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"The boundaries which divide Life from Death
are at best shadowy and vague.

Who shall say where the one ends, and where the other begins"
Edgar Allan Poe, The Premature Burial
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Extended Abstract

Introduction
Multiphase flows are adopted in several industrial applications such as power
plants [1, 2], oil and gas field management [3], combustion and in general
chemical processes [4], cavitation in technical applications [5, 6]. The study
of multiphase flows and in particular of two-phase fluids, which will represent
the main subject of this work, shows a large amount of variants that are worth
being discussed. The direct measurement of characteristic flow variables such
as velocity, volume fraction and temperature are not always possible mainly
because the process could be altered by the acquisition method or because
the equipment to be tested is too small to fit any experimental system of
measurement, as in the case of the study of internal nozzle flows in fuel
injectors. Obtaining experimental evidences from this kind of processes is
really cumbersome and most of the time includes the use of pilot studies
(experiments carried out in thermo-hydrodynamic similitude with the case
study) [7–9] as well as empirical correlations. Nowadays, CFD simulations of
internal nozzle flows are becoming very popular and are performed in com-
bination to experimental studies, to expand the applicability of the solution
method to a wider spectrum. Among the several CFD methodologies avail-
able in the literature, the VoF method (Volume of Fluid) is preferred for
simulations of injectors [7, 9–12]. Main drawback of this methodology is the
lack of information about the two fluids since a single momentum equation
is solved. In 2016 Edelbauer [10] proposed the validation of an hybrid solver:
a three-phase system consisting of liquid, vapour and gas is applied for the
Volume of Fluid simulation of the liquid disintegration in order to resolve
the liquid-gas interface. The method presented by Edelbauer overcomes the
problem of high computational effort needed by surface-capturing methods
(each bubble is resolved singularly) by modelling the liquid-vapour interface
within the Eulerian Eulerian framework, while the liquid-gas interface is de-
scribed by the VoF method. With this approach Edelbauer was able to reach
(with reasonable computational effort) a more accurate solution with respect
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to Sou’s one. Some results are plotted in figure 1 and show that the vapour
fraction, even at small pressure jump, is intercepted more accurately.

Figure 1: Comparison of simulated liquid volume fraction iso-surface snapshots (αiso =
0.5) and instantaneous photographs of the experiment from [7] for pin = 0.22, 0.25 and
0.28MPa.

The work of [10] evidences two fundamental characteristics that are prefer-
able for a multiphase solver, namely the ability to capture the gas/liquid
interface and to account for the slip velocity at the gas-liquid interface.

The aim of this work is then to evaluate the feasibility of the application
of an Eulerian-Eulerian solver to simulate cavitation in injector geometries.
The solver reactingTwoPhaseEulerFoam in the OpenFOAM software was
selected for the study; the solver, originally designed for multiphase chemi-
cal reactors and fluidized-bed combustors, is able to track the mass fraction
of the chemical species and to account for chemical reactions. With this
in mind, the interconnection between the species transport equations and
the Eulerian-Eulerian framework transport equations has been investigated,
with particular focus on the correlation between the mass source term and
the transport of the volume (void) fraction between different phases. Finally,
the metodology employed in OpenFOAM for interface tracking in multiphase
solvers was studied and validated on a numerical experiment; a quantitative
evaluation and a complete analysis on benchmark quantities defined in [13]
was performed; comparison with a two-fluid VoF solver interFoam are pro-
vided.

Governing Equations
In order to better understand how the two fluid model describes the two
phases it is following presented the formulation of the transport equation
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defining the model. The formulation of the phase transport equation is based
on the conditional averaging of the continuity equation based on the work of
Weller [14] as described in [15].

∂ρϕαϕ
∂t

+∇ · (ρϕ ~̄Uϕαϕ) = Γϕ (1)

where ϕ identifies the phase, α is the phase fraction and Γ represents the mass
source term. It is possible to write a phase-continuity equation for each of the
two phases (ϕ ∈ [1, 2]) and combine them to obtain the volumetric continuity
equation for the mixture. Weller [14] proposed a different formulation of
the phase continuity equation, so that all terms are conservative and α1 is
bounded, introducing two different velocities U and Ur.

~̄U = α1
~̄U1 + α2

~̄U2 (2)

~̄Ur = ~̄U1 − ~̄U2 (3)
This rearranged equation couples implicitly the two phases through the intro-
duction of these two velocities, applying Weller’s formulation to both phases
and rearranging the equations, we obtain:

∂(α1)
∂t

+∇ · (α1
~̄U) +∇ ·

(
α1
~̄Ur(1− α1)

)
− α1∇ · ( ~̄U) =

α1α2

 1
ρ2

D(ρ2)
Dt

− 1
ρ1

D(ρ1)
Dt

 (4)

Following the analysis carried on the continuity equation, conditional averag-
ing is performed also on the momentum equation derived from the generalised
transport equation for two-phase flows:

∂(αϕρϕ ~̄Uϕ)
∂t

+∇ · (αϕρϕ ~̄Uϕ ~̄Uϕ) +∇ · (αϕR̄eff
ϕ ) = −αϕ∇p̄+αϕρϕ~g+M̄ϕ (5)

where R̄eff
ϕ is the combined Reynolds and viscous stress tensor [16, 17] and

M̄ϕ represents the averaged inter-phase momentum transfer term for both
dispersed and segregated flows. This last term has to be defined, and hence
modelled for each phase. In order to obtain a conservative solution the total
momentum transferred through phases has to be null. This means that the
summation of each momentum transfer contribution for both phases has to
be zero: ∑

ϕ ∈ [1, 2]
i ∈ [IMTM ]

M̄ϕi (6)
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In a two-fluid approach, it is sufficient to define one expression for the inter-
phase momentum transfer to reach closure of the system. Usually the models
are fitted to describe the forces acting on the dispersed phase, or better to
the Dispersed Phase Elements.

Interfacial Momentum Transfer Modelling
In order to correctly assess the effect of interfacial momentum transfer it
is also worth to highlight the substantial mathematical and physical differ-
ences between segregated and dispersed flows. In this section the two diverse
framework will be described and the deriving inter-phase change terms will
be listed. Starting from the momentum averaged transport equation (5) the
source term will be described for both dispersed and segregated flows as the
summation of two components namely the net force contribution from inter-
facial averaged pressure in case there is a gradient in the volumetric phase
fraction and the contribution due to shear stress and unbalanced interfacial
pressure.

M̄ϕ = M̄σ,ϕ + M̄h,ϕ (7)
The first source term takes into account the phase slip and the surface tension
effects, while the second term =0.25em

- for the dispersed two-fluid system represents the sum of fluid dynamic
forces applied to a Disperse Phase Element (DPE):

M̄1 = Ad
~̄Ur Drag

+Avm
(
D2

~̄U2
Dt
− D1

~̄U1
Dt

)
Virtual Mass

+Al2 ~̄Ur × (∇× ~̄U2)
+Al1 ~̄Ur × (∇× ~̄U1)

Lift

+Aα∇α Turbulent Dispersion
+Mwl

1 Wall Lubrication

(8)

- for segregated flow types, it models the interfacial force density due to
unbalanced pressures and viscous stresses, that lead to a dissipative drag
due to interfacial friction in the presence of phase slip.
In the case of Segregated flows the interfacial morphology is partially re-
solved, i.e. the averaging volume is chosen sufficiently in its size to capture
the main (mean) dynamics of the interfacial flow, whereas non-resolved
interfacial morphologies and phase interactions again must be accounted
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for in the underlying averaging framework by appropriate (physical mean-
ingful) closure models. As a consequence, the interface is represented as
an interfacial transition region of certain characteristic width

M̄ϕ,σ = αϕ · 4αϕαφM̄σ

M̄φ,σ = αφ · 4αφαϕM̄σ

(9)

with:

M̄σ = σ
︷︸︸︷
KI

︷︸︸︷
nI Σ + σ

dΣ
dαϕ
∇αϕ

≈
(
∇ ·

(
∇αϕ
|∇αϕ|

)
+ 4Σ0(1− 2αϕ)

)
∇αϕ

(10)

For what concerns the interfacial drag term it is modelled as follows:

M̄h,ϕ = λ(ReI , πµ) |∇αϕ|
δ

µ̄ϕµ̄φ

µ̄ϕ + µ̄φ

(
Ūϕ − Ūφ

)
(11)

Where µ̄ is the field average viscosity, |∇αϕ| is used to model Σ, i.e.
the interfacial area density that varies across the interfacial transition
region of width δ. λ(ReI , πµ) is a proportionality factor representing
the dimensionless friction coefficient which holds tangential inertia and
tangential shear contributions:

λ(ReI , πµ) = mReI + nπµ (12)

the parameters m and n have to be appropriately chosen (0.1 ≤ m ≤ 1.5
and n ≈ 8 ).

Cases Setup
The initial configuration is identical for both cases and consists of a circular
bubble of diameter d0 = 0.5 centred at [0.5; 0.5] in a [1 × 2] rectangular do-
main, as represented in figure 2. The density of the bubble is lower than that
of the surrounding fluid (ρb < ρl). No-slip boundary conditions are applied
on top and bottom walls (~u = ~v = 0), while the free slip condition is applied
to the vertical walls (~u = 0).

Table 1 lists the fluids and physical parameters which specify the test
cases. The evolution of the bubbles should be tracked for 3 time units during
which the defined benchmark quantities should be measured. Adimension-
alization is frequently used to assist with classifying simulations and can be
introduced by scaling through a characteristic length and time:
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L = d0

t = L
Ug

where Ug =
√
gd0 is the gravitational velocity.

Figure 2: Initial configuration and boundary conditions for the test cases.

Table 1: Pysical parameters defining the test cases

Test Case ρl ρg µl µg g σ Re Eo ρl/ρg µl/µg
1 1000 100 10 1 0.98 24.5 35 10 10 10
2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

It is worth to mention that the VoF solver of reference was interFoam,
used as the benchmark solution for the comparison described in this paper,
while the Euler-Euler solver of reference was twoPhaseEulerFoam, it was
preferred since the benchmark cases are non reacting/cavitating.
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Case 2
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Figure 3: Visual comparison between two-fluid method (blue) and VoF (red) of contours
at t = 3 for different mesh resolutions.

The contour chart reported in figure 3 shows for simulations of Case 2 a
lack of cohesion in coarsest meshes that manifest in an early breakup fol-
lowed by a unphysical interface tracking. This phenomenon is visible as well
from the bubble circularity chart, in which the concavity change corresponds
to the bubble breakup. The unphysicality of coarsest mesh solutions with
twoPhaseEuerFoam is confirmed by the trends shown in Fig. 5, where severe
deviation from the benchmark trends can be spotted. It is also interesting to
notice that with mesh refinement the rising velocity and the bubble centroid
are simulated correctly. This suggests that even if the interface is not being
tracked correctly the momentum equation solution is correct and provides
the right velocity value. The bubble centroid is located almost at the "core-
bubble" centroid, since that the deviations in the barycenter position due
to the bubble-tails are light. Figure 4 shows how substantially convergence
is reached in both solvers towards the finest mesh solution and provide a
numerical comparison between the two solutions.

Figure 4: Comparison between Vof’s (left) and Euler-Euler’s (right) charachteristic
benchmark values
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Figure 5: Comparison between bubble circularities at different mesh resolutions for
both two-fluid method (a1) and VoF (b1). Comparison between bubble rise velocities
at different mesh resolutions for both two-fluid method (a2) and VoF (b2). Comparison
between bubble centroids at different mesh resolutions for both two-fluid method (a3) and
VoF (b3).
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Figure 6: Visual comparison between two-fluid method (blue) and VoF (red)
of contours at t = 3 for different mesh resolutions.

From figure 6 it is evident that a unphysical solution is derived for all resolu-
tions. Solutions of Case 1 simulations for twoPhaseEulerFoam show a lack of
cohesion of the bubble, which shows a skirted profile with a set-up typical of
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ellipsoidal range bubbles. The benchmark parameters are not comparable to
the VoF solution except in some part for the finest meshes’ rise velocity and
bubble centroid position. This, as said before, is due to the correct solution
of the momentum equations and the light deviation brought by the tails to
the bubble centroid position. This simulation is vital for the analysis carried
on in this paper, since it brings out that Euler-Euler method as implemented
in twoPhaseEulerFoam is not suitable for interface-tracking simulations. Fi-
nally, figure 7 help demonstrate that convergence is not reached towards the
finest solution in the Eulerian-Eulerian simulation, except in some part for
the finest solution and provides a quantitative comparison between the two
simulations.

Figure 7: Comparison between Vof’s (left) and Euler-Euler’s (right) charachteristic
benchmark values
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Figure 8: Comparison between bubble circularities at different mesh resolutions for
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between bubble centroids at different mesh resolutions for both two-fluid method (a3) and
VoF (b3).
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Conclusions
Recalling what said in the introduction about the requirements of a solver to
be suitable for simulating cavitation in injectors and injector-like geometries,
a two-fluid solver should capture gas/liquid interface correctly and be able
to take into account the slip velocity between phases. Since cavitation is the
most important source/sink phenomenon in this kind of problems, the solver
should be capable to model also this contribution.

reactingTwoPhaseEulerFoam features a "interfaceCompositionModel" that
allow to determine through a user-selected model the composition of the
species at phase-interface. Hence the introduction of a homogeneous reactor
model for cavitation in a two-fluid solver can be perform by taking advantage
of the high modularity of the existing framework.

The results of this work brought to the author’s attention that not only
the two fluid Euler-Euler methodology is more mesh demanding than the
VoF solver, used as benchmark solver , but also that severe diffusion and
lack of cohesion manifest even at high mesh resolutions. This suggest that a
modelling error is committed systematically by the solver, meaning that in
twoPhaseEulerFoam the form of the terms for surface tension is not suitable
for the case studied.
An accurate revision of the solver’s code resulted in the finding that no
equation for surface tension is currently implemented in OpenFOAM-dev.
This somehow justifies the irrational results obtained from the simulations.

Several options can be implemented; the simplest barotropic model for
cavitation, coupled to a homogeneous reactor model, should be implemented
and the solver should be validated through a pilot study [7] and also compared
to the Vof solver (interPhaseChangeFoam) solution. Once the cavitation
phenomenon is demonstrated to be correctly tracked by the solver, a further
development of the cavitation modelling could be studied. Together with
this improvement in barotropic cavitation modelling other, more complex,
models should be considered. In literature, as well as in OpenFOAM, mod-
els based on the Rayleigh-Plesset equation such as Schnerr and Sauer were
demonstrated to be reliable to describe cavitation and widely validated [18].

Interface tracking in two fluid solver should be improved. It is suggested
as a further development to implement the surface tension source term de-
scribed in (10). The implementation should be consistent with the Open-
FOAM formulation of two fluid method, in particular the source term should
be activated only if the segregated version of the solver is being used.
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Abstract
The aim of this work is to evaluate the feasibility of the application of an
Eulerian-Eulerian solver to simulate cavitation in injector-like geometries.
In order to achieve this goal, the research started with the selection of the
most suitable solver already implemented in OpenFOAM. Among the differ-
ent two-fluid Eulerian-Eulerian solvers approach. Starting from the existing
framework implemented in OpenFOAM, the aim was to implement a “ho-
mogeneous reactor model” for cavitation in a compressible two-fluid solver.
With this in mind, most of the efforts were oriented to obtain a full descrip-
tion of the solver implementation and to outline differences with other solvers
from the existing literature [2,15,19–21], when present. The link between the
transport equations of the chemical species and the governing equations in
the Eulerian-Eulerian framework was investigated, with particular focus on
the correlation between the mass source term and the transport of the volume
(void) fraction, to understand whether it is possible to correlate mass trans-
port and volume fraction transport in a cavitation source term. The stencil
of the equations reported in this thesis have been derived directly by the
implementation of the equations in the software (OpenFOAM-dev, released
by the OpenFOAM Foundation), to check the consistency with the published
litterature, since no code documentation was available. Finally, the ability of
the Euler-Euler solver to track the fluid interface is discused by a comparison
with a Volume-Of-Fluid (VoF) solver, performed on a numerical experiment
for validation available from the litterature.

Keywords: CFD, OpenFOAM, Euler-Euler, Interface Tracking, Cavitation,

reactingTwoPhaseEulerFoam
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Sommario
Questo lavoro punta a valuare la fattibilità di applicazione di un metodo
Eulero-Eulero per la simulazione CFD di flussi bifase in iniettori. Per ottenere
questo risultato, il lavoro di ricerca è cominciato con la selezione di un solu-
tore già implementato in OpenFoam, tra i vari solutori Eulero-Eulero bifase.
Partendo dal codice implementato in OpenFOAM l’obiettivo era di imple-
mentare un “modello di reattore omogeneo” per la cavitazione in un solutore
comprimibile e bifase. Detto ciò, è importante sottolineare che la maggior
parte del lavoro è stato orientato alla corretta descrizione del solutore come
implementato e all’identificazione delle differenze del suddetto solutore con
altri analoghi presenti in letteratura [2, 15, 19–21]. Particolare attenzione è
stata posta nell’individuare il legame tra le equazioni di trasporto delle specie
chimiche e le equazioni costitutive del modello Eulero-Eulero, più precisa-
mente è stata ricercata una correlazione tra il termine sorgente dell’equazione
del trasporto della massa e quello dell’equazione del trasporto della frazione
in volume, per capire se fosse possibile correlare il trasporto della massa
e il trasporto della frazione volumetrica con un termine sorgente di cavi-
tazione. Le equazioni derivate in questa tesi sono state derivate direttamente
dall’implementazione delle stess nel software (OpenFOAM-dev,rilasciato da
OpenFOAM Foundation), per verificare la consistenza con la letteratura di
riferimento, visto che nessua documentazione riguardo il codice è presente.
Infine, le capacità di tracciare l’interfaccia tra due fluidi è discussa per il mod-
ello Eulero-Eulero attraverso un confronto con un solutore che usa l’approccio
del “Volume dei Fluidi” (VoF). Questo confronto è stato attuato tramite un
esperimento numerico per la validazione disponibile in letteratura.

Parole Chiave: CFD, OpenFOAM, Eulero-Eulero, Interfaccia, Cavitazione,

reactingTwoPhaseEulerFoam
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Chapter 1

Introduction

1 Background
Multiphase flows are adopted in several industrial applications such as power
plants [1, 2], oil and gas field management [3], combustion and in general
chemical processes [4], cavitation in technical applications [5, 6]. The study
of multiphase flows and in particular of two-phase fluids, which will repre-
sent the main subject of this thesis, shows a large amount of variants that
are worth being discussed. Two-Phase flows can be categorized either by the
physical state of the constituents (gas-solid, gas-liquid, solid-liquid, liquid-
liquid flows) if immiscible liquids are considered or by the topology of the
interface (segregated vs dispersed flows).

The direct measurement of characteristic flow variables such as velocity,
volume fraction and temperature are not always possible mainly because the
process could be altered by the acquisition method or because the equipment
to be tested is too small to fit any experimental system of measurement, as
in the case of the study of internal nozzle flows in fuel injectors. Flow inside
single orifice nozzles and fuel injectors with complex geometries are gaining
significant attention from researchers, as evidenced by the several confer-
ences organized yearly around the world on this topic. This interest in the
flow characteristics of nozzles and injectors is largely due to their use in sev-
eral engineering applications, the most important being in the automotive
industry. For instance, cavitation occurring in single orifice nozzles and fuel
injectors plays a pivotal role in fuel plume atomization required for better fuel
economy and reduction of emissions (soot and particulate matter). However,
cavitation also can lead to a significant reduction in the nozzle volumetric ef-
ficiency (in diesel engines), in the spray direction stability and to a potential
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damage of the hardware components, thus contributing to increased cost and
reduced reliability of these injectors. These conflicting attributes has spurred
a renewed interest in understanding the complicated flow-physics inside these
devices [5].

As mentioned before obtaining experimental evidences from this kind of
processes is really cumbersome and most of the time includes the use of pilot
studies (experiments carried out in thermo-hydrodynamic similitude with the
case study) [7–9] as well as empirical correlations. Winklhofer et al. [8] pro-
posed a 2D experimental rig to capture water cavitation in different nozzle
geometry configurations at different pressures. They used back illumination
and imaging of the flow model with a CCD camera in order to capture and
visualize the cavitation field. The CDD camera allowed to capture pressure
and density field as well, through a Mach Zehnder interferometer arrange-
ment [8], while velocity profiles were calculated with a fluorescence tracing
method.

Figure 1.1: Model throttle flow path between the sapphire windows and
Throttle geometry "U" in 300µm thick sheet steel [8]

Today, CFD simulations of internal nozzle flows are becoming very pop-
ular and are performed in combination to experimental studies, to expand
the applicability of the solution method to a wider spectrum.

Between the several CFD methodologies available in the literature, the
VoF method (Volume of Fluid) is preferred for simulations of injectors [7,
9–12]. Main drawback of this methodology is the lack of information about
the two fluids since a single momentum equation is solved, meaning that the
phase slip velocity is modelled giving a low quality tracking of the phases’

1. Background
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velocities, on the other hand they allow a correct modelling of the phase-
interface that is really important to track in cavitation problems since the
phase exchange happens at the interface.

With an experimental set-up similar to the one used by Winklhofer et
al. [8], Morozov and Iben [12] in 2008 presented the validation of a cavitation
model based on Rayleigh-Plesset equation by the software ANSYS CFX-
11.0. The validation was carried on with the assumption of single velocity
and pressure between the two phases, i.e. a VoF model was tested.
More recently Bicer, Sou and Tomiyama [7,9] simulated incipient cavitation
in a more injector-like geometry by the VoF method. Following in image
1.2 are reported the experimental rig and a detail on the nozzle geometry.
They were able to obtain with a VoF method good resemblance with the

Figure 1.2: Experimental rig and detail on nozzle geometry of Sou’s experi-
ment [7, 9]

experimental evidences as reported in figure 1.3
Only in 2016 Edelbauer [10] proposed the validation of an hybrid solver:

a three-phase system consisting of liquid, vapour and gas is applied for the
Volume of Fluid simulation of the liquid disintegration in order to resolve
the liquid-gas interface. The method presented by Edelbauer overcomes the
problem of high computational effort needed by surface-capturing methods
(each bubble is resolved singularly) by modelling the liquid-vapour interface
within the Eulerian Eulerian framework, while the liquid-gas interface is
described by the VoF method as graphically summarized in image 1.4.

1. Background
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Figure 1.3: Experimental vs VoF simulation liquid volume fraction as simu-
lated by Sou et al. [9]

Figure 1.4: Concept for 3-phase simulation by combination of Eulerian Eu-
lerian and Volume of Fluid approaches.

