
Politecnico di Milano
Department of Civil and Environmental Engineering

Doctoral Programme in Environmental and Infrastructure Engineering

Stochastic analysis of
Troposphere’s non-hydrostatic
refractivity field for small- and

mid-scale GNSS networks

Doctoral Dissertation of:
Alessandro Fermi

Supervisor:
Prof.ssa Giovanna Venuti

Tutor:
Prof.ssa Giovanna Venuti

The Chair of the Doctoral Program:
Prof. Alberto Guadagnini

XXIX cycle - 2013/2016





I



II



Contents

1 Introduction 3

2 The Troposphere signal in Global Navigation Satellite Systems 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Physics of the neutral atmosphere . . . . . . . . . . . . . . . . . . . 10
2.3 Propagation of GNSS signals in Earth’s troposphere . . . . . . . . . 13

2.3.1 Zenith Hydrostatic Delay . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Zenith Wet Delay . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 GNSS observation equations and estimation strategies . . . . . . . . 18

3 Stochastic modelling of the non-hydrostatic ZWD field 23
3.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Intrinsic stationary stochastic processes . . . . . . . . . . . . . . . . 27
3.3 Kriging algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 GNSS data processing of the MIST dense network: impact of
relative and absolute strategies on ZWD estimates 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 MisT dense network . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 GNSS data processing setup . . . . . . . . . . . . . . . . . . . . . . 37
4.4 GNSS data estimation: results and discussion . . . . . . . . . . . . 39

4.4.1 Ionosphere impact on relative positioning of two close stations 39
4.4.2 Relative against absolute positioning . . . . . . . . . . . . . 43

5 GNSS data processing of mid-scale SPIN network: temporal stack
of 2D ZWD maps 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 GNSS data processing setup . . . . . . . . . . . . . . . . . . . . . . 53
5.3 GNSS data estimation . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Spatial stochastic modelling of the SPIN GNSS network . . . . . . 61
5.5 Temporal stack of 2D ZWD maps: results and discussion . . . . . . 67

6 Toward spatio-temporal stochastic modelling of the ZWD field 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 ZWD advection model . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Taylor’s Frozen flow hypothesis and estimation of the mean trans-

port field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 General ZWD advection-diffusion model: discussion and perspectives 81

III



Bibliography 85

List of figures 87

Tables 90

Acknowledgements 93

IV



Abstract

Spatio-temporal Precipitable Water Vapour (PWV) monitoring at regional and
small scale is important both to deeper understand the initiation and develop-
ment of local convection phenomena and to better forecast local heavy rainfall
events. Along with scientific reasons, an accurate monitoring of PWV would
be important also to support the activities of regional environmental protection
agencies. GNSS measurements represent an unexpected but interesting source of
information to retrieve absolute and accurate time series of PWV measurements.
In fact, the average zenith non-hydrostatic tropospheric delay (i.e. the Zenith
Wet Delay) depends (linearly) on PWV. Thus, accurate estimates of GNSS signal
tropospheric delays can lead to obtain reliable PWV data.
Our research lay within this field. It mainly focused on the analysis of GNSS ob-
servations from different GNSS networks with specific characteristics of receivers’
electronics, spatial distribution and acquisition rate, in order to retrieve careful es-
timates of the non-hydrostatic tropospheric delay and to model its spatio-temporal
variations. To this extent, we carried out a comprehensive analysis of different ap-
proaches and estimation strategies of GNSS-derived Zenith Wet Delays (ZWDs)
and we carried out a re-processing of the GNSS data acquired by the network
MIST, deployed within the ESA project METAWAVE. The MIST network con-
sisted of double-frequency geodetic receivers and was a dense network, i.e. a
network with inter-distances of nearby stations less than 15 km. We analyzed sev-
eral aspects both on the relative processing strategy (Double Difference method)
and on the absolute processing one (Precise Point Positioning strategy). We have
made extensive comparisons among these methods. Along with this study, we
gave a closer look at a mid-scale GNSS network, i.e. with nearby stations inter-
distances of approximately 50 km. We analyzed two severe rainfall events occurred
in Lombardy region on the 22nd and on the 26th of July 2016 . These two severe
storms showed a different meteorological nature: the one on the 22nd of July was
characterized by a strong advective behavior with a weather front propagating
from South-East to North-West, whereas the event on the 26th showed strongly
localized convective cells. To analyze whether ZWD time series would give ev-
idence of these phenomena we processed GNSS data from 21st to 29th of July
acquired by the interregional GNSS SPIN network. The aim of this analysis was
assessing the accuracy of GNSS-derived ZWD and PWV and the potential use
of GNSS observations for the determination of (2+1)-D ZWD maps - 2D for the
spatial range and 1D for the time variable. We modelled the residual ZWD field
– i.e. the ZWDs reduced by a height/time component - as an intrinsic stationary
random field. We then computed for each epoch the spatial empirical variograms
of the residual field and fitted these empirical spatial variograms with Fractional
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Brownian motion models. At the end of the present work, we describe a procedure
for the estimation of the mean transport velocity vector. This procedure relies on
the conservation equation of the specific humidity and in its simplest form it turns
out to be equivalent to Taylor’s frozen flow hypothesis.
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Chapter 1

Introduction

Spatio-temporal Precipitable Water Vapour (PWV) distribution monitoring at re-
gional and small scale is important both to deeper understand the initiation and
development of local convection phenomena and to better fore- and nowcast local
heavy rainfall events (cf. [De Haan(2006)], [Brenot et al.(2013)] and the ref-
erences therein).
Along with these scientific purposes an accurate monitoring of the distribution of
PWV both spatially and temporally would be decisive also to support the activ-
ities of regional environmental protection agencies. In fact, the lack of accurate
forecasts of localized convective rainfalls may bring inefficiencies in risk alerts and
corresponding mitigation activities.
To this regards GNSS measurements represent an unexpected but interesting
source of information to retrieve accurate time series of absolute PWV mea-
surements at the receiver locations. In fact, the average zenith nonhydrostatic
tropospheric delay, experienced by the GNSS signal when crossing Earth’s low
atmosphere (computed from the slant nonhydrostatic delays by suitable projec-
tions), depends (linearly) on the PWV (see for instance [Bevis et al.(1992)],
[Smith et al.(1953)]).
Observations of PWV are hardly available with the time and space resolution
needed to properly predict the highly variable behaviour of water vapour tro-
pospheric content. Radiosondes, balloon-borne instrument packages that send
temperature, humidity, and pressure data to the ground by radio signals, allowing
for a detailed evaluation of the water vapour content along the ballon profile, are
rather expensive instruments. Therefore, they are launched only in few locations,
thousand of km apart, once or twice a day, thus assuring vapour information at
a very low spatial and temporal resolution [Elliott1991]. Ground based Water
Vapour Radiometers (WVR), currently used for water vapour sounding, allow
for a proper time resolution monitoring, but again high operational costs limit
their spatial distribution [Resch1984]. Satellite borne WVRs, on the other hand,
can produce a proper space sampling, but the time resolution is still too poor
[Princea1998]. Therefore accurate estimates of GNSS signal tropospheric delays
may lead to reliable PWV data.
The research presented in this thesis lies within this field. It mainly focused indeed
on the analysis of GNSS observations from different GNSS networks in order to
retrieve precise estimates of the nonhydrostatic tropospheric delay and to model
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Chapter 1

its spatio-temporal variations at mid- and small spatial scale. The GNSS networks
we analized had specific characteristics about the receivers’ electronics, their spa-
tial distribution and acquisition rate (see Chapter 4 and 5 for further details).
To be more precise, we carried out a comprehensive analysis of different approaches
and estimation strategies of GPS-derived Zenith Wet Delays (ZWDs). To this re-
gards we carried out a re-processing activity of the GPS data acquired by the
network MisT, deployed within the ESA project METAWAVE.
The MisT network consisted of double-frequency geodetic receivers and could be
defined as a dense network, i.e. a network with inter-distances of nearby stations
less than 15 km. We analyzed several aspects both on the relative processing
strategy, i.e. Double Difference method (shortened by the symbol DD), and on
the absolute processing one, namely Precise Point Positioning strategy (denoted
by PPP). We have made extensive comparisons among these methods.
In particular, within the DD approach we investigated the impact of using single
frequency L1 observations with respect to iono-free L3 combinations for each net-
work’s station. It turned out that for very short baselines, like the ones character-
izing the MisT network, L3 combinations yield noisier and less accurate estimates
both of the coordinates and of the ZWDs. Single frequency observations, instead,
lead to more repeatable and accurate results (mainly for coordinates). In our
results, it was remarkable to notice that in the comparisons between coordinates
and ZWDs, obtained by using either L1 or L3 observables, standard deviations
range between one-millimeter precision up to a few millimeters value, whereas a
bias up to 7/8 mm was present, especially in the North coordinate.
This investigation lead us to conclude that for dense networks the deployment of
double frequency receivers for the whole network is unnecessary and L1-only data
may be used, showing a more regular behavior. It may be, however, necessary
to use at minimum two double frequency receivers for an internal and consistent
data quality assessment.
Further on this topic, we made extensive analysis of the estimates obtained by a
relative positioning approach and by an absolute strategy as modelled in the PPP.
In fact we analyzed first the residuals of UTM coordinates time series, obtained by
processing L1-only observations in DD and L3 combinations in PPP with respect
to their corresponding regression lines. This showed the repeatability of DD esti-
mates to range between few millimeters, while the repeatability of PPP estimates
is of course higher but still below 1 cm.
Thereafter we compared the coordinates and ZWD time series for any MIST sta-
tion obtained by processing L1-only observations and L3 combinations with a PPP
approach computing time series of differences. This has made evident that no sig-
nificant bias arises in this case and that the standard deviation of the differences
is at most 4 mm in planimetry and 9 mm both in the UP coordinates and in the
ZWD time series. This variability is very likely a consequence of the observation
equation model used in the PPP approach that requires to model all terms involv-
ing in the observation model and to introduce a priori estimates of the satellite’s
clock offset.
This result suggests in any case that as for the estimation of ZWD both strategies
are adequate, since the ZWD-derived Precipitable Water Vapor (PWV) is retrieved
from the ZWD by a scaling factor of approximately 0.17 ([Kleijer(2004)]). By
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means of a simple application of the variance propagation law, we then deduce
that the variability of the difference time series decreases by a similar factor.
Finally, we computed and compared time series of baselines, i.e. the time series of
the baseline of each station to the reference station adjusted in the DD procedure
and the time series of the differences of PPP estimates for the same station and
reference one. This analysis seemed to suggest that besides PPP residual errors,
the time series of PPP-derived ZWD baseline accounts for the same water vapor
signal as the time series of DD ZWD baseline (without introducing any a-priori
artificial correlation in the estimates inherent to the processing strategy). More-
over, this study lead us to conclude that baselines shorter that 1 km length are
not useful to monitor ZWD variations. These results were obtained applying a
batch estimation method as implemented in the BERNESE software v5.2 and in
its built-in automatic procedure BPE (cf. [Dach et al.(2015)]).
Moreover, in order to carry out the analysis we have also developed ad-hoc SW
tools that contribute to build a “data warehouse”. This software manages the
import of the data from separate output BERNESE files and organize these data
in a coherent archive and allows to perform different analysis on the dataset by
applying several statistical algorithms. This SW has been written in the MAT-
LAB programming language.
Along with the study described above regarding the GNSS network MIST, we
have given a closer look at a GNSS network where the inter-distances of nearby
stations are approximately 50 km, thus including the case of mid-scale and re-
gional networks.
The case study we analyzed consisted in one week of July 2016, where two se-
vere rainfall events occurred in Lombardy region on the 22nd and 26th. These
two severe storms showed a quite different meteorological nature: the one on the
22nd of July was characterized by a strong advective behavior with a weather
front propagating from South-East to North-West, whereas the event on the 26th
showed strongly localized convective cells.
To analyze whether and how GNSS-derived ZWD time series would give evidence
of these phenomena we processed GNSS data from 21st to 29th of July acquired by
the interregional GNSS SPIN network. This network consists of 30 dual-frequency
geodetic receivers covering quite homogenously the two Italian regions Lombardy
and Piedmont. The inter-distances of closeby stations belonging to the SPIN net-
work range between 40 and 50 km.
To analyze this case study we adopted a PPP strategy (thus considering L3 observ-
ables) and for each station, we computed a ZWD time series with time resolution
of 10 minute. The aim of this analysis was assessing the accuracy of GNSS-derived
ZWD (and consequently PWV) and the potential use of GNSS observations for
the determination of (2+1)-D water vapor maps - 2D for the spatial range and 1D
for the time variable.
We modelled the residual ZWD field – i.e. the estimated ZWDs suitably reduced
by an estimate of their mean height component - as an intrinsic stationary ran-
dom field. We then computed for each epoch the spatial empirical variograms
of the residual field and fitted these empirical spatial variograms with Fractional
Brownian motion models ([Shevchenko(2014)]) of the form

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
mid-scale GNSS networks - 5
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γ(‖h‖)t = Ct · (‖h‖)αt , (1.1)

where Ct ∈ R and 0 < αt < 2, for all available epochs t.
These models seem to retain a physical meaning (at least asymptotically), as
they have been used and extensively studied in the turbulence theory of fluids
([Pope(2000)]).
Even though the theory predicts the values of the model parameters, in partic-
ular of the exponent, we estimated them epoch-wise by applying a least square
procedure, with the aim to find the best data-driven model parameters possible.
Comparing the theoretical value with our own estimates, we have found that in our
case the exponent ranges from about 0.3 to 1.5, thus including values significantly
different from that foreseen by the theory (see [Tatarski(1961)], [Pope(2000)]).
On the other side, fractional Brownian motion models seem to represent faithful
models for the computed empirical variograms in case of such regional network
with stations’ inter-distances up to 50 km.
Using these models, we were able to predict the values of the residual ZWD on
a uniform grid applying a simple Kriging algorithm (see [Wackernagel(2003)]).
This yields a stack of 2D residual ZWD maps parametrized by time.
Once again, to perform this analysis we have used and developed further the “data
warehouse” SW, implementing several new modules, i.e. for instance the routine
for computing spatial empirical variograms, for fitting these variograms with Frac-
tional Brownian motion models, for setting up the model parameters and finally,
for creating the maps.
At this point, in order to retrieve accurate PWV maps with absolute values, a last
step is required.
We need indeed to re-introduce topography-dependent information on the network
area, assessing the mean component of the ZWD due to the height at each grid
point.
One possible way to do that would consist in selecting a proper Digital Elevation
Model (DEM) of the network area, in order to estimate as accurately as possible
the height of each grid point, and then choosing a model that expresses the ZWD
as a function of the height component. We could in this way give an estimate of
the mean height-dependent component of the ZWD. Adding these mean contribu-
tion to the residual ZWD maps would yield absolute estimates of the ZWD values
at all grid points taking into account the topography as well.
This procedure could be of some interest since it would allow to compare the re-
sulting absolute ZWD (or equivalently PWV) 2D maps with images acquired by
other sensors, in order to figure out whether indeed GNSS-derived maps retain dy-
namical meteorological information. This step, however, has not been concluded
and the comparison of GNSS-derived absolute ZWD water vapor maps with other
images represents a future research direction.
In the context of dense and mid-scale GNSS networks, we developed also an algo-
rithm for the estimation of the mean transport velocity vector.
This algorithm relies on the Taylor’s frozen flow hypothesis and gives rise to a
time-varying but spatially constant advection vector. It is based on a least square
estimation approach and on the theoretical variogram models needed to estimate
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the 2D ZWD maps.
The purpose of applying this algorithm was to check whether at least the direc-
tion of the weather front propagation for the event on the 22nd would have been
visible. However, for an orographically complex area, as that the SPIN GNSS
network covers, it became clear that such method could be misleading. For these
reasons, we thought about a refined dynamical model, which generalizes the model
based on the frozen flow hypothesis and is based on the conservation law of specific
humidity of a parcel of air. Being both time and space-varying, this model could
overcome the problem found with the previous method.

