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Abstract

When intense femtosecond laser pulses interact with atoms and molecules, high
order harmonics of the fundamental frequency can be generated. This nonlinear
process is well described by the so-called three step model, for which one electron
is freed through tunnel ionization and is then accelerated by the external field, even-
tually recombining with its parent ion with the emission of an XUV photon. This
radiation contains some information on the electronic structure of the generating
system, thus allowing to perform spectroscopic studies.

The aim of this thesis is to analyse two new approaches for increasing the data
that can be collected in such experiments. The first one addressed the restrictions
linked to the necessity to spectrally disperse and spatially focus the radiation onto
a detector of limited dimension. A motorized translation stage was previously
developed by the group to move the detector along the spectral focal curve of the
grating. In this way, the harmonics can be acquired over more spectral windows
and such data can then be subsequently connected. For this purpose, a calibration
procedure allowed to correct for the pixel dependent responsivity of the detection
system, which deforms the spectral shape between different acquisitions. Such
procedure was validated collecting the extended spectra of carbon dioxide and ethy-
lene, which gave also the opportunity to explore the possibility to align complex
molecular systems.

The second approach, instead, explored new ways for increasing the signal-to-
noise ratio by the generation of XUV radiation over an extended medium inside
microstructured channels fabricated with the femtosecond laser micromachining
technique. In particular, two different waveguide configurations were analysed. In
the first case a straight channel allowed to achieve a higher emission compared to
the standard gas-jet geometry. However, both absorption and phase matching were
found to reshape the spectrum as a function of the experimental conditions. In the
second case a modulated waveguide was employed, which provided a less intense
but much more robust signal. Indeed, absorption was found to be negligible even
at very high pressures.





Sommario

Quando un impulso laser molto intenso interagisce con atomi e molecole, può
avvenire la generazione di armoniche di ordine elevato della sua frequenza fonda-
mentale. Questo processo nonlineare è ben descritto dal cosı̀ detto modello a tre
fasi, secondo cui un elettrone viene liberato per effetto tunnel ed è successivamente
accelerato dal campo esterno, fino a ricombinare con il suo ione emettendo un
fotone XUV. Tale radiazione contiene informazioni sulla struttura elettronica del
sistema e può quindi essere sfruttata per studi spettroscopici.

Lo scopo di questa tesi è stato quello di analizzare due nuovi approcci volti ad
aumentare il numero di informazioni che può essere estratto in questo tipo di espe-
rimenti. Il primo ha affrontato le limitazioni connesse alla necessità di disperdere
spettralmente e focalizzare spazialmente la radiazione su di un detector di dimensio-
ni finite. Uno stage traslazionale precedentemente sviluppato dal gruppo permette
di muovere il detector lungo la curva focale dello spettrometro. In questo modo, le
armoniche possono essere acquisite in diverse finestre spettrali. Una procedura di
calibrazione ha successivamente permesso di unire tali acquisizioni correggendo la
dipendenza dalla responsività del detector, la quale deforma lo spettro tra differenti
misure. Questa procedura è stata quindi validata tramite l’acquisizione degli spettri
estesi dell’anidride carbonica e dell’etilene. In questo modo è stato anche possibile
studiare l’allineamento di sistemi molecolari piuttosto complessi.

Il secondo approccio, invece, ha esplorato nuovi metodi per aumentare il rap-
porto segnale-rumore tramite la generazione di radiazione XUV in un mezzo esteso,
grazie all’utilizzo di microcanali ottenuti con la tecnica di microfabbricazione la-
ser a femtosecondi. In particolare, due diverse configurazioni di guida sono state
analizzate. Nel primo caso l’utilizzo di un semplice canale rettilineo ha permesso
di raggiungere una emissione più elevata rispetto alla tradizionale generazione
in getto di gas. Tuttavia, lo spettro è risultato essere fortemente influenzato sia
dall’assorbimento che dalle condizioni di phase matching. Nel secondo caso è
stata invece utilizzata una guida modulata, la quale ha fornito una emissione meno
intensa ma più robusta rispetto alle condizioni sperimentali. L’assorbimento della
radiazione è infatti risultato essere trascurabile anche per pressioni molto elevate.
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Introduction

Over the years laser sources have constantly improved both in terms of peak power
and pulse duration. In particular, the developments of mode-locked oscillators
and of the chirped pulse amplification technique allowed to reach peak intensities
above 1014W/cm2. The interaction between such high intensity femtosecond laser
pulses and matter is understood within the semiclassical three-step model. In this
framework the atom subjected to the laser field is tunnel ionized and the freed
electron is subsequently accelerated by the external field until it is eventually driven
back to the parent ion during its motion. In this way it will have some probability to
recombine with the emission of an XUV photon due to energy conservation. Owing
to the peculiarities of such process the emitted radiation consists of odd harmonics
of the fundamental laser frequency up to even very high orders. Moreover, as the
harmonic emission is temporally restricted in a subcycle of the driving field, a train
of attosecond pulses is generated. This radiation is coherent and can thus be used
as a probe for time resolved studies of rapid electronic dynamics in matter on their
characteristic time scale. This paved the way to the development of the field of
attosecond physics. In a different approach the generation process itself can also be
used as a probe of the generating system. Indeed the ionization and recombination
steps can be thought of as respectively the pump and probe stages of a pump-probe
experiment, with all the information encoded in the emitted spectrum. In this way
it is possible to study the atomic and molecular dynamics with very high temporal
and spatial resolution. This led to the development of the so-called self-probing
scheme of high-harmonic spectroscopy experiments.

The theoretical principles of high-order harmonic generation in atomic targets
will be covered in Chapter 1. Particular attention will be given to the building
up of the XUV field in extended media, since the macroscopic signal is the one
actually detected during the experiments. The generation of high-order harmonics
in molecular targets is instead more complex due to the higher number of internal
degrees of freedom. Therefore it will be treated separately in Chapter 2 along with
the theoretical aspects of the field-free alignment technique, which allows to control
the relative orientation of the molecular system with respect to the driving field
during experiments.

The handling of the XUV radiation is also experimentally challenging as this
region of the electromagnetic spectrum is easily absorbed by almost every medium.
For this reason the experimental setup must be maintained in high vacuum during
the measurements and the spectrometer used for analysing the harmonic signal
must employ optical elements at grazing incidence only. The description of the
experimental apparatus used in this thesis is given in Chapter 3.



2 Introduction

Finally in Chapter 4 the experimental activity performed in the Ultras (center for
ultraintense and ultrafast optical science) and UDynI (Ultrafast DYNamic Imaging)
laboratories of the Physics Department in Poliecnico di Milano will be presented.
The aim of this work was in particular to analyse two approaches for increasing
the amount of information that can be retrieved in high-harmonic spectroscopy
experiments. The first one relies on a motorized translation stage to move the
detector along the focal curve of the spectrometer and acquire data in different
spectral windows. These are then connected and the extended spectrum of the
system under study is retrieved. On the other hand, the second one exploits the gen-
eration of XUV radiation over an extended medium in microchannels. In this way
an enhancement of the signal-to-noise ratio is possible, along with the possibility
to develop complex phase matching geometries for extending the cutoff frequency
of the spectrum. Anyway, due to the high complexity of the generation process
numerical simulations regarding the gas dynamics and the fields propagation in
the microchannel are needed in order to better understand such results.



CHAPTER1
High Harmonic Generation

Classically the interaction of atoms with light is treated in terms of the Lorentz
oscillator model. In this frame the electrons are subjected to the radiation fields and
to the internal restoring force of the nucleus, modelled with Hooke law. When the
Newton equation is solved for such system, considering only the electric part of an
incoming harmonic field in non relativistic approximation, an oscillatory response
of the electron is obtained. Indeed, as the external field displaces the particle from
its equilibrium position, the atomic restoring force opposes to the motion and an
harmonic oscillation sets in, creating an electric dipole in the system. In a medium
the number of such single dipoles per unit volume is called the polarization induced
by the external field. In the limit of the Lorentz oscillator model, this response is
linear in Fourier domain:

P (ω) = ε0χ (ω, r)E (ω)

where χ is the linear optical susceptibility of the medium. In general it is a tensor of
rank two that depends both on the position and the frequency of the excitation to
account for the non homogeneity of the medium and its non instantaneous response.
Therefore in the case of the interaction of a perfectly harmonic field with an isotropic
and homogeneous medium it will be a simple scalar. Unless otherwise specified, we
will always assume this scalar case. The optical polarization acts then as a source
term in the Maxwell wave equation:

(
∇2 − 1

c2
∂2

∂t2

)
E (r, t) = µ0

∂2

∂t2 P (r, t)

that describes the time and space distribution of the fields in the medium.
This linear description of the interaction seemed to be pretty accurate until

the first ruby laser was realized by Maiman in 1960 [1]. Thanks to this invention,
sources of higher intensity became available, allowing the study of light-matter
interaction in new regimes. In particular, for large electric fields the polarization
of the medium was discovered to be dependent on the light intensity. To describe
the situation, without entering in the microscopic details of the interaction, we can
consider a Taylor expansion for the medium polarization:

P(t) = ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3 + ...

)
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where we have considered the electric field to be linearly polarized in order to write
a simpler scalar equation in the fields. The χ(N) terms are called the nonlinear optical
susceptibility of order N of the medium and in the general case are tensors of rank
N+1. This approach allows to explain many phenomena in nonlinear optics, but
relies on the assumption that the terms in the series become rapidly smaller with
increasing order. In other words, it is based on a perturbative description of the
interaction, for which the nonlinearities introduce only a small correction to the
overall linear response of the system.

Over the years, however, laser sources have improved both in terms of min-
imum pulse duration and accessible peak intensities. Today mode-locking lasers
allow to directly generate pulses of few femtoseconds duration and thechirped pulse
amplification technique (CPA) [2] allows to amplify them up to 1022 W/cm2 of fo-
cused peak intensities. Sources with peak intensities in the order of 1014 W/cm2

were already present in some laboratories by the end of the ’80s. Since the electric
field of such pulses is comparable with the one experienced by the electrons in an
atomic ground state, their interaction with matter cannot anymore be described by a
perturbative approach. One of the first phenomena observed in this new regime was
high-order harmonic generation (HHG hereinafter) by the gorup of A. McPherson
at the University of Illinois, Chicago, in 1987 [3], which consists in the generation of
high order odd harmonics of the driving laser frequency when an intense enough
pulse is focused onto a gas-jet. It is important to underline that harmonics can be
obtained also in the perturbative regime, but with different proprieties. Indeed in
this case the intensity of the emission decreases rapidly with the harmonic order
and the process is thus limited to relatively low frequencies. On the other hand,
when the electric field becomes high enough, the harmonics in the intermediate
frequency range form an intensity plateau. This extends into the XUV and soft
X-ray part of the electromagnetic spectrum up until a cutoff frequency, from which
an exponential decay is present.
Afterwards an empiric law for the cutoff frequency was derived by J. L. Krause et al.
in the limit of the single atom response [4]:

h̄ωcutoff ≈ Ip + 3Up

where Ip is the ionization potential of the considered atomic species and Up the
ponderomotive energy of the driving pulse, which is defined as the cycle averaged
quiver energy of a free electron in its electric field. For linearly polarized radiation
this is given by:

Up =
e2E2

f

4meω2
f

with e the electron charge, me the electron mass, E f the electric field amplitude and
ω f the driving laser frequency. Another important propriety of HHG is that the
radiation emission is concentrated in a subcycle of the driving field, giving rise to a
train of attosecond pulses [5]. More recently it was also demonstrated that isolated
attosecond pulses can be extracted from this process [6], which can then be used to
probe electron dynamics in atoms and molecules on their natural time scales [7, 8].
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Figure 1.1: Sketch of a typical HHG spectrum.

Depending on the application, an extended cutoff or the selection of a single
harmonic may generally be needed. However, one of the main limitations of HHG
as a source in the XUV region of the electromagnetic spectrum is the conversion
efficiency which is limited to yelds in the order of 10−6÷7. This is mainly due to
the limited interaction region of the comonnly used gas-jet generation geometry
and to the difference in phase velocity of the driving and the harmonic fields
inside the nonlinear medium, which doesn’t allow an efficient build up of the
signal. This issue can be addressed switching to a hollow waveguide geometry,
which both extends the interaction region and allows to better control the phase
matching conditions, as proposed by A. Rundquist et al. [9]. An extension of
the cutoff frequency, instead, can be achieved using atoms with higher ionization
potential Ip or driving fields with longer wavelengths. Recently T. Popmintchev
et al. demonstrated the possibility to produce radiation up to 1.5 keV employing
a 4 µm driving field in a waveguide geometry [10]. This energies are far above
the so-called water window, delimited by the K absorption edges of oxygen (530
eV) and carbon (280 eV), which is of great importance in the study of biological
samples. Moreover, the employment of a guiding geometry allow to tune, within
some limits, the frequency range for which the phase matching conditions are more
favourable. For all these reasons the generation of high-order harmonics in hollow
core waveguides has lately become a topic of fairly great importance.

In this first chapter we will present the theoretical basis of the HHG process,
focusing on the case of simple atomic targets. In Section 1 the semiclassical theory
of high intensity laser-atom interaction developed indipendenty by Corkum [11]
and Kulander [12] will be covered. Since this model allows to derive in a rather
straightforward way some of the main peculiarities of HHG, it will be treated quite
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extensively. In Section 2 we will then give a brief presentation of the fully quantum
theory developed by Lewenstein [13] in the framework of the so-called strong field
approximation (SFA). Particular attention will be given to those aspects that cannot
be accounted for by the more simple semiclassical model. Finally in Section 3 we
will cover the building up of the harmonic fields in an extended medium, focusing
on phase matching and absorption effects.
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1.1 Semiclassical three-step model

The semiclassical model of high intensity laser-atom interaction accounts in a
rather simple way for some of the main aspects of HHG. Arguments from both
classical and quantum mechanics are used in this approach and the process of light
generation is divided in three steps:

I. Ionization: In the first step the atom is ionized by the external field. The
treatment is completely quantum and many regimes of photoionization are
devised. In particular, the most important one in the case of HHG is tunnel
ionization, in which an electron is detached from the valence shell of the atom
via tunnelling through the potential barrier bent by the external field. Usually
an assumption is made, considering only the most weakly bound electron of
the atom and neglecting multiple photoionization events, which is referred to
as single active electron approximation (SAEA).

II. Propagation: The freed electron is then considered as subjected to the action
of the external field only, neglecting any contribution of the Coulomb potential
of the parent ion. This assumption is called strong field approximation (SFA).
Moreover, also the magnetic field of the driving pulse is neglected, as its
intensity is usually not enough to trigger a relativistic motion of the electron.
The treatment of this step is completely classical and the system dynamics is
solved simply by means of Newton equations.

III. Recombination: In the last step the electron is driven back by the external
field and interacts with its parent ion. This can result in scattering, both elastic
or inelastic (in which case the ion is either excited or further ionized), or in the
recombination of the electron, triggering the emission of a XUV photon due to
energy conservation.

Figure 1.2: Schematics of the process giving rise to HHG. In the first step the atomic
potential well is bent by the driving field and the electron can tunnel out. Then it is
accelerated until it recollides with its parent ion. The accumulated kinetic energy is
finally released in the form of an XUV burst.

In the following sections each one of these steps will be analysed more in details.
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1.1.1 Ionization

Ionization of atoms under the influence of an external electric field is a rather vast
and complex topic, with many aspects that are not fully understood even at these
days. Therefore we will present here only few arguments, beneficial to the study of
HHG, without claiming to be exhaustive and focusing in particular on the limits of
validity of the various approximations employed. For a more complete review on
the topic one can refere to [14].

One possible approach to the problem of evaluating the ionization of atoms in
strong field phenomena is to numerically solve the Schrödinger equation for the
system. Even though this is possible, it can be rather complex and surely doesn’t
give any physical insight on the process. Therefore over the years many analytical
approaches have been proposed to avoid this full numerical computation. In
1965 L.V.Keldysh [15] proposed a theory for the photoionization of atoms in intense
monochromatic laser fields treated in scalar approximation, when the photon energy
is much less than the atomic ionization potential. This implies that an upper limit
for the frequency of the incoming radiation ω f < Ip/h̄ is assumed, which depends
on the considered atom. For the noble gases usually employed in HHG experiments
this gives a limit of ω f < 1016 rad/s, which falls far into the ultraviolet region of
the spectrum. Therefore this condition is generally achieved by the laser sources
commonly used in laboratories.

Other limitations to the applicability of Keldysh theory are then imposed by
the fact that the interaction Hamiltonian is treated in dipole approximation. This
implies that the spatial variations of the fields must be small compared to the
average radius of the atom:

k · r� 1⇒ ω f <<
c

ratm
≈ 1018 rad

s

which gives another upper frequency limit. However, since this is higher that
the previous one, it is generally not important. At the same time, for the dipole
approximation to hold, also the displacement felt by the electron due to the magnetic
field must be small when compared to the average atomic radius[16], otherwise
higher orders in the multipole expansion of the interaction must be considered1. If
we assume that the electric field is polarized along z and the magnetic field along y,
the motion of a free electron is defined by the following set of equations:

me
dVz

dt
= −eE f cos

(
ω f t
)
→ Vz (t) = −

eE f

meω f
sin (ωt)

me
dVz

dt
= eVxB f cos

(
ω f t
)
→ x (t) =

e2 I f

4m2
e c2ε0ω3

f

[
2ω f t + sin

(
2ω f t

)]
1This must not be confused with the non relativistic approximation, which is always assumed in

this thesis. Indeed the relativistic effects scale as the Lorentz factor γL ≈ 1 + (v/c)2 + ... while the
effects given by the magnetic field to the particle motion scale as B/E ≈ (v/c) and may therefore play
a role even in non-relativistic regime.
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Note that the magnetic force acting on z due to the electron motion along x has
been neglected in the first order solution, which is a good approximation when
the magnetic field is small. Thus this sets a lower frequency limit to the dipole
approximation, which is intensity dependent:

ω3
f >

I f e2

4m2
e ε0c2ratm

≈ 1.1 · 1026 rad3m2

s3W
· I f

where I f is the intensity of the incoming field, ε0 the vacuum permittivity, e and me

the electron charge and mass respectively and c the speed of light in the vacuum.
Considering the intensities usually employed in HHG experiments, which are
on the order of 1014 W/cm2, this would give a limit of around 4.7 · 1014 rad/s,
corresponding to a wavelength of almost 4 µm. Although this is far bigger than
the ones employed in this thesis, such limit should be taken into account carefully
when the driving wavelength is extended in the MIR region.

Within this limits, Keldysh proposed to describe the ionization of atoms using a
perturbative approach as the transition rate between the electronic ground state Ψg

and the final continuum state Ψc, computed using SFA:

W ∝
∣∣∣ 〈Ψc|E f · r|Ψg〉

∣∣∣2
By directly solving the Schrödinger equation such final states are found to be a
continuum and so an integral over all the possible transitions should be in principle
considered. The resulting expressions are rather complex and they will not be
covered here in details.

Anyway one of the most important results of Keldysh theory is the introduction
of a simple parameter:

γ =

√
Ip

2Up

with Ip the atomic ionization potential and Up the field ponderomotive energy. This
allows to easily distinguish between two distinct regimes of photoionization. When
γ � 1 Keldysh asserted that the process could be interpreted as the quasi-static
tunnelling of the electron through the atomic potential barrier bent by the external
field (tunnelling ionization, TI). On the other hand, when γ� 1 a better interpretation
could be provided by a vertical transition triggered by the simultaneous absorption
of multiple photons (multiphoton ionization, MPI). Indeed, the Keldysh parameter
can be thought as the ratio between the tunnelling time of the electron and the
period of the driving field. If the former is bigger, than the electron has not enough
time to travel through the barrier before the external field reverses its sign and so
the spatial directionality of the suppression, thus MPI is favourable. Instead, when
the latter is bigger the particle experiences an almost static potential barrier and
therefore TI can take place with high probability. Considering the intensities and
frequencies used in HHG, which are respectively around 1014 W/cm2 and the MIR
region, it is easy to prove that γ ≤ 1 and therefore it is usually assumed that the
tunnelling description of the ionization process is the more accurate one. However
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Figure 1.3: The three main mechanisms of strong field ionization of atoms are
sketched. In a) MPI, in which a vertical transition is given by the absorption of
multiple photons; in b) TI, in which the electron tunnels through the potential
barrier bent by the external field; in c) OBI, in which it can classically escape the
atom.

it is important to underline that these are only two physical pictures which may
accurately describe atomic photoionization only when the Keldysh parameter is
far from unity, while in principle both processes are always present during the
interaction.

A third regime, which is called over the barrier ionization (OBI), is then reached
when the effective atomic Coulomb potential felt by the electron falls below Ip due
to the bending given by the external field. In this way the particle sees no barrier at
all and can classically escape the atomic electric field. Such regime can be present
at any frequency of the driving pulse and the only condition that applies in this
case is regarding the external field strength. This can be easily derived setting the
maximum of the overall potential felt by the electron equal to Ip:

EOBI = I2
p

πε0

Zrese3 → IOBI = I4
p

cπ2ε3
0

2Z2
rese6

where Zres is the residual charge left on the ion after the electron escapes. As
an important example, for noble gases the intensities that trigger OBI are on the
order of 1014÷15 W/cm2. Therefore the limit for OBI may be reached in HHG
experiments and this process generally coexist with TI. However, due to the induced
high ionization, the areas where OBI takes place usually do not contribute to the
final harmonic spectrum2. Anyway, in experiments it is difficult to achieve both
conditions γ << 1 and E f << EOBI when fields in the visible or near IR are
employed and this is one of the reason why sources in the MIR region of are
generally preferred.

Another important caution in the use of the Keldysh parameter is then related to
the tunnell ionization, as exposed in [17]. The limit of γ→ 0 is usually considered as

2This is due both to the rapid depletion of the single atom ground state and to the impossibility to
reach good phase matching conditions in extended media.
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Figure 1.4: Regimes of the Keldysh theory in the case of Ar atoms (Ip = 15.76 eV).
The blue shaded area gives the limits of validity of the theory, while the dotted line
is γ = 1. The x-axis is given in wavelengths for the ease of the reader.

approaching more and more the TI regime. However as can be seen from Figure 1.4
this is not strictly true. Indeed when we move to lower values of γ, both increasing
λ f or I f , we also start entering the non-dipole interaction regime, where the theories
here presented don’t strictly hold anymore. Therefore great attention must be used
when handling the limit of very small values of γ.

Anyway, since the purpose of this thesis is the study of the HHG process, we
will now on focus more deeply on the TI regime. Simplified theories are available
in this limit, which treat the problem directly as a tunnelling process. These so
called tunnelling formulae allow to greatly ease the computation of ionization rates
and therefore are sometimes used also in regions where γ is not much lower than
unity. The first attempt to describe TI with this approach was performed by L.D.
Landau and E.M. Lifshitz [18] in 1981 for an hydrogen atom in a static electric field.
Using parabolic coordinates to simplify the problem and WKB approximation they
calculated a ionization rate of:

WLL (E) =
8EH

E

( IH
p

h̄

)
exp

(
−2EH

3E

)
(1.1)

where EH and IH
p are respectively the atomic field felt by the electron and the ioniz-

ation potential of hydrogen. This result holds in the quasi-classical approximation,
for which E � EH and the barrier penetration is rather small. The exponential
factor in the rate is a typical feature of tunnelling processes and is common to
all tunnel ionization formulae. The extension of this theory to time dependant
fields was then done by A.M. Perelomov, V.S. Popov and M.V. Ter’entev [19, 20, 21],
assuming a short-range potential for the generic atom and a long-range Coulomb
interaction as first-order correction in the quasi classical action of the freed electron.
The so called PPT theory gives actually a very general expression, which can be
used also for values of the Keldysh parameter outside the limit of the tunnelling
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regime, but we will here present only the case γ� 1. The result for the ionization
rate of a Rydberg atom in a static electric field from an energy level described by
the quantum numbers (n, l, m) can be written as:

Wstat (E) = ωp

∣∣∣Cnl

∣∣∣2A(l, m)
(4ωp

ωt

)2n−|m|−1
exp

(
−

4ωp

3ωt

)
(1.2)

where the coefficients are
∣∣∣Cnl

∣∣∣2 = 22n/nΓ(n + l + 1)Γ(n− l) and A(l, m) = [(2l +

1)(l + |m|)!]/[2|m||m|!(l − |m|)!], the frequency linked to the ionization potential
is ωp = In

p /h̄ and the tunnelling frequency is ωt = eE/
√

2me In
p . In this formula

In
p = IH

p (Zres/n)2 is the effective ionization potential while Γ(·) is the Euler’s
gamma function. For the ground state of a more general atom we should then
substitute the quantum numbers n and l with the effective ones n∗ = Zres

√
(IH

p /In
p )

and l∗ = n∗ − 1, both in
∣∣∣Cnl

∣∣∣ and in the exponential, but not in A(l, m). Then, for a
time dependant field, the amplitude in Eq.(1.2) is substituted with its instantaneous
value and an average over one optical cycle is computed:

WPPT
(
E f
)
=

√
3E f

πEn∗
Wstat

(
E f
)

(1.3)

where E f is the amplitude of the oscillating field and En = EH(Zres/n)3 is the
effective binding field felt by the electron in its ground state.

A further simplification of this expression was then given by M.V. Ammosov,
N.B. Delone and V.P. Krainov considering the limit for which n∗ � 1 and the Stirling
approximation for the Euler’s gamma function:

Cn∗ l∗ ,ADK =
( 4e2

n∗2 − l∗2
)n∗(n∗ + l∗

n∗ − l∗
)l∗+1/2( 1

2πn∗
)

(1.4)

with e the Euler constant. Inserting Eq.(1.4) in Eq. (1.3) we obtain the ADK expres-
sion for the tunnel ionization of atoms in intense laser fields, which is probably
the most used formula due to its relative simplicity. However, owing to the many
approximation we had to assume in its derivation, many authors doubt the accuracy
of this result. In particular F.A. Ilkov asserted that the use of the ADK rate should
be limited to values of γ < 1/2 [22].

It is important to underline the fact that the presented tunnelling formulae were
obtained by means of an optical cycle averaging in a perfectly monochromatic field.
Therefore in the case of short pulses they don’t give a correct evaluation of the
ionization rate, since the electric field varies heavily under the envelope. A more
correct approach would be in this case to use the so called adiabatic approximation
and consider the static expression of Eq.(1.2) point by point in time. We should also
underline the fact that in the case of few cycle pulses the Keldysh parameter is a
function of time γ (t) and therefore it is no more simple to distinguish between the
various ionization regimes.
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1.1.2 Propagation

After ionization, the freed electron according to SFA is subjected to the external
electric field only. Its motion can thus be treated classically with the Newton
equation for a point charge in a linearly polarized monochromatic plane wave. The
choice of this kind of polarization is consistent with the experimental practice and
will be justified better in Section 1.1.3:

me z̈ (t) = −eE f cos
(
ω f t
)

where z is assumed to be the polarization direction of the driving field. This
equation can be solved easily once the initial conditions at the ionization time t′

are known. Since we are considering the TI limit, the electron kinetic energy after
leaving the atom may be approximated to be almost null and therefore we can set:

z
(
t′
)
= 0 vz

(
t′
)
= 0

assuming for simplicity the atom initially in the origin of the axis. This allows to
retrieve the expressions for the electron velocity and displacement in the continuum:

z (t) =
eE f

meω2
f

[
cos

(
ω f t
)
− cos

(
ω f t′

)
+ sin

(
ω f t′

) (
t− t′

)
ω f

]
(1.5)

vz (t) = −
eE f

meω f

[
sin
(
ω f t
)
− sin

(
ω f t′

)]
(1.6)

The electrons will therefore follow different trajectories depending on the ionization
phase φ′ = ω f t′ at which the atom undergoes ionization. As an example, in Figure
1.5 some of the possible electron trajectories are represented during the two optical
cycles of the driving field after ionization as a function of φ′. In particular, for
intensities around 1014 W/cm2 and a driving wavelength of 800 nm, which are the
usual conditions of HHG experiments, the maximum excursion of the electron is
in the order of tens of nanometers. This a posteriori justifies the SFA assumption
of neglecting the atomic potential to describe its motion. Moreover, as can be seen
from the figure, electrons freed at two ionization phases separated by π experience
exactly the same trajectory in space, but with opposite directions with respect to the
polarization axis of the driving field.

Regarding the electron energy in the continuum, it can be easily derived from
Eq.(1.6) as in the framework of the SFA it consists of only its kinetic contribution:

Ek (t) =
e2E2

f

2m2
e ω2

f

[
sin
(
ω f t
)
− sin

(
ω f t′

)]2
= 2Up

[
sin
(
ω f t
)
− sin

(
ω f t′

)]2
(1.7)

Therefore also the kinetic energy is the same for electrons released at ionization
phases separated by π, as they have the same velocity up to the sign. In Figure
1.6 the energy of the released electrons is plotted in the two optical cycles after
ionization, normalized to the ponderomotive energy of the driving field. From the
figure it is possible to observe that every electron posses zero energy at the end
of each optical cycle after ionization and that the maximum energy which can be
attained in the continuum is 8Up, for a ionization phase of φ′ ≈ 0.061 and after an
accumulated phase of π in the external field.
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Figure 1.5: Classical trajectories of the electron for various ionization phases as
calculated from Eq.(1.5). The blue ones correspond to a ionization phase in the
range φ′ ∈ {0, π} while the red ones correspond to a ionization phase in the range
φ′ ∈ {π, 2π}. One hundred trajectories were computed for each range.

Figure 1.6: Energies of the electron for various ionization phases as calculated from
Eq.(1.7), with ionization phases in the range φ′ ∈ {0, π}. One hundred trajectories
were computed.
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1.1.3 Recombination

During their motion some of the electrons may be driven back to their parent ions.
In this case they have some probability to recombine to the state from which they
were ionized, releasing in the process a photon of energy

ω =
1
h̄

(
Ip + Ek (t)

)
where t is the recombination time at which the emission is evaluated. This can be
found from Eq.(1.5) by setting the particle displacement to zero:

cos
(
ω f t
)
− cos

(
ω f t′

)
+ sin

(
ω f t′

) (
t− t′

)
ω f = 0 (1.8)

Therefore solving Eq.(1.8) the trajectories (t′; t) which contribute to the emission
of radiation can be studied. Generally three possible behaviours are identified
depending on the ionization phase: none, only one or multiple recollisions with the
parent ion. Usually the assumption is made that only the electrons recombining
within the first optical cycle after ionization contribute to the emission of radiation
and in the case of multiple recombination times only the first one is considered.
This is due to the fact that the particles which undergo longer trajectories in the
continuum have lower probability to recombine with their parent ion. However
only the quantum treatment of Section 1.2 can rigorously justify this assumption,
since its explanation involves the spreading in space of the electron wavefunction.

Anyway Eq.(1.8), being transcendental, doesn’t have a simple closed-form
solution. One possibility is to solve it numerically and to try to fit the result with
some analytical function. This has the advantage to give a simple expression for
the recombination phase φ of the electron, which can be used to further study the
process [23]:

ω f t ≡ φ ≈ π

2
− 3 sin−1

( 2
π

φ′ − 1
)

Since it is possible to show that the only electrons which can recombine with their
parent ion within one optical cycle are the ones with ionization phase in the ranges
φ′ ∈ {0, π/2} and φ′ ∈ {π, 3π/2}, we will from now on concentrate on these
values of φ′. The result for the first of such ranges is shown in Figure 1.7.

The recombination of the electron is therefore concentrated in a time range that
is approximately ∆t = 1.5π/ω f , giving a rule of thumb for the possible duration
of the subsequent XUV burst. In particular, considering a 800 nm driving field
this gives an emission time of around 2 fs, which correspond to a pulse duration
of some hundreds of as. This is however only a rough estimation and should not
be taken as an exact value, since many other parameters may actually influence
it. Another important information that can be taken from the figure is that the
electrons escaping from the atom earlier are the ones that recombine lately in the
following optical cycle, experiencing a longer time in the continuum. Therefore,
due to the spreading of the electronic wavefunction they are expected to have a
lower probability to recombine with the parent ion.
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Figure 1.7: Fitting of the numerical solution of Eq. (1.8).

The numerical solution of Eq.(1.8) allows also to compute by substitution in Eq.
(1.7) the energy of the electron upon recollision:

Ek (t) = 2Up

[
sin
(
ω f t
)
− sin

(
ω f t′

)]2
≈ 2Up

[
cos
(

3 sin−1
( 2

π
ω f t′− 1

))
− sin

(
ω f t′

)]2

(1.9)

Figure 1.8: Recombination kinetic energy of the electron, as calculated from Eq.(1.9).
The electron energy is normalized to the ponderomotive energy of the driving field.

The maximum emitted photon energy is thus given by the maximum of the
recombining electron kinetic energy which is Ek,max ≈ 3.17Up for a ionization phase
of φ′ ≈ 0.1π and a recombination phase of φ ≈ 1.4π. This allows to formulate the
famous cutoff law for the single atom spectrum, which is one of the main success of
the semiclassical model:

h̄ωcutoff = Ip + 3.17Up (1.10)

Moreover the maximum in recollision energy of Eq.(1.19) marks a separation
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between two classes of trajectories. Indeed for every given photon energy there
are always two of them contributing to the emission, one with φ′ ∈ {0, 0.1π} and
the other one with φ′ ∈ {0.1π, π/2}. Since electrons with lower ionization phases
experience a higher propagation in the continuum, these are called respectively
long and short trajectories. Their contributions always coexist and converge near
the cutoff, giving interfering contributions to the overall spectrum.

In many cases a higher cutoff frequency is desirable for extending the emit-
ted spectrum to the near X-ray region. The expression of Eq.(1.10) suggests that
this is possible both using atoms with higher ionization potentials or fields with
higher ponderomotive energy. Due to the scaling of Up ∝ I f λ2

f the latter can be
achieved with higher-intensities or lower-frequencies driving pulses. However as
exposed in Section 1.1.1 both this approaches have limitations linked to the presence
of a higher ionization fraction and the magnetic field contribution. The latter in
particular reduces the recombination probability due to the displacement of the
electron in the direction perpendicular to the polarization axis of the driving field.
Moreover, the scaling to longer wavelengths is not so favourable as the HHG yield
is approximately proportional to λ−5÷6 [24]. Out of it, a factor λ−2 is given by the
redistribution of the harmonics over an extended cutoff for a fixed incoming energy,
while the remaining λ−3 contribution is due to the higher spreading of the electron
wavefunction in the continuum. For all these reasons MIR sources are frequently
used in HHG experiments, since they represent a good compromise between an
extended cutoff and a high yield. It is important to underline that this treatment
strictly holds only for linearly polarized electric fields. Indeed the electron is driven
back to its parent ion with lower efficiency for driving pulses of higher ellipticity
and this ultimately justify the use of linearly polarized fields in HHG experiments.

