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Sommario

Negli ultimi decenni, la crescente disponibilità di dati ha reso possibile lo
sviluppo di modelli su larga scala per lo studio di molti fenomeni. I modelli
gra�ci probabilistici descrivono in maniera compatta l'interazione tra le va-
riabili, tramite una rappresentazione a grafo, nella quale i nodi corrispondono
alle variabili aleatorie di interesse e gli archi alle interazioni probabilistiche
tra di esse. In molte applicazioni, il problema sotto studio è modellato più
accuratamente da una collezione di modelli gra�ci, piuttosto che da uno sin-
golo. Ciò avviene quando i dati sono caratterizzati da una eterogeneità di cui
si vuole tenere conto, ossia sono divisi in categorie: le variabili sono le stesse,
ma interagiscono tra loro in maniera di�erente. Di conseguenza, alcuni archi
saranno presenti in tutte le categorie, altri saranno speci�ci di un determina-
to gruppo. In questo contesto, la stima congiunta dei diversi modelli gra�ci
permette lo scambio di informazione tra categorie, favorendo l'individuazione
della struttura comune e riducendo la variabilità della stima, specialmente
nelle categorie con poche osservazioni.
Scopo del presente progetto di tesi, sviluppato nel corso di un tirocinio di sei
mesi presso la MRC Biostatistics Unit (Università di Cambridge), è lo svilup-
po teorico di un metodo Bayesiano per la stima congiunta di una collezione di
modelli gra�ci Gaussiani, che sia e�ciente dal punto di vista computazionale.

Parole chiave: modelli gra�ci Gaussiani, categorie multiple, test d'ipotesi,
prior coniugato, dati alto-dimensionali, e�cienza computazionale.



Abstract

In the last decades data availability increased substantially. Thanks to that,
several phenomena are now studied by means of large-scale models. The
framework of probabilistic graphical models provides a mechanism to de-
scribe the interplay between variables in a compact way: this is achieved
by using a graph-based representation, where the nodes correspond to the
random variables of interest and the edges to direct probabilistic interactions
between them. In many applications the estimation of a collection of graph-
ical models is better suited than a single one to describe the problem under
study. This happens when data are characterized by informative heterogene-
ity, i.e. they belong to di�erent categories: the variables are the same, but
they interact in di�erent ways, so that some edges will be present in all cate-
gories, while others will be category-speci�c. In such cases, jointly estimating
the multiple graphical models enables the borrowing of information across
conditions: this favours the detection of a common structure and reduces the
variance of the estimates, especially in categories with few observations.
The aim of my thesis project, carried out during a six months internship
at the MRC Biostatistics Unit (University of Cambridge), is the theoretical
development of a computationally e�cient Bayesian method for the joint in-
ference of multiple Gaussian graphical models.

Key words: Gaussian graphical models, multiple conditions, hypothesis test-
ing, conjugate prior, high-dimensional setting, code optimization.



Introduction

In the last decades we witnessed a substantial increase in data availability,
enabled by new technologies for their collection and storage. Thanks to that,
several phenomena in various �elds are now studied by means of large-scale
models, involving complex relationships between tens of thousands or mil-
lions variables (Jordan et al. [2004]).
The framework of probabilistic graphical models provides a mechanism to
describe the interplay between variables in a compact way: this is achieved
by using a graph-based representation, where the nodes correspond to the
random variables of interest and the edges to direct probabilistic interactions
between them.
In the introduction to their book on probabilistic graphical models, Koller
and Friedman [2009] present three advantages of this framework: �rst, the
type of representation is transparent, so that an expert can easily evaluate
its properties; second, the graph structure enables much faster inference of
the posterior probability of some variables given evidence on others with re-
spect to algorithms manipulating the joint distribution explicitly; third, this
framework supports a very e�ective data-driven approach to model construc-
tion.
Graphical models are currently used in many �elds, such as information re-
trieval, image and speech processing, communications and genomics; several
methods have been developed for their inference, both in Bayesian and fre-
quentist settings.
As clearly illustrated in the introduction of the paper by Guo et al. [2011],
in many applications the estimation of a collection of graphical models is
better suited than a single one to describe the problem under study. This
happens when data are characterized by informative heterogeneity, i.e. they
belong to di�erent categories: the variables are the same, but they interact in
di�erent ways, so that some edges will be present in all categories, while oth-
ers will be category-speci�c. As an example, we can consider gene networks
describing di�erent subtypes of the same cancer: there will be some shared
sub-networks across multiple subtypes, and some links present only in a par-
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INTRODUCTION 2

ticular subtype. Detecting common sub-networks might be useful, especially
when one of the subtypes is, say, uncurable: the discovery of similarities
with another subtype that can be cured, may lead to the design of a new
drug targeting the shared mechanism, thus curing also the �rst subtype. On
the other hand, the detection of category-speci�c edges can help to pinpoint
more precisely which genes are responsible for a speci�c mutation. Another
example is the comparison between healthy subjects and patients a�ected
by a particular disease: the inference of the di�erential network, composed
by those edges that are present only in one of the two conditions, can reveal
useful information to understand the causes of that speci�c disease.
In such cases, jointly estimating the multiple graphical models enables the
borrowing of information across conditions: this favours the detection of a
common structure and reduces the variance of the estimates, especially in
categories with few observations.
Reviewing the existing literature, it can be evinced that many of them are
designed to address only speci�c tasks, like detecting the di�erential (Tes-
son et al. [2010]) or common (Hara and Washio [2013]) network structure;
some are restricted to the framework with only two conditions (Gill et al.
[2010], Valcárcel et al. [2011]). The majority of the methods use regulariza-
tion to assess the sparsity of the network (Danaher et al. [2014], Chiquet et al.
[2011]), others, like Peterson et al. [2015], go Bayesian. Both approaches have
speci�c points of strength and drawbacks: the former scales quite well in a
high-dimensional setting, but the estimation heavily depends on the choice
of the penalization hyperparameter, which is not straightforward; the latter
is less parameter dependent, however it is computationally very demanding,
so that it can be employed only when the number of features under analysis
is small.
The aim of my thesis project, carried out during a six months internship at
the MRC Biostatistics Unit (University of Cambridge), is the theoretical and
computational development of a method for the joint inference of multiple
Gaussian graphical models. The starting point has been the paper by Leday
and Richardson [2018]. The method they introduce is Bayesian, with con-
jugate prior, so that the posterior can be computed analytically. Thus, no
sampling phase is required and the method scales very well. The Bayesian
model outputs a dense estimation, i.e. a network with all edges present: the
subsequent phase consists in a multiple testing procedure to remove from
the network all the edges for which the null hypothesis of being absent is not
rejected.
The goal is to extend their Bayesian model to the multi-condition case, pre-
serving the prior conjugacy and the error control, assessed through the hy-
pothesis testing.
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The di�cult part to extend has been the graph structure recovery by means
of multiple testing. Indeed, the new framework adds a further layer of mul-
tiplicity: besides having multiple edges to test simultaneously within each
condition, we also have multiple conditions. To tackle this problem, we tried
to adapt di�erent approaches present in the literature to our case: Union-
Intersection tests (Van Deun et al. [2009]), hierarchical testing (Goeman et al.
[2011]) and hierarchical BH (Peterson et al. [2016]).
We will also introduce some concepts borrowed from information theory to
provide an interpretable and well-de�ned notion of distance and, diametri-
cally, of similarity to measure the relatedness between conditions.
Big e�ort has been put also in the phase of data simulation, necessary to
evaluate the performances of our method. We had to simulate sparse pos-
itive de�nite matrices, representing the graph structure: this task becomes
harder and harder as the number of features to include in the simulation
increases.
The last part of the thesis project was devoted to the internal comparison
between the uni-dimensional method applied independently to each condi-
tion, and the joint one: we found out that the bene�t of joint estimation is
not as signi�cant as we hoped. Therefore, we propose two new methods for
the estimation of the hyperparameters in the joint prior.
Together with the paper, Leday developed the R package beam which imple-
ments the proposed method. Also the computational part of our method,
besides the theoretical one, tried to follow the single-condition framework.
Consequently, the R package beamDiff we started developing for the joint
estimation in the multi-condition case heavily relies on beam.
For this reason, the very �rst step has been the optimization of beam, mainly
aimed at a better memory management. This has been bene�cial for beam
itself and for beamDiff in cascade.
The outline of this thesis is as follows.

• Chapter 1: Background and preliminaries. Multivariate Gaus-
sian model and association graphs are revised; after that, the paper by
Leday and Richardson [2018] is presented.

• Chapter 2: R package 'beam'. This chapter is devoted to the
software development of R package beam and to the optimizations per-
formed on it.

• Chapter 3: Joint inference of multiple Gaussian graphical

models. An introduction to multi-condition framework is given; then
the model we propose is presented.
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• Chapter 4: Computational development. This chapter is ded-
icated to the R package beamDiff implementing our method and to
data simulation.

• Chapter 5: Results on simulated and real data. Our method is
tested on simulated data and on a real dataset containing the protein
expression for 19 cancer types.

All the code written during my thesis project has been implemented using
the statistical software R (R Core Team [2013]) and Rstudio (RStudio Team
[2016]).



Chapter 1

Background and preliminaries

This thesis deals with Bayesian inference of Gaussian graphical models from
high-dimensional data: this chapter is devoted to the presentation of some
preliminaries about the Gaussian model, its peculiar relationship with graph-
ical models and the Bayesian approach to the inference. In the last section
the work by Leday and Richardson [2018] is presented.

1.1 Multivariate Gaussian models

Since we will assume a normal distribution for our data, we here introduce
the nomenclature and some useful properties, for which we refer to Pearson
[2001]. Denote a p-dimensional random variable that is normally distributed
with mean µ = (µ1, ..., µp)

T and covariance matrix Σ = [σij]i,j=1..p by:

Y ∼ N (µ,Σ).

We also denote the inverse of the covariance matrix by Σ−1 = Ω = [ωij]i,j=1..p

and we will refer to it as the precision matrix. The partition of Y into two
disjoint subsets indexed by a ⊂ V = {1, ..., p}, card(a) = q, and b = V \ a,
Y = [Ya, Yb], induces the partition of µ into [µa, µb] and the following block-
wise decomposition of Σ:

Σ =

[
Σaa Σab

Σba Σbb

]
,

with Σba = ΣT
ab.

Proposition 1.1. The family of normal distributions is closed under marginal-
isation and conditioning, that is the marginal distribution of Ya and the con-
ditional distribution of Ya given Yb are again normal, and given by

Ya ∼ N (µa,Σaa)

5
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X1 X2

X3 X4

Figure 1.1: Example of undirected graph.

and
Ya|Yb ∼ N (µa + ΣabΣ

−1
bb (Yb − µb),Σaa.b),

with Σaa.b = Σaa − ΣabΣ
−1
bb Σba, respectively.

It is interesting to use the blockwise inversion of Σ to link the elements
of Σ to those of Ω:

Ω =

[
Σ−1aa.b −Σ−1aa.bΣabΣ

−1
bb

−Σ−1bb ΣbaΣ
−1
aa.b Σ−1bb + Σ−1bb ΣbaΣ

−1
aa.bΣabΣ

−1
bb

]
.

In particular we evince that Ωaa = Σ−1aa.b, which directly entails

Σaa.b = Ω−1aa .

Exploiting this equality, the conditional distribution presented in Proposition
1.1 becomes:

Ya|Yb ∼ Nq(µa + ΣabΣ
−1
bb (Yb − µb),Ω−1aa ). (1.1)

These results show that the sub-matrix Σaa captures marginal dependencies
between the variables indexed by a (Proposition 1.1), whereas the inverse of
sub-matrix Ωaa captures dependencies between the variables indexed by a
conditional to (or adjusted by) the variables indexed by b (Equation 1.1).

1.2 Association graphs

In this section we introduce some basic notions and notations about graphs,
from the book by Edwards [2012]
We denote with graph, G = (V , E), a structure consisting of a �nite set V
of vertices (also called nodes) and a �nite set E of edges (also called arcs)
connecting them. A graph is said to be undirected if all edges do not have a
direction, i.e. there is a two-way relationship between the nodes connected
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by an edge. We also assume that between two vertices one edge can be
present at most once: multiple edges are not allowed. Lastly, it is possible
to associate to each edge a weight, indicating the strength of the connection
between nodes: in this case, we will talk about weighted graphs.
From this brief description, it is clear that association graphs are quite generic
and �exible tools. We will work with undirected graphs, where each node
corresponds to a feature and the edges represent dependence (marginal or
conditional, as we will see later) between the pair of connected variables. A
simple example with 4 nodes and 4 edges is reported in Figure 1.1.

1.3 Gaussian graphical models

We now investigate the particular relationship between multivariate Gaussian
distribution and graphical models. Before starting, it is useful to recall the
notions of marginal and conditional independence:

De�nition 1.1. Two random variables X1 and X2 are independent if their
joint distribution factorizes in the product of the two marginal distributions:

fX1,X2(x1, x2) = fX1(x1)fX2(x2).

De�nition 1.2. Let X1, X2, and X3 be three random variables. X1 and X2

are said to be conditionally independent given X3 (X1 ⊥⊥ X2|X3) if X1 and
X2 are independent in the conditional distribution given X3 = x3, for each
value x3.

The structure of marginal and conditional dependence is exactly what
we would like to encode in our networks, so that an edge between two vari-
ables will indicate that they are related: in particular, marginal dependence
means that the two variables a�ect reciprocally, but this might be due to one
or more other variables they are linked to; conditional dependence means,
instead, direct e�ect one on the other, after all the external e�ects have been
removed by conditioning on them. The conditional network will usually be
much sparser than the marginal one, since the edges represent a stronger, un-
mediated, dependence: for this reason, it is considered a more interpretable
tool by the experts analysing the results.
As an example, let us consider the graph in Figure 1.1: assuming that it
represents the conditional association structure, we can evince from it that
X1 ⊥⊥ X3|(X2, X4) and X1 ⊥⊥ X4|(X2, X3).
Therefore, with networks we want to display the pairwise relationship be-
tween variables, say, i and j: let us then revise the properties of multivariate
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Gaussian models, introduced in Section 1.1 when the partition is a = {i, j}
and b = {1, ..., p} \ a. Recalling Equation 1.1, the conditional distribution of
Y{i,j} given "the rest" is a bivariate normal, with covariance matrix Ω−1aa , i.e.
the block of Ω relative to variables i and j:

Ω−1aa =

[
ωii ωij
ωij ωjj

]−1
=

1

ωiiωjj − ω2
ij

[
ωjj −ωij
−ωij ωii

]
.

We will indicate the correlation coe�cient of this distribution with ρij and
call it partial correlation coe�cient :

ρij =
−ωij√
ωiiωjj

.

It is immediate to see that

ρij = 0⇔ ωij = 0,

i.e. two variables are independent given the remaining ones if and only if the
corresponding element in the inverse covariance matrix Ω is null.
Since we proved that all the information about partial independence is en-
coded inside the inverse covariance matrix, the �rst goal will be its estimation,
followed by the application of a selection criterion to identify the elements
signi�cantly di�erent from zero.

1.4 The Bayesian approach

As we showed in the last section, all the inference for Gaussian graphical
models boils down to the estimation of the precision matrix Ω, which must
be positive de�nite by de�nition and sparse, in order for the corresponding
network to be meaningful and interpretable. To the best of our knowledge,
there are two main approaches to deal with it: the �rst one is frequentist
and based on the optimization of a penalized likelihood which encourages
sparsity, the second is Bayesian and it can be thought as a problem of model
selection. We will present a method belonging to the �rst category in Section
3.1, when talking about joint estimation across multiple conditions. Now we
focus on the Bayesian approach, since this is what we are going to use for
our model.
Bayes rule is the core of all Bayesian statistics: the goal is to update the a
priori distribution of one or more unknown parameters given the data; the
posterior is proportional to the product of prior and likelihood. In our case,
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the parameter of interest is Ω, or its inverse Σ depending on the type of de-
pendence, conditional or marginal, under study; more speci�cally, we want
Ω to be sparse, for the reasons explained earlier, so that some of its entries
must be identically zero.
We indicate with G the graph which constraints the structure of Ω: ωij = 0 if
and only if there is no edge in G connecting variables i and j. In a Bayesian
setting, G is a random variable as well: we need therefore to specify a prior
for it; however, this is the hardest and most challenging step when de�ning
the model.
First thing to point out is that the space of p × p binary and symmetric
matrices, over which G is de�ned, is very high-dimensional and grows super-
exponentially with the number of features p. Indeed, given p variables, the
underlying complete graph consists of p(p−1)

2
edges, and each of them can be

either present or absent; therefore, there are 2
p(p−1)

2 possible graphical mod-
els. When p = 10, for example, this number is in the order of 1013. An
exhaustive search over the entire space is computationally impossible.
Even assuming it is not, there are still some drawbacks we will outline for

the easiest case of uniform prior over all the 2
p(p−1)

2 possible models: be-
ing the probability distribution so spread, we will not have con�dence on
the Maximum A Posteriori (MAP) estimator, in the sense that its posterior
probability will be still very small.
In order to overcome this problem, MAP estimator is usually replaced by a
weighted average over all the models: G will then contain the edges with the
highest posterior probability of inclusion. In any case, the model space must
be necessarily narrowed and explored stochastically for the search procedure
to be computationally feasible, but it is generally di�cult to identify a good
subspace, either small enough to be handled and rich enough to contain non-
trivial graphical structures.
In Section 3.1, we will brie�y describe a fully Bayesian algorithm for the
inference of multiple Gaussian graphical models by Peterson et al. [2015]:
the precision of their estimates gained through a complex hierarchical model
comes at the prize of heavy computations, so that they can not go much
further than a hundred features.
The method we will introduce in the next section is Bayesian as well, but it
relies on a prior which is conjugate, so that the posterior distribution can be
derived analytically, without resorting to MCMC algorithms: thanks to that,
the algorithm scales very well with the number of features. The only way
to remain conjugate is to estimate a dense matrix; sparsity will be achieved
afterwards through element-wise hypothesis testing: the null hypothesis is
ωij = 0 (for partial independence, σij = 0 for marginal independence), i.e.
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the edge is not present in the network. All the edges for which H0 is not
rejected will be removed from the network and the corresponding element ωij
in the precision matrix (or, analogously, σij in the correlation matrix) will
be set to 0.

1.5 Fast Bayesian inference in large Gaussian

graphical models

This section is based on the work of Dr G. Leday and Prof S. Richardson,
presented in Leday and Richardson [2018]. The paper proposes to perform
graphical model selection by means of multiple testing of hypotheses about
pairwise (marginal or conditional) independence, using closed-form Bayes
factors. This approach has two strong points: it allows control of the type I
error (which seems more di�cult to achieve in the standard framework) and
it is computationally very e�cient.

1.5.1 The Gaussian conjugate model

Let Y be the n×p observation matrix; the probability distribution associated
to it is the matrix normal, which is the generalization of the multivariate nor-
mal distribution to random matrices. Matrix and multivariate distributions
are related in the following way:

Y ∼MN n,p(M,U,Σ) if and only if vec(Y ) ∼ Nn×p (vec(M),Σ⊗ U) ,

where ⊗ denotes the Kronecker product, vec(M) the vectorization ofM , and
U and Σ are positive-de�nite real n × n and p × p, respectively, covariance
matrices.
In this setting, M is a zero matrix and U the n-dimensional identity In.
The prior for Σ is chosen to be the inverse-Wishart distribution, because
it is conjugate, i.e. the posterior distribution of Σ is Inverse-Wishart, as
well. This allows the derivation of closed-form Bayes estimators for Σ and
Ω. Summing up, the overall Bayesian model is de�ned as follows:

vec(Y )|Σ ∼ Nn×p(0,Σ⊗ In)

Σ|M, δ ∼ IWp(M, δ)
(1.2)

Proposition 1.2. The model described in 1.2 is conjugate and the posterior
distribution is

Σ|M, δ, Y ∼ IWp(M + S, δ + n),

where S = Y TY .
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1.5.2 Hyperparameters elicitation

To complete the model, prior hyperparameters must be elicited. They are
the degrees of freedom δ and the scale matrix M of the inverse-Wishart
distribution modelling Σ, as reported in Equation 1.2.
The expected value of a inverse-Wishart distributed p× p random matrix X
with parameters M and δ, X ∼ IWp(M, δ) is given by

E[X] =
M

δ − p− 1
.

Let T := M/(δ − p− 1) be the target matrix, i.e. the matrix towards which
the MLE estimator is shrunk.
The data Y are standardized (Y T

j In = 0 and Y T
j Yj/n = In for 1 ≤ j ≤ p),

therefore Σ will contain the correlation between the variables; in absence
of prior information, the most reasonable choice is to set the target matrix
T equal to the identity and, consequently, the hyperparameter M equal to
(δ − p− 1)Ip.
Hyperparameter δ needs to be chosen carefully, since it has a regularization
e�ect, as we can see by writing down the posterior expectation of Σ:

E[Σ|X] =
M + S

δ + n− p− 1
=

1

δ + n− p− 1
M +

n

δ + n− p− 1

S

n

=
δ − p− 1

δ + n− p− 1
T +

n

δ + n− p− 1
Σ̂mle.

E[Σ|X] is a convex linear combination between the prior expectation E[Σ] =
T and the maximum likelihood estimator Σ̂mle, weighted by α = (δ − p −
1)/(δ + n− p− 1) ∈ (0, 1), which indeed depends on δ.
Following previous papers, e.g. Hannart and Naveau [2014], δ is set to the
value which maximizes the log-likelihood of the model. It can be obtained in
closed-form and e�ciently optimized, being convex:

δ̂ = argmax
δ

log pδ(X),

where

log pδ(X) =− np

2
log π + log Γp

(
δ + n

2

)
− log Γp

(
δ

2

)
+
δ

2
log|M | − δ + n

2
log|M + S|,

(1.3)

being S = XTX, Γp(·) the multivariate gamma function and the vertical
lines |·| representing the determinant operator.
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Setting M = (δ − p− 1)Ip, Equation 1.3 can be simpli�ed:

log pδ(X) =− np

2
log π + log Γp

(
δ + n

2

)
− log Γp

(
δ

2

)
+
δp

2
log (δ − p− 1)− δ + n

2

∑
i=1

log (δ − p− 1 + di) ,
(1.4)

being di the eigenvalues of S.

1.5.3 Bayes factors

Bayes factors for marginal independence

In order to build the graphical model associated with the data, it is necessary
to test the presence of each single edge (i, j):

HM
0,ij : φij = 0 against HM

1,ij : φij 6= 0,

where φij = σij(σiiσjj)
−1/2 is the marginal correlation between variables i

and j. The Bayes factor evaluating evidence in favour of the alternative
hypothesis H1 is

BFM
ij =

∫
p1(Y |Σ)p1(Σ)dΣ∫
p0(Y |Σ0)p0(Σ0)dΣ0

,

where Σ0 is the covariance matrix Σ with σij = 0. Through some reparametriza-
tions and adopting a conditional approach to derive the distribution under
the null hypothesis from that under the alternative, the following closed-form
expression for the marginal Bayes factor is obtained:

BFM
ij =

Γ2(
δ+n−p+2

2
)Γ2( δ−p+3

2
)

Γ2(
δ−p+2

2
)Γ2( δ+n−p+3

2
)

(
1− r2m,ij

) δ−p+2
2(

1− r2h,ij
) δ+n−p+2

2

(
h2iih

2
jj

m2
iim

2
jj

) 1
2

,

where m2
ii,m

2
jj, rm,ij, h

2
ii, h

2
jj and rh,ij are such that

Maa =

[
m2
ii miimjjrm,ij

miimjjrm,ij m2
jj

]
Haa = Maa + Saa =

[
h2ii hiihjjrh,ij

hiihjjrh,ij h2jj

]
.

(1.5)

The subscripts aa indicate the 2×2 submatrix ofM and S respectively, with
the elements associated to coordinates i and j.
As a �nal note, we can interpret Haa as the Bayesian update of the prior
matrix Maa: from this perspective, m2

ii,m
2
jj, h

2
ii, h

2
jj, rm,ij and rh,ij can be

seen as prior marginal and posterior variances and correlations.
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Bayes factors for conditional independence

Similarly to the marginal case, in order to evince the conditional indepen-
dence structure it is necessary to de�ne the proper hypothesis test for the
partial correlation ρij = −ωij(ωiiωjj)−1/2:

HC
0,ij : ρij = 0 against HC

1,ij : ρij 6= 0.

Again, through block-wise partition of the involved matrices induced by the
partition of Y in (Ya, Yb), where a = i, j and b = V \a, and through a condi-
tional approach for deriving the prior distribution under the null hypothesis,
the Bayes factor in favour of HC

1,ij can be computed. Its expression is the
following:

BFC
ij =

Γ( δ+n
2

)Γ( δ+n−1
2

)Γ2( δ+1
2

)

Γ( δ
2
)Γ( δ−1

2
)Γ2( δ+n+1

2
)

(1− r2g,ij)
δ
2

(1− r2k,ij)
δ+n
2

(
k2iik

2
jj

g2iig
2
jj

) 1
2

,

where g2ii, g
2
jj, rg,ij, k

2
ii, k

2
jj and rk,ij are such that

Maa.b =

[
g2ii giigjjrg,ij

giigjjrg,ij g2jj

]
and Haa.b =

[
k2ii kiihjjrk,ij

kiikjjrk,ij k2jj.

]
with Maa.b = Maa −MabM

−1
bb Mba and Haa.b = Haa −HabH

−1
bb Hba.

