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Abstract

Kidney tumor is the twelfth most common type of cancer, with 338,000 new cases

annually diagnosed. The most effective treatment for small tumors is the surgical

resection of the tumoral tissue. The treatment procedure is called partial nephrectomy.

Partial nephrectomy can be performed in Minimaly Invasive Surgery (MIS), whose

advantages for the patient, when compared to open surgery, are bleeding reduction,

smaller incision size, less pain, shorter recovery time and lower risk of infection. The

main MIS disadvantages are, for the surgeon, the loss of depth perception and the

difficulty in intra-operative identification of relevant anatomical structures. In the last

years, Robotic MIS (RMIS) has become spread; the advantages are 3D view, tremor

filtering and wide surgical instrument range of motion. However, RMIS suffers from

the same drawback of MIS.

A solution to overcome these drawbacks is provided by Augmented Reality (AR).

AR refers to the superimposition on the intra-operative scene of virtual elements,

such as the patient-specific anatomical model. AR can help providing intra-operative

guidance, information matching and identification of the relevant structures.

Integrating AR in partial nephrectomy requires to deal with intra-operative organ

deformation in 3D (due to insufflation, organ manipulations and changes in position),

that is still an open issue. The hypothesis of this thesis is that exploiting deformable

registration is crucial to tackle intra-operative tissue deformation.

The focus of this work is on the registration between the pre-operative kidney model

and the intra-operative kidney surface.

The patient-specific kidney pre-operative model was obtained from pre-operative

Computed Tomography (CT). The CT was segmented with a semiautomatic method

exploiting deformable active contour models. From the obtained segmentation mask,

the kidney model was retrieved. The model vertexes were retrieved in order to perform

a surface-based registration.



The intra-operative kidney images were acquired with the da Vinci Research Kit

stereocamera. Kidney surface was reconstructed with a dense soft-tissue 3D recon-

struction. The intra-operative kidney surface was retrieved as point cloud.

Intra-operative registration was then performed between the pre-operative model

and the intra-operative point cloud in two steps: (i) intial alignment was performed

manually or with pair-point matching algorithm based on corresponding markers (ma-

nually identified by an user), (ii) deformable registration refining was performed with

Free Form Deformation (FFD) algorithm based on B-splines.

For experimental purpose, a kidney silicon phantom was developed according to

the patient-specific model in order to acquire the intra-operative point cloud.

The registration algorithms were implemented in C++ using the Visualization

Toolkit (VTK) and the Insight Segmentation and Registration Toolkit (ITK) libraries.

To test the registration workflow in a controlled environment, an intra-operative

point cloud was manually created deforming the kidney model. The registration gave

high results when registering in 2D the kidney model boundary to the kidney deformed

boundary with different levels of deformation (mean Root Mean Square Error (RMSE)

reduction (−∆RMSE) was 34.68%). The results were good when the registration was

performed in 3D (mean −∆RMSE was 6.27%). The relation between the algorithm

performance and the deformation level was statistically investigated with the Wilcoxom

signed-rank test (α = 0.05) showing that the algorithm was robust with respect to the

deformation level.

In both the cases, the performance of FFD were significantly higher (Wilcoxon

signed-rank test, α = 0.05) compared to a rigid registration algorithm.

The developed workflow was tested to register the 3D kidney model to the intra-

operative point cloud acquired on phantom. The best −∆RMSE obtained in the (i) ini-

tial alignment was 89%. The best −∆RMSE obtained in the (ii) deformable registration

was 28%. The overall registration process best −∆RMSE was 91%.

The high −∆RMSE highlights the need, in a partial nephrectomy AR system, to

tackle the intra-operative kidney deformation with deformable registration algorithm.
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Sommario

Il tumore al rene é il dodicesimo tipo di cancro piú comune in entrambi i sessi, con

338 000 nuovi casi ogni anno. Il trattamento piú efficace per tumori di piccola taglia

é la rimozione chirurgica del tessuto tumorale. La procedura é chiamata nefrectomia

parziale.

La nefrectomia parziale si puó eseguire in chirurgia microinvasiva, i cui vantaggi

per il paziente, rispetto all’esecuzione in chirurgia aperta, sono minore sanguinamento,

meno dolore, tempo di ricovero piú breve e minor rischio di infezioni. I maggiori

svantaggi della chirurgia microinvasiva sono, dal punto di vista del chirurgo, la perdita

della percezione della profonditá e la difficoltá nell’identificare le strutture anatomiche

di interesse durante la procedura.

Negli ultimi anni, l’uso di sistemi robotici nella chirurgia microinvasiva si é diffuso; i

vantaggi sono la visione 3D, il filtraggio del tremore e una migliore mobilitá degli stru-

menti chirurgici. Tuttavia, la chirugia robotica microinvasiva ha le stesse limitazioni

in termini di perdita di profonditá e difficoltá nell’identificazione delle strutture. Una

soluzione a queste problematiche é offerta dalla realtá aumentata. La realtá aumen-

tata consiste nella sovrapposizione sulla scena intraoperatoria di elementi virtuali, ad

esempio il modello anatomico specifico per il paziente. La realtá aumentata puó offrire

supporto fornendo una guida nel contesto intraoperatorio, permettendo la fusione delle

informazioni e lidentificazione delle strutture di interesse.

Per l’integrazione della realtá aumentata nella nefrectomia parziale, un problema

tuttora aperto riguarda il trattamento della deformazione intraoperatoria degli organi,

dovuta all’insufflazione del paziente, alla manipolazione degli organi e ai cambi di

posizione. L’ipotesi su cui si basa questa tesi é che utilizzare la registrazione deformabile

é cruciale per trattare la deformazione intraoperatoria dei tessuti.

Il punto centrale di questo lavoro é la registrazione tra il modello preoperatorio del

rene e la sua superficie visibile intraoperativamente.



Il modello preoperatorio del rene del paziente é stato ottenuto da una tomografia

computerizzata eseguita preoperativamente e segmentata con un metodo semiautoma-

tico che utilizza deformable active contour model. Il modello del rene é stato poi

ricavato utilizzando l’algoritmo di fast marching method. I vertici del modello sono

stati estratti per poter eseguire una registrazione basata sulla superficie.

Le immagini intraoperatorie del rene sono state acquisite con la stereo camera del

da Vinci Research Kit. La superficie del rene é stata ricavata con una ricostruzione 3D

densa dei tessuti molli e la nuvola di punti é stata ottenuta.

La registrazione intraoperatoria é stata poi eseguita tra il modello preoperatorio e la

nuvola di punti intraoperatoria in due step: (i) l’allineamento iniziale é stato eseguito

manualmente o con un algoritmo basato su punti corrispondenti (che devono essere

identificati manualmente), (ii) l’aggiustamento é stato eseguito con un algoritmo di

registrazione deformabile Free Form Deformation (FFD), basato su B-splines.

Per ragioni sperimentali, un fantoccio di silicone del rene é stato sviluppato secondo

il modello specifico del paziente per acquisire la nuvola di punti intraoperatoria.

Gli algoritmi di registrazione sono stati implementati in C++ utilizzando le librerie

Visualization Toolkit (VTK) e Insight Segmentation and Registration Toolkit (ITK).

Per testare il sistema in un ambiente controllato, una nuvola di punti intraope-

ratoria é stata creata deformando manualmente il modello del rene. I risultati della

registrazione mostravano che si otteneva un’alta accuratezza registrando in 2D i con-

torni del modello del rene sui contorni del rene deformato (la riduzione −∆RMSE media

del Root Mean Square Error (RMSE) era del 34.68%) testando diversi livelli di defor-

mazione. I risultati sono stati buoni quando la registrazione é stata eseguita in 3D (il

−∆RMSE era del 6.27%). Il legame tra i risultati dell’algoritmo e il livello di deforma-

zione é stato investigato statisticamente con il test di Wilcoxon (α = 0.05) mostrando

che l’algoritmo é robusto rispetto alla deformazione.

In entrambi i casi, i risultati di FFD erano significativamente (test di Wilcoxon con

α = 0.05) piú alti di quelli ottenuti con un algoritmo di registrazione rigido.

L’algoritmo di registrazione é stato utilizzato per registrare il modello 3D del rene

alla nuvola di punti intraoperatoria acquisita sul fantoccio. Il miglior−∆RMSE ottenuto

(i) nell’allineamento iniziale é stato del 89%. Il miglior −∆RMSE ottenuto (ii) nella fase
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di registrazione deformabile é stato del 28%. Il miglior −∆RMSE calcolato su entrambi

gli step é stato del 91%.

Gli alti −∆RMSE ottenuti evidenziano la necessitá, in un sistema che utilizza realtá

aumentata in nefrectomia, di trattare la deformazione intraoperatoria del rene con

algoritmi di registrazione deformabile.
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Chapter 1

INTRODUCTION

Kidney tumor is the 12th most common type of cancer [1], with 338,000 new cases

annually diagnosed1. Men are more affected by kidney tumor2, as shown in Fig. 1.1.