With this approach Edelbauer was able to reach (with reasonable com-
putational effort) a more accurate solution with respect to Sou’s one. Some
results are plotted in figure 1.5 and show that the vapour fraction, even at
small pressure jump, is intercepted more accurately.

1. Background
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Figure 1.5: Comparison of simulated liquid volume fraction iso-surface snap-
shots (αiso = 0.5) and instantaneous photographs of the experiment from [7]
for pin = 0.22, 0.25 and 0.28MPa.

As it is possible to infer from what said so far, in order to capture ac-
curately the cavitation during injection, two fundamental characteristics are
requested from a solver:

• Capacity to capture the gas/liquid interface;

• Accurately take into account slip velocity between phases.

In order to better understand how the multiphase flow can manifest itself,
and hence how the interface should be transported in different flow situation
a brief description and classification of multiphase flows and bubble dynamics
is presented in the following section.

2 Multiphase-Flow Dynamics
A multiphase flow is the flow of a mixture of phases such as gases (bubbles)
in a liquid, or liquid (droplets) in gases, and so on. Dispersed phase flows are
flows in which one phase consists of discrete particulates, such as droplets
in a gas or bubbles in a liquid. On the other hand, separated/segregated
flows happens when the two phases are separated by a line of contact i.e.
the interface. In this section, the different flow regimes are analysed through
the study of a two-phase fluid (gas+liquid) in a vertical pipe [22–25]. De-
pending on the combination of gas and liquid superficial velocities, a specific
flow regime may occur in vertical upward gas-liquid flow. We are primarily
interested in four clearly distinguishable flow regimes, namely: bubbly, slug,

2. Multiphase-Flow Dynamics
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churn and annular flows, which will be referred to as distinct regimes. For
vertical up-flow, as the amount of gas is gradually increased, the following
four distinct regimes evolve:

• Bubbly Flow: In this configuration, there is a continuous liquid phase
and the gas phase is dispersed as bubbles within the liquid. The bubbles
travel with a complex motion within the flow, may be coalescing and
are generally of non-uniform size.

• Slug flow: Characteristic bullet-shaped bubbles, often called Taylor
bubbles, flow up the pipe surrounded by a thin film of liquid. The
liquid slug body between the Taylor bubbles often contains a dispersion
of smaller ones.

• Churn flow: At higher velocities, the Taylor bubbles in slug flow break
down into an unstable pattern in which there is an oscillatory motion
or churning of liquid in the tube.

• Annular flow: This configuration is characterized by liquid travelling
as a film on the channel walls. Part of the liquid can also be carried as
drops in the central gas core.

Figure 1.6: Scketches of flow regimes for two-phase flow in vertical pipes [26].

2. Multiphase-Flow Dynamics
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Figure 1.7: Test section photographs of upward air-water flow regimes:(a)
Bubbly, (b) Spherical cap, (c) Stable slug, (d) Unstable slug, (e) Semi-
annular, (f) Annular [27].

Figures 1.6 and 1.7 present respectively a schematic and visual representa-
tion of the different flow regimes.

This work will focus mainly on the bubbly flow regime since cavitation
in injectors, as highlighted in the previous chapter, fits better this case.
Following a description of the bubble shape in regime (a) and (b) of figure
1.7 is presented.

2.1 Bubble Motion
The bubbles dispersed in a fluid flow doesn’t behave like solid particles (flu-
idized beds). Firstly the momentum transfer from the continuous fluid phase
results in a circulation of the fluid inside the bubble and secondly the shape
of the bubble is not fixed. This has to be taken into account when modelling
drag and lift forces between the phases and it will be described in section 5
of chapter 2 .
Two dimensionless numbers can be defined to describe the bubble shape:

Eo = geff |∆ρ|d2

σ
= Buoyancy Force

Surface Tension (1.1)

Mo = geffµ
4
c |∆ρ|

ρ2
cσ

3 (1.2)

2. Multiphase-Flow Dynamics
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Where Eo stands for Eötvös number andMo stands for Morton number. σ
is the surface tension and ∆ρ is the density difference between continuous
and dispersed phase, i.e ∆ρ = ρd− ρc. geff is the magnitude of the effective
acceleration |~geff | = |~g − D~Uc

Dt
|, the effective acceleration takes into account

the acceleration of the continuous phase that can be appreciable. Figure 1.8

Figure 1.8: Shape regimes of fluid particles in unhindered gravitational mo-
tion through liquids [28].

shows the characteristic shapes of fluid particles rising in a quiescent fluid
as function of Morton and Eötvös numbers. The diagram provides also the
Reynolds number based on the terminal velocity as function of the same
parameters. For low Eo spherical shape is retained while for larger ones the
bubble takes an ellipsoidal shape or largely deformed. This behaviour is more
pronounced for low Mo since the continuous phase has a low viscosity, i.e
when a fluid particle rises through a continuous phase, work is done on the
continuous phase at a rate equal to the rise velocity times the buoyancy force
acting on the fluid particle. In very viscous fluids the energy is dissipated

2. Multiphase-Flow Dynamics
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mostly by laminar viscous dissipation but with a low viscosity continuous
phase some of it is dissipated through wake shedding. Which is responsible
for the secondary motion of the bubble that is the superposition of two types
of motion: oscillation on the bubble trajectory and bubble shape oscillations.
Figure 1.9 highlights the terminal rise velocity of air bubbles in water as a
function of the bubble diameter. Three regimes are identified: spherical,
ellipsoidal and spherical-cap. The shaded area represents the dependence of
the bubble rise velocity also on the presence of surfactants and as it is possible
to see from the figure this dependence mainly affects ellipsoidal bubbles.
These features will be recalled in chapter 4 where a numerical simulation
for the solver validation will be carried on. It will be possible to see the
transition of the bubble shape between the different regimes as well as verify
the velocity distribution as function of the bubble shape.

Figure 1.9: Terminal velocity as a function of diameter for air bubbles in
water [28].

2. Multiphase-Flow Dynamics
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3 Objectives
The aim of this work is then to evaluate the feasibility of the application
of an Eulerian-Eulerian solver to simulate cavitation in injector-like geome-
tries. In order to achieve this goal, the research started with the selection
of the most suitable solver already implemented in OpenFOAM. Among the
different solvers based on the two-fluds Eulerian-Eulerian approach avail-
able in OpenFOAM, reactingTwoPhaseEulerFoam was chosen: the reason
is that this solver, originally designed for multiphase chemical reactors and
fluidized-bed combustors, is able to track the mass fraction of the chemical
species and to account for chemical reactions. The original idea was to im-
plement a dummy chemical reaction in order to "emulate" cavitation in the
system by an homogeneous reactor model. With this in mind, most of the
efforts were oriented to obtain a full description of the solver implementation
and to outline differences, when present, with other solvers from the existing
literature [2, 15, 19–21]. In the meanwhile, the interconnection between the
species transport equations and the Eulerian-Eulerian framework transport
equations was investigated, with particular focus on the correlation between
the mass source term and the transport of the volume (void) fraction. The
scope of this investigation was to understand whether it is possible to corre-
late mass transport and volume fraction transport with a cavitation source
term. The findings about this will be presented as a part of chapter 3 about
OpenFOAM implementation of two-fluid model.

Additionally, the metodology employed in OpenFOAM for interface track-
ing in multiphase solvers was studied. A numerical experiment was performed
to check whether the interface was being transported correctly. Finally, to
give a quantitative evaluation a complete analysis on benchmark quantities
defined in [13] was performed on the Eulerian-Eulerian solver and compared
with the VoF solver interFoam that, as shown before [7,9], was proven as an
efficient method for interface tracking. The study about interface transport
wasn’t however limited to the results of the benchmark tests, but a physical
description of interface tracking in two-phase flows, as well as comparison of
the solver implementation with literature [19] was performed. Results about
interface tracking are described in chapter 2 and 4, respectively in two-fluid
model description and simulations.

3. Objectives
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4 Thesis Outline
The remainder of this thesis is structured as follows:

Chapter 2: CFD methodologies for two-phase flows and generalized
transport equations are derived. The two-fluid model for both cavitat-
ing and non cavitating systems are derived as well as the inter-phase
momentum transfer terms for both dispersed and segregated flows;

Chapter 3: The reactingTwoPhaseEulerFoam solver is described in
detail highlighting the equations and models described in chapter 3 as
well as the link between species transport and phase fraction transport
equations;

Chapter 4: The benchmark case is performed for both Euler-Euler
and VoF methodologies at different mesh resolutions and then the re-
sults are compared;

Chapter 5: The main findings and conclusions are summarized. Issues
and suggestions for future research are presented.

4. Thesis Outline





Chapter 2

Two-Fluid Model

In this Chapter, an introduction to the classification of Multiphase flows,
as well as to bubble shape and dynamics, is discussed. Two different CFD
methodologies for two-phase flow are compared and the general conservation
equations are derived. Then, the two-fluid model for both non-cavitating and
cavitating systems are described. The governing equations for compressible
fluids are listed along with turbulence and inter-phase momentum transfer
modelling for dispersed flows and segregated ones.

1 CFD Metodologies for Two-Phase Flow
The present study needs a model to track the velocities of both phases sep-
arately. This is why a volume of fluid (VoF) methodology was discarded
at the beginning of this work. Being a free-surface modelling technique it
allows correct tracking of the fluid interface but, the Navier-Stokes equation
solved alongside the void fraction transport equation are referred to the mix-
ture velocity instead of tracking the two separate velocities of the two fluids.
This is why, for a more accurate analysis either an Eulerian-Lagrangian or
an Eulerian-Eulerian method has to be used. In the following sections the
two methodologies will be briefly described to justify the choice of the solver
used in this thesis.

1.1 Eulerian-Lagrangian Approach
In the Eulerian-Lagrangian approach the two phases are referred to as the
continuous and the dispersed phase. A macroscopic description of the dis-
persed phase is obtained by replacing the microscopic conservation equations
with a discrete formulation. In this discrete formulation, the dispersed phase

13
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is represented by individual droplets, which are tracked through the flow
domain by solving an appropriate equation of motion. The equation of mo-
tion is the conservation equation of momentum expressed in the Lagrangian
formulation, in which the dependent variables are the properties of material
particles that are followed in their motion. On the other hand, the conserva-
tion equations for the continuous phase are expressed in the Eulerian frame,
where the fluid properties are considered as functions of space and time in
an absolute (or inertial) frame of reference [15].

Figure 2.1: Eulerian-Lagrangian approach schematic.

As it is depicted in figure 2.1 it is possible to distinguish the continu-
ous phase, modelled through an Eulerian framework, through the red arrows
(each cell of the control volume has a velocity vector for the continuous
phase). On the other hand the dispersed phase, modelled through a La-
grangian framework, is represented through the blue arrows, which highlights
that each single droplet of dispersed phase is tracked singularly.

For sufficiently dilute suspensions, where the particle size is small, the in-
fluence of the dispersed phase on the motion of the continuous phase can be
neglected. The coupling between the phases is then said to be one-way. How-
ever, the matter is somewhat complicated if the motions of the continuous
and the dispersed phase are closely coupled, i.e. the continuous phase influ-
ences the motion of the DPEs (Dispersed Phase Elements) and vice versa.
This two-way coupling can be taken into account in the Eulerian-Lagrangian

1. CFD Metodologies for Two-Phase Flow
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model with relative ease and is done by accounting for the influence of the
dispersed phase in the momentum equation and the turbulence model of the
continuous phase.

An important advantage of this methodology lies in the possibility to store
information about each single element of dispersed phase, these information
will then be accounted for in each equation of motion, solved separately for
each droplet. On the other hand, problems arise when the dispersed phase
fraction is high. The first problem is that the computational effort required
for the dispersed phase is proportional to the number of DPEs because each
DPE requires the solution of its equations of motion. The problem can be
circumvented by calculating the motion of a finite number of computational
parcels, each containing DPEs possessing the same characteristics such as
size, velocity, shape etc.. However, the number of DPEs in a parcel may
have a marked effect on some of the obtained statistics, as shown by [29], [30].
Secondly, for moderate to high phase fractions, the increased coupling be-
tween the DPEs and the continuous phase can introduce numerical stability
problems [30], which are difficult to handle in a mixed Euler/Lagrange frame-
work [15].

1.2 Eulerian-Eulerian Approach
Here both phases are described through an Eulerian framework. Each phase
is treated as a continuum, each inter-penetrating each other, and is repre-
sented by averaged conservation equations. The averaging process introduces
the phase fraction α into the equation set, which is defined as the probability
that a certain phase is present at a certain point in space and time [15].

As did before for the Eulerian-Lagrangian model in figure 2.2 is depicted
a schematic of the Eulerian-Eularian model. Here, as highlighted before, for
each cell two sets of vectors are present the red ones representing the continu-
ous phase while the blue one represents the dispersed one. Each cell presents
also an α weighting value which constitute the dispersed phase fraction and
allows to identify where the dispersed phase droplets are most probably lo-
cated in the control volume.

Due to the loss of information associated with the averaging process, ad-
ditional terms appear in the averaged momentum equation for each phase,
which require closure. In addition to the Reynolds stresses, which enter into
the averaged single-phase flow equations, an extra term that accounts for
the transfer of momentum between the phases appears. This term is known
as the averaged inter-phase momentum transfer term and accounts for the

1. CFD Metodologies for Two-Phase Flow
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Figure 2.2: Eulerian-Eulerian approach schematic.

average effect of the forces acting at the interface between continuous phase
and the DPEs. The two-fluid methodology is applicable to all flow regimes,
including separated, dispersed or intermediate regimes, since the topology of
the flow is not prescribed. However, the formulation of the inter-phase mo-
mentum transfer term and the two-phase turbulence model is the crux of the
two-fluid methodology because it depends on the exact nature of the flow.
Consequently, the resulting predictive capabilities rely heavily on them. The
derivation of the average inter-phase momentum transfer term starts from
instantaneous momentum transfer term. The main components of this term
are due to the drag, lift and virtual mass forces acting at the interface be-
tween the two phases, and will be deeply analysed in chapter 2 .

It should be noted that the Eulerian-Eulerian model, by definition, in-
corporates two-way coupling (interphase momentum exchange) and, despite
the other complexities, is the preferred method for engineering applications,
especially when the phase fraction is high. For these reasons it is adopted
in this study. This choice mainly relies on the high computational costs of
the Eulerian-Lagrangian method despite the need of models for the Eulerian-
Eulerian model, as showed in figure 2.3 and the complications that arise at
high phase fractions, namely the need of two-way coupling.

1. CFD Metodologies for Two-Phase Flow
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Figure 2.3: Eulerian-Lagrangian vs Eulerian-Eulerian.

2 Local Instantaneous Bulk Conservation Equa-
tions

Here, the generalized transport equation for both single phase and two phase
flows is derived. This procedure will provide the reader with the basic trans-
port equations that will be presented in the following chapters.

2.1 Single-Phase Flow
Let’s consider a control volume V , spatially fixed within an Eulerian frame-
work as illustrated in figure 2.4 . Over this control volume the balances of a
generic property φ will be formulated. It represents the intensive equivalent
of extensive balance quantities such as mass, momentum and energy. To do
so, let’s suppose that a fluid of density ρ crosses the control volume’s surface

2. Local Instantaneous Bulk Conservation Equations
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S at an infinitesimal surface element dS with ~U velocity.

Figure 2.4: Control volume (V ) in Eulerian framework for single phase flow.

The transport of Φ across V is generally constituted from different con-
tributions that represents either surface or volume contributions as follows
[16,17]:

d

dt

∫
V (t)

ρΦ dV =−
∮
S(t)

~n · (ρφ~U) dS

−
∮
S(t)

~n · (−ΓΦ,d∇Φ) dS

+
∫
V (t)

SΦ(Φ) dV

(2.1)

Where Γφ,d represents the generic transport coefficient for the diffusive trans-
port of quantity φ and Sφ denotes the generic volumetric source term. The
transport equation (2.1) states that the total amount of φ will change within
the control volume V if a diffusive or convective net flux across the bounding
control surface S takes place, or a source/sink within the control volume V
itself causes an increase/decrease of φ .

Even tough from equation (2.1) it was possible to identify the different
contributions to property φ change inside the control volume, this doesn’t
represent the final formulation of the generalized transport equation, in order

2. Local Instantaneous Bulk Conservation Equations
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to obtain that Leibnitz’ and Gauss’ theorems has to be introduced to allow
a simplification of the formula:

Leibnitz’ Theorem [31]:

d

dt

∫
V (t)

~a dV =
∫
V (t)

∂~a

∂t
dV +

∮
S(t)

~a
(
~n · ~US

)
dS (2.2)

Where ~a is an arbitrary vector and ~US is the velocity of the bounding
surface S that is null and hence the second term can be neglected,
meaning that Leibnitz’ theorem allows the transport of the derivative
inside the integral operator.

Gauss’ Theorem [31–33]:∫
V (t)
∇ · ~a dV =

∮
S(t)

~n · ~a dS (2.3)

∫
V (t)
∇~a dV =

∮
S(t)

~n~a dS (2.4)

This theorem allows to pass easily from a surface integral to a volume
one.

Applying now Libinitz’ theorem (Eq. (2.2)) to the L.H.S. of equation 2.1
and Gauss’ Theorem (Eqns. (2.3) and (2.4)) to the R.H.S. of the same equa-
tion it is possible to derived a simplified version of the generalized transport
equation:

∫
V (t)

[
∂

∂t
(ρΦ) +∇ · (ρΦ~U)−∇ · (ΓΦ,d∇Φ)− SΦ(Φ)

]
dV = 0 (2.5)

From (2.5) it is possible to extract the generic differential transport equation
deleting the dependence on the control volume (V ) and hence extracting the
square brackets:

∂

∂t
(ρΦ) +∇ · (ρΦ~U)−∇ · (ΓΦ,d∇Φ)− SΦ(Φ) = 0 (2.6)

After This demonstration it results easier the derivation of the various trans-
port equations that will be solved in the following chapters by the Open-
FOAM solvers. To give an idea to the reader mass, momentum and species
transport equations can be derived substituting the coefficients of table 2.1
into equation (2.6), where µ is the kinematic viscosity (deriving from New-
ton’s law), Di is the species diffusivity (deriving from Fick’s law) and R̂i

2. Local Instantaneous Bulk Conservation Equations
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Table 2.1: Coefficients for the generic transport equation for single-phase
flow.

Balance Φ Γφ,d Sφ
Mass 1 0 0
Momentum ~U µ ρ~g −∇p
Species xi ρDi R̂i

is the reaction rate relative to specie i. The energy equation is a little bit
trickier due to its various formulations, in this work we will refer to the for-
mulation in chapter 2 section 3.3 . The derivation is similar to the other
transport equations and it is recommended to consult [16, 17, 19] for a more
detailed derivation of the transport equations.

2.2 Two-Phase Flow
We want now to extend the process explained in the previous section to a two-
phase and in general to a multi-phase system. The control volume has the
same properties as above, but it is now composed by several phase volumes
(Vk ⊆ V ), each possessing an interface separating it from the neighbouring
phase SI . As a consequence of that the control surface S is composed of
phase surfaces (Sk ⊆ S).

Figure 2.5: Control volume (V ) in Eulerian framework for multi-phase flow.

This is schematically represented in figure 2.5, in which are also repre-

2. Local Instantaneous Bulk Conservation Equations
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sented:

• dSI,φϕ: Interface element;

• ~UI,φϕ: Interface velocity between phase φ and ϕ;

• ~nI,φϕ: Outward phase unit normal vector.

In order to take into account the multi-phase effect on the transport equation
of generic quantity Φ the balances will be considered on phase surfaces Sk
and phase volumes Vk.
Examining the transport of Φ within the control volume V , one has to bear
in mind that due to the presence of two phases, interfacial contributions have
to be taken into account that stem from both phases ϕ and φ. As will be
seen, these in effect couple the bulk phase transport equations derived in the
antecedent of this section. The overall balance equation for Φ within the
control volume V holding two phases ϕ and φ reads:

∑
k=ϕ,φ

(
d

dt

∫
Vk(t)

ρΦ dV

)
= −

∑
k=ϕ,φ

∫
Sk(t)

~nk · (ρΦ~U) dS

−
∑
k=ϕ,φ

∫
Sk(t)

~nk · (−ΓΦ,d∇Φ) dS

+
∑
k=ϕ,φ

∫
Vk(t)

SΦ(Φ) dV

+ 1
2
∑
k=ϕ,φ

∑
j=φ,ϕ

(1− δj,k)
∫
SI,jk(t)

SΦ,I(Φ)dS

(2.7)

The first three terms hold the already introduced bulk (phase interior) con-
tributions within the phases ϕ and φ, respectively. The last term on the
r.h.s. of equation (2.7) represents the coupling interfacial source term. δj,k
herein denotes Kronecker’s delta. Analogously to the procedure followed in
the previous section the Leibniz’ Theorem (Eq. (2.2)) is applied to equation
(2.7).

d

dt

∫
Vϕ(t)

ρΦ dV =
∫
Vϕ(t)

∂

∂t
(ρΦ) dV

+
∫
SI,ϕφ(t)

~nI,ϕφ · ~UI,ϕφ(ρΦ) dS
(2.8)

Where the second term cannot be neglected any more since the interface
velocity is not null (~UI,ϕφ 6= 0). Applying Gauss’ theorem as well (Eqns.
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(2.3) and (2.4)) lead to the simplified version of the two-phase generalized
transport equation:∑

k=ϕ,φ

∫
Vk(t)

[
∂

∂t
(ρΦ) +∇ · (ρΦ~U)−∇ · (ΓΦ,d∇Φ)− SΦ(Φ)

]
dV =

1
2
∑
k=ϕ,φ

∑
j=φ,ϕ

(1− δj,k)
∫
SI,jk(t)

[
ρΦ(~U − ~UI,kj) · ~nI,kj

− (ΓΦ,d∇Φ) · ~nI,kj + SΦ,I(Φ)
]

dS

(2.9)

As equation (2.9) is valid for arbitrary phase volumes Vk and arbitrary con-
figurations of phase interfaces SI,ϕφ within V , the two terms and therein the
integrands can be set to zero interchangeably. Thus, the local instantaneous
generic transport equation can be deduced from the first integrand (repre-
senting the bulk phase contributions). As it has already been the result
for the single phase case (equation (2.6)). However, considering the two or
multi-phase case, there is always coupling with (at least) another transport
equation of the same type due to the presence of a neighbouring phase φ.
Hence, interfacial conditions have to be specified from the r.h.s. term of
equation (2.9) in order to close the system.

3 Governing Equations

3.1 Averaged Continuity Equation
In this section the averaged continuity equation for a compressible two-fluid
system is described. The formulation is based on the conditional averaging of
the continuity equation based on the work of Weller [14] as described in [15].

