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Abstract

Heart Failure (HF) is one of most common disease in our society and one of
the most important cause of hospitalisation in people over 65. When dealing
with patients affected by chronic disease (like HF), the matter of predicting
readmissions is a real challenge for hospitals. Finding which patients features
determine a higher incidence of readmission can help to improve therapies
and to target interventions.
Thanks to the large amount of data collected by Trieste hospital, we will try
to understand which factors affect the admission to hospital, discharge from
hospital and death of HF patients, through the implementation of multi-
state models. Secondly, thanks to the data collected by Friuli Venezia Giulia
hospitals, we will analyze the homogeneity of the hospital treatment in the
different residence districts. In order to do this, we will apply a nonparamet-
ric and discrete frailty Cox model that, thanks to the discrete distributed
frailty, allow us to detect if a possible clustering structure can be found
among the residence districts. Moreover, we will analyze the homogeneity
of the regional cohort and we will evaluate, through the k-means algorithm,
the presence of a clustering structure. Once identified the clusters we will
analyze them in order to find the features that best characterize them.

Keywords: Heart Failure, multi-state model, nonparametric frailty Cox
model
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Sommario

Lo scompenso cardiaco è una delle malattie più comuni nella nostra società
e una delle più importanti cause di ospedalizzazione nelle persone sopra i 65
anni. Quando si ha a che fare con pazienti affetti da malattie croniche (come
lo scompenso cardiaco), prevedere le riammissioni è una vera sfida per gli
ospedali. Trovare quali caratteristiche dei pazienti determinano una mag-
giore probabilità di riammissione può, infatti, aiutare a migliorare le terapie
e indirizzare gli interventi.
Grazie alla grande quantità di dati raccolti dall’ospedale di Trieste, cercher-
emo di capire quali fattori influenzano l’ammissione in ospedale, la dimis-
sione dall’ospedale e la morte dei pazienti con scompenso cardiaco, attraverso
l’implementazione di modelli multi-stato. Successivamente, grazie ai dati
raccolti dagli ospedali del Friuli Venezia Giulia, analizzeremo l’omogeneità
del trattamento ospedaliero nei diversi distretti di residenza. Per fare ciò
implementeremo un modello di tipo Cox con frailty non parametrica e disc-
reta, che consentirà di capire se è possibile trovare una struttura di clustering
tra i distretti di residenza. Inoltre, analizzeremo l’omogeneità della coorte
regionale e valuteremo, attraverso l’algoritmo k-means, l’esistenza di una
struttura di clustering. Una volta identificati i cluster, li analizzeremo per
trovare gli aspetti che meglio li caratterizzano.

Parole chiave: scompenso cardiaco, modello multi-stato, modello Cox con
frailty non parametrica
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Introduction

Heart Failure (HF) is a chronic disease that occurs when the heart fails
to pump sufficiently to maintain blood flow at the right pressure for human
needs. It may be caused by many conditions that lead damage to the heart
muscle: coronary artery disease, high blood pressure, heart muscle weakness,
heart rhythm disturbance, damage with heart’s valves or a combination of
all these.
Nowadays, HF is one of most common disease in our society, due to many
causes, for example population ageing. To understand the relevance of this
disease, we just point out that HF is one of the most important cause of
hospitalisation in people over 65 in Italy [18].
When dealing with patients affected by chronic disease (like HF), the matter
of predicting readmissions is a real challenge for hospitals, mainly for two
reasons. The first one is concerned with the high costs of hospitalization,
so, discovering the reasons of readmission may lead to improve hospital care
and, consequently, to save money. Much more important could be the sec-
ond reason: to find which features in patients determine a higher incidence
of readmission, in order to improve therapies and to target interventions.
This is twice as useful, as for it takes benefits to patients and to hospitals as
well. Evaluating hospital readmissions and linked quantities for any kind of
chronic disease is one of the aims of the healthcare research, thanks to the
large amount of data collected by hospitals.
In particular, this is the aim of the first part of this thesis: analyzing the
dataset whose informations are collected in the Trieste area, we will try to
understand which factors influence the admission, discharge and death di-
namic of HF patients, through the implementation of musti-state models.
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Instead, in the second part of this thesis, exploring the dataset whose infor-
mations are collected in all the Friuli Venezia Giulia region, we will analyze
the impact of patients risk profiles and geographical residential effects on
the survival of HF patients. To this aim, we will apply Cox models with
nonparametric and discrete frailty in order to understand if the different res-
idence districts have some measurable influence on the patients survival.

The thesis is structured as follows:

• In Chapter 1 we will describe the main theoretical features of survival
analysis and of multi-state models.

• In Chapter 2 we will discuss the main aspects of the frailty Cox models
focusing on a specific proposal based on nonparametric discrete frailty
[14]. An important advantage of this model is that, through the dis-
crete frailty, it is possible to build a probabilistique clustering tecnique.
We will describe the model and the tailored Expectation-Maximization
algorithm used to estimate the model parameters.

Once described the necessary theory, we will present the results achieved
from the analysis of two different dataset: the Trieste and the Friuli Venezia
Giulia one.

• In Chapter 3 we will analyze the Trieste dataset. After a descrip-
tive analysis of the cohort considered, we will implement a multi-state
model in order to understand which factors most influence the admis-
sion, discharge and death dinamic.

• In Chapter 4 we will analyze the Friuli Venezia Giulia dataset. Firstly,
through the implementation of the nonparametric discrete frailty Cox
model, we will discuss the residence districts homogeneity. Secondly,
through the implementation of different Cox models and through the
application of the k-means algorithm, we will discuss the cohort homo-
geneity. Finally, we will perform a multi-state modelling of the data
in order to see if the results are coherent with the ones obtained with
the smaller dataset, the Trieste one.

• Finally, in Chapter 5, we will conclude with a summary of the results
obtained and with few proposal for future developments.

All the analysis are carried out with R [25].

2



Chapter 1

Multi-state models

In this chapter we will introduce survival analysis and multi-state models
as statistical methodologies to deal with time to event data.
After a brief introduction of basic notions in Section 1.1, Section 1.2 will re-
port the main concepts of survival analysis, where the time occured between
a starting event and a final event of interest is studied.
In Section 1.3, the concepts of Section 1.2 will be generalized to the multi-
state models setting, where the time occured between several events of in-
terest is studied.

The concepts explained in this theoretical chapter will be put into prac-
tice in Chapter 3, where multi-state models will be applied to a real dataset
arising from healthcare context.

1.1 Introduction

Survival and event history analysis [1] are statistical methodologies used
in many different settings where the occurrence of events is studied. By
events we mean occurrences in the lives of individuals that are of interest in
scientific studies, in medicine, demography, biology, sociology, econometrics,
etc. The main objective is trying to understand their cause or establish risk
factors which may affect their occurrence.

In classical survival analysis we focus on a single event of interest for
each individual, describing its occurrence by means of survival curves and

3



hazard rates (see Section 1.2 for details) and analyzing the dependence on
covariates by means of regression models.

When an individual has the possibility to experience several different
events we talk about event histories.

1.2 Survival analysis

We start by considering classical survival analysis, which focuses on the
time elapsed from a starting event to an event, or endpoint, of interest.
Some examples may be:

• time from birth to death;

• time from disease onset to death or relapse;

• time from birth to disease diagnosis.

The time between the starting event and the event of interest is defined as
survival time, even when death is not the final state. On the other hand, the
events definingh such times are called states.

Figure 1.1 shows a sketch of a survival model, reported in [4]. The
blocks, named Alive and Dead, represent the states. The arrow represents
the transition between states. α(t) is defined rate of transition.

Figure 1.1: Example of survival scheme.

1.2.1 Right censoring

Time to event data are often only partially observed. The event of inter-
est can occur for some individuals but not for the others. In this latter case
we could know that the event is not occurred up to a certain time, without
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knowing when and if it will happen. That is called right censoring. Alter-
natively, we could know that the event is occurred before a certain time,
without knowing the exact time in which it occurred. That is called left
censoring.

The most common case is that of right censored data. For each patient
i, let T ∗i be the non negative random variable denoting the time at which
the event occurs and Ci be the random variable denoting the time at which
censoring happens. What we observe is the failure time Ti, that is the event
time T ∗i or the censoring time Ci, whichever is smaller.

Ti = min(T ∗i , Ci). (1.1)

In addition, through an indicator random variable δi, we can get the infor-
mation on whether Ti is an event time or a censoring time.

δi =

1 if T ∗i ≤ Ci
0 if T ∗i > Ci

(1.2)

Hence the observed data consist of pairs (Ti, δi) for each patient i.

An illustration of how censored survival times may arise is given in Fig-
ure 1.2. The figure illustrates a hypothetical clinical study where 10 patients
are observed over a time period to see whether some specific event occurs.
Observations are shown as they occur in calendar time. The patients enter
the study at different times and, then, they are followed until the event oc-
curs or until the closure of the study, after 10 years.

1.2.2 Survival function and hazard rate function

There are two basic concepts that pervade the whole theory of survival
analysis, namely the survival function and the hazard rate.

At time zero a set of individuals waits for an event that might happen.
The observation for a given individual consists of a random variable, say T ,
representing the time from a given origin to the occurrence of the event.
The distribution of T is characterized by the probability distribution function:
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Figure 1.2: Example of right censored data.

F (t) = P (T ≤ t), (1.3)

or, equivalently, by the survival distribution function, defined as:

S(t) = 1− F (t) = P (T > t), (1.4)

The survival function gives the probability that the event of interest has
not happened by time t.
The survival function is a non-increasing function that often tends to zero
as t increases. However, since we use the terms survival time and survival
function also for events that do not necessarily happen to all individuals, the
survival function could also tend to a positive value as t goes to infinity.

The random variable T could be a discrete or an absolutely continuous
variable. In this latter case T has a probability density and, consequently,
by means of a conditional probability, we can define the hazard rate α(t).
The hazard rate represents the istantaneous probability to pass from the
starting state to the final state. If we look at those individuals who have not
yet experienced the event of interest by time t and consider the probability
of experiencing the event in the small time interval [t, t + dt), then this
probability equals α(t)dt. To be more precise, the hazard rate is defined as
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a limit in the following way:

α(t) = lim
∆(t)→0

P (T ≤ t+ ∆(t)|T ≥ t)
∆(t)

. (1.5)

Notice that while the survival curve is a function that starts at 1 and
declines over time, the hazard rate can be essentially any non negative func-
tion.
In Figure 1.3 we can find an example of hazard rate and one of survival func-
tion. The left-hand panel shows a typical hazard rate, reaching a maximum
and then declining. The right-hand panel shows a survival curve.

Figure 1.3: Examples of hazard rate (left panel) and survival function (right
panel).

Starting from the hazard rate function α(t) and integrating it over the
time variable t, the cumulative hazard function can be obtained:

A(t) =

∫ t

0
α(s)ds. (1.6)

There is an important relation between the survival function and the
cumulative hazard function:

S(t) = exp(−A(t)). (1.7)

1.2.3 Kaplan-Meier estimator

To estimate the survival function from a sample of survival data, the
Kaplan-Meier estimator [1] is the most popular method.
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In order to estimate the survival functon, we consider a sample of n
individuals from the population. N(t) is the variable that counts the number
of occurrences of the event in [0, t], while Y (t) is the number of individuals
at risk "just before" time t. We write T1 < T2 < ... for the ordered times
when an occurrence of the event is observed, that is, for the jump times of
N .
To give an intuitive justification of the Kaplan-Meier estimator, we partition
the time interval [0, t] into a number of small time intervals 0 = t0 < t1 <

... < tK = t and use the multiplication rule for conditional probabilities to
write:

S(t) =
K∏
k=1

S(tk|tk−1) (1.8)

where

S(v|u) = S(v)
S(u) , for v > u,

is the conditional probability that the event will occur later than time v
given that it has not yet occurred by time u.
We assume that there are no tied event times. This assumption is reasonable
since we may make each time interval so small that it contains at most one
observed event, and that all censorings occur at the right- hand endpoint of
an interval.
Then, if no event is observed in (tk − 1, tk], we estimate S(tk|tk − 1) with
1, otherwise, if an event is observed at time Tj ∈ (tk − 1, tk], the natural
estimate of S(tk|tk − 1) is

1− 1
Y (tk−1) = 1− 1

Y (Tj) .

Inserting these estimates into (1.8), we obtain:

Ŝ(t) =
∏
Tj≤t

1− 1

Y (Tj)
(1.9)

which is the Kaplan-Meier estimator.

In Figure 1.4, an example of Kaplan-Meier estimates from [1] is reported.
In order to be able to correctly interpret the figure, we underline that on the
x-axis there is the time of the study, that could be expressed in hours, days,
months or years, like in this case, while on the y-axis there is the probability
of survival.
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In this example we are interest in the time between the first and second
births of a woman (by the same father), and how this is affected if the first
child dies within one year of his birth.
From the survival curves we see, for example, that it takes less than two
years before 50% of the women who lost their first child will have another
one, while it takes about four years before 50% of the women who do not
experience this traumatic event will have another one. We note that the
survival curves give a very clear picture of the differences between the two
group of women.

Figure 1.4: Kaplan-Meier estimates for the time between first and second birth of
a woman (by the same father), and how this is affected if the first child dies within
one year of its birth. Upper curve: first child survived one year; lower curve: first
child died within one year.

In this section we explained the main concepts of the survival analysis.
These will be used to deal, in Section 1.3, with the multi-state models.

1.3 Multi-state models

In classical survival analysis we focus on the time to the occurrence of a
single event for each individual. This may, however, be too simplistic in a
number of situations. Sometimes more than one type of event is of interest.
Such situations may conveniently be described by multi-state models (see
among others [4], [2], [15]), where the number of states could be any possible
finite integer number.
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Multi-state models are models for time-to-event data in which all individ-
uals start in one state and, after having transitated through different states,
possibly more than once, end up in a final state.
Theoretically, the transition process ends up when it reaches an absorbing
state, like Dead state in Figure 1.5. However, often, truncation does not
allow the process to reach this equilibrium state. In this case every state
could be a final state.

Multi-state models well describe the development of longitudinal failure
time data; for this reason they are frequently used in medicine, especially
in chronic diseases, where the states can be used to describe the patients’s
conditions over time.

Graphically, multi-state models may be illustrated using diagrams with
boxes representing the states and with arrows between the states representing
the possible transitions.
An example of a multi-state model, the illness-death model, reported in [4],
is given in Figure 1.5.

Figure 1.5: Example of illness-death model with recovery.

1.3.1 Notation

Hereafter we report some notations, generalizing the one previously in-
troduced in Section 1.2.
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For every individuals i, let Xi(t), t ∈ T = [0, τ ], be a random variable
denoting the state occupied by individual i at time t. The possible states
are the ones in the state space S = {1, ..., r}.
The process has initial distribution

πh(0) = P (X(0) = h). (1.10)

The transition probability from the state h to the state j is:

Ph,j(s, t) = P (X(t) = j|X(s) = h) (1.11)

with h, j ∈ S, s, t ∈ T .
The transition intensity, or hazard rate, expressed as

αh,j(t) = lim
∆(t)→0

Ph,j(t, t+ ∆(t))

∆(t)
(1.12)

with h, j ∈ S, t ∈ T , is the istantaneous probability for the transition from
state h to state j to happen.

If αh,j(t) only depends on the history via the state h = X(t) occupied at
t then it is said that the process is Markovian: future evolution depends on
the current state and time, but not on the whole history of the process.

Also with multi-state models, integrating the hazard rate αh,j(t) we can
obtain the cumulative hazard rate:

Ah,j(t) =

∫ t

0
αh,j(s)ds, (1.13)

where h, j ∈ S, t ∈ T .

1.3.2 Cox regression models

A peculiarity of Multi-State models lies in the possibility of introducing
the role of covariates in the transition intensities, that hence may depend on
time t and on a set of individual variables z1(t), ..., zp(t) as well, where p is
the number of covariates.
When covariates are introduced we talk about regression models.
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A big family of regression models is the relative risk regression models,
which have the following general shape:

α(t) = α0(t) r(β, zi(t)) (1.14)

where r(β, zi(t)) is a relative risk function, β = (β1, ..., βp)
T is a vector of

regression coefficients describing the effect of the covariates, and h0(t) is a
baseline hazard rate.

A tipical regression model is the Cox regression model for censored sur-
vival data ([3], [26]), that is obtained when r(β, zi(t)) is equal to exp{βTzi(t)}.
The Cox regression model specifies that covariates have a proportional effect
on hazard function of the life-time distribution of an individual.
The transition intensity for patient i at observation time t take the following
form:

α(t) = α0(t)exp(β1z1 + ...+ βpzp) (1.15)

where β is a p-vector of unknown regression coefficients, α0(t) is the base-
line hazard and exp(β1z1 + ... + βpzp) is the hazard ratio. The objective is
estimating β and α0.

Frailty models

Cox models, through the inclusion of the covariates, can explain the vari-
ability among statistical units. However, in certain situations, in spite of the
introduction of covariates, a certain residual variability remains unexpressed.
To take into account the effects of this unobserved or unobservable hetero-
geneity, frailty models are used.
In frailty models a variable w, said frailty term, is introduced. It acts as a
factor on the hazard function that hence, conditionally on the frailty, can be
written as:

α(t|w) = w · α(t). (1.16)

The idea is to suppose that different patients have different frailties and pa-
tients more "frail" tend to experience the event of interest earlier than those
who are less frail.