The occurrence is higher, both for male and female, in the developed regions with

respect to the developing ones, considering the estimated age-standardized rates.

Risk factors for kidney tumors are smoking, obesity, high blood pressure and expo-

sure to carcinogenic arsenic3. Moreover, some chemicals as asbestos, cadmium, some

organic solvents, pesticides and fungal toxins and some steroidal estrogens are suspec-

ted to be risk factors for kidney tumor. Another risk factor is the presence of kidney

1https://www.worldatlas.com/articles/countries-with-the-highest-incidenceof-

kidney-cancer-in-the-world.html
2http://www.wcrf.org/int/cancer-facts-figures/worldwide-data
3https://www.cancer.org/cancer/kidney-cancer/causes-risks-prevention/risk-factors.html

(a) Incidence for Men. (b) Incidence for Women.

Figura 1.1: Estimated cancer incidence worldwide in 2012 according to WHO.
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Chapter 1. INTRODUCTION

Figura 1.2: Kidney cancer in computed tomography.

diseases such as the von Hippel-Lindau disease, the Birt-Hogg-Dube syndrome, Cowden

syndrome and Tuberous sclerosis and genetic factors.

An example of kidney cancer seen in a Computed Tomography (CT) in shown in

Fig. 1.2. Treatment options for kidney tumor include 4:

• Surgery: surgical treatment (nephrectomy) is the most effective choice for several

type of kidney cancers. It assures the best treatment outcomes for the patient.

• Ablation: for people who cannot undergo surgery, ablation is a treatment option.

Ablation treatments include cryotherapy, radiofrequency ablation and arterial

embolization.

• Radiation therapy: high-energy radiation are used to treat cancer cells. However,

kidney cancer cells are not very sensitive to radiation, so this treatment is not

common.

• Targeted therapies: used to treat advanced cancer or as complementary therapy

after surgery. The target therapies block angiogenesis (growth of the new blood

vessels that nourish cancers) or important proteins in cancer cells necessary for

their lives.

• Chemotherapy. The treatment is rarely used since kidney tumor is really resistant

to chemo drugs.

4http://pubs.rsna.org/doi/full/10.1148/rg.266065010
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Chapter 1. INTRODUCTION

Figura 1.3: Ports comparison in open (left) and laparoscopic surgery (right).

In Sec. 1.1 nephrectomy is discussed in detail, as it represents the main treatment

option.

1.1 Nephrectomy

There are three main kinds of nephrectomy:

• Simple nephrectomy: the entire kidney affected by tumor is removed.

• Radical nephrectomy: the surgeon removes the entire kidney, the layer of fat

surrounding the kidney, the ureter, the adrenal gland and nearby lymph nodes.

• Partial nephrectomy: only tumoral tissue is removed, preserving healthy tissues.

In the last decades, all kinds of nephrectomy were traditionally performed in open

surgery. Through the aperture in the abdomen, open surgery allows the surgeon to

direct access the healthy tissues and the tumor and to identify them clearly according

to their appearance, texture and consistency.

However, it presents several drawbacks for the patients, such as high bleeding, long

recovery time, pain and high risk of infection. To overcome such drawbacks, Minimal

Invasive Surgery (MIS) has recently become a valid alternative to open surgery.

1.1.1 Nephrectomy in MIS

Nowadays, laparoscopic partial nephrectomy, i.e. performed in MIS, is considered to

be the standard of care for small renal tumors [2]. In MIS procedures, three or four

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 3



Chapter 1. INTRODUCTION

Figura 1.4: Set-up in laparoscopic nephrectomy.

incisions are made in the patient’s abdomen to provide access for surgical instrumen-

ts and endoscope. Differences incision size for open nephrectomy and laparoscopic

nephrectomy are shown in Fig. 1.3.

MIS leads to proved benefits for the patient such as reduction of bleeding, recovery

time, scar dimension, pain and risk of infection [3, 4].

In MIS nephrectomy, the kidney and eventually the surrounding structures are

detached internally, placed in an impermeable bag and removed through one of the

incisions using a morcellator. The procedure set-up is shown in Fig. 1.4.

1.1.2 Robotic MIS

In the last years, Robotic MIS (RMIS) has become more and more spread. The birth

of the RMIS can be set in the ’90s, even if robots where used in surgery since ’80s [5].

Ones of the first robotic devices for MIS in neurosurgery were developed in [6] and [7].

In the next years, some robotic devices for MIS were developed and commercialized,

for example NeuroMate and NeuroArm in the neurosurgery field and da Vinci in the

laparoscopic field.

Nowadays, robotic systems for RMIS provide three-dimensional view, tremor filte-

ring and allow for a wide range of motion of the surgical instruments.

However, both MIS and RMIS present some criticisms, such as the impairment of

haptic feedback for detailed discrimination of different structures, the loss of depth

perception due to the monocular endoscopic camera and the surgeon disorientation.

The lack of haptic feedback can be partially solved introducing force feedback in the

instruments, to improve the quality and safety of the surgical procedure [8].

To overcome these drawbacks, Image Guided Surgery (IGS) or computer integra-

ted surgery has progressively become more popular. The IGS aim is to integrate the

4 Anna Morelli



Chapter 1. INTRODUCTION

Figura 1.5: Augmented reality in surgery. On the intra-operative scene organs model are projected

(central). The endoscopic view is displayed without augmentation (left) and with augmentation

(right).

computer technologies to the surgical procedures [9]. IGS can integrate intra-operative

imaging system to identify, in the Operating Room (OR), the trajectories and the

relevant structures identified in the pre-operative phase, or can use pre-operative ima-

ges to retrieve patient-specific anatomical model. Thus, it provides navigational aid

[10]. Among IGS methodologies, Augmented Reality (AR) has several applications in

laparoscopic nephrectomy.

1.2 Augmented reality

AR is the superimposition and combination on a real view (the intra-operative scene)

of some virtual elements (the patient-specific anatomy) not visible in that view [11, 8]

and reported on a screen, as is shown in Fig. 1.5. Moreover, sensitive structures, such

as vessels, can be identified in the pre-operative plan [12] and their intra-operative

position can be retrieved with AR systems. The robot can be avoided to enter such

forbidden structures, e.g. with the implementation of Active-Constraints (AC) control.

The patient-specific anatomy is obtained with high resolution anatomical imaging, such

as CT or Magnetic Resonance Imaging (MRI). The anatomy can be acquired both in

the pre-operative (more common) on in the intra-operative phase. The intra-operative

view is often the endoscopic view.

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 5



Chapter 1. INTRODUCTION

The proved benefits of AR are, as reported in [13]:

• Intra-operative guidance is provided with rapid identification of targets and

critical structures.

• The match of the information from different sources is made by the system, so the

surgeon’s cognitive load is reduced since and the procedure efficiency is increased.

• The pre-operative plan can be represented in the intra-operative scene.

• Surgeon’s disorientation due to the narrow laparoscopic field of view is avoid.

During nephrectomy, AR environment offers a potential clinical advantages in two

stages [14]:

1. In the initial phase of the procedure, identifying important structures such as the

major vessels and the renal vessels.

2. During tumor resection, fixing negative surgical margins that the instruments can

not pass. In this case, the accuracy of the augmentation is a critical parameters

and should assure resection margin of 5-7 mm [14, 15, 16].

The application of AR in case of soft tissues, as in the abdominal cavity, presents a

big challenge: intra-abdominal organs and, even more so, the kidneys are deformable

and not constant in their relationship with the anatomical landmarks surrounding

them. The changes are due to high pressure (the patient is insufflated during the

procedure), to different patient’s position, to growth or reduction of tumor, to renal

vessels clamping and to the surgeon organs manipulation and dissection. To overcome

those errors in the superimposition of the anatomy to the scene, the deformations of

the pre-operative anatomy should be taken into account.

1.2.1 Pioneering AR systems in MIS

The first documented AR systems trials are performed in the neurosurgery field; the

reason is the presence of the skull, a rigid structure presents both in pre-operative phase

and in the intra-operative one, allowing the superimposition of frames of the two phases

6 Anna Morelli



Chapter 1. INTRODUCTION

according to the stereotactive approach. Stereotaxis is a branch of surgery which entails

the 3D localization of the target expressed with respect to rigid frame solid with the

patient. The brain shift, i.e. the brain deformation occurring when the skull is open,

is very limited (but still present) and usually is assumed null. Thus, it is relatively

easy to superimpose pre-operative and intra-operative data under the assumption of

rigidity. An example of superimposition of the anatomy to the intra-operative scene is

reported in Fig. 1.6.

