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Abstract

Nowadays people have the chance to easily access a wide amount of music

by means of many services. As users are not able to handle such wide music

catalogs on their own, services need techniques able to automatically assist

them. In order to do that, services rely on the evaluation of song similarity.

As music is multi-faceted, users tend to evaluate similarity in different ways.

Thus the concept of music similarity is highly subjective. Consequently, also

services must evaluate music similarity in a personalized way.

As many users exploits music fruition services, we need scalable methods.

So, we must adopt a content-based approach, as content-based approaches

rely on content-related information computed from the audio track, thus al-

ways available. However, in order to elaborate a subjective similarity metric,

content-based techniques need to be combined with music similarity infor-

mations provided by the user himself. So, in this thesis we present a hybrid

model for personalized similarity modeling that relies on both content-based

and user-related similarity information.

The goal is to elaborate a metric able to relate content-based and the

similarity information provided by the user. To do so, we proposed a method

that relies on a two-stage procedure. We first exploit a non-metric scaling

technique to first elaborate a low-dimensional space (or embedding) which

fulfills the similarity information provided by the user. Then we exploit a

regression technique in order to learn a mapping able to relate content-based

information and embedding-related information. We kernelize the regression

procedure adopting a non-linear kernel function. In order to enhance the

generalization properties of the method, we also combine the regression oper-

ation with a feature selection algorithm. The result is a novel content-based

method for learning a personalized similarity metric for musical content.

The experiments that we conducted in order to assess the generalization

properties of our method show that it is able to provide good performances,
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even when data are divided adopting a rigid data division method.
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Sommario

Oggi è possibile accedere ad una vasta quantità di musica attraverso vari

servizi. La quantità di musica disponibile è tale per cui l’utente non è in

grado di gestirla autonomamente. Per cui, i vari servizi devono dotarsi

di tecniche in grado di aiutare ogni utente in maniera automatica. Per

farlo, i servizi devono basarsi sulla stima delle similarità tra canzoni. Ma

poichè la musica è un fenomeno complesso e multiforme, la similarità tra

canzoni può essere valutata secondo varie prospettive, ed ogni utente tende

ad avere la propria visione di similarità. Per soddisfare appieno gli utenti,

dunque, la valutazione della similarità da parte dei servizi deve ricalcare

quella dell’utente.

Poichè il numero di utenti a cui rivolgersi è elevato, occorrono tecniche

di modellazione della similarità scalabili. Per cui, scegliamo un approccio

basato sul contenuto, poichè l’informazione sul contenuto è sempre disponi-

bile, data la canzone. Tuttavia, per poter apprendere una metrica di sim-

ilarità personalizzata, tali metodi devono includere delle informazioni sulla

similarità percettiva fornite dell’utente. Motivo per cui in questa tesi presen-

tiamo un approccio ibrido in grado di combinare i due tipi di informazione

: contenuto e similarità utente.

L’obiettivo è quello di apprendere una metrica in grado di mettere in

relazione le informazioni di contenuto e la similarità percettiva. Il metodo

proposto si basa su un approccio bifase. Una tecnica di non metric scaling

si occupa prima di elaborare uno spazio geometrico modellato sulla base

delle informazioni sulla similarità fornite dall’utente. Poi una tecnica di

regressione apprende un mapping in grado di relazionare l’informazione di

contenuto e lo spazio appreso. La procedura di regressione è sia resa non

lineare tramite un kernel non lineare, sia combinata con una procedura di

feature selection in modo da massimizzare le capacità di generalizzazione del

metodo. Il risultato è un nuovo metodo capace di apprendere una metrica
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di similarità.

Gli esperimenti condotti dimostrano che il metodo fornisce buone prestazioni

di generalizzazione, anche quando viene applicata rigida una divisione tra

dati di apprendimento e di test.
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Chapter 1

Introduction

The current scenario concerning music fruition is characterized by the pres-

ence of wide music catalogs ubiquitously and instantly available to anyone

through many services. Due to the size of such catalogs, users are not

able to handle the amount of available musical information on their own.

As a consequence, services must assist users according to their information

needs. The possible user needs are music retrieval, music browsing and

music recommendation [16]. With music retrieval we refer to the scenario

in which the user has a specific music information need, that expresses by

means of a query [16]. The query can be expressed either as a text or a

song or a small piece of audio, and the system takes care of retrieving songs

or musical items that match the query. With music browsing we refer to

the scenario in which the user has an undirected need. The user does not

want to retrieve a specific musical item but wants to explore the available

musical collection. With music recommendation we refer to the scenario

in which the user asks the system to filter the available musical collection

in order to detect relevant items based on his/her preferences or actions [16].

All of the three scenarios rely on the concept of music similarity in order

to satisfy user’s needs. The definition and evaluation of such concept differ

for each scenario. In the retrieval scenario, when the query is represented

by a song or a piece of audio, the interest is focused on retrieving items that

perfectly match the query. In the browsing scenario, songs within a catalog

need to be organized according to their similarity. In particular, similar

songs need to be close to each other while dissimilar songs need to be far

apart. In the recommendation scenario, the system exploits either informa-
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18 CHAPTER 1. INTRODUCTION

tions about user’s preferences or the information coming from a reference

song given by the user [16].

In the retrieval scenario, the similarity definition is objective, as the in-

terest is focused on finding a perfect match [16]. On the other hand, for both

browsing and recommendation scenario the definition of similarity is influ-

enced by user’s similarity perception. The modeling of subjective similarity

perception is a complex task [38]. We have to consider that music is a rich

and multi-faceted type of information. Therefore, it can be evaluated and

perceived by means of several standpoints, to which people can assign more

or less importance, according to their preference, taste, musical knowledge

and experience [16]. At this point, two problems arise. One concerns the

definition of a technique able to represent songs as a multi-faceted informa-

tion type of information. The other concerns the definition of a function

able to evaluate song similarity in a personalized way, i.e. according to the

similarity perception of a specific user.

The research field able to characterize the musical information is Music

Information Retrieval (MIR). MIR is a multidisciplinary research field that

concerns the extraction, analysis, and usage of information coming from

music [16]. In order to fully characterize musical information, MIR encom-

passes a wide variety of knowledge from others research communities. MIR

community has proposed several approaches for evaluating song similarity.

The existing approaches can be divided according to two criteria. One con-

cerns the type of data such approaches rely on in order to represent songs,

the other concerns the type of defined similarity function. According to

the type of data, existing approaches can be divided into Collaborative Fil-

tering (CF), Context-based and Content-based. Depending on the type of

similarity function, approaches can be divided into personalized and non-

personalized. Personalized approaches aim to learn similarity functions able

to fit the user’s characteristics, while non-personalized approaches aim to

learn objective similarity functions.

Both CF and Context-based techniques rely on data provided by users in

order to assess music similarity. In particular, CF exploits the information

related to the listening habits of users in order to infer song similarity, while

Context-based approaches infer song similarity exploiting the mechanism

of tagging. Tagging is the process through which users assign semantically
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meaningful keywords to musical entities in order to characterize them. Both

methods have proved to outperform non-personalized approaches in model-

ing similarity, whenever data they rely on are available [24]. However, as

shown in section 2.1, they suffer from cold-start problems and scalability

issues. Cold-start refers to the initial lack of information for new songs,

which makes not possible to draw any information about similarity. With

scalability issue we refer to the inability of these approaches to cope with

an expanding amount of data.

As opposed to CF and context-based techniques, content-based meth-

ods are always able to evaluate song similarity as they rely on the infor-

mation extracted from audio content. Content-based techniques evaluate

song similarity by means of descriptors able to capture musical properties.

Such descriptors (or features) are computed from the audio track by means

of signal processing and machine learning techniques and can be catego-

rized in three basic levels according to their semantic power [16]: low-level,

mid-level and high-level. Low-level features refer to descriptors that are in-

ferred directly from the audio content, but their semantic power is very low,

as their meaning is far from the way people think of and perceive music

similarity. Indeed, the meaning of low-level features can fully understood

only by a signal processing expert [16]. Some examples of low-level fea-

tures are Spectral Centroid (SC) and Zero Crossing Rate (ZCR) (section

3.1.2). Mid-level features refer to descriptors that can be obtained with the

combination of several low-level features using prior knowledge on musical

theory. The combining process can be empowered with the adoption of some

psychoacoustic-related information [16]. Mid-level descriptors have more se-

mantic than low-level descriptors, but are understandable by music experts

or, more in general, by people having musical background or experience.

Mid-level descriptors represent properties related to timber, rhythm and

dynamics [10]. High-level features refer to those descriptors able to capture

musical properties used by people in order to describe and perceive music

such as instrumentation, genre, and mood [16]. In order to provide such

meaningful descriptors, both low- and mid-level descriptors are combined

by means of machine learning techniques.

Most of the content-based approaches evaluate song similarity consid-
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20 CHAPTER 1. INTRODUCTION

ering solely information provided by descriptors. As these methods do not

include any user-related similarity information within the process of similar-

ity evaluation, they are non-personalized. However, there exist also content-

based approaches that include user-related similarity information (like [53],

[41], [44], and [45]) in order to learn a similarity function tailored on user’s

similarity opinions. All of these methods assume that there exists a linear

relationship between descriptors and the user’s perception of similarity. As

a consequence, they develop several techniques able to learn a linear simi-

larity function tailored on user’s perception. As music similarity evaluation

is a complex phenomenon and music is a context where non-linearity is defi-

nitely present and relevant ([38], [4]), linear similarity functions may not be

appropriate for representing the subjective perception ([38], [4]).

The goal of this thesis is to extend existing content-based and personal-

ized approaches. We introduce a method that combines both content-based

information and user-related data but aims to learn a non-linear similarity

model reflecting user’s similarity perception. Our objective is to learn a non-

linear mapping from descriptors to a low-dimensional spatial representation

reflecting the subjective similarity of the user. We propose a two-stage ap-

proach that combines a non-metric scaling technique (t-distributed Stochastic

Triplet Embedding, or t-STE), a feature selection algorithm and a machine

learning technique (Support Vector Regression, or SVR), empowered by a

non-linear kernel function. The two-stage formulation of the method aims

to first learn, by means of t-STE, a low-dimensional space shaped according

to user’s perception. Then we aim to learn a non-linear mapping between

the descriptors and the low-dimensional space by combining the kernelized

version of SVR with the feature selection algorithm. The objective of the

feature selection algorithm is to identify the feature subset that most en-

hances the generalization properties of the mapping. This is due to the fact

that, once the learning phase is completed, we want to exploit the map-

ping in order to map new songs within the low-dimensional space, without

having to re-train the method. Once the best feature subset is identified,

the kernelized version of SVR takes care of learning the mapping between

descriptors belonging to the optimal subset and the low-dimensional space.

Once the training phase is ended, we obtain a mapping that allows to map

new songs within a user-tailored space.
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Content-based information is summarized by a wide set of low-level de-

scriptors. According to [4], low-level descriptors are more suitable to model

user preferences than high-level descriptors. But, in order to fully character-

ize the many facets of music, we need many descriptors in order to capture

many musical properties. As user-related similarity information, we collect

for each user a set of opinions about similarity between pairs of songs. Such

data represent the similarity perception of the user and are needed in or-

der to elaborate the user-tailored space. The effectiveness of our method

relies on two facts. First, the learned low-dimensional space is generated

from similarity assessments expressed by the user himself, thus the entire

procedure is tailored on a single user. Then, SVR supports kernelized re-

gression. By means of non-linear kernel functions, it is possible to perform

linear regression in a new feature space induced by the kernel, in a way that

it corresponds to perform non-linear regression in the original feature space.

This allows to increase the flexibility of the similarity model, hence allowing

to capture more complex relationships between descriptors and subjective

similarity.

Our method extends the work proposed in [38]. The author of [38] adopts

as user-related data a set of similarity scores between pairs of songs, thus

resolving to a numerical similarity information. With regard to [38], we opt

for translating the numerical information into ordinal similarity compar-

isons. According to [1] and [51], such type of similarity information is more

reliable with respect to numerical information. Indeed, different users will

likely use different internal scales to asses similarity. In addition, this setting

of data gathering appear to be more natural for users [1]. In order to eval-

uate the generalization properties of our method, we conducted two types

of experiment, each with a different data division strategy. Both experi-

ments proved that the mapping learned by our method is able to map new

songs in the low-dimensional space according to the similarity assessments

concerning such new songs. Thus, our method provides good generalization

properties independently on the adopted data division strategy.