The description of these model will be the subject of Chapter 2.
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Chapter 2

Nonparametric frailty Cox
models

"Individuals differ" has been written by Aalen et al. in [1]. This very
simple statement represents the leading idea of the frailty models. Indeed, it
is common knowledge that the same therapy can lead to different results for
different people, and that some people, despite similar conditions, die before
others or survive longer.
This variability is not only recorded in medical field, but also in the wide
contest of biology, economy and technology.
One aim of the survival analysis is to build models that are able to justify
this variability among statistical units. However, there is a part of variability
which cannot be explained by the covariates. Sometimes, not only a residual
error term is present but also an overdispersion due to the grouped nature
of data. In some situations this term is large and not negligible, but it can
be taken into account despite its unobservability. We usually refer to un-
observed heterogeneity that can be accounted for into the model as frailty.
This term highlights that some people are more frail than others and that
the event of interest is more likely to happen for them.

In Section 2.1 we will introduce the Cox proportional hazard frailty
model. In Section 2.2 we will focus on Cox model with a non parametric
frailty and we will present a tailored Expectation Maximization algorithm
to estimate the parameters of this model.
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2.1 Cox proportional hazard frailty model

The term "frailty theory" has been primarily associated with one par-
ticular mathematical formulation of frailty, the proportional frailty model
[1], where we assume that the hazard rate of an individual is given as the
product of an individual specific quantity w and a basic rate α(t):

α(t|w) = w · α(t). (2.1)

In case of Cox proportional frailty model, the hazard rate expression be-
comes:

α(t|w) = w · α0(t)exp(βTx), (2.2)

where w is the frailty term, α0(t) is the baseline hazard function, x is the
vector of covariates and β is the vector of regression coefficients.
If the random component w is higher than 1, the subject has an higher risk,
on the contrary, if w is less than 1, he is exposed to lower risk.

In general the heterogeneity is subject-specific, in this case the frailty
model is known as univariate frailty model. The hazard rate for subject i
then becomes:

αi(t|wi) = wi · α0(t)exp(βTxi) ∀i ∈ 1, ..., n, (2.3)

where n is the total number of subjects in the study.
The univariate frailty model is a particular case of shared frailty model, where
some subgroups, called clusters, are recognized among the population stud-
ied. Subjects of the same group have common unobserved risk factors. The
hazard rate for subject i = 1, ..., n in group j = 1, ...K is:

αij(t|wj) = wj · α0(t)exp(βTxi). (2.4)

A keypoint in the definition of the frailty model (2.3) and (2.4) is the
choice of the distribution of w. The usual choice is the parametric one, in
particular the most common frailty distributions are Gamma, Lognormal,
Inverse Normal and Positive stable [16]. An advantage of the parametric
choice is that only few parameters have to be taken into account. Moreover,
due to the availability of different software, a parametric distribution can be
advantageous also from a computational point of view.
However, due to the potential misspecification of the parametric form, since
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the frailty distribution has to be chosen a priori and sometimes no prior in-
formations are available, a nonparametric frailty distribution, with its good
level of flexibility, is desiderable. In fact, in Section 2.2 we will present an
extension of the shared frailty Cox model for hierarchical time-to-event data
proposed in [14], in which a nonparametric frailty is included.

Another interesting aspect of the nonparametric approac is that, consid-
ering a discrete distribution, it is possible to build a probabilistic clustering
technique. In fact, since the frailty values are extrected from a discrete dis-
tribution with finite support, subjects with the same frailty can be grouped
in a unique cluster.

2.2 Cox model with a nonparametric frailty

In this section we will present the Cox model with a nonparametric and
discrete frailty (npdf Cox) described in [14]. Firstly we will describe the
main concepts and the main variables of this new model. In Section 2.2.1
we will report the tailored Expectation-Maximation algorithm used to esti-
mate the model parameters, while in Section 2.2.2 we will describe how the
parameters standard errors can be computed. Finally, in Section 2.2.3 we
will describe how to compute model selection and hence how to estimate the
correct number of latent populations.

In order to implement the npdf Cox model, we consider a random sample
where each statistical unit i, i = 1, ..., n belongs to one group j, j = 1, .., J .
We define:

• T ∗ij the survival time,

• Cij the censoring time,

• Tij = min(T ∗ij , Cij),

• δij = 1T ∗
ij≤Cij ,

• Xij=(Xij,1, ..., Xij,p)
T the vector of covariates,

• w the vector of shared frailties.
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According to [14], the non parametric frailty term is modelled through a
random variable with discrete distribution with an unknown number of point
in the support.
We assume that each group j can belong to one latent population k = 1, ...,K

with probability πk, P(w = wk) = πk, hence, w1, ..., wK are the support
points of w. zjk is an auxiliary random variable that is equal to 1 if the j-th
group belongs to the k-th latent population, hence zjk

i.i.d.∼ Be(πk). In other
words, the prior probability that the j-th group belongs to the k-th latent
population, hence that zjk = 1, equals πk.
The hazard function for subject i in group j is then:

α(t;Xij , wk, zjk) =
K∏
k=1

[α0(t) wk exp(X
T
ijβ)]zjk , (2.5)

where wk is the frailty term shared among groups of the same latent popu-
lation k.
For each subject i in group j the observable and "incomplete" data are
Yij = {Tij , δij ,Xij}, while the "complete" data, that are needed to write
the log-likelihood of the model, are {Tij , δij ,Xij , wk, zjk}.
We assume that censoring is noninformative, hence T ∗ij and Cij are condi-
tionally independent given Xij , wk, zjk.

If we denote with θ = (π,w, λ0(t),β) the vector of parameters to be
estimated, the full likelihood of the model can be explicitely written as:

Lfull(θ;Y |z) =

K∏
k=1

J∏
j=1

π
zjk
k · Ljkfull(θ;Yj |z) (2.6)

where

Ljkfull(θ;Yj |z) =

nj∏
i=1

{[α0(tij) wk exp(X
T
ijβ)]δij ·exp[−A0(tij) wk exp(X

T
ijβ)]}zjk

(2.7)
and A0(t) =

∫ t
0 α0(s)ds is the cumulative baseline hazard function.

The number of latent populations K can be considered as an unknown pa-
rameter, the relative hazard between two individuals with the same covariate
values but from different latent population k and k̃ can be described by the
frailty ratio wk

wk̃
. This parameter is evaluated in order to define the effect of

different groups.
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2.2.1 Tailored Expectation-Maximization (EM) algorithm

In order to estimate θ for a given K we report an EM algorithm pro-
posed in [14]. The algorithm iterates between two steps, Expectation and
Maximization, and is guaranteed to converge to a stationary point, under
regularity conditions [7], [10], [22], [27].

E-step

The Expectation step consist of computing the expectation over z of the
full log-likelihood, given the current values of parameters θ̂ = (π̂, α̂0(t), β̂, ŵ):

Q(θ) = Ez|θ̂[lfull(θ;Y |z)] (2.8)

The full log-likelihood can be decomposed into two parts, one (2.9) depending
on π and one (2.10) depending on α0(t),β,w.

lfull,1(π;Y |z) =

K∑
k=1

J∑
j=1

zjk · log(πk). (2.9)

lfull,2(α0(t),β,w;Y |z) =
K∑
k=1

J∑
j=1

zjk ·
nj∑
i=1

δij [log(α0(tij)) + log(wk) +XT
ijβ]−

A0(tij)wkexp(X
T
ijβ).

(2.10)

Hence the (2.8) becomes:

Q(θ) = Ez|θ̂[lfull(θ;Y |z)] = Ez|θ̂[lfull,1(θ;Y |z)] + Ez|θ̂[lfull,2(θ;Y |z)].

(2.11)
The (2.11) can be reduced to the computation of E[zjk|Y , θ̂], which can be
derived in closed form using Bayes’ theorem:

E[zjk|Y , θ̂] =
πk · exp{

∑nj

i=1 δij · log(wk)−A0(tij)wkexp(X
T
ijβ)}∑

r∈{1:K} πr · exp{
∑nj

i=1 δij · log(wr)−A0(tij)wrexp(XT
ijβ)}

.

(2.12)
For simplicity we will write ajk = E[zjk|Y , θ̂].
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M-step

The Maximization step consists of maximizing Q(θ) with respect to θ.
As we can see from (2.11), in order to maximize Q(θ), we can maximize
Q1(π) := Ez|θ̂[lfull,1|θ̂] with respect to π andQ2(α0(t),β,w) := Ez|θ̂[lfull,2|θ̂]

with respect to α0(t),β,w separately.

The maximization of Q1(π) is a constrained optimization problem and can
be solved by applying the Lagrange multipliers technique, getting:

π̂k =
1

J

J∑
j=1

αjk. (2.13)

Adapting a profile log-likelihood approach for the estimation of the shared
parametric frailty Cox model [20], w can be estimated fixing α0 and β. The
resulting estimate is:

ŵk =

∑J
j=1 αjk

∑nj

i=1 δij∑J
j=1 αjk

∑nj

i=1{A0(tij) · exp(XT
ijβ)}

. (2.14)

By substituting these estimates in Q2 we obtain:

Q2(α0(t),β, ŵ) =

K∑
k=1

J∑
j=1

αjk ·
nj∑
i=1

δij [log(α0(tij)) + log(ŵk) +XT
ijβ]−

A0(tij)ŵkexp(X
T
ijβ).

(2.15)

With arguments similar to the ones used in [20], it is possible to show that
the estimate of the cumulative baseline that maximize (2.15) is:

Â0(tij) =
∑

(fg):tfg≤tij

dfg∑
rs∈R(tfg)(

∑K
k=1 αskŵk)exp(X

T
rsβ)

, (2.16)

where dfg is the total number of events happening at time tfg and R(tfg)

represents the set of subjects who are at risk at time tfg, which is the event
time of subject f in cluster g.
Including (2.16) in Q2(α0(t),β,w) we obtain the profile log-likelihood as a
function of only β:

lprofile(β) =

J∑
j=1

nj∑
i=1

δij

[
XT
ijβ−log

∑
rs∈R(tij)

( K∑
k=1

αskŵk

)
exp(XT

rsβ)
]
. (2.17)
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Since (2.17) is of the form of the usual partial log-likelihood in the Cox
model with known offsets, a standard software like R [25], in particular the
function coxph of the package survival, can be used to obtain the maximal
β̂.

2.2.2 Estimation of the Standard Errors

In case of the Cox model with shared frailty terms, it is not possible
to compute the variance-covariance matrix directly from the marginal log-
likelyhood, but it is possible to derive it from the observed information ma-
trix, I(θ)−1.
The observed information matrix can be written as:

I(θ) = −∂
2l(θ)

∂θ2
(2.18)

where l(θ) is the observable log-likelihood, obtained by integrating the full
log-likelihood over z:

l(θ) =
J∑
j=1

nj∑
i=1

δijlog(λ0(tij)exp(X
T
ijβ))+

log
( K∑
k=1

πkw
Dj

k · exp
nj∑
i=1

[
−A0(tij)wkexp(X

T
ijβ)

])
,

(2.19)

where Dj is the total number of events in cluster j, Dj =
∑nj

i=1 δij .
A more computationally convenient approximation of the information matrix
is proposed by Louis in [23]:

Ij = E[Bj ]− E[SjS
T
j ] + S∗jS

∗T
j , (2.20)

where S and S∗ are the gradient vectors of the full log-likelihood and the
observable log-likelihood respectively, while B is the negative second deriva-
tive matrix of the full log-likelihood.

The standard errors related to the ratios of frailties can be estimated
through the following formula:

V ar
( ŵk
ŵ1

)
=
(µŵk

µŵ1

)2
·
[σ2

ŵ1

µ2
ŵ1

+
σ2
ŵk

µ2
ŵk

− 2Cov(ŵ1, ŵk)

µŵ1µŵk

]
. (2.21)
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2.2.3 Selection of the number of latent populations

As previously seen, an advantage of a nonparametric and dicrete dis-
tributed frailty is the possibility to build a probabilistic clustering technique.
In fact, subject with the same frailty estimate can be considered as an unique
latent population. In this section we will discuss how to select the correct
number of latent population K.
Since it is impossible to estimate K using a log-likelihood maximization ar-
gument [11], we estimate θ for each potential K and, then, we establish a
model selection criterion. Akaike’s information criterion (AIC), Bayesian
information criterion (BIC) and Laird [22] are used to this aim.

AIC and BIC are founded on information theory: they offer an estimate
of the relative information lost when a given model is used to represent the
process that generated the data. In doing so, they deal with the trade-off
between the goodness of fit of the model and the simplicity of the model. In-
deed, when fitting models, it is possible to increase the likelihood by adding
parameters, but this may also lead to overfitting. Both BIC and AIC at-
tempt to solve this problem introducing a penalty term for the number of
parameters in the model. The penalty term is different in BIC and in AIC.
Denoting with l the maximum value of the likelihood function, with p the
number of parameters and with n the number of observations, they can be
written as:

AIC = −2log(l) + 2p (2.22)

BIC = −2log(l) + p log(n) (2.23)

They do not give indications about the quality of a model in absolute terms,
but just evaluate the relative gain/loss passing from a model to another one.
Given a set of candidate models for the data, the preferred model is the one
with the minimum AIC/BIC value. On the other hand, Laird proposes to
choose the maximum (minimum) number of clusters, when the number of
clusters increases (decreases) in the algorithm, such that in each population
at least one member can be found. This usually leads to the choice of more
complex models than the ones selected by AIC and BIC.
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Chapter 3

Analysis of Trieste dataset

In this chapter we will report the analysis we made on the Trieste dataset,
in particular we will present an application of the multi-state model described
in Chapter 1.
This study is inspired by the work presented in [13].

In Section 3.1 we will introduce the dataset and in Section 3.2 we will
report the relative descriptive analysis. In Section 3.3 we will perform a
multi state modelling of such data. In Section 3.4 we will report the survival
curves estimates obtained with the Kaplan-Meyer estimator.

3.1 Presentation of dataset from Trieste

In this section we will introduce the dataset, we will describe the prepro-
cessing of data carried out on the dataset and we will explain the variables
we decided to exctract from the dataset and that we considered for the im-
plementation of the multi-state model.

The original dataset is composed by informations about 10,287 patients,
identified by an univocal anonymous personal code, hospitalized with Heart
Failure (HF) in the Trieste area.
The cohort we consider is composed of patients hospitalized between 2009
and 2016. 2017 is considered as a follow-up year. The five-year period from
2004 to 2008 is used for the calculation of significant clinical quantities.

21



Each row of the dataset refers to a specific event.
Possible events are:

• hospitalization for HF;

• hospitalization for any cause;

• Intermediate Care Unit admission (ICU);

• Integrated Home Care (IHC) activation;

• passage in Emergency Room (ER).

Several patient specific informations are recorded for each event: gender, age,
length of stay, department of admission, presence of cardiological evaluation
before hospitalization, laboratory tests, comorbidities.

These informations arise from the linkage between administrative data
and Cardionet R© clinical registry. This choice is giustified by the fact that
the administrative data has been acquiring an important role over the years,
providing useful information about the patient’s status and pattern of care.
An attempt of administrative data utilization in healthcare practice is de-
scribed in [5], in [17] and in [24], where applications of multi-state models to
HF patients’s clinical evolution are presented.

For the following analysis we will focus only on hospital admissions, re-
shaping the dataset with the aim of fitting a multistate model as described
in Chapter 1.
In what follows, we describe the preprocessing of data and the variable ex-
tracted.

3.1.1 Preprocessing

The original dataset is composed by 10,287 patients hospitalized in Tri-
este.
For the uncorrect registration of some dates we decide to not include in the
study 3 patients (0.03% of the total population).
Since we decide to focus only on patients whose events last more than one
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Starting: 10287 patients from Trieste
Cause of removal # removed % removed Patients left
Uncorrect dates 4 0.04% 10,283
One-day events 36 0.35% 10,247
Begin isn’t a hospitalization 5 0.04% 10,242
Follow up 712 6.95% 9,530
Cohort 2009-2016 selection 2,479 26.01% 7,051
Only hospitalization events 93 3.75% 6,958

Table 3.1: Preprocessing steps: cause, number of patients removed, percentage of
patients removed and number of patients left, at every step.

day, we don’t include others 36 patients (0.35%).
5 more patients (0.04%) are excluded due to the fact that their clinical his-
tory deos not start with a hospitalization, as request by the clinical protocol
under study.
In order to have at least one year of follow up for each considered patient,
we do not consider the 712 patients (6.95%) whose index admission is dated
after January 1st 2016.
Focusing the attention only on events regarding the cohort 2009-2016, 2,497
(26.01%) more patients are excluded.
Moreover, 93 more patients (3.75%) are excluded due to the fact that, in our
study, we want to consider only hospitalizations as possible events.

In Table 3.1 all the preprocess steps are reported. For every step we can
find the cause of the negletion, the number (%) of patients not considered
and the number of patients left.
We can notice that after the preprocessing our dataset is composed by 6,958
patients.

3.1.2 Variables description

The variables used for the analysis can be divided in two groups: vari-
ables that do not depend on the hospitalizations (group 1) and variables
which depend on hospitalizations (group 2).
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Variables in group 1 are:

• Sex: 1 for male, 0 for female;

• Death index: 1 if patient die before the end of the study, 0 otherwise;

• Worsening index: 1 if patient have an hospitalization for HF in
the five years preceding the index admission (worsening patient), 0
otherwise (de novo patient).

Variables in group 2 are:

• Age [years]: time difference between the admission date of the consid-
ered event and the date of birth;

• Charlson index: index of comorbidity;

• Pre hospitalization cardiological evaluation: 1 if the patient has
an hospitalization in cardiology before the considered event, 0 other-
wise;

• Admission in Cardiological Ward (CW): 1 if patient is admitted
in a cardiological ward, 0 otherwise;

• ICU/IHC index: 1 if patient have at least one events of type ICU
or IHC before the considered hospitalization, 0 otherwise;

• In-hospital death index: 1 if patient die in the considered hospital-
ization, 0 otherwise.