The AR appears in the ’80s: Roberts and his team [17] superimpose tumor boun-

daries obtained from CT to the microscope view in the OR. The superimposition is

made possible by the intra-operative localization of the microscope using Ultra Sounds

(US) to determine position and orientation of the probe.

In the same years, Kelly et al. [18] superimpose the anatomy extracted from pre-

operative CT to the stereotaxic space. The result is used to guide the laser resection

of the tumor, guaranteeing control to avoid healthy regions.

In the ’90s, studies speculate on the application of AR in tumor treatment in the

neurosurgical field, such as [19]. Another AR application investigated is in the bypass

Figura 1.6: Augmented reality in neurosurgery.

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 7
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Figura 1.7: Augmented reality in nephrectomy: superimposition of the intra-operative anatomy to

the intra-operative scene. From [30].

surgery, as is shown by Cabrilo et al. [20]. Thanks to the big amount of studies and

works on this topic [21, 22, 23], nowadays AR in neurosurgery is the standard [13].

In other filed such as otolaryngology, maxillofacial surgery, opthalmology, orthopedics

and dental surgery system integrating AR are used.

In the procedures in which there are not rigid supporting structures like bones, the

AR is not the standard and presents big challenges, because the tissue deformation is

still an open issue. One of the first trials to apply the AR on deformable tissues is

made by [24], where the anatomy extracted from US is projected, through a display,

on the abdomen of a pregnant woman. In general surgery, an application is in [25].

The first AR systems used in laparoscopy are [26] for pancreatico-duodenectomy, [27]

for liver segmentectomy, [28] for laparoscopy and [29] for urology.

1.2.2 AR systems in nephrectomy

An overview about the AR systems developed for the partial nephrectomy is reported

in [14]. In [31, 32, 33, 34] the pre-operative kidney anatomy is rigidly superimposed

to the intra-operative scene: the hypothesis is the presence of small and negligible

8 Anna Morelli



Chapter 1. INTRODUCTION

intra-operative deformation.

One diffused approach is the superimposition of a 3D anatomy extracted intra-

operatively (from MRI, cone-beam CT or US) to the intra-operative scene, as in [30,

35, 36, 37, 38], whose result is shown in Fig 1.7. Since the intra-operative anatomy

has exactly the same shape seen in the endoscope, the errors due to the deformation

of the kidney are null. In most of these works, the use of optical or magnetic tracker is

necessary to determine the spatial transformation necessary to superimpose the images.

However, exploiting intra-operative imaging requires CT or MRI equipped OR and, in

case of CT, further radiation dose is delivered to the patient.

Another approach is the deformation of the pre-operative anatomy with biome-

chanical model to overcome the issue of intra-operative deformation. In [10, 39] the

superimposition with rigid methods is coupled with deformation of the pre-operative

anatomy. In the first, the effects of clamping and incision are considered, while in

the second the effects of loss of perfusion and changes in pressure. The limit of this

approach is the requirement of complex models to be compute.

An innovative solution is proposed in [40]: a pre-operative anatomy extracted from

CT is superimposed to the intra-operative images by means of deformable algorithm.

The main advantages are the avoidance, to deform the kidney anatomy, of biome-

chanical models, made possible by the use of deformable registration algorithm.The

registration error observed is < 1 mm and uncertainties are projected on a single cri-

sp contour. The AR visualization is limited to the boundaries (2D) of the relevant

structures, not to the entire volume.

1.2.3 Limits in the AR systems in nephrectomy

The existing AR systems in nephrectomy, as reported in Sec. 1.2.2, highlights some

limits in tackling organ deformations occurring in the OR. Lots of methods do not

tackle the organ deformation occurring in the intra-operative scenario and rely on rigid

sovrapposition of the pre-operative model to the intra-operative scene. These methods

are based on the hypothesis that the augmentation obtained in that way is sufficient

accurate. However, in a real OR the kidney and all the abdominal organs undergo a

deformation that can not be considered null.

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 9



Chapter 1. INTRODUCTION

Other methods require an additional imaging system inside the OR, however to

have an OR equipped with MRI or CT is expensive, it is challenging and, in case of

CT, require to deliver to the patient an extra dose of radiation.

The use of biomechanical model to model the intra-operative deformation on the

kidney model are affected by the limitation of high number of parameters to be

computed, so are not do used.

There is only one case in which the registration between the pre-operative model

and the intra-operative endoscopic images is performed with deformable registration

algorithm [40]. However, the augmentation of the scene in limited to the 2D tumor

boundary and no information about the rest of the model is displayed on the screen.

This is useful to support the localization of the tumor, but it can not be considered a AR

system able to represent the high resolution pre-operative model on the intra-operative

scene. It neglects all the knowledge about the kidney model.

Figura 1.8: From [40]. 2D tumor boundaries extracted from pre-operative CT are projected onto

the intra-operative endoscopic images. Each contour has associated a probability.

10 Anna Morelli



Chapter 1. INTRODUCTION

1.3 Aim of the thesis

The aim of this thesis is to investigate the use of a deformable registration algorithm to

register the 3D kidney model to the 3D intra-operative endoscopic scene. This is done

towards the use of an AR system to support the surgeon while performing laparoscopic

nephrectomy.

The problem of the 3D intra-operative kidney deformation will be tackled with de-

formable registration algorithms. The deformable registration algorithm used was Free

Form Deformation (FFD) based on B-splines. First, it was used to register the 3D

model to manually created intra-oerative point cloud, to obtain the results in terms

of registration accuracy in a controlled environment and with a defined level of defor-

mation; the results were compared also to evaluate if the algorithm is robust to tackle

different levels of deformation. Secondly, it was used to register the model extract from

real CT to a point cloud retrieved with the da Vinci Research Kit (dVRK)5 stereoca-

mera (720x576 pixels, 25 Hz, 80 degrees field of view) and acquired on silicon kidney

phantom obtained according to the model.

5http://research.intusurg.com/dvrkwiki
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Chapter 2

LITERATURE REVIEW

In this Chapter, the registration process involved in AR system for partial nephrectomy

will be described.

The approach can be split in two phases, according to [13]. The first phase is

the initial registration. In this phase, the organ anatomy is aligned with the intra-

operative view, usually endoscopic images: an high accuracy should be achieved in

this phase. The organ anatomy can be extracted from pre-operative or intra-operative

imaging systems; the most used imaging systems to retrieve the patient-specific organ

3D model are MRI and CT, due to their high resolution.

The second phase is tracking: the aim is to maintain the accurate augmentation

obtained with the initial registration during the entire procedure. Tracking is not

described into details since it is not the aim of this thesis, the reader can refer to

[13, 41] for more information.

2.1 Registration

Registration is the process by which the transformation necessary to superimpose a

given dataset to another one is found, such that the spatial locations of the correspon-

ding points coincide [42].The transformation is the mathematical operators that maps

one dataset into another one.

13
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Figura 2.1: The registration workflow to register the moving point cloud to the reference point cloud.

A metric based on distance is set between the two point clouds. The metric is optimized for finding

the best parameters to be used in the transformation (i.e. the mathematical operators that maps one

dataset into another one). The transformation is applied to the moving point cloud. This process is

iteratively done until convergence in terms of metric reduction is reached.

Registration can be applied both to images or to point clouds. The registration in

this work is applied to point clouds, so only approaches referred to them are reported.

The general workflow of the registration process is represented in Fig. 2.1. A metric

is set to describe the differences or the distance between a point cloud used as reference

and a point cloud that has to be registered (moving point cloud). This metric has to

be optimized, so the point clouds are forced to be as closer as possible. The parameters

obtained with the optimization process are used to update the transformation. The

transformation is then applied to the moving point cloud and, if the disparity between

the two point clouds is below a fixed value, the registration is gained, otherwise the

cycle is repeated until a convergence is reached.

In an AR system for nephrectomy, the registration involves the superimposition

of the kidney model (from which the moving point cloud is obtained) to the intra-

operative view (from which the reference point cloud is retrieved). The registration

can be rigid or deformable.

2.1.1 Rigid registration

The transformation is described by six degree of freedom in 3D, three for rotation and

three for translation (rototranslation). The underlying hypothesis is the rigidity of the

structures. The most used rigid registration algorithm is Iterative Closest Point (ICP).

14 Anna Morelli
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ICP is described in [43, 44] and it is the most used thanks to its simplicity and low

complexity. The algorithm iteratively:

• Assigns correspondences between each point of the moving point cloud m⃗ ∈ M

to the closest point of the reference point cloud f⃗ ∈ F . The minimum of the

Euclidean distance (d(m⃗, F )) is used to set the correspondence:

d(m⃗, F ) = min
f∈F

∥m⃗− f⃗∥ (2.1)

For the entire M , the correspondence relation (Y ) can be computed:

Y = C(M,F )

• Computes the registration parameters: a cost function based on the Euclidean

distance between corresponding points is optimized (d(M,F )):

d(M,F ) =
∑
m⃗∈M

min
f⃗∈F

∥f⃗ − m⃗∥ (2.2)

The quaternion representation of the rotation q⃗R and of the translation q⃗T is

retrieved.

