (unseen) set. The accuracies results are in the Table 3.2 below.
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Table 3.2 Accuracies of the classifiers

PCA k-PCA Autoencoder
99.5% 99.5% 99.1%

Here it can be seen the Autoencoder performs on par as the other methods. This results
validate the goodness of the reduced (encoded) features from our method. High accuracies
results (above ∼ 95%) were expected given previous literature. The results difference
between the best performing and the others is only off by one prediction. The reason may
be because of some parameters/tweaking, since the grid search of the best parameters were
performed with the same value ranges.

Table 3.3 Confusion Matrix - Autoencoder features

Samples
True condition

Positive Negative

Predicted condition
Positive 224 2
Negative 0 17

3.4 Comparison with other cancer types

This section is will show the reader to the results obtained on different type of cancer data.
All the training process is the same as the one presented so far. The datasets were presented
in the Background with the exception of LU. This dataset is the combination of two types of
lung cancer: LUASC and LUAD. Using the two datasets combined would get us a bigger
dataset, almost of the size of the biggest one BRCA, while still referring to the same tissue
type. The results are relative to the losses at the last epoch of training. All of the autoencoders
were trained with the same fixed parameters obtained in the previous section, this of course
isn’t necessarily ideal, but is nonetheless representative given that the commonality between
the data.

From Table 3.4 one can see how the value of the cost function changes by varying the type
of cancer used as data. It can be noticed that the loss is roughly inverse linearly proportional
to the number of samples present: by doubling the dataset size the loss gets halved. These
results do not directly correlate with the quality of the encoding, but they can be somewhat
indicative of the rate of possible improvement.
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Table 3.4 Training loss on different type of cancer

Dataset Size Loss
BRCA 1102 2.9e-03

LU 1015 3.6e-03
KIRC 534 7.4e-03
HNSC 521 8.5e-03
THCA 513 7.2e-03
PRAD 498 9.7e-03

3.5 Summary

In this chapter the process that brought us to choose the autoencoder model, that is going to
be used for gene module extraction, is introduced. The functional parameters were explained
with respect to the architecture and training process. Multiple different options are possible
and the reason for each choice is given relative to the problem at hand.

The training pipeline focuses mainly on two parameters: the activation function and the
number of layers used. A trade-off between performance and the training time is done to
enable for quick prototyping. The final model with is a four layered fully connected network.
The activation function used is the TanH (non-linear) which significantly outperformed the
ReLU (linear) function.

To further validate the extracted features of the autoencoder their performance in a
classification scenario is compared against features obtained by two well-known methods:
PCA and k-PCA. A Support Vector Classifier is trained with the data of reduced dimension
obtained by the three methods. Results were on par of between all the methods and as
expected from previous literature. At the end of this two stages there is a validation regarding
the capability of our training model from the data standpoint. Biological considerations will
be drawn further into the thesis work.

Later in this chapter it is shown, using different types of cancer, how the error changes
with varying sample sizes. This was done to provide some insights into to which degree of
possible improvement on the loss it’s possible to obtain by having more input data.





CHAPTER 4

GENE MODULE

In this chapter the readers are presented to the concept of gene module and how the modules
are extracted from the autoencoder model. Subsequently the extracted modules are visualized
and filtered to understand the quality of the grouping especially on the top K genes for
each modules. Also the appropriate desired number of genes for each modules is discussed.
The most frequent genes over all the modules (most active in the encoding) are researched
from a biological standpoint. The assumption would be that the high frequency genes in the
encoding are telling of the types of modules found.

4.1 Definition

Before going more in-depth in the thesis, it is important to explain what a gene module is.
In previous chapters the discussion was limited to "reduced" or "target" dimensions when
talking about the middle layer of the autoencoder. The aim of the autoencoder is to find a
reduced representation of the features found in the input data. Hence the input variables are
mapped onto latent variables that can explain the data. How good do these latent variables
explain the data depends on the quality of the encoding. This was explained in the previous
chapter. The interesting part, around which this thesis is centered, is to open the black box
and find out how this mapping works. In other words, which are the main contributors (genes)
to each target dimensions (modules).

The concept of gene module exploits the modularity recognized as a design principle
in biological systems. [24] The assumption (later verified) underlying the thesis work is
that genes present in the same modules, extracted from the neural network, participate
towards a common biological function. Genes interacts with each other in multiple ways and
participate in multiple regulatory networks. A gene regulatory network (see Fig. 4.1) is a
collection of molecular regulators that interact with each other and with other substances in
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Fig. 4.1 Picture of a gene regulatory network.

the cell to govern the gene expression levels of mRNA and proteins. Modules are groupings
of genes that belong to the same regulatory network. A gene can be present in multiple
networks/modules, it can collaborate in several biological functions at the same time. With
alternative splicing (see Appendix A) a gene can produce different proteins that contributes
to different outcomes in the cellular life-cycle (there are around 20.000 genes, but 100.000
proteins).

4.2 Extraction

In this section the reader is introduced to how modules are extracted from the neural network.
As explained in the chapter devoted to the Background the autoencoder is divided in two parts:
an encoder (recognition model) and a decoder (generative model). The decoder, it’s what
is of interest here, it maps the code to the original input space. The code is represented, as
explained in the Model chapter, by an array of size 400 with each dimension being calculated
as a non-linear function of the starting dimensions. Note each dimensions in the starting
feature space correspond to a gene, with the value being its expression level at a specific
moment in time.
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The network weights contain a representation of how genes interact with each other,
combining into forming the reduced dimensions. The reduced dimensions/latent variables
are hence constructed from the original variables, but how is it possible to understand the
genes that contribute the most to each of them. To achieve this the focus is shifted to the
decoder part of the network, which represent the inverse function of the operation performed
by the encoder. To pass from the original dimensions to the reduced ones it’s necessary to
go through the encoder which represents the function f . Instead to go from the reduced
dimensions back to the original dimensions, one has to use the decoder which represents the
function f−1. In fact the objective of the training process is to make the network approximate
f ◦ f−1 = I.

To assess the contribution of each gene (original dimension) to the latent variables
(grouping) one-hot vectors are used as inputs of the decoder. One-hot vectors are vectors
where all the elements, minus one, are equal to zero:

λei = λ



0
...

1i
...
0


, λ ∈ R.

These vectors can be imagined as activating only a specific dimension and not the others.
The vector ei "queries" for the genes that contribute to the reduced dimension. Therefore by
reading the output of the decoder we can gather quantitative data on how much each genes
affects the said dimension. For example, to gather the contribution of the genes (original
dimensions) to the first dimension/group, the one-hot vector:

λe1 = λ

 1
...

0n

 , with the previously described model we would have n = 400

will be used as an input for decoder ( f−1). The most "expressed" genes in the newly generated
output vector would be the one with more influence over the encoding result. This operation
is done for every module, obtaining:

ri = f−1(λei), ∀i ∈ [1,n]
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The dimensions of each vector ri are ranked in decreasing order according to their values.
The topmost dimensions of each ranking are then taken to create the final gene modules (see
the Module size part in the next section for more informations).

Graphical representation of one-hot ranking with the decoder

Given the multiple non-linear operations applied by the autoencoder at each layer and
to have a clearer numerical picture of the method (a sort of sanity-check for the method), it
was tested whether the ranking is univocal between different high input values of the one-hot
vector (values of λ ). By "high input values" is meant that λ will take on smaller multiples of
1 (being that the largest value).

There are two motives for why 1 is used as the highest value possible, both connected to
each other:

1. the vertical asymptotes for the activation function of each neuron (TanH) are ±1;

2. the input values for each neuron are all positive, ranging [0,1] (the data was normal-
ized, optimizing for faster and more stable convergence properties). It would not make
much sense to use values of λ greater than the highest value ever encountered during
training. The network would not reliably respond to such input values. This can be
sees as a sort of extrapolation-interpolation conundrum.
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The values of λ used in the test ranged between 0.6 and 1. The experiments showed that
the ranking of the top influencing genes to each modules tends to stabilize with high values of
λ tried. This means that intersection between each subsequent ranking grows, approaching
100% with the highest λ = 1. The last ranking, associated with the highest λ , is used as the
final one from the use in the next steps.

As written, each generated vector ranks the contribution of every gene to each dimen-
sion/module. For enrichment analysis, though, it’s not useful to use all the ranked genes. All
the genes will be present and the enrichment analysis can not find an over-representation of
some gene compared to another. It’s necessary to limit the size of each gene sets, cutting the
size at some specific rank e.g. the enrichment set has to be limited to the first K genes per
module, for some value of K ≤ number of genes ≃ 20.000.

How to decide at which point to cut the ranking to produce the modules? Is there any
options conducive to the next step in the experiment pipeline? Can we yet say anything
qualitative about the grouping obtained in this step? Are the most frequent genes in all the
modules related with each other or some specific activity (i.e. cancer in general or the type
of cancer used during the training of the autoencoder)? These and other questions will be
answered in the next section by visualizing and and studying the properties of the modules.

4.3 Data Exploration

In this section the reader can find an overview of the properties of the extracted modules. For
brevity’s sake only the case in which breast cancer data was used as starting data is taken
into account. Similar consideration can nonetheless be made for other types of cancer. This
section is divided in three parts. The first part will discuss about the idea of module size and
how it was chosen. In the second part properties about the genes contained in the modules
are explored especially for what regards the intersection between them. Finally the most
frequent genes overall in the whole encoding are studied more in depth to find if there’s any
immediate linkage between them and cancer.

