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Chapter 1

Abstract - Italiano

Viene presentato un protocollo di Medium Access Control (MAC) a Time Di-

vision Multiple Access (TDMA) deterministico per Wireless Sensor Networks

(WSN). Le sue caratteristiche sono: la minimizzazione della latenza, la pos-

sibilità di riservare un data rate minimo garantito per ogni comunicazione e il

supporto di reti multi-hop. Vari protocolli multi-hop sono stati proposti durante

gli anni, i quali implementano diversi paradigmi e hanno varie caratteristiche.

Nessuno garantisce data rate o latenze tali da poterli considerare realmente de-

terministici, entrambi requisiti necessari per utilizzare il protocollo in sistemi

real-time. Durante gli anni è stato ideato il protocollo Glossy, il quale realizza

un’efficace primitiva di flooding. Esso è alle fondamenta di FLOPSYNC-2, il

quale ottiene sincronizzazioni temporali inferiori al µs con consumi inferiori al

µA. Questo concetto è stato sfruttato per ottenere un protocollo MAC deter-

ministico per WSN il cui obiettivo principale è garantire latenza e un data rate

minimo. Dato che FLOPSYNC-2 fornisce una primitiva di sincronizzazione nota

per essere efficiente, esso viene usato per allineare i tempi nella rete, in una fase

chiamata synchronization downlink. Il protocollo dispone anche di una fase di

uplink il cui scopo è raccogliere informazioni sulla topologia di rete e sulle richi-

este di allocazione del canale (stream), i quali sono trasmessi fino al master un

nodo alla volta. Successivamente, in maniera centralizzata, viene calcolata una

schedule, che viene poi distribuita usando una fase di downlink. Infine, la fase di

trasmissione dati viene eseguita secondo la schedule distribuita, facendo comu-
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nicare i nodi deterministicamente. Partendo da riferimenti storici, questa tesi

analizza i protocolli attualmente disponibili per le WSN. Poi il problema viene

presentato nei suoi dettagli. Segue il design e relativa descrizione del protocollo.

Viene poi realizzato un modello software del protocollo, illustrandolo nelle sue

parti. Infine vengono presentate e analizzate delle simulazioni per effettuare una

verifica dei concetti.
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Chapter 2

Abstract - English

A deterministic Time Division Multiple Access (TDMA) Medium Access Con-

trol (MAC) protocol for Wireless Sensor Networks (WSN) based on time syn-

chronization is realized. Its key features are the latency minimization, the pos-

sibility to reserve a granted minimum data rate for each communication and

to cope with working in multi-hop networks. Many multi-hop protocols have

been proposed during the years, implementing different paradigms and having

different characteristics. However, no one deals with guaranteed data rates nor

latencies enough to be considered truly deterministic. Though, These are nec-

essary requirements in order to operate in real-time systems. Anyhow, during

the years, a flooding protocol, called Glossy, came up with an efficient idea to

transmit in WSNs. This is used as foundation for the FLOPSYNC-2 architec-

ture, used to achieve sub-µs time synchronization and accuracy at a sub-µA

consumption in WSNs. Therefore this concept has been leveraged to obtain

a deterministic MAC protocol for WSNs whose main target and feature is to

guarantee latency and minimum data rate. Since FLOPSYNC-2 provides a syn-

chronization primitive, known to be efficient, it has been exploited to perform

network time alignment, in a phase called time synchronization downlink. The

protocol uses also an uplink phase to collect network topology and nodes band-

width allocation requests (streams), which are transmitted node by node up to

the master. After that, a schedule is computed, in a centralized way. Then it

is distributed using another downlink phase. Finally a data phase is executed,
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according to the distributed schedule, to make nodes communicate determin-

istically. Starting with historical references, the thesis analyzes the currently

available protocols for WSNs. Then the problem is presented in its details. The

protocol design in which all its parts are described follows. Then a software

model to implement such protocol is illustrated. Simulations with the aim of

proving the concept are then presented and analyzed.
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Chapter 3

Introduction

General purpose wireless protocols often employ a simple statistical multiplexing

MAC layer, based on some form of CSMA/CA, and on top of that build the

rest of the protocol stack. However, statistical multiplexing suffers from the

presence of collisions, which degrade the MAC time-determinism. Since all

higher level network services are built atop of the MAC, this time uncertainty

has far-reaching consequences. This is because, unlike other nonidealities of a

protocol layer, such as missed packets that can be counteracted at higher layers

with acknowledgment and eventual retransmissions, or bit errors that can be

identified with error correcting codes, time determinism, once lost, cannot be

compensated for at higher levels. In this thesis, we propose a different approach.

We start with a clock synchronization scheme, FLOPSYNC-2, that performs

synchronization with packet sending, receiving and retransmission interfacing

directly with the physical level. This protocol has no dependencies from a

MAC, and can be implemented fully without a working one. Then, we propose

a MAC that builds atop of the aforementioned synchronization scheme, using the

knowledge of time for a robust TDMA schedule, and the hop number assigned

to each node through the synchronization packet flooding, to enable a topology

collection that allows the node master to reconstruct the network and schedule

communication flows. This chapter will provide an overview of the technologies,

applied in different fields, considered for the development of the idea and for

the realization of the relative protocol.
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3.1 Internet of things

During the last decades of the previous century informatics grew up exponen-

tially and with it, the number of devices. The devices are now very heteroge-

neous and are used for many different purposes. Therefore now we have a high

quantity of different electronic devices with which we can interact. It’s possible,

for example, to use an app to remotely set up our house heating system while

we are coming back from work. This concept, of having a lot of small devices of

every kind and purpose interconnected, is called Internet of Things. It can be

applied to different kind of devices from various domains. For instance, since

wearable devices have come up, even simple everyday objects like a washing ma-

chine can now connect to the Internet. All these systems need to communicate

and usually they don’t have much computational power. Plus, some of them

can’t have a large battery installed, because they need to be small in size in

order to be portable. These constraints create a whole new series of challenges

in different fields of informatics, from hardware design to networking.

3.2 Wireless Sensor Networks

A particular kind of IoT devices are the Wireless Sensor Networks. It is a cat-

egory of devices used in pervasive data systems for data sensing and at most

performing actuation. These networks are usually composed of many devices,

called nodes or motes, normally spread in an area like a building, on a volcano

or in a vineyard. Their target is to collect and transmit data for different pur-

poses. Their peculiarity is the battery duration. Batteries should be thought

to last many years and long enough to avoid frequent physical mantainance of

the nodes, which can be difficult in some environments. This adds another con-

straint to those presented by common IoT devices. This kind of node is often

developed and realized using a hardware of limited dimensions (from that of

coin up to that of a box of shoes). The hardware frequently contains a micro-

controller, a radio transceiver, a battery for powering the device and sensors,

directly attached or connected through connectors.
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3.3 Networking

A network is a collection of two or more devices and links among them, which

makes it possible to establish connections and allow them to exchange data.

Networks can be seen in many different ways and in computer science they are

modeled using a stack to represent the network at different abstraction levels.

The two mostly used models are the TCP/IP model [1] and the ISO/OSI model

[2], which divide the network in, respectively, 4 and 7 layers. In the former, the

layer stack starts from network access; then passing by internet and transport,

ending at the application. In the latter, the layers are: physical, data link,

network, transport, session, presentation, application. In this thesis, just the

first two layers of the ISO/OSI model, corresponding to the network access layer

of the TCP/IP model, will be examined.

3.3.1 Physical layer

The first part to consider about the physical layer is the medium. The first

commercial networks started being developed during the 70’s using coaxial ca-

bles as medium. They worked with the Ethernet standard [3], which defines

how to operate at the physical and data link layers. This system is still in use,

but just on different mediums (twisted pairs, fiber cables, etc.). On the other

hand, in Wireless Sensor Networks, the nodes can be moved or deployed in dif-

ficult environments, in which physically connecting them with a cable, either

to supply them with current or to connect them to a network is not possible.

Therefore, as the name suggests, the medium chosen in WSNs is wireless. The

most widely known protocol for wireless networks is 802.11 [4]. It specifies how

to implement wireless local area network communication for computers focusing

on different ranges of frequencies. However, this standard has too high energy

demands providing also a higher throughput, which is unneeded in the case of

LR-WPANs (Low rate - wireless personal area networks). Instead, for such en-

vironments, 802.15.4 [5] was developed. The standard contains many physical

layers at many different frequencies and modulation. Anyway we will adopt

the most diffused one, the Offset quadrature phase-shift keying (O-QPSK) Di-

rect Sequence Spread Spectrum (DSSS) modulation on the 2.4 GHz ISM band,
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whose features will be better explained later.

3.3.2 Medium access control protocols

Ethernet, as already stated, is a historical reference for networking at the physi-

cal layer and the same holds for the data link layer. Its key concept is that when

a device needs to access the media, it checks that no one else is transmitting,

before starting. If, after starting, it senses a collision, they (all the nodes send-

ing contemporarily) start jamming the channel and retry after a backoff period.

This approach is called Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) [6].

In wireless networks the most common approach for this issue consists in avoid-

ing its management. This is done by using a CSMA/CA algorithm (where CA

stands for Collision Avoidance) to access the channel [7]. When a wireless con-

nected device wants to transmit a frame, it senses the channel for a certain

period, after which it starts transmitting in case the radio channel results still

free. If not, the radio retries after a certain time, called Collision Window,

randomly chosen within a defined interval. If the channel is free, the node will

transmit a Request To Send (RTS), which is a frame shorter than a data frame.

This process is thought in the case that two (or more) different nodes, both try-

ing to access the channel, sense an available channel and contemporarily, start

accessing it by sending the message. In such a situation the two frames would

collide and get damaged, clogging the channel for a long period. The RTS, in

case is correctly received, will be followed by a reply from the receiver called

Clear To Send (CTS), advising all the nodes that he will be receiving a packet.

In this way all the nodes sensing the signal transmitted by the source device will

avoid transmitting and the same will happen with the devices which received

the CTS from the destination device.

CSMA/CA is applied also in 802.15.4 [5], which is the MAC protocol standard

at the base of ZigBee [8], that is a commercial protocol suite for WPANs. The

main difference with 802.11 is that the device doesn’t continue sensing during

the Collision Window in order to avoid battery waste. It also avoids the RT-

S/CTS exchanges which would be too demanding due to the reduced physical

protocol data unit dimensions (133 vs 2376 bytes for the PPDU). This protocol
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received many amendments over the years in order to overcome its limitations

such as low reliability, unlimited delays and the absence of protection against

interference/fading, which makes it hard to use in real time systems or in ap-

plications with strict requirements about network reliability and latency. In

its latest version, the 802.15.4 standard supports many new protocols designed

for different application domains: Time Slotted Channel Hopping, Determinis-

tic and Synchronous Multichannel Extension, Low Latency Deterministic Net-

work, Asynchronous Multi Channel Adaptation, Radio frequency identification

BLINK. These protocols provide a whole set of new features, improving signif-

icantly the previous standard. Their characteristics and features will be better

explained in 4.3.

All these protocols can be classified into two types: the timeslotted/scheduled

and the CSMA/CA ones. Most of them are actually an hybrid, as the first

release of 802.15.4 is. The most relevant, though are trying to move towards

a more timeslotted architecture, coping with the fact that the nodes are not

time synchronized and they must try to keep the radio turned off as much as

possible. So, in order to take this path, it is advisable to consider this aspect

more in depth.

3.4 Time Synchronization

In networks, time synchronization didn’t use to be a concern, since the majority

of network protocols are historically contention-based and indeed, CSMA, under

many variations, is extremely common. However, with the introduction of new

kind of environments, in which a collisions and subsequent retransmissions from

all the colliding transmitters has a non negligible energy cost, the development

of networking protocols moved towards time determinism and time-slotted net-

work access.

In particular, up to now, what is done to achieve synchronization in WSNs is

either using a causal consistency, referring to the previously received message,

or using control messages like beacons and ackowledgments to transmit the

timestamp, that represents an absolute reference in the network. This means

that the time synchronization is realized on top of layer 2 and suffers from its
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weaknesses. Each protocol can have different delays based on the software, its

implementation and the hardware on which it is deployed. Moreover, even the

radio channel can introduce its delays or interferences. All of these characteris-

tics can be non-linear and non-predictable, depending on various environmental

parameters and conditions. This makes very hard to have an optimal reference,

since the more abstractions layers we have, the more errors will be the intro-

duced on the final measure. Therefore it is advisable to move the mechanism

where the system’s dynamic is more convenient, which has been proved to be

when directly plugging it to the hardware radio. This approach will be illus-

trated better in 5.1.1.

This premise led to the realization of a MAC, which tries to be as determinis-

tic as possible, making the most of this concept of time synchronization. This

capabilities provide the possibility to build a protocol, whose delay, as well as

the data rate, can be easily constrainted, making it desirable in process control

networks and industry automation environments.
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Chapter 4

Technological overview

4.1 Taxonomy and examples

WSN MAC protocols are very heterogeneous and each of them has a partic-

ular target and different priorities. Combining this with the already named

constraints brings a wide range of solutions featuring different characteristics.

[9] illustrates a taxonomy divided in four distinct branches: asynchronous, syn-

chronous, frame-slotted and multichannel.

Asynchronous protocols trade off the synchronization with the cost of peri-

odically waking up for checking the presence of incoming transmissions and

the major cost of initiating a transmission. The first way to achieve this is

duty-cycling nodes’ wake up of a time as long the preamble, in order to avoid

listening continuously. This is called preamble sampling. An improvement is

Low Power Listening (LPL), which combines this technique with CCA before

sending. Other solutions exist, in order to try to achieve synchronicity between

transmitter and receiver a posteriori with as few energy as possible.

Synchronous protocols try instead to negotiate a wake up schedule to make ev-

ery node know when it needs to listen for incoming packets or when it can try

contacting a neighboring node. An example is S-MAC [10], for which all the

nodes wake up periodically based on an interval called synchronization period.

After waking up they contend the channel with their neighbors by trying to

book it (with RTS and CTS), in order to communicate using it at the end of
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the first synchronization period. Inactive nodes can sleep for the whole round.

However it’s noticeable that a multi-hop path needs more rounds to communi-

cate; an issue that [11] tried addressing with adaptive listening. Another way to

achieve synchronicity is with Future Request To Send. Its purpose is to make

the node listen for a certain period for possible incoming transmissions instead

of fixing the length of the active period and forwarding the request to the next

hops, in order to make the packets travel through as many more hops as they

can. Meanwhile, it lets inactive nodes sleep as much as possible, by adopting a

flexible active part in the synchronization period. Staggered schedule protocols,

like DMAC [12], offer a way to cope with data collection by dividing each node’s

time among its children and down to leaf nodes to achieve the lowest possible

latency. A different approach to solve cases in which there are more populated

routes is with adaptive duty cycling, which makes nodes on active paths spend

more time sensing the channel for incoming packets, limiting the delays.

The family of frame-slotted protocols is instead formed around the TDMA con-

cept, to achieve maximal channel utilization under circumstances of high con-

tention. Anyhow, its cost is the need of global synchronization that may be

achieved in a potentially difficult way. Although this leads to a low throughput

and low channel utilization in case of low contention. An approach to solve

this is with slot stealing, combining CSMA with TDMA in inactive channels.

Adaptive assignment tries instead to switch between random access periods and

TDMA periods and it assigns TDMA slots to nodes that need to send data, for

which a representative protocol is TRAMA [13]. TreeMAC [14] tries to employ

a different technique by looking for the maximization of the throughput instead

of the spatial reuse of slots. Its strategy is about using a data gathering tree

structure to collect data. They divide time in cycles, containing frames, each of

whose is composed by 3 slots. A single slot can be assigned once every 3 hops,

in order to reuse slots as much as possible without occurring in interferences.

Frame assignment is distributed among nodes at the same depth, dividing the

frame space assigned to the parent node. An improvement is PackMAC [15],

which tries to reuse unassigned slots by applying a distributed free time-slot

search algorithm after information collection, which is run in parallel with the

TreeMAC algorithm. Only after them the network can start using such schedule.
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Finally another kind of frame-slotted protocols is composed by those who assign

slots to receivers instead of senders. This makes collision-free transmission no

more longer guaranteed, but only nodes having data to deliver to a certain node

have to wake up for the assigned slot.

To improve parallel transmission and network throughput, multichannel proto-

cols have emerged. The first protocols were used to negotiate the channel to be

adopted, but later a distributed alternative was realized, needing each node to

choose a free channel within a 2 hop distance. In this last implementation, if a

node needs to send a packet, it needs to snoop alternatively its own channel for

data reception and listen to the channel where the destination node is listening

in order to perform CCA. A different strategy can be adopted by grouping fre-

quently communicating nodes in separate channels, dividing so the nodes which

don’t communicate much with each other. An example of this paradigm is

GBCA [16] which uses a game theoretic approach to find a channel assignment

that minimizes the total interference (shown to be NP-hard) with a suboptimal

result. In other protocols the multichannel strategy is applied by node role, i.e.

to send or to receive, notifying other nodes about the chosen channel. This can

also be combined with channel hopping, meaning that nodes hop among the

available channels after a predefined time using a pre-shared hopping sequence

thus managing the hop assignment as a channel offset assignment.

4.2 WirelessHART and ISA-100.11a

WirelessHART1 and ISA-100.11a2 are two standard coming directly from indus-

tries, with Emerson as the current leading supplier for WirelessHART followed

by Siemens, ABB, etc.; and Honeywell and Yokogawa for ISA-100.11a. As il-

lustrated in [17] they both provide a TDMA protocol with frequency hopping,

using the 2.4 GHz ISM band and employing a Direct Sequence Spread Spectrum

(DSSS) technique. Both of them use a mesh topology and have technical limits

of thousands of devices. Although when this number increases, even the energy

consumption of nodes does, especially in those nodes residing in crucial points

1Other information about WirelessHART can be found at https://webstore.iec.ch/

publication/24433
2Other information about ISA-100.11a can be found at https://www.isa.org/store/

products/product-detail/?productId=118261
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of the network. Moreover even the latency of packets may grow unpredictably.

In ISA-100.11a three different hopping modes are defined. With slotted channel

hopping, time is divided in frames composed by time slots, which can be as-

signed by the network manager to a sender and a receiver, with a channel offset.

In slow channel hopping, instead a collection of contiguous time slots is grouped

and the protocol is still subjected to channel hopping, but not to channel offset,

leaving in fact access to the channel to CSMA/CA. Hybrid hopping can be also

configured, resulting in a combination of the two solutions. WirelessHART does

not specify how channel hopping can be realized, but states that it is handled by

the network manager and distributed to the devices during the joining process.

Security is another concrete concern and both the protocols support Cipher

Block Chaining Message Authentication Code (CBC-MAC)[18] using Advanced

Encryption Standard (AES)[19] with 128 bytes symmetric keys. As the reader

will notice by some common characteristics, these protocols inspired the evolu-

tion of 802.15.4 during the years.