• Applies the obtained registration to the moving dataset M .

until convergence is reached with a certain tolerance. In AR system for partial neph-

rectomy ICP is used in [31, 32, 33, 10, 30, 38].

2.1.2 Deformable registration

The transformation is described by from six up to infinite degree of freedom, since the

deformation model can be selected as complex as desired. A completed overview of the

deformable registration method used in the medical field is reported in [45].

One possible transformation is Vector Field (VF). VF is a grid in which each block

has associated a displacement vector, representing the direction and the intensity ap-

plied to what is inside that block, as shown in Fig. 2.2. To find the optimal parameters

to describe the displacement vectors, a cost function, based on the similarity of the

two point sets and on some smoothness criteria, has to be minimized. The most used

algorithms to compute VF parameters are:

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 15
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Figura 2.2: The Vector Field (VF) is a possible transformation involved in registration. VF is

a grid superimposed to the point cloud, in which each block has associated a displacement vector,

representing the direction and the intensity applied to what is inside that block.

• Thin-plate spline: it requires corresponding markers and it is based on the

minimization of their corresponding distance.

• Non-rigid FFD based on B-spline: used when there are not corresponding mar-

kers in the point clouds [46, 47]. To compute the similarity, a measure of the

distance between the two sets is used. FFD is a deformation model based on the

interpolation theory [45].

Once the VF is computed, it is applied to the moving point cloud.

2.2 Registration approaches

Disregarding the type of transformation used, it is possible to identify different approa-

ches according to the set-up and to the available data.

2.2.1 Manual approach

The registration between the kidney model and the intra-operative endoscopic images

is performed by an expert and relies on manual input. The manual approach can

perform both rigid and non-rigid registration.

In nephrectomy, this approach is used in [36] to rigidly align the kidney model

extracted from intra-operative CT to the endoscopic images. This strategy can be

also used integrated with other strategies, for example to initialize surface-based (Sec.

2.2.3) as in [40] or volume-based approaches (Sec. 2.2.4) or for a final refinement as in

16 Anna Morelli
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[34]. In this paper, the manual registration perform by surgeon in the OR is used to

adjust the rigid registration of the pre-operative kidney model to the intra-operative

images; the first step of the registration is computed with a point-based approach (Sec.

2.2.2).

2.2.2 Point-based approach

In the point-based approach (Fig. 2.3) the registration is performed between two sets of

corresponding points, one from the moving point cloud, one from the fixed one. So, it is

necessary to have anatomical landmark or artificial markers (usually stuck to the organ

and acquired with the help of tracking system) visible both in the kidney model and in

the intra-operative images. Considering abdominal procedures, no rigid landmarks are

available and fiducial points have to be retrieved intra-operatively exploring the scene.

The markers are usually rigidly aligned.

Figura 2.3: The point-based approach: the registration is performed between markers (black dots)

from the model (gray) and markers from the intra-operative endoscopic image (red). The result is

from [31].
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In nephrectomy, the point-based approach is used in [39] to register the model ob-

tained from high resolution pre-operative CT, deformed with a biomechanial model

to take into account loss of perfusion and pressure, to the model obtained from low

resolution intra-operative CT; the used markers are spheres sutured onto the surface.

However, the use of the point-based approach is most common as initialization of other

approaches. Indeed, in [31, 10] the registration between the pre-operative kidney mo-

del extracted from CT and the surface retrieved intra-operatively is achieved with a

point-based approach, thanks to the presence of external markers visible in both the

scenarios; then the registration is adjusted with surface-based method (Sec. 2.2.3). In

[30, 38] the kidney model obtained from intra-operative CT is registered to the intra-

operative surface by means of navigation aid inserted in the organ, so with a point-based

registration, to initialize a surface-based method. However, in [34] the point-based re-

gistration is used to align the pre-operative kidney model to the intra-operative images:

the anatomical landmarks are identified manually or with semiautomatic methods; the

alignment has to be adjusted manually by the surgeon.

Figura 2.4: The surface-based approach: the registration is performed between the pre-operative or

intra-operative model surface (gray surface) and intra-operative surface (red surface). The resulting

view is from [31].
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2.2.3 Surface-based approach

In the surface-based approach, the point cloud representing the model surface is rigidly

or non-rigidly registered to the point cloud representing the surface extracted from the

endoscopic images (Fig. 2.4). The registration workflow can be divided, as stated in

[48], in:

• Pre-operative organ surface extraction: performed manually or with semi-automatic

methods from high resolution anatomical images, such as MRI and CT. The point

cloud representing the surface is retrieved.

• Laparoscopic scene surface reconstruction. The best accuracy in the laparoscopic

view reconstruction is assured in case of stereo-vision. The optical reconstruction

techniques are detailed described in [49]. The main limitation is the limited organ

exposure in laparoscopy. The point cloud representing the surface is retrieved.

• Registration:

– Initial rigid alignment: often performed with point-based strategies (Sec.

2.2.2) or manually (Sec. 2.2.1)

– Automatic rigid or non-rigid refinement: the registration aims to reduce the

distance between the two surfaces. The registration can be both rigid or

deformable.

The described approach is used in [31, 10, 32, 33] to rigidly register the pre-operative

model surface to the intra-operative surface after a point-based alignment (Sec. 2.2.2),

in [30, 38] to rigidly register the intra-operative model surface to the intra-operative

surface after a point-based alignment. In [40], the surface-based approach is used

to non-rigidly register the pre-operative kidney model to the intra-operative surface

(retrieved from the endoscopic images).

2.2.4 Volume-based approach

The volume-based approach (Fig. 2.5) is adopted when there is an intra-operative

imaging system available to retrieve the intra-operative volume. The registration can
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Figura 2.5: The volume-based approach: the registration is performed between the pre-operative or

intra-operative model volume (yellow) and intra-operative volume (green).

be rigidly or non-rigidly performed.

There are two possible approaches:

• Registration of the pre-operative 3D volume to an intra-operative 3D volume

with low resolution (usually the intra-operative volume is retrieved from low

resolution imaging systems such as cone-beam CT and US). So the aim is to

merge the exactly deformation of the organ (intra-operative volume) with the

accurate anatomy (pre-operative volume).

• Registration of the intra-operative 3D volume to the surface reconstructed from

endoscopic images: this approach avoids the extraction of the pre-operative model

and allows the superimposition of the currently anatomy to the intra-operative

scene.

An example of volume-based registration applied to kidney in reported in [39], where

the kidney intra-operative model retrieved from low resolution CT is registered to the

pre-operative model retrieved from high-resolution CT, after a point-based initializa-

tion (Sec. 2.2.2). The pre-operative model is deformed with a biomechanical model to

mimic the intra-operative situation. The volumes are registered with a mean shift of 3

mm.
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2.3 Limits in the registration literature for AR in

nephrectomy

Regarding the approaches exposed in Sec. 2.2, some limitations can be highlighted.

The manual approach is strongly affected by the quality of its user interface and

by the operator’s degree of expertise.

In point-based approach, the limitations are related to the constraint on visibility of

the same markers and to the tracking system inaccuracy. If the markers are manually

identified, the degree of expertise affects the quality of the procedure.

In the surface-based approach, when implemented with deformable registration al-

gorithm, the registration is reliable only for the visible surfaces, because no assumption

is made on the underlying structure: this is an issue for big organs. The use of biome-

chanical model can alleviate this issues, but the parameters required by the used model

have to be determined. Also the intra-operative surface reconstruction still is challen-

ging. Instead, surface-based approach using rigid algorithms relies on the hypothesis

of structure rigidity that is not true in the abdomen.

The limitations for the volume-based approach are the requirements of a hybrid

OR (not always available and very expensive), the radiations delivered to the patient

in case of cone-beam CT and the amount of data to be precessed and rendered (this

limits the possibility to maintain the tracking during the procedure) Another limit is

the degree of accuracy, that is influenced by all the systems involved (imaging systems,

registration, tracking) [49].