∂ρϕαϕ
∂t

+∇ · (ρϕ ~̄Uϕαϕ) = Γϕ (2.10)

where ϕ identifies the phase, α is the phase fraction and Γ represents the
mass source term.

It is possible to write a phase-continuity equation for each of the two
phases (ϕ ∈ [1, 2]) and combine them to obtain the volumetric continuity
equation for the mixture1:

∂ (ρ1α1)
∂t

+∇ ·
(
ρ1α1

~̄U1
)

= 0 (2.11)

∂ (ρ2α2)
∂t

+∇ ·
(
ρ2α2

~̄U2
)

= 0 (2.12)

1In this case the source term Γϕ was neglected, hence the formulation of the two-fluid
model is for the non reacting system

3. Governing Equations
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The phase fractions are calculated through the solution of one of these
phase continuity equations. Its discretization must bring a conservative and
bounded solution.
The continuity equation for phase 1 can be re-written as:

ρ1
∂α1

∂t
+ α1

∂ρ1

∂t
+ ρ1∇ · (α1

~̄U1) + α1
~̄U1 · ∇(ρ1) = 0 (2.13)

Introducing the total derivative for the density and dividing both terms by
the density itself we obtain:

∂α1

∂t
+∇ · (α1

~̄U1) + α1

ρ1

D(ρ1)
Dt

= 0 (2.14)

Weller [14] proposed a different formulation of the phase continuity equation,
so that all terms are conservative and α1 is bounded.

∂(α1)
∂t

+∇ ·
(
α1
~̄U
)

+∇ ·
(
α1
~̄Ur(1− α1)

)
+ α1

ρ1

D(ρ1)
Dt

= 0 (2.15)

Where:
~̄U = α1

~̄U1 + α2
~̄U2 (2.16)

~̄Ur = ~̄U1 − ~̄U2 (2.17)
This rearranged equation couples implicitly the two phases through the in-
troduction of these two velocities.
The same substitution can be made for phase 2:

∂(α2)
∂t

+∇ ·
(
α2
~̄U
)
−∇ ·

(
α1
~̄Ur(1− α1)

)
+ α2

ρ1

D(ρ2)
Dt

= 0 (2.18)

Since ~̄U2 = ~̄U − α1
~̄Ur.

Equations (2.15) and (2.18) are summed to obtain:

∇ · ~̄U = −α1

ρ1

D(ρ1)
Dt

− α2

ρ2

D(ρ2)
Dt

(2.19)

Substituting equation (2.19) in (2.15) and rearranging the equation as follows,
we obtain:

∇ · (αϕ ~̄U) = αϕ∇ · ( ~̄U) + ~̄U · ∇αϕ (2.20)
∂(α1)
∂t

+ ~̄U · ∇α1+∇ ·
(
α1
~̄Ur(1− α1)

)
=

α1α2

 1
ρ2

D(ρ2)
Dt

− 1
ρ1

D(ρ1)
Dt

 (2.21)
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Re-writing (2.21) through (2.20) we obtain the final equation:

∂(α1)
∂t

+∇ · (α1
~̄U) +∇ ·

(
α1
~̄Ur(1− α1)

)
− α1∇ · ( ~̄U) =

α1α2

 1
ρ2

D(ρ2)
Dt

− 1
ρ1

D(ρ1)
Dt

 (2.22)

3.2 Averaged Momentum Equation
Following the analysis carried on in the previous section 3.1, conditional
averaging is performed also on the momentum equation derived from the
generalised transport equation seen in section 2:

∂(αϕρϕ ~̄Uϕ)
∂t

+∇·(αϕρϕ ~̄Uϕ ~̄Uϕ)+∇·(αϕR̄eff
ϕ ) = −αϕ∇p̄+αϕρϕ~g+M̄ϕ (2.23)

where R̄eff
ϕ is the combined Reynolds and viscous stress tensor [16, 17] and

M̄ϕ represents the averaged inter-phase momentum transfer term for both
dispersed and segregated flows.
This last term has to be defined, and hence modelled for each phase. In order
to obtain a conservative solution the total momentum transferred through
phases has to be null. This means that the summation of each momentum
transfer contribution for both phases has to be zero:∑

ϕ ∈ [1, 2]
i ∈ [IMTM ]

M̄ϕi
2 = 0 (2.24)

Since the system is a two-fluid one, it is sufficient to define one expression for
the inter-phase momentum transfer to reach closure of the system. Usually
the models are fitted to describe the forces acting on the dispersed phase, or
better to the Dispersed Phase Elements.
It is important to notice that during the simulations, in different regions, the
dispersed phase isn’t always the same and this is why the models has to be
defined for both phases and tuned to the case study each time.

3.3 Averaged Energy Equation
The simulations considered in this work deals mainly with isothermal flows,
the possible temperature fluctuations are given mainly by expansion and

2IMTM: interfacial momentum transfer models
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phase change (i.e. evaporation and condensation) phenomena. Even though
the flow is roughly isothermal an energy equation is needed to close the
system, because both phases in Eulerian-Eulerian approach are compressible.
The two enthalpy equations are defined as:

∂(αϕρϕeϕ)
∂t

+∇ · (αϕρϕeϕ ~̄Uϕ) +
∂
(
αϕρϕKϕ

)
∂t

+∇ ·
(
αϕρϕKϕ

~̄Uϕ
)

=

−∇ ·
[
αϕ
(
qϕ + qtϕ

)]
+∇ ·

(
αϕTϕ

~̄Uϕ
)

+ αϕρϕ · ~̄Uϕ + Sϕ

(2.25)

Where eϕ consists in the standard thermal energy and the turbulent kinetic
energy, Kϕ is the kinetic energy of phase ϕ given by Kϕ = 0.5 · ~U2

ϕ, Sϕ
represents the interfacial supply energy to ϕth phase and qtϕ takes account
for the turbulent energy convection as well as for the turbulent work. In
solving problems, it is often useful to separate the mechanical and thermal
effects in the total energy equation. Thus from the standard method of
dotting the momentum equation by the velocity, we have the mechanical
energy equation [21]:

∂

(
αϕρϕ

~̄U2
ϕ

2

)
∂t

+∇ ·
αϕρϕ ~̄U2

ϕ

2
~̄Uϕ

 =− ~̄Uϕ · ∇(αϕpϕ) + ~̄Uϕ · ∇ ·
(
αϕReff

ϕ

)
+ αϕρϕg · ~̄Uϕ + M̄ϕ · ~̄Uϕ

(2.26)

Then by subtracting equation (2.26) to (2.25) the internal energy equation
can be obtained:

∂(αϕρϕeϕ)
∂t

+∇ · (αϕρϕeϕ ~̄Uϕ) = −∇ · (αϕpϕ)

−∇ ·
[
αϕ(qtϕ +Rt

ϕ · ~̄Uϕ)
]
− αϕpϕ∇ · ~̄Uϕ

+αϕ
(
Reff
ϕ

)
×∇ ~̄Uϕ + (Sϕ − M̄ϕ · ~̄Uϕ)

(2.27)

For two-phase flow analyses, the enthalpy energy equation is important and
it is frequently used to solve various engineering problems. Thus the virtual
enthalpy hϕ is defined

hϕ = iϕ +
~̄U2
ϕ

2 = eϕ + pϕ
ρϕ

(2.28)
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substituting (2.28) in (2.27) we obtain:

∂(αϕρϕhϕ)
∂t

+∇ · (αϕρϕhϕ ~̄Uϕ) = −∇ · (αϕpϕ)

−∇ ·
[
αϕ(qtϕ +Rt

ϕ · ~̄Uϕ)
]

+ Dϕ

Dt
(αϕpϕ)

+αϕ
(
Reff
ϕ

)
×∇ ~̄Uϕ + (Sϕ −Mϕ · ~̄Uϕ)

(2.29)

These thermal energy equations are extremely complicated due to the inter-
actions between the mechanical terms from the turbulent fluctuations and
the thermal terms. However, in many practical two-phase flow problems, the
heat transfer and the phase change terms dominate the energy equations. In
such a case, the above equations can be reduced to simpler forms.

3.4 Turbulence Modeling
Turbulence modelling is needed in order to determine the Reynolds’ stresses
tensor in the momentum equation and in particular the kinematic viscosity.
This work will focus solely on the formulation of the k− ε turbulence model
for two-phase system, but it is important to highlight that also k − ω and
LES models are available in OpenFOAM [34]. The k − ε model solves two
additional transport equations for [16]:

k : Kinetic Energy;

ε : Turbulent Dissipation.

From these two quantities the kinematic turbulent viscosity can be calculated
as follows:

νt = Cµ
k2

ε
(2.30)

Where Cµ = 0.09. Two k − ε models will be presented in the following
paragraphs, for other models and a thorough description of turbulence in
multiphase flows it is possible to consult [2, 15].

3.4.1 Standard k − ε with RDT-based compression term

This model aims to extend the validity of the standard k − ε model also to
compressible flows through the model proposed by Sherif H. El Tahry [35].
With this approach the transport equations for k and ε are similar to the
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ones derived in [16,17] for single phase fluids but present, as well, additional
terms that accounts for the fluid compressibility:

∂(αϕρϕkϕ)
∂t

+∇ · (αϕρϕkϕ ~̄Uϕ)−∇ · (αϕρϕDeff
k kϕ) = αϕρϕG

−2
3αϕρϕ∇

~̄Uϕ · kϕ︸ ︷︷ ︸
Compressibility Term

−αϕρϕεϕ (2.31)

∂(αϕρϕεϕ)
∂t

+∇ · (αϕρϕεϕ ~̄Uϕ)−∇ · (αϕρϕDeff
ε εϕ) = C1αϕρϕG

εϕ
kϕ

−
(

2
3C1 − C3

)
αϕρϕ∇ ~̄Uϕ · εϕ︸ ︷︷ ︸

Compressibility Term

−C2αϕρϕεϕ
εϕ
kϕ

(2.32)

Where:

Deff
k : Effective diffusivity for k = νt

σk
+ ν;

Deff
ε : Effective diffusivity for ε = νt

σε
+ ν;

σk = 1;

σε = 1.3;

C1 = 1.44 ;

C2 = 1.92;

C3 = -0.33.

G stands for the production of turbulent kinetic energy and is defined as [2]:

G = νt
[
∇ ~̄Uϕ : dev(∇ ~̄Uϕ + (∇ ~̄Uϕ)T )

]
(2.33)

Where ":" stands for the double inner product and "dev" operator extracts
the deviatoric component of a tensor:

dev(T ) = T − 1
3tr(T )I (2.34)

It can be easily demonstrated [36] that equation (2.33) is derived from the
substitution of Boussinesq assumption into the tensorial notation of the tur-
bulent kinetic energy production term.

3. Governing Equations



Chapter 2. Two-Fluid Model 28

3.4.2 k − ε with RDT-based compression term and bubble gener-
ated turbulence

As illustrated by Lahey in [37] a source term accounting for the bubble gen-
erated turbulence is added in both transport equations described in section
(3.4.1). The two terms Φk and Φε are defined so that:

Φk = kc
Cε2εc

Φε (2.35)

Φk = Cp
(
1 + C

4/3
D

)
αd
| ~̄U3

r |
Dd

(2.36)

Where Cp = 0.25 for potential flow around a sphere, CD is the drag coef-
ficient, Ur is the slip velocity between phases, the subscripts c and d refers
respectively to continuous and dispersed phase and finally, Dd refers to the
Sauter diameter of the dispersed phase DPE.

4 Two-Phase Cavitating Systems
In this section will be reported the characteristic equations for a two-phase
system in which cavitation occurs. In particular will be highlighted the var-
ious source terms that has to be added to the transport equations described
in section 3.

4.1 Continuity Equation
For which concerns the continuity equation,it is exactly equation (2.10):

∂ρϕαϕ
∂t

+∇ · (ρϕ ~̄Uϕαϕ) = Γϕ (2.37)

Where the term Γϕ represents the mass souce term per unit time of phase ϕ.

4.2 Momentum Equation
The mass source term highlighted in section 4.1 has to be added to the
formulation of the momentum equation in order to take into account the
phase exchange:

∂(αϕρϕ ~̄Uϕ)
∂t

+∇ · (αϕρϕ ~̄Uϕ ~̄Uϕ) +∇ · (αϕR̄eff
ϕ ) =− αϕ∇p̄+ αϕρϕ~g

+ M̄ϕ + Γϕ ~̄Uϕ
(2.38)
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4.3 Energy Equation
The energy equation source term is a little bit more complicated from a com-
putational point of view than the single phase solution [16, 17], since it has
to take into account the latent heat of evaporation/condensation of the cav-
itating fluid. The actual analytical formulation doesn’t change significantly
with rispect to (2.25):

∂(αϕρϕeϕ)
∂t

+∇ · (αϕρϕeϕ ~̄Uϕ) +
∂
(
αϕρϕKϕ

)
∂t

+∇ ·
(
αϕρϕKϕ

~̄Uϕ
)

=

−∇ ·
[
αϕ
(
qϕ + qtϕ

)]
+∇ ·

(
αϕTϕ

~̄Uϕ
)

+ αϕρϕ · ~̄Uϕ + Sϕ + LϕΓϕ
(2.39)

where, as said before, Lϕ represents the latent heat of evaportation/conden-
sation.

5 Interfacial Momentum Transfer Modelling
As was introduced before in the chapter (section 3.2) it is important to de-
scribe the various interface momentum transfer terms. Before introducing all
this different contributions it is also worth to highlight the substantial math-
ematical and physical differences between segregated and dispersed flows.
For a purpose of a consistent and general closure, the use of a scale similarity
hypothesis is used, analogously to what is done in LES modeling for single-
phase flows:

The smallest resolved scales of a two-phase flow are assumed to exhibit
similar characteristics as the largest non resolved ones.

Following this hypothesis, it is reasonable and advantageous to consider
dispersed flows within an interfacial scale averaging closure framework and
segregated flows within an interfacial resolving closure framework [19].

In this section the two diverse framework will be described and the de-
riving inter-phase change terms will be listed. For a thorough analysis and
derivation of the characteristic transport equation, the reader is suggested to
refer to the work of Marschall [19]. Starting from the momentum averaged
transport equation as derived from Marschall (see Eq. (2.38)) the source
term will be described for both dispersed and segregated flows as the sum-
mation of two components namely the net force contribution from interfacial
averaged pressure in case there is a gradient in the volumetric phase fraction
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and the contribution due to shear stress and unbalanced interfacial pressure.

M̄ϕ = M̄σ,ϕ + M̄h,ϕ (2.40)

The first source term takes into account phase slip and surface tension ef-
fects,while the second term for the dispersed two-fluid system represents the
sum of fluid dynamic forces exerted to a DPE and for the segregated flow
type it just models the interfacial force density due to unbalanced pressures
and viscous stresses, which manifest itself in a dissipative drag due to inter-
facial friction in the presence of phase slip.

5.1 Dispersed Flows
We will now focus on the dispersed Two-fluid model and a brief description
of both source terms will be presented. Closure models for dispersed flows
are well-established and widely used. Modelling is commonly accomplished
employing two-fluid model frameworks, that are based on the concept of in-
terpenetrating continua: The actual interface morphology and motion is not
explicitly resolved, i.e., the averaging volume is chosen much larger than the
characteristic length scale of the dispersed phase (e.g., the equivalent diam-
eter of the (fluid) particle). As a consequence, all interactions between the
phases have to be modelled appropriately within the averaging framework as
is graphically described in figure 2.6. For which concerns the surface tension

Figure 2.6: Graphical representation of interfacial scale averaging closure
framework for dispersed two-fluid systems

term since the size of the averaging volume has been chosen significantly
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larger than the characteristic length scale of the dispersed phase (e.g., the
equivalent diameter of the fluid particles) it is justified to neglect fluid par-
ticles that intersect the control volume’s surface, stating that there is no net
force that has to be explicitly taken into account.

On the other hand the main contributions to inter-phase momentum
transfer are due to the drag and lift force between the two phases, virtual
mass forces, wall lubrication forces and turbulent dispersion (derived from
the averaging process). As it is possible to imagine, there are several ways to
take into account for interfacial momentum transfer [14,15,38] but, as stated
before this work will focus on the formulation implemented in OpenFOAM
and in particular on the formulation of Gosman et al. [39].
In any case it is interesting to write the inter-phase momentum transfer term
in a general form and then, highlight singularly each characteristic constant
through the diverse models available in literature. It reads:

M̄1 = Ad
~̄Ur Drag

+Avm
(
D2

~̄U2
Dt
− D1

~̄U1
Dt

)
Virtual Mass

+Al2 ~̄Ur × (∇× ~̄U2)
+Al1 ~̄Ur × (∇× ~̄U1)

Lift

+Aα∇α Turbulent Dispersion
+Mwl

1 Wall Lubrication

(2.41)

Neglecting the wall lubrication for a first analysis, the Ai coefficients are mod-
elled differently in literature [14, 15, 38], following in table 2.2 are presented
the coefficients derived in [39] by Gosman.

Coefficient Ad Al1 Al2 Avm Aα
Gosman
Model α 3

4
ρ2
d1
Cd| ~̄Ur| 0 α1Clρ2 α1Cvmρ2

3
4Cd

ρ2
d
νt

σα
| ~̄Ur|

Table 2.2: Multiplier terms for Gosman et al. [39]

In the following paragraphs a detailed formulation of the most important
interface momentum transfer coefficients models will be carried on, and their
schematic representation is presented in figure (2.7).

5.2 Lift Force
For multiphase flows, it is recommended to include the effect of lift forces
on the dispersed phase particles, droplets, or bubbles. These lift forces act
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Figure 2.7: Graphical representation of most important momentum transfer
phenomena.

on a particle mainly due to velocity gradients in the continuous phase flow
field as can be seen in figure (2.8). The lift force will be more significant for
larger particles, but the model assumes that the particle diameter is much
smaller than the inter particle spacing. Thus, the inclusion of lift forces is
not appropriate for closely packed particles or for very small ones [20].

Figure 2.8: Lift force generated on a bubble due to the linear shear flow of
the fluid around it.
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5.2.1 The Lift Force Formulation

the lift force acting on the dispersed phase d in the continuous phase c can
be calculated as:

~Flift = −Clρcαd(~vc − ~vd)× (∇× ~vc) (2.42)

Where:

Cl= Lift coefficient that has to be modelled (sec 1);

ρc= Continuous phase density;

αd= Dispersed phase volume fraction;

~vc= Continuous phase velocity;

~vd= Dispersed phase velocity.

This factor will be added on the right-hand side of the momentum equation
for each phase, remembering that ~Flift,c = −~Flift,d as stated before in section
3.2.

In most cases, the lift force is insignificant compared to the drag force, so
there is no reason to include this extra term. If the lift force is significant (for
example, if the phases separate quickly), it may be appropriate to include
this term. In This study the Tomiyama model was considered [40] and the
reasons of this choice will be highlighted in the following paragraph. An
overview of other lift models is presented in appendix B.

5.2.1.1 Tomiyama Model Tomiyama derived through a series of ex-
periments on a water-glycerol mixture a lift coefficient for different Reynolds
(low Reynolds regime) and Eötvos regimes. It has been clarified through a
number of experiments that the lateral migration strongly depends on bub-
ble size and shape, i.e., small bubbles tend to migrate toward the pipe wall
which causes a wall-peak bubble distribution, whereas large bubbles tend
to migrate toward the pipe center which results in a core-peak bubble dis-
tribution. These experiments lead to the formulation of the lift coefficient
as [40]:

Cl =


min(0.288 · tanh(0.121Reb), f(Eod)) Eod < 4
f(Eod) 4 < Eod < 10
−0.27 Eod > 10

(2.43)

5. Interfacial Momentum Transfer Modelling



Chapter 2. Two-Fluid Model 34

Where Reb is the bubble Reynolds number, and Eod is the Eötvos number
based on Wellek horizontal bubble diameter dh:

Eod = (ρ2 − ρ1)gd2
h

σ
(2.44)

dh = DS(1 + 0.163Eo0.757)1/3 (2.45)

With this formulation the lift coefficient changes sign at DS > 5.8mm as
showed in figure (2.10) and (2.9)so that large bubbles moved towards the
centerline of the pipe as Tomiyama experimented.

Figure 2.9: Lift force on undistorted (a) and distorted (b) bubble in a shear
flow
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Figure 2.10: Lift coefficient regimes as described by Tomiyama [40]

5.3 Wall Lubrication Force
For liquid-gas bubbly flows using the Eulerian model it is recommended to
include the effect of wall lubrication forces on the dispersed phase (bubbles).
The wall lubrication force tends to push the bubbles away from walls. For
example, in a bubbly upward flow in a vertical pipe this force results in the
dispersed phase concentrating in a region near, but not immediately adjacent
to, the wall as in figure (2.11).

5.3.1 The Wall Lubrication Force Formulation

The Wall lubrication force acting on a dispersed phase d, in a continuous
phase c, has the following form:

~Fwl = Cwlρcαd|(~vc − ~vd)|||2~nw (2.46)

Where:

Cwl: Wall lubrication coefficient that has to be modeled(sec 2);

ρc: Continuous phase density;

αd: Dispersed phase volume fraction;

|(~vc − ~vd)|||: Phase relative velocity component tangential to the wall
surface;
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~nw: Unitary vector pointing away from the wall.

Figure 2.11: Continuous phase lubrication layer between the wall and the
dispersed phase, i.e. the gaseous phase

Since this contribution is more influencing in cases with gas and/or liquid
wall adherence is present, the effect of wall lubrication will be neglected in
the simulations presented in chapter 4. If the reader is interested in wall
lubrication modelling it is suggested to refer to appendix B.

5.4 Drag Force
This force represents the resistance opposed to the bubble motion in the
fluid (or, more generally, the resistance of the relative motion between two
phases). The drag force clearly depends on the bubble’s size (i.e. a larger
bubble experiences a larger drag force) and on the relative velocity between
the two phases ~vr = ~v1 − ~v2.