Scaled Bayes factors

Both marginal and conditional Bayes factors presented in the previous sec-
tions are not scale-invariant, due to their last multiplicative term. Since the
next step of the method will involve their comparison in the multiple testing
context, from now on their scaled version will be considered, thus de�ned:

sBFM
ij =

Γ2(
δ+n−p+2

2
)Γ2( δ−p+3

2
)

Γ2(
δ−p+2

2
)Γ2( δ+n−p+3

2
)

(
1− r2m,ij

) δ−p+2
2(

1− r2h,ij
) δ+n−p+2

2

(1.6)

for marginal independence, and

sBFC
ij =

Γ( δ+n
2

)Γ( δ+n−1
2

)Γ2( δ+1
2

)

Γ( δ
2
)Γ( δ−1

2
)Γ2( δ+n+1

2
)

(1− r2g,ij)
δ
2

(1− r2k,ij)
δ+n
2

(1.7)

for conditional independence.
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1.5.4 Structure estimation via multiple testing

So far, for each edge (i.e. couple of features) the estimation of marginal
and partial correlation and the scaled Bayes factor have been computed:
the higher this quantity, the higher the evidence towards the presence (if it
is positive, absence if it is negative) of the edge in the network. Dealing
with scaled quantities, the comparison between the p(p− 1)/2 edges is facil-
itated, but they are still di�cult to interpret, because the scale itself is not
so meaningful. To address this problem, tail probabilities are derived using
the null distribution of the Bayes factors; these new quantities are precisely
probabilities, bounded between 0 (maximum evidence in favour of H1) and
1 (maximum evidence in favour of H0), to which standard adjustments can
be applied, in order to account for multiplicity and control family-wise error
or false discovery rate. The tail probabilities can be computed analytically:
the most relevant considerations about how to derive them in the marginal
case are here reported.
First of all, the only data-dependent term in the Bayes factor 1.6 is rh,ij;
then, recalling from 1.5 that Haa = Maa + Saa, it can be evinced that
rh,ij = (miimjjrm,ij + siisjjrs,ij)(hiihjj)

−1. When the prior matrix M is diag-
onal, rm,ij = 0 and consequently rh,ij is proportional to rs,ij, therefore the tail
probability can be obtained from the distribution under the null hypothesis
of rs,ij:

pr(sBFM
ij )H0 > (sBFM

ij )obs = pr(r2s,ij)H0 > (r2s,ij)obs.

The following proposition will prove in a while to be useful in deriving the
distribution of rs,ij (and, consequently, of the tail probabilities):

Proposition 1.3 (Proposition 3 of Leday and Richardson [2018]). Suppose
Φ ∼ W2(Σ, d), where

Φ =

[
φ2
1 φ1φ2ϕ

φ1φ2ϕ φ2
2

]
and Σ =

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
are parametrised in terms of their correlations ϕ and ρ. Then,

(ϕ2|ρ = 0) ∼ Beta(1/2, (d− 1)/2).

Recalling that, according to the proposed model, Saa ∼ W2(Σaa, n),
the distribution of its squared correlation r2s,ij under the null hypothesis of
marginal independence can be derived, thanks to Proposition 1.3:

r2s,ij|HM
0,ij ∼ Beta(1/2, (n− 1)/2).

Summing up, the tail probability of the Bayes factor for marginal indepen-
dence can be computed exactly using Beta(1/2, (n− 1)/2). A similar result
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is obtained in the conditional case.
To conclude, the underlying graph structure, starting from the dense esti-
mations of Σ (marginal independence) and Ω (conditional independence), is
retrieved by means of multiple hypothesis testing: the p(p − 1)/2 tail prob-
abilities, exactly derived from the Bayes factors, are adjusted to account for
multiplicity using standard correction procedures (Bonferroni, Benjamini-
Hockberg, Holm, ...) to control, say, family-wise error or false discovery
rates.



Chapter 2

R package 'beam'

The method proposed by Leday and Richardson [2018] and presented in
Chapter 1.5 has been implemented in the R package beam (Leday and Sper-
anza [2018]), available on the CRAN repository.
This method shows two main innovation points with respect to others de-
voted to the same task of estimating graphical models: �rst of all, the entire
procedure is closed-form, thus avoiding the sampling step, normally present
in Bayesian algorithms. The sampling phase is computationally expensive,
that is why fully Bayesian algorithms requiring MCMC sampling usually can-
not deal with a large number of features. On the contrary, this algorithm
scales very well in a high-dimensional setting. Secondly, having derived the
tail probabilities using the exact distribution under the null hypothesis of
the Bayes factors, type I error can be controlled, say, with family-wise error
or false discovery rates. In the standard framework, such control would be
more di�cult to achieve.

2.1 Structure of the package

In this section the original structure of R package beam is presented. During
the optimization process it has been slightly modi�ed, as explained in the
next section. The documentation of the optimized version of beam, available
on the CRAN, can be found in Appendix A.
The package is composed by two main functions:

• beam: performs the �rst step of the algorithm, i.e. the estimation of
the covariance matrix Σ and of its inverse Ω. For each entry of the two
matrices Bayes factors, in logarithmic scale, and tail probabilities are
also returned. This step of the algorithm is parameter-free, therefore

16
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beam

marginal : matrix
conditional : matrix
deltaOpt : numeric
alphaOpt : numeric
time : numeric

marg() : data.frame
cond() : data.frame
plotHeatmap() : plot

beam.select

marginal : matrix
conditional : matrix

marg() : data.frame
cond() : data.frame
mcormat() : matrix
pcormat() : matrix
bgraph() : igraph
ugraph() : igraph

Figure 2.1: Simpli�ed UML class diagrams for the S4 objects provided in
beam package, with core slots and methods displayed.

no tuning phase is required, contrary to many other algorithms. Hy-
perparameter tuning can be either slow, if interested in an exhaustive
search over the parameter space, and tricky, since it is often di�cult to
pinpoint the optimal values.

• beam.select: performs the selection, testing edge by edge whether
it is present or not in the network. The user can set one or two pa-
rameters, depending on the multiplicity adjustment (Bonferroni, Holm,
Benjamini-Hockberg, ...) he chooses: thres is the overall level of the
test, by default set to 0.1, while p0, used by blfdr (Bayesian local false
discovery rate) and BFDR (Bayesian false discovery rate), is the prior
belief about the proportion of true null hypotheses (close to 1 for very
sparse graphs, close to 0 for dense graphs).

The output of beam function is an S4 object of class beam-class. The most
interesting quantities contained in this object are two matrices with p(p−1)/2
rows, corresponding to the number of edges present in the complete network
(in this step no selection is performed yet), and the estimates of marginal and
partial correlation (respectively), scaled Bayes factors and tail probabilities
along the columns. Function beam.select takes the beam object as input
and returns in output another S4 object of class beam.select-class con-
taining only the edges which were selected as actually present in the network
representing marginal and conditional independence structures, respectively.
In addition to that, some methods acting on the S4 output objects, beam and
beam.select, are provided: in general, they take the quantities of interest
contained in the output and return them to the user in a useful and readable
format. As an example, methods bgraph and ugraph take a beam.select

object as input and return the marginal and conditional independence struc-
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Figure 2.2: Size of beam object when n = 71 and p ∈ [50, 8000]

tures, respectively, as igraph objects, a format provided by the homonym
R package igraph (Csardi and Nepusz [2006]), a broad library with lots of
tools for network analysis and a good interface with other applications, like
Cytoscape for network visualization.
The main slots and methods of beam-class and beam.select-class are
reported in Figure 2.1.

2.2 Code optimization

2.2.1 Original version

The �rst version of beam package had some issues: besides few secondary
bugs, mainly related to a lack of error handling, the main problem was the
extremely large size of the output object beam. In Figure 2.2 we show how the
size of the output increases with the number of features p, while the number
of instances n is kept �xed at 71: as expected, we see that the growth is
quadratic, like the number of edges with respect to p. When p = 8000, the
size of the output is around 2.5 Gigabytes, and R can fail in storing it if in
its environment there are already other big objects.
Therefore, the �rst goal of code optimization was to reduce the amount of
memory needed for beam output. Many tips for achieving a better code have
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row col m_cor m_logBF m_tail_prob

[1,] 1 2 -0.3499239 10.049308 3.897943e-08

[2,] 1 3 0.4387400 18.201709 1.260282e-12

[3,] 2 3 -0.2974358 6.326299 4.049561e-06

[4,] 1 4 -0.2740645 4.900681 2.389228e-05

[5,] 2 4 0.1193434 -1.345668 7.196609e-02

[6,] 3 4 -0.0550267 -2.454343 4.085861e-01

(a) slot "marginal"

row col p_cor p_logBF p_tail_prob

[1,] 1 2 0.004152242 -0.8375797 0.87009330

[2,] 1 3 0.078558793 0.3446349 0.01889859

[3,] 2 3 -0.020700522 -0.7588028 0.44481223

[4,] 1 4 -0.009233312 -0.8245544 0.79493445

[5,] 2 4 0.010220344 -0.8208769 0.72228012

[6,] 3 4 -0.037582710 -0.5702007 0.32148008

(b) slot "conditional"

Figure 2.3: An example of slots "marginal" (a) and "conditional" (b) con-
tained in S4 object beam.

been taken from the book about advanced programming in R by Wickham
[2014].
Let us start by investigating in more detail the structure of the two tables
returned in output and reported in Figure 2.3, since they are by far the
biggest objects returned in output: each one is made of p(p− 1)/2 rows and
5 columns, with two of them ('row' and 'col') in common.

2.2.2 Improvements and comparison

The �rst improvement simply consisted in returning a unique table, instead
of two, in order not to duplicate the columns related to the indexing. More-
over, the data structure initially chosen to represent the tables in R was
the matrix, which is not e�cient for situations where the columns are not
type-homogeneous, as in this case: indeed, all the elements inside a matrix
must be of the same type, thus forcing the �rst two columns, containing only
positive integers, to be treated as �oats. In order to allow each column to use
the best data type to represent its values, we decided to convert the matrix
into a data frame, thus reducing the object size of 30%.
The last optimization step consisted in completely removing columns 'row'
and 'col': that was possible after realizing that there is a one-to-one relation
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
− 1 2 4 7
− − 3 5 8
− − − 6 9
− − − − 10
− − − − −

⇔

− (1, 2) (1, 3) (1, 4) (1, 5)
− − (2, 3) (2, 4) (2, 5)
− − − (3, 4) (3, 5)
− − − − (4, 5)
− − − − −


(a) Matrix format

col number of elems elems indexes �rst elem index last elem index

1 0 - - -
2 1 1 1 1
3 2 2 3 2 3
4 3 4 5 6 4 6
5 4 7 8 9 10 7 10
...

...
...

...
...

p p− 1 ... (p2 − 3p+ 4)/2 p(p− 1)/2

(b) Table format

Figure 2.4: Relationship between (i, j) indexing and column-wise order of
the upper triangular part of a square matrix.

between the row number and the position in the matrix. Indeed, we only store
the upper triangular part, diagonal excluded being always equal to 1, of the
matrix we are estimating, since it is symmetric. R command upper.tri()

stores the upper triangular part of a matrix into a vector, following column-
wise order, that is preserved in the output (�rst row corresponds to the �rst
element in the upper triangular part, i.e. (1,2), the second corresponds to
the second element according to the column-wise order, i.e. (1,3), etc.). The
mapping described so far is shown in Figure 2.4a for a 5× 5 matrix.
Our goal is to �nd the formula that, given the vector index n (upper tri-
angular part stored in column-wise order), returns the corresponding pair of
indexes (i, j) in the original matrix. In Table 2.4b we list in order the column
index, how many elements of the upper triangular part the column contains,
which are the indexes of the elements, in particular of the �rst and last ones.
First of all, we notice that column j contains j−1 elements; this implies that
n is in column j if

j−1∑
k=1

(k − 1) < n ≤
j∑

k=1

(k − 1). (2.1)
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Figure 2.5: Comparison between original and optimized version of 'beam'
code on the same data as �gure 2.2.

Solving the inequality we obtain:

j =

⌈
1 +
√

1 + 8n

2

⌉
.

Now that we identi�ed the column, we are left to �nd the row index
i: recalling Equation 2.1, we know that the �rst element in column j is∑j−1

k=1(k − 1) + 1 = (j−1)(j−2)
2

+ 1; the row index will therefore equal the dif-
ference between n and the �rst element of its column and is given by:

i = n+ 1− j2 − 3j + 4

2
.

Summing up, we moved from two 5-columns matrices to a unique 6-columns
data frame, whose size is around 60% of the original solution, as displayed
in Figure 2.5.
Our �rst goal was to save as much memory as we could, therefore we stored
only the minimal information in the lightest format; the user will then access
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Figure 2.6: profvis output, n = 71, p = 100

the output by using speci�c methods, provided in the package, which will
display it in a readable way, adding for instance the indexing.
Moreover, the output is now without duplicates and type-homogeneous, since
we removed the two columns regarding the indexing. Therefore, the most
optimized data type to store it is the matrix: actually, we tried to come back
to this kind of representation, but there was not any signi�cant improvement,
so we decided to stick to the data frame, which allows a slightly easier data
manipulation.

After considerably improving the code under the memory point of view,
we tried to optimize it also in time; to do so, we pro�led the code with
the R package profvis (Chang and Luraschi [2017]): this tool measures the
time spent inside each function, so that it is easy to pinpoint the most time-
consuming ones. This preliminary analysis is very important, because it is
useless to waste energy in optimizing parts of code which take a negligible
bit of time, while it is worth trying to improve, even a little, those functions
which represent the bottlenecks of the code.
In Figure 2.6 we show an example of profvis output: on top, the code is
displayed with information about time spent (right column), measured in
milliseconds, and memory allocated/deallocated (left column) line by line.
On the bottom is a �ame graph, whose horizontal direction represents the
time, while in vertical we have the call stack: in the �gure we can read the
total time in the bottom right corner, 2160 ms, and the correspondence be-
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Figure 2.7: profvis output, n = 71, p = 5000

tween upper and lower part of the screen enlighten in red, with the black box
giving additional information on the selected function. In case of small p, as
that presented in the example, the whole function is really fast and almost all
time is spent in the several calls to the R function gc(), acronym for garbage
collection: it forces R to return immediately the unused memory to the op-
erating system. The repeated calls to this function inside beam code were
meant to unload the memory burden as much as possible; however, many R
guides claim that this procedure is useless, since R handles the process well
by itself.
When p increases (Figure 2.7) this function is not the real bottleneck any-
more, although we decided to remove it, after assuring that the code worked
�ne (and even better) without it. In the new example we can see that there
are 3 functions which take a long time during beam execution: which, pbeta
and cov2cor. The �rst two have been optimized, while cov2cor has not
been modi�ed, since it performs a necessary and unchangeable step of the
algorithm.

• which function is used in the original version of beam to extract the
indexes of a squared matrix corresponding to its upper triangular part.
Indeed, being the matrices we want to estimate symmetric, it is enough
to store one of the two halves.
This is the line of code which performed the operation:
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matidxs <- which(upper.tri(diag(p), diag=FALSE), arr.ind=

TRUE)

We can see that a new p× p matrix, diag(p), is created only for this
speci�c purpose and then for each element of this matrix command
which checks whether it belongs or not to the upper triangular part.
As a matter of fact, no check is needed since the indexes of interest can
be computed in advance, with the dimension of the matrix as the only
required input. This is the new function:

.upperTriIdxs <- function(p){

z <- sequence(p)

cbind(

row = unlist(lapply (1:(p-1), function(x) 1:x), use.names

= FALSE),

col = rep(z[-1], times = tail(z, -1) -1))

}

and below the modi�ed line of code:

matidxs <- .upperTriIdxs(p)

• pbeta function is used twice during the algorithm for tail probabilities
in marginal and conditional estimation, on each edge of the network, i.e.
p(p− 1)/2 times, therefore the time taken increases quadratically with
the number of features. Per se, pbeta function cannot be optimized
further, however we propose an approximated version, which can be
employed when p gets bigger. In order to speed-up the computation,
we evaluate pbeta only on a dense grid of 100001 values, equally spaced
between 0 and 1, and then return for each edge the linear interpolation,
as it is shown in the code below:

.approxBeta <- function(u, shp1 , shp2 , h=.00001){

x <- seq(from = 0, to = 1, by = h)

approx(x, pbeta(x, shape1=shp1 , shape2=shp2 , lower.tail =

FALSE), yleft = 0, yright = 1, xout = u)$y

}

results$m_tail_prob <- .approxBeta(rsij^2, 1/2, (n-1)/2)

results$p_tail_prob <- .approxBeta(rfij2 , 1/2, (n-1)/2)

Some simulations we run con�rm that the edges selected are exactly
the same with and without the approximation. As a �nal note, this
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Figure 2.8: profvis output for optimized beam function, n = 71, p = 5000
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50 1.651(0.138) 0.007(0.001)
100 1.771(0.073) 0.017(0.005)
500 1.935(0.061) 0.192(0.036)
1000 2.628(0.069) 0.906(0.020)
2000 5.337(0.544) 1.982(0.050)
5000 21.580(2.445) 11.153(0.213)
8000 62.286(13.073) 36.548(9.680)

Figure 2.9: Running time comparison between original and optimized beam

versions with di�erent number of features p. In the table, standard error
(SE) over 10 simulations is also shown.

approximated version is faster than the original one when p > 448, as
this is minimum integer value satisfying p(p− 1)/2 > 100001.

With the optimizations just described, the algorithm runs much faster, as
we can see from the new pro�led code in Figure 2.8: now it takes about 10
seconds to complete (against the 20 of the original version) and the bottle-
necks have been greatly reduced. In addition to that, we can notice that gc
function is now automatically called by R in many points (grey rectangles at
the top of the stack) in a much more optimized way.
In Figure 2.9 we show how the code has been improved in terms of running
time for di�erent values of p.



Chapter 3

Joint inference of multiple

Gaussian graphical models

So far, we discussed how to deal with graphical models concerning a single
set of data and we illustrated an algorithm based on Gaussian conjugate
model and hypothesis testing. Let us now consider the case in which we have
data related to multiple conditions (they can be cancer types, human tissues,
healthy and ill patients). If for each of them we analysed the same features,
e.g. we measured the expression of the same genes, it might be interesting
to investigate not only the network structure underlying each condition, but
also which are di�erences and commonalities across the conditions.
When multiple conditions are involved, two "easy" ways to analyse the data
can be considered: overall estimation merging all conditions and group-by-
group estimation. Regarding the former, even if on one side the number of
observations increases (being the sum of the observations in each group), on
the other, putting all data together, there is no possibility to perform any
di�erential analysis and the heterogeneity is lost; the latter has instead the
opposite problem, because it considers each condition independently, neglect-
ing the underlying shared structure.
Starting from these unsuitable solutions for the multi-group network estima-
tion, we derived two necessary characteristics any algorithm must have to
deal properly with this problem: �rst of all, observations belonging to di�er-
ent conditions must be kept separate, so that commonalities and di�erences
across groups can be appreciated; secondly, interaction between conditions
must be present, to allow the expected underlying shared structure to emerge
and act as anchor for the individual estimations.

26
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3.1 State of the art

Before starting with the implementation of our method, we considered sev-
eral papers to see which were the techniques used so far to deal with multi-
network estimation; in particular, we investigated two in detail, since they
were presenting very di�erent methodologies, each with its points of strength
and weakness.
In the paper by Danaher et al. [2014] Joint Graphical Lasso (JGL) is pre-
sented: the sparse and interdependent across groups network estimation is
obtained by maximizing a double penalized version of the likelihood of the
model. The �rst tuning parameter, present also in the single group case,
controls the sparsity of each network, the higher the sparser; the second one,
instead, penalizes the di�erences between corresponding elements in the pre-
cision matrices: the higher, the more the estimations across groups will be
forced to be similar one to each other.
Compared to other algorithms, JGL scales quite well with the number of
features (in the paper they claim they can get up to 20000), though quite
slowly and only for speci�c ranges of the tuning parameters.
The main issue we met when trying this method (implemented in the R pack-
age JGL, Danaher [2013]) is related to the choice of the tuning parameters
λ1, for the individual sparsity, and λ2, for the across-groups similarity: even
if their intrinsic meaning is clear, in many real cases it is not known a priori
how sparse and how similar the conditions under study are. The authors
propose to tune, when possible, the two parameters according to practical
criteria, such as network interpretability and stability; for instance, a sparse
estimation is usually preferred.
When the knowledge about the data is not enough or a more objective
method is desirable, λ1 and λ2 can be found by minimizing an approximated
version of AIC score; when p gets larger, though, this second approach be-
comes quite slow and it might also happen that the provided values for the
tuning parameters lead to an unreliable estimation with a (too) high false
discovery rate.

The other paper we considered is by Peterson et al. [2015]: here, as in
our framework, a Bayesian method to infer Gaussian graphical models is
presented; however, it is not in closed-form, thus having strong limitations
in terms of scalability.
In order to assess a sparse estimation, the prior on precision matrices Ωk is
distributed as a G-Wishart,

Ωk|Gk, b,D ∼ WG(b,D),

for k = 1, 2, ..., K. This prior constraints the non-zero elements of Ωk in
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correspondence of the edges of graph Gk; in other words, if edge (i, j) /∈ Gk

then ωk,ij = 0. Every graph structure Gk is in turn random, and a Markov
Random Field (MRF) prior is de�ned on it, in order to encourage common
structure in related graphs. A further layer in the model is set to learn graph
relatedness by de�ning a K × K symmetric matrix and by placing on it
a spike-and-slab prior, so that graphs in non-related conditions will not be
encouraged to share any common structure.
The method presented in Peterson et al. [2015] is very complex and accounts
for all the issues generally arising in multiple network inference, like sparsity
of the estimation and sharing of information across conditions, but this very
complexity makes the algorithm unusable on data with more than 50 features,
maximum: the examples shown in the paper deal with 20 features in the
simulation study and with 17 on real data, 4 groups in both cases, and the
algorithm takes already more than 2 hours.

3.2 Proposed model

Let us introduce the new setting and highlight the analogies with the uni-
dimensional case by Leday and Richardson [2018] we are going to extend.
We will refer to the number of conditions, also called groups, with K; p will
be the number of features, which must be the same in all conditions under
study, and nk the number of observations for group k, k = 1, ..., K.
The model within each group is again the conjugate Gaussian-inverse-Wishart:

vec(Yk)|Σk ∼ Nnk×p(0,Σk ⊗ Ink)
Σk|M, δ ∼ IWp(M, δ)

(3.1)

with k = 1, ..., K.
As before, scale matrixM can be expressed as a function of the target matrix
T , M = (δ − p− 1)T : we will use both notations.
It is important to note that the prior on the covariance matrices is indepen-
dent of condition k. In this way we allow the sharing of information across
groups by borrowing of strength and joint shrinkage estimation. This can be
seen by writing down the posterior expectation of Σk

E [Σk|Yk] =
δ − p− 1

δ + nk − p− 1
T +

nk
δ + nk − p− 1

Σ̂mle

k , (3.2)

where Σ̂mle

k = n−1k Sk is the maximum likelihood estimator of Σk and Sk =
Y T
k Yk: it is a convex linear combination between the maximum likelihood

estimator Σ̂mle

k and the prior expectation E [Σk] = T . This means that all
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the single Σk are jointly shrunk towards the common prior expectation T .
Summing up, all estimates of Σk are anchored to a common target T with
intensity regulated by hyperparameter δ.
Like the other methods described in the previous section, our model should
output more precise estimations with respect to one-by-one estimation, es-
pecially when the number of observations is unbalanced between the groups.

3.3 Hyperparameter elicitation

Our �rst attempt for the choice of hyperparametersM and δ has been to use
the same strategy used by Leday in the univariate case and here discussed
in Subsection 1.5.2: we set M = (δ − p − 1)Ip and δ equal to the value
maximizing the (logarithm of the) joint marginal likelihood of the model,
available in closed-form thanks to prior conjugacy. We write here its general
formulation

K∑
k=1

log pδ(Yk) =− p log π

2

K∑
k=1

nk +
K∑
k=1

log Γp

(
δ + nk

2

)
+
Kδ

2
log|M |

−K log Γp

(
δ

2

)
−

K∑
k=1

δ + nk
2

log|M + Sk|,

(3.3)

and that speci�c to our current case, with T = Ip:

K∑
k=1

log pδ(Yk) =− p log π

2

K∑
k=1

nk +
K∑
k=1

log Γp

(
δ + nk

2

)
+
Kδp

2
log (δ − p− 1)−K log Γp

(
δ

2

)
−

K∑
k=1

δ + nk
2

p∑
i=1

log
(
δ − p− 1 + d

(k)
i

)
,

(3.4)

where d
(k)
i are the eigenvalues of Sk = Y T

k Yk.
Choosing M such that the prior expectation for Σ is equal to the identity
has several advantages: �rst of all, it acts as regularizer for the MLE estima-
tor which is usually ill-conditioned, specially when nk � p; secondly, being
diagonal, the derivation of tail probabilities is relatively straightforward. We
refer to Subsection 1.5.4 for the details in the single-condition framework,
which hold in the same way in the current joint inference setting.
These nice properties come at a prize: the prior is completely uninformative
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and brings all posteriors close to the identity, i.e. to the empty graph. In the
single-condition case, this shrinkage does not a�ect the quality of the perfor-
mance; though, in our setting, by bringing all groups closer to the identity,
we mask somehow the appearance of their common underlying structure. In
other words, borrowing information across conditions by means of δ only,
might be not enough to appreciate signi�cant improvements with respect to
the independent inference on each group individually.
Our concerns were con�rmed by some numerical experiments: for a set of
simulated data representing the multiple conditions (the simulation proce-
dure is detailed in Section 4.2), we plot simultaneously the logarithm of each
individual marginal likelihood (see Equation 1.4) and the joint one (Equation
3.4). We make the same comparison on the more interpretable scale given
by α = (δ− p− 1)/(δ+nk− p− 1). Results are shown in Figure 3.1: in both
scenarios, totally (3.1a) and partially (3.1b) shared network structure, we
consider three cases in which we vary the number of observations inside the
conditions. We start on the left with constant nk = 100, then, as we move
to the right, we increase the imbalance between conditions (nk ∈ [50, 150] in
the second column and nk ∈ [10, 200] in the third). To draw our conclusions,
let us focus on the α scale, which is bounded between 0 and 1 and more
interpretable, since the higher the value, the more the in�uence of the prior
(see Equation 3.2).
When the underlying structure is exactly the same and the conditions are
balanced (leftmost column in 3.1a), we can see that estimating individually
or jointly is the same. As we increase the heterogeneity between conditions,
by varying the number of observations and the underlying network structure,
we start to appreciate some di�erences between the two estimations: how-
ever, they are signi�cant only in very extreme scenarios (see for instance the
blue line in the rightmost column, corresponding to the condition with 10
observations: from the alpha-plots we evince that this group borrows a lot of
information from the others, and its corresponding optimal αk moves from
almost 0 to almost 1).
We will come back on this comparison between individual and joint estima-
tion in Section 5.1: for the time being, we just point out that, even if it does
not prove to be "practically" bene�cial, still the joint approach is the proper
way to model the multi-condition framework under a theoretical point of
view.
After realizing that setting hyperparameter M equal to the identity was not
optimal, we looked for new solutions, which could be more data-oriented:
this is for instance achieved by using an empirical Bayes estimate also for M
(we use it already for the estimation of hyper-parameter δ). Empirical Bayes
approach, proposed by Morris [1983], allows the prior to be data dependent,
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(a) Same covariance structure
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(b) Partially shared covariance structure

Figure 3.1: Plots of log(marginal likelihood) as a function of δ (upper row)
and α = (δ−p−1)/(δ+nk−p−1) (lower row) when estimated independently
group by group and jointly. In delta-plots, colored lines correspond to the 5
simulated conditions, the black one to the joint marginal likelihood; in alpha-
plots, dashed lines refer to the individual estimation, solid one to the joint.
Vertical lines are in correspondence of the optimal value, i.e. the maximum
of the function.
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in particular the aim in a multi-condition framework is to borrow strength
from the ensemble.
Hypothetically, we could decide to optimize the joint marginal likelihood
(Equation 3.3) in both its variables δ and M , but this solution is imprac-
ticable: the estimation of M requires in truth the estimation of p(p − 1)/2
parameters, with the constraint of positive de�niteness, therefore the prob-
lem is too high-dimensional to be numerically handled. Moreover, the joint
marginal likelihood is proved to be concave only as a function of δ: the same
property does not hold when considering also M variable (see Proposition
3.1).