Finally, nowadays the biggest limit is the absence of a system able to offer an

accurate augmentation for nephrectomy. The most interesting system is [40], but

it allows only the superimposition of the 2D tumor visible boundaries to the intra-

operative endoscopic images, not considering the entire kidney surface (Sec. 1.3).
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Chapter 3

MATERIALS AND METHODS

3.1 Methods

This Chapter will explain the proposed methodology adopted for the general workflow

reported in Fig. 3.1. The pre-operative anatomical model was extracted from high

resolution pre-operative images, as described in Sec. 3.1.1. The intra-operative point

cloud was reconstructed from the endoscopic images and the strategy is described in

Sec 3.1.2. To register the model and the point cloud, the registration was split in

two parts (Sec. 3.1.3): (i) an initial alignment, mandatory for the next step, and

(ii) an adjustment performed with the deformable registration algorithm to handle

the problem of intra-operative scene deformation. For experimental purposes, kidney

phantom were built as described in Sec. 3.1.4 to reconstruct an intra-operative point

Model 
generation

Calibration
3D

reconstruction

Initial 
alignment

Deformable 
registration

Sec. 3.1.1

INTRA-OPERATIVE

PRE-OPERATIVE
Kidney-tumor

model (M)

Point-cloud (F)Sec. 3.1.2 Sec. 3.1.2

Sec. 3.1.3.1 Sec. 3.1.3.2

Figura 3.1: The proposed registration workflow for augmented reality in nephrectomy.
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Figura 3.2: The steps of the model generation: (left) segmentation of the computed tomography with

active contours model; (center) kidney model obtained with fast marching method; (right) retrieved

model vertexes (M).

cloud.

3.1.1 Model generation

The pre-operative kidney anatomical model was extracted from pre-operative high

resolution images. In this work, pre-operative abdominal CT were used. CT slices

(Fig. 3.2 left) were segmented with a semiautomatic segmentation method exploiting

deformable active contours model [50, 51]. It required a manual initialization: relevant

structures were roughly identified by an operator. The deformable active contours

model is a spline (i.e. an interpolation polynomial) dynamically altering its shape,

being pulled towards object contours, while minimizing a merit function based on the

energy of the spline itself.

From the obtained kidney segmentation mask, the kidney model (Fig. 3.2 center)

was obtained with the Fast Marching Method (FMM) [52].

As a prerequisite for performing intra-operative registration (Sec. 3.1.3.2), the

surface model vertexes (M) were retrieved from the obtained model (Fig. 3.2 right).

3.1.2 Calibration and 3D reconstruction

In order to perform the superimposition of the pre-operative model to the intra-

operative point cloud, the kidney intra-operative surface visible in the endoscope had
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Figura 3.3: The steps of the 3D reconstruction: (left) stereoimages acquired with the da Vinci

Research Kit endoscope; (right) intra-operative point cloud retrieved with the dense soft-tissue 3D

reconstruction.

to be retrieved.

The kidney surface was acquired with dVRK endoscope (Fig. 3.3 right) and its

point cloud (F ) was retrieved from the endoscopic stereoimages (Fig. 3.3 left).

The camera calibration was performed according to the Zhang calibration method

[53]. Zhang calibration method is a flexible method to model the radial lens distor-

tion. A planar pattern was shown to the camera in at least two different orientation.

From the acquired intra-operative stereoimages, dense soft-tissue 3D reconstruction

was performed to retrieve F as in [54].

3.1.3 Registration

In this Section, the registration will be described. The used approach split the regi-

stration in two steps, the initial alignment and the deformable registration adjustment.

3.1.3.1 Initial alignment

The initial alignment aim was to put the intra-operative point cloud and the pre-

operative one as closer as possible. This step was necessary given that a lot of regi-

stration algorithm, both rigid and deformable, require a good initialization to obtain

an accurate registration.

There were two approaches for the initial alignment:

• Manual initial alignment: with a graphical user-interface, the pre-operative

point cloud was aligned to the intra-operative one, moving manually the point
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Figura 3.4: The manual alignment was performed with the Slicer interface. The rotations angles

and the values of translations were manually set.

Figura 3.5: Point-based registration of the kidney model to the intra-operative point cloud. (Left)

From the kidney model vertexes (p⃗ ∈ P , blue dots) and the intra-operative point cloud (⃗i ∈ I, pink

dots), corresponding markers (green dots) were identified. (Right) The point-based registration was

computed and the transformation was applied.
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cloud and adjusting the rotation angles and the translation parameters. An

example implemented in Slicer1, an open source software for medical image

visualization and processing, is shown in Fig. 3.4.

• Pair-point matching: the adopted approach is the point-based one, thus two

sets of corresponding markers, one from the intra-operative point cloud and one

from the pre-operative one, with at least three corresponding points were necessa-

ry (in 3D). The rigid transformation necessary to superimpose the pre-operative

markers (p ∈ P ) to the intra-operative ones (i ∈ I) was retrieved. The transfor-

mation was found minimizing a cost function based on the distance (d) between

the corresponding markers:

d(P, I) =
∑
i⃗∈I

min
p⃗∈P

∥⃗i− p⃗∥ (3.1)

An example is shown in Fig. 3.5.

3.1.3.2 Deformable registration

Given the pre-operative model point cloud and the intra-operative point cloud, a

surface-based approach was exploited. In particular, non-rigid FFD based on B-spline

was used. FFD advantages, compared with other deformable registration algorithms

described in Sec. 2.1, are the possibility to describe the deformation with a smooth

function [46], the computational efficiency (due to the least number of contributing

functions), the small b-splines overlap (that reduces the interdependency between va-

riables), the flexibility (given no assumption on the underlying anatomy), the avoidance

of one to one correspondence between point clouds(a control point is affected only by

neighboring points) [55, 56, 57].

The main idea of FFD is to represent the kidney deformation of a moving point

cloud (M) with respect to a reference or fixed point cloud (F ) as the deformation of

an underlying mesh (Φ) of control points (ϕi,j,k) with nx, ny, and nz control points

along x, y and z axis, respectively (Fig. 3.6 left in 2D). Along each axis, the spacing

is uniform: δx = dimx

nx
, δy = dimy

ny
, δz = dimz

nZ
, where dimx, dimx, dimx are respectively

1https://www.slicer.org/

Towards deformable registration for augmented reality in robotic assisted partial nephrectomy 27



Chapter 3. MATERIALS AND METHODS

the point cloud dimension along x, y and z. The displacement in the control points

is computed minimizing a cost function based on the Euclidean Distance (d(M,F ))

between M and F (Eq. 2.2).

The transformation of a generic point m⃗ ∈ M with coordinates (x, y, z) was com-

puted using a B-spline interpolation kernel:

T (x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ϕi+l,j+m,k+n (3.2)

where i = |x/nx| − 1, j = |y/ny| − 1, k = |z/nz| − 1, u = x/nx − |x/nx|, v =

y/ny − |y/ny|, w = z/nz − |z/nz|, and where Bl(u), Bm(v), Bn(w) are the spline basis

functions:

B0(u) =
(1− u)3

6
, (3.3)

B1(u) =
3u3 − 6u2 + 4

6
, (3.4)

B2(u) =
−3u3 + 3u2 + 3u+ 1

6
, (3.5)

B3(u) =
u3

6
. (3.6)

Figura 3.6: The deformation of the control points (ϕi,j) mesh Φ in Free Form Deformation model in

2D. (Left) Φ is built over the moving point cloud (blue dots). A cost function based on the distance

between the moving point cloud and the fixed one (red stars) is minimized and the ϕi,j displacement

is computed (the ϕ0,4 displacement in shown in green). (Right) the transformation retrieved is applied

to all the moving points.
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The spline basis functions Bl(u), Bm(v), Bn(w) are known for a given m⃗ and weight

the contribution of each ϕi,j,k to T (m⃗) considering the distance between the point m⃗

and ϕi,j,k. The optimization Levenberg-Marquardt algorithm (also known as Damped

Least Squared method) [58, 59] was used to compute the optimal ϕi,j,k displacements.

Once the optimal parameters are computed, the transformation can be applied to the

moving points (Fig. 3.6 right).

The disadvantages of FFD are the requirement of a good initial alignment and the

impossibility to deal with big rotation and with shearing.

3.1.4 Phantom development

To test the developed system, the development of kidney phantoms to allow the retrie-

val of a intra-operative point cloud was necessary. Phantoms were created through a

moulding process as in [60]. The free and open source 3D creation suite Blender2, was

used: the 3D virtual negative molds were modeled staring from the pre-operative model

computed as explained in Sec. 3.1.1. The virtual molds were 3D printed in acryloni-

trile butadiene styrene (ABS), using the Elite Dimension 3D printer (layer thickness:

0.25mm). A bi-component silicon elastomer (Pro Lastix 10 A+B from Prochima s.r.l.)

2https://www.blender.org/

Figura 3.7: The silicon kidney phantom obtained according to the pre-operative model.

3.1.1 and used to acquire the intra-operative point cloud.
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was combined with silicon oil (a softening agent) to mimic the real tissue stiffness. The

silicon was colored to mimic the real appearance in the endoscopic view.

3.1.5 Implementation

The model generation explained in Sec. 3.1.1 was implemented in Slicer.

The 3D reconstruction described in Sec. 3.1.2 was implemented in C++.

