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Abstract

Enterprise systems are put under heavy pressure by users, if the underlying

configuration is not adequate they often incur into periodic downtime which

can become a great expense in terms of time, resources and customer satis-

faction. Nowadays there is no general approach to this problem since these

kind of system are very heterogeneous in terms of quantity and quality of

the information they provide. For this reason, in this thesis we propose a

generic approach to implement an anomaly prediction algorithm to switch

the paradigm of the response to a system fault from a reactive to a proactive

one. This algorithm works by exploiting the infrastructural metrics collected

by the system along with the applicative logs produced by the application

running on it. Our experiment has been conducted on a small test environ-

ment for which the results are not satisfying, therefore this thesis is focused

on describing our approach by motivating the reasons of the decisions we

take in order to serve as a guide for the reader who wants to implement an

anomaly prediction algorithm on its own system.



Sommario

I sistemi informativi delle grandi aziende sono sottposti a grande sforzo

da parte degli utenti, se la configurazione sottostante non risulta adeguata

spesso incorrono in periodici disservizi che possono risultare in un grande

costo in termini di tempo, risorse e soddisfazione del cliente. Oggigiorno

non esiste un generico approccio a questo problema perchÃ¨ questi sistemi

sono molto eterogenei in termini di quantitÃ e qualitÃ delle informazioni

che forniscono. Per questo motivo, in questa tesi proponiamo un generico

approccio per implementare un algoritmo di predizione delle anomalie per

modificare il paradigma di risposta a un guasto di sistema da reattivo a

proattivo. Questo algoritmo funziona sfruttando le metriche infrastrutturali

collezionate dal sistema assieme ai log applicativi prodotti dalle applicazioni

in esecuzione sul sistema. I nostri esperimenti sono stati condotti utilizzando

un piccolo ambiente di test per i quali i risultati non sono soddisfacenti, per

questo motivo questa tesi Ã¨ concentrata nel descrivere il nostro approccio

motivando le ragioni e le decisioni che abbiamo preso in modo da servire

come guida per il lettore che voglia implementare un algoritmo per predire

le anomalie sul proprio sistema.
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Chapter 1

Introduction

Companies often uses large-scale clusters of machines to host their services

which rely on the underlying infrastructure to achieve maximum perfor-

mance. Unfortunately, infrastructural anomalies are a common issue in

an enterprise context, having the possibility to predict them would mean

sparing a considerable amount of time and resources while improving the

customer experience.

In this thesis we propose a custom solution anomaly prediction solution that,

starting from the logs of an applications running on a cluster of machines

and by its infrastructural metrics is able to predict the next infrastructural

anomaly.

The demand for this algorithm has been raised by an important Italian bank

that suffered constant downtime of some application used by internal em-

ployee of the bank, which caused severe delays in terms of services offered

to the customer and sometimes the necessity of overtime labor by the em-

ployees themselves in order to restore the service. These issues caused also

the need of intervention by highly skilled technicians which had act as soon

as possible: a work that could require up to hours of extensively paid time.

We were asked to find a solution for this problem by, if possible, building an

algorithm that could work also on other application used by the customer.

For this reason, we focused our work to be as general as possible in such

way that it could work agnostically with respect to the machine and the

application that is running on it.

The application given us for developing the model was the family banker

portal, an important service for the business of the customer which incurred

into severe faults every few days. A fundamental point of this work is that

the machine that were given to us for developing our solution were not the

ones on which the family banker portal actually run, neither we could access



the data coming from it. We were instead given access to a single machine

of the cluster using for testing purposes of this service. This was a further

motivation to approach the problem in a general way, such as we had to

think of a solution that could be deployed without knowing a priori to the

type of underlying machine since we were guaranteed that test and produc-

tion machine would differ one from the other but we could not know how

much.

To develop this solution, we explored two main fields: anomaly detection

and log analysis therefore the elaborate is structured in the following way:

first it gives an analysis of the current state of art for both the fields of

study, then it explains in detail the problem and the methodologies used for

solving our specific situation and then it concludes with the analysis of the

results along with some considerations about possible future development.

The algorithm has been developed for a customer during a non-curricular

stage at Oracle Italia and, for policy issues, we divulgate as many informa-

tion as we are allowed to.

This thesis is organized as follows. In Chapter 2 we give an overview of the

current state of the art for the techniques we used to build the algorithm,

anomaly detection and log parsing, followed by a paragraph dedicated to

anomaly prediction. In Chapter 3 we describe in details the enterprise sys-

tem we worked on and the information it provides about its health status. In

Chapter 4 we explain step-by-step our approach, the decisions we made and

their motivation. We first introduce anomaly detection, then we show how

we parsed the applicative logs and we conclude showing how we combined

the outputs of the previous steps. In Chapter 5 we finally show the results

of our approach and the reasons for which our algorithm performed poorly.
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Chapter 2

State of the art

In this chapter we perform an analysis about the current state of the art

in the challenges that characterize our work, these are log analysis and log

parsing, anomaly detection and anomaly prediction. For each of them we

give an overview of the main techniques used to face them highlighting how

they can be interfaced with our problem.

2.1 Log Analysis

We start by giving the definition of a log: for “log” we intend an automat-

ically produced and time-stamped documentation of events relevant to a

particular system. Virtually all software applications and systems produce

log files.

In our particular case we had to analyze applicative logs, such as the ones

produced by an application which have the characteristic of containing a

huge amount of information, according to how they have been programmed

they can contain general information, events, warnings and alerts.

Applicative logs are used by developers and system experts for the analysis

of an application in order to monitor its status and gather insights about

any issue that occurred along time. Their nature and the information they

carry can be very heterogeneous depending on the application they refer to.

Independently from their nature however, applicative logs share a common

characteristic: they are all composed by fixed part, defined by the develop-

ers, and variable parts that depends on the situation. To give an example, a

log saying “Connection opened on port 3343”, communicating the beginning

of a connection, is composed by a fixed part “Connection opened on port”

and a variable part such as the port number “3343”, therefore one must
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decide how to deal with this kind of information.

2.1.1 Log Parsing

Another important characteristic of logs is that the majority of them is given

in free text format, this raises the problem of parsing them. There are two

main approaches for parsing logs:

• Clustering based approach: (LogSig [1], log key extraction [2]) calcu-

late distances between logs using different techniques, like edit distance

or other custom distance measure, in order to group them and finally

they generate a template for every cluster found and they use it as a

representation for any log belonging to that group for any next step.

• Heuristic-based approach: (SLCT [3], iPLOM [4]) count the occur-

rences of each word on each position in the log and then select frequent

words to use them as event candidate. Some of this candidate are fi-

nally chosen to become log events. There are other minor approaches,

such as the one proposed by Loghound algorithm [5] that discovers fre-

quent patterns from event logs by utilizing a frequent itemset mining

algorithm, for example using Apriori algorithm.

All the above mentioned methods were of great inspiration for our work but

they did not completely fit our needs. In our case we explicitly knew some

information about the log, for example its severity level, but the rest of the

information had to be extracted to a more abstract level. For this reason,

we implemented a log parsing algorithm based on a clustering techniques

exploiting the tf-idf algorithm [6] in order to find more relevant word. This

approach is discussed in details in chapter 3.

2.1.2 Feature Extraction

After the parsing phase is concluded, logs must be transformed in something

that can be used by a machine learning algorithm such as a feature vector.

To do so, logs are sliced in sequences so that can be grouped using different

techniques, this process often takes the name of windowing. Independently

of the technique used, at the end of this phase we have a matrix, called event

count matrix, which describes the log history over time. This matrix has a

column for each cluster found in the parsing phase and a number of rows

equal to the number of windows.

For selecting the number of windows there are three main techniques:
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• Fixed window: is a timestamp based method which requires the tuning

of only one parameter: the window size each set of log is grouped in

a window of fixed size in such way that each log appears in only one

window. Figure 2.1 explains this concept.

Figure 2.1: Fixed window feature extraction: the two time windows are completely

disjoint

• Sliding window: is another timestamp method which, differently from

fixed windows, requires the tuning of two parameters: the window size

and the step size. Usually step size is smaller than window size so

that windows are overlapped, this means that the same group of log

(defined by the timestamp step size) could be duplicated in different

consecutive windows. Figure 2.2 explains this concept.

• Session window: differently from the previous techniques, this one is

based on an identifier representing the of session that is going to be

considered. This is used for example in distributed system for example

in Hadoop where a session takes place on different blocks and there is

the necessity to group together all its logs.

Given this high variety of methods, we understood that using a sliding win-

dow was the better choice for our task because it gives the possibility to the

better model the progressive growth of anomalies in time when related an

anomaly score. This is better discussed in the following chapters [19].
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Figure 2.2: Sliding window feature extraction with a width of 3 time steps and a pace

of 1

2.2 Anomaly Detection

To build an anomaly prediction algorithm we first need to define what is an

anomaly in the system we considered, in order to do so we implemented an

anomaly detection algorithm.

Anomaly detection (sometimes called outlier detection) is the identification

of items, events or observations which do not conform to an expected pattern

or other items in a dataset. The importance of anomaly detection is due to

the fact that anomalies in data translate to significant, and often critical,

actionable information in a wide variety of application. Typical use cases for

this task includes fraud detection in credit card transaction for example by

noticing an unexpected high withdrawal of money from a location which does

not correspond to the normal behavior of the customer, intrusion detection

on a Linux system and also cases in system health monitoring in which for

example an anomalous MRI image may indicate the presence of malignant

tumors.