Variables like sex, death index, in-hospital death, pre hospitalization car-
diological evaluation and CW are present in the original dataset, so we simply
exctract them. Variables like worsening index, Charlson index and ICU/IHC
index has to be computed from other variables present in the original dataset.

In particular, for the creation of the worsening index, we compare for
each patient the first event after 2009 (reference event), that could be hos-
pitalization for HF (as in 72.06% of cases) or for any cause (as in 27.94% of
cases), with all the existing events before it (if present): if an event regard-
ing hospitalization for HF is present and the time difference between it and
the reference event is less than five years, we classify the patient as worsening.
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Charlson index is calculated using hospital diagnosis occured within five
years prior to the first admission (like myocardial infarction, congestive
heart failure, peripheral vascular disease, cerebrovascular disease, demen-
tia, chronic obstructive pulmonary disease, rheumatic disease, peptic ulcer
disease, mild liver disease, diabetes with and without complications, hemi-
plegia, renal disease, liver disease, cancer and AIDS) as suggested in [13] and
refined with laboratory data and diagnosis recorded at the first admission,
as indicated in [12].

Instead, for the creation of the ICU/IHC variable, we activate the index
from the first ICU/IHC occurence until the last event recorded. We poin out
that, in contrast with our decision of keeping only patients with hospital-
ization as first event, this index could be active also in first events. Indeed,
we can note that after the elimination of the events preceding 2009, some
patients have an ICU or a IHC as starting event. We decide to consider these
starting events for the computation of the relative index and only after to
eliminate all the ICU and IHC events.

3.1.3 Dataset transformation in long format

Once the selection of features and statistical unit is complete, we have
to modify the dataset in order to make it manageable by the algorithms of
the survival package in R [25], so to build the multi-state model.

In Table 3.2 we can see our data format after the preprocessing described
in Section 3.1.1.
For a better visualization, we reported events regarding only one patient,
identified by ID equal to 1, and we neglected the covariates.
Hospitalization events are identified by state number equal to 0 (hospital-
ization for HF) or 1 (hospitalization for any cause). We can see that there
is one row for every single patient’s hospitalization.

The first transformation step in order to obtain the long format is re-
ported in Table 3.3.
First of all we have to consider every hospitalization as made by two differ-
ent and separate events, since we want to distinguish between admission and
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ID state adm_num dateADM dateDIS dateOUT DEATH_ind
1 0 1 2009-12-31 2010-01-09 2017-12-31 0
1 1 2 2015-05-28 2015-05-30 2017-12-31 0
1 1 3 2016-03-09 2016-03-16 2017-12-31 0

Table 3.2: Data format of the original dataset: one row for every single event.

discharge.
Consequentely, we create the STATUSdef column reported in Table 3.3,
where the number of the hospitalization is reported togheter with the dis-
tinction if the event is an admission or a discharge.
DateADM and dateDIS columns in Table 3.2 are grouped in dates column
in Table 3.3.
The eventTIME column is created. This variable indicates, for every pa-
tient, the days spent between the entrance in the study (indicated always
with time equal to 0) and the corresponding event.

ID dates eventTIME STATUSletter STATUSnum STATUSdef
1 2009-12-31 0 IN 1 1 IN
1 2010-01-09 9 OUT 1 1 OUT
1 2015-05-28 1974 IN 2 2 IN
1 2015-05-30 1976 OUT 2 2 OUT
1 2016-03-09 2260 IN 3 3 IN
1 2016-03-16 2267 OUT 3 3 OUT
1 2018-01-01 2923 OUT 3 3 OUT

Table 3.3: Data format after the first transformation step: one row for every
different hospital admission or discharge.

After this first propedeutic transformation, we have to obtain a long for-
mat dataset, attackable by the function Surv. In order to obtain the long
format, we have to consider all the possible transitions and status, so we
create the from and to columns as in Table 3.4.
In Table 3.5 we report the correspondence between the states and the num-
ber with which they are indicated.
In the example reported in Table 3.4 we can see that the patient, with ID
equal to 1, starts in state 1 (1IN) and has two possibilities: to pass to state
2 (1OUT) or to state 12 (D). The transition that actually takes place is
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indicated with 1 in status variable. The time needed for the transition to
happen is reported in column time, togheter with the transition initial time
(Tstart) and the transition final time (Tstop).
The format in Table 3.4 is the long format needed by the function Surv.

ID from to Tstart Tstop time status
1 1 2 0 9 9 1
1 1 12 0 9 9 0
1 2 3 9 1974 1965 1
1 2 12 9 1974 1965 0
1 3 4 1974 1976 2 1
1 3 12 1974 1976 2 0
1 4 5 1976 2260 284 1
1 4 12 1976 2260 284 0
1 5 6 2260 2267 7 1
1 5 12 2260 2267 7 0
1 6 7 2267 2923 656 0
1 6 12 2267 2923 656 0

Table 3.4: Final dataset in long format: one row for every possible transition.

State number State kind
1 1IN
2 1OUT
3 2IN
4 2OUT
5 3IN
6 3OUT
7 4IN
8 4OUT
9 5IN
10 5OUT
11 6+
12 D

Table 3.5: Correspondence between state number and state kind.
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3.2 Descriptive analysis

From now on we focus the attention on two different dataset: in the first
one (Overall data-OD) all patients are present, in the second one (DeNovo-
DN) only de novo patients are considered. This latter distinction is intended
to allow the study of incident cases only, which represent the 72.67% of the
total.

3.2.1 Overall Data-OD

We start analysing and describing the characteristics of the OD popula-
tion, whose summary is reported in Table 3.6.

The patients considered are 6,958. Among these 3,760 (54%) are females.
1,901 patients (27% of the total) had a HF hospitalization in the five years
preceding the index admission (worsening patients).
The mean age at first hospitalization is 80.88 years, the corresponding stan-
dard deviation is 10.31.
The mean length of stay (LOS) of all the hospitalizations is 11.84 days.
Over the observing period 4,533 deaths (65%) are recorded; 2,788 patients
(61% of the death) die during a hospitalization. On average in-hospital death
occurs after 4 hospedalizations and last hospitalization has a mean length of
11.84 days (sd=15.69).

Focusing on indices at first hospitalizations, there is a prevalence of non-
cardiac comorbidities in patient’s background (26% has pulmonary disease,
10% cancer, 29% diabetes and 59% renal disease).
The mean Charlson index of 2.44, with a standard deviation of 2.19, wit-
nesses a high level of comorbidity burden. The 82% of patients has this
index grater that zero and the 66% has at least one morbidity. The rate of
admission in CW is 19%. Finally, 36% of patients has a cardiological pre
hospitalization visit.
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Table 3.6: Summary of the overall population features.

General characteristics
Number of patients 6,958
Male 3,198 45.96%
DeNovo patients 5,057 72.67%
Deaths 4,533 65.14%
In hospital death 2,788 61.5%
Mean number of ospedalizations before death 4.22
Length of last ospedalization (in hospital death) m=11.58 sd=4.10
LOS m=11.84 sd=15.69

Values refered to the first event
Age m=80.88 sd=10.31
Male age m=77.46 sd=10.68
Female age m=83.78 sd=9.03
Pulmonary disease 1,862 26.76%
Cancer 764 10.98%
Diabetes 2,069 29.73%
Renal disease 4,131 59.37%
Pre hospitalization cardiological evaluation 2,509 36.05%
Admission in cardiological ward 1377 19.79%
Comorbidities>0 4,625 66.47%
Charlson index>0 5,711 82.07%
Charlson index m=2.44 sd=2.19

Values refered to the last event
ICU>0 1,840 26.44%
Mean number of ICU 1.67
Mean length of ICU 101.35
IHC>0 3,072 44.15%
Mean number IHC 3.07
Mean length of IHC 101.56
ICU/IHC>0 3,621 52.04%
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We analyse the frequency of ICU/IHC activations looking at variable
ICU/ICH index at last hospitaliziation: in their history, 52% of patients has
experienced at least one of this events. In particular, 26% of patients had
ICU transition and 44% had an IHC activated. The ICU/IHC mean length
is 101 days. The mean number of ICU events for a single patient (if we
consider only who has experience it) is 1.67, while for the IHC events is 3.07.

In Table 3.7 a summary of the population features in terms of the number
of hospitalizations is given considering only patients having up to 4 hospital-
izations. We stop descripties at 4th hospitalization since using this criterion
we include about 70% of the entire population.

Looking at the rows referring to morbidity in Table 3.7, we can immedi-
ately note that the progressive number of readmission rates is associated with
an increasing in comorbidity burden: we can see the Charlson index starting
with a mean value of 2.36 and finishing with a mean value of 3.75. This
increasing tendency is evident in every morbidity percentage: pulmonary
disease, renal disease, diabetes and cancer.
The presence of a cardiological pre hospitalization visit is more common
among patients who have a greater number of hospitalizations.
Another increasing index is the one that indicates the presence of ICU/IHC
events. This seems reasonable because having more hospitalizations implies
a longer permanence in the study and this, in turn, means having more prob-
abilities of experience this kind of events. In particular the growth of the
combined index rise from the 8% to the 70%.
A higher percentage of deaths is recorded among patients with multiple
events. In particular, the number of deaths rise from the 60% to the 67%,
the number of in-hospital deaths rise from the 50% of the deaths to the 65%.
Conversely, the admission in cardiological ward decreases whit the progres-
sive number of readmission rates.

In order to analyze the difference between the four populations described
in Table 3.7, we made tests on proportions for the binary covariates and
Kruscal-Wallis tests for continuous covariates. In both cases H0 = same
covariate distribution, H1 = different covariate distribution.
The p-value referring to variable sex is 0.521, the one referring to variable
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Table 3.7: Summary of the overall population features in terms of the number of
hospitalizations considering only patients having up to 4 hospitalizations.

1 hosp 2 hosp 3 hosp 4 hosp

General characteristics
Num of patients 1,538 (22.10%) 1,392 (20%) 1,081 (15.53%) 849 (12.2%)
Male 682 (44.34%) 607 (43.60%) 464 (42.92%) 392 (46.17%)
DeNovo 1,206 (78.41%) 1,084 (77.87%) 806 (74.56%) 601 (70.78%)
Deaths 936 (60.85%) 896 (64.36%) 728 (67.34%) 570 (67.13%)
In hosp death 477 (50.96%) 562 (62.72) 451 (61.95%) 373 (65.43%)
Mean LOS (sd) 12.18 (13.45) 11.95 (12.41) 11.81 (12.50) 11.87 (11.60)

Values refered to the last event
Mean age (sd) 82.20 (11.41) 83.05 (10.06) 83.50 (10.51) 83.26 (9.45)
Pulm. disease 333 (21.65%) 361 (25.93%) 328 (30.34%) 314 (36.98%)
Cancer 180 (11.70%) 240 (17.24%) 194 (17.94%) 166 (19.55%)
Diabetes 428 (27.82%) 365 (26.22%) 325 (30%) 290 (34.15%)
Renal disease 908 (59.03%) 871 (62.57%) 726 (67.16%) 593 (69.84%)
Pre hosp 443 (28.08%) 578 (41.52%) 460 (42.55%) 419 (49.35%)
CW 285 (18.53%) 175 (12.57%) 82 (7.58%) 70 (8.24%)
Mean Ch ind (sd) 2.36 (2.35) 2.9 (2.48) 3.33 (2.5) 3.75 (2.64)
ICU>0 35 (2.27%) 215 (15.44%) 267 (24.69%) 311 (36.63)
IHC>0 116 (7.54%) 409 (29.38%) 519 (48.01%) 496 (58.42%)
ICU/IHC>0 134 (8.71%) 529 (38%) 642 (59.38%) 601 (70.78%)

LOS is 0.621 and the one referring to variable age is 0.463. We can not
reject the null hypothesis so we conclude that the distribution of these three
variables in the four populations do not differ.
The p-values of the other variables are all very low: worsening index =

8.34e− 05, polmonary desease = 2.874e− 15, cancer = 2.353e− 07, diabetes
= 4.794e− 04, renal desease = 1.404e− 07, pre hospitalization cardiological
evaluation< 2.2e−16, CW< 2.2e−16, Charlson index< 2.2e−16, ICU/IHC
index < 2.2e− 16. We can reject the null hypothesis and conclude that the
distribution of these latter variable are different among the four populations.
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3.2.2 De Novo data-DN

We proceed reporting the summary of the dataset regarding only de novo
patients, namely that haven’t experienced hospitalizations for HF in the five
years preceding index admission.
In Table 3.8 we can find informations about all the de novo population, while
in Table 3.9 a summary of the population features in terms of the number
of hospitalizations is given considering only patients having up to 4 hospi-
talizations.

De novo patients are 5,057 (72% of the original data). The overall mean
age is 80.7 with standard deviation of 10.54. Men are 46% and their mean
age at first admission is 77.2, with standard deviation of 11.01. Women are
54% and their first admission mean age is 83.69 with relative standard devi-
ation of 9.18.

Looking at Table 3.8, we note the presence of different morbidity at the
first hospitalization: 22% of patients present pulmonary disease, 10% cancer,
27% diabetes and 56% renal disease. Overall 66% of patients has at least
one morbidity and 78% has Charlson index grater than zero, with a mean
value equal to 2.09 (sd=1.98).
36% of patients has a cardiological evaluation before the first admission and
for 19% of them first hospitalization take place in CW.

Looking at the last admissions we can observe that the 23% of patients
experiences at least one event in ICU, 38% an IHC activation, and overall
the 46% at least one of the two, i.e. 46% has index ICU/IHC activated at
the end of the observing period.
At the end of the study, 2,978 (59%) deaths are recorded; about the 60%
of the deaths take place in hospital. The mean number of events recorded
before death is 3.72.

We will now focus our attention on the Table 3.9, where patients are
divided according to their total number of hospitalizations. There are the
same trends we noted for the overall dataset in Section 3.2.1.
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Table 3.8: Summary of the de novo population features.

General characteristics
Number of patients 5,057
Male 2,327 46.01%
Deaths 2,978 58.88%
In hospital death 1,784 59.9%
Mean number of ospedalizations before death 3.72
Length of last ospedalization (in hospital death) m=11.84 sd=14.42
LOS m=11.48 sd=16.93

Values refered to the first event
Age m=80.7 sd=10.54
Male age m=77.2 sd=11.01
Female age m=83.69 sd=9.18
Pulmonary disease 1144 22.62%
Cancer 515 10.18%
Diabetes 1,403 27.74%
Renal disease 2,868 56.71%
Pre hospitalization cardiological evaluation 1,817 35.93%
Admission in cardiological ward 1,179 23.31%
Comorbidities>0 3,385 66.93%
Charlson index>0 3,948 78.07%
Charlson index m=2.09 sd=1.98

Values refered to the last event
ICU>0 1,180 23.33%
Mean number of ICU 1.61
Mean length of ICU 93.13
IHC>0 1,960 38.75%
Mean number IHC 2.83
Mean length of IHC 93.22
ICU/IHC>0 2,358 46.62%
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The progressive number of readmission rates is associated with an in-
creasing Charlson index and comorbidity burden at first admission: mean
Charlson index ranges between 1.97 and 3.55. We can observe that these
values are smaller than the corresponding ones in the complete dataset, due
to the absence of worsening patients, whose clinical history starts before the
events we are looking at in this table and consequently they could have a
worse clinical condition.
The presence of a cardiological pre hospitalization visit also increases with
the number of events recorded.
As we observed in Section 3.2.1, also the index indicating the presence of
ICU/IHC events increases going from the 6% to the 67%.
Also an increase in mortality and in in-hospital mortality is observed.
Conversely, a decrease in admission in CW is pointed out.

In order to analyze the difference between the four populations described
in Table 3.7, we carried out tests on proportions for the binary covariates
and Kruscal-Wallis tests for continuous covariates (In both cases H0 = same
covariate distribution, H1 = different covariate distribution).

The p-value referring to variable CW is 3.08e-12, the ones referring to
variable Charlson index and ICU/IHC index are <2.2e-16. We can reject the
null hypothesis and conclude that the distributions of these three variable
are different among the four populations.
The p-values of the other variables are quite high: sex = 0.473, LOS = 0.462,
age = 0.092, pulmonary disease = 0.346, cancer = 0.189, diabetes = 0.339,
renal disease = 0.678, pre hospitalization cardiological evaluation = 0.510.
In these cases we can not reject the null hypothesis and we conclude that
the distributions of these variables is the same among the four populations.
These populations are more similar to each other than the ones analyzed in
Table 3.7. A possible explaination could be found in the fact that patients
in DN dataset are more omogeneous than the ones in OD, where there are
both worsening and denovo patients.
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Table 3.9: Summary of the de novo population features in terms of the number
of hospitalizations considering only patients having up to 4 hospitalizations.

1 hosp 2 hosp 3 hosp 4 hosp

General characteristics
Num of patients 884 (17.48%) 786 (15.54%) 590 (11.66%) 439 (8.68%)
Male 407 (46.04%) 350 (44.52%) 247 (41.86%) 208 (47.38%)
Deaths 463 (52.37%) 464 (59.03%) 359 (60.84%) 265 (60.36%)
In hosp death 202 (43.62%) 295 (63.57) 223 (62.11%) 174 (65.66%)
Mean LOS (sd) 11.36 (10.61) 11.49 (12.02) 11.73 (12.16) 11.55 (11.85)

Values refered to the last event
Mean age (sd) 81.7 (11.82) 82.69 (10.19) 83.04 (11.50) 82.63 (9.96)
Pulm. disease 159 (17.98%) 177 (22.51%) 178 (30.16%) 152 (34.62%)
Cancer 91 (10.29%) 142 (18.06%) 101 (17.11%) 83 (18.9%)
Diabetes 234 (26.47%) 188 (23.91%) 167 (28.3%) 149 (33.94%)
Renal disease 479 (54.18%) 483 (61.45%) 396 (67.11%) 298 (67.88%)
Pre hosp 257 (29.07%) 343 (43.63%) 258 (43.72%) 224 (51.02%)
CW 189 (21.38%) 108 (13.74%) 82 (7.58%) 45 (10.25%)
Mean Ch ind (sd) 1.97 (2.02) 2.73 (2.42) 3.18 (2.44) 3.55 (2.56)
ICU>0 12 (1.35%) 99 (12.59%) 146 (24.74%) 149 (33.94%)
IHC>0 49 (5.54%) 204 (25.95%) 261 (44.23%) 234 (53.3%)
ICU/IHC>0 53 (5.99%) 257 (32.69%) 335 (56.77%) 294 (66.97%)
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3.3 Inferential analysis

In this section we will present the inferential analysis made on data pre-
sented in Section 3.1.
In particular, in Section 3.3.1 we will explain the model we decided to imple-
ment on such data, whereas in Section 3.3.2 we will report the main results
obtained from the application of the multi-state model.