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
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Chapter 2

The Troposphere signal in Global
Navigation Satellite Systems

2.1 Introduction

Space geodetic measurement techniques, as for instance VLBI and GNSS, take
advantage of the propagation time of signals, in the microwave spectrum, as a
measure of the distance. When such a signal travels through the Earth’s atmo-
sphere, it affects the electromagnetic wave in three main ways

1. it causes a propagation delay

2. it causes a bending of the ray path of the signal

3. it absorbs part of the energy of the wave

The propagation delay is mainly a consequence of the refractivity of the medium
where the electromagnetic wave propagates through. In this Chapter we will only
deal with the propagation delay in the neutral atmosphere (or Troposphere), i.e.
the lower part of Earth’s atmoshere that ranges from the ground up to approxi-
mately 10/12 km.
We will describe the main components of the delay models typically used for the
a-priori correction of the GNSS observations. Furthermore we will also introduce
the main techniques and approaches employed for estimating the non-hydrostatic
delay. This part of the total delay, indeed, is not easily corrected by means of a
priori information or models and it needs to be assessed by statistical inferential
methods.
The present Chapter introduces the atmospheric variables we will deal with in the
rest of this work. The aim is to give an overview of the most important quantities
and results in modelling the GNSS signal’s propagation delay. The intention is
not to be exhaustive by explaining all the existing models, but only to give an
overview to the subject. A more comprehensive introduction can be found in, for
example, [Kleijer(2004)], [Dach et al.(2015)] an the references therein.
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Chapter 2

2.2 Physics of the neutral atmosphere

This section deals with the physical background that is needed to derive the GNSS
signal’s troposphere delay models. We will first briefly describe the atmospheric
layers and then the governing laws of the dynamical evolution of the neutral atmo-
sphere. After that we will introduce the refractivity of the air, which represents for
our purposes the main concept of this sectin. In fact the GNSS signal’s propaga-
tion delay may be viewed as a linear functional of the refractivity field of air. We
will finally present the decomposition of the refractivity into the hydrostatic and
the non-hydrostatic components, explaining the main differences between these
two parts. This section is based on [Kleijer(2004)].
The Earth’s atmosphere can be roughly subdivided in different concentric layers,
where the common centre is of course the centre of the Earth. The definition
and the basic characteristics of these layers depends on the purpose for which
the subdivision is made. If the atmosphere is studied from a physical-chemical
perspective then the well-known characteristic features are temperature, pressure
and ionization. Instead, if it is studied as a medium for electromagnetic waves
then an important characteristic is the propagation (cf. [Kleijer(2004)] and the
references therein). Analyzing the atmosphere by this latter case, i.e. by the way
electromagnetic waves propagate through it leads to a subdivision of the atmo-
sphere into two broad layers, namely the troposphere and the ionosphere. The
ionosphere is the upper part of the atmosphere and can be taken to be ranging
from about 15 km up to approximately 1000 km altitude. For electromagnetic
waves with wavelengths ranging from some centimeters to a few millimeters the
ionosphere is a dispersive medium, i.e. the propagation delay depends on the fre-
quency of the wave. For the same class of waves, instead, the troposphere turns
out to be a nondispersive medium, i.e. a medium for which the propagation delay
does not depend on the wave’s frequency. For this reason the troposphere is also
referred to as neutral atmosphere.
In general, the temperature in the troposphere decreases almost linearly with
height . At the top of the troposphere, i.e. at a variable height of approximately
9− 16 km above the mean sea level, the temperature remains constant for about
another 10 km. This stratum of the neutral atmosphere can be referred to as
tropopause in order to explicitly highlight this feature.
The neutral atmosphere contains both dry air and water in gaseous or liquid state.
By volume dry air contains on average approximately 78% of Nitrogen, 21% of
Oxygen, 0.9% of argon and 0.04% of carbon dioxide (together with small amounts
to other gases). From a dynamical point of view, dry air shows smooth variations
both spatially and temporally. Moreover, it does not show significant changes with
latitude. The amount of water vapour, on the contrary, present a highly variable
behaviour both spatially and temporally and it is concentrated in the lowest part
of the troposphere, especially in the Atmospheric Boundary Layer, up to approxi-
mately 5− 6 km. Water, both in gaseous and liquid phase, is the most important
constituent in relation to weather processes, especially because the large amounts
of energy released or absorbed in the condensation and evaporation processes.
For this reason all meteorological phenomena happen generally in the part of the
neutral atmosphere ranging from the ground up to approximately 6 km. The dy-
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namical evolution of the water vapour concentration and, more generally, of the
atmosphere can be expressed by a set of differential equations. These equations
are retrieved by applying the conservation of mass, both of dry air and water,
energy, momentum and the equation of state for ideal gases (cf. [Kalnay(2003)])

dv

dt
= −α∇p−∇φ+ F − 2Ω× v (2.1)

∂ρ

∂t
= −∇ · (ρv) (2.2)

pα = RT (2.3)

Q = Cp
dT

dt
− αdp

dt
(2.4)

∂ρq

∂t
= −∇ · (ρvq) + ρ(E − C) (2.5)

where v = (u, v, w) is the flow velocity field of the air, T is the temperature of a
parcel of air, p is its the pressure, ρ denotes the mass density of a parcel of (moist)
air, α is the specific volume of a parcel of air, Cp represents its specific heat at
constant pressure and q stands for the specific humidity of a parcel of air.
The third Equation is the well known equation of state for ideal gases.
The last Equation, instead, represents the conservation equation for the specific
humidity q. It simply states that the total amount of water vapor in a parcel
of air is conserved as the parcel moves around, except when there are sources
(evaporation E) and sinks (condensation C). For our purposes this equation is
quite important and we will take advantage of it in Chapter 6 in order to describe
an advection-diffusion model for the ZWD field.
When an electromagnetic wave travels through the neutral atmosphere it interacts
with all the atmospheric constituents described above and among the other effects
mentioned in the Introduction, it suffers a delay compared to its propagation in the
vacuum. In fact the propagation speed of an electromagnetic wave in the vacuum
is the speed of light c, whereas its propagation velocity in any other medium is
v ≤ c.
Hence the total delay of a radio signal due to the neutral atmosphere depends
on the refraction index along the traveled path, i.e. the ratio between its actual
speed and speed of light

n =
c

v
(2.6)

Evidently the refraction index is an adimensional variable. In some cases, n
can be modelled as a complex number, where the imaginary part is related to
the absorption of energy while the real part reflects the propagation delay and
bending (see [Kleijer(2004)]). However, for our scope we will always think of
the refraction index as a real number, thus considering only the delay and bending
part.
Since n is close to 1, the refraction index is usually replaced by the refractivity
defined as

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
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N = (n− 1) · 106 (2.7)

Also the refractivity is an adimensional variable. The values of the refractivity
for the atmosphere ranges between 0 and 300.
Taking into account that the atmosphere contains both dry air and water, typically
in vapour phase, we may decompose the refractivity into a dry and wet component

N = Nd +Nv (2.8)

where Nd is the refractivity of dry air, whereas Nv is the refractivity of water
vapour.
Both these terms depends on pressure and temperature of the troposphere.
Indeed according to [Thayer(1974)] and [Smith et al.(1953)] for electromag-
netic waves with frequencies up to approximately 20 GHz, an accurate formula for
the refractivity of dry air and of water vapour is given by

Nd = k1
Pd
T
Z−1d (2.9)

Nv =
[
k2
e

T
+ k3

e

T 2

]
Z−1w (2.10)

where

� ki are constants; [Kmbar−1], fori = 1, 2 and [K2mbar−1], fori = 3

� Zd is the compressibility factor of dray air [−]

� Zw is the compressibility factor of water vapor [−]

The compressibility factors take into account the non-ideal behaviour of dry air
and water vapor and under average atmospheric conditions they are close to 1. In
order to compute them there exist empirical formulas that let the compressibility
factors depend again on temperature and pressure both of dry air and water
vapour. The explicit formulas are reported in [Kleijer(2004)], pag. 28.
Here we limit ourselves in saying that these factors can be often considered to be
equal to the unity with good approximation, which implies the following formulas
for the dry and wet refractivity

Nd = k1
Pd
T
Z−1d (2.11)

Nv =
[
k2
e

T
+ k3

e

T 2

]
Z−1w (2.12)

The constants ki have been determined empirically and values for them are
reported, for instance, in [Bevis et al.(1992)].
As explained in [Kleijer(2004)] and the references therein, the dry refractivity
and the linear term with respect to temperature in the wet refractivity are the
result of the molecular polarization induced by the wave when travels through
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the neutral atmosphere. The quadratic term, instead, is the result of the dipole
structure of the water molecule and it is by far the largest part of the delay induced
by water vapour.
Along with the splitting of the refractivity N into its dry and wet part, we may
decompose N also in its hydrostatic and nonhydrostatic components.
More precisely, starting with Equation 2.9 and the equation of state for dry air
and water vapour, we may write

N = k1Rdρd + k2Rwρw + k3
e

T 2
Z−1w

= k1Rdρm − k1Rdρw + k2Rwρw + k3
e

T 2
Z−1w

= k1Rdρm + (k2 − k1
Rd

Rw

)Rwρw + k3
e

T 2
Z−1w

(2.13)

where we considered the density of moist air given by ρm = ρd + ρw.
Setting

K2 = k2 − k1
Rd

Rw

[Kmbar−1] (2.14)

and using the equation of state of water vapor, Equation 2.13 reads

N = k1Rdρm + (K2
e

T
+ k3

e

T 2
)Z−1w

= Nh +Nw

(2.15)

The first term is called hydrostatic refractivity while the second term is the
nonhydrostatic refractivity or with a slight abuse of language wet refractivity, even
though this term refers to Equation 2.9. Unless otherwise stated, in this work we
will always consider the decomposition 2.15 of the refractivity in hydrostatic and
nonhydrostic component.
Also in this case the constants may be determined empirically and we refer to
[Kleijer(2004)] for a table reporting different values for them.

2.3 Propagation of GNSS signals in Earth’s troposphere

As already said many times, a radio signal travelling through Earth’s neutral at-
mosphere interacts with the atoms and molecules present, mostly given by dry
air and water vapour. This results in a change of the propagation speed and di-
rection, i.e. the signal is refracted. In this section we will discuss in detail the
effects of the propagation media on radio signals with frequencies up to approxi-
mately 20 GHz, considering therefore in particular GNSS signals. The section is
based [Teunissen and Kleusberg(1998)], [Kleijer(2004)] and the references
therein.
The delay experienced by a radio signal travelling through the neutral atmosphere
is a linear functional of the refraction index n introduced in the previous section.
The most basic physical principle for the propagation of an electromagnetic wave

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
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is Fermat’s principle that can be stated as follows

The path taken between two points by a ray of light, or any electomagnetic wave,
is the path that can be traversed by the least time.

Keeping this in mind, we may define the elecromagnetic distance between a source
point P and a target point Q as (see [Kleijer(2004)])

L =

∫
l(P,Q)

c · dt =

∫
l(P,Q)

c

v
· ds =

∫
l(P,Q)

n(s) · ds (2.16)

where l(P,Q) is the effective path followed by the signal, c is the speed of light, v
is signal’s effective propagation speed and n is the refraction index.
If we define the geometrical distance by

R =

∫
r

dr (2.17)

where r is the geometric ideal path of the signal, namely a straight line from the
source and target points, then the slant total delay of the radio signal is given by

dstrop = L−R =

∫
l(P,Q)

n(s) · ds−
∫
r

dr

=

∫
l(P,Q)

(n(s)− 1) · ds+

[∫
l(P,Q)

ds−
∫
r

dr

] (2.18)

The first term on the right-hand side of the equation above is the delay caused
by the refraction media, while the second term is the delay caused by ray bending.
Introducing the refracted (i.e. apparent) angle θ and the non-refracted (namely
the geometric) angle ψ, then the delay experienced by a signal propagating from
the top of the neutral atmosphere to the ground can be in first approximation
expressed by the formula ([Teunissen and Kleusberg(1998)])

∫ ra

rs

(n(r)− 1)cosec(θ(r))dr +

[∫ ra

rs

cosec(θ(r))dr −
∫ ra

rs

cosec(ψ(r))dr

]
(2.19)

where r is the geocentric radius with rs the radius of Earth’s surface and ra
the radius at the top of the troposphere.
This formula holds for a spherically symmetric atmosphere for which the refraction
index n depends only on the geocentric radius.
The integral equation 2.19 can be computed if the angles θ and ψ are known
together with a vertical profile of the refraction index n. In most applications,
however, a profile of the refraction index is not available and therefore one is
forced to make use of another approach based on closed-form or approximation
series that rely on simplified atmospheric models.
In the context of signals used in satellite ranging systems it is possible to estimate
the slant delay by means of approximating analytical functions that models the
atmospheric parameters around the receiver. Following Equation 2.15, the delay
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due to the hydrostatic component of the refraction index and that due to the
nonhydrostatic one are treated separately. Thus similarly to Eq. 2.15 we may
decompose the total slant delay as

dstrop = dsh + dsw (2.20)

From the adjustment of GNSS observations, however, it is not possible to deal
directly with slant delays. In fact, their introduction in the adjustment model
would yield an ill conditioned systems. Thus the neutral atmosphere is assumed to
be homogeneously distributed on horizontal layers, i.e. spherically symmetric (cf.
for instance [Teunissen and Kleusberg(1998)], [Herring1992]) and in this
way, the path-depending delays can be expressed in terms of a common unknown
delay parameter in the zenith direction above the receiver. More precisely each
slant delay will be written as the product of a delay in the zenith direction with
a proper coefficient, which projects the zenith delay onto the corresponding slant
direction

dstrop = ZHD ·mh(ψ) + ZWD ·mw(ψ) (2.21)

In the context of GNSS, the total slant delay dstrop will be more explicitly

denoted by T SR where R and S denote respectively receiver and satellite (cf. the
forthcoming section).
In the above equation ψ is the non-refracted elevation angle of the signal in its
path from the satellite to the receiver, whereas the term ZHD stands for Zenith
Hydrostatic Delay and ZWD for Zenith Wet Delay. Their sum yields the Zenith
Path Delay or total Zenith Delay denoted by

ZPD = ZHD + ZWD (2.22)

These parameters, with special emphasis on the ZWD, are the most important
parameters dealt with in this work and in the forthcoming chapters we will see
many of their features, properties and related issues.
The projecting functions mh and mw are called mapping functions. Among their
properties, the mapping functions map the increase in delay with the correspond-
ing decreasing of the signal’s elevation angle. Moreover, they take account for
average characteristics of the troposphere according to the latitude of the region
where the receiver is located and the year’s season.
Over the past decades, a variety of model profiles and mapping functions have
been developed in order to assess the delay experienced by signals, which propa-
gate in the neutral atmosphere at arbitrary elevation angles.
As explained in [Teunissen and Kleusberg(1998)] and the references therein,
the elevation angle dependence of the tropospheric delay can be mathematically
described by a continued fraction and most of the mapping functions developed so
far are based on a truncation of that series. A review of the most common mapping
functions can be found in [Kleijer(2004)]. Here we would like only to point out
that in the present work we extensively used the Niell mapping function within
the reprocessing activity carried out for the MisT network (see Chapter 4) and the
Global Mapping Function (together with the Global Pressure and Temperature
model GPT, as implemented in the GNSS data processing software BERNESE v.
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5.2) for the research study realized for the GNSS SPIN network.

2.3.1 Zenith Hydrostatic Delay

The Zenith Hydrostatic Delay (ZHD) is the delay experienced by a signal caused
only by the hydrostatic component of the neutral atmosphere.
Using the refractivity N (see Definition 2.7) we have

ZHD = 10−6
∫ ha

h0

Nh(h)dh (2.23)

where h0 is the height of the surface above the mean sea level and ha is the
height of the top of the troposphere.
Applying Equation 2.15 we may express the ZHD as

ZHD = 10−6k1Rd

∫ ha

h0

ρm(h)dh (2.24)

The hydrostatic zenithal term accounts approximately for 90% of the total
zenith delay and it can be computed with an accuracy of a few millimeters once
surface pressure data are available and the atmosphere is assumed to be in hydro-
static equilibrium.
In general, a fluid is said to be in hydrostatic equilibrium if it is at rest or when
its flow velocity at each point is constant over time. This occurs when external
forces such as gravity are balanced by the pressure. Mathematically we may state
the hydrostatic equilibrium as

dP

dh
= −g(h)ρm(h) (2.25)

where P denotes the pressure, g is the gravity acceleration, ρm the density of
moist air and h the height.
Integrating Equation 2.25 we get∫ 0

P0

dP = −
∫ ha

h0

ρm(h)g(h)dh = −P0 (2.26)

with P0 the surface pressure exerted by a air.
Introducing a mean gravity term gm, which represents the gravity acceleration at
the center of mass of a column of air, we express the ZHD as

ZHD = 10−6k1
Rd

gm
P0 (2.27)

The mean gravity term is given by

gm = g0m · f(φ, h) (2.28)

where φ is the geodetic latitude and g0m = 9.784m · s−2.
As stated in [Kleijer(2004)], the function f has the form
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f(φ, h) = 1− 0.00266cos2φ− 0.00000028h (2.29)

and it is very close to 1. Kleijer [Kleijer(2004)] reports empirical values for
the constants appearing in Equations 2.24 and 2.28 in order to obtain the explicit
formula for the computation of the ZHD

ZHD = [0.0022768m/mbar] · P0

f(φ, h)
(2.30)

The accuracy of the term expressed in square brackets is 0.5mm/bar according
to [Kleijer(2004)] and the references therein.
Thus, for any point of Earth’s surface one can compute the ZHD provided that
the pressure at that point is known. No further assumptions about pressure at
different heights or on temperature is needed.