2.2.1 Taxonomy of Anomalies

An important aspect of anomaly detection is understanding the nature of

the anomaly we are going to face; they can be classified into the following

three categories:
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• Point anomalies: if an individual point can be considered anomalous

with respect to the rest of data then we have a point anomaly. This is

the simplest and most common kind of anomaly and it is the one we are

going to face in this work. An example of this anomaly is the above

mentioned credit card fraud using as only dimension the amount, a

point anomaly occurs when we record a monthly withdrawal of 1000$

while for the rest of the year the usual withdrawal is 100$ per month.

An example is shown in Figure 2.3.

Figure 2.3: A simple example of anomalies in a two-dimensional dataset.

• Contextual Anomalies: If a point is anomalous in a specific context

but not otherwise. They are also referred as conditional anomalies

[7]. For this particular kind of anomaly, context has to be defined and

become part of the problem formulation. Each data instance then is

now composed in two parts:

– Contextual attributes: used to describe the context the data is

in. An example could be time attribute in a time series data.

– Behavioral attributes: the set of non-contextual characteristic

of the instance, using the time series example this is the actual

value of the point. To use the same example of credit card fraud
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mentioned above, a contextual attribute could be the time of

withdrawal. Suppose an individual has a usual withdrawal of

100$ per month except on December because of Christmas where

the amount reaches up to 1000$, a withdrawal of 1000$ in July is

considered a contextual anomaly. An example is shown in Figure

2.4

Figure 2.4: Contextual anomaly t2 in a temperature time-series. Note that the tem-

perature at time t1 is same as that at time t2 but occurs in a different context and

hence is not considered as an anomaly.

• Collective Anomalies: If a collection of related data instances is anoma-

lous with respect to the entire data set, it is termed a collective

anomaly. The individual data instances in a collective anomaly may

not be anomalous by themselves, but their occurrence together as a

collection is. An example could be the one in Figure 2.5 picturing

the rhythm of a heart in an electrocardiogram. If taken together the

highlighted points compose a collective anomaly because the same low

value exists for an abnormal amount of time while, if taken individ-

ually, such low value is not a point anomaly. It emerges then that

collective anomalies can emerge only in a dataset where instances are

related.
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Figure 2.5: Collective anomaly corresponding to an atrial Premature contraction in a

human electrocardiogram.

2.2.2 Anomaly detection techniques

Anomaly detection is often performed by using a rule-based model which

sends alerts when a certain attribute exceeds a previously set threshold.

This approach is not so reliable since it often does not take in account

all the attributes at once and, if it does so, it could produce a significant

overhead. For this reason, machine learning is often used for this task, we

give now an overview on hot it is used. There are three main categories of

machine learning anomaly detection techniques:

• Supervised anomaly detection: there techniques are trained in super-

vised mode and they assume the availability of a training data set that

has labeled instances for normal as well as anomaly classes. Typical

approach is to build a predictive model which output is a label catego-

rizing each new input as anomalous or not or specifying a probability.

There are two typical problems these methods incur into: the first is

the high imbalance between the two class (there are lot less anomalies

with respect to normal data) and the other one is finding representative

labels for the anomaly class since some anomalies are more severe than

others. Usual models for this task are Neural network, Bayesian net-
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works, Support Vector Machines and Rule-based algorithms, another

important contribution is given by K-Nearest-Neighbor techniques.

• Semi-supervised anomaly detection: Techniques trained in semi-supervised

mode assume the availability of a training data set that has labeled

instances only for the “normal” class. Such models usually are trained

to recognize the normal behavior and are then used to identify anoma-

lies. An example could be the detection of anomalies on an aircraft

where incidents are difficult to model. These models are quite rare

because of the lack of datasets available since it is difficult to obtain a

training data set that covers every possible anomalous behavior that

can occur in the data.

• Unsupervised anomaly detection: Techniques that do not require train-

ing data and thus are more widely applicable. These methods make

the implicit assumption that normal instances are far more frequent

than anomalies. Clustering methods are part of this category, going

deep into this particular methodology would require an entire essay,

for our work it is enough to say that many are based on the concept

of local outlier such as a point that is anomalous with respect to his

neighbors.

As emerged from this resume of topologies and techniques the world of

anomaly detection is very wide and heterogeneous [20]. We identified that

in our situation the best representation was given by point anomalies and

we used an unsupervised technique, named local outlier factor [8][9] which

is better discussed in chapter 4.

2.3 Anomaly Prediction

The final step of our work is to put together the output of feature extraction

of the applicative logs and the anomalies found with an anomaly detection

technique to train an anomaly prediction model.

Anomaly prediction raises from the need of switching from a reactive anomaly

management system, that could bring to prolonged hours of service down-

time, to a proactive that take preventive actions on the system component

beforehand. As in the previous analysis on anomaly detection it emerged

that the nature of anomalies can be very heterogeneous, finding reliable

works on anomaly detection in a cluster of machines is not an easy task.

The actual state of the art is composed by the following families of anomaly
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prediction techniques, sometimes used in combination one with the others.

Those families are:

• Context-aware anomaly prediction model: [10] that takes into high

consideration the context in which the underlying cluster of machine

is working. For example, in the morning a webserver often receives a

higher workload than in the evening. A difficult task that these models

face is the one of identifying which variable denote each context and

how they change over time but once they are discovered, these models

are able to perform a much more precise prediction since it becomes

possible to train the more appropriate model for each context.

• Markovian anomaly prediction model: capture the changing patterns

of different measurement metrics that are used as features by a classi-

fier [11][12]. These algorithms are a good way to model sequences of

events but they run into minor problems. To model the states of the

machine it is necessary to discretize continuous attributes into a finite

number of bins which could lead to lose some information. Another

issue that they must face is that not all attributes follow the Markov

property, for example if an attribute value exhibits a sinusoidal pat-

tern the model has to rely on both the current value and the previous

value to determine whether the attribute value on an increasing slope

or a decreasing slope. To solve this problem some tricks are used like

using two dependent Markow chains.

• Monolithic anomaly prediction model: algorithms that see the cluster

as a unique entity. These are widely used because they are easier to

implement but suffer from two throwbacks: they cannot distinguish

which components are attributed to the performance anomaly, sec-

ondly the prediction accuracy of one monolithic model is significantly

worse since the attribute value prediction errors accumulate as the

attributes of all components is included into only one model [10].

• Per-machine anomaly prediction model [12]: builds a single model for

every machine analyzed in the cluster. In such way it is possible to

overcome the limitations which characterized the previous technique

but lose the efficiency of considering the cluster as a collection of en-

tities.

All the above mentioned techniques perform online anomaly prediction.

Each of these methods have been developed for specific situations and, of

course, could not be just taken and reused for our goal. In our situation,

17



since this work has been done for a customer, we had constraints regard-

ing the simplicity of the model and the time to deliver it. After having

considered all the suggested approach we concluded that for our goal a per-

machine anomaly prediction model could be the one that best fitted our

needs because of it simple but still valid logic.
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Chapter 3

Definition of the problem

In this chapter we are going to explain in details the problem we had to face.

We begin by giving an overview of the actual situation of the customer and

the issue he incurs into every day, then we proceed by carefully explaining

the information available and of the motivations that lead us to think about

an anomaly prediction solution.

3.1 Overview of the situation

The customer is one of the biggest banks in Italy which everyday activities,

like many other companies, is strictly related to its software applications.

These go from internal-only usage applications, like an analytical CRM, to

the ones accessed by its customers like the home banking portal. Each of

these applications has an impact level on the operational capacity of the

bank, some of them are of vital importance while others are more or less

negligible. To give an example, if the above mentioned home-banking por-

tal becomes inactive, even for few minutes, thousands of customer would

incur into a disruption of service which, of course, would leave an unhappy

memory about their user experience. Since no company wants unhappy cus-

tomers, this has to be considered of maximum importance because repeated

disservices are to be avoided as much as possible.

Other applications, instead, are not so crucial for the reputation of the bank

but are still fundamental for the correct functioning of the bank ecosystem

and if they do not respect certain availability conditions they may cause

far worse damage than unhappy customers. One of those application is the

portal used internally by family bankers which is also the target of our work.

Family bankers are freelancers that represent the primary link between the

bank and its customer also embodying the role of financial advisors, they



use this portal to manage their everyday work. Even if a disservice of an

application used by internal-employees only is not as severe as one occur-

ring on an application used by customers, a periodic downtime could lead to

significant delays in terms of customer service delivery since family bankers

are part of the core functionality of the bank.

Up to the current situation, each time an applicative fault occurs, a quick

intervention of technical experts is needed to restore the service: this could

require up to hours of intense, manual search to look for the root cause of

the fault. Therefore, for all the above mentioned reasons, every fault results

in a loss of resources in terms of time, money and efficiency.

Our response to find a solution to this problem has been suggesting a switch

of paradigm: from a reactive anomaly management system to a proactive

one.

There are two kinds of faults: infrastructural, such as caused by a hardware

issue like a pitch in the CPU response time, or applicative, such as caused

by some logical error like for example a Java exception. These two faults are

correlated one with the other since an infrastructural fault could cause an

applicative fault and vice versa. Moreover, it has also to be considered that

some light infrastructural anomalies could be the cause of a greater one in

the future and such reasoning is valid also when talking about applicative

anomalies.

Unfortunately, we were asked to find and implement a quick solution because

of business requirements so, since it would take a considerable amount of

time and resources to develop an anomaly prediction system that considered

all kinds of faults and every possible correlation between them, to meet them

we could not develop a full solution. For this reason, we decided to develop

an anomaly prediction system that could forecast infrastructural anomalies

starting from the applicative logs of the family banker portal by keeping an

eye on how finding a generic solution that could fit other applications as

requested by the customer. In this thesis we present how we implemented

this algorithm and, since this is just one part of the final model, for the

sake of completion we discuss on how we would have proceeded with the

implementation of the final model.

