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Abstract

Nowadays computational fluid dynamics has reached a high level of importance due
to the possibility of applying it in several branches of science and engineering, con-
cerning for example aerodynamics or naval applications. There are, however, some
complications arising from the complexity of the problem to be solved. The governing
equations of the physical model, namely the Navier-Stokes equations, are computa-
tional expensive to solve. One way to avoid this obstacle is provided by simplified
flow models. A classical simplified model is based on the potential flow theory, where
an elliptic Laplace equation for the flow potential is derived from the Navier-Stokes
equations by introducing suitable simplifying hypothesis. The computational com-
plexity is reduced, still keeping the capability of the model to describe the underlying
physical reality in relevant operating conditions.

In this work we analyze and implement a Boundary Element Method to solve 2D
and 3D potential flows around lifting bodies (airfoils and wings), analyzing different
geometrical configurations. This method is powerful because it decreases the dimen-
sionality of the problem transforming it from a 3D problem into a 2D problem defined
over the boundary of the domain, thus reducing the degrees of freedom of our model.
The Boundary Element Method approach yields a correct treatment of problems in in-
finite domains, however it works only for small angles of attack, for which the potential
flow assumption is adequate. In potential flow models the viscosity is neglected, so that
only inviscid features, as lift, can be captured but not viscous effects, as turbulence or
boundary layers. The numerical model developed in this thesis is a modification of
the program π-BEM [1] based on an existing open source finite element library called
deal.II [2, 3]. The existing solver was able to deal with a potential flow for non
lifting bodies in three dimensions. We extended it in order to treat the simulation of
lifting bodies also in the two dimensional cases. As the problem in this case becomes
nonlinear, a suitable iterative procedure to treat the nonlinearity has been introduced.

A key feature of the model is the possibility to adapt the grid by refining and
projecting it over given CAD geometries, so that the input is not the mesh describing
the domain, but an initial mesh, the curves and surfaces describing the geometry and
a list of parameters that specifies how much and with which strategy the initial mesh
should be refined. This possibility is useful in order to refine the grid in the regions
where we want to capture better the solution.

A new way to impose the Kutta condition is proposed. This condition states that
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the jump of pressure at the trailing edge has to be null. This is a nonlinear condition
and different strategies have been proposed in literature such as the recollocation of
the trailing edge points upwind or normally to the wake in order to desingularize the
integrals at trailing edge and to have distinct nodes at the trailing edge [4], the Kutta
condition in term of velocity [5], the decomposition of the velocity at the trailing edge
in its components [6] and the linearization of the Kutta condition [7].

In this work, we present a method that is able to compute the pressure at the
trailing edge and solve the nonlinear problem, so that neither grid node recollocation
nor linearization of the Kutta condition are required.
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Introduzione

In questa tesi vogliamo simulare il flusso attorno a una superficie portante in due e
tre dimensioni. Il modello che abbiamo deciso di utilizare è basato sulla teoria di
flusso a potenziale. Questa teoria risulta di grande interesse nel campo aerodina-
mico, ma bisogna porre particolare attenzione quando si introduce la scia e quando
si vuole imporre la condizione di Kutta, cosa che ci permette di trattare corpi por-
tanti. Questa condizione, la quale afferma che non c’è salto di pressione al bordo di
uscita, viene trattata con uno schema non lineare in modo da poterla imporre. Per
l’approssimazione numerica del problema abbiamo utilizzato un metodo agli elementi
al contorno (boundary element method, BEM) basato sulla formulazione integrale
delle equazioni governanti il modello fisico del problema. Questo metodo risulta par-
ticolarmente efficace in quanto la risoluzione del problema non avviene all’interno del
dominio, ma sul suo bordo. Grazie a questa potenzialità è possibile trattare casi di
flusso esterno dove il dominio ha estensione infinita.

La peculiarità del nostro lavoro consiste nell’imposizione della condizione di Kutta,
che viene trattata in modo differente da quanto fatto finora in letteratura [4, 7, 5].
Vedremo come imporre questa condizione ci porti a dover risolvere un sistema di
equazioni non lineare, cosa che comporta l’uso di tecniche adeguate per poter ot-
tenere la soluzione del nostro problema. La parte più importante, infatti, è riuscire
a imporre la condizione di Kutta così come è enunciata, ovvero che il salto della pres-
sione al bordo d’uscita di un profilo portante debba essere nullo. Essendo questa una
condizione non lineare, per imporla dobbiamo utilizzare un metodo di Newton in cui
dovremo andare a calcolare il residuo e lo Jacobiano del sistema di equazioni.