3.3.1 Application of multi-state model to Trieste dataset

We implemented a multi-state model (as in Chapter 1.3) to jointly eval-
uate the impact of different risk factors on multiple hospital admissions,
discharges and death.
In particular the model considered fits a Cox-type regression (2.1) for each
transition. This kind of model provides a convenient description of the ad-
mission/discharge dynamics, pointing out which covariates act in which tran-
sitions and how they affect the istantaneous probability of going from one
state to another.
As explained in Section 1.2, in the Cox model the hazard rate for a patient
i at observation time t has the following form:

α(t) = α0(t) exp(β1z1 + ...+ βpzp),

where β is a p-vector of unknown regression coefficients, α0(t) is the baseline
hazard and exp(β1z1 + ...+ βpzp) is the hazard ratio (HR).

The possible states of the model are in this case hospitalizations (IN
states in Figure 3.1), discharges (OUT states in Figure 3.1) and death (D
state in Figure 3.1). We considered the hospitalizations as separated events
until the sixth hospitalization. The adverse outcome of death is an absorb-
ing state and a competing event with respect to all the other transitions.
Overall there are 12 possible states and 21 possible transitions, represented
in Figure 3.1.

The transitions can be grouped in 4 categories: admissions to hospital,
hospital discharges, in-hospital deaths, out-of-hospital deaths. All the possi-
ble transitions with the corresponding categories, starting states and ending
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Figure 3.1: Sketch of multi-state model implemented: 12 possible states, 21 pos-
sible transitions.

states are shown in Table 3.10 .

We applied this model, sketched in Figure 3.1, to both the OD and DN
dataset.

One appealing features of this model is the flexibility in introducing tran-
sition specific covariates. In order to decide in which transitions insert a
particular variable, we tested the full model with all covariates in all tran-
sitions, then we retained only those which resulted to be significant from a
statistical and/or clinical point of view.

The resulting choice is:

• Age is present in all transitions;

• Sex is present in hospital discharges and in-hospital deaths transitions;

• Charlson indexis present in all transitions;

• Pre hospitalization cardiological evaluation is present in in-hospital
death and out-of-hospital deaths transitions;

• Admission in CW is present in hospital discharges, in-hospital death
and out-of-hospital deaths transitions;

• Worsening index: is present in admission to hospital, in-hospital death
and out-of-hospital deaths transitions;

• ICU/IHC indexis present in all transitions;
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Table 3.10: Transition categories.

States connected Transition ID Transition type
1IN → 1OUT 1
2IN → 2OUT 5
3IN → 3OUT 9 hospital discharge
4IN → 4OUT 13
5IN → 5OUT 17
1IN → D 2
2IN → D 6
3IN → D 10 in-hospital death
4IN → D 14
5IN → D 18
6+ → D 21

1OUT → 2IN 3
2OUT → 3IN 7
3OUT → 4IN 11 admission to hospital
4OUT → 5IN 15
5OUT → 6+IN 19
1OUT → D 4
2OUT → D 8
3OUT → D 12 out-of-hospital death
4OUT → D 16
5OUT → D 20
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3.3.2 Results

In this section we report the results of fitting the Cox model, described
in section 3.3.1, to both the OD and DN dataset.

Our quantities of interest are the hazard rates estimates, the istantaneous
probabilities of going from a state to another. In particular we focus on the
hazard ratios concerning each covariate.

In order to be able to correctly interpret the following tables and figures,
we underline that each hazard ratio estimate is computed once fixed all the
others pairs of variables/transitions.

OD

In Tables from 3.11 to 3.17, we report the hazard ratio estimates for
each pair of variable/transition considered in the Cox model together with
the p-value of the significance test of the single HR (H0 : exp(βi) = 1 VS
H1 : exp(βi) 6= 1, with i from 1 to p), the number of the asterisks reflects
the importance of the coefficient.

In every table we group together transitions belonging to the same cat-
egory. For example, in Table 3.11 there are 4 blocks, the first from above
contains hospital discharges transitions, the second in-hospital deaths transi-
tions, the third admissions to hospital transitions and the last out-of-hospital
deaths transitions.
Moreover, in every row, the number near the variable name indicates the
transition considered, as reported in column Transition ID in Table 3.10.
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Table 3.11: Hazard ratios estimates for the transitions of variable age, estimated
fitting Cox model to OD.

HR Pr(>|z|)
AGE.1 0.997 0.038 *
AGE.5 0.997 0.071 .

Hospital discharge AGE.9 0.997 0.153
AGE.13 0.997 0.242
AGE.17 1.001 0.750
AGE.2 1.079 < 2e− 16 ***
AGE.6 1.070 < 2e− 16 ***

In-hospital death AGE.10 1.060 < 2e− 16 ***
AGE.14 1.040 < 2e− 16 ***
AGE.18 1.077 < 2e− 16 ***
AGE.21 1.047 < 2e− 16 ***
AGE.3 1.014 < 2e− 16 ***
AGE.7 1.010 < 2e− 16 ***

Admissions to hospital AGE.11 1.010 < 2e− 16 ***
AGE.15 1.010 < 2e− 16 ***
AGE.19 1.010 0.001 ***
AGE.4 1.087 < 2e− 16 ***
AGE.8 1.073 < 2e− 16 ***

Out-of-hospital death AGE.12 1.067 < 2e− 16 ***
AGE.16 1.080 < 2e− 16 ***
AGE.20 1.032 0.007 **
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Table 3.12: Hazard ratios estimates for the transitions of variable sex, estimated
fitting Cox model to OD.

HR Pr(>|z|)
SEX.1 1.067 0.015 *
SEX.5 1.084 0.008 **

Hospital discharge SEX.9 1.042 0.245
SEX.13 1.055 0.196
SEX.17 0.975 0.614
SEX.2 1.228 0.035 *
SEX.6 1.107 0.263

In-hospital death SEX.10 1.197 0.073 .
SEX.14 0.988 0.913
SEX.18 1.395 0.011 *
SEX.21 1.244 0.001 **
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Table 3.13: Hazard ratios estimates for the transitions of variable Charlson index,
estimated fitting Cox model to OD.

HR Pr(>|z|)
CHARLSON.1 0.949 < 2e− 16 ***
CHARLSON.5 0.956 < 2e− 16 ***

Hospital discharge CHARLSON.9 0.976 0.001 ***
CHARLSON.13 0.960 < 2e− 16 ***
CHARLSON.17 0.969 0.001 **
CHARLSON.2 1.087 < 2e− 16 ***
CHARLSON.6 1.089 < 2e− 16 ***

In-hospital death CHARLSON.10 1.072 < 2e− 16 ***
CHARLSON.14 1.045 0.037 *
CHARLSON.18 1.058 0.024 *
CHARLSON.21 1.089 < 2e− 16 ***
CHARLSON.3 1.096 < 2e− 16 ***
CHARLSON.7 1.081 < 2e− 16 ***

Admissions to hospital CHARLSON.11 1.075 < 2e− 16 ***
CHARLSON.15 1.073 < 2e− 16 ***
CHARLSON.19 1.071 < 2e− 16 ***
CHARLSON.4 1.199 < 2e− 16 ***
CHARLSON.8 1.190 < 2e− 16 ***

Out-of-hospital death CHARLSON.12 1.145 < 2e− 16 ***
CHARLSON.16 1.108 < 2e− 16 ***
CHARLSON.20 1.150 < 2e− 16 ***

42



Table 3.14: Hazard ratios estimates for the transitions of variable pre hospital-
ization cardiological evaluation, estimated fitting Cox model to OD.

HR Pr(>|z|)
PRE_HOSP.2 0.943 0.601
PRE_HOSP.6 1.002 0.983

In-hospital death PRE_HOSP.10 0.787 0.025 *
PRE_HOSP.14 0.840 0.119
PRE_HOSP.18 0.915 0.501
PRE_HOSP.21 0.895 0.094 .
PRE_HOSP.4 0.687 0.002 **
PRE_HOSP.8 0.582 < 2e− 16 ***

Out-of-hospital death PRE_HOSP.12 0.840 0.199
PRE_HOSP.16 0.951 0.746
PRE_HOSP.20 0.807 0.269

Table 3.15: Hazard ratios estimates for the transitions of variable admission in
CW, estimated fitting Cox model to OD.

HR Pr(>|z|)
CW.1 1.522 < 2e− 16 ***
CW.5 1.454 < 2e− 16 ***

Hospital discharge CW.9 1.495 < 2e− 16 ***
CW.13 1.412 < 2e− 16 ***
CW.17 1.420 < 2e− 16 ***
CW.2 0.378 0.001 **
CW.6 0.576 0.017 *

In-hospital death CW.10 0.541 0.040 *
CW.14 0.550 0.039 *
CW.18 0.327 0.028 *
CW.21 0.477 < 2e− 16 ***
CW.4 0.562 0.005 **
CW.8 0.679 0.108

Out-of-hospital death CW.12 0.484 0.029 *
CW.16 0.624 0.181
CW.20 0.602 0.241
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Table 3.16: Hazard ratios estimates for the transitions of variable worsening index,
estimated fitting Cox model to OD.

HR Pr(>|z|)
WORSENING.2 1.088 0.402
WORSENING.6 0.835 0.063 .

In-hospital death WORSENING.10 0.837 0.084 .
WORSENING.14 1.014 0.902
WORSENING.18 0.749 0.033 *
WORSENING.21 0.916 0.177
WORSENING.3 1.148 < 2e− 16 ***
WORSENING.7 1.180 < 2e− 16 ***

Admissions to hospital WORSENING.11 1.138 0.001 **
WORSENING.15 1.163 0.001 **
WORSENING.19 1.102 0.071 .
WORSENING.4 0.698 0.002 **
WORSENING.8 0.917 0.484

Out-of-hospital death WORSENING.12 0.868 0.295
WORSENING.16 0.997 0.987
WORSENING.20 0.895 0.558
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Table 3.17: Hazard ratios estimates for the transitions of variable ICU/IHC index,
estimated fitting Cox model to OD.

HR Pr(>|z|)
ICU_IHC.1 0.827 < 2e− 16 ***
ICU_IHC.5 0.871 < 2e− 16 ***

Hospital discharge ICU_IHC.9 0.826 < 2e− 16 ***
ICU_IHC.13 0.884 0.003 **
ICU_IHC.17 0.871 0.006 **
ICU_IHC.2 1.774 < 2e− 16 ***
ICU_IHC.6 1.298 0.003 **

In-hospital death ICU_IHC.10 1.483 < 2e− 16 ***
ICU_IHC.14 1.855 < 2e− 16 ***
ICU_IHC.18 1.683 0.001 **
ICU_IHC.21 1.011 0.093 .
ICU_IHC.3 0.989 0.857
ICU_IHC.7 1.143 < 2e− 16 ***

Admissions to hospital ICU_IHC.11 1.044 0.255
ICU_IHC.15 1.000 0.994
ICU_IHC.19 0.987 0.810
ICU_IHC.4 1.447 0.039 *
ICU_IHC.8 1.150 0.220

Out-of-hospital death ICU_IHC.12 1.312 0.031 *
ICU_IHC.16 1.530 0.009 **
ICU_IHC.20 2.316 0.001 ***
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In Figures, from 3.2 to 3.8, we can find the plots of the hazard ratio es-
timates and their corresponding 95% confidence intervals. We consider one
variable at a time, separating the different transitions for a better visualiza-
tion.

Figure 3.2: 95% confidence intervals for hazard ratios of age (all other covariates
fixed) estimated fitting Cox model to OD.

We point out that if the coefficient βi of a variable xi is bigger than zero
then it acts increasing the hazard ratio, that consequently will be greater
than one, this latter will increase the probability for the considered transi-
tion to happen. Conversely, if the same coefficient is smaller than zero then
it acts decreasing the hazard ratio, that consequentely will be smaller than
one and will decrease the probability of the transition.
In order to distinguish the positive/negative effects of the hazard ratios, we
colored the confidence intervals accordingly: the orange ones are lower than
one, the blue ones are greater than one and the black ones are straddling the
value one, i.e., they come out not to be significant.
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Figure 3.2 shows the confidence intervals for hazard ratios of age variable.
This variable increases the probabilities of every transition of kind admission
to hospital, in-hospital deaths and out-of-hospital deaths. In particular the
effects on death transitions are greater than the others.
Conversely, this variable decreases the probabilities of discharge from hospi-
tal transitions or not influences them.

The same behavior is observed in the confidence intervals of hazard ratios
of Charlson index variable, reported in Figure 3.3.

Figure 3.3: 95% confidence intervals for hazard ratios of Charlson index (all other
covariates fixed) estimated fitting Cox model to OD.

Figure 3.4 shows the confidence intervals for hazard ratios of sex variable.
We note that the significant terms are all positive. This indicates that being
a man increases the probabilities of being discharged in the first hospitaliza-
tion but also of dying in hospital, in the first and in the latest hospitalizations.

Figure 3.5 shows the confidence intervals for hazard ratios of pre hospi-
talization cardiological evaluation variable.
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Only few terms are significative: one in-hospital deaths transition and two
out-of-hospital deaths transitions. Both terms are smaller than one mean-
ing that having a pre hospitalization decreases the probabilities of having a
transition to death.

Figure 3.6 shows the confidence intervals for hazard ratios of CW admis-
sion variable.
The hazard ratios related to the discharge from hospital are all bigger than
one, indicating that being admitted in CW increases the LOS of a patients,
probably due to the more severe conditions of the patient. On the other
hand, the hazard ratios related to death inside or outside hospital are all
smaller than one. Being admitted in this ward is a protected factor for the
deaths since it decreases the probability to have a transition to death.

Figure 3.4: 95% confidence intervals for hazard ratios of sex (all other covariates
fixed) estimated fitting Cox model to OD.

Figure 3.7 shows the confidence intervals for hazard ratios of worsening
index variable.
Having a hospitalization in the five years before the index admission in-
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Figure 3.5: 95% confidence intervals for hazard ratios of pre hospitalization cardi-
ological evaluation (all other covariates fixed) estimated fitting Cox model to OD.

Figure 3.6: 95% confidence intervals for hazard ratios of admission in CW (all
other covariates fixed) estimated fitting Cox model to OD.
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creases the istantaneous risk of being readmitted and decreases the risk of
death (in-hospital for the last hospitalization and out-of-hospital for the first
one).

Figure 3.8 shows the confidence intervals for hazard ratios of ICU/IHC
index variable.
Looking at them we can suppose that ICU/IHC index allows to identify the
most fragile population, because experiencing one of these events decreases
the probabilities of being discharged from hospital and increases the ones of
being readmitted in hospital and of dying. However we will focus on this
assumption later in Section 3.5.

Figure 3.7: 95% confidence intervals for hazard ratios of worsening index (all
other covariates fixed) estimated fitting Cox model to OD.
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Figure 3.8: 95% confidence intervals for hazard ratios of ICU/IHC index (all other
covariates fixed) estimated fitting Cox model to OD.
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DN

In this paragraph we report the results of the application of the model
described in Section 3.3.1 to the DN data.
We remind that this dataset consist only of de novo patients, namely the
incident cases, not having a HF hospitalization in the five years preceding
their index admission. For this reason, the worsening variable won’t be nec-
essary.
As it can be evinced by Tables from 3.18 to 3.23 and from Figures from 3.9
to 3.14, all the conclusion pointed out in Section 3.3.2 hold also in this case.

Table 3.18: Hazard ratios estimates for the transitions of variable age, estimated
fitting Cox model to DN data.

HR Pr(>|z|)
AGE.1 0.997 0.038 *
AGE.5 0.997 0.071 .

Hospital discharge AGE.9 0.997 0.153
AGE.13 0.997 0.242
AGE.17 1.001 0.750
AGE.2 1.080 < 2e− 16 ***
AGE.6 1.071 < 2e− 16 ***

In-hospital death AGE.10 1.060 < 2e− 16 ***
AGE.14 1.040 < 2e− 16 ***
AGE.18 1.078 < 2e− 16 ***
AGE.21 1.048 < 2e− 16 ***
AGE.3 1.014 < 2e− 16 ***
AGE.7 1.010 < 2e− 16 ***

Admissions to hospital AGE.11 1.010 < 2e− 16 ***
AGE.15 1.010 < 2e− 16 ***
AGE.19 1.010 0.001 ***
AGE.4 1.087 < 2e− 16 ***
AGE.8 1.073 < 2e− 16 ***

Out-of-hospital death AGE.12 1.067 < 2e− 16 ***
AGE.16 1.080 < 2e− 16 ***
AGE.20 1.032 0.007 **
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Table 3.19: Hazard ratios estimates for the transitions of variable sex, estimated
fitting Cox model to DN data.