3.2 System Overview

To understand the problem and our solution, it is mandatory to explain how

the system is built and how its components communicate. The entire portal

of family bankers is built on top of a WebLogic cluster of four managed

servers on Exalogic hardware. If all of this sounds confusing it is because
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we are talking entirely about Oracle products so we proceed step by step.

Oracle WebLogic Server is a scalable application server used for building and

deploying enterprise Java EE applications with support for new features for

lowering cost of operations, improving performance, enhancing scalability

and supporting the Oracle Applications portfolio [13]. It provides a stan-

dard set of APIs for creating distributed Java applications that can access

a wide variety of services, such as databases, messaging services, and con-

nections to external enterprise systems. Each WebLogic Server has an ad-

ministration domain which is a logically related group of WebLogic Server

resources. A domain include a special WebLogic Server instance called the

Administration Server, which is the central point from which it is possible to

configure and manage all resources in the domain. Usually, one configures

a domain to include additional WebLogic Server instances called Managed

Servers. Web applications, Enterprise Java Beans, and other resources are

deployed onto the Managed Servers and the Administration Server is used

for configuration and management purposes only.

Figure 3.1: Abstract view of the WebLogic domain.

Multiple Managed Servers can be grouped into clusters, this allows multi-

ple Managed Servers to operate as a single unit to host applications and

resources while enabling balance loads and provide failover protection for

critical applications. Figure 3.1 shows the abstract view of the WebLogic
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Model Name Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

N. cores 4

Standard CPU Frequency 2.70 GHz

Max CPU Frequency 3.50 GHz

Cache 30 MB Smart Cache

Bogomips 5387.21

Address size physical 46 bits

Address size virtual 48 bits

Table 3.1: Processor characteristics

Server architecture, note that The domain configuration also includes infor-

mation about resources and services associated with applications hosted on

the domain [14].

Each managed server is installed on top of an Exalogic Virtual Machine

which is a complete hardware and software platform for Enterprise applica-

tions delivered as pre-assembled building blocks in order to be easy to deploy

and operate. It is an assemblage of storage, compute, network, operating

system, and software products which is not proprietary so that one could

integrate it with other services at will. [15]. Each Exalogic Virtual Machine

is identical and is assembled with four processors which characteristics are

listed in Table 3.1 along with 16 GB RAM and is running Red Hat Enter-

prise Linux Server release 6.5 (Santiago) operating system.

These four Virtual Machines are connected together by Oracle load balancer

called Oracle Traffic Director, this allows the virtualized cluster to be seen

as a unique machine from the application point of view as shown in Figure

3.2.
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Figure 3.2: Relation between the application and the VMs.

3.3 Log Collection

Each virtual machine of the cluster hosts the same application which pro-

duces logs that are collected by Splunk.

Splunk is a log collector used by technical experts to collect, monitor in real

time and analyze machine data from any input [16]. It is a very versatile

tool, able to be integrated in different kind of systems with ease, used by

many companies to collect and monitor their application. Splunk allows ex-

tensive, efficient research on the whole history of the application logs since

its reports are very detailed and well structured, allowing to browse logs

filtering by application, time and host.

The application is installed on top of the above described cluster and is

integrated with Splunk as shown in Figure 3.3 which shows the abstract

information flow. The single arrow indicates that Splunk sees the applica-

tion as a single entity producing logs continuously while it stays in polling.

Whenever the application produces a log it be almost immediately visible

from the Splunk console.
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Figure 3.3: Abstract view of the information flow between the application and Splunk.

Underhand, instead, the actual information flow between the application

and Splunk is a bit different: since the application is distributed on the

cluster it produces separate logs for each machine it is hosted in. Each VM

hosts a Splunk agent which reads the logs produced by the application and

sends it to the Splunk Server that merges them and stores it into an index

database. This flow is shown in Figure 3.4.

Since Splunk is very versatile, it is able to gather any kind of log from the

machine, not only the applicative ones anyway, since the cluster is com-

posed by Oracle machines, in our problem Splunk is set up to collect only

the applicative logs and does not consider the infrastructural metrics like

CPU usage, amount of stored RAM and so on. This information is collected

by a proprietary software called Oracle Enterprise Manager(OEM) 12c [17]

which is used by Oracle to monitor all its products. Differently from Splunk,

OEM sees every machine of the cluster as a separate entity since the fam-

ily banker portal which is running on them is not an Oracle software. Each

machine has a health monitoring software installed, called Oracle Enterprise

Manager Cloud Control, which collects infrastructural metrics information

and pushes them to OEM, from here they are stored in an Oracle Database

table. Figure 3.5 shows the logical view of this information flow.

It should be now clear that the cluster is monitored on two different levels,
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Figure 3.4: Information flow between the application and Splunk.

Figure 3.5: Infrastructural information flow.
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infrastructural and applicative, and that the information is collected into

two different storages which do not communicate between them.

3.4 Log overview

Now that we have described which kind of information we are dealing with

and its flow, we are going to explore it in details, starting by Splunk ap-

plicative logs and then exploring infrastructural logs collected by Oracle

Enterprise Manager. In this chapter we are going to focus on the format

of those kinds of logs by showing data from sample machine which run an-

other Oracle application, instead of directly showing the one from which we

extracted data. We prefer this approach because we had to work agnosti-

cally with respect to the final target machines and applications on which

our algorithm will run. This reasoning is valid even if we focused only on

the family banker portal since we were given just a test environment which,

even if it run theoretically the same application, is guaranteed to produce

different logs in terms of level of details and even information gathered.

3.4.1 Application log format

We start by describing the format of application logs which come from a

simple extraction on a CSV file of all the logs of the target application. This

file is composed by attributes which give us a wide range of information in

a fine grained fashioned way since in Splunk logs are generated in the order

of milliseconds. These fields are automatically filled by Splunk from the

applicative log using a custom parsing logic which has been predefined by

the technical experts monitoring the family bank portal. Depending on how

it has been set up, Splunk could produce reports composed by hundreds of

fields, some of which are often nulls and thus any log analysis algorithm has

to take in consideration this characteristic. The percentage of not-null values

per attribute on a sample application is illustrated in Figure 3.6 representing

on the how many fields contains which percentages of not-null values using

bins of 0.1 percentage.
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Figure 3.6: Distribution of plain values into the fields of the applicative logs.

In this case more than 120 fields are almost always set to null while less

than 40 are filled at least 90% of the time.

This information suggests that developing an algorithm focused on the sin-

gle fields could lead to problem since there is no guarantee of how many

nulls they contain or, even, if they are recorded the same way in another

application or, worse, recorded at all. Fortunately, Splunk is set in such a

way that it keeps the original unparsed applicative log in one of the fields

called “ raw” that, if used properly, could be able to fill this apparent lack

of information. This field, by nature, can never be null, unless the log itself

is empty and thus is the focus of our analysis as better explained in chapter

4. An Example of “ raw” log is shown in Figure 3.7.

The entire log is not reported because it would not give any additional in-

sight. The main information it contains is about the timestamp the log

occurred, the environment in which it was running along with its host, the

application this log refers to (remember that Splunk is able to monitor dif-

ferent applications at the same time), the position in the code that generated

the logs and a lot of minor and situational information.
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Figure 3.7: Example of applicative log.

The “Info”tag suggests that the family banker portal is an application that

uses log4j [18] to implement its logging system. Log4j is a part of the

Apache Foundation Project and is a standardized Java library which allow

access to an optimal logging system to monitor a Java application. One

of its characteristic is that it associates to every log a severity level, here

listed in Table 3.2 in decreasing order of severity. Since these levels given

by the developers of the application, they constitute a fundamental piece of

information because they already express the importance of the log giving

us a strong prior information.

3.4.2 Infrastructural log format

Infrastructural logs are collected by querying the Oracle database table in

which they are progressively stored. Oracle Enterprise Manager offers sev-

eral monitoring views depending on the level of details required by the user.

There are mainly two kind of views:

• History of hourly or daily aggregation of every metric from the begin-

ning

• History of most recent metric showing all records for each of them

Overall, since machines can be of different types, the number and the kind

of infrastructural metric differs from one machine to another. To give an

example of the level of details that OEM is able to give, for the machine on

which the sample application mentioned before run 82 metrics are reported.

They go from the amount of allocated memory (both in bytes and in per-

centage), the CPU load, information about I/O activity and much more.
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Level Description

OFF The highest possible rank and is intended to turn off logging.

FATAL Severe errors that cause premature termination. Expect these

to be immediately visible on a status console.

ERROR Other runtime errors or unexpected conditions.

Expect these to be immediately visible on a status console.

WARN Use of deprecated APIs, poor use of API, ’almost’ errors, other

runtime situations that are undesirable or unexpected, but not

necessarily ”wrong”. Expect these to be immediately visible

on a status console.

INFO Interesting runtime events (startup/shutdown). Expect these

to be immediately visible on a console, so be conservative and

keep to a minimum.

DEBUG Detailed information on the flow through the system. Expect

these to be written to logs only. Generally speaking, most lines

logged by your application should be written as DEBUG.

TRACE Most detailed information. Expect these to be written to logs

only.

Table 3.2: Log4j severity levels

Differently from Splunk, however, infrastructural metrics are emitted asyn-

chronously one with respect to the others so Oracle Enterprise manager does

not produce each time a log containing all of them at once but rather pro-

duces a log containing the name of the metric and its value each time it is

emitted.