5.4.1 Drag Formulation

For fluid-fluid flows, each dispersed phase is assumed to form droplets or
bubbles. This has an impact on how each of the fluids is assigned to a
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particular phase. For example, in flows where there are unequal amounts of
two fluids, the predominant fluid should be modelled as the continuous fluid,
since the sparser fluid is more likely to form droplets or bubbles. The Drag
coefficient for these types of mixtures can be written in the following general
form:

~Fdrag = −3
4
Cd
Ds

ρcαd|~vr|~vr (2.47)

Where:

Ds: is the mean Sauter diameter;

Cd: is the drag coefficient, described differently for the different models;

ρc: is the density of the continuous phase;

αd: is the void fraction of the dispersed phase;

5.4.2 Drag Models

The drag coefficient is usually deduced from experiments and many models
were developed in order to fit different experimental data-set. Since the
derivation of the model is strictly correlated to the data-set used to derive
it, the constant that is calculated from it results really case-dependent. This
leads to a vast selection of models. It is crucial to select the right model
when the case results highly drag-dependent because, otherwise the solution
could result distorted. Following is presented the most used drag model
for dispersed flows, namely the Schiller Neumann model [41], as it will be
described in chapter 4 the liquid phase needs to be accounted as locally
dispersed and hence a drag model needs to be defined for it. The other
important drag model is, as implemented in OpenFOAM, the saturated that
will be described thoroughly at the end of this chapter. If the reader is
interested to deepen the topic can refer to appendix B, where the other drag
models implemented in OpenFOAM are described.

5.4.2.1 Schiller and Neumann Model It is the most general method,
and is used for all fluid-fluid pairs of phases. For this model the drag function
is [41]:

Cd = 24
Reb

(1 + 0.15Re0.687
b ) (2.48)

Where the bubble Reynolds number is defined as Reb = |~v1−~v2|DS
νb

. This
formulation of the drag coefficient is valid only for solid spherical particles
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with Reb < 1000. For Reb > 1000 the drag coefficient is nearly constant and
equal to 0.44, therefore the following model is implemented:

Cd = max

(
24
Reb

(1 + 0.15Re0.687
b ), 0.44

)
(2.49)

5.5 Turbulent Dispersion Force
For multiphase turbulent flows using the Eulerian model, it is possible to
include the effects of turbulent dispersion forces which account for the in-
terphase turbulent momentum transfer. These forces acts as a turbulent
diffusion in dispersed flows. This terms, hence accounts for the turbulent
fluctuations of liquid velocity and the effect that has on the gas bubbles.
The characterizing feature of this force is the fact that it is proportional
to the void-fraction gradient and therefore this could theoretically generate
unstable results [15].

5.5.1 Turbulent Dispersion Force Formulation

The turbulent dispersion force arises from averaging the interphase drag
term. For a dispersed phase (d) and a continuous phase (c) the turbulent
drag is modelled as:

Kdc(~̃vd − ~̃vc) = Kdc(~vd − ~vc)−Kdc~vdr (2.50)

From this averaging process two terms are obtained, the first right-hand
side term is the mean momentum exchange between the two phases (see
section 5.4) and the second term is the turbulent dispersion force, that can
be expressed as:

~Ftd,c = −~Ftd,d = −Kdc~vr (2.51)
Where

~vr: is the drift velocity and accounts for the dispersion of secondary
phases due to transport by turbulent fluid motion;

For an overview on the available models please refer to appendix B, for what
concerns the simulations of chapter 4 no turbulent dispersion was considered
since the benchmark simulation is laminar.

5.6 Virtual Mass Force
For multiphase flows, it is possible to include the virtual mass effect that
occurs when a secondary phase accelerates relatively to the primary phase.
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The inertia of the primary-phase mass encountered by the accelerating parti-
cles (or droplets or bubbles) exerts a virtual mass force on the particles. The
virtual mass effect is significant when the dispersed phase density is much
smaller than the continuous phase density.

5.6.1 Virtual Mass Force Formulation

The virtual mass force is defined as:

~Fvm = −Cvmαpρq
(
Dq

~Uc
Dt

− Dp
~Ud

Dt

)
(2.52)

Where:
Cvm: is the virtual mass coefficient (usually set at 0.5);
Di(φ)
Dt

= ∂(φ)
∂t

+ ~Uϕ · ∇φ: phase material time derivative.
The only other model implemented in OpenFOAM is the one derived by
Lamb [42], and it is based on the Interfacial area. The formulation is the
following:

Cvm = (1− E)1/2 − E · acos(E)
E · acos(E)− E · (1− E)1/2 (2.53)

Where E represent the aspect ratio that will be described in section 5.8.
These models highlighted so far are the actual interfacial momentum ex-
change models. It is also interesting to pay attention to other two quantities
to model as well: bubble diameter (also referred to as mean Sauter diameter)
and the aspect ratio (an index to define how deformed is the bubble E = Dh

Dw
).

These two quantities has to be derived because are needed by most of the
models mentioned in this section.

5.7 Bubble Diameter Modelling
In fluid dynamics the Sauter mean diameter is defined as the diameter of a
sphere that has the same volume to surface ratio as the particles of interest.
Three different models for the SMD will be listed in this section.

5.7.1 Constant SMD

The simplest way to model the dispersed phase particle diameter is through
this model. A constant value set by the user is choosen for the diameter, this
value should not be set arbitrarily but, instead should derive from tested
correlations or experiments and be consistent with the assumptions made by
the user.
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5.7.2 Isothermal SMD

As it is possible to infer the diameter of the "mean" bubble is estimated
through an isothermal relationship. The model is designed so that inputting
a reference diameter (d0) and a reference pressure (p0) it is possible to derive
the value of the SMD as function of the changing pressure:

SMD = d0

(
p0

p

)1/3

(2.54)

Even though it provides a more accurate evaluation of the diameter of the
bubble, since it adds the dependance on the system pressure, this model still
highly relies on the initial assumptions and hence on the reference values for
the diameter.

5.7.3 Interfacial Area Concentration Transport Equation

The interfacial area concentration (a) corresponds to the area of the dispersed
phase bubbles per unit volume and for spherical bubbles is:

a = 6αϕ
Ds

(2.55)

where Ds is the Sauter mean diameter. The transport equation of a is used
in order to determine the mean sauter diameter, and is formulated as derived
in [21,43] by Hibiki and Ishii:

∂(a)
∂t

+∇(a~̄Uϕ) = 2
3
a

αϕ

(
∂αϕ
∂t

+∇ · (αϕ ~̄Uϕ)
)

+ ΦWEC + ΦRC + ΦTB (2.56)

The right hand side accounts respectively for the contribution of phase change
and expansion due to pressure-density change, the wake entrainment coales-
cence source/sink term, the random coalescence source/sink term and the
turbulent breakup source/sink term.

5.7.3.1 Wake Entrainment Coalescence This term models the coa-
lescence due to the acceleration of the following bubble in the wake of the
preceding bubble (fig 2.12) and can be written as:

ΦWEC = 12 ·ΨCweC1/3
D | ~̄Ur|k (2.57)

where CD is the drag coefficient of the bubble, Ψ is a constant defined as
Ψ = 1

36π and k is the surface curvature, from which can be computed the
interfacial area concentration (a = α · k). Finally Cwe is the model constant
defined for different cases in table (2.3).
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Figure 2.12: Scheme of Wake Coalescence phenomenon.

5.7.3.2 Random Coalescence This term models the coalescence through
random collisions driven by turbulent eddies (fig 2.13) and can be written as:

ΦRC = 12 · ΨaCrc| ~̄Ur|
α

1/3
max

(
α

1/3
max − α1/3

)
1− exp

(
− C α1/3

maxα
1/3

α
1/3
max − α1/3

) (2.58)

where Crc is the characteristic constant of the model, tabulated in tab (2.3)
as well as C and αmax.

Figure 2.13: Scheme of Turbulent Eddy Coalescence phenomenon

5.7.3.3 Turbulent Breakup This term models the breakup due to the
impact of turbulent eddies (fig 2.14) and can be written as:

ΦTB = 2 · Cti| ~̄Ur|
√

1− Wecr
We

exp

(
− Wecr

We

)
if: We > Wecr (2.59)

As said in the previous paragraphs the critical Weber number (Wecr) and Cti
are tabulated in tab (2.3), whilst the bubble Weber number can be calculated
as follows:

We = ρv2l

σ
(2.60)

where:
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Mechanisms Round Pipes
vertical upward

Round Pipes
vertical co-current downward

Confined Test Section
vertical upward

Turbulent Breakup
(Source)

0.085
Wecr = 6.0

0.034
Wecr = 6.0

0.026
Wecr = 8.0

Random Coalescence
(Sink)

0.004
C = 3;αmax = 0.75

0.004
C = 3;αmax = 0.75

0.003
C = 3;αmax = 0.75

Wake Entrainment Coalescence
(Sink) 0.002 0.002 0.042

Table 2.3: Summary of coefficients for source terms in interfacial area trans-
port equation according to Ishii and Hibiki [43]

ρ: density of the phase considered;

v: phase velocity;

l: phase’s characteristic length, usually bubble diameter (SMD);

σ: surface tension.

Figure 2.14: Scheme of Turbulent Breakup phenomenon

It can be tough as a measure of the relative importance of the fluid’s inertia
compared to its surface tension. It is useful in analysing multiphase flows
with strongly curved surfaces. It is important to highlight that in the first
term of the r.h.s is also accounted the source/sink term due to phase change.

5.8 Aspect Ratio Modelling
From a geometrical point of view the aspect ratio of a shape is the ratio of its
sizes in different dimensions. In two-fluid modelling the aspect ratio is used
to have informations about the shape of the bubble of the dispersed phase,
in order to model more correctly the forces exchanged between phases. in fig
2.15 it is possible to see the difference between a spherical bubble (unitary
aspect ratio) and an elliptical bubble (oriented horizontally). Several models
are available in literature as well as experimental evidences. In this section
some of those are explained.
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Figure 2.15: Aspect ratio for a spherical bubble (a) and for an elliptical
bubble (b)

5.8.1 Constant Aspect Ratio

It is the simplest model with which is possible to deal with aspect ratio, it
consist in a user defined value for the aspect ratio. Even tough it represents a
strong simplification it is suggested for cases in which the shape of the bubble
does not influence the interfacial momentum transfer and the bubbles can be
considered spherical, i.e. E = 1.

5.8.2 Vakhrushev and Efremov Model

Vakhrushev and Efremov [44] derived the following formulation for the aspect
ratio of a bubble of dispersed phase:

E =



1 Ta < 1[
0.81 + 0.206 · tanh

[
1.6

−2 · log10
(
max(Ta, 1)

)]] 1 ≤ Ta < 39.8

0.24 39.8 ≤ Ta

(2.61)

Where Ta represents the Takahashi number, defined as:

Ta = Re ·Mo0.23 (2.62)

It is important to underline that this model is limited to low values of the
Morton number in the order of Mo ≤ 10−3.

5.8.3 Wellek Model

Wellek [45] derived this formulation for the aspect ratio of a bubble of dis-
persed phase as a function of Eötvös number, Eo:

E = 1
1 + 0.163 · Eo0.757 (2.63)

Eo = ∆ρgl2
σ

(2.64)
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5.8.4 Tomiyama Model

Tomiyama [46] derived this formulation for the aspect ratio of a bubble of
dispersed phase as a function of the Sauter mean diameter of the bubble:

E = max

(
1− 0.35 · yWall

Ds

, 0.65
)

(2.65)
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5.9 Segregated Flows
A closure for the second two-phase flow type under consideration (segre-
gated flow) needs to be accomplished consistently, meaning also in the same
manner as done for the dispersed two-phase flows. As a pivotal aspect of
closure, a conceptual framework has to be formulated that is compatible and
in the same spirit as the concept of interpenetrating continua for dispersed
flow types. Such a conceptual framework is entitled as the concept of par-
tially penetrating continua in the interfacial transition region: The interfacial
morphology is partially resolved, i.e., the averaging volume is chosen suffi-
ciently in its size to capture the main (mean) dynamics of the interfacial flow,
whereas non-resolved interfacial morphologies and phase interactions again
must be accounted for in the underlying averaging framework by appropri-
ate (physical meaningful) closure models. As a consequence, the interface is
represented as an interfacial transition region of certain characteristic width,
which is determined by the averaging length scale as described in the fol-
lowing picture 2.16 [19]. As did before for the dispersed flow type, recalling

Figure 2.16: Graphical representation of interfacial resolving closure frame-
work for segregated two-fluid systems

equation (2.40) in this paragraph the main source term for segregated flows
are presented, for the complete derivation of this terms please refer to [19].

Since closure relations obviously are related to an interfacial force density
due to surface tension, that is assumed to be dominated by non-resolved (mi-
croscopic/local) curvature, i.e., the inner morphological structure of the inter-
facial transition region, it is advisable to revisit the underlying assumption of
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an isotropic interfacial topology: According to equation (2.66) the interfacial
averaged curvature can be decomposed into a resolved mesoscopic contribu-
tion and a dominant non-resolved microscopic contribution dΣ

dαϕ
, where the

interfacial area density Σ is only allowed to vary across the interfacial tran-
sition region, that is in the direction of ︷︸︸︷nI , perpendicular to contours of
constant αϕ. ︷︸︸︷

KI = ∇
2αϕ
|∇αϕ|

+ dΣ
dαϕ

(2.66)

In the context of interfacial surface tension modelling it is proposed that:

M̄ϕ,σ = αϕ · 4αϕαφM̄σ

M̄φ,σ = αφ · 4αφαϕM̄σ

(2.67)

where 4αϕαφ represents a regularization term. This is clearly stating that the
essential contribution of the interfacial force density due to surface tension
to the momentum equation of a particular phase is to be localized in a part
of the interfacial transition region that does feature the inner curvature: on
the adjacent sites of the interface (from the respective "phases view point").
It is just left to define M̄σ:

M̄σ = σ
︷︸︸︷
KI

︷︸︸︷
nI Σ + σ

dΣ
dαϕ
∇αϕ

≈
(
∇ ·

(
∇αϕ
|∇αϕ|

)
+ 4Σ0(1− 2αϕ)

)
∇αϕ

(2.68)

For what concerns the interfacial drag term it is modelled as follows:

M̄h,ϕ = λ(ReI , πµ) |∇αϕ|
δ

µ̄ϕµ̄φ

µ̄ϕ + µ̄φ

(
Ūϕ − Ūφ

)
(2.69)

Where µ̄ is the field average viscosity, |∇αϕ| is used to model Σ, i.e. the
interfacial area density that varies across the interfacial transition region of
width δ3. λ(ReI , πµ) is a proportionality factor representing the dimension-
less friction coefficient which holds tangential inertia and tangential shear
contributions:

λ(ReI , πµ) = mReI + nπµ (2.70)
the parameters m and n have to be appropriately chosen (0.1 ≤ m ≤ 1.5 and
n ≈ 8 ). From this, it is evident that the dissipative drag is a function of the

3has to be modelled, see [19]. In OpenFOAM is defined as mesh.V
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relative phase velocity, that is the averaged slip velocity between the phases.
Note that the interfacial Reynolds number has been defined as:

ReI ≡
ρδ|Ūϕ − Ūφ|

αϕαφµ̄ϕµ̄φ/(µ̄ϕ + µ̄φ) (2.71)

Moreover, for the dimensionless group πµ (viscous shear contribution), it is
suggested:

πµ ≡
αϕαφµ̄

ϕµ̄φ/(αφµ̄ϕ + αϕµ̄
φ)

µ̄ϕµ̄φ/(µ̄ϕ + µ̄φ) (2.72)
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Implementation in OpenFOAM

In this Chapter, the OpenFOAM implementation of the two-fluid model is
described. The discretization of the governing equations in particular of the
MULES::explictiSolve and the PIMPLE p-v coupling described in pEqn.H are
listed along with the discretization of momentum, energy and species trans-
port. This last transport equation will be highlighted with the barotropic
cavitation term as the substantial difference between the two OpenFOAM
solvers considered in this work, namely twoPhaseEulerFoam and reactingT-
woPhaseEulerFoam.

1 twoPhaseEulerFoam
Solver for a system of two compressible fluid phases with one phase dispersed,
e.g. gas bubbles in a liquid including heat-transfer [47].

twoPhaseEulerFoam handles the requirement to describe the properties of
the individual phases as well as the interaction terms between the phases by
two distinct libraries phaseModel and twoPhaseSystem. Fig. 3.1 shows the
flow chart of the solver, and hence the algorithm followed by twoPhaseEuler-
Foam to solve the fluid-dynamic problem.
The procedure starts with updating the timestep according to the Courant
number limit and then solves the coupled set of volume fraction equations
with interface sharpening for selected phase pairs. The interface momentum
transfer coefficients are computed and an equation for the phase velocities
is constructed and solved for preliminary values. The PIMPLE (PISO +
SIMPLE) algorithm is used to solve pressure-velocity coupling and will be
briefly described following in the chapter.

49
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Figure 3.1: Flow chart of twoPhaseEulerFoam solver as implemented in
OpenFOAM-dev

2 reactingTwoPhaseEulerFoam
Solver for a system of two compressible fluid phases with a common pres-
sure, but otherwise separate properties. The type of phase model is run
time selectable and can optionally represent multiple species and in-phase
reactions. The phase system is also run time selectable and can optionally
represent different types of momentum, heat and mass transfer [47].

The solution procedure is similar to the one seen in section 1 but this
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solver features two other transport equations to take into account the mass-
fraction transport inside each phase. This diversity can be noted in Fig. 3.2
where an additional step is added before the solution of the PIMPLE loop
in order to take into account the species transport. As well as the transport
equations also a term to take into account the species exchange between
phases is needed, namely the interfaceComposition library. This, as it will
be explained later in this chapter, allowed to identify a framework able to fit
a barotropic cavitation model.

Figure 3.2: Flow chart of reactingTwoPhaseEulerFoam solver as implemented
in OpenFOAM-dev
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2.1 The Species Transport Equation
As already said in the introduction of this section, the species transport equa-
tions represent one of the main diversities between the two solvers considered
in this work. It is, then, important to understand how the solver interprets
the mass transfer between phases.

Listing 3.1: YEqns.H file

{
autoPtr < phaseSystem :: massTransferTable >
massTransferPtr (fluid. massTransfer ());

phaseSystem :: massTransferTable &
massTransfer ( massTransferPtr ());

PtrList < volScalarField >& Y1 = phase1 .Y();
PtrList < volScalarField >& Y2 = phase2 .Y();

forAll (Y1 , i)
{

tmp < fvScalarMatrix > Y1iEqn ( phase1 .YiEqn(Y1[i]));

if ( Y1iEqn .valid ())
{

Y1iEqn =
(

Y1iEqn
==
* massTransfer [Y1[i]. name ()]
+ fvOptions (alpha1 , rho1 , Y1[i])

);
...

The file links to an auto-pointer where the mass transfer rates table are
calculated for all species. The pointer is defined in:

\$FOAM_APP/solvers/multiphase/reactingEulerFoam/phaseSystems/
PhaseSystems/InterfaceCompositionPhaseChanghePhaseSystem/
InterfaceCompositionPhaseChanghePhaseSystem.C

This file defines the amount of mass transfer between species/phases. The
term referring to the mass transfer rate is given by dmdt. In order to calculate
this term a mass transfer model is needed. The default ones implemented
in OpenFOAM are the Spherical and Frössling models [48]. Once the mass
transfer term is calculated the script substitutes it inside the mass transfer
term of the specie equation in the following form:
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Y1iEqn == *massTransfer[Y1[i].name()]+fvOptions(alpha1, rho1, Y1[i])

where the left hand side is the specie transport equation created upon the
phase model selected. In our case is the multiComponentPhaseModel, this
means that per each specie a Y equation is created as defined in:

\$FOAM_APP/solversmultiphase/reactingEulerFoam/phaseSystems/
phaseModel/MultiComponentPhaseModel/MultiComponentPhaseModel.C

As it is possible to read in the following code:

Listing 3.2: Species transport equation as defined in the "BasePhaseModel"

template <class BasePhaseModel >
Foam ::tmp <Foam :: fvScalarMatrix >
Foam :: MultiComponentPhaseModel < BasePhaseModel >:: YiEqn
(
...

return
(

fvm :: ddt(alpha , rho , Yi)
+ fvm :: div( alphaRhoPhi , Yi , div( + alphaRhoPhi .name ()

+ ,Yi))
- fvm ::Sp(this -> continuityError (), Yi)
- fvm :: laplacian
(

fvc :: interpolate (alpha)
*fvc :: interpolate (this -> turbulence ().nut ()*rho/Sc_

),
Yi

)
==
alpha*this ->R(Yi)

+ fvc :: ddt( residualAlpha_ *rho , Yi)
- fvm :: ddt( residualAlpha_ *rho , Yi)

);

it is then straightforward the derivation of the specie equation:
∂

∂t
(αρYi) +∇(αρ~UYi)−∇ ·

[
α
µt
Sct
∇Yi

]
= R (3.1)

With:
µt: Turbulent viscosity;
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Sct: Turbulent Schmidt number;

R: Source term due to reaction;

The mass transfer term has to be added to this formulation of the specie
equation in order to have the actual equation that the solver is using, that
will be:

∂

∂t
(αρYi) +∇(αρ~UYi)−∇ ·

[
α
µt
Sct
∇Yi

]
= R +massTransfer[Yi] (3.2)

As we will see in the following section the inter-phase mass transfer in the
species equation, since it is a source/sink term, is considered as part of the
massTransfer term of the species equation.

2.2 The Interface Composition Model
This section will focus on how the interface composition model is used to
calculate species composition at the interface in order to take, correctly, into
account for species mass transfer at the interface. For starters an extract of
the setup file constant/phaseProperties is presented to understand how
the interfaceComposition call is made:

Listing 3.3: Template of an interfaceComposition call in phaseProperties

interfaceComposition
(

(gas in liquid )
{

type Saturated ;
species ( H2O );
Le 1.0;
saturationPressure
{

type Antoine ;
A XXX;
B XXX;
C XXX;

}
}

);

The interface composition model, as defined in InterfaceComposition-
Model.C computes various quantities that are then used by interface-
CompositionPhaseChangePhaseSystem.C to compute dm

dt
and popu-

late the massTransferTable.
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First of all it is interesting to focus on the type of interface composition
model, hence on the Saturated.C file. It calculates two variables, namely:

Yf: The interface species fraction;

YfPrime: The interface species fraction derivative with respect to
temperature.

The program firstly identifies whether the species belong to saturated or not,
as specified in the listing above ("species ( H2O )"), in this case the specie
will be "H2O".