4.3 IEEE 802.15.4

The commercial reference for the MAC protocols, as stated in the introduc-

tion, is 802.15.4. This protocol was born taking the concept of CSMA/CA from

802.11 and adapting it to low power devices, by relaxing some rules and allowing

the devices in the network to save energy for longer time. Also, the maximum

frame size is limited, with 133 bytes against the 2304 bytes of WiFi. Its effi-

ciency is measured in the equation (4.3). In 802.15.4, many physical layers are

proposed in the standard and many were added with amendments, but we will

focus on the O-QPSK 2.4 GHz ISM band, which is the most common and used

for this protocol. In this band, 16 channels are available, each with a 2 MHz

bandwidth, distributed with 5 MHz of distance. 32 consecutive radio symbols,

translated with a DSSS map using a Pseudo Noise (PN) sequence of 64 bits per

byte grants a data rate of 250 kbps. The time needed to send data of arbitrary

dimension using this physical layer is calculated in the equation (4.1). Other

physical layers use various modulations (BPSK, ASK, CSS, etc.) at different

frequencies (868 MHz, 902 - 928 MHz, UWB, etc.).
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ddata = Dimension of the data to be sent in bytes

Tpkt = Time to send an amount of data (CRC included)

T crcpkt = Time to send an amount of data (CRC excluded)

ηpkt = Spacial efficiency in sending a certain amount of data

Tpkt(ddata) = 31250

(
6 ·
⌈
ddata
127

⌉
+ ddata

)
(4.1)

T crcpkt (ddata) = 31250

(
6 ·
⌈
ddata
125

⌉
+ ddata

)
(4.2)

ηpkt(ddata) =
ddata

6 ·
⌈
ddata

127

⌉
+ ddata

(4.3)

The devices admitted in these protocols are of two kinds: Reduced Function

Devices (RFD) and Full Function Devices (FFD). RFDs are only limited to

send and/or receive. FFDs, on the contrary, are capable of both sending and

receiving and also acting as coordinators.

This MAC allows two topologies: star and peer to peer. With the star topology

a central FFD coordinates the PAN to which other devices can connect. The

peer to peer topology allows instead many other topologies to be formed, but

needs at least a FFD among them. This allows trees and mesh networks to be

formed, with the constraint that most of the devices are FFDs.

The base time reference in this protocol is defined by a periodical unit called

superframe. Each superframe starts with a beacon transmitted by the PAN

coordinator. Every superframe contains an active part and, potentially, an

inactive one, in which the PAN coordinator can stop listening to the network.

The active part is then divided into CAP (Collision Access Part) and CFP

(Contention Free Period). Each device can send data either in the CAP, with

contention, or ask for the reservation of a GTS (Guaranteed Time Slot) in the

CFP. To access the channel during the CAP and transmit, a device should

wait for a random time ∈ [0, 2BE−1] backoff periods where BE is a backoff

exponent usually initialized with a value of 3. After having waited, the node

can start performing Clear Channel Assessment (CCA) for Contention Window

(CW) multiplied by the backoff period. If the channel is found occupied BE is

incremented (if less than a boundary value) and, if the algorithm has not been
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iterated too many times, the procedure repeats from the start.

As previously stated, timing in 802.15.4 is based on beaconing. In the case of a

tree based network, having so a peer to peer topology, beaconing is performed

by every coordinator. Each of them has an incoming beacon and a transmitted

beacon, which delimits the superframe structure. Superframe overlapping is not

allowed, therefore the outgoing beacon must be sent during the inactive part of

the incoming superframe and the outgoing superframe must not end after the

next incoming superframe starts.

Another job accomplished by beaconing is time synchronization. In beacons the

local timestamp of the source is indicated and the beacon is taken as a temporal

reference in the network. The default window in which a node expects to receive

packets from the network is of ± 2200 µs.

In newer versions of the standard, five new layer 2 protocols have been added,

in order to serve different purposes. A survey describing these new protocols

has been proposed in [20].

4.3.1 TSCH

Time Slotted Channel Hopping (TSCH) uses a TDMA approach to manage how

the nodes access the network combined with multichannel support, for better

allocating transmissions in multi-hop networks. It is the most developed among

the new MAC behavior modes. In TSCH time is divided in slotframes, which

continuously repeat. Slotframes are then composed of timeslots, slices of time in

which a transmission and an acknowledge can occur. The Absolute Slot Number

(ASN) is the count of how many slotframes has past since the network starts up,

thus making a reference timeline. It is maintained by the network and shared

among the nodes using Enhanced Beacons (EBs). The main characteristic of

the protocol is channel hopping and it is used to switch channel based on the

ASN. Each link will be then represented as a communication in a timeslot with a

channel offset called cell. A link can be dedicated, meaning that two nodes only

use a link, or shared, meaning that more communications can occur in it. In

shared links, transmissions use a simplified CSMA/CA algorithm with a backoff

exponent in case of collision but without CCA. Either to grant network coex-

istence or avoid the choice of noisy or bad quality channels, blacklisting should
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be also possible. This is achieved by making the scheduler avoid such chan-

nels when formulating timeslot assignments. Anyway, the scheduling function

is not included in TSCH, but the standard leaves instead the opportunities open

for designs and implementations. Although most of the existent schedulers are

not suitable for TSCH because they do not allow per-packet scheduling, chan-

nel spatial reuse is not always considered, devices’ memory and computational

power is usually too limited.

Two different families of scheduling algorithms have been proposed: central-

ized and distributed. Both of them try to solve the same problem, starting

however from different points of view and considering further contexts. Among

them Traffic Aware Scheduling Algorithm (TASA) [21] proposes a centralized

approach starting with a statically configured topology represented in a graph

structure, whose scheduling is extracted with a technique that combines match-

ing and vertex coloring. [22] is another centralized algorithm which tries to

maximize throughput using a Hungarian algorithm and minimizes delays using

a branch and bound algorithm. In both of them, no strategy of distribution is

proposed. A distributed version of TASA, namely DeTAS [23], claims to cope

with building an efficient and fair scheduling with few information exchanged

with each node’s neighbors, achieving better results than its centralized ver-

sion. Another distributed but simpler solution was proposed in [24]. It tries to

allocate slots in random cells and performs ”housekeeping” operations to dis-

tribute the load among the available cells based on packet delivery ratio. DIVA

[25] is a decentralized scheduling solution in which nodes try not to concentrate

traffic towards the root node, preferring peripheral paths, as main target for

the scheduling result. Its solution is based on connection management packets,

exchanged between neighbors, without considering multi-hop contexts. Nodes

listen to connection request packets while they are in idle state with a defined

probability. If a connection request packet is received, they reply with an ack and

switch to the requested channel, expecting data to arrive. Time synchroniza-

tion in TSCH can either happen when receiving beacons as previously stated

or at the reception of a data or a control frame from the node’s time source

neighbor. Effort was put in improving TSCH synchronization by [26]. Their

work is based on the concept of adaptive synchronization, which uses clock drift
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estimation to decide when performing synchronization is needed (i.e. the esti-

mated skew goes beyond a threshold), avoiding battery wastes. Results showed

that in a networks composed of 3 hops, nodes desynchronize of a maximum of

76 µs and need to transmit an average of 83% less synchronization packets then

in a network that doesn’t use adaptive synchronization. As showed by [27], a

combination of HF and LF crystals can be used to improve the resolution and

the results previously presented to under 2mus per-hop.

A commercial version of this protocol, called SmartMesh IP® is brought by

Linear Technologies [28]. They support up to 100 motes in a network if us-

ing their manager’s embedded version, while capabilities over 1000 motes are

achievable if using VManager, another manager version running on a Linux VM.

4.3.2 DSME

Deterministic and Synchronous Multi-Channel Extension (DSME) can be con-

sidered as a modification of the original 802.15.4 protocol, trying to expand

the Collision Free Part (CFP) to have a more reliable protocol by avoiding

packet collisions and energy wasting. CFP was already present in the origi-

nal standard, but was very limited and actually usable only by nodes close to

the PAN coordinator. This brings more Guaranteed Time Slots (GTS), whose

use in the original standard is actually possible only for devices situated in the

proximities of the PAN coordinator [29]. Another feature consists in allowing

devices to operate in multiple channels in two different ways: channel hopping

and channel adaptation. Channel hopping mode is used to periodically switch

channel, based on a pre-shared hopping sequence, in order to avoid to dealing

with unusable links due to interference or multipath fading. Each node, will

then have its channel offset, which is summed to the base channel (given by

the hopping sequence combined with the current sequence number) and every

communication will occur at the receiver’s chosen channel. Channel adaptation

mode is instead a mechanism used to allow the nodes to negotiate a channel

to communicate with each other, using any free available channel and taking

into account the channel quality estimated by the nodes. This results in a solu-

tion for multi-hop mesh networks with a more deterministic latency. Its beacon

scheduling and slot allocation are not performed by a central entity but they
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are instead managed in a completely distributed way. This means that each

node can autonomously allocate or deallocate GTS slots, resulting in a differ-

ent architecture with respect to TSCH. As shown previously, in TSCH it’s not

always possible to reconfigure a network, recompute a schedule or distribute it

at runtime, making DSME more adapt to dynamic networks.

4.3.3 LLDN

Another operational mode proposed in the 802.15.4 amendments is Low Latency

Deterministic Network (LLDN). It is a single-hop (star topology) single-channel

protocol for low latency applications, suitable for a single topology only. Its

design target is sensor sampling and collection every 10ms from 20 different

sensors. In this protocol the time is seen as a sequence of superframes, which

repeat seamlessly. Each superframe is divided among the nodes transmitting

their data in short MAC frames with just 1 byte header.

4.3.4 AMCA

Asynchronus Multi-Channel Adaptation (AMCA) is an additional operation

mode for 802.15.4 designed for Smart Utility Networks (SUN), infrastructure

monitoring networks and process control networks. In this protocol each node

picks up a channel with the best local quality and every device that needs to

transmit switches to the channel the message receiver has chosen. Information

about nodes’ channels can be obtained using a special packet or by asking the

network coordinator to transmit a beacon.

4.3.5 BLINK

The last mode proposed in the amendment is Radio Frequency Identification

Blink (BLINK). It is a protocol intended for item and people identification,

location and tracking. It works by making the nodes just communicate their IDs

to other nodes without any association nor acknowledgement using an ALOHA-

like protocol.
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Chapter 5

Problem statement

The problem that this thesis tries to solve is the lack of a deterministic multi-hop

MAC protocol capable of providing limited latency and a guaranteed minimum

data rate in WSNs. The existing protocols that try to assign channel utilization

use different kinds of synchronizations and mechanism to perform such assign-

ments. However, better approaches exist and are discussed in section 7.2.1.

Also, the WSN world is very heterogeneous and a very wide range of devices is

available, therefore an analysis of what to target the protocol for is performed

in section 5.2. Anyway the protocol tests would require a large number of de-

vices and configurations. So, a simulator was used for sketching and testing the

protocol model, being able to stress it under various conditions. It is illustrated

in section 5.3.

5.1 Time synchronization

Time synchronization among devices is a longstanding issue. It has been tried to

find a solution in different ways and with various approaches, either using hard-

ware or with network protocols, at different levels. In networking, the original

approach to time synchronization was to delegate the problem to the same layer

in which it originated, or to work around it by using a non-time deterministic

solution (NTD protocols). This, for a protocol of layer 2, means sensing the

media for a predefined period, after which a sender can start transmitting its

packets. This concept is the base of CSMA, on which rely most of the networks
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currently used around the world. However, CSMA protocols need to sense the

channel in order to avoid the occurrence of a collision. Plus, even after sensing,

collisions are keen to occur, especially in case of overcrowded networks. This

happens due to the presence of the hidden node problem [30]. Those are the

reasons why such protocols are called ”best effort”. On the other hand, recent

developments led to a more conscious energy consumption which in certain en-

vironments is also a strict constraint, due to the difficulties of energy harvesting

or delivery. Direct consequence of this concept is that the previously considered

methods for achieving time synchronization became less suitable for the context,

making a well synchronized network more interesting. However, the problem in

this kind of solutions is the non-deterministic cost of collisions, whereas keeping

network times synchronized has a fixed cost. Therefore this trade-off needs to

be considered and analyzed on the basis of the context and the cost of syn-

chronization. They depend on various factors, but can be divided into those

really making a trade off and those which worsen the conditions in both the

techniques. The presence of interfering devices, like Wi-Fi and Bluetooth ones,

sharing the frequency spectrum, can hinder communications making the risk

of collisions worse in any case. Though, internal interferences, i.e. concurrent

transmissions, can make the best effort case worse than the synchronized one if

the energy loss is higher than the one used to achieve synchronization, due to

undelivered/colliding messages. In fact, every kind of synchronization based on

the protocol level at which it is implemented has its own purpose and its own

approximation. However, low level synchronization protocols (LL SYNC) made

its cost affordable and thus interesting to be used in place of synchronization

techniques using highers layers of the protocol stacks (HL SYNC). Therefore,

since the goal was to develop a MAC protocol targeting environments in which

there are strong determinism and latency requirements, the choice made was to

employ FLOPSYNC-2. It is a low level synchronization protocol, whose char-

acteristics are better explained in the next section, making possible to obtain a

time-deterministic protocol stack. The differences between an asynchronous en-

vironment, versus LL-SYNC and HL-SYNC is illustrated in figures 5.1a for the

ISO/OSI protocol stack and in 5.1b for the TCP/IP protocol stack. A compar-

ison on orders of magnitude precision and the purpose of time synchronization
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Figure 5.1: Time determinism and synchronization inside the ISO/OSI protocol
stack (a) and the TCP/IP suite (b).

at different layers is displayed in table 5.1.

5.1.1 FLOPSYNC-2

Clock synchronization is a two front battle where it is necessary to compensate

for the nonidealities of both the local clock and the channel used for time dis-

semination.

For what concerns the sources of error in the local clock, other than the initial

offset and frequency error, a clock suffers from quantization, as the resolution

of any clock is finite, as well as various sources of nonlinearity that cause the

clock frequency to change, differing by their timescale. Among these, we can

consider jitter, a random variation of the period of each tick, that is thus as

fast as the clock itself. Wander is a random walk in clock frequency occurring

over a timescale of milliseconds to seconds, typical of systems employing PLLs
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Layer Physical Data link Network, Transport

Synchronisation Physical medium operation MAC Internetworking
purpose
Technology Hardware (PLL,...) Hardware/software Software
Examples Bit-level synchronisation Random exponential backoff TCP/IP

(e.g., CAN) (Ethernet)
Clock recovery (Ethernet)

Main error Physical (jitter, skew,...) Collisions Routing,...
sources
Error order of
magnitude ns–µs ∼ 10µs–ms ∼ 10ms

Table 5.1: Typical synchronisation error magnitude at the various ISO-OSI
layers.

for clock generation. At a greater timescale, seconds to minutes, the tempera-

ture dependence of quartz crystal oscillators becomes significant, while for even

longer timescales, aging effects arise.

FLOPSYNC-2 is the clock synchronization scheme used in this thesis. It is

a low-level scheme that starts from a model of the local clock and corrects it

with a controller specifically designed to counteract its nonidealities. It is ca-

pable of being highly precise, below the µs, with a power consumption of less

than 2.1µW . Moreover, it provides a monotonic and continuous clock by only

performing rate corrections except when resynchronizing after the network con-

nection is lost.

FLOPSYNC-2 also integrates seamlessly with the Virtual High-resolution Time

(VHT) [32] approach,which is a technique used to achieve a high resolution

timebase without requiring an always-active (thus power hungry) high frequency

oscillator. It is realized by employing two different clocks, i.e. two different crys-

tal oscillators, a slow and low-power one combined with an high frequency and

high consumption one. Using the high frequency crystal only when the node is

processing and using resynchronizing it with the low frequency one during sleep

times makes a good consumption compromise as well as it makes it possible to

have an high resolution timer when needed. An enhanced jitter-compensated

version of VHT has been proposed [33]. This solves an accuracy issue which is

present in the original VHT algorithm since it didn’t consider the intrinsic jitter

of the crystals.

For what concerns the communication channel, the most significant source of

error is variable network delays, followed by propagation delays. FLOPSYNC-2
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relies on Glossy [31] to disseminate the clock synchronization packets in a time-

deterministic way, and uses a custom scheme to compensate for propagation

delays.

Glossy is an innovative idea for network flooding in WSNs. It exploits con-

current transmissions for taking profitably flooding WSNs. As stated before,

802.15.4 uses an O-QPSK modulation at 2.4 GHz with a bandwidth of 2 MHz.

Data, before being transmitted is translated to chips and the inverse operation

is performed by a receiving radio. The radio correlator performing such opera-

tion always tries capturing signals of every intensity and compares them to the

well known DSSS PN sequences. If a signal has been received before others and

can be correlated corectly, it will. This effect is called delay capture. Another

similar effect is the power capture for which when a signal is stronger than oth-

ers, the correlator will correctly rebuild the stronger one. Known that, Glossy

built a mechanism called flooding for which a node transmit a packet and all the

nodes of the first hop receive it. After a well-determined time interval all the

nodes of the first hop retransmit the packet and so on and so forth. Adopting

this mechanism all the nodes will have a common time reference, deducing it

from the packet arrival time. It has been shown that if two nodes transmit the

same packet within 500 ns, which correspond exactly to a chip period, they will

have a very high probability to interfere constructively (> 75%). A graphical

representation of this is presented in figure 5.2. In the leftmost part, the mas-

ter node transmits its packet, which is received by nodes 1, 2 and 3. Then,

after a ∆t these nodes retransmit the packets as well. As it can be evinced in

the central part of the figure, node 4 will receive the packet transmitted by 2

and 3. In this case the power capture will make the message to be correctly

reassembled. Then, as shown in the rightmost part of the illustration, also the

packet transmitted by node 3 starts to be received, however its signal strength

will make it be discarded by the correlator.

Reverse Flooding [35] is an extension to Glossy to estimate the propagation

delay, having so precise timestamping at a precision higher than 1µs by can-

celling them. This is achieved by asking to the previous hop’s nodes in sight

the measurement of the roundtrip time. They will reply after a predefined time

delta with a packet in which, using the bar graph encoding presented to depict
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Figure 5.2: Flooding mechanism step-by-step

each node’s cumulated delay to the master. By summing the obtained roundtrip

time value with the response data, a good estimation of the propagation delay to

the master is obtained, achieving a great timestamp accuracy by cancelling 95%

of the relative error induced by propagation delays. The illustrated solutions

will be used as protocol primitives in order to have a concrete time awareness

at the protocol base.