On a deeper analysis we found out that metrics are collected in discrete,

predefined, intervals. Figure 2.8 shows this characteristic, in this case most

metrics are collected in a relatively low amount of minutes, up to 15, while

others are collected up to once a day or more. The most collected metrics are

the one regarding memory, CPU and disk usage while the least collected re-

gards system flags which are changed by developers only when needed. This

asynchrony is motivated by storage issues: since Oracle Enterprise Manager

has been created to manage huge clusters of machines, collecting at high

rate metrics which change only once in a while would be a waste of disk

memory.
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Figure 3.8: Sample rate distribution of the metrics for a machine.

Another thing that Oracle Enterprise Manager does to preserve storage is to

aggregate old metrics as mentioned above. This is done by keeping a view

which is a sliding windows of the records of the previous 30 days, eliminating

from the view the ones that become too old. Obviously, this information is

not completely lost but it is aggregated in a daily report which shows for

every metric the following indicators explained in Table 3.3.

These indicators are useful for having an insight of the machine health trend

during a certain day but are of little use for implementing an anomaly pre-

diction streaming algorithm.
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Metric Description

ROLLUP TIMESTAMP The start and end period of the collection.

SAMPLE COUNT How many metrics were used for the aggre-

gation.

AVERAGE Average of the metric during the collecting

period.

MINIMUM Minimum of the metric during the collect-

ing period.

MAXIMUM Maximum of the metric during the collect-

ing period.

STANDARD DEVIATION Standard deviation of the metric during the

collecting period.

Table 3.3: Attributes of the aggregation Table
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Chapter 4

Definition of the problem

In this chapter we are finally going to present our solution for building an

anomaly prediction model which could forecast infrastructural anomalies

from applicative logs. Our algorithm is split in three parts: Anomaly de-

tection, log clustering and anomaly prediction. Anomaly detection and log

clustering are completely independent one from the other and can be consid-

ered the data preparation phase of our work while in the last part, anomaly

prediction, the outputs of the previous steps are merged in order to build

the model. In this chapter we present our work starting by describing the

behavior of the test environment given to us in terms of hardware setup and

then passing to a description of the specific applicative and infrastructural

logs, in the last paragraph the final solution is proposed.

4.1 Setup

Before starting analyzing our solution we have to spend some time explain-

ing our hardware setup. As above mentioned, for policy reasons we could

not access directly data from the production environment, formed by the

cluster of four Virtual Machines described in chapter 3.2 but we were given

a single machine which is part of the test-environment. This environment is

composed by only two identical Exalogic Virtual Machines, each equipped

with two processors which characteristics are shown in Table 4.1, note how

the test processors are identical to the one in Table 3.1 but have half the

cores. As in the production environment, each Virtual Machine has 16 GB

RAM and is running Red Hat Enterprise Linux Server release 6.5 (Santiago)

operating system. The test cluster follows the same logic as the production

one regarding how machine are connected between them and how it relates

to the application.



Model Name Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

N. cores 2

Standard CPU Frequency 2.70 GHz

Max CPU Frequency 3.50 GHz

Cache 30 MB Smart Cache

Bogomips 5387.21

Address size physical 46 bits

Address size virtual 48 bits

Table 4.1: Test processor characteristics

The family banker portal application installed of course is not used by the

bank employees but it is used for other activities like training and testing

purposes.

4.2 Anomaly detection

The first part of our algorithm is Anomaly Detection. Since our goal is

to build an anomaly prediction model we first need to define what is an

anomaly. Up to now there was no such concept from the customer side so

we had to find an unsupervised anomaly detection technique that allowed

us to model anomalies in this particular context.

Remembering that the anomalies we want to predict are the infrastructural

ones and that we had access to data regarding only one of the two ma-

chines composing the cluster used for testing, we focused our analysis on

the database logs regarding the infrastructural metrics of this specific VM.

For this test Virtual Machine, Oracle Enterprise Manager collects 65 met-

rics, please note how the number of metrics collected is different with respect

to the sample machine mentioned in 3.4.2 which were 82. The plot shows

the distribution of the sample rate of the metrics in our test machine, shown

in Figure 4.1.
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Figure 4.1: Distribution of the collection rate of the metrics in the test machine.

Note how the majority of metrics are sampled relatively frequently while

others are less important metrics or system flags that changes once in a

while, or did not change at all. The difference between the charts in Figure

3.8 and 4.1 has the following motivations:

• The difference in the number of metrics is motivated by the fact that

for different situations it is necessary to sample different metrics.

• The differences in the sample rates is due to the fact that probably

our test machine is more important than the one used for Figure 2.8

and thus metrics in it are samples more often.

This demonstrates that Oracle Enterprise Manager's output is different from

machine to machine, thus reinforcing our need to find a generic approach to

this problem since there is no guarantees that we will find the same metrics

sampled at the same rate of the test machine on the production machine.
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4.2.1 Local outlier factor

For detecting anomalies, we decided to use a method called Local Outlier

Factor, simply called LOF which theoretical background is given in this

paragraph. The motivation of our choice were the following:

• It is an unsupervised technique for anomaly detection.

• It is proven to work well even in the range of dimension that is the

number of metrics Oracle Enterprise Manager usually collects so we

could use it also in production environment where the number of met-

rics and their collection rate is unknown.

• It works agnostically with respect to the definition of the metrics.

• Unlike most of anomaly detection, it does not output a label “Anoma-

lous” or “Not anomalous” but rather assigns at each point an anomaly

score that can be seen as the degree of being an outlier.

To better understand this algorithm, we have to go through some definitions

[8].

Definition 1 - DB(pct, dmin)-Outlier: An object p in a dataset D is a

DB(pct, dmin)-Outlier if at least percentage pct of the objects in D lies

greater than distance dmin from p, i.e., the cardinality of the set {q ∈ D |
d(p, q) ≤ dmin} is less than or equal to (100− pct)% of the size of D.

The above definition considers a global view of the dataset therefore the out-

liers fitting this definition are called global outliers. In real world there could

be also objects that are outlying relatively to their local neighborhoods, par-

ticularly with respect to the densities of the neighborhoods. These outliers

are regarded as “local” outliers. To illustrate this concept, consider the

example given in 4.2 which pictures a simple 2-dimensional dataset.
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Figure 4.2: Local Outliers example.

In this example, C2 forms a denser cluster than C1. According to the def-

inition of outlier both o1 and o2 are, whereas objects in C1 and C2 should

not be. With the notion of a “local” outlier, we wish to label both o2 and

o1 as outliers, this would not be possible by using just the outlier concept

in Definition 1. It is in fact possible to demonstrate that there is no ap-

propriate value of pct and dmin such that o2 is a DB(pct, dmin)-Outlier

but the objects in C1 are not. To introduce the concept of locality we must

introduce the concept of the k-nearest neighborhood as follows.

Definition 2 - k-distance of an object p: For any positive integer k, the

k-distance of object p, denoted as k-distance(p), is defined as the distance

d(p, o) between p and an object o ∈ D such that:

1. for at least k objects o
′ ∈ D \ {p} it holds that d(p, o

′
) ≤ d(p, o) and

2. for at most k − 1 objects o
′ ∈ D \ {p} it holds that d(p, o

′
) < d(p, o)
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Definition 3 - k-distance neighborhood of an object p: Given the k- dis-

tance of p, the k-distance neighborhood of p contains every object whose

distance from p is not greater that the k-distance, i.e:

N(k−distance(p)(p) = {q ∈ D \ {p} | d(p, q) ∈ k − distance(p)} (4.1)

These objects are called the k- nearest neighbors of p. To arrive at the final

definition used in our algorithm we need to define also what is the reacha-

bility distance.

Definition 4 - reachability distance of an object p w.r.t. object o: Let k

be a natural number. The reachability distance of object p with respect to

object o is defined as:

reach− distk(p, o) = max{k − distance(o), d(p, o)} (4.2)

This concept is illustrated in Figure 4.3. Intuitively, if object p is far away

from o (e.g. p2 in the figure), then the reachability distance between the two

is simply their actual distance. However, if they are “sufficiently” close (e.g.,

p2 in the figure), the actual distance is replaced by the k-distance of o. The

reason is that in so doing, the statistical fluctuations of d(p, o) for all the p

close to o can be significantly reduced. The strength of this smoothing effect

can be controlled by the parameter k. The higher the value of k, the more

similar the reachability distances for objects within the same neighborhood.
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Figure 4.3: reach-dist(p1, o) and reach-dist(p2, o), for k = 4

The next step of this reasoning is that being an outlier is not a binary

property but we could also assign an outlier factor which is the degree of

outlying of a point. Usual density based cluster algorithms leverage one two

parameters that define the notion of density: a parameter MinPts specifying

a minimum number of objects and a parameter specifying a volume. These

two parameters determine a density threshold for the clustering algorithms

to operate. That is, objects or regions are connected if their neighborhood

densities exceed the given density threshold.

To detect density based outliers however is necessary to compare the den-

sities of different sets of objects, which means that we have to determine

the density of sets of objects dynamically. Therefore, we keep MinPts

as the only parameter and use the values reach-distMinPts(p, o) for o ∈
MinPts(p), as a measure of the volume to determine the density in the

neighborhood of an object p.

Definition 5 - local reachability density of an object p: The local reacha-

bility density of p is defined as:

lrdMinPts(p) =
1∑

o∈NMinPts(p)

reach− distMinPts(p, o)

| NMinPts(p) |

(4.3)
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Intuitively, the local reachability density of an object p is the inverse of the

average reachability distance based on the MinPts-nearest neighbors of p.