Yf =


MWsat

p·MWtot
· psat(Tf ) if : ”specie = saturated”

Yi·
(

1− MWsat
p·MWtot

·psat(Tf )

)
1−Ysat otherwise

(3.3)

Where Yi represents the mass fraction of the "non saturated specie" while
Ysat represents the mass fraction of the "saturated specie. As it is possible to
infer from the definition of Yf this is the interface composition model that
describes the phase change in the "saturated" specie.

yi · p = pi = xi · psat (3.4)

The term MW
p·MWtot

in equation 3.3 represents the constant of proportionality
between partial pressure and mass, hence Yf represents the mass fraction of
evaporated specie (the interface specie mass fraction). From equation (3.4)
it is easily derivable the first expression of equation 3.3, since:

Yf = yi
MWi

MWtot

= psati(T )
p

MWi

MWtot

(3.5)

The second part of equation 3.3 represents, instead, the interface mass frac-
tion of the other species.
The interface composition, hence, models the sudden jump in the value of
gas mass fraction at interface due to gas solubility in liquid. This is not
the only component of mass transfer between phases, but two other settings
of phaseProperties dictionary had to be defined in order to model the mass
transfer coefficient through either Frossling or Spherical [48]. For each phase
to be transported two mass transfer coefficient are defined, in order to dis-
tinguish whether the liquid or vapour are a continuous or dispersed phase.
In other words, if we focus on the mass transfer of the gaseous phase, two
different mas transfer coefficient will be defined: one to describe the mass
transfer of gas as a diluted phase inside the liquid and another one to model
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a continuous gas with liquid as diluted phase. The same is done for the other
phase, in this case the liquid one.
Due to the presence of discontinuities in concentration at phase equilibrium,
it is, in general, not possible to model multicomponent mass transfer using a
single overall mass transfer coefficient. Instead, it is necessary to consider a
generalization of the heat transfer two resistances model. For instance, con-
sider one specie (i) dissolved in two immiscible phases A and B. The basic
assumption of this model is that there is no resistance to mass transfer at
the interface, and hence the equilibrium conditions prevail at the interface
(namely Yf ). The specie mass transfer is modelled through the coefficients
KA and KB defined on either side of the phase interface, these are defined
so that driving forces are defined in terms of mass fraction differences. Thus
the mass flux of specie i to phase A from the interface is:

ṁiA = ρiKA(YfA − YiA) (3.6)
And the mass flux of i to phase B from the interface is:

ṁiB = ρiKB(YfB − YiB) (3.7)
A graphical representation of this model is presented in figure 3.3, in which
is possible to highlight the necessity of two mass transfer coefficients and also
highlights the discontinuity at interface due to the phase change.

Figure 3.3: Interface species transfer with phase change

This is implemented in OpenFOAM through interfaceComposition-
PhaseChangePhaseSystem.C code.
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2.2.1 Saturation pressure modelling

Several saturation models are implemented, and each of them outputs the
same variables (Psat, P ′sat, ln(Psat) and Tsat). They differ in the way these
properties are calculated, in detail we have:

• Antoine [49], it uses Antoine’s equation to derive the saturation pres-
sure and needs the calibration of three coefficients (A, B, C):

log(Psat) = A+ B

C − T ; (3.8)

• Antoine Extended, it uses a modified Antoine’s equation to derive the
saturation pressure and needs the calibration of six coefficients (A, B,
C, D, E, F):

log(Psat) = A+ B

C − T +Dlog(T ) + ET F ; (3.9)

• ArdenBuck [50], It is based on the vapour pressure of moist air;

• constant, It is based on constant saturation conditions;

• Function1, It express saturation vapour temperature in terms of pres-
sure of saturation, the inverse function is not implemented;

• Polynomial, It describes saturation temperature as a polynomial func-
tion of saturation pressure

Tsat =
∑

CiP i
sat (3.10)

As already stated, the most suitable model consist in the Antoine, this model
in fact describes easily the saturation pressure as a function of temperature
and also is a reliable and highly validated model.

The focus of this analysis is then moved to the file InterfaceComposition-
Model.C, in which are defined the following variables:

dY = Yf − Yi (3.11)

That represents the mass difference between the fluid interface and the field.

D = αH
ρLe

(3.12)
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That defines the mass diffusivity as a function of thermal diffusivity (αH)
and Lewis number (Le).

L = Ha1 −Ha2 (3.13)
Also the latent heat of evaporation/condensation is defined as the difference
of the absolute enthalpy of the two phases. And finally the heat flux of
evaporation/condensation and its derivative are calculated:

ṁL = ρKDL · dY (3.14)
ṁ′L′ = ρKDL · Y ′f (3.15)

Finally, moving to the file interfaceCompositionPhaseChangePhaseSystem.C,
all the contributions from each interface composition model are summed
inside the massTransferTable. The most interesting variables calculated are
eqns1 and eqns2, representing respectively the generation/consumption of
specie i for both phase 1 and 2, as it is possible to see in figure 3.4.

Figure 3.4: Phase change of dispersed phase

These two arrays are populated following the criterion of "dispersed" and
"continuous" phase, or rather, since the script iterates over each interface
composition model and since each of those is defined as either "gas in liquid"
or "liquid in gas" through orderedPhasePair.C it is possible to identify
which specie is continuous and which is dispersed. In other words, each model
is defined for an ordered phase pair, eg. gas in liquid, this means that, as in
our case, the gas is the dispersed phase while the liquid is the continuous one.
This definition allows a correct allocation of the mass transferred through the
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phases, since the mass transfer table for each specie is defined as:

eqns[phase1] = ρ1KD · Yf − Sp(ρ1KDψ) (3.16)
eqns[phase2] = ρ2KD · dY (3.17)

Where "phase1" and "phase2" refer respectively to the dispersed and contin-
uous phase. For instance, if there is gas generation (according to the "Sat-
urated" model) a gas mass increase will be accounted through eqns[phase1]
while a liquid mass decrease will be determined through eqns[phase2], this
will not happen to a inert specie that, as it is possible to derive from equa-
tions 3.16 and 3.17 will be transported in the gas phase but will have a null
dY and , hence no liquid mass generation/destruction. In order to better
understand a graphical representation of this process is presented in figure
3.5.

Figure 3.5: OpenFOAM procedure to determine phase change and mass
transfer.

From this scheme it is also possible to infer that a model based on Antoine
equation is needed in order to describe cavitation and condensation. This for-
mulation of interfaceCompositionPhaseChangePhaseSystem.C generates also
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the variable dm/dt, that is used to calculate the source term of the phase
equation. This quantity is defined through equation (3.16) and expressed as
its two components the former explicit and the latter implicit:(

dm

dt

)
explicit

= (−1)kKD · Yf (3.18)(
dm

dt

)
implicit

= −(−1)kKDψ (3.19)

Where "k" is either 0 or 1 depending whether the mass is generated or de-
structed. The study of this interface composition model allowed the author
to identify a structure of the code able to welcome the cavitation model. It
is, hence easy to substitute theoretically the "Saturated" model with a simple
barotropic one using the Antoine’s equation to describe the saturation pres-
sure at different temperatures. This will allow the analytical description of
the source terms due to cavitation in the species equation. Later on in this
chapter will be highlighted that this source term will determine a change in
the phase fraction representing the sink/source term for the phase fraction
equation due to cavitation.

2.2.2 Thermo correction due to latent heat

interfaceCompositionPhaseChangePhaseSystem.C has also a section dedi-
cated to the temperature correction this loop solves for the interface tem-
peratures, Tf, and updates the interface composition models. The correction
is based on the fact that the rate of heat transfer to the interface must equal
the latent heat consumed at the interface, i.e.:

h1(T1 − Tf ) + h2(T2 − Tf ) = ṁL = Kρi · Li(Yfi − Yi) (3.20)

Where h1 and h2 are respectively the convective heat transfer coefficient of
phase 1 and phase 2. From equation (3.20) it is easily derivable the corrected
interface temperature, that will be used to derive the new cavitated/con-
densed mass fraction.
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3 PIMPLE Loop
After the introduction of the two solvers and the focus on the species mass
fraction transport equation it is time to detail the PIMPLE loop. Firstly
a brief introduction on what it represents for the solution algorithm is pre-
sented and then, in the following sections a description of the discretization
and solution process will be carried out for the most important equations,
namely the transport equations of the two-phase system described in chapter
2.

Most fluid dynamics solver applications in OpenFOAM use either the
pressure-implicit split-operator (PISO), the semi-implicit method for pressure-
linked equations (SIMPLE) algorithms, or a combined PIMPLE algorithm.
These algorithms are iterative procedures for coupling equations for momen-
tum and mass conservation, PISO and PIMPLE being used for transient
problems and SIMPLE for steady-state. Within in time, or solution, step,
both algorithms solve a pressure equation, to enforce mass conservation, with
an explicit correction to velocity to satisfy momentum conservation. They
optionally begin each step by solving the momentum equation, the so-called
momentum predictor. While all the algorithms solve the same governing
equations (albeit in different forms), the algorithms principally differ in how
they loop over the equations. The looping is controlled by input param-
eters that are listed below. They are set in a dictionary named after the
algorithm [47].

• nCorrectors:used by PISO, and PIMPLE, sets the number of times
the algorithm solves the pressure equation and momentum corrector in
each step; typically set to 2 or 3.

• nNonOrthogonalCorrectors:used by all algorithms, specifies repeated
solutions of the pressure equation, used to update the explicit non-
orthogonal correction of the Laplacian term ∇ · 1

A∇p; typically set to
0 (particularly for steady-state) or 1.

• nOuterCorrectors:used by PIMPLE, it enables looping over the entire
system of equations within on time step, representing the total number
of times the system is solved; must be ≥ 1 and is typically set to 1,
replicating the PISO algorithm.

• momentumPredictor :switch that controls solving of the momentum pre-
dictor; typically set to off for some flows, including low Reynolds num-
ber and multiphase.

3. PIMPLE Loop



Chapter 3. Implementation in OpenFOAM 62

4 The Alpha Equation
The phase fraction transport equation is the first equation called in the PIM-
PLE loop. It is technically solved by the MULES algorithm, but actually the
fields needed by it are created in the twoPhaseSystem.C file. This is why this
section will focus on how the fields are managed in OpenFOAM and only in
the following section the actual discretization of the alpha equation will be
analyzed. For simplicity the analysis will focus on reactingTwoPhaseEuler-
Fom, it will hence be described the reacting solver with the source mass term
derived from the species mass transport equation as part of both explicit and
implicit source term of the void fraction transport equation.

4.1 The Dilatation Rate Term
Actually the first step implemented in twoPhaseSystem.C is to define the
dilatation rate source term, it consists basically in the source term of alpha
equation due to compressibility, but in the reacting case it is also enriched
with the dm/dt term of "YEqns.H" as said before.

4.1.1 The Effect of Compressibility

It is now possible to identify the definition of the phase dilatation rate:

Listing 3.4: The phase dilatation rate in twoPhaseSystem.C

if ( phase1_ .divU ().valid () && phase2_ .divU ().valid ())
{
tdgdt =
(
alpha2 ()
* phase1_ .divU ()()()
- alpha1 ()
* phase2_ .divU ()()()
);
}

In order to find a definition for phase1.divU()()() the file pEqn.H is needed
to be analyzed.
Here the two phase dilatation rate are defined as function of the compressible
part of the pressure equation [see Appendix A for the computation of divU ]:
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Listing 3.5: Definition of divU in pEqn.H

// Set the phase dilatation rates
if ( pEqnComp1 .valid ())
{
phase1 .divU(- pEqnComp1 & p_rgh);
}
if ( pEqnComp2 .valid ())
{
phase2 .divU(- pEqnComp2 & p_rgh);
}

So, finally it is possible to derive the elementary component of dgdt:

Listing 3.6: Compressible part of the pressure equation for phase 1 in pEqn.H

{
pEqnComp1 =
(
phase1 . continuityError ()
- fvc ::Sp(fvc :: ddt( alpha1 ) + fvc :: div( alphaPhi1 ), rho1)
)/rho1
+ ( alpha1 *psi1/rho1)* correction (fvm :: ddt(p_rgh));
}

Now a complete analytical formulation of the phase dilatation rate will be
derived starting from the OpenFOAM formulation.

dg

dt
= α1divUα2 − α2divUα1 (3.21)

divUαϕ = −pEqCompαϕ (3.22)

pEqnCompαϕ = −
(
∂αϕ
∂t

+∇ · (αϕ ~̄Uϕ)
)

+ αϕψϕ
ρϕ

D(prgh)
Dt

(1−Ψ) (3.23)

Here Ψ, is an underelaxation factor introduced to obtain boundedness in the
solution. It will be kept in the formulation of the dg

dt
and erased only when

fully made explicit.
Now equations (3.23) and (3.22) can be substituted into (3.21) to lead:

dg

dt
= α1

[
∂α2

∂t
+∇ · (α2

~̄U2)− α2ψ2

ρ2

D(prgh)
Dt

(1−Ψ)
]
+

− α2

[
∂α1

∂t
+∇ · (α1

~̄U1)− α1ψ1

ρ1

D(prgh)
Dt

(1−Ψ)
] (3.24)

4. The Alpha Equation



Chapter 3. Implementation in OpenFOAM 64

(3.24) can be rearranged as:

α1

[
∂α2

∂t
+∇ · (α2

~̄U2)− α2ψ2

ρ2

D(prgh)
Dt

(1−Ψ)
]
+

− (1− α1)
[
∂α1

∂t
+∇ · (α1

~̄U1)− α1ψ1

ρ1

D(prgh)
Dt

(1−Ψ)
] (3.25)

This formulation can be expanded as follows:

α1
∂α1

∂t
+ α1∇ · (α2

~̄U2)− α1α2ψ2

ρ2

Dprgh
Dt

(1−Ψ)− ∂α1

∂t
+

−∇ · (α1
~̄U1) + α1α2ψ1

ρ1

Dprgh
Dt

(1−Ψ) + α1
∂α1

∂t
+ α1∇ · (α1

~̄U1)
(3.26)

Remembering that:

α1
∂α1

∂t
+ α1

∂α2

∂t
= 0 (3.27)

α1∇ · (α1
~̄U1) + α1∇ · (α2

~̄U2) = α1∇ · ( ~̄U) (3.28)

The rearranged equation becomes:

α1α2
Dprgh
Dt

(
ψ1

ρ1
(1−Ψ)−ψ2

ρ2
(1−Ψ)

)
−
(
∂α1

∂t
+∇·(α1

~̄U1)−α1∇·( ~̄U)
)

(3.29)

Then it is simplified through equations (2.22) and (2.19), to lead:

α1α2

(
ψ2

ρ2

Dprgh
Dt

(1−Ψ)− ψ1

ρ1

Dprgh
Dt

(1−Ψ)
)

︸ ︷︷ ︸
n+1

+

+ α1α2

(
1
ρ2

Dρ2

Dt
− 1
ρ1

Dρ1

Dt

)
︸ ︷︷ ︸

n

(3.30)

According to Weller [14] in the solver the pressure equation is constructed
using the corrected flux prediction (n+1), while the calculation of the total
derivatives of the densities in the compressibility terms are performed using
the fluxes evaluated at the previous iteration (i.e. before the flux prediction,
n).
It is now possible to focus on the bounding term, which can be correctly
written as:

α1α2

ψ2

ρ2

[
Dpnrgh
Dt

− Dpn−1
rgh

Dt

]
− ψ1

ρ1

[
Dpnrgh
Dt

− Dpn−1
rgh

Dt

] (3.31)
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As it is possible to see from (3.31) the bounding term approaches zero as
the solver approaches convergence. It is also important to highlight that this
term has no physical meaning and, hence, it will not be considered in the
definition of the dg

dt
. It is finally possible to derive the final formulation of dg

dt

as:
dg

dt
= α1α2

(
1
ρ2

Dρ2

Dt
− 1
ρ1

Dρ1

Dt

)
(3.32)

From equation (3.32) is possible to see that the dimensions of the phase
dilatation rate are consistent with the formulation of the mules explicit solver.
And also the dg

dt
represents the source term due to compressibility of equation

(2.22).

4.1.2 The Mass Transfer Term

Now the solver adds the terms due to the mass transfer, simply by considering
the source term in terms of volume generated/destructed through the mass
generated/destructed per unit time divided by its density, namely:

Listing 3.7: The compressibility contribution due to mass transfer to pres-
sure and alpha equation

if (fluid. transfersMass ())
{

if ( pEqnComp1 .valid ())
{

pEqnComp1 .ref () -= fluid.dmdt ()/rho1;
}
else
{

pEqnComp1 = fvm ::Su(-fluid.dmdt ()/rho1 , p_rgh);
}

if ( pEqnComp2 .valid ())
{

pEqnComp2 .ref () += fluid.dmdt ()/rho2;
}
else
{

pEqnComp2 = fvm ::Su(fluid.dmdt ()/rho2 , p_rgh);
}

}

This is the demonstration that the phase fraction and mass fraction transport
equations are linked, and that the change of phase of a specie would be
tracked in the void fraction equation as a source/sink term as we will see
briefly in the following paragraph.
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4.2 The Alpha Equation Source Terms
Following, in twoPhaseSystem.C the implicit and explicit source terms Sp
and Su are initialized and calculated:

Spn =


0 if n = 0
Spn−1 − ∂g

∂t
1
α2

if ∂g
∂t
> 0

Spn−1 + ∂g
∂t

1
α1

if ∂g
∂t
< 0

Sun =
α1div(φ) if n = 0
Sun−1 + ∂g

∂t
1
α2

if ∂g
∂t
> 0

It is important to remember the definition of the phase dilatation rate
(
dg
dt

)
as well as the definition of the fluxes that will be showed in the following
paragraph.

4.3 The Fluxes
In order to solve the phase transport equation, a combined flux is derived
to assure boundedness. Instead of writing the flux directly from the phase
velocity, provided directly by the solution of the phase intensive momentum
equation, the flux for phase ϕ is calculated as linear combination of the
absolute velocity and the relative velocity as seen in the previous chapter
(equations 2.16 and 2.17). This leads to the definition of two fluxes, one
relative to the absolute velocity and the other derived from the relative one.
So that the "alphaPhiϕ" field, namely the phase intensive flux needed by the
MULES algorithm to solve explicitly the void fraction transport equation is
calculated as follows:

αϕφϕ = αϕφ+ αϕ(1− αϕ)φr (3.33)

However, the solution is not that simple since the relative flux is not only
calculated as the difference between the fluxes derived from the two different
phases, but also includes a correction term. The formulation will hence be:

φr = D̄

A
∇α · Sf + (φ1 − φ2) (3.34)

Where D̄
A

=
[(

D
A

)
1

+
(
D
A

)
2

]
.

Now the first addend of equation (3.34) represents the correction term. The
reader is suggested to reference the work of Rousche [15] for the analytical
derivation of the correction term. Hereby a brief treatment of the problem is
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presented, remembering that the main difference between this work and the
one carried by Rousche is the compressibility of the phases.

From [15] it is possible to derive the momentum correction, as Rousche
mentioned in his work this term derives from a semi-discretised form of the
momentum equation:(

Aϕ
)
D

~̄Uϕ =
(
Aϕ
)
H
−∇p̄− Aα∇αϕ

αϕ
(3.35)

Where Aϕ denotes the system of linear algebraic equations arising from
the discretisation of the phase momentum equations without terms which
are proportional to the gradients ∇p̄ and ∇αϕ. Analogously at Rhie and
Chow [51] procedure, The gradient terms are not discretised at this stage.
Rearranging equation (3.35) we obtain the momentum correction equation:

~̄Uϕ =

(
Aϕ
)
H(

Aϕ
)
D

− ∇p̄(
Aϕ
)
D

− Aα∇αϕ
αϕ
(
Aϕ
)
D

(3.36)

Once the momentum correction equation (3.36) is derived, it is possible to
substitute it in equation (2.22):

∂α1

∂t
+∇ ·


(
A1
)
H(

A1
)
D

−∇ · ( 1(
A1
)
D

∇p̄
)
−∇ ·

 Aα(
A1
)
D

∇α1

 = 0 (3.37)

The problems arise from the last term, i.e. fourth term on the l.h.s., since it
is not discretised implicitly. A simple solution is to treat this term implicitly
as a diffusion term. However, this remedy suffers from some deficiencies
in the sense that the flux featuring in the second term is non-conservative
and, consequently, boundedness of the solution can not be guaranteed. This
situation can be overcome by starting from equation 2.14 instead of 2.11.
Furthermore, the discretization of the second and third term on the l.h.s.
of equation (3.37) can be avoided by correcting the phase velocities for the
contributions of the turbulent drag term which are now treated implicitly in
the diffusion term. The corrected phase velocity is:

~̄U∗ϕ = ~̄Uϕ + Aα(
Aϕ
)
D

∇αφ (3.38)

Substitution of this corrected velocity into equation 2.14, leads to:
∂α1

∂t
+∇ ·

(
~̄U1
)

+∇ ·
(
~̄U∗rα1(1− α1)

)
−∇ ·

[
Aα

(
α2(
A1
)
D

+ α1(
A2
)
D

)]
= 0

(3.39)
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With:
~̄U∗r = ~̄U∗1 − ~̄U∗2 (3.40)

The discretisation of equation (3.39) is:

αn1P − αn−1
1P

∆t VP +
∑
f

φαn1f(φ,S) +
∑
f

φ∗r1α
n
1f(φ∗

r1 ,S)
−
∑
f

ναfS · ∇fα
n
1 = 0 (3.41)

Where:

• The relative, corrected flux for phase 1 is

φ∗r1 = α2f(−φ∗
r1 ,S)φ

∗
r (3.42)

• The diffusion coefficient evaluated at the faces is

ναf = Aαf

α2f

(
1(
A1
)
D

)
f

+ α1f

(
1(
A2
)
D

)
f

 (3.43)

• The corrected relative flux is calculated by adding the contribution of
the turbulent drag term from the volumetric phase fluxes

φ∗r = φr + S
ναf

α1fα2f
∇fα1 (3.44)

It is also important to notice that in the second term, α1 is bounded at zero
as well as one, since the volumetric mixture flux φ satisfies the mixture con-
tinuity equation exactly. In the third term, bounding of α1 is achieved by
using φ∗r in the convection scheme to interpolate α1 to the face and −φ∗r in the
face interpolation of α2 . This treatment is quite diffusive if upwind discreti-
sation is used. However, using an higher order differencing scheme instead,
reduces the numerical diffusion, but might compromise the boundedness of
the solution.