3.3.1 EM algorithm for hyperparameters estimation

A method developed by Bilgrau et al. [2015] helped in this framework. Their
model is Normal-inverse-Wishart as ours and they also estimate the hy-
perparameters of the inverse-Wishart distribution by maximizing the log-
likelihood.
Before illustrating the method, we brie�y introduce their framework, which is
meta-analysis of covariance matrices. Nowadays, independent studies about
gene expression are carried out by multiple research groups: each of them
collects lots of data but only on relatively few subjects. It then becomes very
useful to gather information across studies, so that the overall sample size
increases. Doing that by simply merging all the data might lead to erroneous
results, due to severe batch e�ects.
Bilgrau et al. [2015] propose a maximum likelihood estimator for the un-
derlying common covariance matrix. As previously mentioned, they model
the data as we do, i.e. according to the normal-inverse-Wishart distribu-
tion, reported in Equation 3.1. Accordingly, also the expression of the (log-)
marginal likelihood will be the same we show in Equation 3.3: they pro-
pose a expectation-maximization (EM) algorithm for the joint optimization
of M and δ. It consists in an iterative algorithm, where, in turn, M̂ is up-
dated keeping δ̂ �xed (expectation step) and δ̂ is optimized, given the current
value of M̂ (maximization step). This procedure continues until convergence,
which is guaranteed under the only constraint

∑
k nk ≥ p.

We present here the relative propositions: for the proofs we refer to their
paper.

Proposition 3.1. For a �xed δ, the log-likelihood function 3.3 is not concave
in M .
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Proposition 3.2. For a �xed positive de�nite M , the log-likelihood function
3.3 is concave in δ.

Proposition 3.3. The log-likelihood 3.3 has a unique maximum in M for
�xed δ and N =

∑K
k=1 nk ≥ p.

At iteration t + 1, EM algorithm updates the estimations for M and δ,
M̂ and δ̂ respectively, in the following way:

M̂(t+1) =

(
1

Kδ̂(t)

K∑
k=1

(
nk + δ̂(t)

)(
M̂(t) + Sk

))−1

δ̂(t+1) = argmax
δ

K∑
k=1

log pδ(Yk, M̂(t+1)),

being K the number of groups and Sk = Y T
k Yk the scatter matrix.

We implemented this algorithm and we tried it on several simulated datasets:
it usually converges in less than 100 iterations and it is very fast, even in rel-
atively high-dimension (we tried it up to p = 500 and K = 10).
However, we observed a severe drawback: the estimated M̂ is often ill-
conditioned or rather it is not well-conditioned enough to regularize the scat-
ter matrices Sk, when summed-up in the posterior. To be clearer: contrary
on the method proposed by Bilgrau et al. [2015], in our case the estimation
ofM is required for the hyperparameters elicitation of a Bayesian model. Af-
ter that, our interest lies in the posterior distribution, especially of precision
matrices Ωk, which we recall to be

Ωk|Yk ∼ Wp

(
(M + Sk)

−1, δ + nk
)
.

We see that M has to be summed up to Sk and the resulting matrix Mpost =
M + Sk has to be inverted. Our simulations show that Mpost is generally
ill-conditioned, specially in the groups with low sample size. When inverting
it, a lot of numerical error is added to the estimation, which is consequently
not reliable anymore. Numerical results are presented in Section 5.1.

3.3.2 Improved estimation of hyperparameters

Up to now, we analysed two methods for the estimation M : the �rst sets it
equal to (δ−p− 1)Ip, the second to the estimated common covariance struc-
ture. The former shrinks too much towards the empty graph, overcoming the
borrowing of information, the latter regularizes too little, with consequent
lack of accuracy in the estimation, due to ill-conditioning.
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Since the goal is to estimate the underlying common structure and then use
it as a prior for the joint inference, we decided to run beam function on all
data merged together. Recalling that in the single group case the target
matrix T was set to the identity (see 1.5.2), we expect the estimated overall
covariance matrix to be well-conditioned and to reveal that common under-
lying structure we want to embed in M .
Let us see in more details the steps that bring to the estimation of M . As
just mentioned, we run beam function on all data Ytot = Y1∪ ...∪YK ; from it,
we obtain the estimate of posterior expectation for the common covariance
matrix Ψ̂:

Ψ̂ := E [Σcomm|Ytot] .
We now recall that the expected value of an inverse-Wishart distributed
random variable, X ∼ IWp(M, δ) is given by M/(δ − p− 1). By equalling it
with the posterior expectation we get the following expression for M :

M = (δ − p− 1)Ψ̂.

Standard univariate (M is now expressed as a function of δ) optimization of
log-likelihood function follows to �nd δ:

δopt = argmax
δ

K∑
k=1

log pδ(Yk, Ψ̂),

with

log pδ(Yk, Ψ̂) =− pnk log π

2
+ log Γp

(
δ + nk

2

)
+
δp

2
log|(δ − p− 1)|

+
δ

2
log|Ψ̂| − log Γp

(
δ

2

)
− δ + nk

2
log|(δ − p− 1)Ψ̂ + Sk|.

It is interesting to notice that this approach di�ers from the starting one only
for the target matrix T , which here is equal to Ψ̂, instead of the identity: this
means that the posteriors will be now shrunk towards a target that somehow
represents the underlying common structure.
As we will see in Section 5.1, the simulations show that this approach to
the estimation of M is very promising: the results are well-conditioned and
generally better than the other two.
However, being it not diagonal, the expression of tail probabilities has yet
to be derived: indeed, the derivation of tail probabilities reported in 1.5.4 is
under the assumption of diagonal prior matrix.
For this reason, in this Master thesis we will adopt the �rst approach, with
T = Ip.
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3.4 Group comparisons using measures from

information theory

Even though our �nal goal is the network estimation inside each group, we
can already, with no selection carried out yet, provide useful information
regarding the relative distance between groups. Being Bayesian and working
with conjugate prior, we have closed-form inference for the posteriors of Σk

and, analogously, of Ωk:

Σk ∼ IWp(M + Sk, δ + nk)

Ωk ∼ Wp((M + Sk)
−1, δ + nk).

(3.5)

We can, therefore, rely on some statistical distances de�ned between prob-
abilistic distributions, rather than simply comparing the posterior expecta-
tions. We will focus on two of them, broadly used also in information theory:
cross entropy and Kullback�Leibler (KL) divergence, which are closely re-
lated, as we will see in a while. We give the de�nitions of the two distances
in the continuous case, since this is our current setting, although both of
them were originally thought for discrete distributions.

De�nition 3.1. Let P and Q be the distributions of a continuous random
variable, and p and q their density functions. Then the cross entropy between
P and Q is

H(P,Q) = −
∫ +∞

− inf

p(x) log q(x)dx = EP [− log q].

De�nition 3.2. Given distributions P and Q of a continuous random vari-
able, the Kullback-Leibler divergence from Q to P is de�ned as

DKL(P‖Q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx,

being p and q the densities of P and Q.

Remark 3.1. Taking advantage of logarithm properties, it is immediate to
evince the following relationship between cross entropy and KL divergence:

DKL(P‖Q) = H(P )−H(P,Q),

where H(P ) ≡ H(P, P ) is the entropy of P .
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Remark 3.2. None of the two statistical distances just introduced is sym-
metric. This is reasonable in many typical contexts, where P represents the
"true" (or theoretical) distribution and Q its approximation. In these cases
the interest lies in �nding the approximation Q that minimizes cross entropy
or KL divergence (they are identical up to an additive constant) with respect
to P , since it encodes how much information is lost when using the approx-
imation. On the contrary, we would like to deal with a symmetric distance,
because the estimations we are going to compare are exchangeable: in order
to ensure this property we will simply sum the two asymmetric quantities, as
it is proposed by Kullback and Leibler [1951] themselves:

KL(P,Q) = KL(P‖Q) +KL(Q‖P ).

Let us now derive the expressions for entropy, cross-entropy and KL di-
vergence between random variables distributed according to Wishart and
Inverse-Wishart distributions, which are the cases we are interested in, being
Ωk and Σk distributed likewise.

Proposition 3.4. Let X1 and X2 be p × p random matrices, Wishart dis-
tributed, with parameters (δ1, V1) and (δ2, V2), respectively. Then cross en-
tropy H(X1, X2), entropy H(X1) and KL divergence KL(X1‖X2) are given
by:

H(X1, X2) = −δ2
2

log|V −12 V1|+
p+ 1

2
log|V1|+

δ1
2

Tr(V −12 V1)

+ log Γp

(
δ2
2

)
− δ2 − p− 1

2
Ψp

(
δ1
2

)
+
p(p+ 1)

2
log 2;

(3.6)

H(X1) =
p+ 1

2
log|V1|+ log Γp

(
δ1
2

)
− δ1 − p− 1

2
Ψp

(
δ1
2

)
+
δ1p

2
+
p(p+ 1)

2
log 2;

(3.7)

KL(X1‖X2) = −δ2
2

log|V −12 V1|+
δ1
2

Tr(V −12 V1) + log

Γp

(
δ2
2

)
Γp

(
δ1
2

)
+
δ1 − δ2

2
Ψp

(
δ1
2

)
− δ1p

2
.

(3.8)

Ψp is is the multivariate digamma function, i.e. the derivative of the loga-
rithm of multivariate gamma function Γp.

Proposition 3.5. Let X1 and X2 be p×p random matrices, Inverse-Wishart
distributed, with parameters (δ1, V1) and (δ2, V2), respectively. Then, the cross
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entropy H(X1, X2), entropy H(X1) and KL divergence KL(X1‖X2) are given
by:

H(X1, X2) =− δ2
2

log|V −11 V2| −
p+ 1

2
log|V −11 |+

δ1
2

Tr(V −11 V2)

+ log Γp

(
δ2
2

)
− δ2 + p+ 1

2
Ψp

(
δ1
2

)
− p(p+ 1)

2
log 2;

(3.9)

H(X1) =− p+ 1

2
log|V −11 |+ log Γp

(
δ1
2

)
− δ1 + p+ 1

2
Ψp

(
δ1
2

)
+
δ1p

2
− p(p+ 1)

2
log 2;

(3.10)

KL(X1‖X2) =− δ2
2

log|V −11 V2|+
δ1
2

Tr(V −11 V2) + log

Γp

(
δ2
2

)
Γp

(
δ1
2

)
+
δ1 − δ2

2
Ψp

(
δ1
2

)
− δ1p

2
.

(3.11)

Remark 3.3. KL divergence is invariant to parametrization. This consid-
eration leads to the following equality

KL(Σi‖Σj) = KL(Ωi‖Ωj) ∀i 6= j,

which can be easily checked by comparing 3.8 and 3.11.

With the closed-form expression of KL divergence and cross entropy be-
tween both covariance and precision matrices we have, at a low computational
price, a �rst exploratory tool which gathers in a single positive number a no-
tion of distance between each pair of groups. The a posteriori distances we
computed could be also useful for some cluster algorithms, which might de-
tect interesting sets of similar conditions, among those under study.
Obviously, there are also some drawbacks: �rst of all, as already mentioned,
this is supposed to be only a very �rst, qualitative, information about group
similarities, since we are trying to summarize di�erences and commonalities
between high-dimensional matrices in a single number, which, as a result,
cannot carry all the information we are interested in. Moreover, the distances
we compute are meaningful only when put on a relative scale and compared
between them: per se, they are not a good indicator of the e�ective simi-
larity. To be clearer, we will get extremely high values for KL divergence
even between almost equal matrices. This happens exactly for the reason we
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were discussing earlier: even a slight perturbation in a very high-dimensional
object has a huge impact on its "projection" on a one-dimensional space, as
KL divergence and cross entropy are.

3.5 Structure estimation

Up to this point we dealt with the estimation of marginal and partial corre-
lation matrices. As in the single-condition case, this is only an intermediate
step, because users' interest lies in a more interpretable result, like a network
(in the multi-condition case K networks) where only signi�cant connections
between variables are reported.
To �nd a proper and working way to extend the hypothesis testing to the
multi-condition case has been very hard; we struggled particularly in dealing
with double multiplicity (multiple edges within multiple conditions), since
we had to think about which kind of error we could control and how to do
it.
Before starting illustrating our results, let us brie�y recap what we have
done so far: by setting hyperparameter δ to the value maximizing the joint
marginal likelihood, we obtained a joint estimation of marginal and par-
tial correlation in each of the K groups, together with tail probabilities and
Bayes factors related to the probability of inclusion in the network, in perfect
analogy with the univariate case we presented in Chapter 1.5. For the time
being, we stored either Bayes factors and tail probabilities, because both
these quantities could be useful for the selection algorithm: indeed, we will
see that some approaches we tried rely on Bayes factors and some others on
tail probabilities.
Regarding the selection procedure, we now make a distinction between con-
�rmatory and exploratory analysis, recalling a paper by Tukey [1980]. In a
nutshell: as the name suggests, exploratory analysis aims at exploring data,
in order, for instance, to identify their general structure, the key variables and
the questions worth to be investigated. Goeman et al. [2011] outline three
characteristics for exploratory research, which describe its open-minded na-
ture: mild (some false positive are allowed among the selected hypotheses),
�exible (no a-priori prescription of which precise hypotheses to select or not
select) and post-hoc (choices inherent the procedure can be made after seeing
the data). Vice versa, con�rmatory analysis is about the rigorous evaluation
of the evidence coming from the data by means of statistical tools such as
signi�cance, inference and con�dence. Goeman et al. [2011] position multi-
ple hypotheses testing at the border between the two approaches, especially
when thousands of variables are involved: although somewhat structured,
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such experiments take also into account criteria as convenience and com-
pleteness when selecting a collection of hypotheses to be tested. Indeed, the
rejected hypotheses are usually not to be considered as �nal results to be
reported, but rather as a pool of signi�cant variables, on which it is worth
to follow up with validation experiments.
Thanks to the analytical derivation of Bayes factors and tail probabilities,
the method we developed provides the tools for proper con�rmatory analy-
sis. However, there are two considerations we need to take into consideration:
�rst of all, even though tail probabilities and Bayes factors are available, it
is not straightforward to understand how to manipulate them, in order to
account for double multiplicity. The second consideration is about the type
of information we want to return in output: con�rmatory analysis is per-
formed to answer a speci�c question, say, the network structure made of
edges present only in condition 1. Conversely, we think that it is often more
useful to return the network estimated in each condition: a rigorous formu-
lation of the corresponding hypothesis test is di�cult to obtain, therefore we
will try a more exploratory approach. In this section we will discuss Union-
Intersection tests using Bayes factors, pertaining con�rmatory analysis; after
that, we will move to the broader and more exploratory goal of associating
each edge to the conditions in which it is present, if any.

3.5.1 Con�rmatory analysis with Bayes factors

The con�rmatory procedure for structure estimation we developed takes in-
spiration from the work of Van Deun et al. [2009] and it is based on the
following two observations:

1. The Bayes factor is the ratio between the marginal likelihoods under
the alternative hypothesis and under the null: the higher, the more
likely is the alternative. If we take the reciprocal (or change the sign
if we are working with its logartihm) we will have a measure of how
likely the null is with respect to the alternative.

2. Exploiting the a priori independence across groups, we can easily for-
mulate global hypothesis tests for, say, the detection of edges present
in all groups: to be in common, an edge must be present in all groups,
i.e. the null hypothesis must be rejected in each group. Bayes factors
quantify the likeliness of the alternative versus the null in each group:
thanks to independence, we can multiply (or sum if we consider the
logarithms) them to obtain the Bayes factor for the global test.

We call these global tests Union-Intersection (UI) tests, since the global al-
ternative is the intersection of many individual hypotheses, and the null its
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complement, i.e. the union of the complement individual hypotheses. Denot-
ing ρ

(k)
ij the partial correlation between variables i and j in condition k, we

formulate the null hypothesis of conditional independence by H
(k)
0,ij : ρij = 0

against the alternative H
(k)
1,ij : ρij 6= 0. The test we propose on each edge, in

order to identify the common network structure is the following:

H0,ij :
K⋃
k=1

H
(k)
0,ij against H1,ij :

K⋂
k=1

H
(k)
1,ij

Recalling what discussed in consideration 1, we can actually test whatever
global hypothesis we may be interested in by simply considering the reciprocal
of the Bayes factors corresponding to the conditions where we want to test
the edge to be absent.
We illustrate this concept with an example, where we have 3 conditions
and we want to investigate the network structure speci�c to group 2, that
is composed by those edges which are present exclusively in group 2. The
corresponding UI test is

H0,ij = H1,ij ∪H0,ij ∪H1,ij against H1,ij : H0,ij ∩H1,ij ∩H0,ij.

The global Bayes factor expressing the evidence in favour of the alternative is
then obtained by multiplying the Bayes factor in group 2 by the reciprocals
of Bayes factors in groups 1 and 3.
The potentiality of this method relies on the easy formulation of a global
test for any di�erential or common network structure we are interested to
investigate; however, several issues arose when we implemented and applied
it to simulated data:

• Only one test at a time. UI-tests require the a priori statement of the
network structure of interest, either the common one or that speci�c
to one or more conditions. In any case, it is not possible to estimate
the network structure relative to each condition, therefore the purpose
of this method is limited.

• p0 estimation. Selection methods based on Bayes factors, blfdr and
BFDR, need the tuning of parameter p0 which, in short, converts the
Bayes factors into probabilities. To them, standard multiplicity adjust-
ment can be applied in order to �nd the edges in the network signi�-
cantly di�erent from 0. The theory states that p0 is the proportion of
tests for which H0 is not rejected (true null). In many real cases, this
information is unknown; furthermore, even trying on simulated data to
set p0 to the exact value, the selection was not optimal.
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Aiming at solving the problem of p0, we used HC threshold on tail probabili-
ties to estimate the proportion of true null. HC stands for "Higher Criticism",
term that was coined by Tukey [1976]. We refer to a more recent work by
Klaus and Strimmer [2012], who propose to apply an empirical HC threshold
based on p-values (tail probabilities in our case) for signal identi�cation in
high-dimensional settings.
Setting N := p(p−1)/2 equal to the total number of edges, the HC approach
to signal identi�cation proceeds as follows:

1. Arrange the p-values in increasing order p(1), ..., p(N). The empirical
distribution function of the p-values is given by:

F̂ (x) = i/N for p(i) ≤ x < p(i+1),

with x ∈ [0; 1], p(0) and p(N+1).

2. Compute the empirical HC objective function:

ĤC(x) =
|F̂ (x)− x|√

F̂ (x)(1− F̂ (x))/N
.

3. Obtain the HC statistics

ĤC
∗

= max
i
ĤC(p(i)) = ĤC(xHC).

4. Take xHC as the HC decision threshold for signal identi�cation: all
edges whose p(i) < xHC are considered "signi�cant".

We then estimate p0 as the proportion of p-values greater than the HC thresh-
old:

p0 = card
(
{p(i) : p(i) ≥ xHC}

)
/N.

With this approach, we assess in the simulations a good approximation of
the real value, i.e. the true proportion of edges not present in the network.

3.5.2 Exploratory analysis with tail probabilities

Our next goal was to answer to wider questions, instead of focusing on a sin-
gle network structure of interest. As just discussed, UI test is not suited for
this more general purpose. Neither are Bayes factors: indeed, we could mul-
tiply them as long as at the alternative we had the intersection of elemental
hypotheses. When trying to address more general problems, this property of
Bayes factors is not useful anymore; in addition to that, their numeric value
is not directly interpretable, since the scale is not clearly de�ned. Consid-
ering these issues, we decided to use tail probabilities for group allocation,
which are well-suited for standard multiplicity adjustments.
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Intersection-Union test and hierarchical testing

Our �rst idea to detect a broader set of edges was to switch from UI to IU
test, standing for intersection union. This global test detects all the edges
that are present in at least one condition:

H0,ij :
K⋂
k=1

H
(k)
0,ij against H1,ij :

K⋃
k=1

H
(k)
1,ij.

At this stage, we have the opposite problem, that is the question is too
general, since all we know about the edges for which the null was rejected is
that they are present in at least one group, but we don't know neither how
many nor which ones.
From a computational point of view, in order to perform this test, we select
for each edge its minimum tail probability across all conditions. This means
that for each edge we are testing whether it is present or not in the condition
where it is most likely to appear. After this procedure we end up with
p(p−1)/2, which we adjust to account for multiplicity. If we terminate here,
we expect to detect lots of edges, but still the information we have on them
is very weak: the idea is to add a further step to the procedure in which we
allocate the edges we found to be signi�cant to the conditions they belong
to.
The considerable problem we had to face when trying to think about this
additional step pertains the error control. During selection we controlled a
speci�c error type, at a speci�c level: it is not straightforward to come up
with a solution for the group allocation step such that the same error control
is preserved, or even any form of error control.
We decided to use the approach proposed by Goeman et al. [2011], dealing
with multiple testing for exploratory research. Their �nal goal is slightly
di�erent from ours, since they aim at pinpointing one or more subset of
variables which prove to be signi�cant, so that it is reasonable to follow up
with a con�rmatory analysis on them. We aim instead at a more rigorous
group allocation of those edges we already pinpointed to be the signi�cant
ones.
Nevertheless, the method they propose has the peculiarity that family-wise
error rate (FWER) is always controlled at the same level, no matter which
subset out of the entire collection is selected: this is exactly the characteristic
we were looking for.
Let us present the methodology in more detail. As the name, hierarchical
testing, suggests, it consists of a hierarchical procedure: at the top, the global
intersection hypothesis testH1∩H2∩...∩HK is performed. In our framework,
it corresponds to test whether a speci�c edge is present in all conditions. If it



CHAPTER 3. JOINT INFERENCE OF MULTIPLE GAUSSIAN

GRAPHICAL MODELS 43

((((
((((hhhhhhhhH1 ∩H2 ∩H3

��
���XXXXXH1 ∩H2

��ZZH1

��
���XXXXXH2 ∩H3

H2

��
���XXXXXH1 ∩H3

H3

Figure 3.2: Example of hierarchical testing, taken from the paper by Goeman
et al. [2011]. Rejected hypotheses are marked with a cross.

is rejected, we go down of one level and we perform the K − 1 tests, with all
possible combinations of K−1 variables: H2∩ ...∩HK , H1∩H3∩ ...∩HK , ...,
H1∩ ...∩HK−1. Where the null hypothesis is not rejected, we do not explore
further; conversely, we keep testing the underlying leaves whenever we reject
the null hypothesis. An example with three variables is shown in Figure 3.2:
the �rst two levels are all rejected, on the third onlyH1 is rejected. This result
is somehow counter-intuitive: since H2 ∩ H3 is rejected, we expect at least
one of H2 and H3 to be rejected as well. For this reason, the procedure is said
to be non-consonant: the authors claim that in the framework of exploratory
research, which aims at being milder than family-wise error-based one, non-
consonant testing procedures need not to be avoided.
In our case, though, we would prefer to have this property: we will see in a
while how we will guarantee it.
We now observe that, in its standard form, this hierarchical testing procedure
requires about 2n− 1 tests to be performed, being n the number of variables
under study: with more than 20-30 variables, it becomes computationally
intractable. Our problem is in a much higher-dimensional setting, being n
the number of edges whose null hypothesis was rejected during IU test .
For such cases, the authors propose two shortcuts, which can be applied
under speci�c assumptions: one of them is based on Fisher's combination
method (Fisher [1925]), which can be adopted when the null hypotheses are
independent, as ours are. Given the p-values p1, ..., pn of the tests of the
elemental hypotheses H1, ..., HN , Fisher's combination method rejects the
intersection hypothesis I if

−2
∑
i∈I

log(pi) ≥ g#I ,

being gr the (1−α)-quantile of a χ2-distribution with 2r degrees of freedom.
Together with the paper, the authors provided the R package cherry (Goe-
man et al. [2015]), available on CRAN repository, where hierarchical testing,
in its standard form and with shortcuts, is implemented.
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Figure 3.3: Output of function curveFisher in package cherry, performing
hierarchical testing with Fisher's combination method.

In Figure 3.3 the graphical output of curveFisher is shown: the input data
is a vector of 34 p-values provided in the package itself. Given a value on
the x-axis (corresponding to how many hypotheses, increasingly ordered ac-
cording to their p-value, we are considering), the corresponding y-value on
the solid line represents the number of correct rejections we are making, with
95% con�dence. With respect to Figure 3.3, we can reject the 4 most sig-
ni�cant hypotheses, being con�dent at 95% of not making any mistake. If
we want to include also the �fth, we do not have evidence enough to reject
all �ve: with 95% con�dence, we could state that we are making 4 correct
rejections out of 5. Moving to the right, it is interesting to notice that there
is no advantage in including any of the last 9 variables, since we have no
bene�t in terms of number of true rejected.
This tool is very useful when dealing with thousands of variables and it is
necessary, due to budget constraints for instance, to pinpoint a subset on
which it is reasonable to focus further analyses.
As already pointed out, our main goal is to allocate the edges selected by
IU test to the conditions they belong to: this is achieved by considering
each edge present in the conditions located before the point where the solid
line stops overlapping with the dotted one. That's the point beyond which
the number of true rejected hypotheses is strictly less than the number of
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included variables. If we went beyond it, the only statement we could do
would be something similar to: "With 95% con�dence, this edge is present
in 4 out of the 5 following conditions". Such a result would be di�cult to
communicate to the �nal user.
To conclude, we discuss some drawbacks that led us to look for a better-
suited method. Recalling that we focus only on the edges rejected by IU
test, i.e. present in at least one condition, we expect, accordingly, each edge
to be allocated in at least one condition by curveFisher function: this does
not always happen, due to the non-consonance of the procedure.
Moreover, the error type that is controlled is family-wise error rate, which
is very conservative: in our framework, where the signal is often weak, we
struggle to have fairly good power.

