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Abstract

Increasingly uncertain hydrologic regimes combined with more frequent and
intense extreme events are challenging water systems management worldwide,
emphasizing the need of accurate medium- to long-term predictions to timely
prompt anticipatory operations. Despite modern forecasts being skilful over
short lead time, predictability generally tends to decrease on longer lead times.
Global climate teleconnection, such as El Niño Southern Oscillation (ENSO)
and the North Atlantic Oscillation (NAO), may contribute in extending fore-
cast lead times. However, ENSO teleconnection is well defined in some loca-
tions, such as Australia or Chile, while there is no consensus on how it can be
detected and used in other regions, like Europe or Africa. The same is true for
NAO teleconnection. In this work, we employ the Niño Index Phase Analy-
sis, to capture the state of two large scale climate signals, i.e. ENSO and NAO,
and we use these teleconnections to forecast hydroclimatic variables on a sea-
sonal time scale. For each phase of the considered climate signals, our approach
identifies relevant anomalies in Sea Surface Temperature that influence the lo-
cal hydrologic conditions, which are first aggregated via Principal Component
Analysis and then used as inputs in a multivariate forecast model of seasonal
precipitation. The resulting seasonal meteorological forecasts , are then trans-
formed into daily streamflow predictions, by means of a time scaling procedure
(k Nearest-Neighbour) combined with an hydrological model (HBV). Lastly,
the streamflow forecasts are used as additional inputs for informing the water
system operations. The value of the addicted information is then evaluated as
the gain in the system performance obtained with the more informed opera-
tions. The potential of this framework is demonstrated through an application
to the Lake Como system, a regulated lake in northern Italy which is mainly
operated for flood control and irrigation supply. The results for each step are
overall good, with a final performance improvement of 48% when the lake is
simulated under the comparing the Informed Operating Policy with respect to
the baseline solution.
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Riassunto

La crescente incertezza dei regimi idrologici, combinata con la maggiore fre-
quenza di eventi estremi sta accrescendo la difficoltá nella gestione dei sistemi
idrici nel mondo, evidenziando la necessitá di previsioni accurate di medio
lungo periodo per ottimizzare le operazioni. Nonostante siano performanti nel
breve periodo, gli attuali modelli previsionali tendono a perdere accuratezza
su orizzonti previsionali piú lunghi. Teleconnessioni climatiche globali, quali
El Niño Southern Oscillation (ENSO) e la North Atlantic Oscillation (NAO)
possono contribuire all’estensione dei periodi di previsione. Tuttavia, gli effetti
di ENSO sono definiti solo in poche aree, come Australia e USA, mentre quelli
in altre, quali l’Europa, sono meno conosciuti. Lo stesso si puó dire per gli ef-
fetti associati al NAO. In questo lavoro, usiamo la Niño Index Phase Analysis,
per comprendere lo stato di ENSO e NAO, e sfruttiamo tali teleconnesioni per
prevedere variabili idro-climatiche su un periodo stagionale. Per ogni fase di
ciascun segnale, l’approccio identifica anomalie di temperature al livello del
mare rilevanti che influenzino le condizioni della variabile idrologica locale.
Esse vengono prima aggregate attraverso l’analisi delle componenti principali
e poi usate come input per un modello di previsione multivariato per fornire
previsioni stagionali di precipitazione. Quest’ultime sono poi trasformate in
portate giornaliere, con prima una procedura di scomposizione temporale (k
Nearest-Neighbour) combinate con un modello idrologico (HBV). Da ultimo,
le previsioni di portata sono usate come informazione aggiuntiva nella ges-
tione del sistema. Il valore di tale informazione viene calcolato in termini di
miglioramento nelle performance del sistema quando questo viene gestito uti-
lizzando le previsioni di portata. Il potenziale della procedura é dimostrato
applicandola sul sistema del Lago di Como, un lago regolato nel nord Italia,
operato prevalentemente per controllare le piene e per l’irrigazione. I risul-
tati sono stati soddisfacenti con un miglioramento complessivo della gestione
tradizionale del sistema pari al 48% quando si utilizza una gestione piú infor-
mata.
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1
Introduction

1.1 The context

The world contains a total volume of 1400 million km3 of water. Of this volume,
only the 0.003%, equivalent to about 45000 km3, is fresh water, meaning water
that theoretically can be used for drinking, hygiene, agriculture and industry.
But not all of this water is accessible nor equally distributed around the world.
Floods, for example, make it difficult to capture and utilize water before it runs
off. So, the total amount humanity can really rely on is about 9000 to 14000 m3.
Besides, the problem of water quality must be also considered. Because of this,
343 conflicts going on for its use and possession (see Figure 1.1 ) (Gleick, 1998,
1994; PacificInstitute, 2018) .

This situation is bound to get even worse. This because of the grow of de-
mand, due to world population increase, meaning growing agriculture and en-
ergy production, but also for the raising of the awareness about environmental
and ecological needs (Whateley et al. (2014); Culley et al. (2016)). Climate change
is increasing uncertainty of hydrological regimes all over the world (Giuliani
et al., 2016; Giuliani and Castelletti, 2016), with expected dryer conditions in
some of the most populated areas. Figure 1.2 shows the expected change in
water stress in year 2050 compared to today in 4 different scenarios. All of
them show a worsening of the situation in most of the world’s countries, with
just few exceptions like for example in Canada and some zones between China
and Russia. This could lead to a further exacerbation of the existing conflicts

1



1. Introduction

Figure 1.1: Water related hostile events from 1990 to 2008. Image from "https://www.popsci.com".

and to the birth of new ones.

Figure 1.2: Worldwide water stress scenarios in 2050. "http://populationgrowth.org/".

Looking at this future, a better management of the available water resources
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1.2. Objective of the thesis

is needed.
Apart from locally suitable solutions, which cannot be applied globally, a gen-
erally low-cost option for supporting better water management strategies is
the development of models able to make skilful predictions of future water
availability, especially in terms of precipitation and streamflow forecast. This
information could greatly help water management in making better decision in
general, but be particularly effective in case of extreme events (Block, 2016).
Recently, many studies have investigated this field, and, in particular, climate
variability and its causes, because it is thought to be a fundamental premise
for the forecast of future hydro-climatological. One very promising aspect, is
the correlation between large scale oceanic-atmospheric phenomena, and local
hydrological processes (Sharma, 2000; Goddard et al., 2001; Block and Rajagopalan,
2007; Block and Goddard, 2011).
Such teleconnections are recurring and persistent large scale pattern of pres-
sion and circulation anomalies that interests large areas. They are known to
have effects on global circulation and even on local hydro-meteorological vari-
ables. Large scale processes like teleconnections generally have slower dynam-
ics compared to local ones and long term effects, so they can be used to make
predictions with a certain time lead (Lloyd-Hughes and Saunders, 2002). In partic-
ular, many works focused on the correlations between El Niño Southern Oscil-
lation (ENSO), a teleconnection taking place in the southern Pacific ocean, and
local climate anomalies in different parts of the world (Ropelewski and Halpert,
1987; Chiew and McMahon, 2002; Ward et al., 2010). This is done both for areas
more expected to receive an effect because closer to the Pacific Ocean, including
the Andean region of South America (Daniels and Veblen, 2000) or the western
USA (Kahya and Dracup, 1993; Harrison and Larkin, 1998) and more recently, also
in distant areas such as Europe (Brönnimann et al., 2007; Fraedrich and Müller,
1992). However, in some locations, the effects are still not clear. In particular,
the Alpine region considered in this thesis is one of the areas lacking complete
and coherent results. The studies for the area do not always agree on the results
and do not provide a complete view of the effects teleconnections have on the
area.

1.2 Objective of the thesis

The objective of this thesis is to construct reliable long term (i.e. seasonal) hy-
drologic forecast for an Alpine river basin, based on the state of global tele-
connections. In addition, the value of these forecast in informing the system

3



1. Introduction

operations is assessed. The methodology is demonstrated on the case of Lake
Como, a regulated lake in Northern Italy, operated mainly to avoid floods and
feed the agricultural districts downstream.
In particular, this thesis employs machine learning techniques to capture the
state of multiple large-scale climate signals (i.e. ENSO, and North Atlantic
Oscillation) to forecast hydroclimatic variables on a seasonal time scale. For
each phase of the considered climate signals, our approach identifies relevant
anomalies in Sea Surface Temperature (SST) that influence the local meteoro-
logical conditions.
This is done by applying the Niño Index Phase Analysis (NIPA) to find the Prin-
cipal Components (PC) for a multi-variate forecast model of precipitations on
the Lake Como basin. Seasonal precipitation is then transformed into stream-
flow values by means of a basin rainfall runoff model of Lake Como catchment,
after the disaggregation of seasonal values into daily ones.
Finally, we demonstrate the potential of such long term forecasts in informing
the lake operations. We re-design the operation of Lake Como by including the
forecasts among the inputs of the control policy and we contrast the resulting
performance with the one of a policy relying on traditional information only.
The policy performance improvement represents the value of the forecasts in
informing the water system operations.

1.3 Thesis outline

The thesis is structured as follows.

Chapter 2 introduces the concept of climate variability, focusing on telecon-
nections. It reviews the literature regarding the effects of teleconnections on
the considered zone and illustrates the study already utilizing this type of in-
formation for reservoirs operations.

Chapter 3 provides the description of the methods employed in this thesis. It
starts with the description of the data collection and analysis. Then proceeds
to explain the Niño Index Phase Analysis procedure, used to find the Principal
Components. It then describes the Multi-Variate (MV) seasonal rainfall forecast
model adopted. After that, the method for the downscaling to daily precipita-
tions is presented. In the next step, it explains the hydrological model used
to transforms the daily rainfall into daily inflow to the Lake. Finally, the Evo-
lutionary Multi-Objective Direct Policy Search used for designing the optimal
control policy for the operation of Lake Como is introduced, along with the

4



1.3. Thesis outline

metric for the evaluation of the resulting performance.

Chapter 4 describes the Lake Como study case, including its geomorpholog-
ical features, stakeholders and conflicts, the data and models utilized and the
experimental settings.

Chapter 5 contains the results of the thesis. The first part of this chapter dis-
cusses the relationship between the considered teleconnections and the local
hydrological variable. The second reports the results of the Multi Variate pre-
diction with the different models. The third shows the results of the time down-
scaling of the precipitation and its transformation into streamflow. Finally, the
last part reports the result of the optimization model and the quantification of
the value of the forecast information.

Chapter 6 sums up the conclusions and suggests some starting points for fur-
ther research about the topic.
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2
State of art

This chapter gives a general overview on global climate variability, with a fo-
cus on long term variability due to global teleconnections.
In particular, we first give a definition for climate variability in section 2.1.
Then, in section 2.2 we review a specific climate phenomena, namely the tele-
connections, focusing in particular on ENSO and NAO.
Section 2.3 reviews a number of works concerning the effects of ENSO and
NAO on the Alpine region, where the Lake Como case study is located.
Finally, section 2.4 gives an overview of how teleconnections have already been
employed in different ways to manage hydrological systems in the known lit-
erature.