4.3.1 Module size

After having obtained the ranking of contributing genes for each modules one should decide
the functional number of genes to be selected amongst the top one to be used on successive
experiments. There are two possible ways of doing it: ex ante and ex post. The latter
is a verification done through biological experimentations. This means that after having
chosen a particular K for the cut we study the best performing modules and retroactively
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tweak the value. It’s the usual type of verification that is done in classical machine learning
models, where a metric is optimized to indicate the update direction. This qualitative type of
verification is unfeasible both for the manual intensive work done by experts and because it
would void the exploratory type of analysis this method is geared towards.

The method presented in the thesis is to be intended as a tool. The reader could
think of it as a clustering technique with two parameters: number of clusters
(reduced dimensions) and cluster size (top gene per modules).

There are nonetheless several possible ways to choose the value for K. One of them is
using expert knowledge, by weighing in the degree of exploration: the bigger the size of
the modules the larger is the number of related genes to study. On this front inspired by other
works and after having asked a biologist for an expert opinion it was decided to settle on 50
genes per module. Here 50 is chosen as a middle-ground between being too restrictive with
the number of modules to enrich and taking too many of them. Using less gene would give
us less surrounding genes to target for biological analysis.

Another method to choose an appropriate K, could use make some statistical consideration
regarding the differential between the expression value related to each gene in the decoded
vector. It’s hence possible to use the standard deviation relative to the distribution of the
rankings’ values. In this case we can stop the module to the gene with a ranking in which the
difference between successive value is greater than 2σ of the positively contributing genes.
The median of the stopping index for all the 400 modules in this case is 59. (close to the
expert chosen value)

4.3.2 Properties

The following part will be about the properties of the resulted modules. For comparison
results include also the case for target module size 100. This double analysis is done also
to consider how the properties evolve with increasing module size. It’s interesting to see
whether the modules share a large number of genes because it would be an indication that
the method cannot separate gene contribution (what we are going to test from a biological
standpoint with enrichment analysis). Keeping the comparison to cluster method, it’s clear
that in most cases, a method which returns cluster with high overlaps between all the modules
is not a good one (very often overlaps are not even permitted, being the membership a
non-fuzzy property). Following an overview regarding both cases of K :

• K = 50 With this cut value, across all the modules there are 9673 unique genes
present. Remember that there are about 20.000 overall in the dataset, that would
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mean that ∼ 50% of the genes are present in the final modules. Still, this does not
give any indication about how many shared genes are present in each modules. The
maximum percentage of genes in common between any two given modules is: 8%.
The intersection is small even as an absolute value: at maximum over a module of 50
genes only 4 will be found in a different one.

• K = 100 In this case there are 17367 unique genes present. This means that almost all
the genes are present in the final representation. This could indicate a dispersion in the
module specificity (capability of targeting a specific function). At maximum, this time,
the modules have 5% genes in common.

From this preliminary analysis the results are comforting in the capability of the network
to achieve a good separation between module (good cluster distinction). This is desirable; an
high intersection/overlap would mean that the module, if related to a function, would belong
to similar pathways or to the same one. In the next section the genes are looked for biological
significance.

Most frequent genes

Another analysis it’s possible to perform at this stage is to look at the most frequent genes
present in the encoding between all the modules. In this last part of the section the distribution
of genes in between the modules is investigated.

For the case in which K is equal to 50 the graph is plotted and presented in Fig. 4.2a and
when it’s equal 100 the result is in Fig 4.2b. The X axis here indicates the number of times
a gene is present and the Y axis how many genes repeat themselves that many times. This
visual representation of the data can show that that the majority of genes are never present
more than 2 times between all the modules. A more detailed (readable) description of the
same data is given in Table 4.1 (module size is 50) and Table 4.2 (module size 100). In the
former case 4 genes are present 9 times (maximum) while in the latter there are fewer genes
that are very frequent with one present 11 times and only another one 10 times. Now an in
depth look to them; an evaluation to see if the most frequent genes are linked to the data the
methods was trained with (breast cancer and cancer more broadly).

A list of the most frequent genes present when the module size is 50:

• PDE4DIP was recently proposed as an highly relevant gene in breast cancer [25], it’s
also amongst the top 50 genes differentially expressed in invasive stroma compared to
in situ stroma. [26]
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(a) Most frequent genes over the top 50 (b) Most frequent genes over the top 100

• MCTP1 possibly cancer related, it seems to be regulated in cell-lines which are drug
resistant. [27] With expert knowledge (biologist) one could possibly narrow the specific
interaction.

• SNX10 is expressed in all cancer tissue in the TCGA dataset. The gene encodes a
member of the sorting nexin family and plays a role in the secretion of MMP9 [28]
which drives the progression of cancer. [29]

• ATE1 encodes an arginyltransferase, an enzyme that is involved in posttranslational
conjugation of arginine to N-terminal aspartate or glutamate residues. The gene is
expressed in all TGGA cancer tissues and seems to act as a tumour suppressor [30]
affecting DNA mutagenesis by regulating stress response [31]

Most frequent genes present when the module size is 100 (Note that ATE1 is the most
frequent also with this choice of K):

• CTNNA1 encodes a member of the catenin family of proteins that play an important
role in cell adhesion process by connecting cadherins located on the plasma membrane
to the actin filaments inside the cell. Several studies found a link between this gene
and breast cancer. [32] [33] [34]

• ATE1, same consideration as the previous case. The repeated presence of this gene is
reaffirming the capability of the method. Independently of the cutoff chosen, the most
frequent gene, is cancer related.

The most frequent genes in all the modules are related to cancer and some strictly to
breast cancer. Previous cited works validate the preliminary analysis over the quality of the
grouping extracted from the raw breast cancer data. In the next chapter single modules are
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studied more in depth, trying to linked them to a specific function, with a statistical method
well used in the field of bioinformatics: enrichment analysis.

Table 4.1 Table form of the histogram relative to module size 50

Number of appearances 1 2 3 4 5 6 7 8 9
Number of genes 4048 2780 1665 733 293 95 46 9 4

Table 4.2 Table form of the histogram relative to module size 100

Number of appearances 1 2 3 4 5 6 7 8 9 10 11
Number of genes 5687 5297 3546 1707 727 267 90 31 13 1 1

4.4 Summary

This chapter introduced the concept of a gene module and in particular of gene regulatory
networks. The method used to extract the individual modules is explained. It consists in
using one-hot vectors as output to the decoder part of the network to obtained a measure of
the magnitude of contributions of each specific gene to the extracted feature (identified as
modules).

Furthermore the question of choosing an appropriate module size is investigated with
one suggested and justified. The issue is equated to the one of choosing the number of
clusters that are targeted in a clustering algorithm e.g. K means, or an algorithm that let the
user choose the maximum cluster size. The properties of the modules are also studied, in
particular: the intersection between gene modules and the amount of unique genes overall.
As expected the maximum amount of shared genes between any two modules is never higher
than 8% (around 4). An high percentage of shared genes between modules would have
indicate a poor ability of the method to separate modules and modules’ functionality.

Finally the genes which are more present overall in the encoding are studied individually.
It was found that all of the top genes by frequency were also present in previous cancer study
literature. Some of the genes in particular are present in papers discussing directly breast
cancer, which represents the training data for the autoencoder. These results are promising
as validation of the method so far, but in the next chapter this bird’s-eye view is put aside
and the singular modules are studied for their ability to represent/target a specific, hopefully
cancer-related, functionality.





CHAPTER 5

ENRICHMENT ANALYSIS

In this chapter the modules extracted by the thesis’ method are individually validated for their
capability of representing a specific functionality. It’s worth reviewing all the steps taken
so far to check for the effectiveness of the method. Firstly the autoencoder was trained, by
minimizing a cost function, to reduce the starting high-dimensional space. The reduction is
tested by using the obtained dimensions in a cancer classification scenario, achieving similar
results to other well-known methods. Next the model is retrained using only cancer data and
a module is extracted from each dimension. The extracted modules are studied both visually
and statistically, verifying that the genes are well separated: only a small number of genes
are shared between any two given groups. Finally a preliminary analysis from a biological
perspective was undertook, to check the function of the genes which are most frequent over
all the encoding. The most frequent genes were linked to cancer or breast cancer activity
by cited published works. These steps were necessary to guide the experiments, because if
any of those would have yield poor results it would have been a sign that something was not
correct in the initial assumptions.

The steps the reader is presented in this chapter regard the biological analysis of the
modules, and can be divided in two: the first, test for statistical over-representation of a
class of genes in the modules. The gene sets that are used for this test are already known for
contributing to a specific activity. This part can be automated with software tools that query
multiple well known genomic databases and perform what’s called enrichment analysis.
The second step consist in a manual verification of the enrichment results to see if the
terms obtained from the enrichment are connected between each others and are related
to some specific function. If there are terms (with high enrichment score) connected to
cancer it would be a strong indication that the other genes in the group contribute to the
same function, thus answering the thesis’ research question. That was the original objective:
providing an additional list of genes which are participating to some specific activity. The
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other genes in the group then would ideally be subject to exploratory analysis (strictly from a
biological/experimental standpoint) targeted for the discovery of novel gene interactions.

5.1 Overview

This section will introduce the concept of enrichment analysis and will then describe more in
the depth the tool used in this thesis: Enrichr. Results from the enrichment and the biological
analysis of each cluster are presented in the next section Evaluation.