5.2 WSN platform

In WSN and IOT applications the device environment is very heterogeneous and

a wide range of devices has been developed. However most of them are custom

made by each single company for their clients and only few try selling mass

products like Linear Technologies SmartMesh IP®. The approach chosen to

manage time synchronization and the lack of an off the shelf hardware capable

of supporting it led to the development of a custom hardware based on publicly

available components called WandStem and whose design is available as open

hardware1. The WandStem components include an ARM Cortex M3 micro-

controller that uses 32 bits instructions with 128 MB of RAM and an internal

flash memory equipped with a 48 MHz oscillator crystal. It is also attached

to a 32768 Hz oscillator for using VHT. The radio transceiver connected is a

TI CC2520 clocked at 32 kHz. To achieve accurate packet timestamping, its

arrival time is registered from the microcontroller using 48 MHz frequency, i.e.

a 21ns resolution. Other more modern solution involve a System on Chip (SoC)

1Device details and schematic files are available at http://miosix.org/wandstem.html
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architecture, with the drawback of being less customizable and not usable for

implementing FLOPSYNC-2.

The operating system used with this device is Miosix [36], which has an embed-

ded kernel written in C++ whose code is publicly available2 under GNU GPL

license.

The protocol will however be usable in many other devices, even if a fast clock

will be needed for the timestamping resolution. Also the radio transceiver must

be able to manage packet timestamps with such a resolution. Memory and other

requirements elicitation are left to the implementer, since they depend on the

protocol configuration and the network dimension, as will be explained in 6.

5.3 Testbed architecture

The strategy used for developing and testing the protocol was to develop a sim-

ulation in OMNeT++[37]. OMNeT++ is a widely used discrete event simulator

to design networks and protocols. This approach made it possible to test the

protocol without needing to have multiple devices physically distributed to form

the desired topologies and deploy firmwares over and over, making debug and

testing slow and difficult. Moreover, this choice has been made to make the

protocol available to the community, to work with it, performing improvements

or personalizations and comfortably simulating them without the need to realize

circuits. This obviously required the development of a Miosix-friendly interface

to wrap the simulator in order to have a cross-compatible software.

In Miosix, each component, either hardware or software, is mapped, as the ob-

ject oriented programming (OOP) principles suggest, to a class. These classes,

when representing unique entities, such hardware peripherals, use the singleton

design pattern, which is particularly thought for these cases when only one in-

stance of such class can and must exist. The drawback of this approach has

been found while miming the Miosix system API, because in OMNeT++ all

the nodes share the same application space, instead of having that (physically)

separated, making unfeasible to use the standard singleton pattern. However,

the adaptation was possible by using an API to retrieve the running simulation,

2Miosix code: https://github.com/fedetft/miosix-kernel
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Figure 5.3: Miosix-OMNeT++ interface Class Diagram

which has a method to obtain the currently active device and thus keep a device

to instance map making the adaptation possible. The proposed architecture is

shown in the class diagram in figure 5.3, in which Transceiver, VirtualClock and

PowerManager are examples of Miosix singletons.

For what concerns the radio, it was needed to simulate its characteristics,

staying as close to the reality as possible, but keeping in mind that the de-

velopment of a model was needed, which by definition can’t simulate perfectly

environmental characteristics and non-ideals. OMNeT++ provides a channel

model useful to develop its specific characteristics. However, the easiest solu-

tion was keeping tight to the ideal channel model and use the Transceiver class

developed for compatibility to model also the real channel behaviors. This is

because, other than the data rate, yet developed in the simulator in a dedicated

model, there was the need to model the interference. However, it depends on

physical characteristics of the media and on which values does the correlator

produce from sensing it. Once it finds a preamble and a SFD it starts correlat-

ing the signal present in its radio range for reconstructing a packet, making it

possible for the radio to receive also jammed packets. This is an achievable re-

sult, but the theory behind Glossy has already been proved, both in simulation

and in hardware in [31], [34] and [35]. Therefore, the implemented algorithm

doesn’t take into account all the actual physical characteristics, like propagation

delays, and, as described in Glossy, it just considers any packet’s arrival until
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the current packet is completely received. If other packets arrive within 500ns,

a possible constructive interference is considered, elsehow the packets interfere

destructively, returning a wrong CRC, if enabled, or random data if not. In case

of interference within the theoretical time limit of 500ns, random bytes from

the colliding packets are picked.
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Chapter 6

Protocol design

Summarizing, the needed MAC protocol finds its roots in:

Synchronization for deterministic low latencies and transmissions.

Flooding a mechanism which Glossy proved to be efficient for massively diffuse

a message. Can be used to broadcast control messages from the master

node or to transmit multiple packets with the same content contemporarily

to the whole network.

Hop knowledge by running FLOPSYNC-2, nodes become aware of their hop,

transmitted in the packet content.

802.15.4 PHY 2.4 GHz O-QPSK DSSS, since FLOPSYNC-2 is currently im-

plemented on it.

To obtain a deterministic environment, the choice of a TDMA architecture was

pretty straightforward. However, to obtain this target, every node must be

able to acquire data on its exact timings. Moreover, these timings need to be

scalable at each node’s necessities in terms of throughput and to obtain the

most efficient protocol in terms of energy wasting, meaning the highest effec-

tive throughput with the least activity time. To manage this, two different

approaches are possible. Either the nodes always maintain the same necessities

in terms of communication with their neighbors, or they can change their neces-

sities over time. Considering that a MAC protocol that can’t scale its devices

throughput when the necessities change, leads to the need of reconfiguring the
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whole network, the decision was to prefer having a more flexible structure.

A similar approach was taken for the management of the network topology, since

in many environments, things can change and devices can be added or removed,

or condition in the surrounding environment can be modified by external fac-

tors, making some paths more difficult to be considered reliable enough for use.

Therefore the chosen approach was permitting to have a dynamic topology, ca-

pable of coping with device removal, addition and even movement. The protocol

primitives which needed to be designed are therefore intended to deal with an

unknown topology and unknown scheduling management, enabling every node

to communicate with another and maintaining a limited latency.

However, in order to communicate, nodes have the necessity to identify them-

selves at least within the network they are currently connected to. Consequently,

address management needs to be handled. Nodes should be able to understand

to which other nodes they can talk, and at a level, sooner or later it will need to

be statically defined, either at the application level with a DNS, or at network

level with a static network address like an IP address, or at the data link level,

with a MAC address. The translation function obviously requires some effort,

that is stacked on top of the one made to achieve dynamical address assignment.

Analyzed this trade-off, the choice made was to implement static addressing,

without anyway excluding the possibility to expand the protocol features to en-

able dynamic address assignment in the future.

Finally, the elicited requirements are made for a protocol with a reasonable

number of devices having a statically assigned address, dynamic topology, vari-

able bandwidth request and being able to communicate with a TDMA protocol

based on FLOPSYNC-2.

Once surveyed the desired characteristics, the protocol is ready to be designed.

In the protocol there is a base time unit, a fixed interval of time to which each

part will refer, to enable every node to identify each protocol phase and to de-

duce when to transmit and when to receive easily. This part, for uniformity and

ease of interpretation with respect to similar protocols, will be called slotframe.

Each slotframe can be identified by a FLOPSYNC-2 flooding, occurring as the

first action.

As with every other protocol, an initial taxonomy about packets devise two types
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of them: control and data. Its control part can be accomplished in two different

ways: by making every node negotiate with neighbors on how to manage the

space around them, which comprise the so called distributed protocols, or in a

centralized fashion, by collecting nodes’ necessities and knowledge, calculating

centrally how the network time will be managed among the nodes and then dis-

tributing information about how and when to access the radio. Other protocols

tried using distributed solutions to perform network management ((some TSCH

scheduler implementations do, as shown in 4.3.1). But, since the architecture

under examination has the possibility to have fast distribution of information

thanks to Glossy flooding, the choice was to use a centralized way to manage

the network. This led to the nodes having to perform less operations, leaving

to the master node the job of taking care of the network phases organization.

This made necessary the development of ways to make the master node obtain:

Data paths which represent data flows, called streams, within the network

and the related required data rate.

Network topology which can be seen as a list of adjacencies, in order to form

a graph of the connections between nodes in the network.

It is also necessary to realize a way to obtain and distribute the network schedule.

It is so evident, that a second taxonomical distinction is present for the control

packets. Some of them are produced by all the nodes and need to reach the

master node, whilst other are sent by the master and need to reach every node

of the network. They will be respectively called uplink and downlink phases.

The details about them will be stated and the presented issues analyzed in the

following sections. A first base formula of the protocol time division can be

calculated, as illustrated in equation (6.1), to obtain the most macroscopic time

division and thus a related spatial efficiency measure (equation (6.2)).

Tsf = Total duration of a slotframe

Tup = Duration of the uplink phase

Tdown = Total duration of the downlink phases

Td = Total duration of the data timeslots

Tsf = Tup + Tdown + Td (6.1)
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ηspace = ηpkt ·
Td
Tsf

(6.2)

6.1 Uplink

Each uplink packet will need to travel to a defined node of the previous hop,

towards the master. This would obviously take some time and different steps,

based on where the node is positioned. Therefore, given that each node’s uplink

data transmission requires tup time, the best case is a star topology, in which

this phase requirement is shown in equation (6.4) while the worst case is a line

topology (i.e. each node is connected with two nodes, but the master and the

last are connected to one node only), in which the required time is displayed in

equation (6.5). This is because each message needs to travel all hops separating

it from the master, number that goes from 1 to the maximum hops number. An

illustration of this is displayed in figure 6.1. So, this information flow can’t obvi-

ously happen contiguously, generating a trade off between control overhead and

responsiveness of the network to topology changes. A complete uplink phase, in

the sense that every node’s information reaches the master node, will be spanned

over multiple slotframes. The proposed structure makes every node transmit

a defined number of packets per slotframe. The information is delivered to a

well chosen node of the previous hop, which will be in charge of forwarding the

information up to the master node. The duration of the uplink phase is calcu-

lated in equation (6.3). As evinced in equation (6.6), the less uplink packets are

used when calculating the spatial efficiency of the uplink phase, the higher is

the spacial efficiency ratio. Moreover, this leaves more space to manage data,

0 1

0 1 2

0 1 2 3

N = 2

N = 3

N = 4

+

+

+

+

+ +

= 1

= 3

= 6

Figure 6.1: Worst case evaluation of the total number of hops that messages
should pass in order to reach the master, given that one message is sent by each
node
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making data spatial efficiency higher by diminishing the protocol control part,

which is already big since it’s a fully deterministic protocol. Thus, keeping the

uplink packets count per node to one unless really necessary is advisable.

N = Number of maximum addressable nodes

tproc = Time for processing the packet

tstart = Time for making the first node prepare its packet

#up = Number of uplink packets sent by each node in each slotframe

Tup = tstart +N

#up∑
i=1

(
Tpkt(d

i
data

)
+ tproc

 (6.3)

Tminup = tup(nnodes − 1) (6.4)

Tmaxup = tup
nnodes · (nnodes − 1)

2
(6.5)

ηup = ηpkt

#up∑
i=1

(
didata

) (6.6)

How to forward each uplink content data is left to each field. So, each packet

will contain the hop to which the node belongs, the assignee, which is the node

of the previous hop that will be in charge of forwarding the contained data, the

topology data and the stream management information. Anyway, which content

will be forwarded is up to the uplink management, to assure fairness among

different nodes and different kinds of data to forward. Fairness is obtained

through the usage of a FIFO queue with allocation optimization, meaning that,

the first information arrived is also forwarded. There is however the possibility

that the first topology information in queue can’t fit the available space, while

another behind it does. In this case an exception is made, adding the latter

to the message, in order to optimize channel utilization and throughput. Its

dimension is calculated in equation (6.7) and a graphical representation is shown

in figure 6.2.

H = Number of maximum manageable hops

Dnd = Dimension of neighbor discovery data in bits

39



assignee hop neighbor discovery stream management

uplink packet

Figure 6.2: Content of an uplink packet

Dsm = Dimension of stream management data in bits

Dup = log2N + log2H +Dnd +Dsm (6.7)

Uplink transmissions happen in an ordered way, starting from the last node

in the address space and arriving to the first. This choice was thought to deal

with networks in which the master has address 0, the nodes belonging to the

first hop have low addresses, and, while the number increases, the distance from

the master node, measured in hops, increases too. This is not a rule in the

sense that it limits the network functioning in case it is not enforced, but a rule

of thumb for fast network convergence (when a node with an higher address

connects to the network as a leaf, it is added as soon as it shows up during an

uplink phase, otherwise it would take more slotframes). Each node needs to

listen to every other’s node transmission. However, since it has been achieved

a very accurate synchronization, it can listen up to the time of expected arrival

to which a receiving window’s tolerance is summed. The resulting minimum

interval the transceiver awaits a packet is highlighted in cyan in figure 6.3. It

contains not only the preamble and the Start Frame Delimited (SFD), but also a

receiving window, computed by the FLOPSYNC-2 algorithm. The error, which

is used during the time synchronization downlink for the algorithm functioning,

is highlighted as the difference between the expected end of the SFD line, in

red, and the actual end of the SFD, in black. At the hardware level, the SFD

is taken into consideration as receiving time reference, making the appropriate

calculations, since it’s the time in which the correlator can determine if a packet

is arriving or not. In the case in which a In this way, a node can go into deepsleep

mode for most of the time, a noticeable amount of energy can be saved. Notice

that, for functionality purpose, an upper bound of acceptance for the receiving
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Figure 6.3: Example of node sending an uplink message

window should be configured, making the nodes achieve a minimum level of

synchronization before operating the MAC, but also keeping tolerance times

low to achieve a higher throughput.

6.1.1 Topology collection

The topology collection aim is to make the master node aware of the actual

network composition, of the way nodes are linked and data can travel among

them. Then these data need to be transmitted and carried over to the master.

Each node, in its uplink turn, will transmit its known topology. By hypothesis,

every node will receive an uplink packet from at least a node belonging to the

previous hop, called predecessor. However, it is possible that a node has more

than one predecessor, requiring each node to choose wisely to which predecessor

the uplink message will be assigned. This is accomplished by collecting the

Received Signal Strength Indication (RSSI) of the neighbors of the previous

hop.

Said so, the topology information transmitted up to the master node will have to

contain only the information that is really needed to be known by the master,

avoiding information overhead. This, anyway, depends on what topology is

desired. Two topologies will be provided, for giving to the user more flexibility

about trade-offs.

Mesh

Given a root node, or master node using the protocol terminology, in a mesh

topology there can be more different paths to the master, while in a tree topology

the path can be only one. In this case the master needs to know each node’s

adjacencies, by collecting each one’s neighbors. A neighbor is any node whose
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uplink message, during its relative turn, can be received by the node in object.

Also, this information is useful to collect knowledge about nodes closer to the

master and elect the one to which the uplink message will be assigned. The

method to transmit them easily is by providing each node’s neighbor list. The

chosen representation is a bitmask [node0 . . . nodem−1] in which every value will

be 0 but the bits representing neighboring nodes. The dimension of a node’s

adjacencies that will need to travel to the master is displayed in equation (6.8).

dmnd = Dimension of mesh neighbor discovery node’s data in bits

dmnd = N (6.8)

By receiving this information from all the nodes, the root node will be able

to rebuild the complete network graph. To do so, forwarding must be imple-

mented. The complete topology packet contains the sender’s adjacencies and

the forwarded topologies with their count. Its count is necessary for the receiver

to reconstruct the list of forwarded topologies coherently, avoiding the possibil-

ity to misinterpret the content. Each forwarded topology is composed of its

original sender and the adjacencies list. The complete mesh topology informa-

tion transmitted dimension is calculated in equation (6.9). The topology part

of the uplink packet will be composed as of figure 6.4. A representation of this

topology is illustrated in figure 6.6.

Dm
nd = Dimension of mesh neighbor discovery data in bits

ft = Actual number of forwaded

Ft = Maximum number of forwadable topologies

Dm
nd = dmnd + log2Ft + ft(log2N + dmnd) (6.9)

Tree

A simpler alternative to the mesh topology is a tree topology. This topology

can be easily collected by making the master node aware of the path each node

needs to follow to reach the master. However, is not the full path that needs
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Figure 6.4: Mesh topology part content of the uplink message

to be transmitted up to the master, but just the node to node links represented

by a couple of addresses. Its dimension is shown in equation (6.10).

dtnd = dimension of tree neighbor discovery node’s data in bits

dtnd = 2log2N (6.10)

In this way, it results easier for nodes to forward other nodes’ information, which

translates to a faster converging network, especially when crowded with devices.

However, this method lacks of redundancy, which in critical environments can

be mandatory. Moreover, the path each packet needs to follow to reach a node

located in the last hop is statically decided by the node itself, leaving to the

chosen predecessor all the load of delivering its packets. This makes it use

more energy and therefore discharge his batteries faster. Anyhow, in the IOT

environments where nodes can be moved or conditions around them can change

or when there are few interconnections among nodes making redundancy paths

useless, this topology can result more effective. The actual packet will contain

just the forwarded links and their count, for parsing purposes. The complete

dimension, including the forwarded data can be observed in equation (6.11). A

graphical representation of the packet is displayed in figure 6.5. An illustration

of this topology is illustrated in figure 6.6.

Dt
nd = Dimension of tree neighbor discovery data in bits

Dt
nd = log2Ft + ftd

t
nd (6.11)
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Figure 6.5: Tree topology part content of the uplink message

Dimensioning

Based on the network dimensions, the topology part of the message has differ-

ent sizes. Obviously, the number of streams that are to be opened or closed

is not predictable. Therefore, in this dimensional analysis, it’s considered that

streams management is achieved in another packet and 2 uplink packets will be

sent by each node per slotframe. With these hypothesis, an analysis has been

performed. The equations regulating occupancy in terms of forwardable topolo-

gies and remaning space depend only on N and H, as evinced in equations (6.12)

and (6.15). The equations are evaluated in bits, however this choice does not

grant any noticeable space efficiency. An example calculation is performed in

table 6.1 and 6.2. However, operating with bitwise requires a noticeably higher

number of operations, making space efficiency very costly if compared to calcu-

lation throughput. Moreover, the remaining space can be used to allocate the

stream management part, hence the use of the byte-aligned version is recom-

mended. Choices marked with an ’*’ should use less forwardable slots in order

to accomodate slots management in the same uplink packet. This consideration

about byte-aligned fields has been performed for the topology collection part of

the uplink message, but is also valid in general, even if in certain cases the trade

off may be more advantageous for the choice of the unaligned version.

Also, there is a noticeable spatial convenience in using the tree topology, so the

adoption choice will be left to the implementation, based on the actual context

and necessities.

