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Extended Abstract

According to [1] and [2], transport phenomena in porous media involve the
description of fluid flow and solute transport. The former abides by Darcy’s law
and accomplishes the continuity constraint, while the latter, assuming a chemically
inactive solute species, is generally modelled through ADE (Advection Dispersion
Equation). Effects of molecular diffusion and mechanical dispersion are taken into
account. Flow field is stationary, while concentration varies along time.
These physical processes are of great interest in the energy field, in fact they include
important themes of research and applications such as carbon capture and storage
or enhancement oil recovery.
Phenomena are illustrated by means of a set of partial differential equations, whose
outputs of interest are the velocity vector u and concentration c, within the given
domain. However, in order to calculate them, it is not possible to rely on analytical
integration methods, since they are applicable to few limited and simple cases, such
as uniform flow or constant dispersion tensor. This leads to the necessity of having
numerical methods at one’s disposal, which allow computing an approximation uh
and ch of the exact solution u and c.
In this thesis we have considered three computational codes:

• Freefem Fix ;

• Freefem Adaptive;

• Fortran Traces.

The first name coincides with the language code, whereas the second is the actual
nomenclature, they are referred with. Each of them shows different features, although
they are all implemented in a Finite Element Framework (FEM).
According to [3], Fix is based on a fixed grid Galerkin discretization scheme in space
and time, while it employs a Streamline Upwind technique, to limit the spurious
oscillation, deriving from the convective term in the transport equation.
According to [3] and [4], Adaptive relies on an automatic space and time adaptation
technique, which is grounded on an anisotropic, a posteriori error estimator. It is an
advisable tool, because of the ability to follow the evolution of the concentration front
and optimize, as consequence, mesh and time step. A crucial issue is the projection,
so far performed by means of linear interpolation, of velocity field from one grid to
another. This concept is linked to the matter of local fluid mass conservation and
it is particularly critical especially when topology of the grid changes a lot, with
respect to the original mesh, on which Darcy’s law has been solved (see [5] for further
details).
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Traces is the most sophisticated and stable code, since it uses a Discontinuos Finite
Galerkin Method to solve the advective term in the transport equation. Mass balance
is discretized by means of a Finite Volume formulation, whereupon exact conservation
of mass could be evaluated at element level (we refer to [6] for further details).
The choice of the codes and their peculiarities enables us to carry out a deep
and complete analysis of flow and transport problem. Relying on the theoretical
background, taken from the scientific literature, aim of this thesis work is the
code benchmarking to understand impact of solution strategies and possible critical
features, especially associated with space-time adaptation, applied to numerical
solution of solute transport in homogeneous and heterogeneous domain.
In particular three macro-sections have been fulfilled, whose objectives are:

1. Detecting numerical effects of grid size variation and issues deriving from the
codes strategy, in the discretization of the convective term at different orders
of the grid Péclet number (Peh).

2. Codes benchmarking in the case of strongly heterogeneous field, in order to
explore the effect of high level of complexity in the velocity structure and
concentration distribution.

3. Implementing a mass conservative scheme for the interpolation of the flow field
between two different numerical grids, to be employed in an adaptive solution
strategy.

First assessment is realized on a homogeneous bounded domain, with uniform 1D flow.
For the transport problem investigated, a 2D analytical solution is available. The aim
consists in verifying the codes stability by varying mesh size and dispersivities values,
since, in case of transport dominated by convection (Peh > 2), the discretization of
the velocity term induces false diffusion.
The comparison with the analytical solution detects codes verification at different
mesh size. On the other hand, dealing with high Péclet, Fix demonstrates a low level
of accuracy, whereas Adaptive and Traces provide a better estimation, in fact the
former can adapt the mesh size throughout the domain and automatically control
the grid Péclet number, while the latter employs an advanced method, Discontinuous
Galerkin, which significantly prevents that false diffusion could occur.

Second assessment is based on a strongly heterogeneous control volume, which
is characterized by a fixed variance of a random Gaussian permeability field. As
already introduced, the choice of a strong heterogeneity implies a complex structure
of the velocity field and so of the concentration map. To ensure accuracy of the
results, dispersivity values have been set, in order to avoid artificial diffusion.
Fix and Traces generates identical solutions of local evolution and spatial distribution
of concentration. Adaptive instead shows remarkable oscillations, which might be
determined by an erroneous interpolation of the advective field. Projection of
velocity from one grid to another is a feature which only belongs to the adaptive
strategy, in fact both Fix and Traces are built on a fixed space-time discretization
scheme. From the analysis performed and the logarithmic-maps of flux balance, it is
evident the actual method, labelled as NCI (non-conservative interpolation), which
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is implemented in a subroutine of Freefem and is intrinsically used in the adaptive
procedure, suffers from limitations and shortcomings, such as:

• It does not account for the heterogeneity of the system, because the flux is
computed through a single permeability value, eventhough the associated edge
intersects different permeability regions;

• It does not respect local flux balance;

• It depends on mesh topology.

We have carried out a double vision of code benchmarking, involving both
the discretization scheme (Streamline Upwind versus Discontinuos Galerkin) and
the space-time procedure (fix versus adaptive strategy). Several scenarios of flow
(homogeneous and heterogeneous domain) and transport (advective or diffusive
dominated) problem have been investigated. From this analysis we have identified
the lack of local mass balance in the actual interpolation scheme as a key weakness
of the adaptive method. Therefore the novelty introduced in this work regards the
formulation of a mass conservative scheme, labelled as CI (conservative interpolation),
for the interpolation of the flow field, between two different numerical grids.
We label as transport grid the adaptive mesh, generated along time and as flow grid,
the initial mesh, on which Darcy’s law is solved. According to the old procedure NCI,
the flux, associated to an edge of a given triangle in the transport grid, is rebuilt as
average interpolation only considering the middle point of the edge itself. On the
contrary, new approach CI could be summarized in the following steps:

1. Generic triangle of transport grid is located in the flow grid, so its vertices are
pinpointed;

2. All intersections between the edge of the given triangle and elements in flow
grid are calculated. Subsequently, the edge is split in several segments, each of
them characterized by a middle point and a lenght;

3. A partial flux is computed on the segment. The summation of all contributions
allow to determine the flux associated to the edge of the element, which belongs
to the transport grid.

In this way the flow field is rebuilt throughout the transport mesh. This method is
conservative and consistent with the heterogeneity of the system, in fact, calculating
all intersection points and splitting the edge in different segments, it is possible to
match the whole edge with the corresponding permeability regions. We remind NCI
uses a single point (so one permeability value) for the computation of the flux. CI
is general, i.e. it does not depend on the topology of the adaptive grid and it is
applicable to whatever remeshing is applied. CI is a powerful tool and the difference
with the previous approach NCI is evident, especially in those elements with a
coarser size, because they are characterized by different regions of permeability and
an average interpolation with a single point can not catch all the pointwise variations
in the permeability field.
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Future works should be concerned in optimizing the code, in terms of computa-
tional cost, in fact, despite the numerical advantage, its application in couple with
the adaptive strategy is not feasible. The final objective should be to verify and
compare the solutions, which ensue from running a transport simulation.



Contents

Abstract xiii

Sommario xiv

Introduction 1

1 Problem Definition 5
1.1 Transport phenomena in porous media . . . . . . . . . . . . . . . . . 6

1.1.1 Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Darcy’s equation . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Advection-Dispersion Equation . . . . . . . . . . . . . . . . . 19

1.3 Space Time Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Variable Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5 Target of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Code Verification 29
2.1 Study case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Grid size variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Dispersivity variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Code comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Numerical Results 57
3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Outputs of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Flux Interpolation 85
4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Code Verification . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 Study case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



xii CONTENTS

Conclusion 111

A Appendix A 115
A.1 Traces Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.1.2 Hybrid scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.1.3 Discontinuous Galerkin Finite Element Method . . . . . . . . 119

A.2 Space Time Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2.1 Anisotropic setting . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2.2 Recovery-based error estimator . . . . . . . . . . . . . . . . . 123
A.2.3 Adaptation procedure . . . . . . . . . . . . . . . . . . . . . . 126

B Appendix B 129
B.1 Transport problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 False Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

List of Figures 131

List of Tables 135

List of Symbols 137

Acronyms 141

Bibliography 143



Abstract

Objective of this thesis work consists in assessing the impact of a space-time
adaptation technique, applied to numerical solution of solute transport in both ho-
mogeneous and strongly heterogeneous system, where the heterogeneity is expressed
in terms of variance of a random Gaussian permeability field.
In order to detect possible critical features and verify the results, associated with
the adaptation procedure, we perform a benchmarking of the numerical code, upon
comparing the results, given by the adaptive strategy with those yielded by two
different codes, which are built on a fixed space-time strategy.
Adaptive method allows to limit spurious oscillations, deriving from the discretization
of the convective term in transport equation, especially when the process is advective
dominated, therefore at high grid Péclet number. On the contrary, we note that a
crucial issue regards the projection of velocity field between two different meshes.
Flow problem is initially solved on a regular grid and then interpolated step by step,
from one mesh to another, during the transport simulation. This concept is linked to
the matter of fluid mass conservation. The actual interpolation scheme, labelled as
NCI (non-conservative interpolation), does not respect continuity principle, especially
when topology of the grid changes a lot, with respect to the original mesh, on which
Darcy’s law has been solved.
Novelty of this thesis work coincides with the implementation of a new mass conser-
vative method, labelled as CI (conservative interpolation). The latter is conservative
and consistent with the heterogeneity of the system. It does not depend on the
topology of the adaptive grid and it is applicable to whatever remeshing is yielded.
While the approach gives very promising results, a development is required to reduce
the computational cost. In this way CI scheme could be coupled with a full adaptive
transport simulation.
Keywords: Heterogeneity, Darcy’s law, Solute transport, Adaptivity, Interpolation,
Mass conservation.
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Sommario

L’obbiettivo di questo lavoro di tesi consiste nel valutare l’impatto che la strate-
gia di adattività spazio-temporale assume nella risoluzione numerica del trasporto
di un soluto in sistemi omogenei ed eterogenei. In particolare l’eterogeneità del
dominio viene quantificata tramite un campo Gaussiano casuale di permeabilità a
varianza costante. Con il fine di rilevare possibili caratteristiche critiche e verificare i
risultati ottenuti, proponiamo una strategia comparativa, selezionando due tipi di
codici, basati su metodi numerici a variazione temporale costante e griglia fissa. Si
riscontra che il procedimento adattivo permette di limitare lo sviluppo di oscillazioni,
specialmente in casi, in cui il trasporto sia avvettivamente dominato (alto numero
di Péclet) e di conseguenza la discretizzazione del termine convettivo risulti essere
un passaggio delicato. Al contrario, si denota come l’aspetto di maggior criticità
riguardi la proiezione del campo di velocità tra due griglie. La mappa di flusso viene
inizialmente risolta, tramite approssimazione della legge di Darcy su una griglia
regolare, dopodichè ad ogni istante temporale la stessa deve essere ricalcolata tramite
interpolazione lineare su una nuova griglia. Tale passaggio è legato alla questione
della conservazione della massa fluida, di fatti si evince che, l’attuale metodo di
interpolazione lineare, chiamato NCI, non fornisce una redistribuzione di massa
fluida, che permetta di soddisfare un bilancio locale dei flussi sul singolo elemento.
Da questa considerazione si sviluppa la novità introdotta in questo lavoro di tesi,
ovvero la formulazione di un nuovo metodo di interpolazione del campo avvettivo,
chiamato CI, che possa soddisfare il principio di continuità. I risultati finali ottenuti
giustificano il netto miglioramento sotto questo aspetto e denotano una maggior
consistenza tra il campo di velocità generato su griglia adattata e la mappa di
permeabilità del dominio di controllo. Bisogna tuttavia ammettere, che il codice
implementato, nonostante dia ottime soluzioni numeriche, non è ottimizzato da un
punto di vista computazionale di conseguenza sviluppi futuri dovranno dirigersi su
questa strada.
Parole chiave: Eterogeneità, Legge di Darcy, Trasporto di soluto, Adattività,
Interpolazione, Conservazione della massa.
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Introduction

Solute transport through porous media is of practical importance and plays a
significant role in several phenomena, including saltwater intrusion of coastal aquifers,
transport of contaminants in soil, secondary and tertiary oil recovery techniques
and many others. In the context of petroleum engineering, the study of subsurface
transport in porous media became particularly relevant and it is a key component in
the design and optimization of oil and gas production operations or in the planning
and management of geological carbon sequestration. Solute transport modelling
received particular attention for its relevance to Carbon Capture and Storage (CCS)
and Enhanced Oil Recovery (EOR) processes, which are largely affected by solute
transport dynamics.
Following [7], CCS has been validated as part of a portfolio of measures to mitigate
climate change. To stabilise atmospheric concentrations of carbon dioxide (CO2), at
reasonable levels, drastic cuts in anthropogenic emissions are required in the coming
decades. A possible strategy deals with capturing CO2 from flue gases and disposing
it underground, in depleted hydrocarbon fields or saline. However, in order for the
technology to be deployed at large scale, its viability in terms of injectivity, the
containment of the injected CO2 and the long term safety with respect to humans
and the environment, needs to be guaranteed.
Instead EOR is also known as tertiary phase of the oil production. It is generally
employed in fields, which exhibit heavy oil properties, poor permeability or irregular
faultlines. The process entails changing the actual features of the hydrocarbons with
the aim to restore formation pressure and enhances oil displacement in the reservoir.
Gas injection is a possible solution. It mainly involves natural gas, carbon dioxide or
nitrogen, which could improve the oil flow, decreasing its viscosity.
These processes require a deep knowledge of the transport phenomena in porous
materials. However, due to the impossibility to determine an analytical solution of
the governing equations and predict solute behaviour, we should rely on numerical
models to approximate the correct results. A critical challenge to the characterization
of solute transport in heterogeneous domain regards the development of numerical
methodologies, which could render suitable approximations of the space-time dynam-
ics of concentration fields.
The following thesis work is involved in this context, in particular the study is fo-
cused on transport of non-reactive chemical in both homogeneous and heterogeneous
porous domains at the continuum scale, as describing through the classical Advection
Dispersion Equation (see [2], [1], [8]). The advective term, appearing in the ADE
accommodates the details of the velocity field, emerging from the solution of the flow
problem, based on Darcy’s law and continuity constraint. Structure of the convective
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2 Introduction

field is linked to the heterogeneity of the system, which has been quantified in terms of
random Gaussian permeability field with fixed variance. A crucial aspect is concerned
with the ability of the model to retain the relevant features of the input heterogeneous
map, because preferential pathways and low velocity region can imprint remarkable
effects on the transport solution. A common way to design a mesh is based on fixed
space-time discretization scheme, however an adaptive procedure could be a valuable
alternative, because of the automatic remeshing upon the concentration evolution
(see [9], [3], [10]). A series of previous works provide examples of implementation
of adaptive grid in the context of numerical modelling of flow (see [11], [5], [12]),
moreover a recent approach incorporates the anisotropic features with an a posteriori
error estimator, to guide space remeshing and computational time step (see [13], [14],
[4], [15], [10]). The latter has been used in our study.
Relying on the theoretical background, taken from the scientific literature, aim of
this thesis work is to assess the impact of space-time adaptation technique, applied to
numerical solution of solute transport in homogeneous and heterogeneous domain. In
order to detect possible critical features and verify results, we propose a benchmark-
ing approach, whereupon we introduce two further codes. They are implemented
through a fixed space-time discretization strategy. The analysis aims at assessing
two aspects:

• Stability of the code by varying mesh size and under the imposition of a
transport problem, dominated by advection, therefore high grid Péclet number;

• Behaviour of the code in presence of a strong heterogeneous domain.

The first assessment has been run on a homogeneous system. This let us to assume a
uniform flow field and focus only on the discretization of the convective term, which
is a delicate issue, especially at high grid Péclet number.
The second matter reveals us the inconsistency of the adaptive solution with the
conservation of fluid mass. Advective field needs to be projected from one grid to
another at each time step. However the actual interpolation method, labelled as
NCI (non-conservative interpolation) does not abide by the continuity principle.
Some works (see [16] and [17]) deals with the numerical errors induced by a non-free
divergence velocity field and the analysis, we perform, confirms these considerations.
This limit leads to the key novel development, introduced in this thesis work, namely
the formulation of a conservative scheme for the interpolation of the flow field between
two numerical meshes, which we label CI (conservative interpolation). The algorithm
embeds a rigorous process of grid projection, detecting all intersection points between
an element, which belongs to the adaptive grid, and the original flow mesh, on which
Darcy’s problem has been solved. Afterwards a conservative computation of the flux
is performed. This scheme represents an original feature of this study.

A short description of the contents of each chapter is provided hereafter.

Chapter 1 introduces the governing equations of transport phenomena in porous
media, then codes and associated numerical methods, for the approximation of
velocity and concentration fields, are illustrated.
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Chapter 2 deals with the homogeneous test case. Initially we assess the effects,
involving grid size variation, in order to provide verification of each code, thereafter
the analysis is shifted towards the simulation of transport process, dominated by
convection.

Chapter 3 is concerned with results of solute transport, taking place in heteroge-
neous domain. Both flow and concentration field are presented and discussed, with a
main focus on the adaptive strategy.

Chapter 4 explains the formulation of the new conservative interpolation algorithm,
firstly from a theoretical point of view and then numerical results are depicted.





Chapter 1

Problem Definition

This thesis work is focused on the study of flow and transport of a non-reactive
solute in heterogeneous porous media at continuum scale, as described through the
classical Darcy’s law and Advection-Dispersion equation (ADE). These physical
processes have been illustrated by means of a set of partial differential equations
(PDE). In this context, the outputs of interest are the velocity and concentration
field, however, in order to calculate them, we can not rely on analytical integration
methods, because they are limited to very simple cases. Therefore, following [18],
from a theoretical point of view, the analysis of a given PDE is often bound to
investigating existence, uniqueness and possibly, regularity of its solutions, but it
lacks practical tools for their actual determination. It leads that it is extremely
important to have numerical methods at one’s disposal, which allow to construct an
approximation zh of an exact solution z, and evaluate the error ‖ zh − z ‖ between
exact and numerical solution.
According to [18], main features of a whatever numerical method are convergence,
consistency and stability. We denote with V(z(g)) the space, to which the solution z
and the set of data g, on which the PDE depends, belong. We denote with Vh(zh(gh))
the approximated problem.
A numerical method is convergent, if the approximated solution tends to the exact
one, as the discretization parameter h tends to zero.

‖ z − zh ‖→ 0 as h→ 0 (1.1)

A numerical method is said consistent, if the exact solution satisfies the algebraic
equation, obtained for the approximation of the solution.

Vh(z(g))→ 0 as h→ 0 (1.2)

A numerical method is stable, if to small perturbations to the data correspond small
perturbations to the solution.

The Chapter is organized as follows:

Section 1.1 is dedicated to the presentation of the governing equation for fluid
flow and solute transport in porous media.

5



6 Chapter 1. Problem Definition

Section 1.2 is concerned with the introduction of Finite Element Method and dis-
cretization techniques upon flow and transport problem.

Section 1.3 describes the general procedure for mesh adaptation and the associ-
ated algorithm, implemented in [19].

Section 1.4 introduces the concept of variable conservation.

Section 1.5 shows the objectives of the thesis work and the novelties introduced.