2.3.2 Zenith Wet Delay

The Zenith Wet Delay (ZWD) is the delay experienced by a signal caused by the
nonhydrostatic part of the neutral atmosphere.
It is a linear functional of the wet refractivity and it is defined as follows

ZWD =

∫ ha

h0

Nw(h)dh (2.31)

where h0 denotes again the height of the surface above the mean sea level, ha
the height of the top of the troposphere and

Nw = K2
e

T
+ k3

e

T 2

with unit compressibility factor.
According to [Kleijer(2004)], if we define a mean temperature coefficient as

Tm =

∫ ha
h0

e
T
dh∫ ha

h0

e
T 2dh

(2.32)

and use the definition of the nonhydrostatic refractivity the ZWD can be writ-
ten in the following way

ZWD = 10−6(K2 +
k3
Tm

)

∫ ha

h0

e

T
dh (2.33)

Thus, from this equation it turns out that one would need water vapour pres-
sure and temperature vertical profiles in order to determine the ZWD.
Whereas the ZHD can be easily and accurately modelled (cf. the previous section),
the same is not true for the ZWD. Indeed the water vapour in the troposphere is
not well mixed as the dry air constituents and therefore its distribution is spatially
and temporally inhomogeneous and highly variable, especially in the atmospheric
boundary layer.
For this reason, in the case of satellite ranging systems the ZWD is a parameter
that is usually estimated in the adjustment of the GNSS observations. We will
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review in the next sections a few approaches to assess the ZWD by means of differ-
ent adjustment techniques and we will present the results obtained in our research
study related to the comparison between these methods for estimating the ZWD.
Furthermore, due to its inherent probabilistic nature the spatial and temporal
distribution of the ZWD values across a region covered by a GNSS network will
be modelled by a stochastic field with suitable stationarity assumptions. We refer
to the Chapter 3 for a theoretical introduction to random fields and their basic
properties and to Chapter 5 for a thorough analysis of a case study.
For meteorological applications the ZWD is important because it can be directly
linked to the Precipitable Water Vapour (PWV). The latter meteorological pa-
rameter is defined as

PWV =
1

ρ

∫ ha

h0

ρw(h)dh (2.34)

where ρw is the density of water vapour while ρ = 1000 kg/m−3 is the density of
(liquid) water.
Using the equation of state of ideal gases we have that∫ ha

h0

e

T
dh = Rw

∫ ha

h0

ρw(h)dh (2.35)

and we may define a factor Q relating the PWV to the ZWD as follows

Q = 10−6(K2 +
k3
Tm

)Rwρw (2.36)

With this definition it results that

ZWD = Q · PWV (2.37)

that is there exists a linear relation between the PWV and ZWD.
The factor Q is an adimensional quantity that amounts approximately to 6.5.
In [Kleijer(2004)] or [Bevis et al.(1992)], an empirical formula for the mean
temperature Tm is given, from which Q can be computed with an accuracy of
about 2%. We refer to [Kleijer(2004)] and the references therein for further
details about this topic.

2.4 GNSS observation equations and estimation strategies

In this section we will briefly introduce the basic observation equation model for
GPS signals. Many concepts we are going to present generalize to the other satel-
lite ranging systems already in use or that are being developed, as for instance the
Russian system Glonass and the European one GALILEO. Nevertheless, we will
focus only on the U.S. system GPS for the sake of simplicity and since it is the
GNSS we have used within our research study.
Along with the basic observation equations we will talk about two main GPS obser-
vations adjustment strategies, namely the Double Difference (DD) method and the
Precise Point Positioning method (PPP), pointing out some of their basic features
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we have used in the analysis of our case studies. These methods are extremely
important and there is a huge literature on them, explaining all their features
and properties. We refer for instance to [Teunissen and Kleusberg(1998)],
[Biagi(2009)], [Dach et al.(2015)] and the references therein for a full treat-
ment of these topics.
GPS positioning and monitoring of tropospheric variables is performed on obser-
vations made on the signal carrier phases and on the pseudo random codes (e.g.
precise or coarse acquisition code) that module the carrier phases themselves. The
observation derived from pseudo random codes is usually called pseudorange mea-
surement and it is equal to the difference between the receiver time ti at signal
reception and satellite time tk at signal trasmission scaled by the nominal speed
of light c.
The carrier phase measurement ΦS

R(t), instead, is the difference between the phase
φi of the receiver internally generatd signal at signal reception time with the phase
φk of the satellite generated signal at trasmission time multiplied by the wavelength
λ of the carrier. Only the fractional carrier phase can be measured and therefore
the integer number M of full cycles is unknown. In the liteature M is called the
carrier phase ambiguity.
Following [Teunissen and Kleusberg(1998)], we obtain the GPS observation
equations for the pseudorange and the carrier phase measurements as

ΦS
R(t) = ρSR(t, t− τSR)− ISR + T SR + δmS

R + c[dti(t)− dtS(t− τSR)]+

c[δR(t) + δS(t− τSR)] + λ[φR(t0)− φS(t0)] + λMS
R + εSR

(2.38)

and

P S
R(t) = ρSR(t, t− τSR) + ISR + T SR + δmS

R + c[dti(t)− dtS(t− τSR)]+

c[δR(t) + δS(t− τSR)] + eSR
(2.39)

where
� τSR is the travel time of the signal on its path from the receiver to the satellite

� ρSR(t, t−τSR) is the geometric distance between the receiver R and the satellite
S, expressed in [m]

� ISR is the ionospheric delay ([m])

� T SR is the troposphere’s total slant delay ([m]); we have changed the notation
of the total slant delay here, compared to the previous section, in order to
clearly state the different terms involved in the GPS observation equation
model

� dti(t) and dtS(t−τSR) are respectively the receiver’s clock offset and the satel-
lite’s clock offset
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� c[δR(t)+δS(t−τSR)] is the term related to the equipment delays, in particular
due to electronics of both the receiver and the satellite

� δmS
R is the error due to multipath effects

� in case of the carrier phase measurement ΦS
R(t) we have the additional terms

λ[φR(t0)−φS(t0)] and λMS
R which result respectively from the non-zero initial

phases of the signal emitted by the satellite and that generated internally by
the receiver and the carrier phase ambiguity.

Remark. It is widely known that the GPS signal is modulated on two carrier phases
denoted by L1 and L2 and, in the modernisation program of the space segment,
another carrier will be added, in order to provide a higher accuracy and even more
services (see for instance [Biagi(2009)]).
For the sake of simplicity we did not explicitly introduce in Eqs 2.38 and 2.39
a dependency on the carrier frequency. However, this dependency must always
be kept in mind, since some of the systematic and random errors present in the
observation equation models differ slightly according to which carrier frequency
they are referred to.
Having more than only one carrier frequency is extremely important because a
suitable linear combination of the two carriers allows to drastically reduce the
ionospheric delay ISR.
This linear combination is called the L3 combination, or iono-free combination,
and it is given by the formula

L3SR(t) =
f 2
1

f 2
1 − f 2

2

Φ1SR(t)− f 2
2

f 2
1 − f 2

2

Φ2SR(t) (2.40)

with f1 = 19.029cm is the frequency of the carrier L1 and f2 = 24.421cm is
that of the carrier L2.
This combination allows to remove the first-order effets of the ionosphere, which
account for approximately 90% of the total ionospheric delay. The iono-free com-
bination is typically used for high precision positioning purposes and within the
GNSS data adjustment method called Precise Point Positioning (PPP).

The GNSS observation equations 2.38 and 2.39 are nonlinear equation. This
is because the geometric distance ρSR(t, t− τSR) between receiver and satellite is a
nonlinear function of the coordiantes of the receiver.
Hence in order to apply inferential and regression algorithms to these models, es-
pecially least square and Kalman filter algorithms, the observation equations need
to be linearized. The linearization process relies mathematically on the Taylor ap-
proximation series of the nolinear term truncated at first order. A full treatment
is reviewed for instance in [Teunissen and Kleusberg(1998)] or [Biagi(2009)]
and we refer to these sources for all computations, subtleties and consequences of
the linearization method.
Along with the assessment of the coordinates of the receiver, the linearized obser-
vation equations allow to give an estimate of the tropospheric delay T SR .

20



The Troposphere signal in Global Navigation Satellite Systems

Recall that we cannot directly estimate the slant delays in the adjustment of GPS
observations, rather we express the total slant delay as

T sR = ZHD ·mh(ψ) + ZWD ·mw(ψ)

We refer to the previous section for the explanation of all the terms in the
above equation.
Since the tropospheric delay term depends atually linearly on the observation, this
is exactly the term appearing in the linearized equations.
The Zenith Hydrostatic Delay ZHD can be evaluated and removed from observa-
tions by means of models requiring the knowledge of surface pressure as we have
explicitly derived in the Equation 2.30.
On the contrary, due to the high variability of the temporal and spatial distri-
bution of water vapour in the neutral atmosphere, the corresponding Zenith Wet
Delay cannot be accurately determined as a function of known parameters. The
wet delay is therefore estimated within the general adjustment of GNSS observa-
tions.
Different adjustment strategies can be adopted in the analysis of GNSS data to
obtain the parameters of interest. For what concerns the ZWD parameter estima-
tion, in this work we have extensively used the following ones:

� least-squares batch adjustment of (L1 observations or L3 iono-free combina-
tions) Double Differences (DD), or Relative Positioning

� least-squares batch adjustment of (iono-free observations) Zero Differences,
or Precise Point Positioning (PPP)

In the case studied we are going to present in the next Chapters, we have
carried out post-processing data adjustments of GPS-only observations collected
from stationary geodetic receivers.
In the Double Difference case, the adjustment is performed on the observations
(L1-only or iono-free combination) simultaneously acquired by two stations to the
same satellite pair. Using this particular topology this adjustment method allows
the removal of some of the systematic effects common to the receivers and the
satellites involved. In particular, in the Double Difference the receiver’s clock
offset dti(t) and the satellite’s clock offset dtS(t − τSR) do not appear anymore.
Furthermore in case of phase measurements the fractional phase term disappears
as well. Finally, the total atmospheric bias and error in the ephemeris of the
satellites are slightly reduced. After some computation, it turns out that the final
(nonlinear) equations both for pseudorange and phase measurements are given by
the following expressions

ΦSl,Sk

Ri,Rj
(t) = ρSl,Sk

Ri,Rj
(t, t− τSR)− ISl,Sk

Ri,Rj
+ T Sl,Sk

Ri,Rj
+ λMSl,Sk

Ri,Rj
+ εSl,Sk

Ri,Rj
(2.41)

and

PRi, Rj
Sl,Sk(t) = ρRi, Rj

Sl,Sk(t, t− τSR) + ISl,Sk

Ri,Rj
+ T Sl,Sk

Ri,Rj
+ eSl,Sk

Ri,Rj
(2.42)
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The complete derivation of the above equations and their linearization can be
found in [Teunissen and Kleusberg(1998)] and [Biagi(2009)].
The Double Difference approach implies the relative positioning of one receiver
with respect to the other one. In other words it does not allow to estimate sep-
arately the coordinates of the two receivers involved, but only the coordinates of
the baseline vector between them.
For what concerns the ZWD, instead, when two stations are at a distance shorter
than approximately 20 km the quasi parallelism of the signal paths of the two re-
ceivers to the same satellite, results in a quasi rank deficiency of the least-squares
design matrix. More precisely, the coefficients in Equation 2.21 computed by
means of the mapping functions have almost the same value and this implies the
least square design matrix to become ill conditioned with a quasi-rank deficiency
of 1.
This requires, therefore, the ZWD value of one station to be fixed. Due to this
issue, Double Difference adjustment of nearby receivers data yields a relative es-
timate of the ZWD with respect to a reference one. The same happens in the
multi-station adjustment of networks with interdistances among the stations of
less than 20 km.
For longer baselines, instead, it is possible to give a separate estimate of the ZWD
of two stations since the values of the mapping functions in this case differ signif-
icantly, avoiding the quasi-rank deficiency of the regression model.
In the static Precise Point Positioning (PPP) case, single-station (or undifferenced)
observations are adjusted. This requires the accurate modelling of a number of
systematic errors. Among them, let us mention the satellite attitude effects with
respect to the receiver, as for instance phase wind-up correction and the antenna
offset, the site displacement effects, such as ocean loading effects and solid Earth
tides, Earth Rotation parameters and the relativistic effects. Furthermore, a nec-
essary parameter that has to be introduced in the PPP processing is the estimate
of the satellite clock bias. These clock corrections are determined from a globally
distributed network of receivers and are made available by the International GPS
Service (IGS) with different estimation rate. They are either directly estimated
or for higher sampling rate, as for instance 30 sec they need to be interpolated.
Nevertheless their behaviour turns out to be quite smooth behavior, allowing them
to be interpolated with a high precision.
A further important point to mention is that in case of PPP it becomes essential
to remove as much as possible the ionospheric error, since its presence would affect
heavily the accuracy of the estimated parameters. Therefore, within this adjust-
ment technique L3 iono-free observations are preferable. In those cases where it is
not possible to build the iono-free combination (for instance when single-frequency
observations only are available) it is mandatory the removal of the ionospheric de-
lays by using global or local Ionosphere models.
An exact description of the PPP method with all its subtleties is certainly be-
hind the scope of this thesis. A complete description with full details about the
Precise Point Positioning can be found in [Kouba and Heroux(2001)] and the
references therein.
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Stochastic modelling of the
non-hydrostatic ZWD field

3.1 Stochastic processes

In this section we will introduce some key notions of Probability theory that
will be used throughout this work. In particular we will give the definition of a
stochastic, or random, process, which will be one of the most important concepts
in the present thesis. Along with that we will recall various basic definitions
naturally associated to a random process, in particular generalizing the notions of
probability distribution, mean, variance and covariance of two random variables.
Finally, we will introduce a wide-sense stationary stochastic process and attempt to
outline the weaknesses of such family of random processes in the context of GNSS
meteorology. This will motivate the need of a more general family of random
processes able to better model meteorological fields. This section is largely based
on [Papoulis et al.(2002)] and [Wackernagel(2003)] and we refer to them for
further details.
Heuristically a random variable is a function X that associates a real number X(ξ)
to the outcome ξ of a random experiment Ω. A stochastic process is a rule for
assigning to any outcome ξ a function Xt(ξ) = X(t, ξ). More precisely

Definition 1. A (real) stochastic process is a collection Xt(·) = X(t, ·) of (real)
random variables parametrized by t ∈ T , where T is some indexing set. Typically
we will assume that T be an interval of Rk with k = 1, 2, 3, 4. In case T ⊆ Rk,
with k > 1 then we will refer to Xt(·) as a random field.

If T ⊆ R, then the stochastic process is a continuous-time process. Conversely,
if T ⊆ Z then it will be called a discrete-time process. Moreover, if the values of
the stochastic process Xt, t ∈ T are countable then it will said to be a discrete-state
process. Otherwise it will be called a continuous-state process, or simply a contin-
uous process. In the following we will always assume to deal with continuous-time
and continuous random processes, the definitions for discrete-time and discrete-
state processes being easily extended.
Given a continuous stochastic process Xt, t ∈ T ⊆ R its first-order distribution is
defined as
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F (x, t) = P (Xt < x) ∀x ∈ R (3.1)

Its derivative with respect to x

∂

∂x
F (x, t) = f(x, t) (3.2)

is called the first-order density of the stochastic process.
The n−th distribution ofXt is the joint distribution function F (x1, . . . , xn; t1, . . . , tn)
of the n random variables Xt1 , . . . , Xtn .
For a complete determination of the statistical properties of a stochastic process
Xt the n−th distribution function F (x1, . . . , xn; t1, . . . , tn) should be known for all
xi, ti and n ∈ N. Nevertheless, in almost all applications one may happily restrict
his attention to average quantities that shed light on the statistical behaviour of
the process. These quantities depend on the distribution functions of Xt up to its
second order and are defined as follows.