Thesis outline In Chapter 2 we review the state of the art of music sim-

ilarity modeling, showing the basic categories of similarity models and the
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22 CHAPTER 1. INTRODUCTION

most prominent methods of each category. Chapter 3 contains the theoreti-

cal background of our method: we discuss features characterization and the

theoretical details of the techniques involved in our method. In Chapter 4

we describe in detail our similarity modeling approach, while Chapter 5 con-

tains all the related experimental results. Chapter 6 draws some conclusions

and presents some possible future developments .
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Chapter 2

State of the art

In this chapter we review the state of the art concerning the modeling of mu-

sic similarity. There are three main approaches to model music similarity:

Collaborative Filtering (CF), context-based and content-based. Collaborative

Filtering (CF) (section 2.1) relies on the assumption that similar users listen

to similar songs. The similarity among users is inferred directly from their

listening habits. Consequently, a similarity among songs is inferred by the

amount of users who have listened both. Context-based algorithms (section

2.1) exploit contextual information assigned to songs in the form of tags.

Tags are meaningful keywords that can be manually attributed to songs

and give some sort of information about these latter: genre, velocity, asso-

ciated emotions, listening context, country, etc. Content-based approaches

(section 2.2) are methods that evaluate song similarity exploiting informa-

tion extracted directly from the audio signal.

CF and context-based approaches are strictly related, since they both rely

on user-related data in order to infer song similarity. For the same rea-

son, they also are often combined. Content-based methods exploit content-

related information in order to assess music similarity. In order to provide

a personalized similarity metric, they need to include user-related similarity

information. Personalized content-based approaches exploits user-related

information, while non-personalized approaches do not, as they aim to learn

objective similarity metrics.

23



24 CHAPTER 2. STATE OF THE ART

2.1 Collaborative and Context-based models

Collaborative filtering (CF) is a strictly personalized approach to music sim-

ilarity modeling, since it relies on information provided by the interactions

of users with respect to musical tracks. Specifically, CF approaches collect

for each user information about which songs he/she has listened to. The

gathered information is then represented with a User-Song representation

or a User-Artist representation [16]. Both representations are expressed as

matrices in which rows constitute user profiles and columns represent songs

(or artists).

Collaborative methods are often combined with context-based techniques,

providing hybrid models for music similarity modeling ([29], [31], [15]). This

is due to the fact that both approaches define song representations exploit-

ing data coming from users. As CF exploits data concerning the listening

activity of users, context-based models exploit the mechanism of tagging.

Tagging is the operation of annotating a song with a set of meaningful key-

words able to characterize its content [16].

When employed within large-scale systems for music recommendation,

both CF and hybrid models approaches do not scale well [38], i.e. they are

not able to properly handle an increasing data amount. Indeed, the memory

consumption grows with the square of the number of users and songs in the

system. In order to solve this issue, matrix factorization techniques (like

Singular Value Decomposition, or SVD) are usually employed. We will first

show standard approaches that do not rely on matrix factorization, and then

matrix-factorization-based methods.

2.1.1 Standard approaches

The authors of [33] evaluate song similarity performing co-occurrence anal-

ysis of songs within user collections. They gather listening informations

adopting a User-Song matrix and exploit it in order to characterize songs as

numerical vectors of co-occurrences. Song similarity is assessed as the cor-

relation between the co-occurrences vectors. An approach strictly related

to [33] can be found in [3]. The authors present a method that perform

co-occurrence analysis on user playlists. With regard to [33], they propose

several alternatives to build the song representations, as well as several cri-
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2.1. COLLABORATIVE AND CONTEXT-BASED MODELS 25

teria for the similarity evaluation of the various song representations.

Also the work presented [18] relies on a User-Song matrices data struc-

ture. It computes song similarity exploiting the information coming from a

former procedure of similarity estimation between users. For each user u, a

set of k similar users is retrieved according to the correlation between user

profiles. Then, for each user u, a list of novel songs considered similar to the

examples within its collection is retrieved exploiting the information coming

from the user profiles of the k most similar users.

2.1.2 Factorization-based approaches

CF methods suffer from scalability issues as well as from data sparsity. This

is due to the fact that it is not possible to gather information for each user-

song pair, as the number of users and songs continuously grows in time [16].

In order to cope with these issues, CF methods often employ some kind

of matrix factorization technique, as SVD (Singular Value Decomposition).

With SVD it is possible to decompose a given User-Song matrix in a way such

that users and songs are represented in terms of latent semantic concepts

inferred from the original matrix and ordered in terms of relevance. Standard

SVD works only with dense data matrices, but many different variations

were proposed in order to deal with data sparsity ([17], [56]).

The authors of [50] present three hybrid models for predicting song sim-

ilarities employing both a User-Song matrix and a User-Tag matrix. The

objective of each of the three models is to present the user with a list of

novel songs considered similar to examples within his/her collection. The

novelty brought by these hybrid models consists in the fact that they allow

to estimate song similarity fusing the information derived from the user’s lis-

tening activity and the information related to tags that the user have given

to musical items.

The work in [48] exploits purely CF data and matrix factorization as

well. The method first elaborates a between-song correlation matrix exploit-

ing only data coming from the listening activity of users and then decom-

poses it adopting a variant of SVD. Similarity between songs is estimated

by evaluating the similarity between song representations induced by the

decomposition.

The authors of [29] propose an hybrid CF-Context method to model the

information coming from social tagging data with 3-order tensors, thus able

25



26 CHAPTER 2. STATE OF THE ART

to capture cubic correlations between a triple < users, tags,music items >.

The discovery of latent structures in this model is performed with a variant

of the Singular Value Decomposition (SVD), denoted as Higher Order Sin-

gular Value Decomposition (HOSVD).

Pure collaborative models (model relying only on CF data) has shown

to provide good performances, since they rely on data which are directly

linked to user’s musical preference. However, they suffer from some dis-

advantages [16]. One issue is the “gray sheep issue”: if we compute song

similarity exploiting information on between-user similarity, a user having

uncommon preferences that differ from the great majority of users is unlikely

to find similar users. Consequently, he will receive poor similarity predic-

tions. [16]. Another issue is the popularity bias: if a song is very popular,

it is going to be evaluated as similar to many other songs, and it is likely

to be suggested more frequently by a recommender system. CF approaches

also suffer from cold-start issue [16], which concerns the fact that it is not

possible to draw any inferences for upcoming users or songs, since there is

no information available. In addition, collaborative filtering relies only on

user-related information. This could be an advantage in terms of flexibility

and adaptability, but audio characteristics of songs are not considered at

all. Thus, the similarity evaluation is independent on the similarity of song

content [38].

Using tags for evaluating music similarity shows some drawbacks as

well[16]. First, also context-based approaches suffer from both popular-

ity bias and cold-start. The less popular songs risk not to receive enough

keywords to be completely characterized, due to the fact that most of the

users do not know them. Another issue concerns the semantic nature of

tags: polysemy (words whose meaning changes according to the context),

synonymy, different syntactical inflections of the same word (e.g. hip-hop

and hiphop), and misspelled words can compromise the modeling task; nat-

ural language processing techniques need be applied to cope with this issues

[16].

As opposed to CF and context-based methods, the main advantage of

content-based models is that the similarity definition can be always com-

puted, as these approaches do not rely on the contribution of users. Indeed,

the similarity evaluation relies on the information extracted from audio con-
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tents of songs. Consequently, we decide to employ a content-based approach

in order to evaluate music similarity.

2.2 Content-based models

Content-based approaches describe songs in terms of their audio character-

istics. They exploit specific algorithms whose task is to process an audio

track and to extract from it a set of descriptors able to capture and quan-

tify musical properties. The set of descriptors is denoted as feature vector.

In order to characterize the content of a song, we can adopt either low or

mid- or high-level descriptors [16]. Low-level descriptors are extracted from

the audio content of songs, but represent musical properties that are far

apart from the concepts users adopt to evaluate similarity. Mid-level and

high-level descriptors are usually obtained by combining several low-level

features by means of machine learning techniques. As a consequence, they

are characterized by a higher semantic power, i.e. their meaning is much

more understandable by a user [38].

Content-based techniques can be divided into two main categories: per-

sonalized and non-personalized. Non-personalized techniques evaluates song

similarity taking into account solely the information coming from audio con-

tents, while personalized techniques incorporate user-related similarity in-

formation in order to compute a similarity measure that fits the similarity

perception of the user.

2.2.1 Non-personalized approaches

Non-personalized music similarity modeling consists in creating distribu-

tions of features extracted from the audio, approximating these distributions

with probability density functions, and evaluating song similarity adopting

pairwise-distribution distance metrics.

The technique described in [2] first divides each song into musical phrases,

i.e. fragments showing a continuity of audio content correlation. Then it

extracts a series of MFCCs (Mel Frequency Cepstral Coefficients) for each

phrase and models the MFCCs distributions using multivariate Gaussian

models. The similarity of two songs is evaluated by means of the Kullback-

Leibler distance between the generated distributions.

A similar approach to [2] is described in [22] and [3]. In [22], the series
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of MFCCs coefficients are clusterized. Then, informations related to the

clusters (mean and covariance) are exploited in order to represent songs.

Song similarity is then evaluated according to the Earth’s Mover Distance

(EMD) between song representations. In [3], the authors propose a different

criterion (Asymptotic Likelyhood Approximation, or ALA) as a measure of

distance between distributions.

The greatest drawback of non-personalized algorithms is the fact that

they elaborate an objective similarity measure, as [2], [22], [3] show. Since

they entirely rely on sets of objective features, they are unable to capture

the subjective similarity perception of the user. In order to elaborate a

personalized similarity model, it is necessary to include user-centric data

into the method, thus resolving to a personalized approach [16].

2.2.2 Personalized approaches

Most of the personalized and content-based methods fall within the cate-

gory of Metric Learning algorithms. Metric learning is a supervised machine

learning field whose objective is to learn a subjective similarity measure that

linearly depends on the set of song descriptors. Generally, the linear rela-

tionship between descriptors and similarity is computed by means of opti-

mization techniques whose aim is to ensure that some predefined similarity

constraints are respected. Such constraints are provided by users them-

selves. Specifically, the goal of metric learning is to learn a suitable matrix

W such that the distance d(x,y) between two songs x and y characterized

by feature vectors x, y can be computed as

d(x,y) = (x− y)TW(x− y)

which is, essentially, a weighted Euclidean distance if we constrain W to

be diagonal but different from the identity matrix. On the other hand, al-

lowing W to be a full matrix, we accept some interactions between features.

The author of [41] compares several algorithms for learning W. Some of

these are based on second-order statistics (Whitening, Linear Discriminant

Analysis or LDA, Relevant Component Analysis or RCA), others on pro-

cedures of optimization based on neighborhood relationships among songs

(Neighborhood Component Analysis or NCA, Large-Margin Nearest Neighbor

or LMNN).
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Also the work in [53] compares some metric learning algorithms. The

learning processes showed in the paper are driven by sets of pairwise-song

similarity constraints provided by users themselves. In particular, some

variants of both Support Vector Machine (or SVM) and Metric Learning to

Rank (MLR [26]) are presented.

The authors of [24] propose a CF-based method for enhancing the per-

formances of a non-personalized content-based method for song similarity

evaluation. First, a User-Artist matrix is built. Then, the authors compute

W through a constrained optimization procedure. The constraints derive

from data gathered via CF, and concern the similarities of a generic song and

the songs within the related set of relevant songs. The set of relevant songs

is computed according to the algorithm described within [24]. Specifically,

the constraints specify that the similarity between a generic song s1 and

another belonging to its “relevant set” has to be greater than the similarity

between s1 and another song not belonging to the “relevant set”.

The work in [25] is a further development of the one proposed in [24], by

the same authors. They rely on a User-Song representation using the same

approach of [24], and evaluate the performances of their method starting

from a different content-based approach.

There exist also personalized approaches that do not belong to the field

of metric learning. In particular, both the work in [44] and the one in

[45] aim to model user’s similarity perception as a function depending on

many facets. A facet is a distance measure based on feature subsets able to

characterize a musical aspect [44]. The overall similarity function between

two songs is defined as

d(x,y) =
N∑
i=1

wi · di(x,y)

where N is the number of considered facets, wi (wi ≥ 0,
∑N

i=1wi = 1)

is the weight assigned to di(x,y), which is the distance operating on the

i− th subset of features. The objective is to learn a set of weights wi such

that the overall similarity function reflects the user’s subjective similarity

perception. To this purpose, the authors propose and compare many ap-

proaches relying on constrained optimization procedures. Among the revised

optimization procedures, we find gradient descent, quadratic programming,
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maximal margin classifier, together with different slack formulations to allow

violated constraints [44] [45].