The initial alignment (Sec. 3.1.3.1) was performed manually with Slicer while the

pair point matching was implemented in C++ using the Visualization Toolkit (VTK)

library, an open-source, freely available software system for 3D computer graphics,

image processing, and visualization3.

The deformable registration algorithm (Sec. 3.1.3.2) and the rigid ICP registra-

tion algorithm, used for the comparison, were implemented in C++ using the Insight

Segmentation and Registration Toolkit (ITK) library, an open-source, cross-platform

system for image analysis4.

3.2 Materials

The workflow explained in Sec. 3.1 was tested on different datasets. As pre-operative

model point cloud, two models were used (M1 and M2). M1 was a patient kidney

3https://www.vtk.org/
4https://itk.org/

Figura 3.8: (Left) 3D model point cloud; (right) model point cloud in 2D obtained retrieving the

2D boundaries of the 3D model projected on a plane.
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Figura 3.9: (Left) kidney model; (right) kidney model deformed with the open source 3D creation

suite Blender to test the registration in a controlled environment.
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Figura 3.10: The 2D intra-operative point clouds (F1) manually obtained from the 2D kidney model

boundary. Starting from ten different positions on the model cloud, the deformation is progressively

increased from L1 (the smallest) to L6 (the biggest).
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model obtained from anonymized Ircadb2 dataset5. The Ircadb2 dataset contained the

abdominal CT volume of a male patient, with 512x512x167 slices and a voxel size of

0.916x0.916x1.8 mm. It also contained the models of all visible organs, obtained with

manual segmentation and FMM. M2 was retrieved from anonymized CT given by Isti-

tuto Europeo di Onconologia (IEO). The CT contained the abdominal volume of a

male patient, with 512x512x716 slices and a voxel size of 0.703x0.703x0.625 mm. The

CT slices were segmented and the model was retrieved according to Sec. 3.1.1. The

pre-operative model was used both entire (3D) and in form of 2D boundary, obtained

by projecting the point cloud on a plane and retrieving the projection boundary (Fig.

3.8). As intra-operative point cloud, two point clouds were used (F1 and F2). F1

was obtained by manually deforming the M1 with the software Blender (Fig 3.9). The

deformation was aimed to replicate tissue-surgical tool interactions and tissue mani-

pulation. F1 was made to test the registration algorithm in a controlled environment,

without noise but with completely controlled degree of deformation. The 2D F1 used

are reported in Fig. 3.10: a dataset of 60 F1 was built deforming the M1 in different

point and progressively increasing the deformation level (from the smallest deformation

L1 to the biggest L6; L3 was considered the medium deformation level). A dataset in

3D was build following the same criteria, so, in ten different locations, the 3D point

cloud was deformed with six deformation levels (from L1 to L6). To test the workflow

in a more realistic situation, F2 was retrieved acquiring the stereoimages on the kidney

silicon phantom and reconstructing the point cloud according to Sec. 3.1.2.

3.3 Evaluation protocol

The developed system was tested to investigate its ability to deal with kidney deforma-

tion. To test the registration performance, the Root Mean Squared Error (RMSE) was

compared before (RMSEinitial) and after (RMSEfinal) the registration. The RMSE

reduction (−∆RMSE) is defined as:

−∆RMSE =
RMSEinitial −RMSEfinal

RMSEinitial

(3.7)

where RMSE =
√

d(M,F ), with d(M,F ) defined in Eq. 2.2.

5https://www.ircad.fr/research/3d-ircadb-02/
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The performances of deformable registration in the experiments (E), reported in

Tab. 3.1, were evaluated.

3.3.1 E1: investigation of nx and ny

The differences in terms of −∆RMSE using different values of nx and ny was done

arbitrarily fixing them and computing the results. The evaluation was made in 2D for

sake of simplicity. Arbitrarily fixing nx and ny led to δx ̸= δy, thus the comparison

with the use of the same δ along the two directions x and y was done, too. The test

was performed on M1 and ten F1 (medium deformation L3). The investigation on the

use of not arbitrarily fixed nx and ny was done also to have a Φ formulation as general

as possible.

3.3.2 E2: trade-off between number of iteration and −∆RMSE

The relation in FFD between the number of iterations (itermax) and the −∆RMSE

was investigated in order to determine the best trade-off between the computational

time required by the iterations and the registration accuracy. The experiment was

performed knowing the best δ from E1. The test was performed in 2D, for sake of

simplicity, using ten F1 (L3 deformation level). The time required, using a PC with

AMD Ryzen 7 and 32 GB of RAM, was reported, too.

3.3.3 E3: Comparison between FFD and ICP in 2D

A comparison was made between FFD and ICP accuracy (−∆RMSE,ICP and−∆RMSE,FFD),

in 2D, registering the 2D M1 to the F1 dataset reported in Fig. 3.10. The aim

of the analysis is (i) to compare, for each deformation level, the −∆RMSE,ICP and

−∆RMSE,FFD with the non-parametric Wilcoxon test (α = 0.05) to investigate the

presence of significant difference using the rigid or the deformable algorithm for the

presented dataset; (ii) to investigate the presence of significant differences (Wilcoxon

test, α = 0.05) in −∆RMSE,FFD according to the deformation level (−∆RMSE,FFD for

L1 compared to −∆RMSE,FFD for L2, compared to −∆RMSE,FFD for L3 and so on);

the same was done to compare −∆RMSE,ICP according to the deformation level.
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3.3.4 E4: Comparison between FFD and ICP in 3D

This experiment had the same aims of E3, however it was performed registering the

3D M1 to the 3D F1 dataset.

3.3.5 E5: Registration of M1 to F2 with manual initial align-

ment

The experiments was made to test the proposed workflow to register M1 to F2, i.e.

the point cloud acquired on the kidney phantom. The workflow adopted is: (i) manual

initial alignment, (ii) deformable registration refinement. The RMSEbefore, i.e. RSME

before the manual alignment, the RMSEalignment, i.e. RMSE after the alignment, and

the RMSEregistration, i.e. RMSE after the deformable registration, were considered to

measure the quality of the overall registration workflow. A trail was performed using

part of the kidney model.

3.3.6 E6: Registration of M2 to F2 with manual initial align-

ment

This experiment followed the same steps of E5 in Sec. 3.3.5 to register the entire M2

and a part of M2 to F2.

3.3.7 E7: Registration of M1 to F2 with point-based initial

alignment

The workflow adopted was: (i) point-based initial alignment with four corresponding

points manually identified in M1 and in F2, (ii) deformable registration refinement.

The quality of the overall workflow was measured as reported in Sec. 3.3.5. A trail

was performed using part of the kidney model.
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3.3.8 E8: Registration of M2 to F2 with point-based initial

alignment

This experiment followed the same steps of E7 in Sec. 3.3.7 to register the entire M2

and a part of M2 to F2.
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Experiment Investigation Data

E1 Uniform δ M1 and 10 F1 (medium deformation) in 2D

E2 itermax and −∆RMSE trade-off M1 and 10 F1 (medium deformation) in 2D

E3 FFD vs ICP M1 and 10 F1 with 6 deformation in 2D

E4 FFD vs ICP M1 and 10 F1 with 6 deformation in 3D

E5 Registration workflow (manual initial alignment) M1 and F2

E6 Registration workflow (manual initial alignment) M2 and F2

E7 Registration workflow (point-based initial alignment) M1 and F2

E8 Registration workflow (point-based initial alignment) M2 and F2

Tabella 3.1: M1 was the model vertexes point cloud obtained from the Ircadb Computed Tomography (CT) with manual segmentation and Fast Marching

Method (FFM) reconstruction. M2 was the model vertexes point cloud obtained segmenting (deformable model active contours) and reconstructing (FFM)

an abdominal CT from the Istituto Europeo di Oncologia. F1 was the intra-operative point cloud obtained manually deforming M1 with Blender, an open

source software. F2 was the intra-operative point cloud retrieved from the da Vinci Reseach Kit’s endoscopic acquisitions on kidney silicon phantom (dense

soft-tissue 3D reconstruction). FFD was the Free Form Deformation registration algorithm, based on a mesh grid whose control points are separated by

spacing δ. ICP was the Iterative Closest Point rigid registration algorithm. itermax is the maximum number of iteration of the registration algorithm.

−∆RMSE is the Root Mean Square Error (RMSE) reduction.
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Chapter 4

RESULTS

The results of the experiments described in 3.3 will be shown in this section.

The results of E1 are reported in Tab. 4.1. The best −∆RMSE were obtained using

a uniform δ or a low number of ϕi,j (6,6 and 5,5). Thus, to maintain the generality

and to not fix a priori the nx and ny, a uniform δ was used in the other experiments.