Un’altra potenzialità del nostro algoritmo consiste nel potere dare in input una
superficie CAD con i suoi bordi e una griglia iniziale. Automaticamente, specificando
delle strategie di raffinamento, si ottiene la mesh finale sulla quale viene poi risolto
il problema. Questa possibilità fa sì che non dobbiamo creare a parte una mesh per
ogni profilo CAD che vogliamo utilizzare nelle simulazioni, ma è invece possibile
eseguire l’algoritmo applicandolo a casistiche diverse e automaticamente otteniamo la
griglia su cui lavorare. Avendo la possibilità di raffinare la griglia all’interno del nostro
algoritmo, è possibile attuare una strategia di raffinamento adattivo, in cui, dopo aver
risolto il problema per una mesh poco fitta, essa viene raffinata in alcune zone per poter
meglio cogliere l’andamento della soluzione. È possibile iterare questo procedimento
per più volte, in modo da riuscire a calcolare soluzioni sempre migliori.
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Riportiamo di seguito la struttura dell’elaborato. Nel capitolo 1 viene descritto il
modello fisico e il procedimento per passare dalle equazioni di Navier-Stokes a quelle
di Laplace e Bernoulli, specificando sotto quali ipotesi questa trasformazione sia pos-
sibile. In secondo luogo è illustrato il procedimento per passare dalla formulazione
differenziale a quella integrale, in cui la risoluzione del problema passa dal dominio al
suo bordo con la conseguente riduzione della dimensionalità. Vengono poi introdotte
adeguate condizioni al contorno del profilo e condizioni inerenti la trattazione della
scia e del bordo d’uscita, in particolar modo la condizione di Kutta. Vengono dunque
analizzate le equazioni finali da risolvere e, una volta ottenuta la soluzione, in che
modo ottenere le altre quantità fisiche di nostro interesse come la pressione.
Nel capitolo 2 è trattato il problema presentato nel precedente capitolo introducendone
un’opportuna discretizzazione numerica. Sono introdotti quindi opportuni spazi fun-
zionali in cui viene risolto il problema. Senza aver ancora imposto la condizione di
Kutta si ottiene così un sistema lineare di equazioni. Nel momento in cui viene im-
posta la continuità della pressione al bordo d’usicta allora viene illustrato in che modo
riuscire a ricavare il gradiente del potenziale e il metodo di Newton che ci permette di
imporre la condizione di Kutta. Nelle ultime sezioni viene trattato lo spostamento della
scia e il calcolo delle velocità su di essa, dato che compaiono degli integrali ipersingo-
lari di difficile trattazione.
Nel capitolo 3 viene illustrato il procedimento di generazione della griglia sia in due
che in tre dimensioni, con particolare attenzione alla trattazione dei nodi doppi e degli
hanging nodes.
Nel capitolo 4 vengono presentati i risultati ottenuti in questo lavoro. Dopo aver ana-
lizzato le proprietà di convergenza del metodo rispetto alla griglia di calcolo e alla
discretizzazione della scia, i risultati sono confrontati con quelli presenti in letteratura.
In tre dimensioni vengono presentati anche casi con geometrie più complesse o con la
presenza di più corpi.

Il lavoro svolto ha mostrato come il modello proposto è in grado di imporre della
condizione di Kutta in modo adeguato e come le potenzialità legate al raffinamento
della griglia all’interno dell’algoritmo siano molteplici.
Le evoluzioni di quanto presentato in questo elaborato sono parecchie: la trattazione
del problema non stazionario, la soluzione del problema per profili sottili, la paralleliz-
zazione dell’algoritmo, l’introduzione di un metodo ad alto ordine e l’integrazione di
questo metodo con l’interazione barca-onde [8] per la simulazione di timoni e derive.
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Introduction