The completion of the Human Genome Project resulted in an enormous amount of genetic
information to be further studied by researchers. The problem of how to interpret and analyze
this incredible amount of data represent a significant challenge for the research community.
In order to seek out genes associated with diseases, researchers utilized DNA microarrays,
which measure the amount of gene expression in different cells. Researchers would perform
these microarrays on thousands of different genes, and compare the results of two different
cell categories, e.g. normal cells versus cancerous cells. They needed a way to compare
groups of genes by leveraging a previous knowledge base and to do this in a systematic way:
this is done by a method called enrichment.

But what is enrichment? (Gene) Set enrichment analysis (GSEA) (or functional enrich-
ment analysis) is a method used to identify classes of genes that are over-represented in a
large set of genes. The analysis uses statistical methods to identify significantly enriched
groups of genes. Researchers performing next-generation sequencing experiments that return
sets of genes (e.g. genes that are differentially expressed under particular conditions) often
want to retrieve a functional profile of that gene group, to understand better the underlying
biological processes. This can be done by comparing the input gene set, that we want to
enrich, to each of the classes (terms, such as a pathway name or a transcription factor that
regulates the genes) in the gene library of reference. GSEA uses a priori gene sets that have
been grouped together by their involvement in the same biological pathway, or by proximal
location on a chromosome (human or otherwise). A statistical test can then be performed for
each class to see if it is present significantly in the input genes from the experiments.

There are multiple openly accessible tools on-line to perform this analysis. In the
following section the focus will shift on the tool that is used in the thesis, Enrichr, which
provided a practical API that makes possible to automatically perform several enrichments at
a time.
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5.1.1 Enrichr

Enrichr [6] [35], our tool of choice, is a web-based application that includes several gene
set libraries, multiple ways to rank enriched terms, and various visualization approaches
to display results. The main indicators from its result that are used in this thesis are the
resulting pairs of Term and P-value. For each gene set in the knowledge bases there’s a
Term/annotation that indicates to which activity the genes in the set are involved in. The
associated P-value is used in order to quantify the statistical significance of the term. That
is the gene in our groups are linked to the one in the knowledge base, if the associated
term has low P-value. The P-value is computed using a standard statistical method: the
hyper-geometric test (Fisher’s exact test [36]), a test that is implemented in most gene list
enrichment analyses programs. This is a binomial proportion test that assumes a binomial
distribution and independence for probability of any gene belonging to any set.

In this work gene enrichment of the extracted modules is performed against four pub-
lic gene libraries named: ’GO Molecular Function 2015’, ’GO Cellular Component
2015’, ’GO Biological Process 2015’ and ’KEGG 2016’ (Kyoto Encyclopedia of Genes
and Genomes). GO stands for ’Gene Ontology’ and contains gene sets created from the
three gene ontology trees [37]. The Gene Ontology Consortium, the group that maintains
the GO library, uses graphs as a structure for related terms, but they can be seen as a tree
since all the terms in a domain can trace their parentage to the root term. To create the
relative gene set libraries, the Enrichr team “cut” the tree at either the third or fourth level
and created a gene set from the terms and their associated genes downstream of the cut. The
reasoning behind this was avoiding the presence of very high level functions. KEGG instead
is a collection of pathways under the then ongoing Japanese Human Genome Program. The
pathways associated gene set libraries, in Enrichr were created from each of the databases by
converting members of each pathway to a list of human genes.

Example

In Table 5.1 the readers can find an example of what is intended by term-value pair from the
Enrichr output. The terms are ranked by the order of significance (P-value) and have not only
their full name description, but also the reference code (on Gene Ontology in this case).

5.2 Evaluation

In the following section, results of the enrichment of modules obtained from two different
models are evaluated. The first model that is presented here was trained strictly with breast
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Table 5.1 Example of an Enrichr term-value pair

Term P-value
vitamin transport (GO:0051180) 5.13154851693e-05
folic acid transport (GO:0015884) 0.000169869167294
modified amino acid transport (GO:0072337) 0.00124782046916
neurotrophin TRK receptor signaling pathway (GO:0048011) 0.000595734193651
neurotrophin signaling pathway (GO:0038179) 0.00063607205649

cancer (BRCA, Breast Invasive Carcinoma) data; while the second model was trained from
lung cancer (LUSC, Lung Adenocarcinoma, and LUAD, Lung Squamous Cell Carcinoma)
data. What was found in both cases was that:

the majority of modules had statistically significant P-values, showing that the
method successfully managed to cluster genes for common functions.

As written in the previous section, small P-values indicate that the groups can be linked
to the relative gene set from the known databases with high probability. Hence part of the
original research question is verified. Now the focus is shifted on the biological meaning
of each cluster. What is meant by it is: after having found that the modules are able
to meaningfully cluster genes, the question is, are these modules enriched for a function
associated to the original data used for training? For example, are the modules obtained from
the first model enriched with terms that are related to breast cancer. And for how many of
the modules this holds true? This process entails manually checking each module’s enriched
terms and verifying: what the terms mean and if the terms are related to each other. The
latter phenomenon would further help in the validation of the quality of the modules since it
would mean that multiple gene sets, known for the participation into a common activity, are
represented at the same time. To render this manual verification possible it was necessary to
have a way of filtering the enrichment results. The modules where filtered in the P-value of
their most meaningful term (≤ e−05). This reliably resulted in less than ∼ 40 modules per
each of the two model to be studied.

The rest of this section is divided in an overview of the two cancer cases with some
statistics about the number of significant modules and a look over some specific modules. In
both cases, thanks to the biologist of our laboratory, some samples of modules’ enrichment
are tagged with a reference to a published article that shows a proven link from the module’s
terms to cancer. While mostly all of the top 5 terms in each modules are related to each
other not all are cancer related (or related to the specific cancer type). For brevity’s sake the
selection of modules presented here in the thesis is limited. Only 3 modules are focused on
per each paragraph. This is solely to give to the reader an idea of what the important terms
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were and the references to support their validity. In Appendix B the results for the modules
that are not included here are left for the reader to view.

Important to note For the modules manually verified the explanation of their relevance
to cancer was based on a conservative estimate. Meaning, any association was tried not to be
made if possible, because this way the connection is as strong as possible.

5.2.1 Breast Cancer

In this part the modules extracted from the model trained on breast cancer data are going to
be discussed. In the process 400 modules were enriched "against" the 4 databases mentioned
in the previous section. This results in exactly 1600 tables of enrichment results. For the
manual verification it was decided to focus on modules with highest enriched term having a
P-value under a certain cutoff. This was done to render the manual work manageable and
to include also results relative to another cancer type. The cutoff was chosen to be e−04
because it reliably (across different runs) gave us a smaller list of around 40 modules to go
through.

Of all the 400 modules 372 had the most enriched term’s value under e−04. The number
of modules with P-value smaller than the cutoff (e−05) are 35. Out of all the 35 modules:
19 are cancer related with 25% of them strictly breast cancer related.

Breast Cancer related

Following an overview of three modules that were found to be related to breast cancer.

Table 5.2 Module #13 enrichment, against GO Biological

Term P-value
histone H3-K4 methylation (GO:0051568) 3.2528722798e-05
histone lysine methylation (GO:0034968) 1.32739164569e-05
histone methylation (GO:0016571) 3.49558385378e-05
protein alkylation (GO:0008213) 0.000118038410346
protein methylation (GO:0006479) 0.000118038410346

The terms of Table 5.2 are all related to each other and in particular the role of histone
H3-H4 acetylation dynamics was found to help defining breast cancer subtypes [38].
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Table 5.3 Module #228 enrichment, against GO Biological

Term P-value
single organism cell adhesion (GO:0098602) 4.38763554598e-05
wound healing, spreading of cells (GO:0044319) 0.00062991870488
negative regulation of smooth muscle cell migration (GO:0014912) 0.000397852306904
single organismal cell-cell adhesion (GO:0016337) 0.000295567877423
regulation of cell-substrate adhesion (GO:0010810) 0.000522076580859

For module 228 (Table 5.3) many enriched terms mention cell adhesion. Cell-adhesion is
an important phenomenon in cancer because during its progression, cells lose their original
tissue contacts and ultimately form new tumors. Tumor cells inevitably experience alterations
in cell adhesion. Multiple sources discussed this phenomena particularly in relation to breast
cancer [39].

Table 5.4 Module #147 enrichment, against GO Biological

Term P-value
regulation of leukocyte activation (GO:0002694) 4.92711408497e-05
regulation of cell activation (GO:0050865) 7.85085852027e-05
positive regulation of leukocyte mediated immunity (GO:0002705) 4.30172751565e-05
hypothalamus development (GO:0021854) 0.000469437940862
regulation of lymphocyte activation (GO:0051249) 0.000208137182627

In reference to the terms of module 147 (Table 5.4) leukocytes related dynamics are
present in the top 3 terms. Leukocytes are cells that contribute to immune response, here in
particular breast cancer [40].

Cancer related

The following modules are connected to cancer more in general.