The author of [43] presents a technique whose goal is to identify which

subset of features more accurately approximates the similarity perception

of the user. Once a song has been analyzed (and the relative features ex-

tracted), the technique employs a set of neural networks, each of which will

generate a similarity measure involving a particular subset of features and

return the most similar song according to the learned measure. The user

evaluations about returned songs are used to refine the learning processes

of the networks.

All of these methods show some drawbacks. The existing techniques

for metric learning aim to learn a linear relationship between descriptors

and user’s perceived similarity. The linearity assumption constitutes a limit

to the metric learning procedure, as music similarity evaluation is a com-

plex phenomenon and music is a context where non-linearity is definitively

present [38]. Both the work in [25] and the work in [43] rely on non-linear

models for learning a personalized metric, but they have never been tested

in a personalized way. In other words, their performances have never been

evaluated on user-wise base, so their ability to fulfill a subjective similarity

is not measured.

The objective of this thesis is extend the current scenario of personal-

ized content-based approaches, and thus to provide a method able to detect

potentially non-linear relationships between features and similarity. The

work described in [38] constitutes the grounds of our proposed model. The

objective of [38] is to learn a non-linear relationship between a set of de-

scriptors and user subjective similarity. To do so, the author proposes a

a two-stage personalized and non-linear method that combines a metric

Multidimensional Scaling technique, a regression technique (SVR) and a

feature selection algorithm. The two-stage formulation aims to first learn a

low-dimensional space (or embedding) shaped by a set of user-related sim-

ilarity constraints and then learn a non-linear mapping between a subset

of acoustic features (identified by the feature selection algorithm) and song

coordinates within the embedding. In order to detect non-linear mappings,

the regression procedure is kernelized.

The author of [38] employs numerical constraints related to pure dis-

tances between songs in order to drive the learning process of the embed-
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ding. The distance between songs are obtained converting the similarity

score provided by the user for the related pair of songs. However, as stated

in [1], [8] and [53], pure numerical constraints are not suitable when trying to

model similarity perception. This is due to the fact that different users will

likely use different internal scales to asses similarity and that the magnitude

of the input dissimilarities is often unreliable or too difficult to measure. On

the other hand, ordinal constraints, i.e. constraints of the kind “A is more

similar to B than to C”, are more straightforward to annotate and easy to

obtain, even when the distance information is expressed through similarity

scores between pairs of songs ([53], [1]). Due to these facts, we decide to

include in our approach a non-metric Multidimensional Scaling technique

as opposed to the metric technique of [38]. Indeed, non-metric scaling tech-

niques employ ordinal similarity constraints as input for the scaling proce-

dure. They preserve the ordinal relationship between distances rather than

the pure distance values.
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Chapter 3

Theoretical background

In this chapter we provide the theoretical details for the data and the tech-

niques our model employ. We start with a general definition and character-

ization of MIR features. We then describe in detail each feature employed

within our song representations, and then describe the measures for com-

puting the distances between song representations. Afterwards, we show the

foundations of the methods we adopted within our model: (1) t-Distributed

Stochastic Triplet Embedding (t-STE) (2) Support Vector Regression (SVR)

and adjusted R2-based feature selection.

3.1 Features

3.1.1 Short-Time Fourier Transform

The Short Time Fourier Transform (STFT) is the mathematical tool used

to transform a signal from the time domain to the frequency domain. STFT

is meant to provide a local characterization of the frequency content of the

audio track. In STFT, the signal to be transformed is divided into frames

and multiplied by a finite-length window. For a signal x, the STFT is defined

as

Xk
(m) =

L−1∑
n=0

xn+m·Nh · wn · e
−j 2πkn

L , k = 0, 1, ..., L− 1

where n is the sample number (i.e. xn is the n− th sample of x), k is the

frequency bin, wn is the weight of n− th sample of x (according to the type

of window involved), L is the window length, m is the frame number (that
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determines the position of the window), and Nh is the hop-size expressed in

number of samples. Frames can be made overlapping, to reduce artifacts at

the boundaries, by setting Nh < L.

The length of the window influences both time and frequency resolution.

The wider the window length, the higher the frequency resolution and the

lower the time resolution. The relation holds also if considered vice versa.

3.1.2 General feature characterization

MIR features are numerical descriptors, extracted from audio, able to cap-

ture and quantify musical properties. They can be categorized according to

their level of abstraction. The abstraction level indicates the semantic power

of the descriptors [16]. Thus, the higher the level of abstraction, the closer

they are to the concepts users adopt for describing and evaluating music

similarity. On the other hand, the higher the level of abstraction, the less

objective the descriptors [38].

The level of abstraction of a feature is typically described by a scale

of three levels: low level, mid-level, and high level. Low-level features are

computed directly from the signal representation, but they represent non-

trivial audio characteristics. Mid-level features capture aspects that are

more musically meaningful, such as note- or beat-related properties, but

their interpretation requires some musicological background. Corresponding

mid-level feature extractors are frequently computed combining sets of low-

level features [16]. On the highest level, we find features that are closer to

the way people think of and describe music. Indeed, high-level features are

comprehensible also by the average user. As well as mid-level features are

obtained combining low-level descriptors, high-level descriptors are obtained

through the combination of several low- and mid-level features.

Low-level features

Low-level features are directly computed from the representation of the au-

dio signal in either the time domain or the frequency domain. All of the

features are usually computed on the frame level, but it is possible to ag-

gregate all values of a particular feature with respect to the full signal. This

can be done by computing some statistical summarization function (such as

mean or median value) or adopting probabilistic feature aggregation meth-

ods (like Gaussian mixture model or Maximum Likelyhood model [2]). Some
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examples of low-level features are the Spectral Centroid (SC) and the Zero

Crossing Rate (ZCR). SC is a frequency-domain-related feature that repre-

sents the center of gravity of the magnitude spectrum, i.e. the frequency

band where most of the energy is concentrated. This feature is used as

a measure of brightness of a sound. On the other hand, ZCR is a time-

domain-related feature that measures the number of times the amplitude

value changes its sign within the current frame. It is used to detect per-

cussive sounds and noise as well as an indicator of pitch for monophonic

music signals, since higher ZCR values typically correspond to higher fre-

quencies. Low-level features represent the most basic informations that can

be extracted from audio. However their expressive power is very limited, as

they represent musical properties that are far apart the way people evaluate

song similarity. Thus they are understandable only by a person with a solid

background on signal processing.

Mid-level features

Mid-level features are a combination of or extension to low-level features

that incorporate musical theory, although boundaries between the abstrac-

tion levels are fuzzy and a strict categorization is difficult to make. Mid-

level representations are considered closer to the concepts adopted by users

to describe music, therefore allowing more meaningful comparisons between

musical entities [10]. Mid-level features provide a more understandable rep-

resentation of the musical content, and constitute a particular interest for

people holding a musicological background. Among mid-level descriptors,

we find features that represent properties related to timber, rhythm and

dynamics [10]

High-level features

High-level features represent musical properties characterized by a high se-

mantic level. They represent concepts whose meaning can be understood by

the average listener [16], as they are designed to fill the semantic gap between

low-level objective descriptors and the way people think of and perceive mu-

sic similarity. Indeed, high-level descriptors are able to represent properties

as instrumentation, genre, melody and mood [16]. The boost in the explana-

tory power of the features, however, comes to a cost. Indeed, they require

a more complex elaboration, as they are computed by means of machine
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learning techniques that combine both low- and mid-level descriptors.

3.1.3 Feature details

In this section we provide the details about the features we chose for our

work. We employ the same set of low-level descriptors used by [38], whose

work constitutes the grounds for our model. We consider a wide set of fea-

tures of different nature. This is due to the fact that music is a multi-faceted

type of information and many low-level descriptors need to be employed in

order to provide a suitable representation [4]. In particular, we employed

four different types of low-level descriptors. Energy-related descriptors cap-

ture information about the energy distribution and evolution within a song.

Temporal features analyze time-related audio aspects. Depending on the

type of temporal information to be detected, they operate either on the orig-

inal signal either on its spectral representation. Spectral features represent

concepts that come from the spectrum analysis of a song, while waveform-

related descriptors represent audio characteristics extracted from the raw

song waveform, without any previous processing. We present the complete

feature set according to such categorization.

The low-level descriptors we employ have different temporal scopes. The

temporal scope of the features determines the way they are processed once

they have been extracted from audio tracks. We follow the same temporal

characterization used by [38]. Basically, we identify three main feature value

types according to temporal scopes. FrameSingleValued and FrameMultipl-

eValued features are computed on each frame, after signal windowing. The

first has only one real value for each frame, while the second defines an en-

tire vector per frame. Finally, SingleValued features consist of a single value

computed on the entire track.

We now present the complete feature set, specifying the type of the

descriptor as well as the temporal-scope related category of the descriptor.

For FrameSingleValued- and FrameMultipleValued-type descriptors, all the

computations are meant on single frames.

Energy-related features

Intensity ratio Value type: FrameMultipleValued. According to [21], if

the signal is divided into several sub-bands, the Intensity ratio refers to

the ratio between the sub-band’s intensity and the overall intensity I. The
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intensity I is computed by summing all the amplitudes of the frequency

components within the spectrum.

Loudness Value type: FrameSingleValued. The loudness is the character-

istic by means of which music can be ordered on a scale extending from quiet

to loud. Its value is computed with an approach built on psycho-acoustical

theories that explain how the human ear perceive sounds [5].

RMS energy Value type: SingleValued. Root Mean Square (RMS) en-

ergy is a simple measure of the overall mean energy contained in a song.

Low energy Value type:SingleValued. According to [36], the signal is first

segmented into frames. The low energy ratio is the percentage of frames

whose RMS energy falls within a fixed threshold represented by the overall

mean RMS energy.

Temporal features

BPM Value type: FrameSingleValued. It represents the estimated num-

ber of musical beats in each frame, expressed in beat per minute. The

procedure for the estimation of the number of beats ([7], [6]) is composed of

an onset analysis stage, used to derive a representation containing rhythm-

based information, and a beat matching algorithm that computes short-term

predictions of future beats in the audio.

Key mode Value type: FrameSingleValued. The descriptor represents a

major-mode coefficient, given by the ratio between the time during which

the song is estimated to have a major mode and the time during which it is

estimated to have a minor mode. We employ the method depicted in [30],

which allows to analyze the track and continuously estimates its key.

Onsets Aubio Value type: FrameSingleValued. The descriptor consists

of several timecodes (or time instants) related to onset times within the

audio signals. With onset times we refer to the beginning of discrete sound

event [23].
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Onsets OnsetsDS Value type: FrameSingleValued. Such feature repre-

sents the onset likelihood of the frame, computed adopting the Adaptive

Whitening method employed in [46].

Onsets Queen Mary Value type: SingleValued. Similarly to the previous

descriptor, such feature represents the onset likelihood of the frame. This

time the likelihood is estimated using the algorithm in [12].

Tempo Value type: SingleValued. It represents an estimated overall tempo

value (BPM) for the song. The algorithm in [12] calculates an overall en-

ergy rise function, locates peaks in the related auto-correlation function and

converts from auto-correlation lag to the corresponding tempo.

Spectral features

Crest Value type: FrameSingleValued. A descriptor related to the flatness

of the frame spectrum, i.e. to the noisiness-harmonicity ratio of the related

signal [12].

Irregularity K Value type: FrameSingleValued. The feature measures

the irregularity of the spectrum harmonics, which is empirically related to

a perceived inharmonicity in the sound [19].

Irregularity J Value type: FrameSingleValued. Similarly to the previous

descriptor, this feature is related to the variation of successive harmonic

components of the spectrum [19]. Thus it represents a further indicator of

sound inharmonicity.

MFCC coefficients Value type: FrameMultipleValued. Mel-frequency

cepstrum (MFC) is a representation of the short-term power spectrum of a

sound that relies on a non-linear psychoacoustic-based scale of frequencies

(known as mel scale). Mel-frequency cepstral coefficients (MFCCs) are the

coefficients that collectively summarize a MFC [40]. Generally speaking,

MFCCs concern timbra-related characteristics of tracks. MFCCs are com-

monly derived as follows: first, the Fourier transform of each signal frame is

taken. Then, the obtained spectrum is filtered using a Mel filter bank; after-

wards, the logs of the powers at each of the Mel frequencies are computed.
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Finally, the discrete cosine transform (DCT) is applied to the list of Mel

log powers. The MFCCs are the amplitudes of the resulting spectrum. The

procedure is represented in figure 3.1. Considering a psycho-acoustic scale

leads to a better approximation of the auditory system, allowing a better

modeling of the human timbre perception.
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Figure 3.1: Overview of the MFCCs computation process.