Hierarchical BH

In order to deal with the weakness of signal and to solve the lack of power, it
might be useful to apply a less stringent error control than family-wise error
rate, when performing multiple testing, such as False Discovery Rate (FDR),
introduced by Benjamini and Hochberg [1995].
We will here present some results from a more recent work by Benjamini
and Bogomolov [2014]: they adapt FDR error control to the case of multiple
families of hypotheses, which is exactly our framework. Indeed, we have in
total p(p − 1)/2 ×K tail probabilities (we will refer to them as p-values in
this section), corresponding to p(p−1)/2 edges in K networks. In our model
we consider each edge independent from the others, therefore we can think
of it as a family, whose components refer to the presence or absence of that
edge in each condition k = 1, ..., K. Summing up, we have p(p− 1)/2 fami-
lies/edges and K hypotheses inside each of them.
When dealing with multiple families, a common approach is to select promis-
ing families �rst (in our case, this was achieved by Intersection-Union test)
and then apply a multiple testing procedure in each selected family sepa-
rately. Unfortunately, this strategy is proved not to guarantee any level of
con�dence about the �ltration of errors within the selected families.
In general, it could be interesting to assure some level of con�dence for dis-
coveries within the selected families: a natural request could be the control
of the expected value of some measure of error C in each selected family i:
E [Ci|i is selected]. This, however, is often di�cult to achieve; for this reason,
a more modest goal is presented: the control of the expected average value
of C over the selected families.
Formally, let Pi be the set of p-values in family i, i = 1, ..., N , being N =
p(p − 1)/2 the number of families/edges. P is the ensemble of these sets:
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P = {Pi}Ni=1. Let S be the selection procedure, which, given in input the
p-values P , returns the indexes of the selected families. Let |S(P )| be the
number of selected families.
The error criterion under study is:

E [CS ] = E

[
N∑
i=1

Ci/N

]
.

The authors claim that, in many cases, the control over the expected average
measure of errors is also more appropriate for the interpretation of the results
than the global control of an error rate over the selected family, because it
gives some con�dence in the discoveries within the selected families.
The main result of the paper by Benjamini and Bogomolov [2014] we are
presenting is that, in order to guarantee the control of E [CS ], E [C] should
be controlled in each selected family i at a more stringent level: the nominal
level q must be multiplied by the proportion of selected families among all
the families. The adjustment procedure (procedure 1 ) required on the testing
levels within the selected families is given by the following steps:

1. apply the selection rule S to the ensemble of sets P . Let R be the
number of selected families: R = |S(P )|.

2. apply the E [C] controlling procedure in each selected family separately
at level Rq/N .

Theorem 1 (Theorem 1 of Benjamini and Bogomolov [2014]). For any error
rate E [C] such that C takes values in a countable set, suppose that we have
a testing procedure that can control E [C] at any desired level α under the
dependence structure of the p-values within a family. If the p-values in each
family are independent of the p-values in any other family then for any simple
selection rule S(P ) the selection-adjusted procedure guarantees E [CS ] ≤ q.

Proof. See Benjamini and Bogomolov [2014]

An additional useful result presented in the paper states that, if the consid-
ered error rate is FDR, then the control of E [C] by the selection-adjusted
procedure yields control of FDR at the family level. Thus, the control is
guaranteed both for the erroneous discoveries within each family and at the
�rst stage where families are selected. Building upon the work of Benjamini
and Bogomolov [2014] presented so far, Peterson et al. [2016] propose a pro-
cedure which controls vFDR (FDR for the discovery of families) and sFDR
(average FDR on the selected families) at levels q1 and q2, respectively.
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Testing is carried out on the basis of the p-values corresponding to each indi-
vidual hypothesis Hit, with i = 1, ..., N indexing the family and t = 1, ..., K
each hypothesis within it. The p-values for the intersection hypothesis Hi• =⋂K
t=1Hit are de�ned as the Simes's p-values (Simes [1986]):

pi• = min
t

Kpi(t)
t

,

where pi(t) is the t-th element of the increasingly ordered vector {pit, t =
1, ..., K}.
The hierarchical procedure (we will refer to it as hierarchical BH ), is de�ned
by the following steps:

0. Use Simes's method to obtain the p-values pi• for the intersection hy-
potheses Hi•.

1. apply the Benjamini-Hochberg (BH) method (Benjamini and Hochberg
[1995]) to the collection of p-values pi• with an FDR target level q1. Let
S(P ) be the set of rejected hypotheses Hi•.

2. Test the individual hypotheses Hit only in families Fi ∈ S(P ). Within
such families, apply BH with target level q2,adj properly adjusted to
account for the selection bias introduced in stage 1:

q2,adj = q2 ×
|S(P )|
N

.

Remark 3.4. Setting q1 ≤ q2 consonance is guaranteed, i.e. if the global
null corresponding to an edge is rejected, then it will be allocated to at least
one condition.

We implemented the hierarchical BH procedure in the R function hierBH,
reported in Appendix B.4. As we will see in Section 5.1, where we will test
on simulated data the three methods presented for structure estimation, hi-
erarchical BH proves to have good performances. Moreover, it was originally
developed to deal with a problem very similar to ours, i.e. multiple families
(edges in our case) of hypotheses (about the allocation in the K conditions).



Chapter 4

Computational development

4.1 R package beamDi�

In this project, theoretical and computational development proceeded side
by side. This was necessary because, at each step, we needed to check if what
seemed correct and sound under a theoretical point of view also worked in
practice. As in the unidimensional case, our method should prove to be
much faster than other Bayesian ones and less parameter dependent than
those using a Lasso approach. In our multi-condition framework, good mem-
ory management is fundamental: during the estimation phase, for instance,
we need to store K × p(p− 1)/2 for the K correlation matrices and as many
for the partial ones. It is therefore worth making an e�ort to �nd a light way
to store the data.
After setting hyperparameter δ by maximizing the joint marginal likelihood,
the estimation procedure boils down at independently computing the poste-
rior distribution in each condition: this step is identical to the single group
case. Thus, it now becomes clearer why the �rst goal of the thesis project
was the optimization of R package beam: most of the code of beam function
will be reused for the estimation of each condition.
We called the R package beamDiff, to highlight the strong relationship with
beam and suggest its application to di�erential networks. The package is not
complete: currently, it only consists of the estimation function beamDiff and
of some methods acting on its output.
All the procedures discussed in Section 3.5 have been implemented, for the
time being, as standalone functions. Similarly, of the three approaches to hy-
perparameter elicitation presented in Section 3.3, we included in the package
only the simplest (M = (δ− p− 1)Ip), since the theory about the derivation
of tail probabilities for the other two has yet to be completed.
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We report here the header of beamDiff function, beamDiff(..., type,

return.only, approx.tail, verbose): the body of the function is re-
ported in Appendix B.1. The �rst argument is an ellipsis, to allow more
�exibility in the input data format: the method accepts both K separated
datasets or a single list, where each element correspond to a dataset. With
parameter type the user can specify if interested in both marginal and par-
tial estimation, or only in one of the two; return.only is used to set which
quantities to compute (correlations, Bayes factors and/or tail probabilities).
approx.tail is a binary �ag, regulating whether or not the approximation
of pbeta function, explained in Section 2.2 must be put in place, in order to
speed-up the function. If verbose is set to true, some information about
the execution are displayed, while the code is running.

beamDi�

tableList : list
invCovStdev : matrix
deltaOpt : numeric
alphasOpt : vector
time : numeric

marg() : data.frame
cond() : data.frame
plotML() : plot
plotHeatmap() : plot
crossDistance() : list

Figure 4.1: Simpli�ed UML class diagram for the S4 object provided in
beamDiff package. Core slots and methods are displayed.

As for beam function, beamDiff outputs a S4 object of class beamDiff-class:
its more relevant quantities and methods are displayed in Figure 4.1.
tableList is a list of K elements: each of them is a matrix with p(p− 1)/2
rows; the number of columns varies from 2 to 6, depending on type and
return.only parameters. invCovStdev is a p×K matrix: its columns con-
tain the diagonal of the estimated posterior inverse covariance matrix, which
is necessary (and expensive) to compute, but not to store, because the corre-
lation matrix is returned. However, we need to recover the covariance matrix
and its inverse to compute KL-divergence (see Section 3.4), therefore the di-
agonal is needed.
We implemented for beamDiff the same methods that were acting on beam,
adjusted accordingly. In addition to them, we also implemented the method
crossDistance: it outputs a list with three K × K matrices containing,
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Figure 4.2: Comparison between beam and beamDiff estimations in terms of
memory allocation of the respective outputs (a) and of their running time
(b). The results are averaged on 5 simulations.

respectively, KL divergence and marginal and conditional cross-entropy. As
already discussed in Section 3.4, these quantities are very useful to have a �rst
insight about which conditions have similar network structures and which are
expected to di�er more; these distances can also be used in several clustering
algorithms. In input to the function, users can set the �ag symmetric: if
true, a symmetrised version of these distances, obtained by summing each
matrix with its transpose, is returned.
Let us now see how beamDiff compares to beam in terms of memory and
time: we run both of them on a set of data made of 19 conditions. We will
present it more details in Section 5.2. We vary the number of conditions to
consider, from 2 to 19: for each of these settings we run beamDiff to get the
joint inference estimations and beam on each single condition. We then com-
pare the execution time and memory allocation of beamDiff with execution
times and object sizes of beam, summed all together.
The results are displayed in Figure 4.2. From the memory allocation point
of view, beamDiff performs slightly better than beam, and the improvement
increases as we increase the number of conditions to analyse: this might be
enabled by the decision to change the structure to store the results, from
data.frame to matrix. As already observed in Section 2.2, matrix repre-
sentation is lighter than data.frame when data are type-homogeneous, as
in our case: the advantage is really small (indeed for beam is negligible),
but, when summed up over multiple conditions, it becomes slightly evident
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(when analysing all 19 conditions, beamDiff memory allocation is 1% less
than beam). As expected, beamDiff takes longer than the individual beam
execution times summed up together: the overhead might be given by the
repeated calls to Map function, through which we simultaneously apply the
same function to all conditions. However our main concern is memory, and
there beamDiff proves to perform better; moreover, even if a bit slower (15%
when considering all 19 conditions), we are still very fast, being able to anal-
yse all 19 groups with 217 features in less than 3 seconds.

4.2 Data simulation

In order to assess the performance of our method, we had to run it on sim-
ulated data, where the underlying graph structure was known. In this way
we could compute some useful indicators:

• distance between true and estimated precision and covariance matrices.
It highlights how precise we are in the estimation, i.e. how close we get
to our target;

• ROC curves, where we use as predictors the absolute values of the
estimated partial correlation and as labels a binary vector indicating
the presence (1) or absence (0) of each edge in the graph. This tool
helps us understanding how well the original ordering is preserved in
the estimation: the better, the more accurate the recovery of the graph
structure will be;

• contingency table (containing the number of true positives, true neg-
atives, false negatives and false positives): this indicator, contrary to
the previous two, is computed after selection step has been performed.
We are therefore measuring how good is our thresholding algorithm:
we might achieve a very good ROC curve, but then "cut" it at a non-
optimal point (being, for instance, too conservative or too liberal).

Our focus has been on the performance in recovering the conditional de-
pendence structure, being it more informative and interpretable than the
marginal one. For this reason, we aimed at simulating the precision ma-
trix Ω, which by de�nition has to be symmetric positive de�nite; moreover,
representing a network, we need it to be sparse: the non-zero elements will
correspond to the edges present in the graph.
In addition to these structural characteristics, we also want to control the
magnitude of the non-zero entries and the condition number: the former
because if they are too small (say under 0.001) it will be very hard, nay



CHAPTER 4. COMPUTATIONAL DEVELOPMENT 52

impossible, for the method to pinpoint them among the random noise gener-
ated during the sampling phase; the latter because Ω needs to be inverted in
order to obtain Σ from which we will sample from the Gaussian distribution.
When inverting a ill-conditioned matrix, extra noise is added, therefore the
results will not re�ect the real performances of the method.
Lastly, we remark that we want to simulate a framework with multiple con-
ditions, whose underlying graph structure must be partly in common, since
we want to simulate a situation where we have information to share across
groups.

4.2.1 Review of existing methods

First of all, we revised how in similar papers present in the literature simu-
lations have been carried on.
In the paper by Peterson et al. [2015], 4 conditions are simulated: the �rst
matrix Ω1 has a band structure, with non-zero entries that guarantee sym-
metric positive de�niteness; the other three are obtained by removing some
edges from the �rst one and adding some new. In order to assess positive
de�niteness in the last three groups each o�-diagonal element is divided by
the sum of the o�-diagonal elements in its row, and then the matrix is aver-
aged with its transpose.
This way of simulating has two issues: �rst of all, the number of nodes in-
cluded is 20 (the method is Bayesian so, as previously discussed, it cannot
scale) and, if we increase it, the magnitude of non-zero entries in Ω2, Ω3

and Ω4 will become smaller and smaller, if we want to keep the same spar-
sity level, due to the regularization necessary to make them positive de�nite.
The other issue is in the simulation itself, where the magnitude of the entries
in Ω2, Ω3 and Ω4 is smaller than in Ω1: this responds a merely structural
constraint and we believe it does not re�ect a realistic situation.
Danaher et al. [2014] simulate 3 conditions with 500 features each. Ω1 has
a block structure, composed by ten equally sized unconnected subgraphs;
each subgraph follows a power law degree distribution, which is thought to
mimic the biological networks. Ω2 is set equal to Ω1, except for one of the
ten blocks that is removed; the same happens for Ω3, but in this case the
removed blocks are two. Also in this case, positive de�niteness is not au-
tomatically guaranteed: similarly to the previous example, all the elements
are divided by the sum of the elements present in their row, then the matrix
thus obtained is averaged with its transpose, to make it symmetric. This
regularization procedure makes most of the entries really small (a simulation
example is reported in Table 4.1): the authors themselves considered, when
assessing the performance of their method, the edges with magnitude under
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Summary abs. partial correlation
Min. 1st Qu. Median Mean 3rd Qu. Max. Spars. Cond.
9.09e-14 1.85e-05 2.57e-04 0.0124 0.0028 0.3421 9.81 26.75
9.10e-14 1.76e-05 2.44e-04 0.0124 0.0027 0.3404 8.84 23.21
9.10e-14 1.64e-05 2.44e-04 0.0125 0.0029 0.3404 7.86 23.05

Table 4.1: Distribution of non-zero entries (absolute value), sparsity and
condition number of the 3 precision matrices simulated according to the
method presented in Danaher et al. [2014].

a certain threshold as not actually present in the graph. We do believe that
it is more fair to avoid such a shortcut.

4.2.2 Our method

Aware of the di�culties others met before us when simulating realistic high-
dimensional graphical models, we tried to keep the structures, band and
blocks, of the examples illustrated in the previous section and only improve
the problematic aspects.
Concerning the block structure, the big advantage is that we can simulate
each block independently, so that the dimensionality of the problem reduces.
For instance, we can obtain a 200× 200 matrix by simulating 5 blocks with
40 features each. As we increase the number of blocks we simplify the simu-
lation, but simultaneously we also increase the sparsity, since the maximum
density we can get is given by 1/B, being B the number of blocks. Like
Danaher et al. [2014], we reproduce the multi-condition framework by repli-
cating the same matrix in all groups, and in turn remove one or more blocks.
Regarding the band structure, the heterogeneity across conditions is obtained
by permuting a subset of rows of columns: in this way, there will be a core
of edges shared across all groups, plus some group-speci�c edges.
For both structures we implemented a function (see Appendix B.3) with sev-
eral parameters that can be set, in order to obtain a simulated matrix with
the desired properties.

simBlockMatrix <- function(sparsity , nBlocks , val_lb = 0, val

_ub = 1, p, max_iter = 1000, maxCond = 500, minCorThres =

0, minMedThres = 0, shrink = 0)

Listing 4.1: header of function simBlockMatrix

Function simBlockMatrix, whose header is reported in Listing 4.1, simu-
lates one precision matrix with nBlocks independent blocks along the main
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Condition 1

Simulated precision matrices with block structure

Condition 2

Simulated precision matrices with block structure

Condition 3

Simulated precision matrices with block structure

Condition 4

Simulated precision matrices with block structure

Figure 4.3: Simulation example with p = 200 and block structure. The
absolute value of non-zero entries is displayed. The grey color scale goes
from 0-black to 1-white.

diagonal. With parameter sparsity we control the overall sparsity, recall-
ing that its maximum value is 1/nBlocks. For convenience, we decided to
simulate only one squared block of dimension p/nBlocks and then replicate
it the required number of times. For that block, �rst the position of the
non-zero entries is chosen randomly, then their values are uniformly sam-
pled from [−val_ub,−val_lb] ∪ [val_lb, val_ub]. If the resulting matrix
thus obtained is already positive de�nite and its condition number is under
maxCond, the algorithm stops and returns the matrix. If, instead, posi-
tive de�niteness is not assessed, the quantity shrink is added on the main
diagonal and the matrix is then scaled accordingly to reset the values on
the diagonal to 1. This regularization process makes the minimum eigen-
value increase, so that, if the shrinking is enough, it will become positive;
as countere�ect, the non-zero elements will be shrunk towards 0: through
parameters minCorThres and minMedThres we can control their minimum
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magnitude and/or the minimum value of their median. This whole procedure
is iterated until a matrix ful�lling all constraints is found, up to a maximum
number of iterations speci�ed by parameter max_iter : in this second case an
error message is displayed, with information about the best result achieved
so far. Based on that, the function can be called again with a new setting
for the parameters. In Figure 4.3 an example of simulation with 4 conditions
is shown. The �rst matrix is generated by the following call to the func-
tion: simBlockMatrix(sparsity = .2, nBlocks = 4, p = 200, shrink

= 0.05, val_lb = .1, val_ub = 1, max_iter = 1000).

simBandShuffle <- function(p, width , shuffle.from.list ,

shuffle.to.list , K, lb = 0, ub = 1)

Listing 4.2: header of function simBandShuffle

In Listing 4.2 we display the header of function simBandShuffle: param-
eter p sets the dimension of the matrix, width speci�es the bandwidth, lb
and ub lower and upper bounds for the uniform distribution from which the
non-zero entries are sampled. Unlike the block simulation, in this case we
directly simulate K matrices, corresponding to as many conditions: we will
start simulating the matrix for the �rst condition, then it will be copied in the
other groups with some rows and columns, speci�ed by shu�e.from.list and
shu�e.to.list, randomly permuted. In Figure 4.4 we display the output ma-
trices produced by the following code: simBandShuffle(p=200, width=20,

shuffle.from.list=list(1,1,1), shuffle.to.list=list(30,60,90),

K=4, lb=.3, ub=1).
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Condition 1

Simulated precision matrices with band structure

Condition 2

Simulated precision matrices with band structure

Condition 3

Simulated precision matrices with band structure

Condition 4

Simulated precision matrices with band structure

Figure 4.4: Simulation example with p = 200 and band structure of width
20. The absolute value of non-zero entries is displayed. The grey colour scale
goes from 0-black to 1-white. The number of permuted rows and columns in
condition 2,3 and 4 is 30,60 and 90 respectively.



Chapter 5

Results on simulated and real

data

In the last two chapters we discussed some methods for estimating marginal
and partial correlation (Section 3.3), some for structure selection (Section 3.5)
and data simulation (Section 4.2), discussing issues and possible solutions.
In this chapter we will see how the algorithms we presented perform on
simulated data; after that, we will use our method to jointly infer multiple
network structures on a real dataset.

5.1 Internal comparison

Let us start by introducing the simulated data we are going to use. We set
the number of features p to 200 in all simulations: though not extremely high,
we think it is enough to appreciate the behaviour of our method. We tried
to be as exhaustive as possible by let several parameters under our control in
the simulation change. We summarize here the various settings we are going
to analyse in the next plots:

• Network structure. We simulate both band and block structure for
our precision matrices. This to ensure our method's performance is
independent of the underlying structure it has to infer.

• Information shared across groups. We simulate either the ideal case of
same underlying structure in all groups and the case of a core shared
structure plus some group-speci�c edges. The former, although not re-
alistic, is the situation in which there is maximum information to share
across groups and it is interesting to see how the di�erent methods
behave in this context.

57
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We did not analyse the other extreme case of no similarity between
conditions: we already expect a poor performance in this case, be-
cause our method has been tailored to encourage commonalities across
groups, under the assumption of some information to be shared. If
there is none, the method will wrongly bring the conditions close to
each other.

• Number of groups. We will simulate the setting with 2,5 and 10 con-
ditions.

• Number of observations. We will consider the case in which all condi-
tions have the same number of observations nk and the case in which
they di�er. As already pointed out in Section 3.3, this imbalance is a
factor of heterogeneity: in this setting, we expect the methods perform-
ing joint inference (i.e. allowing the conditions to borrow information
from the others) to perform better than beam, i.e. than the independent
inference in each condition.

Practically, our simulations proceeded in the following way: with functions
simBandShuffle and simBlockMatrix we simulate 4 lists of 10 sparse pre-
cision matrices, 2 with band and 2 with block structure. For each structure,
one list contains the same matrix replicated ten times; the other represents
the case of partially shared information.
In Figures 5.1 and 5.2 we display the precision matrices we are going to use
throughout all the simulations. For each of the four scenarios, we select the
�rst K = 2, 5, 10 groups and we create the correspondent simulated dataset
by sampling nk observations from the multivariate Gaussian distribution.
This step is repeated for 10 times, in order to have more stable results.

5.1.1 Correlation and precision matrices estimation

We start comparing the three strategies for hyperparameters elicitation dis-
cussed in Section 3.3 for the joint inference, among them and with the indi-
vidual estimation of each group independently.
For the individual estimation we use function beam, provided by the homonym
R package; the caseM = (δ−p−1)Ip is currently implemented in R package
beamDiff. The function performing the joint optimization inM and δ using a
EM algorithm is named beamDiff_boost. Lastly, in function beamDiff_new

we estimate M by running beam on all data merged together.
We remind that these simulations pertain only the estimation of correlation
and precision matrices, because the theory on how to derive the tail proba-
bilities when M is not diagonal has yet to be developed.



CHAPTER 5. RESULTS ON SIMULATED AND REAL DATA 59

Method cond(H) dist_marg dist_part dist_part_nz AUC
beam - 9.645 4.799 3.789 0.872
beamDi� - 9.643 4.788 3.790 0.873
beamDi�_boost 555.55 8.041 9.548 2.046 0.926
beamDi�_new 45.2 5.779 4.021 2.074 0.989

beam - 9.642 4.784 3.789 0.877
beamDi� - 9.638 4.787 3.786 0.875
beamDi�_boost 561.99 8.001 9.564 2.064 0.925
beamDi�_new 46.07 5.777 4.020 2.074 0.988

beam - 9.615 4.793 3.786 0.862
beamDi� - 9.616 4.790 3.789 0.862
beamDi�_boost 587.99 8.027 9.584 2.054 0.929
beamDi�_new 45.74 5.777 4.021 2.074 0.989

beam - 9.600 4.780 3.789 0.869
beamDi� - 9.588 4.784 3.782 0.870
beamDi�_boost 505.03 7.974 9.581 2.049 0.922
beamDi�_new 44.26 5.774 4.020 2.074 0.988

beam - 9.621 4.778 3.774 0.877
beamDi� - 9.626 4.775 3.778 0.877
beamDi�_boost 580.2 8.020 9.553 2.019 0.926
beamDi�_new 44.73 5.776 4.020 2.074 0.989

Table 5.1: Some performance indicators for the estimation of marginal and
partial correlation matrices. Simulated setting: same band structure in all
5 conditions, p = 200, nk = 100 (same as �gure 5.3). From left to right:
method used for estimation, condition number of H = M + Sk, L

2-distance
between true and estimated correlation matrix, same for precision matrix and
for non-zero entries in the precision matrix, area under the curve (AUC).
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Method cond(H) dist_marg dist_part dist_part_nz AUC
beam - 10.927 4.993 4.331 0.793
beamDi� - 10.969 4.957 4.379 0.795
beamDi�_boost 486.06 7.838 9.264 2.016 0.928
beamDi�_new 38.69 5.834 4.012 2.117 0.985

beam - 10.352 4.916 4.096 0.836
beamDi� - 10.392 4.886 4.132 0.837
beamDi�_boost 371.70 7.965 9.423 2.056 0.923
beamDi�_new 40.36 5.833 4.017 2.114 0.986

beam - 9.642 4.795 3.790 0.868
beamDi� - 9.652 4.787 3.798 0.869
beamDi�_boost 509.43 7.912 9.698 2.125 0.914
beamDi�_new 40.86 5.826 4.024 2.108 0.986

beam - 9.260 4.729 3.627 0.890
beamDi� - 9.243 4.740 3.614 0.890
beamDi�_boost 456.96 7.843 9.817 2.144 0.913
beamDi�_new 37.29 5.825 4.029 2.103 0.986

beam - 8.718 4.635 3.391 0.901
beamDi� - 8.687 4.661 3.363 0.901
beamDi�_boost 496.59 7.711 9.827 2.140 0.910
beamDi�_new 40.62 5.821 4.034 2.097 0.986

Table 5.2: Some performance indicators for the estimation of marginal and
partial correlation matrices. Simulated setting: same band structure in all 5
conditions, p = 200, nk = 50, 70, 100, 120, 150 (same as �gure 5.4). From left
to right: method used for estimation, condition number of H = M + Sk, L

2-
distance between true and estimated correlation matrix, same for precision
matrix and for non-zero entries in the precision matrix, area under the curve
(AUC).
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Method cond(H) dist_marg dist_part dist_part_nz AUC
beam - 9.406 4.547 3.722 0.841
beamDi� - 9.391 4.553 3.713 0.841
beamDi�_boost 1263.04 8.077 9.504 2.217 0.874
beamDi�_new 39.32 6.246 4.042 2.489 0.955

beam - 9.370 4.553 3.720 0.840
beamDi� - 9.365 4.555 3.717 0.840
beamDi�_boost 1228.12 8.101 9.487 2.203 0.877
beamDi�_new 41.36 6.255 4.043 2.491 0.954

beam - 9.532 4.558 3.707 0.852
beamDi� - 9.543 4.551 3.714 0.852
beamDi�_boost 1029.29 8.199 9.517 2.276 0.871
beamDi�_new 40.80 6.464 4.075 2.536 0.947

beam - 9.401 4.556 3.724 0.845
beamDi� - 9.392 4.560 3.720 0.845
beamDi�_boost 1205.06 8.166 9.634 2.411 0.860
beamDi�_new 42.31 6.492 4.174 2.653 0.940

beam - 9.421 4.553 3.706 0.843
beamDi� - 9.432 4.547 3.712 0.844
beamDi�_boost 1043.54 8.274 9.631 2.451 0.856
beamDi�_new 40.06 6.719 4.251 2.730 0.926

Table 5.3: Some performance indicators for the estimation of marginal and
partial correlation matrices. Simulated setting: partially shared band struc-
ture in all 5 conditions, p = 200, nk = 100 (same as �gure 5.5). From left
to right: method used for estimation, condition number of H = M + Sk, L

2-
distance between true and estimated correlation matrix, same for precision
matrix and for non-zero entries in the precision matrix, area under the curve
(AUC).
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Method cond(H) dist_marg dist_part dist_part_nz AUC
beam - 10.455 4.721 4.148 0.770
beamDi� - 10.534 4.679 4.198 0.771
beamDi�_boost 802.00 8.060 9.269 2.335 0.870
beamDi�_new 35.57 6.436 4.122 2.631 0.934

beam - 9.962 4.646 3.937 0.811
beamDi� - 10.030 4.611 3.979 0.812
beamDi�_boost 879.18 8.178 9.428 2.353 0.865
beamDi�_new 37.07 6.430 4.125 2.622 0.933

beam - 9.462 4.572 3.707 0.836
beamDi� - 9.488 4.557 3.723 0.836
beamDi�_boost 1044.50 8.200 9.657 2.390 0.868
beamDi�_new 37.01 6.580 4.134 2.612 0.937

beam - 9.078 4.506 3.593 0.844
beamDi� - 9.038 4.527 3.570 0.843
beamDi�_boost 1147.41 8.053 9.827 2.446 0.857
beamDi�_new 37.00 6.504 4.181 2.656 0.934

beam - 8.601 4.429 3.376 0.890
beamDi� - 8.556 4.455 3.348 0.890
beamDi�_boost 1118.28 7.900 9.930 2.425 0.859
beamDi�_new 38.51 6.600 4.197 2.639 0.935

Table 5.4: Some performance indicators for the estimation of marginal and
partial correlation matrices. Simulated setting: partially shared band struc-
ture in all 5 conditions, p = 200, nk = 50, 70, 100, 120, 150 (same as �gure
5.6). From left to right: method used for estimation, condition number of
H = M + Sk, L

2-distance between true and estimated correlation matrix,
same for precision matrix and for non-zero entries in the precision matrix,
area under the curve (AUC).
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Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Condition 6 Condition 7 Condition 8 Condition 9 Condition 10

Partially shared band structure

Figure 5.1: Simulated precision matrices with band structure, obtained with
function simBandShuffle. The magnitude of the non-zero entries is between
0.12 and 0.22. The sparsity is at 5% and its condition number is 94.30. The
number of shu�ed rows is, respectively: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90.