Table 5.5 Module #115 enrichment, against GO Biological

Term P-value
negative regulation of response to DNA damage [. . . ] (GO:2001021) 3.60646862779e-06
negative regulation of DNA repair (GO:0045738) 0.000169869167294
regulation of response to DNA damage stimulus (GO:2001020) 0.000260008410174
negative regulation of intrinsic apoptotic [. . . ] (GO:1902230) 0.00177125637478
regulation of intrinsic apoptotic [. . . ] (GO:1902229) 0.00289597063475
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The reader can see how all the top terms in the enrichment result of module 115 (Table
5.5) are all related to DNA damage and apoptosis. Apoptosis is the process of cell death, an
insufficient amount of it results in uncontrolled cell proliferation, such as cancer. (here an
article linking the terms and cancer [41])

Table 5.6 Module #358 enrichment, against GO Biological

Term P-value
negative regulation of cysteine-type endopeptidase [. . . ] (GO:0043154) 2.65058180031e-05
negative regulation of cysteine-type endopeptidase [. . . ] (GO:2000117) 2.96812852382e-05
negative regulation of signal transduction by p53 [. . . ] (GO:1901797) 0.00177125637478
negative regulation of apoptotic signaling pathway (GO:2001234) 0.00121829704709
regulation of cysteine-type endopeptidase activity [. . . ] (GO:0043281) 0.00119441970837

In module 358, clear links were found between the role of P53 and apoptosis [42] (Table
5.6).

Table 5.7 Module #370 enrichment, against GO Biological

Term P-value
leukocyte mediated cytotoxicity (GO:0001909) 3.67068918761e-05
negative regulation of smooth muscle contraction (GO:0045986) 0.00054680280059
cell killing (GO:0001906) 0.000169094883171
natural killer cell mediated cytotoxicity (GO:0042267) 0.00062991870488
natural killer cell mediated immunity (GO:0002228) 0.00062991870488

The terms in module 370 (Table 5.7) were found to strongly relate to cancer [43].

5.2.2 Lung Cancer

The same treatment for breast cancer is done here for lung cancer. Following there are
included the results relative to an autoencoder trained on lung cancer data: 389 modules had
the most enriched term’s value under e−04, and 38 with P-value smaller than e−05. Out of
all the 38 modules: 20 are cancer related with 60% of them strictly lung cancer related.

Lung Cancer related

Here an overview of a sample three modules that were found to be related to lung cancer.
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Table 5.8 Module #77 enrichment, against GO Biological

Term P-value
purine deoxyribonucleotide metabolic process (GO:0009151) 8.04663174679e-06
2’-deoxyribonucleotide metabolic process (GO:0009394) 6.29042976962e-05
deoxyribose phosphate metabolic process (GO:0019692) 7.60844583344e-05
nucleoside diphosphate biosynthetic process (GO:0009133) 0.000272131942618
deoxyribonucleotide metabolic process (GO:0009262) 9.90436680677e-05

For module 77, nucleic acid metabolism is present in all the most important terms (see
Table 5.8). Nucleic acid metabolism influences the induction of lung adenoma [44].

Table 5.9 Module #92 enrichment, against GO Biological

Term P-value
mitochondrial fission (GO:0000266) 1.62655776435e-05
regulation of mitochondrial fission (GO:0090140) 0.000397852306904
positive regulation of mitochondrial fission (GO:0090141) 0.000218054077011
regulation of mitochondrion organization (GO:0010821) 0.000100907596367
mitochondrial fragmentation involved in [. . . ] (GO:0043653) 0.000218054077011

All the enriched terms for module 92 (Table 5.9) references mitochondrial fission which
is connected to lung cancer progression [45].

Table 5.10 Module #232 enrichment, against GO Biological

Term P-value
negative regulation of intracellular steroid [. . . ] (GO:0033144) 6.92895518836e-05
negative regulation of circadian rhythm (GO:0042754) 0.000469437940862
regulation of glucocorticoid secretion (GO:2000849) 0.000272131942618
entrainment of circadian clock by photoperiod (GO:0043153) 0.000913492369971
protein-chromophore linkage (GO:0018298) 0.000469437940862

In reference to module 232 in Table 5.10, links between circadian clock, glucocorticoid
secretion and pulmonary inflammation was recently found [46].

Cancer related

The following 3 modules are connected to cancer more in general, not strictly lung cancer.
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Table 5.11 Module #233 enrichment, against GO Biological

Term P-value
regulation of transcription from RNA [. . . ] (GO:0043618) 3.26900359274e-06
protein hydroxylation (GO:0018126) 8.04663174679e-06
regulation of DNA-templated transcription [. . . ] (GO:0043620) 5.21939846522e-06
regulation of transcription from RNA [. . . ] hypoxia (GO:0061418) 5.13154851693e-05
4-hydroxyproline metabolic process (GO:0019471) 0.000469437940862

Hypoxia is a key regulatory factor in tumour growth [47] (Module 233, Table 5.11).

Table 5.12 Module #308 enrichment, against GO Biological

Term P-value
positive regulation of cell-matrix adhesion (GO:0001954) 2.66485589452e-06
regulation of cell-matrix adhesion (GO:0001952) 4.30172751565e-05
positive regulation of cell-substrate adhesion (GO:0010811) 8.56590675595e-05
regulation of gene expression by genetic imprinting (GO:0006349) 0.00101933263419
positive regulation of focal adhesion assembly (GO:0051894) 0.000913492369971

A similar module to 308 was found in the breast cancer case. Cell-matrix adhesion is a
very important factor in cancer progression [48]. (Table 5.12)

Table 5.13 Module #331 enrichment, against GO Molecular

Term P-value
intramolecular oxidoreductase activity [. . . ] (GO:0016864) 2.18955063625e-05
protein disulfide isomerase activity (GO:0003756) 2.18955063625e-05
oxidoreductase activity, acting on a sulfur group [. . . ] (GO:0016667) 0.000249794059724
protein disulfide oxidoreductase activity (GO:0015035) 0.00177125637478
intramolecular oxidoreductase activity (GO:0016860) 0.000351965055354

In reference to Table 5.13 of module 331, all the terms can be found to be related to
cancerous activity [49].

5.3 Summary

In this chapter the concept of enrichment analysis is presented along with an overview of
Enrichr, the enrichment tool used. The evaluation methodology used on the enrichment of
the extracted modules is explained for each cancer type.
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After the enrichment tool validated the capability of the model to group useful gene sets,
the focus is shifted in interpreting the terms that were associated with the modules. A subset
of the most enriched modules was studied from a biological perspective: that is, verifying
that the significant terms for each modules are related to the type of data used to train the
network. What was found was that a significant percentage of the most enriched modules are
related to cancer and some directly linked to the specific cancer used in the training. For each
case three examples are presented to the reader with a published article validating the claims.
The rest of the modules that weren’t found to be related to cancer still had the most enriched
terms all related to each other. This indicates that the method can function more generally
because it also identifies normal cell activities that of course are still present in tumor cells.



CHAPTER 6

EVALUATION

The first section of this chapter regards the stability of the method for gene clustering used in
the thesis. By stability it is meant the reoccurence of modules which are enriched by the same
functions across multiple versions of the model. A certain degree of repeatability would be
desirable for the use of the method as a research tool. The problem is discussed with some
consideration on its effects and possible solutions.

Furthermore the final section of the chapter will present the reader to similar approaches
from the literature to the same problem of gene clustering. Various methods that use
autoencoders are analyzed and summarized to give an overview of the differences and
common points between the works.

6.1 Stability

This section is devoted to some consideration regarding the stability of method. All the models
trained during our experiments yielded modules that were significant, but considerations have
to be done on the consistency of the results across different runs (models trained) on the same
data. The results of two single run on breast cancer data didn’t return meaningful functional
overlap over the most significant modules. This means that, at least, in the first ∼ 40 modules
obtained from two different models it wasn’t possible to find the same enriched function.
This it’s not an indication on the stability per se, but more on the not-immediate possibility
of recognizing stability. Anyway the method seems to be not as stable as desired, following
some considerations.

The main issue with stability is inherent with the small number of data that is available.
The model training process has many variables that depends on random initialization. For ex-
ample, the samples are subdivided randomly in two sets: the training set, used for effectively
tweaking the weights of the network, and the validation set, used to check the progression
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of the training at each update. With a dataset of limited size, as the one used, the impact on
the training results can be significant due to the high intrinsic variance of the training set
(it can happen by excluding important samples for certain activities). Another parameter
affected by random initialization is the set of weights of the neural network, hundreds of
thousands, which are sampled randomly from a limited uniform distribution. Theses issues
are compounded in such an high dimensional space by the difficulties of dealing with saddle
points and multiple local minima [50].

The combination of the random initial conditions and the limited number of samples
results in fluctuations in the final groupings.

Without changing the model so far, these problems could be solved in two ways:

1. Increasing the number of samples: n → ∞ would stabilize the method. With an
higher number of samples the initial split of the data would not affect much the results,
reducing the variance of the splitted data [51]. This is because more samples containing
specific patterns would be available and the gradient wouldn’t fluctuate as much. While
this approach is certainly the best one, at the moment it is not foreseeable to obtain a
dataset of much bigger size.

2. Increasing the training sessions: t →∞. The alternative to having more samples would
be verifying that enrichment results converge across multiple trained models. This
approach presents other issues. For starter, the hardware used is a significant handicap
to the iteration speed of the training pipeline. The training of each individual model
requires multiple hours at a time and the enrichment analysis is also a slow process
(it queries for all the extracted modules, 4 on-line databases). The biggest bottleneck
though, is the manual validation of the data that let us link the terms in a module to
cancerous activities. Small differences between any two given modules would result in
different P-values and modules that were present under a certain cutoff of the P-value
could now not be considered. The manual comparison between two runs would require,
to be as thorough as possible, to check 4× (400×400) couples of results.