We have now all the elements to define our anomaly score. The outlier

factor of object p captures the degree to which we call p an outlier. It is

the average of the ratio of the local reachability density of p and those of

p's MinPts-nearest neighbors. It is easy to see that the lower p's local

reachability density is, and the higher the local reachability densities of p's

MinPts-nearest neighbors are, the higher is the LOF value of p.

Definition 6 - local outlier factor of an object p The local outlier factor of

p is defined as:

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)

lrdMinPts(p)

| NMinPts(p) |
(4.4)

Local outlier factor captures the degree to which we call p an outlier, It

is the average of the ratio of the local reachability density of p and those

of p's MinPts-nearest neighbors. Basically, a point has an high LOF score

if its distance from its k neighbors is far greater than the average distance

between those neighbors and the points in their respective k-neighborhood.

This concept is explained in Figure 4.4 using k = 3.

Figure 4.4: Visual representation of distances considered to calculate Local Outlier

Factor.
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A more critical situation presents when we have many smaller clusters:

choosing k too high would lead to consider points from different clusters

in the calculation of the score while choosing k too low would lead to a bad

modeling of the closest cluster to the outlier which could be erroneously

considered as a point of it. Usually, one choses a lower bound and an upper

bound for k, then runs the model for all k in this interval and aggregates

the results. For the lower bound, a general literature guideline is to consider

at least 10 points in the neighborhood to remove any unwanted statistical

fluctuation. Another guideline comes from the fact that k can be regarded

as the minimum number of objects a cluster has to contain, so that other

objects can be local outliers relative to this cluster. This value could be

application-dependent. The literature shows that picking 10 to 20 appears

to work well in general for most dataset. Now that we set some guidelines

for the lower bound, let's see how to choose the upper bound. As the lower

bound, also the upper bound carries a significate: let C be a set/cluster of

close by objects, then the upper bound can be regarded as the maximum

cardinality of C for all objects in C to potentially be local outliers.

There is no single way to select lower and upper bound for k, anyway after

having chosen them, one proceeds by calculating the LOF score of every

point in the dataset for every k in the chosen interval. As aggregation

method some propose the heuristic of ranking every object with their re-

spective maximum LOF value within the specified range, other suggests

instead to use mode, mean or minimum as long as this last one is could be

inappropriate since it may erase the outlying nature of the object completely.

4.2.2 Implementation of anomaly detection algorithm

To train the anomaly detection model the only dataset available was the

database table hosting the last 30 days of records. This table contains

968831 records made in the following way:

• Collection timestamp

• Metric name

• Metric value

• Other parameters

This format was not appropriate for LOF algorithm which expects in input

a set of 65-five dimensional points. In order to obtain this set of points we

reshaped the dataset in such a way that each row contained the collection
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Figure 4.5: Reshaping of the metric dataset.

timestamp and a column for each metric which would be filled with its value

if the metric was collected in that precise timestamp and null otherwise. This

concept is more easily explained in Figure 4.5 in which we make an example

using just 3 metrics. After this step however we still do not have full 65-

dimensional points since many dimensions are null values, for this reason we

need to find a way to replace them. We assumed that in the period between

two subsequent collections of the same metric it can be considered constant.

This assumption well fits both the case of metrics with high sample rate and

the ones with a low one: in the first case we have a high amount of different

values so that developing a model imputing its change over time would be

excessively complicated, in the second case we can assume that a low sample

rate implies a scarcely important metric or one which changes only once in

a while and thus remains constant meanwhile.

Since we are dealing with more than 65 metrics, it is unlikely that they all

share the same scale. For this reason, we perform feature scaling by cen-

tering each metric and by dividing it by its standard deviation so that a

variation in any metric carries the same importance.

Once prepared the dataset, we had to decide which range of k we wanted

to use for running the LOF algorithm and which quantity to use for ag-

gregation. In the previous paragraph we analyzed the importance of this

choice and the consequences that a wrong decision could have. We set as

41



lower bound 10 as suggested by literature and we experimented on the upper

bound. Since we had no idea about how many clusters of not-anomalous

situation there could be and their density we tried by setting k to 20, 35, 50

and the aggregation metric first to maximum and then to median. Figure

4.6 shows the distribution of the anomaly score calculated for all possible

combinations of the above parameters. The first thing to notice is how

anomaly score are distributed: by nature, they cannot be less than 0.9 and

they orbit around 1 while the more they get far from this value, the fewer

they become.

One of the most evident property is a natural consequence of choosing the

maximum: it would shift the scores to the right with respect to the median.

This, would bring many points out of the “safe interval” which is generically

identified as [0.9 − 1.1]. Another factor that seems to shift anomaly scores

to the right for both aggregation quantity is k: the larger it gets the more

the values are shifted. This is because the algorithm would look for the

distance between more points which can happen to be in another cluster or

even outlier themselves and thus they contribute to increase the anomaly

score of the selected point.

Please notice that, in some cases, there were points with anomaly score

reaching up to 20 but they have been dropped in the representation to make

it easier to read.

To clarify the behavior of the distribution we discretized the anomaly scores

in anomaly levels the following way, which results are shown in Figure 4.7.

It is clear how, overall, the median tends to label fewer anomalies than the

maximum for different values of k and that it is more stable over time. This

characteristic has lead us to choose the median as aggregation metric, while

for the number of nearest neighbors to use as an upper bound we decided to

set k=20 because there were no substantial differences with respect to other

larger values of k and it requires few resources to compute.

What is left now is to validate the model. Unfortunately, we could not find a

methodology to do it with our current data. A common approach for testing

anomaly detection algorithms is giving in input to the trained model objects

which were labeled as not anomalous for another situation (that could be in

our case a different machine running another application). This could not

have been done because of the lack of other data sources. For this reason, we

must content to check some of the point labeled as anomalous with others

who are not. In Figure 4.8 we perform a manual check to see if the results

of the anomaly detection algorithm.
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Figure 4.6: Distribution of anomaly scores for different parameters.
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Figure 4.7: Distribution of the discretization of the anomaly scores.

Figure 4.8: An example of anomaly on normalized data.
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Figure 4.9: Anomaly trend of the analyzed machine with anomaly alert set to 1.5.

We see that the anomaly scored marked as a severe anomaly a problem

generated by the cpu which time of response raised a lot along with other

indicators. In the figure we showed the result scaled with the above men-

tioned technique to highlight the sudden changes. Note how the anomaly

regarded only the CPU as the measure regarding other piece of the infras-

tructure like the percentage of free memory shown in the Figure were left

unchanged.

This anomaly detection algorithm is propaedeutic to the realization of the

final anomaly prediction algorithm but is itself a valid tool. If set up with

a proper visualization tool in fact, it could offer a dashboard on which it

would be possible to monitor the trend of the health of the machine by

plotting the anomaly score on a temporal graph with possibly a threshold

indicating when a sample of metric could be considered dangerous, like the

one shown in Figure 4.9 which is set to 1.5, so that the reactive response to

the anomaly can be quicker. Another advantage of this algorithm is that it

could be possible to find the metric, or the metrics, that caused an anomaly

by looking at the most divergent dimension with respect to the others among

the neighbors.
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To conclude, this anomaly detection step respects the secondary goal of be-

ing reusable for other machines since it works despite the number of metrics

and their kind.

4.3 Feature extraction from applicative logs

The second part of our work was to find a way to deal with application logs

coming from Splunk. The final goal of this stage is to find a way to extract

a set of feature in a proper format to be ingested by the anomaly prediction

algorithm. For this step we could not take a whole months of data as we did

in anomaly detection but we had to reduce at only one week. This is because

for this test instance of the Family banker portal Splunk outputs almost 1.5

million logs corresponding to a file of 1.5 GB. Normally, this would not have

been a problem but to develop this algorithm we had to work on our laptops

which were not powerful enough to deal with an entire month of data.

Our approach is divided into the following steps:

1. Logs exploration, to understand their nature.

2. Log cleansing and keyword extraction

3. Feature extraction, to transform the history log into a proper format

for a machine learning algorithm, that in our case is be a set of vectors.

To perform step 3, we applied two techniques: Tf-idf statistics to give each

keyword a proper weight and then K-means clustering, to group together

similar logs. The output of this latter algorithm is be the input for the

anomaly prediction algorithm.

Before describing how we performed the above mentioned steps, we give

an explanation of the techniques used in Step 3.

4.3.1 Tf-idf (term frequency-inverse document frequency)

Tf-idf is a numerical statistic approach that intends to reflect how impor-

tant a word is to a document in a corpus which is often used as a weighting

factor in information retrieval, like in our case. The tf-idf value increases

proportionally to the number of times a word appears in the document but

inversely proportional to the frequency of the word in the corpus, which

helps to adjust for the fact that some words appear more frequently in gen-

eral.
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Before calculating tf-idf for every word in our logs we need to perform a

preparation step that is projecting the logs into a bag-of-word model also

known as vector space model. In a bag-of-words model a text, such as a

sentence or a document (in our case, the applicative logs) is represented by

a vector of its words by keeping multiplicity. In our case then, each ap-

plicative log will be represented as a vector of n dimensions, where n is the

number of distinct words in all logs, in which every dimension represent a

word and its value corresponds to the number of occurrences of that word in

that particular log. After this step is concluded, our collection of keywords

of logs will be transformed into a set of integer array of n dimensions thus

being ready to calculate tf-idf statistic.