Odd-even ratio Value type: FrameSingleValued. The odd-even ratio is

defined as the ratio between odd and even harmonics of a general funda-

mental frequency.

Rhythm (Strength, Average onsets frequency, Auto-correlation,

Mean correlation peak, Peak-valley ratio, Tempo) Value type (all):

FrameSingleValued. The aim of this set of descriptors is to capture several

characteristics able to define the rhythm of a song. The final goal is to

detect the tempo (BPM) of the song, but intermediate steps provide useful

information as well. We compute an onset curve adopting the algorithm in

[21]. From the onset curve it is possible to define all the other parameters.

In particular, the rhythm strength is the mean value of the peaks of the onset

curve. The average onsets frequency is the total number of onsets divided

by the length of the track in minutes. In addition, from the onset curve
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an auto-correlation signal is also computed, as this latter is used to detect

peaks. The mean value of the selected auto-correlation peaks constitute the

mean correlation peak, while the peak-valley ratio is the ratio between the

mean correlation peak and the mean value of the valleys. Finally, the tempo

is defined as the maximum common divisor of the detected peaks.

Rolloff Value type: FrameSingleValued. The feature represents the min-

imum frequency value such that a given percentage R (usually 95 %) of

the spectrum energy stays below that frequency. It is a measure of the

brightness of the sound [32]: the higher the rolloff, the more high-frequency

components are present in the spectrum, denoting a brighter sound.

Spectral Centroid Value type: FrameSingleValued. Spectral centroid

(SC) basically represents the center of mass of the spectrum [36]. More gen-

erally, it indicates if the spectrum is mostly composed by low or high fre-

quency components, which it is often related to the perceived sound bright-

ness.

Sharpness Value type: FrameSingleValued. Sharpness is the perceptual

equivalent of the spectral centroid and it is based on psycho-acoustical mod-

els. It is computed according to the approach depicted in [28].

Spectral inharmonicity Value type: FrameSingleValued. The descriptor

is a measure of the divergence of the spectrum components from the multi-

ples of a detected fundamental frequency. The value obtained according to

[36] represents an indicator of how much a sound is inharmonic.

Spectral contrast (mean, peak, valleys) Value type(all): FrameMul-

tipleValued. Spectral Contrast represent a measure that reflects the distri-

bution of the harmonic and non-harmonic components within the spectrum.

According to the method in [14], the track is segmented into overlapping

frames; then the spectrum is computed and filtered by an octave-scale filter

that divides it into several sub-bands. For each of these bands, peak and

valley are detected. For each sub-band, the spectral contrast is computed

as the mean difference between peaks and valleys.
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Spectral flux Value type: FrameSingleValued. Spectral flux is a measure

of the change in energy between various frequency bands along a sequence

of spectra measured from the audio data. As stated in [11], we consider only

the positive values in the spectral difference, setting negative values to zero

and leaves positive values unaltered.

Spectral kurtosis Value type: FrameSingleValued. Kurtosis is a statistical-

based measure to determine the flatness of a probability distribution around

its mean value; when applied to a spectrum becomes an indicator of the sig-

nal noisiness [36].

Spectral skewness Value type: FrameSingleValued. Skewness is a statistical-

based measure as well. It is an indicator of the asymmetry of the spectrum

around its mean value [36]. A positive value means that the spectrum is

skewed towards the right, thus showing a long tail on lower frequency com-

ponents; with negative values, the spectrum is skewed towards the left; for

perfect symmetry, the feature takes the value of 0.

Spectral slope Value type: FrameSingleValued. Spectrum components

tend to decrease towards higher frequencies. The spectral slope gives the

rate of descent of the spectrum, obtained by computing a linear regression

of the spectral amplitudes [36]. According to the definition, higher values

are expected for dark songs, as opposed to lower values for bright songs.

Spectral smoothness Value type: FrameSingleValued. Smoothness is

related to the differences between adjacent spectral components ak. It is

computed by evaluating the log of a component minus the average of the

log of the surrounding components [36].

Spectral variance Value type: FrameSingleValued. The basic variance of

spectral amplitudes. It constitutes an index of the noisiness of the sound. A

small spectral variance means that all the spectrum energy is concentrated

around the same frequency, thus the produced sound cannot be considered

noise. Contrarily, a flat and distributed spectrum is typical of noisy sounds

[36].
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Tristimulus (Tristimulus 1, Tristimulus 2, Tristimulus 3) Value

type (all): FrameSingleValued. Basically, each of these 3 descriptor de-

fines an energy ratio, that respectively account for the normalized amplitude

of the fundamental, the mid-range, and high-frequency harmonic content.

They are computed according to the method within [39].

Waveform-related features

Average deviation Value type: FrameSingleValued. Computes the av-

erage deviation of the signal within each frame, i.e. the mean of the abso-

lute deviations of each sample within the frame from the frame-wise sample

mean.

Kurtosis Value type : FrameSingleValued. Its definition is analogous to

the definition provided for spectral kurtosis. The difference relies in the fact

that now it is applied to the time-domain representation of the signal.

Noisiness Value type : FrameSingleValued. According to what stated in

[34], noise can contribute to alter the timber of a sound, when combined to

harmonic components. We estimate the noisy contribution by removing the

portion of the signal that is predictable with a simple linear predictor and

considering the residual as noise. The assumption is that each sample of the

signal is predictable by a linear combination of the previous samples. Finally,

obtained values are averaged, to produce a single value that quantifies the

amount of noise present in the frame.

Power curve (Raw power, Power slope, Smoothed power, Smoothed

power slope) Value type (all): FrameSingleValued. A set of descriptors

related to the power curve of the track. The average raw power is computed

for each frame to be then converted to decibels since hearing loudness occurs

on a logarithmic scale [36]. The power slope is simply the slope of the power

curve. The smoothed power consists of a smoothed version of the raw power

data, computed in order to have a more perceptually relevant view of the

power curve. The smoothed power slope is defined analogously the simple

power slope.
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Type Features

Energy Intensity ratio, Loudness, Low energy, RMS energy.

Temporal Beat tracker, Key detector, Onsets Aubio, Onsets

OnsetsDS, Onsets Queen Mary, Tempo.

Spectral Crest, Irregularity J, Irregularity K, MFCC coeffi-

cients, Odd-even ratio, Rhythm, Rolloff, Sharpness,

Spectral inharmonicity, Spectral centroid, Spectral

contrast, Spectral flux, Spectral kurtosis, Spectral

skewness, Spectral slope, Spectral smoothness, Spec-

tral variance, Tristimulus, Tuning.

Waveform Average deviation, Kurtosis, Noisiness, Power curve,

Skewness, Variance, Zero-crossings.

Table 3.1: Summary of low-lovel descriptors and their types.

Skewness Value type : FrameSingleValued. It has the same definition of

spectral skewness descriptor, but it is applied to frame samples.

Variance Value type : FrameSingleValued. It has the same definition of

spectral variance descriptor, but it is applied to frame samples.

Tuning Value type : SingleValued. The feature represents an estimation

of the global tuning of the songs, computed according to the method within

[9]. Integer values of the descriptor map to pitches using standard Pitch

Class notation. E.g. a key value of 0 states that the song key is C, while 1

indicates the song is in C]/D[, 2 that the song is in D, and so on.

Zero-crossings Value type : FrameSingleValued. Such descriptor counts

the number of times the signal changes its sign. It is an indicator of the

presence of noisy sounds in case of high ZCR values, as opposed to periodic

sounds which are characterized by small ZCR values.

Table 3.1 summarizes the wide set of low-level descriptors according to

their type, while table 3.2 summarizes the temporal scopes of the descriptors

and the values that each type of descriptor induce.
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Temporal scope Effect

FrameSingleValued Defines one value per frame

FrameMultipleValued Defines a vector of descriptors per frame

SingleValued Defines one value for the entire song

Table 3.2: Summary of the different temporal scopes of descriptors.

3.1.4 Measure of distances

Once two songs have been represented with a feature vector we can evaluate

their similarity. According to [38], the similarity between two songs repre-

sented by two feature vectors x and y) is evaluated by means of the distance

between the feature vectors. The lower the distance between two songs, the

more these two share similar audio characteristics. Usually, similarity and

distances are normalized, such that the more the distance is close to 0, the

more the similarity is close to 1 (meaning high similarity between the songs)

[38]. Examples of distance functions between vectors are: Euclidean (3.1),

Cosine (3.2), Manhattan (3.3), Chebychev (3.4), and Mahalanobis (3.5).

d(x,y) =

√√√√ N∑
i=1

(xi − yi)2 (3.1)

d(x,y) = 1− xTy

||x|| · ||y||
(3.2)

d(x,y) =
N∑
i=1

|xi − yi| (3.3)

d(x,y) = max |xi − yi|, i = 1, ..., N (3.4)

d(x,y) =
√

(x− y)TS−1(x− y) (3.5)

where xi,yi are the i− th entries of the related feature vectors. Each of

these distance measures support a strategy for the weighting of attributes,

in such a way that different levels of significance can be given to the features

composing the song representation.
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3.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a machine learning subfield whose ob-

jective is to learn a low-dimensional spatial representation (or embedding)

which aims to preserve the distance relationships of a set of objects origi-

nally represented in a higher-dimensional space [20]. The higher the num-

ber of dimensions of the learned space (which is usually estabilished a-priori

depending on the application), the easier is to preserve the distance rela-

tionships [1]. Depending on the type of distance relationships that needs

to be preserved, multidimensional scaling algorithms can be categorized in

two classes: metric scaling algorithms (section 3.2.1) and non-metric scal-

ing algorithms (section 3.2.2). The former aim to preserve the pure pairwise

distance between objects, while the latter aim to preserve a set of ordering

relationships between objects.

3.2.1 Metric scaling algorithms

The input of methods belonging to this scaling category, like the algorithm

presented in [20], is a self-distance matrix (SDM) computed within the origi-

nal multi-dimensional space (usually adopting an Euclidean metric, formula

3.1). The objective is to learn an embedding in which numerical distances

represented by SDM are preserved. Metric algorithms accomplish the objec-

tive with an iterative process for the minimization of a convex function. The

convex function expresses the quantity of distance shifts introduced by the

operation of dimensionality reduction. The convex optimization function to

be minimized in [20] is

σ(X) =
N∑
i=1

N∑
j=1

(d(i, j)− d(i, j)(X))
2 (3.6)

where N is the number of objects within the representation, d(i, j) is the

Euclidean distance between object i and object j in the original space and

d(i, j)(X) is the Euclidean distance between object i and object j within the

embedding X ∈ RN×D. The function (3.6) is named stress function.

3.2.2 Non metric scaling algorithms

Non-metric algorithms aim to preserve a set of ordering relationships be-

tween objects. Thus, the input of such kind of techniques is a set Θ of
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ordering constraints usually expressed as 4-tuples (i, j, k, l)

Θ = {(i, j, k, l) | d(i, j) < d(k, l)}

It is also possible to employ triplets (i, j, k), as opposed to 4-tuples. The

meaning of the two type of constraint is strictly related, as triplets can be

thought as a particular case of 4-tuples constraints for which we have k ≡ i
and l ≡ k [1]. The set of constraints becomes

Θ = {(i, j, k) | d(i, j) < d(i, k)}

In our model we employ t-distributed Stochastic Triplet Embedding (t-

STE) [51], a non-metric scaling that exploits set of constraints expressed as

triplets.