To conclude the only thing that can be stated is that the method finds meaningful groupings
with a certain level of significance (P-value) to which is possible associated a biological
activity. Following some attempts to achieve stability are explained.
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Fig. 6.1 Ordered variance for each of the 20000 genes in the data. Breast (left), Lung (right)

6.1.1 Possible solutions

Multiple attempts were undertook to stabilize the results of our method. While they are
intended for future works here some preliminary results are presented. The hope is that the
following assessments could serve as a basis for improvements.

The first idea is about additional preprocessing for the dataset. This entails diminishing
the dimensionality of the input data for the model via feature selection. For example, by
removing feature with low variance, which don’t affect much the reduced dimensions, it
would be possible to make the training process faster and minimize the risk of getting stuck
during it. The ordered variance of each of the 20000 features is plotted in Fig. 6.1 for both
dataset. It is possible to see that approximately a quarter of the features are the one that
accounts for the majority of the variance. Hence reducing the data in the beginning to the
features that have more variance could prove beneficial.

The second possibility would consists in inducing sparsity in the output of the middle
layer. By sparsity is meant that only one dimension is active at any single time. This would
have two effects: orthogonalize the extracted dimensions to minimize their interdependence,
thus increasing module separation; and possibly reducing the solution space, making the
results more stable. In theory the L0 penalty (“norm”) would have to be the added term to
the objective function, where the L0 (λ ∑

n
i=1 |oi|0) is the number of non-zero components of

the output vector. Optimization though in this case reduces to a combinatorial search and its
time complexity is very difficult to optimize. L1 norms (λ ∑

n
i=1 |oi|1) are the ones which are

usually used in its place; they function as proxies to L0 norms and they work by promoting
sparsity because of the shape of their feasible set of solutions.

The above ideas were implemented with some successes: they increased the inter-
modules overlap between different runs on the same dataset and they resulted in faster
convergence. Some preliminary enrichment results suggests high functional overlap not
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only between module of different runs, but also between the modules in a single run. While
these results are promising they require more experiments, and biological evaluations of the
enrichment results, which are left for future works.

6.2 Related works

Following there is an overview of related works from literature that used deep autoencoders
applied to the discover of relevant genes. All articles reaffirm that autoencoders have the
capability to successfully identify input combinations that affect the overall set of values. [4]
[52]. Across the different works, the commonalities and the differences with our approach
are summarized to give a better support for the theoretical concepts discussed in the thesis.

Here a list of the articles with a short summary:

1. ADAGE-Based Integration of Publicly Available Pseudomonas aeruginosa Gene
Expression Data with Denoising Autoencoders Illuminates Microbe-Host Inter-
actions [53] [54]

This article has a very similar overall process to the one presented in the thesis, but
it is applied on a different dataset. The main difference with our method is the way
they extract the membership of each gene to the clusters. Even though the method is
comparable, they make considerations on the weights between the layers instead than
directly measuring the output of the decoder.

The target dimensions for the middle layer are fewer: “A model with 50 nodes was
chosen to balance reconstruction error with the need to manually interpret the ADAGE
model, and our subsequent analyses demonstrated that networks of this size are capable
of adequately extracting major global transcriptional patterns”.

They expect a larger number of nodes to improve the results (like it is done in this
thesis 400 nodes), writing: “We demonstrated the biological relevance of a 50-node
ADAGE model, and we expect that increasing the node number will allow for further
separation of distinct processes with independent transcriptional signatures.”.

They also mention what we referred as stability without seemingly solving it.

2. Using neural networks for reducing the dimensions of single-cell RNA-Seq data
[55]

The model validation of this training resulted in an autoencoder with mostly the same
parameters as ours: same activation function, loss function, weight initialization,
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optimizer (mini-batch gradient descent). Also a similar number of training epochs for
the training were undertook (100 v. 200).

The main difference in this approach is in the number of hidden layers of their model
(2, while in the thesis we use 4) and the number of reduced dimensions (100, while in
the thesis we use 400).

Our choice of using more hidden layers is supported by their conclusion: “While the
results are encouraging, there are several directions for future work which we would
like to explore. These include testing more involved (deeper) architectures”.

Unlike our method they don’t justify the cutoffs used beside just stating: “top 10 most
highly weighted (hidden layer) nodes”, “nodes with a high (absolute value) weight”

3. Boosting Gene Expression Clustering with System-Wide Biological Information:
A Robust Autoencoder Approach [56]

This article is also similar conceptually to the thesis’ work, but uses yet another method
for extracting the clusters (it is based on network considerations).

Furthermore, the researchers don’t justify the number of target modules “[. . . ] we set
the number of clusters to be 100” (as the second paper). The results they provide are
not validated biologically by individually checking the enrichments terms, unlike in
our case.

4. A Deep Learning Approach For Cancer Detection And Relevant Gene Identifica-
tion. [22]

In this case the researchers used the same method for validating the autoencoder
parameters (comparison in a classification setting). The dataset used in this case is
limited to breast cancer and the preprocessing is different: they used over-sampling to
balance healthy and cancerous samples for the training (in our case we limit the data
to cancer samples).

Yet another difference is their method for extracting genes from the network. It’s much
more similar to the one used in the first article, but instead of finding gene modules
they find a collection of the most influencing genes over all the encoding.

5. Learning influential genes on cancer gene expression data with stacked denoising
autoencoders [57]

Very similar to the previous article. It uses the same number of target dimensions as
done in this thesis: “The number of features for the final representations was chosen to
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be 400 for comparison with other methods as the number of final features should not
be higher than the number of samples.”.

The enrichment results seem to be worse overall. This is probably because of some
parameters chosen for the model. The results are not validated by a specialist/biologist:
“we did not have the opportunity to validate the results with a thyroid cancer specialist”.

6. Learning structure in gene expression data using deep architectures, with an
application to gene clustering [58]

This is the most different article in this list. It limits the use of autoencoders as a
preprocessing step for another method. The modules extraction is different (based on
another work [59]) as the dataset used.

From the previous literature overview it can be gathered that there are multiple similarities
between their method and ours. These are not only in the parameters used in the autoencoder’s
architecture, but also in the use of classification for the preliminary testing of the reduced
features. All the methods at the end concluded with some type of enrichment analysis, but
most of them lacked in providing any biological evaluation of the enriched terms.

6.3 Summary

In this chapter some considerations regarding the method were made: in particular the issue
with the stability of the results was discussed along with the comparison of our approach to
similar works in the literature.

The first section is dedicated to a discussion on the stability. While the results of autoen-
coders trained on the same data across different runs all contain meaningful connected terms
in the majority of the modules; the functional terms do not reoccur between different models.
Some motivations were given to this phenomenon and their relation to the inherent difficulties
given by the problem’s dimensionality and the effects of the randomized initialization of the
network parameters. Possible solutions were also discussed and implemented to evaluate if
any improvement could be witnessed. The initial results are promising and could help the
development of future attempts to the stabilization.

The last section contains an overview of similar methods/articles in the literature to
provide a better foundation to the overall presented process. A brief summary of each one
of the articles is attached to provide a quick resource for the differences and similarities
between the approaches. Similar network parameters (number of layer, activation functions,
. . . ) to the one found in this thesis are used over multiple works, validating the approach and
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the parameters selected in our model validation. The use of a large number of neurons, such
as 400, in the middle layer was also suggested by multiple articles in their conclusions and
future works’ suggestions.





CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

Some tools were produced as a way of making the presented method more accessible and
comprehensive. The tools are described in Appendix C.

In this thesis the problem of gene clustering with deep autoencoders has been addressed.
Gene clustering is the task of grouping multiple genes that collaborate in a shared biological
function, these genes form a so called ’gene module’. Autoencoders, a particular class of
neural network architectures used for dimensionality reduction, were leveraged to extract the
modules. The research questions that were posed at the beginning of this thesis were: Can a
deep autoencoder group gene that are involved in a common biological activity? And will
these activities be linked to the type of cancer used as training data of the model? To answer
these questions we have proposed a method for extracting gene modules from each of the
reduced dimensions of the middle layer of the autoencoder. The dataset used is composed by
healthy and cancer samples coming from RNA-seq experiments of different types of cancer.
The data is high dimensional, containing ∼ 20000 features, each representing the expression
level of a specific gene. The later verified assumption that was made initially was that deep
architectures are able to better match the complex interactions of human biology with respect
to simpler models. The whole pipeline of the experiments done in the thesis can be divided
in three parts, with each step functioning also as validation of the various design choices.

In the first part the autoencoder model is constructed by using all the data available to
find the optimal parameters. The model’s parameters are found by multiple experiments
that ended up in the choice of the ones belonging to the autoencoder that was able to better
minimize the cost function without loosing the ability to generalize on unseen samples.
The resulting architecture was validated by confronting the performance of the reduced
features to the one belonging to other well known methods in a classification scenario. The
autoencoder’s features performed on the same level (> 95% accuracy) as the one of the other



76 Conclusions and future works

methods, reaching the expected performance targets from previous literature results. These
results prove the capability of the model to preserve information, at least the one relative to
whether the sample is cancerous or not.