2.1 Climate variability introduction

Climate naturally varies in time and space and it is well known that atmo-
spheric circulation boosts substantial variability. This variability comes in dif-
ferent time ranges (NOAA, 2018a):

• Few days: e.g. normal storms and frontal passages;

• Few weeks: e.g. mid-winter warm-up or a mid summer wet period;

• Few months: e.g. particularly cold winters or hot summers;

• Few years: e.g. cold winters happen for several years on a row;

• Several centuries: e.g. long-term climate changes.
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In addition to time variability, atmospheric circulation may also come in dif-
ferent spacial scales, from local to continental. Climate variability is defined
by the World Meteorological Association as "variation in the mean state and
other statistics of the climate on all temporal and spatial scales, beyond indi-
vidual weather events" (WMO, 2018). So, basically, climate variability is the
difference between the actual climate and its average expected value. It may
affect any hydrological variable, from rainfall and temperature to air pressure
and many others and is generally due to natural oscillations. Most of this vari-
ability, is demonstrated to be caused by teleconnections (Ropelewski and Halpert,
1987; Harger, 1995; Holmgren et al., 2006).

2.2 Teleconnections

A teleconnection is, as defined by NOAA (NOAA, 2018b), a recurring and per-
sistent large scale pattern of pression and circulation anomalies that interests
large areas. They are the most notable example of low frequency, long time
scale climate variability. They are typically characterized by a duration rang-
ing from several weeks to several months, but their effects can in some case last
for years (NOAA, 2018b). Consequently, they play an important role for both
the inter-annual and inter-decadal variability of the atmospheric circulation. A
large number of teleconnections have a world-wide scale magnitude of effects
and may affect entire ocean basins and continents.
Teleconnections are natural occurring aspects of the chaotic atmospheric sys-
tem, i.e. the interaction of the atmospheric circulation with both land and
oceans. They are the aftermath of large-scale changes in the atmospheric wave
and jet stream patterns, and influence many hydrological variables in large ar-
eas.
Between all the variables connected to the process, Sea Surface Temperatures
(SSTs) appear to play a particularly prominent role. A great amount of en-
ergy is absorbed or dispersed when a region’s SST changes, and even slow or
contained variations may have great effects on some climate patterns and con-
sequently on the climate variability.
As shown in Figure 2.1 there are many teleconnections around the world, from
the Pacific Ocean to the Arctic Glacial Sea. In this thesis, we focus on the two
most important teleconnections active in Europe, namely El Niño Souther Os-
cillation (ENSO) and North Atlantic Oscillation (Vincent et al., 2005; Beniston,
2005a; Steirou et al., 2017; Barcikowska et al., 2017; Samale et al., 2017)
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2.2. Teleconnections

Figure 2.1: Map showing the different locations of some of the world known teleconnections.
"https://www2.ucar.edu/news/backgrounders/weather-maker-patterns-map".

2.2.1 ENSO

El Niño Southern Oscillation (ENSO) is a periodic climatological phenomena
that occurs in the Pacific ocean. It takes its name from the fact that it generally
happens during the Christmas eve, associated by the populations of the area
most interested by it with the arrive of baby Jesus (El Niño in spanish). "El
Niño" refers to the oceanic component, while Southern Oscillation represents
the atmospheric one. It is characterized by a shifting of Sea Surface Tempera-
tures and air pressure of the overlying atmosphere. The two components are
mutually coupled and strictly bounded one to the other (Trenberth, 1997).
El Niño represents only one of the two phases of the phenomena, with La Niña
being the other and having opposite effects.
On neutral years, the Walker current flows from east to west, carrying humid-
ity and hot water. This way, the eastern part is normally left cool and dry.
Then, after arriving on the occidental zone of the Pacific, both the wind and the
current return westwards, passing respectively in the upper atmosphere and
deeper ocean (Figure 2.4)(Picaut et al., 1996). The warm SSTs in the occidental
Pacific cause the formation of heat and moisture in the air, leading to the forma-
tion of Cumulonimbus clouds and consequently rain. So, during this neutral
phase opposite conditions can be found in the occidental and oriental parts of
the meridional Pacific, with an high pression in the east and a low one in the
west, warm western waters and cool ones in the east and persistent presence of
rain in the Pacific-Indonesia zone opposed to the dryness of the coasts of South
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America. This neutral year condition is altered during the El Niño and La Niña
phases (Rasmusson and Wallace, 1983).

During El Niño phase, the conditions change dramatically from the normal
ones. The trade winds brought by the Walker current weaken or may even
reverse, making it possible for the warm water to travel from the West region
towards the central and eastern one as shown in Figure 2.2. The upwelling of
cool ocean waters weakens during this phase, contributing to the warming and
the associated deepening of the thermocline in the central to eastern Pacific.
The persistent precipitation zone shifts its position towards the now hotter cen-
tral and eastern region. As a result, droughts number and intensity increase
in the Indonesian and east Australian zone while the normally arid coasts of
Chile and Peru are interested by precipitations (Sarachik and Cane, 2010). At
the same time, the usual air pressure pattern reverses, being characterized by
high air pressure at the sea surface in the western Pacific and low air pressure
in eastern Pacific. In addition, the thermocline characterizing the waters near
South American coasts weakens in this period, leaving the waters poor of nu-
trients, with large detrimental effects on the region’s fisheries and economies.
The main worldwide effects of El Niño can be seen in Figure 2.5.

Figure 2.2: Graphic representation of the effects of El Niño.

During La Niña phase, instead, the situation reverses. In particular, the
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Walker circulation is stronger than in neutral years, causing a raise in water
level of about 80-100 cm in the west coasts of the Pacific compared to the east
ones. The convection over the Pacific intensifies and the trade winds blow
stronger. This causes the warm water to remain confined in the occidental re-
gion, with higher than usual SSTs in the northern region of Australia as shown
in Figure 2.3. On the contrary, waters in the western part of the pacific, become
even cooler than usual, causing also a more marked thermocline (Larkin and
Harrison, 2002; Jin and An, 1999). The up welling strengthens and the deeper
waters are drawn to the surface enriching it of nutrients and enhancing the
growth of marine organisms, with positive effects on fisheries and economies
in the region (Waluda et al., 2006). The main worldwide effects can be seen in
Figure 2.6.

Figure 2.3: Graphic representation of the effects of La Niña.

ENSO is an irregular phenomenon, meaning that the timing of its occur-
rence cannot be predicted. It occurs on average every two to seven years,
with El Niño more frequent than La Niña, and it typically lasts from nine to
twelve months (or sometimes even longer during La Niña events). It shows its
first signs of development during the Borealis spring and reaches its maximum
strength during autumn and winter.
ENSO is known to have worldwide effects (Figure 2.5, 2.6) and has been stud-
ied for works concerning large parts of the world like for example in the United
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States (Ropelewski and Halpert, 1986; Harrison and Larkin, 1998) , in Australia,
South America, Africa (Ropelewski and Halpert, 1987) , in Australia and New
Zealand, South and Central America (Chiew and McMahon, 2002) , in Vietnam
(Beltrame and Carbonin, 2013), in China (Zhang et al., 1999) , in Europe (Hafez,
2017) and worldwide (Terray et al., 2016; Veldkamp et al., 2015; Ward et al., 2014).
ENSO effects are not limited to hydrological variables but also impacts directly
other important processes, like for example the way it affects the fish popula-
tions on the coasts of South America (Sandweiss et al. (2004),Fiedler (2002)).

Figure 2.4: ENSO neutral year and Walker circulation.

ENSO indexes

Many indexes are available to analyse and assess ENSO. The most used is the
Southern Oscillation Index (SOI), computed as the difference in sea level pres-
sure between Tahiti (French Polynesia) and Darwin (Australia) (Chen, 1982).
Other indexes are the Sea Surface Temperature (SST) index, which relies on
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Figure 2.5: Map of the worldwide best known effects of El Niño on precipitations.

Figure 2.6: Map of the worldwide best known effects of La Niña on precipitations.

the difference of sea temperature in some specific area of the Pacific Oceans
and the Multivariate ENSO Index (MEI). There is no consensus in the scientific
community over which of them best represents ENSO years, or the strength or
duration of events (Hanley et al., 2003).
For this thesis however, due to the overall good performances, the Multivariate
ENSO Index (MEI) was used. Its calculation is based on 6 variables:

1. Sea level pressure;
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2. Zonal component of the surface wind;

3. Meridional component of the surface wind;

4. Sea surface temperature;

5. Surface air temperature;

6. Total cloudiness fraction of the sky.

Observations for these data have been collected and published by the Compre-
hensive Ocean-Atmosphere Data Set for a long period and have then been used
by Wolter and Timlin, Wolter (1993) and Wolter and Timlin (1998) to formulate the
index. It is calculated twelve times per year, for each sliding bi-monthly sea-
son, characterized as January-February, February-March, March-April, and so
on. In the index, positive values correspond to the El Niño phase, while neg-
ative ones to La Niña. This indicator was chosen because it is one of the most
accurate in all the fields due to the use of six different variables and because of
the long timeseries of available data.

2.2.2 NAO

The North Atlantic Oscillation (NAO) is the most prominent and recurrent pat-
tern of atmospheric variability in the middle and high latitudes of the North-
ern hemisphere (Hurrell et al., 2003). It is an atmospheric circulation pattern
localized in the North Atlantic ocean, characterized by a cyclic oscillation of
the difference of pressure at sea level between Iceland and the Azores islands.
Trough the oscillation motion east to west of the Iceland depression and the
anti-cyclone of the Azores, NAO determines the strength and direction of the
occidental zonal flow and the direction of the perturbations all over the north-
ern Atlantic (Hurrell, 1995; Hurrell and Van Loon, 1997; Hurrell, 2005). Unlike
ENSO, NAO is a teleconnection with only a strictly atmospheric component
and doesn’t have a corresponding oceanic water flow.
In neutral conditions, the occidental winds, called westerlies, flow trough the
Atlantic, bringing wet air over the European continent. When the winds blow
strongly, the summers of the affected areas are cool and the winters mild and
wet. Instead, when winds are weaker, the temperatures become more extreme,
higher in the summer and lower in winter, and the precipitations diminish.
These winds are caused by a semi-permanent system of low pressure over Ice-
land (namely, Iceland Depression) and high pressure over the Azores (namely,
Anti-Cyclone of the Azores). The relative strength and position of the two, reg-
ulates the intensity and direction of the Westerlies.
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This pattern is mostly observable during the Boreal cold season and does not
only control winds speed and direction, but also air temperatures, heat and
moisture transports and precipitation. The Atlantic ocean is also affected, in
terms of temperature and salinity characteristics of the water, vertical mixing,
circulation patterns and, at higher latitudes, ice formation.