The process described thus far takes place every half cycle of the driving field.
In particular, since the ionization probability is highly dependent on the driving
field intensity, being maximum on its peaks and zero on its nodes, the process
results in the emission of a train of XUV pulses separated by the half of its period
Tf = 2π/ω f . Moreover, due to the fact that the driving field changes sign every
half cycle, subsequent bursts experience a π phase shift. In time the emitted field
can thus be written as:

Exuv = exuv(t) ∗
+∞

∑
n=−∞

δ
(

t− nπ

ωF

)
einπ

where exuv(t) represents the envelope in time of the single burst. The frequency
spectrum of the emission will then be given by the Fourier transform of this expres-
sion:

F{Exuv}(ν) = ν fF{exuv(t)}
[ +∞

∑
m=−∞

δ(ν−mν f )−
+∞

∑
m=−∞

(−1)mδ(ν−mν f )
]

where ν f = ω f /2π is the driving field frequency. Therefore for even values of m the
terms of the two combs simplify while for odd values they sum up. This implies
that in centrosymmetric targets, as the case of single atoms, only odd harmonics of
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the fundamental frequency interfere constructively, while even ones are suppressed:

F{Exuv}(ν) = 2ν fF{exuv(t)} ∑
m=odd

δ(ν−mν f )

In order to obtain a more quantitative result for the emitted spectrum, one should
then know the exact expression of F{exuv(t)}, which cannot be found in the frame-
work of the semiclassical model here presented. However this qualitative descrip-
tion is one of the main result of such simple theory.

Moreover, it is also possible to predict the presence of a chirp in the generated
XUV pulses. From Figure 1.6 and Figure 1.7 it is indeed clear that the frequency of
the emitted radiation varies with the recombination phase. In particulr, for the short
trajectories photons of higher energies are emitted later in time and they thus show
a positive chirp, while longer trajectories show a negative chirp. This so-called
attochirp can be compensated, once only one of the two classes of trajectories is
selected, in order to obtain pulses with duration down to tens of attoseconds [25].
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1.2 Lewenstein model

In 1994 Lewenstein proposed the first fully quantum description of HHG from
driving fields of arbitrary polarization [13]. Even though it is still in many ways an
approximated treatment, this theory can overcome some of the main limitations of
the semiclassical model, which are linked to the impossibility to get quantitative
results for the emitted spectrum.

In principle, for studying the evolution of the harmonic fields one must know
the atomic polarization that acts as the source term in Maxwell equations. This is
proportional to the dipole moment induced on the single atom by the driving field:

P (t) ∝ µ (t) = −er (t)

where r gives the displacement of the negative charge from the positive nucleus,
directed towards the former, and e is the modulus of the electronic charge. From
a quantum point of view this must be evaluated as the expectation value of the
relative operator over the state |Ψ〉 of the electron system:

〈r (t)〉 = 〈Ψ|r (t)|Ψ〉

Therefore to obtain the properties of the emitted radiation, we need to find the
solutions of the corresponding time dependent Schrödinger equation (TDSE):

ih̄
∂

∂t
|Ψ〉 = Ĥ |Ψ〉

where the Hamiltonian can be decomposed as Ĥ = Ĥ0 + Ĥem, with Ĥ0 the un-
perturbed atomic one and Ĥem the contribution given by the interaction with the
external electromagnetic field. Although it might be possible to find numerically
the solutions for such TDSE, in practice this is not trivial at all since the unperturbed
Hamiltonian of a general atom can be quite complicated. Instead, the Lewenstein
model allows to solve the equation analytically exploiting two main approxima-
tions: the SAEA and the SFA. Moreover an even simpler expression for the dipole
moment can be retrieved under the so called saddle point approximation (SPA).

1.2.1 Single active electron and strong field approximations

The first source of complications in the TDSE is the unperturbed atomic Hamiltonian,
which for multi electron atoms couples the motion of all the particle in the system.
Indeed, for an N-electrons atom it is rigorously given by:

Ĥ0 =
N

∑
i=1

[
− h̄2

2mi
∇2

ri
+ Vnucl(ri) + ∑

i 6=j
Vij(rij)

]
where the first and second term are respectively the kinetic and the Coulomb energy
of each single electron in the field of the nucleus, while the last term represents
the coupling between all electrons. For simplifying this expression the SAEA is
assumed, for which only the most weakly bound electron is considered to take part
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in the interaction with the external field. Moreover the field experienced by the
single active electron in the atom is modelled with an effective Coulomb potential
which eliminates the coupling between the multiple coordinates:

Ĥ0 =
[
− h̄2

2me
∇2

r + Veff(ri)
]

where Veff(r) is chosen to reproduce as accurately as possible the characteristics of
the atom and in particular its ionization potential Ip. The discrete eigenstates of
this Hamiltonian will define the energy levels allowed for the single electron inside
the atom. A further simplification is then assumed, considering only the ground
state of the electron to play a role in its interaction with the external field. This
means that no resonance with excited atomic levels occurs in the process, which is a
good approximation for Up � Ip. Indeed only recently the role of excited states in
high-order harmonic generation has started to be investigated [26]. Anyway, the
resulting eigenstates of the unperturbed atomic Hamiltonian can be written as:

|Ψ0〉 = exp
{−iEg

h̄
t
}
|0〉 = exp

{
iIp

h̄
t
}
|0〉

with |0〉 the solution of the time independent Schrödinger equation for the electron
system.

Regarding the interaction Hamiltonian Ĥem we can instead assume a description
in terms of a pure dipole interaction, remembering however the limits that this
assumption brings (see Section 1.1.1):

Ĥem = eE f (t) · r (t)

In the framework of SFA the freed electron experiences only the external field and so
the eigenstates in the continuum are the same of the pure interaction Hamiltonian.
For simplicity these can be written as the superposition of plane-wave states of
wave vector k. Exploiting the δ-Dirac normalization, we can thus write:

|k〉 = 1√
(2π)3

exp{i(k · r−ωet)}

k =
meve

h̄
ωe =

mev2
e

2h̄
This model works well for harmonic orders near the cutoff, where the electrons have
higher kinetic energies and therefore the plane wave description is more accurate,
while it is not expected to describe efficiently the lower orders of harmonics. Under
these assumptions the generic wavefunction can be written as:

|Ψ〉 = ei
Ipt
h̄

[
a (t) |0〉+

∫
b (k, t) |k〉 dk

]
(1.11)

It is important to underline that his is however a rather huge approximation, since
there is no rigorous proof that these states form a basis for the electron system.
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In this frame work the expectation value of the displacement induced by the
external field can therefore be divided in four parts:

〈r(t)〉 = a2 (t) 〈0| r |0〉+
∫

a∗ (t) b (k, t) 〈0|r|k〉 dk +
∫

a (t) b∗ (k, t) 〈k|r|0〉 dk+

+
∫ ∫

b (k, t) b∗ (k’, t) 〈k’| r |k〉 dkdk’

where the last term represents the coupling between states in the continuum, while
the first term is zero owing to the defined symmetry of the atomic ground state. The
two in the middle, on the other hand, reflect the coupling between the continuum
and the atomic ground state, which is the origin of the harmonic emission. Therefore
the formers can be neglected and the expectation value of the electron dipole can
finally be written as:

〈µ (t)〉 = 2e Re
{∫

a∗ (t) b (k, t) 〈0|r|k〉 dk
}

(1.12)

From this expression it is possible to notice that the HHG signal is expected to be
quenched when the atomic ground state is depleted and a (t)→ 0, which is not a
priori visible in the semiclassical model. This shows that the oscillating dipole that
generates the harmonics rises from the interference between the electronic ground
state and the continuum wave packet, which is recombining to the atom. Since the
value of a (t), which represents the ground state population of the atom, may be
in principle calculated using the ionization rates exposed in Section 1.1.1, the only
unknown variable in the expression is b (k, t), that describes the evolution of the
electron wavepacket in the external field.

1.2.2 Saddle point approximation

In order to find the expression for b(k, t) we should substitute Eq.(1.11) inside the
TDSE. The derivation is rather complex and will be left in Appendix A. The final
result is given as a function of the electron canonical momentum in the external
field p = h̄k− eA(t):

b(p, t) = −i
e
h̄

∫ t

−∞
a(t′)d[p + eA f (t′)] · E f (t′)e−

i
h̄ S(p,t,t′)dt′ (1.13)

where we have defined the dipole transition matrix element d(k) = 〈k| r |0〉, while
in the exponential is present the quasi-classical action of the electron in the external
field from the ionization time t′ to the emission time t:

S(p, t, t′) =
∫ t

t′

(
Ip +

[p + eA f (t′′)]2

2me

)
dt′′

which is defined as quasi-classical due to the presence of the additional term pro-
portional to the atomic ionization potential. Therefore for obtaining the electric
dipole we need to simply substitute this expression into Eq.(1.12):

〈µ(t)〉 = −i
2e
h̄4 Re

{∫
dp
∫ t

−∞
dt′a∗(t)d∗[p + eA f (t)]a(t′)d[p + eA f (t′)] · E f (t′)e−

i
h̄ S(p,t,t′)

}
(1.14)
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where the dependence on the atomic Coulomb energy Veff(r) is no more present
explicitly, but it is only implicit in the expression for |0〉. From this equation it is
simple to recall the three steps of the semiclassical model:

I. a(t′)d[p + eA f (t′)] · E f (t′) gives the probability of ionization at time t′, linked
to the dipole transition matrix from |0〉 to |k〉 due to the interaction with the
external field.

II. exp{−iS(p, t, t′)/h̄)} represents the phase accumulated by the electron owing
to the propagation in the continuum between the ionization time t′ and the
emission time t. During its motion the electron changes its state from the initial
one identified by k ∝ p− eA(t′) to the one identified by k’ ∝ p− eA(t), while
maintaining constant its canonical momentum.

III. a∗(t)d∗[p + eA f (t)] gives the probability of recombination at time t, linked to
the dipole transition matrix from |k′〉 to |0〉.

The main difference between this quantum model and the semiclassical one is
that to determine the dipole at time t the contribution from all electron freed at
times t′ ≤ t is considered due to interference.

The direct integration of Eq.(1.14) is however still analytically impossible and
thus the so-called saddle point approximation (SPA) is usually employed to further
simply it. Indeed the exponential term of the quasi-classical action can be demon-
strated to oscillate with respect to p much faster than the dipole transition matrix
elements. In this way the integration over the canonical momentum of the elec-
tron can be considered to yield approximately zero apart from the regions where
S(p, t, t′) is stationary. These so-called saddle points are defined by the condition:

∇pS(p, t, t′)
∣∣∣∣
psd

=
∫ t

t′

psd + eA f (t′′)
me

dt′′ = 0

where psd, being a constant of motion of the electron, can be taken out from the
integral:

psd(t, t′) =
1

(t− t′)

∫ t

t′
eA f (t′′)dt′′

This expression have the physical interpretation to require that the displacement
of the electron between the ionization time t′ and the recombination time t is zero.
Being a definite integral, only one possible saddle point exists for every couple
of ionization and recombination times (t′; t). Therefore in Eq.(1.14) the dipole
transition matrices can be evaluated at the saddle points and so they can be taken
out from the integral in the momentum space:∫

dp
∫ t

−∞
dt′a∗(t)d∗[p + eA f (t)]a(t′)d[p + eA f (t′)] · E f (t′)e−

i
h̄ S(p,t,t′) ≈

∫ t

−∞
dt′a∗(t)d∗[psd + eA f (t)]a(t′)d[psd + eA f (t′)] · E f (t′)

∫
dpe−

i
h̄ S(p,t,t′)
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The quasi-classical action can then be approximated with a Taylor series around
these saddle points:

S(p, t, t′) ≈ S(psd, t, t′) +
1
2
(p− psd) · H(psd, t, t′) · (p− psd)

where H(psd, t, t′) is the relative Hessian matrix. In this way, the integral in the
momentum space can be further reduced, as it can be demonstrated that:∫

dpe−
i
h̄ S(p,t,t′) ≈ e−

i
h̄ S(psd ,t,t′)

∫
dpe−

i
2h̄ (p−psd)·H·(p−psd) =

( πh̄me

i(t− t′)/2

)3/2
e−

i
h̄ S(psp ,t,t′)

The denominator is proportional to the time spent by the electron in the continuum
(t− t′) and thus the longer the particle moves in the external field the lower is its
contribution to the final dipole due to quantum diffusion. This is one of the aspects
that the semiclassical model was not able to describe, while it is obtained naturally
in this quantum treatment. Moreover, since for t = t′ this expression would diverge,
which is unphysical, a small empiric regularization constant α is added in the
denominator for avoiding it. It is important to underline that the presence of such
singularity means that the SPA cannot accurately describe trajectories for which
t→ t′.

By substitution in Eq.(1.14) we finally retrieve the equation for the electron
dipole moment in the framework of SPA for the canonical momentum:

〈µ(t)〉 = −i
2e
h̄4 Re

{∫ t

−∞
dt′a∗(t)d∗PRa(t′)

( πh̄me

α + i(t− t′)/2

)3/2
dPI · E f (t′)e−

i
h̄ S(psd ,t,t′)

}
(1.15)

where for simplicity in the notation we have called d∗PR = d∗[psd + eA f (t)] the
dipole matrix element representing photo recombination and dPI = d[psd + eA f (t′)]
the one describing photoionization. The response of the single atom to the external
field can thus be computed once the quasi-classical action and the dipole transition
matrix elements are known.

1.2.3 High harmonic spectrum

The Lewenstein model in the framework of the SPA for the canonical momentum
allowed to retrieve Eq.(1.15), which is a very general expression for the dipole
moment of an atom in a high-intensity laser field. Once this is known the emitted
radiation can be described in time using Larmor formula:

P(t) =
|〈µ̈(t)〉|2

6πε0c3

where the classical dipole acceleration is formally replaced by its expectation value.
The power spectrum of the XUV field can instead be calculated through a simple
Fourier transform:

P(ω) ∝ ω4F{|〈µ〉|}2

where:
F{|〈µ〉|} =

∫ +∞

−∞
dt|〈µ(t)〉|eiωt
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In order to solve the integration in t and t′ it is then possible expand the procedure
of SPA also to these coordinates. This will not be covered extensively here, but only
the most important results of such approach are presented. In particular, the new
saddle point conditions have nice physical interpretations:

I. After ionization the kinetic energy of the electron is equal to −Ip. This is a
consequence of the quantum nature of the tunnel ionization process:

∂S
∂t′

∣∣∣∣
t′sd

= 0→
[ps + eA f (t′sd)]

2

2me
+ Ip = 0

Since Ip > 0 this equation can be satisfied only by complex values for the
velocity and ionization time. In particular, the higher is the ionization potential
the higher is the imaginary part of t′sd and the lower is the ionization probability
of the atom.

II. Energy is conserved upon recombination:

∂S
∂t

∣∣∣∣
tsp

= 0→
[ps + eA f (tsd)]

2

2me
+ Ip = h̄ωq

where h̄ωq is the energy of the emitted XUV photon. This condition selects the
trajectories that can contribute to the spectrum.

Within this approach it can also be demonstrated that the saddle point solutions
found for each frequency of the high harmonic spectrum are related to the semiclas-
sical long and short trajectories. These two contributions have similar strength in
the plateau region, while approaching the cutoff from lower energies the long traject-
ories become more relevant. The most important difference between the quantum
result and the semiclassical one is that in this case the trajectories whose coherent
superposition gives the harmonic spectrum are intrinsically complex. Moreover, if
only the semiclassical quantum paths are considered, the spectral amplitude of the
qth harmonic can be written as [28, 29]:

µq = ∑
n

An(q, I)eiΦn(q,I) (1.16)

where the sum over n identifies short and long trajectories. The dipole amplitude
An in the plateau region is only weakly dependant on the harmonic order, while
the phase Φn can change highly with respect to it. From the Lewenstein model we
can also directly write out the expression for the latter:

Φn(q, I) = qω f t− 1
h̄

S(p, t, t′)

with the first term that depends simply on the semiclassical recombination time and
the second that describes the phase acquired from the electron propagation in the
continuum. This last contribution is particularly interesting since its dependence
on the driving intensity is an effect that is not present in lower order nonlinear
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optics. In the particular case of a linearly polarized driving field, it is possible to
demonstrate that:

Φn(q, I) ≈ α0(q, n) + α(q, n)I f (1.17)

with both constants depending on the considered harmonic order and trajectory.
More precisely α is always negative and its modulus is usually one order of mag-
nitude bigger for the long trajectories with respect to the short ones. This is a
fundamental difference that plays a big role in defining the characteristics of the
harmonic radiation [30].

Moreover, when dealing with monochromatic driving field, also an expression
for the cutoff energy can be found by solving the saddle point equations:

h̄ωcutoff = f (
Ip

Up
)Ip + 3.17Up (1.18)

which is equal to the semiclassical result up to a slight correction due to the contri-
bution of quantum diffusion and quantum interference. Indeed f (Ip/Up) ≈ 1.32
for Ip � Up and it decreases with increasing ionization potentials, approaching
the semiclassical limit f (Ip/Up) ≈ 1. However, differently from the semiclassical
case, this does not imply a sharp cutoff but an exponential decrease in the power
spectrum. Anyway, such expression holds only as long as we do not have any
depletion of the atomic ground state. Indeed, when the driving laser intensity be-
comes higher than the so called saturation intensity Is for which a(t) ≈ 0, the HHG
process is suppressed. This is due to the fact that the dipole moment of Eq.(1.15) is
quenched and XUV emission from ions is not favourable as ionization defocusing
of the driving pulse is too high [31]. In this case the spectral extension is limited by
Is and the cutoff law becomes independent on the driving intensity [33]:

h̄ωcutoff ≈ Ip + 3.17Up(Is)

For an efficient generation of XUV radiation it is thus important to avoid saturation
even when high driving intensities are employed. To do so it is possible to use
atoms of high ionization potentials, since it can be demonstrated that Is ∝ I3

p, or
driving pulses with very short duration, since it can also be demonstrated that Is ∝
ln(∆t f )

−1 [32]. For a fixed cutoff frequency, instead, the use of longer wavelengths
allows to employ driving fields of lower intensity, as the ponderomotive energy
increases.
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1.3 Macroscopic effects

In the previous sections the theory of HHG from a single atom was treated. However
in experiments we deal with extended media, in which both the driving and the
harmonic fields propagate. The contributions of every single emitter need therefore
to be summed up for getting the final macroscopic signal. In the case of a linearly
polarized driving field interacting with a homogeneous and isotropic medium, the
propagation of the fields can be studied with Helmholtz scalar equation:

∇2
r E(t, r)− 1

c2
d2

dt2 E(t, r) = µ0
d2

dt2 P(t, r)

where the polarization of the medium can be written as a Taylor series of the electric
field to account for its non linearities:

P(t, r) = ε0[χ
(1)E(t, r) + χ(2)E2(t, r) + χ(3)E3(t, r) + ...]

Note that for very high-intensity fields this sum cannot be in principle truncated
as the terms of the power series does not become negligible with increasing order.
Moreover the electric field that needs to be consider in the propagation equation is
given by both the fundamental and the harmonic radiation:

E(t, r) = E f (t, r) +
cutoff

∑
q

Eq(t, r)

where q is the harmonic order. For simplicity it is possible to rewrite Helmholtz
equation in Fourier domain for getting rid of the temporal derivatives:

∇2
r E(ω, r) +

ω2

c2 E(ω, r) = −ω2

c2 [χ(1)E(ω, r) + χ(2)E2(ω, r) + χ(3)E3(ω, r) + ...]

Since the nonlinear terms depend on the total electric field in the medium, this
expression in principle defines a set of coupled differential equation for the indi-
vidual harmonics. However it can be reduced considering that the efficiency of the
HHG process is quite low, so that only the fundamental radiation is actually able to
trigger a nonlinear response in the material, and assuming that the harmonic fields
do not spectrally overlap, so that their interaction is negligible [34]. In this way the
equations become decoupled for each field contribution:

∇2
r E f (ω, r) +

ω2

c2 n2
f E f (ω, r) = −µ0ω2PNL

f (E f (ω, r)) (1.19)

∇2
r Eq(ω, r) +

ω2

c2 n2
qEq(ω, r) = −µ0ω2PNL

q (E f (ω, r)) (1.20)

where we have introduced the refractive index of the medium n =
√

1 + χ(1) and a
term PNL that resumes the nonlinear polarization induced by the driving field. The
latter describes in the first equation the classical low order nonlinearities present
during the propagation of the driving field, while in the second one it is linked
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to the density of the atomic dipoles giving rise to the high harmonic fields in the
material. Therefore in this framework the fundamental field propagates in the
medium without any influence from the harmonics, while each harmonic is treated
as a perturbation to the initial field. The solutions can thus be found by firstly
computing the propagation of the unperturbed driving beam and then substituting
it in the source term of the second equation. For this reason the solutions of such
equations are highly dependent on the geometry of the system, which defines the
propagation of the fundamental field. In the following sections we will present a
simplified approach to this problem, renouncing to obtain the exact expression of
the fields and focusing mainly on two features: the phase matching of the harmonic
radiation and its absorption from the medium.

1.3.1 Plane wave geometry

Since the solution of the wave equation for the driving field depends on the geo-
metry of the interaction, the simplest possible case we can consider is the one of
perfectly plane waves. Even though strictly speaking this isn’t a feasible condition
in actual experiments, it can anyway give important insight on the problem and
may be used as an approximation when dealing with more complex geometries. As
it is known in nonlinear optics, the wave vector of PNL

q acting as the source term for
the qth harmonic field will be equal to the one of the fundamental multiplied by q.
Perfect phase matching is then achieved when this matches the one of the harmonic
field Eq, satisfying in this way the momentum conservation for the photons. The
emission from different single atoms in the material can thus efficiently sum up
without getting out of phase, as sketched in Figure 1.9.

Figure 1.9: Sketch of the phase matching mechanism for plane waves. In a) the
perfect phase matching case is represented, in which the emission of the single
emitters adds up constructively. In b), instead, some phase mismatch is present and
the fields interfere along the medium length.

For plane waves two contributions to the phase mismatch can be identified for each
harmonic order [35]:

∆kq = qk f − kq = ∆kneutrals,q + ∆kplasma,q (1.21)

where the wave vectors are considered as scalar quantities along the optical axis x
of the system. The first term is simply given by the different refractive indexes seen
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by the waves due to the medium dispersion:

∆kneutrals,q = qn f
2π

λ f
− nq

2π

λq
= q

2π

λ f
(n f − nq)

Since the driving field is usually in the IR while the harmonics are in the XUV
range, the refractive index needs to be evaluated in very different regions of the
electromagnetic spectrum. In the first case it is usually possible to derive the
refractive index theoretically, once the static atomic polarizability αatom of the gas is
known [36]:

nIR(λ) =
√

1 + χ(1)(λ) ≈ 1+
1
2

χ(1)(λ) = 1+ Nneutrals
αatom

2ε0
= 1+(1− η)N(r)

αatom

2ε0

where η and N(r) are respectively the ionization fraction and the atomic density of
the medium. Note that the low order nonlinearities induced by the high-intensity
driving field, such as Kerr effect, are not considered in this expression for the index
of refraction. Indeed, as a matter of fact the direct contribution of such terms to
phase matching is always very low for HHG in gases and this is usually a good
approximation. However, it is important to underline that they may contribute to
it indirectly, as they may alter the propagation of the fundamental beam and thus
influence some of the parameters relevant to phase matching (e.g. the shape of the
phase front of the driving pulse, its intensity, ...). On the other hand, in the XUV
range of the spectrum the problem of evaluating the refractive index of atoms was
undertaken by Henke et al. [37]. In this framework it is written as a function of the
so-called atomic scattering factor f = f1 + i f2:

nUV(λ) ≈ 1− re

2π
λ2Nneutrals f1 = 1− re

2π
λ2(1− η)N(r) f1

where re = e2/(4πε0mec2) is the classical electron radius and only the real part
of f is considered, being the one linked to the medium dispersion. For the usual
conditions explored in HHG experiments we have that f1 > 0 and thus nUV(λ) < 1.
Therefore the contribution ∆kneutrals of the neutral atoms to the phase mismatch is
generally positive. This can be finally written making explicit the dependence on
the neutrals density in the material:

∆kneutrals,q = q
2π

λ f
(1− η)N(r, P)δnq (1.22)

where N(r, P) = NatmP/Patm is the atomic density at pressure P and δnq =

αatom/2ε0 + reλ
2
q f1/2π is the difference in refractive index per unit atomic density

between the fundamental and the qth harmonic. The ionization fraction η can be
calculated using one of the methods presented in Section 1.1.1, while the pressure is
usually setted by the experimental conditions and can in principle be a function of
the position in the system.

The second term in Eq.(1.21) is instead linked to the presence of free electrons in
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the medium, owing to the unavoidable ionization linked to the HHG process. The
index of refraction in a cold plasma is a well known quantity [39]:

nplasma(λ) =

√
1−

( λ

λp

)2

λp = 2πc
√

meε0

Nee2

with λp the so-called plasma wavelength, which is a function of the electron density
in the material Ne = ηN(r, P) in the approximation of only single-ionized atoms.
The underdense plasma condition λp << λ must be satisfied for light to travel
efficiently in the medium. For noble gases and the usual parameters of high-order
harmonic generation experiments this is always the case and so the expression can
be simplified taking a Taylor expansion of the radical:

nplasma(λ) ≈ 1− 1
2

( λ

λp

)2

Also in this case the dependence on the atomic density can then be made explicit
for simplicity:

∆kplasma = qreλ f ηN(r, P)
( 1

q2 − 1
)

(1.23)

Considering that q > 0, this contribution is always negative and thus opposes to
the phase mismatch due to the neutrals.

Substituting Eq.(1.23) and Eq.(1.22) inside Eq.(1.21) the final expression for the
phase mismatch in the plane wave interaction geometry is then obtained:

∆kq = q
2π

λ f
N(r, P)

[
(1− η)δnq +

re

2π
λ2

f η
( 1

q2 − 1
)]

(1.24)

from which we can see that for every harmonic order q it is always present a
ionization fraction allowing perfect phase matching, which is independent on the
medium pressure:

ηPM
q =

1

1−
reλ2

f
2πδnq

(
1
q2 − 1

) ≈ 1

1 +
reλ2

f
2πδnq

where 1/q2 can be approximated to zero for high orders of harmonics. This so-called
critical ionization fraction is determined only by difference in the refractive index
of the medium between the fundamental field and the considered qth order. Since it
depends on a single parameter, the phase matching window is thus usually very
narrow. Moreover, as the refractive index in the XUV region is usually increasing
with the wavelength, the critical ionization fraction is lower for higher harmonics,
as can be seen from Figure 1.10.
For a fundamental field of wavelength λ f = 800 nm the values of ηPM

q in noble gases
are always lower than 10% . Since the higher order of harmonics are generated at



30 Chapter 1 . High Harmonic Generation

Figure 1.10: Ionization fraction allowing perfect phase matching in Ar for λ f = 800
nm.

higher intensities, this means that for efficiently phase matching them the ionization
fraction needs to be limited even at the peaks of the driving field. This issue is
similar to the saturation of the single atom emission analysed in Section 1.2.3 and
the parameters used to overcome it are quite alike, but it is important to underline
that they are two different physical phenomena. In particular, phase matching
issues are macroscopic effects that arise generally at lower ionization fractions with
respect to the saturation of the single emitter.

For the plane wave interaction geometry we can also directly solve Eq.(1.20)
quite easily, starting from the approximation of lossless medium. Setting the optical
axis as x, the equation for the qth harmonic field reads:

∂2

∂x2 Eq +
ω2

q

c2 n2
qEq = −µ0ω2

q PNL
q (E f )

which can be reduced inserting a plane wave behaviour as ansatz3:

Eq = Ẽq(x)e−ikqx PNL
q = P̃NL

q (Ẽ f )e−iqk f x

Considering paraxial approximation, the small ∂2Ẽq
/

∂x2 term can be neglected and
the final expression for the harmonic field equation is obtained:

∂

∂x
Ẽq(x) = −i

µ0ω2
q

2kq
P̃NL

q (Ẽ f )e−i∆kqx

which depends explicitly on the phase mismatch. In the important case of ∆kq

independent from x this can be solved quite simply4 for a medium of length L.
Indeed, as the driving field is approximately not depleted during propagation, the

3The solution of Eq.(1.19) is implicit in the plane wave assumption, when the nonlinear polarization
of the medium at the fundamental frequency is neglected.

4For plane waves this essentially requires that the medium density is not changing along its length.
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Figure 1.11: a) Intensity of the harmonic field after a medium of length L = 1m as
a function of the phase mismatch, normalized to its maximum. b) Intensity of the
emitted harmonic as a function of the medium length. The red curve is drawn for
∆kq = 0 while the green one for ∆kq 6= 0.

amplitude of the non linear term can be considered as constant and the equation is
integrated in a straightforward way:

Ẽq = −i
µ0ω2

q

2kq
P̃NL

q

∫ L

0
e−i∆kqxdx =

µ0ω2
q

2kq
P̃NL

q

( e−i∆kq L − 1
∆kq

)
The corresponding intensity, replacing the non linear polarization amplitude with
the number of dipole moments emitting the qth harmonic per unit volume, reads:

Iq =
1
2

cε0

(µ0ω2
q

2kq

)2
| µq |

2 (1− η)2(NL)2 sinc2
(∆kqL

2

)
(1.25)

where we have used the definition sinc(x) = sin(x)/x for the cardinal sine function.
Therefore the harmonic intensity depends on the product between the medium
length and the density of the emitters. This is a fingerprint of the coherence of
the generation process, since we need to firstly add the single dipole amplitudes
and then square them to obtain the intensity of the harmonic radiation, instead
of directly summing their squared values [34]. One important quantity that can
be defined for describing the macroscopic propagation of the harmonics is the so
called coherence length:

Lcoh,q =
π

∆kq
(1.26)
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that is the length over which the qth harmonic and the fundamental field acquire
a phase difference of π and the intensity of the relative XUV field reaches a local
maximum. Therefore it is a measurement of the quality of phase matching and as a
rule of thumb the medium should not be longer that the coherence length for the
frequency of interest, otherwise the build-up of the signal wouldn’t be efficient due
to the interference between radiation generated in different positions. In particular,
for perfect phase matching ∆kq = 0 the coherence length diverges to infinity and
the harmonic radiation adds up constructively over the whole medium, with an
intensity that increases quadratically with its length.

In actual media, however, the absorption of the harmonics by the atoms cannot
be neglected and so the contribution of such losses should be added explicitly.
Indeed this is the main reason why HHG experiments are performed in vacuum, as
the XUV absorption along propagation should be minimized. The equation for the
harmonic fields in this case reads:

∂

∂x
Ẽq(x) = −i

µ0ω2
q

2kq
P̃NL

q (Ẽ f )e−i∆kqxe−αqx

where the absorption coefficient is linked to the imaginary part of the index of
refraction at the harmonic frequency αq = kq Im

{
n(λq)

}
and thus to the atomic

scattering factor f2. Neglecting also in this case the depletion of the fundamental
wave, the equation can be integrated to obtain the expression for the XUV field after
a medium of length L:

Ẽq = −i
µ0ω2

q

2kq
P̃NL

q

∫ L

0
e−i∆kqxe−αqxdx = i

µ0ω2
q

2kq
P̃NL

q

( e−L(αq+i∆kq) − 1
αq + i∆kq

)
and therefore the harmonic intensity reads:

Iq =
1
2

cε0

(µ0ω2
q

2kq

)2
| µq |

2 (1− η)2N2
(1 + e−2αq L − 2e−αq Lcos(∆kqL)

α2
q + ∆k2

q

)
(1.27)

When absorption is included, it is no more possible to establish a simple dependence
on the material density-length product and the optimization of the photon flux with
respect to the various parameters is not straightforward. Anyway, its ultimate effect
is to set an asymptotic value for the harmonic intensity that cannot be exceeded.
Therefore, it is possible to define another important parameter to characterize the
macroscopic emission, which is the absorption length for the qth harmonic:

Labs,q =
1

2αq
(1.28)

This is the distance over which the intensity of the harmonic radiation decreases of
a factor e due to absorption when perfect phase matching is present. It is important
to underline that its value depends only on the considered atom and harmonic
order. A rule of thumb for maximizing the emission for a given harmonic in a lossy
medium could be to have L ≈ Lcoh,q and Lcoh,q >> Labs,q, while a more precise
treatment of this issue was given in [40] where the conditions to reach at least half
of the highest possible radiation output are setted:

L > 3Labs,q Lcoh,q > 5Labs,q (1.29)
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Figure 1.12: Behaviour of the harmonic signal in the presence of absorption as given
in [40].

1.3.2 Tight focusing geometry

In actual experiments the driving field is generally focused in a small region in
order to reach higher intensities and therefore higher orders of harmonics. In this
case the gas is injected using a valve and freely diffuses in a vacuum chamber,
thus ensuring the interaction to be spatially confined. The driving field in paraxial
approximation and without the contribution of lower order nonlinearities can be
well approximated with a fundamental TEM00 Gaussian beam. Exploiting the
cylindrical symmetry of the problem, the coordinate r is defined as the distance
from the optical axis x, whose zero is setted at the focal position:

E f (t, r, x) = ẼU(t)
w0

w(x)
exp
{
− r2

w(x)
+

kr2

2R(x)
− iξg(x)

}
ei(ω f t−kx)ez

where w(x) and R(x) are respectively the spot radius and the radius of curvature
of the wave front at position x, while w0 is the beam waist and ξg the so-called
Gouy phase. All these quantities depend on a parameter xR named Rayleigh length,
which is defined as the distance from the focus at which the spot size of the beam
increases by a factor

√
2:

xR =
πw2

0
λ f

Indeed, once this is known, the other quantities read:

w(x) = w0

√
1 +

( x
xR

)2
R(x) = x +

x2
R

x
ξg(x) = − tan−1

( x
xR

)
Differently from the case of a plane wave, the electric field of a Gaussian beam
varies strongly both radially and axially, thus giving ultimately more complicated
conditions for phase matching. Indeed, the phase mismatch has four contributions:

∆kq = qk f − kq = ∆kneutrals + ∆kplasma + ∆kgeometrical + ∆kdipole (1.30)
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which are simple scalars when only the dependence on the x coordinate is con-
sidered, focusing on the forward emission along the optical axis.