After the viability of autoencoder extracted features was verified, the model was retrained
using only cancerous samples. This was done to better capture tumor activities, since that is
our primary goal. The gene modules are then extracted from the neural network. This was
done by using only the decoder part of the autoencoder. The decoder takes a vector from the
reduced space and returns one from the original space. By using one-hot vectors (ei, vectors
with only one non-zero element) we gathered a ranking of the most expressed genes in the
resulting output. The top 50 genes for each dimension were taken to form a module, ending
up with a total of 400 modules. Preliminary analysis over the most frequent genes in all
the modules was done, verifying that all of them are related to cancer. The analysis proved
beneficial in being a sort of sanity check for the modules’ significance.

In the final part, the quality of the genes in the modules was verified by using a method
called Enrichment Analysis. This method checks whether some set of genes known to
contribute to a specific function is over-represented in our modules. If there are more genes
from a specific set than one could normally expect in a random grouping, that set is said to be
’enriched’ for that specific function (term) with an associated significance level (given by its
P-value). Breast and lung cancer were the focus for this section; an autoencoder was trained
using each of the two different datasets and modules extracted from it. The majority of the
modules extracted from each of the two models had significant P-value (≤ e−04) answering
positively to our first research question about the autoencoder’s ability of grouping genes
into ’useful’ sets.

To answer the second research question regarding the biological interpretation of each
module, a step of manual verification is needed. This step entails manually checking for
relatedness of each module’s most enriched terms and a possible link to, if possible, cancer
activity via some published articles. To do this, the set of modules under examination was
filtered by the P-value of their most significant term (≤ e− 05) to reduce the number of
modules to be manually studied. Pretty much all of the resulting modules have the most
significant terms related to each other. Around half of the modules, in both the breast and
lung cancer case, contain cancer related terms, with a subset (25% for the breast cancer case
and 60% for the lung cancer one) strictly related to the type of cancer the autoencoder was
trained with. The other half of the modules contains terms which are more general, being
related to ’generic’ cell activities. These last two facts answers our second and final initially
posed question: the method for the extraction of cluster of genes from the autoencoder not
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only can group related genes, but also with a non-trivial subset of them related to the specific
type of cancer the data belonged to.

To conclude the thesis’ work we evaluated the method against other similar approaches
in the literature and we found several similarities. Many of our findings on the optimal
parameters were also present in other articles. The choice of a relatively ’large’ size for
the middle layer (400) was also mentioned across multiple articles as a possible future
development to increase the quality of the resulting gene sets. The issue of the stability of
results, across different autoencoder models trained on the same data, was also explained
in the previous chapter. Multiple possible solutions were proposed and implemented. The
stability of the results improved significantly, but other experiments are needed.

For the future it would be interesting to solve the stability of the method. Possible
improvements could be achieved with the use of transfer learning techniques to make up for
the limited number of samples. This would allow the method to be included as a mainstay in
biological research settings.
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APPENDIX A

BIOLOGY HANDBOOK

DNA

Deoxyribonucleic acid or DNA is a thread-like chain of nucleotides. DNA stores biological
information and more specifically it carries the genetic instructions used in the development,
functioning, growth and reproduction of all known living organisms and viruses. DNA and
ribonucleic acid (RNA) are nucleic acids; alongside proteins, lipids and complex carbohy-
drates (polysaccharides), they are one of the four major types of macromolecules that are
essential for all known forms of life. Most DNA molecules consist of two biopolymer strands
coiled around each other to form a double helix. The DNA backbone is resistant to cleavage
(bond splitting), and both strands of the double-stranded structure store the same biological
information. This information is replicated as and when the two strands separate. A large
part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not
serve as patterns for protein sequences, but they may have some other functions (such as
regulators, enhancers, etc. . . ). The two strands of DNA run in opposite directions to each
other and are thus antiparallel. Attached to each sugar is one of four types of nucleobases
(informally, bases). It is the sequence of these four nucleobases along the backbone that
encodes biological information.

RNA

Ribonucleic acid or RNA is a polymeric molecule (nucleic acid) essential in various biological
roles, such as: coding, decoding, regulation, and expression of genes. It can be of several
types. Many viruses encode their genetic information using an RNA genome. Some RNA
molecules play an active role within cells by catalysing biological reactions, controlling gene
expression, or sensing and communicating responses to cellular signals. One of these active
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Fig. A.1 Model of the differences between DNA and RNA molecules

processes is protein synthesis, a universal function where RNA molecules direct the assembly
of proteins on ribosomes. This process uses messenger RNA (mRNA) to convey genetic
information that directs the synthesis of proteins, transfer RNA (tRNA) molecules to deliver
amino acids to the ribosome, where ribosomal RNA (rRNA) then links amino acids together
to form proteins. The chemical structure of RNA is very similar to that of DNA, but differs
in three main ways: Unlike double-stranded DNA, RNA is a single-stranded molecule in
many of its biological roles and has a much shorter chain of nucleotides. However, RNA
can, by complementary base pairing, form intra-strand double helixes, as in tRNA. While
DNA contains deoxyribose, RNA contains ribose, which is more prone to hydrolysis. The
complementary base to adenine in DNA is thymine, whereas in RNA, it is uracil.

Nucleotide

A nucleotide is an organic molecule. It is the monomer comprising DNA or RNA biopolymer
molecules. Each nucleotide consists of a nitrogenous heterocyclic base (or nucleobase),
which can be either a double-ringed purine or a single-ringed pyrimidine; a five-carbon
pentose sugar (deoxyribose in DNA or ribose in RNA); and a phosphate group.
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Fig. A.2 Focus on the Nucleotide and Base pairs

Gene

A gene is a sequence in the DNA or RNA which codes for a molecule that has a function.
During gene expression, the DNA is first copied into RNA. The RNA can be directly
functional or be the intermediate template for a protein that performs a function. Genes make
up different DNA sequences called genotypes. Genotypes along with environmental and
developmental factors determine what the phenotypes will be. Most biological traits are under
the influence of polygenes (many different genes) as well as gene–environment interactions.
Some genetic traits are instantly visible, such as eye color or number of limbs, and some
are not, such as blood type, risk for specific diseases, or the thousands of basic biochemical
processes that constitute life. Genes can acquire mutations in their sequence, leading to
different variants, known as alleles (brown and blue eye colours), in the population. These
alleles encode slightly different versions of a protein, which cause different phenotypical
traits. Usage of the term "having a gene" (e.g., "good genes," "hair colour gene") typically
refers to containing a different allele of the same, shared gene. Genes evolve due to natural
selection or survival of the fittest of the alleles. The concept of a gene continues to be refined
as new phenomena are discovered. For example, regulatory regions of a gene can be far
removed from its coding regions, and coding regions can be split into several exons. Some
viruses store their genome in RNA instead of DNA and some gene products are functional
non-coding RNAs. Therefore, a broad, modern working definition of a gene is any discrete
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locus of heritable, genomic sequence which affect an organism’s traits by being expressed as
a functional product or by regulation of gene expression.

Genome

Fig. A.3 A visual overview of all the chromosomes

A genome sequence is the complete list of the nucleotides (A, C, G, and T for DNA
genomes) that make up all the chromosomes of an individual or a species. Within a species,
the vast majority of nucleotides are identical between individuals, but sequencing multiple
individuals is necessary to understand the genetic diversity. In terms of modern molecular
biology and genetics, a genome is the genetic material of an organism. It consists of DNA
(or RNA in RNA viruses). The genome includes both the genes (the coding regions) and the
noncoding DNA, as well as the genetic material of the mitochondria and chloroplasts.

mRNA

Messenger RNA (mRNA) is a large family of RNA molecules that convey genetic information
from DNA to the ribosome, where they specify the amino acid sequence of the protein
products of gene expression. Following transcription of primary transcript mRNA (known
as pre-mRNA) by RNA polymerase, processed, mature mRNA is translated into a polymer
of amino acids: a protein. As in DNA, mRNA genetic information is in the sequence of
nucleotides, which are arranged into codons consisting of three base pairs each. Each codon
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Fig. A.4 The gene expression process

encodes for a specific amino acid, except the stop codons, which terminate protein synthesis.
This process of translation of codons into amino acids requires two other types of RNA:
Transfer RNA (tRNA), that mediates recognition of the codon and provides the corresponding
amino acid, and ribosomal RNA (rRNA), that is the central component of the ribosome
protein production.

Exon/Intron

An exon is any part of a gene that will encode a part of the final mature RNA produced
by that gene after introns have been removed by RNA splicing. The term exon refers to both
the DNA sequence within a gene and to the corresponding sequence in RNA transcripts.
In RNA splicing, introns are removed and exons are covalently joined to one another as
part of generating the mature messenger RNA. Just as the entire set of genes for a species
constitutes the genome, the entire set of exons constitutes the exome. An intron is any
nucleotide sequence within a gene that is removed by RNA splicing during maturation of
the final RNA product. The term intron refers to both the DNA sequence within a gene
and the corresponding sequence in RNA transcripts. Introns are found in the genes of most
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organisms and many viruses, and can be located in a wide range of genes, including those
that generate proteins, ribosomal RNA (rRNA), and transfer RNA (tRNA). When proteins
are generated from intron-containing genes, RNA splicing takes place as part of the RNA
processing pathway that follows transcription and precedes translation.

Transcriptome

The transcriptome is the set of all RNA molecules in one cell or a population of cells. It is
sometimes used to refer to all RNAs, or just mRNA, depending on the particular experiment.
It differs from the exome in that it includes only those RNA molecules found in a specified
cell population, and usually includes the amount or concentration of each RNA molecule in
addition to the molecular identities.