1.1 Transport phenomena in porous media
A porous medium is a portion of space, occupied by heterogeneous or multiphase

matter. It contains pores or voids, which are enclosed by a solid matrix and
generally filled by gaseous or liquid phase (at least for the sake of interest of reservoir
engineering). Void spaces are interconnected each other, through continuous paths.
As far as flow through porous media is concerned, unconnected pores may be
considered as part of the solid matrix. This concept anticipates the definition of
porosity ϕ, the fraction of volume of porous medium, occupied by void space. More
strictly speaking, the effective porosity is the variable to take into account, since it
excludes regions of void space, entirely enclosed by solid material, where fluids can
not flow. Furthermore, the fraction of void space of the soil occupied by water is
defined as saturation Sw. Another important property of the geometry of the porous
medium is the permeability k [m2], which measures the ability to transmit a fluid
through it. Following [1], permeable formations, such as sandstone, tend to have
many large well-connected pores, whereupon they could transmit fluid readily. On
the contrary, shales or siltstones tend to be finer grained with less interconnected
pores. The difference in grain shape is depicted in Figure 1.1, the bottom-left sample
(Mount Gambier) shows high-porosity and high-permeability with well connected
pore space, while the bottom-right (Portland) is well-cemented with shell fragments.
In the present thesis work, let us consider a 2D domain in x− y directions, since the
depth can be generally neglected, in fact transport phenomena of interest take place
along the planar direction, also depending on the geometry of the aquifer/reservoir.
The continuum approach is adopted, therefore the porous medium is interpreted
as a fictitious continuum, indeed at any point, kinematic, dynamics variables and
parameters are continuous functions of the spatial coordinates.
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Figure 1.1: Top, a schematic two dimensional cross-section through a porous rock; bottom
(left and right) a two dimensional cross-section of a three-dimensional image
of a limestone, showing individual grains, from [1]
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1.1.1 Fluid Flow
Let us consider a chemically inactive, viscous, Newtonian, of a constant tempera-

ture fluid. Derivation of the equations governing the behaviour of the fluid is here
explained.
Two different view points could be taken into account:

• Eulerian: a volume element is fixed in a space frame of reference;

• Lagrangian: the surface of the volume element is co-moving with the fluid, in
a fluid frame of reference.

Eulerian approach is considered. The infinitesimal volume element dΩ is shown in
Figure 1.2.

Figure 1.2: Finite control volume fixed in space, from [20]

There are two fundamental concepts to use for describing the fluid flow: conservation
of mass and Navier-Stokes equation. Firstly, following [20], a model of moving fluid
is considered with velocity u= (u1, u2)T (1, 2 denotes Cartesian coordinates x, y).
The mass of the infinitesimal element dΩ is dM , which could be calculated as:

dM = ρdΩ (1.3)

We assume there are no sources or sinks of mass within dΩ, then the rate of change
is simply related to the mass flow across the boundaries (right-hand side of the
Equation (1.4)). Examining Figure 1.2, by convention ndΓ points outwards, hence
denoting positive an outflow. Since the control mass M is conserved, the total time
rate of change of the fluid mass is zero. From an analytical point of view, recalling
Reynolds transport theorem:

dM

dt
=
∫

Ω

∂ρ

∂t
dΩ +

∫
Γ
ρu · n dΓ = 0 (1.4)

According to Gauss-Divergence theorem:∫
Γ
ρu · n dΓ =

∫
Ω
∇ · (ρu)dΩ (1.5)
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Coupling Equation (1.4) and (1.5), local conservation in an Eulerian frame reference
is derived:

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

According to [1], we assume relatively incompressible fluids in a small domain (the
pore scale), where changes in pressure, hence density, are small compared to the
overall pressure, the density can be approximated as constant and so Equation (1.6)
can be rewritten as ∇ · u = 0.
The second concept to introduce is the conservation of momentum, analytically
described through Navier-Stokes, in Equation (1.7):

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + µ∇2u (1.7)

where P indicates pressure [Pa] and µ the viscosity [Pa s].
According to [1] and [21], the flow field changes slowly over time, and it is reasonable
to neglect any explicit time dependence. This notion could be quantified by Reynold’s
number Re, ratio of inertial to viscous forces:

Re = ρuC LC
µ

(1.8)

where uC and LC coincide with characteristic velocity and length. Roughly speaking
for a sand field and water fluid, typical values of the quantities, involved in Equation
(1.8), are ρ = 103 kg/m3, µ = 10−3 Pa s,
LC = [10−5 ÷ 10−4]m, uC = 10m/day, as consequence, orders of magnitude of Re
belongs to the range [10−1 ÷ 10−3]. Assumption of laminar regime is so reasonable
(see [1]).
It is possible to average the Navier-Stokes equation and derive a linear relation
between volumetric flow rate and pressure gradient, known as Darcy’s law. According
to [2], it reads:

Q = −k
µ
A(∇P − ρg) (1.9)

where Q is the volumetric flow rate [m3/s], k is the permeability [m2], A is the cross
sectional area [m2], P is the pressure [Pa], ρ is the density [kg/m3], g is gravitational
acceleration [m/s2]. The porous medium is taken to be saturated with the fluid of
interest, in the sense that fluid-fluid interfaces do not form and a single fluid prevails
in the pore space.
In case of isotropic and homogeneous media, permeability is reduced to a scalar
quantity. In our case, we assume to deal with an heterogeneous system, which is
characterized in terms of spatial distribution of permeability (see Section 3.1). A
scalar map k = k(x, y) is considered. It is function of space coordinates and it is
obtained as random Gaussian field with a fixed variance of natural logarithm, such
as in Figure 1.3 (for further details see [9] and [19]).
Avoiding the gravitational effects, the following form is obtained:

Q
A

= q = −k
µ

∂P

∂x
= k

µ

[
∂P

∂x
+ ∂P

∂y

]
(1.10)
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It is important to remind the flow occurs only in the pore space, therefore the effective
area has to take into account the porosity ϕ. This is particularly significant in order
to calculate the actual velocity, because only a fraction of the total formation volume
is available.

u = q
ϕ

= − k

µϕ
(∇P + ρg) (1.11)

It is also possible to write an alternative formulation of Darcy’s law, by introducing
two new terms, piezometric head PH and hydraulic conductivity KH . The former
is calculated as the sum of pressure head P/(ρg) and the elevation head zH , which
corresponds to the vertical coordinate. The latter is a variable, which accounts for
thermo-physical properties of the fluid (by means of ρ,µ) and geometry features of
the medium (by means of k)

KH = kρg

µ
(1.12)

Q = −AKH∇PH (1.13)

Although Equation (1.13) and (1.9) are equivalent in describing Darcy’s law, the
latter is taken as reference.
It is now possible to derive the final system, which globally describes the fluid flow.
Darcy’s law and continuity equation are included.

ϕu = −k/µ(∇P + ρg) x ∈ Ω

∇ · u = 0 x ∈ Ω
(1.14)

Figure 1.3: Probability density function of a random Gaussian field against log-
permeability scale, from [19]
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1.1.2 Transport
We assume a porous medium satutated with water. Transport of species dissolved

in a single phase is governed by three physical processes:

Advection : it causes translation of solute mass by moving it with the flow velocity;

Mechanical dispersion : it derives by the effects of the presence of a velocity
distribution at the pore scale on the dispersion of the solute;

Diffusion : it describes the spread of particles through random motion in the
presence of a concentration gradient.

Following the definitions reported in [22], diffusion is a term reserved for the mixing
in the molecular level, where motion is random, while mechanical dispersion occurs
due to different velocity channels within the porous medium. This second effect
is governed by the variations in the flow field and it usually dominates with huge
spreading of a dissolved plume of solute.

Figure 1.4: From left to right, pore space, pressure field (red colour represents high values,
while blue low ones) and flow field, from [1]

According to [2], diffusion and dispersion could be quantified and summed up in a
parameter defined in tensor form D= {Dij}. It is labelled as the effective dispersion
coefficient, which accounts for both molecular and random nature of the flow field.
Consider an heterogeneous and anisotropic medium, the tensorial notation ensues:

Dij = (αT ‖ u ‖2 +Dm)δij + (αL − αT ) ui uj
‖ u ‖2

with i, j = 1, 2 (1.15)

Here αL [m] and αT [m] are longitudinal and transverse dispersivity. δij is Kronecker’s
delta, Dm [m2/s] is molecular diffusion and ‖ u ‖2 denotes the standard Euclidean
norm of velocity vector. Neglecting reactive terms, the conservation equation of a
solute in a porous media could be derived.
We label:

• c as the concentration of solute per unit pore volume, hence ϕ c is the mass
per unit volume of soil;
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Figure 1.5: A schematic control volume, used to derive conservation equation, from [1]

• J = {Ji} is the total flux per unit cross section area, along ith direction.

ϕJ = ϕu c− ϕD∇c (1.16)
According to [1], convection and dispersion-diffusion are clearly additive and inde-
pendent each other, in fact advection does not bias the probability a molecule will
take a diffusive step.
Referring to Figure 1.5, we consider an arbitrary volume Ω of a porous medium,
bounded by a surface Γ, then mass balance holds if:

ϕ
∫

Ω

∂c

∂t
dΩ + ϕ

∫
Γ
J · n dΓ = 0 (1.17)

Green theorem is adopted to convert the surface integral into a volume one:

ϕ
∫

Ω

∂c

∂t
dΩ + ϕ

∫
Ω
∇ · J dΩ = 0 (1.18)

In order to perform an overall volume balance, we assume an incompressible fluid,
Advection-Dispersion equation (ADE) reads:

∂c

∂t
+ u · ∇c−∇ · (D∇c) = 0 (1.19)

Manipulating the terms in Equation (1.19), it is also possible to write an equivalent
version, known as conservative form:

∂c

∂t
+∇ · (uc−D∇c) = 0 (1.20)

At this point, we provided a theoretical description of the transport phenomena
in porous media, however, as discussed at the beginning of the chapter, the actual
determination of the variables of interest requires the adoption of numerical methods.
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Therefore, the next step corresponds to the shift from the actual partial differential
problem to its approximated form and, in order to generate an estimation of the
solutions for flow and concentration field, three different codes have been taken into
account, which are labelled as:

• Freefem Fix: it relies on a fixed space and time discretization scheme (see
Section 1.2);

• Freefem Adaptive: it is based on an adaptive procedure for the transport
problem resolution (see Section 1.3 and Appendix A.2);

• Fortran Traces: it is a powerful tool, which uses an advanced level of dis-
cretization to guarantee stability of the solution (for further details we refer to
Appendix A.1).

The first name corresponds to the language programme, while the second is the
actual nomenclature, with they will be referred to.
In the following sections, we argue on the theoretical background, underlying the
numerical methods, which have been implemented in the given codes. Each of them
is built on a Finite Element Framework, therefore we initially introduce a general
overview on the topic, afterwards the focus is shifted on the discretization scheme of
flow and transport equation.

1.2 Finite Element Method
Finite element method (FEM) has become a very widespread tool, thanks to

its flexibility, which allows to accommodate complex domain and heterogeneity in
the problem parameters. All the given codes, Fix, Adaptive and Traces rely on this
framework.
The common definition of Finite Element, according to [23], reads as follows:

Definition 1. A finite element is defined by a triplet (Ω,V , Z), where:

• the domain Ω is a bounded, closed subset of Rn with non empty interior and
piecewise smooth boundary;

• the space V = V(Ω) is a finite dimensional function space on Ω of dimension n;

• the set of degrees of freedom Z= {z1, z2, ..., zn} (i.e the values that must be
assigned to define uniquely the functions themselves).

This leads to three different steps, which are the drivers for generating a solution:
domain discretization, problem approximation and functional space definition. Inde-
pendently on the type of code, these phases need to be accomplished, in order to
achieve an approximated solution zh of the real variable z.
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Figure 1.6: Conformal (left) and non-conformal (right) mesh, from [24]

Domain Discretization

We consider a domain Ω∈ Rn (n = 2 or n = 3) on which a PDE is defined. In
order to solve a partial derivative system in a finite element framework, it is needed
to provide an approximation of Ω, labelled as Ωh. The domain Ωh is divided in
triangles or rectangles (n = 2) or tetrahedra, pentahedra or hexahedra for (n = 3).
The covering-up of the domain Ωh, by means of such elements is called mesh or grid,
and it is indicated with the symbol Th, where h stands for the mesh size. In case of
polygonal control volume, Ωh= ∪T∈Th

T and Ωh coincides with Ω, therefore, for sake
of simplicity, the subscript h will be removed from the notation.
In this thesis work, a polygonal 2D domain has been considered and triangles have
been used for discretization, as consequence h represents the triangle diameter. A
conforming triangulation is needed to be realized, because an efficient mesh reduces
the difficulties, related to the computation of solution and more reliable results will
be obtained. According to [24], a conformal Th of Ω needs to satisfy the following
criteria:

• Ω=Ωh=int (∪T∈Th
T );

• the interior of every element T in Th is non empty;

• the intersection of the interior of two elements is empty, in order to avoid
element overlapping;

• the intersection of two elements in Th is either the empty set, a vertex or an
edge.

Figure 1.6 depicts an example of conformal and non-conformal mesh, due to the
non-matching vertex, located on the edge of the element T . Main parameters of the
mesh are here enlisted:

• Ω: discrete bounded domain;

• Γ: boundary of the given domain;

• h: mesh size i.e triangle diameter;
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• T : generic triangle in Th;

• Nt: number of triangles element in Th;

• Vi: ith vertex (i = 1, 2, 3) of generic triangle T ;

• Nv: number of vertices in Th;

• Ei: ith edge (i = 1, 2, 3) of a generic triangle T ;

• Ne: number of edges in Th.

Furthermore, note that meshes are used to discretize a certain domain, to obtain
the solution of the problem under investigation. They can be interpreted as spatial
support, where each differential equation is solved in a precise location, labelled
as node. As consequence, it is then possible to classify a triangulation according
to the structure, in this sense a structured mesh is the simplest kind of grid and
it is built, placing nodes in the space. This often leads to an optimization of the
implementation of the numerical procedure. The disadvantage of the structured
grids is that they can be used only for geometrically simple domains. On the other
hand, an unstructured mesh allows a more flexible distribution of the nodes in space
and it can be applied for complex geometries.

Figure 1.7: Structured and unstructured mesh, from [24]

Problem Discretization

The general idea of Finite Element Method is to numerically approximate a
generic solution z of PDE with a function zh, using combinations of basis functions,
according to the following expression:

z ≈ zh =
N∑
i

$i(x)zi(t) (1.21)

where x is the vector of coordinates, t the time, $i(x) is an interpolation (or basis)
function defined over the whole domain Ω, N the total number of nodes (or degrees
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Figure 1.8: Basis function in 2D triangular mesh, from [25]

of freedom) and zi = z(xi) is the ith degree of freedom, which corresponds to the
nodal evaluation of z. Assuming Lagrangian basis function (see Section 1.2) $i(x)
takes the value of 1 in the respective node and 0 elsewhere, as illustrated in Figure 1.8.

Functional Space

Following [18], [23], some basic, but fundamental concepts are recalled, in order
to figure out problem interpretation and discretization in Section 1.2.1 and 1.2.2.
We denote with L2(Ω), the space of functions, which satisfy the following criterium:

L2(Ω) =
[
z : Ω 7→ R :

∫
Ω
|z(x)|2 dΩ < +∞

]
(1.22)

where z(x) = z(x, y) is a generic function, which belongs to L2(Ω). It is fundamental,
because it identifies the set of square integrable functions.
We denote with H1 the space:

H1(Ω) =
z ∈ L2(Ω) :

∫
Ω

(∂z
∂x

)2

+
(
∂z

∂y

)2
 dΩ < +∞

 (1.23)

All functions z embedded in H1 are of class C0 (i.e continuous) on a bounded
domain Ω, whose derivatives are square-integrable as well. For essential boundary
conditions, space H1

0 (Ω) (subspace of H1) might also be defined, in order to abide
by the condition z|Γ = 0.
We denote with H(div) the space, consisting of vector fields, which requires the C0

continuity of the normal component.
A functional space is defined, based on the continuity and differentiability require-
ments of the problem at hand, thereafter, once an appropriate space has been chosen,
the goal is to create an approximation, that depends on the mesh size h. To this end
a partition Th has been introduced.
We consider for example the case of functions z embedded in space H1(Ω), since
they are continuous on the bounded domain Ω, the following family of spaces Vrh, for
the approximated functions zh, could be constructed:

Vrh = {zh ∈ C0(Ω) : zh|T ∈ Pr ∀T ∈ Th} (1.24)
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Having denoted by Pr(Ω), the space of polynomials with degree lower than or equal
r. Space Vrh coincides with a subspace of H1(Ω), as it is constituted by differentiable
functions. The fact that, functions embedded in Vrh are locally (element-wise)
polynomials makes the computation easier, furthermore, it is convenient to choose a
Lagrangian basis {$i} for Vrh, because the coefficient of the expansion of a generic
zh ∈ Vrh , in the basis itself, is the value taken by zh at the node. To summarize, the
Lagrangian element is defined for r = 0, 1 (for what concerns this thesis work):

Ω = ∪T∈Th
T T triangle (1.25)

Vrh = Pr(Ω) ⊂ H1(Ω) (1.26)
zi = z(xi) (1.27)

Degrees of freedom in Equation (1.27) coincide with the function evaluated at the
vertices (r = 1) or baricenter (r = 0).
We consider now the space H(div), the main family of subspace is known as Lowest
order Raviart-Thomas (RT0), whose element, for r = 1, is defined in the following
way:

Ω = ∪T∈Th
T T triangle (1.28)

Vrh = [P0(Ω)]2 + xP0(Ω) Vrh ⊂ H(div) (1.29)

zi =
∫
Ei
z · n dEi (1.30)

Raviart-Thomas finite element belongs to a space of vector fields (Equation (1.29)),
for which each normal component needs to be continuous, and to ensure it, degrees
of freedom are moments of the normal component, or rather fluxes across edges Ei
of the mesh (Equation (1.30)).

The theoretical overview just presented is essential to understand the discretization
scheme, related to flow and transport problem. We remind that FEM represents a
common background to all codes.
In the following sections, we argue on the strategies, adopted by Fix, Adaptive and
Traces for the discretization of flow and transport, respectively Equation (1.14) and
(1.19). For further details, we refer to the scientific literature suggested and to
Appendix A.