As the name suggests, this approach is the product of two statistics: term

frequency and inverse document frequency. Term frequency leverage on the

idea that the more a word appears in a single document, the more this docu-

ment is related to the word. In order to calculate this statistic, the simplest

way is to perform a raw count of the word in each document. In this case,

the quantity is expressed as tf(t, d) where t is the term we are analyzing.

Anyway, using just the raw count could lead to a bias towards bigger doc-

uments therefore the document length is introduced a normalization term.

If we denote f(t,d) as the raw count of a word in a document we can define

the term frequency statistic as:

tf(t, d) =
ft,d∑

t′∈d
ft′ ,d

(4.5)

The problem with term frequency is that it tends to emphasize common

words which appear frequently in all documents by nature, giving them ex-

cessive importance. Inverse document frequency acts as a regularization

term for this phenomenon by acting as a measure of how much information

the word provides, that is, whether the term is common or rare across all

documents. It is the logarithmically scaled inverse fraction of the documents

that contain the word, obtained by dividing the total number of documents

by the number of documents containing the term, and then taking the log-

arithm of that quotient, calculated as follows.

idf(t,D) = log
N

1+ | {d ∈ D : t ∈ d} |
(4.6)
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Where:

• N is the total number of the documents in the corpus, that is N=—D—

• {d ∈ D : t ∈ d} | is the number of documents of the corpus in which t

appears. If the term is not in the corpus this would lead to a division

by zero which is commonly adjusted with the summation by 1

Now the statistics are combined by a simple product to obtain the final

tf-idf formulation:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (4.7)

4.3.2 K-means clustering

K-means clustering is a clustering algorithm which aims to partition n-

observation into k clusters. Each observation belongs to the cluster with

the nearest mean which serves as a prototype of the cluster.

Given a set of observations (x1, x2, . . . , xn), where each observation is a real

vector of d dimensions, k-means clustering aims to partition n observations

into k(≤ n) sets S = {S1, S2, . . . , Sn} so as to minimize the within-cluster

sum of squares (WSS). Formally the objective is to find:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 (4.8)

Where µi is the mean of the points in Si
The most common approach is an iterative technique. Given an initial set of

k-means m
(1)
1 ,m

(1)
2 , . . . ,m

(1)
n the algorithm proceed by alternating between

two steps:

Assignment step: Assign each observation to the cluster whose mean has

the least squared Euclidean distance, this is intuitively the “nearest” mean.

s
(t)
i = {xp : ‖xp −mt

i‖2 ≤ {xp : ‖xp −mt
j‖2∀j, 1 ≤ j ≤ k} (4.9)
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Where xp is assigned to exactly one S(t), even if it could be assigned to

two or more of them.

Update step: Calculate the new means centroids of the observations in

the new clusters:

mt+1
i =

1

| S(t)
i |

∑
xj∈S

(t)
i

xj (4.10)

The algorithm has converged when the assignments no longer change. There

is no guarantee that the optimum is found using this algorithm.

The algorithm is often presented as assigning objects to the nearest cluster

by distance. Using a different distance function other than (squared) Eu-

clidean distance may stop the algorithm from converging whereas various

modifications of k-means have been proposed to allow using other distance

measures. The results may be influenced by the initialization methods, de-

pending from the dataset: initial prototype can be set as random points or

to be as distant one from another as possible, other methods are possible

but further explanation would be no use for the goal of our thesis. Usually,

to decide the value of k, one plots the value of WSS for each k and then

identifies the “elbow” of the graph, such as the k for which the derivative

of WSS starts decreasing becoming more and more flat. This is done be-

cause the minimum for the WSS function is found when k = n and thus

making the whole algorithm useless. This procedure has also the side effect

of reducing the number of clusters so that data would be less fragmented.

4.3.3 Proposed Solution

We can now start to show how we performed feature extraction on the

application logs. As we did for the sample application, we analyze the

distribution of plain values per fields of the test application which is shown

in Figure 4.10.

If we compare it to the distribution in Figure 3.6. we can notice two things.

The first one is that the number of fields collected for this application is

far greater than the previous one, this time each log is composed by 275

fields while before we had 161. The second thing to notice is that even in

this case there is a predominance of fields that are almost always left blank,

these two factors are a consequence of the high customizability of Splunk.

Even if these two application may seem different in terms of fields collected,

as anticipated in Chapter 3 they share at least one common field, “ raw”,
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Figure 4.10: Distribution of plain values in the logs of the family banker portal.

which contains the original log and therefore all possible information. It is

clear now that in order to extract any information from the application log,

the only viable option is to find a way of parsing this field. This approach

also perfectly fits to the underlying request of the customer: use the most

general approach possible. Figure 4.11 shows an example of how the “ raw”

field of the log is composed, using a random log as an example.

It is easy to understand that this particular log has the same format as

the one in in Figure 3.7 while it is carrying information about a different

application. This is possible thanks to the log4j standard and thus, finding

a way to perform feature extraction on this entity would mean being able

to perform in on every application following this standard. Differently from

Anomaly detection in which we were able to find a reliable methodology

which has been proved to be valid by the literature, in this case we had

to create our own algorithm. In fact, it is hard to find some open-source

log parsers which could fit our solution since some were created for a very

specific situation while others had some prerequisites that were not satisfied

in our situation like knowing beforehand the format of the logs. Our idea is

to group these logs into a finite number of clusters in such way that we could

tell how many logs of each group have been produced by the application in

50



Figure 4.11: A Log from the family banker portal.

a given period of time. To do this we need to extract keywords from logs

and then use a clustering algorithm that could group them based on these

words, the entire process is explained ahead.

By exploring the logs, we realized that depending on the error message

they carried, some of them were much longer than the others, often because

this message reported the Java class which triggered the error which in a

complex application could mean up to hundreds of recursive calls. To give

an insight of the complexity and heterogeneity of the logs in Figure 4.12 we

plot using a logarithmic scale on both axes the distribution of the number

of words in each log, obtained by splitting them using as a separator every

possible punctuation symbol. It is clear how logs could take any form, from

very few words up to ten thousand, the maximum recorded is a log with

13305 words.

The first step is to clean the logs; this is done not just by splitting the words

using any possible punctuation but we need to distinguish the parts carrying

information with the one who do not.

Our log cleansing approach could be divided mainly in the following steps:

1. Eliminate every single variable part in the logs, these may include

numbers in an alphanumeric word. As already mentioned in Chapter

2, logs are composed by a fixed part, set by developers, that indicates

the type of event and a variable part, set by the application in real

time.

2. Eliminate all queries: some logs were caused by some queries which

generated an error. For this level of analysis, we can't go deep into

analyzing the weight of each query but we content about knowing
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Figure 4.12: Distribution of words in the logs.

which error a query generated.

3. Eliminate extremely verbose descriptions. As mentioned before Some

logs reported the class generating the error with the consequences

previously described and shown. We decided just to keep the Java

error reported by dropping other useless information.

4. Eliminate stopwords.

An example of the result of this process can be seen in 4.13.

It is evident how for every log only keywords are kept while unintelligible

parts are discarded. Another achievement of this step having reduced the

number of total log: from 1484090 logs as initial data to 670156 after the

cleansing process as shown in Figure 4.14. This is due to the fact that many

logs contained just punctuation or unintelligible alphanumeric sequences like

“\uxa782” which do not bring any information. Our hypothesis has been

confirmed by expert technicians which work on the machine every day, in

fact they revealed that those kind of logs are remnants of an old logging

system used before which explains why there are so many of them.

Now that we have a list of keywords for each log, to cluster them we need

to find the most relevant ones. First, we explore the distribution of their

frequencies as shown in Figure 4.15. We can see that while some words ap-

pear more than 130000 times, a large quantity of them are appearing very
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Figure 4.13: Cleansing process on a log.
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Figure 4.14: Distribution of words in the logs after cleansing process.

rarely, some lower than 10 times. For this reason, we made the following

assumption: uncommon words are more meaningful than the most common

ones for identifying a cluster of log.

Figure 4.16: Distribution of tf-idf model scores.

To bring this concept in our algorithm we used calculated tf-idf function for
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Figure 4.15: Distribution of occurrences of keywords.

every word in log history which is composed by 2443 distinct words spread

in 670156 logs for a total of almost 17 million total words. The goal of

this step is having a dataset composed by a n-dimensional vector, where

n is the number of distinct word, for every log in the dataset so that we

could use it as an input for k-means clustering algorithm. Since k-means

is computationally expensive and we had to use only our laptops, we could

not continue the algorithm using all dataset, therefore we split the entire

corpus using just 10% of the logs obtained by random sampling. On this

slice we calculated tf-idf statistics, this mean that it is very unlikely that

all words are considered in this model It would be therefore misleading to

show the most relevant words according to the calculated model, for this

reason in Figure 4.16 we show just the distribution of the scores per word

with respect to the percentage to help the reader.

Having now the tf-idf statistics, we can calculate k-means clustering. Figure

4.17 shows the value of WSS we obtained for the following values of k:

a We first run the algorithm using an evenly spaced array of k, from 20

to 150 with step 10, in order to have a generic idea of the trend of

WSS function. We considered the elbow to be around k=80.

b We run the algorithm again for every k between 70 and 90 in order to

focus the analysis around the elbow. Unfortunately, the trend becomes

55



linear in this interval meaning that there is no proper elbow.

The consequence of Figure 4.17 (b) is that we have no proper indication on

the value of k to set. We decided to set k=80 since it looks like a proper

elbow in Figure 4.17 (a) and choosing any larger k would bring few additional

information while forcing us to deal with a larger value of dimensions in input

to the final Anomaly Prediction model.