Reverse Transcriptase

A reverse transcriptase (RT) is an enzyme used to generate complementary DNA from
an RNA template, a process termed reverse transcription. It is mainly associated with
retroviruses. However, non-retroviruses also use reverse transcriptase. RT inhibitors are
widely used as antiretroviral drugs. Reverse transcriptase activities are also associated
with the replication of chromosome ends (telomerase) and some mobile genetic elements
(retrotransposons).

cDNA

In genetics, complementary DNA (cDNA) is DNA synthesised from a single stranded RNA
(e.g., messenger RNA (mRNA) or microRNA) template in a reaction catalysed by the enzyme
reverse transcriptase. cDNA is often used to clone eukaryotic genes in prokaryotes. When
scientists want to express a specific protein in a cell that does not normally express that
protein, they will transfer the cDNA that codes for the protein to the recipient cell. cDNA
is also produced naturally by retroviruses (e.g. HIV-1) and then integrated into the host’s
genome, where it creates a provirus. The term cDNA is also used, in a bioinformatics context,
to refer to an mRNA transcript’s sequence, expressed as DNA bases (GCAT) rather than
RNA bases (GCAU).
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Contig

A contig (from contiguous) is a set of overlapping DNA segments that together represent
a consensus region of DNA. In bottom-up sequencing projects, a contig refers to overlapping
sequence data (reads); in top-down sequencing projects, contig refers to the overlapping
clones that form a physical map of the genome that is used to guide sequencing and assembly.
Contigs can thus refer both to overlapping DNA sequence and to overlapping physical
segments (fragments) contained in clones depending on the context.

Cancer

Cancer is a large family of diseases involving abnormal cell growth with the potential to
invade or spread to other parts of the body. They are in contrast to benign tumours, which do
not spread to other parts of the body. Possible signs and symptoms include a lump, abnormal
bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements.
While these symptoms may indicate cancer, they may have other causes. They form a subset
of neoplasms. A neoplasm or tumour is a group of cells that have undergone unregulated
growth and will often form a mass or lump, but may be distributed diffusely. All tumour cells
show the six hallmarks of cancer. These characteristics are required to produce a malignant
tumour. They include: Cell growth and division absent the proper signals Continuous growth
and division even given contrary signals Avoidance of programmed cell death Limitless
number of cell divisions Promoting blood vessel construction Invasion of tissue and formation
of metastases Over 100 types of cancers affect humans. In 2015, about 90.5 million people
had cancer. About 14.1 million new cases occur a year. It caused about 8.8 million deaths
(15.7% of deaths). The most common types of cancer in males are lung cancer, prostate
cancer, colorectal cancer and stomach cancer. In females, the most common types are
breast cancer, colorectal cancer, lung cancer and cervical cancer. If skin cancer other than
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melanoma were included in total new cancers each year, it would account for around 40%
of cases. In children, acute lymphoblastic leukaemia and brain tumours are most common
except in Africa where non-Hodgkin lymphoma occurs more often. In 2012, about 165,000
children under 15 years of age were diagnosed with cancer. The risk of cancer increases
significantly with age and many cancers occur more commonly in developed countries.
Rates are increasing as more people live to an old age and as lifestyle changes occur in the
developing world. The financial costs of cancer were estimated at $1.16 trillion USD per
year as of 2010.

Single Nucleotide Polymorphism

Fig. A.5 An example of C-A polymorphism

A single-nucleotide polymorphism (SNP), is a variation in a single nucleotide that occurs
at a specific position in the genome, where each variation is present to some appreciable
degree within a population. For example, at a specific base position in the human genome,
the G nucleotide may appear in most individuals, but in a minority, the position is occupied
by an T. This means that there is an SNP at this specific position, and the two possible
nucleotide variations are said to be alleles for this position. SNPs underlie differences
in our susceptibility to disease e.g. sickle-cell anemia, β -thalassemia and cystic fibrosis
result from SNPs.The severity of illness and the way our body responds to treatments
are also manifestations of genetic variations. For example, a single-base mutation in the
Apolipoprotein E gene is associated with a higher risk for Alzheimer’s disease.
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Alternative Splicing

Fig. A.6 How alternative splicing works

Alternative splicing is a regulated process during gene expression that results in a single
gene coding for multiple proteins. In this process, particular exons of a gene may be included
within or excluded from the final, processed mRNA produced from that gene. Consequently,
the proteins translated from alternatively spliced mRNAs will contain differences in their
amino acid sequence and, often, in their biological functions. Notably, alternative splicing
allows the human genome to direct the synthesis of many more proteins than would be
expected from its 20,000 protein-coding genes. Alternative splicing occurs as a normal
phenomenon in eukaryotes, where it greatly increases the biodiversity of proteins that can
be encoded by the genome. There are numerous modes of alternative splicing observed, of
which the most common is exon skipping. In this mode, a particular exon may be included
in mRNAs under some conditions or in particular tissues, and omitted from the mRNA in
others.





APPENDIX B

ENRICHMENT RESULTS

In this appendix, the remaining results from the manual verification of the extracted modules
are included. In the chapter devoted to the Enrichment Analysis only 6 modules are presented
for each cancer type. The rest of them also have interesting insights which are left here for
the reader.

Breast Cancer

Breast Cancer related

Table B.1 Module #100 enrichment, against GO Biological

Term P-value
epithelial tube branching involved in lung [. . . ] (GO:0060441) 1.62655776435e-05
regulation of Rac protein signal transduction (GO:0035020) 0.000469437940862
aerobic respiration (GO:0009060) 0.00137041296548
positive regulation of lipid catabolic process (GO:0050996) 0.00113078452929
acylglycerol catabolic process (GO:0046464) 0.00124782046916

Related article: "Rac signaling in breast cancer: a tale of GEFs and GAPs" [60].

Table B.2 Module #125 enrichment, against GO Biological

Term P-value
stem cell division (GO:0017145) 3.67068918761e-05
intracellular estrogen receptor signaling pathway (GO:0030520) 0.000913492369971
somatic stem cell division (GO:0048103) 0.000718757572453
positive regulation of acute inflammatory response (GO:0002675) 0.00191580216511
regulation of T cell differentiation (GO:0045580) 0.00183755032274



98 Enrichment Results

Related article: "Minireview: inflammation: an instigator of more aggressive estrogen
receptor (ER) positive breast cancers" [61].

Cancer related

Table B.3 Module #6 enrichment, against GO Cellular

Term P-value
proteasome accessory complex (GO:0022624) 9.75370366188e-06
proteasome regulatory particle (GO:0005838) 0.000397852306904
proteasome complex (GO:0000502) 0.000525323124367
cytoplasmic vesicle part (GO:0044433) 0.00207755248182
cytoplasmic vesicle membrane (GO:0030659) 0.00255261632643

Related article: "Proteasome inhibitors in cancer therapy" [62].

Table B.4 Module #21 enrichment, against GO Biological

Term P-value
small molecule catabolic process (GO:0044282) 4.57962365495e-05
nitric oxide biosynthetic process (GO:0006809) 0.00054680280059
negative regulation of interleukin-8 production (GO:0032717) 0.00054680280059
arginine metabolic process (GO:0006525) 0.00062991870488
arginine catabolic process (GO:0006527) 0.000169869167294

Related articles: "Regulation of interleukin-8 expression by nitric oxide in human pan-
creatic adenocarcinoma." [63] and "Targeting amino acid metabolism in cancer growth and
anti-tumor immune response" [64].

Table B.5 Module #28 enrichment, against GO Molecular

Term P-value
ATP binding (GO:0005524) 5.555057613e-05
transforming growth factor beta-activated [. . . ] (GO:0005024) 0.000813291421624
transmembrane receptor protein serine/threonine [. . . ] (GO:0004675) 0.000813291421624
transforming growth factor beta binding (GO:0050431) 0.000718757572453
transforming growth factor beta receptor binding (GO:0005160) 0.00137041296548

Related article: "Transforming growth factor-beta receptors in human cancer cell lines:
analysis of transcript, protein and proliferation." [65].
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Table B.6 Module #42 enrichment, against GO Molecular

Term P-value
ubiquitin thiolesterase activity (GO:0004221) 9.90436680677e-05
cysteine-type peptidase activity (GO:0008234) 0.00089369059915
collagen binding (GO:0005518) 0.00050118705903
thiolester hydrolase activity (GO:0016790) 0.000575802113062
ubiquitinyl hydrolase activity (GO:0036459) 0.00230383353688

Related article: "Targeting the ubiquitin–proteasome system for cancer therapy" [66].

Table B.7 Module #44 enrichment, against GO Biological

Term P-value
positive regulation of mitochondrial outer [. . . ] (GO:1901030) 8.33007195229e-05
regulation of mitochondrial outer membrane [. . . ] (GO:1901028) 0.00014657676169
positive regulation of mitochondrion organization (GO:0010822) 0.000550191771545
regulation of protein insertion into [. . . ] (GO:1900739) 0.00206576853123
positive regulation of protein insertion into [. . . ] (GO:1900740) 0.00206576853123

Related article: "The mitochondrial permeability transition pore and cancer: molecular
mechanisms involved in cell death" [67].