In this thesis we want to simulate a flow on a lifting surface in two and three dimen-
sions. The model we decided to use is based on the potential flow theory. This theory
is of great interest in the aerodynamical field, but it is necessary to have some atten-
tions on the introduction of the wake and the imposition of the Kutta condition, that
will allow to deal with lifting bodies. This condition, that states that the pressure is
continuous at the trailing edge, will be treated in a nonlinear way. For the numerical
discretization of the problem we use the boundary element method, based on the inte-
gral formulation of the equations governing the physical model of the problem. This
method is particularly effective because the solution of the problem is not computed
in the domain, but on its boundary. Thanks to this potentiality, it will be possible to
treat external flow cases where the domain has infinite extension. The peculiarity of
our work will be the imposition of the Kutta condition, that will be treated in a dif-
ferent way than what is present in literature [4, 7, 5]. This condition is a nonlinear
equation, that it is often linearized in order to have a final linear system of equations.
In our work we will impose this condition adopting a fully nonlinear strategy. We will
see how imposing this condition will lead us to solve a nonlinear system of equations,
involving the use of adequate techniques in order to obtain the solution of the problem.
The most important thing, in fact, will be imposing the Kutta condition as it is stated,
that is the pressure jump at the trailing edge must be null. Since this is a nonlinear
condition, in order to solve it we will use a Newton method in which we will have to
specify the residual and the Jacobian of the system of equations. Another potentiality
of our algorithm consists in being able to give in input CAD surfaces and edges and an
initial grid and automatically. After having specified the refinement strategies in fact,
we will obtain the final mesh on which the problem will be solved. This possibility will
ensure that we don’t have to create previously a mesh for every CAD surface that we
want to use in the simulations, but it will be possible to execute the algorithm applying
it to different cases and automatically we will obtain the grid on which the solution
will be computed. Having the possibility to refine the grid during the execution of our
algorithm, it will be possible to use a strategy of adaptive refinement, in which, after
having solved the problem with a coarse mesh, the grid will be refined in some regions
in order to improve the accuracy of the solution. This procedure can be iterated more
times, in order to be able to obtain always better solutions.
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State of art
Many fields of engineering benefit from accurate and reliable solvers of Boundary In-
tegral equations. The most noteworthy equations that admit this formulation are the
Laplace equation, the Helmholtz equation and the Stokes system. This method has
been applied to problems involving hydrodynamic flows ([5, 9, 10, 8, 11, 12, 13, 14]),
flows around aerodynamic lifting bodies ([4, 15, 16, 6, 17]), structural mechanics
([18]), electrostatics ([19]), quantum mechanics ([20]) and acoustics ([21]). The most
convenient aspect of the Boundary Integral formulation is that the solution at each
point of the domain is expressed in term of convolutions between a fundamental so-
lution and the boundary trace of the solution or its normal gradient. This convolution
is done on the domain’s boundary so the method can reduce the dimensionality of the
problem. The associate numerical method is the Boundary Element method which is
able to reduce the number of degrees of freedom if compared to the more common Fi-
nite Elements or Finite Volumes approaches. The reduction of dimensionality however
is limited by the fact that the resulting algebraic system is dense, so the computational
cost of assembly and the cost of solving a linear system are O(n2) flops, since the used
method is an iterative GMRES Krylov solver.
In aerodynamic and hydrodynamic applications panel methods have been widely used,
since the first work of Hess and Smith (1962) [22]. Different panel methods have been
proposed in order to apply them to a variety of engineering aspects. The first methods
were based on a velocity formulation in which the boundary condition on the body
surface was satisfied through the computation of the velocity. Morino (1974) [6] in-
troduced a panel method based on Green functions, so that the primary unknown is
the potential. This formulation is more stable, but with low order panel method, where
the potential is assumed constant over a panel, there are significant errors while com-
puting the velocities with finite difference schemes near the trailing edge and at the
tip of the lift-generating surface. One improvement to this method was given by Lee
et al. in [23, 24] where a higher-order method was implemented employing B-spline
basis functions. Since the derivative of the basis functions are known exactly, there
is no need to compute the velocity by numerical differentiation, so one limit of the
panel method is solved. This procedure however restricts the basis functions to be
B-splines. Key ingredient in panel methods, when treating with weakly singular and
singular integrals, is shifting the collocation points in order to avoid singular terms as
in [25]. In this work there will not be a desingularization of these integrals, but they
will be treated with bidimensional Telles, Lachat, Watson or Duffy quadrature formula
[26, 27, 28, 29].
When describing a potential flow around aerodynamic lifting bodies, it is necessary to
introduce the so-called Kutta condition. This condition, that states that the pressure
jump at the trailing edge has to be null, has been widely studied in the literature [30],
since its statement is simple but the implications and the possible implementation in
a 3D framework are several. In the numerical framework is not easy to impose this
condition, since it is nonlinear and because it has to be imposed at the trailing edge,
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a physical region where there coexist the body and the wake. In order to avoid the
nonlinearity of the problem, some methods introduce a linearization strategy [7, 5, 6]
where the null pressure jump is imposed by relations between the velocity’s compo-
nents. In order to avoid the same geometrical location of the trailing edges on the
two sides of the wake, some models [4] shift that points upwind or normally to the
wake and impose two different boundary integral equations, then, passing to the limit
as these points approach the trailing edge, they recover the Kutta condition. Another
procedure proposed in [15] consists in expressing the velocity by means of the exact
gradients of the basis function in analytical way. This procedure however restricts
the treatment only to a limitate number of cases. In our work we show how to im-
pose the Kutta condition in a general way independent on the basis functions, without
shifting the trailing edge’s nodes and imposing that the pressure jump at the trailing
edge should vanish.
One problem arising from the presence of sharp edges is that the normal vectors and
so the normal components of the potential gradient have a jump across the interface.
For continuous elements a possible solution is the so-called double nodes technique
[31] where continuity is preserved on the solution while its normal gradient is allowed
to have jump across edges. New challenges come from the developing of Computer
Aided Design technologies, in particular the creation of a grid over that geometry
specified by user provided files either for FEM [32] or for BEM [33] communities.
The techniques used in this work have been presented in [1] and have been extended in
this work to 2D configurations. Having the possibility to create a grid in the algorithm,
it will be possible to refine the mesh with adaptive strategy as presented in [34].

Thesis structure
The elaborate is structured as follows. In chapter 1 we describe the physical model
and the procedure to derive from Navier-Stokes equation the Laplace and Bernoulli
equations, specifying under which assumptions this transformation is possible. Then
the integral formulation of the potential flow model is derived. We will introduce
suitable boundary conditions on the profile and conditions on the treatment of the
wake and the trailing edge, in particular the Kutta condition. We will then analyse the
final equations that we have to solve and, after having obtained the solution, we will
be able to find other physical quantities such as the pressure.
In chapter 2 we will treat the problem presented in the previous chapter bringing it
into a numerical framework. We will introduce suitable functional space, in which
we will solve our problem, and the collocation method. Without the imposition of
the Kutta condition we would obtain a linear system of equations. When we want to
impose the pressure continuity at the trailing edge, then we will show how we can
obtain the potential gradient and we will illustrate the Newton method that will allow
us to impose the Kutta condition. In the last sections we will present how to treat the
wake displacement and the computation of the velocities on it, since there will appear
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hypersingular integrals of difficult treatment.
In chapter 3 we will present the procedure of grid generation either in two or in three
dimensions, with particular attention to the treatment of double nodes and hanging
nodes.
In chapter 4 numerical results obtained in this work are presented and discussed. In
particular, grid convergence analysis and comparison with available results are used to
asses the accuracy of the proposed model.

The work carried out has shown that the imposition of the Kutta condition with this
innovative method is adequate and that the refinement of the grid inside the algorithm
may have different possible applications.
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Chapter 1

Mathematical model: boundary
integral equation and Kutta condition

The problem we want to solve consists in finding the velocity and the pressure of the
fluid around a lifting body moving at velocity V∞. Choosing a reference system fixed
with the body, the problem can be recast, as in Figure 1.1, so that the velocity field
V(x, t) has a farfield condition V(x, t) = V∞. The wing is oriented so that its elonga-
tion direction forms an angle θ (the angle of attack) with respect to wind direction. The
equations governing this phenomenon are the Navier-Stokes equations.