Based on the state of NAO, two possible conditions can be found: NAO pos-
itive (NAO+) and NAO negative (NAO-) with opposite effects (Figure 2.7).

Figure 2.7: Map of the different effects of NAO+ and NAO- phases.

In particular, when the Icelandic low and Azores’ high pressure fields are
enhanced, the system enters the NAO+ phase. The significant pressure differ-
ences between the two centres strengthens the Westerliesand produces effects
(see Figure 2.8):

• The temperatures over eastern North America and across Northern Eu-
rope are higher than in neutral years (Folland et al., 2009);

• The temperatures over Greenland and sometimes Southern Europe and
Middle East tend to get lower (Vicente-Serrano and Trigo, 2011; Trigo et al.,
2004);

• There is a precipitation increase over Northern Europe and Scandinavia
during winter(Uvo and Berndtsson, 2002; Uvo, 2003; Bierkens and Van Beek,
2009);

• There is a precipitation decrease over Southern and Central Europe (Rodó
et al., 1997; Castro-Díez et al., 2002).

Conversely, when the Icelandic low and Azores’ high pressure fields are
weakened, the system enters the NAO- phase. A decrease in the gradient of
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Figure 2.8: Map of the effects of NAO+ phase.

pressure between the two centres can be observed, weakening or even stop-
ping the Westerlies. The effects are opposite to those in the NAO+ phase (see
Figure 2.9):

• A decrease of temperature can be observed in North America and North-
ern Europe(Bojariu and Paliu, 2001);

• An increase of temperature in Greenland, Southern Europe and middle
east (Kahya, 2011; Cullen et al., 2002);

• More precipitations on meridional and central Europe(Vicente-Serrano and
Trigo, 2011);

• Less precipitations over Northern Europe and Scandinavia (Uvo and Berndts-
son, 2002; Rogers, 1997; Nesje et al., 2000).

By altering climatological variables, NAO is also responsible for other docu-
mented related effects, e.g. on European ecosystems (Gordo et al., 2011; Stenseth
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Figure 2.9: Map of the effects of NAO- phase.

et al., 2003), fisheries in the Mediterranean sea (Maynou, 2011), crop production
(Orlandini et al., 2011) and even pollution on the Mediterranean basin (Dayan,
2011).

NAO index

The index utilized to measure the state of NAO is computed as the difference
the difference between the normalized mean winter (from December to March)
Sea Level Pressure anomalies at Lisbon, Portugal and Stykkisholmur, Iceland
(Hurrell and Van Loon, 1997). The stations were changed from those used be-
fore, (Ponta Delgada, Azores and Akureyri, Iceland) (Walker, 1932) to get 30
additional years of data, starting from 1864.
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2.3 ENSO and NAO impacts on Alps

The effects of ENSO and NAO have been widely studied, like for example in
America and Australia (Holmgren et al., 2006), in the USA (Harrison and Larkin,
1998), in Indonesia, Philippines and El Salvador (Harger, 1995), in Mexico (Pavia
et al., 2006), in the Fenno-Scandic region (Uvo, 2003), worldwide (Diaz and Mark-
graf (2000) Stenseth et al. (2003); Wanner et al. (2001), in Europe (Rodwell et al.,
1999)). However, not many works cover the Alpine region. Studies concerning
ENSO effects, in particular, are few and often with conflicting results.
A number of studies have investigated the correlation between NAO phases
and the snow in the Alpine region. All the studies agree that NAO has a certain
influence on its quantity and melting but there is no agreement on how much
does it really affect the process, with some stating that it is an overall large one
(Beniston (1997); Scherrer et al. (2004); Steirou et al. (2017)) and others arguing
that its role is marginal (Durand et al. (2009); López-Moreno et al. (2007, 2011)).
In particular, the negative phase of NAO, (associated with higher temperatures
and precipitations in Southern Europe), seem to transform most of the precip-
itations in rain (particularly during winter) and accelerate the melting, while
the positive NAO phase is characterised by more precipitations under the form
of snow and a slower melting due to lower temperatures.
The studies considering ENSO generally define its role as marginal (Steirou
et al., 2017; Durand et al., 2009). Other studies investigate correlations between
NAO and ENSO phases with different climatic signals, precipitation and tem-
perature in particular (Wanner et al., 2001). Regarding this, the results have
been different and sometimes contrasting, with some affirming that the effects
are overall negligible for both teleconnections (Casty et al., 2005; Bartolini et al.,
2009; Shaman, 2014), with ENSO in particular not having any role (Efthymiadis
et al., 2007), while other studies observed significant correlations on the area
(Bojariu and Paliu, 2001; Beniston, 2005a,b; Folland et al., 2009; Brandimarte et al.,
2011).
Other works studied different aspects of the relations between ENSO, NAO
and hydro-climatological variables in the Alpine region. Some authors studied
the correlation with the streamflow and the floods of the rivers in the region,
finding good correlation (Bierkens and Van Beek, 2009; Callegari et al., 2015; No-
bre et al., 2017). Others investigated their connections in the zone with climate
change and how it is expected to impact in the region’s climate (Beniston, 2005b;
Rohrer et al., 2017). One study also investigated the correlation between ENSO,
NAO and the glaciers fluctuations, finding that the temperature shifts caused
by the different phases of ENSO and particularly of NAO play an important
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role in determining the size of glaciers (Vincent et al., 2005). Other studies fo-
cused on the correlation between ENSO, NAO and the frequency of winter
storms (Kamil et al., 2017) or renewable (hydroelectric, solar and wind) energy
production in the Alpine area (François, 2016), summer heat waves (Hafez, 2017)
or crop anomalies (Ceglar et al., 2017).
To sum up, despite a lack of agreement on the intensity, it is reasonable to con-
clude that there exist a relation between many hydro-climatological variables
in the area and the two considered teleconnections.

2.4 Use of ENSO and NAO for reservoir operations

Information coming from ENSO and NAO has already been used in many cases
to improve the forecasts for hydrological variables, while only few studies use
this information for making better operational decisions. As far as the forecasts
are concerned, the most common procedure is to use the state of the signal
(i.e., El Nino or la Nina, NAO+ or NAO-) as an input in a hydrological model
(Sharma, 2000; Beltrame et al., 2014). Successful examples include the use of
ENSO in North America, such as in Colorado (Pulwarty and Melis, 2001), Texas
(Chen et al., 2005) Florida (Abtew and Trimble, 2010), Canada (Sellars et al., 2008).
Additional applications were developed in Australia (Simpson et al., 1993; Ev-
eringham et al., 2012), China (Wei et al., 2014), Iran (Banihabib et al., 2017), India
(Robertson et al., 2013; Maity and Nagesh Kumar, 2009), Sri Lanka (Chandrasekara
et al., 2017; Chandimala and Zubair, 2007), Ecuador (Gelati et al., 2014), Brasil
(Bouvy et al., 2003), Uganda and Nigeria (Phillips and McIntyre, 2000). An in-
teresting case is that of Ghana, where the state of ENSO is used not only for
climatological variables prediction, but also for optimal management of the
reservoir and of the agricultural system, meaning that what to plant is decided
also on the expected state of ENSO that year (MacCarthy et al., 2017). Similarly,
(Turner and Galelli, 2016) used a regime state variable for informing water re-
lease decisions and to quantify the potential gains in operating performance
that could be obtained by allowing for regime-shifting behaviour in reservoir
inflow, namely when the distribution of the streamflow shifts in concert with
an unobserved (climate) state, such as ENSO. At the global scale, ENSO was
demonstrated to impact more than 30% of hydropower dams, even though the
variability in power production tends to be less than that of the forcing inflows
(Ng et al., 2017).
Finally, some cases are present also in Europe, where the main signal consid-
ered is NAO along with ENSO. That’s for example the case of Spain , where
ENSO and NAO are used to make forecast for the precipitations (López-Moreno
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et al., 2007, 2011; López and Francés, 2013). But, regarding Italy or the considered
region, apart from the work by Samale et al. (2017), there are no works consid-
ering information coming from ENSO or NAO to enhance the management of
hydrological systems.
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Methods

This chapter provides the methodological context for this thesis, by detailing
the methods and tools employed. Figure 3.1 shows the main components of
the proposed framework. Each of the sections is devoted to the description of
one of the flowchart blocks.
In particular, section 3.1 searches the most relevant climate teleconnections for
the selected river basin by means of Niño Index Phase Analysis (NIPA), devel-
oped by (Zimmerman et al., 2016).
Section 3.2 combines the results of NIPA detection into a Multi-Variate model,
to get seasonal rainfall forecast. The model structure is selected by comparing
the performances of three different structures (linear model, Artificial Neaural
Networks and Extreme Learning Machine).
Then in section 3.3, hydrological forecasts are obtained from the seasonal rain-
fall forecast. The step requires the forecast to be first downscaled in time (from
seasonal rain to daily) and then transformed into streamflow.
Finally, section 3.4 illustrates the Evolutionary Multi-Objectives Direct Policy
Search (EMODPS) algorithm, used for the design of Lake Como control policy.

3.1 Detection of climate teleconnections

Teleconnection signals are recurring and persistent large scale patterns of pres-
sion and circulation anomalies that interests large areas. As seen in chapter 2,
they influence hydrology also at the local scale, so they can represent a valuable
information for water management.
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Figure 3.1: Thesis flowchart.
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3.1. Detection of climate teleconnections

The following section analyses the influence of ENSO and NAO for the selected
study case, using the Niño Index Phase Analysis (NIPA).
Most of the traditional approaches use just an index of the current phase of the
teleconnection as a single input for a single model to improve the forecast. The
peculiarity of NIPA is instead of using it as a physical influence of the average
state of the atmosphere-ocean system (Zimmerman et al., 2016). This allows us-
ing information that wouldn’t be considered otherwise, possibly resulting in a
skill improvement for the seasonal forecast.

3.1.1 Data collection and analysis

The first step is to decide which variable to predict and to find the most in-
forming teleconnections to use for the forecast models. Following the work
from (Samale et al., 2017), already based on the same system, we decide to use
precipitations as the variable to predict and ENSO and NAO as climate signals.

3.1.2 NIPA

The Nino Index Phase Analysis, NIPA for short, is a statistical framework for
seasonal forecast, originally based on the state of ENSO. Its main steps can be
seen in Figure 3.2. The main idea behind the method, is to bin the considered
periods into different phases, based on the state of the selected climate signal,
using an index. After that, phase-specific Sea Surface Temperature (SST) cor-
related cells are identified to be used as predictors in a Principal Component
Regression (PCR) model.

The first step is to bin the considered time periods into different phases ac-
cording to one climate signal index. This is done because the occurrence of
large-scale climate events is associated with hydro-climatic anomalies that are
expected to alter the mean state of the atmospheric oceanic system and those
changes can be caught by some indexes (Block and Rajagopalan, 2007; Block,
2016). Based on the considered index, like for example the MEI index for ENSO,
it is possible to classify a time period. An example of it can be seen in Table 3.1,
where January, February and March (JFM) months of the years from 1896 to
2014 are classified in different Nino phases based on the value of the MEI in-
dex.