In Fig. 4.1, the results of the experiment E2 are reported: after few iterations, the

−∆RMSE always reached a plateau. So, given all the tested cases reached an almost

constant −∆RMSE after 1000, the itermax was fixed at 1000 for the other experiments.

The Tab. 4.2 reports the relation between the itermax and the mean computational

time required.

The boxplots represented in Fig. 4.2 show, for the 2D case, the comparison between

−∆RMSE,ICP and −∆RMSE,FFD for the six deformation levels of E3. Significant diffe-

rences between −∆RMSE,ICP and −∆RMSE,FFD was assured by the Wilcoxon tests (p-

value < α). The results of the comparison between the −∆RMSE,ICP and −∆RMSE,FFD

according to the deformations levels are shown in Fig. 4.3. No significant difference

was found, so the level of initial deformation had not effects on the registration accu-

racy. In Fig. 4.4 an example of the application of FFD in the 2D case is displayed: on

the left there is the initial situation, on right the registration result.

The boxplots in Fig. 4.5 represent E4 results for the 3D case. The comparison of

−∆RMSE,ICP and −∆RMSE,FFD according to the deformations levels are shown in Fig.

4.6.
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nx, ny Mean −∆RMSE

10,10 0.30

6,6 0.44

5,5 0.44

dimx

5
, dimy

5
0.30

dimx

8
, dimy

8
0.31

dimx

10
, dimy

10
0.32

dimx

15
, dimy

15
0.45

dimx

20
, dimy

20
0.44

Tabella 4.1: Expetiment E1 results. nx and ny were the number of control points along the x and y

direction, respectively. ∆RMSE was the Root Mean Square Error (RMSE) reduction. dimx and dimy

were the reference point cloud dimensions along x and y.
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Figura 4.1: Experiment E2 results. −∆RMSE was the Root Mean Square Error (RMSE) reduction

and itermax was the maximum number of iteration. The results were obtained registering in 2D

with Free Form Deformation algorithm the model boundary to ten manually deformed boundary with

medium deformation level.
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itermax Mean computational time [s]

1 2.4

10 2.5

100 5

1000 30

10000 286

Tabella 4.2: Relation between the maximum number of iteration (itermax) and the computational

time in Free Form Deformable registration algorithm for E2. The mean computational time was

computed on the registration of the 2D model boundary to ten manually deformed kidney boundary

with medium deformation level.
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Figura 4.2: Experiment E3 results. On the horizontal axis are reported the deformation levels (L)

of the manually deformed boundary (the intra-operative point cloud to which the model boundary

was registered). The −∆RMSE,ICP was the Root Mean Square Error (RMSE) reduction of Iterative

Closest Point (ICP) algorithm (orange). The −∆RMSE,FFD was the RMSE reduction of Free Form

Deformation (FFD) algorithm (blue). Statistical significant difference (given by Wilcoxon test with p

< α) are represented with a star.
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Figura 4.3: Experiment E3 results. −∆RMSE,ICP (a) was the Root Mean Square Error (RMSE)

reduction for Iterative Closest Point (ICP) registration algorithm and −∆RMSE,FFD (b) was the

RMSE reduction for FFD algorithm. On the horizontal axis the deformation levels (L) of the manually

deformed boundary to which the model boundary was registered are represented. The absence of

significant difference is represented with black lines.

Figura 4.4: An example of deformable registration results from experiment E3. (Left) Initial situa-

tion: the blue point cloud was the pre-operative model boundary and the pink point cloud was the

manually deformed point cloud. (Right) After deformable registration.
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Figura 4.5: Experiment E4 results. On the horizontal axis are reported the deformation levels (L)

of the manually deformed boundary (the intra-operative point cloud to which the model boundary

was registered). The −∆RMSE,ICP was the ROot Mean Square Error (RMSE) reduction of Iterative

Closest Point (ICP) algorithm (orange). The −∆RMSE,FFD was the RSME reduction of Free Form

Deformation (FFD) algorithm (blue). Statistical significant difference (given by Wilcoxon test with p

< α) are represented with a star.
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Figura 4.6: Experiment E4 results. −∆RMSE,ICP (a) was the Root Mean Square Error (RMSE)

reduction for Iterative Closest Point (ICP) registration algorithm and −∆RMSE,FFD (b) was the

RMSE reduction for FFD algorithm. On the horizontal axis the deformation levels (L) of the manually

deformed boundary to which the model boundary was registered are represented. The absence of

significant difference is represented with black lines, while the presence of significant difference is

represented with red lines.

Experiment RMSEbefore [mm] RMSEalignment [mm] RMSEregistration [mm]

E5 on entire M1 59.2 34.8 30.6

E5 on part of M1 60.9 21.9 17.7

E6 on entire M2 299.5 32.2 27.8

E6 on part of M2 131.3 20.2 19.2

E7 on entire M1 59.2 19.1 18.6

E7 on part of M1 59.0 18.0 16.9

E8 on entire M2 299.5 43.1 40.4

E8 on part of M2 132.2 21.1 15.1

Tabella 4.3: Epxeriments E5, E6, E7, E8 results. RMSEbefore was the Root Mean Square Error

(RMSE) before the registration, RMSEalignment was the RMSE after the alignment, used to initialize

the registration, and RMSEregistration was the RMSE after the deformable registration. The expe-

riments protocol are reported in Tab. 3.1. M1 was the model obtained from the Irbadb2 Computed

Tomography (CT) with manual segmentation and Fast Marching Method (FMM) reconstruction, M2

was the model obtained from CT from Istituto Europeo di Oncologia with deformable model active

contour segmentation and FMM reconstruction.
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Experiment −∆RMSE,initialalignment −∆RMSE,deformableregistration

E5 on entire M1 0.41 0.12

E5 on part of M1 0.64 0.19

E6 on entire M2 0.89 0.14

E6 on part of M2 0.85 0.05

E7 on entire M1 0.68 0.03

E7 on part of M1 0.69 0.06

E8 on entire M2 0.86 0.06

E8 on part of M2 0.84 0.28

Tabella 4.4: Experiments E5, E6, E7, E8 results. −∆RMSE,initialalignment was the Root Mean

Square Error (RMSE) reduction in the initial alignment, performed according to the experimental

protocol, and −∆RMSE,deformableregistration was the RMSE reduction in the deformable registration.

The experiments protocol are reported in Tab. 3.1. M1 was the model obtained from the Irbadb2

Computed Tomography (CT) with manual segmentation and Fast Marching Method (FMM) recon-

struction, M2 was the model obtained from CT from Istituto Europeo di Oncologia with deformable

model active contour segmentation and FMM reconstruction.

Figura 4.7: Experiment E5 results obtained with the entire kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed manually. (Right) After

deformable registration.
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Figura 4.8: Experiment E5 results obtained with part of the kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed manually. (Right) After

deformable registration.

Figura 4.9: Experiment E6 results obtained with the entire kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed manually. (Right) After

deformable registration.
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Figura 4.10: Experiment E6 results obtained with part of the kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed manually. (Right) After

deformable registration.

Figura 4.11: Experiment E7 results obtained with the entire kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed with markers. (Right)

After deformable registration.
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Figura 4.12: Experiment E7 results obtained with part of the kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed with markers. (Right)

After deformable registration.

Figura 4.13: Experiment E8 results obtained with the entire kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed with markers. (Right)

After deformable registration.
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Figura 4.14: Experiment E8 results obtained with part of the kidney model. (Left) Initial situation:

the blue point cloud was the pre-operative model and the pink point cloud was the intra-operative

surface acquired on kidney phantom. (Center) The alignment was performed with markers. (Right)

After deformable registration.

The results of the entire workflow E5 experiment on the entire kidney model is

displayed in Fig. 4.7, while the result obtained using only part of the kidney is shown

in Fig. 4.8. On the left the initial situation is shown, in the center there is the result

of the alignment and on the right the deformable registration result is shown. The Fig.

4.9 and 4.10 show the E6 results, respectively, using the entire model and using only

a portion of it. The E7 results, for the entire model and for a part of it, are shown in

Fig. 4.11 and 4.12. The Fig. 4.13 and 4.14 show the E8 results, respectively, using

the entire model and using only a portion of it.

For the experiments E5, E6, E7, E8, the RMSE of the initial situation (RMSEbefore),

the RMSE after the alignment (RMSEalignment), that is performed manually or with

point-based approach according to the considered experiment, and the RMSE after

the deformable registration (RMSEregistration) are reported on Tab. 4.3. The values of

−∆RMSE,initialalignement and of −∆RMSE,deformableregistration computed from the values

of Tab. 4.3 are shown in Tab. 4.4.
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DISCUSSION

In this Chapter, the results presented in Sec. 4 will be discussed.