X

Y

y

θ

x

V∞

Figure 1.1: 2D visualization of the problem. V∞ is the inflow velocity, X and Y is the
global coordinates system, x and y is the local coordinates system attached to the body,
θ is the angle of attack.

In this chapter we will derive the equations describing the potential flow around a
lifting object. Under specific assumptions on the physical model, we will show how
the Navier-Stokes equations governing the flow of a Newtonian fluid can be recast into
the Laplace equation for the velocity potential field and the Bernoulli equation. This
approximation will lead to a simpler problem, which can be useful in the analysis of
external flows resulting in a cheaper numerical approach than computational fluid dy-
namic simulations based on Navier-Stokes.
Starting from a potential flow, we will derive the boundary integral formulation for
the potential model, in which we naturally treat the presence of a wake surface de-
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taching from the trailing edge and allowing for the generation of a lifting force. Such
formulation allows for the definition of a numerical problem which only requires the
discretization of the boundary of the fluid domain [35].
Particular attention will be devoted to the importance of the wake vortex sheet in the
potential flow theory for lifting bodies [30]. In particular we will throughly discuss
the imposition of the Kutta condition which requires that the wake detaches from the
trailing edge and that no pressure discontinuity is observed across the wake. This is
of capital importance to avoid the D’Alembert paradox: a pure potential flow cannot
produce a lifting force.
The physical assumptions on which the potential flow theory is based are

• irrotational velocity field ∇ × V = 0;

• incompressible flow ∇ · V = 0;

• negligible body forces;

• negligible viscous forces;

• simply connected fluid domain Ω.

1.1 Derivation of the potential flow equations
We now show how to transform the Navier-Stokes equations into the Laplace and
Bernoulli equations defining the potential flow around a body. For a complete treat-
ment, see e.g. [36]. Consider a spatial domain Ω ⊆ Rd with d = 2, 3 and the incom-
pressible Navier-Stokes equations

∂V
∂t + (V · ∇)V +

∇p
ρ
− ν∇2V = g, (1.1)

∇ · V = 0, (1.2)

where V denotes the velocity of the fluid, p the pressure, ρ the fluid density, ν the
kinematic viscosity and g the external forces for unit of mass, like gravity acceleration.
The equation (1.1) is the momentum balance law whereas the equation (1.2) is the mass
conservation law that is also a condition of incompressibility.
Under the assumptions of potential flow, we can neglect the viscous term −ν∇2V and
we obtain the incompressible Euler equations

∂V
∂t + (V · ∇)V + ∇

pρ = g, (1.3)
∇ · V = 0. (1.4)

As the Reynolds number is defined as Re = UL
ν

, where U is the velocity of the fluid
with respect to the object, L is the characteristic linear dimension and ν is the kinematic
viscosity, assuming negligible viscosity corresponds to take the limit of Reynolds num-
ber that goes to ∞. Obviously, neglecting the kinematic viscosity the model will not
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be able to describe viscous effects such as turbulence or boundary layers, but it will
model only inviscid phenomena.
Moreover in the potential theory we assume that the fluid motion is irrotational, that is
∇ × V = 0, so there exists a scalar function (called potential) Φ such that ∇Φ = V and
the governing equations become

∂Φ
∂t + 1

2 |∇Φ|2 +
p
ρ

+ χ = C(t), (1.5)

∇2Φ = 0, (1.6)

where χ is the external force potential, such that g = −∇χ and C(t) is a time dependent
arbitrary function. Equation (1.5) is called Bernoulli equation and equation (1.6) is
the Laplace equation. In particular we want to consider only steady flows and we
can consider negligible body forces, since in most aerodynamics problems the gravity
force does not play a relevant role, so the Bernoulli equation becomes

1
2
|∇Φ|2 +

p
ρ

= C, (1.7)

where C is a time independent constant. We can find the potential Φ solving the
Laplace equation, then we obtain the pressure from the Bernoulli equation.
Given the linearity of the gradient and Laplace operator, the potential Φ can be written
as Φ = φ∞ + φ, where φ denotes the perturbation potential induced by the presence of
the wing and φ∞ = V∞ · x with V∞ the inflow velocity of the fluid and x the spatial
coordinates, thanks to the linearity of the Laplace operator and since ∇φ∞ = V∞ and
∇2φ∞ = 0, we obtain

∇2Φ = 0⇐⇒ ∇2φ = 0, (1.8)
1
2 |∇Φ|2 +

p
ρ

= C ⇐⇒ 1
2 |∇φ + V∞|2 +

p
ρ

= C. (1.9)

1.2 Boundary integral equation
Since the Laplace equation (1.6) admits a fundamental solution, see [37], it can be
reformulated in a boundary integral equation, in order to reduce the dimensionality of
the problem so that we will be able to use the boundary element method.
We consider a body defined by a bounded open set B ⊂ Rd with d = 2, 3 with Lipschitz
boundary Γ. B is surrounded by another Lipschitz boundary Γ∞ (non intersecting Γ).
We call Ω the open set with ∂Ω = Γ

⋃
Γ∞ as shown in Figure 1.2.

We multiply the Laplace equation by an arbitrary function G and integrate over Ω,
thus we obtain this formulation∫

Ω

−∇2φGdΩ = 0 ∀G. (1.10)
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Γ

Γ∞
Ω

Figure 1.2: Spatial domain.