In the next plots and tables we compare Receiver Operating Characteristic
(ROC) curves, condition number of Hk = M + Sk and L

2-distance between
true and estimated matrices. For the ROC curves we used the absolute val-
ues of estimated partial correlations as predictors and the binary indicators
of presence or absence of each edge as labels.
We report here all the scenarios (totally/partially shared network structure,
same/di�erent number of observations) and discuss the results for the band
structure case with K = 5 conditions. Afterwards, we will present one case
for K = 2, one for K = 10 and one relative to the block structure.
In Figure 5.3 and Table 5.1 we report, respectively, the ROC curves and some
indicators about the method's performance relative to the case with same un-
derlying structure and same number of observations. From the plot we notice
that the ROC curves relative to beam and beamDiff (red and blue) overlap
almost perfectly. This is in accordance with what we already discussed in
section 3.3: borrowing information only by means of hyperparameter δ does
not lead to any signi�cant improvement with respect to the separate infer-
ence on the single conditions. Table 5.1 con�rms it: indeed, the �rst two lines
of each group, are almost identical. We appreciate some di�erences between
the two only in cases with strong heterogeneity across conditions, like in the
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Condition 1 Condition 2 Condition 3 Condition 4 Condition 5

Condition 6 Condition 7 Condition 8 Condition 9 Condition 10

Partially shared block structure

Figure 5.2: Simulated precision matrices with block structure, obtained with
function simBlockMatrix. The magnitude of the non-zero entries is between
0.14 and 0.22. The full matrix (with all 10 blocks) is 5% sparse and its condi-
tion number is 171.54. The number of blocks in the matrices is, respectively:
10, 9, 8, 7, 6, 5, 4, 3, 2, 1.
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Figure 5.3: ROC curves for the correlation matrix estimation. 5 conditions,
same band structure, p = 200 and nk = 100 in all conditions.
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Figure 5.4: ROC curves for the correlation matrix estimation. 5 conditions,
same band structure, p = 200, nk = 50, 70, 100, 120, 150.
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Figure 5.5: ROC curves for the correlation matrix estimation. 5 conditions,
shu�ed band structure, p = 200, nk = 100 in all conditions.
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Figure 5.6: ROC curves for the correlation matrix estimation. 5 conditions,
shu�ed band structure, p = 200, nk = 50, 70, 100, 120, 150.

case presented in Figure 5.9, which we will discuss in more details later.
When number of observations and structure are identical in all conditions
(Figure 5.3), we observe, as expected, that the ROC curves are pretty much
the same in all conditions; by varying the number of observations (Figure
5.4), we notice that beam and beamDiff have poor performances in the con-
ditions with small sample size (on the left) and improve as it increases. On
the contrary, beamDiff_boost and beamDiff_new, the latter in particular,
manage to borrow a good amount of information through hyperparameter
M : in this way, they perform pretty well also on the conditions with small
nk. If, instead, we vary the underlying structure, keeping constant the num-
ber of observations, we observe (Figure 5.5) that all methods struggle more
than before: the performance gets worse as we increase the heterogeneity.
beamDiff_new is particularly a�ected as we can see in the rightmost plot:
this is due to the fact that we use as target M the matrix representing the
common underlying structure, obtained by merging data from all conditions
together. The more heterogeneous the data, the more the target will not be
optimal. We notice, however, that its performance is still better than the
others, at least in this case.
Lastly, we vary both structure and number of observations (Figure 5.6):
again, we observe that the two methods using the identity matrix as tar-
get, worsen when the sample size decreases, while beamDiff_boost and
beamDiff_new are less a�ected.
Besides ROC curves, we also computed some numeric indicators, reported
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in Tables 5.1 (same structure, same nk), 5.2 (same structure, di�erent nk),
5.3 (di�erent structure, same nk) and 5.4 (di�erent structure, di�erent nk).
For methods beamDiff_boost and beamDiff_new we report the condition
number of Hk = M + Sk, which is the matrix that needs to be inverted to
compute the partial correlation estimates. As expected, the condition num-
ber relative to beamDiff_boost is way bigger than that of beamDiff_new

and in general quite high, like in Table 5.3.
The consequences of bad conditioning can be observed in the next two
columns of the table, where the L2-distance between true and estimated
correlation and precision matrices are reported. As regards the correlation
matrix, beamDiff_new performs better than beamDiff_boost, which in turn
outperforms beam and beamDiff. When considering the precision matrix,
beamDiff_new still performs (slightly) better, while beamDiff_boost has a
much bigger error. This is caused by the numerical noise introduced when
inverting bad-conditioned Hk. As further proof of it, we report in the next
column the L2-error restricted to the non-zero entries of the true precision
matrices: we notice in this case beamDiff_boost has good performances
again. At selection phase, this will likely translate into a good recall (many
true positives) but insu�cient precision (too many false positives).
In the last column the area under the curve (AUC) is reported: it refers to
the ROC curves displayed in the corresponding plots.

Let us now discuss the impact of K, i.e. the number of conditions on
the estimations: for this purpose we present a case with 2 conditions and
one with 10. In Figure 5.7 we display the ROC curves relative to the pre-
cision matrix estimation in the setting with 2 conditions, di�erent network
structure and same number of observations: while beamDiff_new performs
well, beamDiff_boost does as bad as random allocation. The explanation
for this behaviour is again in the condition number (Table 5.5), which is in
the order of 108. Both the estimations of marginal and partial correlation are
completely disguised by the numerical noise due to ill-conditioning. When,
instead, we consider the setting with 10 conditions (Figure 5.8), we observe
that the performances of beamDiff_new and beamDiff_boost are similar:
the more the conditions, the more the estimation of hyperparameter M pro-
vided by the EM algorithm is regularized. It also interesting to notice how
the performances of both beamDiff_new and beamDiff_boost deteriorate as
we increase the heterogeneity: for instance, in condition 10 approximately
50% of the edges are group-speci�c (see Figure 5.1), therefore there is no
bene�t, actually it might even be detrimental, in using a data-driven prior
matrix, which shrinks towards the common structure, rather than the unin-
formative identity.
We give a graphical representation of the e�ect of M on the estimations in
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the block structure case, where it is easier to be seen. The ROC curves rel-
ative to the setting with 10 conditions, partially shared network structure
and same number of observations are displayed in Figure 5.9: in condition
10, where only one block is present (see Figure 5.2 for the true structure),
the two methods using a data-driven prior perform much better, while in
condition 1 (all 10 blocks present) the four methods perform quite similarly.
In Figure 5.10 we display the estimations of condition 1 (5.10a) and condi-
tion 10 (5.10b). First of all, we can glimpse the noise a�ecting zero entries
in beamDiff_boost's estimation (third column) of the precision matrices. In
condition 1, the best method for partial correlation estimation is beamDiff,
indeed we can distinguish all 10 blocks, while in beamDiff_new estimation
the last blocks mix up with the noise on zero entries. Conversely, in condi-
tion 10 the only block actually present is better identi�ed by beamDiff_new,
where we can also glimpse some other blocks: this is the e�ect of shrinking
towards the structure inferred by pooling together all data, which will be a
sort of average, containing therefore approximately 5 blocks. In light of all
these simulations, we can draw some conclusions:

• beamDiff often performs as good as beam. When the underlying net-
work structure is expected to be similar across the conditions, it proved
bene�cial to borrow information also through hyper-parameterM (meth-
ods beamDiff_boost and beamDiff_new). However, if conditions are
quite heterogeneous, it might be convenient to use a non-informative
prior, to avoid the shrinking towards a common structure that does not
really exist.

• In case of imbalance in the number of observations, beamDiff_boost
and beamDiff_new perform better than beamDiff in the conditions
with small sample size, since they are able to borrow more information
from the others.

• beamDiff_boost provides noisy estimates, unless we are dealing with
many conditions and reasonably high sample sizes. Before applying
this algorithm, it is recommended to compute the condition number of
Hk = M + Sk, for each condition k, and check if it is reasonably low.

• In general, beamDiff_new proved to outperform (or at least perform
as well as) all the other methods. Therefore, we think that it is worth
extending the derivation of tail probabilities also to the case of non-
diagonal prior matrix. In this way, we could use beamDiff_new at
estimation phase and get better results also in the following step when
we retrieve the network structures.
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Figure 5.7: ROC curves for the correlation matrix estimation. 2 conditions,
shu�ed band structure, nk = 100 in all conditions.

Method cond(H) dist_marg dist_part dist_part_nz AUC
beam - 9.369 4.557 3.710 0.840
beamDi� - 9.374 4.553 3.713 0.841
beamDi�_boost 2.98E+08 10.024 97.087 21.366 0.503
beamDi�_new 33.81 7.918 4.600 2.976 0.903

beam - 9.379 4.556 3.723 0.844
beamDi� - 9.371 4.559 3.719 0.843
beamDi�_boost 3.11E+08 10.010 97.249 21.415 0.505
beamDi�_new 31.65 7.912 4.605 2.981 0.901

Table 5.5: Some performance indicators for the estimation of marginal and
partial correlation matrices. Simulated setting: partially shared band struc-
ture in both conditions, p = 200, nk = 100 (same as �gure 5.7). From left
to right: method used for estimation, condition number of H = M + Sk, L

2-
distance between true and estimated correlation matrix, same for precision
matrix and for non-zero entries in the precision matrix, area under the curve
(AUC).
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Figure 5.8: ROC curves for the correlation matrix estimation. 10 conditions,
shu�ed band structure, p = 200 and nk = 100 in all conditions.
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Figure 5.9: ROC curves for the correlation matrix estimation. 10 conditions,
partially shared block structure, p = 200 and nk = 100 in all conditions.
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Figure 5.10: Plot of marginal (upper row) and partial (lower row) correla-
tion matrices estimated by methods beam, beamDiff, beamDiff_boost and
beamDiff_new (from left to right) for condition 1 (a) and 10 (b) in the fol-
lowing setting: 10 conditions, partially shared block structure, p = 200 and
nk = 100 in all conditions.
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Figure 5.11: Network inference performed by methods hierTest_BF (upper
row) and hierBH (lower row). 5 conditions, same block structure, p = 200
and nk = 100 in all conditions. True Positives (green), False Negatives (blue)
and False Positives (red) are displayed.

5.1.2 Network structure inference

Before presenting the simulations results, we recall the methods for retrieving
the network structure, introduced in section 3.5, we are going to test.
In the context of con�rmatory analysis, we proposed the Union-Intersection
(UI) test, which is based on the product of the Bayes factors. UI test can
be used to test whatever hypothesis about a speci�c network structure, e.g.
that containing edges present only in a given condition or that shared across
all conditions. In the simulations, we focus on this last case: we will compare
it with the other two methods, where we will consider as common an edge
that has been allocated to all conditions.
Switching to a more exploratory setting, we discussed hierarchical testing by
Goeman et al. [2011] and hierarchical BH by Peterson et al. [2016], which
we implemented in functions hierTest_BF and hierBH (see Appendix B.4),
respectively.



CHAPTER 5. RESULTS ON SIMULATED AND REAL DATA 74

Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 199 751 11 18939 20.95 0.0580

hierBH 507 443 76 18874 53.37 0.4011
hierTest_BF 211 739 10 18940 22.21 0.0528

hierBH 511 439 73 18877 53.79 0.3852
hierTest_BF 198 752 10 18940 20.84 0.0528

hierBH 519 431 75 18875 54.63 0.3958
hierTest_BF 196 754 10 18940 20.63 0.0528

hierBH 509 441 74 18876 53.58 0.3905
hierTest_BF 203 747 10 18940 21.37 0.0528

hierBH 512 438 72 18878 53.89 0.3799

hierTest_BF 71 879 2 18948 7.47 0.0106

hierBH 340 610 12 18938 35.79 0.0633
UI test 568 382 52 18898 59.79 0.2744

Table 5.6: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, same block struc-
ture, p = 200 and nk = 100 in all conditions. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.

In its original context, hierarchical testing was thought to be applied on a
vector of p-values: we have a matrix, instead, made of N = p(p− 1)/2 rows,
corresponding to the edges, and K columns, one for each condition. As dis-
cussed when presenting this method, we �rst apply Intersection-Union (IU)
test to identify the "promising" edges; after that we run independently hier-
archical testing on each of them, in order to pinpoint the conditions where
they are present. In practice, we implemented the procedure in the follow-
ing way: in order to verify if an edge is signi�cant or not, we consider the
maximum tail probability on its row, representing the evidence of it being
present in at least one condition. If it is lower than the given threshold α,
corrected for multiplicity with Bonferroni (α/N), then hierarchical testing
is applied on it. The choice of adjusting for multiplicity using Bonferroni
approach is dictated by the necessity of coherency between the two steps:
since hierarchical testing controls FWER (Family-Wise Error Rate), we need
to ensure the same type of control also at the �rst level.
For all the methods we set the threshold α at 0.1; hierarchical BH allows
di�erent test levels α1 and α2 for the two selection steps: we set them both
equal to 0.1.
As we did for in the previous comparison, we will comment in details all four
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Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 170 780 10 18940 17.89 0.0528

hierBH 469 481 149 18801 49.37 0.7863
hierTest_BF 184 766 10 18940 19.37 0.0528

hierBH 483 467 118 18832 50.84 0.6227
hierTest_BF 196 754 10 18940 20.63 0.0528

hierBH 511 439 86 18864 53.79 0.4538
hierTest_BF 206 744 10 18940 21.68 0.0528

hierBH 526 424 61 18889 55.37 0.3219
hierTest_BF 215 735 8 18942 22.63 0.0422

hierBH 553 397 34 18916 58.21 0.1794

hierTest_BF 49 901 3 18947 5.16 0.0158

hierBH 331 619 12 18938 34.84 0.0633
UI test 568 382 43 18907 59.79 0.2269

Table 5.7: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, same block struc-
ture, p = 200 and nk = 50, 70, 100, 120, 150. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.

scenarios regarding the simulation setting with 5 conditions. Here, we will
consider the simulations with block structure (displayed in Figure 5.2).
In Figure 5.11 a graphical representation of how methods hierTest_BF (up-
per row) and hierBH (lower row) perform is shown. Colour green denotes
the True Positives (true edges correctly detected), blue the False Negatives
(true edges not detected) and red the False Positives (edges wrongly detected
as present). White colour denotes the others, i.e. the True Negatives. At a
glance, we immediately spot a lack of power in method hierTest_BF, whose
estimations are dominated by colour blue. For a more quantitative insight,
we refer to Table 5.6: as expected, hierBH detects many more edges than
hierTest_BF. However, we notice that False Postive Rate (FPR) increased,
but it is still quite low.
When considering the case with di�erent number of observations (Table 5.6),
we notice, unsurprisingly, that the detection ability improves with the sam-
ple size: indeed, TPR gets higher and, simultaneously, FPR gets lower as
we increase the number of observations, from 50 in the �rst condition (�rst
block in the table) to 150 (last block before the double horizontal line).
Moving to the case with partially shared network structure (Tables 5.8 and
5.9), we observe the same dependence on the sample size and a slight improve-
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Figure 5.12: Network inference performed by methods hierTest_BF (upper
row) and hierBH (lower row). 5 conditions, partially shared block struc-
ture, p = 200 and nk = 100 in all conditions. True Positives (green), False
Negatives (blue) and False Positives (red) are displayed.

ment of the performances for both methods, which becomes more signi�cant
as the number of blocks contained in the matrix decreases. This might be
a peculiarity of this speci�c simulation setting: indeed, the heterogeneity is
here simulated by gradually removing some blocks form the true precision
matrices. This means that there are no edges speci�c to a single condition
(expect the �rst block of the �rst condition): they are all shared between at
least two conditions. This setting seems to be favourable for both methods.
We perform the same comparison (5 conditions, same number of observa-
tions, totally vs partially shared network structure) in the case with band
matrices (Table 5.10 and 5.11, respectively): in this setting we notice the op-
posite trend, i.e. both methods, hierBH in particular, perform better when
all conditions have the same network structure.
In Tables 5.12 and 5.13 we report the results for the setting with same block
structure and same number of observations, relative to 2 and 10 conditions,
respectively.
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Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 234 716 12 18938 24.63 0.0633

hierBH 549 401 168 18782 57.79 0.8865
hierTest_BF 230 625 10 19035 26.90 0.0525

hierBH 505 350 157 18888 59.06 0.8244
hierTest_BF 227 533 13 19127 29.87 0.0679

hierBH 449 311 157 18983 59.08 0.8203
hierTest_BF 220 445 15 19220 33.08 0.0780

hierBH 395 270 143 19092 59.40 0.7434
hierTest_BF 196 374 20 19310 34.39 0.1035

hierBH 345 225 139 19191 60.53 0.7191

hierTest_BF 18 77 89 19716 18.95 0.4494

hierBH 44 51 277 19528 46.32 1.3986
UI test 36 59 291 19514 37.89 1.4693

Table 5.8: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, partially block
structure, p = 200 and nk = 100 in all conditions. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.
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Figure 5.13: Common edge detection performed by methods UI test (left),
hierTest_BF (center) and hierBH (right). 5 conditions, same block struc-
ture, p = 200 and nk = 100 in all conditions. True Positives (green), False
Negatives (blue) and False Positives (red) are displayed.
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Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 201 749 20 18930 21.16 0.1055

hierBH 502 448 231 18719 52.84 1.219
hierTest_BF 229 626 29 19016 26.78 0.1523

hierBH 475 380 227 18818 55.56 1.1919
hierTest_BF 244 516 26 19114 32.11 0.1358

hierBH 459 301 190 18950 60.39 0.9927
hierTest_BF 239 426 21 19214 35.94 0.1092

hierBH 411 254 165 19070 61.80 0.8578
hierTest_BF 238 332 22 19308 41.75 0.1138

hierBH 364 206 135 19195 63.86 0.6984

hierTest_BF 16 79 94 19711 16.84 0.4746

hierBH 44 51 302 19503 46.32 1.5249
UI test 35 60 226 19579 36.84 1.1411

Table 5.9: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, partially shared
block structure, p = 200 and nk = 50, 70, 100, 120, 150. A single horizon-
tal line separates the conditions; under the double line, same performance
indicators for common edge detection.
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Figure 5.14: Common edge detection performed by methods UI test (left),
hierTest_BF (center) and hierBH (right). 5 conditions, partially shared
block structure, p = 200 and nk = 100 in all conditions. True Positives
(green), False Negatives (blue) and False Positives (red) are displayed.



CHAPTER 5. RESULTS ON SIMULATED AND REAL DATA 79

Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 52 933 0 18915 5.28 0

hierBH 256 729 12 18903 25.99 0.0634
hierTest_BF 52 933 0 18915 5.28 0

hierBH 259 726 10 18905 26.29 0.0529
hierTest_BF 53 932 0 18915 5.38 0

hierBH 264 721 11 18904 26.80 0.0582
hierTest_BF 55 930 0 18915 5.58 0

hierBH 263 722 13 18902 26.70 0.0687
hierTest_BF 57 928 0 18915 5.79 0

hierBH 266 719 9 18906 27.01 0.0476

hierTest_BF 14 971 0 18915 1.42 0

hierBH 105 880 2 18913 10.66 0.0106
UI test 244 741 0 18915 24.77 0

Table 5.10: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, same band struc-
ture, p = 200 and nk = 100 in all conditions. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.
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Figure 5.15: Common edge detection performed by methods UI test (left),
hierTest_BF (center) and hierBH (right). 10 conditions, partially shared
block structure, p = 200 and nk = 100 in all conditions. True Positives
(green), False Negatives (blue) and False Positives (red) are displayed.
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Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 56 929 3 18912 5.69 0.0159

hierBH 145 840 17 18898 14.72 0.0899
hierTest_BF 58 927 3 18912 5.89 0.0159

hierBH 141 844 19 18896 14.31 0.1004
hierTest_BF 61 924 2 18913 6.19 0.0106

hierBH 148 837 19 18896 15.03 0.1004
hierTest_BF 70 915 1 18914 7.11 0.0053

hierBH 149 836 16 18899 15.13 0.0846
hierTest_BF 61 924 3 18912 6.19 0.0159

hierBH 154 831 19 18896 15.63 0.1004

hierTest_BF 25 531 1 19343 4.5 0.0052

hierBH 68 488 18 19326 12.23 0.0931
UI test 29 527 13 19331 5.22 0.0672

Table 5.11: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 5 conditions, partially shared
band structure, p = 200 and nk = 100 in all conditions. A single horizon-
tal line separates the conditions; under the double line, same performance
indicators for common edge detection.

Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 187 763 10 18940 19.68 0.0528

hierBH 514 436 76 18874 54.11 0.4011
hierTest_BF 190 760 10 18940 20.00 0.0528

hierBH 517 433 77 18873 54.42 0.4063

hierTest_BF 120 830 9 18941 12.63 0.0475
hierBH 437 513 33 18917 46 0.1741
UI test 257 693 4 18946 27.05 0.0211

Table 5.12: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 2 conditions, same block struc-
ture, p = 200 and nk = 100 in both conditions. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.
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Method TP FN FP TN TPR (%) FPR (%)
hierTest_BF 199 751 9 18941 20.95 0.0475

hierBH 514 436 68 18882 54.11 0.3588
hierTest_BF 194 756 10 18940 20.42 0.0528

hierBH 513 437 74 18876 54.00 0.3905
hierTest_BF 197 753 10 18940 20.74 0.0528

hierBH 514 436 73 18877 54.11 0.3852
hierTest_BF 196 754 10 18940 20.63 0.0528

hierBH 503 447 75 18875 52.95 0.3958
hierTest_BF 198 752 10 18940 20.84 0.0528

hierBH 520 430 82 18868 54.74 0.4327
hierTest_BF 212 738 10 18940 22.32 0.0528

hierBH 519 431 83 18867 54.63 0.4380
hierTest_BF 198 752 10 18940 20.84 0.0528

hierBH 508 442 73 18877 53.47 0.3852
hierTest_BF 209 741 10 18940 22.00 0.0528

hierBH 509 441 68 18882 53.58 0.3588
hierTest_BF 186 764 9 18941 19.58 0.0475

hierBH 513 437 67 18883 54.00 0.3536
hierTest_BF 197 753 10 18940 20.74 0.0528

hierBH 511 439 78 18872 53.79 0.4116

hierTest_BF 32 918 0 18950 3.37 0

hierBH 286 664 10 18940 30.11 0.0528
UI test 709 241 187 18763 74.63 0.9868

Table 5.13: Performance indicators for methods hierTest_BF, hierBH and
UI_test (only for common edge detection). 10 conditions, same block struc-
ture, p = 200 and nk = 100 in all conditions. A single horizontal line
separates the conditions; under the double line, same performance indicators
for common edge detection.
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From them, we can see that the number of conditions does not really change
the performances of the two methods. This is related to the prior we are
using in our model: as discussed in Section 3.3, if the borrowing of informa-
tion is enabled only through hyperparameter δ, the estimate provided by the
joint model is almost the same as that provided by K separate models. This
is particularly true when underlying structure and sample sizes are identical
across conditions, as in the case we are commenting.