In order to make NIPA a predictive model, the climate index is observed in
the season prior to the one that has to be predicted, and the period is classified
on its value. For example, to have a January, February and March prediction
(JFM), the average value of the index from October, November and December
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Table 3.1: Binning of January, February and March period for years from 1896 to 2014 in ENSO
phases, using MEI index (NOAA elaboration).

El Nino Neutral La Nina

1897 1896 1904
1900 1898-1899 1909
1903 1901-1902 1910
1906 1905 1911
1915 1907-1908 1917
1919 1912-1914 1918
1926 1916 1925
1931 1920-1924 1934
1941 1927-1930 1939
1942 1932-1933 1943
1958 1935-1938 1950
1966 1940 1951
1973 1944-1949 1955
1978 1952-1954 1956
1980 1957 1962
1983 1959-1961 1971
1987 1963-1965 1974
1988 1967-1970 1976
1992 1972 1989
1995 1975 1999
1998 1977 2000
2003 1979 2008
2007 1981-1982 2011
2010 1984-1986 2012

1990-1991
1993-1994
1996-1997
2001-2002
2004-2006

2009
2013-2014
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Figure 3.2: NIPA procedure scheme.

(OND) is used. The period is characterized using a percentile threshold de-
fined on the basis of how many different phases are to be identified, i.e. the
50th percentile can be used as threshold to bin the years into the two different
phases (positive and negative). As a result of the process, all the considered
time periods are binned into the two different phases.

After classifying the considered time periods in different phases, each phase
is evaluated individually, thus constructing as many predictive models as the
number of the phases.
The first step of the modelling procedure consists in identifying the most sig-
nificant SST predictor regions. For this purpose, correlation maps between the
seasonal mean of the local hydroclimatic variable and pre-season gridded SST
anomalies are used, and regions correlated at the 95% significance level for each
phase are identified.
After identifying the SST predictor regions, a Principal Component Analysis
(PCA, see Joliffe (2002)) is conducted on the entire predictor field and the first
m resulting Principal Components (PCs) are retained as predictors in the fore-
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cast model. In this work, we considered only the first Principal Component for
each phase (PC1), because it explains most of the variance in the selected SST
gridpoints. The forecast model is defined as follows:

ŷ = β ∗ PC1 + α (3.1)

where ŷ is the estimated local hydroclimatic variable (i.e., season precipita-
tion), β the regression coefficient, and α the intercept. A leave-one-out cross-
validation procedure is then applied to the model obtained from eq. 3.1 to
avoid model overfitting and improving the statistical significance of the results.
The predicted values and the observations are contrasted by using as evalua-
tion metric the Pearson correlation coefficient, calculated as in formula 3.2:

r = ∑i=1((xi − E[xi])(yi − E[yi])√
∑i=1((xi − E[xi])2)∑i=1(yi − E[yi])2

(3.2)

Lastly, a Monte Carlo test is performed to verify that the obtained results are
statistically significant at a high level of confidence.

3.2 Multi variate seasonal meteorological forecast

The second step of the framework in Figure 3.1 combines the results of NIPA
detection into a multivariate model.
The results of the NIPA detection procedure described in the previous section
allow identifying for the selected climate signals the SST fields that produce
the best results in terms of prediction accuracy (i.e., high values of the Pear-
son correlation coefficient at high level of confidence). These outputs are then
combined into a multivariate prediction model to exploit all the information
provided by the two different climate signals.
For the first step, the values of the climate indexes associated to the selected
signals are used for binning the years in "meta-phases", combinations of the
original phases distinguished for each index. To better understand the proce-
dure, we consider two teleconnections. One is τi , whose phases can be 1 or 2,
and τ j, whose phases are a and b. The procedure classifies each period based
on its τi and τ j signals phase. So, one period can either be τi

1 and τ
j
a, τi

1 and τ
j
b,

τi
2 and τ

j
a or τi

2 and τ
j
b. The way it is done for this thesis can be seen in Table

3.2. At the end of this step, each considered time period is associated with a
meta-phase.
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After the definition of the metaphases, models are built for next season’s
precipitation forecast. Three alternative models are explored: linear, Artificial
Neural Networks (ANNs) and Extreme Learning Machines (ELMs).
To obtain the parameters while limiting the possibility of over-fitting and over-
parametrization, a leave-one-out cross-validation is used for all models. The
leave-one-out is a particular kind of cross-validation where only one value at a
time is excluded from the calibration set and is used for validation (Kohavi et al.,
1995; Refaeilzadeh et al., 2009). By doing so, the dataset is split in a number of
folds equal to the number n of the input data. For n times, the model is trained
on all the data minus one sample, which is used for the model validation. The
value of the performance is then calculated as the average of all the different
validation step performed.

The first considered model is the linear one. Four equations as eq. 3.3, are
calibrated for each meta-phase, and used to calculate the value of the total sea-
sonal precipitation.

Y = a× PCmei + b× PCnao + c (3.3)

Where: Y is the predicted rainfall, a and b are the coefficients that multiply
MEI and NAO PCs, varying depending on the metaphase, and c is a metaphase
specific constant.

The second class of model is the Artificial Neural Networks (ANNs), first
introduced in 1943 by McCulloch and Pitts (1943), are simplified mathematical
models of how the human neurons work (Abraham, 2005; Ranković et al., 2010).
They work by processing an input through a series of non-linear, sigmoidal,
functions (equal to the number of neurons), with a shape depending on their
parametrization. Then, through a function which gives a weight to each neu-
ron, the output of each of them is added to get the final result (Figure 3.3). The
universal approximation theorem, firstly demonstrated by Cybenko (1989) says
that "A feed forward network with a single hidden layer containing a finite
number of neurons (i.e. a multi-layer perceptron) can approximate any kind of
continuous functions on compact subsects of Rn, under mild assumptions on
the activation function". So ANNs appear particularly apt at reproducing the
inner complex non-linear connections between the variables of this problem.

The formulation of the ANN is the following (eq. 3.4):

Y = ANN(PCmei, PCnao, Mph) (3.4)
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Figure 3.3: ANNs’ scheme.

Table 3.2: Mph vector building

MEI phase NAO phase Mph
1 1 1
1 2 2
2 1 3
2 2 4

where Mph indicates the metaphase of the considered season, as reported in
Table 3.2.

The last model class is Extreme learning machines (ELMs), an evolution of
ANN models. ELM models only need to calibrate the weights vector of the
output layer, while the neurons are randomly parametrized (Figure 3.4). This
means that only the weights for the random neurons are adjusted to fit the
model , resulting in a lower computational effort with an equal number of
neurons(Huang et al., 2004). ELMs are demonstrated to be faster and to have
generally better performances in reproducing data and better generalization
performance than ANNs (Huang et al., 2006).

The ELMs are formulated as follows:

Y = ELM(PCmei, PCnao, Mph) (3.5)
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Figure 3.4: ELMs’ scheme.

3.3 Seasonal hydrological forecast

The third step of the framework illustrated in Figure 3.1 transforms the me-
teorological forecast produced by the MV models described in the previous
section to hydrological forecasts. This step first requires the disaggregation
of the predicted seasonal precipitation to a temporal resolution, suitable for
running a hydrological model. In particular, the disaggregation is performed
via k-Nearest Neighbour (KNN) (Nowak et al., 2010) and the hydrological pro-
cesses are reproduced by means of a Hydrologiska Byrans Vattenbalansavdel-
ning (HBV) model.

3.3.1 Daily disaggregation - k-Nearest Neighbour (KNN)

The k- Nearest Neighbour is a downscaling technique used to derive informa-
tion at fine spatial and/or temporal scale, starting from aggregated data. In
this thesis we employ KNN to disaggregate seasonal precipitation into daily
amounts.
The algorithm works by comparing predicted and historical precipitations. The
daily observed rainfall data are summed into seasonal rain data Rseason = ∑ Rday.
After that, daily values are divided by the seasonal total for each year wi,j =

Ri,j
day/Rseason, obtaining a weight matrix, where each column represents the
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same season for each year, and each row is a day of the considered season.
Each cell contains the percentage of rain, compared to the total seasonal one,
that has fallen on that day.

The predicted seasonal rainfall series are then compared to the observed
ones, and the k most similar among the observed ones are chosen for each
predicted value.
The daily sequence is derived by randomly extracting one proportion vector
from the k candidates, with a probability of extraction that depends on the
candidate ranking as follows:

P(j) =
1
j
/ ∑ 1/j (3.6)

The rank is given according to the Euclidean distance between seasonal pre-
dicted and observed precipitations, i.e.

dist = |Rpred − Rreal| (3.7)

Finally, the proportion matrix corresponding to the selected real year is multi-
plied for the value of the predicted seasonal total rain and thus the daily rain is
obtained.
KNN method was chosen as it captures the observed statistics, is consistent
with the correlation structures, and ensures summability and continuity across
the daily time scale (Rajagopalan et al., 1997).
The final output of this step is a forecast of daily precipitation.

3.3.2 HBV model

The daily forecasted rainfall is employed to feed a hydrological model of Lake
Como basin, and finally obtain a prediction of daily inflow to Lake Como. The
hydrological model used in this thesis is a hybrid physically-based and empiri-
cal model called Hydrologiska Byrans Vattenbalansavdelning (HBV)(Bergstrom,
1976). HBV (Bergström, 1992; Lindström et al., 1997) is a model developed for op-
erational flood forecasting in Sweden. Its working scheme can be seen in Figure
3.6. The model has four storage units, one for the snow and the other three for
different ground layers. Each of them is treated as a reservoir with its own state
(Figure 3.5), parameters (Figure 3.7), inputs and outputs.

Depending on the temperature, the precipitation can become a flow directly
or be stored as snow, which later melts and becomes flowing water. The snow-
melt and the rain then enter the soil moisture unit, where part of it is lost due
to evapo-transpiration, calculated with the Hamon method (Hamon, 1960). The
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Figure 3.5: HBV states.

remaining water transfers into the shallow layer storage unit. There, the water
can take 3 paths:

1. Near Surface Flow: water that flows on the surface and is directly trans-
formed into discharge

2. Interflow: intended as thorughflow, water lateral movement in the un-
saturated zone (Vadose zone), that returns on the surface and becomes
discharge.

3. Percolation: water that flows in the deeper layers of the ground.Percolated
water reaches the deep layer storage, where it can either be stored or trans-
formed into baseflow.

The sum of near-surface flow, interflow and baseflow gives the total dis-
charge.

So, the final output of the HBV model is the discharge at the basin outlet,
namely the inflow entering in the Lake Como.

3.4 Quanti�cation of forecast operational value

After getting the streamflow predictions, the next step is to quantify their op-
erational value in informing the system management.
To do that, the new information is used as input to the control policy adopted
in the operations of the lake.
The comparison of the performance of policies informed with the forecast, and
solutions which do not use such information, allows the quantification of the
forecast operational value, by means of an appropriate indicator, namely the
Hypervolume indicator.
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Figure 3.6: HBV working scheme.