3.2.3 t-distributed Stochastic Triplet Embedding (t-STE)

Let us suppose we are provided a set of N data objects, for which there

exists a function s(·) able to define the similarity for each pair of objects

i, j ∈ N . On the other hand, we are provided a set Θ of similarity compar-

isons, which constitute a realization of s(·), i.e. given a triplet (i, j, k) ∈ Θ,

s(i, j) > s(i, k). Such realization is potentially affected by noise, i.e. con-

tradictions in the constraints, as they come from similarity judgements ex-

pressed by people. Consequently, the goal of t-STE is to learn an embedding

X ∈ RN×D, with D equal to the number of embedding dimensions, able to

represent the underlying function s(·) rather than its realization Θ. To do

this, t-STE evaluates the goodness of X with respect to s(·) by computing

a probability for each constraint, that represents how well the constraint is

modeled within X [51]. In particular, the authors propose to use a heavy-

tailed t-Student kernel with α degrees of freedom in order to model triplet

probabilities as

pijk =

(
1 +

||xi−xj ||2
α

)−α+1
2

(
1 +

||xi−xj ||2
α

)−α+1
2

+
(

1 + ||xi−xk||2
α

)−α+1
2

The objective is therefore to learn an embedding X by maximizing a

function based on log-probabilities of the constraints within Θ (equation
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(3.7)). The maximization process relies on projected gradient descent method

[51], a first-order iterative optimization algorithm for finding the extrema of

a multi-variable function [1].

max
X

∑
∀(i,j,k)∈Θ

log(pijk) (3.7)

Such formulation of triplet probabilities is due to the success of unsuper-

vised dimensionality reduction techniques that employ heavy-tailed kernels,

as [37] and [52]. Indeed, the use of a heavy-tailed kernel does have a major

advantage with respect to the use of a Gaussian kernel [47] to compute triplet

probabilities from an embedding. The resulting formulation does more than

simply satisfy the constraints within Θ. This is due to the fact that the tails

of the t-student distribution are not flat, and therefore t-STE decreases the

distance between i and j (similar objects), even when the related constraint

(i, j, k) is already satisfied. Similarly, it increases the distance between i and

k (less similar objects), even when the related constraint is already satisfied

[51]. In other words, t-STE collapses points whenever there are no con-

straints keeping the points apart and it separates points whenever there are

no triplets keeping the points together. In addiction, as opposed to other

non-metric algorithms relying on the definition of constraint probabilities

as [47], t-STE is able to handle the noise in Θ. Indeed, the formulation

of triplet probabilities allows to identify constraints that heavily contradict

the underlying functions s(·) , i.e. that contradict several other constraints.

As opposed to [47] or [1], t-STE does not concern the correction of heavily

contradicting constraints [51].

3.3 Support Vector Regression (SVR)

Support vector machines (SVM) are supervised machine learning techniques

that aim to learn models able to analyze data either for classification or re-

gression purposes [42]. Data samples are characterized by set of descriptors

(or variables) and are associated to response values. According to the ap-

plication, response values can be either a discrete value (denoted as label)

or a continuous value. If the response value is discrete, we learn models for

classification purposes, i.e. models able to predict labels for unseen data

samples. If the response value is a continuous value, we learn models for
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regression purposes. These models are able to quantify the response values

for unseen data. Indeed, regression techniques aim to discover the existing

relationship between data descriptors and response values [42]. SVR belongs

to the field of SVM-based regression techniques.

However, it may happen that not all the predictors have a statistical

significance with respect to the response values. Or, equivalently, not all

the predictors carry useful information in terms of prediction capability.

Consequently, the set of predictors (or features) is usually preprocessed so

that only informative feature are considered in the regression process [27].

Preprocessing techniques concerning the selection of descriptors fall within

the category of feature selection algorithms.

3.3.1 Feature selection

In many machine learning settings, feature selection, also known as variable

selection, is combined with regression techniques [27]. Feature selection is

the process of selecting a suitable subset of features from an original set

of features. Descriptors are selected such that the generalization perfor-

mances of the associated predictive model are enhanced. Feature selection

techniques are used for reasons as the simplification of complex models, in

order to make them easier to interpret by researchers, and avoiding the

curse of dimensionality [27]. The curse of dimensionality is a well-known

phenomenon in the community of machine learning. Its basic effect is the

following: when the data dimensionality increases, the volume of the rep-

resentation space increases so fast that the available data become sparse.

Sparsity is problematic for any method that requires statistical significance

[27]. Indeed, data organization and research often relies on detecting ar-

eas where objects form groups with similar properties; in high dimensional

data, however, all objects appear to be sparse and dissimilar in many ways,

which prevents common strategies from being efficient. Feature selection is

different from dimensionality reduction. Both methods aim to reduce the

number of descriptors in the dataset, but dimensionality reduction methods

like Principal Component Analysis (PCA), do so by creating new combi-

nations of descriptors [27]. On the other hand, feature selection methods

include and exclude descriptors without altering them.

The combination of feature selection and regression techniques allows to
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learn a predictive model depending only on the most appropriate features.

We decide to select features according to their capability of describing the

variance of the data to be predicted. We adopt the adjusted R2 measure

in order to evaluate the goodness of each feature. Such measure is a fur-

ther development of an other performance measure named R2 (denoted also

as coefficient of determination). R2 provides a measure of how well the

observed outcomes are replicated by the model built considering a certain

set of descriptors [27]; it measures the proportion of total variance in the

observed data that is explained by the model. Given a N -sample dataset

with observed response values y1, ..., yN , the general definition of R2 is the

following

R2 = 1−
∑N

i=1 (yi − ŷi)2∑n
i=1(yi − ȳ)

where N is the dataset size, ŷi is the predicted value for sample i, and ȳ

is the mean of the observed response values (ȳ =
∑N

i=1 yi). The higher it is,

the more the model is able to perform accurate predictions. The maximum

achievable value is 1. Lower values attest poorer prediction results and can

also be negative, although this is quite uncommon [27]. However, the simple

R2 measure has an important drawback: every time a descriptor is added

to the model, the related R2 may increase, in a way that is not statistically

related to the explanatory power of the new descriptor [27]. Consequently, a

model including more descriptors may appear to perform better only because

it involves a bigger amount of information; such feature selection procedure

may easily lead to models containing descriptors not necessary meaningful

in terms of prediction capability. In order to take into account this effect,

an improved version of the coefficient of determination (adjusted R2) has

been proposed

adjusted R2 = 1− (1−R2) · N − 1

N − p− 1

with N the dataset size and p the number of descriptors actually belong-

ing to the model. A candidate descriptor (a feature that could be included

in the model) is actually included only if it improves the R2 more than that

would be expected by chance [38]. As its value is always smaller or equal to

the simple R2, also adjusted R2 has maximum value of 1 and can be negative

as well. Adjusted R2 does not measure directly the ability of the model to
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fit the data, since it embeds information about the dataset size and model

dimensionality as well [27].

The process for the computation of the best subset of descriptors constitutes

of iteratively including in the model one feature at a time computing every

time the adjusted R2. The peak value after which such measure systemati-

cally decreases provides the model including the best feature subset [38].

Regression techniques are able to learn both linear and non-linear re-

lationships between data descriptors and response values. In our method

we adopt non-linear regression in order to extend preexisting methods for

similarity modeling. According to [38], as music similarity evaluation is a

complex phenomenon, non-linear models are more appropriate to learn a

similarity function able to reflect user’s subjective similarity. SVR allows to

learn non-linear functions using the same problem formalization that char-

acterizes the linear case. Therefore, we discuss first the details related to

the linear case.

3.3.2 Linear SVR

Suppose we have a training set of N samples. Each sample i is described

by a feature vector xi ∈ Rd, where d in the number of features the vector

consists of. We also define yi as the response value related to xi and ŷi as

the predicted response value related to xi. We define the prediction error as

the absolute difference between yi and ŷi that exceeds a chosen threshold ε.

The goal of the learning process is to minimize the prediction errors, but we

have to take into account that a system that perfectly learns the training

set usually does not provide good generalization properties. It means that

such system would generate a model so accurate in describing the training

data that it would not be able to perform a good prediction when facing an

unseen sample [38]. Instead, we are interested in a regressor that is able to

generalize the information contained in the training set also to unseen data

samples. For this reason, we look for a function f(x) that minimizes the

prediction errors but, at the same time, it is as flat as possible, as excessively

wiggly functions tend to overfit the data [38]. We define the function f(x)

as the linear combination of the entries of the training vector x with a vector

of coefficients w ∈ Rd, plus a constant term (b ∈ R)
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f(x) =

d∑
i=1

wi · xi + b = 〈w, x〉+ b (3.8)

Requiring a function to be as flat as possible means requiring a small

w, in terms of Euclidean norm. We can do it defining the following primal

objective convex function:

min
1

2
||w||2

subject to

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε
∀i = 1, .., N

Usually, such type of constrained problems are not solvable with this

setting. To relax the constraints, we introduce some slack variables ζi, ζ
∗
i to

deal with unfeasible constraints. The slack variables represent the amount

of error higher than ε provided by a prediction. In particular, ζi accounts the

positive difference in the prediction error, while ζ∗i accounts for the negative

difference in the prediction error. Both slack variables are 0 if the prediction

is correct, i.e. provides a prediction error lower than ε, and provide a linear

penalization when a prediction error exceeds ε.

|ζi| =

0 if |yi − 〈w, xi〉 − b| < ε

|yi − 〈w, xi〉 − b− ε| otherwise

|ζ∗i | =

0 if |〈w, xi〉+ b− yi| < ε

|〈w, xi〉+ b− yi − ε| otherwise

Figure 3.2 shows an intuitive picture of the effect that both the threshold

ε and the slack variables have on the regression process. In practice, ε

induces a range around the regression function (the region between the two

blue parallel lines) within which prediction errors are not considered as such.

Slack variables account for errors exceeding such range.

The introduction of these slack variables leads to the following optimiza-

tion problem:
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f(x) - ε

f(x)

f(x) + ε

ζ𝑖 > 0

ζ𝑗
∗ > 0

i-th data point

j-th data point

Figure 3.2: Effects of ε and slack variables ζi, ζ
∗
i (linear SVR setting)

min
1

2
||w||2 + C

N∑
i=1

(ζi + ζi
∗) (3.9)

subject to


yi − 〈w, xi〉 − b ≤ ε+ ζi

〈w, xi〉+ b− yi ≤ ε+ ζ∗i

ζi, ζ
∗
i ≥ 0

,∀i = 1, .., N

where C plays the role of a constant value controlling the trade-off be-

tween the flatness of f(x) (the first term of the objective function) and

the quantity of tolerated prediction error. Starting from equation (3.9), we

shape a suitable Lagrange function, by introducing a dual set of variables

(ai,a
∗
i , ηi, η

∗
i ). The Lagrange function is obtained by taking the primal ob-

jective function and subtracting the product between each constraint and

the corresponding dual variable (or Lagrange multiplier) [38]. It is possible

to show that the optimal point can be reached either by minimizing with

respect to the primal variables or by maximizing with respect to their dual

counterparts; therefore, the function has a saddle point with respect to the

primal and dual variables at the optimal solution. The resulting Lagrange

function is
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L =
1

2
||w||2 + C

N∑
i=1

(ζi + ζi
∗)−

N∑
i=1

ai(ε+ ζi − yi + 〈w, xi〉+ b) (3.10)

−
N∑
i=1

ai
∗(ε+ ζi

∗ + yi − 〈w, xi〉 − b)−
N∑
i=1

(ηiζi + η∗i ζ
∗
i )

In order to find the saddle point, i.e. the optimal solution, we derive the

function (3.10) with respect to the primal variables and we find the following

conditions:

∂L

∂b
=

N∑
i=1

(a∗i − ai) = 0 (3.11)

∂L

∂w
= w −

N∑
i=1

(ai − a∗i )xi = 0 (3.12)

∂L

∂ζ
(∗)
i

= C − a(∗)
i − η

(∗)
i = 0 (3.13)

It is possible to show that if we expand the original Lagrange function

(3.10) and exploit the derivatives with respect to the primal variables, we

get the following dual optimization problem [42].

max

−1
2

∑N
i,j=1(ai − a∗i )(aj − a∗j ) 〈xi, xj〉

−ε
∑N

i=1(ai + a∗i ) +
∑N

i=1(ai − a∗i )yi
(3.14)

subject to


∑N

i=1(ai − a∗i ) = 0

ai, a
∗
i ∈ [0, C]

The dual variables ηi, η
∗
i disappear from the final rewriting of the opti-

mization problem. We have already seen that w =
∑N

i=1(ai − a∗i )xi thus w

can be computed as a linear combination of the training vectors. Using this

fact, we obtain the following redefinition of equation (3.8), called support

vector expansion

f(x) =
N∑
i=1

(ai − a∗i ) 〈xi, x〉+ b (3.15)

which is the final function we use to perform regression, after having

trained the algorithm. b is computed exploiting the Karush-Kuhn-Tucker
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f(x) - ε

f(x)

f(x) + ε
i-th data point

j-th data point

ζ𝑖 > 0

ζ𝑗
∗ > 0

Figure 3.3: Effects of ε and slack variables introduction in non-linear SVR setting

conditions [42]. After the formalization of the linear problem, we now show

how it is possible to learn non-linear functions exploiting the same formal-

ization.

3.3.3 Non linear SVR

In order to get a non-linear regressor, we should preprocess the training vec-

tors using a mapping function φ(x) able to characterize the original training

vectors into a new feature space. To do so, we can substitute the dot prod-

uct characterizing equation (3.8) with a kernel function K(xi, xj) [42]. A

kernel function is a function that, given two vectors in the original feature

space, computes the value of their dot product in another feature space [38].