HR Pr(>|z|)
SEX.1 1.067 0.015 *
SEX.5 1.084 0.008 **

Hospital discharge SEX.9 1.042 0.245
SEX.13 1.055 0.196
SEX.17 0.975 0.614
SEX.2 1.228 0.036 *
SEX.6 1.106 0.265

In-hospital death SEX.10 1.187 0.089 .
SEX.14 0.988 0.915
SEX.18 1.373 0.015 *
SEX.21 1.242 0.001 **
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Table 3.20: Hazard ratios estimates for the transitions of variable Charlson index,
estimated fitting Cox model to DN data.

HR Pr(>|z|)
CHARLSON.1 0.949 < 2e− 16 ***
CHARLSON.5 0.956 < 2e− 16 ***

Hospital discharge CHARLSON.9 0.976 0.001 ***
CHARLSON.13 0.960 < 2e− 16 ***
CHARLSON.17 0.969 0.001 ***
CHARLSON.2 1.091 < 2e− 16 ***
CHARLSON.6 1.084 < 2e− 16 ***

In-hospital death CHARLSON.10 1.068 < 2e− 16 ***
CHARLSON.14 1.045 0.035 *
CHARLSON.18 1.052 0.040 *
CHARLSON.21 1.088 < 2e− 16 ***
CHARLSON.3 1.104 < 2e− 16 ***
CHARLSON.7 1.087 < 2e− 16 ***

Admissions to hospital CHARLSON.11 1.080 < 2e− 16 ***
CHARLSON.15 1.076 < 2e− 16 ***
CHARLSON.19 1.073 < 2e− 16 ***
CHARLSON.4 1.180 < 2e− 16 ***
CHARLSON.8 1.186 < 2e− 16 ***

Out-of-hospital death CHARLSON.12 1.140 < 2e− 16 ***
CHARLSON.16 1.107 < 2e− 16 ***
CHARLSON.20 1.147 < 2e− 16 ***
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Table 3.21: Hazard ratios estimates for the transitions of variable pre hospital-
ization cardiological evaluation, estimated fitting Cox model to DN data.

HR Pr(>|z|)
PRE_HOSP.2 0.940 0.582
PRE_HOSP.6 1.007 0.937

In-hospital death PRE_HOSP.10 0.796 0.032 *
PRE_HOSP.14 0.839 0.116
PRE_HOSP.18 0.944 0.660
PRE_HOSP.21 0.901 0.113
PRE_HOSP.4 0.688 0.002 **
PRE_HOSP.8 0.585 < 2e− 16 ***

Out-of-hospital death PRE_HOSP.12 0.849 0.226
PRE_HOSP.16 0.951 0.746
PRE_HOSP.20 0.816 0.292

Table 3.22: Hazard ratios estimates for the transitions of variable admission in
CW, estimated fitting Cox model to DN data.

HR Pr(>|z|)
CW.1 1.522 < 2e− 16 ***
CW.5 1.454 < 2e− 16 ***

Hospital discharge CW.9 1.495 < 2e− 16 ***
CW.13 1.412 < 2e− 16 ***
CW.17 1.420 < 2e− 16 ***
CW.2 0.373 0.001 **
CW.6 0.578 0.017 *

In-hospital death CW.10 0.542 0.041 *
CW.14 0.550 0.038 *
CW.18 0.323 0.027 *
CW.21 0.474 < 2e− 16 ***
CW.4 0.584 0.008 **
CW.8 0.681 0.111

Out-of-hospital death CW.12 0.486 0.029 *
CW.16 0.624 0.181
CW.20 0.600 0.238
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Table 3.23: Hazard ratios estimates for the transitions of variable ICU/IHC index,
estimated fitting Cox model to DN data.

HR Pr(>|z|)
ICU_IHC.1 0.827 < 2e− 16 ***
ICU_IHC.5 0.871 < 2e− 16 ***

Hospital discharge ICU_IHC.9 0.826 < 2e− 16 ***
ICU_IHC.13 0.884 0.003 **
ICU_IHC.17 0.871 0.006 **
ICU_IHC.2 1.826 < 2e− 16 ***
ICU_IHC.6 1.255 0.008 **

In-hospital death ICU_IHC.10 1.453 < 2e− 16 ***
ICU_IHC.14 1.859 < 2e− 16 ***
ICU_IHC.18 1.633 0.002 **
ICU_IHC.21 1.009 0.137
ICU_IHC.3 1.038 0.534
ICU_IHC.7 1.170 < 2e− 16 ***

Admissions to hospital ICU_IHC.11 1.060 0.124
ICU_IHC.15 1.008 0.853
ICU_IHC.19 0.998 0.973
ICU_IHC.4 1.270 0.170
ICU_IHC.8 1.136 0.258

Out-of-hospital death ICU_IHC.12 1.292 0.041 *
ICU_IHC.16 1.530 0.009 **
ICU_IHC.20 2.284 0.001 ***
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Figure 3.9: 95% confidence intervals for hazard ratios of age (all other covariates
fixed) estimated fitting Cox model to DN data.
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Figure 3.10: 95% confidence intervals for hazard ratios of sex (all other covariates
fixed) estimated fitting Cox model to DN data.

Figure 3.11: 95% confidence intervals for hazard ratios of Charlson index (all
other covariates fixed) estimated fitting Cox model to DN data.
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Figure 3.12: 95% confidence intervals for hazard ratios of pre hospitalization
cardiological evaluation (all other covariates fixed) estimated fitting Cox model to
DN data.

Figure 3.13: 95% confidence intervals for hazard ratios of admission in CW (all
other covariates fixed) estimated fitting Cox model to DN data.
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Figure 3.14: 95% confidence intervals for hazard ratios of ICU/IHC index (all
other covariates fixed) estimated fitting Cox model to DN data.
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3.4 Kaplan-Meier curves

In this section we report the analysis carried out on OD dataset using
Kaplan-Meier (KM) curves, introduced in Section 1.2.3.

In this section we will focus on two different times to event. In Section
3.4.1 we will study the survival time, hence the time between the first ad-
mission in the study and the death of the patients, if it occurs. In Section
3.4.2 we will study the time between the first and the second hospitalization,
if it occurs. In this latter case, we are interested in the time needed for
the second hospitalization to happen, so we don’t consider patients who die
between the two hospitalizations. We decide to focus on second admission
because it could be seen as a marker of success of the initial treatment.

In any survival plot, from 3.15 to 3.23, on the x-axis there is the calendar
time, from 0 to the last time recorded, on the y-axis there is the probability
for a people to not experience the event of interest, the death for figures in
Section 3.4.1, the second hospitalization for figures in Section 3.4.2.

It is possible to stratify a survival curves according to some characteris-
tics of interest, in order to investigate the effect of the stratifying variable
on the outcome.
In our case, we will consider stratifications induced by age at first admission,
sex, Charlson index at first admission, presence of pre hospital cardiological
evaluation before first admission and presence of ICU admission or IHC ac-
tivation among all the registered events.
All the plots reported are created using the OD dataset.

3.4.1 KM curves on survival time

Figures from 3.15 to 3.19 are obtained considering the difference between
the first admission in the study and the death of the patients, if it occurs.
We stratify the survival curve for each variable described in Section 3.1.2,
in order to analyze if being part of a given population’s subgroup makes
differences in terms of survival probability.
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In Figure 3.15, survival time is stratified according to the age of the pa-
tients at first admission. We categorized the age variable using the empirical
quartiles, i.e. we grouped togheter the patients whose age at first admission
was below the first quatile (75), between the first and the second quartile
(83), between the second and the third quartile (88) and above the third
quartile.
In order to analyze the difference between the curves we use the Log-Rank
test, where the null hypothesis is H0: no difference between survival curves.
The corresponding p-value, reported in Table 3.24, is <2.2e-16, so we can
conclude that the curves are different and, consequently, that age influences
the survival probability, in particular the latter decreases with aging.

Figure 3.15: KM curves of survival time stratified by age of patients at their first
admission.

In Figure 3.16 survival is stratified according to the sex of the patients.
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In Table 3.24 the p-value of the Log-Rank test is shown, its low value (6.62e-
07) allows us to consider the two curves as different. We can notice that
the curve of the women is always below the one of the men, indicating that
women have a smaller survival probability. The fact that women mean age
is higher than men mean age can explain this results.

Figure 3.16: KM curves of survival time stratified by sex of patients.

In Figure 3.17 survival is stratified according to the Charlson index of
the patients computed at first hospitalization.
Since this index ranges between 0 and 17, we dichotomized the variable ac-
cording to the mean value (2.45).
In Table 3.24 the p-value of the Log-Rank test is shown, from his low value
(<2.2e-16) we can conclude that the curves are different and that Charlson
index influence the survival: the higher the commorbidity level the lower the
survival.
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Figure 3.17: KM curves of survival time stratified by Charlson index of patients
at their first admission: above the mean, below the mean.

In Figure 3.18 survival is stratified according to the presence of at least
one pre hospital cardiological evaluation in patient’s history. The patients
who had at least one of this visits have the survival curve above the patients
who hadn’t it, the difference between the curves is confirmed by the p-value
of the Log-Rank test, reported in Table 3.24.
We can observe the same trend also if we consider the presence of this visit
only before the first hospitalization.

In Figure 3.19 survival is stratified according to the variable ICU/IHC
index, distinguishing between patients who have at least one of these events
in all their clinical history or who haven’t it.
The behaviour of the curves is twofold: for the first 3 years having an admis-
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Figure 3.18: KM curves of survival time stratified by the presence of al least one
pre hospital cardiological evaluation in patients’s clinical history.

sion/activation of ICU/IHC seems to be protective. We could suppose that
this variable is usefull in identifying the most frailty patients, whose survival
is more at risk.
The p-value of the Log-Rank test, reported in Table 3.24 does not allow us
to conclude that the two curves are different, due to the intersection.

We can conclude saying that all the considered variables turn out to
be a discriminating factor for the estimation of the survival probability, as
expected from observing their significance in the Cox model. The only excep-
tion is the ICU/IHC index, however we believe it is significant in identifying
the most fragile patients’s subgroup.
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Figure 3.19: KM curves of survival time stratified by the presence of al least one
ICU admission or IHC activation in patients’s clinical history.

Variable p-value
Age <2.2e-16
Sex 6.62e-07
Charlson index <2.2e-16
Pre hosp card eval <2.2e-16
ICU/IHC index 0.329

Table 3.24: P-value of the Log-Rank test for the different survival curves esitimates
created with the Kaplan-Meier estimator.
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3.4.2 KM curves on time to second hospitalization

We now focus only on the second hospitalization. We consider only the
time needed for the possible second admission to hospital: the time variable
is now the time spent between the discharge from the first hospitalization
and the second admission to hospital, if it happens.
Patients who die after the first admission and before the first discharge, as
well as patients who die after the first discharge and before the second ad-
mission, are not considered for the creation of these curves, as explained and
sketched in Figure 3.20.
The variables considered for the stratifications of the curves are the same
ones used for the previous analysis. For this reason we report now only the
significant plots.
An important thing to note is the difference in the asymptotic value between
the plots about survival times and the plots about times to second rehospi-
talization: the former have a bigger asymptotic mean value. This is due to
the fact that peolple who die at the end of the study are 65% of the popu-
lation, while people who experience second hospitalization are 78% and the
asymptotic value expresses the percentage of patients who not experience
the event of interest, death in the previous plots and second hospitalization
in these plots.

Figure 3.20: Sketch of considered patients for the creation of Kaplan-Meier curves
about the survival to second hospitalization.
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In Figure 3.21 survival is stratified according to the age of the patients at
first admission. As in the previous analysis, we categorized the age variable
using the empirical quartiles, i.e. 74, 82 and 87.
The difference between the curves related to different levels of the variables
are less evident than in the corresponding previuos plot; nevertheless the p-
value of the Log-Rank test, reported in Table 3.25, is very low and it allows
us to conclude that aging is a factor of risk. We omit the confidence intervals
of the curves in order to have a clear visibility of the differences.

Figure 3.21: KM curves stratified by age.

In Figure 3.22 survival is stratified according to the Charlson index of the
patients computedat first admission. We create again two levels: above the
mean (2.37) and under the mean. The two curves behave as we described
before, having a bigger Charlson index is a factor of risk, because the prob-
abilities of being readmitted in hospital raise. This behaviour is confirmed
by the p-value of the Log-Rank test, reported in Table 3.25.
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Figure 3.22: KM curves stratified by Charlson index at first hospitalization: above
the mean, below the mean.

In figure 3.23 survival is stratified according to the ICU/IHC index, differ-
entiating between patients that have one of these events before first admission
and patients that haven’t it. We remind the having this index active at first
hospitalization is possible only for patients whose history starts before 2009
and consequently has to be cleaned from events preceding that year. The
patients in this situation are a small percentage of the total population. The
low p-value of the Log-Rank test, reported in Table 3.25, express their big-
ger probability to experience a rehospitalization. This fact seems reasonable
because this kind of patients has a longer clinical history and consequently
they should have a worse health.

We can conclude saying that all the considered variables are discrimi-
nating factors in the calculation of the probability of experiencing a second
hospitalization.
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Figure 3.23: KM curves stratified by the presence of at least one events of type
ICU or IHC at first hospitalization.

Variable p-value
Age <2.2e-16
Charlson index <2.2e-16
ICU/IHC index <2.2e-16

Table 3.25: P-value of the Log-Rank test for the difference between survival curves
about second hospitalization, created with the Kaplan-Meier estimator.
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3.5 Comparison among Overall Data-OD and De
Novo data-DN

In this section we compare patients who experienced an ICU/IHC event
with patients who did not; we make this comparison both for the OD and
the DN dataset.

Summaries of these population subgroups are shown in Table 3.26.
Looking at the complete dataset we can observe that patients with ICU/IHC
index active present a higher commorbidity load than the other cohort: in
fact the 95% (vs 86%) has Charlson index greater than zero, with mean value
of 2.57 (vs 2.31). The 93% (vs 78%) has more than one morbidity. The mean
number of comorbidities at last hospitalization is 1.1 (vs 1.01). The number
of total hospitalizations recorded is 5.33 (vs 2.41).
This indicates that having experienced at least once an ICU/IHC event al-
lows to classify a patient as a fragile subject.
To confirm this hypothesis of fragility, we can note that among patients with
ICU/IHC events 2,623 deaths are recorded (72%), against the 1,910 (57%)
recorded between patients with hospitalization events only.
The same trend can be observed in the dataset containing only de novo pa-
tients.
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OD DN

ICU/ICH=0 ICU/ICH>0 ICU/ICH=0 ICU/ICH>0

Num of patients 3,377 3,621 2,699 2,358
Death 1,910 (57.23%) 2,623 (72.43%) 1,407 (52.13%) 1,571 (66.62%)
In hosp death 1,058 (55.39%) 1,730 (65.95%) 752 (53.44%) 1,032 (65.69%)
Ch ind>0 2,882 (86.36%) 3,459 (95.52%) 2,276 (84.32%) 2,224 (94.31%)
Mean Ch ind (sd) 2.31 (2.19) 2.57 (2.18) 2.07 (2.02) 2.12 (1.93)
Com>0 2,622 (78.57%) 3,370 (93.06%) 2,110 (78.17%) 2,192 (92.96%)
Com mean 1.03 1.12 1.03 1.07
Com at first hosp 1.01 1.02 1.03 1.03
Com at last hosp 1.01 1.10 0.99 1.04
Hospitalizations 2.41 5.33 2.35 5.06
Hosp/ICU/IHC 8.79 8.23

Table 3.26: Summaries of population subgroups: OD vs DN, ICU/IHC index
active vs ICU/IHC index inactive.
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Chapter 4

Analysis of Friuli Venezia
Giulia dataset

In this chapter we will report the analysis of the Friuli Venezia Giulia
dataset, in particular we will present an application of the Non Parametric
Discrete Frailty Cox model (npdf Cox), described in Chapter 2, and an ap-
plication of the multi-state model, described in Chapter 1.
In Section 4.1 we will introduce the dataset and we will report the descrip-
tive analysis. In Section 4.2 we will analyze the homogeneity of the residence
districts while in Section 4.3 we will analyze the homogeneity of the cohort.
In Section 4.4 we will perform a multi-state modelling of the Friuli Venezia
Giulia data.

4.1 Presentation of dataset from Friuli Venezia Giu-
lia

In this section we will introduce the dataset, we will explain the variables
we decided to exctract from the dataset for the analysis and we will describe
the preprocessing of data carried out on the dataset.

The dataset has the same structure of the one used in Chapter 3 and
described in Section 3.1, since it is the extension of the Trieste dataset to all
the Friuli Venezia Giulia region.
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It is composed by informations about 26,303 patients, identified by an uni-
vocal anonymous personal code, hospitalized with HF in the Friuli Venezia
Giulia region.
The cohort considered is composed of patients hospitalized between 2009 and
2017. The five-year period from 2004 to 2008 was used for the calculation of
significant clinical quantities.
Each row of the dataset refers to a specific event. Possible events are:

• hospitalization for HF;

• hospitalization for any cause;

• Intermediate Care Unit admission (ICU);

• Integrated Home Care (IHC) activations.

Several patient specific informations are recorded for each event: gender,
age, length of stay, department of admission, presence of cardiological eval-
uation before hospitalization, laboratory tests, comorbidities, residence dis-
trict, hospital where the hospitalization takes place etc..

4.1.1 Variables description

The variables used for the analysis are:

• Sex: 1 for male, 0 for female;

• Age [years]: time difference between the considered event and the date
of birth;

• Worsening index: 1 if patient has an hospitalization for HF in the five
years preceding the index admission (worsening patient), 0 otherwise
(de novo patient);

• Charlson index: index of comorbidity;

• Pre hospitalization cardiological evaluation: 1 if the patient has
an hospitalization in cardiology before the considered event, 0 other-
wise;

• Admission in Cardiological Ward (CW): 1 if patient is admitted
in a cardiological ward, 0 otherwise;
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• ICU/IHC index: 1 if patient have at least one events of type ICU
or IHC before the considered event, 0 otherwise;

• Residence district: a number between 1 and 20 indicating the resi-
dence district where the patient lives;

• Death index: 1 if patient die before the end of the study, 0 otherwise.