1.2.1 Darcy’s equation
Differential System (1.31) represents the strong formulation of flow equation. The

common way to solve it is to introduce a modified version of the problem, labelled as
weak form, which reduces the order of derivation, by means of integral formulation,
moreover it automatically enforces natural boundary conditions. The procedure,
we report below, describes in detail the discretization process, involving in Fix and
Adaptive, nonetheless at the end of the section some considerations, regarding Traces
are pointed out.
Starting from the general strong formulation:u = −k/(µϕ)(∇P + ρg) x ∈ Ω

∇ · u = 0 x ∈ Ω
(1.31)
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We introduce the following functional spaces V ⊂ H(div),W ⊂ H0(div) and X ⊂ L2,
(see [18], [3] for further details). We consider two kind of test functions, w for Darcy
law and ξ for continuity equation, thereafter multiplying them for both equations in
System (1.31) and integrating on Ω, we find:

∫
Ω

(
µϕ

k
u ·w + w · ∇P +∇ · uξ

)
dΩ = −

∫
Ω

(ρg ·w)dΩ (1.32)

Applying Green theorem on the pressure term, it is obtained:∫
Ω
w · ∇P dΩ =

∫
Ω

(∇ · (wP )− P∇ ·w) dΩ

= −
∫

Ω
P∇ ·w dΩ +

∫
Γ
w · nP dΓ

(1.33)

Rearranging Equation (1.33) into (1.32), the final weak formulation ensues. It
demands to find u∈ V and P ∈ X such that, for any w ∈ W and ξ ∈ X :∫

Ω

(
µϕ

k
u ·w− P∇ ·w +∇ · uξ

)
dΩ = −

∫
Ω

(ρg ·w)dΩ (1.34)

As discussed in previous section, the original PDE (1.31) needs to be discretized,
generating the so called Galerkin problem, however, instead of the strong form, the
weak Equation (1.34) is solved, in order to seek approximation uh ∈ Vh and Ph ∈ Xh.
The finite dimensional spaces Vh, Xh, which have just been introduced, are simply
subspaces of the previous ones, therefore Vh ⊂ V and Xh ⊂ X . The same occurs
for test functions, which have to be taken into discrete form, or rather wh ∈ Wh

and ξh ∈ Xh. Furthermore, according with the notation, defined in Section 1.2,
Vh, Xh coincide respectively with a Raviart-Thomas space (RT0) and a zero order
Lagrangian space P0.
It is important to underline that Finite Element Method, in which two spaces
are used to approximate two different variables receive the general denomination
of Mixed Methods. Following [18], [26], this technique has been adopted because
it is particularly appropriate for the description of phenomena with two natural
independent variables, such as flow problem (1.14) with pressure and velocity.
Thus RT0− P0 discretization of (1.34) reads: find uh ∈ Vh and Ph ∈ Xh such that,
for any wh ∈ Wh and ξh ∈ Xh,

∑
T∈Th

∫
T

(
µϕ

k
uh ·wh − Ph∇ ·wh +∇ · uhξh

)
dT = −

∑
T∈Th

∫
T

(ρg ·wh)dT (1.35)

Since velocity field is steady, the problem is solved once, for prescribed set of data.
We remind the above description regards the discretization scheme for the flow
problem, adopted by Fix and Adaptive. On the other hand, Traces is still built on a
Mixed Finite Element, therefore the approximate velocity belongs to functional space
RT0, while the pressure to the zero order Lagrangian P0. The difference consists in
the governing equation, taken into account, in fact Traces approximates Equation
1.13, calculating first the piezometric head and then the actual flux. We always refer
to Appendix A.1 for further details.
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1.2.2 Advection-Dispersion Equation
The procedure, we report below, describes in detail the discretization process,

involving in Fix and Adaptive, nonetheless at the end of the section some considera-
tions regarding Traces are pointed out.
Conservative formulation (see [1], [2], [18]) of transport reads:

∂c

∂t
−∇ · (D∇c− uc) = 0 (1.36)

Assume c ∈ Z, u ∈ V with Z ⊂ H1(Ω) and V ⊂ H(div)(Ω), in order to find the weak
formulation of the above equation, a test function ζ ∈ Z is considered. Following [3],
the weak formulation reads:∫

Ω

[
∂c

∂t
ζ − ζ∇ · (D∇c− uc)

]
= 0 (1.37)

Applying Green theorem, it is obtained: ∫
Ω

[ζ∇ · (D∇c− uc)] dΩ

=
∫

Γ
ζ(D∇c− uc) · n dΓ−

∫
Ω

(D∇c− uc) · ∇ζ dΩ
(1.38)

Rearranging Equation (1.38) into (1.37), the final weak formulation ensues:
∫

Ω

[
∂c

∂t
ζ + (D∇c− uc) · ∇ζ

]
dΩ = 0 (1.39)

Further details, regarding the solution of the weak problem, are given in Appendix
B.1.
Thereafter, Galerkin discrete approximation, which is implemented in Fix and
Adaptive is immediately derived:
find ch = ch(t) ∈ Zh ⊂ Z such that for any ζh ∈ Zh:

∑
T∈Th

[∫
T

(
∂ch
∂t

ζh + (Dh∇ch − uh ch) · ∇ζh
)
dT

]
= 0 (1.40)

Traces, instead develops a mass balance, through a finite volume formulation, which
allows to ensure exact conservation at local element-wise level. Convective part of
Equation (1.40) is solved through Discontinuous Finite Element, the rest by Mixed
Hybrid Finite Element (see Appendix A.1).

Discretization of the convective term in Equation (1.40) demands a particular
treatment. In the following part, we outline the numerical issue and strategy adopted
by each code.

Stabilization of the convective term

In multidimensional problems, both convection and diffusion carry information.
Velocity field determines direction and speed of the convective transport, whereas
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the net diffusive flux depends on the definition of D, in particular on longitudinal
and transverse dispersivity αL and αT . In case of transport advective-dominated (see
Section 2.3 and Appendix B.2 for further details), the erroneous discretization of the
convective term induces numerical crosswind diffusion, which needs to be stabilized.
Each of the considered codes manages it in a different way:

• Fix uses the so called Streamline Upwind Technique, which is presented below;

• Adaptive can count on the remeshing itself. Mesh size refinement (see Section
1.3) allows to obtain accurate results in the discretization of the convective
term.

• Traces employs another stabilization method, known as Discontinuous Galerkin.
It is much more sophisticated than the Streamline Upwind technique and it
ensures exact local mass balance at element level, without oscillations and
reducing the artificial diffusion (we refer to Appendix A.1 for further details).

We focus on the description of Streamline Upwind technique. It introduces anisotropic
balance dissipation, acting along the streamlines, but not transversely. Referring to
[27], [18], [28], the upwind artificial-viscosity could be generalized for the 2D case,
simply by adding to Equation (1.40) a term like:

bh(ch, ζh) =
∑
T∈Th

γT

∫
T

(uh · ∇ch)(uh · ∇ζh)dT (1.41)

The resulting discrete problem is therefore a modification of the initial Galerkin
(1.40). Basically, the integrand of Equation (1.41) represents a weak form of the
second convective derivative:

(u · ∇)2c = u · ∇(u · ∇c) (1.42)

therefore the term bh(ch, ζh) incorporates a streamline diffusion into the Galerkin
scheme. The stabilization parameter γT is defined, according to [3] as

γT = hT
3|uh|T

(1.43)

where hT is the triangle diameter, while |uh|T is the velocity module. Both quantities
are referred to element T .

Finally time discretization is performed via ϑ-method, setting ϑ = 2/3 to guaran-
tee the unconditionally absolute stability.
According to Fix approach, we denote:

R(ch, t) =
(
∂ch
∂t

ζh +∇ζh · (Dh∇ch − uhch)
)

+ γT (uh · ∇ch)(uh · ∇ζh) (1.44)

A compact notation of the discrete problem, including both time and space discretiza-
tion, could be written in the following way:

1
∆t(c

n+1
h − cnh) + (1− ϑ)R(cnh, tn) + ϑR(cn+1

h , tn+1) = 0 (1.45)
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1.3 Space Time Adaptation
Both Fix and Traces are characterized by fixed strategy, in terms of space-time

discretization. This means that numerical mesh and computational time step need
to be defined a priori via a suitable convergence analysis (see Chapter 3). On the
other hand, Adaptive embeds another scheme, which is here clarified.
In this Section, space-time adaptation procedure is rapidly illustrated, in order to
give a general view of the theoretical background. The whole scheme is reported in
Appendix A.2 and we refer to the suggested literature for further details (see [3], [9],
[11], [29], [30], [5], [13], [14], [31], [32], [10], [15]).
The method is said adaptive, because the process depends on previous results at all
stages and it has to be interpreted as an enhancement of the classic finite element
algorithm (Fix) described in Section 1.2.
An automatically adaptive grid is a very advisable tool in modelling real scale
applications, in fact, often, the most relevant processes, driving the evolution of a
variable, take place in different regions throughout the domain, therefore a homoge-
neous distribution could lead to useless computational cost. The actual remeshing
and computation time definition are grounded on an anisotropic a posteriori error
estimator.
About the choice of an anisotropic estimator, the main objective is to include ge-
ometrical information, regarding orientation and size, about a generic triangle T
in mesh Th. This may be optimized for the discretization of ADE, in particular to
concentration evolution within the domain. Furthermore, according to [14], using
rather elongated elements may help in reducing the number of degrees of freedom
necessary for a given solution accuracy.
About the choice of a posteriori estimator, it is important to remind that an analyt-
ical solution is not available for the Problem (1.20) at hand, therefore neither the
error could be calculated. However, a posteriori estimator only relies on the discrete
function and it can qualitatively detect which elements in the mesh give a larger
error contribution. This could be perfectly couple with a refinement, just selecting
those triangles with a significant error and subdividing them, reducing the mesh size
h.
The algorithm, which has been implemented in [19] combines the discretization
scheme of ADE with the information, provided by the error estimator ηht

ηht = ηh + ηt (1.46)

which includes a compound ηh for spatial discretization and one, ηt for time.
The objective is to automatically adapt the mesh Th and time domain [0, tend],
moreover, in order guarantee the error below a certain value, following [10], two
accuracy targets need to be specified:

τ = τ∆t + τh (1.47)

τh drives the mesh adaptation, while τ∆t the time advancement. The main goal is
to find the mesh with the least number of elements and associated with the fixed
accuracy (i.e. such that ηh ' τh), while guaranteeing an equidistribution of the
error in space. Once the optimal mesh has been derived, some constraints have to



22 Chapter 1. Problem Definition

be imposed, in order to avoid a cluster of elements with small surface area. The
following input parameters are set:
pmin : minimum area value allowed for T ;

Nmin, Nmax : maximum and minimum number of elements in Th;

hmin, hmax : maximum and minimum length of triangle edges.
Same considerations occur to control the time adaptation, therefore we fix:
∆tmin : minimum allowed time step for the adaptation procedure.

∆tmax : maximum allowed time step for the adaptation procedure.

1.3.1 Algorithm
Referring to Figure 1.9, which depicts the whole algorithm, the strategy to

combine the discretization technique (Section 1.2.1 and 1.2.2), with space-time
adaptation is here detailed. The variable of interest is the solute concentration c.
To start, preliminary input data need to be assigned, therefore:

1. Velocity field from flow problem −→ u = (u1, u2)T ;

2. Initial concentration −→ c0 = c(x, t = 0);

3. Space adaptivity parameters −→ pmin, τh, hmax, hmin, Nmax, Nmin;

4. Time adaptivity parameters −→ ∆tmax, ∆tmin, τ∆t.
We consider time step tn+1 and we assume to know concentration map, grid distri-
bution and time interval length at tn. First of all, Equation (1.20) is discretized
on interval In = [tn, tn+1] and grid T nh , via Galerkin approximation (1.40), thus
yielding the solution c∗h(tn). The latter is employed to generate the adaptive mesh
T nh , following the anisotropic adaptive procedure (see Appendix A.2), whereupon all
the quantities associated with T nh are projected on the new grid T n+1

h .
According to [33], at each adaptation step, a complete remeshing is performed by
the Freefem mesh generator BAMG, which, as far as possible, preserves the previous
position of mesh nodes, during adaptation. Nevertheless, to successfully complete
the generation of the adapted mesh and to make the whole simulation process more
stable and smoother, some controls on the topology and cardinality are mandatory.
This leads to bound on the minimum triangle area and maximum element number,
such as discussed in previous section. In this way, the actual ch(tn) is defined. Notice
that, to contain the computational cost, characterizing the whole time window, we do
not resort to an iterative algorithm to get the adapted mesh Th(tn+1), by demanding
a stagnation of the number of mesh elements. On the contrary, the mesh identified
by the optimal metric is directly assumed as the mesh to be associated with time
tn+1. Finally moving from the approximate solutions, the next time step is predicted
(see Appendix A.2). Concerning the projection step, a standard L2-projection is
adopted, because it exhibits good conservation properties, when applied, for instance,
to unsteady solute transport equation (see Section 1.4).
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Figure 1.9: Sketch of the solution-adaptation algorithm
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1.4 Variable Conservation
As explained in [30], in a mesh adaptation procedure a crucial issue is the

projection of the solution computed on T nh on the new grid T n+1
h . As depicted

in Figure 1.10, the highlighted triangle in mesh T n+1
h intersects six triangles of

T nh , rendering the translation of the information a difficult task. This step has to
be handled carefully, especially in an unsteady framework as a non-conservative
projection may heavily compromise the accuracy of the computed solution during
the propagation of the process.

Figure 1.10: Graphical explanation of interpolation error among two different mesh, from
[30]

Two variables need to be projected from one mesh to another, concentration and
velocity field. About the former, at global scale, we need to verify the conservation of
the solute mass on different meshes, but same time instant, in fact the new adapted
grid is built, based on concentration gradient at previous time step. This means that
the mass content, evaluated either on T nh or T n+1

h , must be the same.
The following recipe is resorted:

∑
T∈T n+1

h

∫
T

(cn+1
h − cnh) · ζn+1

h dT = 0 (1.48)

where cnh stands for the concentration, evaluated at time tn, whereas ζn+1
h denotes the

generic finite element test function, associated with the new mesh T n+1
h . Numerical

solution of Equation (1.48) has been implemented via a dedicated algorithm. This
procedure ensures, in general, a global conservation of the variable with respect to
the L2-norm, in particular it allows a reasonable global conservation of mass during
the projection step.
On the contrary, for what concerns velocity field, Equation (1.48) offers acceptable
results from a global point of view, but we also need to ensure a local conservation,
in order to avoid fictitious fluid mass redistribution.
It is reminded that the velocity profile is stationary, therefore it has been computed
once, before running transport simulation. However, time to time, passing from
one mesh to another, the adaptation procedure implies to recalculate it, and this is
usually done by means of linear interpolation, which unfortunately does not satisfy
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the continuity constraint, especially when the transport grid changes a lot with
respect to the initial flow grid. Difficulties arise from the imposition of a strong
heterogeneous field, which induces a complex spatial arrangement of the convective
map. It exhibits preferential channels and low velocity regions, which demand a
precise scheme of interpolation, in order to be reproduced in the correct way.
Moreover, due to the dependence on the advective field, results of concentration have
been found to be very sensitive to the quality of the velocity approximation (see
Chapter 3), particularly regarding the satisfaction of the divergence free-condition.
Such errors determine in the existence within the flow field of sources and sinks,
which numerically provide a generation of fluid mass.
To distinguish the notation and simplify the reading of this section, we denote as Flow
grid, the regular mesh, where Darcy’s problem has been solved, whereas Transport
grid represents the adapted mesh. According to Figure 1.11, we state to use the
following symbols:
Flow grid:

• T 0
h : flow grid;

• T : generic triangle in T 0
h ;

• Ei: ith edge of triangle T in T 0
h ;

• Ri: intersection point;

• Si = (Ri −Ri+1): segment, composed by two consecutive intersection points;

• Mi = (xM , yM): middle point of Si;

• qi,j: flux associated to segment Si, which composes the edge Lj;

• Qi: stationary flux, computed through Darcy’s law, associated with Ei.

Transport adaptive grid:

• T nh : transport adaptive grid;

• K: generic triangle in T nh ;

• Li: ith edge of triangle K in T nh ;

• Ni = (xN , yN): middle point of Li;

• qj: unknown flux, associated with Lj.

In order to deeply understand the problem, let us consider a generic triangle T in
T 0
h and denote with Qi the flux associated with Ei (i.e the ith edge of triangle T ).

Following [34], to compute the flux, an integral quadrature formula with one Gauss
point, the middle point of the edge, has been used, while the orientation of the
normal is justified by the sign of vertices number.
In the original flow grid, the following expression holds:∫

T
∇ · u dT =

3∑
i=1

∫
Ei
u · n dEi '

3∑
i=1

Qi ≈ 0 (1.49)
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Numerically speaking, the summation can not be equal to zero, but in the order of
magnitude of [10−14 ÷ 10−15], which is acceptable from a conservative point of view.
However, once grid adaptation is performed, it is not possible to determine a priori
new vertices position, therefore 2D interpolation of the flow field is a compulsory
step.
As discussed in Section 1.1.1, heterogeneity is quantified in terms of random Gaussian
permeability field with constant variance. In case of strongly heterogeneous domain,
advective profile is characterized by either low and high velocity regions, which are
associated to the original flow grid. On the other hand, transport mesh, due to
the adaptation process, is not conformal anymore in describing the initial Darcy’s
map, especially when the grid topology is completely altered. In accordance with
this context, we can understand that interpolation is the only alternative to project
velocity from one grid to another. Thinking to solve at each time step the flow
problem would be impossible for the inconsistency between the generated transport
grid and the structure of the heterogeneous field.
The actual scheme is implemented by means of linear interpolation in a subroutine
of Freefem. We label it NCI (non-conservative interpolation) and to figure out how
it works, we refer to Figure 1.11.
We denote as T 0

h the original flow grid, where triangle T lay (vertices B1, B2, B3).
We also consider the highlighted triangle K of vertices V1, V2, V3, which has been
taken from the transport mesh T nh .
We denote with Ni = (xN , yN) the middle point of edge Li = (Vj − Vi) and with qi
the associated unknown flux.
Following [35] and [34], we consider the bold triangle T , which contains middle point
N3 of edge L3.
Fluxes Qi are applied at the middle point of the associated edge Ei and they
are known, since they have been calculated as direct numerical solution from the
discretization of Darcy’s problem. The surface of triangle T could be interpreted as a
piecewise interpolation scheme, therefore by inserting the values of the three known
medium points of Ei, it is possible to build a linear system of equations, where the
value Qi can be visualized as the altitude:

Q1 = ax1 + by1 + c

Q2 = ax2 + by2 + c

Q3 = ax3 + by3 + c

(1.50)

Coefficients a, b, c define a generic plane, hence the value Q(x, y) at any arbitrary
point (x, y), within the triangle, can be found, such as in the case of q3 (Figure
1.11). Summing up, what NCI scheme performs at each time step, to determine the
unknown flux qi, is:

1. To locate the medium point Ni ∈ T nh into the original flow grid T 0
h ;

2. To compute qi by means of 2D linear interpolation, based on the stationary
fluxes Qi, computed on the original grid T 0

h ;

3. Associate the value qi with the whole edge Li.
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In Chapters 3 and 4, it is demonstrated this strategy induces significant errors in the
fluid fluxes balance, because it is an average flow reconstruction, based on a single
point. As consequence, it does not allow to generate a free divergence velocity field
along time.
Roughly speaking, to have a perception of the matter, advection transport Equation
(1.51) is taken into account:

∂tc+∇ · (u c) = 0

∂tc+ u · ∇c = 0

∂tc+ c∇ · u + u · ∇c = 0

(1.51)

From a theoretical point of view, all equations (1.51) are consistent and equivalent,
because of null divergence (continuity principle), nevertheless, from a numerical point
of view, it holds only in the case ∇ · u ≈ 0.
This is not always satisfied during adaptation procedure and, in order to figure out
the order of magnitude, we perform a sensitivity analysis, assuming the following
data, which have to be interpreted as average values:

c ≈ [10−4 ÷ 100]→ c ≈ 10−2

∇ · u ≈ 10−15 → c∇ · u ≈ 10−17 (Darcy)
∇ · u ≈ 10−5 → c∇ · u ≈ 10−7 (NCI )

(1.52)

The difference is quite impressive, almost 10 orders of magnitude, which could really
affect the accuracy of the ensuing concentration profile, since the divergence is not
negligible anymore.
This concept establishes the main novelty, developed in this thesis work, in fact in
the following chapters, several simulations have been run and analysis performed, in
order to rigorously detect any issue in the fluid conservation.

1.5 Target of the thesis
The choice of the codes and their peculiarities let to carry out a deep and

complete analysis of flow and transport problem, touching different aspects. Relying
on the theoretical background, taken from the scientific literature, aim of this thesis
work is the code benchmarking to understand impact of solution strategies and
possible critical features, especially associated with space-time adaptation, applied
to numerical solution of solute transport in homogeneous and heterogeneous domain.
In particular three objective are investigated:

1. Detecting numerical issues deriving from the codes strategy, by changing mesh
size and due to discretization of the convective term at different orders of the
grid Péclet number (Peh). A homogeneous domain is taken into account.

2. Codes benchmarking in the case of strongly heterogeneous field, in order to
explore the effect of high level of complexity in the velocity structure and
concentration distribution.
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3. Implementing a mass conservative scheme, labelled as CI (conservative interpo-
lation), for the interpolation of the flow field, between two different numerical
grids, to be employed in an adaptive solution strategy.

The thesis organizations reflects those goals:

Chapter 2 deals with the homogeneous test case. Initially we assess the effects,
involving grid size variation, in order to provide verification of each code, thereafter
the analysis is shifted towards the simulation of transport process, dominated by
convection.