D̂t
nd = 1000− (log2H + log2N)

f̂mt =

⌊
D̂t
nd −N − log2f̂mt
log2N +N

⌋
(6.12)
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Figure 6.6: The mesh (top) and the tree (bottom) topologies obtained from the
same nodes layout
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Max hops Max nodes
Byte aligned

Mesh Tree
Fw.able Rem. bits Fw.able Rem. bits

7 8 6° 872 6 880
15 16 14° 632 14 752
31 32 23 24* 30 496
63 64 12 48* 61 0*
127 128 6 32* 61 0*
255 256 2 192 61 0*

256 512 NA NA 30 16*
256 1024 NA NA 30 16*
256 2048 NA NA 30 16*
256 4096 NA NA 30 16*

Table 6.1: Topology collection space occupancy in byte-aligned packet man-
agement for both the topologies. ° maximum number of forwardable topologies
achieved. * not enough space left for stream management.

r̂mt = D̂t
nd − f̂mt (log2N +N) (6.13)

f̂ tt =

⌊
D̂t
nd − log2f̂ tt
2log2N

⌋
(6.14)

r̂mt = D̂t
nd − f̂mt (2log2N) (6.15)

6.1.2 Stream management

In the stream management part of the uplink control messages, streams can be

opened, closed, or their minimum required data rate modified. Requirements

about the data rate value dimensions and meaning are left to the scheduler

implementation. Its only constraint is that a zero-valued element will have the

meaning of a request to close the stream. Another constraint is that the streams

are unidirectional, so to open a symmetric stream, two stream management

elements (SMEs) must be sent. A SME will contain the address of the source

node, the address of the destination node and the already named data rate.

The dimension of each element is calculated in equation (6.16) and a graphical

representation of it is presented in figure 6.7. The stream management part,

which is the last part of the uplink message, will be made up by an enumeration

of SME. The count of transmitted elements would be redundant, since its length
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Max hops Max nodes

Byte aligned

Mesh Tree

Fw.able Rem. bits Fw.able Rem. bits

2 8 6° 919 6° 957

2 16 14° 695 14° 879

2 32 25 32* 30° 689

2 64 13 15* 62° 243

2 128 6 51* 70 5*

2 256 2 206 61 9*

2 512 NA NA 54 12*

2 1024 NA NA 49 3*

2 2048 NA NA 44 14*

2 4096 NA NA 40 21*

4 8 6° 918 6° 956

4 16 14° 694 14° 878

4 32 25 31* 30° 688

4 64 13 14* 62° 242

4 128 6 50* 70 4*

4 256 2 205 61 8*

4 512 NA NA 54 11*

4 1024 NA NA 49 2*

4 2048 NA NA 44 13*

4 4096 NA NA 40 20*

8 8 6° 917 6° 955

8 16 14° 693 14° 877

8 32 25 30* 30° 687

8 64 13 13* 62° 241

8 128 6 49* 70 3*

8 256 2 204 61 7*

8 512 NA NA 54 10*

8 1024 NA NA 49 1*

8 2048 NA NA 44 12*
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8 4096 NA NA 40 19*

16 16 14° 692 14° 876

16 32 25 29* 30° 686

16 64 13 12* 62° 240

16 128 6 48* 70 2*

16 256 2 203 61 6*

16 512 NA NA 54 9*

16 1024 NA NA 49 0*

16 2048 NA NA 44 11*

16 4096 NA NA 40 18*

32 32 25 28* 30° 685

32 64 13 11* 62° 239

32 128 6 47* 70 1*

32 256 2 202 61 5*

32 512 NA NA 54 8*

32 1024 NA NA 48 19*

32 2048 NA NA 44 10*

32 4096 NA NA 40 17*

64 64 13 10* 62° 238

64 128 6 46* 70 0*

64 256 2 201 61 4*

64 512 NA NA 54 7*

64 1024 NA NA 48 18*

64 2048 NA NA 44 9*

64 4096 NA NA 40 16*

128 128 NA NA 69 13*

128 256 NA NA 61 3*

128 512 NA NA 54 6*

128 1024 NA NA 48 17*

128 2048 NA NA 44 8*

128 4096 NA NA 40 15*
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256 256 NA NA 61 2*

256 512 NA NA 54 5*

256 1024 NA NA 48 16*

256 2048 NA NA 44 7*

256 4096 NA NA 40 14*

512 512 NA NA 54 4*

512 1024 NA NA 48 15*

512 2048 NA NA 44 6*

512 4096 NA NA 40 13*

Table 6.2: Topology collection space occupacy in unaligned packet management
for both the topologies. ° maximum number of forwardable topologies achieved.
* not enough space left for stream management.

can be deduced by the receiver as shown in equation (6.17). SMEs are managed

using an updatable FIFO queue, which keeps the packets FIFO timeliness but

updates the content if a packet from the same sender regarding the same stream

ID is received, to achieve fairness and minimize delays. SMEs transmission

starts from the source node. What it does, is enqueuing its message to its local

stream management queue and wait until it’s sent, repeating the operation in

every slotframe until the effect is noticed in the schedule downlink message,

whose structure and function is enunciated in 6.2.2. Otherwise, when nodes

receive uplink messages from others, every received SME is added to stream

management queue, respecting its internal mechanisms previously illustrated.

ds = Size of a stream management element in bits

fs = Sent stream elements

ddr = Dimension in bits of the data rate value

L = length byte in the PHY header

ds = 2log2N + ddr (6.16)

fs =
8L− (log2N + log2H +Dnd)

ds
(6.17)
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Figure 6.7: Stream management part content of the uplink message

6.2 Downlink

Each downlink packet will be flooded, using the constructive interference mech-

anism explained in 5.1.1. This makes possible to reach quickly all the network

nodes, making the entire network aware of the scheduling that needs to be used.

This process takes Tdown as calculated in equation (6.18), having a tretransm re-

transmission interval among the hops, that must be tuned considering the packet

receiving time and the operative time for switching the radio operational mode.

There are more kinds of contents that can be transmitted using the downlink

and are explained in the sections to follow. It must be kept in mind, though,

that downlink packets need to have all the same payloads for being capable of

leveraging the capture effects in a constructive way. In the protocol, two types

of downlink packets are implemented: time synchronization and schedule dis-

tribution. An example of downlink message flowing through 3 hops, with the

synchronization error explicited is shown in figure 6.8.

tdown = Duration of a downlink phase

tretransm = Time needed for retransmitting a packet

tdown(ddata) = tstart +H (Tpkt(ddata) + tretransm) (6.18)

Tdown = ttimesyncdown + tscheddown
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Figure 6.8: Example of downlink message flooding

6.2.1 Time synchronization

This kind of downlink packet is used to implement FLOPSYNC-2 making it

possible to achieve synchronization and thus being able to save energy. Syn-

chronization leads to energy saving by making it possible to have a very small

receiving window and low risk to loss an expected packet or to transmit in some

other node’s round, as pointed out in 5.1.1. This packet is the most similar to a

802.15.4 beacon and, to make it understandable for other devices, which would

understand that this channel is already occupied by devices using another pro-

tocol, it starts with a 802.15.4 compatible header. This is also handy because it

makes the nodes using this protocol aware that it is a flooding packet. It starts

with a 2 bytes frame control sequence stating that this is a reserved type intra-

pan frame, with no source addressing and destination addressing only. The next

byte, which is by standard the sequence counter, is used for the source’s hop

count, which will be used by nodes joining the network to obtain mathemati-

cally the actual time at which the current slotframe started and hence calculate

all the time points correctly. Then the 2 bytes of pan ID are left unused and the

destination address of 2 bytes set to broadcast (65536). The space from byte

10 to byte 26 contains the current timestamp of the master. Finally, the last

#rtt · log2N packet bits, are reserved to state which will be the nodes enabled

to perform the reverse flooding algorithm in the sudden part of the phase. Its

complete duration is therefore calculated in equation (6.20). #rtt must be de-

fined a-priori while configuring the network and shared among all the nodes.

So, the nodes that can be reverse by flooding initiators for the slotframe are

chosen by the master. It needs to choose them accurately, preventing two nodes

from asking the roundtrip calculation to the same node, leading to an unde-
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fined behavior. Also, a node that performs reverse flooding calculation that has

another node doing the same in its predecessor set would not obtain an accu-

rate estimation. These two cases need to be avoided by the master node when

choosing. After being chosen, nodes will be able to calculate their roundtrip

time to the master node, in order to better align its timer and achieve a more

accurate timestamping during the current slotframe. This gives to the nodes the

possibility to sleep in order to save energy, since their neighbors in the succes-

sive hop are not listed in the time synchronization downlink message. Attention

must be payed in this part, because in a tree topology, a node should listen

not only to its direct children, but to every node receiving its flooded messages,

i.e. the nodes whose uplink message is received. In case a node hasn’t already

measured its RTT to the master, it will not be able to reply with a correct

estimation, so it won’t be listening for any RTT request. A part of the slot-

frame is reserved to the nodes willing to perform the roundtrip estimation after

the time synchronization downlink. This phase is displayed in figure 6.9. The

tsnd

bargraph delay
reply delay

tsnd

send delay

roundtrip request
send delay

trcv

Node A

Node B

roundtrip request

trcv

bargraph delay

synchronization error

reply delay

Figure 6.9: Example of roundtrip request and response

packet composition is of 3 bytes, the first 2 to identify, that is, to ask for the

roundtrip calculation, and the last for the hop count. If such a packet is not

received within the expected receiving time and the receiving window calculated

by FLOPSYNC-2, the receiving nodes goes into sleeping mode to save energy.

Otherwise, a reply bargraph-encoded packet, as explained in [35], is sent back.

The duration of a roundtrip estimation with reverse flooding is calculated in

equation (6.19). A graphical representation of this process with the construc-

tive interference is displayed in figure 6.10. The flooding is represented in blue.

Then, supposing that N4 is listed in the last bytes of the flooding packet and

it is interested in measuring its RTT to the master, in the dedicated part of

the slotframe, it sends the RTT measurement request, colored in red. Then, all
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the nodes of the previous hop within its radio range reply with the bargraph

encoded delay to the master, in green. Hence this makes N4 able to estimate

itself the delay to the master.

Trf = Duration of a reverse flooding

T timesyncdown = Duration of the downlink time synchronization phase

Trf = tstart + Tpkt(3) + tretransm + Tpkt(127) (6.19)

T timesyncdown = td

(
9 +

⌈
#rtt ·

log2N

8

⌉)
+ Trf (6.20)
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Figure 6.10: Time synchronization process

6.2.2 Schedule distribution

The schedule, once is computed by the master node, needs to be distributed.

Since a fast downlink process is available, the central scheduler option has been
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chosen and therefore the schedule will be broadcasted with flooding. However,

the choice and design of the scheduler and how the schedule is computed is not

treated in this thesis. Instead, it is managed as a black box, taking the topology

map and the required streams as inputs, producing a schedule in terms of nodes

and timeslots as output. Then, the distribution of such output among the nodes

is analyzed. Supposing to have an implementation of the protocol with the rea-

sonable values of 10ms per data slot and 10s for each slotframe, excluding the

control part, the available data slots are 1000. Supposing that a fixed number

of transmissions in each data slot is allowed entails a result in bits calculated

in equation (6.21), needed for the distribution of a complete schedule, for each

data slot and each transmission in it. Of course, this value is not manageable

since 4kB of schedule (32 packets) would need to be transmitted, in order to

send a schedule in a network with 256 nodes capacity and 65536 manageable

slots, requiring 134ms, per-sending, according to equation (4.2). In a network

of 8 hops, it would need more than 1s meaning more than 10% of the slotframe,

considering that other control parts were not included in the calculation. This

also excludes the possibility for two nodes to transmit contemporarily, leading

to a poor network throughput. Moreover, before the schedule is able to change

completely, all the schedule, so all the 32 packets, need to be flooded.

Another possibility is to send the schedule enumerating it by stream and thus

having a variable length schedule based on the number of currently active

streams. This makes the streams, unless a stream ID is managed, ”anony-

mous”, but every node, in receiving a stream’s schedule can understand the

correspondence by looking at its source and destination nodes. The constraint

added is that two streams with the same source and same destinations can’t

exist. However, this is applied only at MAC level, meaning that at the trans-

port level, if two sockets need to be opened, the data rate can be adapted. The

adaptation to be done depends on the scheduler adopted and the meaning that

it will give to the data rate value. This can lead to the allocation of slots that

will not be used by the node, though. This happens, because the requested

value must be strictly met to keep the data rate fixed among every two suc-

cessive transmissions of the upper layer stream, leading to the impossibility of

simply summing the values. Although the overhead reduces when the rates are
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equals or have a common divisor different from 1 (i.e. they have a common

base frequency and each one has its own multiplier). However, a significant

advantage of this distribution function with respect to the previous is that no

limit is imposed on the number of transmission in each data slot. In this case

the needed bits are shown in equation (6.22).

It is pointless to enumerate also the unallocated timeslots in the schedules.

Therefore, instead of listing all the timeslots for every opened stream, it is just

necessary to state the stream source and the number of hops to travel, and list

at what time each node in the path must expect it (i.e. the node that received

it previously needs to retransmit it). The schedule dimension calculation is ac-

complished in equation (6.23). Also, it should be noticeable that h(s) 6 2 ·H,

in the worst case in which a node of the last hop needs to reach another node of

the last hop without any parents of any level in common but the master node.

A simpler alternative, that reduces the schedule space allocation, fixes the global

minimum data rate and considers data rate increments only as its multiples. It

can be represented using tuples containing the stream source’s address, the

count of traveled hops, the data rate multiplier (represented by simplification

with Ns, since it is an upper bound) and the couples receiver - instant, similar

to the previous structure. An initial value specifying the minimum data rate

is also needed. Its space occupation, measured in bits, is illustrated in equa-

tion (6.24).

By comparing all the equations, deductions can be made.

#ds = Data slots in each slotframe

#tps = Transmissions per data slot

S = Maximum number of managed streams

So = Number of opened streams

h(s) = Hops traversed by the stream

hs = Average hops traversed by a stream

n(s) = Number of times the stream is executed in the current schedule

ns = Average number of times the stream is executed in the current schedule
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Ns = Number of times a stream can travel from the source to

the destination in a schedule

Dsched1 = #ds ·#tps(2log2N + log2S) (6.21)

Dsched2 = So ·#ds · 2log2N (6.22)

Dsched3 =

So<S∑
s=0

(log2N + log22H + n(s)h(s) (log2N + log2#ds)) (6.23)

Dsched4 = log2Ns +

So<S∑
s=0

(log2N + log22H + log2Ns + h(s) (log2N + log2#ds))

(6.24)

Dsched2 < Dsched1 ⇐⇒ So < #tps

(
1 +

log2S

2log2N

)
(6.25)

Dsched3 < Dsched2 ⇐⇒ log22H + hs · ns · log2 ·#ds <

log2N
(
2 ·#ds −

(
1 + hs · ns

))
(6.26)

Dsched4 < Dsched3 ⇐⇒ log2Ns

(
1 +

1

So

)
< hs (ns − 1) (log2N + log2#ds)

(6.27)

In equation (6.25) it is shown under which conditions the second format can be

potentially better than the first. By knowing that usually S > N , since a node

should be able to open at least a stream, the more are the non-opened streams,

the better is the second format. Also, as it could be easily imagined, more oper-

able streams in the same data slots lead to a higher length of the first schedule

format. So, the second format is more convenient, unless there are few slots per

slotframe and not many streams per node. Moreover, the first one has no flexi-

bility about the number of allocable streams. By comparing the third proposed

schedule with the second, as proposed in equation (6.26), it can be noticed that

the former is less greedy of space when there are more data slots per slotframe

and when the average transmissions per data slot over opened streams ratio

is high, so when there is more parallelism. The modification adopted in equa-

tion (6.27) is quickly analyzed since there is an improvement only if the number

of bits to represent the base data rate and each stream’s multiplier is lower

than the number of bits needed to represent the average schedule repetitions in
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terms of data slot and destination address. This is therefore advantageous in

case of schedules sharing a common base frequency, repeated many times during

a slotframe. At this point, the values considered in the first example turn being

meaningless, since the presented schedule distribution functions become more

and more parametric and hence their length variable. The best way to use these

values, finding the best combination in different configurations of the protocol,

evaluating the drawbacks, is just a matter of a choice, which can be performed

by picking the most appropriate function case by case and plugging it into the

protocol.

A completely different approach is transmitting a delta-encoded schedule. In

this case, every time a SME is received or when the topology changes signifi-

cantly, a new schedule is computed. The differences between the new and the

old schedules will be transmitted using a tuple which contain an addition/re-

moval bit, the stream number and the entire path, with its modified parts. This

last part is represented as a count of the hops followed by the addresses of the

path and the related dataslots. This solution would be efficient in cases where

the scheduler tries to minimize the number of modified paths. However, it needs

to retransmit the whole path for each modified schedule. Other solutions trans-

mitting only the modified parts and correctly changing only such parts can be

compared and used. Anyway, since the trade-offs depend mostly on the sched-

uler, this aspect has been no further developed.

When the schedule is received by the node, it is rebroadcasted and the data

is analyzed. Therefore, pending SMEs are checked and, if the current schedule

results satisfactory, they stop being transmitted; instead, they are kept in the

queue and hence transmitted when possible. Vice-versa, the master node, ana-

lyzing uplink’s SMEs, checks them with those considered in the active schedule,

avoiding to allocate the same stream several times.

Throughout the analysis a single-channel protocol is considered. If a multiple

channel implementation of the data part is desired, it must be considered that it

will be needed to specify the channel for each communication that will occur in

the schedule. Moreover, this analysis is scheduler-agnostic. Based on the needs

and the constraints of the scheduler, a deeper exploration can be performed thus

achieving better and more suitable results to efficiently distribute the schedule.
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6.3 Data transmission

As previously stated, the data part of the protocol, is divided in data slots,

which, for simplicity, have a fixed duration. Per-stream timeslot management

can be surveyed and considered, since different application types should be ca-

pable to use the same protocol at the same time with the most accurate timeslot

duration. The time part dedicated to this is calculated in equation (6.28) and

thus the efficiency of channel utilization can be deduced in terms of the amount

of data that has been treated by the protocol with respect to the amount of

data that has been transmitted by it in the channel (equation (6.2)).

Nslots = Number of data slots in a slotframe

tslot = Duration of a single slot

Td = Tsf − Tup − Tdown (6.28)

Nslots =
Td
tslot

(6.29)

Except for their duration tslot, timeslots can feature different behavioral modes.

An interesting difference is found between acknowledged and non-acknowledged

timeslots. In the latter, the connection reliability, if needed, must be addressed

in the upper layers. Whereas, in the former, acknowledgments are managed at

the MAC layer. This can be seen as a limit to the real-time characteristic of this

protocol. However, for certain mission-critical applications it can be useful for

an application to know exactly whether a datum has been correctly delivered

or not, and hence needs to be transmitted again at the next available timeslot.

This, as a side-effect impacts on the slots duration, therefore on the number of

slots as can be noticed in equation (6.29) and on the amount of energy spent to

send a message.

Another feature influencing the slot duration is the length of the data to be

sent. In some environments, few data may need to be transmitted, like sensor

values of few bytes. In this case, tslot would obviously decrease, the number

of slots available increase and thus granting the possibility to perform frequent

transmission decreasing the average delay to the destination, while diminishing
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although the ηspace.