We decide to consider the residence district instead of the hospital where
the patient is admitted since it is a more robust indicator. Indeed, it is pos-
sible that a patient visits different hospitals during his clinical history while
it is less probable that he changes residence district, especially considering
that the cohort is composed of very old patients.

4.1.2 Dataset transformation

We remind that our dataset is in the format of one row for every patient’s
event. In order to implement both the npdf Cox model and the multi-state
model we have to reshape the dataset, in two different ways.

In order to implement the npdf Cox model, see Section 4.2, we reshape
the dataset obtaining the one row for patient dataset. This dataset, used
in general to fit survival models, contains one row for each patient and as
many columns as many informations are collected for each patient. Since
we start with one row for each event and we need one row for each patient,
we decide to synthesize the informations gathered in the different hospi-
talizations reporting only informations computed at first admission or at
last admission. In particular age, Charlson index, pre hospital cardiological
evaluation, worsening index and admission in CW are computed at first ad-
mission while ICU/IHC index is computed at last admission. Sex, residence
district and death index are time independent variables.

In order to implement the the multi-state model, see Section 4.4, we re-
shape the dataset obtaining the long format dataset. This transformation is
explained in Section 3.1.3.
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4.1.3 Descriptive analysis

In this section we will report the descriptive analysis of the patients in
the Friuli Venezia Giulia dataset.
In Table 4.1 we can find a summary of the population features.

Variable name # patients % patients
N 26,303
Male 11,937 45.38%
Age m=81.82 sd=9.6
DeNovo 23,646 89.89%
Deaths 16,625 63.2%
Survival time m=897.9 sd= 856.2
Pre hosp card visit 14,540 55.14%
CW 2,252 8.56%
Charlson index m=2.93 sd=1.96
Ch >0 24,013 91.29%
ICU/IHC >0 10,127 38.5%
ICU >0 4,424 16.81%
IHC >0 8,726 33.17%
Cancer 2,537 9.64%
Pulmonary desease 4,863 18.48%
Diabete 13,035 49.55%
Renal desase 15,042 57.18%

Table 4.1: Summary of the main population features.

The patients considered are 26,303. Among these 11,937 (45%) are males.
23,646 patients (90% of the total) did not have a HF hospitalization in the
five years preceding the index admission (de novo patients). The mean age
at first hospitalization is 81.82 years, the corresponding standard deviation
is 9.6. The mean survival time is 897.9 days, the corresponding standard de-
viation is 856.2. Over the observing period 16,625 deaths (63%) are recorded.
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ID District name # patients % patients
1 Valmaura 1,302 4.95%
2 Via Stock 1,104 4.19%
3 Alto Isontino 1,463 5.56%
4 Cervignano del Friuli 1,213 4.61%
5 Codroipo 1,053 4%
6 San Daniele 999 3.79%
7 Cividale del Friuli 1,029 3.91%
8 Udine 3,283 12.48%
9 Maniago (Nord) 1,057 4.01%
10 Sacile (Ovest) 1,261 4.79%
11 San Giovanni 1,149 4.36%
12 Via della Pieta 1,134 4.31%
13 Basso Isontino 1,565 5.94%
14 Latisana 1,133 4.3%
15 Gemona del Friuli 928 3.52%
16 Tolmezo 904 3.43%
17 Tarcento 996 3.78%
18 Azzano decimo (Sud) 1,100 4.18%
19 Pordenone 1,913 7.27%
20 San Vito al Tagliamento 827 3.14%

N.D. 890 3.36%

Table 4.2: List of all the Friuli Venezia Giulia residence districts together with
the numer and the percentage of patients living there.

Focusing on indices at first hospitalization, there is a prevalence of non-
cardiac comorbidities in patient’s background (18% has pulmonary disease,
9% cancer, 49% diabetes and 57% renal disease). The mean Charlson index
of 2.93 denotes an high level of comorbidity burden. The 91% of patients
has this index grater that zero. The rate of admission in CW is 9%. Finally,
55% of patients has a cardiological pre hospitalization visit.

We analyse the frequency of ICU/IHC activations looking at variable
ICU/ICH index at last hospitaliziation: in their history, 38% of patients ex-
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perienced at least one of this events. In particular, 16% of patients had an
ICU transition and 33% had an IHC activation.

In Table 4.2 we can find all the residence districts together with the
number and the percentage of patients living there. We can note that the
patients are equally distributed in the different districts. In every district
we can find about 3%-5% of the patients, with the exception of the Udine
district (12%) and of the Pordenone district (7%).

4.2 Analysis of the homogeneity of the residence
districts

In this section we will report the application of the npdf Cox model with
residence distric specific frailty on the Friuli Venezia Giulia dataset.
Our goal is to evaluate if, after specific patient and specific procedure ad-
justments, the residence distric, see Table 4.2 for all the possible residence
districts, has some further measurable influence that our covariates can not
explain.

We want to clarify that, for this specific analysis, we only consider pa-
tients whose information about the residence district is present. Hence, as
reported in Table 4.2, we do not include 890 patients (3.36% of the total
population) in the following analysis.

First of all we compare the Kaplan-Meier estimates of patients’s survival,
stratified according to all the possible residence districts. These estimates
are reported in Figure 4.1. We can notice that the curves have a similar
trend and do not differ from each other, being almost overlapped. We can
suppose that the difference in hospital treatment among all the residence dis-
tricts is minimal so we hypothesize the homogeneity of the residence districts.
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Figure 4.1: Kaplan-Meier estimates of the survival stratified according to the
residence district.

We proceed by analyzing the variables distribution among the twenty dif-
ferent residence districts, reported in Table 4.2. In this way we can see if any
particular behaviour of the variables is present. We report the comparison
in Table 4.3 and 4.4. We can notice that there are not big differences among
the variables distributions between the residence districts. In every residence
district, the percentage of people presenting the characteristics reported in
Table 4.3 and 4.4 is about the same as if we consider the entire population,
as reported in Table 4.1.
This absence of huge differences is in line with our first hypothesis, deduced
from the Kaplan-Meier estimates in Figure 4.1, of homogeneity among the
residence districts.

In order to confirm that the residence district has no influence on the
survival we decide to implement the npdf Cox model with residence district
specific frailty, described in Chapter 2. In this way we can verify, in a
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ID N Male Age Denovo Deaths Survival time
1 1,302 44% 81.8(8.6) 87% 63% 965.6(687)
2 1,104 45% 82.8(8.2) 86% 66% 912.6(826)
3 1,463 46% 81.3(10.3) 92% 65% 782.4(758)
4 1,213 46% 81.7(9.6) 87% 66% 902.6(877)
5 1,053 46% 82.0(9.3) 89% 66% 840.6(856)
6 999 43% 82.7(9.3) 88% 68% 770.9(774)
7 1,029 48% 81.2(9.1) 89% 61% 927(854)
8 3,283 45% 82.1(9.4) 89% 63% 884.9(851)
9 1,077 45% 82.5(9.6) 90% 66% 727(791)
10 1,261 43% 82.4(9.3) 90% 64% 869(859)
11 1,149 40% 83.7(8.5) 87% 70% 869(823)
12 1,134 36% 83.6(8.7) 88% 69% 887.5(835)
13 1,565 49% 80.1(10.5) 90% 60% 927.3(874)
14 1,133 48% 81.4(9.7) 89% 63% 887.6(846)
15 928 43% 81.1(9.3) 89% 65% 919.4(858)
16 904 49% 80.1(9.6) 91% 61% 915.2(838)
17 996 45% 81.9(9.2) 90% 67% 900.9(845)
18 1,100 45% 81.4(10.0) 90% 61% 922.3(874)
19 1,913 44% 82.4(9.4) 91% 60% 915.4(871)
20 827 41% 82.1(9.7) 92% 61% 876.1(842)

Table 4.3: Main features comparison among patients living in different residence
districts.

modellistic and quantitative way, if the available covariates are able to catch
almost all the present variability. This kind of model takes advantage of
the nonparametric and discrete distribution of the frailty term in order to
build a probabilistique clustering tecnique with whom we can investigate the
influence of the residence districts on the survival.
We built five different models, one for each potential number of clusters K,
from 1 to 5, and then we compute model selection criteria such as AIC, BIC,
or search for the optimal K using the approach proposed by Laird [22]. We
always consider seven individual-level predictors: age, sex, worsening index,
Charlson index, pre hospitalization cardiological evaluation, admission in
CW, ICU/IHC index.
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ID Pre hosp card eval CW Ch index Ch index >0 ICU/IHC>0
1 56% 4% 2.9(2.1) 89% 47%
2 55% 5% 2.9(1.9) 89% 51%
3 61% 29% 3.3(1.8) 99% 30%
4 62% 5% 2.7(1.7) 90% 39%
5 59% 3% 2.9(1.8) 91% 43%
6 54% 2% 2.7(1.9) 89% 34%
7 64% 3% 2.8(2.0) 89% 43%
8 58% 3% 2.9(1.9) 90% 36%
9 51% 4% 3.3(2.1) 93% 32%
10 54% 11% 2.3(2.0) 83% 37%
11 51% 4% 2.9(2.0) 90% 48%
12 44% 4% 2.8(2.1) 87% 46%
13 60% 33% 3.4(1.8) 99% 32%
14 62% 2% 2.9(1.8) 92% 41%
15 57% 1% 3.3(1.8) 98% 45%
16 59% 2% 3.3(2.8) 99% 45%
17 62% 3% 3.1(1.8) 93% 40%
18 46% 9% 2.6(2.0) 86% 39%
19 42% 11% 2.3(1.9) 82% 37%
20 61% 3% 3.4(1.9) 97% 31%

Table 4.4: Main features comparison among patients living in different residence
districts.

Criterion K optimum
AIC 1
BIC 1
Laird 1

Table 4.5: Results of the model selection criteria.

The model selection criteria, as reported in Table 4.5, are all consistent:
the optimum number of clusters is 1. We can conclude that the covariates
have caught almost all the heterogeneity present in the residence districts
that, hence, have no further influence on the survival.
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Parameters β̂ HR se Louis
Age 0.062 1.064 0.001
Sex 0.213 1.237 0.016
Charlson index 0.111 1.117 0.004
Pre hosp card visit -0.063 0.939 0.016
Worsening index 0.342 1.408 0.023
CW -0.342 0.710 0.037
ICU/IHC -0.307 0.735 0.016

Table 4.6: Estimate of the parameters (β̂ and HR) of the npdf Cox model with
no latent populations, together with Louis standard errors.

We report the results of the npdf Cox model for K=1 in Table 4.6.
The HR of variable age is 1.064, this means that being older increases the
probability of dying.
The HR of variable sex is 1.237, this means that being a woman increases
the probability of dying.
The HR of variable Charlson index is 1.117, this means that having a bigger
index of comorbidity increases the probability of dying.
The HR of variable pre hospitalization cardiological evealuation is 0.939, this
means that having this kind of pre hospitalization decreases the probability
of dying.
The HR of variable worsening index is 1.408, this means that being a wors-
ening patient increases the probability of dying.
The HR of variable CW is 0.710, this means that being admitted in a CW
decreases the probability of dying.
The HR of variable ICU/IHC index is 0.735, this means that experience at
least one of these events decreases the probability of dying.

We decide to compare the results of the npdf Cox together with the
results of the traditional Cox model without the frailty term and with a tra-
ditional Cox model where Gamma and Normal frailties are specified for the
district term. The results of the different Cox models are reported in Table
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4.7. We can notice that the coefficients estimates of the three Cox models
reported in Table 4.7 are very similar to the ones of the npdf Cox model
reported in Table 4.6. The coefficients referring to the same variable have
all the same sign in the different models, meaning that in every model the
variables have the same effect on the outcome.
For the Cox frailty models, both with Gamma distribution and Normal dis-
tribution, we can note that the variance of random effect is very low: 0.005
for the first model and 0.003 for the second one. This indicates that the
residual variability, not explained by the covariates, is very low, in agree-
ment with the fact that only one cluster is significant. The residence districs
can hence be considered homogeneous, after specific patient and specific pro-
cedure adjustments. This means that we have no evidence to conclude that
the clinical treatment is different among the districts of the Friuli Venezia
Giulia region.

Cox Cox frailty Gamma Cox frailty Normal

Parameters HR se exact HR se exact HR se exact
Age 1.064 0.001 1.063 0.001 1.063 0.001
Sex 1.237 0.016 1.238 0.016 1.238 0.016
Charlson ind. 1.117 1.116 0.110 1.116 0.110 0.004
Pre hosp c.v. 0.937 0.934 -0.068 0.935 -0.067 0.016
Worsening ind. 1.322 1.329 0.285 1.328 0.284 0.023
CW 0.709 0.037 0.696 0.038 0.697 0.037
ICU/IHC 0.735 0.016 0.737 0.016 0.737 0.016

Variance of random effect 0.005 0.003

Table 4.7: Parameters estimates (HR) together with exact standard errors of the
simple Cox model, hence without frailty term, of the Cox model with residence
district specific Gamma distributed frailty and of the Cox model with residence
district specific Normal distributed frailty. For frailty models we reported also the
variance of random effects.
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4.3 Analysis of the homogeneity of the cohort

In this section we will analyze the homogeneity of the cohort and the pos-
sible presence of significant subgroups. In this context, homogeneity means
that the statistical properties of any subset of the overall dataset are the
same as those of the latter, hence can not be found groups of patients char-
acterized by strongly different features.
In Section 4.3.1 we will implement Cox models with different parametric
patient specific frailty, in order to evaluate the importance of this patient
specific adjustment, and we will discuss the impossibility to apply the npdf
Cox model with patient specific frailty. In Section 4.3.2, we will apply the
k-means algorithm in order to analyze if we can cluster our cohort at least
according to the covariates.

4.3.1 Parametric frailty Cox models

In order to evaluate the impact of a patient specific adjustment, hence
if the patient specific frailty is a significant term that can catch and explain
a part of variability or if the covariates are sufficiently to explain it, we de-
cide to compare the results of the simple Cox model, of the Cox model with
patient specific frailty with Gamma distribution and of the Cox model with
patient specific frailty with Normal distribution. The results of the different
Cox models are reported in Table 4.8.
First of all, we can notice that the coefficients estimates referring to the same
variable of the three Cox models are quite similar and, in particular, they
have all the same sign, meaning that, in every model, the variables have the
same effect on the outcome.
We can also notice that the estimated variance of random effect is quite low:
0.617 for the Cox model with Gamma distributed frailty and 0.431 for the
Cox model with Normal distributed frailty. This means that the residual
variability, hence not explained by the covariates, is not so high and that
our cohort could be considered homogeneous with respect to it.

In order to confirm that the variability that the covariates can not ex-
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plain is low, we would like to apply the npdf Cox model with patient specific
frailty. Indeed, this model, thanks to the discrete distribution of the frailty,
see Section 2.2, could allow us to evaluate if our cohort could be partitioned
in some subgroups, according to the residual variability.
Nevertheless, as we show in Appendix A, we can not trust the results of the
npdf Cox model with patient specific frailty. We would have 26,303 groups
(that correspond to the number of the patients in our cohort) made by only
one unit and our simulation study highlights how, in such stressed situation,
the npdf Cox algorithm could not estimate the correct number of latent pop-
ulations.

Cox Cox frailty Gamma Cox frailty Normal

Parameters HR se exact HR se exact HR se exact
Age 1.064 0.001 1.080 0.001 1.073 0.001
Sex 1.237 0.016 1.295 0.017 1.272 0.016
Charlson ind. 1.117 0.004 1.164 0.004 1.144 0.004
Pre hosp c.v. 0.937 0.016 0.906 0.016 0.920 0.016
Worsening ind. 1.322 0.023 1.421 0.031 1.382 0.023
CW 0.709 0.037 0.640 0.044 0.673 0.037
ICU/IHC ind. 0.735 0.016 0.567 0.021 0.638 0.016

Variance of random effect 0.617 0.431

Table 4.8: Parameters estimates (HR) together with exact standard errors of
the simple Cox model, hence without frailty term, of the Cox model with patient
specific Gamma distributed frailty and of the Cox model with patient specific Nor-
mal distributed frailty. For frailty models we reported also the variance of random
effects.

Since we can not apply the npdf Cox model in order to detect a possible
clustering structure of our cohort, we decide to investigate it using the col-
lected informations. Hence, we choose to apply the k-means algorithm on
the available measured covariates.
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4.3.2 K-means algorithm

As we explained in Section 4.3.1, in order to analyze the possible clus-
tering of patients according to the covariates, we decide to proceed with the
application of the k-means algorithm.

Firstly we use the "elbow" method [21] in order to identify an optimal
number of clusters.
This method runs a k-means clustering on the dataset for a range of values of
k (in our case, as we can see in Figure 4.2, from 1 to 10). For each value of k it
calculate the between (BSS) and within (WSS) sum of square and compute
the ratio BSS/(BSS+WSS). This ratio is a measure of the percentage of
varibility explained. We look at it as a function of the number of clusters.
We should choose a number of clusters so that the variability explained
is sufficiently high and has not a significant increase after the addition of
another cluster. A threshold value for the percentage of variability explained
could be 80%. As we can see in Figure 4.2, at some point the marginal gain
will drop, giving an angle in the graph of the function. The number of clusters
is chosen at this point. In Figure 4.2 we can find the "elbow" function.