The first two terms in Eq. (1.30) are exactly the same of Eq.(1.22) and Eq.(1.23)
with the only difference that now the ionization fraction is in principle a function
of both the temporal and the spatial coordinates η(t, r). Indeed at a fixed time the
medium won’t experience the same ionization at two different positions, as it was
in the case of perfectly plane wave geometry. The third term arises instead from the
Gouy phase:

kgeometrical =
∂ξg

∂x
= − xR

x2 + x2
R

This is a rapidly varying wave vector, which is always negative and attains its min-
imum in the focal position. Assuming also the harmonic field to be well described
by a Gaussian beam, due to the power scaling of nonlinear effects Eq ∝ Eq

f we have
that w2

0,q = w2
0, f /q. The final expression for the geometrical phase mismatch can

thus be found:
∆kgeometrical = (1− q)

xR

x2 + x2
R

(1.31)

as the Rayleigh parameters of the two beams are equal xR, f = xR,q ≡ xR. This
contribution to the phase mismatch is therefore negative and linearly decreases
with the harmonic order.

The last term in Eq.(1.30) is instead linked to the intrinsic dipole of the emit-
ted harmonics, which depends linearly on the intensity of the driving field (see
Eq.(1.17)). This will therefore give a contribution to the phase mismatch for the
forward emission along the optical axis that reads:

kdipole = −
∂Φn(q, I)

∂x
→ ∆kdipole = α(q, n)

∂I
∂x

(1.32)

where it is important to remember that the constant α is negative and depends
on both the harmonic order q and the quantum trajectory n of the electron, being
higher in modulus for the long trajectories. The exact analytical expression of this
phase contribution is difficult to compute. However, due to the focusing geometry,
its value is always negative before the focus and positive after it.

Since the first two terms of Eq.(1.30) are proportional to the gas density while the
last two are independent from it, if the pressure is enough low only the geometrical
and dipole mismatch play a role [42]:

∆kq ≈ (1− q)
xR

x2 + x2
R
+ α(q, n)

∂I
∂z

(1.33)

Therefore, perfect phase matching on axis can be achieved only after the focal
position, since the two terms should compensate, as can be seen in Figure 1.13.
Moreover, for a given harmonic order the phase mismatch is a function of both the
focusing condition and the considered trajectory. In particular, short trajectories
would require a higher derivative of the intensity to compensate the geometrical
mismatch and are therefore phase matched nearer the focus, thus suffering more
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Figure 1.13: Behaviour of the dipole and gemetrical phase on axis around the focus
for a peak intensity of 6× 1014 W/cm2 and a low density medium. An almost
stationary phase is achievable only after the focus, for x > 0. Figure taken from
[42].

from ionization effects such as depletion of the ground state.
At higher densities, instead, the pressure of the gas becomes an important tuning

parameter to achieve phase matching [41]. The first two terms in Eq.(1.30) indeed
depends linearly on the pressure and their contribution can be therefore increased
or reduced until it compensate for the geometrical and dipole mismatch:

PPM
[ ∂

∂P
∆kneutrals +

∂

∂P
∆kplasma

]
+ ∆kgeometrical + ∆kdipole = 0 (1.34)

where PPM is called phase matching pressure. Before the focus this equation can be
satisfied only if |∆kneutrals| >

∣∣∆kplasma
∣∣, since the last two terms are both negative.

Therefore the ionization of the medium must be less than the critical value ηPM
q

found in the case of the plane wave geometry for the considered harmonic to allow
phase matching. Owing to the fact that generally the focusing conditions of the beam
are fixed in the experiment, Eq.(1.34) establishes a relation between the pressure
and the ionization fraction to have perfect phase matching of a given harmonic. In
particular at low ionization levels PPM varies weakly with the considered harmonic
order and thus we have a broad intensity interval over which the generation is
efficient. On the other hand, at higher η a good phase matching is supported for
narrower intensity intervals in the pulse, as the ionization rate scales exponentially
with the driving field. Therefore an increasing of the gas pressure does not give
a straightforward quadratic scale of the harmonic intensity as in the case of plane
waves, since the phase matching region shifts at higher intensity and shrinks both
in space and time.

Considering now the generation far from the optical axis, the geometrical and
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dipole terms will show also a phase mismatch contribution in the radial direction:

kgeometrical

∣∣∣∣
r 6=0

=
kr

R(x)
kdipole

∣∣∣∣
r 6=0

= α(q, n)
∂I
∂r

Figure 1.14: Conversion efficiency of th 45th harmonic as a function of position with
respect to the focus (x = 0). Also the radial distribution of radiation is plotted. For
x > 0 collinear phase matching is possible, with high spatial coherence, while for
x < 0 annular emission due to non collinear phase maching is present. The figure
was taken directly from [42].

The first one, being linear with respect to k, goes to zero when taking the wave
vector difference in Eq.(1.30), while the second gives always a positive contribution.
Therefore it may compensate for a negative phase mismatch, allowing the non
collinear phase matching of the harmonics. This is, for instance, the typical case
for harmonics generated before the focus in a low density medium. Due to the
cylindrical symmetry of the system, this gives rise to ring like emission of the
radiation which spoils to some extent the spatial coherence of light [42]. Moreover
the study of the harmonics’ phase along the radial coordinate allows to determine
their divergence[43]. In this case the dipole term tends always to make harmonics
diverging more. In particular, owing to the different values of α, long trajectories
happens to have higher divergence than short trajectories, providing a way to
spatially select their contributions in the far field.

The treatment here presented is however a very approximated one and to study
correctly the phase matching of harmonics in a tight focusing geometry a full 3D
model including lower order non linearities and the pressure profile of the gas jet
should be in principle considered. We have also neglected any temporal profile
of the laser beam, which would make the phase mismatch dependent on time.
Perfect phase matching is indeed a transient condition that is achieved for a given
harmonic order at different times in different regions of the pulse. Anyway, due to



1.3 Macroscopic effects 37

the complexity of such evaluation, in experimental practice the optimization of the
harmonic signal is performed with an iterative approach in which all the parameters
(e.g. the gas jet position, the pressure ... ) are tuned until a good working condition
is achieved. For instance the employment of an iris on the optical path of the
fundamental beam allows to easily modify both its intensity and phase behaviour
in the focal region. Since in the tight-focusing geometry many factors influence
the phase mismatch, differently from the plane wave case, it is indeed possible to
achieve a good macroscopic signal for a wide range of parameters. However from a
practical point of view the main disadvantages of this geometry are the presence
of the Gouy phase, which is rapidly varying near the focus where the maximum
of the generation is expected, and of the radial dipole term, that doesn’t allow to
achieve a perfect phase matching for all the interaction spot.

1.3.3 Waveguide geometry

In order to overcome many of the limitations of the tight focusing geometry with
respect to phase matching, waveguiding of the fundamental field can be exploited.
In this case the solution of Eq.(1.19) was studied by Marcatili and Schmeltzer [44].
A brief presentation of its derivation is left in Appendix B, while only its most
important consequences are presented here. In particular, the coupling of a laser
beam to a hollow waveguide can be studied by describing the input field as a
superposition of waveguide modes:

Ewg(r, θ, x, t) = ∑
s,m

Esm = ∑
s,m

csm(t)Asm(r, θ, ω)ei(ωt−γsmx) (1.35)

The complex propagation constant γsm of each elemental mode is a function of the
modulus of the wave vector in vacuum k, the index of refraction of the cladding ne,
the radius of the waveguide a and usm, which is the mth zero of the Bessel function
of the first kind Js:

γsm ≈ k
[
1− 1

2

(usm

ka

)2(
1− i

(n2
e + 1)√
n2

e − 1
1
ka

)]
= βsm + iαsm (1.36)

where the real part describes the wave propagation along the direction x, while
the imaginary part is linked to the propagation losses induced by the guiding
mechanism. Generally for longer wavelengths the former decreases while the latter
increases, leading to higher losses. The same happens when higher order modes
are considered, as unm increases in this case. Anyway the wave vector of the field in
the propagation direction is always lower in the waveguide with respect to the free
space case.

Each incoming field will then be identified by the specific coefficients csm, which
give the relative contribution of the correspondent waveguide modes. Their initial
value is defined by the spatial overlap integral between the field and the each mode
at the entrance surface of the channel:

csm(t) =
∫

E∗f (r, θ, t) ·Asm(r, θ, ω)dS (1.37)
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where the normalization of Asm is assumed. It is important to underline that such
waveguide modes have been derived for a monochromatic wave and therefore in
the case of an incoming pulsed laser every spectral component should in principle
be decomposed over the correspondent modes. However, when the laser pulse is
not too short, the slowly varying envelope approximation (SVEA) can be considered and
the waveguide modes can be computed at the central frequency ω f of the spectrum
only. Moreover, if the temporal behaviour of the wave is separable with respect to
its transverse coordinates, it can be taken out from the overlap integral in Eq.(1.37)
and will thus be directly transmitted to the waveguide modes:

E f (r, θ, x, t) = U(t)E0(r, θ, x)ei(ω f t−k f x) → csm(t) = U(t)
∫

E∗0(r, θ) ·Asm(r, θ, ω f )dS

In this way the envelope of the fundamental beam modulates in time the amplitude
of the modes in the waveguide, but doesn’t affect their distribution. If we further
assume that during propagation no coupling is present between the modes, this
distribution will then persist along all the waveguide5. In the particular case of an
incoming linearly polarized Gaussian beam, only linearly polarized EH1m modes
can be excited and the overlap integral depends directly on the ratio between the
spot size of the beam at the channel entrance and the radius of the waveguide core
w/a. It is possible to demonstrate that for a wide range of parameters 0.3 < w/a <

0.7 only the first three lower order EH1m modes are excited, while for w/a = 0.64
a maximum overlap with the fundamental EH11 of 98% is achieved. Therefore
sometimes, in order to further simplify the problem, the description of the field
propagation is restricted only to this mode.

The phase mismatch in the waveguide has four contributions, as in the tight
focusing geometry. Also in this case we consider only collinear phase matching for
obtaining more simple scalar equations. The geometrical contribution for a mode
EHsm is determined by the real part of its complex propagation constant γsm:

kgeometrical = βsm − k = − 1
2k

(u1m

a

)2
= −u2

1mλ

4πa2

Therefore the geometrical phase mismatch term depends on the harmonic order,
the channel radius and the considered mode:

∆kgeometrical = −q
λ f

4πa2

[
u2

1m, f −
u2

1m,q

q2

]
where the guiding term of the XUV field can usually be neglected for high order
harmonics. Indeed the difference between the free space wavevector and the one in
the waveguide is in this case very small and thus the behaviour of the XUV field
can be well approximated with a plane wave. If we further assume that only the
fundamental EH11 mode is excited, a rather simple expression for the geometrical

5This approximation holds as long as the variation of the modes’ electric field in the transversal
direction (e.g. due to the modulation of the index of refraction given by the plasma) is lower than the
one in the axial direction.
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phase mismatch is obtained:

∆kgeometrical ≈ −q
u2

11λ0

4πa2 (1.38)

where u11 = 2, 4048. Such term is negative as in the tight focusing geometry
but it does not depend on the coordinate along the optical axis, thus giving a
much more controllable phase mismatch along extended media. Moreover, the
dependence on the waveguide radius gives a further parameter that can be tuned
to obtain good phase matching conditions. The dipole phase term behaves instead
very differently with respect to the tight focusing geometry. Indeed, owing to
the guiding mechanism, the intensity doesn’t change with respect to x, provided
that the coupling between the modes and the variation of the channel radius are
negligible. Such term will therefore give only a positive radial contribution allowing
for non collinear phase matching, but doesn’t affect the building up of radiation in
the forward direction:

∆kdipole = α(q, n)
∂I
∂r

All the conclusions derived in the case of tight focusing geometry (e.g. lower spatial
coherence of the radiation) hold also here. It is however important to underline
that in principle the divergence of the harmonic beam caused by the dipole term
prevents the treatment of the XUV radiation as a perfectly plane wave, contradicting
our previous discussion. This would give rise to a much more complex dynamics,
where also the field of each harmonic should be decomposed in waveguide modes.
Anyway in this thesis we will stick to the simpler plane wave approximation for the
XUV radiation, expecting some deviation from this description in particular when
rather long channels are employed.

The expression for the phase mismatch in the waveguide thus reads:

∆kq = q
2π

λ f
N(r, P)

[
(1− η(t))δnq +

re

2π
λ2

f η(t)
( 1

q2 − 1
)]
− q

u2
11λ f

4πa2 (1.39)

The most important control knobs to achieve phase matching are therefore the
pressure and the driving laser intensity, being generally fixed the capillary radius
and the atomic dispersion. At low intensities, in particular, the ionization of the
medium is rather low and phase matching appears as the equilibrium between
the neutrals’ term and the waveguide contribution [9]. The more dispersive is the
medium, the lower is the pressure necessary to achieve perfect phase matching
for a given harmonic order. On the other hand, as the intensity of the incoming
beam increases, the plasma contribution starts to become more and more important
and therefore also the pressure required to compensate for the geometrical phase
mismatch increases. This is true until the ionization fraction reaches the critical
value for the phase matching of plane waves at the given harmonic order. Then,
for values equal or bigger than this, phase matching is no more possible and the
signal will be quenched. This is the most important factor limiting the extension of
the harmonic spectrum in the waveguide geometry. Indeed, even if it is possible
as exposed in Section 2.3 to limit the medium ionization at high driving intensities
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using shorter pulses, this method is limited by the lowering of the output emission
[47].

The situation presented until now is however oversimplified. In actual experi-
ments the gas is injected in the channel trough some inlets and thus the pressure
varies considerably in space6, while the ionization of the medium varies both in
space and time due to the dynamics of the driving field.

Figure 1.15: Spatial and temporal effect of phase matching in Ar for the 29th har-
monic. In a) the ionization rate is calculated using the ADK model, while in b) the
phase mismatch is evaluated. As can be seen perfect phase matching starts on axis
for lower times and then moves radially as ionization increases. Data: capillary
radius a = 120 µm, pulse duration 40 fs FWHM, driving intensity 2 · 1014 W/cm2

and pressure 150 mbar. The code was inspired by [46].

The perfect phase matching condition is therefore highly transient and for obtaining
quantitative results a full model of both gas and field propagation in the waveguide
should be considered. In particular, for a fixed harmonic and pressure level perfect
phase matching starts on axis and then move at larger radial positions in time, as

6A temporal variation of the pressure could also be in principle present, if the inlet doesn’t give a
continuous flux of gas but works impulsively.
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intensity increases [46], following a given ionization level. On the other hand, for a
fixed harmonic and intensity profile of the driving field, phase matching is possible
at higher pressures near the peak of the pulse and at lower pressures along its tails.
Indeed when the medium density increases, also the ionization level needed to
perfectly compensate the geometrical contribution of the waveguide increases and
vice versa.

Regarding the intensity of the harmonic radiation along the capillary, the same
Eq.(1.25) and Eq.(1.27) of the plane wave geometry can be used, if the behaviour of
the XUV field is approximated in this way. It is important to notice that in the case of
waveguides the absorption of the harmonic radiation is of much higher importance
with respect to the tight focusing geometry, since it interacts with an extended
medium. In particular, as the gas density usually decreases towards the end of the
channel, the emission of those harmonics which are highly absorbed by the gas may
be possible only in these regions. The radiation that is not so much absorbed by
the medium, instead, is emitted mostly in the central part of the waveguide where
the pressure is more constant and the field can thus efficiently build up for longer
distances. In any case, the interplay of absorption and phase matching ultimately
defines the shape of the harmonic spectrum, which can be very different from the
classical plateau of the single atom emitter [9].

1.3.4 Quasi phase matching

The waveguiding geometry has many advantages when compared to the tight
focusing one, since the interaction length is longer and the collinear phase mismatch
is much more controllable. This allows to obtain a higher XUV intensity, which
is ultimately limited only by absorption. However the extension of the spectrum
is still bounded by the ionization of the medium. Indeed typical ionization levels
from which the phase matching becomes impossible are on the order of 5% in Ar,
1% in Ne and 0.5% in He, which are easily achieved at the intensities necessary
to generate radiation above 100 eV. Due to the high phase mismatch, in the soft
x-ray region of the spectrum the signal will thus oscillate along the waveguide
length, without efficiently building up7. Anyway to overcome this limitation it is
possible to use a quasi phase matching (QPM) technique, similarly to what is done
in classical non linear optics. The idea is to introduce some periodic modulation
of one of the parameters which influence the phase mismatch in order to allow an
efficient generation of XUV radiation only in those sections of the waveguide for
which it can add up coherently and to quench it in those regions where destructive
interference takes place. In this way the signal can build up over long distances
even when it is not possible to achieve perfect phase matching. In this section we
will try to give a brief presentation of the most important QPM techniques, without
in any way claiming to be exhaustive.

7In this region of the electromagnetic spectrum the absorption of the media used for HHG is
generally very low, giving a good scalability to lower wavelengths. The signal is therefore limited
only by phase matching conditions and in particular by the free electron density.
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Corrugated waveguides

One of the possible approaches in QPM is to employ waveguides with a periodically
modulated diameter a = a(x) [48]. If such variation is enough slow, so that it doesn’t
affect the distribution of the waveguide modes, it is possible to describe its effect as
a simple modulation of the nonlinear polarization induced by the driving field in
the medium. Since this will be a periodic function itself, we can write it by means of
a Fourier series. Using the same notation of the simple model developed for plane
waves in Section 3.1 it will thus read:

P̃NL
q =

+∞

∑
n=−∞

Pn,qeiKnx

Kn = n
2π

Λ
where Λ is the period of the diameter modulation and n an integer index. Then the
building up of the harmonic field along the waveguide can be computed as:

Ẽq = −i
µ0ω2

q

2kq

∫ L

0

+∞

∑
n=−∞

Pn,qeiKnxe−i∆kqxdx (1.40)

Figure 1.16: Corrugated waveguide used in [48]. In a) the optical microscope
image of the capillary, showing the dimensions of the modulation produced with
glassblowing technique. In b) effects of the enhancement due to QPM in Ar at 7 torr
with driving intensity of 9 · 1014 W/cm2. The black line is the spectrum measured
in a straight waveguide while the red line in the modulated capillary of a). The
images are taken directly from [48].

Therefore, when perfect phase matching isn’t present, it is possible to enhance the
harmonic signal if Kn = ∆kq for some value of n. This intensification will be greater
for first order QPM (|n| = 1) and lower for higher orders QPM (|n| > 1), as in this
case the signal will rise and fall n-1 times across the channel. Still the enhancement
remain significant with respect to the straight waveguide case even for pretty high
values of n. Moreover, since the phase mismatch for a given frequency varies
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strongly both in space and time, a rather wide window of harmonic order can be
intensified.

Due to the fact that the harmonics near the cutoff are generated near the peak
of the pulse, they will generally suffer from the highest phase mismatch. To com-
pensate it with high efficiency (|n| = 1) it is thus necessary to employ waveguides
with very small modulation periods, which is one of the main practical limitation
of this approach. Another drawback of this QPM method is that the driving field
during its propagation is inevitably perturbed by the modulation. This leads to the
necessity of rearranging the parameters along the waveguide length if one wants to
grant the same phase matching conditions, which is not feasible in bulk structures
as these. Finally the maximum phase mismatch that can be compensated with this
mechanism is ultimately limited by the waveguide diameter, since it is possible to
demonstrate that for QPM to be efficient the modulation should be much smaller
than a.

Multiple sources

Another possible QPM technique is the use of multiple sources, which offers the
possibility to rearrange the parameters along the propagation direction of the
driving laser in a more flexible way. The idea is here to divide the interaction length
L in M different parts and to separate them in space in order for controlling their
phase matching conditions individually. Indeed a trade off is generally present
between the harmonic yield and the coherence length, as higher pressures increase
both the output intensity of the XUV radiation and its phase mismatch. In the
case of multiple sources instead the distance between them can be experimentally
arranged in such a way that the radiation emitted from the last part of one section
and from the first part of the following has a phase difference of π. In this way the
generated light can efficiently build up along all the medium length and the gas
pressure inside each single section can be increased to obtain an higher output yield.
For example, in [49] an enhancement of the pressure inside the single source up to
the number of sections M was possible. The dependence of the optimal distance
between the sources with respect to the harmonic order has been proved to be
quite low for the lower harmonic orders, while it is bigger for higher ones. This is
mainly due to the fact that the former are generated in different times and regions
of the medium and thus experience a wider range of phase mismatches that may
be compensated with QPM. The latter, instead, are generated mainly near the peak
of the driving pulse in narrow temporal window and have therefore more sharply
defined phase matching conditions.
The signal that can be obtained from M sources with this approach can be computed
using the simple plane wave approximation:

Iq ∝
1− (−1)M cos

(
L∆kq

)
1 + cos

(
L∆kq

M

) sin2
(L∆kq

2M

)
(1.41)

The main technical difficulties of this method derive from the fact that usually free
space propagation of the driving field is employed to allow for the flexibility given
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Figure 1.17: a) Schematics of the system, in which multiple sources are pumped
collinearly by the same laser. Their density and distance can be independently
arranged. b) Saturation of the output harmonic intensity with pressure for a fixed
medium dimension due to the lowering of the coherence length. As the medium
is divided in multiple sources the optimal pressure increases, leading to an higher
yield. The images are taken directly from [49].

by the sources’ motion. Therefore the beam divergence and plasma defocusing
effects limit the practical scalability to bigger numbers of separated sources.

Counterpropagating waves

Another possibility to quench the harmonic emission in out-of-phase regions is
the use of weak counterpropagating fields at the same frequency of the driving
beam. In the approximation of perfectly plane waves the total field can be described
assuming that the behaviour of the more intense forward wave prevails and the net
effect of the counterpropagating one is a modulation in the longitudinal direction
of both the amplitude and the phase:

E f ei(kx−ω f t) + Ecei(−kx−ω f t) ≈ Etot(x)ei(kx−ω f t+φ(x))

where it can be demonstrated that [50]:

Etot(x) = E f

√
1 +

(E f

Ec

)2
+ 2
(E f

Ec

)
cos(2kx)

φ(x) = − tan−1
( Ec

E f
sin(2kx)

1 + Ec
E f

cos(2kx)

)
This modulation takes thus place on a scale of half the fundamental wavelength.
Using a power law model for the medium response, it is then possible to characterize
the microscopic emission from such small area. The harmonic field at the exit of
this region will be proportional to:

Eq ∝
∫ λ f /2

0
Eq

tote
iq(φ(x)−ω f t)dx
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where the comoving frame (x, t + x
c ) is employed. On the other hand, if only the

driving pulse were present, the harmonic field would be proportional to:

Eq ∝
∫ λ f /2

0
Eq

f e−iω f tdx =
λ f Eq

f

2
e−iω f t

It is therefore possible to define a microscopic phase-mismatch factor of the counter-
propagating wave as the ratio between these two values.

ξ =
2

λ f Eq
f

∫ λ f /2

0
Eq

tote
iqφ(x)dx (1.42)

Figure 1.18: Behaviour of the microscopic phase-mismatch factor as a function of
the ration between the two field amplitudes. The green curve refers to q = 11, the
red one to q = 21 and the blue one to q = 51. The image is adapted from [50].

This parameter describes how the response of the atoms is disrupted by the presence
of the second field. In particular, the radiation emission results to be quenched for
even low values of Ec. Moreover, as can be seen from Figure 1.18, the higher is the
considered harmonic order, the lower is the intensity of the second wave that is
necessary to obtain a complete suppression of the emission. Also ratios for which ξ

is negative are present, meaning that the emission is out of phase with respect to
the one driven by a single pulse, providing another possible degree of freedom to
compensate the phase mismatch of the harmonics. However, in actual experiments
focused and pulsed lasers are employed instead of perfectly plane waves. The
microscopic phase mismatch factor will thus be a function of both position and
time ξ = ξ(r, t). Therefore QPM will be possible only if the second field is able to
selectively quench the radiation emission from a considerable part of the regions
which would give an out of phase contribution.

The same technique was demonstrated to be feasible in the waveguide geometry
by Zhang et al. [51]. In this case a train of counterpropagating pulses is employed
to quench the harmonic generation in the sections of the channel where the phase
mismatch is larger than π. Therefore the pulses in the counterpropagating train
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need to be accurately designed to overlap with the fundamental field in precise
positions along the optical axis and to cover the whole out-of-phase regions, which
is not trivial. In particular, to achieve the maximum enhancement the such pulses
should be separated by 4Lcoh,q and have a duration of around Lcoh,q/c. Therefore the
optimal parameters of the counterpropagating pulse train depend on the particular
harmonic order for which QPM is designed, thus limiting the frequency window of
the enhancement.

Figure 1.19: Geometry of the QPM in waevguide using counterpropagating waves.
The image is taken directly from [51].

This all optical QPM method has the main advantage of being easily extendible to
even very high orders of harmonics and of compensating also for the phase mis-
match in the transverse direction if suitable pulse shaping techniques are employed.
Moreover it doesn’t disturb the medium, apart from the collision regions between
the two beams. However it still suffers from the narrow quasi phase matching
window, owing to the frequency dependence of the radiation coherence length.
Moreover, in order to allow the passage of the emitted XUV radiation, the optics
used to send the counterpropagating pulses in the waveguide should present a hole,
which may then perturb the IR field.

Multi-mode propagation

In Section 1.3.3 light propagation inside a waveguide was described in terms of
modes, among which only the EH1m were considered due to the linearly polariza-
tion of the driving field. Afterwards an approximation was taken, considering only
the fundamental EH11 to be active, since usually its coupling efficiency can be easily
maximized designing the beam spot size at the entrance of the channel. When this
is not the case, however, the excitation of multiple modes is possible, each one of
which is described by its own propagation constant β1m. As a consequence the total
field intensity in the longitudinal direction is modulated by their interference [52].
In the limiting case of only two excited modes, this leads to a beating length that
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can be derived directly from Eq.(1.36):

Lbeating =
2π

β1m − β1m′
=

8π2a2

λ f (u2
1m − u2

1m′)

Even when this modulation is rather small, it can be used to selectively quench
the harmonic generation in some areas of the waveguide and to achieve QPM. In
particular it is possible to compensate for a phase mismatch of [53]:

∆kbeating =
2πn

Lbeating
= n

λ f (u2
1m − u2

1m′)

8πa2 (1.43)

where n = 1, 2, ... is an integer number defining the order of the QPM process. To
compensate for bigger phase mismatches it is thus necessary to excite higher order
modes of the capillary, which is one of the main limitations of this approach, as the
guiding losses become rapidly quite important. Moreover, in actual experiments it
is difficult to achieve the ideal condition of only two excited modes and thus the
mathematical description becomes quite complex. However in case of multimodal
propagation the field intensity follows empirically the beating frequency between
the lower and the higher mode among the ones that are excited, with some peaks
that are missing due to the perturbation given by the others. These deviations are
more evident for longer medium and thus limit the effective length over which
QPM can be achieved with this method.

Figure 1.20: Example of QPM with multi-mode propagation in Ar. In red and blue
are shown the signals due to quasi-phase matching while in black is represented the
emission from single mode propagation in the waveguide. The image is adapted
from [53].

One advantage of this approach is instead the lower average ionization fraction that
is reached in the channel with respect to the single mode propagation, due to the
intensity fluctuations. This reduces the effective phase mismatch, allowing for an
easier compensation. Indeed with this approach the feasibility of achieving QPM
also for ionic species has been demonstrated [53].





CHAPTER2
HHG in Molecules

One of the main results of Chapter 1 is that the high harmonic signal radiated
by a single emitter in the SFA limit of the Lewenstein model can be considered
as the sum of three contributions, related to the semiclassical steps of ionization,
electron propagation in the continuum and recombination. In particular, the latter
is proportional to the transition dipole matrix element between the continuum and
the ground state of the system and it thus depends only on the species of the emitter
and the considered harmonic order, due to the fact that the wave vector of the
recollinding electron is fixed by the energy conservation law. The first two terms
depend also on the structure of the driving field and they are usually refferd to as
the continuum electron wave packet (EWP) [54]. This factorization is at the basis
of high-harmonic spectroscopy (HHS), which is a powerful tool to self-probe atoms
and molecules [55]. Indeed the EWP can be thought of as a probe of the static and
dynamical structure of the emitter, which is encoded in the recombination part of
the dipole with high temporal and spatial resolutions. The first one is guaranteed
by the HHG process itself, which takes place on a subcycle of the driving field.
Moreover the attochirp of the short trajectories allows also to encode the temporal
evolution of the system in the harmonic order [58], when the contribution of long
trajectories is efficiently filtered out [28]. The high spatial resolution is assured
by the small De Broglie wavelength of the recombining electron. Therefore the
cutoff frequency in a spectroscopic experiment defines in some way the amount of
information that can be extracted and the resolution that can be achieved. Some
examples of the successes of this technique are the tomographic reconstruction of
molecular orbitals with sub-Åmströng resolution [57, 117], the probing of structural
rearrangements in molecules [58], the mesurement of the electronic structure of
atoms [59] and the monitoring of molecular vibrations [60].

High-harmonic spectroscopy suffers, however, from one important limitation.
Indeed the presence of the high-intensity driving pulse cannot be neglected and
thus the information that is retrieved is in principle referred to the system ”dressed”
by the strong-field and not to its unperturbed state [63]. Besides this issue it is also
important to underline that such information is encoded in the recombination term,
which can be easily factored out and described with a simple dipole expression only
within the SFA framework, whose validity is not undoubted for generic systems.
Moreover, in order to obtain useful data it is also necessary to recover the single-
emitter spectrum from the measurement of the macroscopic signal, which is not

49
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always trivial.
Apart from these limitations, HHS is indeed a promising tool for retrieving

important static and dynamic pieces of information about the emitting system.
Owing to their rich structure, molecules are naturally interesting targets for such
studies. However the use of molecular media implies a more complex theoretical
and experimental treatment of the generation process with respect to simple atoms.
In Section 1 we will therefore briefly sketch the main aspects that are unique to
HHG in molecular samples. Afterwards in Section 2 we will present the theory of
impulsive alignment of molecules, which is a technique used to control important
parameters in these experiments. A brief treatment of the quantum mechanical
structure of molecules, which is useful for the topics of this chapter, is reported in
Appendix C.

Throughout all the chapter, two different frames of reference are used, depend-
ing on the situation: the molecular one and the laboratory fixed one. These two
can be related through three angular coordinates named Euler angles Q = (θ, φ, χ).
In particular θ is the angle between the molecular axis a and the laboratory axis z,
φ the angle of rotation of a around z and χ the angle of rotation of the molecular
frame around a. Moreover, following the convention of the previous chapter, the
laboratory axis z is always considered parallel to the polarization of the driving
pulse, which is propagating along x.

Figure 2.1: Representation of the three Euler angles (θ, φ, χ). The blue coordinates
are relative to the laboratory frame, while the red ones are relative to the molecular
frame. The image was adapted from [64]

Sometimes also the set of three angles β = (βa, βb, βc) is employed, which repres-
ents the position of the molecular frame axis with respect to z. These angles are
linked to the Euler angles through the relations:

cos βa = cos θ cos βb = sin θ cos χ cos βc = sin θ sin χ
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2.1 The three-Step model for molecules

In this section we will consider the adjustments that should be done to the Lewen-
stein model as presented in Section 1.2 in order to account for the peculiarities of
molecules with respect to simple atoms within the SFA framework. This will be
carried out without seeking for a complete treatment of the problem and avoiding
the derivation of a general analytical expression for the dipole moment as Eq.(1.15).
Eeach one of the three semiclassical steps linked to HHG will be considered separ-
ately. The main purpose of this treatment is indeed to justify the necessity to use
molecular alignment techniques for studying such systems. A deeper analysis of
the topics of this section can be found in [65].

2.1.1 Molecular ionization

The problem of molecular ionization can be faced in two ways, as was already the
case in Section 1.1.1 regarding atoms: the numerical solution of the time dependent
Schrödinger equation or the use of approximated tunnelling formulae. In this
section we will focus only on the latter, remembering the assumptions and limits
of validity of such approach. In particular we will briefly present the results of the
so-called molecular ADK rate (MO-ADK), which is an extension of the ADK equation
used for atoms [66].

The much richer structure of molecules gives rise to a more complex ionization
dynamics with respect to the atomic case, that in principle can be influenced by the
internal vibrational and rotational degrees of freedom of the system. Moreover, due
to the lack of spherical symmetry of the electron wavefunction, the ionization rate
is expected to depend also on the relative direction between the linearly polarized
driving field and the molecular axis. If multi-electron effects are neglected and
the internal degrees of freedom of the molecule are considered frozen during the
process, the MO-ADK rate in a static field reads:

WMO
stat (E, Q) = ∑

m’
ωp

B2(m′, Q)

2|m′||m′|!

(4ωp

ωt

)2n∗−|m′|−1
exp
(
−

4ωp

3ωt

)
(2.1)

where the same notation of Section 1.1.1 is used for ωp and ωt, while m’ is the
quantum number representing the projection of the electron orbital momentum
along the polarization direction of the external field. This equation is composed
of two parts: the exponential term, that is a function of the ionization potential
only and is the same of the atomic case, and the prefactor, which depends on the
molecular structure. In the case of linear molecules the quantum number m, which
identifies the projection of the orbital angular momentum along the molecular axis,
is a good quantum number and so the prefactor will be given by:

B(m′, Q) = ∑
l
(−1)m′ClmDl

m′ ,m(Q)

√
(2l + 1)(l+ | m′ |)!