5 MULES
The Multidimensional Universal Limiter with Explicit Solution, namely the
MULES is an iterative algorithm to solve hyperbolic equations. This method
is based on solving the phase fraction equation using an explicit time inte-
gration scheme and a combination of low and high order schemes for the
fluxes reconstruction that ensure boundedness, mass conservation and sharp
interfaces capturing.
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5.1 ExplicitSolve
The explicitSolve function defined in MULESTemplates.C is called in the file
twoPhaseSystem.C to solve the phase fraction equation, this call is made
through the command "fluid.solve()" as seen in both figure ?? and 3.2.
With the hypothesis of no alpha subcycles the functionMULES::explicitSolve
is called as follows:

Listing 3.8: MULES::explicitSolve call in twoPhaseSystem.C

MULES :: explicitSolve
(

geometricOneField (),
alpha1 ,
phi_ ,
alphaPhi1 ,
Sp ,
Su ,
phase1_ . alphaMax (),
0

);

The first argument passed to the constructor is the density, it is passed as
geometricOneField() which is a unit value field. The second argument is
the variable to be solved i.e. the phase fraction. The third argument is the
mixture velocity flux, the limited normal convective flux is the next argument
which is solved explicitly by theMULES:limit function, that will be described
in the following section. The next two terms are the explicit and implicit
source terms in the continuity equation which arise when mass transfer across
the phases or reaction source terms exist. The MULES algorithm solves for
the phase fraction with the explicit consideration of the convective flux of the
phase fraction. The considered transport mechanism is convection only. If
the number of correctors are larger than one, then the phase fraction at the
old time is stored and fluxes for all phases are set to zero. The discretized
phase transport equation here solved can be written as:

αn+1
iP
− αniP

∆t Vp +
∑
f

F n
cf

= αn+1
iP

Sp + Su (3.45)

Where the subscript "p" represent the centroid of a control volume, f rep-
resents the faces of the control volume, Fc is the convective flux that is
calculated through the function limit, implemented as a part of MULES and
the terms Sp and Su take into account both compressibility and mass transfer
source/sink terms as was derived in the previous sections.
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5.2 Limit
The boundedness of the temporal solution can be achieved with phase frac-
tion and velocity face values limiting schemes such as TVD/NVD convective
schemes or by limiting the total convective face fluxes. The second option is
implemented in the MULES algorithm, following this criterion the convective
face fluxes will split into a low order and high order contribution, to later
build a limiter that will allow to estimate the maximum contribution of the
high convective fluxes. Convective face fluxes will be computed through:

1. Compute low order convective fluxes FL
C using upwind scheme for the

phase fraction face value reconstruction, operation that ensures bound-
edness;

2. Compute high order convective fluxes FH
C using an high order scheme

for face phase fraction reconstruction;

3. compute the antidiffusive flux A = FH
C − FL

C ;

4. The convective flux is computed assembling the two previous with the
aid of a limiter λ;

FC = λFH
C + (1− λ)FL

C = FL
C + λA (3.46)

5. Choose a limiter that ensures boundedness of the solution while retain-
ing the highest order possible of accuracy

From that follows that the most important parameter to be determined in
the MULES algorithm is the limiter value at each face. Where a value of the
limiter λ = 1 means that a full high order scheme will be used while λ = 0
an upwind diffusive scheme will be used to reconstruct face fluxes.

In order to understand the influence of the limiter λ in the phase fraction
solution it is helpful to rewrite the discretized phase fraction equation (3.45),
without considering source terms, adding the antidiffusive convective fluxes:

αn+1
iP
− αniP

∆t VP +
∑
f

F n,L
Cf +

∑
f

λfA
n
f = 0 (3.47)

To calculate the values of the limiters a conservative criterion is used to
ensure boundedness of the solution: Supposing that a cell P, bounded by
different neighbours NB, has a phase fraction at a given timestep αniP , while
the neighbours present a value αnNB for the same property at the exact same
timestep. It is therefore possible to demonstrate that the maximum value of
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the phase fraction at cell P at the next timestep cannot be bigger then the
maximum phase fraction of the neighbouring cells at the previous timestep.
The same can be demonstrated for the minimum phase fraction, both sen-
tences are demonstrated through the conservation properties of the transport
equation. The convective fluxes’ effect on the transport equation reflect in a
modification of the phase fraction from a timestep to another and, therefore
the contribution of the antidiffusive fluxes must be limited to ensure bound-
edness. It is, hence, well known that high order convective fluxes offer a
less diffusive solution at the expense of boundedness. To better understand
the effect of limiters, it is wise to rewrite (3.47) without the contribution of
antidiffusive flux:

αn+1,L
iP

− αniP
∆t VP +

∑
f

F n,L
Cf = 0 (3.48)

From (3.48) it is possible to explicit αn+1,L
iP

, namely the low order approxi-
mation of the phase fraction:

αn+1,L
iP

= αniP −
∆t
VP

∑
f

F n,L
Cf

 (3.49)

Subtracting then equations (3.47) and (3.48) leads to:

αn+1
iP
− αn+1,L

iP

∆t VP +
∑
f

λfA
n
f = 0 (3.50)

from which it is possible to highlight the role of antidiffusive fluxes. They
represent the difference between low order and highest order possible solution
of the phase fraction equation.

Moreover, as stated before in the paragraph, the maximum and minimum
value of the phase fraction in the cell P are bounded by their value in the
cell and also in neighbouring ones, it is therefore useful to define:

αPmax = max(αniP , α
n
iNB

) (3.51)
αPmin = min(αniP , α

n
iNB

) (3.52)

It is also important to take into account numerical issues that may arise
during the solution procedure, which may lead to a maximum or minimum
phase fraction outside the physical interval [0, 1]. Therefore a connection
to ensure boundedness has to be performed, following equations (3.51) and
(3.52):

αPmax = max(αniP , 1) (3.53)
αPmax = max(αniP , 0) (3.54)
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Recalling equation (3.50) it is physically correct to say that positive an-
tidiffusive fluxes lowers the phase fraction while negative ones result in a
phase fraction increase. This can be schematically summarized as:

• If A+
f > 0 then αiP ↓

• If A−f < 0 then αiP ↑
Moreover, since phase fraction is limited both superiorly and inferiorly it is
possible to derive a condition to which the antidiffusive flux must obey in
both cases that arise from equation (3.50):

αPmax − αn+1,L
iP

∆t VP ≥ −
∑
f

λ−f A
−
f (3.55)

αPmin − αn+1,L
iP

∆t VP ≤ −
∑
f

λ+
f A

+
f (3.56)

From (3.55) and (3.56) two new limiters are defined: λ+
f and λ−f . Since the

computation of the low order solution is time consuming, it is substituted in
(3.55) and (3.56) to obtain:

αPmax − αniP
∆t VP +

∑
f

F n,L
Cf = −

∑
f

λ−f A
n,−
f (3.57)

αPmin − αniP
∆t VP +

∑
f

F n,L
Cf = −

∑
f

λ+
f A

n,+
f (3.58)

This solution brings, however, to low values of antidiffusive limiters [52]. This
is due to the fact that stabilization of antidiffusive flux wasn’t taken into
account in previous assumptions. It was found out that adding on the left
hand side respectively to equation (3.57) and (3.58) the opposite antidiffusive
flux would lead to a higher value of the limiter while still relying on bounded
physical hypothesis:

αPmax − αniP
∆t VP +

∑
f

F n,L
Cf +

∑
f

λ+
f A

n,+
f = −

∑
f

λ−f A
n,−
f (3.59)

αPmin − αniP
∆t VP +

∑
f

F n,L
Cf +

∑
f

λ−f A
n,−
f = −

∑
f

λ+
f A

n,+
f (3.60)

Unfortunately the solution of the previous system is undetermined because
we are solving 2 · N equations, with N representing the number of control
volumes while there are 2·F values of limiters to be determined (F represents
the number of faces). Therefore some simplifications must be introduced in
order to find a solution to the system:
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• The value of both limiters at the cell is defined (λ−Pandλ+
P ), these are

utilized on the r.h.s of equations (3.59) and (3.60)

• Limiters at the faces are computed as a combination of the limiters at
the cell center of the cells that own the face as:

λ+
f = min(λ+

P , λ
−
NB) (3.61)

λ−f = min(λ−P , λ+
NB) (3.62)

As a matter of fact, the "min" operator is used to ensure boundedness
for all faces and cells. Moreover, the need to couple positive and nega-
tive limiter from respectively owner and neighbour cells arises from the
fact that antidiffusive fluxes for a face have opposite signs depending
on whether the cell considered is the owner or the neighbour.

• An iterative method is used to reach convergence between the value of
the limiter at the cells and at the faces.
At first iteration all limiters are set to unity (λ±P = 1), then the mod-
ified (3.59) and (3.60) with the first simplifications above are solved
to determine the positive and negative limiters for antidiffusive fluxes
at the cell (λ±,b+1

P ). And finally the face limiters are calculated from
(3.61) and (3.62) as explained in the second simplification.

• All limiters are again bounded to the [0, 1] interval.

In case a solution exists with a limiter greater than one, the complete an-
tidiffusive flux prediction can be used without breaking the boundedness
constraint. On the other hand, if a limiter predicted value is lower than zero
there is a problem with the iterative process since it will imply that low or-
der convective fluxes are inducing unboundedness, which is mathematically
impossible. It is also important to note that the phase fraction equation will
be solved iteratively and therefore, the values of low and high order fluxes
can be computed with the phase fraction field of the previous iteration i.e.
explicitly.

6 Discretised Momentum Equation
The next equation solved in the PIMPLE loop, as it is possible to see in img.
1 and 3.2, is the momentum equation. The formulation of this transport
equation follows the two-phase model and hence is analogous to the one seen
in chapter 2:
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Listing 3.9: Momentum equation for two-phase systems in OpenFOAM as
formulated in file UEqns.H located in ../multiphase/reactingEulerFoam/react-
ingTwoPhaseEulerFoam/pU

autoPtr < phaseSystem :: momentumTransferTable >
momentumTransferPtr (fluid. momentumTransfer ());

phaseSystem :: momentumTransferTable
momentumTransfer ( momentumTransferPtr ());

{
U1Eqn =
(

phase1 .UEqn ()
==

* momentumTransfer [ phase1 .name ()]
+ fvOptions (alpha1 , rho1 , U1)

);
U1Eqn.relax ();
fvOptions . constrain (U1Eqn);
fvOptions . correct (U1);

}

The l.h.s. of the momentum equation is templated into the basePhaseModel
and that is the discretization of the homogeneous momentum equation.

Listing 3.10: The discretized momentum equation as implemented in the
basePhaseModel

tmp < fvVectorMatrix > tUEqn
(

fvm :: ddt(rho , U) + fvm :: div(phi , U)
+ MRF.DDt(rho , U)
+ turbulence -> divDevRhoReff (U)

==
fvOptions (rho , U)

);
fvVectorMatrix & UEqn = tUEqn.ref ();

UEqn.relax ();

fvOptions . constrain (UEqn);

The r.h.s. consists in the momentumTransfer, this is a hash pointer table
populated by the various models described in chapter 2 section 5. As it will be
explained later in section (6.1) the pressure gradient and gravitational term
won’t be solved in the momentum equation but in the pressure equation
to grant the P-U coupling and hence reach a convergent solution for both
pressure and velocity. It is important to remember that, since we are talking
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about a two-fluid system the solver has to transport two velocities and, hence
the momentum equation as described in this section has to be written for
both phases.

6.1 P-U Coupling
In CFD the velocity field is not known and emerges as part of the overall
solution process along with all other flow variables [16, 17]. The solution of
the momentum equation presents several problems:

• The convective terms of the momentum equation contain non linear
quantities i.e. ∇ · (ρ1ϕ~̄Uϕ ~̄Uϕ).

• The three equations that compose the momentum (x-direction, y-direction,
z-direction) are strictly linked .

• The pressure gradient play a difficult role since no equation for it is
present.

A solution can be found coupling pressure and velocity and hence introducing
a constraint in the solution of the flow field: if the correct pressure field is
applied in the momentum equations the resulting velocity field should satisfy
continuity [16,17]. Apart from the need of a p-U coupling algorithm, that in
our case is represented by the PIMPLE loop, another feature is implemented
and important to highlight: the correction of the velocity field. As seen in
section (4.3) Rhie and Chow [51] defined a procedure for which a velocity
at the center cell is defined as the interpolated value of the velocities at the
faces (predicted value) plus a correction term. This term can be different
from author to author but the more physical it is, the faster the solution will
converge. In our case, the pressure equation, and hence the p-U coupling
presents several terms for the correction. The corrected flux can be written
as:

φ∗∗ϕ =φ∗ϕ −
DTD + p′(
Aϕ
)
D

Sf∇αϕ −
FL+WL(
Aϕ
)
D

Sf −
KD(
Aϕ
)
D

φ1−ϕ

− αϕ(
Aϕ
)
D

[
ghfSf∇ρϕ − α1−ϕ(ρ1 − ρ2)f (g · Sf )

] (3.63)

Where:

φ∗ϕ: The predicted flux;

DTD: Turbulent diffusivity coefficient;
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p′: Pressure derivative with respect to volume fraction ;

FL+WL: Force due to lift and wall lubrication force;

KD: Drag coefficient;

The last term accounts for compressibility and gravitational effects.

7 Discretised Energy Equation
Analogously to what said in the previous paragraph, the energy equation is
discretized and implemented in OpenFOAM as follows:

Listing 3.11: Energy equation for two-phase systems as formulated in file
EEqns.H located in: application/solvers/multiphase/reactingEulerFoam/react-
ingTwoPhaseEulerFoam

autoPtr < phaseSystem :: heatTransferTable >
heatTransferPtr (fluid. heatTransfer ());

phaseSystem :: heatTransferTable &
heatTransfer = heatTransferPtr ();

{
tmp < fvScalarMatrix > E1Eqn( phase1 .heEqn ());

if (E1Eqn.valid ())
{

E1Eqn =
(

E1Eqn
==

* heatTransfer [ phase1 .name ()]
+ alpha1 *rho1 *(U1&g)
+ fvOptions (alpha1 , rho1 , phase1 . thermo ().he

())
);

E1Eqn ->relax ();
fvOptions . constrain (E1Eqn.ref ());
E1Eqn ->solve ();

}
}

As already said the l.h.s. of the equation is templated and can be recov-
ered in the basePhaseModel as the discretized implementation of the energy
equation:
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Listing 3.12: Energy equation for a two-phase system in OpenFOAM.

fvScalarMatrix E1Eqn
(

fvm :: ddt(alpha , rho , he) + fvm :: div( alphaRhoPhi ,
he)

- fvm ::Sp(contErr , he)

+ fvc :: ddt(alpha , rho , K) + fvc :: div( alphaRhoPhi , K)
- contErr *K
+ (

he.name () == thermo . phasePropertyName (e)
? fvc :: div(fvc :: absolute (alphaPhi , alpha , U), p)
+ p*fvc :: ddt(alpha)
: -alpha*dpdt

)

- fvm :: laplacian
(

fvc :: interpolate (alpha)
*fvc :: interpolate ( thermo . alphaEff (phase.

turbulence ().mut ())),
he

)
);

E1Eqn.relax ();

Continuing the analogy with the previous section, the heat transfer table is
populated with the heat transfer model coefficients that take into account
the heat transfer between phases. It is also important to remember that the
phase change introduces an heat source/sink term due to the latent heat of
evaporation, as illustrated in section 2.2.2.
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Chapter 4

Simulations

In this chapter two benchmark simulations, described in [13], will be per-
formed on two OpenFOAM solvers, namely twoPhaseEulerFoam and interFoam.
The objective is to highlight the differences between Eulerian-Eulerian and
VoF approach as implemented in OpenFOAM, in particular the benchmark
aims to highlight how sharply a method can transport the interface of a
bubble.

1 Introduction to the Case-study
The two case-studies presented in [13] will be performed alternatively on the
two solvers, the results will firstly be discussed in terms of convergence rate
towards the finest solution as well as accuracy of bubble interface tracking
comparing the gaseous bubble interface (αgas = 0.5) with the literature both
theoretically 2.1 and experimentally/numerically [13]. As will be thoroughly
described before in the chapter the two cases refer to two different bubble
regimes. The first setup is characteristic of ellipsoidal cap bubbles while the
second one is typical of skirted bubbles. These two cases were designed to
spot two different aspects of interface tracking quality:

• Case 1: Allows to detect how sharply the interface is tracked;

• Case 2: Allows to detect whether or not the solver is capable to track
breakup and how precisely the breakup bubbles are described.

The VoF solver interFoam was taken as reference since, as mentioned be-
fore in the thesis, VoF has been widely used for interface tracking dominat-
ing problems and has been proven to provide satisfying results in interface
tracking. Not to leave anything to the chance the cases were ran before
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through the VoF methodology, after that the same cases were ran using
twoPhaseEulerFoam and the results were then compared. All the simulations
were performed in order to evaluate two-fluid method’s capacity of interface
tracking and to provide some means that will help for the identification of
eventual problems.

2 Cases Setup
The initial configuration is identical for both cases and consists of a circular
bubble of diameter d0 = 0.5 centred at [0.5; 0.5] in a [1 × 2] rectangular do-
main, as represented in figure 4.1. The density of the bubble is lower than
that of the surrounding fluid (ρb < ρl). No-slip boundary conditions are
applied on top and bottom walls (~u = ~v = 0), while the free slip condition is
applied to the vertical walls (~u = 0).

Table 4.1 lists the fluids and physical parameters which specify the test
cases. The evolution of the bubbles should be tracked for 3 time units during
which the defined benchmark quantities should be measured. As described in
section 2.1 of chapter 1 adimensionalization is frequently used to assist with
classifying simulations and can be introduced by scaling through a charac-
teristic length and time:

L = d0

t = L
Ug

where Ug =
√
gd0 is the gravitational velocity.

The first test case models a rising bubble withRe = 35, Eo = 10 and both
density and viscosity ratio set to 10. According to experimental studies [28] as
highlighted in figure 1.8 (chapter 1), such a bubble will end up in ellipsoidal
regime. Extending the validity also to 2D flows it would mean that the
surface tension effects are strong enough to hold up the bubble and hence no
breakup is expected in this test case.

The second models a rising bubble with Re = 35, Eo = 125 and large
values of density and viscosity ratios, respectively 1000 and 100. This bub-
ble lies somewhere between the skirted and dimpled ellipsoidal-cap regimes
indicating that breakup can possibly occur [28] [Fig. 1.8], which will present
additional challenges to the two solvers in interface tracking.
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Figure 4.1: Initial configuration and boundary conditions for the test cases.

Table 4.1: Pysical parameters defining the test cases

Test Case ρl ρg µl µg g σ Re Eo ρl/ρg µl/µg
1 1000 100 10 1 0.98 24.5 35 10 10 10
2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

2.1 Benchmark Quantities
Visual comparison of the interface transport against time is the most obvious
way to compare two simulations. However, this does not allow to accurately
determine the resolution of a method. Therefore the following benchmark
quantities are introduced in order to provide the reader with a quantitative
numerical confrontation method regarding both interface transport accuracy
and computational effort:
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Point quantities: Positions of various points can be used to track
the translation of bubbles. It is common to use the centroid (center of
mass) defined by:

Xc = (xc, yc) =
∫

Ωg xdx∫
Ωg 1dx (4.1)

where Ωg denotes the region that the gaseous bubble occupies.

Circularity: The degree of circularity introduced by [53], can be de-
fined as:

c = Pa
Pb

= perimeter of area-equaivalent circle
perimeter of bubble = πda

Pb
(4.2)

Rise velocity: The mean velocity with which the bubble is rising
or moving is an interesting quantity, since it does not only measure
how the interface tracking is working but also the quality of the overall
solution, it is defined as:

Uc =
∫

Ωg ~udx∫
Ωg 1dx (4.3)

where Ωg again denotes the region that the bubble occupies. A possible
variant is to use the velocity at the centroid of the bubble. Important
to mention is that the rise velocity (opposed to the gravitational vector)
will reach a stationary limit called terminal velocity.

2.2 Error quantification
The temporal evolution of the computed benchmark quantities can be mea-
sured against suitable reference solutions to establish the following relative
error norms:

l1error: ||e||1 =
∑NTS
t=1 |qt,ref − qt|∑NTS

t=1 |qt,ref |
(4.4)

l2error: ||e||2 =
∑NTS

t=1 |qt,ref − qt|2∑NTS
t=1 |qt,ref |2

2

(4.5)

l∞error: ||e||∞ = maxt|qt,ref − qt|
maxt|qt,ref |

(4.6)

where qt represent the temporal evolution of quantity q. The solution com-
puted on the finest grid with the smallest time step is usually taken as a
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reference solution qt,ref . With the relative errors established and CPU times
measured, it is then straightforward to see how much effort is required to
establish a certain accuracy. Additionally, convergence rates (ROC) for the
quantities can also be computed as:

ROC =
log10

(
||el−1||/||el||

)
log10

(
hl−1/hl

) (4.7)

where l is the grid refinement level and h the mean cell edge length.
The ROC will not indicate how well a method converges to the exact solution,
but how it converges toward an approximate discrete solution. Although this
means that absolute convergence cannot be proved, if the results from a suf-
ficient number of methods approach the same solution it can be assumed
that the difference between the discrete reference and the exact solution is
not too large.

In this work, contrarily to what was done in [13], a first analysis will be
performed on case-study 2, in order to understand how the two methods can
track phase interface in breakup conditions. Following in the chapter also
the case-study 1 will be performed and analysed in order to highlight how
surface tension forces are accounted by the two methodologies.
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3 Case 2 Results

3.1 interFoam
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Figure 4.2: Contour plot for h = 1/640.

Following the solutions computed through the VoF solver interFoam will
be presented. In figure 4.2 is presented the bubble evolution over time for the
finest mesh resolution. The bubble contours were considered at αgas = 0.5
and the progressive refinements were defined through rectangular tensor
product grid with cell size h = 1/[40, 80, 160, 320, 640]. From 4.2 it is ev-
ident, recalling section 2.1 described in chapter 1, that a bubble breakup
happens after t = 2.2 and the "breakup-tails" are transported consistently,
with respect to both theory references [2.1] and the benchmark tests [13].
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Figure 4.3 presents a focus on how breakup is captured by the method at
different mesh resolution, in order to do so the gas phase contours at time
t = 3 were compared highlighting how mesh resolution strongly influences
how "breakup-tails" are captured or not and also how the droplets that com-
pose the tails assume different shapes at different resolutions. It is evident
that the solution on the coarsest grid produces a rather unphysical interface
with sharp-edged tails, on the other hand it seems that the bulk bubble is
captured correctly with respect to the solution on the finest grids.
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Figure 4.3: Contour plot at time t = 3 for different mesh refinements h.

The circularity, represented in figure 4.4, is constant until around t = 0.5
and then decreases almost linearly. It is important to highlight that around
t = 2.4 ÷ 2.8 on the finest grids a change of concavity in bubble-circularity
chart is present, this is due to the bubble breakup. Since the coarsest case
(h = 1/40) cannot track bubble breakup, this change of concavity is not
captured.

The proof of that lays in figure 4.4 (b), where no bubble breakup is
tracked. On the other hand starting from h = 1/80 an incipient breakup can
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Figure 4.4: Circularity at different mesh resolutions for the VoF methodology
(a), focus on bubble contours at incipient bubble breakup (t = 2.6)(b).

be identified.
Time evolutions of the center of mass and mean rise velocity of the bubble

are shown respectively in figure 4.5 (a) and (b). The center of mass moves
almost linearly and only slight deviations can be spotted in low mesh resolu-
tion simulations. For the finest solutions the trend is similar and so the lines
almost superpose.