Figure 3.7: HBV parameters.
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3.4.1 EMODPS

To design optimal operating policies for water reservoirs, Dynamic Program-
ming (DP) is generally employed, in particular its stochastic extension (SDP)
(Bellman, 1958; Yeh, 1985). SDP formulates the operating policy design problem
as a sequential decision-making process, where a decision taken now produces
an immediate reward, affects the next system state and, through that, all the
subsequent rewards. The policies are searched employing value functions de-
fined over a discrete (or discretized) state-decision space, obtained by looking
at future events and computing a backed-up value.
SDP can help finding optimal solutions, but its application is limited by the
presence of three curses. The first is the curse of dimensionality (Bellman, 1957),
which states that the cost of SDP grows exponentially with the state vector di-
mensionality, meaning that only a limited number of states can be considered
by it. The second is the curse of modelling: any information included into
the SDP framework must be explicitly modelled to predict the one step-ahead
model transition and ultimately the value function (Tsitsiklis and Van Roy, 1996).
This means that no exogenous information can be added to the model, un-
less turned into a state variable of a dynamic model or a stochastic and time
independent disturbance. The last curse is the curse of multiple objectives
(Powell, 2007): multiple contrasting objectives requires to generate a set of non-
dominated alternatives, i.e., a Pareto front.
These three curses limit the possibility of using SDP on complex systems, but,
in recent years new methods have emerged.

In this thesis, to design the optimal control policies for the Lake Como oper-
ations, we use an Evolutionary Multi-Objective Direct Policy Search (EMODPS)
methos (Giuliani et al., 2015). EMODPS replaces the traditional SDP approach
based on the computation of the value function, with a simulation based opti-
mization that directly operates in the policy space (Giuliani et al., 2017). EMODPS
explores the parameter space Θ seeking the best parameterization for the op-
erating policy pθ, defined within a given family of functions. The parameters
are chosen in order to optimize the expected longterm cost defined by the ob-
jectives of the problem, formulated as in equation 3.8:

P∗θ = arg min
Pθ

J(Pθ, x0, εh
1) (3.8)

Finding p∗θ corresponds to finding the best parameters θ∗ for the class of
policy pθ, measured by the objectives J. Figure 3.8 shows a scheme of the algo-
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rithm.

Figure 3.8: Schematization of EMODPS approach. The dashed line represents the model of the system
and the gray box the MOEA algorithm (Giuliani et al., 2015).

EMODPS boasts a simulation-based nature, meaning that the variables do
not need to be discretized and the value of the function computed. This way, it
is possible to overcome the curse of dimensionality and the biases introduced
by the discretization of continuous variables (Baxter and Bartlett, 2001). It is also
possible to introduce exogenous information or models, avoiding this way the
curse of modelling (Giuliani et al., 2015; Denaro et al., 2017). Finally, the combi-
nation of DPS with the MOEA framework, allows producing an approximation
of the Pareto front for up to 10 objectives, thus avoiding in most cases the curse
of multiple objectives (Giuliani et al., 2014a).

EMODPS finds the optimal set of parameters for a given function to maxi-
mize the performance given one or more objectives. So, what it does, is finding
the best solution inside a given class of functions. If the system is already being
operated, the class of function can be extrapolated from that already in use, but
there is no guarantee that the manager is already using the most efficient one.
If there are no data, or the system is under construction, the policy structure
must be guessed a priori on the base of empirical evaluations. When guessing
the structure, is important for it to be flexible and highly adaptable to any sys-
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tem, in order not to end up with a not efficient one. So, a very flexible class of
functions, with many parameters to be calibrated is advised. In this case we
use a Radial Basis Function (RBF) (Zoppoli et al., 2002). A three layers RBF has
been demonstrated to be able to approximate any continuous function defined
on a closed and bounded set (Park and Sandberg, 1991; Chen and Chen, 1995).The
superiority of RBF for the role over other approximators, such as ANN, has
been demonstrated (Giuliani et al., 2014b). It has also been demonstrated that
they work particularly well when exogenous information is used directly to
condition the operations

For the optimization step, we use the Multi-Objective Evolutionary Algo-
rithms (MOEA) framework, which work by mimicking biological systems, al-
lowing them to better adapt to multi-objective problems characterized by mul-
timodality, nonlinearity, stochasticity, and discreteness (Maier et al., 2014). MOEAs
are proven to better handle performance uncertainties than gradient-based meth-
ods (Busa-Fekete et al., 2014). We use a the self-adaptive Borg Multi-Objective
Evolutionary Algorithm (MOEA) to perform the optimization (Hadka and Reed,
2013). Borg procedure is highly robust in solving multi-objective optimal con-
trol problems, where it met or exceeded the performance of other state-of-the-
art MOEAs (Salazar et al., 2016).

3.4.2 Value of exogenous information

EMOPDS allows to condition the designed operating policy with exogenous in-
formation. The operational value of exogenous informations can be evaluated
as the difference between the performance achieved relying on a policy based
only on traditional information Baseline Operating Policy (BOP), the one found
with the additional ones Informed Operating Policy (IOP) and the one calcu-
lated assuming to have perfect forecast, the Perfect Operating Policy (POP).

There are many metrics that could be used (Zitzler et al., 2003; Maier et al.,
2014), but for this thesis, we choose to evaluate the performance improvement
gained trough the use of exogenous informations by using the hypervolume
(HV). It captures the convergence and distance of the IOP and BOP Pareto front
F and the optimal one F? over the whole trade-offs in the objective space (Zit-
zler et al., 2003). HV varies from 0 to 1, and measures the volume of the objective
space dominated (D) by the considered set of solutions (Figure 3.9). It allows
set-to-set evaluations, where values of HV close to 1 indicate Pareto fronts close
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to the reference (POP). We calculate HV by finding the hypervolume ration be-
tween F and F?, where F? is the reference Pareto front. The formula to calculate
HV is:

HV(F, F?) =

∫
αF(x)dx∫
αF?(x)dx

(3.9)

where αF(x) is: 1 i f ∃ x
′ ∈ F such that x

′ ≤ x

0 else
(3.10)

Figure 3.9: Example of hypervolume.
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4.1 Lake Como

Lake Como, also known as Lario, is a regulated sub-alpine lake of glacial origin
located in Lombardy, Italy, in the provinces of Como and Lecco.
With a surface of 145 km² and 185 km of shores, it is the third biggest in Italy,
after Lake Garda and Lake Maggiore, and the longest in perimeter. The aver-
age depth of Lake Como is 161 m, while the maximum is 418 m, making it the
fifth-deepest in Europe.
The lake’s shape resembles a reverse Y (Figure 4.1): with the northern branch
located near the city of Colico, and 2 southern branches, in correspondence of
the cities of Como (west) and Lecco (east).

The lake is fed by a 4552 km² basin almost completely located in Italy (90%),
with the remaining part (10%) located in Switzerland. The Lake’s main tribu-
tary is the Adda river, originating on the Alps north-east of Lake Como, at an
height of 2150 m. Pre-lacual Adda flows westwards in Valtellina valley, collect-
ing water from many other courses, and enters the Lake Como in its northern
branch. The river has an average discharge of 88 m3/s ranging from 18 m3/s
to 918 m3/s (Giacomelli et al., 2008).
Besides Adda river, 37 other smaller water courses flow into Lake Como, most
with limited and discontinuous discharge.
The sub-lacual Adda is the only emissary of the lake, flowing from its south-
eastern branch southwards towards the Padana plain. The south-western branch
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Figure 4.1: Lake Como.

of the lake is instead a dead end, suffering with floods (Guariso et al., 1986) and
water quality problems (Mosello et al., 2010; Binelli et al., 2001).
Since 1946, Lake Como is a regulated lake, thanks to the construction of the Ol-
ginate Dam, located between the lakes Garlate and Olginate. The dam has then
been operated by the Adda Consortium to avoid floods (mostly in the city of
Como), and to supply water to downstream users. The regulation can control
a total volume of 254.3 Mm³, of which 246.5 Mm³ stored in Lake Como and the
rest in Lake Garlate. The regulation is allowed between levels -0.4 m and +1.3
m, measured at the Malgrate hydrometer.
There are several artificial hydropower reservoirs and natural lakes upstream,
with a total storing capacity of 545 Mm³, more than twice the total active capac-
ity of the lake (Denaro et al., 2017).
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Figure 4.2: Digital Elevation Model of Lombardy, including lakes, the main river network, Lake Como
basin and irrigation districts.

4.2 Hydrological regime

The pre-lacual Adda river, main tributary of Lake Como, is characterized by a
snow-rainfall dominated hydrological regime, typical of Alpine catchments.
The hydrograph (Figure 4.3) shows a snowmelt peak in late spring and a sec-
ondary rainfall peak in autumn. Winters and summers are characterized by
low flows. Summers are typically dry in the region, while in winter a large por-
tion of precipitation accumulates in the basin in the form of snow. Compared
to the natural regime, the regulation shifts part of the spring volume to late
summer in order to meet downstream irrigation demand. Nevertheless, Lake
Como releases are not always capable to meet summer demand. Moreover, the
effects of climate change on the system are expected to be extensive (Anghileri
et al., 2012) and to exacerbate the situation. Basins with a high average alti-
tude like this (reaching 4049 m in Pizzo Bernina (MeteoComo, 2018)), are also
the ones bound to suffer greater effects due to the temperature shifts ((Bocchiola
and Rosso, 2007) and (Rosso, 2002)) caused by climate change. Droughts have al-
ready increased in frequency and intensity (e.g. 2003, 2005, 2006, 2012 and 2014
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droughts)((García-Herrera et al., 2010)) and the hydrological trends are chang-
ing, as illustrated in Figure 4.4. With respect to the past, and higher streamflow
can be observed in winter, due to increasing temperatures that cause less pre-
cipitation to fall as snow and more to fall as rain and immediately flow.
As a consequence, spring peak is reduced and also anticipated, as snowmelt
occurs earlier, due again to raising temperatures. This causes the reduction of
water available in spring, and consequently a reduction of summer availability.

Figure 4.3: Lake Como annual average hydrograph.

Figure 4.4: Lake Como inflow. 30-years moving average between 1946 and 2010.
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4.3 Main stakeholders and interests

Lake Como and Adda river shores have historically been populated and their
waters exploited in many different ways. The water has been used to feed agri-
cultural districts since ancient times, as well as for fishing and sport activities.
The Lake’s geological conformation makes the south-western branch a dead
end, and the city of Como subjected to floods. Also many important natural
sites are located along the Adda course, e.g. Natural Reserve of Pian di Spagna
Lake Mezzola, Parco Adda Nord, Parco Adda Sud and Parco Sud, all requiring
particular hydrological conditions in order to survive.
Downstream to Lake Como, the Adda river serves four agricultural districts.
Since the needs of the different stakeholders are seldom synchronized and very
often conflicting, the lake has been operated as a multi-objective problem (Guar-
iso et al., 1986) in order to satisfy all the stakeholders.