Regarding the common edges, we can observe form the tables illustrated
so far that the performances deteriorate as we increase the heterogeneity
across conditions. As an example, we compare Figures 5.13 and 5.14, dis-
playing common edges detection with methods UI test, hierTest_BF and
hierBH: the corresponding numerical data can be found in Tables 5.6 and 5.8.
When the underlying network structure is identical (Figure 5.13), all methods
recover it correctly, UI test in particular; if we introduce some heterogeneity
(Figure 5.14), however, we notice that lots of edges are wrongly detected as
present. They concentrate, quite intuitively, in those blocks that are shared
across some of the conditions. This e�ect becomes less evident when we
increase the number of conditions, as we can see in Figure 5.15, where we
display the same setting just described with K = 10.
We �nally observe that we are measuring some of the many performance
indicators available. They give already a general overview about our meth-
ods: still, TPR and FPR are not enough by themselves to highlight all their
properties. Let us focus on FPR, for instance: it is always very low, which
is a good sign. However, recalling its formula, FPR = FP/(FP + TN), we
see that at the denominator there is the number of True Negatives, which is
extremely high, given that we are dealing with very sparse matrices in our
simulations. Even a considerable number of False Positives can be somehow
concealed in the ratio with True Negatives. If, instead, we computed the
Precision index (prec = TP/(TP + FP )), we would observe much worse
results: indeed, the number of False Positives is often in the same order of
magnitude as the True Positives. This holds true especially for hierBH, while
hierTest_BF usually attains fair results in terms of precision, being it intrin-
sically more conservative.
We show an extreme example in Table 5.9: the last block of results, under
the double horizontal lines, refers to the detection of common edges: if we
look only at TPR and FPR percentages, we do not spot anything too wrong,
unless a general lack of power. However, looking also at the other columns,
we notice that the number of True Positives is way lower than that of False
Positives. This means that, in a real case scenario, where we do not know
whether the edges that have been detected are actually present or not, we
have no con�dence about the selected edges at all.
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Summing up, we can draw some conclusions. The performances are not com-
pletely satisfactory: in particular, we observed a general lack of power. For
these simulations we used the model which sets the target matrix to the iden-
tity. As already discussed, this approach is not optimal and can be improved
by allowing the sharing of information also by means of hyperparameter M .
It is likely that we will achieve better results by changing the model accord-
ingly.
In the simulations we presented, we notice a general trade-o�: hierBH usu-
ally has almost double power than hierTest_BF, but it pays a small prize in
terms of False Positives.
Thus, we think that the choice of the method to use should be driven by the
application: if more interested in detecting as many edges as possible, regard-
less of some False Positives, in view of a subsequent con�rmatory analysis,
we suggest hierBH. Method hierTest_BF should be privileged if the main
concern is about precision.

5.2 Application to real data

In this last section we are going to apply our method to a real dataset,
in order to show an example of analysis that can be performed. An in-
depth interpretation of the results is beyond our scope, as it requires a deep
knowledge in molecular biology. Still, we can make some general observations
and see it the method outputs plausible results.
The data are divided in 19 conditions, representing 19 cancer types; each of
them contains the protein expression relative to 217 proteins.
Moreover, in the paper by �enbabao§lu et al. [2016] a previous version of the
same data collection (containing 187 proteins for 11 cancer types and with
slightly smaller sample size) is analysed. Thus, we can compare our �ndings
with theirs, to see if they are reasonable. Before presenting in more details
the dataset, we will give a brief overview about what protein expression is.
We will refer to Hunter [1993], who wrote a short compendium on molecular
biology for computer scientists, and to the paper by Mishra et al. [2015].

5.2.1 Protein expression

All the characteristics an organism inherits are contained in a single messen-
ger molecule: deoxyribonucleic acid, or DNA. The information is represented
in a simple, linear, four-element code. The complexity comes into play in the
translation of this code into all the inherited characteristics. The particular
genetic encoding for an organism is called its genotype; the resulting physi-
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cal characteristics are called its phenotype. The di�erence between genotype
and phenotype is very important, because small changes at genotype level
can have large consequences on the phenotype.
All of the genetic material in an organism is called its genome. Genetic mate-
rial is discrete and hence has a particular size, which varies from about 5000
elements in very simple organisms to more than 1011 in some higher plants;
people's genome is made of about 3× 109 elements. The size of the genome
is not directly related to the complexity of the organism.
All living things are made of cells: in multicellular organisms they special-
ize to accomplish speci�c tasks. Tissues are groups of cells specialized for a
particular function. In people there are fourteen major tissue types. Despite
these variations, all cells in a multicellular organism have exactly the same
genetic code. What di�ers is their gene expression, that is, whether or not
the product a gene codes for is produced, and how much is produced.
Inside each cell, genetic messages are translated into the main type of bio-
logical molecule, the proteins, which accomplish most of its functions. The
"central dogma of molecular Biology" (Crick [1970]), which says that DNA
is transcribed in RNA and subsequently translated into proteins, is a very
simplistic way to describe the �ow of information. The genetic regulatory
process is very elaborate and intricate: genes code for products that turn on
and o� other genes, which in turn regulate other genes, and so on.
One of the key research areas aims at studying how the control of gene ex-
pression is managed, how cells "know" what to di�erentiate into and what
makes them go wrong (e.g. the cancer cells). To understand this Biologists
take measurements at di�erent molecular levels of the cell (DNA, RNA, Pro-
tein, Methylation, microRNA,...), protein expression among the others.
Protein expression quanti�es the amount of protein that is produced.
The analysis we are going to present falls into the category of Pan-cancer
analyses, whose general aim is to examine similarities and di�erences among
the genomic and cellular alterations found across diverse cancer types. In
their paper, Mishra et al. [2015] claim that it is particularly relevant to per-
form Pan-cancer analysis at protein level, since it is more immediately related
to patient phenotype than genomic or transcriptomic data.

5.2.2 Analysis of Pan-cancer data

The dataset DataListPanCan19 we analysed comes from the data portal
TCPA (The Cancer Proteome Atlas), illustrated in Li et al. [2013] and it is
directly available in beamDiff R package.
The pan-cancer dataset contains normalized protein expression data relative
to p = 217 proteins.
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Figure 5.16: Heatmap for pairwise symmetric KL-divergence on DataList-
PanCan19 dataset. The colour scale goes from yellow (0) to red (1).
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Acronym Cancer type Sample size
ACC Adenoid Cystic Carcinoma 46
BLCA Bladder Urothelial Carcinoma 127
BRCA Breast invasive carcinoma 815
COAD Colon adenocarcinoma 327
GBM Glioblastoma multiforme 205
HNSC Head and Neck squamous cell carcinoma 203
KIRC Kidney renal clear cell carcinoma 445
KIRP Kidney renal papillary cell carcinoma 208
LGG Brain Lower Grade Glioma 257
LUAD Lung adenocarcinoma 234
LUSC Lung squamous cell carcinoma 192
OV Ovarian serous cystadenocarcinoma 411
PAAD Pancreatic adenocarcinoma 105
PRAD Prostate adenocarcinoma 164
READ Rectum adenocarcinoma 129
SKCM Skin Cutaneous Melanoma 36
STAD Stomach adenocarcinoma 299
THCA Thyroid carcinoma 372
UCEC Uterine Corpus Endometrial Carcinoma 404

Table 5.14: Cancer types present in DataListPanCan19 dataset. The sample
size of each condition is also reported.

TheK = 19 cancer types are reported in Table 5.14, together with the sample
size nk. We perform the estimation with function beamDiff. Once obtained
the estimates for marginal and partial correlation matrices, we can already
compute one of the measures from information theory, discussed in Section
3.4. In Figure 5.16 the symmetrized version of KL divergence is displayed
on a heatmap, with a dendrogram representing the hierarchical clustering
(Complete linkage and Euclidean distance). From it, we can have a �rst
insight about group-relatedness.
We can identify, for instance, a group of cancer types at the bottom right
corner, composed by ACC, SKCM and PAAD: these groups, however, have
relatively small sample sizes, therefore the resulting relatedness might be due
to their similarity with the empty graph, rather than among them. More in-
terestingly, we observe in the middle a cluster with LUAD, LUSC and HNSC:
this cluster appears also in the analysis by �enbabao§lu et al. [2016], where
it considered plausible, since it gathers two lung cancers and two squamous
cell carcinomas.
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Cancer type sample size hierBH hierTest_BF methods coherency (%)
ACC 46 283 16 100
BLCA 127 423 47 100
BRCA 815 1227 108 100
COAD 327 718 59 100
GBM 205 594 52 100
HNSC 203 515 47 100
KIRC 445 935 76 100
KIRP 208 650 59 100
LGG 257 738 68 100
LUAD 234 583 67 100
LUSC 192 551 54 100
OV 411 766 78 100
PAAD 105 487 53 100
PRAD 164 540 53 100
READ 129 434 45 100
SKCM 36 273 8 100
STAD 299 672 79 100
THCA 372 972 70 100
UCEC 404 693 84 100

Table 5.15: Number of edges selected by methods hierBH (third column)
and hierTest_BF (fourth column) out of the 23436 present in the complete
graph. In the last column the proportion of edges detected by hierTest_BF

present also in hierBH selection is reported.
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Figure 5.17: Network structure inferred by methods hierBH and
hierTest_BF in cancer type ACC of DataListPanCan19 dataset.

In order to retrieve the network structures, we apply both hierBH and
hierTest_BF, with threshold at 10%. We expect the latter to output sparser
networks, but we can still check whether the edges it selects are a proper
subset of those selected by hierBH. Figures 5.17, 5.18 and 5.19 con�rm our
hypothesis: no matter the sample size, hierTest_BF outputs a much sparser
structure that hierBH. From the same �gures, we also notice that the sparsity
of the graphs seems to depend on the number of observations. In particular,
in those with small sample size (cancer types ACC and SKCM) the inferred
networks are really sparse: due to the weakness of signal, very few edges
are detected as present. On the contrary, the network estimated for BRCA,
characterized by a high number of observations, contains many more edges
than the others. A possible explanation might be that the sparsity assessed in
BRCA is actually the closest to the true one and the problem lies in the other
groups, where we do not have power enough to retrieve the entire structure.
In Table 5.15 we report, for each condition, the number of edges selected by
the two methods; the last column shows the proportion of edges detected by
hierTest_BF which are detected by hierBH, as well. In all groups, we observe
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hierBH hierTest_BF
LUSC, 192 obs.

Figure 5.18: Network structure inferred by methods hierBH and
hierTest_BF in cancer type LUSC of DataListPanCan19 dataset.

perfect consensus between the two. Thus, we believe that the inference by
hierTest_BF, although too sparse to be meaningful, can provide additional
information to that by hierBH: indeed, recalling that hierTest_BF estimate
is characterized by very low False Positive Rate, the edges selected by both
are more likely to be True Positives. Lastly, we can verify the relatedness we
read on the KL divergence heatmap, by computing the proportion of shared
edges between cancer types that were clustered together and between groups
that were far apart. The results we will report refer to hierBH estimate.
Let Si be the set of edges selected in group i, the proportion of shared edges
between group i and group j, τi,j, is de�ned as the ratio between the number
of edges present in both networks and the minimum between the cardinality
of Si and Sj:

τi,j =
card ({Si ∩ Sj})

min (card(Si), card(Sj))
.

We compute this index for the pairs LUAD-LUSC, LUAD-HNSC and LUAD-
LGG; the results are the following: τLUAD,LUSC = 0.403, τLUAD,HNSC = 0.371
and τLUAD,LGG = 0.228. As expected, it is higher in the �rst two cases, where
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hierBH hierTest_BF
BRCA, 815 obs.

Figure 5.19: Network structure inferred by methods hierBH and
hierTest_BF in cancer type BRCA of DataListPanCan19 dataset.

we considered two groups in its same cluster.
To conclude, we remind that the estimation step has been performed using
beamDiff. As we showed in Section 5.1, it does not borrow information
enough to gain substantial power on conditions characterized by small sam-
ple size. The analysis we have just presented is a further con�rmation of
this weakness. Most likely, by using at estimation stage beamDiff_boost or
beamDiff_new, we would be able to gain power, especially in conditions with
few observations, and to achieve more precise estimates.



Conclusions and further

developments

The aim of my thesis work was the theoretical and computational devel-
opment of a method for the joint inference of multiple Gaussian graphical
models. In Chapter 1, after introducing the theoretical framework of mul-
tivariate Gaussian models and association graphs, we presented the work
by Leday and Richardson [2018], which has been the starting point of my
project.
In Chapter 2 we described the optimizations performed on R package beam,
aimed at improving memory allocation and execution time. We achieved an
improvement of 40% on the size of the output object and we halved the ex-
ecution time.
In Chapter 3 we presented our model for the joint inference of multiple Gaus-
sian graphical models. As the model by Leday and Richardson [2018], it is
divided in two steps: estimation (closed-form computation of posterior ex-
pectation of marginal and precision matrices) and selection (the network
structure is retrieved by testing the presence of each edge).
At the estimation stage, we noticed that setting the target matrix to the iden-
tity, as Leday and Richardson [2018] did, was not the best choice. Indeed,
we observed on simulated data that our joint estimation did not improve
with respect to the individual group-by-group estimation. Aware of that,
we suggested two methods to estimate the target matrix with an empirical
Bayes approach. The �rst one, based on the work by Bilgrau et al. [2015]
and implemented in function beamDiff_boost, is a EM algorithm for the it-
erative optimization of the joint marginal likelihood of the model in both its
variables, M and δ. In the second, implemented in function beamDiff_beam,
the target matrix T = M/(δ−p−1) is set equal to the posterior expectation
of the marginal correlation matrix, obtained by running beam on all data
merged together. In this way, the target matrix will embed some informa-
tion about the common structure shared by all conditions. Unfortunately,
we were not able to develop the entire model based on these new approaches
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to the estimation. Indeed, the theory to derive the tail probabilities in the
general setting of hyper-parameter M being non-diagonal has yet to be de-
veloped.
At selection stage we had to cope with double multiplicity: multiple edges
in multiple conditions. We discussed di�erent methods to deal with it, both
in a con�rmatory and exploratory framework.
In the same chapter, we also introduced some indicators, generally used in
information theory, useful to quantify the similarity between groups. Thanks
to the conjugacy of our model, they can be computed analytically and in a
computationally e�cient way. We showed that KL divergence is particularly
well-suited as measure of distance between conditions, since it is the same
for marginal and partial correlation.
Chapter 4 is devoted to the computational development of the R package
beamDiff, which heavily relies on R package beam, and to data simulation.
In particular, we discussed many issues related to the simulation of sparse
positive de�nite matrices in a high-dimensional setting. We concluded il-
lustrating two functions, simBlockMatrix and simBandShuffle, we imple-
mented to simulate the general framework of multiple conditions, which par-
tially share a common network structure. With respect to other methods we
learnt from related papers, ours allow the control of many parameters, such
as the sparsity of the matrix, the condition number or the range of magnitude
of the non-zero entries.
In Chapter 5 we presented some results from the extensive simulations we
carried out both at estimation and selection steps. Regarding the estimation,
we have shown that, most of the time, beamDiff_boost and beamDiff_new

provide much better estimates with respect to beamDiff.
Actually, beamDiff_boost proved to have a severe drawback in settings with
few conditions and/or small sample sizes: the estimated prior matrix M can
be ill-conditioned. This ill-conditioning will add numeric noise to the esti-
mation, making it completely unreliable. For this reason, we would opt for
beamDiff_new, whose estimate is much more well-conditioned.
Regarding the selection, we noticed a general lack of power a�ecting all meth-
ods, hierTest_BF in particular. However, this might be due also to the es-
timates obtained at the �rst step of our method. We believe that the best
method, among those proposed, is hierBH, either for the good performances
and for the fact that in the paper by Peterson et al. [2016] where it has been
introduced it was applied to a setting very similar to ours.
In the last section of the chapter we introduced and analysed a dataset con-
taining protein expression for 19 cancer types.
During the project, we also tried to compare our method with some com-
petitors, �rst of all Joint Graphical Lasso, proposed by Danaher et al. [2014].



CONCLUSIONS AND FURTHER DEVELOPMENTS 93

The method has been implemented in the R package JGL (Danaher [2013]).
We decided not to include this comparison here, because of many issues; the
most important is that every method is tailored to perform well on a speci�c
statistical question. It is therefore very di�cult to make a comparison which
is fair for all competitors. Moreover, most of the algorithms we took into
consideration were computationally very demanding; JGL itself took a really
long time to tune its hyperparameters.
Summing up, the output of my Master thesis project has been a working
extension of the method proposed by Leday and Richardson [2018] to the
multi-condition case. We also managed in the objective of maintaining its
strength points: indeed, our method is as fast as applying beam to each
condition separately and we still control the type I error.

Future work

To conclude, a brief overview about some possible future developments.
The very �st goal is to extend the theory to derive the tail probabilities
to the case of non-diagonal prior matrix. Once it will be available, we
could use at estimation stage the function beamDiff_new. In parallel, also
R package beamDiff needs to be �nished, by implementing the function
beamDiff.select for the selection step and some auxiliary methods.
To further extend our method we could return a weighted graph, with weight
depending on the tail probability associated to that edge: the smaller the tail,
the higher the weight, since we are more con�dent about its presence. An-
other development could be to allow the method to borrow information only
between groups that are similar. In our current setting, all conditions are
shrunk towards a unique common matrix: in order to better deal with het-
erogeneous data, it would be interesting to allow multiple targets towards
which the conditions can be shrunk.
Under a computational point of view, we believe that, especially in the multi-
condition framework, a further optimization of memory allocation would al-
low to scale at even higher-dimensions. A possible solution consists in storing
at estimation step a matrix that is already sparse; this is achieved by con-
sidering as exact zeros those entries which are "close enough" to it. An
accurate theoretical analysis is required to study the properties of such an
approximation.



Appendix A

Documentation of R package

'beam'

The method presented in Leday and Richardson [2018] has been implemented
in R package beam, now available on the CRAN. Its documentation is here
reported: the two main functions beam and beam.select are described in
details, together with the methods acting on the output classes beam-class
and beam.select-class.
In Chapter 2 the optimizations carried out on the code are presented: clearly,
in the package the optimized version is implemented. Indeed, it can be seen in
beam-class documentation that there is a unique data.frame slot, containing
all estimations for both marginal and partial correlation.
Among the methods it is worth mentioning plotCor, acting on objects of
beam-class: it outputs the heatmap of marginal and/or partial correlation.
This tool is useful to have a �rst graphical insight about the features more
highly correlated.
Methods ugraph and bgraph act, instead, on objects of beam.select-class:
they return an igraph object representing the conditional and marginal,
respectively, dependence structure as a graph. igraph R package provides
several tools for further analyses on the graphs.
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beam-package Fast Bayesian Inference in Large Gaussian Graphical Models

Description

The package enables the reconstruction of marginal and conditional independence structures be-
tween variables using the method of Leday and Richardson (2018). Inference is carried out by
multiple testing of hypotheses about pairwise (marginal or conditional) independence using closed-
form Bayes factors. Exact tail probabilities are obtained from the null distributions of the Bayes
factors to help address the multiplicity problem and control desired error rates for incorrect edge
inclusion. The method is computationally very efficient and allows to address problems with hun-
dreds or thousands of variables.

Details

The main function of the package is beam which carries out (inverse) covariance estimation and
compute (scaled) Bayes factors as well as tail probabilities (p-values). The function returns an (S4)
object of class beam-class that is associated with the following methods:

- summary,beam-method:
provides a summary of inferred (marginal or conditional) associations.

- marg,beam-method:
returns a data.frame with marginal correlations, Bayes factors and/or tail probabilities.

- cond,beam-method:
returns a data.frame with partial correlations, Bayes factors and/or tail probabilities.

- mcor,beam-method:
return marginal correlation matrix (scaled posterior expectation of the covariance matrix).

- pcor,beam-method:
return partial correlation matrix (scaled posterior expectation of the inverse covariance matrix).

- plotML,beam-method:
plot log-marginal likelihood of the Gaussian conjugate model as a function of shrinkage parameter.

- plotCor,beam-method:
plot heatmap of marginal (upper triangle) and/or partial (lower triangle) correlation estimates.

The function beam.select takes as input an object of class beam-class and carries out edge se-
lection with multiple testing and error control (false discovery rate, family-wise error rate, ...). The
function returns an (S4) object of class beam.select-class that is associated with the following
methods:

- summary,beam.select-method:
provides a summary of inferred (marginal or conditional) associations.

- marg,beam.select-method:
returns a data.frame with marginal correlations, Bayes factors and tail probabilities for selected
edges.

- cond,beam.select-method:
returns a data.frame with partial correlations, Bayes factors and tail probabilities for selected edges.
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- bgraph,beam.select-method:
return an igraph object containing the marginal (in)dependence graph.

- ugraph,beam.select-method:
return an igraph object containing the conditional (in)dependence graph.

Author(s)

Authors: Gwenael G.R. Leday and Ilaria Speranza

Maintainer: Gwenael G.R. Leday <gwenael.leday@mrc-bsu.cam.ac.uk>

References

Leday, G.G.R. and Richardson, S. (2018). Fast Bayesian inference in large Gaussian graphical
models. Submitted.

beam Bayesian inference for high-dimensional Gaussian graphical models

Description

This function carries out covariance and inverse covariance estimation within the Gaussian conju-
gate model. The scale matrix parameter of the inverse-Wishart is set to the identity, whereas the
degree of freedom parameter is estimated by marginal likelihood maximization (empirical Bayes).
The function also computes the Bayes factor and tail probability (p-values) to test the marginal or
conditional independence between all pairs of variables.

Usage

beam(X, type = "conditional", return.only = c("cor", "BF", "prob"), verbose=TRUE)

Arguments

X n by p data matrix

type character. Either "marginal", "conditional" or "both". See Details.

return.only character. Either "cor", "BF", "prob". See details.

verbose logical. Whether information on progress should be be printed.

Details

The arguments type and return.only have essentially been introduced for computational and
memory savings. Using argument type the user may indicate whether the marginal dependencies
("marginal"), the conditional dependencies ("conditional") or both ("both") are to be inferred. On
the other hand, the argument return.only is used to indicate whether the correlations ("cor"),
Bayes factors ("BF") or tail probabilities ("prob") should be returned. Default is to return all three
quantities both for marginal and conditional dependencies.
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Value

An object of class beam-class

Author(s)

Gwenael G.R. Leday and Ilaria Speranza

References

Leday, G.G.R. and Richardson, S. (2018). Fast Bayesian inference in large Gaussian graphical
models. Submitted.

Examples

# Load data
data(TCPAprad)

# beam
fit <- beam(X = TCPAprad, type="both")

# Print summary
summary(fit)

# Extract matrix of marginal correlations
mcor(fit)[1:5, 1:5]

# Extract matrix of partial correlations
pcor(fit)[1:5, 1:5]

# Plot log-marginal likelihood of the Gaussian conjugate model
plotML(fit)

# Plot heatmap of marginal (upper triangle) and/or
# partial (lower triangle) correlation estimates
plotCor(fit)

beam-class Class beam

Description

An S4 class representing the output of the beam function.
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Usage

## S4 method for signature 'beam'
print(x, ...)

## S4 method for signature 'beam'
show(object)

## S4 method for signature 'beam'
summary(object, ...)

## S4 method for signature 'beam'
marg(object)

## S4 method for signature 'beam'
cond(object)

## S4 method for signature 'beam'
mcor(object)

## S4 method for signature 'beam'
pcor(object)

## S4 method for signature 'beam'
plotML(object, ...)

## S4 method for signature 'beam'
plotCor(object, type = object@type, order = 'original', by = "marginal")

## S4 method for signature 'beam'
bgraph(object)

## S4 method for signature 'beam'
ugraph(object)

Arguments

x An object of class beam-class

object An object of class beam-class

type character. Type of correlation to be displayed (marginal, conditional or both)

order character. Either ’original’ or ’clust’. If ’clust’ the rows and columns of the
correlation matrix are reordered using the cluster memberships obtained by the
Louvain clustering algorithm.

by character. When type ="both" and order = ’clust’, specifies whether the clus-
tering has to be performed using the complete weighted marginal or conditional
independence graph.

... further arguments passed to or from other methods.
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Slots

table dat.frame. A data.frame containing marginal and/or partial correlation estimates, Bayes
factors and tail probabilities for each edge.

deltaOpt numeric. Empirical Bayes estimate of hyperpaprameter delta.

alphaOpt numeric. Empirical Bayes estimate of hyperpaprameter alpha.

dimX numeric. Dimension of the input data matrix X.

type character. Input argument.)

varlabs character. Column labels of X.

gridAlpha matrix. A matrix containing the log-marginal likelihood of the Gaussian conjugate
model as a function of a grid of values of alpha and delta.

valOpt numeric. Maximum value of the log-marginal likelihood of the Gaussian conjugate model.

return.only character. Input argument.

time numeric. Running time (in seconds).

Author(s)

Gwenael G.R. Leday and Ilaria Speranza

beam.select Edge selection with multiple testing and error control

Description

Bayesian inference of graphical structures in high-dimensional settings

Usage

beam.select(object, thres = 0.1, method = "BH", p0 = NULL,
return.only = c(object@return.only, "adj"))

Arguments

object An object of class beam-class.

thres numeric. Threshold to be applied on adjusted tail probabilities.

method character. Method to use for multiple comparison adjustment of tail probabili-
ties.

p0 numeric. Prior probability on the number of null hypotheses.

return.only character. Quantities to be returned.
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Details

The argument method allows to adjust the tail probabilities obtained from the null distributions
of the Bayes factors for multiple comparisons. Possible choices are: "holm", "bonferroni", "BH",
"BY", "HC", "blfdr" and "BFDR". Apart from "HC", "blfdr" and "BFDR", these are passed onto the
R function p.adjust from package stats and we refer the user to its documentation for details. The
method "HC" provides an optimal decision threshold based on the Higher Criticism score which is
computed using the R function hc.thresh from package fdrtool. Again, we refer to the associated
documentation for details. Methods "blfdr" and "BFDR" only work when a prior probability on the
number of null hypotheses is specified via argument p0.

The argument return.only allows to decide which quantities have to be in the output: it could
be any subvector of c(’cor’, ’BF’, ’prob’, ’adj’) (provided that the requested quantities have been
computed in the beam object, except for adjusted probabilities). It can also be set to NULL: in this
case, only the selected edges will be returned without any additional information. The default value
for this argument are the columns present in the beam object plus the adjusted probabilities.

Value

An object of class beam.select-class

Author(s)

Gwenael G.R. Leday and Ilaria Speranza

References

Leday, G.G.R. and Richardson, S. (2018). Fast Bayesian inference in large Gaussian graphical
models. Submitted.

beam.select-class Class beam.select

Description

An S4 class representing the output of the beam.select function.