This, contrarily to what said for bubble circularity, doesn’t allow to locate
bubble breakup. Moving to the mean rise velocity, it almost superpose in
the first time unit of simulation for all mesh resolutions, then it is possible
to identify a gap between different grid refinements. Namely, the two local
maxima are quite different (see table 4.2), but it is possible to spot both
from figure 4.5 (b) and from table 4.2 that convergence toward the finest
grid is reached. Also bubble mean rise velocity doesn’t allow to locate bubble
breakup and even tough a solution gap is identified in correspondence to the
local maxima, the maxima themselves are identified at all mesh resolution
within a reasonable distance.

The errors and rate of convergence will not be calculated for this case
study to be consistent with the reference benchmark paper [13]. This is due
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Figure 4.5: Centroid position over time (a), mean rise velocity (b) calculated
for VoF method at different mesh resolutions.

Table 4.2: Minimum circularity and maximum rise velocities with corre-
sponding time and centroid final position

h 1/40 1/80 1/160 1/320 1/640
cmin 0.5594 0.53374 0.51518 0.49057 0.49252
t|c=cmin 3 3 3 3 3
vmax,1 0.2411 0.24622 0.24876 0.2487 0.2506
t|v=vmax,1 0.70937 0.72031 0.71875 0.72031 0.7210
vmax,2 0.21598 0.22525 0.23125 0.23474 0.23694
t|v=vmax,2 1.7406 1.8797 1.9688 2.0094 2.0105
yc|t=3 1.0945 1.1059 1.1161 1.1219 1.1291

to the fact that the solutions are visibly different and convergence towards
the finest solution can be appreciated graphically, the computation of ROC
will be required during case 1 discussion, where the diverse solutions will
appear as a superposed bubbles. In that case the error computation will
help the reader understand whether the solution is converging towards the
finest grid one or not.

The findings achieved through this simulation are in line with literature
and the benchmark paper results. This means that, as said before in the
chapter, The VoF methodology is able to capture bubble breakup correctly
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almost at any rate of refinement. Obviously the more refined a simulation is
the more accurate the solution will be, in terms of both bubble velocity and
shape/breakup of the interface. It is straightforward to understand that mesh
resolution is the limiting variable for breakup capturing, i.e. if mesh dimen-
sions are bigger or in the order of breakup-bubble dimensions, no breakup
will be captured. On the other hand too refined solutions will provide an
accurate solution but uselessly long to simulate. The right mesh-element
sizing has to be chosen in order to provide a correct interface tracking while
containing the computational time.
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3.2 twoPhaseEulerFoam
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Figure 4.6: Contour plot for h = 1/640.

Following the solutions computed through the two fluid solver twoPhaseEuler
Foam will be presented. In figure 4.6 is reported the bubble evolution over
time at h = 1/640 mesh refinement. For this case study the bubble contours
were considered at αgas = 0.5 and the progressive refinements were defined
through rectangular tensor product grid with cell size progressively defined
as : h = 1/[40, 80, 160, 320, 640]. From 4.6 it is evident, recalling section 2.1
described in chapter 1, that a bubble breakup happens after t = 2.2 and the
"breakup-tails" are not tracked correctly by the model, with respect to both
theory references [2.1] and the benchmark test [13]. Figure 4.7 presents a
focus on how breakup is captured by the method at different mesh resolu-
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tion, in order to do so the gas phase contours at time t = 3 were compared
highlighting how mesh resolution strongly influences how "breakup-tails" are
captured. In this case it is possible to conclude that trailing breakup bub-
bles are not tracked before h = 1/320 and even at this resolution only the
biggest core-bubbles of the tails are detected by the solver, giving no idea
on how the bubble interface is transported. This highlights how mesh de-
manding the solver is and probably that some interface capturing problems
are present. It is evident that the solution on the coarsest grid produces a
rather unphysical contour, not only the tails are not captured (as well as
for h = 1/80,h = 1/160) but also the core bubble shape and position is not
tracked correctly. However convergence towards the finest solution may seem
to be reached as it is possible to prove from table 4.3.
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Figure 4.7: Contour plot at time t = 3 for different mesh refinements h.

The circularity, represented in figure 4.8, is constant until around t = 0.5
and then decreases almost linearly. It is important to highlight that around
t = 2÷ 3 on the finest grids a change of concavity in bubble-circularity chart
is present, this is due to the bubble breakup. The coarsest case (h = 1/40 and
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h = 1/80) present the same trend earlier in time with respect to the finest
solutions and sue to the diffusivity of the solution no breakup can be tracked
in the latest time-steps. Figure 4.9 shows how the bubble breakup causes
the change of concavity in the bubble-circularity chart and how the breakup
correspond exactly to the local maximum of the curve. Similar behaviour
can be spotted in 4.8 for the finest mesh (green line) but the breakup is
translated in time as the inflection point position may suggest. This is also
the proof that for the brown contour (h = 1/160) breakup happens at t = 2.2
but the "tails" do not appear in the last time-step.
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Figure 4.8: Circularity at different mesh resolutions for the two fluid method-
ology (a), focus on bubble contours at incipient bubble breakup (t = 2.2)(b).

Time evolutions of the center of mass and mean rise velocity of the bub-
ble are shown respectively in figure 4.10 (a) and (b). The center of mass
moves almost linearly and only slight deviations can be spotted at low mesh
resolution simulations. For the finest solutions the trend is similar and so
the curves almost superpose.

This, contrarily to what said for bubble circularity doesn’t allow to locate
bubble breakup. Moving to the mean rise velocity, it almost superpose in
the first time unit of simulation for finest mesh, but the coarsest show an
unphysical top raise velocity and then a local minimum way too low with
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Figure 4.9: Bubble circularity evolution against time (a) for different mesh
resolutions and bubble contours at t = 2.2 for two fine resolutions (b)
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Figure 4.10: Centroid position over time (a), mean rise velocity (b) calculated
for two fluid method at different mesh resolutions.

respect to the other simulations. This, added to the other considerations
made in the section and to the results presented in table 4.3, lead to the
conclusion that being the solver really mesh demanding the solution at h =
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1/40 is unpysical and can’t produce a satisfying solution. h = 1/80 shows a
more converging trend, the maximum is aligned to the finest ones in the first
time-steps but then the second is really premature and follows a unphysical
velocity reduction. The two local maxima are quite different (see table 4.3),
so it is possible to say both from figure 4.10 (b) and from table 4.3 that
convergence toward the finest grid is not reached. The inequalities found in
the mean rise velocity chart are surely due to the lack of resolution given by
coarsest grids and as a consequence to the incorrect interface tracking that
derives from that. This can lead to the conclusion, even without checking the
errors that the solutions on the coarsest grids cannot be considered sufficient
because neither interface nor bubble rise velocity are traced correctly.

Table 4.3: Minimum circularity and maximum rise velocities with corre-
sponding time and centroid final position

h 1/40 1/80 1/160 1/320 1/640
cmin 0.65637 0.64369 0.6167 0.595 0.5702
t|c=cmin 3 3 3 3 3
vmax,1 0.28816 0.26418 0.25739 0.25295 0.24972
t|v=vmax,1 0.62 0.66 0.7 0.71 0.7
vmax,2 026759 0.23716 0.22766 0.23672 0.24102
t|v=vmax,2 1.04 1.64 1.85 2 2.1
yc|t=3 1.1131 1.102 1.1231 1.1317 1.1320

For what concerns the finest meshes simulations, it is evident that conver-
gence is reached towards the finest solution, which provides a coherent rise
velocity and bubble centroid position but it is not able to track correctly the
breakup of the bubble. This will be discussed more thoroughly in the follow-
ing paragraph where a comparison between the two solvers will be carried
on.

3.3 Comparison
Figure 4.11 reports a comparison between the two solvers on how the interface
is transported, at the last time-step, for the same mesh resolution. Starting
from top left side of the picture it is evident that the coarsest mesh gives
an unphysical solution for both solvers. However the VoF solver (in red)
interFoam present a sharper bubble interface and it is also able to capture
the "tails" of the bubble, the centroid position and so the bubble velocity as
well as its size are similar to the ones derived for the finest meshes (4.11)
and in the reference paper [13]. Moving the analysis to a finer (h = 1/80)
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mesh it is possible to identify a bubble breakup, this highlights that the
solution is more consistent to the finest grids and so represent a more physical
simulation. The finest meshes are able to capture the single breakup-bubbles
composing the tails. On the other hand (in blue) we have the simulations
computed through the two-fluid solver twoPhaseEulerFoam. The coarsest
mesh solution is unpysical from both shape and position point of view, the
interface is irregular and no tail is captured, moreover the bubble centroid
reaches a visibly higher position with respect to VoF solution as well as finer
mesh solutions. Bubble dimensions are significantly lower than the VoF ones,
this suggests that diffusion phenomena are acting on the interface. These
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Figure 4.11: Visual comparison between two-fluid method (blue) and VoF
(red) of contours at t = 3 for different mesh resolutions.

3. Case 2 Results



Chapter 4. Simulations 95

bad results are surely, at least in part, due to the mesh resolution. Moving
to finer simulations the results improve, even though until h = 1/320 no
breakup can be identified by the solver. It is interesting to notice how with
mesh refinement the core bubble tend to superpose to the (correct) VoF
solution. This means that both mean bubble velocity and centroid position
over time are captured correctly, but breakup is not identified except for the
biggest tail-bubbles. This could be either due to diffusivity of the solver or
other modelling problems of the solver. This conclusion is reinforced by what
said earlier in section 3.2 regarding bubble breakup, breakup-bubbles are not
tracked in coarsest meshes’ solutions because breakup happens earlier in time
and their interface diffuse before the last time-step.
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Figure 4.12: comparison between bubble circularities at different mesh reso-
lutions for both two-fluid method (a) and VoF (b).
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This highlights a twofold problematic on the one hand we have premature
breakup on coarsest meshes and on the other a diffusive solver not able to
track small bubbles.
This highlights how a more complex solver, that should better track the two
fluids since a momentum equation is solved for each phase produces worse
solutions with respect to a VoF methodology solver. On the one hand this is
surely due to the mesh demand of the two-fluid solver and probably, on the
other an interface-capturing problem can be present as well.
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Figure 4.13: comparison between bubble rise velocities at different mesh
resolutions for both two-fluid method (a) and VoF (b).

As it is possible to see from figures 4.12,4.13 and 4.14 the other bench-
mark quantities are not comparable except in some measure for the finest
grid refinements. Starting from bubble circularity it can be said that the
evolution trend is similar in the two methodologies, namely for the first 0.5
time units the circularity remains almost constant and then decreases. Two
main differences can be spotted in figure 4.12, neglecting the two coarsest
simulations for the two-fluid method, we have in 4.12(a) a higher final value
of circularity and a change of concavity situated between 2 and 2.5. As al-
ready highlighted in the previous section the change of concavity is the result
of bubble breakup that happens at significantly different time-steps in the
two-fluid model. The higher final value of circularity is due to the fact that
except for the core bubble of the tails no other breakup is tracked in the two
fluid method, giving a solution with a more bubble-like interface. This results
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are consistent with what said earlier for the bubble contours and support the
theory of a problem of interface capturing in twoPhaseEulerFoam.
When talking about unphysicality of the coarsest solution of the two fluid
method figure 4.13 gives a tangible overview of what we are talking about. It
is evident that for the case h = 1/40 a huge overestimation error is committed
in the early time-steps, while on the other hand on the last ones an opposite
error of underestimation is committed, in addition to this the second local
maximum results way anticipated with respect to the other solutions. Simi-
lar conclusions can be derived for the finer case h = 1/80 that is able to give
a better solution for the earlier time-steps but presents both the advance and
the underestimation problems spotted for the coarsest simulation. Increasing
the mesh resolution we obtain a profile similar to the one derived through
VoF simulation. This is consistent with the analysis done on the contours
earlier in the section, since the main velocity is linked to the core bubble and
since the two-fluid method is able to capture correctly the interface of that
bubble, it is able to deliver a correct mean velocity profile even though it is
not able to track the breakup.
This consideration is valid also for the bubble centroid. Being this quan-
tity influenced mainly by the core bubble, using finer meshes we can obtain
a correct tracking of the bubble centroid even without any tracking of the
"breakup-tails". As reported in figure 4.14 we see that evident deviations are
present for h = 1/40 and h = 1/80 but the other mesh resolution trends are
in line with the VoF simulations.
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Figure 4.14: comparison between bubble centroids at different mesh resolu-
tions for both two-fluid method (a) and VoF (b).
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4 Case 1 Results
As mentioned before in the chapter, the first numerical benchmark case pre-
sented in [13] was tested as well. This, contrarily to the previous case, sim-
ulates a bubble in the ellipsoidal range (Chapter 1 section 2.1). The scope
of this case is to highlight whether the solver is capable of capturing the in-
terface of the bubble, since no breakup is present the benchmark quantities
will track solely the quality of the interface. This second benchmark test will
then give the means to determine whether the two-fluid methodology imple-
mented in Open∇Foam through twoPhaseEulerFoam presents an interface-
tacking problem or not. Namely it will allow to determine the causes of the
differences highlighted in the previous section between two-fluid and VoF.

4.1 interFoam

First of all the benchmark case is solved with the VoF solver interFoam, to
set a reference. This is done because VoF methodology was already proven
in literature to give satisfying enough results in interface tracking as already
mentioned in the introduction of this work and as resumed in [13].
Following the bubble contours at the last time-step are reported for all the
consecutive mesh refinements to provide the reader with a visual confronta-
tion.
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Figure 4.15: Visual confrontation of contours at last time-step for different
mesh refinement .
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Figure 4.16: bubble circularity over time (a), zoom of bubble circularity in
the second half of bubble evolution (b) calculated for VoF method at different
mesh resolutions.

Figure 4.16(a) represents bubble circularity over time. As in the previous
case study the first 0.5 time units present a constant value of bubble circu-
larity, which decreases linearly until around t = 1.5, then a local minimum
is reached around t = 2 and the final value of circularity ranges between
c = 0.9 and c = 0.91. The excursion in bubble circularity is so small that is
almost imperceptible from picture 4.15, that’s why the relative errors as de-
fined in section 2.2 were introduced. If we zoom the bubble circularity chart
(Fig. 4.16(b)) it is possible to identify small variations between the different
mesh refinement but the values lay in a range of 10−3. The local minima
are located almost at the same time-step except for the coarsest case, which
deviates from the other solutions also in the last time-steps. It is safe to
say, even without consulting the errors, that global convergence towards the
finest solution is reached. This conclusion is supported also by 4.17 where
respectively centroid position over time (a) and the mean bubble rise veloc-
ity (b) are reported. Just minimal deviations are captured around the final
time-steps but these differences only partly influence the bubble evolution,
since, as it is possible to see from picture 4.15, almost all interfaces are con-
gruent.
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Figure 4.17: Centroid position over time (a), mean rise velocity (b) calculated
for VoF method at different mesh resolutions.

Following on table 4.4 the most characteristic benchmark parameters are
presented for each mesh refinement, namely the minimum circularity, the
maximum rise velocity and the time at which these are tracked and finally
the final centroid position. As it is possible to derive also from table 4.5
and from charts 4.16 and 4.17 the deviations are limited and the simulations
converge towards the finest grid as the ROC computation suggests. The
convergence rate is less than linear but it increases with mesh resolution and
the relative errors are in the order of 10−3 for bubble circularity and center
of mass and 10−2 for rise velocity.

Table 4.4: Minimum circularity and maximum rise velocity with correspond-
ing time and centroid final position

h 1/40 1/80 1/160 1/320 1/640
cmin 0.8933 0.8922 0.8946 0.8984 0.9088
t|c=cmin 1.95 1.9297 1.9297 1.9203 1.9
vmax 0.2389 0.2389 0.2389 0.2398 0.2398
t|v=vmax 0.9296 0.9203 0.9297 0.9406 0.97
yc|t=3 1.0683 1.0697 1.0727 1.0778 1.0865
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Table 4.5: Relative error norms and convergence orders for VoF.

h ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞
Circularity
1/40 0.00852 0.164 0.00153
1/160 0.0068 0.2596 0.127 0.2716 0.00112 0.2989
1/320 0.00447 0.6053 0.0836 0.6004 0.00744 0.5928
Center of Mass
1/40 0.00716 0.139 0.0168
1/160 0.00539 0.2926 0.1 0.3039 0.0127 0.2838
1/320 0.00336 0.6795 0.0619 0.6969 0.00801 0.6655
Rise Velocity
1/40 0.0411 0.164 0.0636
1/160 0.0328 0.2596 0.127 0.2716 0.0465 0.2990
1/320 0.0215 0.6054 0.0836 0.6004 0.0309 0.5927
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4.2 twoPhaseEulerFoam
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Figure 4.18: Visual confrontation of contours at last time-step for different
mesh refinements.

In this section the same analysis performed on the VoF solver interFoam
was carried on the two-fluid solver twoPhaseEulerFoam. As mentioned in
the introductory part of this section these calculations were aimed to detect
whether or not the two-fluid method, as implemented in Open∇Foam, is able
to capture phase interface and if it is, how correctly compared to the VoF
methodology (that was already proven as a good benchmark reference).
Following the bubble contours at the last time-step are reported for all the
consecutive mesh refinements to provide the reader with a visual confronta-
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tion.
Figure 4.19 represents bubble circularity over time. As in the previous case
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Figure 4.19: bubble circularity over time calculated for two-fluid method at
different mesh resolutions.

study the first 0.5 time units present a constant value of bubble circularity,
which decreases monotonically towards the minimum reached at the final
time-step, this absolute minimum ranges between a centred neighbourhood
of 0.6. The excursion in bubble circularity is quite big and this is evident in
figure 4.18, a breakup is spotted in the two coarsest mesh while in the finest
simulations the characteristic "tails" of the skirted bubble regime are tracked.
This denotes a highly unphysical solutions for all the mesh refinements pro-
posed in this study, twoPhaseEulerFoam tracks a skirted interface in a case,
as defined in the introduction, that is characterized by dimensionless num-
bers typical of ellipsoidal bubble range. This conclusion is supported also by
4.20 where respectively centroid position over time (a) and the mean bub-
ble rise velocity (b) are reported. A diverging trend is captured for bubble
centroid position, while bubble mean rise velocity shows a similar trend but
with different final values and maxima positions. The only similarity can be
spotted in the two most refined solution which present the same trend.

Following on table 4.6 the most characteristic benchmark parameters are
presented for each mesh refinement, namely the minimum circularity, the
maximum rise velocity and the time at which these are tracked and finally
the final centroid position. As it is possible to derive also from table 4.7 and
from charts 4.19 and 4.20 the deviations are important and the simulations
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Figure 4.20: Centroid position over time (a), mean rise velocity (b) calculated
for VoF method at different mesh resolutions.

hardly converge towards the finest grid as the ROC computation suggests.
These are symptoms of an intrinsic error committed by the solver, the more
the mesh is refined the more the simulation tends to provide a cohesive
bubble with a highly different bubble circularity. That’s why no convergence
is reached towards the finest grid solution (diverging more than linear ROC)
and no correspondence to VoF or literature [13] can be detected, as will be
highlighted in the following section.

Table 4.6: Minimum circularity and maximum rise velocity with correspond-
ing time and centroid final position

h 1/40 1/80 1/160 1/320 1/640
cmin 0.6713 0.6006 0.5383 0.5542 0.5385
t|c=cmin 3 3 3 3 3
vmax 0.2481 0.2571 0.2531 0.2217 0.233
t|v=vmax 0.8203 0.71 0.6906 0.8703 0.9
yc|t=3 1.0681 1.1243 1.0616 1.0331 1.0585
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Table 4.7: Relative error norms and convergence orders for VoF.

h ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞
Circularity
1/40 0.0413 0.0597 0.1331
1/160 0.0496 0.1625 0.0587 0.1266 0.0788 -0.0059
1/320 0.0107 -2.2115 0.0123 -2.256 0.0157 -2.326
Center of Mass
1/40 0.0303 0.0321 0.0329
1/160 0.0325 -0.9438 0.0349 -0.9093 0.0372 -0.7590
1/320 0.0128 -1.3486 0.0154 -1.1794 0.0240 -0.6341
Rise Velocity
1/40 0.1415 0.1564 0.1954
1/160 0.1494 0.4258 0.17 0.21 0.2756 -0.0405
1/320 0.0774 -0.9488 0.078 -1.1235 0.0834 -1.7248
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4.3 Comparison
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Figure 4.21: Visual comparison between two-fluid method (blue) and VoF
(red) of contours at t = 3 for different mesh resolutions.

Figure 4.21 reports how the interface is transported, at the last time-step,
using the same mesh resolution for the two solvers. It is evident, in view
of the above, that the two solutions are not comparable. As highlighted in
interFoam results’ comment section the solution (red contours) is in line
with both theory (2.1) and other benchmark simulations [13]. On the other
hand twoPhaseEulerFoam results (blue contours) give a clear view on how
this solver is not capable to track, in this bubble shape regime, the interface
as correctly as the VoF solver. The coarsest simulations’ lack of resolution
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can be detected as the cause of the bad interface capturing.
But with mesh refinement no improvement is visible, on the contrary for

finer meshes (h = 1/160, h = 1/320 and h = 1/640) a skirted shape is
detected.
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Figure 4.22: comparison between bubble circularities at different mesh reso-
lutions for both two-fluid method (a) and VoF (b).

As it is possible to see from figures 4.22,4.23 and 4.24 the other bench-
mark quantities are not totally comparable. Starting from bubble circularity
it can be said that the evolution trend is similar in the two methodologies,
namely for the first 0.5 time units the circularity remains almost constant
and then decreases monotonically and finally, in the last time-steps, the slope
decreases to reach a plateau. As said before in this section the two solutions
are not comparable at any mesh refinement level. This is evident from figure
4.22 that an unphysical interface tracking is captured by the two-fluid model.
The final values of circularity are not comparable at all and that is reflected
by the contours reported before (Fig. 4.21). This results are consistent with
what said earlier for the bubble contours and support the theory of a problem
of interface capturing in twoPhaseEulerFoam.
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Figure 4.23: comparison between bubble rise velocities at different mesh
resolutions for both two-fluid method (a) and VoF (b).