Definition 2. 1. Given a stochastic process Xt with (first-order) density f(x, t),
we define its mean as

m(t) = E(Xt) =

∫
R
xf(x, t)dx ∀t ∈ T (3.3)

2. The autocorrelation function R(t1, t2) is

R(t1, t2) = E(Xt1Xt2) =

∫
R2

x1x2f(x1, x2; t1, t2)dx1dx2 ∀t ∈ T (3.4)

3. The autocovariance function, or simpler, covariance function is defined as

C(t1, t2) = E(Xt1Xt2)−m(t1)m(t2) ∀t ∈ T (3.5)

If t1 = t2 then C(t1, t1) is the variance of the random variable Xt1.

In case of a random field the above definitions can be verbatim generalized.
A further important second-order statistics of a stochastic process is provided by
the so-called structure functions, or variograms, that will be introduced later on
in this chapter.

Example 1. A trivial example of a stochastic process is provided by any deter-
ministic signal s(t) = g(t). In this case

m(t) = E(g(t)) = g(t) R(t1, t2) = g(t1)g(t2)

Example 2. The random motion of a particle in a fluid resulting from its mutual
collision with the fast-moving molecules in the fluid is typically called Brownian
motion and it is described by a continuous-time stochastic process called Wiener
process. This process occurs frequently in many branches of Science and Economics
and is defined as follows
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Definition 3. A Wiener process is a stochastic process Wt, t ≥ 0 such that
1. W0 is identically zero almost surely
2. for almost all ξ ∈ Ω the function Wt(ξ) is continuous on (0,+∞)
3. Wt has independent increments, i.e. for t1 < t2 < · · · < tn the random

variables Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1 are independent random variables
4. Wt has zero-mean normally distributed increments, i.e. Wt2−Wt1 ∼ N(0, t2−
t1)

A Wiener process is a particular case of Gaussian processes, i.e. those pro-
cesses Xt, t ∈ T such that for any finite subset F ⊂ T the joint distribution of the
corresponding set of random variables Xt, t ∈ F is a multivariate Gaussian distri-
bution. Gaussian random processes are a remarkable class and we will (implicitly)
use them throughout this work.
As already stated in the definition of the Wiener process, the mean of the process
is identically zero. The covariance function instead is given by

CW (t1, t2) = min(t1, t2) (3.6)

This implies in particular that the variance var(Wt) = t for all t ≥ 0.

Among all stochastic processes, an important family is provided by the col-
lection of stationary stochastic processes. Heuristically stationarity is rather an
intuitive concept and refer to the idea that the statistical properties of a random
process do not change over time. More precisely

Definition 4. A stochastic process Xt, t ∈ T is said to be wide-sense or weakly
stationary if its mean is constant

E(Xt) = µ ∀t ∈ T (3.7)

and its covariance function

C(t, s) = C(t− s) ∀t ∈ T (3.8)

Furthermore, if the covariance function only depends on τ = ‖t− s‖

C(t, s) = C(τ) (3.9)

then the process is called wide-sense (or weakly) stationary and isotropic.

Once again the above definition can be easily carried over to stochastic fields
where T ⊆ Rk with k = 2, 3, 4. In this case, however, instead of wide-sense sta-
tionarity we will talk about wide-sense homogeneity and a random field will be
called weakly homogeneous and homogeneous and isotropic.
One of the advantages of having a weakly stationary stochastic process relies on the
fact that this assumption makes less involved to compute empirically the covari-
ance function of the process and to fit it with a suitable theoretical model. Once a
model for the covariance function is known, there exist statistical inferential meth-
ods allowing to make predictions of the stochastic process by means of that covari-
ance model, e.g. collocation formulas (see for instance [Moritz et al.(1967)]).
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Remark. Along with the weak stationarity just defined, there is also a notion of
strong stationarity according to which a random process is strongly stationary if
its statistics is invariant to a shift of the origin. In other words, Xt and Xt+c must
have the same statistical properties for any c ∈ R such that t + c ∈ T . However,
this notion of stationarity is far too strong and fails to hold true in many practical
situations.
Besides the ideas of strong and weak stationarity there are other forms of station-
arity. One of which will be treated extensively in the following section. For other
notions we refer to [Papoulis et al.(2002)].

Example 3. A continuous stochastic process Ut, t ∈ R is said to be white noise if

E(Ut) = 0 ∀t ∈ R (3.10)

C(t, s) = E(UtUs) = σ2δ(t− s) ∀t ∈ R (3.11)

where δ(t − s) denotes the Dirac delta centered at t − s. Thus, from its very
definition, it follows that each pair of variables Ut and Us are uncorrelated and
have the same variance σ2.
If the white noise Ut is normally distributed then it is called Gaussian white noise.
According to its definition it is immediate to see that a white noise process is a
weakly stationary process. Furthermore, if the white noise is Gaussian then it
is also strongly stationary. This is due to the fact that the invariance properties
on the second-order statistics of a Gaussian process hand over to its distribution
functions.

Example 4. The Wiener process Wt, t ≥ 0 is not a weakly stationary process,
since its covariance function is C(t, s) = min(t, s), which depends on both t and s
and not on their difference t− s.

As already stated in Chapter 2, the atmospheric variables one typically deals
with in Meteorology, as well as in GNSS Meteorology, exhibit a stochastic na-
ture and must be treated on a statistical basis. For instance, the ZWD variable
at a point (X0, Y0, Z0), where a GNSS receiver is located, in a certain epoch t0
is typically considered a real random variable whose value must be estimated by
means of statistical inference methods. In the next chapters, we will describe some
methods to compute these estimates.
Atmospheric fields, i.e. spatio-temporal arrays of atmospheric variables, are in-
stead modelled as random fields parametrized in general by an indexing set T ⊆
R3 × R, where R3 represents the spatial coordinates, while R the time variable.
It is not possible indeed to handle meteorological problems, from weather fore-
casts to climate studies, in a deterministic way because of the chaotic nature of
the Atmosphere’s dynamics (cf. Chapter 2) and the unavoidable errors in its
mathematical representations. As an example, the ZWD field will be treated as a
spatio-temporal random field parametrized by T ⊆ R2×R (since the ZWD value is
an integrated value on the vertical component, the spatial coordinates of interest
are the planimetric ones).
In order to analyze atmospheric random fields, it would be tempting to assume
them weakly homogeneous. However, it turns immediately out that these fields do
not have a homogeneous nature as defined in Definition 4 (see [Tatarski(1961)]).
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Therefore we are forced to look into other forms of stationarity/homogeneity that
are general enough to suitably model the atmospheric fields we are dealing with,
in particular the ZWD field, and that still allow to apply inferential methods to
make predictions of the random field.
In the following section we will introduce the intrinsic stationarity (or homogene-
ity, in case of random fields) hypothesis, that will give a theoretical framework to
tackle this issue.

3.2 Intrinsic stationary stochastic processes

In this section we will define a family of stochastic processes that is larger than
that of weakly stationary processes introduced in the previous section, but it still
allows to make predictions of the random process. For many aspects this class
seems to be also well-suited for modelling the atmospheric fields of interest to us,
primarily the ZWD field. In order to define this class, we will introduce the notion
of intrinsic stationarity of a stochastic process, which is a second-order statistics
based on the increments of the process. For the sake of simplicity, we will phrase
all the concepts in this section in terms of stochastic processes. However, all
the definitions and properties can be verbatim generalized to the more general
case of stochastic field. This section will be based on [Wackernagel(2003)] and
[Matheron(1971)], which we refer to for a complete treatment.
Let Xt, t ∈ T denote a stochastic process. For any t ∈ T and h such that t+h ∈ T
we define the increment of the stochastic process as

Yh = Xt+h −Xt (3.12)

In order to generalize the notion of a stationary process the idea is to con-
sider its increments instead of looking at the process itself. Keeping this in mind
and recalling that the weak stationarity is built on the second-order statistics of
the stochastic process, we define another (second-order) statistics based on the
increments

Definition 5. Given the stochastic process Xt, t ∈ T the function

γ(t1, t2) =
1

2
var(Xt1 −Xt2) =

1

2
E[((Xt1 −m(t1))− (Xt2 −m(t2))

2] (3.13)

is called the variogram function of the stochastic process Xt.

As for the notion of wide-sense stationarity, the instrinsic stationarity hypothe-
sis follows by imposing regularity properties to the first-order and the second-order
statisctics of the increments in the following way

Definition 6. A stochastic process Xt, t ∈ T is said to be intrinsically stationary
if

1. the mean of the increments is supposed to be indetically zero over the defini-
tion domain

E(Xt+h −Xt) ≡ 0 ∀t+ h, t ∈ T (3.14)
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2. the variance of the increments, i.e. the variogram function, has a finite value
and depends only on the increment vector h and no longer on the points t+h
and t

var(Xt+h −Xt) = 2γ(h) ∀t+ h, t ∈ T (3.15)

If moreover, the variogram function does only depend on the module of the incre-
ment h

var(Xt+h −Xt) = 2γ(‖h‖) ∀t+ h, t ∈ T (3.16)

then the stochastic process is called intrinsically stationary and isotropic.

The above definition is again immediately generalized to the case of random
fields. In this case, however, we will again talk about an intrinsically homogeneous
random fields or about an intrinsically homogeneous and isotropic fields.
Basic properties of the variogram function γ(h) of an intrinsically random process
are listed below

� the variogram function vanishes at zero

γ(0) = 0 (3.17)

� the variogram function is a positive function

γ(h) ≥ 0 (3.18)

� the variogram function is an even function

γ(h) = γ(−h) (3.19)

� the variogram funtion has a subquadratic growth, i.e.

lim
h→+∞

γ(h)

‖h‖2
= 0 (3.20)

Let us now assume that Xt, t ∈ T be a weakly stationary process. Then its
covariance function depend only on the difference of any two points

C(h) = E(Xt+hXt)

and it is a bounded function that does not exceed the variance

C(h) ≤ C(0). (3.21)

In this case, it can be proved (see [Wackernagel(2003)]) that the variogram
function of Xt can be derived from the covariance function by means of the relation

γ(·) = C(0)− C(·) (3.22)

This formula implies immediately that a weakly stationary stochastic process
is also intrinsically stationary and that in this case the variogram γ is also bounded
by C(0).
However, the converse is not true, since the variogram function γ(h) of an intrin-
sically stationary process need not to be bounded in general. Hence the intrinsic
stationarity hypothesis is more general than the weak stationarity and, therefore,
the class of intrinsically stationary processes is larger than that of wide-sense sta-
tionary processes.
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Example 5. Let us consider the Wiener process Wt, t ≥ 0 as defined in the pre-
vious section.
It follows from its definition that E(Wt+h −Wt) ≡ 0 and that the variogram func-
tion reads

γ(h) =
1

2
var(Wt+h −Wt) =

1

2
‖h‖ (3.23)

Thus, the Wiener process is intrinsically stationary and isotropic.

Example 6. An important family of intrinsically stationary and isotropic stochas-
tic processes (or intrinsically homogeneous and isotropic random fields) is the class
of Fractional Brownian motion models. As the name suggests, they are related to
the Wiener process and indeed the Wiener process is a particular case of a Frac-
tional Brownian motion.

Definition 7. A Gaussian process BH
t , t ≥ 0 is said to be a Fractional Brownian

motion of Hurst parameter H ∈ (0, 1) if it has mean zero and the covariance
function is equal to

E(BH
t B

H
s ) = RH(t, s) =

1

2
CB(s2H + t2H − |t− s|2H). (3.24)

where CB ≥ 0 is a constant.

A Fractional Brownian motion has stationary and isotropic increments, i.e. it
is an intrinsically stationary and isotropic random process. In fact, from 3.24 it
follows that the increments have a normal distribution with zero mean

E(BH
t+h −BH

t ) = 0

and variance

var(BH
t+h −BH

t ) = E((BH
t+h −BH

t )2) = |t− s|2H (3.25)

If we choose the Hurst parameter to be H = 1
2

then we get the Wiener process.

One striking application of the Fractional Brownian motions is in the stochatic
description of turbulent flows and, in particular, of the atmosphere’s refractivity
field. In fact, focusing on this case, Tatarski in [Tatarski(1961)] assumed that the
refractivity fieldN of the atmosphere is a locally intrinsically homogeneous random
field and based on Kolmogorov’s theory of turbulence he stated that its variogram
function is modelled by a Fractional Brownian motion with Hurst parameter H =
1
3

γN(‖h‖) = E((N(x+ h)−N(x))2) = CN · ‖h‖
2
3 l0 ≤ h ≤ L0 (3.26)

where l0 and L0 are the inner and outer scale of turbulence.
Equation 3.26 was first obtained for general turbulent fields by Kolmogorov in his
studies of high Reynolds number fluids and it is widely known as the two-thirds
law. Kolmogorov’s theory of turbulence is a very interesting attempt at finding a
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mathematical structure in turbulent phenomena and we refer to [Pope(2000)] for
a treatment of this theory in all its aspects and drawbacks. In particular a proof
of the two-thirds law can be found there. The word ”locally” stated above may
give rise to different interpretation. Here, we interpret it understanding regional
mesoscale meteorological phenomena, i.e. events occurring with a horizontal spa-
tial scale up to approximately 500 km.
Since the ZWD field is a linear functional of the air refractivity field (cf. Chapter
2), in this work we will assume it to be locally intrinsically stationary as well.
More precisely, we will suppose that over regions covered by dense and mid-scale
GNSS networks - which range from a few km to a few hundred - the ZWD field
can be considered intrinsically stationary.
We will present a case study based on Fractional Brownian motion models in
Chapter 5.

3.3 Kriging algorithm

In this section we will sketch the typical data-driven strategy used to make predic-
tions of a random field (or equivalently process) in a point not directly observed,
by means of a given dataset of measurements. We will introduce the empirical
variograms that are usually computed as a first guess of the theoretical variogram
functions of the field. Then, once a suitable variogram model has been found by
replacing the empirical variograms, we will define the ordinary Kriging system,
which will allow to give an estimate of the random process in a an arbitrary point
of its definition domain. This procedure will be extensively used in Chapter 5.
This section, moreover, is largely inspired by [Wackernagel(2003)].
Let X(x),x ∈ T ⊆ Rk(k = 2, 3, 4) be a stochastic process. Suppose to have
sampled it at different locations xα, α ∈ Ω ⊆ T. We measure the dissimilarity of
two sampled values by computing the empirical variogram

γ∗(xα,xβ) =
1

2
(xα − xβ)2 (3.27)

Now, let us further assume X(x) to be an intrinsically homogeneous and
isotropic random field according to Definition 6. This implies that the dissim-
ilarity γ∗ does only depend on the module of the difference h = xα − xβ, i.e.

γ∗(‖h‖) =
1

2
(xα − xβ)2 (3.28)

Under this assumption then the set of dissimilarities computed for all sampled
values can be plotted in a 2-dimensional cartesian diagram with abscissa the mod-
ule of the vector h. This plot is called the variogram cloud. An ideal sketch of a
generic variogram cloud can be found in [Wackernagel(2003)], Chapter 6.
The variogram cloud is an effective tool for investigating the behaviour of a ran-
dom field. For instance, anomalies, inhomogeneities or outliers can be detected by
analysing th vaiogram cloud (cf. [Wackernagel(2003)]).
Nevertheless, it is usually clearer and more interesting to average the variogram
cloud with respect to a finite set of intervals of the abscissa axis (generally non-
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overlapping classes are chosen). To be more precise, let us give the following
definition.

Definition 8. Given a finite collection of classes {Hk} of the abscissa axis, the
average dissimilarity with respect to Hk is

γ∗(Hk) =
1

2n

n∑
i=1

(X(x + h)−X(x))2 h ∈ Hk (3.29)

The set of all average dissimiliraties is called the empirical variogram of the
random field X(x),x ∈ T with respect to the given dataset.