However, in other applications, greater amounts of data may need to be trans-

mitted, for instance when having few nodes for a great number of sensors due

to the difficulty to deploy more nodes. On the contrary of the previous case,

the delay per packet would be increased, although allowing to reach higher

throughputs.

6.4 Interleaving function

In order to be able to grant a constant delay, downlink and uplink packets will

need to be interleaved with data timeslots. This is performed by a dedicated

interleaving function, whose job is to map uniquely a timestamp with the phase

to be executed and vice-versa. The timestamps used by the protocol are called

logic, since the actual timestamps, as seen from the point of view of the radio

channel, are named physical. Logical timestamping is managed by convention

as follows:

1. Time synchronization downlink;

2. Uplink complete phase;

3. Schedule distribution downlink;

4. Data transmission.

The interleaving function needs to be shared among all the nodes in the network

and all of them must employ the same one, in order to communicate with each

other. The allocation algorithm behind the interleaving function needs to be

known by the scheduler too, in order to compute schedules with a consistent

delay evaluation. The simplest way to perform this job is by knowing the

following configuration parameters:

� Tsf the duration of the entire slotframe;

� T timesyncdown how long does the timesync phase last;

� tdown(dsched) for each packet, for a total dimension of Dsched;

� Tup and #up to allocate each node’s uplink packet;
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time sync uplink schedule data

logical

physical

Figure 6.11: Representation of the interleaving function with a 17 uplink slots,
single slot schedule downlink and 36 data slots

� tslot the duration of a single data slot.

Phases, for being allocated, need to be divided in slots. Each slot is composed by

an elementary radio activity, identified by one or more transmission which can be

effortlessly separated from other transmissions of such phase. In uplink phases,

each slot is identified by a node to node transmission. Instead, in downlink

phases, a single packet flooding from the master to the last hop’s nodes is

considered as a single slot. In this way, by knowing in proportion how much

time of each phase needs to be allocated and the duration of each phase slot, it is

possible to build a fair interleaved schedule. This is needed to keep the allocated

proportion as close to the final ones as possible while allocating each phase’s slot

in sequential order. This metric should be used also to choose the next slot to be

allocated while building the timeline. Once statically computed, the resulting

map should be used as a configuration parameter to be distributed among the

nodes. A graphical representation, not considering the effective durations is

shown in 6.11.

6.5 Complexive structure

Summarizing the main protocol characteristics, it can be represented as shown

in figure 6.12 for what concerns dynamic nodes, and in figure 6.13 from the

operational point of view of the master node. From a top-down point of view,

the upper layers interface with it using the stream management function and
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enqueuing or dequeuing data from their streams. Stream allocation is managed

by the dedicated part of the uplink message. Those messages also contain

information about the topology that the master node needs to acquire. It also

manages other nodes’ topologies and Stream Management Elements that have

been delegated to it. In order to achieve synchronization and performing an

accurate TDMA access, a time synchronization downstream phase is managed.

Another downstream phase is used to deal with the schedule for network access

in the data slots. All this phases are orchestrated over time by an interleaving

function, common to all nodes, which aims to minimize the average delay among

each data timeslot. Finally, despite being present only in the master node, the

scheduling function is also an important part of the protocol. It receives the

interleaving function map, the opened streams information and the collected

topologies as input parameters, producing the schedule to be flooded using the

dedicated downlink packet.
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Figure 6.12: Protocol stack components diagram
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Figure 6.13: Master’s protocol stack components diagram
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Chapter 7

Software project

For the implementation of the protocol, a software engineering project has been

performed. Both the Miosix kernel and OMNeT++ are based on C++, there-

fore it has been chosen as target programming language. Since its main sup-

ported paradigm is the object oriented, the related structuring approach has

been used to synthesize the project. So, knowing the protocol structure and its

functionalities, the first task to be performed is the outlining of a class diagram,

starting from the structure obtained in the figures Upper layers API From the

point of view of the upper layers, the MAC protocol needs to expose an API

to activate it, with a given NetworkConfiguration, containing the parameters

to configure the protocol as explained in detail in 6, and a Transceiver (ref.

5.3), to be bound to, representing the lower layer of the protocol stack. It also

provides methods for opening, closing and managing the data rate of an Outgo-

ingStream besides those to accept IncomingStream connections, returning also

the number of slots per slotframe assigned in the scheduling. These operations

can be accomplished in a synchronous blocking way, by creating a SME that

will be sent during the stream management phase and awaiting for the schedule

to adapt, or asynchronously, by sumbitting a callback that will be called when

the schedule will adapt. This is resumed in the MediumAccessController class,

defining all these behaviors. It does not implement the singleton pattern, since

it is desirable to create more instances of this class in case it will be used on a

node with more Transceivers.
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The just cited OutgoingStream and IncomingStream are subclasses of DataS-

tream, which is another class of our model. Its main job is to contain packets

and thus it includes a queue and methods to manage it by obtaining its size

and to flush all the packets contained, in the case of a clogged stream. It also

detains a getter accessor for the queue which can be called only once making

the queue to be managed by the protocol internally only. The upper layers will

be able to access the stream’s queue only by its already cited children classes

which provide methods for sending and receiving data both synchronously (busy

waiting) and asynchronously (with a callback). This is displayed in the class

diagram of figure 7.1.

Figure 7.1: Upper layers interface class diagram
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7.1 Internal statuses

The MACContext class is the main container to keep the status necessary for

the protocol and its components to run. It also stores structures to manage the

slotframes and the phases of the protocol, whose content will be explained in

the next section. Let’s analyze now the class content, for what concerns the

status management part, as represented in figure 7.2:

1. for back referencing the MediumAccessController object;

2. the hop, as will be received during the time synchronization’s flooding;

3. networkId, as loaded from the NetworkConfiguration at the moment, but

considering that in a future, dynamic address assignment can be imple-

mented;

4. syncStatus, to manage the status of the FLOPSYNC-2 time synchroniza-

tion inside a dedicated class, SyncStatus;

5. scheduleContext, representing the current schedule, used both during the

schedule downlink phase, for its update, and the data phase, to know what

to do slot by slot;

6. topologyContext, which is an abstract class whose derivated class manage,

by elaborating the received uplink messages, the content to be sent in the

topology part of the uplink message;

7. networkConfiguration, for containing the configuration as passed during

the initialization of the MediumAccessController ;

8. streamContext, which operates over the stream management part of the

uplink phase;

9. transceiverConfig, for keeping a base configuration for the transceiver, to

be adapted as needed.

Every component’s content will be described in the appropriate part, by con-

necting it with the actual functionalities. Other functional parts of this core

class are better explained in the next section.
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Figure 7.2: Class diagram for all the classes representing the internal states of
each part of the protocol
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Figure 7.3: Class diagram representing all the classes between the MAC interface
and the Slotframe class
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7.2 Protocol phases

Proceeding with a top-down approach, the MediumAccessController class con-

tains the already known MACContext class, detaining the protocol status, its

configuration and context. It has been separated to give internal classes a set of

operations, which would be confusing and can lead to dangerous effect if exposed

to the user. It contains different status-keeping objects and attributes already

briefly discussed. However, from the point of view of the operative structure, it

contains the current and next Slotframe, used to manage what happens in the

current and the next slotframes. As the current slotframe finishes, it is switched

with the next, and this last one gets reset. This objects are first created when

the protocol is started, and with them also the node-type specific status objects.

The Slotframe contains an instance for each phase, each of them represented by a

different class: TimesyncPhase, which contains in its turn the RoundtripPhase;

DataPhase, to send and receive data when needed; UplinkPhase to manage

topology collection and stream management; ScheduleDownlinkPhase to receive

the schedule, retransmit it and then parse it by suddenly modifying the relatex

context. Details and specializations of these classes will be explained in their

relative sections to follow.

7.2.1 Timesync downlink

The timesync part has as main job the synchronization of the network and the

estimation of the roundtrip to the master. Each protocol phase is represented

by a MACPhase, a class to represent all the phases of the protocol, exposing

an execute method, which accepts the global context and the time at which the

next action will be executed. A MACPhase lasts for the duration of the Slot-

frame and can repeat its execution once, as for the downlink phases (typically),

or vice-versa it can be executed more times to perform slightly different jobs,

like the DataPhase and the UplinkPhase. It also offers a method to know when

it ends, so the next MACPhase will be temporally following it.

The phase representing the timesync context is the TimesyncPhase, which

manages the phase execution, for both the downlink phase and the Roundtrip.

Anyway, three different behaviors can be identified during this phase. The first
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Figure 7.4: Class diagram for the Timesync part of the protocol

to be described is the MasterTimesyncPhase, whose job is to start the flooding

to synchronize all the nodes. Then, the other two regarding the other nodes.

These are the HookingFloodingPhase and the PeriodicCheckFloodingPhase. The

HookingFloodingPhase is used when the synchronization to the master is lost,

so it senses the channel looking for time synchronization flooding packets. The

latter is instead intended to keep the synchronization by receiving the broad-

casted packet and retransmitting it to the next hop.

These last two phases rely on the SyncStatus to store the synchronization state.

It also provides an API to set the synchronization timestamps and obtain those

of the next turn, provided by the Flopsync2 controller. Another important

method is getWakeupAndTimeout, which returns the maximum wake up time

and the timeout, based on a given timestamp, using the information available

after the synchronization has been performed.

After the flooding, the node could be involved in a Roundtrip calculation, per-

formed in the last part of the execution of the TimesyncPhase. It can either
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use the ListeningRoundtrip class or the AskingRoundtrip class, based on its role

during the phase. They execute the roundtrip calculation as explained in the

Reverse Flooding algorithm [35].

7.2.2 Uplink

Figure 7.5: Principal components for the uplink phase.

Another phase of the protocol is the uplink phase, represented by the Up-

linkPhase class in the diagram. Every node during this phase needs to listen

to every node’s uplink phase, collecting their uplinks using the UplinkMes-

sage. It then extracts the TopologyMessage to populate the TopologyContext

as explained in the following section. Also, it extracts a list of StreamManage-

mentElement objects that will be used to compute the next schedule, if it is the

master node, otherwise it will be forwarded to the chosen predecessor. Then,

when the node’s turn comes, the TopologyMessage is formed and the SMEs to

be sent are chosen. This is accomplished by the DynamicUplinkPhase and the
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MasterUplinkPhase, interfacing with the TopologyContext and StreamManage-

mentContext objects, whose function will be elucidated later. The components

responsible for this mechanism are illustrated in figure 7.5.

Uplink - Topology

For what concerns the topology part, it is managed within the TopologyContext,

which is an abstract class. It comes in two flavors: MasterTopologyContext

and DynamicTopologyContext, based on the node’s role. The former is used

to collect the topologies within a TopologyMap, a class representing a generic

undirected graph. This is also used by the Scheduler, whose function will be

better explained later, to compute the schedule to be distributed. Also, if the

master node notices the disconnection of a node, it closes its opened streams by

acting on the MasterStreamManagementContext, that will be explainded in the

dedicated section. Dynamic nodes instead employ the DynamicTopologyContext

class whose specialization is keeping track of the known neighbors, together

with the amount of times they didn’t shown up during the uplink phase. This

is accomplished in order to avoid having an unstable topology. It also keeps

track of the messages to forward in a UpdatablePriorityQueue, which contains

the messages in a FIFO queue, but enables to update its content if it changes

(i.e. a node’s neighbors addition/removal while it’s still in queue). However,

before storing the message, the context class needs to parse it, using the related

class, subclass of TopologyMessage, depending on the topology in use. These

messages are passed to the relative TopologyContext subclass, based on the

topology type and the node role. They will either deduce neighbors, predecessors

and gather topologies to forward if they are dynamic nodes or collect them into

a TopologyMap if the receiving node is a master node. Then, in the former case,

during the node’s round, the information about the self topology and other

nodes’ topologies are assembled in an appropriate TopologyMessage and sent

over the network in an UplinkMessage. The topology messages can be of two

types, either a MeshTopologyMessage or a TreeTopologyMessage. The former

contains the node address and the neighbors bitmask, as the protocol specifies,

while the latter just contains the chosen parent of the previous hop address and

the node’s address. All these processes are described in figure 7.6.
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Figure 7.6: Classes for the topology collection part of the uplink phase.

Uplink - Stream management

The uplink message also contains information about the opening and closing

streams. They are parsed from the UplinkPhase as StreamManagementElement,

when they are received. If the receiving node is a master, those will be used

to change the activeStreams property of the MasterStreamManagementContext.

Those will be accessed also by the Scheduler, to compute a new schedule keeping

track of them. In the case the receiving node is a dynamic node, they will be
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Figure 7.7: Classes for the stream management part of the uplink topology.

enqueued in the DynamicStreamManagementContext, to be sent to the master

node repeatedly, until the schedule has changed to fulfill the required stream.

When, instead, these requests are made directly from the node, i.e. it wants

to open an outgoing stream, the outcome depends on the node’s role. They all

have a common API, openStream() and closeStream() in the StreamManage-

mentContext. If it is a master, it directly allocates or deallocates it and will

schedule it to the other nodes of the network during the next schedule downlink

phase. Instead, in case of a dynamic node, this is managed by enqueuing it

every time it sends out an uplink message and, when the related schedule is
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received in the downlink, it stops sending the SME. This part is displayed in

figure 7.7.

7.2.3 Schedule distribution

Figure 7.8: Classes for the schedule downlink phase for the dynamic nodes.

The schedule distribution phase starts from the master node. The Scheduler

uses the collected topology and the opened streams to determine the schedule

to be distributed and adopted. It is represented as an abstract class only, since

it doesn’t have an actual implementation. The computed schedule will be in-

serted into the MasterScheduleContext, which will also calculate the delta to

distribute. Then, when the ScheduleDownlinkPhase starts, the MasterSched-

uleDownlinkPhase initiates the flooding by fetching the schedule delta from the

context and flooding it. In the meanwhile, receiving nodes have started their

DynamicScheduleDownlinkPhase, in which they will receive the schedule from

the previous hop, parsing it into DataSlot of the appropriate type, if the node is

contained in it. This is based on the presence and role of the node in the stream,

inferred by the known information and the received schedule delta. Those will
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Figure 7.9: Classes for the schedule downlink phase for the master node.
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be then parsed in OutgoingDataSlot, IncomingDataSlot, ForwarderDataSlot or

ForwardeeDataSlot. Similar classes are created by the master for itself, based

on the DataSlotType, in case it is a sender, a receiver or it needs to forward data

from a slot to another. The related class diagram is shown in figure 7.9 and 7.8

for what concerns the master node in the former and for the dynamic node in

the latter.

7.2.4 Data transmission

Data transmission phase is based on the received schedule and the role. For

each data slot, either the MasterDataPhase or the DynamicDataPhase, based

on the node’s role is executed. To know what will be done in the data slot,

ScheduleContext will be used to fetch the DataSlot for the current slot number.

The actions depend on what will be fetched:

� nullptr, no action will be done, and the node will sleep saving energy;

� IncomingDataSlot , the node will receive data from another node and

will send it to the upper layers using the IncomingStream;

� OutgoingDataSlot , if the OutgoingStream contained in the object is

holding data, it will be sent on its route;

� ForwardeeDataSlot , the node will listen for data and store it into the

related ForwarderDataSlot queue, in order to forward it to the successive

node

� ForwarderDataSlot, the data enqueued, if present, will be forwarded,

otherwise the node will sleep.

A variant of these DataSlot classes is present for the master node, which will

use those generated by the scheduler directly, containing more elements in order

to be flooded, as stated in the previous section. Figure 7.10 displays the class

structure for the data phase for the master node. Figure 7.11 displays instead

the structure for the dynamic nodes.

The proposed software structure represents the protocol in the most general

cases, however it uses many classes and structures, which are thought for scala-

bility and maintainability and not to achieve the best performance. Therefore,
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Figure 7.10: Class diagram for the data phase for the master node.
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Figure 7.11: Class diagram for the data phase for the dynamic nodes.
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when implementing the protocol, especially in low memory, slow devices, this

aspect must be addressed and an analysis of structures to be used (i.e. lin-

ear search on lists versus logarithmic lookup on maps) should be accomplished.

Moreover, many classes try to be as immutable as possible, to comply with

OOP principles in the best possible way, causing however trashing and contin-

uous memory reallocation. The use of a lower number of more mutable classes

is suggested to achieve higher performances.

80



Chapter 8

Proof of concept

An implementation of the protocol has been realized in C++ within the OM-

NeT++ environment, as anticipated in 5.3. Its purpose is to prove the protocol

to be working, therefore it is not a complete implementation. It models a net-

work of 256 nodes maximum with a limit of 16 hops, in different configurations.

The chosen topology model is the mesh topology, thus being able to use all the

actual connections made in the simulator. Since no scheduler has been devel-

oped, the schedule used by the nodes was statically hardcoded to be sent out at

a predefined time. Also, since no upper layer was present, the data to be sent

out consist of ”Hello” messages generated at runtime. Then, the interleaving

function is a 1:1 map, not distributing the phases. The topologies implemented

and for which the implementation has been tested are shown in figure 8.1. The

three kites dispositions and the diamond topology are adopted because they

help illustrate some particularities of the protocol, like the capture effects and

how the uplink phase is run under certain conditions. The partial mesh is the

most realistic topology. Star and full mesh topologies represent instead contexts

in which all the nodes are respectively far from and close to the master. In the

sections to follow the execution of the protocol is analyzed in particular cases

and in some topologies, for which different characteristics can emerge. All the

times displayed are expresses in nanoseconds.
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(a) Kite

(b) Upside-down kite

(c) Double tailed kite

(d) Diamond

(e) Partial mesh

(f) Star
(g) Full mesh

Figure 8.1: Topologies simulated
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8.1 Time synchronization

The time synchronization downlink phase is implemented in the protocol as

explained in section 7.2.1. In the log, in listing 8.1 it is shown the time syn-

chronization phase output for the diamond topology, already known to be rep-

resentative for this topic. All the dynamic nodes start by resynchronizing their

time to the master’s, awaiting the Glossy flooding to happen. Then, when the

master node sends the flooding, the nodes receive it, calculating the Measured

Gobal First Activity Time (MGFAT) and rebroadcasting it to the next hop.

Then also node 2 will receive such a packet. The wake-up (WU) and timeout

(TO) times for the next synchronization phase are calculated. Notice, in row 10,

that the node 2 knows it will receive the packet after a predefined forwarding

interval from the previous hop, performing the whole calculation from the hop

count included in the packet and its receiving time. At the next iteration the

nodes will receive the synchronization packet, with error 0 since the simulation

happens in an ideal discrete event simulator and no jitter nor any other partic-

ular physical linear or non-linear effect has been simulated. The FLOPSYNC-2

controller starts with a maximum window of 6ms, however, after a reasonable

number of iterations, the nodes achieve a better alignment with the master’s

clock thus being able to reduce it and activate their MAC protocol, respecting

a maximum synchronization window constraint. No roundtrip time calculation

is performed, since in simulation it would be 0.