Chapter 3 is concerned with results of solute transport, taking place in hetero-
geneous domain. Both flow and concentration field are presented and discussed, with
a main focus on the adaptive strategy.

Chapter 4 explains the formulation of the new conservative interpolation algorithm
CI, firstly from a theoretical point of view and then numerical results are depicted.

Figure 1.11: NCI flux projection



Chapter 2

Code Verification

This chapter deals with a simple homogeneous test case, in order to verify
accuracy of solutions, generated by Fix, Adaptive and Traces. Numerical results
are compared with respect to an analytical case, evaluating the effects upon grid
size variation and dispersivity modification. The former could help in understanding
the convergence properties, while the latter is concerned with the so called False
Diffusion, a numerical issue, arising from the discretization of the convective term.
The Chapter is organized, starting from the presentation of the problem taken into
account, afterwards grid size and dispersivity effects have been analysed and then
numerical results showed.

2.1 Study case
Domain

Let Ω ⊂ R2 be a semi-infinite, homogeneous bounded domain
x × y=[0, 200] × [0, 50]m2 and (0, 50)s be the interval of interest. Boundary Γ is
decomposed into four borders:

• Γwest: western border coincides with the inflow part.

• Γsouth and Γnorth: souther and northern border are impermeable solid walls.

• Γeast: eastern border coincides with the outflow part.

Flow Problem

A constant horizonthal velocity is set, in order to approximate the problem to a
steady 1D case. Data have been chosen arbitrarily and they are reported beyond:

• Permeability: k =1.0204·10−9 m2

• Pressure at the outlet: Po =1 Pa

• Velocity: u =2 m/s

• Porosity: ϕ =0.35

29
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• Darcy’s flux: q0 = u · ϕ =0.7 m/s

Darcy’s flux q0 has been imposed on the western wall, while pressure value P0 has
been fixed at the eastern boundary.

Transport Problem

Governing equations in the differential System (2.1) describe the transport phe-
nomena, taken into account.

∂tc = ∇ · (D∇c− u c) x ∈ Ω× [0, 50]

cD = c(xD, t) = 1 xD : (x = 0, y ≤ 20)

c(∞, t) = 0 ∀t > 0

−D∇c · n = 0 x ∈ (∂Ω− Γwest)

(2.1)

Velocity has been noted down as scalar quantities.
Neumann boundary condition has been imposed to all the borders, but for the
inflow part. A Dirichlet boundary condition has been applied to the western border,
while the assumption of semi-infinite domain is analytically translated by the third
equation in the System (2.1).
A conservative approach is used to approximate the ADE (first equation of the
system (2.1)). Discretization scheme for Traces is reported in Appendix A.1, while
Section 1.2.2 is concerned with Fix and Adaptive. Data regarding transport problem
are the following:

• αL =1 m (only for Section 2.2, then it is made vary to reproduce different
scenarios of transport process, Section 2.3);

• αT =0.1 m (only for Section 2.2, then it is made vary to reproduce different
scenarios of transport process, Section 2.3);

• Dm =0m2/s (in this way molecular diffusion is neglected, in favor of mechanical
dispersion);

• ∆t =0.1 s (for Adaptive, ∆tmin= 0.5 s due to computational cost).

The given problem could be categorized as a continuous injection case in 2D domain,
whose analytical solution is reported in [36].

Output of interest

In order to provide an efficient code verification, both local and global estimators
are adopted to test the code behaviour. The former is evaluated in two different
points, P1(50, 10) and P2(50, 20). The latter takes into account the whole control
volume. A limiting value of 5% upon both errors is arbitrary established as the upper
bound of accuracy.
We label:
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- BTC as Breakthrough curve;
- ch as the approximated concentration, generated by each of the three codes;
- c as the concentration value, obtained from Equation (??);
- T as generic triangle element;
- Nt as the number of triangle elements;
- errr as the relative error in L2-norm

errr =
√

1∫
Ω c

2 dΩ
∑∫

T
(ch − c)2 dT with log10(c) > ε (2.2)

ε = −4 for grid size variation case (Section 2.2) and ε = −2.5 for dispersivity one
(Section 2.3). The constraint on the concentration is automatically translated on
a reduction of the number of elements, therefore the summation inside Equation
(2.2) does not count for whole mesh cardinality. The choice has been done, because
under a certain order of magnitude, there is no distinction for sake of accuracy.
Furthermore, the choice of a L2-norm estimator allows to provide a fair comparison
between fix and adaptive strategy, because the error is associated to the element size.

2.2 Grid size variation
The objective of this section is to quantify effects upon grid size variation. Three

different levels of mesh refinement are taken into account. To distinguish them, we
label coarse, medium, fine grids. For what concerns Fix and Traces, number of
elements is chosen, afterwards mesh size is calculated. Handling with Adaptive, only
the maximum number of elements (Nmax) is selected, because a single value of mesh
size h does not assume any meaning, since we should consider a scalar map.

2.2.1 Parameters
The choice of parameters has done considering both fix and adaptive approaches,

but only for the coarse grid.
We initially consider Fix and Traces.
Calibration of parameters involves time step ∆t and mesh size h. The latter has been
chosen arbitrarily, in order to give an appropriate description of the phenomenon.
Instead, ∆t has been defined as the maximum value, which generates stable local
results.
The choice is subjected to three kind of constraints:

• Discretization of time derivative;

• Maximum principle (Equation (2.4) from [37]);

• Courant criterion (Equation (2.5)).

Recalling Equation (2.3), the approximation of the time derivative as incremental
difference requires a suitable choice for the denominator, or rather as smallest as
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possible
∂c

∂t
= lim∆t→0

c(tn+1)− c(tn)
∆t (2.3)

However, according to [37], a critical aspect for Finite Element coincides with
the violations of the maximum principle, namely a lower bound in the time step
range needs to be accomplished (Equation (2.4)), otherwise oscillations could incur,
affecting the accuracy of the result. We remind all codes are built on a Finite Element
framework, however Equation (2.4) only affects Fix and Traces, since adaptation
method automatically updates the time step

∆tmin =
√

2 h
2

6D (2.4)

Furthermore, in the discretization of convective term, Traces uses an explicit scheme,
which is also subjected to an upper bound:

∆tmax = h

|u|
(2.5)

Local breakthrough curve and relative error are computed for the coarse grid case,

Traces and Fix

Mesh Nx Ny Nt ∆t αL αT h

Coarse 200 50 2·104 0.2 1 0.1 1.40
Medium 400 100 8·104 0.2 1 0.1 0.70
Fine 800 200 32·104 0.2 1 0.1 0.35

Table 2.1: Parameters for Traces and Fix case

in order to find the correct ∆t, which could fulfil all the constraints.
The idea is now to consider five different time step values in the range given by
Equation (2.4) and (2.5)
(∆t = [0.1, 0.2, 0.4, 0.6, 0.7]s) and evaluate local modifications, by means of break-
through curve at the given points P1 and P2, and global variations, by means of
relative error. Once the first condition will be achieved, the final choice will be the
maximum ∆t, which gives the most accurate solution, in terms of errr. The process
allows to immediately reveal the instability reduction by changing the time step,
whereupon to have a global perception over the whole control volume.
Regarding Fix, the solution is only slightly affected by changing the time step, in
the considered range. Assuming ∆t = 0.1 s or 0.7 s, differences are qualitatively
(see Figure 2.2) and quantitatively (errr = 0.324 and errr = 0.326 respectively)
negligible.
On the other hand, dealing with Traces, as it is observed in Figure 2.1, only ∆t = 0.1s
and ∆t = 0.2s offer acceptable solutions, in terms of lack of oscillations in the concen-
tration evolution, although the correct peak value is not reached. Since the relative
error is practically the same for both cases, hence ∆t = 0.2s is assumed as reference
parameter.
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As for what concerns Adaptive, calibration of parameters deals with (see Section
1.3):

• τh: spatial tolerance;

• τt: time tolerance;

• pmin: minimum allowed triangle area;

• hmax: maximum length of triangle edge;

• hmin: minimum length of triangle edge;

• Nmax: maximum number of elements in Th;

• Nmin: minimum number of elements in Th;

• ∆tmax: maximum time step;

• ∆tmin: minimum time step;

In choosing them, we follow two view-points. The former, by similarity with scientific
literature ([9], [3], [11]) and the previous thesis work [19] so Nmin = 103, ∆tmax = 30s,
hmin = 10−12 have been immediately fixed, without performing any sensitivity
analysis, because they affect the adaptive solution in a minor way.
The latter, on the other hand, needs to evaluate two aspects. Starting from data,
taken from [19], the consistency of the mesh elements distribution and the accuracy of
the solution are checked. The former aspect is a necessary, but not sufficient condition
and it is adopted to provide an initial selection over the possible alternatives. To
give a better explanation, we focus on Figure 2.3b, which can not be considered
consistent with the solution, because of the cluster of elements along the western
border. Dirichlet condition has been applied, therefore the profile is constant and
none gradient along x and y should be generated and a coarse area might be present,
such as in Figure 2.3c. The issue derives from a numerical inefficiency, related to the
wrong choice of spatial and time tolerances of error estimator (see Appendix A.2),
which are forcing the adaptive code to allocate a larger number of elements, only
due to the Dirichlet imposition. This should lead to the attitude to choose τh and τt
in accordance with the given problem and not arbitrarily imposed to the minimum
value. Finally τs = 1 and τ∆t = 10−4 are set.
The second step is based on the relative error calculation. Table 2.2 contains all the
results, whereupon pmin = 10−4 and hmax = 40 ensue. Furthermore, ∆tmin = 0.5s is
fixed due to computational reasons.
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(a) Coarse grid, point P2

(b) Coarse grid, point P1

Figure 2.1: ∆t definition by means of local BTC for Traces
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(a) Coarse grid, point P1

(b) Coarse grid, point P2

Figure 2.2: ∆t definition by means of local BTC for Fix
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(a) Coarse grid: analytical solution

(b) Erroneous elements distribution in the grid, τt=1

(c) Acceptable elements distribtion in the grid

Figure 2.3: Coarse grid: elements distribution in the mesh, with the associated analytical
solution
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pmin hmax errr [log10(c) > −4]
10−3 40 0.0425
10−4 10 0.0412
10−4 40 0.0401

Table 2.2: Adaptive parameters calibration for coarse grid

Adaptive

Mesh Nmin Nmax ∆tmin ∆tmax τs τ∆t hmin hmax pmin αL αT

Coarse 103 1 · 104 0.5 30 1 10−4 10−12 40 10−4 1 0.1
Medium 103 2 · 104 0.5 30 1 10−4 10−12 40 10−4 1 0.1
Fine 103 4 · 104 0.5 30 1 10−4 10−12 40 10−4 1 0.1

Table 2.3: Grid size variation: parameters for Adaptive case

2.2.2 Results

Local breakthrough curves (BTC) at the given points are depicted in Figures 2.4,
2.5, 2.6. At first sight, regarding point P1, all trends, independently on the type of
mesh, describe the concentration evolution in an appropriate way. On the contrary,
S curves of P2 for Fix and Traces do not catch the correct constant value, despite
the refinement. However, the gap is negligible.
Error trend is depicted on Figure 2.8 and quantitative values are reported in Table 2.4.
All the codes reproduce in a suitable way the test case, with a minimum discrepancy
in the relative error of 5%, which could be considered acceptable, for sake of accuracy.
It is important to clarify that for Adaptive, maximum number of elements has been
taken into account to represent Figure 2.8.
We note the constraint for the relative error in Equation (2.2) implies a bound on the
number of elements. For Fix and Traces, 47% of the total cardinality is considered
(independently on the refinement level), therefore 53% of the domain is characterized
by negligible concentration values in the order of magnitude. Instead, Adaptive
reaches 98%. This represents the perfect example of space adaptation, in fact the
majority of triangles elements are laid in the region, where the front is spreading.

We now focus on Figure 2.8, where the behaviour of Traces seems to diverge, despite
the mesh refinement. The reason comes from the time step, in fact a calibration for a
suitable ∆t might have be done for each kind of mesh level and not only for the coarse
one. According to Equation (2.5), decreasing h, ∆tmax decreases as well, however,
the choice of maintaining a single value has been adopted due to computational cost,
especially towards Fix. In this case, the coarse mesh is coupled with an appropriate
time step and it could yield a better distribution than the fine grid.
Another interesting comparison is depicted on Figures 2.7a and 2.7b which respec-
tively show the CPU trend against number of unknowns (edges for Traces and
vertices for Fix and Adaptive) and relative error. Simulations have been run with a
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processor Intel(R)Core(TM)i7-7500 CPU @2.70 GHz-2.90 GHz and 12 GB of memory
RAM installed. It is important to underline all the codes are implemented with the
same direct solver, UMFPACK, or rather a multi-frontal Gauss LU factorization.
This makes the comparison fair, in terms of computational cost, because system of
equations are solved in the same manner. However, the difference is remarkable,
Traces could save one order of magnitude of computational memory and the accuracy
in solution is always maintained at high level.

Coarse Grid Medium Grid Fine Grid

Code errr errr errr

Traces 0.0317 0.0592 0.1161
Fix 0.3238 0.1228 0.0490
Adaptive 0.0401 0.0391 0.0153

Table 2.4: Grid size variation: relative error
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(a) Point P1

(b) Point P2

Figure 2.4: Coarse grid: local BTC
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(a) Point P1

(b) Point P2

Figure 2.5: Medium grid: local BTC
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(a) Point P1

(b) Point P2

Figure 2.6: Fine grid: local BTC
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(a) CPU trend against number of unknowns

(b) CPU trend against relative error

Figure 2.7: CPU trend



2.2. Grid size variation 43

Figure 2.8: Grid size variation: relative error against number of elements
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2.3 Dispersivity variation
According to Section 1.2.2, in case of transport dominated by advection, dis-

cretization of the convective term could induce numerical inaccuracies in the final
result. The relative strength between diffusive and advective flux can be quantified
in terms of grid Péclet number, which is defined as:

Peh = |u|h
D

= h

αL
(2.6)

with D = |u|αL.
Peh can be adopted as reference parameter to carry out different transport scenarios.
The objective of this section is to derive numerical simulations to figure out effects
upon dispersivity variations, whereupon low, medium, high values of grid Péclet
number are taken into account. At the same time, medium grid is adopted for spatial
discretization, since it offers an acceptable trade-off, between computational cost of
simulations and accuracy of the solution. Time step is always fixed to ∆t = 0.2 s
(∆tmin = 0.5 s).
Numerical inaccuracies may arise due two reasons both related to:

False Diffusion: also called numerical diffusion is an artificial smearing of jumps,
discontinuities. Neglected terms in the Taylor series expansion of first derivative
contribute to the rise of diffusion. Further details in Appendix B.2

Numerical Dispersion: causing overshoots, oscillations. Dispersion means that
different components of Fourier expansion (of numerical solution) move with
different velocities, for example shorter wavelengths move slower than the
velocity of the flow.

We focus only on false diffusion (in Appendix B.2 Peh = 2 is assumed as critical
value for the generation of false diffusion) and it is important to underline that for
Adaptive case, none technique has been employed to limit the false diffusion. The
automatic refinement allows to decrease the mesh size and so the Peh could remain
below the critical value in the region of interest. Furthermore, according to Equation
(2.6), it is not possible to furnish a single value of Peh, because the mesh size varies
throughout the domain, therefore a scalar map ensues.

2.3.1 Parameters

Péclet number is made varied, by changing longitudinal dispersivity.
Table 2.5 and 2.6 contain the parameters adopted for each code used. As for what
concerns Adaptive, quantities enlisted in Table 2.3 are initially employed, however,
since the problem is becoming more and more difficult, because the concentration
front tends to be sharper and sharper, a refinement in terms of minimum triangle
area will be provided. Different values of pmin will be used and relative error will be
evaluated.
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Traces and Fix

Type Peh αL αT h

Low 0.7 1 0.1 0.70
Discrete 7 0.1 0.01 0.70
High 70 0.01 0.001 0.70

Table 2.5: Parameters for Traces and Fix case

Adaptive

Type αL αT

Low 1 0.1
Discrete 0.1 0.01
High 0.01 0.001

Table 2.6: Parameters for Adaptive case

2.3.2 Results
Case Low Péclet

Figure 2.11a depicts the concentration map, provided by the analytical solution.
Points P1 and P2 lay respectively in the initial part of the concentration front (red
region) and in the mixing area (green zone). The solute is quite spread along the
longitudinal direction, while the transversal diffusion is limited, as consequence of
the choice of αL and αT . This phenomenon will become more and more accentuated,
once we will investigate the case type Discrete and High (Figures 2.11b and 2.11c).
Local BTC are depicted on Figure 2.9. Regarding P1, the trend is well respected and
none of the codes detect particular differences. On the other hand, P2 lays in the
mixing region, which is extremely subjected to gradients along the vertical direction
and this may explain the inaccuracy, especially for Fix and Traces, in reaching the
exact constant value.
The same deviation does not arise for Adaptive, because of the high triangle density
in the entire zone of interest (Figure 2.10e). It is important to remind that parameter
pmin, in Table 2.3, is proportional to the minimum area, whose value is much smaller
than the element area of the medium regular grid (0.125 m2). Figure 2.10d collects
the logarithmic maps of each code. Quantitative error values have been reported in
Table 2.4.
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(a) Point P1

(b) Point P2

Figure 2.9: Low Peh: local BTC
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(a) Analytic

(b) Fix

(c) Traces

(d) Adaptive, pmin = 10−4

(e) Adaptive grid

Figure 2.10: Low Peh: logarithmic maps at t = 50s
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Case Discrete Péclet

According to Table 2.6, Peh > 2 and artificial diffusion could incur, without any
numerical technique to limit it. Fix is the code, which suffers most (see Appendix
B.2) and this is quite evident from the shape of S curve in Figure 2.12a. It intersects
the analytical trend, almost at half of the initial injection, therefore the advective field
is working suitably, whereas the slope of the curve is lower, meaning that diffusion
has raised artificially. Analogously, the logarithmic concentration map, Figure 2.13b,
is speeded up in the x direction. This instability derives from the upwind scheme,
employed for the discretization of the convective term, as discussed in Appendix
B.2 and Section 1.2.2. Same phenomenon occurs in a little scale for Adaptive, in
fact, roughly speaking, according to Figure 2.13d, it could describe in an accurate
manner values of concentration in the order of [10−2, 10−3], that coincide with the
orange and yellow front (x ∈ [100, 120]m). On the contrary, focusing on Figure 2.13e,
∀x > 120m, the element size becomes coarser and coarser, whereupon the ensuing
concentration field might becomes weak in accuracy. Table 2.7 includes spatial error
calculations, where the constraint on concentration has been relaxed (ε = −2.5). As
discussed before, different pmin have been taken into account and, as expected, a
reduction in the minimum triangle area is required. For Traces and Fix, in Table 2.7
only one row has been filled in, since the calibration of pmin only interests Adaptive.

Adaptive Traces Fix

pmin errr errr errr

10−4 0.059 - -
10−6 0.060 - -
10−9 0.051 0.033 0.893
10−12 0.172 - -

Table 2.7: Discrete Peh: relative error
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Case High Péclet

Local BTC and logarithmic concentration map are respectively represented in
Figure 2.14 and 2.15. Same kind of considerations, adopted for the Discrete case,
could be done, but the artificial diffusion effects are even worse. Another aspect to
pinpoint is the oscillation in local solution for Adaptive, in fact the trend in Figure
2.14b is not smooth, despite the high value of element density. Moreover, in Figure
2.15d, the contour lines are very damp, but this is consistent with the spatial grid
topology.