In Chapter 5 we will give many examples of empirical variograms of the ZWD
field with respect to ZWD values estimated at the receiver’s position at different
epochs.
The empirical variogram is a powerful tool for exploring the features of a random
field, since it contains the information of the variogram cloud but averaged on
those points that show similar spatial stochastic characteristics. For large spac-
ings the empirical variogram may reach a sill, which approximates the variance
of the random field at each point. In this case, moreover, one can deduce that
the variogram function has a covariance counterpart and that the random field is
weakly homogeneous and isotropic. Also the behaviour of the empirical variogram
at small scale is important since it gives evidence to the regularity of the random
field, e.g. smooth, continuous but not smooth or discontinuous. For further details
on this issue we refer to the work of Matheron [Matheron(1971)].
As already mentioned above, the empirical variograms are only a first guess of
the behaviour of the random field based on the measurements available. They are
replaced by a theoretical variogram model essentially because the theoretical func-
tions can retain a physical meaning of the phenomenon under study and because
these models can be used in the stochastic description of the random field giving
a sound mathematical basis (cf. [Tatarski(1961)] or [Treuhaft et al.(1987)]).
A theoretical variogram model is fitted to the empirical variogram. Of course this
fit is based on an interpretation of the empirical variogram, especially at the ori-
gin, which dictates the behaviour of the random field at small scales, and at large
distances, in order to detect a bounded or unbounded behaviour of the empirical
variogram. In this approximation, in fact, the most important point to consider is
the type of continuity at the origin and the type of homogeneity assumed for the
random field. Again a thorough discussion can be found in [Matheron(1971)].
Not every function is eligible to be a variogram model. Indeed, a theoretical
vaiogram function has to be conditionally negative definite, i.e. the following
equation must hold

[wα]T [γ(xα − xβ)][wα] = wTΓw ≤ 0 (3.30)

for all wα ∈ R such that
∑n

α=0wα = 0.
This condition guarantees that the variance of a linear combination of n+ 1 vari-
ables of the random field is nonnegative. A proof of this statement can be found
in [Wackernagel(2003)]. This condition is mandatory to use the theoretical var-
iogram functions to set up an ordinary Kriging system.
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The ordinary Kriging algorithm allows to estimate a value of an intrinsically sta-
tionary random field at a point of the domain where the variogram functions are
known. The estimates is retrieved by means of the data in the neighborhood of
the estimation point. More precisely, if X(x),x ∈ T is an intrinsically stationary
random field we set

X∗OK(x0) =
n∑

α=1

wαX(xα) (3.31)

The prediction problem consists in determining the coefficients wα in order to
give an estimate of X∗OK(x0).
We need to constrain the weights to sum up to 1. In fact, if all data were constant,
then the estimated value X∗OK(x0) should be also equal to that constant. We will
assume in the rest of this section that the data are realizations of the intrinsically
stationary random field X(xα) with a variogram model γ(h).
The estimation variance σ2

E is the variance of the linear combination

σ2
E = var(X∗OK(x0)−X(x0)) =

n∑
α=1

wαX(xα)− 1 ·X(x0) (3.32)

. Since
∑n

α=1wα = 1 and setting w0 = −1 we get the constraint

n∑
α=0

wα = 0 (3.33)

Expanding Equation 3.32 with respect to the variogram, we get

σ2
E = E[(X∗OK(x0)−X(x0))

2] =

− γ(0)−
N∑
α=1

N∑
β=1

wαwβγ(xα − xβ) + 2
N∑
α=1

wαγ(xα − xβ)
(3.34)

The ordinary Kriging system is obtained by minimizing the estimation variance
σ2
E with the constraint 3.33


γ(x1 − x1) · · · γ(x1 − xN) 1

...
...

...
γ(xN − x1) · · · γ(xN − xN) 1

1 · · · 1 0



w1
...
wN
λ

 =


γ(x1 − x0)

...
γ(x1 − x0)

1

 (3.35)

where the λ is the Lagrange parameter used to obtain the system.
The left hand side of the system represents the variogram values between the
measured points, whereas the right hand side describes the values between the
data points and the unknown point x0. If we solve the system 3.35, we get the
weights w = [wα] set in Equation 3.31. This weight vector exists and is unique,
being the matrix on the left hand side non-singular.
The estimation variance of the ordinary Kriging system can be estimated by the
formula
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σ2
OK = λ− γ(0) +

n∑
α=1

wOKα γ(xα − x0) (3.36)

Together with the linearity, by construction the Kriging predictor

1. minimizes the estimation variance of the prediction error

2. is an exact interpolator, i.e. in case x0 is one of the locations of the measured
points then the Kriging estimated value is identical with the data value itself
at that point

X∗OK(x0) = X(xα) with x0 = xα

The Kriging algorithm will be used later on in Chapter 5 to obtain a regular grid
of predicted ZWD values using ZWD values estimated at the receivers locations
of the GNSS SPIN network.
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Chapter 4

GNSS data processing of the
MIST dense network: impact of
relative and absolute strategies
on ZWD estimates

4.1 Introduction

In the last years the possibility to increase the spatial resolution of GNSS obser-
vations for meteorological purposes has been investigated, with the aim of better
describing the highly variable spatial behaviour of atmospheric water vapor con-
tent.
In this framework, we carried out a comprehensive analysis of the different ap-
proaches and estimation strategies of GNSS-derived ZWDs of a dense netwotk
called MisT. In particular we carefully analyzed the influence on the estimation
of coordinates and ZWD of the relative processing strategy, i.e. DD, and of the
absolute processing one, namely PPP (see Chapter 2 for an introduction to DD
and PPP methods).
This chapter is devoted to the description of this activity.

4.2 MisT dense network

We carried out a re-processing activity of the GNSS observation dataset collected
by a dense experimental network called MisT.
This network was deployed within the ESA project METAWAVE with the original
aim of studying the spatial correlation of GNSS ZWDs estimated from the data
collected by the network (cf. ([Metawave(2011)])).
MisT covered the urban area of Como, Northern Italy. The area is morphologically
complex, including both lowland and mountains.
Eight geodetic receivers were placed around the permanent station of COMO,
which belongs to the European Reference Permanent Network (EUREF PN), to
form a multi-scale, dense network. COMO station was chosen as reference station
in the network adjustment by means of a relative approach, when a relative a
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relative positioning strategies was applied to estimate stations coordinates and
ZWDs (see below for further details on this point).
The receivers were in fact at distances, with respect to the COMO station, in the
order of 100, 1000 and 10000 meters, to form three nested loops which covered
in total an area of around 100 km2. To be more precise the two receivers ANZA,
CAST were installed closest to COMO at a distance of approximately 100 m. The
receivers BRUN, LAPR and PRCO were instead deployed in the ”second loop” of
the network, namely at a distance of about 1000 m from COMO. The remaining
receivers, i.e. NAND, DANI and MGRA, were the furthest ones, outdistancing
around 10000 m from the reference station. It is worth pointing out that the
receivers were not on the same height.

Figure 4.1 – Left side: The Lombardy network, given by the blue- and yellow-filled cir-
cles. The yellow circle denotes the reference station COMO. The red triangles represent
IGS stations. CAGL, MEDI, MATE, GRAS, GRAZ augmented the Lombardy network
to compute coordinates and ZWDs of the reference station COMO (for further details
see Section 4.3).
Right side: Mist’s stations COMO, BRUN, ANZA and DANI, of which we report the
results.

The six inner receivers (COMO, ANZA, CAST, BRUN, LAPR, PRCO) col-
lected data continuously for six months (from May to November 2008) at 1 Hz
rate, while the furthest three (NAND, DANI and MGRA) worked only for the last
five weeks.
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For this reason we will report only the results obtained by analyzing the COMO
reference station plus three stations ANZA, BRUN and DANI. The location of
these stations is shown if Figure 4.1 on the right side.
These three stations, indeed, provide more complete datasets than those collected
by the other ones. Furthermore they are representative for the distance levels of
the network.
The MisT network was designed, deployed and operated by the Geomatics and
Earth Observation Laboratory (GEOlab) of Politecnico di Milano.

4.3 GNSS data processing setup

In this section we will briefly describe the software tools and parameters used to
process the GNSS data collected by MisT. The estimates of both coordinates and
ZWD time series and, more importantly, the comparison among them are sum-
marized in the next section.
The GNSS observations were used to deeply compare relative (i.e. DD) and abso-
lute stand-alone (i.e. PPP) adjustment strategies. In order to process the data we
adopted the BERNESE v5.2 software (throughout this chapter denoted by BSW).
This choice implied to carry out a least-square batch adjustment procedure for
both strategies, since in the BSW no ”real-time” method, e.g. as the Kalman
filter algorithm, is implemented. However, as already remarked earlier, the BSW
represents the state-of-the-art software available for the GNSS data processing.
Therefore, for our study we leant toward BSW to have a sound benchmark point.
More precisely, the following analyses accomplished:

1. Single-Base Double-Difference adjustment of daily sessions - Single-
Base adjustments are performed between each network station and the refer-
ence station COMO. The coordinates and ZWD time series of the reference
station, used as reference values, were determined in a previous analysis of
the MisT data (see [Visconti et al.(2009)]) at mm level by the iono-free
combinations adjustment of the Lombardy regional network (now part of the
SPIN GNSS Piemonte-Lombardia GNSS network). The Lombardy network
was augmented with 5 International GNSS Service (IGS) stations, namely
CAGL - Cagliari, GRAS - Grasse, GRAZ - Graz, MATE - Matera, MEDI -
Medicina.
The adjustment of this larger network was necessary for the absolute esti-
mate of COMO ZWD time series.
Figure 4.1 shows the GNSS stations involved in the study (they are denoted
by red triangles). On the left the large network used to estimate COMO
station position and absolute ZWDs. On the right the stations of the MisT
network whose results are reported in this work.
The processing rate of all MisT stations was set to 30 seconds, to account
for COMO sampling rate. The dry and wet mapping functions were chosen
in accordance with those used in the adjustment of the augmented Lombar-
dia regional network (i.e. dry/wet Niell mapping functions) and we used 10
degrees of elevation cut-off. The choice of this elevation cut-off might appear
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at first glance a quite large value if compared with a setup for positioning
purposes only (coordinates are typically estimated on a daily base). How-
ever, dealing with a GNSS dense network, we wanted to consider reasonably
confined portions of the atmosphere above each receiver that would still con-
tain the highest number possible of signal paths.
Similarly the ZWD estimation rate of the MisT network has been set to 1
hour coherently with the reference ZWD time series of COMO estimated at
that rate. Large a-priori standard deviation of the differences between the
ZWD parameters of the same station at two consecutive epochs was used to
let the ZWD estimates depend on the observations only without introducing
any a-priori information.

2. Precise Point Positioning adjustment of daily sessions - The pro-
cessing parameters were chosen in general to be consistent with those of DD
processing in view of the comparisons.
In particular the observation sampling rate of all MisT stations was set to
30 seconds in order to be consistent also with the rate of the precise satellite
clock estimates necessary for the PPP strategy (Section 2). Moreover, the
dry and wet mapping functions were also in this case the Niell mapping func-
tions. Lastly for the a-priori standard deviation of the differences between
ZWD estimates of the same station at two consecutive epochs we set the
same value used for the DD adjustment.

Further details about the processing settings of the experimental network for both
approaches may be found in Table 4.1.

Table 4.1 – MisT - Single Base DD and PPP processing settings

Relative DD Absolute PPP

Processing software BERNESE v5.2 BERNESE v5.2

Processed observations L1 and iono-free combination iono-free combination

Processing rate 30 s 30 s

Elevation cutoff 10 degrees 10 degrees

Ambiguity fixing strategy SIGMA none

Mapping functions Niell dry/wet Niell dry/wet

Gradient estimation model none none

Ionosphere model (L1) CODE GIM -

A priori error std of COMO crd 1·10−5 m none and 1·10−5 m

COMO ZTD hourly time series fixed -

ZWD estimation rate 1 hour 1 hour

Ephemeris CODE (final) CODE (final)

Satellite clocks - CODE 30 seconds (final)

A priori ZWD difference std 5 m 5 m

Satellite/receiver antenna PCV latest igs08.atx latest igs08.atx

Ocean loading model FES2004 FES2004
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In order to deal with the great amount of output files that the BSW provides
with, we have developed ad-hoc software tools that lead to build a “data ware-
house”.
We designed in fact a software module that manages the automatic import of
the data from separate output BSW files in a coherent archive that can be easily
queried and manipulated.
In this regard, we implemented several add-ons that perform the computation
of various statistical parameters and allow to carry out stochastic interpolation
procedures, i.e. collocation and Kriging algorithms. This software has been ex-
tensively used to produce the results we are showing in the next section.

4.4 GNSS data estimation: results and discussion

4.4.1 Ionosphere impact on relative positioning of two close stations

The first comparison we carried out involved double-differenced observations only
and in particular we investigated the impact of using single frequency L1 observa-
tions with respect to iono-free L3 combinations for the chosen network’s stations.
In fact if double-differenced L1 observations of dense GNSS networks would lead
to accurate ZWD estimates (and therefore accurate PWV estimates), the capil-
lary deployment of such networks for meteorological purposes could become an
effective and economically viable way to acquire ground-based data to be used in
NWP models (considering of course that single frequency receivers are one order
of magnitude more affordable than dual frequancy receivers).
In order to address this issue it was necessary to analyze the ionospheric delay af-
fecting the GNSS signals. When the distance between two stations is shorter than
10 km, the delay affecting the simultaneous observations from these two stations
- to the same satellite - is significantly reduced in the difference.
Thus the question we addressed was the following.
Can we use L1-only observations, instead of the iono-free combinations, without
accurately modelling the ionosphere? In other words, can we adopt dense networks
of single-frequency receivers (e.g. the nowdays available low-cost ones) together
with one dual-frequency reference station (whose coordinates and ZWD values
are estimated in the adjustment of a permanent regional network) to obtain suf-
ficiently accurate ZWD estimates?
To answer this question we compared the parameters estimated from the adjust-
ment of L1 only observations and those obtained from iono-free L3 combinations,
namely station coordinates and ZWDs. The results of such comparisons are shown
in Figure 4.2 and summarised in Table 4.2; they refer to the stations ANZA, BRUN
and DANI, to account for baseline lengths (with respect to COMO) of 100, 1000,
and 10000 metres.
Although all differences have a standard deviations lower than approximately 1
cm, the N and UP coordinate differences are biased, and this holds irrespectively
of the baseline length.
However, even though the bias was slightly reduced, it did not disappear showing
thereby that it is not directly caused by the factors mentioned above, but rather
due to the inconsistency between the COMO reference station coordinates and
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ZWD, which are determined by means of iono-free combinations and then used in
the adjustment of L1-only data.
ZWD estimates from both techniques do not show instead any evident biases or
systematisms.