Remembering that we used only 10% of logs for performance issues, we need

to include the remaining 90%. To do that we simply use the newly created

model to “predict” the unused records. To test if the clustering model was

correct we analyzed the distribution of logs per cluster for both sample logs

and the history logs, here shown in Figure 4.18. From the distribution we

see that the proportion between clusters are equal both in the sample and

the history, therefore we can safely assume that we would have obtained a

similar result if we run k-means algorithm using all dataset.

By looking at the distribution, it appears that there are two clusters, there

named as C1 and C2 which alone contains roughly 35% of the total logs.

For the sake of completeness, we show an example of log belonging to those

clusters and compare them. C1 contains logs that, once cleaned, appear like

this:

• [executethread, queue, weblogic, kernel, default, self, tuning, info, get-

columnlabel]

These two clusters may seem very similar but they differ from the last word.

As long as these words could appear irrelevant, they actually have both a

high tf-idf value, around 0.96 each, which casts them very far one from the

other in the vector space. If we explore C3 instead we see that is starts

diverging more to the previous ones, in fact a typical log is composed as

follows:

• [executethread, queue, weblogic, kernel, default, self, tuning, info, gri,

start, getindex, service, method]

To complete the exploration on the composition of the clusters we show two

logs of C79:

• [executethread, queue, weblogic, kernel, default, self, tuning, info, busi-

ness, prodottocartabo, chiamata, prodottocartabo, loadfeatures, con, in-

put]
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Figure 4.17: Within cluster sum of squares for different k.
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Figure 4.18: Distribution of logs into clusters for both sample and history logs.

• [executethread, queue, weblogic, kernel, default, self, tuning, info, es-

eguita, query, per, popolare, una, lista, entityrecuperata, bmed, dao,

entity, dettbenef, con, executethread, queue, weblogic, kernel, default,

self, tuning, info, business, prodottocartabo, chiamata, prodottocartabo,

loadfeatures, con, input]

It is clear now that there are words, the initial ones, which are common in

almost all logs and therefore influences less the calculation of the distances

between them. Moreover, by exploring clusters with lower cardinality it is

easier to find heterogeneous logs since this is where are grouped logs that are

not so distant one from another because they carry more unimportant words.

As last observation, we noted that there is no cluster in which appear two

different log4j severity level, mentioned in Table 3.2, meaning that they were

of great help in clustering logs. The second step of the anomaly prediction

algorithm is now concluded, it took in input a raw log and it returns as

output a number, representing its cluster, along with its timestamp. The

entire flow is resumed in Figure 4.19.
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Figure 4.19: Log clustering process schema step-by-step.

4.4 Anomaly prediction

This is the final step of our algorithm. The goal is to use applicative logs

to predict the next infrastructural anomaly. The previous two steps can be

considered as a preparation step for this goal: with anomaly detection we

built a dataset of target variable using anomaly score while with log parsing

we transformed raw logs into real vectors so that we can use them as input

for the model.

The main problem in combining those two steps together is that they are

independent one from another such as they sampled data asynchronously

thus meaning that we had to resort to some kind of aggregate measure.

Before seeing how we managed to do this we must recall that data coming

from Oracle Enterprise Manager had a time span of 30 days while the ones

coming from Splunk over 7 days. To build a dataset we could therefore use

only the span dictated by Splunk thus discarding 23 days of infrastructural

metrics which, anyway, were useful to build a more consistent anomaly scor-

ing. This reduction caused the metrics log dataset to fall from 18765 entries

to 3824. Figure 4.20 shows the different distribution of infrastructural and

applicative logs in this period.

The lower amount of sample in November 10 is due to the fact that we

started gathering data from the afternoon of that day. We can see that
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Figure 4.20: Distribution of logs during analyzed week

if the number of collection for infrastructural metrics remains more or less

the same while for applicative logs it is less homogeneous. This is due to

the fact that infrastructural metrics are sampled at a constant rate while

applicative logs are produced in response to an event, in fact we can see that

for November 11 and November 12 we have lot less collection with respect

to the other days because they were respectively Saturday and Sunday and

thus they corresponded to a period in which the portal was poorly used.

To aggregate such different data, we used a multiple sliding windows tech-

nique which composed by two hyperparameter: the first one is ∆t which is

the width of our sliding window and the second one n, representing the num-

ber of sliding window we consider at the same time. This second parameter

could sound tricky but it allows us to consider a wider time span composed

by smaller ones, the reason for this choice will be soon presented. To better

understand this we start by showing how we aggregated both kind of logs.

Applicative logs are the simpler ones, in fact it is enough to tell how many

logs of a certain cluster were produced during ∆t. This is done by summing

all occurrences of different clusters thus populating a count event matrix,

this is shown in Figure 4.21.

Infrastructural logs require a more sophisticated procedure since anomaly

score is a continuous attribute. First, we calculate for each time window

of width ∆t the mean of the anomaly scores that resides into it and then

we calculate the mean of the means of n consequent sliding windows. For-

mally: given a set of m anomaly scores (ak1, a
k
2, . . . , a

k
m) produced during

time window tk, the mean anomaly score of this window is calculated as:
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Figure 4.21: Applicative log aggregation example with ∆t of 1 minute
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µk =
∑

i = 1m
aki
m

(4.11)

Then, given gk the group (tk, tk+1, . . . , tk+n), of n consecutive time windows

to consider, we calculate the mean anomaly score of gk as:

Θk =
k+n∑
i=k

µi
n

(4.12)

Figure 4.22 explains graphically these quantities.

Figure 4.22: Example of multiple sliding windows technique using n = 2

Note that calculating Θk as a mean of means is different from calculating

as the mean of all records of n consecutive time windows, in fact Θk gives

equal weight to the anomalies reported during a window regardless of the

amount of records it contained.

A point can therefore belong to one and only one time window but belongs to

n sliding windows. This new quantity, Θk , will become the target variable

of the anomaly prediction algorithm. Our choice is led by the fact that

Θk allows to consider a wider time span at the same time, thus using more

information for each prediction, while allowing us to still predict the anomaly

score for the next ∆t. Given k the next time window for which we would

like to know the mean of anomaly scores, Θk−n+1 would be the quantity
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we predict. By knowing it, it is possible to calculate µk from the newly

predicted in the following way:

µk = nΘk−n+1 −
k−1∑

i=k−n
µi (4.13)

To bind applicative log collections with Θk we have to make the following

assumption: application logs do not immediately influence anomaly score

but their effect becomes visible in the near future. This assumption has

been discussed along with the experts currently monitoring the system and

has been considered valid because single errors in the application are often

managed by internal procedures like the load balancers and cause issues

only when they occur in groups. Moreover, since the anomaly prediction

will be running continuously ingesting data in streaming, we cannot predict

Θk using applicative logs that incurred during this time period because it

hasn not finished yet: we have to wait until Θk is finished to group the

applicative logs and thus it would be like predicting an anomaly score from

the past, thus making the algorithm useless. This sliding window mechanism

would also bring in the model the concept of time without recurring to

computationally expensive neural networks, in fact by predicting Θk+1 we

use also some of the applicative logs that appeared in Θk thus making our

model learn consequentiality.

The goal of the algorithm is then to estimate µk, the mean of anomaly

scores in the next time window, by predicting Θk using the aggregation of

the applicative logs incurred during (tk−n, tk−n+1, . . . , tk−1) . The models

used and the results are discussed in the next chapter.
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Chapter 5

Results and considerations

In this chapter we are going to present the models we used and the results

we obtained. We anticipate that the kind of data we had, in terms of quan-

tity and quality, made basically impossible to achieve an acceptable result,

that is why we preferred to focus on all the motivation that led to this poor

conclusion rather than obsessively trying to find a way to fit a model.

Before showing the results, we remember that independently from the ma-

chine learning model one wants to use, our anomaly prediction approach has

two hyperparameters: the width in minutes of the sliding window, ∆t, and

the number of sliding window to consider to calculate which we indicate as

n. For this reason, we will plot the results obtained while changing these 2

parameters.

For this task we decided to try three different models: Random Forest re-

gression, Support Vector Machine regression and Neural Networks. For the

first two model we show, for each hyperparameter configuration, the one

giving the best results according to a grid search parameter tuning method

while for neural networks we use a fully connected neural network made by

2 layers of 20 neurons each. The choice of these model was led by the fact

that we are not looking for the perfect algorithm but we rather prefer to

identify which model could fit data best in order to give additional insight

on its behavior.

For each model we performed the following preprocessing steps: the dataset

is first split in training set and test with a 80/20 proportion using the last

20% of the entries as test set. This kind of split is done for two reasons:

the first is that we have very few data so we have to use as much instances

as we can to train the model, the second reason is that we want to test the

capacity of the model to predict future anomalies based on the past ones

and thus random sampling the occurrences would be less meaningful.



Figure 5.1: Results for n = 2 and ∆t = 10 on the test set.
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Figure 5.2: Results for n = 2 and ∆t = 10 for all dataset.
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After having done that, we performed Principal Component Analysis on the

whole dataset by fitting it in such a way that it could explain 99% of the

variance on the training set. This resulted in a dimensionality reduction of

the dataset from 80 dimension to less than 30, depending on the current

choice of the hyperparametrs. We can now proceed by showing the results.

We started by taking n = 2 and ∆t = 10 for which the above mentioned

PCA returned 24 dimensions.

Figure 5.1 shows for each model the difference between its predictions and

the actual test set. On the x-axis, we use the index of the test samples which

are taken in temporal order while on the y-axis we have the corresponding

value of Θk.

It can be easily seen that each model fails in correctly predicting the anomaly

score, our guesses about the reason of this behavior are explained later on.