(l− | m′ |)!

where Clm are the coefficient of the spherical harmonics expansion of the electron
wavefunction, that can be computed numerically or can be found tabulated [66, 67],
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and Dl
m′ ,m(Q) are the so-called Wigner rotation matrices 1. The latter are defined as

[69]:
Dj

m′ ,m(Q) = eim′φdj
m′ ,m(θ)e

−imχ

dj
m′ ,m(θ) = ∑
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P(j, m, m′, s) cos2j+m′+m−2s
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sinm′−m+2s
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P(j, m, m′, s) = (−1)s

√
(j + m′)!(j−m′)!(j + m)!(j−m!)

s!(j + m + s)!(m′ + m + s)!(j−m′ − s)!

where the sum over s in dj
m′ ,m(θ) runs over all the values for which the factorials

in the expression are positive. On the other hand, for a nonlinear molecule m is
no more a good quantum number and therefore this expression must be slightly
modified:

B(m′) = ∑
l,m

(−1)(m+|m′|)/2ClmDl
m′ ,m(Q)

√
(2l + 1)(l+ | m′ |)!

2(l− | m′ |)!

where m = −l,−l + 1, ..., l − 1, l. Note that if (l, m, m′) were all good quantum
numbers, the expression would go back to the simpler atomic ADK rate and the
dependence on Q would cancel out.

Even if the MO-ADK theory is a highly approximated approach to the study
of strong-field ionization in molecules, it allows to predict in a rather simple way
the dependence upon the orientation of the system. In particular the rate will be
maximum when the electron cloud of the molecule is aligned with respect to the
external field and will be minimum when one of the orbital nodes lies along its
polarization direction. One example of such behaviour is the different ionization
rate for aligned N2 and O2 molecules, as can be seen in Figure 2.2. For this reason
when an ensemble of molecules is considered, the macroscopic ionization signal
should be computed as a weighted sum:

Sion ∝
∫

ρ(Q)dQ
∫
(1− e−

∫
Wstat(E(t),Q)dt)2πrdrdz

where ρ(Q) is the weighting function of the possible molecular orientations and
both the cylindrical symmetry of the system and the adiabatic approximation for
ionization driven by pulsed lasers are exploited. The modulation effect given by
the molecular alignment to the external field is thus purely geometrical and will
reflect on the HHG yield as a scaling factor.

Until now the focus of the discussion has been on the prefactor of Eq.(2.1), which
is the main difference with respect to the atomic case and is directly influenced by
the structure of the electron wavefunction. However, also the exponential factor,
that is a common feature to all tunnelling formulae, contains a peculiar behaviour of
molecules with respect to atoms. Indeed molecular orbitals are much less separated
in energy with respect to atomic ones, with a difference of ionization potentials

1Wigner rotation matrices are used to represent spherical harmonics, which are the usual basis set
for quantum rotators, in rotated frames of reference.
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Figure 2.2: Example of different behaviours for the ionization of the HOMO as
a function of θ. For N2, being the HOMO a σ orbital, the rate is enhanced for
maximum alignment (θ = 0) while for O2 is quenched owing to its geometry. The
image was adapted from [68].

that shrinks as the system becomes more and more complex. Therefore it is not
possible to neglect a priori the possibility to ionize also inner molecular orbitals.
This effect will be more important when ionization of the HOMO is quenched by
the geometrical effects presented before. More recently it was also demonstrated
that electron correlation can excite the ionic system during tunnelling, leading to
ionization of inner orbitals which is not subjected to the exponential suppression
typical of the TI regime [70]. Therefore molecular ionization is strictly a multi-body
process in which all the electrons play a role and the single active electron approx-
imation of the Lewenstein model starts to become no more applicable. Moreover
the external strong field may be also able to polarize the ground state of both the
neutral molecule and its ionic state, influencing strongly the ionization process [71].
In this case, also the SFA is no more a suitable description of ionization. For all
these reasons the MO-ADK theory here presented is not able to outline all the rich
phenomena that may be linked to molecular ionization.

2.1.2 Molecular relaxation

In the semiclassical picture presented in Section 1.1.2 the motion of the freed electron
is determined by the external field only. However, for a generic molecular system
the SFA is not always an adequate approximation. Indeed the ionic Coulomb field
can play an important role and thus the simple plane wave description for the
returning electron begins to fail. This effect is sometimes treated as an acceleration
of the returning electron with respect to the asymptotic value of its momentum up
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to a factor Ip [72]:

Ek =
h̄2k2

2me
+ (1− ε)Ip = h̄ωq (2.2)

This is however only an heuristic formula, where the correction factor 0 < ε < 1
is fitted for reproducing the experimental results in the more accurate way pos-
sible. Moreover in the description of the continuum wave packet it is important
to consider the influence of the ionization mechanism on the distribution of the
electrons’ momenta. Indeed energy conservation fixes the absolute value of the
momenta while the SPA defines their average orientation along the driving field
polarization. However, when a molecule is ionized along a nodal plane of its orbital,
the continuum wavepacket is expected to maintain such node and thus it will not
include states propagating along this direction. In this way, the returning electron
cannot be described as a simple plane wave during the reombination step. Therefore
the shape of the continuum wavepacket in momentum space is influenced by the
orbital symmetry and orientation, expecially when the driving field is parallel to
one of the molecular nodal planes [73].

Apart from the continuum wave packet, also the description of the ionic system
should be improved to account for both its internal relaxation and its interaction
with the external strong field during the motion of the released electron. The first
example of such effects is the vibration relaxation of the nuclei in the cation. Indeed
molecular ionization can be viewed as a vertical transition from the ground state
of the neutral molecular energy potential surface to the ground state of the ionic
energy potential surface, similarly to the Franck-Condon principle in vibrational
spectroscopy. Therefore the cation may found itself in an excited vibrational state
and will start to relax. The returning electron will probe a modified nuclear arrange-
ment in the molecule and this will directily reflect on the emitted spectrum. Using
BO approximation in the standard SFA framework of Lewenstein model, it can be
demonstrated that the HHG yield is modulated by the vibrational autocorrelation
function [74]:

C(τ) =
∫

χn(R)χc(R, τ)dR (2.3)

where χn and χc are the vibrational part of the wavefunction respectively in the
ground state of the neutral molecule and the cation, τ is the electron excursion
time in the continuum and R the coordinates of the nuclei. This means essentially
that, as the electron must return to its initial state in order to give rise to a coherent
emission of harmonics, radiative recombination will be more likely if the vibrational
wavepacket hasn’t changed too much during its motion in the continuum. Since
the vibrational period of the nuclei is approximately proportional to their masses,
they can generally be assumed fixed in the small period of time between ionization
and recombination (τ ≈ 1÷ 2 fs for λ = 800 nm). However, when small nuclei
such as hydrogen are considered or the electron excursion time in the continuum is
increased using longer wavelengths, the effect of the vibrational relaxation of the
system cannot in principle be neglected.
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Figure 2.3: Mechanism of nuclear relaxation influencing HHG spectra. (1) Ionization
launches a vibrational wave packet from the ground state of the neutral molecule
to the ground state of the cation. (2) The wave packet evolves in time during the
electron excursion time τ. (3) During recombination the system must return to the
initial ground state of the neutral molecule. The efficiency of such transition is given
by the overlap integral between the initial and the final vibration wave packets,
represented in figure in red and green respectively.

Another possible relaxation effect during the continuum propagation is linked
to the electron correlation in the system. The rigorous treatment of multi-electron
contributions in HHG is far from simple. We will therefore focus only on the
description of the multi-channel contribution given by the possibility to ionize
multiple molecular orbitals, as exposed in Section 2.1.1. Such channels are named
after the excited states of the ionic system (X, A, B, ...) which in the Hartree-Fock
framework are represented as a hole in inner shell orbitals. When multiple channels
are present, the wavefunction of the ionic system can therefore be written as:

|Ψion〉 = ∑
c=X,A,B ...

αc(t) |ψ+
c 〉 |kc〉

where |ψ+
c 〉 represents the ionic state2 linked to channel c, which is antisymmetrized

to account for the electron indistinguishability, |kc〉 is the continuum state of the
relative freed electron and αc(t) is the weighting coefficient of the different channels,
whose initial value is set by the ionization mechanism. The temporal dependence
of such expression is given both by the free evolution of the ionic and continuum
states and by the possible coupling with the external field. In order to write the
matrix element describing the recombination to the neutral molecular state |Ψ0〉
the N-electron dipole should then be considered as the sum over the single dipoles

2Note that in principle the single-particle wavefunctions used to obtain the ionic ground state in
the Hartree-Fock framework may be different from the ones used for the ground state of the neutral
molecule.
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of the system:

drec(t) = 〈Ψ0|
N

∑
i=1

di |Ψion〉 = 〈Ψ0|dN |Ψion〉

Using the previous ansatz for the ionic wavefunction and exploiting the symmetry
of both the multi-electron dipole and the ionic state it is possible to rewrite such
expression as [75]:

drec(t) = ∑
c

(
αc 〈Ψd

c |dN |kc〉+ dex
c

)
(2.4)

where |Ψd
c 〉 = 〈Ψ0|ψ+

c 〉 is the Dyson orbital linked to the channel c, which repres-
ents a hole in the molecule, and dex

c is a term representing the exchange correlation
between the electrons. In particular, the latter is negligible whenever the actual
ionic states are not very different from the unrelaxed ones and it is thus dependent
on the degree of orbital relaxation upon ionization. In this way the contributions
of the various channels adds up coherently and the multi-electron contribution to
HHG can be thought of in terms of their interferometric superposition. In particular,
during propagation in the continuum each channel will acquire two phase terms.
The first one is due to the oscillation of the plane wave state, which for a given
harmonic order is determined only by the external strong field and the considered
semiclassical trajectory, as was already pointed out in Section 1.2. The second is
linked to the ionic state and, if laser-induced dynamics can be neglected, is simply
given by the beating of the free evolution of the Dyson orbital with frequency Ec/h̄
which describes a time-dependent hole in the molecule [75]. It is important to un-
derline however that, strictly speaking, the hole and the free electron are entangled
and a more precise description of multi-channel HHG should account for that [73].

2.1.3 Recombination interference

Since the recombination of the electron can be though of as the reverse process of
ionization3, we can expect also in this step an angular dependence on the molecular
alignment with respect to the driving field. Indeed the returning particle probes
different electronic distributions depending on the alignment of the molecule, thus
the emitted radiation will encode such structural data. The first theoretical identi-
fication of this effect was performed by Lein et. al [76] by numerically solving the
TDSE for an ensemble of H+

2 molecules, where the alignment degree was found
out to modulate the harmonic spectrum. Surprisingly a rather simple two-centre
interference model could explain the results. If an homonuclear diatomic molecule
is considered and only its HOMO is contributing to the spectrum, the molecular
orbital in LCAO theory can be written as (see Appendix C):

ψel = φat

(
r− R

2

)
−+ φat

(
r +

R
2

)
3This is not strictly true since in this case recombination is a single-photon process while tun-

nelling ionization is intrinsically a multiphoton process. However the argument still stands from a
qualitatively point of view.
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where R is the interatomic distance and φat the atomic orbitals which are combined
to form the molecular one, while the sign −+ defines the symmetry of the wavefunc-
tion. In this way, if the plane-wave approximation for the returning electron holds,
the recombination dipole can be directly computed:

drec(t) = 〈ψel |d |eik·r〉

In the case of a symmetric orbital (+ sign) this gives:

drec(t) = 2k cos
(k ·R

2

)
〈φat|eik·r〉 (2.5)

while for an antisymmetric orbital (− sign) we have:

drec(t) = i2k sin
(k ·R

2

)
〈φat|eik·r〉 (2.6)

By studying the prefactors of these expressions it is thus possible to obtain condi-
tions for constructive or destructive interference between the harmonics emitted
by the two electronic centres. Generally however constructive effects do not give
a modulation in the spectrum as clear as the destructive ones, and so the model
is mostly used to predict only such interference minima. For a symmetric orbital
these are given by:

R cos(θ) =
(

n− 1
2

)
λel

and for antisymmetric orbitals by:

R cos(θ) = nλel

Therefore their position in the spectrum depends on the distance between the
two centres, the alignment angle and the orbital symmetry, encoding in this way
important structural information about the system. Moreover, the solution of the
TDSE predicts also the presence of a π phase-shift in the emission in correspondence
of such minima. Afterwards the same model, even if rather approximated, was able
to describe the spectra of more complex molecules, such as CO2 [77]. In this case R
is the distance between two centres of the electronic distribution in the orbital and
is thus a purely electronic property. Indeed the fact that in diatomic molecules this
is equal to the internuclear distance is only due to the natural LCAO description
of such systems. However, for more complex systems the two-centre interference
model cannot describe all the spectral structures that may be present, since both
the static single-channel assumption and the plane wave approximation for the
returning electron are expected to fail.

For instance, in bigger molecules the possibility to ionize multiple orbitals can
give rise to multi-channel contributions in the spectrum. Indeed these channels are
expected to gain a relative phase between ionization and recombination and will
therefore provide another degree of freedom to produce interference patterns. The
phase accumulated by the electron in a given channel can be decomposed in three
parts [73]:

Φc = φc
ionization + φc

continuum + φc
recombination
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The first term is linked to the relative phase that may be present upon ionization
due to non-adiabatic effects and electron coupling. The second contribution is
instead provided by the electron propagation and is composed by both the phase
linked to the semiclassical action in the continuum and the one determined by
the evolution of the hole in the cation. Therefore it is a function of the driving
laser parameters such as its intensity and wavelength. Finally, the last term is
given by the phase of the dipole matrix element upon recombination. As already
treated, if only short trajectories contribute to the final spectrum, it is possible to
establish a relation between the excursion time of the electron and the harmonic
order due to the intrinsic atto-chirp of the emission. The interference between these
channels will thus be visible as a minimum in the spectrum at a given photon
energy. Since the continuum phase can be modified by both the intensity and the
wavelength of the driving field, the position of the actual minimum will be altered
by such parameters and for this reason this effect is usually named dynamical
interference. One requirement for such interference to give an appreciable effect is
that the contribution of the various channels to the high-harmonic signal should
be comparable. Moreover, being intensity-dependent, it requires a quasi-adiabatic
generation condition [57]. Indeed if short pulses are used, the interference effect
will be washed out by the averaging over the pulse cycles.

The first experimental observation of such effect was given by Bucksbaum et al.
[78], while the interplay of structural and dynamical interferences was analyzed in
[73]. In particular, near a structural minimum both the relative contributions and
the recombination phases of the channels vary heavily, obscuring the dynamical
interference effect. Moreover, it has been demonstrated the possibility for the same
molecule to show a structural or dynamical minimum depending on the driving
wavelength that is chosen [79]. Indeed at lower wavelengths the minimum is
located closer to the cutoff, where the contributions of the different channels may be
comparable, giving the possibility for the dynamical interference to appear. Using
longer wavelengths, instead, the cutoff region shrinks and the minimum shifts
towards the plateau region, where the contribution of the HOMO is predominant
and thus only a structural minimum can be observed.
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2.2 Molecular alignment

As it was presented in the previous section, HHG from molecules is strongly de-
pendent on their alignment with respect to the driving field and therefore this
important parameter needs to be controlled in experiments. Many different ap-
proaches have been developed over the years in physics and chemistry for aligning
molecules in the laboratory frame, one of which is the use of non-resonant strong
field lasers. In this case the first experimental proof of molecular alignment prior
to ionization was given by Normand et al. in 1992 [80]. The origin of such effect
was found in the interaction between the non-resonant laser field and the dipole
induced in the molecule due to the anisotropy of its polarizability.

Two main techniques of molecular alignment with strong field lasers have been
developed. In adiabatic alignment long pulses are used, whose duration is much
longer than the characteristic rotational period of the target molecule ∆t >> Trot

[81, 82]. In this way the molecule starts to align at the rising edge of the pulse
and reaches maximum alignment at its peak. When the field is off, then, also the
alignment effect is no more present. However the major disadvantage of such
approach is that it is not possible to perform any field-free measurement on the
molecular ensemble. In HHG experiments this creates a lot of problems, since the
presence of another high-intensity field can lead to fast ionization and saturation
of the medium. Therefore impulsive alignment is usually chosen, in which the
aligning pulse has a duration much lower that the characteristic rotational period
of the target molecule ∆t << Trot [83]. In this way a coherent superposition of
rotational states is excited by the laser, leading to a revival structure in time due to
their periodic rephasing.
In this section we will briefly present the technique of impulsive alignment with
linearly polarized fields, starting from the case of simple linear molecules and then
moving to more complex ones. With this approach 1D alignment can be achieved,
for which only one axis of the molecular system is aligned in the laboratory frame.
More complex experimental setups can be used to achieve also 3D impulsive align-
ment of molecules [84, 85], but they will not be covered in this thesis.

2.2.1 1D alignment of linear molecules

From a classical point of view, laser-induced molecular alignment can be understood
in terms of the torque imposed by the electric filed on the molecular dipole:

τ = µ× E

where the latter can be expanded in a Taylor series with respect to the external field:

µ = µ0 + α · E + ...

When the molecule has no permanent electric dipole µ0, the interaction is thus
governed by the molecular polarizability α. This is generally a tensorial quantity,
which can however be diagonalized along the three principal axis of the molecule.
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In the molecular frame for the simple case of a linear rotor it can be written as4:

α =

α⊥ 0 0
0 α⊥ 0
0 0 α//



Figure 2.4: Representation of the geometry of the system. The angle θ describes the
relative orientation between the molecular axis and the polarization direction of the
driving field.

However, in order to evaluate the torque imposed in the laboratory frame it is
necessary to determine the polarizability along the direction of the aligning field.
If the latter is assumed to lie at an angle θ with respect to the molecular axis, the
expression of the tensor in the laboratory frame will be:

α =

α// − ∆α cos2(θ) 0 ∆α sin(2θ)
0 α⊥ 0

∆α sin(2θ) 0 α⊥ + ∆α cos2(θ)


where ∆α = α// − α⊥. This allows to directly retrieve an expression for the torque
induced by the external field, which can then be substituted in the equation for the
evolution of the alignment angle θ(t):

I
∂2θ

∂t2 = −E2(t)∆α sin(2θ)

From this expression it is clear that the induced molecular alignment is directly
proportional to the external field amplitude and to the molecular anisotropy. For an
impulsive electric field E(t) = E0δ(t) and an initial position θ0 the evolution of the
alignment angle reads:

θ(t) = θ0 −
(E2

0∆α

I
sin(2θ0)

)
t

4Note that in principle the polarizability of the molecule an its moment of inertia could have
different axis of diagonalization. However for small molecules these generally coincide and we will
always assume such case in this thesis.
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Thus for θ0 ∈ [0, π/2] the torque tends to decrease this angle in time, until alignment
is achieved5. In a molecular ensemble the alignment is then ensured by the fact that
the rate of the induced angular motion is proportional to − sin(2θ0). In this way,
molecules starting at higher angles will experience a faster rotation and they will
be able to catch up with the ones starting from lower values of θ0. However, this
classical treatment allows to predict only the fast alignment induced right after the
impulsive field, which is called prompt alignment, but cannot describe the revival
structure that is experimentally measured.

For this reason a more precise quantum treatment is necessary [83]. In this
framework the Hamiltonian of the system can be divided in two terms. The first
one describes the field-free molecular system and the second one represents the
interaction [86]:

Ĥ = Ĥmol + Ĥint

Since we are considering the situation in which the IR field is far from resonances,
the molecular Hamiltonian can be approximated with its purely rotational part (see
Appendix C). Moreover, the second term can be written in dipole approximation as
a function of the molecular polarizability for a molecule with no permanent dipole:

Ĥint = −∑
pp’

Epαpp′E∗p′

If a linearly polarized sinusoidal field is considered, the cycle averaged interaction
should be taken into account and the full Hamiltonian of the system for a linear
molecule reads:

Ĥ = BĴ2 + DJ Ĵ4 − E2
0(t)
4

(∆α cos2 θ − α⊥) (2.7)

The general rotational state of the molecule can be written as a superposition of
spherical harmonics.

Ψ(t) = ∑
J

cJ(t) |JM〉

|JM〉 = (−1)M
[ (2J + 1)(J −M)!

4π(J + M)!

]1/2
PM

J (cos θ)eiMφ

where PM
J are the associated Legendre polynomials. This expression can then be

directly substituted in the TDSE in order to obtain a set of coupled differential
equations for the cJ(t) coefficients:

ih̄
∂

∂t
cJ(t) = (BJ(J + 1)+DJ J2(J + 1)2− E2

0
4

α⊥)cJ(t)−
E2

0
4

∆α ∑
J’,M’

cJ′(t) 〈JM| cos2 θ |J′M′〉

where the quantum operator for the angular momentum has been substituted with
the correspondent expectation value. In order to simplify these equations, it is
possible to exploit the properties of spherical harmonics:

cos2 θ |JM〉 = a0(J, M) |JM〉+ a2(J, M) |J + 2, M〉+ a−2(J, M) |J − 2, M〉
5Since molecular alignment and not orientation is considered, this is the angular range of interest.

Indeed with linearly polarized fields it is not possible to control the orientation of the molecular axis.
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a0(J, M) =
2(J2 −M2 + J)− 1
(2J − 1)(2J + 3)

a2(J, M) =

√
(J −M + 1)(J + M + 1)(J −M + 2)(J + M + 2)

(2J + 1)(2J + 5)(2J + 3)2

a−2(J, M) =

√
(J −M)(J + M)(J −M− 1)(J + M− 1)

(2J + 1)(2J − 3)(2J − 1)2

The term depending on cos2 θ is thus responsible for the coupling of states with
different J and the creation of a rotational wave packet. In particular, since it links
only states with ∆J = −+2 and ∆M = 0, this is present between states with odd
and even values of J separately. Substituting this result in the set of differential
equations we get:

ih̄
∂

∂t
cJ(t) =

[
BJ(J + 1) + DJ J2(J + 1)2 − E2

0
4
(∆αa0(J, M) + α⊥)

]
cJ(t)+

−E2
0

4
∆α
[

a2(J − 2, M)cJ−2(t) + a−2(J + 2, M)cJ+2(t)
] (2.8)

The coupling directly depends on both the anisotropy of the molecular polarizability
and the electric field strength, similarly to the alignment effect found in the classical
treatment. Therefore, once the initial occupation of the molecular rotational states is
known, from Eq.(2.8) it is possible to numerically compute the wave packet induced
by the aligning field.

After the pulse, the molecule is thus left in a state that can be written as the
field-free evolution of such wave packet. If the centrifugal distortion is neglect this
can be written as:

Ψ(t) = ∑
J

cJ(t̃)e−iEJ t/h̄ |JM〉 = ∑
J

cJ(t̃)e−iBJ(J+1)t/h̄ |JM〉 (2.9)

where the cJ(t̃) coefficients describe the final population induced by the aligning
pulse. During the field-free evolution, at times multiples of trev = πh̄/B the phase
factor of each one of the |JM〉 states will be an integer multiple of 2π. In this way
the wave packet will reproduce the state of the system at the start of the field-free
evolution, which is the prompt alignment induced by the laser. This time period at
which alignment is observed is called rotational revival. A lower degree of coherence
may also be re-established at times that are fractions of trev, which are called frac-
tional revivals, when only a smaller subset of spherical harmonics gets in phase. In
particular, at times t = trev/4, 3trev/4, 5trev/4, ... states with odd and even values of
J show an opposite revival dynamics, while at times t = trev/2, 3trev/2, 5trev/2, ...
they have the same rotational behaviour. If the centrifugal distortion cannot be
neglected, the energy levels of the rotational states have an additional term that
prevents the perfect rephasing at times trev. This effect is more pronounced when
field of higher intensities are used, since they populate also states characterized by
large values of J, or for longer period of times during the rotational dynamics.
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The theory developed so far explains the impulsive alignment of a single mo-
lecule, but generally in experiments we deal with a macroscopic medium. In this
case a more precise description needs to account for the classical probability for
each molecule to initially occupy a given rotational state. This can be done using the
so-called density matrix formalism for mixed states. The density matrix operator
for the system is defined as:

ρ̂ = ∑
J,M

pJ,M |JM〉 〈JM|

where the sum is extended to all possible spherical harmonics and the p(J, M)

coefficients are the classical statistical weights of each state. The evolution in time
of such operator is described by the so-called Liouville equation:

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂]

and the expectation value for a generic operator Â in the system can be computed
as: 〈

Â
〉
= Tr

(
ρ̂Â
)
= ∑

J,M
pJ,M 〈JM| Â |JM〉

Before the interaction with the aligning pulse, the molecular gas can be treated as a
canonical ensemble of particles, characterized by a certain rotational temperature
TK in Kelvin. In this way the initial statistical weights of the rotational states are
described by the Boltzmann distribution:

pJ,M(0) =
1
Z

gJe−EJ /KBTK

where KB is the Boltzmann constant and Z the partition function for the system:

Z = ∑
J,M

e−EJ /KBTK

The statistical weights depend only on the quantum number J and therefore states
that are different only for the quantum number M will have the same initial oc-
cupation probability. The prefactor gJ is linked to the symmetry properties of the
considered molecule. Indeed the total molecular wavefunction Ψmol should com-
mute with respect to all the symmetry operations of its group that permute identical
nuclei without breaking or twisting any existing bond. Since the vibrational and
electronic ground states of molecules are always symmetric with respect to all the
group operations, the combination of nuclear and rotational wavefunctions needs
to be symmetric with respect to permutations of an even number of fermions’ pairs
or any number of bosons and to be antisymmetric with respect to permutations of
an odd number of fermions’ pairs. It is known that rotational states are symmetric
for even values of J and antisymmetric for odd values of J. Therefore, once the
distribution of the nuclear spins of the atoms in the molecule is know, this sets a
symmetry requirement for the rotational part of the wavefunction. In this way the
population ratio between odd and even J states is defined, which is accounted for
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by gJ [87]. For linear rotors this quantity will then be preserved by the interaction
with the aligning field since ∆J = −+2 from the selection rules. In this way such ratio
will reflect on the presence and the strength of the fractional rotational revivals,
during which states with odd and even values of J show a different behaviour, as
we discussed above. For this reason fractional revival can be used as an indirect
probe of the molecular structure.

Once the initial statistical weights for the rotational states in the gas are known,
the evolution of the system due to the alignment dynamics induced by the external
field can be found using Liouville equation. The alignment degree in the ensemble
after the laser pulse can then be evaluated through the so-called alignment parameter
〈cos2 θ〉. Exploiting the density matrix formalism, this can be computed as:

〈cos2 θ〉 = ∑
J,M

pJ,M(t̃) 〈JM| cos2 θ |JM〉

where pJ,M(t̃) are the statistical weights describing the final population induced by
the aligning pulse. For a random ensemble of molecules, such as the one present
at t = 0, we have 〈cos2 θ〉 = 1/3, while if 〈cos2 θ〉 = 1 we have perfect alignment
and if 〈cos2 θ〉 = 0 perfect anti-alignment. In the former case the distribution of
the molecular axis is peaked along the aligning field polarization direction, while
in the latter the distribution is peaked on a plane perpendicular to it. During a
rotational revival the alignment parameter spans between the limits of alignment
and anti-alignment, without reaching a perfect condition for any of them. Outside
the revival structure a baseline alignment is always present as 〈cos2 θ〉 > 1/3 for
any t. The origin of this effect can be understood with the simple semiclassical
vector model for the angular momentum. Indeed, since during the interaction the
quantum number M is conserved, the molecules that are excited to rotational states
characterized by higher values of J will preferentially occupy the energy levels with
M � J. Therefore they will on average rotate in a plane that is a little bit shifted
towards the polarization direction of the aligning field.

Many factors can then influence the degree of alignment in experiments. Higher
intensities, for example, allow to populate rotational states with higher J, giving
rise to sharper and narrower peaks in the alignment parameter. Moreover an enan-
chement of the alignment is expected also when the initial rotational temperature of
the molecular ensemble is lower. In this case, indeed, the states that are populated
by the excitation are not initially occupied by the thermal motion and this allows to
maintain an higher degree of coherence in the wave packet.

Anyway, it is important to underline that 〈cos2 θ〉 is only a phenomenological
parameter, which cannot fully describe the alignment dynamics of the ensemble.
Indeed only lower-order fractional revivals up to 1/4 are described by such expecta-
tion value, while HHG is a physical process which is very sensitive to the rotational
state of the target molecules and allows to record even higher-order fractional re-
vivals [88]. Therefore a more complete description of the alignment dynamics of
the system can be given once the full rotational wave packet Ψ(θ, φ, t) is known, as
a probability density function:

P(θ, φ, t) =| Ψ(θ, φ, t) |2 dΩ (2.10)
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which represents the probability to find the molecular axis lying within an infinites-
imal solid angle dΩ. The HHG intensity as a function of the probed time during the
revival dynamics can then be expressed as:

I(t) =
∣∣∣∫ H(θ)P(θ, φ, t)dΩ

∣∣∣2
where H(θ) is the HHG signal from a single emitter perfectly oriented along the
direction θ, which can be evaluated for example with the Lewenstein theory or
the more simple two-center interference model6. Therefore to describe higher-
order fractional revivals one could refer to this whole probability density function.
Another more simple approach would be instead to consider the so-called cosine
moments 〈cosN θ〉. In particular the higher is the considered N, the higher is the
order of fractional revivals that can be described by such expectation value [89].

2.2.2 1D alignment of complex molecules

Up to now we have considered the 1D alignment of linear rotors. However only
few molecules belong to this class and as the complexity of the molecular system
increases symmetric or asymmetric tops are much more common. Therefore it
is essential to briefly sketch the alignment dynamics induced by an intense non-
resonant linearly polarized field also for these classes of molecules. The case of
symmetric top molecules is rather straightforward, but can also give an insight into
the case of asymmetric rotors for which the Ray parameter is very near the prolate
or oblate limit [90]. The interaction Hamiltonian is indeed the same of the simple
linear case:

Ĥint = −
E2

0(t)
4

(∆α cos2 θ − α⊥)

which is independent from the Euler angle χ. For this reason also in this case the
quantum number K, representing the projection of the angular momentum along the
molecular axis, is conserved during the interaction with the external field. The main
difference with respect to linear molecules is given by the field-free Hamiltonian
which for prolate rotors reads:

Ĥrot = BĴ2 + (A− B) Ĵ2
a − ĤCD( Ĵ, Ĵa)

where ĤCD( Ĵ, Ĵa) resumes the contribution given by the centrifugal distortions. As
discussed in the previous section, this term starts to play a role for higher excitation
intensities, higher initial temperatures or longer times in the revival and has the
effect of deteriorating the regular rephasing of the rotational wave packet. In order
to obtain the alignment dynamics of the molecule it is then necessary to solve the
TDSE for the system. The generic rotational wavefunction of the system can be
written as:

Ψ(t) = ∑
J

cJ |JKM〉

6We are assuming in this case that the polarization of the field driving HHG is parallel to the one
aligning the molecules. This is not always true, but corresponds to the experimental setup used in
this thesis.
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where |JKM〉 are eigenstates of the field-free Hamiltonian for symmetric rotors.
Substituting this ansatz in the Schrödinger equation, a set of coupled differential
equations is obtained:

ih̄
∂

∂t
cJ(t) = ∑

J’
[ 〈JKM| Ĥrot |JKM〉+ 〈JKM| Ĥint |J′KM〉]cJ′(t)

= EJKcJ(t) + ∑
J’
〈JKM| Ĥint |J′KM〉 cJ′(t)

where EJK is the field-free rotational energy associated with the eigenstate |JKM〉
neglecting the centrifugal distortion term. To compute the matrix elements of the
interaction Hamiltonian it is convenient to rewrite it as a function of Wigner rotation
matrices:

Ĥint = −
E2

0
6

∆αD2
00(Q)

In this way it is possible to exploit their properties with respect to the symmetric
rotor eigenstates:

〈JKM|D2
qs(Q) |J′K′M′〉 = (−1)K′+M′

√
(2J + 1)(2J′ + 1)

(
J 2 J′

M q −M′

)(
J 2 J′

K s −K′

)
where the Wigner 3-j symbol is used:(

J1 J2 J3

M1 M2 M3

)
=

(−1)J1−J2−M3

√
2J3 + 1

〈J1M1; J2M2|J3(−M3)〉

with 〈J1M1; J2M2|J3(−M3)〉 the Clebsh-Gordan coefficient for the composition of
the angular moments (J1, M1) and (J2, M2) to form (J3,−M3). Substituting these
results it is possible to numerically solve the set of coupled equations and to retrieve
the rotational dynamics of the excited wave packet. In particular, the selection rules
for the excitation are ∆J = −+1,−+2, ∆M = 0 and ∆K = 0. Therefore, differently from
the linear rotor case, a coupling effect is also present between states characterized
by a different parity of J. The resulting rotational wavefunction can be written as:

Ψ(t) = ∑
J

cJ(t̃)e−iEJKt/h̄ |JKM〉

where cJ(t̃) are the population values of the rotational states after the aligning pulse
is gone. The expression for the rotational revival time is the same of linear molecules
trev = π/cB. Anyway only 1D alignment is achievable with this technique and for
symmetric top molecules the aligned axis is always the one of higher polarizability,
which is usually also the rotationally special one.

Then, when an ensemble of molecules is considered, the same density matrix
formalism of Section 2.2.1 should be exploited. In the case of symmetric rotors the
thermal agitation will initially occupy states with different J and K values. As the
excitation conserves the K value while populating states of different J, at the revival
time trev the coherence will thus be re-established only within states having the
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same K, while states with different K will maintain a small phase difference. This
reflects on the alignment parameter as a fine structure during the revival, which is
a function of the ratio between the two distinct moment of inertia of the molecule
R = Icc/Iaa. In particular such structure is more visible when the molecule is near
the perfect oblate or prolate case R → 1/2, 2 and less when R → 1, as it can be
seen from Figure 2.5. Moreover, for perfectly spherical top molecules the revivals
are completely washed out. This is due to the fact that in this case the molecular
polarizability is completely isotropic and therefore no alignment is possible.

Figure 2.5: Variation of the revival fine structure with respect to the ratio between
the two distinct moment of inertia of the molecule. Each image is taken at different
values of R. a) 0.5; b) 0.625; c) 0.75; d) 0.875; e) 1; f) 1.14; g) 1.33; h) 1.6; i) 2. Image
taken directly from [90].