Adaptive Traces Fix

pmin errr errr errr

10−9 0.118 - -
10−12 0.110 0.10 >1
10−15 0.172 - -

Table 2.8: High Peh: relative error

2.4 Code comparison
Final remarks might be given, in order to identify weak and strong aspects of

each code. First of all, it is important to specify that in safe conditions, namely
no artificial diffusion, Fix, Adaptive and Fortran yield acceptable results, which are
consistent, stable and accurate with respect to the analytical solution, therefore the
code verification has been checked and it could be considered valid also for other
kind of problems, where the analytical solution is not available.
Pros and Cons are here underlined:

Traces : the code is well optimized and it realizes accurate solutions, with the
minimum CPU expenditure, furthermore, the adoption of Discontinuous Finite
Element (see Appendix A.1) allows to balance the effects of false diffusion in
case of high Péclet values. On the contrary, calibration of input parameters,
especially ∆t is not straightforward, since it is subjected to three constraints,
which are strictly dependent on the mesh size.

Fix : the code developed is stable and practically independent on the time step
chosen, thanks to the adoption of the correct value in the ϑ-method (see
Section 1.2.2). Convergence of the solution has been demonstrated, eventhough
it requires a significant amount of elements, to reach very low error values. It
is very costly, in terms of CPU, but the great shortage derives from a suitable
technique to limit artificial diffusion (see Section 1.2.2).

Adaptive : the code has to be interpreted as an enhancement of Fix, in fact
it allows to refine locally the mesh and obtain very accurate results and it
can counter-balance the effects of false diffusion, without implementing any
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particular techniques. However it could induce oscillations in the concentration
map, especially in the coarser regions.
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(a) Low Peh

(b) Discrete Peh

(c) High Peh

Figure 2.11: Analytical solution at time t = 50s
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(a) Point P1

(b) Point P2

Figure 2.12: Discrete Peh: local BTC
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(a) Analytic

(b) Fix

(c) Traces

(d) Adaptive, pmin = 10−9

(e) Adaptive grid

Figure 2.13: Discrete Peh: logarithmic maps at t = 50s
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(a) Point P1

(b) Point P2

Figure 2.14: High Peh: local BTC
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(a) Analytic

(b) Fix

(c) Traces

(d) Adaptive, pmin = 10−12

(e) Adaptive grid

Figure 2.15: High Peh: logarithmic map at t = 50s





Chapter 3

Numerical Results

This chapter is concerned with the results obtained from the approximation of
the Darcy’s law coupled with the Advection-Dispersion equation. Different simu-
lations have been run, in order to test the behaviour of solute transport in highly
heterogeneous field, with complex structure of velocity and concentration map.
This chapter is organized as follows:

Section 3.1 introduces the problem at hand, first the bounded heterogeneous domain
is presented and then flow and transport equation are taken into account.

Section 3.2 deals with the observable variables and it identifies the quantities of
interest.

Section 3.3 shows numerical results. First a general comparison among Fix, Traces
and Adaptive is given, afterwards the aim is shifted towards the verification of the
conservation properties and the effects upon the concentration distribution and
evolution, for the adaptive case.

3.1 Problem Setting
Domain

Let Ω ⊂ R2 be a rectangular, heterogeneous bounded domain
x× y=[0, B]× [0, W ]m2 with B = 0.04m and W = 0.14m (Figure 3.18a). Total
time of observation is (0, 400) s. The correlation length is fixed to l = 0.01m, corre-
sponding to B/l = 4 and W/l = 14. We consider a strongly heterogeneous field, in
order to explore the effects of high level of complexity of velocity and concentration
distribution on the grid adaptation strategy. Heterogeneity is quantified in terms
of variance σ2 of logarithmic permeability, which has been set equal to 5. The
field has been generated on a uniform grid with 40 and 140 elements, respectively
along x and y direction. Note this corresponds to characterize the conductivity field
through 10 generation points per correlation length in the coarsest case, which we
label as G1. The field is depicted on Figure 3.18a and we can immediately notice
that for y < 0.1m, the domain is almost split symmetrically in a low (left-hand
side) and high (right-hand side) permeability region, furthermore the horizontal
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section at y ' 0.01m, where the initial concentration has been fixed, corresponds to
a stagnation zone, due to the low-velocity.
To design the reference mesh, to which space-time domain is discretized, we rely on
a setting, characterized by a uniform numerical grid in space and a fixed time step
across the simulation window. In this context, following [38], an appropriate dis-
cretization grid can be selected through a convergence analysis. Since this procedure
has been rigorously employed in [19] and it is not a matter of interest for this thesis,
we illustrate only the final results and we refer to [19] for further details. We note
the convergence grid analysis has been performed only on Fix, but the reference grid
will be used also in Traces.
First parameter to investigate is the time step. Coarse mesh G1 is taken into account
and different simulations have been performed, assuming respectively
∆t = 0.0625 s, ∆t = 0.125 s,∆t = 0.25 s. We arbitrary state the section average
breakthrough curve at the outlet border (Equation (3.4)), as criterion for the conver-
gence. An upper bound of relative error of 5% among outlet breakthrough curve is
fixed as accuracy target. In particular, we define:

e∆t1 =
∣∣∣∣∣c∆t1 − c∆t2

c∆t2

∣∣∣∣∣ (3.1)

as the relative error among two curves obtained with different and successively time
step.
We assume that c∆t1 corresponds to the solution obtained with a lager time step,
whereas c∆t2 with a lower. If relative error was lower than 5%, the maximum ∆t
should be the convergent one. From Figure 3.1, it is possible to note that the
constraint is fulfilled by ∆t = 0.0125 s.
Since the convergence time step has been selected, we now determine the grid size.
Three different mesh refinement levels, labelled as G1, G4, G8, are taken into account.
Referring to Table 3.1, the difference in the cardinality is related to the number
of generation points per correlation length. Section averaged concentration at the

mesh x elements y elements total number of triangles

G1 40 140 11200
G4 160 560 179200
G8 320 1120 716800

Table 3.1: Mesh levels for grid convergence analysis

northern border is still appointed as discriminant variable to identify the convergent
grid.
We focus on Figure 3.2, where the blue curve is assumed to be the reference solu-
tion, hypothetically found with an infinite number of elements (see [38] and [19]
for further details). It is subjected to uncertainties, which are represented as error
bars, whereupon they give an idea of all probable and acceptable values. Since all
points of red curve lay in those accuracy ranges, grid G6 (403200 elements) can
be identified as the convergent mesh. It is the reference grid either for Fix and Traces.
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Regarding the adaptive case, calibration of parameters is performed in [19], since it
is not matter of this thesis, we simply note down final values:

• ∆tmin = 0.125 s;

• ∆tmax = 30 s;

• Nmin = 103;

• Nmax = 104;

• τh = 1;

• τt = 10−4;

• hmax = 0.06;

• hmin = 10−12;

• pmin = 10−9;

See Section 1.3 for further details.

Flow and Transport

Velocity field is solved by means of Darcy’s law and continuity equation, enlisted
in Problem (1.14). A constant flux q0 is imposed on the northern border, while a
constant pressure P0 is fixed at the southern wall.
The following data have been taken into account:

• Viscosity at 296 ◦K: µ= 0.932Pa s;

• Water density: ρ= 1000 kg/m3;

• Gravitational acceleration: g = 9.81m/s2;

• Porosity: ϕ= 0.35;

• Inlet pressure: P0 = 10000Pa;

• Outlet Darcy’s flux: q0 = 2.45 · 10−4m/s.

The discrete form of the flow problem is presented in Section 1.2.1. Logarithmic
map of the velocity is depicted on Figure 3.18b and the complexity of the struc-
ture is evidenced by the presence of a clearly low-velocity region (approximately
[0, 0.02] × [0.04, 0.06]) and a preferential channel along the eastern border. This
concept is enforced by the streamlines in Figure 3.18c, where a dot represents the
position of a particle at time t.
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(a) Between ∆t = 0.0625s and ∆t = 0.125s

(b) Between ∆t = 0.125s and ∆t = 0.25s

Figure 3.1: Relative error trend at different time steps
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(a) BTC at the outlet

(b) Zoom

Figure 3.2: RE and relative error bars and solution for mesh size of 403200 elements
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Along the western border, the density of dots is much higher, because of low-velocity
region, which delayed the flow.

For what concerns transport problem, dispersivity values have been set to
αL = 10−3m and αT = 10−3m. We also need to add boundary conditions to the ADE
(1.20). No Dirichlet imposition has been fixed, while assumption of impermeable
wall is valid for western and eastern boundary
((−D∇c) · n = 0)).
An initial function of concentration c0 = c(x, t = 0), depicted on Figure 3.3, is
imposed on the domain and it follows a Gaussian distribution:

c0 = c(x, t = 0) = exp

{
−(y − 0.01)2

0.00001

}
(3.2)

Complete description of weak formulation and discretization is furnished in Appendix
B.1 and Section 1.2.2.

Figure 3.3: Spatial map of initial concentration. White curve represents Gaussian distri-
bution of Equation (3.2)
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3.2 Outputs of interest
We introduce here the quantities which constitute the key target outputs for the

purpose of this work.
Temporal variation of solute concentration at given locations within the domain:

c(xi, t) = c(xi, yi, t) (3.3)

where xi identifies the points of investigation.
In particular we select P1(0.01, 0.04), P2(0, 0.08), P3(0, 0.12),
P4(0.04, 0.04), P5(0.04, 0.08), P6(0.02, 0.12) (see Figure 3.18c). First three points lay
in the slow-region (left-hand side part of the control volume), while the others in
the fast. The objective is to figure out any changes in the solution, due to different
distribution of advective field.
We also considered section-averaged concentration, mimicking typically observed
breakthrough curve (BTC):

cout = 1
|Γout|

∫
Γout

c(x, t)dΓ ∀t ∈ [0, 400] s (3.4)

where the subscript out corresponds to the northern boundary.
We then focus on globally integrated quantities, which can quantify spreading and
mixing of the plume within the domain. To this end, we consider second centred
spatial moment of the concentration plume along y direction, which has relevant role
for the characterization of solute spreading. It is defined as:

S(t) = 1
M(t)

∫
Ω

(y − Yav(t))2c(x, t) dΩ (3.5)

where:
Yav = 1

M(t)

∫
Ω
c(x, t)y dΩ (3.6)

and
M(t) =

∫
Ω
c(x, t) dΩ (3.7)

On the other hand, scalar dissipation rate:

χ(t) =
∫

Ω
∇cTD∇c dΩ (3.8)

which quantifies the rate of mixing of plume.

3.3 Results
We here illustrate the comparison of numerical results, associated with the

observables, described in Section 3.2 and obtained, relaying on Fix, Traces and
Adaptive.
We start the analysis from an overview of the solute transport, considering some
snapshots of the concentration evolution, depicted on Figure 3.4. During the first
time instants, solute spreads more intensively, towards the eastern border, while in
the left-hand side region it remains less diffuse (Figure 3.4a).
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(a) Time t=5 s (b) Time t=100 s

Figure 3.4: Spatial distribution of concentration at t = 5 s and t = 100 s, Fix solution.
Dashed white square encloses low velocity region.
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(a) Time t=300 s (b) Time t=400 s

Figure 3.5: Spatial distribution of concentration at t = 300 s and t = 400 s, Fix solution.
Dashed white square encloses low velocity region.
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Along time, the initial Gaussian distribution (Figure 3.3) starts being deformed and
for t > 50s mass flows out the northern border (Figure 3.13a). Referring to Figure
3.18a, it is possible to observe that part of the solute mass is delayed, due to the
presence of two low-velocity bottom regions (represented as white dashed square),
one around x = 0.02m and y = 0.01m and the other around x = 0m and y = 0.05m.
The former is much effective at the beginning of the simulation (Figure 3.4), because
the initial condition is still the dominant aspect in the concentration distribution,
whereas, once the solute tends to spread upwards, it runs into the second slow zone
(Figure 3.5).

The comparison of concentration map between Fix and Traces do not detect any
particular differences, in fact, focusing on Figure 3.6, they exhibit the same shape of
contour lines and values in the concentration field. Therefore, we focus on Adaptive
and, in order to provide a rigorous analysis, for time t = 200s, concentration field
is presented in logarithmic scale, otherwise small values are critical to evaluate.
Results are plotted in Figure 3.7, they are very similar, however some oscillations
(of the order < 10−5) appear in the solution (bottom-right region of the control
volume). The emergence of these oscillations is probably linked to the interpola-
tion of the concentration, in a region, where mesh elements are large. However, for
sake of accuracy, the order of magnitude is very low, whereupon it could be neglected.

(a) Fix solution (b) Traces solution

Figure 3.6: Spatial distribution of concentration at t=200 s
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(a) Adaptive (b) Fix mesh

(c) Grid

Figure 3.7: Spatial log-distribution of concentration with associated grid, at time t = 200 s
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(a) Adaptive grid at time t = 5s (b) Adaptive grid at time t = 100s

Figure 3.8: Adaptive mesh topology

Figure 3.9 shows the trend of time step and number of elements against time, whose
evolution could be split in two phases. In the first instants, t < 100 s, time step is
constant, it coincides with ∆tmin, because of the rapid temporal variation of the
concentration field. As time advances, values of ∆t larger than ∆tmin are allowed.
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(a) Time step

(b) Mesh elements

Figure 3.9: Mesh elements and time step as function of time
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(a) P1(0.01, 0.04)

(b) P2(0, 0.08)

Figure 3.10: Local concentration evolution, points in the slow velocity region
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(a) P3(0, 0.12)

(b) P4(0.04, 0.04)

Figure 3.11: Local concentration evolution. Top: point in the low-velocity region; bottom:
point in the high-velocity region
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(a) P5(0.04, 0.08)

(b) P6(0.02, 0.12)

Figure 3.12: Local concentration evolution, points in the fast velocity region
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(a) Average concetration at the outlet border

(b) Zoom at the peak

Figure 3.13: Section averaged concentration evolution, Fix and Adaptive
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(a) Spreading

(b) Mixing

Figure 3.14: Spreading and Mixing comparison, fix and adaptive solutions
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This is because the solute plume spreads over an increased portion of the domain and
diffusive/dispersive process gain importance, leading to a reduced time variation. On
the other hand, in terms of mesh cardinality, we note a significant decline, because
of the constraint on the maximum number of elements. For t > 100 s the mesh
size reaches a sort of equilibrium, in fact it maintains a flat behaviour. Time step
increases linearly, approximately with a constant slope, until t = 350 s, then, in the
last part of simulation, the trend increases even more.

From Figures 3.10 to 3.12, we depict concentration evolution of points, enlisted
in Section 3.2. Fix and Traces give the same results, while there is a mild difference
in the trend of Adaptive, especially in Figures 3.10b and 3.12b, which are marked
out by intense oscillations.
Asymmetry is a recurring feature of all curves and this behaviour is linked to the level
of heterogeneity of the conductive field, on the contrary the structure of Darcy’s map
largely influences the solute mass distribution either from a physical and numerical
point of view. In the fast-velocity region, peak time (instant at which BTC reaches
its peak value) is very low and the transport is convective dominated. Instead, in
the slow-velocity region solute mass is mainly exchanged by diffusive/dispersive
mechanism, which causes a delayed peak time and a long release of solute mass.
These considerations could also be interpreted from a numerical point of view. We
assume to carry out a sensitivity analysis, by comparing order of magnitude of
convective and diffusive fluxes, including also the divergence term.
From an analytical point of view c∇ · u = 0, but numerically, especially during
velocity projection, this condition is not guaranteed and it could affect accuracy of
the results. However in the high-velocity regions, the advection is the dominant term
and Expression (3.9) holds:

u · ∇c� c∇ · u +∇ · (D∇c) (3.9)

Taking into account that a rapid peak time also implies a larger cardinality in the
mesh (see Figure 3.9b), this leads to a smooth trend in Figures 3.11b and 3.12b.
Numerical issues are limited by the physical process involved. On the contrary, in
slow-velocity region, Expression (3.9) does not hold, left and right terms might have
the same order of magnitude, it means the error in the fluid mass conservation is not
negligible and it causes oscillations, such as in the case of Figure 3.10b.

It is evident, that Traces and Fix generate the same results, either from a lo-
cal and global point of view, therefore there is no sense to provide a comparison
among codes. Instead we take into account different strategy, indeed fixed space-time
discretization, which is now the reference solution, versus adaptive method.
The main objective is now to detect weaknesses of the latter, assuming Fix as
reference solution.

In Figure 3.13a, averaged concentration cout is computed through Equation (3.4).
At first sight, the general trend is well respected and the adaptive solution follows
the fix behaviour. However, zooming on the peak, Figure 3.13b, it is possible to
recognize the low level of accuracy, in fact oscillations are pronounced and they don’t
let to obtain a smooth trend. Raising Nmax = 4e4, the quality is improved.
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Spreading and mixing behaviours (Equations (3.5) and (3.8)) are plotted in Figure
3.14. About the former, as time increases also S(t) does, since the solute initially
spreads around its center of mass. On the other hand, when the trend starts to fall
down, it means the solute has already exited the domain. No particular differences
are detected between the adaptive and fix solution.

From the outputs evaluated, it is possible to infer some important considerations,
which involves in particular the adaptive strategy.
Solute behaviour is generally well described, however a shortage in the accuracy and
a remarkable presence of oscillations, especially for BTC, have been detected. A
possible way to limit them is to raise the maximum number of elements, with an
inevitable increase of the computational cost, therefore our target is to investigate
the reasons of this behaviour to find another remedy. Following [5], a crucial issue in
adaptive setting regards the matter of conservation for solute and fluid mass, hence
these quantities are checked.
According to Section 1.4, Equation (1.48) is applied to project concentration map
from one mesh to another. In order to verify the consistency of this procedure, we
provide a global solute mass balance for Adaptive. This leads to calculate outcoming
and incoming mass flow. We label as M0 the initial mass content, as Min the mass
inside the domain, whereas Mout denotes the solute, which left the control volume,
across the northern boundary. Since we neglect any type of source term inside the
domain, the following expression holds:

M0 = Min(t) +Mout(t) [mol] (3.10)

where:
M0 =

∫
Ω
c(x, t = 0) dΩ (3.11)

We label as M∗(t) the relative solute mass inside the domain Ω at time t:

M∗(t) = M(t)
M0

= 1
M0

∫
Ω
c(x, t) ∀t (3.12)

Regarding Min and Mout:

Min(t̂) =
∫

Ω
c(x, t = t̂) dΩ (3.13)

Mout(t̂) =
∫ t̂

0
M(t̂) dt =

∫ t̂

0
cout uout|Γout| dt = uout|Γout|

∫ t̂

0
cout dt (3.14)

where:

• cout is the average concentration at the outlet border;

• uout is the imposed velocity at the outlet border and it is constant;

• |Γout| is the length of the outlet border.
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Equation (3.14) could be evaluated in a discretized way and it reads:

Mout(T ) = uout|Γout|
t̂∑
t=0

cout ∆t (3.15)

Note that the term ∆t must be taken inside the summation, because it is not a
constant. Table 3.2 shows the results, in particular, focusing on the column err, which
represents the relative error, we could infer that the conservation is well respected.