We integrate by parts twice and we exploit the divergence theorem∫
Ω

∇φ · ∇GdΩ −

∫
∂Ω

G
∂φ

∂n
dS = 0 ∀G, (1.11)

−

∫
Ω

φ∇2GdΩ +

∫
∂Ω

φ
∂G
∂n

dS −
∫
∂Ω

G
∂φ

∂n
dS = 0 ∀G, (1.12)

where ∂φ

∂n = ∇φ · n, n is the outward normal to the domain and ∂Ω = Γ ∪ Γ∞.
We impose two conditions on Γ∞, in order to be able to treat unbounded domains. In
particular we want

φ→ 0 and
∂φ

∂n
→ 0, (1.13)

so the integral contributions on Γ∞ becomes null and equation (1.12) becomes

−

∫
Ω

φ∇2GdΩ +

∫
Γ

φ
∂G
∂n

dΓ −

∫
Γ

G
∂φ

∂n
dΓ = 0 ∀G. (1.14)

Now we choose the function G : Rd → R with d = 2, 3 such that

−∇2G(x − y) = δ(x − y), (1.15)

which is the so-called free space Green’s function and represents the fundamental solu-
tion of the Laplace operator, that is the potential Φ(x) evaluated in x given a pointwise
source δ(x − y) concentrated in y.
In the 2D case, G is given by

G(x − y) = −
1

2π
ln(|x − y|) (1.16)

∂G
∂n

(x − y) =
x − y

2π|x − y|2
· n, (1.17)
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while in the 3D case, we have

G(x − y) =
1

4π|x − y|
(1.18)

∂G
∂n

(x − y) = −
x − y

4π|x − y|3
· n. (1.19)

By substituting the Green’s function in (1.14), we obtain

φ(x) =

∫
Γ

G(x − y)
∂φ

∂n
(y)dΓ −

∫
Γ

φ(y)
∂G
∂n

(x − y)dΓ with x ∈ Ω, (1.20)

where the integral terms are only on the body surface, so we have reduced the dimen-
sionality of the problem.
The first term in the right-hand side of (1.20) is referred to as single layer potential
(SLP) while the second one as double layer potential (DLP). If we know the poten-
tial φ(x) and it’s normal derivative ∂φ

∂n (x) on Γ we can compute the potential in any
point x in the domain Ω. The SLP is continuous across Γ, instead the DLP has a jump
discontinuity, in particular when x approaches a smooth surface Γ from inside Ω

lim
x→Γ−

∫
Γ

φ(y)
∂G(x − y)

∂n
dΓ =

∫ PV

Γ

φ(y)
∂G(x − y)

∂n
dΓ +

1
2
φ(x), (1.21)

where PV means Cauchy Principal Value defined as∫ PV

Γ

φ(y)
∂G(x − y)

∂n
dΓ := lim

ε→0

∫
Γ\Bε

φ(y)
∂G(x − y)

∂n
dΓ, (1.22)

where Bε is the ball of radius ε centered in x ∈ Γ. Then equation (1.20) becomes

1
2
φ(x) =

∫
Γ

G(x − y)
∂φ

∂n
(y)dΓ −

∫
Γ

φ(y)
∂G
∂n

(x − y)dΓ with x ∈ Γ. (1.23)

In general, if Γ is not smooth, the right way to write the equation (1.23) is

αφ(x) =

∫
Γ

G(x − y)
∂φ

∂n
(y)dΓ −

∫
Γ

φ(y)
∂G
∂n

(x − y)dΓ with x ∈ Γ, (1.24)

where α is the Cauchy Principal Value, which is the fraction of the solid angle by which
the point x sees the domain Ω. This is equivalent to consider the trace of equation
(1.20). In this case the kernels G(x − y) and ∂G

∂n (x − y) become weakly singular (but
integrable) and singular respectively.
For the integrals to be bounded, φ ∈ H

1
2 (Γ) and ∂φ

∂n ∈ H−
1
2 (Γ). Equation (1.24) is called

boundary integral equation.
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1.3 Boundary conditions
For well posedness, the boundary integral equation must be complemented by a suitable
set of boundary conditions. We have already seen in equation (1.13) that it’s necessary
to require that far from the body the perturbation potential and its normal derivative
vanish

lim
|r|→∞

φ(r) = 0 and lim
|r|→∞

∂φ

∂n
(r) = 0

in particular we require

φ = O(||r||)−1 or equivalently V = O(||r||)−2

otherwise the integration on Γ∞ would not be zero. These boundary conditions are
imposed on Γ∞.
On Γ we impose the non penetration condition, that means that the flow does not cross
the boundary of the solid body, so the normal component of the total velocity of the
flow must be null

∂Φ

∂n
= 0→ V∞ · n + ∇φ · n = 0→

∂φ

∂n
= −V∞ · n. (1.25)

Now we have reduced the initial problem to the simpler one, so we have to solve:
Given V∞, find φ such that

∇2φ = 0 in Ω (1.26)
lim
|r|→∞

φ(r) = 0 on Γ∞ (1.27)

∂φ

∂n
= −V∞ · n on Γ. (1.28)

We stress that the model derived so far is not able to reproduce any kind of lifting
effects, see [35]. In section 1.4 we will introduce the Kutta condition and the wake
effects to recover such phenomena.

1.4 Wake modeling and Kutta conditions
Even in presence of a lifting body, the solution of this problem has always null cir-
culation (Figure 1.3a) and does not generate lift. This obviously does not represent
the physical observations. This problem is called d’Alembert’s paradox, according to
which for incompressible and inviscid potential flow the aerodynamic force is zero on
a body moving at constant velocity.
In the most common practice [38] such problem is overcome thanks to the introduc-
tion a wake surface Γw in the domain Ω as shown in Figure 1.4. Physically the wake
is a thin layer in which high velocity gradients cause a concentration of vorticity and
viscous forces [35]. In the lifting body potential theory such vortical layer — which is
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(a) Without Kutta condition.
(b) With Kutta condition.