Figure 4.2 – Comparison of coordinates and ZWD from L1 and L3 observations
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The three furthest stations of the MisT network (DANI, MGRA and NAND)
collected observations for a much shorter period than the inner ones and here we
are going to report just one of them, i.e. DANI. Furthermore, this period corre-
sponded to approximately the last month of the experiment and it turned out to
be characterised by a large variability in the differences between the L1-only and
L3 solution. Thus with the aim of better understanding this variability we looked
at the coordinate time series obtained from the adjustment of L1-only, L2-only
and iono-free L3 combination of L1 and L2 observations. As the network’s stations
are in a fixed position, in fact, we would expect a variability of the coordinate time
series in a range of millimeters. All the resulting coordinates time series instead
show a larger variability in the last month of the experiment, the iono-free combi-
nation giving the worse results. We report the standard deviations of the residuals
(δE, δN and δUP) with respect to a regression line of the coordinates in Table 4.3
for L1-only, L2-only and iono-free solutions respectively. For short baselines, as
those characterizing a dense GNSS network, it seems that the use of iono-free L3
combinations is not only unnecessary but it significantly worsens the accuracy of
the coordinates components, especially in the UP direction, with a larger impact
on the shorter baselines of ANZA-COMO and BRUN-COMO.
As a matter of fact, according to BSW manual ( [Dach et al.(2015)], Chapter
13.1.3, Page 312), for small-area high-precision dense networks the use of L1-
only data in combination with ionospheric models is recommended although dual-
frequency observations are available.
Moreover, we observed that this noisier behaviour of L3-derived coordinate and
ZWD estimates was common to all network’s stations and eventually we guessed it
could be due to low quality observations acquired by the reference station COMO.
To verify this hypothesis we performed a relative positioning of BRUN with re-
spect to ANZA station, by fixing ANZA coordinates and ZWD values to those
obtained by means of absolute positioning. Although this procedure could not
lead to accurate solutions for BRUN (the coordinates and ZWDs time series of
the reference station ANZA were affected by PPP residual errors), it had the merit
to entirely exclude the observations of COMO station.
It turned out that the variability of the UP coordinate in the last month of acqui-
sition reduced by a factor of approximately 0.6 - irrespectively of the noisier PPP
derived coordinates of the reference receiver - thus confirming our hypothesis.
This suggested that for the retrieving ZWD time series from dense single-frequency
GNSS networks, at least two dual-frequency stations should be used to allow for
redundancy and internal data quality assessment.
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Table 4.2 – Statistics of the differences between L1 and iono-free (IF) coordinates and
ZWDs

station variable n. of data mean [mm] std [mm]

ANZA EL1-EIF 192 0.9 0.3
100 m from COMO NL1-NIF 192 6.0 0.3

UPL1-UPIF 192 -5.5 3.4
ZWDL1-ZWDIF 4610 -0.2 1.6

BRUN EL1-EIF 192 -0.6 0.2
1000 m form COMO NL1-NIF 192 7.7 0.5

UPL1-UPIF 192 -2.5 3.0
ZWDL1-ZWDIF 4607 -1.9 1.9

DANI EL1-EIF 37 1.3 0.8
10000 m from COMO NL1-NIF 37 5.4 1.5

UPL1-UPIF 37 -7.5 4.5
ZWDL1-ZWDIF 879 1.2 2.0

Table 4.3 – Standard deviation of the residuals with respect to a regression line of the
station coordinates in the last month of the MisT experiment

L1-only L2-only iono-free

station variable n. of data std [mm] std [mm] std [mm]

ANZA δE 34 0.4 0.3 0.8
100 m from COMO δN 34 0.3 0.2 1.0

δUP 34 2.5 0.8 7.4

BRUN δE 34 0.5 0.7 0.6
1000 m from COMO δN 34 0.7 0.7 0.6

δUP 34 2.1 1.6 5.8

DANI δE 33 1.3 1.3 0.9
10000 m from COMO δN 33 1.7 1.4 1.0

δUP 33 3.5 4.0 6.1
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4.4.2 Relative against absolute positioning

The comparison between the results obtained from the relative and absolute po-
sitioning strategies was performed in two ways.
In the first case, we aimed at evaluating basic statistical parameters, in particular
mean and standard deviation, of the differences between daily coordinates and
hourly ZWDs of each station. These time series have been computed applying
both relative and absolute positioning strategies according to a ‘best practice’ cri-
terion. For the DD adjustment, we acted according to the results of the previous
section and thus we used the coordinates and ZWD estimates from L1-only obser-
vations and the EPN station of COMO as reference station. The analysis included
all the available data, comprising the noisier last days of the experiment (cf. the
previous sub-section 4.4.1).
To assess the repeatability level of the two positioning strategies we looked at the
coordinates time series determined with the two approaches (which are typically
well modelled by a linear trend). The standard deviation of the residuals with
respect to a regression line for the three coordinates are in the order of a few mm
for the DD case. They are twice as large, instead, in case of the absolute PPP
method but still under 1 cm, even in the worst case of the UP component. These
results can be seen in Table 4.4 below.
In order to compare the accuracy of the two positioning methodologies we com-
puted time series of differences between the DD and PPP coordinates and ZWDs.
The results obtained are shown in Figure 4.3 and the corresponding statistics are
reported in Table 4.5.
Almost all the coordinate differences are biased and their variability is always
below 1 cm standard deviation. The ZWD differences are biased as well, with
a standard deviation below 1 cm. The biases are probably due to the use of
L1-only for the DD adjustment and the iono-free L3 combination for the PPP
adjustment (cf. the previous sub-section 4.4.1). If expressed in terms of PWV,
the std of the differences are below 1.6 mm, which is comparable with the results
in [Niell(2000)], that is with the uncertainty of our best knowledge of the PWV
itself. Moreover, the linear correlation coefficients between the DD and PPP-
derived ZWD time series are about 98% for all the three considered stations. This
makes the two processing techniques equivalent from the mere accuracy point of
view.
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Table 4.4 – Standard deviations of the residuals δ with respect to a regression line of
the stations coordinates obtained with DD and PPP

DD PPP

station variable n. of data std [mm] std [mm]

ANZA δE 192 1.3 3.9
100 m from COMO δN 192 0.3 2.3

δUP 192 2.2 8.8

BRUN δE 192 1.2 2.9
1000 m from COMO δN 192 0.8 2.0

δUP 192 3.0 6.6

DANI δE 37 1.2 3.1
10000 m from COMO δN 37 1.6 2.1

δUP 37 3.3 6.4

Table 4.5 – Comparison between DD and PPP derived coordinates and ZWDs

station variable n. of data mean [mm] std [mm]

ANZA EDD-EPPP 192 3.3 3.6
100 m from COMO NDD-NPPP 192 5.8 2.3

UPDD-UPPPP 192 0.7 8.2
ZWDDD-ZWDPPP 4610 0.9 9.5

BRUN EDD-EPPP 192 1.0 3.1
1000 m from COMO NDD-NPPP 192 7.0 2.1

UPDD-UPPPP 192 -0.5 7.2
ZWDDD-ZWDPPP 4607 1.2 8.4

DANI EDD-EPPP 37 1.6 3.2
10000 m from COMO NDD-NPPP 37 4.4 2.9

UPDD-UPPPP 37 5.5 5.7
ZWDDD-ZWDPPP 879 1.1 7.3
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Figure 4.3 – Comparison of coordinates and ZWD from L1 DD and L3 PPP adjustment
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The second comparison aimed at evaluating the impact of the different models
used in the observation equations within the PPP approach in comparison with
DD.
We considered exactly the same data set for both (relative and absolute) adjust-
ment strategies and we used iono-free L3 combinations in both cases, making a
comparison between baseline components (∆E, ∆N, ∆UP) and ZWD increments
(∆ZWD).

These solutions were directly estimated in the DD approach, whereas the cor-
responding quantities were computed as difference of the independent PPP ad-
justments of all network’s stations. It is worth noticing that these quantities from
both DD and PPP may be computed by means of the same observation set with-
out introducing any external information. In particular the coordinates and ZWD
time series of the reference station COMO (obtained from the adjustment of the
above mentioned IGS stations)are not included and used anymore. We would
expect a high correlation between coordinates and ZWD estimation errors from
PPP adjustment for the baseline of 100 m, then decreasing with increasing baseline
length. Indeed, the use of L3 combinations guaranteed that the ionospheric delay
was drastically reduced. Furthermore, we conjectured that differencing PPP esti-
mates would lead to a reduction of the systematic biases relative to the satellites
clocks, satellites attitude effects and site displacement effects (e.g. Earth’s solid
tides, Earth’s Orientation Parameters, ocean loading), thereby making evident a
correlation more directly dependent on phenomena due to the variability of the
neutral atmosphere above the stations.
However, this hypothesis could not be directly corroborated by the experimental
results as it can be seen in 4.6. Here the statistics of the baseline components and
ZWD increments separately for the DD and PPP case are reported. The standard
deviation of the PPP derived baseline components and ZWD increments seems
to be independent of the distance between GNSS stations, when this is smaller
than 10 km. Therefore we looked at the differences between DD and PPP derived
baseline components and ∆ZWD. Such differences are shown in Figure 4.4.

Table 4.6 – Statistics of baseline components and ZWD increments from DD and PPP

DD PPP

baseline variable n. of data std [mm] std [mm]

ANZA - COMO ∆E 192 1.6 4.5
100 m ∆N 192 0.4 1.6

∆UP 192 2.2 8.8
∆ZWD 4610 2.8 6.2

BRUN - COMO ∆E 192 1.3 4.4
1000 m ∆N 192 0.8 1.9

∆UP 192 3.0 7.2
∆ZWD 4607 6.3 8.2

DANI - COMO ∆E 37 1.2 5.6
10000 m ∆N 37 1.7 2.1

∆UP 37 3.6 10.5
∆ZWD 879 3.5 6.9
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Figure 4.4 – Comparison between DD and PPP estimates. On the left hand side,
differences between DD and PPP-retrieved ∆E, ∆N, ∆UP. On the right hand side,
differences between DD and PPP-retrieved ∆ZWD

Remark. During the baselines analysis, it turned out that the PPP a-posteriori
standard deviations of ZWD estimates of COMO station were an order of mag-
nitude higher (centimetres) than those of the other stations (millimetres). We
therefore decided to remove the corresponding ZWD estimates, considered as out-
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liers, by using a threshold of 2 mm on the a-posteriori standard deviation.
For the sake of completeness the statistics of the COMO PPP-derived coordi-

nates and ZWD, with respect to the reference values used in the DD processing,
are reported in Table 4.7. In the same table we report the statistics of ZWD with
respect to the reference values after outlier removal.

Table 4.7 – Statistics of the differences between reference and PPP-derived coordinates
and ZWDs

station variable n. data mean [mm] std [mm]

COMO Eref -EPPP 192 1.6 4.7
Nref -NPPP 192 -0.3 2.6

UPref -UPPPP 192 6.3 8.0
ZWDref -ZWDPPP 4610 2.0 21.7

after outlier removal ZWDref -ZWDPPP 4219 1.3 8.2

In Table 4.8 we show the statistics of the differences between baseline compo-
nents and ZWD increments.

Table 4.8 – Comparison of DD estimated and PPP derived baseline components and
ZWD increments

baseline variable n. of data mean [mm] std [mm]

ANZA-COMO ∆EDD-∆EPPP 192 1.6 3.8
100 m ∆NDD-∆NPPP 192 6.1 1.5

∆UPDD-∆UPPPP 192 -5.5 7.6
∆ZWDDD-∆ZWDPPP 4198 0.4 6.1

BRUN-COMO ∆EDD-∆EPPP 192 -0.6 4.0
1000 m ∆NDD-∆NPPP 192 7.3 1.7

∆UPDD-∆ UPPPP 192 -6.8 6.3
∆ZWDDD-∆ZWDPPP 4220 1.8 5.8

DANI-COMO ∆EDD-∆EPPP 37 2.4 5.3
10000 m ∆NDD-∆NPPP 37 5.3 2.3

∆UPDD-∆UPPPP 37 -7.6 9.0
∆ZWDDD-∆ZWDPPP 701 -0.7 5.8

As reported in Table 4.8, it turns out that the differences between ∆ZWD
estimated from DD and those derived from PPP have all a standard deviation of
approximately 6 mm.
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The linear correlation between DD and PPP-derived ∆ZWD time series, reported
in Table 4.9, is less than 0.3 for the 100 m long ANZA-COMO baseline, and then
it increases for the other two baselines. This could be justified by the fact that
the differences between DD and PPP-derived baseline components and ∆ZWD for
ANZA-COMO account mainly for the PPP residual errors, as water vapour delay
variations between the two stations can hardly affect the ZWD parameter.

Table 4.9 – Correlation coefficients between DD-estimated and PPP-derived ∆ZWD

baseline horizontal distance [m] height difference [m] correlation coefficient

ANZA-COMO 100 -12 22%

BRUN-COMO 1000 445 70%

DANI-COMO 10000 74 52%

A further investigation on the empirical covariance function of the DD and
PPP-derived ∆ZWD time series only, reported in Figure 4.5, seems to confirm
such hypothesis. In fact, the covariance function of the DD-estimated ∆ZWD of
ANZA-COMO is pure white noise. However, this is not the case for the PPP-
derived ∆ZWD, whose empirical covariance function converges to zero after ap-
proximately 1 day. We believed that this could be due to the presence of correlated
error in the PPP estimates.
To get a deeper understanding of such behaviour, we carried out the following
analysis. First of all we assumed that DD ∆ZWD time series did not contain cor-
related errors and therefore the corresponding empirical covariance functions of
each baseline would only account for the water vapour signal. Thus, differencing
the DD covariance function from the PPP covariance function - containing both
signal and noise - we should find only a ”pure” noise covariance function, which
should appear almost the same covariance function of the PPP-derived ∆ZWD
of ANZA-COMO. This seems to be the case for the baseline BRUN-COMO, at
least approximatively, as it can be seen in Figure 4.6. The signal to noise ratio
values of those two baselines, estimated from the empirical covariance functions
and reported in Table 4.10, seem to confirm it. This strongly suggests that it is
not useful to use baselines shorter than 1 km length, regardless of the processing
technique used to derive the ZWD values.
We performed the same analysis also for the DANI-COMO covariance functions,
but, due to the poorer data set, the results are not clear. As it can be seen in
Figure 4.5, the covariance functions of both DD and PPP-derived ∆ZWD time se-
ries oscillate more, due to the use of a small number of data, which were collected
during the dry season (October-November) when, in addition, related GNSS ob-
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servations were noisy. The small water vapour signal in DANI-COMO ∆ZWD
time series reflects also into the small signal to noise ratio reported in Table 4.10.

Table 4.10 – Signal to noise ratio of DD and PPP-derived ∆ZWD

baseline ANZA-COMO BRUN-COMO DANI-COMO

SNR DD 0.13 2.53 0.42

SNR PPP 0.23 0.87 0.30
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Figure 4.5 – Empirical covariance functions of DD and PPP-derived ZWD increments

Figure 4.6 – Differences between DD and PPP-derived ∆ZWD empirical covariance
functions of BRUN-COMO and ANZA-COMO baselines
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Chapter 5

GNSS data processing of
mid-scale SPIN network:
temporal stack of 2D ZWD maps

5.1 Introduction

Along with the study described in Chapter 4 regarding the dense GNSS network
MisT, we gave a closer look at GNSS networks where the inter-distances of nearby
stations are approximately 50 km, thus including in our research the case of mid-
scale networks.
The case study we chose for our analysis consisted in one week of July 2016,
where two severe rainfall events occurred in Lombardia region on the 22nd and
26th. These two events, indeed, appeared to have very different features: the one
on the 22nd of July was characterized by an advective behavior, while the event
on the 26th showed strongly localized rainfall events.
In order to understand to which extent GNSS-derived ZWD time series would
give evidence of such behaviour or, more generally, would retain information of
the spatio-temporal variability of the water vapor content, we tried to characterize
spatially the ZWD field for every epoch available. In this way we obtained a
”stack” of 2-dimensional residual ZWD maps (or equivalently residual PWV maps;
see Chapter 2) parametrized by the time at the ZWD processing rate.
In this chapter, we will describe in detail the procedure adopted to compute this
collection of maps and we will explore their significance regarding water vapor
monitoring purposes.

5.2 GNSS data processing setup

In this and next sections we will briefly describe the procedure and the GNSS
processing setup for estimating the ZWD time series.
As already mentioned in the Introduction of this chapter, the case studies cho-
sen in this case consisted in one week of July 2016, where two severe rainfall
events occurred in Lombardia region on the 22nd and 26th. These two severe
storms showed a quite different meteorological nature: the one on the 22nd of
July was characterized by a strong advective behavior with a weather front prop-
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agating from South-East to North-West, whereas the event on the 26th showed
strongly localized convective cells. This behaviour could be easily recognized in
the RADAR images shown below.

Figure 5.1 – Radar image relative of the event on the 22nd of July at 9:40 and 10:40
AM (Courtesy of ARPA - Agenzia Regionale per la Protezione Ambientale)
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Figure 5.2 – Radar image relative of the event on the 26th of July at 16:50, 17.30 and
17:50 AM (Courtesy of ARPA - Agenzia Regionale per la Protezione Ambientale)
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In order to analyze to which extent GNSS-derived ZWD time series would give
evidence of these phenomena we processed GNSS data from 21st to 29th of July
acquired by the interregional GNSS SPIN network.
This network consists of 30 dual-frequency geodetic receivers covering quite homo-
geneously the two Italian regions Lombardy and Piedmont. The inter-distances of
close by stations of the SPIN network range between 40 and 50 km and it may be
considered as a regional network. The signals received are GPS and GLONASS.
Among other services provided by this network, RINEX observation files at 30 s
acquisition rate can be freely downloaded. For the time period of interest in our
case, GPS observations files were available for all stations and without interrup-
tions and we use them for our purposes (we did not use GLONASS data).