Min(t = 400s) Mout(t = 400s) M0 err [%]
7.55·10−5 1.49·10−4 2.24·10−4 0.22%
Table 3.2: Global mass balance for Adaptive

The global mass content remains constant, but this does not assure the local conserva-
tion. However, since solute transport depends on the advective field, we first handle
with the local fluid mass conservation. According to Section 1.4, the stationary
velocity field needs to be projected from one mesh to another, time by time. This is
actually performed via NCI (non-conservative interpolation) scheme. The aim is to
assess effects, related to the employment of this technique, and determine critical
features.
We need to calculate local flux balance at each triangle element, therefore matrix
Raviart (Nt × 6), with Nt number of triangle elements, is implemented and built
with the structure in Table 3.3.

triangle T q1,T q2,T q3,T
∑3
E=1 qi,T log10

∑
Table 3.3: Structure of the matrix Raviart

The sixth column of the matrix gives information on the fluxes balance at local
level, therefore a barycentric value for each triangle is provided. The latter has to be
interpreted as the numerical approximation of the local divergence of velocity. Since
the remeshing occurs at each time step, Nstep matrices have been created, where
Nstep identifies the number of time steps. Figure 3.15 shows the logarithmic flux
balance distribution in the fixed space domain, so Figure 3.16 does, with respect to
the interpolated results, provided by NCI upon adaptive grid at time t = 200 s.
Flux balance configuration in Figure 3.15 is consistent with the continuity principle,
since the range of values in the log-scale is sufficiently low. On the contrary, for what
concerns the results, provided by NCI, involving the adaptive grid in Figure 3.16, we
note that:

• Mass conservation is not fulfilled, since the range in the logarithmic scale can
not be approximated at zero;

• Error map follows the mesh structure, in fact the coarse (top) region shows
the least accuracy, whereas the fine (bottom) zone shows acceptable results,
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in terms of conservation of fluxes balance. However, this aspect is due to the
small size of triangles, instead of a correct flux interpolation, so it is restricted
to a particular case of the mesh topology. To understand it, we focus on the
highlighted region in Figure 3.16a. It is composed by elements, whose surface
area has almost the same order of magnitude of minimum allowed value pmin,
hence each of those triangles are enclosed in a single element of the original
flow grid, therefore only in this case NCI is acceptable.

Figure 3.15: Flux balance map in logarithmic scale as direct numerical solution of Darcy’s
law



3.3. Results 79

(a) Logarithmic flux balance map (b) Grid

Figure 3.16: Flux balance map and associated grid at time t=200 s

We have demonstrated that NCI does not ensure fluid mass conservation throughout
the grid.
To figure out if the lack of fluid mass conservation leads to the oscillations, we
perform a simulation, where the flux balance, computed through Equation (1.49), is
checked at each time step on the elements, where points P2(0, 0.08), P4(0.04, 0.04)
and P6(0.02, 0.12) lay (see Figure 3.18).
Two triangular sub-domains Ω1 and Ω2 have been created, such as in Figure 3.17. They
have fixed boundaries, so, while remeshing takes place within the domain, vertices of
these subregions are anchored. Step by step, fluxes balance is calculated, through
Equation (1.49) on the elements, where points are located. The main advantage
of this layout is to control the flux balance and guarantee a better approximation,
because we are forcing adaptation procedure to limit the coarsening of the desired
region, where points lay.
P2 ∈ Ω1, P6 ∈ Ω2 and P4 only belongs to the common domain Ω.
We remind this is not a method to correct numerical issues of NCI, but it is a simple
way to have a perception of how the error in the fluid mass conservation affects the
concentration evolution.
NCI is always the non-conservative interpolation scheme, which is actually performed
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during the adaptation procedure. We label as New the results just obtained, with
the introduction of two sub-domains Ω1 and Ω2.
The analysis consists in observing changes in the local BTC and average value of
log-flux balance (Table 3.4), computed in the time window [0, 200] s. Flux balance
has been calculated on the triangle, where the point lays. Every step the element
changes due to adaptation. From the transport simulation, we obtain Nstep values of
local mass balance in the given triangles, with Nstep number of time step, however
we calculate the arithmetic average to consider a single value.
We focus on Figure 3.19a, where the fluctuation is considerably reduced, the trend is
much smoother and it suits better to the reference behaviour, depicted as solution of
Fix . This improvement accrues from the enhancement in the fluid balance, which
directly affects the concentration evolution at the given point. On the other hand, in
Figure 3.19b, oscillations are still present, but this is consistent with the restrained
gap between old and new average flux balance value. Figure 3.20 has been included
in the analysis, in order to ensure that sub-domain do not modify the whole field.
Despite a mild change in the average flux conservation, caused by the different
mesh topology along time, NCI and New concentration evolution for point P4 are
practically the same.

NCI New

P2 -6.3 -15.9
P4 -7.3 -6.9
P6 -6 -6.8

Table 3.4: Average log-flux balance value between NCI and New
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Figure 3.17: Internal sub-domains Ω1 and Ω2
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(a) Permeability (b) Velocity

(c) Streamlines

Figure 3.18: Top: logarithmic field of permeability and velocity. Bottom: streamlines
representation
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(a) P2(0, 0.08)

(b) P6(0.02, 0.12)

Figure 3.19: Local concentration evolution. Top: point in Ω1; bottom: point in Ω2
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Figure 3.20: Local concentration evolution for P4(0.04, 0.04)



Chapter 4

Flux Interpolation

The employment of the adaptive setting forces us to project variables from one
grid to another. According to Section 1.4, the matter of conservation is a fundamental
theoretical aspect to abide by, but it assumes a deep meaning also from a numerical
point of view. In order to avoid artificial mass generation, flux balance must hold at
each time step, however results and simulations performed in Chapter 3 suggest that
this condition is not fulfilled. They also reflect a lack of accuracy in the concentration
evolution, mainly due to the wrong interpolation method, intrinsically yielded with
a Freefem subroutine during the adaptation procedure.
The aim of this Chapter consists in implementing a conservative interpolation algo-
rithm, labelled as CI (conservative interpolation) and examining it, with respect to
the existent version of Freefem, labelled as NCI (non-conservative interpolation). A
conservative interpolation scheme is tailored to the highly heterogeneous system and
anisotropic mesh topology.
The work is organized as follows:

Section 4.1 introduces the new algorithm CI with a deep focus on the main steps.

Section 4.2 presents the results, in terms of velocity and flux balance map, ob-
tained through the new algorithm CI. Two mesh refinement strategies have been
taken into account.

4.1 Algorithm
To distinguish the notation and simplify the reading of this section, we remind

the nomenclature:

• NCI indicates the non-conservative interpolation scheme, explained in Section
1.4, which is implemented as a Freefem subroutine and has generated the
oscillating solutions seen in Chapter 3;

• CI represents the conservative interpolation method, which has been introduced,
in order to overcome the limits of the actual formulation.

We denote as flow grid, the mesh where Darcy’s problem has been solved, and as
transport grid, the adaptive mesh, generated along the simulation. According to
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Figure 4.1, we state to use the following notation:
Flow grid:

• T 0
h : flow grid;

• T : generic triangle in T 0
h ;

• Ei: ith edge of triangle T in T 0
h ;

• Bi: ith vertex of the triangle T in T 0
h ;

• Ri: intersection point;

• Si = (Ri −Ri+1): segment, composed by two consecutive intersection points;

• Nc: number of segments Si;

• Mi = (xM , yM): middle point of Si;

• qi,j= flux associated to segment Si, which composed the edge Lj (see transport
notation);

• Qi: stationary flux, computed through Darcy’s law, associated with Ei.

Transport adaptive grid:

• T nh : transport adaptive grid;

• K: generic triangle in T nh ;

• Vi: ith vertex of the triangle K;

• Li: ith edge of triangle K in T nh ;

• Ni = (xN , yN): middle point of Li;

• qi: unknown flux, associated with Li.
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Figure 4.1: Sketch of meshes projection
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The CI algorithm has been implemented in Freefem and it reads as follows:

ALGORITHM

1. Input data :
they encompass connectivity matrices of flow grid T 0

h and fluxes Qi. In
particular we need to determine the association triangle-vertices, triangle-edges,
edge-vertices and edge-triangles, in order to completely characterize the mesh
topology.

2. Read mesh :
it consists in reading new adaptive mesh T nh and extrapolate connectivity
matrix triangle-vertices;

3. Locate triangle K :
it consists in pinpointing vertices of triangle K in the flow grid T 0

h , indeed in
which triangle T a vertex lays;

4. Calculate intersection :
it calculates intersection point Ri of edge Li with triangle elements in T 0

h . We
determine the position of Ri (both triangle T and edge Ei) in the flow grid.
Once the edge Ei is found, from the connectivity matrix is possible to shift
from the actual triangle to the next one (we remind a single edge is shared at
most with two triangles). This is a loop which allows to move along the whole
edge and detect all the intersections. Moreover, once two consecutive points Ri

and Ri+1 have been found, it is possible to calculate the length of the segment
Si and its middle point Mi = (xM , yM);

5. Interpolate velocity :
it provides a conservative interpolation for each segment Si, which composes
the edge Li. The computation is different from the NCI method, previously
explained, in fact, to ensure fluid conservation in the triangle T , we impose to
calculate the velocity at the middle point, as result of fluxes balance, otherwise
numerical errors would affect the value. As consequence, it could be interpreted
as a direct estimation and not an interpolation, such as described in Section
4.1;

6. Sum all the contributions :
all partial fluxes, associated with the segments Si, which compose the edge Li
are summed up, to determine the whole flux qi.

The CI algorithm is governed by two main loops, the first rules the reading of
triangles K, which belongs to adapted mesh, in order to change at each step the
vertices to find and so the edges, while the second has been employed to calculate all
the intersections with the flow grid.
In order to deeply figure out the process developed, steps 3-4-5-6 are now rigorously
detailed.
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Locate triangle K:

The first aspect to take into account is the full localization of element K, through
the position of its vertices Vi. According to Figure 4.2, the procedure is based on
the determination of the square area Ai, generated by Vi with Bi (set of vertices of
generic triangle T ). Therefore:

• A1: area composed by vertices B1 −B2 − Vi;

• A2: area composed by vertices B2 −B3 − Vi;

• A3: area composed by vertices B3 −B1 − Vi;

• Atot: area composed by vertices B3 −B1 −B2;

Adopting this strategy, if the following expression holds:

Vi ∈ T if Atot '
3∑
i=1

Ai (4.1)

position of Vi is uniquely defined. In the case Vi coincides with a vertex Bi, all
triangles sharing it satisfy the Constraint (4.1), therefore the code identifies the first
acceptable element and then the position is adjusted, based on the slope of edge
Li = Vi − Vj.

Figure 4.2: Determination of the vertex position in the flow grid

Calculate intersections:

According to Figure 4.3, we remind that Bi corresponds to the ith vertex in the
flow grid (it is marked with a square), Ri represents the ith intersection point (it is
marked with a circle), Ti identifies the ith triangle of the flow grid (it is enclosed in a
box), Vi is the ith vertex of the triangle in the transport grid, Li is the edge of K
with vertices Vi and Vj.
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Figure 4.3: Calculation of the intersection

Since all vertices Vi have been located in the flow grid, it is possible to calculate
intersections, occurring between Li and the edges Ei of triangle Ti. As already
described, this step has been implemented, through a conditional loop, which allows
to move along the edge Li, starting from Vi and stopping at the triangle of the second
vertex Vj. The actions performed are:

1. Calculation of all the possible intersections with the lines generated by points
Bi ∈ Ti;

2. Adoption of a constraint to limit the solution to the given triangle Ti;

3. Adoption of a constraint to limit the solution in a range of coordinates deter-
mined by the maximum and minimum between the second vertex Vj and the
previous intersection point, which is automatically updated at each step. For
example in the determination of Ri, the range of acceptability is composed by
point [Vi − Vj], while to calculate Ri+1, the constraint is shifted to [Ri − Vj]
and so on.
This strategy allows to remove solutions which do not lay on the given edge Li,
such as in the case for point R0;

4. Calculation of the length |Si| and middle point Mi = (xM , yM) of the segment
Si, composed by two consecutive intersection points. According to Figure 4.3,
Mi would be the middle point of Si = Vi −Ri;

5. Determination of the adjacent triangle Tj , which shares the edge Ei. According
to Figure 4.3, Ri is the intersection point between Li = Vi − Vj and
E3 = B3 −B1, in particular the latter is shared between Ti, the initial triangle,
and Tj, the next element to consider.

This procedure is implemented for all vertices Vi, in order to determine all middle
point Mi and length |Si|, because are fundamental parameters to estimate the flux,
associated to segment Si.
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Interpolate velocity:

This is the core of the code CI, because it provides a conservative technique
to interpolate the velocity field on the adaptive grid and makes the flux balance
constraint fulfilled. The process is split in two phases, first we determine the point-
wise velocity uM = (u1(xM , yM), u2(xM , yM)) and then the flux qi,j.
Once coordinates of pointMi are known, the estimation of the correct velocity needs

Figure 4.4: Velocity field interpolation and flux calculation

to guarantee flux balance on the two triangles, created by the vertical and horizontal
lines held from Mi itself. According to Figure 4.4 and following the definition of flux,
this leads to:

Q∗3 = −(Q∗1 +Q∗2) = u1(xM , yM) ∆y∗ (4.2)
where u1(xM , yM ) is the velocity component along x direction, Q∗i is proportional to
the flux Qi.
In Equation (4.2), u1(xM , yM) is the only unknown. According to Figure 4.4, analo-
gously it is possible to determine u2(xM , yM), which is calculating from the balance
in the upper sub-triangle, formed by the horizontal line, held from Mi. This is an
important consideration, because the linear interpolation would not offer accurate
results. According to Section 1.4, velocity vector is known at the middle point of
each edge in the flow grid. A plane could be constructed:

z = ax+ by + c (4.3)

where coefficient a, b, c are found from the resolution of the system:
z1 = ax1 + by1 + c

z2 = ax2 + by2 + c

z3 = ax3 + by3 + c

(4.4)

where (xi, yi) are the coordinates of middle point of the edge in the flow grid, while
zi is the velocity (u1 and u2) in the considered point. Substituting in Equation (4.3),
(xM , yM) the resulting uM(xM , yM) is slightly different from the velocity obtained
with the previous method. There is almost a gap of 5% per element, among two
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schemes, which could affect a lot the interpolation technique, since the numerical
error is propagated for each triangle considered.
Following the conservative approach, we denote as qi,j the flux associated to the
segment Si = Ri −Ri+1, which composes the edge Lj.
We remind the definition of both edge and normal vector, respectively Lj and nLj :

Lj =
[
cos(β)
sen(β)

]
nLj =

[
sen(β)
−cos(β)

]

where β is the angle formed by the segment Lj with the horizontal.
According to Figure 4.4, flux qi,j is computed through the common formula:

qi,j =
∫
Si
u · n dSi (4.5)

The final step is the summation of all contributions qi,j, which compose the edge Lj.
Since each term qi,j is locally conservative on the triangle Ti of the flow grid, the flux
balance for triangle K holds:

qj =
Nc∑
i=1

qi,j −→ ∇ · uh|K =
3∑
j=1

qj|K ' 0 (4.6)

in fact it comes from a summation of conservative terms, where Nc is the number of
segments Si.
Furthermore, the main novelty of this scheme is not only to abide by continuity
constraint, but also to account for the heterogeneity of the porous medium. Flux
qi,j, associated to each segment Si is characterized by a different permeability value,
consistent with the flow grid. Instead NCI only uses the middle point of the edge.

4.2 Results
Let us now focus on the presentation of numerical results, obtained through the

new CI algorithm. Control volume and heterogeneity characterization of the system
are identical to those considered in Chapter 3, whereas we initially present a simple
case of mesh refinement, which does not use the adaptive remeshing explained in
Section 1.3.
The aim is to verify the correctness of the code developed, by comparing the numerical
solution of Darcy’s law with the interpolated values. Both are estimated on the same
grid.

4.2.1 Code Verification
The first numerical test consists in the verification of the code, assuming a very

simple mesh refinement. Avoiding the adaptive procedure, a regular grid, labelled as
initial flow grid (Figure 4.6a), is considered, a set of investigation points is defined
a priori, their location is detected and then the considered elements are divided
in three, connecting each vertex with the corresponding baricenter, leading to the
generation of a new grid, labelled as transport grid (Figure 4.6b). Flow grid contains
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112 elements, while the transport one 132 triangles.
The aim is the interpolation of fluxes on the transport grid, knowing the solution on
the initial flow grid. It is important to note that the new mesh generated (Figure
4.6b) is conformal and consistent with the heterogeneity field, in fact, focusing on
Figure 4.5, despite the refinement, edges Ei of initial flow grid remain fixed and so
the associated fluxes Qi. The unknowns are the internal compounds qi, but they
do not affect the balance, because they are built internally to the triangle T , where
continuity equation holds:

q1 + q2 + q3 ' 0 (4.7)

In this way, the velocity structured is not altered, despite the change of the initial
flow grid, where the permeability field was defined. This is the main reason, we
choose this test case, in fact it allows to directly compute the Darcy’s problem on
the transport grid and so compare it with the interpolated results, always based on
the transport grid. Therefore we label as DNS the direct numerical solution via
discretization of Darcy’s law and CI the interpolated velocity field.
The code implemented for the interpolation is slightly different from the algorithm,

Figure 4.5: Flux balance on a refined triangle

previously introduced in Section 4.1, in fact it does not need to calculate intersections,
since we simply add a point per triangle refined. Transport grid is not read as input
data, but it is automatically generated upon the number and location of investiga-
tion points. Nevertheless the computation of the interpolated flux remains identical.
Furthermore, this code prototype has been implemented inMatlab and not in Freefem.

In order to verify the consistency of the strategy developed, two kind of analy-
sis are performed:

• a comparison among DNS and CI by means of an error estimator;
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• a comparison based on a transport simulation, where the concentration evolution
is calculated either with DNS and CI velocity field.

We denote as errL1 , a scalar map of error estimator in L1-norm, which is defined as:

errL1(x) =
3∑
i=1
|qi − q̂i|K (4.8)

where qi is obtained from DNS, whereas q̂i is the interpolated solution from CI. K is
the considered triangle. We remind all quantities in Equation 4.8 are referred to the
transport grid in Figure 4.6b.
Log-velocity field is depicted in Figure 4.7, while logarithmic spatial distribution
of the error is represented in Figure 4.8a. We could immediately note that there is
a mild difference only in the refined triangles, in fact in the other zone, flow field
remains constant. The gap is negligible (errL1 ≈ 10−14) and it does not affect the
flux balance, as we could note from Figure 4.9, which represents a zoom of the square
area [0.02, 0.04]× [0.06, 0.08] of the flux balance map.
We have demonstrated the interpolation algorithm provides results, which are con-
sistent with the Darcy’s law and they accomplish the continuity constraint, in the
same manner as DNS does.
Therefore, the aim is now to evaluate the effects of the interpolated flow, generated
through the algorithm, on the transport of species.
We run two types of simulations, which follow a fixed strategy in time and space,
both are discretized on the transport grid in Figure 4.6b, but the former is based on
the Darcy’s DNS, the other on the interpolated velocity CI. In order to detect any
differences in the solution, we identify seven points, all located in the refined triangle
elements (see Table 4.1 and Figure 4.7). Concentration evolution is calculated along
time.
We focus on Figures from 4.10 to 4.13, where we maintain the same nomenclature,
previously introduced, DNS and CI. The former depics concentration evolution,
obtained from the direct resolution of Darcy’s law, the latter via interpolated velocity
field. Both trend overlap each other, therefore we could state the CI algorithm is
stable, for the sake of transport.

Point x y

P1 0.022 0.026
P2 0.036 0.071
P3 0.015 0.02
P4 0.025 0.006
P5 0.026 0.062
P6 0.034 0.006
P7 0.022 0.016

Table 4.1: Coordinates of investigation points
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(a) Initial regular flow grid (b) Example of simple local mesh re-
finement

Figure 4.6: Initial and refined mesh
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Figure 4.7: Log-velocity norm distribution, direct numerical solution through Darcy’s
law
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(a) Spatial error distribution of Equation
(4.8)

(b) Flux balance map of interpolated solu-
tion CI

Figure 4.8: Spatial error distribution and flux balance map
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(a) Zoom of the flux balance map for DNS

(b) Zoom of the flux balance map for CI

Figure 4.9: Test case for code verification
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(a) P1

(b) P2

Figure 4.10: Concentration evolution of point P1 and P2
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(a) P3

(b) P4

Figure 4.11: Concentration evolution of point P3 and P4
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(a) P5

(b) P6

Figure 4.12: Concentration evolution of point P5 and P6
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Figure 4.13: Concentration evolution of point P7

4.2.2 Study case

From previous section, we have demonstrated that the CI (conservative interpola-
tion) algorithm works and it is consistent with approximated Darcy’s field, however
the mesh, taken into account to run the simulation, was almost regular, therefore now
the difficulty level (so the computational cost) is raised by considering as transport
grid, an adaptive mesh generated during the simulation.
This section deals with the comparison of results among NCI (non-conservative
interpolation scheme) and the CI algorithm implemented, in order to detect pros
and cons of the latter. Control volume and heterogeneity characterization are those
of Chapter 3, while two cases, in terms of mesh size, are considered, one coarser, the
other finer. The former includes a flow grid with 700 elements and a transport one
with 493, the latter is based on a flow mesh with 11200 triangles and a transport
one with 8868. They are depicted respectively in Figure 4.14a and 4.15a.