Kernel functions allow to perform regression on a new high-dimensional and

non-linear space implicitly induced by the kernel itself, with no need to

transform the original feature vectors. This constitutes an advantage. In-

deed, the induced space can be easily made non-linear, allowing to perform

non-linear regression using exactly the same infrastructure used for the lin-

ear case [42]. In addition, we can easily handle high-dimensional feature

spaces without actually transforming the original vectors. Figure 3.3 shows

the range induced by ε and the effect of slack variables in the non-linear

case.
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With the introduction of kernel functions, equation (3.15) simply be-

comes

f(x) =

N∑
i=1

(ai − a∗i ) ·K(xi, xj) + b

which allows to rewrite the optimization problem defined by equation

(3.14) as

max

−1
2

∑N
i,j=1(ai − a∗i )(aj − a∗j ) ·K(xi, xj)

−ε
∑N

i=1(ai + a∗i ) +
∑N

i=1(ai − a∗i )yi

subject to


∑N

i=1(ai − a∗i ) = 0

ai, a
∗
i ∈ [0, C]
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Chapter 4

Method overview

In this chapter we describe in details our method for the modeling of music

similarity. Our method relies on two types of data and employs three fun-

damental techniques. Data are represented both by user-centric data, which

are opinions about song similarities, and content-based data represented

by song feature vectors. The three techniques employed are t-distributed

Stochastic Triplet Embedding (t-STE, section 3.2.3), Support Vector Regres-

sion (SVR, section 3.3) and Feature Selection (section 3.3.1). Our method

exploits t-STE in order to learn a low-dimensional space reflecting user’s

opinions (4.5.1) while SVR, in cooperation with the feature selection pro-

cedure, learns a mapping between features and such low-dimensional space

(4.5.2). We have two datasets, each related to one of the data types. We

have a dataset of songs and a user-centric dataset that contains one set

of similarity opinions per user. In the following, we describe the complete

method considering the training phase in single user scenario.

Figure 4.1 represents a high-level overview of our method. Songs are

represented by means of feature vectors as described in section 4.4, while

user’s assessments are converted into similarity constraints as described in

section 4.2. Then, feature vectors are divided into a training dataset and

a validation dataset (section 4.3). After the division, feature vectors are

processed as described in 4.4. Both datasets are exploited in the training

stage (section 4.5) in order to learn the mapping function. The learned

mapping function is then exploited in the prediction stage of our method,

in order to map new songs within the low-dimensional space that reflects

user’s opinions. In this way, we are able to evaluate similarities for new
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songs within a space which has been tailored on the specific user.

Songs

User 
assessments

Constraints
creation

Data splitting
and feature 
processing

Prediction stage

Training stage

Training data

Feature 
extraction

Learned
Mappings

Validation data

constraints

Figure 4.1: Single user scenario of our method.

4.1 Feature extraction

We represent each song within our dataset employing a vector of low-level

descriptors, according to [38] and [4]. After the extracting process, descrip-

tors are processed according to their temporal scopes (table 3.2). The goal

of the feature processing operation is to build a global song representation,

i.e. a feature vector representing the full track. What we do is to aver-

age the values of FrameSingleValued descriptors and FrameMultipleValued

descriptors, as these descriptors are computed frame by frame. FrameSingl-

eValued descriptors are descriptors that define one value per frame, so they

are averaged along the full sequence of frames. FrameMultipleValued de-

scriptors are descriptors that define a vector for each frame. Suppose that

a FrameMultipleValued descriptor provides for each frame a vector v with

P components

v = {v0, v1, . . . , vP }

We treat each descriptor vi, i = 1, . . . , P in the frame vector as a FrameSin-

gleValued descriptor, so we average it along the full sequence of frames. Thus
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FrameMultipleValued descriptors induce, after the processing operation, a

vector v̄

v̄ = {v̄0, v̄1, . . . , v̄P }

whose i− th value represents the average of i− th descriptor ∈ v. Such

vector is appended to the sequence of processed descriptors. SingleValued

descriptors are not processed, as they already represent one value for the full

sequence of frames. At the end of the process, each song is characterized by a

feature vector fi such that each descriptor in fi is a SingleValued descriptor.

4.2 Constraints creation

Each user is characterized by a set of similarity assessments, that can be

represented as a set S of similarity scores between pair of songs.

S = {sij}

where sij denotes the similarity score that the user has assigned to the

song pair (i, j). The similarity scores range between 1 and 10. The higher

the score, the more songs are considered similar by the user. We translate

the numerical information provided by the scores into ordinal information,

according to the reasons stated in chapter 2 and chapter 3. In this way each

user is finally characterized by a personal set Θ of similarity comparisons

expressed as triplets (i, j, k). The meaning of each triplet (i, j, k) ∈ Θ is

sij > sik

The process of conversion from similarity scores to similarity constraints

is the following. We first collect the similarity scores he/she provided into

a self-similarity matrix SSM ∈ RN×N , with N being the cardinality of the

song dataset. In this way, SSM[i, j] = sij . We convert SSM into a set Θ

of triplets with the following procedure. We start with Θ = ∅.

(1) for the i-th row of SSM, retrieve the set Si of valid scores of the i-th

row. Valid scores are scores that are greater or equal to 1.

Si = {sij such that sij ≥ 1}
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(1.1) for each score sij ∈ Si, retrieve the set S
(j)
i of valid scores in the

i-th row that are lower than sij

S
(j)
i = {sik such that sik ∈ Si and sij > sik}

(1.2) for each score sik ∈ S
(j)
i , create the triplet (i, j, k) and add it to Θ.

I.e, Θ = Θ ∪ (i, j, k).

(2) repeate the procedure for each row of SSM.

Once Θ has been defined, we retrieve a set Φ of feature vectors fi such

that each vector fi in Φ is related to a song mentioned by a constraint in Θ.

Both data are then divided as described in section 4.3.

4.3 Data splitting

The procedure of data splitting is to create a training dataset and a valida-

tion dataset. Both datasets consist of both feature vectors and constraints,

and we need the two datasets to be distinct, in order to elaborate a model

with good generalization property. Both datasets are then exploited in the

training phase according to the procedure described in section 4.5. We first

split the constraints into a set Θ(tr) of training constraints and a set Θ(vd)

of validation constraints, adopting the same procedure employed by [38].

Then, we define the set of training songs TR(s) and the set of validation

songs VD(s) as follows

TR(s) =
{
i, j, k such that (i, j, k) ∈ Θ(tr)

}

VD(s) =
{
i, j, k such that (i, j, k) ∈ Θ(vd)

}
TR(s) consists of songs that are mentioned by constraints (i, j, k) ∈ Θ(tr),

as well as VD(s) consists of songs that are mentioned by constraints (i, j, k) ∈
Θ(vd).

The two sets of songs help to define the set of training and validation

vectors. Indeed, the set of training vectors Φ(tr) includes feature vectors

related to training songs, while the set of validation vectors Φ(vd) includes

feature vectors related to validation songs. We define Φ(tr) and Φ(vd) as
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Φ(tr) =
{

fi such that i ∈ TR(s)
}

Φ(vd) =
{

fi such that i ∈ VD(s)
}

Both the sets of vectors are then processed according to the approach

described in section 4.4 before being employed within the learning phase

of our method. Figure 4.2 represents a close view of the process of data

splitting.

feature vectors

Data splitting

Training stage

Prediction stage

Feature processing

Training constraints

Learned mappings

constraints

validation
vectors

training vectors

training vectors
(processed)

validation vectors
(processed)

Validation
constraints

Figure 4.2: Closer view of data splitting and feature processing.

4.4 Feature processing

After the division, feature vectors are normalized according to a feature

normalization criterion known as feature standardization [35]. Feature nor-

malization is a feature refining operation often employed in data mining, due

to wide range showed by pure raw data. Such technique allows to compare

descriptors that have different scales and implicitly assigns the same impor-

tance to each feature by weighting all of them equally [35]. We employed

feature standardization as it has proved to be useful for refining data used
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for regression [35]. Applying feature standardization implies processing each

descriptor in each feature vector with the following criterion

f
(n)
i =

f
(n)
i − µn
σn

where f
(n)
i is the n − th descriptor of fi, µn is the mean for the n − th

descriptor and σn the standard deviation for the n − th descriptor. The

transformation acts such that each descriptor distribution is represented as

a normal distribution with µ = 0 and σ = 1.

We adopted the following methodology for standardizing feature vectors.

We first applied features standardization for feature vectors in Φ(tr). Then,

we applied the same transformation for feature vectors in Φ(vd), but employ-

ing statistics that were related to training vectors. I.e., we processed each

descriptor for each vector fi ∈ Φ(vd) as

f
(n)
i =

f
(n)
i − µ(tr)

n

σ
(tr)
n

where µ
(tr)
n and σ

(tr)
n are respectively mean and standard deviation for

the n-th descriptor computed relatively to vectors in Φ(tr).

4.5 Training stage

The full training stage of our proposed method is represented in figure 4.3.

The full set of constraints Θ constitute the input for the non-metric scaling

algorithm (t-STE), whose objective is to learn a low-dimensional space that

fits the set of constraints as much as possible. The output of the scaling pro-

cess is a set of low-dimensional vectors of song coordinates. In other words,

each vector represent the coordinates of a song within the low-dimensional

space. The coordinates have been computed in a way that the Euclidean

distances (formula 3.1) among songs reflects as much as possible the simi-

larity constraints presented as input. We will refer to the low-dimensional

space learned by t-STE as song space (section 4.5.1). As for feature vectors,

coordinates have been processed in order to feed the regressor with more

easy-to-handle data. Coordinate vectors are then divided according to the

former training-validation split applied to feature vectors, as described in

(4.5.1).
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Normalized song space coordinates and feature vectors constitute the

input data of the regression procedure. The objective of SVR is to learn

a suitable mapping from feature values to song space coordinates. The

regression procedure is combined with a feature selection algorithm so that

only the most suitable descriptors are considered within the learning process

(section 4.5.2).

Validation
vectors

SVR and
Feature selection

Full set of
constraints

Non-metric
scaling (t-STE)

Song space generation

Coordinates
normalization and 

division

coordinates

Training 
vectors

Validation
coordinates

Training 
coordinates

Figure 4.3: Block diagram of the training stage

4.5.1 Song space generation

Song space generation refers to the process of learning a low-dimensional

space able to fit the input constraints. In our proposed method, input con-

straints are triplets (i, j, k) ∈ Θ. As stated in section 3.2.3, t-STE is a

constrained convex optimization problem solved through gradient descent

algorithm. Therefore, according to the theory concerning gradient descent

methods, the algorithm is initialized with a random matrix X ∈ Rs×d, with

s the number of songs within our dataset and d the desired dimensionality

of the song space. This is due to the fact that, given a convex minimization

function, the algorithm converges to the global minimum of such function

whatever initialization has been provided. We denote the final set of coor-

dinate vectors learned by the method as a set C of d−dimensional vectors
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ci

C =
{

ci such that i ∈ TR(s) or i ∈ VD(s)
}

In other words, C contains one coordinate vector for each song men-

tioned in Θ. The effect of a single constraint on the algorithm is graphically

showed in figure 4.4. Each input constraint induces a shifting stimulus to

the related objects. In particular, each triplet (i, j, k) not yet fulfilled during

the iterative process attracts j towards i while pulling k away from i, unless

several other constraints contradict the actual triplet [51].

The final set of song coordinates is post-processed, in order to provide

the regressor with more easy-to-handle response values. We normalized the

set of coordinates dividing each vector ci as

ci =
ci
cmax

where cmax represents the maximum absolute value of the set of coordi-

nates C. This way coordinates range between -1 and 1. We employed such

normalization as it consists of a uniform scaling of the song space. Uniform

scaling preserves the ordinal distance relationships. Therefore, constraints

that were fulfilled in the unprocessed space will be preserved also in the pro-

cessed space. The same occurs for unfulfilled constraints. The normalized

set of coordinates is then divided according to the division that we applied

for feature vectors. We define a set of training coordinates C(tr) and a set

of validation coordinates C(vd) such that

C(tr) =
{

ci such that i ∈ TR(s)
}

C(vd) =
{

ci such that i ∈ VD(s)
}

Equivalently, C(tr) contains coordinate vectors related to training songs,

as well as C(vd) contains coordinate vectors related to validation songs.
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a
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i
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Figure 4.4: Effect of a input constraint (i, j, k). As we can see, initial conditions do not

fulfill the constraint. Consequently, j is pulled towards i while k is pulled away from i.

4.5.2 Feature selection and regression

SVR is the machine learning tool accomplishing the task of learning a map-

ping between acoustic features and song space coordinates. Consequently,

both data types serve as input for the regression procedure.