Figure 1.3: Difference between wings without and with the imposition of the Kutta
condition.

paramount to lift generation — is introduced as a surface of discontinuity for the po-
tential field. The introduction of this surface makes also the two dimensional domain
simply connected.
The wake is usually introduced in the boundary integral formulation as an additional
boundary surface Γw and we will discuss the spatial collocation of such surface and
the boundary conditions prescribed on it. So we divide Γ into Γb for the body and
Γw for the wake. We assume that Γb is smooth with a sharp trailing edge and that the
wake is a thin line in 2D or surface in 3D detaching from the trailing edge in which is
concentrated the vorticity present in the physical wake.
In principle we do not know which is the shape of the wake so its position is an un-
known and it influences the solution, so it has be found in a suitable way. In section
2.4 we describe a methodology to find this solution.

ΩΓ∞

Γb
Γw

Figure 1.4: 2D spatial domain with the introduction of the wake.

In order to obtain the boundary conditions of the wake, we have to split this thin layer
into two boundaries logically distinct, but geometrically identical, so we define

Γw+ = Γw + εn and Γw− = Γw − εn, (1.29)
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where n is the unit normal to Γw, such that, when ε → 0 we obtain again Γw.
In the same way, the trailing edge is splitted in upper trailing edge T E+ and lower
trailing edge T E−, two logical distinct points in 2D and curves in 3D, but geometrically
identical. So we define

T E+ = T E + εn and T E− = T E − εn, (1.30)

such that, when ε → 0 we obtain again the T E, as shown in Figure 1.5.

Γw

Γ+
w

Γ−w

T E+

T E−

T E εn

Figure 1.5: Definition of upper and lower trailing edges and Γw+ and Γw− .

A first condition on ∂φ

∂n on the upper and lower sides of the wake (obtained applying
the mass conservation law across the wake surface) [39] reads[

∂φ

∂n

]
= 0 on Γw. (1.31)

The jump of the normal component of the potential gradient must be null. This ensures
there is no mass accumulation on the wake.
On the other hand, we allow discontinuity of the potential

φ(T E+) , φ(T E−) and φ(Γw+) , φ(Γw−). (1.32)

A further condition is derived from the momentum balance law. It states that the
pressure must be continuous across the wake

p+ = p−. (1.33)

In order to write this condition in terms of the potential, we pass through the Bernoulli
equation (1.5) and we obtain a condition on the Lagrangian derivative of the potential
jump on the wake

Dw
[
φ
]

Dt
= 0, (1.34)

where Dw[φ]
Dt =

∂[φ]
∂t + Vw · ∇

[
φ
]

and Vw is the wake velocity. In case of steady flows,
which are the focus of this work, equation (1.34) implies that the potential jump across
the wake must be constant. In particular to fulfill equation (1.34) we can impose that
the potential jump across the wake is equal to the one across the trailing edge along a
streamline [

φ
]

= φ(T E+) − φ(T E−) on Γw. (1.35)

23



Γw

∂Γw

∂Γw

T E

Figure 1.6: Definition of ∂Γw (red lines) and of the trailing edge (blue line) for 3D
problems.

This condition allows to have discontinuity on the velocity across the wake, that is
what we see in reality, because the gradient of the velocity is concentrated in the wake,
that is only a thin layer in our model, so we can capture this phenomenon as a discon-
tinuity. Moreover equation (1.34) ensures that the wake is a flow surface, id est the
wake is tangential to the fluid velocity in each point.
In 3D problems, in order to ensure ∇φ ∈ L2

loc(Ω) we have to impose the further condi-
tion

[
φ
]
∂Γw

= 0 [30]. Where ∂Γw is intended to be the lateral boundary of Γw without
considering the trailing edge as shown in Figure 1.6.
The problem now is:
Given V∞, find φ such that

∇2φ = 0 in Ω

lim|r|→∞ φ(r) = 0 on Γ∞
∂φ

∂n = −V∞ · n on Γb[
∂φ

∂n

]
= 0 on Γw[

φ
]

= φ(T E+) − φ(T E−) on Γw[
φ
]

= 0 on ∂Γw.

(1.36)

It’s not sufficient to impose these conditions, since we also have to impose a condition
on the trailing edge, that is the Kutta condition: the pressure has to be continuous at
the trailing edge.
This condition in the literature is treated in different ways. There are some techniques
[4] of recollocation of the geometrical trailing edge points upwind or normally to the
wake in order to have two distinct points so that you can impose two different boundary
equations, which is not possible if the two points coincide. Another technique [6] is
expressing the Kutta condition in term of velocity by decomposing it at the trailing
edge and imposing equal components tangential to the wake, that is a sort of lineariza-
tion of the problem.
In this work we impose the Kutta condition at the trailing edge, letting it be com-
posed by the same geometrical point, with two distinct logical points. The condition
is exactly that the pressure jump is null.
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So in addition to the equations in (1.36) we add

p(T E+) − p(T E−) = 0 on T E. (1.37)