Usage

## S4 method for signature 'beam.select'
print(x, ...)

## S4 method for signature 'beam.select'
show(object)

## S4 method for signature 'beam.select'
summary(object, ...)

## S4 method for signature 'beam.select'
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marg(object)

## S4 method for signature 'beam.select'
cond(object)

## S4 method for signature 'beam.select'
mcor(object)

## S4 method for signature 'beam.select'
pcor(object)

## S4 method for signature 'beam.select'
plotML(object, ...)

## S4 method for signature 'beam.select'
plotAdj(object, type=object@type, order = "original")

## S4 method for signature 'beam.select'
bgraph(object)

## S4 method for signature 'beam.select'
ugraph(object)

Arguments

x An object of class beam.select-class

object An object of class beam.select-class

type character. Type of correlation to be displayed (marginal, conditional or both)

order character. Either ’original’ or ’clust’. If ’clust’ the rows and columns of the
adjacency matrix are reordered using the cluster memberships obtained by the
Louvain clustering algorithm.

... further arguments passed to or from other methods.

Slots

marginal data.frame. A data.frame containing the marginal correlation estimates, Bayes factors
and tail probabilities for the selected edges only.

conditional data.frame. A data.frame containing the partial correlation estimates, Bayes factors
and tail probabilities for the selected edges only.

dimX numeric. Dimension of the imput data matrix X.

type character. Input type (marginal, conditional or both)

varlabs character. Column labels of X.

alphaOpt numeric. Empirical Bayes estimates of hyperpaprameter alpha.

gridAlpha matrix. A matrix containing the log-marginal likelihood of the Gaussian conjugate
model as a function of a grid of values of alpha and delta.
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valOpt numeric. Maximum value of the log-marginal likelihood of the Gaussian conjugate model

method character. Input method.

thres numeric. Input threshold

Author(s)

Gwenael G.R. Leday and Ilaria Speranza

TCPAprad Protein expression data.

Description

Level 3 normalized proteomic data (v3.0) from The Cancer Proteome Alas (http://tcpaportal.org/tcpa).
The data comprise the measurements of 189 antibodies obtained from 164 tumor tissue samples
(prostate adenocarcinoma) using reverse phase protein arrays (RPPA).

Usage

TCPAprad

Format

A 164 by 189 matrix

Source

The Cancer Proteome Alas (http://tcpaportal.org/tcpa)

References

Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, Yang J-Y, Broom BM, Verhaak RGW, Kane DW,
Wakefield C, Weinstein JN, Mills GB, Liang H. (2013). TCPA: A Resource for Cancer Functional
Proteomics Data. Nature Methods 10(11), 1046-1047.

Examples

data(TCPAprad)
dim(TCPAprad)
TCPAprad[1:5, 1:5]
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Code

B.1 R package 'beamDi�'

beamDi�-class

beamDiff-class is the class returned in output by beamDiff function. Many
similarities can be found with beam-class in beam R package.

setClass("beamDiff",

representation(tableList = "list",

invCovStdev = "matrix",

deltaOpt = "numeric",

alphasOpt = "numeric",

nk = "numeric",

logDetVect = "numeric",

p = "numeric",

type = "character",

varlabs = "character",

gridDelta = "matrix",

valOpt = "numeric",

return.only = "character",

numGroups = "numeric",

time = "numeric")

)

beamDi�

beamDiff is the function performing joint inference of marginal and partial
correlation matrices.
Bayes factors and tail probabilities are also returned. We refer to 4.1 for
further details.
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##################### HELPER FUNCTIONS #####################

.scaleData <- function(X,n){

X <- scale(X, center = TRUE , scale = FALSE)

X <- scale(X, center = TRUE , scale = sqrt(colSums(X^2)/n))

return(X)

}

.computeEigValVec <- function(X, S, n, p){

if(n>=p){

resEigen <- eigen(S, only.values=FALSE) # both eigvals

and eigvect

}else{

resEigen <- eigen(tcrossprod(X), only.values=FALSE)

}

return(resEigen)

}

.computeEigvals <- function(eigObj , n, p){

if(n>=p){

eigs <- eigObj$val

}else{

eigs <- c(eigObj$val , rep(0,p-length(eigObj$val)))

}

}

.lpvarGamma <- function(z, p){# functions written by Harry

Gray

position = 1:p

if (length(z) == 1){

ans <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z + (1-

position)/2)))

}else{

ans <- rep(0, length(z))

for (i in 1: length(z)){

ans[i] <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z[i]

+ (1-position)/2)))

}

}

return(ans)

}

.alphaToLambda <- function(alpha , myn , myp){

(alpha*myn+(1-alpha)*myp+(1- alpha))/(1-alpha)

}

.lambdaToAlpha <- function(lambda , myn , myp){

(lambda -myp -1)/(myn+lambda -myp -1)

}
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.logDeterminant <- function(eigvals , p, delta){

eigvals = eigvals + delta - p - 1

logEigvals = log(eigvals)

return(sum(logEigvals))

}

.sumLogML <- function(delta , p, nk, eigvalList){

logML <- function(mydelta , myp , myn , myeigs){

part1 <- -0.5*myn*myp*log(pi) + .lpvarGamma (( mydelta+myn)

*0.5, p=myp) - .lpvarGamma(mydelta*0.5, p=myp)

part2 <- 0.5*mydelta*myp*log(mydelta -myp -1) - 0.5*(

mydelta+myn)*sum(log((mydelta -myp -1)+myeigs))

part1 + part2

}

logML_group <- Map(logML , delta , p, nk, eigvalList)

Reduce(sum , logML_group)

}

.upperTriIdxs <- function(p){

z <- sequence(p)

cbind(

row = unlist(lapply (1:(p-1), function(x) 1:x), use.names

= FALSE),

col = rep(z[-1], times = tail(z, -1) -1))

}

.approxBeta <- function(u, shp1 , shp2 , h=.00001){

x <- seq(from = 0, to = 1, by = h)

approx(x, pbeta(x, shape1=shp1 , shape2=shp2 , lower.tail =

FALSE), yleft = 0, yright = 1, xout = u)$y

}

#######

# This is the core function which will be applied to each

group , returning the table with the quantities requested

in output

.Estimation <- function(n, p, X, S, deltaOpt , resEigen ,

return.only , type , verbose , approx.tail , k){

cat('### Estimating group ', k,'###\n')

# Initialize data.frame with results (so that R already

knows how much space we are going to use)

nrows = p*(p-1)/2

ncols <- length(return.only)

if(type == 'both'){
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# results <- as.data.frame(matrix(NA_real_, nrow = nrows ,

ncol = 2*ncols))

results <- matrix(NA_real_, nrow = nrows , ncol = 2*ncols)

} else{

# results <- as.data.frame(matrix(NA_real_, nrow = nrows ,

ncol = ncols))

results <- matrix(NA_real_, nrow = nrows , ncol = ncols)

}

# temporary colnames

colnames(results) <- rep('tempName ', ncol(results))

# Initialize Hdiag list (it will remain empty if only

marginal evaluation is requested)

HinvStdev <- list()

current_free_column <- 1

# Store in a vector only the upper triangular part of S

matidxs <- .upperTriIdxs(p)

Svec <- S[matidxs]

### MARGINAL DEPENDENCIES ###

# Diagonal prior specific case (M <- (deltaOpt -p-1)*diag(p)

)

Hvec <- Svec # All the off diag elements of M are null. On

the diagonal we 'll have n + (deltaopt -p-1)

if( type=="both" | type=="marginal" ){

if(verbose){

cat("Marginal dependencies :\n")

}

if(any( c("cor", "BF") %in% return.only)){

if(verbose){

cat(" > compute marginal correlation estimates ...")

}

# Marginal correlation estimates

rhij <- Hvec/(deltaOpt+n-p-1)

if("cor" %in% return.only){

# Update results table with marginal correlation

colnames(results)[current_free_column] <- 'm_cor' #

change col_name
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# results$m_cor <- rhij # fill column

results[,'m_cor'] <- rhij

current_free_column = current_free_column + 1 #

increment index of free column

}

if(verbose){

cat("DONE \n")

}

if("BF" %in% return.only){

if(verbose){

cat(" > Bayes factors ...")

}

# part 1: log Gamma functions

part1 <- .lpvarGamma (( deltaOpt+n-p+2)/2, p=2) - .

lpvarGamma ((deltaOpt -p+2)/2, p=2)

part1 <- part1 + 2*lgamma ((deltaOpt -p+3)/2) - 2*

lgamma (( deltaOpt+n-p+3)/2)

# part 2: log ratio prior/posterior marginal

correlations

part2 <- - (( deltaOpt+n-p+2)/2)*log(1-rhij ^2)

# log -BFs

logBFs <- part1 + part2

# Update results table with marginal log bayes

factors

colnames(results)[current_free_column] <- 'm_logBF '

# change col_name

#results$m_logBF <- logBFs # fill column

results[,'m_logBF '] <- logBFs

current_free_column = current_free_column + 1 #

increment index of free column

# Relieve memory

rm(logBFs , part1 , part2)

if(verbose){

cat("DONE \n")

}

}

# Relieve memory

rm(rhij)
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}

if("prob" %in% return.only){

if(verbose){

cat(" > compute tail probabilities ...")

}

# Sample correlations

rsij <- Svec/n

# Update table

colnames(results)[current_free_column] <- 'm_tail_prob'

# change col_name

if(approx.tail == FALSE){ # "exact" pbeta function

# results$m_tail_prob <- pbeta(rsij^2, 1/2, (n-1)/2,

lower.tail=FALSE) # fill the free column

results[,'m_tail_prob'] <- pbeta(rsij^2, 1/2, (n-1)/

2, lower.tail=FALSE)

}else{ # approx pbeta function

# results$m_tail_prob <- .approxBeta(rsij^2, 1/2, (n

-1)/2) # fill the free column

results[,'m_tail_prob'] <- .approxBeta(rsij^2, 1/2, (

n-1)/2)

}

current_free_column = current_free_column + 1 #

increment index of free column

# Relieve memory

rm(rsij)

}

if(verbose){

cat("DONE \n")

}

}

# Relieve memory

rm(Svec , Hvec)

### CONDITIONAL DEPENDENCIES ###

# -> Compute partial correlations , (scaled) log -Bayes

factors and tail probabilities
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if( type=="both" | type=="conditional" ){

if(verbose){

cat("Conditional dependencies :\n")

cat(" > compute partial correlation estimates ...")

}

# Compute scaled posterior expectation of the inverse

covariance matrix (partial correlation estimates)

if(n>=p){

H <- (deltaOpt -p-1)*diag(p) + S

Hinv <- solve(H)

rm(H) # relieve memory

}else{

prodtp <- crossprod(X, resEigen$vectors)

Hinv <- tcrossprod(prodtp ,diag(1/(1+(1/(deltaOpt -p-1))*

resEigen$val)))

Hinv <- tcrossprod( Hinv , prodtp)/((deltaOpt -p-1) ^2)

Hinv <- (1/(deltaOpt -p-1))*diag(p) - Hinv

#Hinv <- (1/(deltaOpt -p-1))*diag(p) - (1/(deltaOpt -p-1)

^2)*t(X)%*%solve(diag(n)+(1/(deltaOpt -p-1))*

tcrossprod(X))%*%X

# Relieve memory

rm(prodtp)

}

# Relieve memory

rm(S)

# Partial correlation estimates

HinvStdev <- sqrt(diag(Hinv))

rkij <- - cov2cor(Hinv)

rkij <- rkij[matidxs] # keep only the upper triangular

part , discard the rest

#cat(Hinv)

if("cor" %in% return.only){

colnames(results)[current_free_column] <- 'p_cor' #

change col_name

# results$p_cor <- rkij # fill the free column

results[,'p_cor'] <- rkij

current_free_column = current_free_column + 1 #

increment index of free column

}
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if(verbose){

cat("DONE \n")

}

# Compute scaled log -Bayes factors

if("BF" %in% return.only){

if(verbose){

cat(" > compute Bayes factors ...")

}

# part 1: log Gamma functions

part1 <- lgamma (( deltaOpt+n)/2) - lgamma(deltaOpt/2)

part1 <- part1 + lgamma (( deltaOpt+n-1)/2) - lgamma ((

deltaOpt -1)/2)

part1 <- part1 + 2*lgamma (( deltaOpt +1)/2) - 2*lgamma ((

deltaOpt+n+1)/2)

# part 2: log ratio prior/posterior marginal

correlations

part2 <- - (( deltaOpt+n)/2)*log(1-rkij ^2)

# Update table with log -BFs

colnames(results)[current_free_column] <- 'p_logBF ' #

change col_name

# results$p_logBF <- part1 + part2

results[,'p_logBF '] <- part1 + part2

current_free_column = current_free_column + 1 #

increment index of free column

# Relieve memory

rm(part1 , part2)

if(verbose){

cat("DONE \n")

}

}

if("prob" %in% return.only){

if(verbose){

cat(" > compute tail probabilities ...")

}

gii2gjj2 <- (deltaOpt -p-1)^2

diagHinv <- diag(Hinv)

kii2kjj2 <- tcrossprod (1/diagHinv , 1/diagHinv)
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kii2kjj2 <- kii2kjj2[matidxs]

kii2kjj2 <- kii2kjj2/((1-rkij ^2)^2)

Gii2Gjj2 <- tcrossprod(diagHinv ,diagHinv)

Gii2Gjj2 <- Gii2Gjj2[matidxs]

tpdiag1 <- diagHinv[matidxs [,1]]

tpdiag2 <- diagHinv[matidxs [,2]]

Gii2plusGjj2 <- tpdiag1 + tpdiag2

# Relieve memory

rm(tpdiag1 , tpdiag2 , diagHinv , matidxs)

# Compute rfij

# rfij <- (sqrt(kii2kjj2)*tableC [,3])/sqrt(kii2kjj2 +

gii2gjj2 - (deltaOpt -p-1)* ( Gii2plusGjj2/(Gii2Gjj2*

(1-tableC [ ,3]^2)) ))

num <- sqrt(kii2kjj2)

num <- num*rkij

denom <- 1-rkij^2

denom <- denom*Gii2Gjj2

denom <- - (deltaOpt -p-1)*(Gii2plusGjj2/denom)

denom <- denom + kii2kjj2

denom <- denom + gii2gjj2

rfij <- num/sqrt(denom)

# Relieve memory

rm(Gii2plusGjj2 , Gii2Gjj2 , kii2kjj2 , gii2gjj2)

# Update table

rfij2 <- rfij^2

colnames(results)[current_free_column] <- 'p_tail_prob'

# change col_name

if(approx.tail == FALSE){

# results$p_tail_prob <- pbeta(rfij2 , 1/2, (n-1)/2,

lower.tail=FALSE)

results[,'p_tail_prob'] <- pbeta(rfij2 , 1/2, (n-1)/2,

lower.tail=FALSE)

}else{

# results$p_tail_prob <- .approxBeta(rfij2 , 1/2, (n

-1)/2)

results[,'p_tail_prob'] <- .approxBeta(rfij2 , 1/2, (n

-1)/2)

}

# Relieve memory

rm(rfij , rfij2)

if(verbose){

cat("DONE \n")
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}

}

# Relieve memory

rm(Hinv , rkij)

}

return(list(res = results , HinvStdev = HinvStdev))

}

##################### MAIN FUNCTION #####################

beamDiff <- function (..., type = "both", return.only = c("cor

", "BF", "prob"), approx.tail = FALSE , verbose=TRUE){

time0 <- proc.time()

###########################################

# PREPROCESSING #

###########################################

if(verbose){

cat("Preprocessing ... ")

}

# check arguments

matList <- list (...)

if(length(matList) == 1 & is.list(matList [[1]])){ # this

allows the user to pass as input both a list of matrices

or the matrices separated by a comma

matList = matList [[1]]

}

numGroups <- length(matList)

if(numGroups == 0){

stop("No data provided.")

}

if(any(sapply(matList , is.matrix)) == FALSE){

stop("One or more input data are not in matrix form.")

}

if(any(sapply(matList , function(X) any(is.na(X))))){

stop("One or more matrices contain missing values.")

}

pk = sapply(matList , ncol)

p = unique(pk)

if(length(p) > 1){

stop("All the data matrices must have the same number of
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features.")

}

X1 <- matList [[1]]

if(!is.null(colnames(X1))){

varlabs <- colnames(X1)

}else{

varlabs <- character ()

}

rm(X1)

if(is.character(type)){

if(length(type)==1){

if(!type%in%c("both", "marginal", "conditional")){

stop("type is not recognized")

}

}else{

stop("type must be a character of length equal to 1")

}

}else{

stop("type must be a character")

}

if(is.character(return.only)){

if(length(return.only)%in%c(1:3)){

ind.return.only <- return.only%in%c("cor", "BF", "prob"

)

if(any(!ind.return.only)){

stop("return.only contains characters that are not

recognized")

}

}else{

stop("return.only must contain at least 1 element and 3

elements at most")

}

}else{

stop("return.only must be a character")

}

# Dimension data

nk <- sapply(matList , nrow)

if(p >= 2000){

approx.tail = TRUE

}

# Standardize data

matList <- Map(.scaleData , matList , nk)

# Cross -product
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SList <- lapply(matList , crossprod)

# For each matrix compute eigvals and eigvect , according to

the more efficient method

# for each group eigvals&eigvects

eigList <- Map(. computeEigValVec , matList , SList , nk, p)

eigvalList <- Map(. computeEigvals , eigList , nk , p) # extract

eigvals and fill with 0 the remaining elements if n < p

if(verbose){

cat("DONE \n")

}

###########################################

# OPTIMAL SHRINKAGE #

###########################################

if(verbose){

cat("Optimal shrinkage ... ")

}

# Range of values

eps <- 10^( -6)

lowerVal <- min(. alphaToLambda(alpha=eps , myn=nk, myp=p))

upperVal <- max(. alphaToLambda(alpha=1-eps , myn=nk, myp=p))

initVal <- mean(. alphaToLambda(alpha =0.5, myn=nk , myp=p))

# Maximize log -marginal likelihood

resOpt <- optim(par=initVal , fn=.sumLogML , p = p, nk=nk ,

eigvalList= eigvalList ,

method='Brent', lower=lowerVal , upper=

upperVal , control = list(fnscale =-1))

# Optimum

deltaOpt <- resOpt$par

alphasOpt <- .lambdaToAlpha(lambda=deltaOpt , myn=nk, myp=p)

# Vector with optimal alphas (group -specific , depending

on nk)

myalphas <- seq(from=quantile(alphasOpt , probs =0.2) , to=

quantile(alphasOpt , probs =0.8), length =100)

mydeltas <- as.vector(sapply(myalphas , .alphaToLambda , myn=

nk, myp=p)) # delta values corresponding to the optimal

alpha values

deltaSeq <- seq(from=min(mydeltas), to=max(mydeltas), length

=100)

allSumMLs <- sapply(deltaSeq , .sumLogML , p = p, nk = nk,

eigvalList = eigvalList)
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gridDelta <- cbind(deltaSeq , allSumMLs)

colnames(gridDelta) <- c("delta", "sum -logML")

if(verbose){

cat("DONE \n")

}

## compute logdeterminant of posterior scaling matrix of

covariance

logDetVect <- sapply(eigvalList , .logDeterminant , p = p,

delta = deltaOpt)

#############################

# ESTIMATION #

#############################

results <- Map(. Estimation , nk, p, matList , SList , deltaOpt ,

eigList , rep(list(return.only), numGroups), type ,

verbose , approx.tail ,1: numGroups)

tableList <- lapply(results , function(X) X$res) # extract

the matrices with results

invCovStdev <- sapply(results , function(X) X$HinvStdev) #

extract the vectors with diag elements of H

time1 <- proc.time() - time0

#########################

# OUTPUT #

#########################

# List

out <- new("beamDiff",

"tableList" = tableList ,

"invCovStdev" = invCovStdev ,

"deltaOpt" = deltaOpt ,

"alphasOpt"= alphasOpt ,

"logDetVect" = logDetVect ,

"nk" = nk ,

"p" = p,

"type"= type ,

"varlabs" = varlabs ,

"gridDelta" = gridDelta ,

"valOpt" = resOpt$value ,

"return.only" = return.only ,

"numGroups" = numGroups ,

"time" = time1 [3])

return(out)

}
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crossDistance

crossDistance function returns a list with marginal cross entropy, condi-
tional cross entropy and KL divergence. More details on these quantities can
be found in Section 3.4.

setMethod(

f = "crossDistance",

signature = "beamDiff",

definition = function(object , symmetric = FALSE){

##### helper functions #####

lpvarGamma <- function(z, p = object@p){

return(p*(p-1)/4*log(pi) + sum(lgamma(z + (1 - 1:p)/2))

)

}

pvarDiGamma <- function(z,p = object@p){

return(sum(digamma(z + (1 - 1:p)/2)))

}

pcor2pcov <- function(Cormat , sd){ #ok

scalingMat <- sd %*% t(sd)

Cormat <- - Cormat

diag(Cormat) <- 1

Covmat <- scalingMat * Cormat # element -wise product

return(Covmat)

}

mcor2mcov <- function(MargMat , scalingFact){ #ok

return(scalingFact * MargMat)

}

tr <- function(X){ # trace of a matrix # ok

sum(diag(X))

}

margEntropy <- function(delta , logdet , p = object@p){

return(lpvarGamma(delta/2) + (p+1)/2*logdet - (delta+p

+1)/2*pvarDiGamma(delta/2) - p*(p+1)/2*log (2) +

delta*p/2)

}

condEntropy <- function(delta , logdet , p = object@p){

return(lpvarGamma(delta/2) - (p+1)/2*logdet - (delta -p

-1)/2*pvarDiGamma(delta/2) + p*(p+1)/2*log (2) +

delta*p/2)

}
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ComputeKLdiv <- function(delta1 , delta2 , logdet1 , logdet2

, invM1 , M2, p = object@p){ # ok

trace12 <- tr(invM1 %*% M2)

KL12 <- delta2/2*(logdet1 - logdet2) + lpvarGamma(

delta2/2) - lpvarGamma(delta1/2) + (delta1 - delta2)

/2 * pvarDiGamma(delta1/2) +

delta1/2 * trace12 - delta1 * p/2

return(KL12)

}

############################

numGr <- object@numGroups

nk <- object@nk

logdetVect <- object@logDetVect

deltaOpt <- object@deltaOpt

p <- object@p

invCovStdev <- object@invCovStdev

objType <- object@type

KLdiv <- matrix(0, nrow = numGr , ncol = numGr) #

initialize KL divergence matrix

if(objType == 'both'){ # in object both marginal and

partial correlation estimations are stored. No need to

compute any inverse

corList <- lapply (1:numGr , mcor , object = object)

MList <- Map(mcor2mcov , MargMat = corList , scalingFact

= nk + deltaOpt - p - 1)

for(i in 1: numGr){

inv_M_i <- pcor2pcov(pcor(object , k = i), invCovStdev

[,i]) # the inverse of M_i is (M+S)^{-1}, i.e. the

elements of the inverse partial correlation

scaling matrix

KLdiv[i,-i] <- unlist(Map(ComputeKLdiv , # fill the i-

th row (except the diag elem which is 0) of the KL

-div matrix

delta1 = deltaOpt + nk[i],

delta2 = deltaOpt + nk[-i],

logdet1 = logdetVect[i],

logdet2 = logdetVect[-i],

invM1 = rep(list(inv_M_i),

numGr -1),

M2 = MList[-i]

))

}

}

if(objType == 'marginal '){ # only marginal correlation is
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stored. No estimation of scaling matrix of precision

matrix. Inversion needed

corList <- lapply (1:numGr , mcor , object = object)

MList <- Map(mcor2mcov , MargMat = corList , scalingFact

= nk + deltaOpt - p - 1)

for(i in 1: numGr){

inv_M_i <- solve(MList [[i]]) # estimation of the

inverse partial correlation scaling matrix

KLdiv[i,-i] <- unlist(Map(ComputeKLdiv , # fill the i-

th row (except the diag elem which is 0) of the KL

-div matrix

delta1 = deltaOpt + nk[i],

delta2 = deltaOpt + nk[-i],

logdet1 = logdetVect[i],

logdet2 = logdetVect[-i],

invM1 = rep(list(inv_M_i),

numGr -1),

M2 = MList[-i]

))

}

}

if(objType == 'conditional '){ # only conditional

correlation is stored. No estimation of scaling matrix

of covariance matrix. Inversion needed

pcorList <- lapply (1:numGr , pcor , object = object)

MinvList <- Map(pcor2pcov , pcorList , split(invCovStdev ,

col(invCovStdev))) # estimations of M_{i}^{ -1}. #

split () converts the matrix in list of its columns

for(j in 1: numGr){ # now we fill KL matrix by columns

# estimation of the inverse partial correlation scaling

matrix

M_j <- solve(MinvList [[j]])

# fill the i-th row (except the diag elem which is 0) of

the KL -div matrix

KLdiv[-j,j]<-unlist(Map(ComputeKLdiv ,

delta1 = deltaOpt + nk[-j],

delta2 = deltaOpt + nk[j],

logdet1 = logdetVect[-j],

logdet2 = logdetVect[j],

invM1 = MinvList[-j],

M2 = rep(list(M_j), numGr -1)

))

}

}

margEntropyList <- Map(margEntropy , delta = nk + deltaOpt

, logdet = logdetVect) # marginal entropy



margCrossEntropy <- KLdiv + unlist(margEntropyList) #

compute the cross -entropy MargCrossEntr[i,j] = KL[i,j]

+ MargEntr[i]

condEntropyList <- Map(condEntropy , delta = nk + deltaOpt

, logdet = logdetVect) # conditional entropy

condCrossEntropy <- KLdiv + unlist(condEntropyList) #

CondCrossEntr[i,j] = KL[i,j] + CondEntr[i]

result <- list(KLdivergence = KLdiv , marginalCrossEntropy

= margCrossEntropy , partialCrossEntropy =

condCrossEntropy)

if(symmetric){

result <- lapply(result , function(X) X+t(X)) # return

the sum of K[i,j] and K[j,i] for each (i,j)

}

return(result)

}

)

B.2 Hyperparameters elicitation

beamDi�_boost

This function jointly estimates marginal and partial correlation matrices, us-
ing the EM algorithm by Bilgrau et al. [2015] and described in Section 3.3
to set the hyperparameters.