An even richer rotational dynamics is expected from asymmetric top molecules
[91]. In this case indeed both the moment of inertia and the molecular polarizability
are different along all the three axis. The field-free Hamiltonian thus reads:

Ĥrot =
Ĵ2
a

2Iaa
+

Ĵ2
b

2Ibb
+

Ĵ2
c

2Icc

where Iii are the diagonal elements of the matrix of the molecular moment of inertia.
Moreover, the energy levels are a function of both the quantum number J and
the pseudo-magnetic quantum number τ (see Appendix C), while K is no more
conserved. Also the interaction Hamiltonian is much more complex with respect to
the symmetric top case:

Ĥint = −
E2

0(t)
4

(∆αbc sin2 θ cos2 χ+∆αac cos2 θ) = −E2
0(t)
4

(∆αbc cos2 βb +∆αac cos2 βa)

where we have defined ∆αij = αi − αj the anisotropy of the polarizability along the
molecular axis i and j. In any case, an asymmetric molecule can be aligned by the
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external field only along its axis of highest polarizability. For instance, in the case
of near-prolate rotors the interaction Hamiltonian shows a minimum for βa = 0, π,
a maximum for βc = 0, π and a saddle-point for βb = 0, π and so only the a axis
can be efficiently aligned along the direction of the external field. To compute the
alignment dynamics it is then necessary to solve the TDSE for the system. The most
important difference with respect to symmetric top molecules is the fact that for
asymmetric ones K is no more conserved and thus the generic wave packet reads:

Ψ(t) = ∑
J,K

cJ,K(t) |JKM〉

Substituting this ansatz in the equation, it is possible to obtain a set of coupled
differential equations formally equal to the symmetric case:

ih̄
∂

∂t
cJ,K(t) = ∑

J’,K’
cJ′ ,K′(t)

[
〈JKM| Ĥrot |J′K′M〉+ 〈JKM| Ĥint |J′K′M〉]

]
where the matrix elements of the interaction Hamiltonian can be easily found once
they are rewritten as a function of Wigner rotation matrices:

Ĥint = −
E2

0
4

[αac + αab

3
D2

00(Q)− αcb√
6
[D2

02(Q) + D2
0−2(Q)]

]
while the matrix elements of the field-free Hamiltonian for the considered molecule
can be calculated numerically. The selection rules for the excitation are ∆J =

0,−+1,−+2, ∆K = 0,−+2 and ∆M = 0. Since K is not conserved in the process and
the rotational levels of asymmetric molecules lack of any regularity, the rotational
wave packet will show more frequency beats in its dynamics. The revival structure
is therefore a lot more complex with respect to linear or symmetric top systems and
doesn’t show a simple periodic behaviour.
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Experimental setup

In this chapter the experimental setup used in this thesis work will be briefly presen-
ted. In particular, the experiments have been carried out in the Ultras (center for
ultraintense and ultrafast optical science) and UDynI (Ultrafast DYnamic Imaging)
laboratories of the Physics Department in Politecnico di Milano. Each one of these
laboratories will be covered in a separate section, highlighting similarities and
differences when necessary. In a third section we will present the technique used
to obtain the microstructured structures that were used to confine the medium in
some experiments.

3.1 Ultras laboratory

3.1.1 Laser system

The driving beam in Ultras is delivered by a two-stages optical parametric amplifier
(OPA) pumped by a CPA Ti:Sapphire laser system and tunable in the MIR range
between 1400 nm and 1800 nm with a few-cycle duration at a repetition rate of 10
Hz. The choice of MIR driving wavelengths is done to reach a good compromise
between cutoff extension and signal in HHG experiments. The laser system starts
with a commercial Kerr Lens Mode-Locked Ti:Sapphire oscillator (central frequency
λ f ≈ 800 nm) that delivers 45 fs pulses at a rate of 76 MHz and with an energy
content of 5nJ. The pulses are then stretched to 200 ps using a dispersion grating and
are selected by a Pockels cell at a rate of 1 kHz in order to enter the amplification
section, which is composed of two stages. The first one is a regenerative amplifier,
that allows to reach an energy of 3 mJ. Only one pulse every hundred is then selected
to enter the second stage, which is a multi-pass amplifier employing a water-cooled
crystal. In this way it is possible to reach very high intensities, delivering pulses
at a repetition rate of 10 Hz and with an energy content between 2 mJ and 120 mJ,
tunable through the pump of the second stage. In particular, for HHG experiments
the amplification section is usually setted to a low-energy content of around 15
mJ. The beam is then coupled to a small hollow core fiber where rough vacuum is
made. In this way the waveguide acts as a filter that cleans the spatial beam shape,
through propagation in the HE11 fundamental mode of the fiber. After compression,
the linearly p-polarized pulses have a duration of 60 fs and an energy content of
almost 12 mJ .
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The beam is then divided into four lines by a cascade of three beam-splitters.
The first three beams (a,b and c in Figure 3.1) are then used for producing the final
driving field in the OPA system, while the fourth (d in Figure 3.1) is used to perform
molecular alignment.

Figure 3.1: Sketch of the optical setup of the OPA system in Ultras. Image adapted
from [92].

In particular, beam (a), with an energy content of around 1 mJ, is focused inside
a gas cell filled with Kr gas, where optical filamentation takes place. This is a
physical effect for which the laser can travel collimated for high distances in a
ionized gas due to the equilibrium between plasma defocusing and self-focusing
induced by the Kerr-effect in the neutrals. The radiation is in this way spectrally
broadened, generally between λ = 500 nm and λ = 950 nm, exploiting the self-
phase modulation (SPM) taking place in the plasma so that it can be subsequently
recompressed. This is achieved with the use of chirped mirrors, which allow to
reach a final pulse duration of almost 10 fs with an energy content of around 0.3
mJ. Moreover, the filamentation process has also been proved to further clean the
spatial shape of the beam [94].

The pulses are then focused into a 400 µm thick β-BBO crystal where difference
frequency generation (DFG) takes place between the spectral tails of the same
pulse. In this way a broad MIR spectrum between λ = 1400 nm and λ = 1800
nm is generated. Since the nonlinear process takes place within the same pulse,
only type II phase-matching can be achieved and the MIR signal is thus polarized
perpendicularly with respect to the fundamental field (s-polarized). In this way it
can be easily selected by a following polarizer. Moreover the DFG process allows
also to obtain pulses with a stable carrier envelope phase (CEP), which is essential
to generate isolated attosecond pulses. Anyway, the DFG radiation is used as the
seed for the two OPA stages. Beam (b), with an energy content of around 2 mJ, is
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used as the pump in the first one of these, composed by a 2 mm thick β-BBO crystal,
after being temporally overlapped with the seed through a delay stage. Beam (c),
with an energy content of almost 5 mJ, is instead used in the second OPA stage,
composed by a 3 mm thick β-BBO crystal, after being also in this case synchronized
with the seed by means of a delay stage. Moreover a prism is used on its path to
tilt the wavefront of the pulses for further increasing the spatio-temporal overlap
between the pump and the seed, enanches the efficiency of the second OPA stage.
Both crystals operate at very narrow angles (∼ 2◦) between pump and seed, in
order to easily select the output signal through an iris. The employment of type II
phase-matching allows also to obtain a wide range of wavelength tunability of the
system by tilting the crystals. The optimum output at λ = 1450 nm has an energy
content of 1.2 mJ and a pulse duration of 17 fs, which is only slightly longer than
the transform limited duration of 16 fs for its bandwidth. This OPA system was
completely developed by the group of Proff. S. Stagira and C. Vozzi [92, 93].

Beam (d), with an energy content < 1 mJ, is instead exploited to perform
molecular alignment. In order to improve its spatial shape and to broaden its
spectrum, it is focused in an Ar-filled gas chamber where it undertakes filamentation.
In this way, using a glass-plate its temporal duration can be further increased quite
easily until around 100 fs, exploiting the more efficient dispersion in the broaden
bandwidth. Then, a high- precision delay stage (−+0.28 fs) allows to control remotely
from a computer the temporal distance between the aligning and generating pulses
in the experiment. Moreover a λ/2 plate is placed on the line of the aligning field
at 45◦ in order to make the polarization of the two beams parallel, which is the
experimental condition chosen for all the experiments presented in this thesis work.
Finally, a dichroic mirror is used to recombine the aligning and the driving beams
in a collinear configuration during the experiments.

3.1.2 Generation and detection chambers

Since the XUV radiation is highly absorbed by air, both the generation and detection
chambers are maintained in high vacuum (≈ 10−6÷7 mbar) using turbomolecular
pumps. The beams enter the first chamber through an iris, which can be used
for tuning the focusing conditions during the experiments, and a small window.
Here they are focused by a f = 12.5 cm mirror onto the gas jet. This is provided
by a pulsed electromagnetic valve with a nozzle diameter of around 500 µm, an
opening time of 300 µs and a repetition rate of 10 Hz in order to be synchronized
with the driving beam. The gas expansion in vacuum induces also the cooling of
the sample, which eases its alignment and avoids collisions between the particles.
The position of the valve can be finely tuned with respect to the focus of the driving
beam using a computer assisted translation stage in all three cartesian directions. In
particular, its maximum excursion is 5 cm along the optical axis and 12.5 mm in the
two orthogonal directions.

After generation, the light is collected through a 1 mm aperture placed at 20 cm
from the interaction region, which allows to spatially filter out the non-collinear
contribution to the harmonics. From here the beam enters the second chamber
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where an XUV spectrometer allows to disperse the radiation, which is then analysed
by means of a MCP-intensified CCD. This system was developed in collaboration
with the group of Dr. L. Poletto from CNR-IFN Padova and consists of a toroidal
mirror and a spherical varied line spacing (SVLS) grating, both at grazing incidence
to minimize light absorption [95, 96]. The toroidal mirror focuses the harmonic
radiation in both the tangential and sagittal plane, even if in two different positions.
In particular, for the latter the focus lies before the grating while for the former it is
exactly at the detector surface. The grating, on the other hand, focuses the radiation
only in the tangential plane at a different position q(λ) for each wavelength, thus
ensuring the spatial separation of the frequency components on the detector surface.
The groove density d of the SVLS grating is not constant but follows a polynomial
law with respect to the coordinate y on its surface, with the origin placed in the
center of the grating [96]:

d(y) = d0 + d1y + d2y2 + d3y3

For this reason it can be demonstrated that the spectral focal surface of the spectro-
meter is described by the equation:

cos2 α

p
+

cos2 β

q
− cos α + cos β

R
+ mλd1 = 0

where p and q are respectively the incoming and exit arm of the spectrometer, α and
β the incidence and diffracted angle and m the considered diffraction order. The
two angles depend further on the considered wavelength through the well-known
grating equation:

sin α− sin β = mλd0

Many of the grating parameters are fixed by the scientific requirements on the
spectral resolution and the efficiency throughout the bandiwidth, while R and d1 can
be chosen to minimize the deviation between the spectral focal surface q(λ) and the
detector surface for the frequency range of interest. Higher-order aberrations on the
focal plane, such as coma and spherical aberrations, can then be also minimized by
an appropriate choice of the parameters d2 and d3. The SVLS grating used in Ultras
is a golden coated one manufactured by Hitachi, whose parameters are shown in
Figure 3.2. The two foci of the toroidal mirror can then be decided independently.
In particular, the one on the tangential plane is chosen to maximize the incoming
flux on the grating and to work at unity magnification on the detector plane. In this
way high-order aberrations on this plane are minimized. The focus on the sagittal
plane is instead positioned to compensate the grating astigmatism. Point sources
can in this way be acquired as points at the detector plane. The toroidal mirror is
platinum-coated and also its working parameters are given in Figure 3.2. Finally,
the detector is a single-stage MCP-intensified CCD with magnesium fluoride (MgF2)
photo-cathode. The MCP is manufactured by Photeck and has an outside diameter
of 40 mm with a pore size of 10 µm and a pitch of 12 µm. The photoelectrons are
accelerated insider the micro-channels by a voltage drop of 900 V and then by a
voltage of 4.5 kV onto the phosphor screen where light is released upon impact.
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Figure 3.2: a) Sketch of the instrument view along both the longitudinal and sagittal
plane. b) Parameters of the toroidal mirror. c) Parameters of the SVLS grating. The
images are adapted from [96].

Figure 3.3: Sketch of the spectral focal surface of the grating.
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The signal is analysed by a low-noise CCD camera manufactured by Hamamatsu
with 1280x1024 pixels of 6.7x6.7 µm2 size. The limited extension of the MCP and
the camera thus limit the spectral window over which harmonics can be measured.
For this reason, all the detector system is mounted on a motorized translation stage,
which can be moved along the spectral focal surface of the grating in a circular
motion. This allows to collect radiation from a wider wavelength range, even if the
higher efficiency region is limited between 5 and 80 nm.
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3.2 UDynI laboratory

3.2.1 Laser system

The oscillator in UDynI is a Ti:Sapphire laser system (Femtolaser Synergy), with
central frequency λ = 800 nm, pumped by a intracavity frequency doubled Nd:YLF
CW laser (Laser Quantum) and delivering 40 fs pulses with an energy of 6 nJ and
a repetition rate of almost 75.28 MHz. The laser system as a whole was instead
developed by Amplitude Technologies. Initially the beam is temporally stretched
with a diffraction grating to enter three cascade CPA amplification stages. Before
them, an acousto-optic modulator (Dazzler, Fastlite) acts as a grating allowing to
introduce high-order dispersion terms in the pulses in order to facilitate their ampli-
fication and to reduce their temporal duration by pre-compensating the dispersion.
Moreover the repetition rate is lowered to 1 kHz through a pulse selection device.
The first amplification stage is a regenerative amplifier with a cooled Ti:Sapphire
medium pumped by a frequency doubled Q-switched Nd:YLF laser (Evolution,
Coherent). In the cavity an acousto-optic device (Mazzler, Fastlite) introduces
frequency-selective losses and thus allows to maintain the spectral shape of the
pulse and to compensate for the gain-narrowing of the medium. This effect is
optimized using a procedure in which the beam after the regenerative cavity is
analysed with a spectrometer and a feedback loop is established in order to make
its spectral shape as similar as possible with respect to a reference one (Mazzler
loop). After this stage the pulse energy is up to 0.5 mJ and the spatial shape of the
beam is cleaned by the regenerative cavity. The second stage is instead composed
by a standard multi-pass amplifier allowing to reach few mJ of pulse energy. Here a
beam-splitter divide the output in two beams: a high-energy line (∼ 15 mJ), which
passes in the third amplification stage and is used for strong field experiments,
and a low-energy line (∼ 2 mJ), which enters in a independent compressor and is
used for terahertz and ultrafast spectroscopy experiments. The third amplification
stage is a multi-pass system where the amplifying medium is cooled to −135◦C
with a closed-circuit helium cryostat. This allows to limit thermal effects while
amplifying high intensity pulses up to 17 mJ. To avoid condensation, the system
operates in a small vacuum chamber with the employment of a ionic pump. After
the amplification section a pair of facing cooled diffraction gratings are used to
compress the duration of the pulses down to almost 25 fs.

3.2.2 Generation and detection chambers

Afterwards the beam enters through an iris, used to tune the focusing condition in
the experiments, and a small window into the generation and detection chambers,
where high vacuum (≈ 10−6÷7 mbar) is maintained by means of turbomolecular
pumps. Here a mounting is used to hold the chip used for the experiments of
high-order harmonic generation in microchannels. Three motorized slits (Micronix)
allow to remotely move it along all three Cartesian axis from a computer even
when the chamber is sealed to maintain the vacuum. Onto the chip mounting a
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swage-lock jack is positioned with UV-glue and Teflon tape to allow the gas supply
in the channel. The flow is controlled from outside the chamber by a leak valve
and a pressure gauge. When needed the chip can be removed to make space for
a pulsed electromagnetic valve (Parker Corporations, series 9). This has a nozzle
diameter of around 500 µm, operates at a repetition rate of 20 Hz and can be used
for comparison tests between the tight focusing and the guided geometry or to
perform other kinds of experiments.

The emitted radiation is then collected through a small iris to filter out the non-
collinear light into the detection chamber. Differently from the Ultras laboratory,
the spectrometer is here composed by two toroidal mirror and a final SVLS grating
at grazing incidence. This allows to have an intermediate focus between the first
two mirrors, which is useful when a target is needed, for instance to perform pump-
probe experiments with attosecond pulses. Moreover the second toroidal mirror
is placed on a translational stage that hosts also a spherical mirror. Such spherical

Figure 3.4: View in the longitudinal plane of the setup in the generation and
detection chambers of the UDynI laboratory.

mirror, differently from the toroidal one, doesn’t focus the beam in the sagittal
plane and thus allows to characterize the divergence of the XUV radiation along
this direction. The final part of the spectrometer, composed by the SVLS grating
operates, instead, exactly in the same way as described in Section 3.1.2.

Figure 3.5: Sagittal view of the second mirror and the SVLS grating. a) Toroidal
mirror configuration: the beam is focused directly on the detector plane. b) Spherical
mirror configuration: a focus is present before the SVLS grating and the radiation
maintain a certain angle on the detector plane in this direction, which can be used
for evaluating the beam divergence.

Moreover, as in Ultras, the detector is a single-stage MCP-intensified CCD
with magnesium fluoride (MgF2) photo-cathode, an outside diameter of 40 mm,
a pore size of 10 µm and a pitch of 12 µm manufactured by Photek. In this case
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photoelectrons are accelerated inside the micro-channels by a voltage drop of 800
V and then by a voltage of 4.5 kV onto the phosphor screen. The CCD is instead a
low-noise level camera manufactured by Apogee with a sensor size of 1920x1080
pixels, which is cooled down to 35◦C below room temperature in order to further
limit the contribution of thermal noise.
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3.3 Femtosecond laser micromachining

Femtosecond laser micromachining (FLM) is a technique which allows to induce
permanent modifications in a transparent medium due to its nonlinear interaction
with a ultrashort laser pulse. In this way, it is possible to inscribe waveguides or
dig channels in the bulk of the material, with a control on the spatial parameters
down to the micron scale. The main advantage of such technique with respect to the
more traditional ones is the possibility to obtain arbitrary complex monolithic chips.
Indeed FLM is a truly 3D fabrication technique, differently from standard planar
technology in which the final device is obtained by subsequent layers. Moreover
the fabrication is performed only by the relative motion of the material with respect
to the laser focus and thus it doesn’t need the employment of complex masks.

In this section we will briefly present the FLM technique, with special attention
to the realization of the hollow structures exploited in this thesis, and the experi-
mental setup used to perform such fabrication. In particular, in Section 3.3.1 the
theoretical aspects of the interaction between short laser pulses and transparent
materials will be covered, while in Section 3.3.2 the working parameters important
for the fabrication process will be analysed. Finally, in Section 3.3.3 the laser system
exploited for the realization of the devices used in this thesis will be presented. The
experimental activity concerning FLM was performed by the group of Proff. R.
Osellame and R. M. Vázquez from CNR-IFN Milano.

3.3.1 Interaction of short pulses with transparent materials

When a laser in the NIR region of the spectrum interacts with a glass the direct
linear absorption of light is generally forbidden by the bandgap of the medium.
If ultrashort pulses are employed, however, the intensity in the focal region can
easily reach values above I = 1011 W/cm2, which is enough to trigger a nonlinear
response in the material. Under certain circumstances this can lead to the absorption
of the incoming radiation and a subsequent permanent modification of the medium
that is highly confined in space due to the nonlinear nature of such interaction. The
physical picture behind this process is not yet clear, but generally the dynamics can
be divided in three steps:

I. The laser locally ionizes the material, leading to the formation of free electron
plasma. In this way a lot of energy is deposited by the radiation in the focal
spot.

II. The system relaxes and the energy is released to the bulk.

III. Permanent modifications of the medium appear as the accumulated energy is
dissipated.

Strong field ionization has been already covered in Section 1.1.1. For the fabric-
ation parameters commonly used in FLM the value of the Keldysh parameter in
glasses is γ ≈ 1 so an equal contribution of MPI and TI is expected. However if
this were the case, the threshold intensity for optical breakdown would highly scale
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with the material bandgap, which is not observed in experiments [97]. Therefore
a third mechanism is actually responsible for plasma formation, that is avalanche
photoionization. This process starts with the liner absorption of the incoming ra-
diation by free carriers present in the conduction band of the medium, which are
thus subsequently accelerated. When these have enough energy, they may then
impact ionize other bound electrons. The process can then repeat itself continuously,
releasing more and more particles and increasing the free carrier percentage rapidly,
until plasma is formed. Note that this mechanism is not present in single atoms or
molecules but only in solids, since it requires the initial presence of free electrons in
order to seed the avalanche process. Generally these can be provided both by the
thermal excitation of defect states in the medium gap or by MPI and TI. Employing
femtosecond pulses with high peak intensity it is possible to trigger preferentially
the latter, allowing thus for a more precise and spatially selective machining. Indeed
this leads to a more deterministic optical breakdown with respect to avalanche ioniz-
ation seeded by defect states, which is instead highly dependent on the distribution
of impurities in the material.

After plasma is formed, the system releases the accumulated energy to the
lattice on a time scale of tens of picoseconds. For very short femtosecond pulses
the absorption and ionization processes are therefore efficiently decoupled from
the heat diffusion in the material, increasing the precision and confinement of the
induced modification. Depending on the working parameters, a different regime
can be triggered by the relaxation process [98]:

I. At low energies, just above the threshold to induce permanent modifications
(I ≈ 1011 W/cm2), a smooth refractive index change is obtained, due to the
local densification of the melted medium and the formation of color centers
[99, 100]. The material quality and transparency are maintained and thus this
regime is generally employed to write waveguides [101].

II. At intermediate intensities (I ≈ 1012 W/cm2) the formation of nanogratings
and cracks is observed, leading to a birefringent refractive index change [113].
This is the produced by an inhomogeneous dielectric breakdown and by the
growth of nanoplanes from the blending of different nanoplasmas. In this way
a selective etching of the material is possible, with the consequent creation of
buried channels in the bulk [103].

III. At higher intensities (I > 1014 W/cm2) the relaxation creates empty voids
surrounded by a higher refractive index cladding. This is due to the absorption
of a lot of energy by the plasma in a small time window, which induces
microexplosions and shock waves [104].

Owing to the purpose of this thesis we will now on concentrate mainly on the
second regime. In this case the formation of plasma in the focal volume of the
laser induces a local reduction of the material effective energy gap. The region thus
becomes a preferential absorbing site for the radiation and a positive feedback sets in,
leading to the initial formation of spherical-shaped nanoplasmas [108]. The electric
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field of the laser beam then enhances the energy deposit in a preferential direction,
perpendicularly to its polarization, breaking the symmetry of the nanoplasmas and
generating nanoplanes [109]. Afterwards, when the increasing electron density
in the material reaches the critical value for which the plasma frequency is equal
to the one of the incoming laser, the planes become effectively metallic and start
to influence the light propagation in the glass. In this way, the initially randomly
spaced nanoplanes turn into a parallel configuration with a separation of d = λ/2n,
where λ is the laser wavelength and n the material refractive index. For all these
reasons the interaction dynamics depends highly on the polarization of the incoming
field and it is a cumulative process rather then the effect of a single pulse.

Figure 3.6: Three different regimes of modifications induced by a femtosecond laser
in a transparent material. a) Smooth refractive index change. Image taken from
[105]. b) Birefringent refractive index change due to nanogratings formation. Image
taken from [106]. c) Empty voids in the material. Image taken from [107].

After the material is modified, hollow structures can be manufactured by means
of a technique called femtosecond laser irradiation followed by chemical etching
(FLICE) [97]. Indeed, silicon oxide is known to undergo a chemical reaction when it
interacts with hydrofluoric acid:

SiO2 + 4 HF SiF4 + 2 H2O

The nanoplanes created by the laser act as a stimulant for this reaction, since they
help the diffusion of the acid, and thus a selective etching of the material can be
achieved. Moreover, also an higher reactivity is expected from the irradiated regions
owing to the reduction of the length in the Si−O− Si bridge, which deforms the
oxigen valence electrons. For increasing the efficiency in the fabrication of the
hollow structures the temperature of the acid solution should then be optimized
and the material should be immersed in an ultrasonic bath allowing the fast removal
of the etched material from the capillary hole [110].

3.3.2 Working parameters

Many working parameters can influence the micromachining process and its final
result. One of the most important of them is the repetition rate of the laser source,
which needs to be compared with the characteristic time of heat transfer in the
medium. For fused silica such value is theat ≈ 1 µs and thus three main different
situations are possible:
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I. For frep ≈ 1kHz − 200kHz � fheat we are in the single pulse interaction
regime, as the region is heated and cooled many times when exposed to suc-
cessive pulses. The modification of the medium is therefore strongly affected
by the focal volume, resulting in an elongation along the propagation direction
of the beam. The writing speed is in this case low (≈ 10 µm/s) but the pulse
energy is big enough to allow only a mild focusing. Regenerative amplified
Ti:Sapphire systems are usually employed in this case.

II. For frep ≈ 200kHz− 4MHz ≈ fheat an intermediate regime is present, in which
both a discrete translational speed and a mild focusing can be achieved. Yb-
based lasers can thus be used, which deliver pulses with an energy content of
hundreds of nJ.

III. For frep > 4MHz� fheat we are in the multiple pulses interaction regime, as
the energy of different laser shots builds up in the region without the possibility
for heat to diffuse in the time interval between them. The accumulated heat
thus melts the material in a cylindrical symmetric region which extends much
over the focal volume and washes out the main dependences on the laser
spatial parameters. These repetition rates are achieved using long cavity
Ti:Sapphire lasers with low energy output in the nJ range. Therefore focusing
systems with a high numerical aperture must be used in order to obtain a high
enough intensity in the interaction spot. However fast writing speeds in the
range of some cm/s can be achieved.

Depending on the energy content of the pulses delivered by the laser source
different focusing conditions are thus necessary. Once the numerical aperture (NA)
of the focusing system is known, the waist radius and the Rayleigh length of the
beam in the material can be computed:

w =
M2λ

πNA
xR =

M2nλ

πNA

where M is the quality factor of the Gaussian beam. This is an empiric parameter
that evaluates the degree to which the beam can be focused for a given divergence
angle. These two parameters define the focal spot volume of the beam and thus
the material region that is modified by the incoming radiation. Deviations from
such values are mainly due to aberrations of the optical system, which are more
pronounced for high NA, and to the nonlinearities of the medium influencing the
focusing dynamics, such as Kerr effect and plasma defocusing. As a result, there is
a strong dependence of the micromachining process with respect to the considered
depth in the material [111, 112].

Moreover the fabrication can be influenced also by the velocity and the geometry
of the laser writing system. In particular the effective number of pulses provided
by the source can be computed as:

#pulses =
2w

vtranslation
frep
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which thus defines the effective energy deposited in the medium. Two main writing
geometries are present. When the movement of the sample is parallel to the beam,
the cross section of the modified region is regular and cylindrical symmetric due
to the Gaussian profile of the laser. However the maximum possible length of the
structure is limited by aberrations. For instance, in the case of a typical focusing
system with NA = 0.4 this limit is l ≈ 5 mm. When the movement of the sample is
perpendicular to the beam, the cross section is instead irregular and suffers from a
spatial asymmetry that may be evaluated as:

z
w

=
n

NA
This value for fused silica is in the range of ≈ 1.8− 6. However the maximum
length of the structure is no more limited.

In the particular case of the formation of nanogratings for FLICE purposes, also
the relative direction between the translation of the material and the polarization
of the laser is then important. Indeed, if they are parallel the nanoplanes will
be perpendicular to both and the diffusion of the acid will thus be obstructed
by the cracks, reducing the effective digging rate. On the other hand, if they are
perpendicular, the nanoplanes will be parallel to the sample writing and therefore
the etching rate will be enhanced.

Figure 3.7: Scanning electron microscope images of nanoplanes formed at a depth
of 65 µm. a) is for polarization direction perpendicular to the translation and b)
for an electric field of the laser parallel to the sample movement. The images are
adapted from [113].

Moreover the translation of the material can be in this case exploited to compensate
the tapering of the channel that is induced by the exhaustion of the acid. Indeed
the chemical reaction will be more efficient at the entrance of the hole with respect
to the bulk of the material due to the different acid concentration. The resulting
conic structure will thus show an apex angle that depends on the ratio between the
etching rate of the non-irradiated medium and the diffusion efficiency of the acid
in the nanoplanes. This angle is usually on the order of few degrees and can be
evaluated once the radius at the entrance hole Rc and the length of the channel Lc

are known:
α = tan−1

(Rc

Lc

)
for compensating it, the irradiation can thus be performed in a conical spiral with a
radius that increases with the material depth, as is shown in Figure 3.8. Sometimes
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to enhance the final effect also the spiral axis is irradiated. In this way the etching is
compensated by the inverse structure of the writing pattern. Moreover, if the electric
field is maintained perpendicular to the translational stage, then the nanoplanes are
parallel for different helices of the spiral and the acid can thus efficiently diffuse
between them.

Figure 3.8: Technique used to compensate for the conical shape of the hollow
channel. a) Schematic diagram of a conical spiral inscribed into the substrate. b)
In light blue representation of an uncompensated conical microchannel and in red
the compensating conical spiral. In dashed gray it is represented the expected final
compensated cylindrical capillary. Image taken directly form [114].

3.3.3 Fabrication apparatus

The fabrication of the nanostructures used in this thesis for the experiments of
high-order harmonic generation in hollow waveguides was performed in the FIRE
(Fabrication by Infrared laser Radiation Exposure) laboratory of the Physics De-
partment in Politecnico di Milano. The laser source in this laboratory is a com-
mercial Yb:KYW (Potassium, Yttrium and Tungsten garnet) system manufactured
by HighQLaser (FemtoREGEN) with a central wavelength of λ ≈ 1040 nm and a
tunable repetition rate up to ≈ 1 MHz. The oscillator is followed by a regenerative
amplifier that produces pulses with an energy content up to 23 µJ. In particular, the
maximum average power of the system is fixed at 8 W while three different output
configurations can be selected: 23 µJ for frep = 350 kHz, 16 µJ for frep = 500 kHz
and 8.3 µJ for frep = 960 kHz. After the amplification stage an electro-optic device
acts as a pulse picker, enabling the selection down to one pulse every 255. In this
way the final effective repetition rate can be tuned almost independently from the
energy content of the pulses, increasing thus the flexibility of the source. At the
end of such system pulses characterized by a duration of about 400 fs and a spatial
profile with FWHM of 3 mm are achieved.

After the femtosecond source a rotating half-waveplate followed by a fixed
polarizer acts as a power control unit, allowing to reduce the output energy for
matching the desired one in the fabrication process. Then a mirror placed on a
flip mounting allows to select between two paths. In one of them a LBO (Lithium
triborate) nonlinear crystal is used to produce the second harmonic through type
II phase matching [116]. An external temperature control unit is also employed
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for better tuning the phase matching conditions in the crystal. The second arm is
instead used to propagate the fundamental radiation in free space until a second
flip mirror where the two beams are made collinear. In particular, for the devices
used in this thesis only the second-harmonic beam was employed in the fabrication
process.

Figure 3.9: Sketch of the fabrication line in the FIRE labortory. Image taken directly
from [115].

Following this stage an electro-mechanical shutter controlled from computer
is used to synchronize the translation of the sample with the laser exposure time.
The beam is then steered by a sequence of high-reflectance mirrors on the top of a
3D translation stage, where the sample is fixed on an horizontal plate that can be
precisely moved in all three directions. The laser can thus inscribe the glass from
above after going through a beam shaping stage and a focusing objective (NA=0.85).
For diagnostic purposes a CCD camera is placed on top of the whole system to
image the radiation that is back-reflected from the sample. This allows to align the
writing beam with respect to the chip edges and surfaces with very high precision
and reproducibility. The translation stage of the horizontal plate is placed on air
bearings with electric brushless motors, allowing low friction even at high writing
speeds. Its three axis can be moved up to 15x10x5 cm in x, y and z respectively with
a maximum speed of 15 cm/s.

The etching process is instead performed in a dedicated fume hood for the
handling of HF acid, which ensures the quick removal of toxic fumes. The acid is
diluted in deionized water for reaching the wanted concentration and the chip is
then immersed in it using a polymer-protected beaker. An ultrasonic bath is also
employed to facilitate the removal of the exhausted acid from the sample’s hole
and to enhance the chemical process along with a temperature control system. For
monitoring the etching process in real time an optical microscope is present in the
laboratory. Finally the sample is rinsed for several minutes in another ultrasonic
bath with deionized water and isopropyl alcohol to clean it from the acid solution
before being used.



CHAPTER4
Results and discussion

4.1 Molecular alignment

In this section we will present the results of the molecular alignment experiments
performed in Ultras, starting from a simple linear rotor such as CO2 and moving to
more complex systems such as ethylene, which is an asymmetric top molecule. The
alignment was performed using a 800 nm pulse, while harmonics were generated
by a 1450 nm beam, employing the setup discussed in Section 3.1. The synchroniz-
ation between the two pulses was obtained both by measuring the generation of
XUV continuum due to the temporal coincidence of the two fields and by checking
their overlap in the far field. The valve backing pressure and position were instead
optimized each time in order to maximize the harmonics’ signal and the cutoff,
while avoiding the clusterization of the molecules. For each molecule some scans
were acquired as a function of the time delay between the aligning and the driving
pulses using two motorized slits controlled through a Labview program developed
by the group. When needed, the detector was also moved along the focal surface
of the SVLS grating using a translation stage in order to cover multiple spectral
regions.

In Section 4.1.1 we will present the procedure employed to calibrate such meas-
urements both in frequency and in intensity, focusing in particular on the problems
arising when connecting spectra taken at different detector positions. Each one of
the studied molecules will then be covered in a separate section in order to outline
the main results that were achieved with the data analysis.

4.1.1 Measurement calibration

The energy axis of the measurements was calibrated acquiring spectra in all the
bandwidth of interest with Ne as generating medium and looking at the recurrence
between the first and second order of the spectrometer. In particular, the fitting
between the experimental results and the grating equation was performed with
a Matlab code developed by Dr. D. Faccialà for obtaining the conversion relation
between camera pixels and photon energies. The signal was also corrected by the
Jacobian J = dpixels/dE in order to maintain constant the integral value of the
harmonic intensity after the transformation of the axis.