We know from the Bernoulli equation (1.7) that p(T E±)
ρ

= −1
2 |∇Φ(T E±)|2 + C so we

obtain

p(T E+) − p(T E−) = −
1
2
|∇Φ(T E+)|2 + C +

1
2
|∇Φ(T E−)|2 −C

= −
1
2
|∇Φ(T E+)|2 +

1
2
|∇Φ(T E−)|2

= −
1
2
|∇(φ(T E+) + φ∞)|2 +

1
2
|∇(φ(T E+) + φ∞)|2

= −
1
2
|∇φ(T E+)|2 − (∇φ(T E+),∇φ∞) −

1
2
|∇φ∞|

2

+
1
2
|∇φ(T E−)|2 + (∇φ(T E−),∇φ∞) +

1
2
|∇φ∞|

2

= −
1
2

(|∇φ(T E+)|2 − |∇φ(T E−)|2)

−(∇(φ(T E+) − φ(T E−)),V∞). (1.38)

So the Kutta condition in term of potential becomes

−
1
2

(|∇φ(T E+)|2 − |∇φ(T E−)|2) − (∇(φ(T E+) + φ(T E−)),V∞) = 0. (1.39)

This is a nonlinear condition and requires a suitable numerical treatment to solve the
nonlinearity as it will be discussed in section 2.3.
We must point out that the condition of no pressure jump at the trailing edge is not al-
ways sufficient. As several numerical simulations at higher angles of attack suggested,
we can incur a solution very similar to the one without the wake, as illustrated in Figure
1.7.
As suggested by Bernoulli equation (1.7) Kutta condition only prescribes that the ve-
locity magnitudes on the top and bottom sides of trailing edge assume the same values.
Yet when the top and bottom trailing edge velocities have the same norm, but different
directions, the Kutta condition is still satisfied. In such cases no significant lift force
is observed, and additional treatment is required to obtain a lifting solution. So, to
reach higher angles of attack, we impose the additional condition that requires that
the longitudinal components of the top and bottom trailing edge velocities are equal,
namely

∇Φ(T E+)x − ∇Φ(T E−)x = 0, (1.40)

where x is the coordinate tangential to the wake in 2D, while in 3D it is the coordinate
normal to the trailing edge and tangential to the wake. This condition is stronger
than the one that considers only the pressure jump. In 2 dimensional problems, the
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T E+

T E−

V+

V−

Figure 1.7: Trailing edge velocities for high angle of attack.

satisfaction of equation (1.40) implies that of equation (1.37), since, imposing one
component and considering tangent velocities at the trailing edge, the other component
is automatically imposed (Figure 1.8). For clarity, if we assign a value to V+

x , V+ is
automatically fixed since it is tangential to the body. Thus imposing the continuity of
the longitudinal component Vx also results in that V+ = V− and V+

y = −V−y (see Figure
1.8).

V+
x

V+

V−

V−x

T E+

T E−

V+
y

V−y

Figure 1.8: 2D trailing edge condition on the velocity’s components.

The 3D procedure is the same and the components are shown in Figure 1.9. In this
case, imposing equal components along the tangential coordinate to the wake has no
specific implication on the other components.
We recall that the trailing edge of the body and of the wake are the same geometrical
point, but three distinct logical points. In Figures 1.7,1.8,1.9 and 1.10, we splitted them
in order to have a clearer vision.
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V+
x

V−x
V−z

V+
z

V−y

V+
y

T E+

T E−

T EWAKE

Figure 1.9: 3D trailing edge condition on the velocity’s components.

1.5 Final mathematical model
We denote by u the term related to the potential

u :=
{

φ on Γb[
φ
]

on Γw,
(1.41)

and with h the term related to its normal derivative

h :=

 ∂φ

∂n on Γb[
∂φ

∂n

]
on Γw.

(1.42)

Thanks to the Neumann boundary conditions of non penetration on the body and no
mass accumulation on the wake, we know the value of h on the boundaries

h :=
{
−V∞ · n on Γb

0 on Γw.
(1.43)
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We can rewrite the single layer potential and the double layer potential terms as a
function of h and u as follows∫

Γ

G
∂φ

∂n
dΓ =

∫
Γb

G
∂φ

∂n
dΓ +

∫
Γw+

G
∂φ

∂n
dΓ +

∫
Γw−

G
∂φ

∂n
dΓ

=

∫
Γb

G
∂φ

∂n
dΓ +

∫
Γw

G
[
∂φ

∂n

]
dΓ =

∫
Γ

GhdΓ (1.44)∫ PV

Γ

φ
∂G
∂n

dΓ =

∫ PV

Γb

φ
∂G
∂n

dΓ +

∫ PV

Γw+

φ
∂G
∂n

dΓ +

∫ PV

Γw−

φ
∂G
∂n

dΓ

=

∫ PV

Γb

φ
∂G
∂n

dΓ +

∫ PV

Γw

[
φ
] ∂G
∂n

dΓ =

∫ PV

Γ

u
∂G
∂n

dΓ. (1.45)

Now we can recast the original problem (1.36) in the following way:
Given h, find u that satisfies

α(x)u(x) +
∫ PV

Γ
u(y)∂G(x−y)

∂n dy =
∫

Γ
G(x − y)h(y)dy on Γb (1.46)

u(x) = u(T E+) − u(T E−) on Γw (1.47)
u(x) = 0 on ∂Γw, (1.48)

where u is also subject to the constraint due to the Kutta condition

p(T E+) − p(T E−) = 0 on T E+, (1.49)

and in case of high angle of attack to the additional condition

∇Φ(T E+)x − ∇Φ(T E−)x = 0 on T E+. (1.50)

If we denote by β the angle between the X axis and the trailing edge longitudinal
direction x, as shown in Figure 1.10, Equation (1.50) can be rewritten as

[
∇Φ(T E+) − ∇Φ(T E−)

]
·

 cos(β)
sin(−β)

0

 = 0 on T E+. (1.51)

The mathematical problem we have to solve is the following:
Given h, find u that satisfies

α(x)u(x) +
∫ PV

Γ
u(y)∂G(x−y)

∂n dy =
∫

Γ
G(x − y)h(y)dy on Γb (1.52)

p(T E+) − p(T E−) = 0 with x ∈ T E
u(x) = u(T E+) − u(T E−) on Γw

u(x) = 0 on ∂Γw.