Listing 8.1: Time synchronization phase in the diamond topology

1 n1: [F] Resync

2 n2: [F] Resync

3 n3: [F] Resync

4 n0: [F] ST =1000000

5 n1: [F] MGFAT 1000000

6 n1: [F] WU =9994550000 TO =10007160083

7 n2: [F] MGFAT 1000000

8 n2: [F] WU =9994550000 TO =10007160083

9 n3: [F] MGFAT 1000000

10 n3: [F] WU =9995566000 TO =10008176083

11 ------------------------------------------------

12 n0: [F] ST =10001000000

13 n1: [F] RT =10001000000

14 n1: e=0 u=0 w=6000000 rssi=5

15 n1: [F] MGFAT 10001000000

16 n1: [F] WU =19994550000 TO =20007160083

17 n2: [F] RT =10001000000

18 n2: e=0 u=0 w=6000000 rssi=5

19 n2: [F] MGFAT 10001000000
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20 n2: [F] WU =19994550000 TO =20007160083

21 n3: [F] RT =10002016000

22 n3: e=0 u=0 w=6000000 rssi=5

23 n3: [F] MGFAT 10001000000

24 n3: [F] WU =19995566000 TO =20008176083

8.2 Uplink

The uplink phase, as described in 7.2.2, is a phase in which every node sends

a packet (or more than one, if configured) containing its information to make

the master gather knowledge about the network topology and elements to man-

age the streams related to a node, i.e. opening, closing or modifying a stream

whose source is the sender node. First of all, a more verbose example of topol-

ogy collection without stream management for a diamond topology is displayed

in listing 8.2. At the first iteration, no node will know anything about its neigh-

bors. Anyway, node 1 and 2 belong to the first hop, therefore they know about

it, and can uniquely identify it as their predecessor. Hence they will send their

uplink message during their turns (lines 5 and 9). The nodes within the ra-

dio range, after the appropriate time to receive the message, will receive their

messages (lines 10-14, 17-19, 23-24). The time for expecting the packets is cal-

culated on the basis of the node’s address and all the nodes but the sender

will listen to it using an appropriately calculated receiving window, based on

their synchronization status. The master node will build the topology map in

the meanwhile, collecting information about the network (lines 20-22). At the

next iteration, the process will repeat. However, since the notion of neighbors

changed, the uplink message content reflects it (lines 26, 30, 34, 40, 42, 49, 56).

Therefore node 3 will be able to choose a predecessor, in this case node 1 (lines

41-42), which will enqueue its information and forward them as soon as possible

respecting a FIFO queue. In this case, the message reaches the master node

during the same round, since no other nodes belong to hop 2. Now, the master

has a complete knowledge about the topology (lines 51-55).
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Listing 8.2: Diamond topology collection

1 n3: neighbors:

2 n1: [T] expect 3 from 91530966068 to 91536966068

3 n2: [T] expect 3 from 91530966068 to 91536966068

4 n2: neighbors:

5 n2: [T] N=2 -> @91542706000

6 n3: [T] expect 2 from 91530966068 to 91542966068

7 n1: [T] expect 2 from 91536966068 to 91542966068

8 n1: neighbors:

9 n1: [T] N=1 -> @91548706000

10 n0: Received topology :[2/1 - >0]:0

11 n0: Topology added 2 -> 0

12 n0: [T] <- N=2 @91542706000

13 n3: received: [2/1] : 0

14 n3: [T] <- N=2 @91542706000

15 n2: [T] expect 1 from 91544114000 to 91548966068

16 n3: [T] expect 1 from 91544178000 to 91548966068

17 n0: Received topology :[1/1 - >0]:0

18 n0: Topology added 1 -> 0

19 n0: [T] <- N=1 @91548706000

20 n0: [T] Current topology:

21 n0: [0 - 2]

22 n0: [0 - 1]

23 n3: Received topology :[1/1 - >0]:0

24 n3: [T] <- N=1 @91548706000

25 ------------------------------------------------

26 n3: neighbors: 1, 2,

27 n3: [T] N=3 -> @101536706000

28 n1: [T] expect 3 from 101530966068 to 101536966068

29 n2: [T] expect 3 from 101530966068 to 101536966068

30 n2: received: [3/2] : 1, 2

31 n2: [T] <- N=3 @101536706000

32 n2: neighbors: 3,

33 n2: [T] N=2 -> @101542706000

34 n1: received: [3/2] : 1, 2

35 n1: [T] <- N=3 @101536706000

36 n3: [T] expect 2 from 101538114000 to 101542966068

37 n1: [T] expect 2 from 101538178000 to 101542966068

38 n1: neighbors: 3,

39 n1: [T] N=1 -> @101548706000

40 n0: Received topology :[2/1- >0]:0 , 3

41 n0: Topology added 2 -> 3

42 n0: Received topology :[3/2- >2]:1 , 2

43 n0: Topology added 3 -> 1

44 n0: [T] <- N=2 @101542706000

45 n3: received: [2/1] : 0, 3

46 n3: [T] <- N=2 @101542706000

47 n2: [T] expect 1 from 101545234000 to 101548966068

48 n3: [T] expect 1 from 101545298000 to 101548966068

49 n0: Received topology :[1/1- >0]:0 , 3

50 n0: [T] <- N=1 @101548706000

51 n0: [T] Current topology:

52 n0: [0 - 2]

53 n0: [0 - 1]

54 n0: [1 - 3]

55 n0: [2 - 3]

56 n3: Received topology :[1/1- >0]:0 , 3

57 n3: [T] <- N=1 @101548706000
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In certain topologies, this process is accomplished faster, even if the connection

number is higher. For instance in the complete mesh topology all the nodes can

communicate to the master their topology directly, since they belong to hop 1.

Moreover, they also listen to the uplink messages sent before theirs. Therefore

they are able to build their knowledge about the neighbors iteratively, as the

uplink phase goes on, and the same holds for the master node. Hence, as dis-

played in 8.3, after just one iteration, all the node’s topology information will

be collected into the master node’s topology map.

Listing 8.3: Complete mesh topology collection

1 n9: neighbors:

2 n0: Received topology :[9/1 - >0]:0

3 n0: Topology added 9 -> 0

4 n2: received: [9/1] : 0

5 n3: received: [9/1] : 0

6 n1: received: [9/1] : 0

7 n8: received: [9/1] : 0

8 n8: neighbors: 9,

9 n7: received: [9/1] : 0

10 n4: received: [9/1] : 0

11 n6: received: [9/1] : 0

12 n5: received: [9/1] : 0

13 n0: Received topology :[8/1- >0]:0 , 9

14 n0: Topology added 8 -> 0

15 n0: Topology added 8 -> 9

16 n3: received: [8/1] : 0, 9

17 n4: received: [8/1] : 0, 9

18 n7: received: [8/1] : 0, 9

19 n7: neighbors: 8, 9,

20 n9: received: [8/1] : 0, 9

21 n1: received: [8/1] : 0, 9

22 n6: received: [8/1] : 0, 9

23 n5: received: [8/1] : 0, 9

24 n2: received: [8/1] : 0, 9

25 n0: Received topology :[7/1- >0]:0 , 8, 9

26 n0: Topology added 7 -> 0

27 n0: Topology added 7 -> 8

28 n0: Topology added 7 -> 9

29 n4: received: [7/1] : 0, 8, 9

30 n8: received: [7/1] : 0, 8, 9

31 n6: received: [7/1] : 0, 8, 9

32 n6: neighbors: 7, 8, 9,

33 n9: received: [7/1] : 0, 8, 9

34 n5: received: [7/1] : 0, 8, 9

35 n3: received: [7/1] : 0, 8, 9

36 n2: received: [7/1] : 0, 8, 9

37 n1: received: [7/1] : 0, 8, 9

38 n0: Received topology :[6/1- >0]:0 , 7, 8, 9

39 n0: Topology added 6 -> 0

40 n0: Topology added 6 -> 7

41 n0: Topology added 6 -> 8

42 n0: Topology added 6 -> 9

43 n5: received: [6/1] : 0, 7, 8, 9
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44 n5: neighbors: 6, 7, 8, 9,

45 n7: received: [6/1] : 0, 7, 8, 9

46 n8: received: [6/1] : 0, 7, 8, 9

47 n4: received: [6/1] : 0, 7, 8, 9

48 n3: received: [6/1] : 0, 7, 8, 9

49 n2: received: [6/1] : 0, 7, 8, 9

50 n1: received: [6/1] : 0, 7, 8, 9

51 n9: received: [6/1] : 0, 7, 8, 9

52 n0: Received topology :[5/1- >0]:0 , 6, 7, 8, 9

53 n0: Topology added 5 -> 0

54 n0: Topology added 5 -> 6

55 n0: Topology added 5 -> 7

56 n0: Topology added 5 -> 8

57 n0: Topology added 5 -> 9

58 n4: received: [5/1] : 0, 6, 7, 8, 9

59 n4: neighbors: 5, 6, 7, 8, 9,

60 n6: received: [5/1] : 0, 6, 7, 8, 9

61 n7: received: [5/1] : 0, 6, 7, 8, 9

62 n3: received: [5/1] : 0, 6, 7, 8, 9

63 n2: received: [5/1] : 0, 6, 7, 8, 9

64 n1: received: [5/1] : 0, 6, 7, 8, 9

65 n8: received: [5/1] : 0, 6, 7, 8, 9

66 n9: received: [5/1] : 0, 6, 7, 8, 9

67 n0: Received topology :[4/1- >0]:0 , 5, 6, 7, 8, 9

68 n0: Topology added 4 -> 0

69 n0: Topology added 4 -> 5

70 n0: Topology added 4 -> 6

71 n0: Topology added 4 -> 7

72 n0: Topology added 4 -> 8

73 n0: Topology added 4 -> 9

74 n8: received: [4/1] : 0, 5, 6, 7, 8, 9

75 n3: received: [4/1] : 0, 5, 6, 7, 8, 9

76 n3: neighbors: 4, 5, 6, 7, 8, 9,

77 n7: received: [4/1] : 0, 5, 6, 7, 8, 9

78 n5: received: [4/1] : 0, 5, 6, 7, 8, 9

79 n6: received: [4/1] : 0, 5, 6, 7, 8, 9

80 n9: received: [4/1] : 0, 5, 6, 7, 8, 9

81 n1: received: [4/1] : 0, 5, 6, 7, 8, 9

82 n2: received: [4/1] : 0, 5, 6, 7, 8, 9

83 n0: Received topology :[3/1- >0]:0 , 4, 5, 6, 7, 8, 9

84 n0: Topology added 3 -> 0

85 n0: Topology added 3 -> 4

86 n0: Topology added 3 -> 5

87 n0: Topology added 3 -> 6

88 n0: Topology added 3 -> 7

89 n0: Topology added 3 -> 8

90 n0: Topology added 3 -> 9

91 n2: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

92 n2: neighbors: 3, 4, 5, 6, 7, 8, 9,

93 n9: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

94 n8: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

95 n4: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

96 n5: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

97 n1: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

98 n7: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

99 n6: received: [3/1] : 0, 4, 5, 6, 7, 8, 9

100 n0: Received topology :[2/1- >0]:0 , 3, 4, 5, 6, 7, 8, 9

101 n0: Topology added 2 -> 0

102 n0: Topology added 2 -> 3

103 n0: Topology added 2 -> 4

104 n0: Topology added 2 -> 5

105 n0: Topology added 2 -> 6
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106 n0: Topology added 2 -> 7

107 n0: Topology added 2 -> 8

108 n0: Topology added 2 -> 9

109 n3: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

110 n9: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

111 n1: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

112 n1: neighbors: 2, 3, 4, 5, 6, 7, 8, 9,

113 n4: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

114 n5: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

115 n6: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

116 n7: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

117 n8: received: [2/1] : 0, 3, 4, 5, 6, 7, 8, 9

118 n0: Received topology :[1/1- >0]:0 , 2, 3, 4, 5, 6, 7, 8, 9

119 n0: Topology added 1 -> 0

120 n0: Topology added 1 -> 2

121 n0: Topology added 1 -> 3

122 n0: Topology added 1 -> 4

123 n0: Topology added 1 -> 5

124 n0: Topology added 1 -> 6

125 n0: Topology added 1 -> 7

126 n0: Topology added 1 -> 8

127 n0: Topology added 1 -> 9

128 n0: [T] Current topology:

129 n0: [0 - 9]

130 n0: [0 - 8]

131 n0: [0 - 7]

132 n0: [0 - 6]

133 n0: [0 - 5]

134 n0: [0 - 4]

135 n0: [0 - 3]

136 n0: [0 - 2]

137 n0: [0 - 1]

138 n0: [1 - 2]

139 n0: [1 - 3]

140 n0: [1 - 4]

141 n0: [1 - 5]

142 n0: [1 - 6]

143 n0: [1 - 7]

144 n0: [1 - 8]

145 n0: [1 - 9]

146 n0: [2 - 3]

147 n0: [2 - 4]

148 n0: [2 - 5]

149 n0: [2 - 6]

150 n0: [2 - 7]

151 n0: [2 - 8]

152 n0: [2 - 9]

153 n0: [3 - 4]

154 n0: [3 - 5]

155 n0: [3 - 6]

156 n0: [3 - 7]

157 n0: [3 - 8]

158 n0: [3 - 9]

159 n0: [4 - 5]

160 n0: [4 - 6]

161 n0: [4 - 7]

162 n0: [4 - 8]

163 n0: [4 - 9]

164 n0: [5 - 6]

165 n0: [5 - 7]

166 n0: [5 - 8]

167 n0: [5 - 9]
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168 n0: [6 - 7]

169 n0: [6 - 8]

170 n0: [6 - 9]

171 n0: [7 - 8]

172 n0: [7 - 9]

173 n0: [8 - 9]

A simpler example is with the partial mesh, in which not all the connections are

made, although all the nodes belong to the first hop, so the topology map will

be built at the first iteration, as well as the nodes’ knowledge of their neighbors.

This is illustrated in listing 8.4.

Listing 8.4: Partial mesh topology collection

1 n9: neighbors:

2 n8: neighbors:

3 n0: Received topology :[9/1 - >0]:0

4 n0: Topology added 9 -> 0

5 n2: received: [9/1] : 0

6 n3: received: [9/1] : 0

7 n0: Received topology :[8/1 - >0]:0

8 n0: Topology added 8 -> 0

9 n3: received: [8/1] : 0

10 n4: received: [8/1] : 0

11 n7: received: [8/1] : 0

12 n7: neighbors: 8,

13 n6: neighbors:

14 n0: Received topology :[7/1- >0]:0 , 8

15 n0: Topology added 7 -> 0

16 n0: Topology added 7 -> 8

17 n4: received: [7/1] : 0, 8

18 n8: received: [7/1] : 0, 8

19 n0: Received topology :[6/1 - >0]:0

20 n0: Topology added 6 -> 0

21 n5: received: [6/1] : 0

22 n5: neighbors: 6,

23 n0: Received topology :[5/1- >0]:0 , 6

24 n0: Topology added 5 -> 0

25 n0: Topology added 5 -> 6

26 n4: received: [5/1] : 0, 6

27 n4: neighbors: 5, 7, 8,

28 n6: received: [5/1] : 0, 6

29 n0: Received topology :[4/1- >0]:0 , 5, 7, 8

30 n0: Topology added 4 -> 0

31 n0: Topology added 4 -> 5

32 n0: Topology added 4 -> 7

33 n0: Topology added 4 -> 8

34 n8: received: [4/1] : 0, 5, 7, 8

35 n3: received: [4/1] : 0, 5, 7, 8

36 n3: neighbors: 4, 8, 9,

37 n7: received: [4/1] : 0, 5, 7, 8

38 n5: received: [4/1] : 0, 5, 7, 8

39 n0: Received topology :[3/1- >0]:0 , 4, 8, 9
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40 n0: Topology added 3 -> 0

41 n0: Topology added 3 -> 4

42 n0: Topology added 3 -> 8

43 n0: Topology added 3 -> 9

44 n2: received: [3/1] : 0, 4, 8, 9

45 n2: neighbors: 3, 9,

46 n9: received: [3/1] : 0, 4, 8, 9

47 n8: received: [3/1] : 0, 4, 8, 9

48 n4: received: [3/1] : 0, 4, 8, 9

49 n0: Received topology :[2/1- >0]:0 , 3, 9

50 n0: Topology added 2 -> 0

51 n0: Topology added 2 -> 3

52 n0: Topology added 2 -> 9

53 n3: received: [2/1] : 0, 3, 9

54 n9: received: [2/1] : 0, 3, 9

55 n1: received: [2/1] : 0, 3, 9

56 n1: neighbors: 2,

57 n0: Received topology :[1/1- >0]:0 , 2

58 n0: Topology added 1 -> 0

59 n0: Topology added 1 -> 2

60 n0: [T] Current topology:

61 n0: [0 - 9]

62 n0: [0 - 8]

63 n0: [0 - 7]

64 n0: [0 - 6]

65 n0: [0 - 5]

66 n0: [0 - 4]

67 n0: [0 - 3]

68 n0: [0 - 2]

69 n0: [0 - 1]

70 n0: [1 - 2]

71 n0: [2 - 3]

72 n0: [2 - 9]

73 n0: [3 - 4]

74 n0: [3 - 8]

75 n0: [3 - 9]

76 n0: [4 - 5]

77 n0: [4 - 7]

78 n0: [4 - 8]

79 n0: [5 - 6]

80 n0: [7 - 8]

In both the kite and the upside-down kite topologies, the topology map needs

instead three rounds to be built, since there are four hops and the information

about the fourth hop is provided by the topology data of previous hop’s nodes.