##################### HELPER FUNCTIONS #####################

# function written by Harry Gray

.lpvarGamma <- function(z, p){

position = 1:p

if (length(z) == 1){

ans <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z + (1-

position)/2)))

}else{

ans <- rep(0, length(z))

for (i in 1: length(z)){

ans[i] <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z[i] +

(1-position)/2)))

}

}
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return(ans)

}

.upperTriIdxs <- function(p){

z <- sequence(p)

cbind(row = unlist(lapply (1:(p-1), function(x) 1:x), use.

names = FALSE), col = rep(z[-1], times = tail(z, -1) -1))

}

.alphaToLambda <- function(alpha , myn , myp){

(alpha*myn+(1-alpha)*myp+(1- alpha))/(1-alpha)

}

.lambdaToAlpha <- function(lambda , myn , myp){

(lambda -myp -1)/(myn+lambda -myp -1)

}

.getLogDets <- function(mySlist , myM){

myfun <- function(ii, theS , theM){

if(ii==0){

return(determinant(myM)$modulus)

}else{

return(determinant(theM + theS[[ii]])$modulus)

}

}

sapply (0: length(mySlist), myfun , theS=mySlist , theM=myM ,

simplify=TRUE)

}

.sumLogML <- function(mydelta , myn , myp , myM , mySlist){

part1 <- -0.5*myp*log(pi)*sum(myn)

part2 <- sum(. lpvarGamma (( mydelta+myn)*0.5, p=myp)) - length

(myn)*.lpvarGamma(mydelta*0.5, p=myp)

part3 <- 0.5*length(myn)*mydelta*determinant(myM , logarithm

= TRUE)$modulus

myfun <- function(ii, thedelta , then , theS , theM){

0.5*(then[ii]+ thedelta)*determinant(theM + theS[[ii]],

logarithm = TRUE)$modulus

}

part4 <- sum(sapply (1: length(myn), myfun , thedelta=mydelta ,

then=myn , theS=mySlist , theM=myM , simplify=TRUE))

part1 + part2 + part3 - part4

}

# same as sumLogML but optimized when M does not change

# (LogDets are computed once for all)

.sumLogML2 <- function(mydelta ,myn ,myp ,myM ,mySlist ,myLogDets)

{

part1 <- -0.5*myp*log(pi)*sum(myn)
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part2 <- sum(. lpvarGamma (( mydelta+myn)*0.5, p=myp)) -

length(myn)*.lpvarGamma(mydelta*0.5, p=myp)

part3 <- 0.5*length(myn)*mydelta*myLogDets [1]

myfun <- function(ii, thedelta , then , theS , theM , theLogDets

){

0.5*(then[ii]+ thedelta)*theLogDets[ii+1]

}

part4 <- sum(sapply (1: length(myn), myfun , thedelta=mydelta ,

then=myn , theS=mySlist , theM=myM , theLogDets=myLogDets ,

simplify=TRUE))

part1 + part2 + part3 - part4

}

# function written by Gwenael Leday

.joint_ML_optimization <- function(Slist , n, p, K, maxiter ,

eps_converge , plotML){

# Update M for fixed delta

updateM <- function(oldM , mydelta , mySlist , myn){

myfun <- function(ii, thedelta , then , theS , theM){

(then[ii]+ thedelta)*solve(theM + theS[[ii]])

}

tp <- sapply (1: length(myn), myfun , thedelta=mydelta , then=

myn , theS=mySlist , theM=oldM , simplify=FALSE)

solve(Reduce('+', tp))*(length(myn)*mydelta)

}

# Update delta for fixed M

updateDelta <- function(myn , myp , mySlist , myM , myLogDets){

eps <- 10^( -3)

lowerVal <- min(. alphaToLambda(alpha=eps , myn=myn , myp=myp)

)

upperVal <- max(. alphaToLambda(alpha=1-eps , myn=myn , myp=

myp))

initVal <- mean(. alphaToLambda(alpha =0.5, myn=myn , myp=myp)

)

resOpt <- optim(par=initVal , fn=.sumLogML2 , myp = myp ,

myn=myn , myM= myM , mySlist=mySlist ,

myLogDets=myLogDets ,

method='Brent', lower=lowerVal , upper=upperVal ,

control = list(fnscale =-1))

resOpt$par

}

# Initialisation

M_old <- M_new <- diag(p)

allDeltas <- rep(NA, maxiter +1)

allDeltas [1] <- sum(n)

allLogML <- matrix(NA, maxiter , K)

totalLogML <- rep(NA, maxiter +1)

totalLogML [1] <- .sumLogML(mydelta=allDeltas [1], myn=n, myp=
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p, myM=M_old , mySlist=Slist)

# Algorithm - empirical Bayes

bool <- TRUE

ct <- 1

cat('iter = ')

while(bool){

# Update M

M_new <-updateM(M_old , mydelta = allDeltas[ct], mySlist =

Slist , myn = n)

# Update delta

logDets <- .getLogDets(mySlist=Slist , myM=M_new)

allDeltas[ct+1] <- updateDelta(myn=n, myp=p, mySlist=Slist ,

myM=M_new , myLogDets=logDets)

# Total log -marginal likelihood

totalLogML[ct+1] <- .sumLogML(mydelta=allDeltas[ct+1], myn=

n,

myp=p, myM=M_new , mySlist=Slist)

# update M_old

M_old <- M_new

# Monitor convergence

if(ct >2){

diffLogML <- totalLogML[ct+1]- totalLogML[ct]

relDiffLogML <- diffLogML/abs(totalLogML[ct])

if(relDiffLogML <eps_converge){

bool <- FALSE

}

}

if(ct== maxiter){

warning('No convergence. relDiffLogML =', relDiffLogML ,'\n

')

bool <- FALSE

}

if(bool){

ct <- ct + 1

}

}

if(plotML){

plot(totalLogML [1:(ct+1)][-1], xlab="iteration", ylab="sum

log -ML")

}

cat('\nkappa(M) =', kappa(M_new),'\n')
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# Estimate of M and delta upon convergence

return(list("M" = M_new , "delta" = allDeltas[ct+1], "value"

= totalLogML[ct+1]))

}

# This is the core function which will be applied to each

group , returning the table with the quantities requested

in output

.Estimation <- function(n, p, X, S, deltaOpt , MOpt , group_idx

){

cat('GROUP ', group_idx ,'(',n,'obs )','\n')

# Initialize data.frame with results (so that R already

knows how much space we are going to use)

nrows = p*(p-1)/2 ; ncols <- 2 # mcor and pcor

results <- matrix(NA_real_, nrow = nrows , ncol = ncols) ;

colnames(results) <- c('m_cor','p_cor')

# Upper triangular indexes

matidxs <- .upperTriIdxs(p)

# compute posterior covariance matrix

H <- MOpt + S

cat('kappa(S) =', kappa(S),'\tkappa(H) =',kappa(H),'\n')

# Marginal correlation estimates

rhij <- cov2cor(H)[matidxs] ; results[,'m_cor'] <- rhij

# Compute scaled posterior exp. of the inv. cov. matrix

Hinv <- solve(H)

# Partial correlation estimates

rkij <- - cov2cor(Hinv) ; rkij <- rkij[matidxs] ;

results[,'p_cor'] <- rkij

# store diags to retrieve the original (non -scaled) matrices

return(list(pcor = results , diagH = diag(H),

diagHinv = diag(Hinv)))

}

##################### MAIN FUNCTION #####################

# Joint optimization of M and delta

beamDiff_boost <- function(matList , plotML_flag = FALSE ,

maxiter = 100, eps = .001){

numGroups <- length(matList)

pk = sapply(matList , ncol) ; p = unique(pk)

# Dimension data

nk <- sapply(matList , nrow)
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# Cross -product

SList <- lapply(matList , crossprod)

# OPTIMAL SHRINKAGE

resOpt <- .joint_ML_optimization(SList , nk, p, numGroups ,

maxiter , eps , plotML = plotML_flag)

# Optimum

deltaOpt <- resOpt$delta

MOpt <- resOpt$M

alphasOpt <- .lambdaToAlpha(lambda=deltaOpt , myn=nk, myp=p)

myalphas <- seq(from=quantile(alphasOpt , probs =0.2) , to=

quantile(alphasOpt , probs =0.8), length =100)

mydeltas <- as.vector(sapply(myalphas , .alphaToLambda , myn=

nk, myp=p))

deltaSeq <- seq(from=min(mydeltas),to=max(mydeltas),length

=100)

logDets <- .getLogDets(SList , MOpt)

allSumMLs <- sapply(deltaSeq , .sumLogML2 , myn = nk , myp = p,

mySlist = SList , myLogDets = logDets)

gridDelta <- cbind(deltaSeq , allSumMLs)

colnames(gridDelta) <- c("delta", "sum -logML")

results <- Map(. Estimation , nk, p, matList , SList , deltaOpt ,

rep(list(MOpt), numGroups), as.list (1: numGroups))

tableList <- lapply(results , function(X) X$pcor)

diagH_list <- lapply(results , function(X) X$diagH)

diagHinv_list <- lapply(results , function(X) X$diagHinv)

# List ith results

out <- list("tableList" = tableList ,

"diagH_list" = diagH_list ,

"diagHinv_list" = diagHinv_list ,

"deltaOpt" = deltaOpt ,

"MOpt" = MOpt ,

"alphasOpt"= alphasOpt ,

"nk" = nk ,

"p" = p,

"gridDelta" = gridDelta ,

"valOpt" = resOpt$value ,

"numGroups" = numGroups)

return(out)

}
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beamDi�_new

This function jointly estimates marginal and partial correlation matrices.
beam is preliminary run on all data merged together and its estimate of the
covariance structure in used as prior hyperparameterM . More details on the
algorithm can be found in Section 3.3

require(beam)

##################### HELPER FUNCTIONS #####################

.scaleData <- function(X,n){

X <- scale(X, center = TRUE , scale = FALSE)

X <- scale(X, center = TRUE , scale = sqrt(colSums(X^2)/n))

return(X)

}

.lpvarGamma <- function(z, p){ # function written by Harry

Gray

position = 1:p

if (length(z) == 1){

ans <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z + (1-

position)/2)))

}else{

ans <- rep(0, length(z))

for (i in 1: length(z)){

ans[i] <- ((p * (p-1))/4) * log(pi) + (sum(lgamma(z[i]

+ (1-position)/2)))

}

}

return(ans)

}

.alphaToLambda <- function(alpha , myn , myp){

(alpha*myn+(1-alpha)*myp+(1- alpha))/(1-alpha)

}

.lambdaToAlpha <- function(lambda , myn , myp){

(lambda -myp -1)/(myn+lambda -myp -1)

}

.sumLogML <- function(delta , p, nk, logdet_psi_hat , psi_hat ,

Slist){

logML <- function(mydelta , myp , myn , logdet_psi_hat , psi_

hat , S){

part1 <- -0.5*myn*myp*log(pi) + .lpvarGamma (( mydelta+myn)

*0.5, p=myp) - .lpvarGamma(mydelta*0.5, p=myp)

part2 <- 0.5*mydelta*myp*log(mydelta -myp -1) + 0.5*mydelta

*logdet_psi_hat - 0.5*(mydelta+myn)*determinant ((

mydelta -p-1)*psi_hat + S, logarithm = T)$modulus
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part1 + part2

}

K <- length(nk)

logML_group <- Map(logML , delta , p, nk, logdet_psi_hat , rep

(list(psi_hat), K), Slist)

Reduce(sum , logML_group)

}

.upperTriIdxs <- function(p){

z <- sequence(p)

cbind(

row = unlist(lapply (1:(p-1), function(x) 1:x), use.names

= FALSE),

col = rep(z[-1], times = tail(z, -1) -1))

}

.Estimation <- function(n, p, X, S, deltaOpt , MOpt , group_idx

){

cat('GROUP ', group_idx ,'(',n,'obs )','\n')

# Initialize data.frame with results (so that R already

knows how much space we are going to use)

nrows = p*(p-1)/2 ; ncols <- 2 # mcor and pcor

results <- matrix(NA_real_, nrow = nrows , ncol = ncols) ;

colnames(results) <- c('m_cor','p_cor')

# Upper triangular indexes

matidxs <- .upperTriIdxs(p)

# compute posterior covariance matrix

H <- MOpt + S

cat('kappa(S) =', kappa(S),'\tkappa(H) =',kappa(H),'\n')

# Marginal correlation estimates

rhij <- cov2cor(H)[matidxs] ; results[,'m_cor'] <- rhij

# Compute scaled posterior expectation of the inverse

covariance matrix (partial correlation estimates)

Hinv <- solve(H)

# Partial correlation estimates

rkij <- - cov2cor(Hinv) ; rkij <- rkij[matidxs] ; results

[,'p_cor'] <- rkij

return(results)

}

##################### MAIN FUNCTION #####################

beamDiff_new <- function(matList){

numGroups <- length(matList)
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pk = sapply(matList , ncol)

p = unique(pk)

# Dimension data

nk <- sapply(matList , nrow)

# Standardize data

matList <- Map(.scaleData , matList , nk)

# Cross -product

SList <- lapply(matList , crossprod)

allData <- do.call(rbind , matList) # put all data together

and run beam on them

beam_fit <- beam(allData , type = 'marginal ', return.only =

'cor', verbose = F)

psi_hat <- beam::mcor(beam_fit) # get the estimation for

the marginal correlation matrix

# now we have to compute logML and find optimal delta: pre -

compute all quantities independent of delta

logdet_psi_hat <- determinant(psi_hat , logarithm = T)$

modulus

# Range of values

eps <- 10^( -6)

lowerVal <- min(. alphaToLambda(alpha=eps , myn=nk, myp=p))

upperVal <- max(. alphaToLambda(alpha=1-eps , myn=nk, myp=p))

initVal <- mean(. alphaToLambda(alpha =0.5, myn=nk , myp=p))

# Maximize log -marginal likelihood

resOpt <- optim(par=initVal , fn=.sumLogML , p = p, nk=nk ,

logdet_psi_hat=logdet_psi_hat , psi_hat=psi_hat , Slist =

SList , method='Brent', lower=lowerVal , upper=upperVal ,

control = list(fnscale =-1))

# Optimum

deltaOpt <- resOpt$par

alphasOpt <- .lambdaToAlpha(lambda=deltaOpt , myn=nk, myp=p)

# Vector with optimal alphas (group -specific , depending

on nk)

myalphas <- seq(from=quantile(alphasOpt , probs =0.2) , to=

quantile(alphasOpt , probs =0.8), length =100)

mydeltas <- as.vector(sapply(myalphas , .alphaToLambda , myn=

nk, myp=p)) # delta values corresponding to the optimal

alpha values

deltaSeq <- seq(from=min(mydeltas), to=max(mydeltas),

length =100)

allSumMLs <- sapply(deltaSeq , .sumLogML , p = p, nk=nk,
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logdet_psi_hat=logdet_psi_hat , psi_hat=psi_hat , Slist =

SList)

gridDelta <- cbind(deltaSeq , allSumMLs)

colnames(gridDelta) <- c("delta", "sum -logML")

MOpt <- (deltaOpt -p-1)*psi_hat

tableList <- Map(.Estimation , nk , p, matList , SList ,

deltaOpt , rep(list(MOpt), numGroups), as.list (1:

numGroups))

# List ith results

out <- list("tableList" = tableList ,

"deltaOpt" = deltaOpt ,

"MOpt" = MOpt ,

"alphasOpt"= alphasOpt ,

"nk" = nk ,

"p" = p,

"gridDelta" = gridDelta ,

"valOpt" = resOpt$value ,

"numGroups" = numGroups)

return(out)

}

B.3 Data simulation

In this section we present two functions we implemented to simulate a set of
precision matrices. More details about the two algorithms can be found in
Section 4.2.

simBlockMatrix

simBlockMatrix <- function(sparsity , nBlocks , val_lb = 0, val

_ub = 1, p, max_iter = 1000, maxCond = 500, minCorThres =

0, minMedThres = 0, shrink = 0){

totEdges <- p*(p-1)/2 # size of upper triang part

blockSize <- p/nBlocks # rows and cols of each block

totEdgesBlock <- blockSize*(blockSize -1)/2 # tot number of

values in each block

numEdgesBlock <- round(sparsity*nBlocks*totEdgesBlock) #

number of non -zero values in each block

n_iter <- 1

bestMinEigFound <- -999 # set starting values to assess

during the loop the "goodness" of the sampled matrices
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bestMinValuefound <- 0

bestMedValueFound <- 0

while(n_iter < max_iter){

n_iter <- n_iter + 1

if(n_iter %% 1000 == 0){ # every 1000 iterations display

the iteration number

cat('#',n_iter ,'#\n')

}

non_null_idxs <- sample.int(totEdgesBlock , size =

numEdgesBlock) # sample the positions of the non -zero

values

# then create the block matrix with non -zero entries (

sampled by a signed uniform) in the simulated

positions

OmegaBlock <- .idxs2mat(non_null_idxs , value = ifelse(

rbinom(numEdgesBlock , 1, .5), +1, -1) * runif(

numEdgesBlock , val_lb , val_ub), p = blockSize)

eigvals <- eigen(OmegaBlock)$values # get the eigenvalues

of the matrix

minEig <- min(eigvals)

if(minEig > bestMinEigFound){ # update the best result

obtained so far , if it is the case

bestMinEigFound <- minEig

}

if(minEig > 0){ # then the matrix is positive definite

already

condNum <- max(eigvals)/min(eigvals) # compute

condition number

if(condNum > maxCond){

cat('Ill -conditioned matrix:', condNum ,'\n')

}else{ # both eigenvalues and condition number are ok

cat('##### Found it! #####\n')

Omega <- matrix(0, p, p) # build the matrix ,

replicating OmegaBlock along the diagonal

for(i in 1:( nBlocks -1)){

Omega [((i-1)*blockSize +1) : (i*blockSize), ((i-1)*

blockSize +1) : (i*blockSize)] <- OmegaBlock

}

return(Omega)

}

}else{ # in this case , the matrix is not positive

definite

OmegaBlock <- OmegaBlock + (shrink - minEig)*diag(

blockSize) # add along the diagonal the min Eigval +

shrink (which will therefore become the min eigval)
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OmegaBlock <- cov2cor(OmegaBlock) # now along the diag

we have values > 1 --> rescale the matrix to have 1

along the diag

minCor <- min(abs(OmegaBlock[OmegaBlock != 0])) # check

which is the minimum non -zero value

medCor <- median(abs(OmegaBlock[OmegaBlock != 0])) #

check the median of the non -zero values

if(minCor > bestMinValuefound){ # update the best

result obtained so far , if it is the case

bestMinValuefound <- minCor

}

if(medCor > bestMedValueFound){

bestMedValueFound <- medCor

}

if(medCor > minMedThres){ # if the value is acceptable

condNum <- kappa(OmegaBlock) # compute condition

number

if(condNum > maxCond){

cat('Ill -conditioned matrix:', condNum ,'\n')

}else{

cat('##### Found it! #####\n')

Omega <- matrix(0, p, p) # build the matrix ,

replicating OmegaBlock along the diagonal

for(i in 1: nBlocks){

Omega [((i-1)*blockSize +1) : (i*blockSize), ((i-1)

*blockSize +1) : (i*blockSize)] <- OmegaBlock

}

return(Omega)

}

}

}

}

# if we get here , it means we did not find any good

candidate: return the information about best results ,

which are helpful to tune the next attempt

cat('### MATRIX NOT FOUND ( best eigval:', bestMinEigFound ,

'; best minCor:', bestMinValuefound ,'; best medCor:',

bestMedValueFound ,') ###\n')

return(NULL)

}

simBandShu�e

simBandShuffle <- function(p, width , shuffle.from.list ,

shuffle.to.list , K, lb = 0, ub = 1){

# Function needed
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.generateBand <- function(d, width){

if(width >(d-1)){

width <- d - 1

}

adj <- toeplitz(c(0, rep(1, width), rep(0, p - width -1))

)

return(adj)

}

.simOmega <- function(p, width){

# Generate sparse precision matrix with band structure

myinds <- .generateBand(d=p, width=width)

M <- myinds

ind <- upper.tri(M, diag=FALSE) & M == 1

#M[ind] <- runif(sum(ind), min=-1, max =1) # sample from

uniform [-1,1]

M[ind] <- ifelse(rbinom(sum(ind), 1, .5), +1, -1) * runif

(sum(ind), lb, ub) # sample from unif [-ub,-lb] U [lb,

ub]

M[lower.tri(M)] = t(M)[lower.tri(M)]

minEig <- min(eigen(M,symmetric = TRUE , only.values =

TRUE)$values) # get minimum eigenvalue

M <- M + diag(p)*(abs(minEig)+0.1) # make the matrix pos

def

return(M)

}

.shuffle <- function(M, shuffle.from , shuffle.to){ #

Randomly permute rows and columns

if(shuffle.from != 0){

idx <- sample(shuffle.from:shuffle.to)

M[shuffle.from:shuffle.to , shuffle.from:shuffle.to] <-

M[idx , idx]

}

return(M)

}

###

Omega1 <- .simOmega(p,width) # generate first matrix

if(K > 1){ # create OmegaList by replicating Omega1 , then

shuffle

OmegaList <- rep(list(Omega1),K)

if(length(shuffle.from.list) == 1){

if(shuffle.from.list != 0){ # means no shuffle

shuffle.from.list <- rep(list(shuffle.from.list),K-1)

}
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}

if(length(shuffle.to.list) == 1){ shuffle.to.list <- rep(

list(shuffle.to.list),K-1) }

# first matrix is never shuffled , if there is more than

one group

OmegaList [2:K] <- Map(.shuffle , OmegaList [2:K], shuffle.

from.list , shuffle.to.list)

return(OmegaList)

}else{

Omega1 <- .shuffle(Omega1 , shuffle.from.list , shuffle.to.

list)

return(Omega1)

}

}

B.4 Network structure inference

The following functions implement three approaches we described in Section
3.5 aimed at retrieving the network structure. All of them take as input the
beamDiff-class object returned by beamDiff function and the level of the
test.

UItest

require(fdrtool)

.computeP0fromHC <- function(condTailProb , type = 'max'){

if(type == 'max'){

pvals <- apply(condTailProb ,1,max)

}else{ # type = 'all '

pvals <- unlist(condTailProb)

}

hcThres <- hc.thresh(pvals , plot = FALSE)

rej_proportion <- length(which(pvals < hcThres))/length(

pvals)

p0 <- 1 - rej_proportion

return(p0)

}

UItest <- function(object , presence = c(1: length(

object@tableList)), method = "BFDR", thres = .1){



APPENDIX B. CODE 134

logBFmat <- sapply(object@tableList , function(X) X[,'p_

logBF ']) # matrix with log(Bayes factors) for each

condition

tailsMat <- sapply(object@tableList , function(X) X[,'p_tail

_prob']) # matrix with tail probabilities for each

condition

totEdges <- nrow(logBFmat)

K <- ncol(logBFmat)

res <- rep(0, totEdges) # initialize vector for results

p0 <- .computeP0fromHC(tailsMat , type = 'max')

logBFmat[, -c(presence)] <- - logBFmat[, -c(presence)] #

change sign to all logBFs which are not tested for

common presence

overallLogBF <- rowSums(logBFmat) # sum of the logBFs (sign

already adjusted)

blfdrsvec <- p0/(exp(overallLogBF)*(1-p0)+p0)

if(method =="blfdr"){

res[which(blfdrsvec < thres)] <- 1

}else{ # method == "BFDR"

allthr <- sort(blfdrsvec , index.return=TRUE)

BFDRsvec <- rep(0,length(allthr$x))

BFDRsvec[allthr$ix] <- cumsum(allthr$x)/(1: length(allthr$

x))

res[which(BFDRsvec < thres)] <- 1

}

return(res)

}

hierTest_BF

require(cherry)

hierTest_BF <- function(object , alpha = .05){

dfList <- object@tableList

p <- object@p # get number of covariates

K <- object@numGroups

totEdges <- p*(p-1)/2
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tailProb <- sapply(dfList , function(X) X[,'p_tail_prob']) #

matrix with K cols corresponding to K tails

rownames(tailProb) <- 1: totEdges

alpha_BF_corrected <- alpha/totEdges # Bonferroni

correction

presMatrix <- matrix(0, totEdges , K) # initialize a matrix

with K columns which will tell you where the edge is

present

rownames(presMatrix) <- 1: totEdges # use rownames to keep

track of the original indexing

for(i in 1: totEdges){

pvals <- tailProb[i,] # consider the tails corresponding

to i-th edge for its presence in the K conditions

names(pvals) <- 1:K

if(min(pvals) <= alpha_BF_corrected){ # perform hier

testing only if the min pval in the row is below the

threshold

res <- curveFisher(pvals , alpha = alpha_BF_corrected ,

plot = FALSE) # hierarchical testing with cherry

package

selIdx <- 1

while(res[selIdx] == selIdx && selIdx <= K){selIdx <-

selIdx + 1} # increment the index until the num of

rej hp is equal to the num of groups considered

if(selIdx > 1){ # if so, the edge has been allocated to

at least one group (as expected)

presGroups <- as.numeric(names(res)[1:( selIdx -1)]) #

get the names (or indicators) of the groups

presMatrix[i,presGroups] <- 1

}

}

}

return(presMatrix)

}

hierBH

hierBH <- function(object , alpha1 , alpha2){

# alpha1: level of first test where we detect interesting

edges

# alpha2: level of second where we allocate edges to groups
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tailProbs <- sapply(object@tableList , function(X) X[,'p_

tail_prob'])

K <- ncol(tailProbs) # number of groups

totEdges <- nrow(tailProbs) # number of edges

res <- matrix(0, totEdges , K)

# step0: simes pvalues

simes_pvals <- apply(tailProbs , 1, function(x) min(K/rank(x

)*x)) # for each row compute Simes pvalues and then take

the minimum

# step1: BH at FDR target level alpha1

BH_simes_pvals <- p.adjust(simes_pvals , method = 'BH') #

adjust values with BH

selected_edges <- which(BH_simes_pvals < alpha1) #

threshold at alpha1

selEdges <- length(selected_edges) # number of selected

edges

# step2: group allocation on selected edges

for(i in selected_edges){ # go through the edges that have

been selected

family_tailProbs <- tailProbs[i,]

BH_family_tailProbs <- p.adjust(family_tailProbs , method

= 'BH') # adjust values with BH

selected_groups <- which(BH_family_tailProbs < alpha2*

selEdges/totEdges) # threshold at alpha2 corrected to

account for previous selection

res[i, selected_groups] <- 1 # put 1 in the result matrix

}

return(res)

}
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