As already discussed in Section 4.1, the CI algorithm allows to reproduce a con-
servative field and maintain at the same time the structure of the velocity, without
altering the distribution, despite the change in the mesh topology. It is important
to focus on this aspect, because it is the main reason, to which Darcy’s law could
not be solved on the adaptive grid. Flow equation is an elliptic problem, therefore
both downstream and upstream informations are necessary, whereupon a local value
alone does not take on any meaning. Assuming for example, a point of maximum
velocity, if it was surrounded by a slow zone, the flux would be prevented across it.
This leads to the necessity to have a global reference solution of the flow distribution,
finding preferential channels and low velocity regions. This is only possible upon
the initial grid, where permeability field is defined, while on other mesh the flow
structure would be altered.
According to this concept, interpolation is the sole alternative to reproduce the
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velocity map from one adaptive mesh to another.
Now the objective is to test the consistency and stability in presence of an anisotropic
transport grid, where shape, orientation and size of triangles are completely different
either inside the mesh itself and from the original flow grid.

We start with the coarse case. Figure 4.16a depicts the original velocity norm
distribution in logarithmic scale, obtained as result of Darcy’s numerical solution on
the regular grid. In the central region (0.03 ≤ y ≤ 0.11), the left-hand side depicts
a slow zone, while the right-hand side is the fast one, with a preferential channel
along the eastern boundary. We compare it with the interpolated velocity module,
performed by NCI and through the new algorithm CI. We observe in Figure 4.17,
that in the middle region, 0.02 ≤ y ≤ 0.08, module and shape of the contour lines
are almost identical and consistent with the original velocity norm. However in the
top-left side, there is a mild difference, in particular, results of NCI detects a low
velocity region, along the western boundary, around y ' 0.1, which is not present in
the original distribution.
On the contrary, the improvement accomplished with the CI algorithm is clear if
we focus on the flux balance map in logarithmic scale, depicted on Figure 4.18.
Continuity constraint is respected and no artificial generation of fluid mass occurs.
The distribution is quite homogeneous in the whole domain, in fact shape, size and
orientation of triangles do not affect the balance. The same considerations can not
be inferred for the map, generated by NCI, where the range of values is influenced
by the mesh topology.

Analogous concepts incur for the case of fine meshes in Figure 4.15. Velocity norm
in log-scale does not offer any particular differences either in the value and shape
of the contour lines. The approximation is much better with respect to the coarse
case, because of the increased spatial refinement. However, the relevant differences
still occur in the flux balance map, especially in the order of magnitude, which give
an idea of the accuracy, involved the flux balance. Results are printed in Figure 4.20b.

From the test cases analysed, it is possible to derive some features of both
interpolation methods. We enlist the limits of the actual strategy, yielded by NCI :

1. it does not consider the heterogeneity of the system, because, although the
edge of triangle intersects different permeability regions, the flux is computed,
taking into account only one point, so one permeability value;

2. it does not respect the fluid mass balance;

3. the distribution of the log-flux balance map is affected by the mesh topology.

According to Section 1.4, NCI is computed, taking into account only the middle
point of the edge. It is a sort of average value, which suffers particularly when the
element size becomes coarser and coarser, because depending on the local perme-
ability, it could underestimate or overestimate the interpolation. On the contrary,
the CI algorithm is built on a rigorous process of intersection, in order to find all
the segments Si, which composes the edge Li. In this way the resulting flux comes
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from Nc contributions, with Nc the number of segments Si, each one with a different
permeability value. Some are low, other are high, but the main advantage is that qi
is computed as a correct summation.
As snowball effect, the strategy adopted by NCI does not fulfil fluid mass balance.
This is evident from the log-flux balance maps previously shown. Our approach,
instead is either locally and globally conservative. Locally, because each flux qi,j
(associate to a segment Si, which composes the edge Lj of K) maintains the balance
on the triangle Ti of the flow grid (see Section 4.1 for further details). Globally,
because the summation of qj is null, meaning that the continuity constraint holds.
Another common feature of the log-flux balance maps, generated by NCI, is the
anisotropic distribution, namely they are influenced by mesh topology. Finer regions
are more accurate, in terms of order of magnitude of flux balance than coarser one. It
is still a consequence of the single point-wise strategy. The lower the area of triangles
in transport grid, the higher the probability they are included in a single element of the
flow grid. In this case both interpolation methods are acceptable and consistent with
the permeability field, however it is a particular case, which does not make NCI gen-
eral, i.e. the solution is affected by the geometrical features of the considered element.

As last parameter to investigate, Figure 4.21 depicts the computational time against
the number of elements of transport grid, in logarithmic scale.
The CI code implemented is able to solve the numerical issues, deriving from

Number of elements CPU [s]

70 5.35
493 40.18
8868 2.54·103

Table 4.2: CPU against number of elements

the non-conservative interpolation method NCI, however the computational time is
significant, especially when the mesh cardinality increases (see Table 4.2).
Adaptive setting obliges us to perform a flux interpolation, to project the initial
flow map on the transport grid, at each time step. At this point, the conservative
algorithm is quite efficient from a heuristic view, but it is not the optimal choice,
due to the high cost, in terms of computational time. The code inevitably needs
to be optimized under this aspect, in fact up to now, coupling it with the adaptive
procedure makes this strategy unfeasible and the user would prefer to employ other
types of code, based on a fix discretization.



4.2. Results 105

(a) Regular flow grid (b) Adaptive transport grid

Figure 4.14: Coarse mesh
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(a) Regular flow grid (b) Adaptive transport grid

Figure 4.15: Fine mesh
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(a) Coarse regular grid (b) Fine regular grid

Figure 4.16: Log-velocity norm map, computed on regular flow grid as direct numerical
solution of Darcy’s law
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(a) Log-velocity map computed through
NCI

(b) Log-velocity map computed through
CI

Figure 4.17: Comparison upon log-velocity norm map, coarse case
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(a) Log-flux balance map computed through
NCI

(b) Log-flux balance map computed through
CI

Figure 4.18: Comparison upon log-flux balance map, coarse case
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(a) Log-velocity map computed through
NCI

(b) Log-velocity map computed through CI

Figure 4.19: Comparison upon log-velocity norm map, fine case
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(a) Log-flux balance map computed through
NCI

(b) Log-flux balance map computed through
CI

Figure 4.20: Comparison upon log-flux balance map, fine case
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Figure 4.21: Computational time against number of elements



Conclusion

In the context of petroleum engineering, the study of subsurface transport in
porous media became particularly relevant and it is a key component in the design and
optimization of oil and gas production operations or in the planning and management
of geological carbon sequestration. A deep theoretical and analytical knowledge
is a fundamental step to treat such themes, however the critical challenge is the
development of numerical methodologies, rendering suitable approximations of the
space-time dynamics of concentrations field in highly heterogeneous media.
In this thesis work, we assess the behaviour of a space-time adaptation technique
(labelled as Adaptive), grounded on an anisotropic a posteriori error estimator, when
it is applied to the numerical resolution of solute transport in both homogeneous
and heterogeneous domain. The latter is quantified in terms of random Gaussian
permeability field at constant variance.
In order to ensure confidence on the results, we carry out a benchmarking process,
relying on two codes, Traces and Fix. Both are implemented via fixed space-time
strategy in a Finite Element Framework (as well as Adaptive). Traces is built on
Discontinuous Galerkin scheme , which allows to limit numerical error and oscillations,
while Fix develops the same Galerkin approximation of Adaptive. The choice of the
codes and their peculiarities enables us to carry out a deep and complete analysis
of flow and transport problem. We develop a double vision of code benchmarking,
involving both the discretization scheme (Streamline Upwind versus Discontinuos
Galerkin) and the space-time procedure (fix versus adaptive strategy). Several
scenarios of flow (homogeneous and heterogeneous domain) and transport (advective
or diffusive dominated) problem are investigated with the aim to figure out strength
and weaknesses of each solution strategy.
From the simulations performed, we can come to the following conclusions:

1. First test case is based on a homogeneous domain with a transport process,
dominated by dispersion. It reveals all codes are accurate in outlining spatial
concentration distribution and local evolution along time. However, raising grid
Péclet number, by varying dispersivity values, leads to a transport governed by
advection, which generates numerical diffusion in the concentration map. In
different measure, all codes suffer from this instability. Adaptive and Traces
show a significant ability in limiting oscillations, while the Streamline Upwind
technique, employed in Fix, demonstrates to be unreliable.

2. Second test is based on solute transport, which takes place in heterogeneous
system. Solutions provided by Fix and Traces are almost identical. Grid
adaptation manages to optimize triangles shape, size and orientation upon
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the concentration front evolution. It allows to reduce the number of elements,
necessary for an accurate description of the solute transport at hand, however
it is not able to handle with the complex structure of the velocity field, due
to the imposition of high heterogeneity. We note discrepancies in the spatial
concentration distribution and oscillations in the local evolution, especially in
the low velocity region. Projection of advective field is a mandatory, but prob-
lematic step, due to the complex structure of velocity field and the significant
change in the mesh topology between flow and transport grid. Projection is
actually performed through NCI (non-conservative interpolation) algorithm via
linear interpolation, however results show us oscillations in the concentration
evolution and shortage in the flux balance. From preliminary test, we evaluate
that numerical inaccuracies tend to decrease, when the error in the flux balance
decreases as well.

3. To solve the issues, related to previous point, we implement CI (conservative
interpolation) algorithm. It is the main novelty of this thesis work. It succeeds
in overcoming the above limits, in fact flux balance is completely respected,
the distribution of divergence map is uniform, which ensures no matches with
the mesh topology. Furthermore, the interpolated convective field is consistent
with the original Darcy’s problem. We can assure the fluid mass redistribution
is done, accordingly with the heterogeneity structure.
The scheme introduced is the key original feature of this study. It manages in
handling with meshes of different order of magnitude, in terms of cardinality,
eventhoug the increase of computational cost is significant.

Future works

Future works of this thesis should be concerned on the optimization of the
algorithm, in terms of computational cost. Coupling it with the adaptive strategy
is the main objective to achieve, in order to observe the effects of a conservative
approach on the concentration distribution. An increase of the complexity level could
involve the study at different grid Péclet range, to deal with a process dominated by
both diffusion/dispersion and convection. Finally it should be envisioned to include
chemical reaction term inside the ADE and have a more realistic description of the
solute transport.
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A.1 Traces Code
Traces is a computer programme for the simulation of flow and reactive transport

in saturated porous media. It employs finite volume formulation to ensure exact
local mass balance, handle high parameter discontinuities between adjacent elements
and treat full tensor without approximation. Following [6], mathematical model
describing the flow in the porous material, System (1.14), is solved by the mixed
hybrid finite element (label as MHFEM). Transport equation, Equation (A.6), is
split in two parts, where the advective term is solved by discontinuous Galerkin finite
element (label as DGFEM) and the rest by mixed hybrid method. We consider 2D
polygonal domain, triangle mesh discretization and take as reference the following
nomenclature, previously described in Section 1.2:

• T : generic triangle in the mesh Th;

• Ei: edge i, (with i = 1, 2, 3) of generic triangle T ;

• Nt: number of triangle elements in Th;

• Ne: number of edges in Th;

• Nf : number of edges of T , therefore Nf = 3.

Raviart-Thomas space

In the Raviart-Thomas space of lowest order (RT0), the elementary fluxes at the
element T level are defined by:

ψT =
Nf∑
i=1
$T

i ΨT
i (A.1)

where Nf is the number of edges of the element T and ΨT
i are the fluxes through

the edge i. The vectorial basis function $T
i for element T is defined by:

∫
Ei
$T

i · nj =

1 if i=j
0 if i 6=j

(A.2)
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where nj is the normal outwardly oriented vector and j the edge j of T .
Due to Equation (A.2), the properties of $T

i fulfil:
∫
T
∇ ·$T

i dT = 1
|T |

(A.3)

where |T | is the area of the element T . In addition:

$T
i · nj =

1/|Ei| if j=i
0 if j 6=i

(A.4)

where |Ei| is the length of the edge i.

A.1.1 Discretization
Consider the flow and transport equations, respectively reported in Equation

(A.5) and (A.6):
∂tPH −∇ · (KH∇PH) = 0 (A.5)

∂tc−∇ · (D∇c− uc) = 0 (A.6)

Despite the different formulation with respect to the original Problem (1.14), Equation
(A.5) is perfectly equivalent, in fact temporal derivative of hydraulic head PH , already
introduced in Section 1.1.1, is null, because of assumption of stationariness.
For sake of simplicity, both problems could be generalized to a common form,
expressed in the system of equations (A.7):

S∂tΘ +∇ ·ψ + SλΘ = f

ψ = −Υ∇Θ
(A.7)

where S is the storage coefficient (flow) or the retardation factor (transport), Θ the
state variable (head or concentration), λ a kinetic term, f a sink/source term, Υ
is a tensor (hydraulic conductivity or dispersion) and ψ the related fluxes. First
equation of the System (A.7) states for the water or solute mass balance, while the
second one for Darcy’s or Fick’s law. Discretization over the element T leads to:

∫
T

(
S
∂Θ
∂t

+∇ ·ψ + λΘ− f
)
dT = |T |ST ∂ΘT

∂t
+
∫
T
∇ ·

Nf∑
i=1
$T

i ΨT
i

 dT
+|T |STλTΘT − σT = |T |ST ∂ΘT

∂t
+

Nf∑
i=1

ΨT
i + |T |STλTΘT − σT = 0

(A.8)

where ΘT is the average value of the state variable over element T , ST is the
approximation of S, assumed to be constant over the element T , ΨT

i are the fluxes
through the ith edge (or face) of T , σT is the source or sink term, associated with the
element T (average value fo f over T ) and Nt the number of elements in the grid.
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The variational form of constitutive law, Equation (A.7), using Green’s theorem,
leads to: ∫

T

((
ΥT
)−1

ψT
)
·$T

i = −
∫
T
∇Θ ·$T

i =
∫
T

Θ∇ ·$T
i −

Nf∑
i=1

∫
Ei

Θ$T
i · ni i = 1, .., Nf (= 3)

(A.9)

where ΥT is the approximation of Υ, assumed to be constant over the element T .
Note that in Equation (A.9) the subscript i is referred ith edge of triangle T . Using
properties (A.4) and (A.3) of the vectorial basis function $T

i , it leads:∫
T

((
ΥT
)−1

ψT
)
·$T

i = 1
|T |

∫
T

Θ− 1
|Ei|

∫
Ei

Θ = ΘT −ΘT

i (A.10)

where ΘT is the average of the state variable Θ over the element T , and ΘT

i its
average over ith edge. Previous equation can be rewritten as:

Nf∑
j=1

BT
ijΨT

j = ΘT −ΘT

i i = 1, ..., Nf (A.11)

where
BT
ij =

∫
T
$T

i

(
ΥT
)−1

$T
j (A.12)

and therefore,

ΨT
i =

Nf∑
j=1

(
BT
ij

)−1 (
ΘT −ΘT

i

)
= αTi ΘT −

Nf∑
j=1

(
BT
ij

)−1
ΘT

j (A.13)

with

αTi =
Nf∑
j=1

(
BT
ij

)−1
(A.14)

To mass balance and constitutive flux laws, continuity of the state variable Θ and
fluxes between two adjacent elements T and T ′ are added. These continuities are
ensured by: ΘT

i = ΘT ′

k

ΨT
i + ΨT ′

k = 0
(A.15)

A.1.2 Hybrid scheme
The hybridization consists in writing one equation per element edge or face. The

following steps are used:

1. the mass balance equation is rewritten using state variables only;

2. the average element variable is expressed as a function of the average edge
values;
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3. the flux continuity equation is rewritten using the average edge variables only.
This flux continuity equation is slightly modified at Neumann boundaries.

Using Equation (A.13) leads to:
Nf∑
i=1

ΨT
i = αTΘT −

Nf∑
i=1

αTi ΘT

i with αT =
Nf∑
i=1

αTi (A.16)

mass conservation law is rewritten in:

|T |ST ∂ΘT

∂t
+ αTΘT −

Nf∑
i=1

αTi ΘT

i + |T |STλTΘT − σT = 0 (A.17)

Time derivatives are approximated by a standard implicit scheme, except for the
degradation term where:

ΘT = ϑΘT,n+1 + (1− ϑ)ΘT,n 0 ≤ ϑ ≤ 1 (A.18)
From Equation (A.17), the average state variable is equal to:

ΘT,n+1 =
Nf∑
i=1

γTi ΘT,n+1
i + F T (A.19)

with
γTi = ∆t αTi(

|T |ST + αT∆t+ |T |STλTϑ∆t
) (A.20)

and

F T = |T |S
TΘT,n + σT∆t− |T |STλT (1− ϑ)∆t
|T |ST + αT∆t+ |T |STλTϑ∆t

(A.21)

The flux continuity equation, System (A.15), is modified using (A.13):

αTi ΘT −
Nf∑
j=1

(
BT
ij

)−1
ΘT

j + αT
′

k ΘT ′
−

Nf∑
j=1

(
BT ′

kj

)−1
ΘT ′

j = 0 (A.22)

The element average value of the state variable given by Equation (A.19) is replaced
in (A.22):

αTi

Nf∑
i=1

γTi ΘT,n+1
i + F T

− Nf∑
j=1

(
BT
ij

)−1
ΘT

j +

αT
′

k

Nf∑
i=1

γT
′

i ΘT ′,n+1
i + F T ′

− Nf∑
j=1

(
BT ′

kj

)−1
ΘT ′

j = 0
(A.23)

which leads to the following system equations:
Nf∑
j=1

[
αTi γ

T
j −

(
BT
ij

)−1
]

ΘT,n+1
j +

Nf∑
j=1

[
αT

′

k γ
T ′

j −
(
BT ′

ij

)−1
]

ΘT ′,n+1
j

= −αTi F T − αT ′

k F
T ′

(A.24)

At Neuman boundaries, denote ΨN as the normal flux, Equation (A.15) is modified
in: 

ΨT
i + ΨN = αTi ΘT −∑Nf

j=1

(
BT
ij

)−1
ΘT

j + ΨN

∑Nf
j=1

[
αTi γ

T
j −

(
BT
ij

)−1
]

ΘT,n+1
j = −αTi F T −ΨN

(A.25)
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A.1.3 Discontinuous Galerkin Finite Element Method
DGFEM is applied to the hyperbolic part of the transport equation, allowing

to solve the advective field without oscillations and with very limited numerical
diffusion.