When an extended bandwidth was acquired, acquisitions at different CCD
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position had then to be connected. However, it is not possible to do this directly, even
after the energy axis has been calibrated in all the regions. Indeed, the responsivity
of the detector may depend on the considered pixel, thus deforming the shape of
the harmonic spectrum between different acquisitions. In order to overcome this
issue, we decided to exploit the small steps allowed by the motorized translational
stage of the CCD. When the harmonic signal S(ω) is sampled in two very close
detector positions, the spectrum is shifted on the camera by a small quantity ∆x,
measured in pixels, along the horizontal axis. The detected intensity D(x, ω) at the
two positions can thus be written as:

D1(x, ω) = S(ω)A(x)R(ω)

D2(x, ω) = S(ω)A(x + ∆x)R(ω)

where A(x) and R(ω) are two functions accounting for the responsivity of the
detector as a function of respectively the considered pixel position and the incoming
radiation frequency. Performing easy mathematical steps, it is thus possible to
construct an incremental ratio for A(x), which can be approximated to a derivative
for very small ∆x:

D2(x, ω)− D1(x, ω)

D1(x, ω)∆x
=

A(x + ∆x)− A(x)
A(x)∆x

≈ 1
A(x)

dA
dx

This differential equation can be easily solved to obtain an analytical expression for
the detector responsivity with respect to the pixel position:

ln[A(x)] =
∫ D2(x)− D1(x)

D1(x)∆x
dx → A(x) = exp

{∫ D2(x)− D1(x)
D1(x)∆x

dx
}

(4.1)

where the constant term has been dropped since it represents only an overall scaling
factor. This procedure allows thus to recover the responsivity function A(x) and
to calibrate the harmonic intensity in different spectral windows taking just two
acquisitions at very close detector positions. However, it is important to underline
that this method includes a lot of assumptions that may compromise its reliability.
Fist of all, the definition of the incremental ratio is possible only as long as the
detector responsivity can be factored out in the simple product of A(x) and R(ω),
so that the latter can be simplified. Physically this means that every pixel of the
detector should have exactly the same spectral responsivity. This is usually not the
case since, even if it is mainly determined by the physical design of its sensitive ele-
ments, some variability is always present in the manufacturing process. However,
as a first approximation, this assumption may be considered true and its validity
can then be checked a posteriori by the good outcome of the calibration procedure.
Secondly, in order to limit the error in the approximation of the incremental ratio
with a derivative, the translational step ∆x should be small enough. For this reason
the experimental setup must be able to deliver very tiny and precise movements of
the detector, as in our case. Moreover, owing to this approximation the final result
may also happen to depend somehow on the particular choice of ∆x, even if we can
expect this effect to be limited as long as the step is not too big. The last problem
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arises then from the fact that the procedure is actually performed only on one of the
dimensions of the detector. Indeed the radiation is focused in both the tangential
and longitudinal plane onto the detector and the signal is then integrated along
the vertical axis within a restricted region of interest (ROI) where the spectrum is
concentrated. This is done to correct from the possible residual divergence of the
harmonics. In this way, the final responsivity function is accounting only for the ho-
rizontal pixel position at a fixed detector line. In various acquisitions, however, the
signal may lie along a different pixel row due to the changing of the experimental
conditions. Therefore, strictly speaking, the found A(x) is not a universal respons-
ivity function and it may be necessary to apply this procedure before every scan in
order to get precise results. Moreover, the slits of the translation stage are expected
to have some roughness and for this reasons the two spectra used to derive A(x)
may move along directions that are quite different from the perfectly horizontal
one. Owing to the fact that the integration is not performed in two dimensions, this
information is thus inevitably lost during the analysis, introducing some further
error in the final expression of the responsivity function. It is possible to speculate
that this problem may be reduced by the initial integration taken along the vertical
direction of the ROI, which somehow averages the behaviour of the pixels. Anyway
we still expect this to be one of the limiting factor of the procedure.

During our first attempts to apply this method the second issue was the pre-
dominant one. Indeed the final result was found to be quite sensible not only
on the particular choice of ∆x but also on the absolute positions of the detector
in the two considered acquisitions. Some improvements were made consider-
ing a set of discrete data given by the integration of each harmonic in a window
[h̄ω f (q − 1); h̄ω f (q + 1)] around their peak instead of the whole spectrum and
substituting D1(x) with the average value [D2(x) + D1(x)]/2 in the denominator
of the incremental ratio. The latter was done as for ∆x → 0 the denominator is
expected to be independent on the particular choice between D1(x) and D2(x) since
A(x) ≈ A(x + ∆x). The integration around the peak of each harmonic was instead
done to reduce the influence of the signal basement and to correct for the different
focusing of the radiation at the two detector positions. Indeed the spectral focal
curve of the grating has a complex shape while the MCP is moved along an almost
perfectly circular trajectory, as exposed in Section 3.1.2. For this reason, the same
harmonic is focused in a different way for every detector position and thus its
intensity distribution shows a different width on the camera. However, even after
these corrections, some important discrepancies were still present in the shape of
spectra taken in different frequency windows after being calibrated using A(x).

Therefore another procedure was followed for further improving the results
of the calibration, in which a larger number of acquisitions at different detector
positions was considered. In this way, following the motion of the spectrum on
the CCD, a 2D map representing the detected intensity as a function of harmonic
energy (vertical axis) and pixel position (horizontal axis) was built (see Figure 4.1).
For an ideal detector, the values along each line of such matrix would be constant,
while this is not the case for real ones, as their responsivity will change with the
considered pixel. In this optics if a given harmonic covered all the detector width
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during the movement of the translation stage, the responsivity function would
be directly obtained from its intensity modulation. Anyway, due to the limits in
the cutoff extension and in the excursion of the slits, such matrix is generally not
completely covered during the measurements.

Figure 4.1: 2D map of the detected intensity as a function of harmonic energy and
considered pixel. The values are given in arbitrary units.

The incremental ratio [A(x + ∆x)− A(x)]/[A(x)∆x] as a function of the harmonic
order was obtained subtracting every two neighbouring columns of the matrix and
dividing the result for their mean value. In this way the minimum possible value
for ∆x is used in the computation, which is one pixel, in order to limit the main
issue affecting the previous attempts. The result was then used as the term in the
exponent of Eq.(4.1) to retrieve another matrix, which represents for each row the
value of A(x) sampled by the correspondent harmonic. Finally, the responsivity
function was obtained by averaging along the vertical axis all these values, which
showed a similar functional behaviour up to a constant factor. The result is thus
dependent only on the considered pixel and is expected to be rather robust. Indeed
in the framework of this approach every harmonic can be thought of as a probe
of the underlying pixel responsivity, with each row of the matrix representing an
independent measurement of such function, even if in a restricted region of the
CCD. In this way by averaging them the possible noises in the expression of A(x)
are reduced.

The result found analysing the harmonic emission from Ar atoms with a driving
field of wavelength λ f = 1450 nm is shown in Figure 4.2. As can be seen, the
responsivity of the detector is stronger for higher pixel positions, which correspond
to the low-energy part of the spectrum, probably due to wear. Therefore, for a fixed
harmonic order the signal decreases when the detector is moved towards regions
of lower energies, as was already quite visible in Figure 4.1. A small correction
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was also performed on A(x) for low pixel positions (x ∈ [0, 242] in Figure 4.2),
substituting the converging to zero behaviour with a constant plateau. Indeed this
region of the computed responsivity is not reliable, since it is the starting point
of the numerical integration and the signal is here randomly cut by the detector
edge. This is due to the fact that in the experimental practice when the detector
was moved we always checked that the lower-order harmonic was completely
inside the screen before acquiring the data. In this way the higher-order one was
always randomly placed with respect to the detector edge. For the same reason
a plateau-like behaviour is present also in the high-pixel region of the detector
(x ∈ [1200, 1343] in Figure 4.2), as in this case it is linked to the absence of sampled
signal in this region of the camera.

Figure 4.2: Functional behaviour of A(x) found analysing with the described
method a series of acquisitions at different detector positions of high order harmon-
ics from Ar atoms generated by λ f = 1450 nm.

However it is important to underline that the calibration procedure here proposed
still suffers from two of the three issues underlined before. Indeed the necessity
to suppose its responsivity as a product of a pixel-dependent and a frequency-
dependent function is the unavoidable starting point of such approach, even if it is
not always an adequate description of the system. We have also implicitly assumed
that spectra acquired at very different positions of the detector would lie along the
same row of the camera or at least that there is a negligible dependence of A(x) on
the vertical axis of the MCP, which is also not reasonable. Moreover, it doesn’t allow
to retrieve absolute intensity values for the spectra, as the function A(x) is defined
up to a multiplying constant due to the integral step in its derivation. Anyway, the
results obtained in this thesis are quite encouraging regarding the applicability of
this procedure. As an example, the calibration performed for three acquisitions in
Ar with a driving field of λ f = 800 nm is shown in Figure 4.3. Improvements are
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rather clear, with corrected spectra that fit much better than the raw ones, even if
discrepancies are still present for some harmonic orders.

Figure 4.3: Normalized harmonic spectra acquired in Ar with λ f = 800 nm at three
different detector positions. a) Raw data where only the spectral axis is calibrated.
b) Spectra corrected also for the pixel-dependent response of the detector.

Until now we have only considered the calibration of the measurements with
respect to the pixel position on the detector. However this is usually not enough
when performing HHS studies, as the spectrum should also be as close as possible
to the real emission in the interaction region. For this purpose we need to retrieve
the spectral responsivity of the whole spectrometer, which can be divided in three
main parts: the toroidal mirror, the SVLS grating and the MCP. A characterization
of them was previously performed by the group but only in the high-energy region
of the spectrum [95] and the extension of such analysis also to lower frequencies is
not trivial. Indeed both the toroidal mirror and the SVLS grating are designed to
reach very high performances only in the range of λq ≈ 5− 40 nm and therefore
the manufacturers don’t provide any characterization of their behaviour outside
this spectral window. Regarding the MCP, instead, the spectral responsivity data
provided by Photek range in a pretty broad region of experimental error to account
for the high manufacturing variability. Since it was not possible to perform an accur-
ate experimental characterization of the detection system, an heuristic approach was
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thus employed for obtaining a spectral calibration. In particular, the responsivity of
the grating and the toroidal mirror were assumed to be flat in the low-frequency
region, extending the last point available from the previous data. This is expected
to be a better approximation for the latter, as its previous characterization shows a
plateau-like behaviour below λq = 30 nm, while the responsivity for the grating is
almost linearly increasing in all the available spectral region. On the other hand, for
the MCP an average behaviour was extrapolated from the manufacturer data, which
was then joined to its characterization at higher energies. A linear interpolation
between data points was preferred over more complex ones, such as cubic or spline,
in order to avoid problems related with the function crossing the zero axis. The
spectral responsivity of the whole spectrometer retrieved in this way is presented
in Figure 4.4.

Figure 4.4: Spectral responsivity of the whole detection system. Below 40 nm the
data are given by the already available characterization while above this value they
are obtained heuristically from the assumptions presented above.

The overall efficiency of the detection system is lower at higher wavelengths,
as it is reasonable from the initial purpose of its design. The validity of such
heuristic approach and of the assumptions we had to made in order to retrieve this
spectral responsivity are clearly objectionable. However the extended behaviour
fits quite well the previously available one and the results obtained in this thesis
seem reasonable. Further studies will then allow in the future to obtain a more
precise and reliable characterization of the detection system.

4.1.2 Carbon dioxide

Carbon dioxide is a simple linear molecule, whose harmonic emission as a function
of its alignment with respect to the driving field has been extensively studied in
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the last decade. In particular, it is characterized by a polarizability anisotropy of
∆α ≈ 2.3 · 10−40F/m2 (α‖ ≈ 4.3 · 10−40F/m2 and α⊥ = 2 · 10−40F/m2) and a ro-
tational constant of B ≈ 48 µeV, thus showing a revival period of trev = 42.8 ps.
Moreover, due to the fact that the Oxygen atoms show a fixed nuclear spin S = 0,
the aligning pulse can only excite rotational states with an even value of J and in
this way both half and quarter revivals are visible in the dynamics of its

〈
cos2 θ

〉
.

However in our measurements we focused only on the temporal region around
its first half revival, as our main interest was to collect its extended spectrum for
performing a tomographic reconstruction of its HOMO orbital.

The possibility to perform molecular tomography from the emitted high-order
harmonic radiation relies on the description of HHG given within the Lewenstein
model. In this framework the intensity spectrum is proportional to the modu-
lus squared of the Fourier transform of the recombination dipole matrix element
between the bound molecular orbital |Ψ0〉 and the countinuum wave-packet, de-
scribed as a superposition of plane waves (see Section 1.2):

IXUV(ω) ∝ ω4
∣∣∣F{ 〈Ψ0|d |Ψc〉}

∣∣∣2 =
ω4

(2π)3

∣∣∣∫ dteiωt
∫

dk 〈Ψ0|d |ei(kz−ωet)〉 e−iIpt/h̄b(k)
∣∣∣2

where z is assumed as the polarization direction of the driving field, following the
convention of the previous chapters, and the recombining plane wave is approxim-
ated as being perfectly parallel to it. The integration in the temporal domain can be
solved quite easily, as it fixes only the energy conservation upon recombination:

IXUV(ω) ∝
ω4

(2π)3

∣∣∣∫ dk 〈Ψ0|d |eikz〉 b(k)δ(ω−ωe − Ip/h̄)
∣∣∣2

The wave vector of the recombining electron is then linked to ωe through its disper-
sion relation:

ωe =
h̄k2

2me

For this reason, exploiting the delta function it is possible to compute also the
integration in the wave vector space:

IXUV(ω) ∝
ω4

(2π)3

∣∣∣b(k) 〈Ψ0|d |eikz〉
∣∣∣2 with h̄ω =

h̄2k2

2me
+ Ip

The emitted spectrum can thus be considered as a spatial Fourier transform of the
molecular orbital multiplied by the electric dipole up to the continuum wave packet
amplitude, which includes both the steps of tunnel-ionization and electron propaga-
tion in the continuum. Provided that b(k) can be evaluated in some independent
way, the measurement of the high harmonic radiation can therefore be used to
retrieve the 1D projection of Ψ0 in a direction parallel to the returning electron,
exploiting Fourier slicing theorem. Therefore, if the relative orientation between the
driving field and the molecular axis is controlled, the whole 2D projection of the
molecular ground state wavefunction can be reconstructed. The first experimental
demonstration of this technique was performed by J. Itatani et al. in 2004 [117], with
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the tomography of the N2 HOMO (see Figure 4.5). In this work the amplitude of
the continuum wave packet was determined using as a reference the emission of a
noble gas with ionization potential similar to the one of the molecule, namely Ar.
Indeed the electron wave packet is expected to be essentially the same in the two
cases up to possible alignment effects (see Section 2.1.1), as it is mainly determined
by the external field and the ionization potential of the system.

Figure 4.5: Molecular orbital of N2. a) Reconstructed wavefunction using harmonic
spectra from 19 different alignment angles. b) Orbital shape computed from ab
initio calculations. The color scale is the same for both graphs. The image is adapted
from [117].

Other two assumptions were then made by Itatani et al. in the development of
such tomographic method. In order for the reconstruction to be possible, some
information about the phase of the emitted field needed to be known. Since the
measurements detected only the intensity of the radiation, a relative phase was
introduced from first principles, exploiting the π shift expected from the two-center
interference present at the 25th harmonic. Moreover it was also necessary to assume
that only the HOMO contributed to the emission and that the macroscopic spectrum
could be directly related to the one of the single emitter. The first hypotesis was
supported by the exponentially decrease of the ionization rate with Ip, while the
second issue was overcome by artificially assuming that all the molecules were
perfectly aligned in a fixed direction, neglecting in this way any angular distribution
in the ensemble.

This approach is however limited only to small molecules by many factors.
First of all, as we already discussed in Section 2.1, for bigger systems the Coulomb
field of the parent ion greatly affects the recombining electron wave packet, which
can no more be treated using the simple plane-wave approximation. Moreover,
multi-electron effects start to play an important role and this procedure is not able
to disentangle their contributions in the detected spectrum. In principle also the
angular distribution of the molecules in the ensemble cannot be neglected. Finally,
the necessity of an independent phase measurement may be a non trivial task. In
order to overcome these limitations, in 2011 C. Vozzi et al. proposed a different
method for the reconstruction of the HOMO in complex molecules [57]. A detailed
analysis of such procedure is beyond the scope of this thesis and therefore it will
be presented only briefly, while for a more detailed treatment one could refer to
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[118]. In particular, the most important difference with respect to the tomographic
approach proposed by Itatani is that the macroscopic XUV spectrum is considered
as a function of the whole angular distribution in the molecular ensemble:

I(ω, τ) =
∣∣∣∫ π/2

0
H(θ, ω)P(θ, τ)dθ

∣∣∣2 (4.2)

where H(θ, ω) is the high harmonic field emitted by a single molecule perfectly
aligned at an angle θ, P(θ, τ) is the angular distribution of the molecular axis at time
τ during the revival and the integration is performed to account for the coherence of
the generation process. This equation only assumes that macroscopic effects give a
negligible contribution to the detected spectrum, which can be generally reasonable
for a gas jet geometry, and that the angular distribution of the molecules is uniform
with respect to the transversal direction of the beam. Since the temporal evolution
of P(θ, τ) is known from numerical simulations of the alignment dynamics, if
enough data are available at different τ it is then possible to extract the single
emitter response from the detected spectrum. This is done employing a retrieval
algorithm developed by the group, which is based on Kaczmarz method. However,
this approach is able to determine the phase of the emitted radiation only as a
function of θ for a fixed photon energy. Therefore, for a complete reconstruction
the single emmitter spectrum, the harmonic phase as a function of ω needs to be
know at least for a given time τ. This can be done both by theoretical predictions
on the system or experimentally by standard techniques such as the reconstruction
of attosecond beating by interference of two-photon transitions (RABBIT) [119].
The retrieved single emitter spectrum can then be used to perform molecular
tomography as proposed by Itatani, after the plane-wave term is corrected with
a first-order perturbation theory in order to account for the Coulomb field of the
parent ion [120]:

|kθ〉 ≈ eikz
[
1− i

k

∫
dzVCou(r, θ)

]
(4.3)

where VCou is the electrostatic potential of the molecular cation. Finally, in order
to filter out the contribution of multi-electron effects, few-cycle mid-IR pulses can
be employed (λ f = 1450 nm, ∆t ≈ 20 fs), as already discussed in Section 2.1.3. For
instance, this procedure was applied in the reconstruction of the carbon dioxide
HOMO, which is presented in Figure 4.6. Even if the retrieved orbital agrees pretty
well with the numerical calculations, some artifacts are present in the image. These
are due to the high-pass Fourier spatial filtering of the wavefunction caused by the
limited range of harmonics that were measured, as only the region of the spectrum
above 35 eV was acquired. Therefore one of the main goal for improving such result
was the extension of the analysis to lower energies.

For this reason we took two acquisitions of the spectrum at different detector
positions, exploiting then the calibration procedure exposed in the previous section
to connect the data. The measurements were performed around the first half revival
from τ = 19.4 ps to τ = 22.52 ps with a step of ∆τ = 40 fs for studying the whole
alignment dynamics of the molecule. For each one of these steps an integration
over 400 laser pulses was performed. The backing pressure of the gas jet was set to
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Figure 4.6: Representation of one of the two denegerate molecular orbitals of CO2. a)
Reconstructed wavefunction using the presented tomographic approach. b) Shape
of the HOMO of CO2 as computed from ab initio calculations with a quantum
chemistry program. The color scale is the same for both graphs. The image is
adapted from [57].

4 bar for maximizing the harmonic signal and the cutoff extension, while avoiding
the clusterization of the molecules. The results of the procedure are presented in
Figure 4.7 for a fixed time τ = 21.6 ps in the revival dynamics. The calibration with
respect to the pixel-dependent responsivity of the detector A(x) already allows
to correct pretty well the shape of the spectrum (b in Figure 4.7). In particular,
the region just above 30 eV, which in the raw data showed a different behaviour
in the two measurements, became much more similar after the calibration. Some
discrepancies instead are still present in the absolute values of the harmonic peaks,
probably due to the issues already exposed in Section 4.1.1. Anyway these are quite
small if compared to the raw data. The spectra were joined at 24.6 eV, which is a
minimum between two harmonics, and were calibrated for the spectral responsivity
of the whole detection system to get the extended spectrum of CO2 (c in Figure
4.7). Finally, a smoothing of the data over 10 points was performed below 20 eV
for reducing the fast noise caused by the limited sensitivity of the system at these
energies.

Spectra from different τ were then collected in a matrix in order to show the
whole revival structure as a function of the harmonic energy (x axis) and the
delay between the aligning and the generating pulses (y axis). Each harmonic
was also integrated around its peak for increasing the signal to noise ratio before
presenting the results. In particular, the integration was performed in an energy
window of −+0.14 eV, which is narrower than the distance between each peak and
the neighbouring minimum h̄ω f ≈ 0.855 eV. This choice was done for filtering out
the contribution of the second order of the spectrometer, which is visible below
20 eV. The obtained scan is showed in logarithmic units in Figure 4.8. The first
thing that can be observed from it is that the harmonic cutoff is not constant along
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Figure 4.7: Calibration of the measurements taken in CO2 for a time τ = 21.6
ps in its revival dynamics. a) Raw intensity data collected in the two spectral
regions. b) Same spectra calibrated for the pixel-dependent responsivity A(x) of
the detector. c) Comparison between the extended spectrum calibrated only for
the pixel-dependent responsivity of the MCP (teal) and the one calibrated also for
the spectral responsivity of the whole detection system (yellow). The spectra are
normalized to the number of driving pulses.
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Figure 4.8: Intensity map of high-order harmonics generated around the first half
revival in CO2 with a driving wavelength of λ f = 1450 nm normalized to the
number of driving pulses. Logarithmic units have been used.

the rotational dynamics. In particular it is lower (≈ 60 eV) far from the revival
structure and is higher (≈ 85 eV) during both alignment and antialignment. It is
important to underline that this effect cannot be simply explained as a dependence
of the harmonic amplitude with respect to the molecular orientation, since this
usually implies only an intensity scaling factor. For instance, this is the case for
the overall intensity quenching during alignment with respect to antialignment1,
due to the presence of the HOMO nodal axis along the polarization direction of the
driving field [121]. A more reasonable description for the cuoff recession has been
previously given in terms of the coherent build up of the XUV field in the target.
Indeed in CO2 a phase shift of ≈ π is present in the emitted radiation between
molecules aligned at low (θ < 40◦) and high angles (θ > 40◦) with respect to the
driving field [122]. For this reason, far from the rotational revival such contributions
will interfere destructively, resulting in an lower cutoff.

Another visible feature in the scan is the sharp minimum, whose position is
modulated by the revival structure and which has been previously attributed to
a two center interference effect [77]. Indeed, the πg HOMO of CO2 is formed
exclusively from the 2p orbitals of its oxygen atoms and therefore these can be
treated as natural centres for the radiation emission. Following the treatment
developed in Section 2.1.3 and exploiting the principle of energy conservation
upon recombination, an expression for the structural minimum as a function of the
alignment angle can be retrieved:

h̄ωmin =
2π2h̄2

meR2 〈cos2θ〉
+ Ip

1It is important to underline that this cannot be linked only to the alignment dependence of the
ionization step. Indeed in the case of carbon dioxide this is maximized for θ ≈ 45◦.
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where R = 0.232 nm is the distance between the two oxygen atoms in the molecule.

Figure 4.9: a)Evolution of the alignment parameter 〈cos2θ〉 during the first half
rotational revival. The computation was performed for an aligning pulse with para-
meters λ f = 800 nm, ∆t = 100 fs, I = 4 · 1013 W/cm2 and a rotational temperature
TK = 75K. The numerical simulation is taken from [57]. b) Theoretical position of
the structural minimum as a function of the delay between the aligning and driving
pulses.

In this expression a formal substitution cos2θ →
〈
cos2θ

〉
has been made to account

for the whole angular distribution of the molecules in the ensemble. The values
of the alignment parameter and the minimum position computed in our usual
experimental conditions are represented in Figure 4.9. From the graphs it is possible
to observe that the position of the minimum shows an inverse behaviour with
respect to the alignment parameter, as the De Broglie wavelength of the recombin-
ing electron needs to fit the projection of the molecular axis along the polarization
direction of the external field. In the scan of Figure 4.8 the structural interference
is well predicted by this equation during alignment, while we are not able to see
its full dynamics during antialignment as the cutoff is too low. Indeed, using the
semiclassical equation we obtain a theoretical cutoff of h̄ωcutoff ≈ 85 eV for a driving
wavelength of λ f = 1450 nm and a peak pulse intensity of around I f ≈ 1÷ 1.2 · 1014

W/cm2, which is in good agreement with the OPA system in our experimental
conditions.

Another feature of the scan is the existence of a clear intensity peak around
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27 eV (31th harmonic). This shape was present also in other acquisitions, even if
its exact position was found to slightly change from day to day. Therefore, it is
reasonable to suppose that this is an effect of the phase matching conditions in the
interaction region. In our acquisitions the gas pressure, the focusing conditions
and the position of the valve are fixed. In this way, for every harmonic order there
exists a given ionization fraction that allows to minimize the phase mismatch ∆kq.
Since higher harmonics are generated only near the peak of the driving field, they
experience a faster change of the medium ionization and so the temporal window
over which phase matching is favourable becomes narrower. This could explain
why the peak in the spectrum is always found near rather low energies. However, a
more precise evaluation of macroscopic effects would require the exact knowledge
of all the experimental parameters in the interaction region, which was not available
during our measurements.

A final interesting feature is the presence of two minima in the spectrum at
around 13.34 eV and 16.7 eV, which seem not to be modulated by the revival struc-
ture. Moreover, they could be observed at only slightly different positions in every
acquisitions, with a maximum drift of ≈ 1.7 eV. We are not able to provide a reason-
able and exhaustive physical interpretation for this observation, as the lower-energy
region of the spectrum is not well studied in literature and the mechanism behind
the harmonic generation in this spectral window is not well understood. Indeed
these minima lie approximately in correspondence of the ionization potentials of
the molecular HOMO (≈ 13.66 eV) and HOMO-1 (≈ 17.5 eV), which are the limits
of the strong field interaction when considering the emission from these orbitals.
For this reason, the harmonics generated here are expected to show also a con-
tribution from the perturbative regime. If a pure SFA picture were employed to
predict the response of the system, a quenching of the signal would be expected in
correspondence of Ip due to energy conservation upon recombination. Indeed as
h̄ω ≈ Ip we have that k → 0 and thus the returning electron cannot be described
by any propagating plane-wave. However, as we previously discussed, the SFA
picture cannot be a reliable description for HHG in this spectral region, as the
influence of the ionic field breaks the fundamental assumptions of such approach.
A more precise theory of harmonic emission at these low energies should therefore
be able to explicitly account for both the Coulomb potential of the cation and for the
deformation of the molecular energy levels induced by the presence of the strong
field. Indeed, other possible explanations may also involve some polarization ef-
fects induced by the external field, some intermediate resonances or the excitation
of Rydberg states in the molecule. Further studies are thus needed in order to
understand the physical picture in this spectral region.

4.1.3 Allene

1-2 propadiene (hereinafter named simply allene) is a symmetric top molecule,
whose structure is represented in Figure 4.10. From a nuclear point of view it is
a prolate rotor with the three rotational constants which are A = 596.4 µeV and
B = C = 36.7 µeV, thus showing a revival period of trot ≈ 55.6 ps. From an elec-
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Figure 4.10: Molecular structure of allene. a) Nuclear arrangement of the molecule.
The three principal rotational axis are represented in blue. b) Structure of one of its
two degenerate HOMO.

tronic point of view, instead, its doubly degenerate HOMO shows πu symmetry and
is characterized by a rather low ionization potential Ip = 9.692 eV. Regarding the
possibility to align well the molecule with respect to its a axis, it is ensured by the
pretty high anisotropy of its polarizability ∆α ≈ 4.9 · 10−40 F/m2. The nuclear spin
for each hydrogen atom is S = 1/2 while for the carbon atoms is S = 0. Sixteen pos-
sible nuclear spin states are thus allowed in the molecule, of which seven are even
and nine are odd. Since each allowed symmetry operation involves the exchange of
one couple of fermionic hydrogens, the product of the nuclear and the rotational
wavefunctions needs to be antisymmetric. For this reason the initial ratio between
rotational states with even and odd values of J is set to 9/7. However it is important
to remember that this ratio won’t be conserved by the interaction with the aligning
field, as in the case of symmetric rotors the selection rule ∆J = −+1,−+2 allows to
couple rotational states with different parity [90]. Therefore a full description of
the alignment dynamics, such as the presence of partial revivals and their relative
strength, would require a complete numerical analysis of the interaction.

Anyway, since our measurements had essentially an exploratory aim, we fo-
cused only on the first half revival, scanning the whole rotational dynamics from
τ = 26.5 ps to τ = 30.25 ps with a step of ∆τ = 50 fs. Each spectrum was ac-
quired integrating over 400 laser pulses, while the gas pressure in the gas jet was
maintained at 0.6 bar. Differently from the case of carbon dioxide, however, only
one spectral window was studied. The final result, calibrated for both the spectral
and the pixel-dependent responsivity, is presented in Figure 4.11. The only main
difference in the calibration procedure with respect to the one used for the analysis
of CO2 is that in this case the integration around each harmonic peak was performed
in a wider region −+0.4 eV, as there were no issues linked to the presence of the
second order of the spectrometer.

The effect of the cutoff recession seems to be far smaller with respect to the
case of carbon dioxide. The cause of this difference could be a lower alignment
efficiency in the allene ensemble, but this is not reasonable as the anisotropy of
its polarizability is greater than the one of CO2. Thereore a better explanation
could probably be found in a lower dependence of the harmonic phase on the
molecular orientation. However, this speculation should be supported by further
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Figure 4.11: Intensity map of high harmonics generated around half revival in
allene, with a driving wavelength of λ f = 1450 nm normalized to the number of
driving pulses. Logarithmic units have been used.

studies. It is also possible to notice that the overall emitted intensity is quenched
during alignment τ ≈ 27.7 ps and it is enhanced during antialignment τ ≈ 28.2
ps quite alike CO2. The nature of such scaling factor is indeed similar, with the
harmonic generation that is suppressed when the orbital nodal axis lies along the
polarization of the external field, as can be expected from the πg symmetry of
its HOMO [124]. In other studies it was also demonstrated that the position of
the harmonic enhancement in allene is shifted towards lower alignment angles
(θ < 90◦) with respect to what it would be expected by these simple considerations.
This was justified with the presence of an additional electron density around the
out of plane hydrogens, which creates another nodal plane perpendicularly to the
molecular axis [125].

Another difference with respect to carbon dioxide is present if we compare the
maximum relative intensity quenching [Iantial − Ial]/Iantial at a fixed harmonic order.
Indeed in the case of CO2 this is approximately 0.3 while for allene it is around 0.7.
This could be justified with an higher degree of alignment in the allene ensemble,
which as we already said is supported by the higher anisotropy of its polarizability.
However, another possible explanation could also be found in the different geometry
of their HOMO. Indeed in the case of carbon dioxide this is perfectly antysimmetric
with respect to the inversion of coordinates. Therefore during antialignment the
returning electron will probe a charge distribution quite similar to the alignment
case and this could lead to a lower difference in the harmonic yield between these
two situations. Instead in the case of allene when the molecule is antialigned the
HOMO lacks perfect antisymmetry with respect to the wave vector of the returning
electron and for this reason the effect of the quenching is probably much more
visible.
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Moreover the cutoff energy seems to be pretty low as compared to the one of
carbon dioxide. If we make use of the semiclassical equation with the previously
estimated laser intensity of I f ≈ 1÷ 1.2 · 1014 W/cm2, the cutoff is predicted to lie
around 70 eV in allene, well beyond the measured one. However it is important
to consider that complex molecules are characterized by pretty low saturation
intensities. In particular, in the case of allene this is empirically known to be in the
range of Isat ≈ 2÷ 5 · 1013 W/cm2 [126]. Repeating the semiclassical calculation with
these values we obtain a cutoff energy of 22÷ 40 eV, which is more in agreement
with our experiment. Another possible explanation for the reduced cutoff can als
be found in the expected quenching of the emission at high energies caused by the
nuclear motion. Indeed allene is known to undergo a structural rearrangement
upon ionization, shifting to a completely planar structure due to the π/2 rotation
of the out of plane hydrogen atoms. Since in our experiment we are collecting
only the collinear radiation through a small aperture (see Section 3.1.2), we may
suppose that we are filtering out the contribution of long-trajectories owing to phase
matching conditions. The structural rearrangement would then be visible in the
harmonic yield as a scaling factor proportional to the vibrational autocorrelation
function, as exposed in Section 2.1.2. In particular, the signal would be quenched at
higher frequencies due to the intrinsic time-energy mapping of short trajectories. In
the framework of SFA the relation between the time τ spent by the electron in the
continuum and the harmonic frequency ωq for short trajectories is approximately
given by [63]:

τ =
1

ω f

{
0.786

[
f
( h̄ωq

Up

)]1.207
+ 3.304

[
f
( h̄ωq

Up

)]0.492}

f (x) =
cos−1(1− x

1.5866 )

π

the behaviour of which, calculated for our experimental conditions, is presented in
Figure 4.12.
The covered temporal window is therefore not so narrow, thanks to the use of a
mid-IR driving field. To the best of our knowledge there isn’t any estimation for
the characteristic time of such structural rearrangement in allene and therefore it is
not possible to affirm with certainty if it plays a role in our measurement. However
similar experiments showed that the structural rearrangement upon ionization in
CH4 gives a visible effect on the HHG yield even for an electron excursion time
of only 1÷ 2 fs [58]. Anyway, to prove or dismiss this speculation it would be
necessary to perform a HHG measurement with deuterated allene molecules in
order to have a reference spectrum over which the signal quenching effect can be
evaluated, which is not so trivial.