Figure 5.3 – The interregional SPIN GNSS network

In order to process the GPS observations, we made use of the BERNESE v5.2
software (throughout this chapter denoted again by BSW) and we adopted a PPP
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strategy, thus considering iono-free L3 observables, with a batch least-square based
adjustment algorithm (cf. Chapter 4 for further details on this point). Detailed
info are reported in Table 5.1

Table 5.1 – SPIN GNSS network - PPP processing setting

Network design 30 dual-frequency GNSS receivers

Received signals GPS, GLONASS

Processing SW BSW v5.2

Processing rate 30 s

Elevation cutoff 10 degrees

Processed signals GPS

Processing method PPP

Ephemeris CODE (final)

Satellite clocks CODE 30 s (final)

Ocean loading model FES2004

Observables L3 (iono-free)

Mapping functions GMF dry/wet

Dry tropospheric model Saastamoinen + GPT

Gradient estimation model none

ZWD estimation rate 10 min

A priori ZWD difference std 0.02 m

As we did for processing Mist data, we set an elevation cut off angle of 10
degrees. In this case we dropped instead the use of the Niell mapping function
and chose the dry and wet Global mapping functions that lead to an estimation
of ZWD based on the Global Pressure Temperature model (cf. Chapter 2).
Once again, to deal with the great amount of BSW output files, we took advantage
of the software developed by ourselves that manages the automatic import of all
these files and allows manipulation and analysis of the estimated coordinates and
ZWD time series. This software has been extensively used to produce the results
we are showing in next sections.

5.3 GNSS data estimation

As described in the previous section, we first obtained ZWD time series for all
SPIN network’s stations, as Zenith Path Delay corrections of the Zenith Dry De-
lay computed by relying on the Global Pressure Temperature model. This model
is a global average representation of the pressure and temperature distribution
obtained from long-term gridded monthly Numerical Weather Model pressure and
temperature data and it accounts mainly for regional scale variations (cf. 2 and
the paper [Kleijer(2004)], [Kouba(2009)]).
In this case, luckily we had also available some accurate temperature and pressure
measurements provided by meteorological stations closeby the GNSS receivers at

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
mid-scale GNSS networks - 57



Chapter 5

the ZWD estimation rate throughout the period of interest. Thus we could com-
pute the a-priori ZHD using the measured pressure data, not relying on the global
GPT model. Furthermore the ZHD could be transformed into accurate PWV val-
ues taking advantage of the acquired temperature data.
In all cases where the measurements were not available right at receivers locations
or at the right time, temperature and pressure data were interpolated by means
of deterministic (i.e. spline interpolation) and stochastic methods (i.e. with col-
location algorithms) in order to predict them at the station’s positions and to
have a homogeneous time resolution. These computations have been collected in
[Barindelli et al.(2018)]. The final ZWD time series were eventually obtained
by subtracting these actual and accurate ZHDs from the total Zenith Path Delay,
estimated by means of the BSW.
As examples the accurate ZHD and the corresponding ZWD and PWV time series
for the three SPIN stations ALSN, COMO and MILA relative to both events are
reported below. On the 26th of July, the data started at 6:30 AM.
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Figure 5.4 – Accurate ZHD time series of stations ALSN, COMO and MILA on 22nd of
July

Figure 5.5 – ZWD and PWV time series of stations ALSN, COMO and MILA around
22nd of July
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Figure 5.6 – Accurate ZHD time series of stations ALSN, COMO and MILA around
26nd of July

Figure 5.7 – ZWD and PWV time series of stations ALSN, COMO and MILA around
26nd of July
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In Figure 5.5 it is easily seen that the ZWD and PWV time series of all stations
follow a similar pattern, especially those of COMO and MILA. Furthermore, we
may recognize a significant decrease of the ZWD (and equivalently of PWV) of
these two stations between 9:30 AM and 9:40 AM of the 22nd of July. It turned out
that this corresponded to the weather front passage above these two stations. For
what concerns ALSN’s time series one could register a smaller drop in the ZWD
around the same epochs, again probably due to the weather front propagation.
For the second event occurring on the 26th of July the situation is less clear and
it was not possible to link the ZWD time series variability of the stations to the
meteorological phenomenon underway.

5.4 Spatial stochastic modelling of the SPIN GNSS net-
work

With the aim of investigating the spatio-temporal variability of the ZWD field
on the area covered by the SPIN network during both events, we computed a
temporal stack of 2−dimensional ZWD maps for all epochs available.
In this section and in the next one we will review the procedure followed and
the assumptions we needed to make to achieve this. The approach we pursued is
that explained in Chapter 3. For basic definitions and properties we refer to this
Chapter.
The first fundamental step we did was assuming the ZWD field to be intrinsically
homogeneous and isotropic with respect to the spatial coordinates (please refer
to Chapter 3 for details). In particular recall that this means that the mean of
the increments of the ZWD field are zero

E(ZWD(x+ h)− ZWD(x)) = m(‖h‖) = 0 (5.1)

and that their halved variance exists and it only depends on the norm ‖h‖ of
the vector h

1

2
· var(ZWD(x+ h)− ZWD(x)) = γ(‖h‖) (5.2)

As defined in Chapter 3, the functions γ are called variogram functions and
will be the object of our study.
The estimated ZWDs for each epoch t0 are thought of as a realization of the ZWD
random field at the epoch t0 and at particular points, namely the positions of
the receivers. Thus they are used to determine empirical variogram functions,
describing the spatial dependence and distribution of the ZWD field. However,
Equation 5.1 implies that we cannot use the estimated ZWD time series directly
but we need first to reduce the mean height-depending component. In fact SPIN’s
stations have different height and the ZWD depends on this component. If we
would not have removed a mean ZWD value due to the height of the station,
we would not have fulfilled Equation 5.1. Thus, to overcome this problem and
determine the empirical variograms we computed the residual ZWD time series for
each station, subtracting its sample mean from the time series itself. Physically
this implied that topography-dependent trends were removed before computing
the empirical variograms. Ultimately the epoch-wise spatial empirical variogram
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functions were estimated from the data by exploiting the intrinsically homogeneity
and isotropic assumptions and the methodology presented in Chapter 3. To obtain
the empirical variogram from the variogram cloud, we built a 15 points grid with
a step of 25 km. The numbers above each point in the variogram count how many
dissimilarities contributed to the computation of that average variogram value.
In Figure 5.8 we report some examples. The first column is related to the 22nd
July at the two epochs 9:40 and 10:40 AM (when the weather front passed over the
stations COMO and MILA). The second column shows the empirical variograms
referred to the 26th July at 4:40 and 5:30 PM. Furthemore the last two figures
represent the collection of all empirical variograms parametrized by time. More
precisely they are the projections of all empirical variograms on a plane with time
and spatial lag as, respectively, abscissa and ordinate. The different colors render
the value of each variogram for each point in this plane. As one may see these two
images are quite difficult to be interpreted and it is not easy to extract a signature
of the meteorological phenomena underway.
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Figure 5.8 – Empirical variograms for both 22nd and 26th of July
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As explained in Chapter 3 the empirical variogram is used as a first data-driven
estimate of the theoretical variogram needed for spatial interpolation by the Krig-
ing algorithm.
In our case the empirical variograms were fitted with a theoretical model up to
about 150 km and the models investigated were Fractional Brownian motion mod-
els. These models have a variogram functions of the form

γ(‖h‖)t = Ct · (‖h‖)αt , (5.3)

where Ct ∈ R and 0 < αt < 2, for all available epochs t.

Remark. As mentioned in Chapter 3, these models seem to retain a physical mean-
ing related to atmospheric turbulence as dictated by Kolmogorov’s theory where
such variogram functions with α = 2

3
are predicted.

In order to assess their applicability in the case under study, we estimated for
each epoch the model parameters (Ct, αt) using a least square approach and the
empirical variograms as observation data.
As an example the estimates (Ĉt, α̂t) of the model parameters from 24th to 27th
of July are reported in Figure 5.9

Figure 5.9 – Epoch-wise estimates of the model parameters for the theoretical vari-
ograms.
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Remark. From this empirical analysis it turned out that the estimates α̂t of the ex-
ponent of a Fractional Brownian motion model differ substantially from the value
α = 2

3
predicted by Kolmogorov’s theory. Moreover, the mean of the time series

is approximately 0.96. This suggests that, at least for mid-scale GNSS networks,
variogram functions as stated in Kolmogorov’s theory may lead to an artificial
correlation of the random field and therefore to miscalculations of the Kriging
estimated points.

Using the solutions (Ĉt, α̂t) and applying Equation 5.3 we obtained a set of
theoretical variogram models indexed by the ZWD estimation rate. These models
seem to fit well the empirical variograms for all epochs, thus suggesting that the
choice of Fractional Brownian motions is adequate for modelling the phenomena
we have focused on (under the assumptions we have made). Some examples of the
theoretical variogram functions (blue continuous line) against its corresponding
empirical variogram (red points) for both events are shown in Figure 5.10.
It is worth pointing out that many theoretical variograms show an evident un-
bounded behaviour at infinity implying in particular not to have a covariance
function counterpart. This in turn indicates that we could not have possibly mod-
elled the ZWD field as a weakly homogeneous and isotropic stochastic field, since
for this class of random fields the covariance functions are naturally bounded (cf.
Chapter 3 for further details).
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Figure 5.10 – Theoretical variograms for both 22nd and 26th of July
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5.5 Temporal stack of 2D ZWD maps: results and discus-
sion

In order to retrieve spatially accurate and high-resolution 2D ZWD maps (or equiv-
alently PWV maps), the SPIN network residual ZWDs are interpolated epoch-wise
via ordinary Kriging using the theoretical variogram functions introduced in the
previous section.
Let us recall briefly the main aspects of the Kriging algorithm applied to the ZWD
random field, referring to Chapter 3 and the references therein for a general treat-
ment.
The ordinary Kriging algorithm allows to estimate a value of the residual ZWD
random field at a point of its definition region not directly observed but for which
a variogram is known. More precisely, the estimate of the residual ZWDR(x0) at
a point x0 not directly measured is given by a linear combination of the residual
ZWDR(xα) direcly observed at each network’s station

ẐWDR(x0) =
∑
α

µαZWDR(xα) (5.4)

Under this assumption and the intrinsic homogeneity one, it follows that

N∑
α=1

µα = 1 (5.5)

and that the estimation variance (cf. Chapter 3) is equal to

σ2
E = E[(ẐWDR(x0)− ZWDR(x0))

2] =

− γ(0)−
N∑
α=1

N∑
β=1

µαµβγ(xα − xβ) + 2
N∑
α=1

µαγ(xα − xβ) (5.6)

By minimizing σ2
E with the constraint given by Eq. 5.5, one obtains the ordi-

nary Kriging system
γ(x1 − x1) · · · γ(x1 − xN) 1

...
...

...
γ(xN − x1) · · · γ(xN − xN) 1

1 · · · 1 0



µ1
...
µN
λ

 =


γ(x1 − x0)

...
γ(x1 − x0)

1

 (5.7)

Solving this system yields an estimate of ẐWDR(x0) at the point x0.
A stack of 2D residual ZWD maps parametrized by the ZWD estimation rate was
obtained by applying the ordinary Kriging algorithm to a homogeneous grid of 21
points built around the SPIN network. The grid points compared to the SPIN
network’s station positions are shown in Figure 5.11.
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Figure 5.11 – Grid points (blue points) with respect to SPIN network’s receivers (red
triangles)

Some examples of residual ZWD maps at different epochs for both events are
instead presented in Figures 5.12 and 5.13.
It is worth recalling that modelling the ZWD random field as an intrinsic homo-
geneous and isotropic field implied the removal of topography-dependent trends
(cf. Section 5.4). Hence the collection of these images describes the variability of
the ZWDs around an average value (mainly depending on the station’s height).
The analysis of the stack of the residual ZWD maps relative to the 22nd of July
suggested that such GNSS-derived images may withhold some qualitative infor-
mation about the behaviour of the meteorological phenomenon ongoing. In the
attempt to interpret at best these information, we have placed the residual ZWD
maps side by side with the the RADAR images available from the regional envi-
ronmental protection agency.
The weather radar witnessed at 9:40 AM the meteorological front passing from
Piedmont region to Lombardy, approaching the SPIN stations of COMO and
LECC (cf. Figure 5.12). The residual ZWD maps corresponding to this epoch
records a value of approximately 2.0 − 2.2 cm in the Eastern part of Lombardy
that includes the SPIN stations SONP, DARF and BRES. This region is far away
from the meteorological event and does not seem to be affected by the weather
front approaching.
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On the other hand the residual ZWD map shows a very low variability of less than
about 5 mm in a region that includes the weather front and extends down to the
southern part of Lombardy (closeby the SPIN stations SERR and VARZ). This
virtually constant value of the ZWD suggests that in this area there is hardly any
water vapour transfer nor rise of moist air above the GNSS receivers. At 10:40
AM the weather front moved and we may observe that the corresponding residual
ZWD map exhibits a larger variability ranging from a few mm up to about 1−1.5
cm. This may be due to the pressure gradients in the front itself and to the in-
coming summer solar radiation, increasing in magnitude and causing therefore a
variation of the ZWD spatial distribution. When the weather front passed away or
reduced significantly at 11:40 we may finally observe that the residual ZWD map
presents an inhomogeneous variability of the ZWD in the order of a few cm on the
whole map. One possible reason for this behaviour could be again the incoming
solar radiation leveraging a spatial redistribution of the water vapour. A draw-
back of the above analysis is however that the meteorological event under study
is naturally anisotropic but the residual ZWD maps cannot hold any knowledge
about this feature. In fact as a consequence of the isotropicity hypothesis only an
averaged ”spherically symmetric” behaviour of the occurrence is reflected into the
residual ZWD maps.
This limitation is even clearer in the case of the phenomenon occurred on the 26th
of July. As shown in Figure 5.13, from about 4:30 PM to 6:00 PM of the 26th
of July the event was characterized by the development of convective cells mostly
across the northern part of Lombardia region, whereas the southern part of the re-
gion was not affected by the phenomenon. These cells were virtually not advected
even though a slight movement from South-East to North-West can be detected
in the radar images. In this case, the residual ZWD maps corresponding to this
time window show only a prominent stepwise variability in the upper right part of
the map (i.e. approximately the northern part of Lombardia). This may indicate
privileged directions of water vapour transfer along the development of the cells
themselves. However they do not exhibit any hint about the potential position
of the cells nor a clear separation between the northern and the southern part
of Lombardia. The reason for this inaccuracy of the ZWD maps can rely on the
intrinsic anisotropicity of the event, which cannot be captured by the variogram
models used.
Dealing with purely intrinsically homogeneous models without assuming them to
be also isotropic raises several issues, in particular the problem of determining the
theoretical variograms from the empirical ones, and it represents a novel research
perspective.
The last issue we would like to address is the problem of retrieving absolute ZWD
maps, i.e. 2D maps with absolute ZWD values instead of residual ones. In order to
compute such maps it is necessary to re-introduce topography-dependent informa-
tion on the network area and to compute the mean height-dependent component
of the ZWD at each grid point.
One possible strategy to carry this out consists in the following steps:

1. choose a model that expresses the average component of the ZWD due to
the receiver’s height
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2. select a suitable Digital Elevation Model of the network area, in order to
know as accurately as possible the height of each grid point

3. add these mean contributions to the residual ZWD maps
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Figure 5.12 – Left side: Examples of 2D residual ZWD maps of the event on the 22nd
of July at three different epochs
Right side: Radar image relative of the event on the 22nd of July at 9:40 and 10:40
AM (Courtesy of ARPA - Agenzia Regionale per la Protezione Ambientale)
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Figure 5.13 – Left side: Examples of 2D residual ZWD maps of the event on the 26th
of July at three different epochs
Right side: Radar image relative of the event on the 26th of July at 17:10 and 18:05
AM (Courtesy of ARPA - Agenzia Regionale per la Protezione Ambientale)
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This would allow to retrieve absolute PWV maps and to analyze them together
with independent high-resolution spatial weather sensors, as for instance weather
radar, in order to figure out to which extent GNSS-derived maps retain spatio-
temporal meteorological information.
This step, however, has not been concluded yet and the study of GNSS-derived
absolute PWV water vapor maps with such sensors represents a future research
direction.