Before diving deep into our speculation about this topic, we first check that

the problem does not resides into the models themselves. To do this we used

the models to predict the very same instances they have been trained on,

the results of this test are shown in Figure 5.2. We can see that for SVM

and Random Forest the model tried to fit data, without actually managing

to fit it. Any attempt of fitting by modifying the parameters, even by trying

to overfit, has resulted in failure. For the Neural Network instead the model

did not even manage to fit the training set by even showing peaks where

there was none. Any attempt done by changing the network layout, batch

size, epoch or any other parameter did not end in better results.

Our major hypothesis is that the cause of this behavior resides in data,

which in fact have a lot of characteristic that can harm the final result.

First of all, we are in possession of few data, we recall that, due to the fact

that we lacked of computational power, we could use just a single week of

application logs with which we had to build our dataset, ending up with few

thousands of data points. Another important aspect of data is that they

come from a single machine of a test environment, this has two important

consequences. The first is that we are considering just one machine of a

cluster composed by two, thus we are forced to completely ignore the fact

that this cluster acts as a single entity thanks to its protocol of load bal-

ancing and other features. There is no guarantee that this factor actually

harms the quality of data but due to the nature of our goal this hypothesis

is strongly suggested. The second consequence is that test environments

are used, by a matter of fact, for testing purposes meaning that they do

not experience the same kind of load as the production one. This includes
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also using them to check how the application could react to certain circum-

stances by simulating, for example, infrastructural faults or overflowing it

with requests and thus overloading it in a very brief, artificial time. This

means that there is a high possibility that the nature of our data was too

artificial to be actually predicted by a machine learning model.

Other motivations for such poor results, not excluding the precedent given

one, could also reside in our approach. The final dataset in fact comes from

the output different steps which altered original data, this includes for exam-

ple the number of cluster we used for application logs and more specifically

the very definition of Θk. We recall that it comes from a function accepting

two hyperparameters: n and ∆t that has to be chosen manually. To check

whether this was the reason of the failure of the machine learning models

we tried different combinations of them. An example is given in Figure 5.3

and Figure 5.4 which show the results we obtained by choosing n = 20 and

∆t = 1 : a diametrically different approach with respect to the previous

one. Please note that the choice of using again a total of 20 minutes for the

second plot is purely casual. It can be easily seen that the behavior is almost

identical to the preceding one: on the test set none of the model manages to

correctly predict Θk and using the same model for predicting the very same

sample on which they have been trained on suggests that Support Vector

Machine and Random Forest are trying to fit data without success while

Neural Network manages to mispredict even them.

Different combinations of n and ∆t were tried without giving different re-

sults in terms of quality. It has to be noted that by decreasing ∆t we increase

the number of total records in the dataset, normally this should give a boost

to our performances but as we just seen this did not happened. The main

reasons for this could still reside in the nature of data discussed above or,

worse, in our approach which is based on various assumption, listed during

this thesis, thus there is the possibility that one or more of the steps com-

posing this algorithm actually harms data.

To analyze this possibility, we now recap all steps by listing what factors

could have caused this behavior.

The first thing to consider has been already discussed at the beginning of

Chapter 3: we are taking in consideration infrastructural anomalies consid-

ering just one cause for them such as applicative faults. There are other

odds to consider: infrastructural anomalies could be caused by other minor

infrastructural faults incurring for a prolonged period or even some external

factor for which we are blind.
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Figure 5.3: Results for n = 20 and ∆t = 1 on the test set.
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Figure 5.4: Results for n = 20 and ∆t = 1 for all dataset.
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With the limited resources and information, we had at disposal we acted

under the hypothesis that the main cause of infrastructural anomalies was

to be searched into applicative logs but, looking at the results, there is no

actual guarantee in this assumption. To build an anomaly prediction algo-

rithm one should examine deeply the causes of such anomalies in order to

take every of them in consideration during the prediction phase.

The first step of the algorithm the anomaly detection which actually seems

to be performing quite well. One thing to be noticed about this algorithm is

that it tends to identify as anomaly any situation deviating from one consid-

ered normal. This could include also situations in which a deviation is not

actually a bad behavior: for example, if the cpu-usage percentage always

orbits around 60% but in a certain situation drops to 20% we could not be

sure whether this comes from a malicious cause, for example a sudden fail-

ure in reaching data to elaborate leading to an idle CPU, or simply comes

from a moment in which the application is not used. Our hypothesis is that

any normal behavior has already been recorded with enough sample to be

able to form a cluster big enough to be recognized by Local Outlier Factor

algorithm for different k. To fine-tune this algorithm one should dive deep

into the nature of every metrics understanding for every of them when a

behavior must be considered malicious or not thus modifying the algorithm

by consequence.

The second step of the algorithm is log parsing. Here we acted on data

on two major ways: by cleaning the logs and by clustering them. One

chance could be that during the cleansing process we dropped part of the

log which we considered irrelevant but in reality is not. The heterogeneity

of the logs coming from this step anyway let us think that this possibility

is very unlikely, yet it has to be considered anyway. About the clustering

process instead, one thing that could raise an alarm is the graph of the

WSS measure, which had no clearly defined elbow. This could be caused

by several reasons: first, as previously mentioned, the log cleansing process

could have dropped some important information. Secondly, the vectoriza-

tion process of each log done with the tf-idf algorithm could actually be

harming data, this anyway looks very unlikely to us since we could see that

important words, like the severity levels of log4j, are very well distinguished

in different clusters of logs. Another motivation could reside into the clus-

tering algorithm which could not be the optimal one for this task. For this

reasons different type of clustering, like spectral clustering, have been tried

with no different results. The last, and maybe the simplest reason is that
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the nature of data simply could not never lead to a clear division between

logs thus never resulting in to an evident elbow in the WSS graph.

The last step is anomaly prediction in which we correlate applicative logs

to a custom metric, Θk, derived from the single anomaly scores calculated

during the first step. It is possible that the way we calculated this value

could have brought to a loss of information about the real anomaly situ-

ation into infrastructural metrics. A cause for this could be the usage of

the mean instead of another metric like median or max or, worse, the entire

concept revolving around Θk is completely wrong and we should have used

a completely different approach.

As we have seen, there are many possible reason explaining such poor re-

sults. Our strongest hypothesis is that the strongest factor is the fact that

data comes from a single machine of a test environment in a cluster of two.

We believe that speculating even more than what has already been done on

what step could have cause the failure of the anomaly prediction is no use.

The first thing to do should be, instead, testing the algorithm using a reli-

able dataset coming from a production environment from a sufficiently long

period, only after having seen these results one could really start making

considerations.
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Chapter 6

Conclusion

In this thesis we presented our approach to implement an anomaly predic-

tion algorithm by correlating applicative and infrastructural logs. Despite

the results were not satisfying we believe that, since we respected the under-

lying requirement of implementing a generic approach, the steps this work is

composed of and the methodologies used could inspire and guide the reader

into implementing his own anomaly prediction system. Anomaly detection

works in fact agnostically with respect to the metrics recorded by the system

while application log parsing performs log cleaning and keyword extraction

on the raw text of the logs thus ignoring the protocol they have been col-

lected with. We have therefore implemented and explained an anomaly

prediction approach that could be extended at least to any Oracle applica-

tion running on a machine, since they all follow the same paradigm in terms

of information collected, but could also to any other system replicating the

same situation.

6.1 Future developments

The most urgent task is to gather enough data from the production environ-

ment to test the algorithm on a real case environment. If these new results

were satisfying the next step would be deploying the algorithm to predict

anomalies for every machine in a cluster. Figure 6.1 shows the architecture

we designed.

There would be a separate anomaly prediction model for every machine in

the cluster, the whole anomaly prediction system would be hosted and ran

on a separate machine. This machine which would gather all information

needed by using Splunk API, this includes also infrastructural metrics, which

are collected by Oracle Enterprise Manager as explained in Chapter 3 and



Figure 6.1: Architecture of the anomaly prediction for an enterprise system.

then forwarded to Splunk. This is done because it would be more efficient

and easy for the algorithm to have a single point of input instead of several

ones. The idea is to perform online anomaly prediction, to achieve this we

split the architecture into two parts: a Running Layer and a Training Layer.

On the training layer data are read from Splunk and stored into a Hadoop

File System from which they are manipulated by Spark to perform the var-

ious steps of data preparation listed in this thesis. Once data is prepared

we train the different anomaly prediction models by using Spark Regressors

from the Spark ML package [21] and then we deploy them.

On the Running Layer instead new data is ingested in a mini-batch of ∆t

minutes of data and stored again in HDFS, then it is prepared in a similar

way to the training layer, sent as input to one of the previously trained

anomaly prediction model (depending on the machine the data belongs to)

and then the predicted anomaly scores are sent to Splunk again by using

a Splunk agent like the one already installed on the machines we analyze.

We send data back to Splunk because it can also be used as a dashboard
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to visualize current anomaly levels and can be set to send alarms if needed.

The two extraction of data, the one from the training layer and the mini-

batch of the running layer are separated to not to create excessive overhead

while reading data in this last mentioned layer since we want the anomaly

prediction to be as immediate as possible.

In order to keep track of every possible changes in the system behavior and of

new, unseen events, the idea is to train each anomaly prediction model once

in a while, for example once in three weeks. Since it is possible that with

the amount of data stored in a production environment the training of the

algorithms could require up to hours, this task has to be performed during

the night where anomaly prediction is far less crucial. If needed, it is also

possible not to train all models together but to distribute the jobs during

several nights in order to keep the system running as much as possible.
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