A further visible feature in the scan is the presence of a minimum around
τ ≈ 27.7 ps during molecular alignment. This could be interpreted as the effect of
two center interference between the part of the orbital that lies in the planar region
of the molecule and the electron density around the out of plane hydrogens. Indeed
a similar effect has been demonstrated in N2O, that possess a very similar HOMO
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Figure 4.12: Time-energy mapping of short trajectories for a pulse of intensity
I f = 1014 W/cm2 and central wavelength λ f = 1450 nm in the spectral window of
Figure 4.11.

structure [127]. However, since at the moment we lack a precise simulation for
the alignment factor 〈cos2θ〉 of allene, we cannot prove this speculation. Anyway,
assuming from Figure 4.11 that the minimum position is around h̄ωmin ≈ 34 eV and
considering the distance between the first carbon and the out of plane hydrogens2

of R ≈ 0.355 nm, the resulting expectation value for the alignment factor would be
〈cos2θ〉 ≈ 0.62. This value could be reasonable, as it is almost the same attained
in carbon dioxide. However, if this were the case, it would mean that the higher
anisotropy of the polarizability in allene, which is almost double with respect to the
one of CO2, doesn’t have such a huge effect on the final value of 〈cos2θ〉. Anyway,
it is also important to underline that, due to its lower Ip, in our experimental
conditions allene experiences a non negligible ionization from the aligning pulse.
This can be estimated with the ADK rate, without taking into consideration any
angular dependence on the molecular orbital structure, as η ≈ 24%, while the same
calculation in CO2 gives a negligible value of η ≈ 0.007%. Therefore the effective
degree of alignment in allene may be spoiled by its fast ionization. Further studies
need however to be performed in order to confirm or dismiss the possibility to
observe a structural minimum, when a full characterization of its revival dynamics
will be available.

Another important thing to underline is the absence of any fine structure in the
revival, differently to what was derived in Section 2.1.2 for symmetric rotors. This
can probably be explained by the low rotational temperature of the gas, which is
estimated to be around 70 K. In such conditions, the energy linked to the thermal
motion of the molecules is approximately 6 meV, while their rotational energy can
be evaluated as:

Erot = BJ(J + 1) + (A− B)K2 = 36.7 µeV J(J + 1) + 559.7 µeV K2

Therefore initially only states with relatively low values of K < 4 are substantially
occupied in the ensemble. Since this quantum number is conserved during the

2This choice of the emitting centres is done for similarity with the case of N2O
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alignment dynamics, we may then expect the fine structure to be not so visible in
the final spectrum.The phase contributions of the second terms at the center of the
first half revival τ ≈ 27.75 ps happen then to be very near integer multiples of 2π

(φK=1 ≈ 3.7 · 2π, φK=2 ≈ 13.8 · 2π, φK=3 ≈ 33.8 · 2π, φK=4 ≈ 60.1 · 2π), thus con-
tributing to further wash out any modulation. Moreover, we should also consider
that the transversal profile of the beam doesn’t allow to reach an homogeneous
rotational dynamics of the gas in this direction. Therefore, the detected spectrum is
an average over all these contributions, which may deteriorate well defined fine
structure in the HHG signal.

4.1.4 Ethylene

Ethylene is a complex asymmetric molecule, whose structure is represented in
Figure 4.13.

Figure 4.13: Molecular structure of ethylene. a) Nuclear arrangement of the mo-
lecule. The three principal rotational axis are represented in blue. b) Structure of
the molecular HOMO.

From a rotational point of view it will thus show different constants along all three
rotational axis, namely A ≈ 603 µeV, B ≈ 124 µeV and C ≈ 102.7 µeV. In this way,
its Ray parameter can be evaluated as κ = (2A− B− C)/(A− C) ≈ −0.915, which
classifies ethylene as an almost symmetric rotor, near the prolate limit κ = −1.

Since it is an asymmetric molecule, its interaction with an external aligning
pulse can be written as (see Section 2.2.2):

Hint = −
E2

0
4
[∆αbc sin2(θ) cos2(χ) + ∆αac cos2(θ)]

The potential surface obtained from the interaction Hamiltonian substituting the
values of the molecular polarizability along its three principal axis (αa = 5.6 · 10−40

HHG/m2, αb = 4.1 · 10−40 F/m2 and αc = 3.6 · 10−40 F/m2) and the typical field
amplitude in our experimental conditions (E0 ≈ 1.74 · 1010 V/m) is presented in
Figure 4.14. It is possible to notice that a minimum is present for θ = 0 almost
independently on χ and therefore ethylene is preferentially prompt aligned along
the electric field with its a axis. However, due to its asymmetric nature, the rotational
dynamics of the molecule after the interaction is far more rich and complex. Indeed,
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Figure 4.14: Potential surface of the interaction between ethylene and the external
field in our experimental conditions. The parameters vary in the range θ ∈ [0, π/2]
and χ ∈ [−π/2, π/2] to account for alignment but not orientation. Values are given
in meV.

during its field-free evolution also b and c are alternatively aligned with respect to z,
even if not as strongly as a owing to their lower molecular polarizability. Such effect
can be characterized bt the expectation values of the cosine along the angles βb and
βc respectively. To understand its origin, we should consider that, as it was already
developed in Section 2.2.2, the selection rules for asymmetric top molecules are
given by ∆J = 0,−+1,−+2, ∆K = 0,−+2 and ∆M = 0. Precisely the irregular structure
of the energy levels and the fact that the projection of the angular momentum on
the principal molecular axis K is not conserved are the main causes of its complex
rotational dynamics. Indeed, if we take into consideration the alignment prameters
of the three molecular axis in the basis of the symmetric rotors’ eigenfunctions, it
can be demonstrated that 〈cos2βa〉 ≡ 〈cos2θ〉 involves only rotational states having
the same value of K, while both 〈cos2βb〉 and 〈cos2βc〉 includes also states linked
by ∆K = −+2 [128]. From a semiclassical point of view the impulsive interaction
with the aligning field can therefore be thought of as a rotation induced both in
θ ≡ βa (excitation in J with ∆K = 0) and in χ (excitation in K). For this reason, the
difference between the alignment parameters along the three axis could generally
be used as a good measure of the degree of asymmetry showed by a molecule in its
rotational dynamics.

From a nuclear point of view the behaviour of ethylene is determine by the fact
that every allowed symmetry operation involves the exchange of two couples of
fermionic hydrogen nuclei with S = 1/2 and one couple of bosonic carbon nuclei
with S = 0. Threfore the product of its nucler and rotational wavefunctions needs
to be symmetric and the initial ratio betweem states with even and odd values of J
is set to 7/9. In particular, each rotational state of ethylene JK−1 ,K1 can be assigned to
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a particular spin isomer and the statistical weights in the initial canonical ensemble
will be gJ = 7 if both K−1 and K1 are even and gJ = 3 otherwise. A more complete
analysis of the topic, as well as an interesting theory about spin-selective alignment
in ethylene, can be found in [129].

For all these reasons, the revival dynamics of the molecule is not trivial. An
example of the evolution of its alignment parameter 〈cos2θ〉 computed for an
aligning pulse of I0 = 4 · 1012 W/cm2 and an ensemble temperature of 9 K is
presented in Figure 4.15.

Figure 4.15: Evolution in time of 〈cos2θ〉 ≡ 〈cos2βa〉 for an aligning pulse of peak
intensity I0 = 4 · 1012 W/cm2 and a molecular gas at a rotational temperature of 9
K. The image is directly taken from [130].

Differently from the case of linear and symmetric rotors, no perfectly periodic reviv-
als are present, due to the irregular rotational levels of the molecule. However, it
is always possible to define subsets of energy levels that can be approximated as
multiples of some combinations of rotational constants. Their partial rephasing will
thus give rise to a nearly periodic structure in the alignment parameter, even though
only for a relatively short period of time in the field-free evolution of the molecule.
The most important recurrences for almost-prolate rotors such as ethylene are the
so called J-type revivals tJ = 2πh̄/(B + C) ≈ 18.24 ps (see Figure 4.15), which are
given by states with ∆J = −+2 and τ ≈ J. Indeed, as the molecule approaches the
prolate limit we would have B → C and so tJ → πh̄/B, which is the only revival
period present for symmetric top rotors. From a semiclassical point of view during
these revivals the molecule can be thought of being restricted in a precession motion
of its a axis around the polarization direction of the aligning field z. As in the case of
symmetric rotors, also fractional revivals may then be present, due to the rephasing
of only a subset of these states.

Anyway, a more precise analysis of the rotational dynamics during J-type reviv-
als should involve the whole angular distribution of the molecular axis P(θ, χ, τ).
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A representation of such evolution around the first half J-revival in ethylene for an
aligning pulse of I0 = 3 · 1013 W/cm2 and an ensemble temperature of 5 K is given
in Figure 4.16.

Figure 4.16: Angular distribution of the molecular axis P(θ, χ, τ) as a function of
the two angles θ and χ at fixed times during the first half J-revival. a) τ = 7.84 ps.
b) τ = 8.34 ps. c) τ = 8.84ps d) τ = 9.84 ps. e) τ = 10 ps. f) τ = 10.34 ps. Image
adapted from [128].

During the maximum alignment of the a axis ( a, b and c in Figure 4.16) the angular
distribution is completely delocalized in χ. However this is strictly true only as
long as θ → 0, π while, for imperfectly aligned molecules, there are always some
values of χ that are more probable. During the antialignment of a, instead, the
b and c axis are successively aligned with respect to the polarization direction of
the field. In particular during the represented temporal range, firstly the b axis is
aligned as χ = 0 ( d in Figure 4.16) and then, after a transition in which both are
delocalized ( e in Figure 4.16), the c axis is aligned as χ = π/2 ( f in Figure 4.16).
Anyway, the importance of J-type revivals is linked to the fact that they represent
the predominant dynamics for near-symmetric rotors in the weak alignment regime,
when relatively low fields are employed.

Other recurrences may then be present in the revival structure of asymmetric
molecules. For instance, the so-called C-revivals are produced by states linked by
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∆J = ∆K1 = −+2 and lying in the lowest part of the rotational spectrum τ ≈ −J.
They are characterized by a period tC = πh̄/2C ≈ 10.04 ps and from a semiclassical
point of view they can be thought of as rotations in the molecular plane around the
c axis. These revivals have been demonstrated to be favoured when high intensity
fields are used to align the molecular ensemble [128]. Indeed the interaction transfer
the population towards higher J states preferentially through the lower part of
the spectrum, for which τ ≈ −J. Moreover, also semiclassical rotations of the
molecules around the a axis are allowed, which characterize the so-called A-revivals
with tA = πh̄/2A ≈ 1.713 ps. These are given by states lying in the upper part
of the rotational spectrum τ ≈ J which are linked by ∆J = ∆K−1 = 2. Since
such energy levels are not much populated in ethylene below room temperature,
these recurrences are usually negligible if compared to C and J-revivals. Finally, no
recurrences are linked to the semiclassical rotation of the molecule around the b
axis. Therefore the field-free rotational dynamics of an ethylene ensemble is rather
complex, as it is defined by the interplay between the partial rephasing of all these
subsets of states. Anyway, the principal aim of our measurements was to explore
the feasibility to obtain a good alignment of asymmetric top molecules with our
setup, as this is a preliminary requisite for their study.

In particular we focused on the first half J-revival around 9.1 ps. This choice
was done to avoid the fast quenching in efficiency and regularity of the alignment
due to the asymmetric nature of the molecule, which is estimated to happen on
a temporal scale of ≈ 40 ps for J-revivals. The first scan was performed between
τ = 8 ps and τ = 11 ps with a step of ∆τ = 15 fs at two different detector positions.
Each spectrum was integrated over 120 laser pulses and the backing pressure of the
gas jet was set to 1.6 bar for maximizing both the signal and the cutoff extension,
while limiting clusterization effects. In order to connect the data obtained in the
two different spectral windows we employed the calibration procedure discussed
in Section 4.1.1. A resume of such results are presented in Figure 4.17. The relative
intensity of the harmonic peaks is corrected pretty well by the calibration for
the pixel-dependent sensitivity of the MCP ( b in Figure 4.17), while the spectral
responsivity of the detection system mainly modifies the overall shape of the
spectrum ( c in Figure 4.17). Even if discrepancies are still present after the first step
of this procedure, the agreement between the two scans is far better than in the raw
data. The spectra were then joined at 18.9 eV, which is a minimum between two
harmonics.

Data acquired at different delays were then collected in a matrix for representing
the whole rotational dynamics of the molecules during the first half J-revival. The
signal was then integrated around the peak of each harmonic in a energy window
between −0.4 eV and +0.14 eV. The choice of such range is done to account for
the asymmetric width of the harmonics on the screen. We decided also to exclude
the harmonic around 11 eV from the analysis, as it was cut by the detector edge
and so its value was not reliable. Such scan, given in logarithmic units, is repres-
ented in Figure 4.18. As it can be easily seen from the graph, the cutoff is rather
low if compared to its semiclassical estimation for ethylene in our experimental
conditions h̄ωcutoff ≈ 72eV. However, considering that it is quite similar to the one
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Figure 4.17: Calibration of the measurements taken in ethylene for a time τ = 8.9
ps in its J-revival dynamics. a) Raw intensity data collected in the two frequency
regions. b) Spectra calibrated for the pixel-dependent responsivity A(X) of the
detector. c) Comparison between the extended spectrum calibrated only for the
pixel-dependent responsivity of the MCP (teal) and the one calibrated also for
the spectral responsivity of the whole detection system (yellow). The spectra are
normalized to the number of driving pulses.
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Figure 4.18: Intensity map of high harmonics generated around the first half J-
revival of ethylene in the delay range τ ∈ [8 ps , 11 ps ], with a driving wavelength
of λ f = 1450 nm normalized to the number of driving pulses. Logarithmic units
have been used.

measured in the case of allene, it could be reasonable to assume that also in this case
the limiting factor is the saturation of the generating medium. Moreover, another
explanation could also be given by the fast decreasing of the one-photon ionization
cross section of ethylene, which represents the recombination step of HHG. Indeed
the experimental data show a drop of almost a factor 60 between 20 eV and 100 eV
[131].

Regarding the influence of the revival dynamics on the harmonic emission only
a slight modulation is present. However it is important to underline that, for all
the reasons exposed before, it is quite difficult to obtain a high degree of alignment
in asymmetric top molecules such as ethylene. Anyway, since its HOMO is a πu

orbital, it is possible to predict a maximum of the emission around antialignment
and a minimum around alignment during the half J-revival, as an effect of the
relative position of the orbital nodal axis with respect to the polarization of the
driving field [77]. This allows to confront the delays of higher (τ ≈ 8.45 ps, 9.3 ps,
10 ps) and lower (τ ≈ 8.85 ps, 9.65 ps, 10.25 ps) signal with the behaviour of 〈cos2θ〉
given in Figure 4.15. A quantitative correspondence cannot be established due
to the different experimental conditions, however it seems reasonable to assume
the highest modulation in our experiment between τ ≈ 8.85 ps and τ ≈ 9.3 to be
identifiable with the alignment around 8 ps in Figure 4.15.

Another interesting feature of the scan is the presence of what seems to be a fast
intensity modulation at very high orders of harmonics (> 45 eV). One intriguing
possibility could be that they are the fingerprint of some vibration in the molecule,
which reflects on the harmonic yield as a periodic modulation of the nuclear auto-
correlation function presented in Section 2.1.2. However, the attempts to perform a
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Fourier analysis on the signal have not given any satisfying result. Moreover, the
aligning pulse is hardly able to excite Raman vibrational modes due to its rather
long temporal duration (∆τ ≈ 100 fs). Another possible cause of this modulation
could be linked to the molecular rotations with respect to the angle χ during the
J-type revival. Indeed due to the symmetry of the molecular orbital, a quenching
is expected when χ = 0, π, as the nodal plane along the molecular axis is in this
case parallel to the driving field. However, the rotational periods of molecules are
generally on the order of some ps, while the observed modulation seems to be in
the fs time scale.

In order to analyse better this modulation we then performed a narrower scan in
the range τ ∈ [8.2 ps , 9.984 ps ] with a step of ∆τ = 8 fs, integrating each spectrum
over 400 pulses. The results are showed in Figure 4.19. Differently from the previous
scan, in this case we focused only on the high energy region of the spectrum and
each harmonic peak was integrated in an interval −+0.4 eV, as the signal was much
more clean and symmetric.

Figure 4.19: Intensity map of high harmonics generated around the first half J-
revival of ethylene in the delay range τ ∈ [8.2 ps , 9.984 ps ], with a driving
wavelength of λ f = 1450 nm normalized to the number of driving pulses. Logar-
ithmic units have been used.

However, even if the temporal sampling in this acquisitions was higher with respect
to the previous one, its Fourier analysis was still inconclusive. Further studies are
therefore needed in order to understand better the origin of this effect.

Anyway, another interesting feature was underlined by this scan, which is a
modulation of the harmonic position with respect to the temporal delay between
the aligning and the generating pulse. We must underline the fact that this was
actually visible also in the previous one, but it was not as clear. An analysis of the
harmonic centroids was thus performed for understanding the physics behind this
effect. The result for the 31th harmonic of the driving field (27 eV) in comparison
with its intensity modulation due to the half J-revival is presented in Figure 4.20.
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Figure 4.20: Analysis of the centroid shift for the 31th harmonic of λ f = 1450 nm
in ethylene. a) Intensity modulation of the harmonic due to the half J-revival. b)
Modulation of the centroid position during the scan.

In literature similar effects are generally ascribed to the time-dependence of the gas
refractive index following the rotational dynamics of the molecules. In principle,
the refractive index of the ensemble can be written as:

n(r, t) =

√
1 +

N
ε0
(αa 〈cos2 θ〉+ αb 〈sin2 θ sin2 χ〉+ αc 〈sin2 θ cos2 χ〉)

where the dependence on r has been included to account for the transverse profile
of the aligning beam. During its propagation in a medium of length L the radiation
will therefore experience a shift given by:

∆ω = −2π

λ
L

∂n
∂t

with λ its wavelength in vacuum. However the treatment is not as trivial as it may
seem. Indeed, during the half J-revival both the euler angles θ and χ are expected
to change in time in a complex way. Moreover, both the driving and the harmonic
fields may in principle experience such shift. To simplify the problem, as a first
approximation, we may suppose that only the IR radiation is influenced by the
refractive index change induced by the alignment dynamics. This assumption is
supported by the fact that the amplitude of the measured frequency modulation is
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an increasing quantity with respect to the harmonic order, although not linearly. In
this way, as exposed in Section 1.3.1, the refractive index is very near unity and we
may consider a Taylor expansion of the radical at the first order:

n(r, t) ≈ 1 +
N

2ε0
(αa 〈cos2 θ〉+ αb 〈sin2 θ sin2 χ〉+ αc 〈sin2 θ cos2 χ〉)

We further neglect the dependence on the transverse profile of the aligning beam
and we rewrite the parenthesis exploiting simple trigonometric identities:

n(t) ≈ 1 +
N

2ε0
(αb + ∆αab 〈cos2 θ〉 − ∆αcb 〈sin2 θ cos2 χ〉)

where we have called ∆αij = αi − αj following the notation of Section 2.2.2. From
this equation it is therefore clear that the asymmetry of the molecule acts as a
correction through the third term in the parenthesis.

Figure 4.21: Refractive index change during the first half J-revival. a) Simulation
of 〈cos2 θ〉 for an aligning pulse of peak intensity I0 = 3 · 1013 W/cm2 and a gas
temperature of T = 5 K. Values taken directly from [128]. b) Computed value of
−dn(t)/dt both in the perfect prolate limit (blue line) and with the asymmetric
correction (red line).

Since ethylene has a very low value of the Ray parameter κ ≈ −0.915, usually it
is assumed to be well approximated by the prolate limit ∆αcb → 0, for which the
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derivative of the refractive index simplifies:

dn
dt
≈ N

2ε0
∆αab

d 〈cos2 θ〉
dt

Using the alignment parameter provided for ethylene in [128], we then performed
the computation of −dn(t)/dt, both in the prolate limit and considering also the
asymmetric correction factor, in order to confront it with the experimental observa-
tion. The results are represented in Figure 4.21. The first thing that can be noticed is
that the two curves are very similar. This confirms the fact that ethylene can be quite
well approximated by the prolate limit in this context. However, the computation
does not fit our experimental results, in which the modulation is confined only
within the first rising edge of the alignment parameter. This means that, in order to
fully describe such effect, it is probably not possible to rely only on the change in
the refraction index induced by the alignment dynamics. Therefore, further analysis
must be undertaken to include also other possible causes of frequency shifts, like
non linear effects in the ionized medium.
Anyhow, the most important result found with this measurements is without any
doubt the fact that 1D alignment of ethylene is possible with our setup, even if the
signal needs to be optimized, and the clear identification of J-revival structures in
the field-free evolution of the molecules.
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4.2 HHG in femtosecond laser fabricated devices

In this section the results concerning the generation of high-order harmonics in
channels fabricated through the FLICE technique will be presented. These devices
were manufactured by the group of Proff. R. Osellame and R. M. Vázquez from
CNR-IFN Milano using the setup presented in Section 3.3. The experimental work
concerning the generation of the XUV radiation and the analysis of the measure-
ments were instead performed in UDynI laboratory by the group of Proff. S. Stagira
and C. Vozzi.

In particular, in Section 4.2.1 we will briefly present the characterization per-
formed on the IR driving beam to set the experimental conditions explored in this
work. Afterwards, in Section 4.2.2 we will show the measurements acquired em-
ploying a simple straight waveguide geometry, while in Section 4.2.3 the possibility
to generate radiation in a modulated channel designed for achieving QPM of the
harmonics will be discussed. The latter will also prove the feasibility to obtain in
the future more complex devices, with the integration of multiple functionalities on
a single monolithic chip thanks to the manufacturing flexibility offered by the FLM
technique.

4.2.1 Driving beam characterization

The beam delivered on the low-energy line by the laser system of UDynI (τ ≈ 25 fs,
frep = 1 kHz, E ≈ 2 mJ; see Section 3.2) is divided using a beam splitter and only a
smaller portion with an energy content of E ≈ 400 µJ enters the interaction chamber.
There, an iris followed by a lens with f = 20 cm allows to adapt within a certain
range the beam waist in the focus, where the chip is placed. The value of the focal
length is chosen to provide a diameter of the laser spot which is near the optimum
value for the coupling to the fundamental EH11 mode of the microstructured chan-
nels.

In order to characterize the IR driving beam in the focal region we employed
a beam profiler (Beamage 3.0 by Gentec-eo) after properly reducing its intensity
with a series of neutral density filters. The f = 20 cm lens was also mounted on a
translation stage (Micronix) for scanning a region of 4 mm around the focus. The
results are resumed in Figure 4.22. The beam is rather astigmatic with the position
x ≈ 0 being the circle of least confusion, that from now on will be simply referred to
as the focus of the beam. This aberration is probably due to the amplifying system
itself and its precise origin should be investigated in following campaigns. Even if
this is not an ideal condition, it anyway provides enough similar dimensions for
the radii Wz and Wy near the focus. Indeed, their values, measured by the beam
profiler for 30 minutes at a sampling frequency of 10 Hz triggered by the oscillator
and integrated over 20 ms, are:

〈Wz〉 = 30.27 µm σ (Wz) = 1.59 µm

〈
Wy
〉
= 28.95 µm σ

(
Wy
)
= 3.68 µm
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where 〈x〉 identifies the average of x and σ (x) its root mean square value. The beam
profiler allowed also to directly quantify the ellipticity ξ of the spot in the focus,
which is defined as the ratio between its shorter and its longer diameter:

〈¸〉 = 0.91% σ (¸) = 8.54%

with a minimum sampled value of ¸ ≈ 50%, attained however only once.

Figure 4.22: Profile of the IR driving beam around the focal position. Positive values
of x are referred to positions after the focus.

Another important characterization that was performed is the one of the beam
pointing stability, as it can highly influence the temporal evolution of the coupling
to the channel. The result is presented in Figure 4.23, where the red dot is the
average position of the beam centroid in the focal plane.
In particular the distribution of the centroid along the two transversal axis is almost
Gaussian with root mean square values of:

σ(y) = 3.17 µm σ(z) = 2.9 µm

and a maximum excursion of:

∆y = 12.8 µm ∆z = 11.9 µm

No temporal drift of the laser position was visible within the temporal range under
investigation, but a dominant frequency component around 3 Hz is present in the
the Fourier transform along both transversal directions (see Figure 4.24). This is a
well know property of the driving laser, linked to the mechanical vibrations of the
cryogenic chiller of the third amplification stage. This issue have been previously
faced by placing some buffer pads to uncouple the cooling device from the optical
table and in the present experimental conditions its influence is therefore minimized
as much as possible.
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Figure 4.23: Position of the spot centroid in the focal plane. The red dot identifies
the average over the measured temporal window.

Figure 4.24: Measurement of the position of the beam centroid in the focal spot. a)
and b) position along y with respect to time and its Fourier transform. c) and d)
position along z with respect to time and its Fourier transform.

The same measurement allowed also to characterize the peak intensity of the
pulses, which is found to be stable within the 2.5% RMS during the same temporal
window. Moreover, the intensity of the beam is known from other measurements
performed on the line to show some fluctuations with a frequency of 100 Hz in the
Fourier domain. This is probably due to the laser system itself, even if its precise
origin is currently unknown. However, since these fluctuations are not too much
high and usually the acquisitions are done integrating the signal over rather long
temporal windows, we expect this issue not to play an important role in the final
results.

The last characterization performed on the beam was done in the frequency
domain employing a spectrometer in the range λ = 200 − 1100 nm (AvaSpec-
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2048XL by Avantes). These measurements were taken after the focus, firstly in air
and then after putting the interaction chamber in vacuum. The results are resumed
in Figure 4.25.

Figure 4.25: Spectrum after the focus in air (blue line) and in vacuum (red line).

When focused in air the laser undergoes filamentation for almost one centimetre
around the focus and this gives some spectral broadening and modulation mainly
due to self phase-modulation (SPM). However, as can be seen from the figure, this
effect is rather limited. Moreover, measurements taken after the straight waveguide
device showed a spectrum intermediate between these two conditions and with no
evident dependence on the particular choice of the gas inserted in the channel. This
is probably due both to the rather small interaction length and gas pressure used,
which is always lower than one bar, and to the guiding mechanism itself, which
reduces the effective intensity of the field with respect to the one of a Gaussian
beam near the focus. For all these reasons, at least as a first approximation, we
won’t expect strong influences on the harmonic generation process from the spectral
modulations of the driving laser due to lower order nonlinearities.

4.2.2 Straight waveguide device

The first device that was employed in these experiments is a simple linear channel
with a length of L = 6 mm and a radius of a ≈ 65 µm. Its fabrication was performed
using the second harmonic of the Yb:KYW laser source presented in Section 3.3,
with a power of P ≈ 300 mW and a repetition rate of frep ≈ 1 MHz, which allow
to reach an inscription speed of v ≈ 0.2 mm/s. The polarization of the source was
maintained perpendicular with respect to the translational direction, in order to
fabricate long nanoplanes, which help the diffusion of the acid during the etching
process. The gas flow in the waveguide is ensured by six channels, separated by 1
mm each, that are linked to a reservoir where an external inlet can be inserted. Some
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preliminary results regarding this configuration were discussed in previous works
[132, 133]. In particular, the correct working of the device and an amplification of
the signal with respect to the usual gas jet interaction geometry were demonstrated.

Figure 4.26: Photographic images of the linear channel from the top. a) Section of
the gas reservoir. b) Gas entrance channel. c) Main waveguide.

Various experimental parameters were then analysed in order to better under-
stand their influence on the harmonic generation and to optimize its output. Since
the waveguide radius is fixed and both the iris aperture and the relative position
of the channel with respect to the beam focus are optimized each time, the most
important control knob in our case is the gas pressure. Indeed, for a fixed driv-
ing intensity, it defines the relative contribution of the phase mismatch linked to
the medium dispersion with respect to the geometrical one. In particular, at low
intensities the ionization of the medium may be neglected and for this reason the
more dispersive is the gas the less will be the pressure needed to obtain a good
phase matching. At higher intensities, instead, also the ionization potential of the
considered atom will start to play an important role, as it ultimately defines the
relative importance of the plasma and neutral terms. However, it is important to
remember that this simple reasoning stands only as long as the medium pressure
and the channel length are enough low to avoid the absorption of the XUV radiation,
which is proportional to both of them.

The prediction of the optimum pressure for the harmonic generation in the
channel is therefore not trivial from a theoretical point of view, even if it can be
easily determined experimentally by means of a pressure scan. This was done for
various noble gases obtaining a maximization of the integrated signal for P > 300
mbar in He and for P ≈ 50÷ 100 mbar in Ne and Ar, depending on the particular
experimental conditions. It is important to underline that what we refer to is always
the backing pressure, which is measured at the entrance of the reservoir, while
its exact value inside the channel may in principle be different and is generally
not homogeneous both in space and time. Anyway, it is interesting to notice that
this founding is in agreement with what we would expect by comparing the beha-
viour of the refractive indexes of these gases in the XUV region, as it is shown in
Figure 4.27. Therefore, we may conclude that in our experimental conditions the
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low-intensity regime is usually the predominant one. This is proved also by the
computation of the ionization percentage of the media in the channel, which can
be estimated by the ADK rate to be far below few percent, owing to the relatively
short pulse duration. For these reasons, a first approximative description of the
phase matching conditions inside the channel may consider only the neutral and
geometrical terms, with the plasma contribution that acts only as a second order
correction.

Figure 4.27: Dispersive term of the atomic scattering factor for the three analysed
noble gases: helium (blue), neon (red) and argon (yellow).

However, the maximization of the integrated signal can give only little inform-
ation about the generation process, since both absorption and phase matching
reshape the harmonic spectrum as a function of the pressure. This can be under-
stood with the fact that the optimal pressure actually varies with the harmonic
order. As an example, in Figure 4.28 the spectra for P = 300, 500 and 700 mbar of
helium are given. Each measurement was calibrated on the energy axis using the
recurrence of the second order of the spectrometer and it was multiplied by the
Jacobian dpixels/dE in order to maintain constant its integral value. As the backing
pressure increases lower order harmonics are quenched with respect to the higher
order ones. This is a feature that is visible in all the acquired pressure scans and it is
in agreement with the fact that the XUV absorption of noble gases is a decreasing
function of the photon energy. Therefore, as the pressure increases, the bandwidth
over which harmonics are efficiently generated reduces and the spectrum becomes
more peaked near the cutoff.

In order to better understand this issue, a rather simple model for harmonic
generation in the channel can be implemented using Eq.(1.39) to evaluate the phase
mismatch as a function of the harmonic order and then Eq.(1.27) to retrieve the
signal at the exit of the waveguide. The computation doesn’t account for the char-
acteristic dipole moment of the considered atom but following [46] this quantity
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Figure 4.28: Harmonic spectra in helium for P = 300 mbar (blue), P = 500mbar (red)
and P = 70 mbar (yellow). Each curve is normalized with respect to the number
of driving pulses and only the signal above E = 65 eV is considered, in order to
exclude the second order of the spectrometer.

is approximated only with a simple power law dependence on the driving field
|d| ∝ |E|p, where p = 5 is chosen to better fit the experimental results. In addi-
tion, to account for the spatio-temporal dynamics of the phase mismatch in the
channel, the model is developed in 2D considering the temporal and transversal
coordinates, while the pressure and the field shape are assumed fixed along the
longitudinal direction. The intensity of the driving field was instead retrieved from
the semiclassical evaluation of the experimental HHG cutoff. Finally, Eq.(1.27)is also
divided for the photon energy in order to obtain the photon irradiance, which can
be more directly confronted with the CCD counts. Some result of this simple model
in the case of helium are presented in Figure 4.29. Only a qualitative agreement
can be established with the experimental results, as the absorption of the low-order
harmonics increases with the gas pressure while the maximum of the spectrum is
shifted from E ≈ 80 eV to E ≈ 110 eV. However, it is important to consider that
in principle this computation provides only the emission at the exit of the channel,
while the measured signal is influenced also by the efficiency and the responsivity of
the whole detection system, which may further modify the spectrum. Nevertheless,
a characterization of the spectrometer in UdynI is not available. Anyway, it is clear
that more quantitative results for the harmonic spectra are not possible with this
simple model, as it implies a lot of approximations.

One of the most important of them is the assumption that the XUV radiation
propagates like a plane wave. Indeed, as it was treated in Section 1.2, we know
that the emitted harmonics show always a phase term inherited from the electron
excursion in the continuum. Considering a monochromatic and linearly polarized
driving field, this phase can be expressed as [13]:
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Figure 4.29: Harmonic spectra in helium for P = 300 mbar(blue) and P = 500 mbar
(red). Simulations are represented with dashed lines. Each curve is normalized to its
peak for comparing their shape and only the signal above E = 65 eV is considered,
as in Figure 4.28.
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where τ = t− t′ is the time spent by the electron in the continuum. In this approach
the dipole phase is thus independent on the particular choice of generating medium
and on the gas pressure, while depends heavily on the transversal profile of the
driving field inside the waveguide. The computed phase fronts for the semiclassical
short and long trajectories considering a perfect coupling to the fundamental EH11

mode of the channel are sketched in Figure 4.30. As can be easily noticed, long
trajectories are always more divergent than short ones, like it is well known also in
the case of the gas-jet interaction geometry. However, the two classes of trajectories
display a different behaviour with respect to the harmonic order. Indeed, short
trajectories are more divergent for higher orders while the opposite is true for long
ones. For this reason, it is not trivial to understand how to improve the simple plane
wave description for the XUV radiation as a more correct description should account
not only for the exact distribution of the driving field in the channel but also for the
selection of trajectories provided by the phase matching conditions. Moreover, as a
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Figure 4.30: Phases of the generated harmonics in the channel as a function of
its radius. The peak intensity of the EH11 field is set to I0 ≈ 6 · 1014W/cm2 from
the evaluation of the experimental cutoff and only semiclassical trajectories are
considered. a) Short trajectories and b) long trajectories.
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matter of fact, the trajectories which due to absorption cannot propagate enough
to encounter the boundaries of the channel may probably still be treated as plane
waves.

The intrinsic limits of Eq.(1.27) are therefore mainly linked to the assumed ho-
mogeneity of the conditions in the longitudinal coordinate, both with respect to the
gas density and the driving field. Indeed the shape of the IR field in the waveguide
could be reshaped by the coupling to higher order modes. For instance, this may
happen due to nonlinear effects taking place in the medium or to the energy losses
caused by its ionization. Moreover, the gas pressure will be far from constant owing
to its free expansion in vacuum. For improving the understanding of the generation
process in the channel, the group previously established a collaboration with the
group of Prof. V. Tosa (National Institute for R& D of Isotopic and Molecular Tech-
nologies Cluj-Napoca) regarding the simulation of the phase matching conditions
and the propagation of the radiation in the waveguide and with the group of Prof.
A. Frezzotti (Aerospace Department, Politecnico di Milano) regarding the study of
the microfluidic dynamics in the channels. Further insight on these preliminary
results will therefore be probably gained in the future.