Table B.8 Module #100 enrichment, against GO Biological

Term P-value
epithelial tube branching involved in lung [. . . ] (GO:0060441) 1.62655776435e-05
regulation of Rac protein signal transduction (GO:0035020) 0.000469437940862
aerobic respiration (GO:0009060) 0.00137041296548
positive regulation of lipid catabolic process (GO:0050996) 0.00113078452929
acylglycerol catabolic process (GO:0046464) 0.00124782046916

Related article: "Rac signaling in breast cancer: a tale of GEFs and GAPs" [60].

Table B.9 Module #198 enrichment, against GO Molecular

Term P-value
Rac GTPase binding (GO:0048365) 5.69169031669e-05
inositol trisphosphate kinase activity (GO:0051766) 0.000169869167294
exonuclease activity (GO:0004527) 0.0008746486678
Rho GTPase binding (GO:0017048) 0.000629283942131
ATPase binding (GO:0051117) 0.00518076445826
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Related article: "Rac and Rho GTPases in cancer cell motility control" [68].

Table B.10 Module #231 enrichment, against GO Cellular

Term P-value
contractile fiber (GO:0043292) 9.90436680677e-05
focal adhesion (GO:0005925) 0.000235574451193
cell-substrate adherens junction (GO:0005924) 0.000257966040442
cell-substrate junction (GO:0030055) 0.000273802975808
adherens junction (GO:0005912) 0.000497256653527

Related article: "Collective cell migration in morphogenesis, regeneration and cancer"
[69].

Table B.11 Module #302 enrichment, against GO Biological

Term P-value
embryonic cranial skeleton morphogenesis (GO:0048701) 5.13154851693e-05
pathway-restricted SMAD protein phosphorylation (GO:0060389) 0.000469437940862
response to cholesterol (GO:0070723) 0.00113078452929
response to sterol (GO:0036314) 0.00149853462764
regulation of lipid transport (GO:0032368) 0.00117355122158

Related article: "Molecular pathways: sterols and receptor signaling in cancer" [70].

Lung Cancer

Lung Cancer related

Table B.12 Module #32 enrichment, against GO Biological

Term P-value
cGMP metabolic process (GO:0046068) 2.86757414113e-05
cAMP catabolic process (GO:0006198) 0.000718757572453
cyclic nucleotide catabolic process (GO:0009214) 0.000913492369971
cyclic nucleotide metabolic process (GO:0009187) 0.000411783643815
cAMP metabolic process (GO:0046058) 0.00345743152997

Related article: "Elevated nephrogenous cyclic AMP with normal serum parathyroid
hormone levels in patients with lung cancer" [71].
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Table B.13 Module #36 enrichment, against GO Biological

Term P-value
placenta blood vessel development (GO:0060674) 5.69169031669e-05
synaptonemal complex assembly (GO:0007130) 0.00101933263419
negative regulation of alcohol biosynthetic process (GO:1902931) 0.00062991870488
synaptonemal complex organization (GO:0070193) 0.00124782046916
negative regulation of steroid biosynthetic process (GO:0010894) 0.00124782046916

Related article: "Synaptonemal complex protein 3 is associated with lymphangiogenesis
in non-small cell lung cancer patients with lymph node metastasis" [72].

Table B.14 Module #37 enrichment, against GO Biological

Term P-value
positive regulation of sodium ion transport (GO:0010765) 6.29042976962e-05
positive regulation of sodium ion [. . . ] (GO:2000651) 0.000332074180163
positive regulation of sodium ion [. . . ] (GO:1902307) 0.00062991870488
regulation of sodium ion transport (GO:0002028) 0.00045507583593
nucleus localization (GO:0051647) 0.00124782046916

Related article: "The α1 subunit of the sodium pump could represent a novel target to
combat non-small cell lung cancers" [73].

Table B.15 Module #114 enrichment, against GO Biological

Term P-value
dolichol-linked oligosaccharide biosynthetic process (GO:0006488) 8.33007195229e-05
negative regulation of intrinsic apoptotic [. . . ] (GO:1902166) 0.000397852306904
negative regulation of intrinsic apoptotic [. . . ] (GO:1902254) 0.00062991870488
regulation of intrinsic apoptotic signaling [. . . ] (GO:1902165) 0.00054680280059
granulocyte differentiation (GO:0030851) 0.00062991870488

Related article: "p53: a frequent target for genetic abnormalities in lung cancer" [74].

Table B.16 Module #144 enrichment, against GO Biological

Term P-value
regulation of cell adhesion mediated by integrin (GO:0033628) 9.90436680677e-05
positive regulation of cell adhesion mediated [. . . ] (GO:0033630) 0.000718757572453
regulation of catenin import into nucleus (GO:0035412) 0.00149853462764
regulation of cell adhesion (GO:0030155) 0.00148127650608
negative regulation of peptidyl-tyrosine [. . . ] (GO:0050732) 0.00307789877528
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Related article: "The E-cadherin cell–cell adhesion complex and lung cancer invasion,
metastasis, and prognosis" [75].

Table B.17 Module #243 enrichment, against GO Molecular

Term P-value
beta-tubulin binding (GO:0048487) 9.09499482584e-05
SMAD binding (GO:0046332) 0.0125610214202
RNA polymerase II transcription cofactor activity (GO:0001104) 0.016298707591
tubulin binding (GO:0015631) 0.022350641825
cyclase regulator activity (GO:0010851) 0.0222807196156

Related article: "Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung
cancer growth and metastasis" [76].

Table B.18 Module #323 enrichment, against GO Biological

Term P-value
chromosome organization involved in meiosis (GO:0070192) 9.90436680677e-05
synaptonemal complex assembly (GO:0007130) 0.00101933263419
synaptonemal complex organization (GO:0070193) 0.00124782046916
activation of phospholipase C activity (GO:0007202) 0.000433082063756
positive regulation of phospholipase C activity (GO:0010863) 0.000629283942131

Related article: "Synaptonemal complex protein 3 is associated with lymphangiogenesis
in non-small cell lung cancer patients with lymph node metastasis" [72].

Cancer related

Table B.19 Module #56 enrichment, against GO Cellular

Term P-value
ubiquitin ligase complex (GO:0000151) 9.21549527451e-05
cullin-RING ubiquitin ligase complex (GO:0031461) 0.000132203089205
Cul3-RING ubiquitin ligase complex (GO:0031463) 0.0016321581628
microbody membrane (GO:0031903) 0.00494766354779
peroxisomal membrane (GO:0005778) 0.00494766354779

Related article: "Peroxisome proliferator activated receptor-γ and the ubiquitin-proteasome
system in colorectal cancer" [77].
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Table B.20 Module #104 enrichment, against GO Biological

Term P-value
cellular response to fibroblast growth factor stimulus (GO:0044344) 9.21549527451e-05
response to fibroblast growth factor (GO:0071774) 0.000102031457675
regulation of fibroblast migration (GO:0010762) 0.00101933263419
fibroblast growth factor receptor signaling pathway (GO:0008543) 0.000731357860307
O-glycan processing (GO:0016266) 0.000371234763507

Related article: "Fibroblast growth factor signalling: from development to cancer" [78].

Table B.21 Module #151 enrichment, against GO Biological

Term P-value
regulation of ryanodine-sensitive [. . . ] (GO:0060314) 3.2528722798e-05
negative regulation of ryanodine-sensitive [. . . ] (GO:0060315) 0.000272131942618
regulation of calcium ion transmembrane transport (GO:1903169) 0.000234913166441
regulation of calcium ion transmembrane (GO:1901019) 0.000234913166441
negative regulation of cation channel activity (GO:2001258) 0.000913492369971

Related article: "Evidence of functional ryanodine receptor involved in apoptosis of
prostate cancer (LNCaP) cells" [79].

Table B.22 Module #386 enrichment, against GO Biological

Term P-value
regulation of nucleocytoplasmic transport (GO:0046822) 8.08634213906e-05
regulation of intracellular protein transport (GO:0033157) 0.000213389819348
cranial suture morphogenesis (GO:0060363) 0.000272131942618
negative regulation of catenin import into nucleus (GO:0035414) 0.000218054077011
regulation of hexokinase activity (GO:1903299) 0.000218054077011

Related article: "Wnt/β -catenin signaling plays an ever-expanding role in stem cell
self-renewal, tumorigenesis and cancer chemoresistance" [80].





APPENDIX C

TOOLS PROODUCED

In this appendix the tools produced as support to the method are introduced.

The first tool performs a lookup over all of the modules for a specific gene. The query
consists in a JSON file containing the name of the gene to be searched and the cancer type
over which the desired autoencoder was trained. Here is an example of the input:

{
"Gene": "KRAS",
"Cancer": "BREAST"

}

The output of the previous query returns the number identifying the module that contains the
desired gene and its position in it, with a snapshot of the other leading genes:

The 384-th module contains the gene.
The gene KRAS was found in the module’s first 7 most relevant genes.
The module, rounded to the nearest multiple of 10, is the following:
[’KIAA0664P3’ ’USF2’ ’F5’ ’DICER1’ ’CDNF’ ’IQCA1’ ’KRAS’ ...
... ‘C18orf32’ ’CRYZL1’ ’HIST1H2BI’]

The second tool returns, for each module, a report containing all the known tumor
suppressors, proto-oncogenes and oncogenes in the module; a list of the genes in the module
with their differential expression levels; and the results of the enrichment analysis performed
on it. The following page include a sample module’s report (Fig C.1).
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