For what concerns the other two benchmark quantities (mean bubble
rise velocity and bubble centroid position) we can spot a behaviour similar
to the one highlighted in 3.3. Namely, with mesh refinement both velocity
and centroid position trends tend to align to the VoF solution. The bubble
velocity is tracked more or less correctly with mesh refinement, the curve
shape is similar to VoF’s one, as said for Case 2 with the formation of bubble
tails the mean bubble rise velocity is affected with a localized concavity
change (in time). The peak position is also affected by mesh resolution but
with refinement the position and maximum value tend to the VoF solution.
In fact, as can be seen in figure 4.21 the bubbles with mesh refinement tend
to superpose. The deviations reported in figure 4.23 are consistent with
the contours described before, even though the velocity field is correct in
the most refined meshes the bubble centroid deviates with respect to VoF
solutions because of the unphysical breakup tails tracked by two-fluid model.
This confirm what said before for "Case 2" that bubble momentum equation is
correctly solved, meaning that the velocity field is correct, while the interface
is evidently incorrect.

The analysis on case 1 allowed to confirm what was only possible to as-
sume from case 2 results. Namely, the two-fluid methodology as implemented
in OpenFOAM through twoPhaseEulerFoam takes correctly into account the
two separate momentum equations for the two segregated phases but it is not
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Figure 4.24: comparison between bubble centroids at different mesh resolu-
tions for both two-fluid method (a) and VoF (b).

capable to track in a physical way the interface between phases. This lack of
resolution in interface tracking is evident from both case-study highlighting
that neither bubble breakup nor ellipsoidal-interface can be modelled. Espe-
cially in case 1, that is a surface tension dominated regime, it is clear that
something is missing in the solver. The solution lacks of cohesion, the bubble
as it evolves through time tend to collapse and high diffusion of the interface
is captured. The reasons of this behaviour will be analysed in the following
chapter as part of the conclusion of This work.

4. Case 1 Results





Chapter 5

Closure

A feasibility study for the application of a two-fluid CFD methodology for
simulating two-phase cavitating flows. In this study, two-fluid and VoF
interface-capturing methodologies have been discussed and compared. A
thorough description of state of the art numerical techniques as well as math-
ematical models of key physical phenomena has been carried on. This last
Chapter concludes the thesis and is divided in two Sections. The first sum-
marises the conclusions acquired from this work, especially from the results
derived in the previous chapter, and the second one makes suggestions for
future work.

1 Conclusions
Recalling what said in the introductory chapter about the requirements of a
solver to be suitable for simulating cavitation in injectors and injector-like ge-
ometries, a two-fluid solver should capture gas/liquid interface correctly and
be able to take into account the slip velocity between phases. Since cavitation
is the most important source/sink phenomenon in this kind of problems, the
solver should be capable to model also this contribution. Starting from the
latter requirement this section will describe the procedure followed during
this thesis research work and will highlight the principal conclusions.

1.1 Cavitation
As described in Chapter 3 reactingTwoPhaseEulerFoam features a "inter-
faceCompositionModel" that allow to determine through a user-selected model
the composition of the species at phase-interface. Cavitation is a phenomenon
of phase change driven by pressure, i.e. if a local depression happens a portion
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of liquid could evaporate if if local pressure falls behind saturation pressure
at fluid’s temperature. Since the transport of mass fractions is supported and
the bound between species transport source/sink term and volume fraction
transport equation source/sink term was demonstrated in chapter 3, the to
introduction of a homogeneous reactor model for cavitation in a two-fluid
solver can be perform by taking advantage of the high modularity of the
existing framework.

1.2 Interface Tracking
The core-subject of this work was to study interface capturing abilities of the
two-fluid solver as implemented in OpenFOAM-dev. In chapter 4 a thorough
analysis based on two benchmark case studies was carried on in order to
quantify both qualitatively and quantitatively the interface-tracking quality
of the method. The results brought to the author’s attention that not only
the two fluid Euler-Euler methodology is more mesh demanding than the VoF
solver, used as benchmark solver since already validated as a reliable one in
literature, but also that severe diffusion and lack of cohesion manifest even
at high mesh resolutions. This suggest that a modelling error is committed
systematically by the solver. Recalling what said about segregated-flows
modelling in chapter 2, it appears evident that two main contributions define
the bubble shape and consequently the bubble evolution1 over time:

• Drag Force;

• Surface Tension Force

The derivation of the drag force term was discussed in chapter 2. On the other
hand, solutions of Case 1 simulations show a lack of cohesion of the bubble,
which shows a skirted profile with a set-up typical of ellipsoidal range bub-
bles, while simulations of Case 2 show a lack of cohesion in coarsest meshes
tat manifest in an early breakup followed by a unphysical interface tracking.
This suggests that in twoPhaseEulerFoam the form of the terms for surface
tension is not suitable for the case studied.

An accurate revision of the solver’s code resulted in the finding that no
equation for surface tension is currently implemented in OpenFOAM-dev.
This somehow justifies the irrational results obtained in chapter 4, where a
physically more accurate solver provided in some case unphysical solutions
and in other cases a low-quality solution. As repeatedly pointed out surely

1Both bubble shape and trajectory/velocity
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the solution acquires physical meaning with mesh refinement, but that is the
demonstration that surface tension forces are not being taken into account.
in fact, recalling chapter 2, it was demonstrated that Euler-Euler segregated
solvers capture the interface of liquid-gas phases thanks to the combined
action of two factors:

• Mesh Resolution;

• Surface Tension source term for momentum equation

From the benchmark cases it is evident that with mesh refinement a more
physical-like bubble is described, meaning that the behaviour of the solver is
in line with the theoretical one. This can be seen as a further demonstration
that the surface tension source term is not modelled in OpenFOAM-dev, and
hence that the two-fluid solver, as it is, is not suitable for segregated flows
simulations.

1.3 Slip Velocity
Although some diffusion in the interface tracking was found, the momentum
equations an hence the velocity fields resulted generally consistent with the
benchmark case and the solution of the VoF solver. The mean rising velocity
and bubble centroid position for each case study tend to converge towards
the finest solutions, which are comparable in terms of velocity magnitude
and peaks position. This demonstrates that with the two fluid method it
is possible to obtain comparable solutions (from the velocity point of view)
but with a double accurate information, i.e. instead of having a "mixture
velocity" and a "slip velocity", where the latter is modelled, we will have two
transport equation solving for gas and liquid velocities and, as a consequence,
the slip velocity will be calculated from the "exact" fluids velocities. This
feature is the reason why the Euler-Euler methodology was investigated as
possible solution for this kind of problems. Thinking about the phenomena
that this feasibility study aims to allow studying, such as vortex cavitation
in injectors [5], it is straightforward to see how the two fluid method is less
dependent on modelling and, hence would provide a more physical solution
of the velocity field.
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2 Suggestions for Future Work
Starting from the conclusions derived in the previous section, the principal
suggestions for future work development are described, two main aspects will
be considered: cavitation and interface tracking.

2.1 Cavitation
Several options can be implemented; the simplest barotropic model for cavi-
tation, coupled to a homogeneous reactor model, should be implemented and
the solver should be validated through a pilot study [7] and also compared
to the Vof solver (interPhaseChangeFoam) solution. Once the cavitation
phenomenon is demonstrated to be correctly tracked by the solver, a fur-
ther development of the cavitation modelling could be studied. In particular
more complex models can be implemented, namely models such as Delan-
noy, Koop and Schmidt [54–56] that use a transition function providing a
smoother passage from a phase to the other with pressure change, as showed
in figure 5.1. Together with this improvement in barotropic cavitation mod-

Figure 5.1: Different barotropic models for water at T=293 K

elling other, more complex, models should be considered. In literature, as
well as in OpenFOAM, models based on the Rayleigh-Plesset equation such
as Schnerr and Sauer were demonstrated to be reliable to describe cavitation
and widely validated

2. Suggestions for Future Work
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[18].

2.2 Interface Tracking
Interface tracking in two fluid solver should be improved. It is suggested as a
further development to implement the surface tension source term described
in 2.68. The implementation should be consistent with the OpenFOAM
formulation of two fluid method, in particular the source term should be
activated only if the segregated version of the solver is being used. It could be
added a section in phaseProperties dictionary where it is possible to activate
the source term, in this way twoPhaseEulerFoam could be used both for
dispersed flows and segregated ones. For what concerns the validation of the
upgraded solver it is recommended to follow the benchmark case [13] as well
as the analysis described in chapter 4 of this thesis.

2. Suggestions for Future Work





Appendix A

The & Operator and divU
derivation

1 Discretisation of PDEs
During discretization, the partial differential equations are integrated over
each element in the mesh resulting in a set of algebraic equations with each
one linking the value of the variable at an element to the values at its neigh-
bours. The algebraic equations are then assembled into global matrices and
vectors and the coefficients of every equation stored at the row and column
locations corresponding to the various element indices (Fig A.2). The linear
system that derives from this discretisation has the form of:

A~x = ~b (A.1)

Where A represents the matrix of coefficients, ~x is the field that will be
derived solving the system and finally ~b represents the effect of both source
terms and boundary conditions.
Taking a deeper look at the matix of coefficients every cell has one and
only one diagonal coefficient, none of which are zero. Therefore the diago-
nal list contains N values, where N is the number of cells in the mesh.The
upper and lower triangles have (N - 1)N possible values, however most are
zero. The non-zero values correspond to cell-pairs that influence one an-
other. Open∇FOAM uses a small computational molecule, therefore only
adjacent cells influence one another. In other words, there are two non-zero
coefficients for every internal face in the mesh: one that appears in the lower
triangle; and one that appears in the upper triangle. These coefficients are
usually opposite (especially when fluxes are involved) and , thus for each face
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a neighbouring and an owner cell are defined such that:

Ai,j =


Owner i > j

Diagonal i = j

Neighbour i < j

This can be easily seen starting from a simple 3×3 matrix as defined in figure
(Fig.A.1):

Figure A.1: Example matrix.

Applying the procedure described before it is then possible to derive the
non zero coefficients in Open∇FOAM:

Figure A.2: "X" refears to diagonal elements, "O" refears to owner cells and
"N" refears to neighbouring cells

1. Discretisation of PDEs
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2 the calculation of divU
"&" operator is defined in fvMatrix.C and is used in pEqn.C to derive
phaseϕ.divU. In this section the "&" operator will be described and then
the formulation of divU will be derived as a function of pEqnCompϕ.

2.1 the "&" operator
As it is possible to see from the caller of the function, this operator creates
a GeometricField starting from an fvMatrix, namely M and a Dimensioned-
Field, in this case psi.

template <class Type >
Foam ::tmp <Foam :: GeometricField <Type , Foam :: fvPatchField ,

Foam :: volMesh >>
Foam :: operator &
(
const fvMatrix <Type >& M,
const DimensionedField <Type , volMesh >& psi
)

Dimensions of the GeometricField are set as dimensions of matrix M divided
by volume regardless of which manipulations will be done afterwards on the
matrix.
Remembering what said about the discretization of PDEs through a system of
linear equations (Equation (A.1)) and considering that in Open∇FOAM that
exact system of discretised equations is represented through an fvMatrix, it
is possible to define various sub-matrices starting from the linearized system
of equation M.
It is possible to define briefly M as:

M := AM~x = ~b (A.2)
This identity allows the definition of the diverse matrix composing M:

M.diag: represents the diagonal part of matrix AM;

M.source: represents the explicit vector of system M, namely ~b;

M.H:represents the H operator in lduMatrix.

2.1.1 H operator in lduMatrix

Before continuing the description of "&" operator it is necessary to focus on
the definition in Open∇FOAM of the H operator.
Adressing of elements in the matrix is fulfilled through lduMatrix, two
poiters are defined to navigate through te elements of the matrices:

2. the calculation of divU
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uPtr: namely the upper adress, for upper list it represents column
number while for lower list represents row number;

lPtr: namely the lower adress, for upper list it represents row number
while for lower list represents column number.

If, for instance, we take into account matrix A as defined in equation (A.3):

A :=


1 0 5 0
0 2 0 6
7 0 3 0
0 8 0 4

 (A.3)

It is possible to rewrite it using lduMatrix notation, namely describing it
through diagonal, upper and lower elements:

d(0) − u(0) −
− d(1) − u(1)
l(0) − d(2) −
− l(1) − d(3)

 (A.4)

Once this matrix has been defined, the two pointers (uPtr and lPtr) can be
listed as:

uPtr = [2,3] Representing the columns of upper elements;

lPtr = [0,1] Representing the columns of lower elements.

To have a better understanding of the procedure, it is interesting to procede
with the example introduced with equation (A.3). The vector resulting from
H ooperator is defined as:

for (label face =0; face < nFaces ; face ++)
{
HpsiPtr [uPtr[face ]] -= lowerPtr [face ]* psiPtr [lPtr[face ]];
HpsiPtr [lPtr[face ]] -= upperPtr [face ]* psiPtr [uPtr[face ]];
}

Thanks to the definition of uPtr and lPtr it is possible to write:

HpsiP tr[2]− = l(0) · ψ(0) HpsiP tr[3]− = l(1) · ψ(1)
HpsiP tr[0]− = u(0) · ψ(2) HpsiP tr[1]− = u(1) · ψ(3)

It is possible to reorder the resulting vector as:

HpsiP tr := {−u(0) · ψ(2);−u(1) · ψ(3);−l(0) · ψ(0);−l(1) · ψ(1)}T (A.5)
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The description of the adressing of lduMatrix allows to interpret the formu-
lation of H as defined in lduMatrixTemplates.C :

HN− = AO · ψO
HO− = AN · ψN

(A.6)

Where "N" and "O" refear respectively to neighbouring and owner cells and
so to upper and lower triangular matrix.

The Transformation of the M matrix throug H operator can be graphi-
cally summarised as:

Figure A.3: The H operator

It can be easily demonstrated that theH operator represents the opposite
inner product of the extra diagonal matrix and a vector, namely:

H(A) := −AED · ~ψ (A.7)

Where AED is the extra diagonal matrix.

It is now possible to write the formulation of the "&" operator as defined
in Open∇FOAM:

Mϕ = −−[M.diag +BCi · I] · ψ + M.H(ψ) + M.source +BCe
V

(A.8)

Where BCi represents the diagonal matrix of implicit boundary conditions
and BCe represents the vector of explicit boundary conditions.
As it is possible to infer from equation (A.8) the dimensions given to the
GeometricField by the "&" operator are consistent with its formulation.

2.2 The derivation of "divU"
pEqnComp represents the compressible part of the pressure equation, tak-
ing into account both compressibility of the phases and mass transfer. This
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factor is made by summing an explicit contribution to an implicit undere-
laxed one. The reasons behind this definition are due to the bounding of the
solution.
This compressible part of the pressure equation is then added to the incom-
pressible part and is solved to derive the pressure field Prgh. Once obtained
the solution of the pressure equation is possible to derive explicitly the term
divU through the "&" operator, as seen in Chapter 3. This procedure is sum-
marised graphically in figure A.4, from which is possible to highlight also the
dimensions consistency.

Figure A.4: Schematic representation of divU derivation

2. the calculation of divU
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Interface-Composition Models

1 Lift Coefficient Models
Different models are available in literature for the calculation of lift coeffi-
cients, the most commonly used will be described in the following sections.

1.1 Moraga Model
It is applicable mainly to the lift force on spherical solid particles, though it
can be applied to liquid drops and bubbles. In this model the lift coefficient
combines opposing actions of two phenomena:
• Classical aerodynamic lift resulting from the interaction between the

dispersed phase particles and the primary phase shear;

• The vorticity-induced lift resulting from interaction between particles
and vortices shed by particle wakes.

As a result, the lift coefficient is defined in terms of both particle Reynolds
number and vorticity Reynolds number:

Rep = ρq|~vq − ~vp|dp
µq

(B.1)

Reω =
ρp|∇ × ~vq|d2

p

µq
(B.2)

Introducing φ = RepReω, The Moraga lift coefficient is defined as [57]:

Cl =


0.0767 φ ≤ 6000
0.2e φ

3.6×10−5−0.12 · eφ3×10−7 6000 < φ < 5× 107

−0.6353 φ ≥ 5× 107
(B.3)

123



Appendix B. Interface-Composition Models 124

1.2 Legendre-Magnaudet Model
Is applicable primarily to small diameter spherical fluid particles, though it
can be applied to non-distorted liquid drops and bubbles. The Legendre-
Magnaudet model accounts for the momentum transfer between the flow
around the particle and the inner recirculation flow inside the fluid particle
caused by the fluid friction/stresses at the fluid interface. Therefore, the
predicted lift force coefficients are smaller than for rigid solid particles. The
range of validity given by Legendre and Magnaudet is [58]:

0.1 < Rep < 500 (B.4)
St = 2β ≤ 1 (B.5)
β = 0.5(reω/Rep) (B.6)

And with St = fL
~v

the Strouhal number. The lift coefficient can be written
as:

Cl =
√

(Cl,lovRe)2 + (Cl,highRe)2 (B.7)
With:

Cl,lowRe = 6
π2 (RepSt)−0.5 2.55

(1 + 0.2Rep
St

)1.5
(B.8)

Cl,highRe = 1
2

1 + 16Re−1
p

1 + 29Re−1
p

(B.9)

2 Wall Lubrication Models
Different models are available in literature for the calculation of lubrication
coefficient, the most commonly used will be described in the following sec-
tions.

2.1 Antal Model:
Antal was the first to use this force to predict the near wall peak void fraction.
This model computes the lubrication coefficient as [59]:

Cwl = max

(
0, Cw1

db
+ Cw2

yw

)
(B.10)

Where Cw1 = −0.01 and Cw2 = 0.05 are non dimensional coefficients, db
is the bubble diameter and yw is the distance to the nearest wall. It is
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interesting to note that the lubrication coefficient is different from zero only
within a thin layer adjacent to the wall, the region satisfies this relation:

yw ≤ −
(
Cw2

Cw1

)
db (B.11)

Corresponding to a region yw ≤ 5db with default values of reference coeffi-
cients. As a result, the Antal model will only be active on a sufficiently fine
mesh and grid independence can only be achieved with very fine meshes.

2.2 Tomiyama Model
The expression for the lubrication coefficient for this model is [46, 60]:

Cwl = Cw
db
2

(
1
y2
w

− 1
(D − yw)2

)
(B.12)

WhereD represents the pipe diameter and Cw depends on the Eötvos number
(Eo).

Cw =


0.47 Eo < 1
e−0.933Eo+0.179 1 ≤ Eo ≤ 5
0.00599Eo− 0.0187 5 < Eo ≤ 33
0.179 33 ≤ Eo

(B.13)

Where Eo = g(ρq−ρp)d2
b

σ
and σ is the surface tension.

This model is superior to Antal’s [59] but it is restricted to flows in pipe due
to the dependence on pipe diameter.

2.3 Frank Model
The model developed by Frank et al. [61] removes the dependence on pipe
diameter in the Tomiyama model, expressing the lubrication coefficient as:

Cwl = Cwmax

(
0, 1
Cwd
·

1− yw
Cwcdb

yw
(

yw
Cwcdb

)m−1

)
(B.14)

where:

Cw: is a function of Eo as in Equation (B.13);

Cwd: is the damping coefficient and determines the relative magnitude
of the force;
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Cwc: is the cut-off coefficient and determines the distance to the wall
within which the force is active;

m: is the power law constant (1.5 ≤ m ≤ 2).

3 Drag Models
Different models are available in literature for the calculation of Drag coeffi-
cient, the most commonly used will be described in the following sections.

3.1 Tomiyama Model
This model is well suited to gas-liquid flows in which the bubbles can have
a range of shapes. The drag function is modeled as in the Shiller and Neu-
mann Modell (Equation (2.48)). But in this case the formulation of the drag
coefficient (CD) is different [62,63]:

CD = max

(
min

(
24
Re

(1 + 0.15Re0.687), 72
Re

)
,
8
3

Eo

Eo+ 4

)
(B.15)

The Eotvos number (Eo) is defined in section 2.2.

3.2 Ishii-Zuber Model
This model, as implemented in Open∇FOAM, distinguishes two regimes with
conseguent different drag modeling:

• The spherical bubble regime with a drag coefficient defined by the Ishii-
Zuber formula for spherical solid particles [64]:

Cd(sphere) = max

(
24
Rebm

(1 + 0.15Re0.687
bm ), 0.44

)
(B.16)

where the Reynolds number is defined as:

Rebm = ρbubble|~U1 − ~U2|Ds

µm
(B.17)

µm = µbubble

(
1− αa

αmax

)−2.5αmaxµ∗

(B.18)

µ∗ = µ1 + 0.4µ2

µ1 + µ2
(B.19)
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This model is valid only for solid particles in the undistorted regime
[Rushe]. αmax is the maximum phase fraction and depends on the
maximum packing value considered. It is user-defined and Rusche [15]
suggested a value of 0.62 for solid particles and 1.0 for fluid particles
(if the Ishii-Zuber model valid for bubbles is used).

• The ellipse distorted regime:

Cd(ellipse) = E(α1)Cd∞ (B.20)

where:

Cd∞ = 2
3Eo

1/2 (B.21)

E(α1) = 1 + 17.67f(α1)(6/7)

18.67f(α1) (B.22)

f(α1) = µ2

µm
(1− α1)(1/2) (B.23)

And the Eötvös number is defined as the ratio between gravitational
and surface tension forces:

Eo = (ρ2 − ρ1)gD2
S

σ
(B.24)

An automatic regime selection is performed in the code according to [2]:

Cd = Cd(sphere) if Cd(sphere) ≥ Cd(ellipse) (B.25)
Cd = Cd(ellipse) if Cd(sphere) < Cd(ellipse) (B.26)

4 Turbulent Dispersion Models
The following sections describe the models for turbulent dispersion force.

4.1 Lopez de Bertodano Model
Instead of following equation (2.51), Lopez de Bertodano proposed this for-
mulation, one of the simplest available in literature [65,66]:

~Ftd,q = −~Ftd,p = CTDρqkq∇αp (B.27)

Where:

4. Turbulent Dispersion Models
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ρq: continuous phase density:

kq: turbulent kinetic energy of continuous phase:

∇αp: gradient of dispersed phase volume fraction:

CTD: modifiable variable (initially set as 1).

4.2 Burns Model
This model is based on the Favre averaging of the drag term [66]:

~Ftd,c = −3
4Cd

ρd
Ds

νtd
σt
|~Ur|αc

(
1
αc

+ 1
αd

)
∇αc (B.28)

where σt = 0.9and Cd stands for the drag force coefficient that is used during
the simulations.

4.3 Gosman Model
This is the formulation of the Gosman et al. [39] model as implemented in
Open∇FOAM:

~Ftd,c = −3
4Cd

ρd
Ds

νtd
σt
|~Ur|∇αc (B.29)

where σt = 0.9 and Cd stands for the drag mpdel coefficient.

4. Turbulent Dispersion Models
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