4.3.1 Flood control

Flood risk management is one of the primary issues in the water governance of
Lake Como. The most vulnerable part is the south-western branch of the lake
(Guariso et al., 1982), where the city of Como is located, with floods documented
in the city since 1431. The floods happen mostly during autumn or late summer,
when the basin is subject to the most intense rain. However, floods can happen
also in late spring, due to intense snow-melt peaks (Denaro et al., 2017). Since
the construction of the Olginate dam, the number and intensity of floods has
decreased, due to the introduction of DMV for the downstream river and the
built of dykes in the city of Como (Castelletti et al., 2010; Anghileri et al., 2012).
However the problem will still remain and may worsen due to a progressive
phenomenon of subsidence registered in Cavour square, the commercial heart
of the city of Como. The phenomena is known since 1955 and it is caused by
the overuse of groundwater. It increases the vulnerability to flood of the city,
although it has slowed down in recent years, from 12 mm/year in 1983 to the
current trend of 2.5 mm/year.

4.3.2 Agricoltural districts

The river Adda, downstream from lake Como serves an approximate area of
1320 km² (Figure 4.2). Maize, with a 52% of the total cultivated area is the pri-
mary crop, with an annual production of about 1.5 Mton/year (Li et al., 2017).
Like most of the other crops in the area, it requires irrigation with water coming
from the river during the growth season (spring to summer), as the rainfall is
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not sufficient to cover its water needs.
The area is divided into 4 different irrigation districts, called Consorzi di Bonifica.
The largest district, Muzza, has an area of 700 km² and an irrigation network
of 4000 km.
The irrigation season goes from April to August, coinciding with the period
of low flow of the river. Coming from a good condition, save for exceptionally
dry years, this problem has worsened during all of 20th century and is expected
to exacerbate in the future with increasing needs of water and climate change
(Giuliani and Castelletti, 2016).

4.4 Data

4.4.1 Local hydrological data

The local data used in the thesis were:

• Precipitation Data: they come from the Euro4M-APGD (i.e. Alpine Precip-
itation Gridded Dataset) dataset, created by MeteoSwiss for the EURO4M
(i.e. European Reanalysis and Observation for Monitoring deliverables)
project. The EURO4M, is an European project aimed at providing timely,
reliable information on the climate state in Europe. The dataset is based on
a gridded analysis of daily precipitations, coming from an high resolution
rain gauge networks which cover the entire Alpine region (Figure 4.5). It
is composed by 8500 stations, spread across Austria, Croatia, France, Ger-
many, Italy, Slovenia and Switzerland. The system considers rain, as well
as the Snow Water Equivalent (SWE) [mm]. The quality checked data used
for this thesis range from 01/01/1971 to 31/12/2008 with a 5× 5 km res-
olution and a daily time step.

These daily data, were then clipped over the Lake Como basin and aggre-
gated monthly. Figure 4.6 shows the average trend of daily precipitations,
calculated as daily mean on the basin from 1971 to 2008. Looking at any
year, we can see a similar pattern. During summer, apart from anomalous
values, the precipitations are generally low. During winter instead, the
precipitations are slightly higher, but a large amount of it is snow. During
spring and autumn there are two high peaks of precipitations.

• Temperature: the temperature is the one measured by the ARPA (i.e. Re-
gional Agency for Environmental Protection ). The data range from year
1990 to 2013 and are averaged for the basin.
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Figure 4.5: Rain-gauge network. The color represents the height (m) of the station.

Figure 4.6: Cyclostationary mean of the precipitations in Lake Como basin, from 1971 to 2008.

Figure 4.7 shows the average daily temperature pattern, calculated as daily
mean from 1971 to 2008, averaged in all the basin. The average tempera-
ture is 3.4 degrees. The pattern is that typical of the climatic region. It has
hot summers, cold winters and intermediate springs and autumns.

• Lake inflow: daily data of inflow [ m3/s ] to Lake Como are measured and
made available by the Consorzio Adda since 1946 1. Consorzio Adda is
the company in charge of the management of the Olginate dam. Figure

1http://www.addaconsorzio.it/
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Figure 4.7: Cyclostationary mean of the temperature in Lake Como basin, from 1971 to 2008.

4.8, shows the cyclostationary mean of the inflow, calculated with data
from 1971 to 2008.

Figure 4.8: Cyclostationary mean of the inflow to Lake Como, from 1971 to 2008.
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4.4.2 Global data

Sea Surface Temperatures

The global Sea Surface Temperatures (SSTs) come from the NOAA’s Extended
Reconstructed SST (ERSST) Version 3b dataset. It is a global dataset, with a
monthly time resolution and 2.5 degrees spatial resolution. ERRST 3b version
uses in situ SST data coming from the International Comprehensive Ocean-
Atmosphere Dataset International Comprehensive Ocean-Atmosphere Dataset
(IECOADS) and uses improved statistical methods to allow a stable reconstruc-
tion using sparse data. Version 3b is the newest available capable of excluding
under-sampled regions for global averages. Unlike the previous versions, it
doesn’t consider satellite data, as they were observed to inject a a considerable
bias in the analysis. A detailed description of the 3b version and a comparison
to the prior ones can be found in (Smith et al., 2008).

ENSO

Among the existing ENSO indexes, we selected the MEI index, as seen in chap-
ter 2.2.1. Values for the index are available on the NOAA website from 1950
and to the present. The value of the index comes from a combination of sea
level pressure, zonal and meridional components of the surface wind, sea sur-
face temperature, surface air temperature, and total cloudiness fraction of the
sky.
The index is calculated monthly considering two months at a time (January
and February, February and March, ..., December and January). The index first
filters the individual fields into clusters and then it is calculated as the first un-
rotated Principal Component (PC) of the six considered variables combined. To
have comparable values of the MEI, all seasonal values are standardized with
respect to average seasonal value for the 1950-1993 reference period.
Since 2011, an extended timeseries dating back to 1871 is available.

NAO

The selected NAO index is the station-based Hurrell NAO Index (see chapter
2.2.2 ). It is calculated using as inputs the difference of normalized Sea Level
Pressure between Stykkisholmur in Iceland and Lisbon in Portugal. The Na-
tional Center for Atmospheric Resource (NCAR) provides the the timeseries
dating back from 1865, with a monthly resolution.
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4.5 Models

The conceptual model for Lake Como assumes a 24 hours decision and mod-
elling time-step. Its state dynamic is built as a mass balance equation of the
storage s [m3]:

st+1 = st + nt+1 − rt+1 (4.1)

where nt+1 is the net inflow to the lake, given by the difference between
inflow, evaporation and other losses and rt+1 is the outflow. The variables sub-
script indicates the time step when its value is deterministically known. The
release is calculated as:

rt+1 = f (st, ut, nt+1) (4.2)

where the function f describes the nonlinear, stochastic relation between the
decision ut and the actual release rt+1 (Piccardi and Soncini-Sessa (1991)). Given
an operating policy p, the daily release decision is obtained, using as inputs the
day of the year and the reservoir storage:

ut = p(t, st) (4.3)

The policy is built in a way to produce a sequence of optimal decisions ut

that maximize the stakeholders’ needs, operationally defined by objective func-
tions. These functions are formulated according to previous works (Castelletti
et al., 2010; Culley et al., 2016; Denaro et al., 2017) as follows: average annual
number of flood days over the simulation horizon H, i.e.

J f lood =
1
H
×

H

∑
t=0

g f lood
t+1 (4.4)

where: 1 i f ht+1 > hlim

0 else
(4.5)

where hlim = 1.24 m is the lake level threshold determining the occurence of a
flood in Como. The objective for the irrigation deficit is defined as the quadratic
daily average water deficit with respect to the water demand wt, calculated as:

Jirr =
1
H
×

H−1

∑
t=0

girr
t+1 (4.6)
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where:
girr

t+1 = (βt ×MAX(wt − (rt+1 − qMEF), 0))2 (4.7)

and qMEF = 5 m3/s is the minimum environmental flow, βt is a time-varying
coefficient accounting for the different impacts of water deficit during the dif-
ferent crop growth stages. The quadratic formulation aims at penalizing severe
deficits in a singe time step over more frequent, smaller ones.

4.6 Experimental settings

This section details the experimental settings used to adapt the procedures
summarized in chapter 3 of the case study just presented.

NIPA is set to work binning years into two phases for each signal. Each can
be either positive or negative. The model is set to predict, starting from SSTs
data from three months, the next three ones and the minimal significance level
threshold is set to be 95%.

For the calibration of multivariate rain prediction models, we used 4 neu-
rons in the ANN, following the empirical rule where: Nneurons = Ninputs + 1.
The number of neurons in the ELM model was set to 10, after a trial-and-error
manual tuning.

For the policy optimization via Borg MOEA, the number of NFE was set to 2
millions, according to guidelines given by previous works on the systems. The
optimization was repeated 20 times to filter the random components, and the
final Pareto front is obtained by merging the results of the 20 repetitions.
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This chapters presents the results of the procedures explained in chapter 3. Fol-
lowing a similar order, it shows the results for the detection of climate telecon-
nections (section 5.1), the multivariate seasonal meteorological forecast (section
5.2), the seasonal hydrological forecast (section 5.3) and valuation of forecast
operational value (section 5.4).

5.1 Detection of climate teleconnections

This section is dedicated to the presentation of the results of the detection of
climate teleconnection step, in which teleconnection indexes are employed to
find significant correlations between the state of the large-scale climate signals,
and the precipitation in the Lake Como basin. Following the NIPA procedure,
detailed in section 3.1.2, we first bin the 12 triplet of consecutive months (JFM-
FMA-MAM-AMJ-MJJ-JJA-JAS-ASO-SON-OND-NDJ-DJF) into meta-phases, ac-
cording to the MEI index for ENSO and the NAO index for NAO. For each
month triplet, four combinations of metaphases are possible, as shown in Table
5.1 for the JFM period.
After that, we perform a correlation analysis between the three months ag-
gregated precipitations(e.g. JFM) and the average SSTs of the three previous
months (e.g. OND SSTs) for each oceanic cell. Detected correlations with a sig-
nificance level ≥ 95 % are retained.
An example of the results for the JFM precipitations and OND SSTs period can
be seen in Figure 5.1. The complete set of results are reported in appendix A.
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Table 5.1: Years splitted into meta-phases according to MEI and NAO index: JFM period

MEI + NAO+ MEI + NAO - MEI - NAO + MEI - NAO -

1973 1978 1972 1971
1977 1979 1975 1974
1980 1981 1985 1976
1983 1988 1999 1982
1987 1998 2000 1984
1991 2003 2001 1986
1992 2004 2008 1989
1993 1990
1994 1996
1995 1997
2005 2002
2007 2006

For the JFM case, years with positive MEI index show many gridpoints where
SSTs are negatively correlated with the precipitation, with a particularly high
concentration in the Indian Ocean. For negative MEI index instead, there is
a much smaller number of correlated points, all of them positively correlated,
and located in the Atlantic Ocean.
The results are different for NAO where, for both phases, mixed negatively and
positively correlated gridpoints of SSTs can be detected. For the positive NAO
phase, most of the points are scattered without a prevalent location. For the
negative NAO phase, instead, most of the points are concentrated in the Pacific
Ocean.
Following the correlation analysis, a Principal Component Analysis (PCA) is
performed for each combination of months’ triplets and climate signal’s phase
on the significantly correlated cells. The first Principal Component (PC) ob-
tained is finally retained as input for the subsequent multivariate modelling
step.