In particular, given a song space expressed as set of d-dimensional vec-

tors, we aim to learn d mappings, i.e. one mapping per dimension. There-

fore, the procedure of feature selection and subsequent regression is repeated

d times. The input data for the n− th execution (n = 1, .., d) of the process

are feature vectors as well as the song space coordinates with respect to the

n−th dimension. We denote the set of coordinates with respect to the n−th
dimension as C(n)

C(n) = {cni such that ci ∈ C}

After the training phase, we want to be able to map also new songs into

the song space. For this reason, the feature selection stage takes care of

identifying the feature subset that most enhances the generalization proper-

ties of the model to learn. To do so, the feature selcetion stage exploits both

training and validation data. Then, SVR builds a mapping between such

subset of features and the song coordinates with respect to the considered
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dimension. Figure 4.5 represents a closer view of a single execution.

Feature 
selection

Regression
N-th dimension
training coordinates

Return
best feature 
subset

Training vectors

Validation vectors

N-th dimension
validation
coordinates

Figure 4.5: Block diagram of SVR and feature selection stages.

Feature selection

Feature selection stage is represented in figure 4.6. Since our proposed

method exploits SVR in order to fit the data, feature selection stage exploits

SVR as well. Therefore, its input data consist of both feature vectors and

single-dimension song space coordinates. We denote training coordinates

with respect to the n − th dimension as C
(tr)
(n) , and validation coordinates

with respect to n− th dimension as C
(vd)
(n) .

As described in section 3.3.1, the best feature subset is built with an

iterative procedure. We start defining two sets: CF and BM . CF represent

the set of candidate features, and consists of features that have the chance

of being included within the model. BM represent the set of features that

have been included so far in the model. The two sets are initialized with

the full set of original features and with an empty set respectively. For each

candidate feature f ∈ CF we build a temporary set of features TM which

consists of BM extended with f , i.e. TM = BM ∪ f . We learn a mapping

from Φ(tr) to C
(tr)
(n) using a model that includes descriptors in TM . After
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having learned the model related to TM , we compute its adjusted R2 score

(section 3.3.1) on validation data, i.e. on the dataset composed by Φ(vd) and

C
(vd)
(n) . Once this operation as been accomplished for each f , we detect (if

any) the candidate features that provided some increment with respect to

the adjusted R2 score achieved by the model related to BM (computed with

the same procedure). In case at least 1 candidate has provided an increment,

we include in BM the candidate fmax that provided the largest increment,

i.e. BM = BM ∪ fmax. We also delete fmax from the set of candidate

features. If no candidates have provided an increment, the procedure stops

and returns the actual set of descriptors BM . The stopping criterion agrees

to what stated in section 3.3.1. Basically, a non-increasing or decreasing

adjusted R2 score indicates that the R2 score of the model is not increasing

as well or that it increasing in a way that is not statistically related to the

explanatory power of the descriptors (section 3.3.1). Therefore, the model

built until that moment relies on the best feature subset.

For each
candidate 
feature 𝑓

Fit training 
data using

SVR

Model 
(initially
empty) Any

candidate 
yet to 

evaluate?

Include 𝑓 in 
the model

YES

NO

NO

Return current model

Any
increased
adjusted

R2?

YESDetect the candidate 
feature 𝑓𝑚𝑎𝑥 providing
the largest increment. 

Candidate 
features 

(initially full)

Repeat

Add
𝑓𝑚𝑎𝑥

Remove 
𝑓𝑚𝑎𝑥

Compute 
adjusted R2 

on validation
data

Figure 4.6: Block diagram of the feature selection stage.

Regression

The goal of the regression operation is to learn a mapping between feature

vectors and each set of single-dimension coordinates C(n). As n = 1, . . . , d,
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we learn d mappings. So, input data for the regressor consist of both the

full feature vector set Φ and BM and C(n). During the regression operation,

vectors in Φ are truncated such that only descriptors belonging to BM are

kept within the song representation. Our regressor exploits a kernelized

version of SVR (section 3.3). We choose a non-linear kernel to empower

the regression operation as done in [38], as this allows us to enhance the

flexibility of the model and thus to capture more complex mappings with

regard to a linear kernel.

After the training phase, we can exploit the mappings in order to map

unseen songs in the learned song space. Indeed, all that we now require

in order to map a song in the song space is its feature vector. Now we

are able to evaluate song similarities for new songs in a space reflecting the

similarity perception of the user. Figure 4.7 shows how to exploit the learned

mappings, supposing to have d = 2 for simplicity.

Predict coordinates
along the x axis

Predict coordinates
along y axis

Song space

y

x

New song

Figure 4.7: Exploiting the mappings in the prediction stage (2D case).
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Chapter 5

Experimental setup and

evaluation

In this chapter we provide the details concerning the experimental setup

and the numerical results related to experiments that have been conducted.

We conducted two types of experiment in order to test the generalization

properties of our method. The two experiments differ in the way we divide

data between training and test, but share both the general setting and the

evaluation criterion. We start by describing the set of user-centric data that

our methods exploits (section 5.1), and then discuss experimental setup for

the two experiments (section 5.2). In particular, we first present the general

setting shared by the two experiments in section 5.2.1, then discuss the two

data division methods in section 5.2.2. In section 5.3 we first present the

shared evaluation criterion and then show the numerical results in section

5.3.1.

5.1 Data collection

The song dataset employed within our work is the CAL500 music database

[49]. It consists of 500 popular songs recorded in the last century, and con-

tains a very heterogeneous set of tracks, allowing us to cover several musical

genres and epochs. The user-related data we exploited come from the survey

deployed by [38]. In order to collect information about the similarity from

users, the author of [38] presents users a survey. In the survey, each user

is presented several reference songs, and for each reference song, a list of 5
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User ID Number of scores

1 371

2 100

3 100

4 194

5 98

6 100

7 194

8 198

9 55

10 53

11 164

12 304

13 60

14 195

15 200

16 200

17 196

18 195

19 98

Table 5.1: Statistics of valid users.

songs is presented. User is asked to evaluate the similarity between the ref-

erence song and each song within the list. User can listen to the tracks and

express his/her opinion about song similarity by means of a score ranging

from 1 to 10. The higher the score, the more songs are considered similar

by the user. Scores are collected into a self-similarity matrix SSM.

A total of 34 users has attended the survey. By a preliminary analysis

of the data coming from the survey, we found that some users provided a

small number of between-song similarity scores. As our approach requires a

sufficient amount of data to learn an efficient similarity metric, we filter out

users who provided less than 50 scores. We ended up with 19 valid users.

Table 5.1 summarizes the details on the amount of scores annotated by each

user.
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5.2 Experimental setup

5.2.1 General setting

For both experiments, the dimensionality of the song space is set to d =

2, as previous experiments on the effectiveness of t-STE showed that it

provides identical performances independently on the a priori established

dimensionality. This requires SVR to learn only 2 dimension-wise mappings

per user. We decided to employ a Radial Basis Function (RBF) kernel [13]

in order to kernelize the regression procedure. The RBF kernel between two

vectors x and y is computed as

K(x,y) = exp(−γ ‖x− y‖2)

and we set γ = 1. RBF has been tested and compared with other

kernel functions in a preliminary set of experiments. Other tested kernels

were Polynomial, Sigmoid and Laplacian. RBF kernel has proved to greatly

outperform both Polynomial kernel and Sigmoid kernel, while providing a

light increase with respect to the Laplacian kernel. This is due to the fact

that the Laplacian kernel represents a simpler variant of the original RBF

formulation [13].

5.2.2 Data division methods

In order to test the generalization properties of our method, we need to

divide training and test data into two distinct sets. We refer to the first

data data division method as song split, while we refer to the second data

division method as constraint split. Song split constitutes a rigid data divi-

sion method as it allows to avoid data redundancy, while constraint split it

is not able to avoid data redundancy. However, constraint split is the data

division most frequently employed within the literature of content-based

approaches that also exploit similarity constraints ([53], [55], [54] and [38]).

So, we conducted the related experiment, for the sake of completeness. Our

data consists of both constraints and feature vectors, so we need to divide

both data types. The sets of vectors are defined accordingly to the related

constraint sets. Training vectors are vectors related to songs mentioned by

training constraints, while test vectors are vectors related to songs men-

tioned by test constraints. So, we first define the two sets of constraints and

then define the two sets of vectors. We first describe in detail the song split
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procedure and highlight its capability of avoid data redundancy. Then we

describe in detail the constraint split procedure and highlight the inability

of such data division in avoiding data redundancy.

Song split

In this experimental setup we first split songs. We randomly divide songs

into training songs and test songs adopting a 80-20 split. This means that

we establish 80 % of the songs that have been annotated to be training

songs and the remainder to be test songs. The division of songs implies a

division of the original scores matrix SSM into a training matrix SSM(tr)

and a test matrix SSM(te). SSM(tr) contains similarity annotations that

concern training songs, as well as SSM(te) contains similarity annotations

that concern test songs. Both matrices are then processed as described

in 4.2, providing the two sets of training and test constraints. The set of

training constraints consists of constraints (i, j, k) such that i and j and

k are training songs. The set of test constraints consists of constraints

(i, j, k) such that at least two songs i, j, k are test songs. The set of training

vectors is composed by vectors of training songs, while the set of test vectors

is composed by vectors of songs mentioned by test constraints. Figure 5.1

represents this experimental setup more closely.
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Figure 5.1: Song split method.
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Song split allows to avoid data redundancy. We have to recall that each

constraint (i, j, k) defines two distances, d(i, j) and d(i, k). We refer to the

distances defined by training constraints as training distances, as well as we

refer to the distances defined by test constraints as test distances. Train-

ing distances represent the information for training the mapping learning.

Indeed, training constraints are used as input for t-STE, and the mapping

is trained such that it is able to reflect the distances induced by training

constraints. Test distances represent the information we want to predict, as

we want the mapping to be able to fulfill test constraints. In this setting,

the two sets are completely distinct. Indeed, training distances are distances

that are defined only for pairs of training song. As test constraints consist

of constraints in which at least two songs are test songs, each test constraint

induces two unseen pair-wise distances. As a consequence, each test distance

constitute an a priori unpredictable information for the mapping. So, the

experiment provides an ideal setting for the evaluation of the generalization

properties of the method, as it completely separates the training information

from the test information.

Constraints split

Adopting constraint split, we first convert the whole self-similarity matrix

SSM into a set of constraints as described in section 4.2. Then we split the

whole set of constraints into a training set and a test set adopting a random

selection that reserves 80 % of constraints to training and the remainder to

test. Figure 5.2 represents the data division process.

In this setting, training songs and test songs are defined from the related

set of constraints, while with song split the reverse scenario occurs. Thus,

with this setting the set of test songs is not separated by the set of training

songs. As test distances are pairwise-distances of test songs, and training

distances are pairwise-distances of training songs, several test distances will

be already defined in the set of training distances. In other words, the set

representing training information partially includes the set representing test

information. This causes the method to exploit data redundancy. As a

consequence, the performances of our method are boosted in a way that it

is not related to its generalization properties.
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Figure 5.2: Constraints split.

5.3 Evaluation

The evaluation of the generalization properties is the same for both methods.

We adopt the mappings learned in the training phase and use them in order

to predict test song coordinates given test song feature vectors. In particular,

as represented in figure 5.3, we exploit each dimension-wise mapping in order

to predict song coordinates with respect to that specific dimension. We then

evaluate the goodness of the predictions in terms of test constraints fitting,

measured as the percentage of test constraints that the predicted coordinates

fulfill. For each test constraint (i, j, k), we check that

d(ci, cj) < d(ci, ck)

In other words, we check if, within the song space, the Euclidean distance

between i and j is smaller than the Euclidean distance between i and k. We

denote the percentage of fulfilled test constraints as test accuracy. As we

need to properly evaluate our model on a user-wise base, each experiment is

repeated a certain number of times for each user. In particular, we repeat

each experiment 30 times per user, in order to exploit 30 performance values

in order to assess the overall performance of our method. Fo each user, we

collect the 30 test accuracies related to the 30 repetitions of the experiment,

and represent their distribution by means of a boxplot. The accuracy dis-
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tributions will help us to graphically evaluate the goodness of our method.

The baseline distribution to which we compare to is the random distribution,

i.e. a distribution with mean equal to 0.5 and a wide variance. We expect

our method to provide for both experiments mappings that are better than

the random mapping, thus we expect each user-related distribution to be

characterized by a mean higher than 0.5 and a small variance.

Test 
vectors

Predict coordinates
along the x axis

Predict coordinates
along the y axis

Song space

y

x

Evaluation

Test constraints

Figure 5.3: Evaluation of test constraints fitting. For simplicity, a 2D scenario is

represented.