As a last comment on these measurements, it is important to underline that,
even if the amplification of the HHG signal with respect to the tight focusing geo-
metry is the biggest advantage of the straight waveguide device, its exploitation
in spectroscopic studies is not straightforward. Indeed, although a higher output
allows in principle to enhance the signal-to-noise ratio and to identify also very
small features of the spectrum, the single atom response, which is ultimately the
quantity of interest, cannot be retrieved easily due to the reshaping induced both
by the absorption and the phase matching conditions. Therefore the simulations
provided by the mentioned collaborations could be extremely useful also in this
perspective.

4.2.3 Modulated waveguide device

Exploiting the full potential of the FLM technique, a device constituted by a wave-
guide with a modulation step of Λ ≈ 200 µm was fabricated in order for studying
the possibility to accomplish QPM of the XUV radiation. The channel has the same
length of the straight one, while the radius of its section varies between amax ≈ 65
µm and amin ≈ 55 µm. In correspondence of each narrowing a channel linked to the
reservoir allows the gas to flow in the waveguide, while opposite to it another one
facilitates its removal (see Figure 4.31). The experiments employing this new device
have only recently started and therefore we will present here just few very prelimin-
ary results. In particular, we concentrated also in this case on the characterization of
the emitted spectrum as a function of the generating medium and the gas backing
pressure, while all other parameters were optimized before each acquisition. These
results are resumed in Figure 4.32, where a comparison with the same pressure
scans measured in the straight channel is made. The optimal value of the backing
pressure for maximizing the emission seems to be always higher for the QPM device
with respect to the straight waveguide. In particular, the signal in helium seemed to
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Figure 4.31: Photographic image of the modulated waveguide, directly taken from
[133]. The principal channels where the gas flows are indicated.

Figure 4.32: Integrated harmonic signal as a function of the channel backing pressure
a) in helium and b) in neon. The blue curve represents the straight channel, while
the red one represents the modulated waveguide. Each measurement is normalized
to the number of driving pulses and only the signal above 60 eV is considered, in
order to exclude the contribution of the second order of the spectrometer.
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be constantly increasing and we couldn’t reach its maximum due to the limitation
of the pumping system for maintaining the vacuum inside the interaction chamber.
Moreover the measurements in neon suggest that the emission could also be much
less influenced by the pressure, as the sharp maximum at P = 50 mbar is substituted
by a more regular plateau-like behaviour in the region P = 200÷ 400 mbar. It is also
clear that generally the straight waveguide offers a higher integrated signal, even if
for a narrower pressure window and in a shorter spectral bandwidth. Anyway we
must underline that a direct comparison is not significant in the case of helium, as
the energy range selected in the analysis to exclude the contribution of the second
order of the spectrometer highly disadvantages the signal of the modulated channel.

More informations were then gained studying the evolution of the harmonic
spectrum with pressure, instead of its integrated value. An example in the case of
helium is given in Figure 4.33.

Figure 4.33: Harmonic spectrum as a function of the backing pressure in the mod-
ulated waveguide device in helium: P = 300mbar (blu), P = 500 mbar (red) and
P = 900 mbar (yellow). Each measurement is normalized to the number of driving
pulses.

The cutoff is generally comparable with the one obtained with the straight wave-
guide, differently from what would be expected if an efficient QPM of the higher
harmonics were present. However, no quenching of lower-order harmonics is
present as the backing pressure increases and only a few spectral reshaping is vis-
ible. Indeed, it seems like the absorption of the XUV radiation along the channel
can be generally neglected for this device configuration. This could be caused
by an higher confinement of the medium in the narrowings of the waveguide, as
the exit channels allow the gas to flow outside more rapidly and efficiently with
respect to the main waveguide. Thus, the effective length over which absorption
can take place is reduced. If this were the case, this interaction geometry may be
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thought of as an hybrid between the QPM schemes employing modulated channels
and multiple sources which were presented in Section 1.3.4. Another hint in this
direction could be provided also by the overall shape of the spectra, which generally
resemble much more the ones measured with the gas jet geometry than the ones
measured after the straight channel.

However this is just a preliminary hypothesis and only more precise micro-
fluidic simulations can dismiss or confirm it. Anyway, if this were the case, the
use of a modulated waveguide could be potentially useful in spectroscopic studies,
allowing to overcome the limitations linked to the reshaping of the spectra in the
straight channel.





Conclusions and perspectives

In this thesis two different approaches for increasing the amount of information that
can be gained in high-harmonic spectroscopy experiments were analysed. The first
relies on a motorized translation stage, designed by the group of Proff. S. Stagira
and C. Vozzi, to move the detector along the focal curve of a spherical varied line
spacing grating and to acquire the signal in different spectral windows. This is
particularly useful when systems characterized by low ionization potentials are
studied, as the information is concentrated at rather small photon energies. In the
second case an extended interaction length is exploited in microstructured chan-
nels for reaching a more intense emission and a potentially higher cutoff. In this
perspective the manufacturing flexibility offered by the FLM technique provides
the possibility to fabricate very complex 3D structures and to potentially integrate
more functionalities on the same device.

For the first one of such approaches a calibration procedure was developed to
connect the different acquisitions. In this way the extended harmonic spectrum
of the molecules under investigation can be obtained. This method was validated
with the investigation of the XUV emission from systems of increasing complexity,
starting from carbon dioxide, which is a linear and well studied molecule, and
moving to allene and ethylene, that are respectively a symmetric and an asymmetric
rotor. In these preliminary measurements it was possible to detect harmonics lying
just above the ionization potential of the molecular HOMO. This represents the
edge between the perturbative and strong field regime for the interaction between
the molecule and the external field. The generation process in such region is not so
well understood, thus giving the possibility to study interesting new physics in the
future.

These measurements allowed also to explore the feasibility to obtain 1D align-
ment of complex molecules with the same experimental setup. This is crucial as the
vast majority of molecular systems, in particular the ones of biological interest, are
asymmetric rotors. The harmonic signal was found to show a clear modulation in
all the acquisitions, confirming the correct alignment of the targets. In particular, in
the case of allene both a recession of the cutoff and a feature similar to a two-center
interference pattern were underlined. However further studies should be done in
order to prove or dismiss this last hypothesis, although the low ionization potential
of the molecule makes the achievement of a high-enough cutoff very difficult. In
the case of ethylene, instead, its complex rotational dynamics was analysed and
the fingerprint of J-revivals was observed in the acquisitions. Some modulation of
the harmonic positions with respect to the temporal delay between the aligning
and generating pulses was also observed. Similar effects in literature are generally
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ascribed to the time dependence of the gas refractive index following the rotational
dynamics of the molecules. However this picture is not able to explain our observa-
tion and therefore further studies will be needed to better investigate its origin.

In the second part of this experimental work, the generation of high-order
harmonics in femtosecond laser fabricated devices was studied. Previous works
already demonstrated the possibility to obtain a higher output employing a straight
channel in place of the standard gas-jet geometry [132, 133]. A deeper study of
the experimental conditions influencing the harmonic spectrum was undertaken,
focusing in particular on the backing pressure of the gas. In the case of the linear
waveguide this exhibits an optimal value for the integrated harmonic signal, which
depends on the considered noble gas and is in agreement with the conditions of the
low-ionization regime. Moreover the shape of the emission is ultimately determined
by the interplay between the absorption of the medium and the phase matching
conditions in the channel. For better understanding these effects a simple plane
wave model was used, which however could get only few very qualitative features
of the spectra. The reasons behind these discrepancies were analysed and the main
issue was found in the assumed homogeneity of the conditions along the longit-
udinal dimension of the channel. More quantitative results will require numerical
simulations for both the gas dynamics and the field propagation in the waveguide.
For this reason the group has previously established external collaborations.

Finally, the generation of XUV radiation in modulated microchannels was stud-
ied. Due to time constraints only very preliminary results were obtained. Differ-
ently from what would be expected if quasi phase matching of the harmonics were
present, no increment of the cutoff is visible. However, the optimal pressure is
found to be higher with respect to the straight waveguide device for all gases and
the effect of spectral reshaping due to absorption and phase matching seems to
be generally negligible. The origin of such effects needs to be investigated more
deeply in the future. Moreover, the harmonic generation in even more complex
geometries will be explored, along with the possibility to perform spectroscopic
studies in such waveguides. In particular, the signal amplification offered by the
straight channel could provide a way to identify also very small spectral features,
while the robustness to absorption and phase matching conditions of the modulated
waveguide could allow to retrieve more easily the single atom response.



APPENDIXA
Continuum wave packet

To find the expression for the amplitude of the continuum wave packet we should
substitute Eq.(1.11) inside the time dependent Schrödinger equation describing the
system. The left-hand side thus reads:
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while the right-hand side becomes:
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From the TDSE of the unperturbed system it is possible to simplify the terms:
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Then for further reducing this equation, it is projected along one of the continuum
wavefunctions 〈k’| and it is integrated in wave vector space. Indeed since the states
representing plane waves are orthogonal among them, we have that:

〈k’|k〉 = δ(k’− k)

Moreover from the expression of the continuum states it is possible to demonstrate
that:
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Therefore while projecting along 〈k’|we can also exploit these properties to simplify
the following terms:
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Finally, since it can be demonstrated that a(t) is a term that varies slowly in time,
we can further assume ∂a(t)

/
∂t ≈ 0. The TDSE is thus reduced to:
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which defines an infinite set of differential equations for the b(k’, t) terms coupled
by the integral. To find a closed-form solution we can once again exploit the SFA,
for which the contribution of the effective atomic potential Veff(r) on the continuum
states can be neglected. Thus the integral can be setted to zero and the equations
become uncoupled:
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We then do a formal substitution of the only variable present k’→ k and define the
dipole transition matrix element d(k) = 〈k| r(t) |0〉 to make the expression more
readable:
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In this form all the coefficients in the equation are proportional to important physical
quantities:
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where the first one is the sum of the atomic ionization potential and the kinetic
energy of the plane wave, the second is the energy of the dipole d(k) inside the laser
pulse and the last one is the force experienced by the electron due to the external
field. In order to solve such differential equation it is then usefull to perform a
change of variable t→ ζ and k→ p. The idea is to choose a variable ζ in order to
have p constant as b(k, t) evolves in time. A good solution is to set [27]:
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= F
dt
dζ

= 1

so that we obtain a simple differential equation:

d
dζ

b(k(ζ), t(ζ)) = −iGb (k(ζ), t(ζ))− iU

and then choose as change of variables:

ζ = t
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p = h̄k + e
∫

E f (ζ)dζ = h̄k− eA f (ζ)

where A f (ζ) is the vector potential of the field. It is important to underline that with
this choice p is the canonical momentum of the electron. The differential equation
thus reads:

d
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b(p, ζ) = −iGb (p, ζ)− iU

whose general solution can be demonstrated to be
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The constant C is found by setting as boundary condition b(p,−∞) = 0 since we
consider the electron initially in the atomic ground state:
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Finally, substituting it in the expression for b(p, ζ), making all terms explicit and
going back to the initial temporal variable ζ → t we get our final result:
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is the quasi-classical action of the electron in the driving field from the ionization
time t′ to the recombination time t. The notation x2 = x · x is here used for the ease
of the reader.





APPENDIXB
Hollow waveguide modes

In order to retrieve the modes of a cylindrical waveguide it is in principle necessary
to determine both the electric and the magnetic field of the propagating light. In
doing so we will follow the derivation of [44] and [45]. It is convenient to start from
Maxwell curl equations for E and H:

∇× E = −µ0
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H ∇×H = ε0n2 ∂

∂t
E

where only the linear polarization of the medium has been considered, in accordance
with the approximation already used for plane wave and tight focusing geomet-
ries. A simplification of this equations is expected when exploiting cylindrical
coordinates (r, θ, x) due to the symmetry of the problem.
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The same expression is valid also for the magnetic field. Moreover, assuming that
the medium is homogeneous and thus the refractive index depends only on the
frequency of the field n = n(ω), it is possible to use a separated variable ansatz in
the transverse and longitudinal direction for the electric and magnetic fields:

E(r, θ, x, ω) = A(r, θ, ω)ei(ωt−γ(ω)x)

H(r, θ, x, ω) = G(r, θ, ω)ei(ωt−γ(ω)x)

Substituting them in the Maxwell equations we can demonstrate that their solutions
depend only on the x components of the two fields:
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while the other two components can be found directly from these:

Ar = −
i

k2n(ω)2 − γ(ω)2

(
γ(ω)

∂

∂r
Ax +

ωµ0

r
∂

∂θ
Gx

)
Aθ = −

i
k2n(ω2 − γ(ω)2

(γ(ω)

r
∂

∂θ
Ax −ωµ0

∂

∂r
Gx

)



136 Chapter B . Hollow waveguide modes
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Therefore in order to obtain the modes in the waveguide it is sufficient to consider
the equations for the x components of the fields, which are uncoupled. For solving
them it is possible to use another ansatz which further separate the variables in the
radial and angular coordinates:

Ax = Ax(r, ω) sin(sθ + φ)

Gx = Gx(r, ω) cos(sθ + φ)

with s an integer number called mode parameter and φ a generic offset phase. In
this way the so-called Bessel equations for the longitudinal components of the fields
in the waveguide are found:
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These are well known equations in mathematical physics, whose solutions can be
written either as a sum of Bessel function of the first kind and Neumann functions
or a sum of Hankel functions of first and second kind. Until now the assumption
of a perfectly homogeneous medium was taken and the index of refraction was
dependent only on the frequency of the field ω. However, considering an actual
waveguide, two different solutions are present in the core and in the cladding,
having respectively refraction indexes of ni and ne. Therefore we need to join them
on the boundary r = a and to set the physical condition of E, H → 0 as r → ∞.
Doing so, the longitudinal field in the core is described by Bessel functions Js only
and in the cladding by Hankel function of first kind H1

s only. In particular we are
interested in the first region, which describes the propagation of the fields, while in
the second one only an almost exponential decaying is present.

Marcatili further classifies the solutions of these equations in three categories: the
transverse electric (TE) modes, with no axial component of the electric field; the
transverse magnetic (TM) modes, with no axial component of the magnetic field;
the hybrid modes (EH), for which the axial components of both fields are different
from zero (see Figure B.2). The first two are more straightforward to calculate, but
have little interest in this treatment since they cannot describe the linearly polarized
fields commonly used in high-order harmonic generation. For this reason we will
concentrate only on EH modes.
In the core the solutions of the Bessel equations thus read:
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Figure B.1: Sketch of the considered geometry for the problem. The circular inner
core or radius a has refractive index ni while the cladding has refractive index ne

Figure B.2: Electric field lines of hollow dielectric waveguides: (a) TE, (b) TM and
(c) EH modes. The figure was directly taken from [44]

G int
x ∝ Js

(u
a

r
)

cos(sθ + φ)

with the field distribution that depends on the mode parameter s and the so-called
radial wavenumber u/a, where u is a constant that can be obtained from the
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boundary conditions. To retrieve it in the most general case one should solve a
complex transcendental equation. However an approximate solution is possible
if three assumptions are made: a >> λ, which is always true for the wavelengths
usually employed in HHG experiments; the axial wave vector of the propagating
field is similar to the one in the vacuum γ ≈ k, which reduces the analysis to modes
with low losses; ni ≈ 1, that is generally a good approximation for noble gases 1. In
such cases by setting:
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)
where usm is the mth root of the equation:
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we can express the complex propagation constant of the mode by considering the
decomposition of the wave vector onto the radial and axial directions:

k2 =
(u

a
)2

+ γ2
sm

where u/a is the transversal component of the wave vector while γsm is the lon-
gitudinal one. Isolating the complex propagation constant and taking a Taylor
expansion to the second order, a rather simple expression is finally retrieved:
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Therefore, once both γsm andAx are known, the waveguides modes can be obtained
directly from Maxwell equations. In particular if we focus on the solutions for the
electric field in the core region we have:
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These expression are very general but can be further simplified if only the behaviour
far from the boundary is considered and the terms depending on λ/a are neglected
in the propagation constant. In this case indeed only one of the terms in the sum is
important and we can write:
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1Of the three assumptions this is the weaker one, since in some cases the refractive index of the
gas can be far from unity for some of the wavelengths involved in the HHG process. These results,
however, can still describe the system to a certain degree of approximation.
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If projected back onto the Cartesian coordinates, these can also be expressed as:
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Each EH mode is thus identified by two integers numbers s and m, with the most
general field inside the waveguide being a combination of all of them:

E(r, θ, x, t) = ∑
s,m

Esm = ∑
s,m

csmAsm(r, θ, ω)ei(ωt−γsmx)

H(r, θ, x, t) = ∑
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Hsm = ∑
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dsmGsm(r, θ, ω)ei(ωt−γsmx)

Since only linearly polarized fields should be considered for the purposes of this
thesis, it is then possible to demonstrate that the only interesting EH modes are the
ones having s = 1, with φ fixing the polarization direction 2.

However this is not sufficient to have a complete set of solutions. Indeed
from one very general property of Bessel functions of the first kind we have that
J−s(u) = (−1)s Js(u). Since the propagation constant γsm depends on the mode
only through usm, it can thus be shown that u−|s|,m = u|s|+2,m. Therefore EH−|s|,m
and EH|s|+2,m are degenerate and can be combined. In particular, if they are ad-
ded with equal amplitude and phase the solution will show a linear polarization3.
These so-called composite modes are not radial symmetric as the hybrid modes
and suffer from the variation of the relative amplitude or phase between the two
modes. Indeed any small variation of them causes such modes to loose their linear
polarization. Anyway these can be excited when a linearly polarized wave with
no radial symmetry is present at the entrance of the waveguide, for example due
to a misalignment of the optical axis between the incoming field and the channel.
Anyway in this thesis we will not consider the contribution of such composite
modes, assuming always fields with a well defined radial symmetry.

2For a >> λ the axial part of the EH1m modes is indeed negligible with respect to their longitudinal
part.

3The hybrid modes that can be combined does not need to be linearly polarized themselves.
Within composite modes therefore all EH modes having s 6= 1 can in principle contribute to the field
propagation.





APPENDIXC
Molecular structure

From a quantum mechanical point of view, to obtain all the information about a
molecule one should solve its multi-body Schrödinger equation:
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where ri and Rα are respectively the coordinates of the electrons and the nuclei in
the system, while Mα and Zα are respectively the mass and the positive charge of the
nucleus identified by α. This equation however cannot be solved analytically, even
for the simplest molecules. In order to overcome this difficulty, it thus is necessary
to assume the so-called Born-Oppenheimer approximation (BO), which allows to
uncouple the electron and nuclear motions. Indeed, due to their high difference in
mass, the electrons can respond almost instantaneously to a displacement of the
nuclei and so one can solve the electronic problem considering the nuclei fixed in
different arrangements. In this way a molecular potential energy curve is found,
whose minimum will describe the equilibrium configuration of the molecule. We
will not deal deeply with the mathematical formulation of this approximation, but
we will assume that the molecular problem can be effectively treated with this
approach. The system of uncoupled equations for the nuclear and the electronic
problem thus reads:

|Ψmol〉 (r, R, t) = |ψel〉 (r, t) |ψnuc〉 (R, t) (C.1)
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(C.3)
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In this framework Eq.(C.2) is solved treating the nuclear coordinates R as parameters
to obtain the electronic contribution to the molecular energy Eel(R), which is the
function whose minimum with respect to R defines the equilibrium configuration
of the molecule. Once this is known it can be substituted in Eq.(C.3) to get the total
molecular energy Emol. The eigenfunction of the molecule can finally be obtained by
multiplying the found electronic and nuclear ones as in Eq.(C.1). In the following
sections we will therefore treat the electronic and nuclear problems separately
under BO approximation in order to obtain the full structure of the molecule. In the
treatment we will mainly follow [61].

C.1 Molecular orbital theory

Generally the electronic eigenvalue problem of Eq.(C.2) is still too difficult to be
solved even after the BO approximation. The most crude approach is then to further
assume that the electronic wavefunction can be factored out in the individual
contributions of each one of the N-electrons in the system:

|ψel〉 (r, t) = |ψ1〉 (r1, t) |ψ2〉 (r2, t) |ψ3〉 (r3, t)... |ψN〉 (rN , t)

where the |ψi〉 are called molecular orbitals and describe the delocalization of a
single electron on the whole molecule. The interaction between electrons is thus
neglected or treated in averaged terms, which is the most important approximation
linked to this approach. The simplest way to define such single-electron wavefunc-
tions is to write them as a linear superposition of the atomic orbitals |φn〉 of the
single atoms in the molecule (LCAO):

|ψi〉 (ri) = ∑
n

cn |φn〉 (C.4)

Indeed near each atom the Hamiltonian of the system is expected to be similar to the
atomic one and so this choice of base is physically reasonable. In principle, however,
an infinite basis set would be necessary to represent precisely the electron system
and thus the use of this finite base will introduce some further approximation
in the final wavefunction. Anyway, in this framework the molecular orbitals are
described as a delocalization of charge in the molecule arising from the interference
of the single atomic orbitals. Once the energy of each molecular orbital is found,
the energy diagram of the molecule can be constructed. Each single electron can
then be assigned to one of the molecular energy levels following the same Hund’s
Rules of multi-electron atoms in order to define its ground state. In particularly the
occupied orbital with higher energy is usually called HOMO while the unocuppied
orbital with lower energy is called LUMO. These define the energetic frontier of the
electronic system of the molecules, where most of its chemistry takes place.

Following this approach the linear combination of N atomic orbitals give rise to
N molecular orbitals. Some of them are called bonding orbitals, since their energy is
lower than the one of the atomic orbitals from which they are constituted, while in
the opposite case they are called antibonding orbitals (identified with the symbol ∗).
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A given ensemble of atoms is therefore able to form a stable molecule only if the
electronic configuration of the molecular orbitals attains altogether a lower energy
with respect to the separated atomic orbitals. An important aspect to consider is
that the LCAO energy levels of molecules are not symmetric since the repulsion
between the nuclei tends to increase their value. In this way antibonding orbitals
are more antibonding than bonding orbitals are bonding. When complex molecules
are examined, the number of atomic orbitals that should be in principle considered
in the linear combination starts then to become very high. Luckily, however, some
empirical rules can be exploited to simplify the task. First of all it is possible to
demonstrate that only atomic orbitals with similar energy and same symmetry with
respect to the rotation along the molecular axis can be effectively combined to form
a molecular orbital. Therefore, since the molecular orbitals of interest are usually
the most energetic ones, which they are the ones linked to the chemical properties
of the molecule, it is generally enough to consider the atomic orbitals of the outer
shells. Closed-shells electrons, indeed, can be assumed to be effectively confined
in the vicinity of the relative atom, giving thus a negligible contribution to the bonds.

Figure C.1: Energy level diagram of carbon monoxide (CO) as computed from the
LCAO theory. Electron spin is represented by the arrows while the spatial shape
of the molecular orbital is sketched on the side of each level. The HOMO is in this
case a 3σ orbital while the LUMO is a doubly degenerate 2π orbital.

The molecular orbitals can then be classified according to their symmetry prop-
erties. The first one is their parity, or inversion of coordinates with respect to center
of the molecule. In particular a molecular orbital is defined as gerade (represen-
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ted with the letter g) if its sign doesn’t change under the parity operation while
it is defined ungerade (represented with the letter u) if its sign changes under the
inversion of coordinates. However, this classification is relevant only as long as
the system posses a center of inversion and so it is generally not applicable to all
molecules. Another important symmetry of the molecular orbitals is then the one
with respect to the internuclear axis. Differently from atomic orbitals, molecular
ones cannot be spherically symmetric and therefore l is not a good quantum number.
However m, linked to the projection of the orbital angular momentum along the
internuclear axis, is conserved and can be used to classify them: if m = 0 we talk
about a σ-orbital, if m = −+1 we talk about a π-orbital and if m = −+2 we talk about
a δ-orbital. Even if strictly speaking this classification is applicable only to diatomic
orbitals, a similar designation based on group theory is extendible also to more
complex cases, for which capitol greek letters are used (Σ if m = 0, Π if m=1 and ∆
if m = 2).

It must be however stressed that LCAO theory implies a lot of approximations
and it is therefore not able to give highly reliable quantitative results, even if it can
qualitatively describe a lot of molecular properties. For more quantitative results
it is thus necessary to rely on more complex theories. Two main approaches are
generally possible: ab initio calculations, in which a model for the wavefunction is
chosen based on previous knowledge about the system for computing the electronic
energies; semiempirical methods, in which a simplified Hamiltonian is used, with
some parameters derived from experimental data. One of the most used ab initio
approaches is the so called Hartree-Fock self-consistent field method, in which the
electron-electron repulsion is treated in averaged terms and the solution is found
via an iterative procedure. Each electron is indeed considered to be moving in an
effective potential given by the nuclei and the average field of the other electrons.
Starting from trial single-electron wavefunctions, such potential is computed and
then it is substituted in the BO equations (called in this frame Hartree-Fock equa-
tions) to obtain a new set of eigenstates. This is then iteratively repeated until a
convergence criterion is satisfied. When reliable single-electron wavefunctions are
known the total electronic eigenstate is then found using a Slater determinant to
satisfy the antisymmetry character of fermions. These methods however are much
more complex than LCAO theory and don’t give a fast and physically intuitive
picture of the electronic structure of molecules, even if they can deliver more precise
results.

C.2 Molecular rotations

In the framework of BO approximation once the potential energy surface (PES) of
each molecular orbital is known, the nuclear problem can be treated. In particular,
a molecule composed of N nuclei posses 3N degrees of freedom in its dynamics.
Among these 3N-6 are given by internal vibrations (3N-5 in the case of linear
molecules), 3 are given by rotations (2 for linear molecules) and 3 are given by the
translation in space of the molecular center of mass. The nuclear Hamiltonian can
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thus be partitioned as:
Ĥnuc = Ĥvib + Ĥrot + Ĥtrasl

For the purposes of this thesis the most interesting part of nuclear dynamics is the
rotational one and therefore we will concentrate only on this one. In particular we
will start considering the simplified picture of rigid rotor molecule in which the
rotational and vibrational dynamics are completely uncoupled. The rotation of the
molecule can thus be described by its angular momentum J, once the tensor of the
moment of inertia I is known:

J = Iω

From classical mechanics it is known that this equation can be highly simplified if
such tensor is diagonalized onto the three principal axis a, b and c of the system (for
convention the axis are defined such that Ia < Ib < Ic). Since there is no contribution
from the potential energy, the rotational Hamiltonian reads:

Ĥrot =
Ĵ2
a

2Ia
+

Ĵ2
b

2Ib
+

Ĵ2
c

2Ic

Rigid rotor molecules can then be classified depending on the values of their
moments of inertia along the three principal axis.

I. Linear: In this case only one moment of inertia is present, which is perpendic-
ular to the molecular axis.

II. Spherical top: The three moments of inertia are all equal and different from
zero. In this way, due to the high degree of symmetry, the molecule cannot
exhibit any permanent electric dipole or any anisotropy of its polarizability.

III. Symmetric top: In this case two moments of inertia of the molecule are equal
and different from the third, which lies along the principal symmetry axis of
the system. It is then possible to distinguish between oblate molecules, for
which Ic is the different one, and prolate molecules, for which Ia is the different
one.

IV. Asymmetric top: This is the most complex case, for which all three moments
of inertia are different from zero and different from one another.

The symmetry of the first three categories highly simplify the TDSE, which is instead
very complex in the most general asymmetric rotor case. Therefore we will start
focusing on a generic prolate molecule for which the rotational Hamiltonian can be
simply written as:

Ĥrot =
Ĵ2
a

2I‖
+

Ĵ2
b + Ĵ2

c

2I⊥
where for convenience we have defined Ia = I‖ and Ib = Ic = I⊥. To further reduce
this expression it is possible to exploit the decomposition of the molecular angular
momentum along the principal axis:

Ĵ2 = Ĵ2
a + Ĵ2

b + Ĵ2
c → Ĥrot =

Ĵ2

2I⊥
+
( 1

2I‖
− 1

2I⊥

)
Ĵ2
a
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In this way the Hamiltonian becomes proportional to the modulus squared of the
total molecular angular momentum and to its projection along the unique rotational
axis a. Therefore the rotational energy levels of such molecule are easily obtained
remembering the results for the angular momentum in quantum mechanics:

Erot(J, K) =
J(J + 1)h̄2

2I⊥
+
( 1

2I‖
− 1

2I⊥

)
K2h̄2 (C.5)

J = 0, 1, 2, 3, ... K = J, J − 1, ...,−J

In a semiclassical vectorial picture, the quantum number K thus encodes the inform-
ation about the molecular rotation along its principal symmetry axis. In particular
if |K| ≈ J almost all of the angular momentum can be considered to be about
this axis, while if |K| ≈ 0 the angular momentum can be considered to be almost
perpendicular to it. It is important to underline that the rotational energy depends
quadratically on K and therefore it is not affected by the direction of such rotation.
As a convention, the energy of Eq.(C.5) is then usually written in terms of the
so-called molecular rotational constants A and B:

A =
h̄2

2I‖
B =

h̄2

2I⊥

so that it takes the simpler form:

Erot = BJ(J + 1) + (A− B)K2 (C.6)

We can then quite easily study also linear and spherical top molecules as special
cases of symmetric tops. For a spherical rotor indeed all moments of inertia are equal
and so A = B. This gives a rotational energy that is independent on the quantum
number K and therefore each energy level becomes (2J+1)-fold degenerate:

Erot = BJ(J + 1)

For linear rotors instead the angular momentum needs to be perpendicular to the
intermolecular axis and therefore I‖ = 0. This gives an expression for the rotational
energy that is mathematically equal to the previous one:

Erot = BJ(J + 1)

However, the physical picture is very different. For a spherical top molecules indeed
this result is due to the possibility to arbitrary choose the axis over which the total
angular momentum is projected, giving thus a degeneracy of the energy levels with
respect to K. In the case of linear molecules instead this result is due to the necessity
to fix the rotational axis of the molecules and therefore K ≡ 0 for all its states and
no degeneracy is present.

This energetic analysis is however in many ways too simplified. Indeed the
treatment of molecules as rigid rotors is a very crude approximation since while the
system rotates the bonds are stretched and this influences back the rotation. This so
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called centrifugal distortion is more important for higher values of J and makes the
molecular energy levels less well separated with respect to the perfectly rigid rotor
case. As a first approximation this correction can be simply treated adding three
terms in the energy equation:

Erot = BJ(J + 1)− Dj J2(J + 1)2 + (A− B)K2 − DkK4 − Djk J(J + 1)K2 (C.7)

where Dj,Dk and Djk are called centrifugal distortion constants and are usually
found empirically for each molecule of interest. Generally speaking they are higher
for molecules having bonds with lower force constants.

Moreover the analysis presented so far has been developed in the molecular
frame of reference, while usually in experiment the laboratory frame of reference
is the relevant one. These two can be related through three angular coordinates,
named Euler angles (θ, φ, χ).b

c
a

 =

 cos θ cos φ cos χ− sin φ sin χ cos θ sin φ cos χ + cos φ sin χ sin θ cos χ

− cos θ cos φ sin χ− sin φ cos χ − cos θ sin φ sin χ + cos φ cos χ sin θ sin χ

sin θcosφ sin θ sin φ cosθ

x
y
z


In this way the expression for the quantum operators of the angular momentum can
be obtained in both frame of reference [62]. In particular, the most important result
of such analysis is that both Ĵa and Ĵz commute with the rotational Hamiltonian
of symmetric top systems. It is therefore possible to find a set of wavefunctions
|JKM〉 that are simultaneous eigenfunctions of both of them, where the quantum
number M = −J,−J + 1..., J is related to the projection of the total angular moment
along the laboratory z axis and it is a conserved quantity. Physically this is due
to the symmetry of the system with respect to the laboratory fixed axis. The exact
expression of these wavefunctions is anyway complex to be computed since the
different moments of inertia don’t allow to write the Hamiltonian as a function of
Ĵ2 only, apart from spherical top or linear molecules.

For asymmetric top systems the theory is instead more complex and the equa-
tions are generally not solvable analytically. This is mainly due to the fact that, being
all the moments of inertia different one from the others, it is not possible to factor
out the Hamiltonian in the sum of two terms, one dependent only on Ĵ2 and one
dependent only on the projection of the angular moment along one rotational axis.
However the |JKM〉 wavevectors of the symmetric rotor case are still a complete
basis set for the system and so the wavefunctions of asymmetric top molecules can
be represented as a linear combination of these. For fixed good quantum numbers J
and M the asymmetric top wavefunction can thus be written as:

ΨJ,M =
J

∑
K=−J

cK |JKM〉

where K is no more a good quantum number and it is used only as an index. This
expression can then be exploited to diagonalize the correspondent Hamiltonian
and to obtain the energy levels of an asymmetric top molecule. For convention



148 Chapter C . Molecular structure

such levels are labelled as JK−1 ,K1 where K−1 and K1 are indexes that are linked
respectively to the prolate and oblate limit. Indeed for a given J a number of
possible energy levels JK−1,K1 are present, bounded between the energy of the prolate
molecule with quantum numbers (J, K−1) and the one of the oblate molecule with
quantum numbers (J, K1). It is important to notice that in the case of prolate rotors
the rotational energy is increasing with K−1, while for oblate rotors it is decreasing
with K1. For each combination of such numbers a given molecule will then attain a
particular energy as a function of the so called Ray’s asymmetry parameter:

κ =
2B− A− C

A− C

In the symmetric prolate limit this parameter is κ = −1, in the oblate limit κ = 1
while for a generic asymmetric molecule −1 < κ < 1. Each one of these molecular
energy levels are then usually numbered using the so-called pseudo-magnetic
number τ = K−1 − K1 = −J,−J + 1, ..J, which is a good quantum number for the
system. In Figure C.3 some of the energy levels of asymmetric top molecules are
given, using a linear approximation between the two symmetric rotor limits, while
for more precise results numerical methods should be exploited. It is important to
underline the fact that asymmetric rotors show much less regularity in the structure
of the energy levels with respect to symmetric top molecules and much of their rich
rotational dynamics derives from this.

Figure C.2: Rotational energies of rigid asymmetric top molecules as a function on
its moments of inertia. The energies as given in terms rotational wavevectors F with
Erot = h̄cF while the rotational constants A, B and C are in this case expressed in
cm−1 [62].
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