First of all, the ϕi,j distribution was investigated in 2D (E1 ): the best −∆RMSE

were obtained using a coarse Φ and so a low nx and ny (−∆RMSE of 0.44 both for

nx = 5,ny = 5 and for nx = 6,ny = 6). However, using fixed nx and ny did not

assure the possibility to use the same workflow for a point cloud with different size,

so the −∆RMSE resulting from the use of nx and ny depending on dimx and dimy

were more interesting. Moreover, it was found that using nx = dimx

15
and ny = dimy

15

the −∆RMSE was a little bit better (0.45). The relation of −∆RMSE with the ϕi,j

distribution is stated in the formulation of the transformation in FFD (Eq. 3.2): T (m⃗)

is influenced by a fixed number of surrounding control points and, if they are distant

(i.e. Φ is coarse), the area identified by them is wide, therefore T (m⃗) is influenced

by the deformation occurred in that wide area. Otherwise, T (m⃗) is influenced by the

deformation in a small area, not taking into account the entire deformation. Thus, for

sake of generality and to take into account the actual dimension of the point cloud,

nx = dimx

15
and ny = dimy

15
were used in all the experiments (adding nz = dimz

15
when

working on 3D).

The computational time was investigated comparing the −∆RMSE obtained varying

itermax for ten F1. As it is possible to see in the E2 results (Fig. 4.1), for all the

tested dataset, the −∆RMSE increased a lot in the first few iterations, while after

approximatively 1000 iterations it reached a plateau. Thus, it is possible to limit
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the number of iterations without affecting the registration accuracy. The mean time

required to perform 1000 iterations was 30 seconds. These results shows that FFD

algorithm is a possible option for the implementation of an almost real time system

able to augment the scene.

The proposed deformable algorithm was used to register the 2D model boundary to

the manually deformed F1 dataset (E3 ) and its results (−∆RMSE,FFD) were compared

with the one obtained with ICP (−∆RMSE,ICP ). The algorithm parameters were fixed

according to the previous described results to achieve a good −∆RMSE with the mi-

nimum computational time. The registration was performed with the manual created

F1 to test in a controlled environment and with controlled deformation levels. The

comparison between −∆RMSE,FFD and −∆RMSE,ICP , separated according to the de-

formation levels, showed that there was a statistically significant difference (Wilcoxon

test with α = 0.05 rejected the hypothesis of equal median in the distributions). Re-

spectively, the median of −∆RMSE,FFD and the median of −∆RMSE,ICP were for L1

0.17 and 0.02, for L2 0.32 and 0.03, for L3 0.36 and 0.04, for L4 0.41 and 0.04, for

L5 0.52 and 0.05, for L6 0.50 and 0.05. So, the results highlight the need to treat the

intra-operative deformation with deformable registration algorithm to achieve a good

registration accuracy. The absence of statistically significant differences (Wilcoxon te-

st with α = 0.05) between the values of −∆RMSE for L1 and −∆RMSE for L2 and

−∆RMSE for L3 and so on highlights the robustness of FFD to tackle different levels

of deformation, so the possibility to deal all the deformation occurring in the OR.

The inability of ICP to treat also the smallest deformation level is interesting: the

smallest deformation can be considered the ideal situation in a partial nephrectomy,

given all the possible intra-operative deformation sources. So, this fact highlights the

need to continue the investigation of deformable registration algorithm in order to use

it in partial nephrectomy AR system.

The same considerations can be done in the 3D case (E4 ), where the median of

−∆RMSE,FFD and the median of −∆RMSE,ICP were, respectively 0.059 and 0.004 for

L1, 0.054 and 0.005 for L2, 0.071 and 0.006 for L3, 0.064 and 0.007 for L4, 0.058

and 0.012 for L5, 0.080 and 0.009 for L6. The absence of statistically significant

differences (Wilcoxon test with α = 0.05) between the values of −∆RMSE for L1 and
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−∆RMSE for L2 and −∆RMSE for L3 and so on was highlighted also here. So, the

FFD algorithm showed also in 3D the ability to treat different levels of deformations

in different locations of the intra-operative point cloud.

The complete workflow was used to register the two available pre-operative model

M1 and M2 to the point cloud acquired with the phantom (F2).

The results of the Tab. 4.3 and 4.4 show that the developed workflow was able

to tackle the deformable registration of the kidney models on the real point cloud.

The final RMSEregistration was strongly affected by the results of the manual ali-

gnment (RMSEalignment). Indeed, the mean results of the deformable registration

(−∆RMSE,deformableregistration) was 0.11, however the highest values were obtained when

the registration was performed on well aligned point cloud. The alignment was easier

to be performed when only a small portion of the pre-operative volume was conside-

red. The alignement, both manual or based landmark, was strongly affected by the

user experience. By the way, the results are promising for the use of FFD deformable

registration algorithm in a real scenario.

The proposed workflow deals only with the registration of the pre-operative mo-

del and the intra-operative point cloud, so the maintenance of the registration during

the procedure is not handled. Regarding the proposed registration workflow, one of

the main limitations is in the initial registration step: it is time consuming, strongly

depends on the user and affects the entire workflow. Moreover, the registration adjust-

ment step is based on the hypothesis that a wide portion of the surface is available:

this does not always happens in the OR. The most time consuming phases in the cur-

rent workflow are the segmentation of the pre-operative CT to retrieve the model and

the segmentation of the intra-operative endoscopic view to retrieve the kidney surface.

Moreover, currently the deformation is tackled only on the kidney surface, disregarding

the volumetric information. Those issues have to be solved to obtain a more complete

workflow.
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Chapter 6

CONCLUSIONS AND FUTURE

WORK

The workflow for deformable registration of the kidney model to the intra-operative

point cloud is proposed. The registration is split in two phases: (i) the initial align-

ment, performed manually or based on corresponding landmark, and (ii) the deformable

registration adjustment, performed with FFD algorithm based on B-splines.

The presented workflow obtained good registration results when it registered the

entire kidney volume. However, there are still some issues that have to be solved.

First of all, the problem of the intra-operative tracking to maintain the registration

is not treated. Some possible implementation of tracking are described in [13, 41].

The tracking issue can be addressed when the registration accuracy is high enough to

justify the use of this technique to overcome the MIS drawback. As stated in [13], one

open problem in every kind of AR system is to decide what to display to offer a real

help to the surgeons.

Currently, the pre-operative kidney segmentation from CT to obtain an accura-

te patient-specific anatomical model is time consuming: it can be improved using

automatic segmentation method for CT as in [61, 62, 63].

Another step to further automatize the registration procedure is the use of au-

tomatic intra-operative point cloud segmentation for the kidney surface recognition

[64].
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Regarding the registration workflow, currently the deformable registration adjust-

ment relies on wide intra-operative kidney visible surface. Indeed, in [31] the feasibility

of the image guided kidney surgery is studied and the it is stated that approximately

28% of the total surface is required to obtain a feasible augmentation. The currently

partial nephrectomy procedure does not allow to retrieve such a wide point cloud, so

other data should be exploited to allow an accurate registration.

Finally, the developed workflow can be integrated with a robotic system for the

AC implementation. The AC are usually structures internal to the kidney (e.g. ves-

sels and nerves); to identify them in the intra-operative scene starting from the pre-

operative information, determine the kidney model surface deformation is not sufficient.

Thus, a mass-spring-damper model can be developed to simulate the kidney volume

deformation.
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List of abbreviations

RCC: Renal Cell Cancer

CT: Computed Tomography

MRI: Magnetic Resonance Imaging

MIS: Minimal Invasive Surgery

RMIS: Robotic MIS

IGS: Image Guided Surgery

OR: Operating Room

AR: Augmented Reality

AC: Active-Constraints

US: Ultra Sounds

FFD: Free Form Deformation

dVRK: da Vinci Research Kit

VF: Vector Field

FMM: Fast Marching Method

m⃗ ∈ M : surface model vertex

f⃗ ∈ F : point of the intra-operative point cloud

p⃗ ∈ P : pre-operative marker

i⃗ ∈ I: intra-operative marker

d: distance

ϕi,j,k ∈ Φ: control point
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nx, ny, nz: number of control points in x, y, z dimension

δx, δy, δz: spacing along x, y, z

dimx, dimy, dimz: point cloud dimension along x, y, z

T (x, y, z): transformation

Bl(u), Bm(v), Bn(w): spline basis function

IEO: Istituto Europeo di Oncologia

VTK: Visualization Toolkit

ITK: Insight Segmentation and Registration Toolkit

M1: kidney model from Ircadb2

M2: kidney model from IEO

F1: manually deformed point cloud

F2: point cloud acquired on silicon phantom

−∆RMSE: error reduction

RMSE: Root Mean Squared Error

E: experiment

itermax: maximum number of iteration

Y : correspondence relation between points

q⃗R: rotation expressed in quaternion

q⃗T : translation expressed in quaternion
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