We choose a number of clusters k=4, since adding another cluster does
not highly increase the percentage of variance explained, that is over the
80% yet.
Once the number of clusters is decided, we analyze the distribution of the
available variables in the four different groups identified.
We report these comparisons in Table 4.9, where the p-value refers to the
tests on the proportions, for binary covariates, and to the Kruskal-Wallis
tests, for continuous covariates.

Looking at the p-values in the last column, we can immediately notice
that all the variables are significantly differently distributed among the four
groups. In particular the different percentage of deaths and the different
mean survival times seem characterize the four groups.
For example, Group 1 is characterized by the highest mean survival times
(1372 days) and the lowest percentage of deaths recorded (34%), and, coher-
ently with the results obtained in Section 3.3.2, it also presents the lowest
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Figure 4.2: "Elbow" function: on the x-axis there is the number of cluster con-
sidered while on the y-axis there is the ratio BSS/(BSS+WSS), a measure of the
percentage of varibility explained by the corresponding clusters.

mean age (62.04 years) and the highest percentage of men (70%).
On the contrary, Group 4 is characterized by the lowest mean survival times
(500 days) and the highest percentage of deaths recorded (80%), and, co-
herently, it also presents the highest mean age (93.02 years) and the lowest
percentage of men (25%).
In Group 2 and 3 are intermediate results.

In Figure 4.3 we can find the Kaplan-Meier estimate of the survival strat-
ified according to the four groups identified through the k-means.
We can see that the four groups have survival curves with different behav-
iors, that reflect the different mean survival times reported in Table 4.9. The
different survival of the groups is confirmed by the p-value of the Log-Rank
test, that is <2.2e-15.
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Group 1 Group 2 Group 3 Group 4 P-value
Deaths 34% 52% 70% 80% <2.2e-16
Mean survival time(sd) 1372(973) 1112(907) 803(782) 500(592) <2.2e-16
N 2,723 8,232 10,044 5,304
Male 70% 57% 39% 25% <2.2e-16
Mean age(sd) 62.04(7.08) 76.5(3.3) 85.6(2.2) 93.02(2.9) <2.2e-16
DeNovo 92% 89% 88% 91% 3.03e-08
Visit pre hosp. 51% 63% 56% 42% <2.2e-16
CW 28% 11% 4% 1% <2.2e-16
Mean Charlson index(sd) 2.51(2) 3(2.13) 3(1.9) 2.9(1.7) <2.2e-16
ICU/IHC >0 29% 40% 42% 32% <2.2e-16

Table 4.9: Main features comparison among the four groups identified thorugh
k-means algortithm together with the p-values of tests on the proportion, for binary
covariates, and of Kruskal-Wallis tests, for continuous covariates.

In order to better analyze the difference between the four groups iden-
tified by the k-means algorithm, we fit a simple Cox model on each group.
The estimates of the coefficients variables togheter with the relative standard
errors and the p-values of the significance tests are reported in Table 4.10
and in Table 4.11.

We can note that Group 1 (i.e. the youngest group, since it contains the
patients with the lowest mean age), is the group with the highest, neverthe-
less significant, p-values, hence, there is less evidence in the significance of
the coefficients. We can explain this fact supposing that being hospitalized
at a "young" age is a relevant factor that, once taken into account, puts the
other factors in the background.

Moreover, in all the four groups, the coefficients of variables age, Charl-
son index and worsening index are significant and all positive. This means
that being older as well as having a bigger Charlson index as well as being
a worsening patient increases the probability of death. These results are
consistent with the ones obtained in Section 3.3.2.
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Figure 4.3: Kaplan-Meier estimate of the survival stratified according to the four
groups identified thorugh the k-means algorithm.

Looking at the estimates of the ICU/IHC variable coefficients we can note
that the significant ones have different sign in different groups. In particular
the coefficient is positive in Group 1, the youngest group, and is negative in
Group 3 and 4, that are the older groups. This means that experience an
ICU or an IHC event is a risk factor for the younger patients while it is a
protective factor for the older patients. Indeed, generally, if a young patient
has an ICU admission or a IHC activation means that he has a complicated
clinical situation. Instead, if an old patient has an ICU admission or a IHC
activation implies that he will receive more specific and careful care.
This different behavior is reflected in the Kaplan-Meier estimate of the sur-
vival stratified by the presence of at least one ICU/IHC events in patient’s
clinical history, reported in Figure 3.19, where we can note that the two
curves intersect. The intersection can be justified by these reseults: before
the intersection, where in general we can find the mean survival time of the
older patients, experiencing an ICU/IHC event is a protective factor, after
the intersection, where in general we can find the mean survival time of the
younger patients, experiencing an ICU/IHC event becomes a risk factor.
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Group 1 Group 2
34% deaths 52% deaths

Parameters HR se p-value HR se p-value
Age 1.032 0.005 3.11e-08 1.058 0.004 <2e-16
Sex 1.201 0.074 0.014 1.278 0.031 6.55e-15
Charlson index 1.217 0.015 <2e-16 1.144 0.006 <2e-16
Pre hosp card visit 1.204 0.067 0.005 1.031 0.031 0.323
Worsening index 1.312 0.094 0.004 1.423 0.042 <2e-16
CW 0.711 0.088 0.0001 0.733 0.056 2.95e-08
ICU/IHC index 1.275 0.069 0.0004 1.021 0.031 0.498

Table 4.10: Estimates of the coefficients variables (HR) togheter with the relative
standard errors and the p-values of the significance tests obtained fitting the simple
Cox model on the first two groups identified thorugh the k-means algorithm.

Group 3 Group 4
70% deaths 80% deaths

Parameters HR se p-value HR se p-value
Age 1.072 0.005 <2e-16 1.052 0.005 <2e-16
Sex 1.236 0.024 <2e-16 1.155 0.035 4.95e-05
Charlson index 1.105 0.006 <2e-16 1.073 0.008 <2e-16
Pre hosp card visit 0.938 0.024 0.007 0.967 0.032 0.292
Worsening index 1.291 0.034 9.66e-15 1.104 0.050 0.050
CW 0.757 0.064 1.54e-05 0.746 0.130 0.024
ICU/IHC index 0.727 0.024 <2e-16 0.620 0.032 <2e-16

Table 4.11: Estimates of the coefficients variables (HR) togheter with the relative
standard errors and the p-values of the significance tests obtained fitting the simple
Cox model on the last two groups identified thorugh the k-means algorithm.

4.4 Analysis of Friuli Venezia Giulia dataset tho-
rugh multi-state model

In this section we will present the main results obtained from the appli-
cation of the same multi-state model described in Section 3.3.1 to the Friuli
Venezia Giulia dataset.
The only difference between this model and the one described in Section 3.3.1
is that here we do not consider the ICU/IHC index variable in the transitions
with ID equal to 1, 2, 3 and 4. Indeed, in the Friuli Venezia Giulia dataset,
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any patient has this index active at the beginning of his clinical history. The
patients who need it are admitted in ICU only after the first hospitalization
and the same happens for the IHC activation.

We want to see if the results obtained using the Friuli Venezia Giulia
dataset are similar with the results obtained in Section 3.3.2, where we used
a subset of this regional dataset, the Trieste dataset.

In Tables from 4.12 to 4.18, we report the hazard ratio estimates for
each pair of variable/transition considered in the Cox model together with
the p-value of the significance test of the single HR (H0 : exp(βi) = 1 VS
H1 : exp(βi) 6= 1, with i from 1 to p), the number of the asterisks reflects
the importance of the coefficient.
In Figures, from 4.5 to 4.10, we can find the plots of the hazard ratio es-
timates and their corresponding 95% confidence intervals. We consider one
variable at a time, separating the different transitions for a better visualiza-
tion.

Table 4.12: Hazard ratios estimates for the transitions of variable sex, estimated
fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
SEX.1 1.082 < 2e− 16 ***
SEX.5 1.042 0.017 *

Hospital discharge SEX.9 1.019 0.358
SEX.13 1.027 0.280
SEX.17 1.014 0.637
SEX.2 1.222 < 2e− 16 ***
SEX.6 1.054 0.275

In-hospital death SEX.10 1.219 < 2e− 16 ***
SEX.14 1.143 0.028 *
SEX.18 1.175 0.031 *
SEX.21 1.185 < 2e− 16 ***
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Table 4.13: Hazard ratios estimates for the transitions of variable age, estimated
fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
AGE.1 0.996 < 2e− 16 ***
AGE.5 0.998 0.066 *

Hospital discharge AGE.9 1.000 0.723
AGE.13 1.000 0.901
AGE.17 1.003 0.086 *
AGE.2 1.081 < 2e− 16 ***
AGE.6 1.058 < 2e− 16 ***

In-hospital death AGE.10 1.064 < 2e− 16 ***
AGE.14 1.051 < 2e− 16 ***
AGE.18 1.069 < 2e− 16 ***
AGE.21 1.044 < 2e− 16 ***
AGE.3 1.005 < 2e− 16 ***
AGE.7 1.006 < 2e− 16 ***

Admissions to hospital AGE.11 1.005 < 2e− 16 ***
AGE.15 1.005 0.001 **
AGE.19 1.003 0.085 *
AGE.4 1.079 < 2e− 16 ***
AGE.8 1.068 < 2e− 16 ***

Out-of-hospital death AGE.12 1.068 < 2e− 16 ***
AGE.16 1.061 < 2e− 16 ***
AGE.20 1.055 < 2e− 16 ***
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Table 4.14: Hazard ratios estimates for the transitions of variable Charlson index,
estimated fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
CHARLSON.1 0.949 < 2e− 16 ***
CHARLSON.5 0.948 < 2e− 16 ***

Hospital discharge CHARLSON.9 0.961 < 2e− 16 ***
CHARLSON.13 0.959 < 2e− 16 ***
CHARLSON.17 0.963 < 2e− 16 ***
CHARLSON.2 1.096 < 2e− 16 ***
CHARLSON.6 1.079 < 2e− 16 ***

In-hospital death CHARLSON.10 1.083 < 2e− 16 ***
CHARLSON.14 1.075 < 2e− 16 ***
CHARLSON.18 1.080 < 2e− 16 ***
CHARLSON.21 1.076 < 2e− 16 ***
CHARLSON.3 1.084 < 2e− 16 ***
CHARLSON.7 1.072 < 2e− 16 ***

Admissions to hospital CHARLSON.11 1.071 < 2e− 16 ***
CHARLSON.15 1.069 < 2e− 16 ***
CHARLSON.19 1.073 < 2e− 16 ***
CHARLSON.4 1.110 < 2e− 16 ***
CHARLSON.8 1.143 < 2e− 16 ***

Out-of-hospital death CHARLSON.12 1.130 < 2e− 16 ***
CHARLSON.16 1.140 < 2e− 16 ***
CHARLSON.20 1.129 < 2e− 16 ***
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Table 4.15: Hazard ratios estimates for the transitions of variable pre hospitaliza-
tion cardiological evaluation, estimated fitting Cox model to Friuli Venezia Giulia
dataset.

HR Pr(>|z|)
PRE_HOSP.2 0.782 < 2e− 16 ***
PRE_HOSP.6 0.887 0.010 **

In-hospital death PRE_HOSP.10 0.955 0.399
PRE_HOSP.14 0.836 0.004 **
PRE_HOSP.18 0.898 0.179
PRE_HOSP.21 0.837 < 2e− 16 ***
PRE_HOSP.4 0.908 0.050 *
PRE_HOSP.8 0.766 < 2e− 16 ***

Out-of-hospital death PRE_HOSP.12 0.844 0.013 *
PRE_HOSP.16 0.787 0.005 **
PRE_HOSP.20 0.578 < 2e− 16 ***

Table 4.16: Hazard ratios estimates for the transitions of variable CW admission,
estimated fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
CW.1 1.174 < 2e− 16 ***
CW.5 1.203 < 2e− 16 ***

Hospital discharge CW.9 1.217 < 2e− 16 ***
CW.13 1.187 < 2e− 16 ***
CW.17 1.318 < 2e− 16 ***
CW.2 0.840 0.216
CW.6 0.411 < 2e− 16 ***

In-hospital death CW.10 0.495 < 2e− 16 ***
CW.14 0.646 0.003 **
CW.18 0.842 0.340
CW.21 0.485 < 2e− 16 ***
CW.4 0.763 0.031 *
CW.8 0.425 < 2e− 16 ***

Out-of-hospital death CW.12 0.486 < 2e− 16 ***
CW.16 0.442 < 2e− 16 ***
CW.20 0.440 0.006 **
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Table 4.17: Hazard ratios estimates for the transitions of variable worsening index,
estimated fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
WORSENING.2 1.054 0.455
WORSENING.6 0.940 0.352

In-hospital death WORSENING.10 1.032 0.653
WORSENING.14 0.944 0.463
WORSENING.18 0.833 0.052 *
WORSENING.21 0.835 < 2e− 16 ***
WORSENING.3 1.356 < 2e− 16 ***
WORSENING.7 1.227 < 2e− 16 ***

Admissions to hospital WORSENING.11 1.209 < 2e− 16 ***
WORSENING.15 1.209 < 2e− 16 ***
WORSENING.19 1.195 < 2e− 16 ***
WORSENING.4 0.968 0.686
WORSENING.8 0.932 0.396

Out-of-hospital death WORSENING.12 0.767 0.010 **
WORSENING.16 0.892 0.319
WORSENING.20 1.025 0.854
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Table 4.18: Hazard ratios estimates for the transitions of variable ICU/IHC index,
estimated fitting Cox model to Friuli Venezia Giulia dataset.

HR Pr(>|z|)
ICU/IHC.5 0.852 < 2e− 16 ***

Hospital discharge ICU/IHC.9 0.876 < 2e− 16 ***
ICU/IHC.13 0.891 < 2e− 16 ***
ICU/IHC.17 0.887 < 2e− 16 ***
ICU/IHC.6 1.315 < 2e− 16 ***
ICU/IHC.10 1.218 < 2e− 16 ***

In-hospital death ICU/IHC.14 1.453 < 2e− 16 ***
ICU/IHC.18 1.227 0.009 **
ICU/IHC.21 1.538 < 2e− 16 ***
ICU/IHC.7 1.014 0.531

Admissions to hospital ICU/IHC.11 1.030 0.196
ICU/IHC.15 1.009 0.730
ICU/IHC.19 0.978 0.498
ICU/IHC.8 1.382 < 2e− 16 ***

Out-of-hospital death ICU/IHC.12 1.459 < 2e− 16 ***
ICU/IHC.16 1.691 < 2e− 16 ***
ICU/IHC.20 1.516 < 2e− 16 ***
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Figure 4.4: 95% confidence intervals for hazard ratios of sex (all other covariates
fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.

Figure 4.4 shows the confidence intervals for hazard ratios of sex variable.
We note that the significant terms are all positive. This indicates that being
a man increases the probabilities of being discharged and of dying in hospital.

Figure 4.5 shows the confidence intervals for hazard ratios of age variable.
This variable increases the probabilities of every transition of kind admission
to hospital, in-hospital deaths and out-of-hospital deaths. In particular the
effects on death transitions are greater than the others.
Conversely, this variable decreases the probabilities of discharge from hospi-
tal transitions or not influences them.

Figure 4.6 shows the confidence intervals for hazard ratios of Charlson
index variable.
This variable increases the probabilities of every transition of kind admission
to hospital, in-hospital deaths and out-of-hospital deaths and decreases the
probabilities of discharge from hospital transitions.

Figure 4.7 shows the confidence intervals for hazard ratios of pre hospi-
talization cardiological evaluation variable.
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Figure 4.5: 95% confidence intervals for hazard ratios of age (all other covariates
fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.

Figure 4.6: 95% confidence intervals for hazard ratios of Charlson index (all other
covariates fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.
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Figure 4.7: 95% confidence intervals for hazard ratios of pre hospitalization cardi-
ological evaluation (all other covariates fixed) estimated fitting Cox model to Friuli
Venezia Giulia dataset.

We note that the significant terms are all negative. This means that having a
pre hospitalization decreases the probabilities of having a transition to death.

Figure 4.8 shows the confidence intervals for hazard ratios of CW admis-
sion variable.
The hazard ratios related to the discharge from hospital are all bigger than
one, indicating that being admitted in CW increases the LOS of a patients.
On the other hand, the hazard ratios related to death inside or outside hospi-
tal are all smaller than one. Being admitted in this ward is a protective factor
for the deaths since it decreases the probability to have a transition to death.

Figure 4.9 shows the confidence intervals for hazard ratios of worsening
index variable.
Having a hospitalization in the five years before the index admission increases
the istantaneous risk of being readmitted and decreases or does not influence
the risk of death.
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Figure 4.8: 95% confidence intervals for hazard ratios of CW admission (all other
covariates fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.

Figure 4.9: 95% confidence intervals for hazard ratios of worsening index (all other
covariates fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.
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Figure 4.10: 95% confidence intervals for hazard ratios of ICU/IHC (all other
covariates fixed) estimated fitting Cox model to Friuli Venezia Giulia dataset.

Figure 4.10 shows the confidence intervals for hazard ratios of ICU/IHC
index variable.
Experiencing one of these events decreases the probabilities of being dis-
charged from hospital and increases the probabilities of dying. The proba-
bilities of being readmitted in hospital are not influenced by this variable.

We can conclude saying that all the results obtained fitting the multi-
state model on the Friuli Venezia Giulia dataset are coherent with the results
obtained fitting the same model on the Trieste dataset.
The influence of the different variables on the different transitions is the same
in both cases.
Anyway, we have to note that the significant terms of the model fitted on
the Friuli Venezia Giulia dataset are more than the significant terms of the
model fitted on the Trieste dataset. This could be due to the fact that the
first dataset is bigger and more comprehensive, and this can lead to more
significative estimates.
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Chapter 5

Conclusions and further
developments

In this thesis work we analized two different administrative dataset, in
which several information about HF patients from Trieste and from Friuli
Venezia Giulia region are collected.