5.2 Multivariate meteorological forecast

In this step, the previously obtained PCs are used as input to a multivariate
prediction model that is calibrated and validated to reproduce the observed
rainfall.
We test three model classes: linear models, ANNs and ELMs. All of them link
the period’s meta-phase, NAO PC and MEI PC to the precipitations in the Lake
Como basin. As specified in chapter 3.2, a leave one out cross-validation is
performed for each model, to limit the risk of over-fitting. The results for JFM
season can be seen in Figure 5.2, while the rest are reported in appendix A.
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Figure 5.1: Correlation maps between October, November, December SST anomalies and January,
February, March precipitation in the Lake Como catchment for the two phases of ENSO (top panel)
and NAO (bottom panel).

Results show that, the ELM model clearly outperforms the other two. The lin-
ear model yields a very poor performance, even predicting highly negative pre-
cipitations in a few periods. In addition, the peaks are extremely emphasized,
reaching extreme values out of the historic range for the area. The forecasted
peaks are not even synchronized with the observed ones. Finally, also the av-
erage trend is not respected. We can clearly infer that the relationship between
the PCs and the precipitations is not linear.
In comparison, the ANNs perform much better. No negative values nor un-
naturally high peaks are present and they fairly reproduce the general trend.
However, they poorly reproduce most of the highest peaks in both magnitude
and timing.
Finally the ELMs show the best performances. They best reproduce peaks and
generally perform better on the whole horizon. The observed trend is followed,
without a large presence of time lag or anticipation. The performances seem to
deteriorate a bit for the last years, but the error is still contained.
The conclusion we have drawn from the inspection of the predicted rainfall
trajectories are numerically confirmed by the values of the Pearson coefficient
R and the coefficient of determination R2 that can be seen in Table 5.2, which
reports an R = 0.9 and an R2 = 0.76 for the ELMs, which clearly outperform the
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Figure 5.2: Observed and predicted precipitation for JFM season: linear (top), ANN (center), ELM
(bottom).
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Table 5.2: Performances of Linear, ANN and ELM models: JFM case.

R2 Linear ANN ELM

R 0,50 0,63 0,90
R2 -12,60 0,62 0,76

Linear and ANN models. Complete results for the R and R2 for ELM models
can be seen in appendix A

With this procedure, we obtain the predicted precipitations for the three
months following the three months of SSTs observations for each of the twelve
months triplet. Figure 5.3 illustrates a scatterplot of observed vs ELM-predicted
values of the three months cumulated precipitations, which gives an idea of the
consistently good performance of ELMs, for all the twelve months triplet.

Figure 5.3: Scatterplot between observed and predicted precipitation for all the three-month triplets.

The points look aligned to the diagonal line splitting the plane in two equal
halves, with no apparent deterministic trend in the disposition of the outliers.
The Person’s correlation coefficient R is equal to 0.91 and R2 to 0.83, further
confirming the very satisfactory results. So, in the end, we use the seasonal
precipitations predictions calculated with ELM models to proceed to the next
step.
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5.3 Seasonal hydrological forecast

Once we have the predicted seasonal precipitations, the next step is to trans-
form them into daily precipitations and finally into daily streamflows.
The K- Nearest Neighbour procedure is first employed to obtain the daily pre-
cipitation data. Figure 5.4 shows an example of the results, for the JFM season.
We used a k=6, to have enough variability and at the same time avoid using
season with big differences in total value.

Figure 5.4: Disaggregation of seasonal precipitation values into daily ones: JFM case. The different
colours represent different years.

KNN does not try to reproduce the exact values of historical daily precipi-
tations, but only to construct an appropriate daily distribution by capturing a
plausible seasonal precipitation pattern. In fact, for our purpose, it is not par-
ticularly important to get a precise day prediction as long as cumulated pre-
cipitation is accurate enough, considering that our aim is to make long term
prediction, as opposed to short term predictions. Short term predictions need
to accurately reproduce daily magnitudes and follow the fast flood dynamics;
long term predictions need to give an indication of season ahead water avail-
ability, necessary to trigger effective hedging strategies in water supply opera-
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tions.

The obtained daily precipitations, along with cyclostationary average the tem-
peratures, are then used as inputs for the hydrological model HBV to get the
corresponding daily streamflow. Lastly, according to the findings of (Denaro
et al., 2017), daily predicted inflows will be cumulated over a lead time of 51
days to inform the lake operating policy.
From Figure 5.5 we can see that the hydrological predictions tend to present a
wet bias, caused by the imperfect reproduction within the HBV model of some
of the physical processes taking place in the catchment. In particular, the largest
bias can be observed on low flow conditions,where the values of predicted in-
flow are much higher than the real ones. Analysing these points, we find out
that they are mostly located during the dry summer season. This error could be
explained by the fact that the HBV model doesn’t take into account the multi-
ple hydropower reservoirs located in the upstream the catchment. These reser-
voirs are operated with only the maximization of the profit from hydropower
electricity production as objective. During the summer period, the demand for
electricity is generally low (Bianco et al., 2009) and so is the price of sold energy,
due to the market’s dynamics. So, in this period, the hydropower companies
have little to no interest in releasing water that wouldn’t bring profit and so
they lower their releases. The HBV doesn’t model explicitly this part of the
system and so it can’t accurately simulate these dynamics.
Anyway, apart from those low flow values, the model’s performance seem suf-
ficiently accurate, with the Pearson coefficient still attaining a satisfying value
of 0.71. Yet, it is worth noticing that the transformation from precipitation to
streamflow forecasts introduces a 0.2 degradation of forecast accuracy.

At the end of this step, we have the predicted inflows to Lake Como to be
used in the next step to condition the control policy.

5.4 Quanti�cation of forecast skill and operational value

After obtaining the streamflow we feed use this information in the design of
the the control policies for the operations of Lake Como. Formally we solve the
following multi-objective optimal control problem:

p? = argminp|J f lood, Jirr| (5.1)

where the two objectives are defined as in eqs. 4.7 and 4.6.s a baseline oper-
ating policy (BOP) we consider to condition the lake operations over the day of
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Figure 5.5: Scatterplot of observed and predicted inflows cumulated over a leadtime of 51 days.

the year and the lake level (Denaro et al., 2017). Enlarging this basic information
set by including the 51 days ahead predicted inflows represent a promising
option for increasing the overall system performances and reliability (Tejada-
Guibert et al., 1995; Galelli et al., 2010; Gelati et al., 2010; Denaro et al., 2017), espe-
cially in terms of irrigation supply. In particular, we build three different sets
of Pareto optimal policies:

1. Perfect Operating Policy (POP): POP is designed using Deterministic Dy-
namic Programming, assuming to have perfect knowledge of all the future
information at he time the decision is taken. All the future inflow is deter-
ministically known over the entire horizon H. This set of solutions serve
as an upper bound reference of the best (ideal) system performance.

2. Baseline Operating Policy (BOP): BOP is designed via EMODPS to approx-
imate the historical lake regulation. BOP decisions depend only on the day
of the year and on the lake level, i.e. ut = p(t, ht).

3. Informed Operating Policy (IOP): IOP is also designed using EMODPS,
but it includes the information coming from our study. So the decision is
calculated as ut = P(t, ht, q̂51).

Figure 5.6 shows the performances of the three alternatives in terms of objec-
tive values. Both objectives are described as cost functions and so both should
be minimized, meaning that the perfect solution would lay on the bottom left
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corner. The Figure shows the reference set identified for each of the three alter-
native policy structures, obtained as the set of non-dominated solutions across
the 20 optimization trials performed.

Figure 5.6: Performance comparison between Baseline Operating Policy (BOP), Informed Operating
Policy (IOP) and Perfect Operating Policy (POP). The two rhombi represent the policies with 6.3
days of floods per year, corresponding to the historical lake operations, which are analyzed in detail
in Figures 5.7 and 5.11.

From the observation of the three Pareto fronts, a clear ranking can be made,
since there are no intersections between the three classes of policies.
The POP, represented by the green line clearly outperforms the other two. This
because perfect knowledge allows to take the best possible decisions at any
time step. It is interesting to note that the bottom left part of the POP is sharp
edged. This means that with a perfect forecast of the future conditions, the
conflict between irrigation and flooding wouldn’t exist. In fact, using the so-
lution in the bottom left corner would mean that giving a slight advantage to
one of the two stakeholders would cause a massive disadvantage for the other
and vice-versa. So an agreement on using that specific solution could be easily
accepted by both parts and this would eliminate the conflict. However, with
the current time technology and knowledge, it is not possible to gain perfect
knowledge about the future and the conflict will remain. Anyway, the use of
additional information could help mitigate it.
This can be seen looking at the performances of the IOP. We can see that the IOP
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Table 5.3: Results of the Hypervolume Indicator for the three Pareto Fronts in Figure 5.6. The POP
Pareto front assumes value 1 as it is the reference performance.

Pareto front Hypervolume
POP 1
BOP 0.21
IOP 0.69

Pareto front looks down-shifted compared to the BOP one. This is due to the
fact that the information we give is a long term one which useful for irrigation,
while the leadtime should be much shorter to be useful for flood control. So,
the information we give about future expected inflow is particularly valuable
to improve the water supply strategy rather than flood control.
But the fact that largest improvement is shown by Jirr doesn’t mean that the
information is not helpful also for J f lo. We can in fact improve Jirr at no cost for
J f lo, meaning a mitigation of the conflict.

To get a better understanding of the results, beside looking at Figure 5.6,
we can use the hypervolume, already introduced in chapter 3.4.2, to quantify
the quality of the different Pareto fronts. The hypervolume (HV) can assume
values from 1 (best performance) to 0 (worst performance). The value 1 is given
to the POP and used as reference to calculate the performances of BOP and IOP,
as reported in Table 5.3. The value assumed by BOP is 0.21 and its difference
compared to that of IOP confirms the large potential improvement provided
by the use of the 51 days ahead inflow prediction. In fact, the introduction of
the information coming from the MV-forecast helps achieving an HV of 0.69.
This means a 48% improvement compared to the BOP, demonstrating that it
represents an extremely valuable information.