Stochastic analysis of Troposphere’s non-hydrostatic refractivity field for small- and
mid-scale GNSS networks - 73



Chapter 5

74



Chapter 6

Toward spatio-temporal
stochastic modelling of the ZWD
field

6.1 Introduction

In the previous chapter we have characterized spatially the residual ZWD field
and we have obtained a ”stack” of 2-dimensional residual ZWD maps for every
epoch available. The temporal dimension is not modelled in any way and it only
acts as parameter.
In order to investigate the full spatio-temporal structure of the ZWD field and
to explore the feasibility of temporal predictions, we need to have a basic un-
derstanding of its dynamics. The spatio-temporal evolution of the ZWD field is
related to the fluid dynamic properties of the neutral atmosphere and we have
detected the contributions of at least two main terms responsible for its evolution.
First of all a ”diffusion term”, for instance due to turbulence effects or evapo-
ration/condensation phenomena. Secondly an ”advection term” due to a rigid
transport of a parcel of air along the fluid velocity field.
In this chapter starting from the conservation equation of the moisture of a parcel
of air we will derive an advection-diffusion model for the ZWD field. If the velocity
field is assumed to be constant, we obtain as a particular case the so-called Taylor’s
frozen flow hypothesis (cf. [Treuhaft et al.(1987)] or [Tatarski(1961)]). Un-
der this hypothesis we will present an algorithm for estimating a time-dependent
spatially-averaged mean transport field in order to quantitatively detect the ad-
vection term. This algorithm could be used in case of dense or mid-scale GNSS
networks with no heterogeneous topography.
More generally if the velocity field of the advection-diffusion model is only divergent-
free, we are going to present a method for giving an estimate of the mean transport
field both time and space-dependent. Moreover, in this case it is also possible in
principle to take into account turbulent mixing effects, reckoning quantitatively
the diffusion term mentioned above.
This chapter relies heavily on [Onn et al.(2006)], where many ideas are taken
from. It is also worth pointing out that it only represents a primer to the complex
topic of the characterization of the spatio-temporal structure of the ZWD field
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and further insights are necessary.

6.2 ZWD advection model

In this section we will derive a general advection model for the ZWD field starting
from the conservation equation of moisture of a parcel of air.
This equation indicates that the total amount of water vapour in a parcel of air
is conserved as the parcel moves around except when there is a phenomenon of
evaporation or condensation

∂q

∂t
+ v · ∇q = E − C (6.1)

where the specific humidity of the parcel is denoted by q, the 3D flow velocity
field by v of the Troposphere, the condensation by C and the evaporation by E.
Multiplying Equation 6.1 by the density ρ of a parcel of (moist) air and adding to
it the mass conservation equation multiplied by q

q(
∂ρ

∂t
+∇ · (ρv)) = 0 (6.2)

one obtains the conservation equation of the specific humidity of a parcel of
air

∂(ρq)

∂t
= −∇ · (ρqv) + ρ(E − C) (6.3)

Equation 6.3 will be our starting point for constructing the advection model
for the ZWD field.
We will assume throughout that

∇ · v = 0 (6.4)

This means the fluid be incompressible, which may be assumed for mesoscale
weather systems ranging vertically up to approximately 4 km and horizontally
up to length scales as those covered by dense and mid-scale GNSS networks.
This is because density variations in the lower atmosphere and in relatively small
areas are small (see [Onn et al.(2006)] and the references therein). Under the
incompressibility hypothesis Equation 6.3 is equivalent to

∂(ρq)

∂t
= −v · ∇(ρq) + ρ(E − C) (6.5)

The equation above states that time variations of humidity ρq of a parcel of
air is given by its net flux through the boundary surface of any volume element.
Assuming there is neither condensation nor evaporation and integrating Equation
6.3 (or equivalently Equation 6.5) along the vertical component, one obtains (see
also [Onn et al.(2006)]) the equation

∂

∂t
(

∫ H

0

ρqdz) +
∂

∂x
(

∫ H

0

uρqdz) +
∂

∂y
(

∫ H

0

vρqdz) + (wρq)|H − (wρq)|0 = 0 (6.6)
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where (u, v, w) are the componenents of the flow velocity field. The boundary
terms represent the water vapor exchange between the ground and the upper part
of the neutral atmosphere considered (typically the top of the planetary boundary
layer).
The Integrated Water Vapor can be expressed as (see Chapter 2)

IWV =

∫ H

0

ρqdz

and let us define the vertically averaged transport field components as

U =

∫ H
0
uρqdz∫ H

0
ρqdz

, V =

∫ H
0
vρqdz∫ H

0
ρqdz

(6.7)

Substituting these two equations in Equation 6.6, we obtain an advection model
for the IWV field

∂IWV

∂t
+

∂

∂x
(U · IWV ) +

∂

∂y
(V · IWV ) + moisture sources = 0 (6.8)

This model characterizes the time variations of the water vapour in a column
of air as the horizontal net flux of IWV into that column (along the transport field
(U, V )).
Taking into account the linear relation IWV = κZWD, as explained in Chapter
2, where κ is assumed to be constant, Equation 6.8 can be straightforwardly
expressed in terms of the ZWD, yielding an advection model for the ZWD field.

∂ZWD

∂t
+

∂

∂x
(U · ZWD) +

∂

∂y
(V · ZWD) = 0 (6.9)

6.3 Taylor’s Frozen flow hypothesis and estimation of the
mean transport field

Let us start from the advection model for the ZWD field given by Equation 6.9.
If we consider as a particular case that the vertically-averaged transport vector
(U, V ) is constant and that there are no source or sink terms, Equation 6.9 has
the solution

ZWD(x, y, t) = ZWD(x− Ut, y − V t, t0) (6.10)

where ZWD0 is the initial ZWD distribution at time t0. Equation 6.10 is
classically known as the Taylor’s frozen flow hypothesis. In general this assumption
means that the diffusion contributed by turbulent circulations is small and that
the advection of a parcel of air past a given point can be taken to be entirely due
to the mean flow velocity field. In particular, in the unusual case of the ZWD
field it implies that the ZWD value is rigidly transported around by means of the
transport vector (U, V ) defined in Equation 6.7.
Throughout this section we will assume the ZWD field to be evolving according to
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Equation 6.10. If the transport vector (U, V ) would be known, then it would be
possible to take advantage of frozen flow hypothesis (when applicable) in order to
make predictions of the ZWD values at any point (x, y) and time t. Unfortunately
this vector is in general not known and must be estimated.
A possible way to give an evaluation of the mean transport is using Equation 6.10
itself and set an inverse problem for it with unknowns (U, V ).
Following this idea and according to Taylor’s frozen flow hypothesis, we developed
a data-driven procedure to evaluate (U, V ). In order to set this inverse problem
the input data of the ZWD field may be provided by a collection of known ZWD
values at different epochs or by a set of predicted (absolute or residual) ZWD
values parametrized by the time, e.g. the collection of Kriging predicted residual
ZWD values as derived in Chapter 5.
Hence, let us suppose the spatio-temporal ZWD field to be defined on a region
whose dimension is comparable to those covered by a dense or mid-scale GNSS
network (for instance as the MisT network or the SPIN network). Moreover let us
consider a stack of 2D ZWD maps MZWD,t parametrized by the ZWD etimation
rate t as described in Chapter 5.
Taking pairs (MZWD

tk
,MZWD

tk+1
) of such maps at two consecutive epochs tk and tk+1

the following equation holds for any grid point (xl, yl)

ZWD(xl, yl, tk+1) = ZWD(xl−U(tk) ·(tk+1−tk), yl−V (tk) ·(tk+1−tk), tk) (6.11)

Hence for any epoch tk (with the exceptions of the final epoch) Equation 6.11
represents a non-linear system where the spatially-constant time-varying transport
field (U(tk), V (tk)) is the unknown.
In order to effectively solve this system, we linearize Equation 6.11, obtaining a
linear system

ZWD(xl, yl, tk+1) ≈ ZWD(xl, yl, tk)−∇ZWD(xl, yl, tk) ·
(
U(tk)
V (tk)

)
(tk+1 − tk)

(6.12)
The accuracy of the linearization is as accurate as the ZWD estimation rate is

high.
A last step we need to carry out to solve the system 6.12 is estimating the gradient
∇ZWD(xl, yl, tk). We explored two alternative approaches

1. 2° order finite difference approximation of the derivatives

2. stochastic prediction of the derivatives via the Kriging algorithm

The first method consists in computing suitable combinations of differences
among the Kriging ZWD estimates at any grid point (we refer for instance to
[Quarteroni(2014)] for further details). It is worth pointing out that here we
must use implicitly the measured ZWD values for every stations and suitable var-
iogram functions as for example those computed in the previous chapter.
The second approach amounts to express directly the gradient of the ZWD field
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at any grid point as a linear combination of the measured ZWD values at the re-
ceivers locations and evaluate it applying the Kriging ordinary algorithm. In this
case, too, it is necessary to take advantage of the variogram functions computed
in the above mentioned chapter in order to set up the Kriging system. For further
details please see [Reguzzoni et al.(2005)].
Once the gradient ∇ZWD(xl, yl, tk) has been assessed by means of one these two
methods, the system 6.12 evaluated at all grid points can be solved epoch-wise
through a least squares adjustment approach.
Some examples of the results of this algorithm for the stack of 2D residual ZWD
maps computed in Chapter 5 are reported in Figure 6.1. These images refer to
the two events occurred on the 22nd of July and on the 26th of July 2016 at three
different epochs.

The above algorithm was formulated with the aim to give an estimate of both
the magnitude and the direction of the advective term of the dynamical evolu-
tion of the ZWD field. In our opinion this represents a first step toward a joint
spatio-temporal modelling of the ZWD field, that could be useful for meteorolog-
ical purposes and rainfall events hazards.
The above procedure, moreover, could be of special interest for dense GNSS net-
works with no heterogeneous topography, since the interdistances between two
stations are so small that the mean transport vector (Ū , V̄ ) may be assumed
spatially-constant. In this case, indeed, we expect only the variation in time of
the advection term to be significant.
A problem regarding the method we tried to tackle was its validation. More pre-
cisely, we attempted to verify that the estimates (Û , V̂ ) of the transport vector
obtained by this algorithm can be linked to the meteorological flow velocity field
~v = (u, v, w) and are reliable estimates of Equation 6.7. However, to compute the
integral 6.7 and effectively validate our estimates we would need wind and humid-
ity values at different heights of the neutral atmosphere. These values could be
either real data provided by meteo sensors, as for instance radiosondes, or simu-
lated data obtained from NWP models. Either way unfortunately these data were
not available to us and thus we were not able to proceed further on this point.
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Figure 6.1 – Estimates of the mean transport vector under Taylor’s frozen flow hypothesis
for the events of the 22nd and 26th of July at three different epochs
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6.4 General ZWD advection-diffusion model: discussion
and perspectives

In the previous section we considered the transport field (U, V ) as being constant
throughout the definition area of the ZWD field. However, this may be true only
in very few cases and thus it is highly desirable to drop this strong assumption. In
this section we are going to derive a general model for the dynamics of the ZWD
field that will not only describe its advective behaviour but also the turbulent
mixing effects including them in the form of a diffusion term. This section is
based on [Onn et al.(2006)].
As we have done in Chapter 5 the ZWD field and the transport vector (U, V ) can
be thought of as being random fields. Hence they may be decomposed into an
average component and a random component as follows (cf. [Pope(2000)])

U = U + U
′

V = V + V
′

ZWD = ZWD + ZWD
′

(6.13)

Physically this means that the random fields (U, V ) and ZWD are the result
of a mean laminar component (Ū , V̄ ) and ¯ZWD together with random turbulent
fluctuations (U

′
, V

′
) and ZWD

′
(see again [Pope(2000)]). Let us also clarify

that practically the mean values for the transport flow (Ū , V̄ ) and wet delay are
averaged over an area on the ground, which we will refer to as a grid cell. The size
of this grid cell corresponds to the dimensions of the base of a column containing
water vapor and it is assumed that the conservation of IWV is averaged over this
column.
Substituting the equations 6.13 into the ZWD advection model 6.9, one gets

∂ZWD

∂t
+
∂ZWD

′

∂t
+∇·(VZWD)+∇·(VZWD

′
)+∇·(V′

ZWD)+∇·(V′
ZWD

′
) = 0

(6.14)
where V = (U, V ) and the differential operator ∇· = ∂

∂t
+ ∂

∂t
.

It is not feasible to consider in detail all small-scale random fluctuations appearing
in Equation 6.14 and therefore we follow the Reynolds averaging procedure in order
to describe only the average state of the ZWD field. This smoothing method is
commonly used in Computational Fluid Dynamics for studying the behaviour of
turbulent flows and we refer to [Pope(2000)] and the references therein for full
details about it. Here we would like only to recall that the random components of
the ZWD and of the transport field have zero mean, i.e. ZWD′ = 0 and V′ = 0.
Thus we may deduce that

∂ZWD′

∂t
= 0

∂

∂t
(V′) = 0

Hence, averaging Equation 6.13 over a grid cell gives
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∂ZWD

∂t
+∇ · (VZWD) +∇ · (V′ZWD′) = 0 (6.15)

Equation 6.15 states that time variations of the mean ZWD, averaged on a grid
cell, depends both on a laminar mean flow component, described by the advection
term ∇·(VZWD), and on the averaged turbulent flux component ∇·(V′ZWD′).
The turbulent flux term appearing in the equation cannot be resolved explicitly
with respect to the unknown field the equation is written for and therefore it needs
to be modelled (cf. [Pope(2000)]). This problem is extremely important and
there is a vast literature describing several models of the averaged turbulent flux
component (we refer again to [Pope(2000)] for a complete treatment of this is-
sue). Here following [Onn et al.(2006)], we adopt the so-called gradient-diffusion
hypothesis according to which the turbulent flux term is directly proportional to
the gradient of the mean ZWD field

∇ · (V′ZWD′) = Γ · ∇ZWD (6.16)

The variable Γ is called turbulent diffusivity and throughout this chapter we
will suppose it to be constant. Its unit of measurement is [m2/s].

Remark. The gradient-diffusion hypothesis represents the simplest model that can
be adopted in order to close Equation 6.15. Its greatest value relies just on its
clarity and simplicity and this is exactly the reason we focused on this model. How-
ever, it should always be borne in mind its drawbacks that make it not suitable in
many cases. For a thorough appraisal of this hypothesis we refer to [Pope(2000)],
where several alternative models are described.

Substituting the gradient-diffusion hypothesis in Equation 6.15 we eventually
get the ZWD advection-diffusion model

∂ZWD

∂t
+∇ · (VZWD) + Γ∆ZWD = 0 (6.17)

We may now assume that the ZWD field evolves according to the general
model 6.17. Unlike the model 6.11 obtained applying Taylor’s frozen flow hypoth-
esis which is purely advective, Equation 6.17 accounts also for the contribution of
turbulence.
Furthermore, in the advection-diffusion model above we need not anymore to as-
sume the transport field V to be spatially-constant. Indeed, the solution of the
inverse problem given by Equation 6.17 would yield a general time and space-
varying advection field V. Hence in this respect as well the advection-diffusion
eqaution 6.17 generalizes the model 6.11.
There exists several numerical techniques that allow to integrate Equation 6.17
both as direct problem, i.e. assuming the mean laminar flow V to be known and
solving for the unknown ZWD, and as an inverse problem, i.e. where ZWD is
known and the unknown is given by the mean transport field.
In [Onn et al.(2006)] a numerical integration based on the method of Finite Dif-
ference is explained in full details. In particular, the author solves the advection-
diffusion equation both as an inverse and as a direct problem describing accurately
all terms involved. He proposes a two-step algorithm, whose first step consists in
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employing model 6.16 to evalute the mean transport vector V. In this step he
makes use of predicted ZWD values in any point of a grid and set the turbulent
diffusion coefficient Γ to be zero. In the second stage of his algorithm the esti-

mates V̂ are exploited to produce 2D ZWD difference maps that take into account
the spatial variation of the average ZWD due to advection and turbulent diffu-
sion. Strikingly he gives also an estimate of the turbulent diffusion coefficient.
These maps are eventually used as corrections of the turbulently-mixed atmo-
spheric phase of a SAR interferograms (see [Onn et al.(2006)] for all details).
Instead of considering Finite Difference methods, we would like to suggest here
the possibility of numerical integrate Equation 6.16 by means of Finite Element
Methods. Compared to Finite Difference approaches, the Finite Element tech-
niques show some advantages that are worth to be mentioned. First of all they
are well suited for problems where the definition domain shows complex geomet-
ric features. Moreover, they are suitable when the theoretical solution lacks of
regularity (i.e. it is not smooth or not even continuous everywhere) relying on
a sound mathematical framework. Finally the Finite Element numerical solution
is a function approximating the theoretical solution in general better than that
given by Finite Difference algorithms.
Independently on the numerical method chosen to integrate Equation 6.16, the
great value of this model seems to be its great simplicity compared to general Nu-
merical Weather Prediction models. In fact, lacking of high computing facilities
the advection-diffusion model described here could be implemented on a common
workstation with limited resources and still capture information about the dynam-
ics of the ZWD field. We think this is a valuable aspect that can motivate further
research efforts in the analysis of the model 6.16.
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