Firstly, we focused on Trieste dataset. We selected the most relevant ad-
ministrative information and we computed some clinical indices. Afterwards,
we applied a musti-state model in order to analyze the effect of different co-
variates (i.e. sex, age, Charlson index, worsening index, presence of a pre
hospital cardiological evaluation, ICU/IHC index) on the admission to hos-
pital, discharge from hospital and death dinamic. We showed that some
variables act as a protective factor in some transitions and as a risk factor
in other transitions.
Then, we analyzed how the previous variables affect the survival outcome,
through the Kaplan-Meier estimate of the survival, stratified according to
the different variables (age at first admission, sex, Charlson index at fist ad-
mission, presence of a pre hospitalization cardiological evaluation, presence
of an ICU/IHC event). We noticed that age is an important discriminant
factor and that the presence of an ICU/IHC event has a double effect that
depends on the time from the first admission.
We also analyzed how the previous variables affect the time to second ad-
mission outcome, throught the Kaplan-Meier estimate of the time to second
admission, stratified according to the different variables (age, Charlson index
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and ICU/IHC index). In this case the effect of the variables is less evident,
even though, they are always statistically significant.

Afterwards, we focused on Friuli Venezia Giulia dataset, a bigger dataset
that contains also Trieste area.
First of all, we analyzed the distribution of the main features among the 20
existing residence districts and we plotted the Kaplan-Meier estimate of the
survival, stratified according to these districts. Through this first analysis
we noted that the residence district does not significantly affect the survival.
In order to confirm this hypothesis we applied a npdf Cox model with res-
idence district specific frailty. Indeed, through this model, we can evaluate
if a possible clustering structure, based on the residual variability, could be
found among the residence districts. If no clustering structure is detected,
it means that the residual variability should not be modeled through a dis-
crete random variable. The results of this model suggested the absence of a
possible clustering structure, hence we could state that there is homogeneity
among the hospital treatment in the different residence districts.
Subsequently, we analyzed the cohort distribution and homogeneity. Firstly,
we applied different Cox models with a parametric shared frailty term, dis-
tributed as a Gamma or a Normal, in order to evaluate if the residual vari-
ability can be explained with this term. Since the estimate of the frailty
variance is low (0.005 and 0.003), we concluded that the residual variabil-
ity should not be explained through an individual-specific parametric frailty
term. Then, we applied the npdf Cox algorithm with patient specific frailty.
However, the simulation study reported in Appendix A showed us that the
estimates of this algorithm are not reliable in such specific case. We could
not detect a possible clustering structure based on the residual variability
but we could detect a possible clustering structure based on the recorded
covariates. So, we decided to proceed fitting a k-means algorithm. We
detected four clusters characterized by different mean survival times and dif-
ferent percentages of deaths, primarily justified by the different mean ages
of the patients. In order to better understand the differences among the four
clusters, we fitted a simple Cox model on each cluster. An interesting aspect
that emerged, and that confirmed the results obtained with the analysis of
the Trieste dataset, is the double effect of the ICU/IHC index: it acts as a
protective factor for older patients and as a risk factor for younger patients.
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Finally, we concluded the analysis of Friuli Venezia Giulia dataset fitting
a multi-state model whose results confirmed the ones obtained through the
analysis of Trieste dataset.

As concerns the limitations and the possible future developments, we are
aware of the fact that Charlson index is not the best index to measure the
comorbidity load in such an old cohort. In this case, considering CIRS index
(Cumulative Illness Rating Scale) would have been more appropriate, but we
were not able to compute this index because some of the required variables
(i.e. psychiatric conditions) are not routinely measured. Moreover, in this
work we considered the combined binary index ICU/IHC, but two separate
indices or an index that takes into account the length of these events could
be considered and could be a target to be addressed in future works.
After highlighting the fragility of the npdf Cox algorithm with patient spe-
cific frailty, we concluded the study of the cohort homogeneity through the
application of the k-means algorithm, that highlighted the presence of pos-
sible clusters based on the recorded covariates. This clustering structure
should be studied in deep and other clustering techniques could be consid-
ered in future works.
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Appendix A

Simulation study

A.1 Npdf Cox model

A simulation study is conducted to evaluate the performance of the esti-
mators obtained with the npdf Cox algorithm, described in Section 2.2.
We simulate 100 datasets for each value of N=number of groups (e.g. res-
idence districts) ∈ {10, 50, 100} and S=statistical units per group (e.g. pa-
tients) ∈ {1, 5, 20, 50, 100}.
The number of latent populations is varied in two scenarios with K = 2 and
4, while the mixing proportions and frailty ratios are fixed at balanced values
listed in Table A.1.

K π1 π2 π3 π4 w1 w2 w3 w4

2 0.5 0.5 - - 1 3 - -
4 0.3 0.2 0.3 0.2 1 1.5 3 5

Table A.1: Values of mixing proportions and frailty ratios used in the simulation
staudy for each number of latent populations K.

For all the simulations, we set the covariate-related log hazard ratio =
0.4, and define the baseline cumulative hazard so that Λ−1

0 (t) = 0.01 · t1.9 in
order to mimic the dataset that motivated this study.
The aim of the simulation is to estimate how well the algorithm estimates
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the number of latent populations K for various values of N and S.

In Table A.2 and A.3 we report the results of the simulations, respec-
tively for K=2 and 4 latent populations. For each combination of N and
S we report the number of latent populations estimated by AIC, BIC and
Laird, together with the estimated mixing proportions π. When the num-
ber of estimated latent populations is smaller that the real number of latent
populations, we report an asterisk, since it is not possible to compute the
estimate.

N S AIC BIC Laird Estimated π
10 1 1 1 1 *
10 5 1 1 1 *
10 20 2 2 3 0.4 0.6
10 50 2 2 2 0.5 0.5
10 100 2 2 3 0.5 0.5

50 1 1 1 2 0.16 0.84
50 5 1 1 3 0.24 0.76
50 20 2 2 2 0.5 0.5
50 50 2 2 2 0.5 0.5
50 100 2 2 2 0.5 0.5

100 1 1 1 2 0.3 0.7
100 5 1 1 2 0.5 0.5
100 20 2 2 3 0.52 0.48
100 50 2 2 4 0.5 0.5
100 100 2 2 2 0.5 0.5

Table A.2: Simulation study results for each combination of N and S when 2
latent populations are present.
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N S AIC BIC Laird Estimated π
10 1 1 1 1 *
10 5 1 1 2 *
10 20 2 2 3 *
10 50 2 2 3 *
10 100 3 3 3 *

50 1 1 1 2 *
50 5 1 1 3 *
50 20 2 2 4 0.36 0.12 0.42 0.1
50 50 4 4 4 0.28 0.22 0.3 0.2
50 100 4 4 4 0.34 0.16 0.32 0.18

100 1 1 1 1 *
100 5 1 1 3 *
100 20 2 2 4 0.22 0.31 0.3 0.17
100 50 4 4 5 0.3 0.21 0.3 0.19
100 100 4 4 5 0.28 0.22 0.3 0.2

Table A.3: Simulation study results for each combination of N and S when 4
latent populations are present.

Looking at the results in Table A.2 and A.3, we can note that AIC and
BIC estimate, in the majority of the scenarios, the same number of latent
populations, while Laird tends to estimate higher values, as expected.
We can observe that the algorithm performs well only when the number of
statistical units per group is sufficiently high. For example in Table A.2,
where two latent populations are present, the correct number of latent pop-
ulation is estimated only when the statistical units per group are more than
20, both when we have 10, 20 or 100 groups. Otherwise, in Table A.3, where
four latent populations are present, the correct number of latent population
is estimated only when we have more than 50 statistical units per group in
case of 20 and 100 groups. When we have one unit per group the algorithm
always estimates only one latent population. This means that in such cases
others clustering techniques have to be considered.
Another thing to note is that, when the real number of latent population
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increases, the estimates are more precise if we have many groups; we can see
for example the results of the first block from the top in Table A.3. This is
quite reasonable, in fact, when there are 10 groups it is unlikely that there
are 4 latent populations. We can conclude saying taht this model is a good
method of screening when we have complex and large databases.

A.2 Cox model with a shared gamma frailty term

In this section we want to analyze if, even with an algorithm different
from the npdf Cox one, the estimation of the model parameters is difficult
when the groups are made by only one unit. For this reason a simulation
study is conducted to evaluate the performance of the estimators obtained
with the Cox algorithm with gamma distributed frailty. In particular we
evaluate the performance of the coxph function of the survival pakage of R.
We simulate 100 datasets for each value of N=number of groups (e.g. res-
idence districts) ∈ {10, 50, 100} and S=statistical units per group (e.g. pa-
tients) ∈ {1, 5, 20, 50, 100}. We repeat the simulations for four different val-
ues of θ=variance of the gamma distributed frailty ∈ {0.3, 0.7, 1.5, 2}. We
set the covariate-related log hazard ratio = 0.4, and we define the baseline
cumulative hazard so that Λ−1

0 (t) = 0.01 · t1.9, in order to mimic the dataset
that motivated this study.
The aim of the simulation is to evaluate how well the algorithm estimates
the variance of random effect and the covariate-related log hazard ratio β̂
for variuous values of N and S.

In Table A.4, A.5, A.6 and A.7 we report the results of the simulations,
respectively for θ = 0.3, 0.7, 1.5 and 2. For each combination of N and S

we report the mean value and the standard deviation of the variance of ran-
dom effect and of β̂, hence we compute the mean and the standard deviation
of the estimates obtained fitting the Cox model on the 100 simulated dataset.

Looking at the results in Table A.4, A.5, A.6,A.7 we can note that, in the
majority of the scenarios, the covariate-related log hazard ratio is correctly
estimated, since the values referring to β̂ are around 0.4, that is the real
value. However, we note that the β̂ estimates, in the case of groups made by
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N S Variance of random effect β̂

mean (sd) mean (sd)
10 1 0.004 (0.048) 0.376 (0.601)
10 20 0.309 (0.158) 0.389 (0.081)
10 50 0.477 (0.225) 0.408 (0.058)
10 100 0.734 (0.190) 0.403 (0.032)

50 1 0.023 (0.117) 0.369 (0.195)
50 20 0.370 (0.104) 0.403 (0.031)
50 50 0.606 (0.105) 0.401 (0.020)
50 100 0.810 (0.064) 0.398 (0.014)

100 1 0.052 (0.170) 0.363 (0.141)
100 20 0.388 (0.077) 0.401 (0.027)
100 50 0.633 (0.063) 0.405 (0.015)
100 100 0.829 (0.043) 0.402 (0.009)

Table A.4: Cox algorithm simulation study results for each combination of N and
S when the real variance of the gamma distributed frailty is 0.3.

only one unit, are much less accurate. We can see for example how, when
S=1 and θ = 2 in Table A.7, the estimates are 0.306, 0.159 and 0.182.
Looking at the estimates of the variance of random effect, we can note that
when S = 1 the estimates are always inaccurate. Instead, for bigger values
of S, the estimate depends on θ. When θ = 0.3, in Table A.4, the estimate
is very accurate for S = 20 and less accurate for bigger values of S. When
θ = 0.7, in Table A.5, the estimate is not very accurate for any S values
bigger than 1. When θ = 1.5 or 2, in Table A.6 and A.7, the estimate is
fairly accurate for each value of S bigger than 1.

These results are in line with our hypothesis: the parameters estimates
of a shared frailty survival model when all the groups are made by only one
unit are not accurate and other methods are needed.
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N S Variance of random effect β̂

mean (sd) mean (sd)
10 1 0.007 (0.073) 0.393 (1.187)
10 20 0.690 (0.299) 0.412 (0.092)
10 50 0.882 (0.214) 0.395 (0.044)
10 100 0.954 (0.148) 0.403 (0.040)

50 1 0.025 (0.126) 0.259 (0.189)
50 20 0.806 (0.121) 0.402 (0.035)
50 50 0.932 (0.062) 0.404 (0.020)
50 100 1.002 (0.029) 0.398 (0.014)

100 1 0.095 (0.229) 0.290 (0.157)
100 20 0.826 (0.080) 0.404 (0.025)
100 50 0.954 (0.042) 0.399 (0.014)
100 100 1.000 (0.018) 0.401 (0.011)

Table A.5: Cox algorithm simulation study results for each combination of N and
S when the real variance of the gamma distributed frailty is 0.7.

N S Variance of random effect β̂

mean (sd) mean (sd)
10 1 4.8e-07 (8.4e-08) 0.263 (0.574)
10 20 1.433 (0.488) 0.407 (0.074)
10 50 1.364 (0.519) 0.398 (0.051)
10 100 1.449 (0.481) 0.406 (0.034)

50 1 0.030 (0.123) 0.189 (0.163)
50 20 1.552 (0.280) 0.398 (0.035)
50 50 1.526 (0.278) 0.401 (0.020)
50 100 1.521 (0.279) 0.398 (0.015)

100 1 0.118 (0.292) 0.202 (0.167)
100 20 1.505 (0.214) 0.402 (0.026)
100 50 1.538 (0.202) 0.400 (0.013)
100 100 1.617 (0.222) 0.399 (0.010)

Table A.6: Cox algorithm simulation study results for each combination of N and
S when the real variance of the gamma distributed frailty is 1.5.
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N S Variance of random effect β̂

mean (sd) mean (sd)
10 1 0.007 (0.075) 0.306 (0.599)
10 20 1.832 (0.756) 0.401 (0.099)
10 50 1.925 (0.739) 0.393 (0.055)
10 100 1.860 (0.696) 0.396 (0.034)

50 1 0.057 (0.227) 0.159 (0.202)
50 20 2.018 (0.375) 0.398 (0.032)
50 50 2.000 (0.322) 0.396 (0.020)
50 100 1.958 (0.289) 0.400 (0.013)

100 1 0.133 (0.309) 0.182 (0.144)
100 20 2.025 (0.307) 0.400 (0.025)
100 50 2.014 (0.220) 0.402 (0.016)
100 100 2.013 (0.235) 0.400 (0.010)

Table A.7: Cox algorithm simulation study results for each combination of N and
S when the real variance of the gamma distributed frailty is 2.
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Appendix B

Code

In this appendix we will report the main functions that we used to obtain
the results reported in Chapter 3.

1 library(survival)
2

3 # COX MULTI -STATE MODEL
4

5 # dat_expanded , as required by the "coxph" function , is a
6 # dataset in long format whose columns are:
7 # AGE.1, AGE.2,...,R_A.20.
8

9 modello_dummy <- coxph(Surv(time ,status) ~
10

11 AGE.1 + AGE.5 + AGE.9 + AGE.13 + AGE .17
12 + AGE.2 + AGE.6 + AGE .10+ + AGE.14 + AGE .18 + AGE .21 +
13 + AGE.3 + AGE.7 + AGE .11 + AGE.15 + AGE .19 +
14 + AGE.4 + AGE.8 + AGE .12 + AGE.16 + AGE .20 +
15

16 + SEX.1 + SEX.5 + SEX.9 + SEX.13 + SEX .17
17 + SEX.2 + SEX.6 + SEX .10 + + SEX.14 + SEX.18 + SEX .21 +
18

19 + CH.1 + CH.5 + CH.9 + CH.13 + CH.17
20 + CH.2 + CH.6 + CH.10+ + CH.14 + CH.18 + CH.21 +
21 + CH.3 + CH.7 + CH.11 + CH.15 + CH.19 +
22 + CH.4 + CH.8 + CH.12 + CH.16 + CH.20 +
23

24 + PRE.2 + PRE.6 + PRE .10 + PRE.14 + PRE .18 + PRE.21 +
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25 + PRE.4 + PRE.8 + PRE .12 + PRE.16 + PRE .20 +
26

27 + CW.1 + CW.5 + CW.9 + CW.13 + CW.17 +
28 + CW.2 + CW.6 + CW.10 + CW.14 + CW.18 + CW.21 +
29 + CW.4 + CW.8 + CW.12 + CW.16 + CW.20 +
30

31 + WOR.3 + WOR.7 + WOR .11 + WOR.15 + WOR .19 +
32 + WOR.2 + WOR.6 + WOR .10 + WOR.14 + WOR .18 + WOR.21 +
33 + WOR.4 + WOR.8 + WOR .12 + WOR.16 + WOR .20 +
34

35 + R_A.1 + R_A.5 + R_A.9 + R_A.13 + R_A.17
36 + R_A.2 + R_A.6 + R_A.10+ + R_A.14 + R_A.18 + R_A.21 +
37 + R_A.3 + R_A.7 + R_A.11 + R_A.15 + R_A.19 +
38 + R_A.4 + R_A.8 + R_A.12 + R_A.16 + R_A.20 +
39

40 + strata( trans ), data=dat_expanded , method="breslow")
41

42 summary( modello_dummy )
43

44

45 # KAPLAN -MEIER ESTIMATES OF THE SURVIVAL CURVES
46 # in dati_km we have one row for each patient
47 dati_km<-read.table("dati_vita_km.txt",header=T)
48

49 # as example we report the computation to obtain the
50 # estimate of the survival stratified by ICU/IHC index ,
51 # the stratifications according to all the others
52 # variables are similar
53

54 # we create a survival object
55 km <- survfit(Surv(vita ,stato_vita) ~
56 r_a, data = dati_km , conf.type = "log -log")
57

58 # we plot the KM curve
59 plot(km, conf.int=T,col=c(’blue’,’orange ’),
60 xlab=’Time[days]’, ylab=’Survival ’)
61

62 # we perform the log rank test
63 logrank <-survdiff(Surv(vita ,stato_vita) ~
64 r_a,data = dati_km)
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