5.4.1 Policy trajectory analysis

This section deepens the analysis, by comparing Lake Como levels and releases
in the case of baseline and informed policy. In particular, we choose to study
the case where we have a number of flood days equal to the average historic
one (6.3 days/year). These two points can be seen in Figure 5.6 circled by the
two diamonds. In this way, we can focus on how much IOP improves the BOP’s
Jirr performance while maintaining the same value for J f lo.
Figure 5.7 shows the level at the Malgrate hydrometer trend for the two poli-
cies, compared to the flooding threshold.

The most evident trend of the IOP compared to the BOP is that the level is
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Figure 5.7: Lake Como level from 1996 to 2008: BOP, IOP and flood threshold comparison.

generally higher throughout the whole year, except for the end of summer and
winter period, where they both reach their minima. In particular IOP keeps
the level just below the flood threshold for a long period. This is possible due
to the information provided by the forecast about the expectedinflow in the
next period. This knowledge about the expected inflow allows evaluating the
flood risk and keeping the lake at higher levels. As a consequence, irrigation
can be better satisfied. Figure 5.8 helps visualizing this trend. It shows the
cyclostationary daily mean of the Lake level for the two different policies. From
the Figure, we can see that the IOP clearly stays above the BOP for all the year
on average, confirming what was said before. The difference between the two
policies is particularly large during spring to summer, while the gap reduces in
autumn.

Among the considered horizon, two particular periods are interesting to
look at. The first one can be seen in Figure 5.9. The Figure shows the level
for IOP and BOP for the period from the end of year 2000 to autumn 2001. This
is one of the few periods where the IOP is below the BOP. We can clearly see
that BOP’s level is over the threshold for a very long period while IOP manages
to keep it just below for most of the time. In this case the IOP works correctly
and actively helps in avoiding floods. This is possible for the IOP because the
anomalies for that period all show above average inflows and so the policy can
release a considerate amount of water to avoid flooding, while also covering
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Figure 5.8: Cyclostationary mean of the lake level from 1996 to 2008 for BOP and IOP.

Figure 5.9: BOP and IOP Lake level from fall 2000 to fall 2001, compared with the flood treshold.

future irrigation demand.

Figure 5.10 shows another example of the IOP’s good management. In par-
ticular we can notice that for a very long period, starting at September 2004 and
ending in August 2005, the IOP is able to maintain a higher lake level despite
the intense drought of 2005. Conversely, the BOP almost empties the lake.
These two examples further confirm the advantages gained in terms of Jirr that
IOP can bring when compared with BOP and the downshifting of the Pareto
fronts, in favour of the irrigation objective. This is made possible by the fact
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Figure 5.10: BOP and IOP Lake level from fall 2004 and end of summer 2005.

that the introduction of the forecast into the control policy arguments, brings
information about next season’s expected streamflow. .

Figure 5.11: Lake Como release from 1996 to 2008: BOP vs IOP management for the 6.3 flood days
policies.

Figure 5.11 shows the release trajectories for the two selected policies, along
with the water demand. The water demand has a time varying pattern, reach-
ing its peak during summer and late spring, when crops are growing most,
and its minima in winter, when the crop is still to be planted. By looking at
the Figure, we can make a visual analysis of the timing and magnitude of the
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water deficit for the two cases. We can see that the release values for IOP are
slightly smaller that the release from BOP during the winter period. This is
done to accumulate more water to be used during spring and summer. Indeed
the release from IOP during spring is very often higher than that from BOP and
follows more closely the pattern of water demand, minimizing the deficit and
improving the performances in terms of Jirr.

Figure 5.12: Releases cyclostationary means for BOP and IOP, compared to water demand.

The trend just described is confirmed when looking at Figure 5.12, which
shows the cyclostationary mean of the release for BOP and IOP, compared with
water demand. In particular we can see that the release is higher for IOP dur-
ing all the period with the highest water demand, from late spring to autumn,
with the exception of the peak. The opposite happens during winter and early
spring, where IOP releases less in order to save water for the summer period.

Figure 5.13 shows the releases corresponding to the lake levels in Figure
5.9. Where we can see that the release from IOP is slightly higher than that
from BOP. Figure 5.14 , instead, shows the releases corresponding to the lake
levels in Figure 5.10. A part from the higher peak at the end of November 2004,
with the IOP policy, the release is kept at a lower level than that coming from
BOP. This is what allows the lake to accumulate the water volume, necessary
to better satisfy the water demand in spring 200.

To resume, what we have found is that IOP’s next season’s forecast, allows
it to perform better compared to BOP. This because the release in one season
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Figure 5.13: BOP and IOP release from fall 2000 to end of fall 2001, compared to water demand.

Figure 5.14: BOP and IOP release from fall 2004 to end of summer 2005, compared to the water demand.

can be regulated according to the next one’s expected conditions. So, if the fol-
lowing season is expected to be dryer than usual, more water will be stored by
lowering the release. In the opposite case, instead, the release will be promptly
raised to avoid floods.
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6
Conclusions and future research

This work’s aim is to investigate the possibility of using information coming
from teleconnections to improve the operations of water systems, trough the
use of long term forecast models of local hydrological variables. In particu-
lar, this thesis analyses the main teleconnection patterns to construct long term
forecasts of precipitation and inflow for the Lake Como basin, and redesigns
the lake operations including such information to mitigate the existing con-
flicts between water users.
Lake Como is a regulated system located in Northern Italy. The management
of its storage is cause of many conflicts, with the one between agricultural dis-
tricts and flood protection as the most important. In particular, agriculture
needs the lake volume to be as high as possible, to have enough water to sat-
isfy summer demands. On the contrary, flood protection is interested in keep-
ing Lake Como’s level as low as possible, to prevent flooding for those living
on its shores. So, the demands of the two are opposite and difficult to satisfy at
the same time. A better management, coming from a larger set of information,
could help mitigating this conflict.
To achieve that, we first apply the NIPA procedure, binning the years in dif-
ferent phases according to both ENSO and NAO oscillations, creating correla-
tion maps and finding Principal Components aggregating the pre-seasons SSTs
significantly correlated with the local precipitations. Those PCs, are then com-
bined in MV-forecast ELM models, to predict the precipitation in the following
three months. The results show that a correlation between teleconnections and
precipitations in the area exist, and that ELM models are able to use it for de-
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livering skilful forecast. In particularthe comparison between observations and
resulting hindcast provides a Pearson coefficient R = 0.9 and the determination
coefficient R2 = 0.76.

These seasonal precipitation forecast are then transformed into daily fore-
casts, by means of a KNN procedure, and a basin hydrological model produces
the daily inflow to Lake Como. The procedure to get daily inflows from sea-
sonal precipitations performs sufficiently well, attaining an R = 0.71, although
introducing some biases with respect to the precipitation forecasts. The fore-
casted inflows are then aggregated into 51 days cumulated inflow forecast. Fi-
nally, the last part of the work focuses on exploring the potential of informing
Lake Como operating policy with the produced teleconnection based long term
forecast. Three policies were designed:

1. Perfect Operating Policy (POP): POP assumes perfect foresight of the fu-
ture inflow and is taken as a reference for the other policies;

2. Baseline Operating Policy (BOP): BOP approximates the historical lake
regulation

3. Informed Operating Policy (IOP): IOP is conditioned upon basic informa-
tion and the long term forecast

The performance improvement provided by the forecast is very notable, and
can be quantified with an increase of the Hypervolume metric of 48%. A com-
parative analysis of the trajectories of the lake level and releases under BOP
and IOP shows that the informed policy tends to maintain the lake level higher
during the whole year, except for the winter months, thus generally counting
on larger storages on irrigation months.

The conclusion we can draw from this is that a clear correlation between
teleconnections and local hydrological variables can exist and can help bring-
ing massive advantages in water systems management. This is true in partic-
ular for those objectives requiring a long term forecast to improve their per-
formances, like for example irrigation supply, while the effects are limited on
some others that would benefit more from a short term forecast, like flood con-
trol.
Future researches could build on these results and extend the analysis to com-
bine short and long term forecast to inform the lake operating policy on fast
and slow upcoming hydrological dynamics, for the benefit of both objectives.
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A possible improvement could be also achieved by using forecast also for tem-
peratures. In this thesis, as input to the HBV model, we use climatology tem-
peratures, i.e. the cyclostationary average of the mean temperatures in the
basin from 1990 to 2003. This timeseries could be one of the causes of the loss
of performances that we observe in this stepas they affect both snow dynamics
and evapotranspiration processes. Using a forecast model also for temperature
could help improving the performances of the resulting hydrological forecast,
which has proven to be one of the most critical in the framework.
More specifically for the Lake Como system, a different model for transforming
rainfall into inflow, which considers also the many upstream reservoirs, could
further improve the hydrological forecast accuracy. By including them, the er-
rors could be minimized and some benefits could be provided to the overall
procedure.
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A
Additional material

In this chapter we show the complete results of the procedure.

Table A.1: Performance of ELM model for the three differently constructed years.

JFM AMJ JAS OND Total
R2 0,7614 0,7072 0,7598 0,6562 0,72115

FMA MJJ ASO NDJ Total
R2 0,7262 0,5518 0,6116 0,6813 0,642725

MAM JJA SON DJF Total
R2 0,7371 0,6933 0,6242 0,5035 0,639525
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Figure A.1: Correlation maps between pre-season SST anomalies and FMA precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.2: Correlation maps between pre-season SST anomalies and MAM precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.3: Correlation maps between pre-season SST anomalies and AMJ precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.4: Correlation maps between pre-season SST anomalies and MJJ precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.5: Correlation maps between pre-season SST anomalies and JJA precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.6: Correlation maps between pre-season SST anomalies and JAS precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.7: Correlation maps between pre-season SST anomalies and ASO precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.8: Correlation maps between pre-season SST anomalies and SON precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.9: Correlation maps between pre-season SST anomalies and OND precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.10: Correlation maps between pre-season SST anomalies and NDJ precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.11: Correlation maps between pre-season SST anomalies and DJF precipitation for the two
phases of ENSO (top panel) and NAO (bottom panel).
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Figure A.12: Observed and predicted (ELM model) precipitation for the FMA period.

Figure A.13: Observed and predicted (ELM model) precipitation for the MAM period.

Figure A.14: Observed and predicted (ELM model) precipitation for the AMJ period.
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Figure A.15: Observed and predicted (ELM model) precipitation for the MJJ period.

Figure A.16: Observed and predicted (ELM model) precipitation for the JJA period.

Figure A.17: Observed and predicted (ELM model) precipitation for the JAS period.
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Figure A.18: Observed and predicted (ELM model) precipitation for the ASO period.

Figure A.19: Observed and predicted (ELM model) precipitation for the SON period.

Figure A.20: Observed and predicted (ELM model) precipitation for the OND period.
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Figure A.21: Observed and predicted (ELM model) precipitation for the NDJ period.

Figure A.22: Observed and predicted (ELM model) precipitation for the DJF period.

Figure A.23: Observed and predicted (ELM model) seasonal precipitation over the complete period.
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