∂c

∂t
+ u · ∇c = 0 (A.26)

rewritten in:
∂c

∂t
= −∇ · (uc) + c(∇ · u) (A.27)

Equation (A.27) is multiplied by a test function ζ and Green’s theorem is used:

∫
T

∂c

∂t
ζ dT +

∫
T
uc · ∇ζ dT −

Nf∑
i=1

∫
Ei
ζcu · n dEi =

∫
T
c(∇ · u)ζ dT (A.28)

Due to the discontinuity of the concentration across the element edge, the convective
flux is approximated by solving a 1D Riemann problem. The convective flux is equal
to: uc = ucout if u · n < 0

uc = ucin if u · n ≥ 0
(A.29)

The concentration is approximated by:

cT (x, t) =
Nf∑
k=1

ωTk (x)cTk (t) =
Ne∑
k=1

ωTk (x)cT,ink (t) (A.30)

where cTk is the concentration at node k of element T , ωTk are the Galerkin finite
element test functions and Nf is the number of edges of element T .
Using Equation (A.30) and (A.29) in (A.28) and replacing ζ by the test function ωTk ,
with k = 1, ..., Nf lead to:

Nf∑
k=1

∂cTk
∂t

∫
T
ωTk ω

T
i dT =

Nf∑
k=1

[−cTk
∫
T
ωTk u · ∇ωTi dT +

Nf∑
j=1

c
T,in/out
k

∫
Ej
ωTk ω

T
i u · n dEj + cTk

∫
T
ωTk (∇ · u)ωTi dT ]

(A.31)

After inverting the local mass matrix (left hand side of Equation (A.31)), this system
can be written in the following matrix form:

dcT

dt
= M(cT,in, cT,out) (A.32)

where cT is a vector of dimension Nf , containing the cell unknowns cTk and M
represents the components of the right hand side of Equation (A.31), multiplied by
the inverse of the mass matrix. Note that cTk and cT,ink are the same.
Time discretization is second order accurate and based on a simplified explicit
Runge-Kutta method. The following three steps algorithm is used:
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1. Computation of an intermediate approximation cT,n+1/2 by

cT,n+1/2 = cT,n + ∆t/2 M(cT,in,n, cT,in,n)
Note only the inner value of the nodal concentrations are used.

2. Calculation of c̃T,n+1 by solving the Riemann problem

c̃T,n+1 = cT,n + ∆tM(cT,in,n+1/2, cT,out,n+1/2)

3. The solution is stabilized with the multidimensional slope limiting operator L,
which avoid that oscillations raise, for further details see [6]
cT,n+1 = L(c̃T,n+1)

Consider for the element T the following notations:

• cT is the average of c over T .

• min(i) is the minimum of the c̃T,n+1 of all the elements having i has a node.

• max(i) is the minimum of c̃T,n+1 of all the elements having i for a node.

• min(T ) is the minimum of c̃T,n+1 of all the elements, having a common node
with the element T .

• max(T ) is the maximum of the c̃T,n+1 of all the elements having a common
node with the element T .

Figure A.1: Element T, node I and their neighborhood, from [6]

The multidimensional slope limiting process satisfies the following conditions:

cT = c̃T in order to preserve mass balance. (A.33)

In order to avoid oscillations:

min(i) ≤ c̃T,n+1 ≤ max(i) (A.34)
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if c̃T,n+1 is a local maximum or minimum, then

cT,n+1
i = cT i = 1, ..., Nf (A.35)

If c̃T,n+1 is not a local maximum or minimum, the concentration at node i of element
T , cT,n+1

i , is not uniquely defined. Therefore, cT,n+1
i is imposed to be as close as

possible to c̃T,n+1 by minimizing the following objective function J:

J(p) =
Nf∑
i=1
‖ cT,n+1

i − c̃T,n+1
i ‖2 (A.36)

where p represents the Nf concentrations of the inner node of element T . The method
used to minimize (A.36) with the constraint given by (A.34) and (A.33) is the saddle
point method.
We remind the previous theoretical presentation, involving numerical method of
Traces is completely taken from [6].

A.2 Space Time Adaptation
In this Section, space-time grid adaptation procedure is implemented, in order

to efficiently improve the accuracy of numerical solution. The method is said adap-
tive, because the process depends on previous results at all stages and it has to be
interpreted as an enhancement of the classic finite element algorithm, described in
Section 1.2.
An automatically adaptive grid is a very advisable tool in modelling real scale applica-
tions, in fact, often, the most relevant processes, driving the evolution of the variable,
take place in different regions throughout the domain, therefore a homogeneous
distribution could lead to useless computational cost.
Adaptation procedure is not a new concept in scientific literature, however the novelty
of this work is to make spatial and time distribution grounded on the definition of
an anisotropic a posteriori error estimator for the global discretization error.
About the choice of an anisotropic estimator, the main objective is to include geo-
metrical information, regarding orientation and size, about a generic triangle T in
mesh Th. This may tailor to the discretization of ADE, in particular to concentration
evolution within the domain. Furthermore, according to [14], using rather elongated
elements may help in reducing the number of degrees of freedom necessary for a
given solution accuracy.
About the choice of a posteriori estimator, it is important to remind that an analyt-
ical solution is not available for the Problem (1.20) at hand, therefore neither the
error could be calculated. However, a posteriori estimator only relies on the discrete
function and it could qualitatively detect which elements in the mesh give a larger
error contribution. This could be perfectly coupled with a refinement, just selecting
those triangles with a significant error and subdividing them, reducing the mesh size h.

The Section deals with a first presentation of anisotropic setting, introducing the
main variables, thereafter the focus is shifted towards the definition of the spatial and
time estimators. Finally, the adaptative procedure is explained and the algorithm,
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which has been implemented in [19], is described in all its steps. Notice that all the
theoretical framework is taken from scientific literature.

A.2.1 Anisotropic setting
Following [3], it is possible to derive the anisotropic information by introducing

the standard invertible affine map FT : T̂ → T , which transforms the equilateral
triangle T̂ , with vertices in coordinates:
(-
√

3/2,−1/2),(
√

3/2,−1/2) and (0, 0) and initially inscribed in a circle with unit
radius centred at (0, 0), into a generic T . The map changes the circle into an ellipse
circumscribing T , as illustrated in Figure A.2.

Figure A.2: Geometrical interpretation of the map FT from [3]

It is possible to provide the following definition:

x = FT (x̂) = MT x̂ + fT ∀x = (x1, x2)T ∈ T (A.37)

with x̂ = (x̂1, x̂2)T ∈ T̂ ,MT ∈ R2×2 the Jacobian associated with the map FT and
fT ∈ R2 a shift vector. It is possible to provide a decomposition of MT as:

MT = BTZT (A.38)

with BT ∈ R2×2 a symmetric positive definite matrix and ZT ∈ R2×2 an orthogonal
matrix. We consider the following spectral decomposition of BT :

BT = RT
TΛTRT (A.39)

where
RT =

[
r11 r21
r12 r22

]
ΛT =

[
λ1,K 0

0 λ2,K

]

in which RT ∈ R2×2 is the matrix containing the eigenvectors of BT and ΛT ∈
R2×2 is the diagonal matrix of the corresponding eigenvalues, where it is assumed
λ1,T ≥ λ2,T . In particular, the right eigenvalues are expressed as r1,T = (r11, r12)
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and r2,T = (r21, r22). Notice shape, size and orientation of T are fully described
by ri,T and λi,T for i = 1, 2. In particular, r1,T and r2,T identify the directions of
the two semi-axes of the ellipse circumscribing T , while λ1,T and λ2,T correspond to
the measure of the semi-axes. All these information are represented in Figure A.2.
Deformation of the triangle T is provided by the aspect ratio sT = λ1,T/λ2,T ≥ 1
that provides an information about the deformation of the triangle T .

A.2.2 Recovery-based error estimator
As previously introduced, mesh adaptivity is governed by the error estimator ηht

ηht = ηh + ηt (A.40)

which includes a compound ηh for spatial discretization and one, ηt, for time. Fol-
lowing [10], the two error estimates can be computed separately, entailing two
steps:

• local reconstruction of the solution gradient, upon averaging or re-interpolating
it;

• estimation of the discretization error, obtaining by computing the L2-norm of
the difference between the recovered and the discrete gradient.

Spatial error estimator

Consider a finite element approximation zh(t) of a generic scalar variable z(t).
Discretization error is defined as:

ezh(t) = z(t)− zh(t) (A.41)

while its H1-seminorm is defined as:

|ezh(t)|2H1 =
∫

Ω
|∇z(t)−∇zh(t)|2 dΩ (A.42)

However, the seminorm can not be calculated, since the exact gradient of the solution
is unknown. Relying on an isotropic view, the general idea is to replace the exact
gradient with a recovered one P (∇zh(t)):

|ezh(t)|2H1 '
∫

Ω
|P (∇zh(t))−∇zh(t)|2 dΩ = η(ezh(t)) (A.43)

Define ∆T as the patch of triangles, sharing at least one vertex with the given triangle
T , the anisotropic error estimator should differ from the isotropic one, by involving
geometrical quantities, indeed indentifying the size, shape and orientation of element
T .
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Figure A.3: Spatial recovered gradient procedure from [3]. Patch corresponds to the red
area; numerical gradients are the blue pieces; recovered gradients are the
green ones.

The local error estimator is obtained:

ηAT,h(zh(t))2 = 1
λ1,Tλ2,T

∫
∆T

{λ2
1,T [r1,T · (P (∇zh(t))−∇zh(t))]2 +

λ2
2,T [r2,T · (P (∇zh(t))−∇zh(t))]2} d∆T ∀T ∈ Th

(A.44)

The factor 1/(λ1,Tλ2,T ) in Equation (A.44) ensures the consistency with respect to
isotropic case, in fact imposing λ1,T = λ2,T , the isotropic estimator is obtained.
Following [31], the procedure to find the recovered gradient is reported below:

P∆T
(∇zh)(x, t) = 1

|∆T |
∑

Ti∈∆T

|T |∇zh(t) with x ∈ Ti (A.45)

where Ti represents a generic triangle, which belongs to the patch ∆T . Equation
(A.45) represents the area-weighted average over the whole patch ∆T of the gradients
of the discrete solution and then such value is assigned to the single element T , as
shown in Figure A.3. Thereafter for any Ti ∈ ∆T with Ti 6= T , P∆Ti

(∇zh) is assumed
constant over the whole patch ∆Ti

.

Time error estimator

In this part an overview of the time discretization method is provided. Following
[11], time step ∆tn, which defines the length of the interval In between tn and tn+1

should be determined. The prediction is carried out by defining a local time error
estimator, instead of the global one. ∆t can not be predicted a priori, since the
total number and length are not constant values, in fact both are defined by the
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adaptive procedure itself. Consider a general scalar variable z and its finite element
approximation zh. The H1−seminorm of the time discretization error on the interval
In is:

|ezh(x)|2H1 =
∫ ∣∣∣∣∣∂z(x)

∂t
− ∂zh(x)

∂t

∣∣∣∣∣
2

dt (A.46)

Firstly, dealing with the approximated derivative, at a generic time level tn, zh at all
previous time ti, with i = 0, ..., n− i is known. Since the solution on previous step
has already been computed, it is possible to replace the derivatives term in Equation
(A.46), by substituting zh with the straight line interpolating zh at tn−1 and tn as
showed in Figure A.5.
Therefore:

∂zh(x)
∂t

' znh − zn−1
h

∆tn−1 with znh = zh(x, tn) (A.47)

Secondly, the exact derivative should be substituted and to do this, the solution z(x)
is replaced with a recovered value zR(x), which has been selected as the parabola
interpolating the values zn−2

h , zn−1
h , znh , in correspondence of time step tn−2, tn−1, tn,

as shown in Figure A.5.

Figure A.4: Time derivatives from [11]; ∂tzR (dotted and dashed line), ∂tzh (continuous
line).

Choosing a parabola to identify the recovered solution leads to a piecewise linear
recovered gradient. According to [29], a more detailed formulation ofH1−seminorm of
the time discretization error in Equation (A.46) could be estimated, by approximating
via local time recovery-based error estimator ηn−1,t(zh(x)) as:

|ezh(x)|2H1 ' π
∫ ∣∣∣∣∣∂zR(x)

∂t
− znh − zn−1

h

∆tn−1

∣∣∣∣∣
2

dt = ηn−1,t(zh(x))2 (A.48)
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Figure A.5: Time gradient recovery from [11]. Recovered solution (dotted and dashed
line) and linear interpolate values (continuous line).

with π a suitable time scale factor of the problem. In hand, in order to make
the estimator dimensionless, generally it coincides with the previous time step.
ηn−1,t(zh(x)) is evaluated at each vertex of the triangle T , however a single averaged
value for the interval In is needed.

ηn−1,T (zh)2 = 1
3
∑
Bi∈T

ηn−1,T (zh(Bi))2 (A.49)

where Bi with i = 1, 2, 3 represents the vertex of the triangle T . Shifting from local
to global level, once these values have been computed is possible to provide an
area-weighted average:

ηn−1(zh)2 = 1∑
T∈Th
|T |

∑
T∈Th

|T |ηn−1,T (zh)2 (A.50)

Equation (A.50) normalises the time error with respect to the domain dimension. In
view of the time adaptive scheme in Section A.2.3, the global time error estimator is
introduced:

ηt(ezh)2 =
Nstep∑
n=1

ηn−1,t(zh)2 (A.51)

where Nstep identifies the total number of time intervals, but it is still unknown.

A.2.3 Adaptation procedure
Until now the algorithm combines the discretization scheme of ADE with the

information, provided by the error estimators, to automatically adapt the mesh Th
and time domain [0, tend]. However, the aim is to guarantee the error below a certain
value, therefore, following [10], the accuracy target needs to be specified:

τ = τ∆t + τh (A.52)
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The former drives the mesh adaptation, while the latter the time advancement.

Spatial mesh adaptivity

Following [14], the adaptive mesh is built starting from a metric, induced by the
anisotropic error estimator, labelled as ηAh (ezh(t)), so the number of mesh elements is
minimized and the tolerance τh is guaranteed on ηAh (ezh(t)) via an error equidistribution
criterion. Before going on with the description, the concept of metric is introduced.
It is a symmetric positive definite tensor field,M : Ω→ R2×2, such that:

M(x) = R̃T (x)Λ̃−2(x)R̃(x) for any x ∈ Ω (A.53)

with Λ̃(x) = diag(λ̃1(x), λ̃2(x)) and R̃T (x) = [r̃1(x), r̃2(x)] a positive diagonal and
orthogonal tensor. It is possible to associate a piecewise constant metricM with a
background grid Th, by exploiting the anisotropic spatial error estimator, previously
defined in Equation (A.44), therefore to evaluate it on Th. The computation of the
new elemental metric, which is indicated by the symbolMn+1

T , where n+ 1 stands
for the successive time step, is performed on the background grid T nh by:

1. applying an error equidistribution criterion;

2. solving a local constrained optimization problem on each element T of T nh .

In details, firts the ADE is solved on the background grid, then the unknown metric
Mn+1

T is computed by imposing the desired accuracy τh and by equidistributing
the error. In this way, local accuracy τT = τh/card(Th) is also guaranteed. This
procedure essentially leads to deal with local constrained optimization problems,
which can be explicitly solved in [14], [32], [3]. The general idea is to minimize the
mesh elements, by maximising the area of each triangle T . Reporting and analysing
the whole minimisation problem is not a matter of this thesis work, for further
details refer to the suggested scientific literature. Only the solution is reported. An
optimal aspect ratio, label as s̃ηT , can be derived, which also drives the definition of
the optimal metricMη, completely identified by two separate values λ̃η1,T and λ̃η2,T .
The algorithm allows to minimize the number of elements, always maintaining a
certain value of accuracy, defined by τh
Once the optimal metric has been derived, the new adapted mesh ensues. However
some constraints are necessary, in order to avoid a cluster of elements with small
surface area. The following input parameters are set:

pmin : minimum area value allowed for T . Therefore the actual triangle area will be
min{λ̃η1,T λ̃

η
2,T , pmin};

Nmin, Nmax : maximum and minimum number of elements in Th. The initial number
of elements is first found by means of optimal metric and if the number does
not belong to the interval, a new metric is generated via a global and uniform
scaling of the tensorM;

hmin, hmax : maximum and minimum triangle edges length.
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Time step adaptivity

Time step ∆t might be predicted, however the total number of intervals is an
unknown and it could be determined only a posteriori. A local tolerance τt is needed
to be imposed at each interval, instead of considering a global value. Roughly
speaking, time step adaptation entails three actions:

1. computation of a recovered time derivative;

2. evaluation of the local time estimator;

3. prediction of the next time step size.

Time error estimator in Equation (A.50) can be rewritten as:

ηn−1(zh)2 = ∆tn−1εn−1(zh)2 (A.54)

where
εn−1(zh)2 = 1

(∆tn−1)2∑
T∈T n

h
|T |

∑
T∈T n

h

|T |ηn−1,T (zh)2 (A.55)

where T nh denotes the mesh at time instant tn. Finally, it is possible to compute the
actual time step:

∆tn = ηn−1(zh)
εn−1(zh)

(A.56)

Further constraints are needed in order to control the time adaptation, therefore the
following parameters have been set:

∆tmin : minimum allowed time step for the adaptation procedure.

∆tmax : maximum allowed time step for the adaptation procedure.

Both values have been chosen accordingly to the characteristic time scale of the given
transport problem.
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B.1 Transport problem
Recall conservative strong formulation of ADE:

∂c

∂t
−∇ · (D∇c− uc) = 0 (B.1)

Consider functional space Z and test function ζ ∈ Z, described in Section 1.2.2.
Weak formulation of previous equation reads:

∫
Ω

[
∂c

∂t
ζ − ζ∇ · (D∇c− uc)

]
dΩ = 0 (B.2)

Apply Green theorem, it is obtained: ∫
Ω

[ζ∇ · (D∇c− uc)] dΩ

=
∫

Γ
ζ(D∇c− uc) · n dΓ−

∫
Ω

(D∇c− uc) · ∇ζ dΩ
(B.3)

Linear integral term could be decomposed into four parts, which are label as Γi = ∂Ωi,
representing each border of the control volume. However only the north section is
characterized by an outlet flow, as a consequence of impermeable walls impositions.
Furthermore, since natural boundary condition holds, it ensues:∫

Γ
ζ · (D∇c− uc) · ndΓ =

∫
Γnorth

ζu · n c dΓ (B.4)

Galerkin discrete approximation immediately derives:
find ch = ch(t) ∈ Zh such that for any ζh ∈ Zh:

∑
T∈Th

[∫
T

(
∂ch
∂t

ζh +∇ζh · (Dh∇ch − uhch)
)
dT

]
= 0 (B.5)

Final step is the time discretization, reported in Section 1.2.2.
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B.2 False Diffusion
Analytical demonstration, dealing with the origin of numerical diffusion is here

described. We consider, for sake of simplicity, 1D ADE with uniform velocity field u
along x direction and constant dispersion D = αL u, reported in Equation (B.6)

∂c

∂t
= D

∂2c

∂x2 − u
∂c

∂x
(B.6)

First space derivative (convective term) is commonly discretized through finite
difference of the incremental ratio, therefore we consider two nodes, the first located
at x and the other at x+ ∆x, so:

∂c

∂x
= cx+∆x − cx

∆x (B.7)

however, we consider to apply Taylor series up to the second order

cx+∆x = cx + ∂c

∂x
∆x+ ∂2c

∂x2
∆x2

2 (B.8)

Equation (B.6) could be rearranged, by declaring the term ∂xc from Equation (B.8).
Collecting all the terms, in order to rebuild the new form of ADE equation, it is
obtained:

∂c

∂t
=
(
D + ∆x

2 u

)
∂2c

∂x2 − u
(
cx+∆x − cx

∆x

)
(B.9)

Comparing Equation (B.6) and (B.9), it is noticed an extra term, u∆x/2, is present,
which does not have any physical meaning, but it simply comes from the discretization
of the advective component on the dispersive term. It is inferred in order to reduce
the impact of the numerical (or false) diffusion, the following constraint has to be
respected:

u
∆x
2 << D (B.10)

which can be also rewritten as Peh << 2 or ∆x << αL, if we assume that D = uαL,
with αL the longitudinal dispersivity.
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