Such information arrives to the master after a number of iterations equal to

those node’s hop count (#hop − 1), in case that no uplink message is oversatu-

rated. The logs of such collections is displayed in listings listings 8.5 to 8.6.
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Listing 8.5: Topology collection of a kite configured network

1 n5: neighbors:

2 n4: neighbors:

3 n3: neighbors: 1, 2,

4 n2: received: [3/2] : 1, 2

5 n2: neighbors: 3,

6 n1: received: [3/2] : 1, 2

7 n4: received: [3/2] : 1, 2

8 n1: neighbors: 3,

9 n0: Received topology :[2/1- >0]:0 , 3

10 n0: Topology added 2 -> 3

11 n0: Received topology :[3/2- >2]:1 , 2

12 n0: Topology added 3 -> 1

13 n3: received: [2/1] : 0, 3

14 n0: Received topology :[1/1- >0]:0 , 3

15 n0: [T] Current topology:

16 n0: [0 - 2]

17 n0: [0 - 1]

18 n0: [1 - 3]

19 n0: [2 - 3]

20 ------------------------------------------------

21 n5: neighbors:

22 n4: neighbors: 3,

23 n3: received: [4/3] : 3

24 n3: neighbors: 1, 2, 4,

25 n5: received: [4/3] : 3

26 n2: received: [3/2] : 1, 2, 4

27 n2: received: [4/3] : 3

28 n2: neighbors: 3,

29 n1: received: [3/2] : 1, 2, 4

30 n4: received: [3/2] : 1, 2, 4

31 n1: neighbors: 3,

32 n0: Received topology :[2/1- >0]:0 , 3

33 n0: Received topology :[3/2- >2]:1 , 2, 4

34 n0: Topology added 3 -> 4

35 n0: Received topology :[4/3 - >3]:3

36 n3: received: [2/1] : 0, 3

37 n0: Received topology :[1/1- >0]:0 , 3

38 n0: [T] Current topology:

39 n0: [0 - 2]

40 n0: [0 - 1]

41 n0: [1 - 3]

42 n0: [2 - 3]

43 n0: [3 - 4]

44 ------------------------------------------------

45 n5: neighbors: 4,

46 n4: received: [5/4] : 4

47 n4: neighbors: 3, 5,

48 n3: received: [4/3] : 3, 5

49 n3: received: [5/4] : 4

50 n3: neighbors: 1, 2, 4,

51 n5: received: [4/3] : 3, 5

52 n2: received: [3/2] : 1, 2, 4

53 n2: received: [4/3] : 3, 5

54 n2: received: [5/4] : 4

55 n2: neighbors: 3,

56 n1: received: [3/2] : 1, 2, 4

57 n4: received: [3/2] : 1, 2, 4

58 n1: neighbors: 3,

59 n0: Received topology :[2/1- >0]:0 , 3

60 n0: Received topology :[3/2- >2]:1 , 2, 4

61 n0: Received topology :[4/3- >3]:3 , 5
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62 n0: Topology added 4 -> 5

63 n3: received: [2/1] : 0, 3

64 n0: Received topology :[1/1- >0]:0 , 3

65 n0: [T] Current topology:

66 n0: [0 - 2]

67 n0: [0 - 1]

68 n0: [1 - 3]

69 n0: [2 - 3]

70 n0: [3 - 4]

71 n0: [4 - 5]

Listing 8.6: Topology collection in an upside-down kite topology

1 n5: neighbors:

2 n4: neighbors:

3 n3: neighbors:

4 n2: neighbors:

5 n1: neighbors:

6 n0: Received topology :[1/1 - >0]:0

7 n0: Topology added 1 -> 0

8 n0: [T] Current topology:

9 n0: [0 - 1]

10 n0: 1 -[1]-> 0

11 ------------------------------------

12 n5: neighbors:

13 n4: neighbors: 2,

14 n3: neighbors: 2,

15 n2: received: [4/3] : 2

16 n5: received: [4/3] : 2

17 n2: received: [3/3] : 2

18 n2: neighbors: 1, 3, 4,

19 n5: received: [3/3] : 2

20 n3: received: [2/2] : 1, 3, 4

21 n4: received: [2/2] : 1, 3, 4

22 n1: received: [2/2] : 1, 3, 4

23 n1: received: [4/3] : 2

24 n1: received: [3/3] : 2

25 n1: neighbors: 2,

26 n0: Received topology :[1/1- >0]:0 , 2

27 n0: Received topology :[2/2- >1]:1 , 3, 4

28 n0: Topology added 2 -> 3

29 n0: Topology added 2 -> 4

30 n0: Received topology :[4/3 - >2]:2

31 n0: [T] Current topology:

32 n0: [0 - 1]

33 n0: [1 - 2]

34 n0: [2 - 3]

35 n0: [2 - 4]

36 ------------------------------------

37 n5: neighbors: 3, 4,

38 n4: received: [5/4] : 3, 4

39 n4: neighbors: 2, 5,

40 n3: received: [5/4] : 3, 4

41 n3: neighbors: 2, 5,

42 n2: received: [4/3] : 2, 5

43 n2: received: [5/4] : 3, 4

44 n5: received: [4/3] : 2, 5

45 n2: received: [3/3] : 2, 5
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46 n2: neighbors: 1, 3, 4,

47 n5: received: [3/3] : 2, 5

48 n3: received: [2/2] : 1, 3, 4

49 n4: received: [2/2] : 1, 3, 4

50 n1: received: [2/2] : 1, 3, 4

51 n1: received: [4/3] : 2, 5

52 n1: received: [5/4] : 3, 4

53 n1: neighbors: 2,

54 n0: Received topology :[1/1- >0]:0 , 2

55 n0: Received topology :[3/3 - >2]:2

56 n0: Received topology :[2/2- >1]:1 , 3, 4

57 n0: [T] Current topology:

58 n0: [0 - 1]

59 n0: [1 - 2]

60 n0: [2 - 3]

61 n0: [2 - 4]

62 ------------------------------------

63 n5: neighbors: 3, 4,

64 n4: received: [5/4] : 3, 4

65 n4: neighbors: 2, 5,

66 n3: received: [5/4] : 3, 4

67 n3: neighbors: 2, 5,

68 n2: received: [4/3] : 2, 5

69 n2: received: [5/4] : 3, 4

70 n5: received: [4/3] : 2, 5

71 n2: received: [3/3] : 2, 5

72 n2: neighbors: 1, 3, 4,

73 n5: received: [3/3] : 2, 5

74 n3: received: [2/2] : 1, 3, 4

75 n4: received: [2/2] : 1, 3, 4

76 n1: received: [2/2] : 1, 3, 4

77 n1: received: [3/3] : 2, 5

78 n1: received: [4/3] : 2, 5

79 n1: neighbors: 2,

80 n0: Received topology :[1/1- >0]:0 , 2

81 n0: Received topology :[4/3- >2]:2 , 5

82 n0: Topology added 4 -> 5

83 n0: Received topology :[5/4- >4]:3 , 4

84 n0: Topology added 5 -> 3

85 n0: [T] Current topology:

86 n0: [0 - 1]

87 n0: [1 - 2]

88 n0: [2 - 3]

89 n0: [2 - 4]

90 n0: [3 - 5]

91 n0: [4 - 5]

Another example of topology collection, is realized in a the simple star topol-

ogy, in which also streams are opened during the uplink phase. The example is

about a real application, in which the network is used to perform data collec-

tion with a low frequency sampling. The master node achieves knowledge about

other node’s information in one slotframe only, as expected. Stream requests

are displayed in lines 4, 9, 14, 19, 24, 29, 34, 39 of listing 8.7. The output of
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node 0 shows that the streams were opened in lines 7, 12, 17, 22, 27, 32, 37, 42,

45, and then the whole information collected by node 0 about the open streams

from line 56 to line 65.

Listing 8.7: Topology collection and stream management of a star topology

1 n9: neighbors:

2 n9: [S] Opening stream to 0 with rate 1

3 n8: neighbors:

4 n8: [S] Opening stream to 0 with rate 1

5 n0: Received topology :[9/1 - >0]:0

6 n0: Topology added 9 -> 0

7 n0: [S] Opened stream 9 -[1]-> 0

8 n7: neighbors:

9 n7: [S] Opening stream to 0 with rate 1

10 n0: Received topology :[8/1 - >0]:0

11 n0: Topology added 8 -> 0

12 n0: [S] Opened stream 8 -[1]-> 0

13 n6: neighbors:

14 n6: [S] Opening stream to 0 with rate 1

15 n0: Received topology :[7/1 - >0]:0

16 n0: Topology added 7 -> 0

17 n0: [S] Opened stream 7 -[1]-> 0

18 n5: neighbors:

19 n5: [S] Opening stream to 0 with rate 1

20 n0: Received topology :[6/1 - >0]:0

21 n0: Topology added 6 -> 0

22 n0: [S] Opened stream 6 -[1]-> 0

23 n4: neighbors:

24 n4: [S] Opening stream to 0 with rate 1

25 n0: Received topology :[5/1 - >0]:0

26 n0: Topology added 5 -> 0

27 n0: [S] Opened stream 5 -[1]-> 0

28 n3: neighbors:

29 n3: [S] Opening stream to 0 with rate 1

30 n0: Received topology :[4/1 - >0]:0

31 n0: Topology added 4 -> 0

32 n0: [S] Opened stream 4 -[1]-> 0

33 n2: neighbors:

34 n2: [S] Opening stream to 0 with rate 1

35 n0: Received topology :[3/1 - >0]:0

36 n0: Topology added 3 -> 0

37 n0: [S] Opened stream 3 -[1]-> 0

38 n1: neighbors:

39 n1: [S] Opening stream to 0 with rate 1

40 n0: Received topology :[2/1 - >0]:0

41 n0: Topology added 2 -> 0

42 n0: [S] Opened stream 2 -[1]-> 0

43 n0: Received topology :[1/1 - >0]:0

44 n0: Topology added 1 -> 0

45 n0: [S] Opened stream 1 -[1]-> 0

46 n0: [T] Current topology:

47 n0: [0 - 9]

48 n0: [0 - 8]

49 n0: [0 - 7]

50 n0: [0 - 6]

51 n0: [0 - 5]

52 n0: [0 - 4]

53 n0: [0 - 3]
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54 n0: [0 - 2]

55 n0: [0 - 1]

56 n0: [S] Streams opened:

57 n0: 1 -[1]-> 0

58 n0: 2 -[1]-> 0

59 n0: 3 -[1]-> 0

60 n0: 4 -[1]-> 0

61 n0: 5 -[1]-> 0

62 n0: 6 -[1]-> 0

63 n0: 7 -[1]-> 0

64 n0: 8 -[1]-> 0

65 n0: 9 -[1]-> 0

In the following case, instead, a double tailed configuration was used. It it the

nodes open streams to the master with data rate 1 and to another node, with

data rate 255. In this case, however, all the SMEs can fit in the uplink message

and are therefore forwarded as well as the topology information. This is illus-

trated in listing 8.8.

Listing 8.8: Double tail kite topology collectionn and stream management

1 n7: neighbors:

2 n6: neighbors:

3 n5: neighbors:

4 n4: neighbors:

5 n3: neighbors:

6 n2: neighbors:

7 n1: neighbors:

8 n1: [S] Opening stream to 0 with rate 1

9 n1: [S] Opening stream to 6 with rate 255

10 n1: [S] Sending SME: SND 1 -[1]-> 0

11 n1: [S] Sending SME: SND 1 -[255]-> 6

12 n0: Received topology :[1/1 - >0]:0

13 n0: Topology added 1 -> 0

14 n0: [S] Opened stream 1 -[1]-> 0

15 n0: [S] Opened stream 1 -[255]-> 6

16 n0: [T] Current topology:

17 n0: [0 - 1]

18 n0: [S] Streams opened:

19 n0: 1 -[1]-> 0

20 n0: 1 -[255]-> 6

21 n2: received: [1/1] : 0

22 ------------------------------------------------

23 n7: neighbors:

24 n6: neighbors:

25 n5: neighbors:

26 n4: neighbors:

27 n3: neighbors:

28 n2: neighbors: 1,

29 n2: [S] Opening stream to 0 with rate 1

95



30 n2: [S] Opening stream to 7 with rate 255

31 n2: [S] Sending SME: SND 2 -[1]-> 0

32 n2: [S] Sending SME: SND 2 -[255]-> 7

33 n3: received: [2/2] : 1

34 n4: received: [2/2] : 1

35 n1: received: [2/2] : 1

36 n1: [S] enqueued SME: SND 2 -[1]-> 0 RCV

37 n1: [S] enqueued SME: SND 2 -[255]-> 7 RCV

38 n1: neighbors: 2,

39 n1: [S] Forwarding SME: SND 2 -[1]-> 0

40 n1: [S] Forwarding SME: SND 2 -[255]-> 7

41 n0: Received topology :[1/1- >0]:0 , 2

42 n0: Topology added 1 -> 2

43 n0: Received topology :[2/2 - >1]:1

44 n0: [S] Opened stream 2 -[1]-> 0

45 n0: [S] Opened stream 2 -[255]-> 7

46 n0: [T] Current topology:

47 n0: [0 - 1]

48 n0: [1 - 2]

49 n0: [S] Streams opened:

50 n0: 1 -[1]-> 0

51 n0: 1 -[255]-> 6

52 n0: 2 -[1]-> 0

53 n0: 2 -[255]-> 7

54 n2: received: [1/1] : 0, 2

55 ------------------------------------------------

56 n7: neighbors:

57 n6: neighbors:

58 n5: neighbors:

59 n4: neighbors: 2,

60 n4: [S] Opening stream to 0 with rate 1

61 n4: [S] Opening stream to 1 with rate 255

62 n4: [S] Sending SME: SND 4 -[1]-> 0

63 n4: [S] Sending SME: SND 4 -[255]-> 1

64 n3: neighbors: 2,

65 n3: [S] Opening stream to 0 with rate 1

66 n3: [S] Opening stream to 8 with rate 255

67 n3: [S] Sending SME: SND 3 -[1]-> 0

68 n3: [S] Sending SME: SND 3 -[255]-> 8

69 n2: received: [4/3] : 2

70 n2: [S] enqueued SME: SND 4 -[1]-> 0 RCV

71 n2: [S] enqueued SME: SND 4 -[255]-> 1 RCV

72 n5: received: [4/3] : 2

73 n2: received: [3/3] : 2

74 n2: [S] enqueued SME: SND 3 -[1]-> 0 RCV

75 n2: [S] enqueued SME: SND 3 -[255]-> 8 RCV

76 n2: neighbors: 1, 3, 4,

77 n2: [S] Forwarding SME: SND 4 -[1]-> 0

78 n2: [S] Forwarding SME: SND 4 -[255]-> 1

79 n2: [S] Forwarding SME: SND 3 -[1]-> 0

80 n2: [S] Forwarding SME: SND 3 -[255]-> 8

81 n5: received: [3/3] : 2

82 n3: received: [2/2] : 1, 3, 4

83 n4: received: [2/2] : 1, 3, 4

84 n1: received: [2/2] : 1, 3, 4

85 n1: received: [4/3] : 2

86 n1: received: [3/3] : 2

87 n1: [S] enqueued SME: SND 4 -[1]-> 0 RCV

88 n1: [S] enqueued SME: SND 4 -[255]-> 1 RCV

89 n1: [S] enqueued SME: SND 3 -[1]-> 0 RCV

90 n1: [S] enqueued SME: SND 3 -[255]-> 8 RCV

91 n1: neighbors: 2,
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92 n1: [S] Forwarding SME: SND 4 -[1]-> 0

93 n1: [S] Forwarding SME: SND 4 -[255]-> 1

94 n1: [S] Forwarding SME: SND 3 -[1]-> 0

95 n1: [S] Forwarding SME: SND 3 -[255]-> 8

96 n0: Received topology :[1/1- >0]:0 , 2

97 n0: Received topology :[2/2- >1]:1 , 3, 4

98 n0: Topology added 2 -> 3

99 n0: Topology added 2 -> 4

100 n0: Received topology :[4/3 - >2]:2

101 n0: [S] Opened stream 4 -[1]-> 0

102 n0: [S] Opened stream 4 -[255]-> 1

103 n0: [S] Opened stream 3 -[1]-> 0

104 n0: [S] Opened stream 3 -[255]-> 8

105 n0: [T] Current topology:

106 n0: [0 - 1]

107 n0: [1 - 2]

108 n0: [2 - 3]

109 n0: [2 - 4]

110 n0: [S] Streams opened:

111 n0: 1 -[1]-> 0

112 n0: 1 -[255]-> 6

113 n0: 2 -[1]-> 0

114 n0: 2 -[255]-> 7

115 n0: 3 -[1]-> 0

116 n0: 3 -[255]-> 8

117 n0: 4 -[1]-> 0

118 n0: 4 -[255]-> 1

119 n2: received: [1/1] : 0, 2

120 ------------------------------------------------

121 n7: neighbors:

122 n6: neighbors:

123 n5: neighbors: 3, 4,

124 n5: [S] Opening stream to 0 with rate 1

125 n5: [S] Opening stream to 2 with rate 255

126 n5: [S] Sending SME: SND 5 -[1]-> 0

127 n5: [S] Sending SME: SND 5 -[255]-> 2

128 n4: received: [5/4] : 3, 4

129 n4: [S] enqueued SME: SND 5 -[1]-> 0 RCV

130 n4: [S] enqueued SME: SND 5 -[255]-> 2 RCV

131 n4: neighbors: 2, 5,

132 n4: [S] Forwarding SME: SND 5 -[1]-> 0

133 n4: [S] Forwarding SME: SND 5 -[255]-> 2

134 n3: received: [5/4] : 3, 4

135 n6: received: [5/4] : 3, 4

136 n3: neighbors: 2, 5,

137 n2: received: [4/3] : 2, 5

138 n2: received: [5/4] : 3, 4

139 n2: [S] enqueued SME: SND 5 -[1]-> 0 RCV

140 n2: [S] enqueued SME: SND 5 -[255]-> 2 RCV

141 n5: received: [4/3] : 2, 5

142 n2: received: [3/3] : 2, 5

143 n2: neighbors: 1, 3, 4,

144 n2: [S] Forwarding SME: SND 5 -[1]-> 0

145 n2: [S] Forwarding SME: SND 5 -[255]-> 2

146 n5: received: [3/3] : 2, 5

147 n3: received: [2/2] : 1, 3, 4

148 n4: received: [2/2] : 1, 3, 4

149 n1: received: [2/2] : 1, 3, 4

150 n1: received: [4/3] : 2, 5

151 n1: received: [5/4] : 3, 4

152 n1: [S] enqueued SME: SND 5 -[1]-> 0 RCV

153 n1: [S] enqueued SME: SND 5 -[255]-> 2 RCV
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154 n1: neighbors: 2,

155 n1: [S] Forwarding SME: SND 5 -[1]-> 0

156 n1: [S] Forwarding SME: SND 5 -[255]-> 2

157 n0: Received topology :[1/1- >0]:0 , 2

158 n0: Received topology :[3/3 - >2]:2

159 n0: Received topology :[2/2- >1]:1 , 3, 4

160 n0: [S] Opened stream 5 -[1]-> 0

161 n0: [S] Opened stream 5 -[255]-> 2

162 n0: [T] Current topology:

163 n0: [0 - 1]

164 n0: [1 - 2]

165 n0: [2 - 3]

166 n0: [2 - 4]

167 n0: [S] Streams opened:

168 n0: 1 -[1]-> 0

169 n0: 1 -[255]-> 6

170 n0: 2 -[1]-> 0

171 n0: 2 -[255]-> 7

172 n0: 3 -[1]-> 0

173 n0: 3 -[255]-> 8

174 n0: 4 -[1]-> 0

175 n0: 4 -[255]-> 1

176 n0: 5 -[1]-> 0

177 n0: 5 -[255]-> 2

178 n2: received: [1/1] : 0, 2

179 ------------------------------------------------

180 n7: neighbors:

181 n6: neighbors: 5,

182 n6: [S] Opening stream to 0 with rate 1

183 n6: [S] Opening stream to 3 with rate 255

184 n6: [S] Sending SME: SND 6 -[1]-> 0

185 n6: [S] Sending SME: SND 6 -[255]-> 3

186 n5: received: [6/5] : 5

187 n5: [S] enqueued SME: SND 6 -[1]-> 0 RCV

188 n5: [S] enqueued SME: SND 6 -[255]-> 3 RCV

189 n5: neighbors: 3, 4, 6,

190 n5: [S] Forwarding SME: SND 6 -[1]-> 0

191 n5: [S] Forwarding SME: SND 6 -[255]-> 3

192 n7: received: [6/5] : 5

193 n4: received: [5/4] : 3, 4, 6

194 n4: received: [6/5] : 5

195 n4: [S] enqueued SME: SND 6 -[1]-> 0 RCV

196 n4: [S] enqueued SME: SND 6 -[255]-> 3 RCV

197 n4: neighbors: 2, 5,

198 n4: [S] Forwarding SME: SND 6 -[1]-> 0

199 n4: [S] Forwarding SME: SND 6 -[255]-> 3

200 n3: received: [5/4] : 3, 4, 6

201 n6: received: [5/4] : 3, 4, 6

202 n3: neighbors: 2, 5,

203 n2: received: [4/3] : 2, 5

204 n2: received: [5/4] : 3, 4, 6

205 n2: received: [6/5] : 5

206 n2: [S] enqueued SME: SND 6 -[1]-> 0 RCV

207 n2: [S] enqueued SME: SND 6 -[255]-> 3 RCV

208 n5: received: [4/3] : 2, 5

209 n2: received: [3/3] : 2, 5

210 n2: neighbors: 1, 3, 4,

211 n2: [S] Forwarding SME: SND 6 -[1]-> 0

212 n2: [S] Forwarding SME: SND 6 -[255]-> 3

213 n5: received: [3/3] : 2, 5

214 n3: received: [2/2] : 1, 3, 4

215 n4: received: [2/2] : 1, 3, 4
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216 n1: received: [2/2] : 1, 3, 4

217 n1: received: [3/3] : 2, 5

218 n1: received: [4/3] : 2, 5

219 n1: [S] enqueued SME: SND 6 -[1]-> 0 RCV

220 n1: [S] enqueued SME: SND 6 -[255]-> 3 RCV

221 n1: neighbors: 2,

222 n1: [S] Forwarding SME: SND 6 -[1]-> 0

223 n1: [S] Forwarding SME: SND 6 -[255]-> 3

224 n0: Received topology :[1/1- >0]:0 , 2

225 n0: Received topology :[4/3- >2]:2 , 5

226 n0: Topology added 4 -> 5

227 n0: Received topology :[5/4- >4]:3 , 4

228 n0: Topology added 5 -> 3

229 n0: [S] Opened stream 6 -[1]-> 0

230 n0: [S] Opened stream 6 -[255]-> 3

231 n0: [T] Current topology:

232 n0: [0 - 1]

233 n0: [1 - 2]

234 n0: [2 - 3]

235 n0: [2 - 4]

236 n0: [3 - 5]

237 n0: [4 - 5]

238 n0: [S] Streams opened:

239 n0: 1 -[1]-> 0

240 n0: 1 -[255]-> 6

241 n0: 2 -[1]-> 0

242 n0: 2 -[255]-> 7

243 n0: 3 -[1]-> 0

244 n0: 3 -[255]-> 8

245 n0: 4 -[1]-> 0

246 n0: 4 -[255]-> 1

247 n0: 5 -[1]-> 0

248 n0: 5 -[255]-> 2

249 n0: 6 -[1]-> 0

250 n0: 6 -[255]-> 3

251 n2: received: [1/1] : 0, 2

252 ------------------------------------------------

253 n7: neighbors: 6,

254 n7: [S] Opening stream to 0 with rate 1

255 n7: [S] Opening stream to 4 with rate 255

256 n7: [S] Sending SME: SND 7 -[1]-> 0

257 n7: [S] Sending SME: SND 7 -[255]-> 4

258 n6: received: [7/6] : 6

259 n6: [S] enqueued SME: SND 7 -[1]-> 0 RCV

260 n6: [S] enqueued SME: SND 7 -[255]-> 4 RCV

261 n6: neighbors: 5, 7,

262 n6: [S] Forwarding SME: SND 7 -[1]-> 0

263 n6: [S] Forwarding SME: SND 7 -[255]-> 4

264 n5: received: [6/5] : 5, 7

265 n5: received: [7/6] : 6

266 n5: [S] enqueued SME: SND 7 -[1]-> 0 RCV

267 n5: [S] enqueued SME: SND 7 -[255]-> 4 RCV

268 n5: neighbors: 3, 4, 6,

269 n5: [S] Forwarding SME: SND 7 -[1]-> 0

270 n5: [S] Forwarding SME: SND 7 -[255]-> 4

271 n7: received: [6/5] : 5, 7

272 n4: received: [5/4] : 3, 4, 6

273 n4: received: [6/5] : 5, 7

274 n4: received: [7/6] : 6

275 n4: [S] enqueued SME: SND 7 -[1]-> 0 RCV

276 n4: [S] enqueued SME: SND 7 -[255]-> 4 RCV

277 n4: neighbors: 2, 5,
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278 n4: [S] Forwarding SME: SND 7 -[1]-> 0

279 n4: [S] Forwarding SME: SND 7 -[255]-> 4

280 n3: received: [5/4] : 3, 4, 6

281 n6: received: [5/4] : 3, 4, 6

282 n3: neighbors: 2, 5,

283 n2: received: [4/3] : 2, 5

284 n2: received: [5/4] : 3, 4, 6

285 n2: received: [6/5] : 5, 7

286 n2: [S] enqueued SME: SND 7 -[1]-> 0 RCV

287 n2: [S] enqueued SME: SND 7 -[255]-> 4 RCV

288 n5: received: [4/3] : 2, 5

289 n2: received: [3/3] : 2, 5

290 n2: neighbors: 1, 3, 4,

291 n2: [S] Forwarding SME: SND 7 -[1]-> 0

292 n2: [S] Forwarding SME: SND 7 -[255]-> 4

293 n5: received: [3/3] : 2, 5

294 n3: received: [2/2] : 1, 3, 4

295 n4: received: [2/2] : 1, 3, 4

296 n1: received: [2/2] : 1, 3, 4

297 n1: received: [5/4] : 3, 4, 6

298 n1: received: [6/5] : 5, 7

299 n1: [S] enqueued SME: SND 7 -[1]-> 0 RCV

300 n1: [S] enqueued SME: SND 7 -[255]-> 4 RCV

301 n1: neighbors: 2,

302 n1: [S] Forwarding SME: SND 7 -[1]-> 0

303 n1: [S] Forwarding SME: SND 7 -[255]-> 4

304 n0: Received topology :[1/1- >0]:0 , 2

305 n0: Received topology :[2/2- >1]:1 , 3, 4

306 n0: Received topology :[3/3- >2]:2 , 5

307 n0: [S] Opened stream 7 -[1]-> 0

308 n0: [S] Opened stream 7 -[255]-> 4

309 n0: [T] Current topology:

310 n0: [0 - 1]

311 n0: [1 - 2]

312 n0: [2 - 3]

313 n0: [2 - 4]

314 n0: [3 - 5]

315 n0: [4 - 5]

316 n0: [S] Streams opened:

317 n0: 1 -[1]-> 0

318 n0: 1 -[255]-> 6

319 n0: 2 -[1]-> 0

320 n0: 2 -[255]-> 7

321 n0: 3 -[1]-> 0

322 n0: 3 -[255]-> 8

323 n0: 4 -[1]-> 0

324 n0: 4 -[255]-> 1

325 n0: 5 -[1]-> 0

326 n0: 5 -[255]-> 2

327 n0: 6 -[1]-> 0

328 n0: 6 -[255]-> 3

329 n0: 7 -[1]-> 0

330 n0: 7 -[255]-> 4

331 n2: received: [1/1] : 0, 2
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8.3 Schedule downlink and data phase

The schedule, as previously stated, is statically coded and distributed. The

nodes set as senders in them will send an Hello message during the assigned

timeslot. A first example is realized in the diamond topology in which the mas-

ter node sends a message in the first timeslot to node 1, which forwards it to

node 3. Once received, in the next turn it replies forwarding the reply to node 1

which then reaches the master node. The output showing the schedule distribu-

tion to achieve this result and how the messages travel the network is shown in

listing 8.9. In lines 2-3 the distributed schedule is shown. It is about 2 additions

(”+” symbol at line start), one with id 0 and one with id 1. The first one spans

two hops. The first transmission is from node 0 to node 1 (node id is enclosed

in square parenthesis) during data slot 0 (the slots are in the middle of arrows,

representing transmissions, preceded by ”at” symbols), while the second one is

to node 3 at data slot 1. The syntax in the logs is repeated for all the examples.

Listing 8.9: Ping-pong schedule distribution and data transmission on the dia-

mond topology

1 n0: [SC] Sending schedule delta of 2 packets:

2 n0: + 0 [0] -@0 -> [1] -@1-> [3]

3 n0: + 1 [3] -@2 -> [1] -@3-> [0]

4 n1: [SC] Receive #0 @0 <- 0 forwardee

5 n1: [SC] Send #0 @1 -> 3 forwarder

6 n1: [SC] Receive #1 @2 <- 3 forwardee

7 n1: [SC] Send #1 @3 -> 0 forwarder

8 n3: [SC] Receive #0 @1 <- 1 receiver

9 n3: [SC] Send #1 @2 -> 1 sender

10 n0: [D] Sent packet with size 32 at 152362156000

11 n1: [D] Received forwarded with size 32 packet at 152362156000 with

error 0

12 n1: [D] Forwarded packet with size 32 at 152368606000

13 n3: [D] Received packet with size 32 at 152368606000:

14 n3: Hello , I am 0

15 n3: [D] Sent packet with size 32 at 152374606000

16 n1: [D] Received forwarded with size 32 packet at 152374606000 with

error 0

17 n1: [D] Forwarded packet with size 32 at 152380606000

18 n0: [D] Received packet with size 32 at 152380606000:

19 n0: Hello , I am 3

Another example, involves the master node as router. This case, also run on

the diamond topology, shows packet going from node 2 to node 3 passing by the
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master node and then from node 1, starting from the first timeslot. The log is

shown in listing 8.10.

Listing 8.10: Routing though the master node in the diamond topology

1 n0: [SC] Sending schedule delta of 1 packets:

2 n0: + 0 [2] -@0 -> [0] -@1-> [1] -@2-> [3]

3 n1: [SC] Receive #0 @1 <- 0 forwardee

4 n1: [SC] Send #0 @2 -> 3 forwarder

5 n2: [SC] Send #0 @0 -> 0 sender

6 n3: [SC] Receive #0 @2 <- 1 receiver

7 n2: [D] Sent packet with size 32 at 152362606000

8 n0: [D] Received forwarded with size 32 packet at 152362606000 with

error 0

9 n0: [D] Forwarded packet with size 32 at 152368156000

10 n1: [D] Received forwarded with size 32 packet at 152368156000 with

error 0

11 n1: [D] Forwarded packet with size 32 at 152374606000

12 n3: [D] Received packet with size 32 at 152374606000:

13 n3: Hello , I am 2

The last example, that shows how two nodes at the opposite ends of a network

can send themselves a message contemporarily, is displayed in listing 8.11. In

this case the transmission is accomplished in a double tailed kite topology in

which messages travel during timeslots 0 and 1 from the ends to nodes 2 and

5 (lines 4-5, 8 and 18, 22-23, 25 for the scheduling, 26-33 for the data), respec-

tively. Then in dataslot 2, data is sent from 2 to 3 (lines 9, 12 and 34-35), in slot

3 from 5 to 4 (lines 14, 19 and 36-37). Later, in dataslot 4, 4 sends its data to

2 (lines 10, 15, 38-39) and in 5, node 3 sends to 5 (lines 13, 16, 40, 42). Finally,

the last two hops are traveled and the data reaches the final destinations (lines

6, 7, 11, 17, 20-21, 24 and 41, 43-51). Node 0 is reached in dataslot 6 and node

7 in dataslot 7.

Listing 8.11: Two nodes sending each other a packet contemporarily in the

double tail kite topology

1 n0: [SC] Sending schedule delta of 2 packets:

2 n0: + 0 [0] -@0 -> [1] -@1-> [2] -@2-> [3] -@4-> [5] -@5 -> [6] -

@6-> [7]

3 n0: + 1 [7] -@0 -> [6] -@1-> [5] -@3-> [4] -@5-> [2] -@6 -> [1] -

@7-> [0]

4 n1: [SC] Receive #0 @0 <- 0 forwardee
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5 n1: [SC] Send #0 @1 -> 2 forwarder

6 n1: [SC] Receive #1 @6 <- 2 forwardee

7 n1: [SC] Send #1 @7 -> 0 forwarder

8 n2: [SC] Receive #0 @1 <- 1 forwardee

9 n2: [SC] Send #0 @2 -> 3 forwarder

10 n2: [SC] Receive #1 @5 <- 4 forwardee

11 n2: [SC] Send #1 @6 -> 1 forwarder

12 n3: [SC] Receive #0 @2 <- 2 forwardee

13 n3: [SC] Send #0 @4 -> 5 forwarder

14 n4: [SC] Receive #1 @3 <- 5 forwardee

15 n4: [SC] Send #1 @5 -> 2 forwarder

16 n5: [SC] Receive #0 @4 <- 3 forwardee

17 n5: [SC] Send #0 @5 -> 6 forwarder

18 n5: [SC] Receive #1 @1 <- 6 forwardee

19 n5: [SC] Send #1 @3 -> 4 forwarder

20 n6: [SC] Receive #0 @5 <- 5 forwardee

21 n6: [SC] Send #0 @6 -> 7 forwarder

22 n6: [SC] Receive #1 @0 <- 7 forwardee

23 n6: [SC] Send #1 @1 -> 5 forwarder

24 n7: [SC] Receive #0 @6 <- 6 receiver

25 n7: [SC] Send #1 @0 -> 6 sender

26 n0: [D] Sent packet with size 32 at 152362156000

27 n1: [D] Received forwarded with size 32 packet at 152362156000 with

error 0

28 n7: [D] Sent packet with size 32 at 152362606000

29 n6: [D] Received forwarded with size 32 packet at 152362606000 with

error 0

30 n1: [D] Forwarded packet with size 32 at 152368606000

31 n6: [D] Forwarded packet with size 32 at 152368606000

32 n2: [D] Received forwarded with size 32 packet at 152368606000 with

error 0

33 n5: [D] Received forwarded with size 32 packet at 152368606000 with

error 0

34 n2: [D] Forwarded packet with size 32 at 152374606000

35 n3: [D] Received forwarded with size 32 packet at 152374606000 with

error 0

36 n5: [D] Forwarded packet with size 32 at 152380606000

37 n4: [D] Received forwarded with size 32 packet at 152380606000 with

error 0

38 n3: [D] Forwarded packet with size 32 at 152386606000

39 n5: [D] Received forwarded with size 32 packet at 152386606000 with

error 0

40 n4: [D] Forwarded packet with size 32 at 152392606000

41 n5: [D] Forwarded packet with size 32 at 152392606000

42 n2: [D] Received forwarded with size 32 packet at 152392606000 with

error 0

43 n6: [D] Received forwarded with size 32 packet at 152392606000 with

error 0

44 n2: [D] Forwarded packet with size 32 at 152398606000

45 n6: [D] Forwarded packet with size 32 at 152398606000

46 n1: [D] Received forwarded with size 32 packet at 152398606000 with

error 0

47 n7: [D] Received packet with size 32 at 152398606000:

48 n7: Hello , I am 0

49 n1: [D] Forwarded packet with size 32 at 152404606000

50 n0: [D] Received packet with size 32 at 152404606000:

51 n0: Hello , I am 7
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Chapter 9

Conclusions

In this thesis a new Medium Access Control protocol based on 802.15.4 2.4

GHz O-QPSK physical layer was presented. The target was to make a protocol

that solves the required delay and the strict data rate constraints in multi-hop

WSNs. The starting point was time synchronization implemented at the phys-

ical layer, using Glossy and FLOPSYNC-2 for error compensation. This uses

a flooding mechanism which is initialized by the root node and reaches all the

nodes traveling all the network hop by hop. This workflow made centralized net-

work management more interesting and convenient, and therefore it was chosen.

However, for achieving this, collection of information about the network in order

to manage it is necessary. More in detail, the master node needs information

about the topology and the transmission requirements of the nodes, namely

streams. Then, the master node computes a schedule that will be distributed

to the nodes, making the nodes able to send data to other nodes and forward

data through multiple hops. The process repeats after a predefined timestamp,

identifying the slotframe. The actual distribution of the phases within the slot-

frame is managed by an interleaving function whose job is distributing evenly

the different phases’ timeslots over the whole slotframe. Phases are firstly di-

vided into two macrogroups: downlink and uplink. The first is used for time

synchronization and schedule distribution, the second for transmitting stream

management and topology information until reaching the master node, achieved

by traveling one hop per slotframe. The managed topologies are either mesh
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or tree, defining different contents for the topology collection part of the uplink

message. A software engineering project of the protocol has been realized using

UML class diagrams for representing its operational structure and a possible

implementation. Then it was realized and simulated in OMNeT++, analyzing

the resulting logs phase by phase.

A physical implementation of the protocol would be helpful for having an hard-

ware test bed, which would be a better environment for running tests and know-

ing what the actual performances of the protocol are. It would be interesting

to test it by varying the different dimensions (number of nodes, hops, slotframe

duration, etc.), the topology collected, the deployment configurations (e.g. how

performances change from a balanced tree to a mesh), the possible streams

configurations in terms of data rate, number of involved nodes and amount of

opened streams. Vice-versa, the constraints imposed by the protocol, like the

proportions among the phases within the slotframe and how the slotframe is

defined, should be better investigated, in order to understand if relaxing them

would improve it. But, before of that, a real scheduler needs to be implemented,

requiring the problem to be deeply investigated and formalized. This would also

require giving an actual meaning to the data rate field of SMEs. Moreover, it

would also give a better knowledge about the amount of information needed to

be transmitted to the nodes, making it simpler to analyze the proposed schedule

distribution formats and choosing among them or proposing a new one. An-

other important aspect is the security. The protocol should be able to transmit

encrypted data, in order to protect intruders for joining the network or being

able to receive message content. Then, under certain conditions, enabling nodes

to obtain a network address without statically configure it would be desirable,

therefore a protocol (similar to DHCP but at level 2, so not based on mapping

MAC to IP address and vice versa) for realizing so could be helpful.

The proposed protocol tries to fill a gap, making it possible for real-time and in-

dustry automation systems being able to rely on wireless communication. This

technology has been a taboo for them and what this protocol tries to do is to

break it down, even with the creation of new research questions.
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