5.3.1 Numerical results

Figure 5.4 shows the accuracy distributions obtained from the song split

experiment, while table 5.2 summarizes some statistics related to the same

experiment. As we can see, even when a rigid data division is applied, the

method is able to provide good generalization properties with respect to

each user. The characteristics of each distribution are far apart from the

characteristics of the random scenario. We can observe that users have dis-

tributions with different characteristics. In particular, users who provided

most data are characterized by distributions with a smaller variance, while

users who provided less data are characterized by distributions with a higher

variance. This is due to the fact that the more data are provided, the more
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the learned mappings tend to match their performance as their parameters

tend to match as well. Indeed, with many data, the training sets of the

various repetitions tend to be similar, and the mapping learning will pro-

vide similar mappings as well. With less data, we have the opposite effect.

With less data, training sets of different repetitions tend to differ, and as a

consequence the learned mappings differ as well. Due to the diversity of the

learned mappings, the accuracy distributions present a larger variance.
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Figure 5.4: Test accuracy distributions for song split experiment

Figure 5.5 shows the accuracy distributions obtained from the constraint

split experiment, while table 5.3 summarizes some statistics related to the

same experiment. As expected, even in this case the accuracy distributions

greatly differ from a random distribution. According to the previous ex-

periment, distributions still relate with the amount of data provided by the

related user. As we can see, with this experimental setup, that involves a

less rigid data division, the method greatly increases its performances. The

boost in the performances is also related to the amount of redundant data

that the methods can exploit with this setting.

The relationship between the data amount and the accuracy distribution

can be further proved by observing the feature histograms related to each
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User ID Accuracy µ Accuracy σ Number of triplets

5 0.61 0.07 225

1 0.61 0.02 1276

17 0.60 0.03 474

9 0.59 0.08 91

16 0.62 0.03 487

4 0.63 0.04 473

18 0.62 0.04 489

12 0.66 0.03 628

19 0.62 0.06 202

11 0.63 0.05 369

7 0.62 0.04 441

6 0.62 0.06 198

14 0.62 0.05 489

3 0.60 0.06 207

8 0.59 0.04 433

2 0.63 0.06 209

13 0.66 0.08 92

10 0.63 0.08 113

15 0.63 0.05 456

Table 5.2: Summary of statistics related to song split experiment.

user. For each user, we computed the related feature histogram counting the

times that each feature has been selected by the feature selection algorithm

along his/her sequence of experiments. Our method learns mappings that

take into account only the set of descriptors identified by the feature selec-

tion algorithm. So, counting the times each feature is selected we count the

times a feature has been included in the mapping learning. As we stated,

mappings related to a user who provided most data tend to match. In

other words, these mappings tend to be defined by similar set of descriptors.

So we expect the feature histogram for a user who provided most data to

be characterized by several peaks and valleys. Peaks correspond to those

descriptors belonging to the similar feature subsets computed along the ex-

periment sequence. Figure 5.6 represent the feature histogram for user 1,

who provided the largest quantity of constraints. As we can see, peaks and
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Figure 5.5: Test accuracy distributions for constraint split.

valleys are clearly identifiable. On the other hand, we expect a user who

provided less data to be characterized by a flat feature histogram, as his/her

mappings tend to be characterized by different set of descriptors along the

sequence of experiments. So different descriptors tend to be selected along

the experiment sequence, providing a more flat distribution of occurrences.

Figure 5.7 represents the feature histogram for user 9 which is the one who

provided less data. The figure confirms the previous statements, as distinct

descriptors are more hard to detect.

Feature histograms also allow us to confirm that fact that different users

tend to evaluate music similarity according to different similarity criteria.

The diversity of similarity criteria can be assessed by observing the distri-

bution of feature histograms. Different histogram distributions mean that

the mappings of the two users rely on different sets of descriptors, thus sug-

gesting their similarity criteria to be different. Figure 5.8 and 5.9 represent

some examples of two users showing different histogram shapes. This con-

firms the necessity of resolving to personalized techniques in order to model

the complex phenomenon of music similarity.
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User ID Accuracy µ Accuracy σ Number of constraints

5 0.75 0.07 225

1 0.77 0.03 1276

17 0.76 0.04 474

9 0.75 0.10 91

16 0.80 0.04 487

4 0.78 0.04 473

18 0.79 0.05 489

12 0.85 0.03 628

19 0.81 0.06 202

11 0.80 0.04 369

7 0.79 0.05 441

6 0.83 0.05 198

14 0.78 0.04 489

3 0.80 0.05 207

8 0.78 0.05 433

2 0.77 0.08 209

13 0.83 0.10 92

10 0.77 0.07 113

15 0.82 0.05 456

Table 5.3: Summary of statistics related to constraint split experiment.

Exploiting the information provided by feature histograms, we identi-

fied for each user the descriptors that are most frequently employed by the

mapping learning procedure, exploiting the information provided by feature

histograms. We denote the set of most frequently used descriptors as the

set of relevant descriptors for the related user. We consider relevant descrip-

tors to be the descriptors that at least half of times along the experiment

sequence are selected to represent the mapping. In other words, we select

descriptors whose histogram value is higher than 0.5. Table 5.4 presents for

each user the related set of relevant descriptors. As we can see, for users who

provided most data, a wide set of descriptors, related to histogram peaks,

are detected. Users who provided less data, as they are characterized by flat

histograms, are defined by a small set of relevant descriptors.
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User ID Most frequent descriptors

5 aubio tempo, smoothness, spectral contrast peaks, sharpness

1 aubio tempo, chordino harmonicchange, irregularity j, rhythm

autocor, spectral contrast peaks, spectralflux thresholdfunc-

tion, spectralreflux scaledspectralreflux, spectralreflux spec-

tralrefluxonsets, sharpness, MFCCs

17 aubio tempo, odd even ratio, powercurve smoothpowerslope,

spectralreflux scaledspectralreflux, sharpness, MFCCs

9 aubio tempo, sharpness

16 aubio tempo, chordino chordchangerate, intensity, odd even ra-

tio, spectral contrast valleys, sharpness

4 aubio tempo, chordino chordchangerate, intensity, rhythm au-

tocor, spectralreflux scaledspectralreflux, spectralreflux spec-

tralrefluxonsets, sharpness, MFCCs,

18 aubio onsets, aubio tempo, chordino harmonicchange, spectral-

reflux scaledspectralreflux, sharpness, MFCCs

12 aubio tempo, chordino chordchangerate, intensity, odd even ra-

tio, powercurve smoothpowerslope, rhythm autocor, spectral-

reflux spectralrefluxonsets, sharpness, MFCCs

19 aubio tempo, chordino chordchangerate, sharpness, MFCCs

11 aubio tempo, chordino chordchangerate, spectral contrast val-

leys, spectralreflux scaledspectralreflux, sharpness, MFCCs

7 aubio tempo, chordino chordchangerate, chordino harmonic-

change, spectralreflux scaledspectralreflux, spectralreflux spec-

tralrefluxonsets, sharpness, MFCCs

6 aubio tempo, chordino chordchangerate, sharpness, MFCCs

14 aubio tempo, rhythm autocor, spectral contrast valleys, spec-

tral contrast valleys, sharpness, MFCCs

3 aubio tempo, chordino harmonicchange, powercurve power-

slopeproduct, qm onsets, spectralreflux scaledspectralreflux

8 aubio onsets, aubio tempo, chordino chordchangerate, onsetsds

onsets, spectralreflux scaledspectralreflux, spectralreflux spec-

tralrefluxonsets, sharpness, MFCCs

2 aubio tempo, chordino chordchangerate, irregularity j, rhythm

autocor, sharpness

13 sharpness

10 sharpness

15 aubio tempo, chordino chordchangerate, spectralreflux scaled-

spectralreflux, spectralreflux spectralrefluxonsets, sharpness,

MFCCs

Table 5.4: List of relevant descriptors for each user.
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Histogram for user 1

Figure 5.6: Feature histogram for user 1, who provided the highest amount of data.

Occurrences are normalized.
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Figure 5.7: Feature histogram for user 9, who provided the smallest amount of data.

Occurrences are normalized.

81



82 CHAPTER 5. EXPERIMENTAL SETUP AND EVALUATION

0 20 40 60 80
Feature ID

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 o

cc
ur

en
ce

Histogram for user 11

0 20 40 60 80
Feature ID

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 o

cc
ur

en
ce

Histogram for user 12

Figure 5.8: Feature histogram for user 11 and 12.
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Figure 5.9: Feature histogram for user 18 and 19.

82



Chapter 6

Conclusions

In this thesis, we presented a novel approach for learning a personalized sim-

ilarity metric for musical content. As we need a scalable method in order

to handle a wide amount of users, we adopted a content-based approach.

In addition, as we need to evaluate music similarity in a personalized way,

we developed a hybrid method that relies both on content-based data and

similarity information provided by users. We modeled content-related in-

formation adopting sets of low-level descriptors and collected similarity in-

formation as sets of song similarity constraints. Our method relies on a

two-stage procedure. We first learn a low-dimensional space tailored on

user’s perceived similarity. Then, we relate the low-space-related informa-

tion with the content-based information exploiting a regression technique. In

order to learn a non-linear mapping between content-based and low-space

information, the regression is kernelized by means of a non-linear kernel.

The mapping represents the user’s metric. The regression procedure is also

combined with a feature selection algorithm, whose objective is to iden-

tify the feature subset able to enhance the generalization properties of the

method. We conducted two experiments in order to evaluate the generaliza-

tion properties of our method, each of the two characterized by a different

data division algorithm. Our method has proved to perform well with both

experimental setups, achieving good generalization performances even when

evaluated with a rigid data division method.

Our method presents some advantages with regard to the existing ap-

proaches. First, the process of learning the personalized metric is fast and

requires a low computational burden. Once data about the similarity are

available, all we require is to run a scaling procedure and then a regres-
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sion procedure. In addition, once the training phase is completed, both

the learned mappings and the low-dimensional space can be exploited of-

fline. They can be used in order to handle typical user requests as music

recommendation, playlist generation and browsing. For each of these three

tasks, mappings can be employed in order to map new songs within the

low-dimensional space. For recommendation and playlist generation, this

allows us to evaluate song similarity in a space shaped according to user’s

opinion. For browsing, the user can exploit both the low-dimensional space

and the mappings in order to elaborate a personal musical collection that

has been organized according to their opinion. In addition, the mappings

reduce all the information coming from the audio to a small set of coordi-

nates, so evaluating song similarity reduces to evaluate distances between

low-dimensional points. So, for both recommendation and playlist genera-

tion, the computation of similarity is straightforward. A further advantage

is the fact that the mappings rely only on subsets of features. As we know

the set of descriptors that characterize the mapping related to a user, it is

sufficient to compute that set of descriptors in order to map a new song

within the low-dimensional space related to that user. So, we do not need

to extract a wide set of descriptors from new songs in order to map them.

Our method also presents some possibilities for improvements and future

works. The first possible development concerns the adoption of implicit

data coming Collaborative Filtering. Collaborative Filtering (2.1) collects

for each user information about their listening habits. The idea is to adopt

CF data in order to estimate the user similarity information that our method

needs in order to learn the mapping. This gives the possibility to implicitly

learn the user metric without requiring the user to supply any similarity

information. This could provide a content-based method not requiring any

user feedback or interaction to learn the metric. CF data can also be helpful

in order to upgrade the process of learning the metric and make it “time-

adaptive”. As music is a complex phenomenon, users may change their

preferences over time. As CF data are related to user’s listening habits, we

can exploit them in order to learn a new similarity metric able to reflect

the current preferences of the user, providing a method able to continuously

update a specific user metric.

An other development of our method is represented by the chance of

including a process for user profiling. The idea is to adopt a user profiling
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process in order to collect some user-related characteristics as age, musical

preferences, musical experience or musical theory background. The goal

is to investigate if user’s characteristics are somehow related to the set of

descriptors that define their similarity metric. If such relationship exists,

we expect that similar profiles will tend to rely on similar set of descriptors

for the metric. As a consequence, we could think of grouping similar users,

simply by exploiting the information coming from their profiles. This could

be an advantage when facing a new user, for which a personalized metric

need to be learned. Just by exploiting the information coming from their

profile, we could think of first characterizing the user with a metric related

to a user similar to him/her. This allows us to provide new users, for which

CF data are not available, with an initial metric that is somehow related

with their subjective similarity. This could be an efficient solution to the

cold start issue of CF approaches. Once CF data for new users are available,

we can learn their“true” personalized metric.
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