There is however another unknown, that is the position of the wake, because the con-
dition on the potential jump on it is valid only if the wake is a flow surface. In order to
find its position, we have to compute the velocity in each point of the domain, so that
we will be able to align the wake with the flow. We call this procedure wake relaxation
and we describe it in detail in section 2.4.
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Γw

V∞

V+
x

V−x

x

y

V−
V+

T E−

β

X
Y

T E+

Figure 1.10: Trailing edge condition on the components: the velocities V+ and V−

calculated in the general coordinates system X Y are projected in the local one x y in
order to match the x components V+

x and V−x .

1.6 Postprocessing
Once we have computed the solution of the problem (1.53) in terms of the potential,
we can compute the velocities on the body, using a gradient recovery strategy on the
surface. The velocities field in Ω is calculated taking the gradient of the boundary
integral equation (1.20)

V(x) = ∇xΦ(x) = ∇xφ(x) + V∞

=

∫
Γb

∂φ(y)
∂n
∇xG(x − y)dy −

∫
Γb

φ(y)∇x
∂G(x − y)

∂n
dy

−

∫
Γw

[
φ(y)

]
∇x
∂G(x − y)

∂n
dy + V∞, (1.53)

where ∇x is the gradient operator applied to a function with respect to the variable x.
This formula is not well defined in the presence of edges since a hypersingular term
appears in ∇x

∂G(x−y)
∂n [30].
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In the 2D case, ∇x
∂G(x−y)

∂n is given by

∇x
∂G(x−y)

∂n = ∇x
∂G(r)
∂n

= − 1
2π|r|4

(
−r2

1 + r2
2 −2r1r2

−2r2r1 −r2
2 + r2

1

)
n, (1.54)

while in the 3D case, we have

∇x
∂G(x−y)

∂n = ∇x
∂G(r)
∂n

= − 1
4π|r|5

 2r2
1 − r2

2 − r2
3 3r1r2 3r1r3

3r2r1 2r2
2 − r2

1 − r2
3 3r2r3

3r3r1 3r3r2 2r2
3 − r2

1 − r2
2

 n. (1.55)

The presence of the hypersingular term in the integral for the computation of the ve-
locity gives problems in the numerical quadrature. So in order to obtain the velocity
on the body and on the wake we will show how to avoid the numerical integration of
this term in section 2.5.
We can also obtain the pressure using Bernoulli equation (1.7) and the pressure coeffi-
cients using the gradients of the potential calculated on the body

cp =
p − p∞
1
2ρ∞V2

∞

= 1 −
|∇Φ|2

V2
∞

. (1.56)

Another coefficient we can calculate is the lift coefficient. The lift L is defined as the
component of the force normal to the flow direction, while the lift coefficient CL is the
adimensional quantity.

CL =
L

1
2ρ∞V2

∞S
. (1.57)

In 2D simulations, the lift coefficient is the area of the surface between the curve of
the pressure coefficient, so it is the integral of the pressure coefficient.
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Chapter 2

Numerical method

In this chapter we introduce a discretization of the boundary integral problem (1.46),
(1.47) and the Kutta condition (1.49) introduced in the previous chapter. We show how
this nonlinear problem can be solved iteratively by computing a sequence of linear
problems until convergence.

2.1 Algebraic formulation
We introduce a suitable discretization of the boundary, then we define standard La-
grangian finite elements on Γ as basis functions for the unknown φ. The unknown
of the problem are the values of φ on the respective set of interpolatory points of the
Finite Element discretization. For a detailed treatment see [2, 3, 1].
We define a computational mesh defined as a regular decomposition Γh of the boundary
Γ. Such partition is composed of linear segments (for 2D problems) or quadrilateral
cells (for 3D problems). Each element is denoted by Kl and the discrete boundary
Γh is given by Γh =

⋃
Kl. Regular means that any two cells Kl,Km only intersects

on common faces, edges or vertices, and that there exists a mapping from a reference
cell K̂ such that the determinant of the Jacobian of this mapping is uniformly bounded
away from zero for all cells Kl. In all the computations carried out in this work we pro-
vide an extremely coarse grid and then we progressively refine it to obtain a solution
with specified accuracy. From the user’s perspective, this eases the mesh generation
problem, provided that the solver is aware of the underlying geometry on which the
mesh should be refined. In the next chapter we will present the procedure that allows
the generation of the computational mesh and its refinement on the desired wing ge-
ometry.
To put the boundary integral equation into a numerical framework approximating the
problem (1.46), we need to find suitable numerical approximation of both the BIE in-
tegrals and the unknowns φ and

[
φ
]
. To start with the unknown functions, let us define

the space Vh on Γh, such that

Vh := {φh ∈ C0(Γh) : φh|Kl ∈ Q
r(Kl),Kl ∈ Γh}, (2.1)
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where C0(Γh) is the space of continuous function over Γh, Qr is the polynomial space
of degree r defined on the cell Kl.
While the Galerkin method appears as the natural choice for FEMs, in the BEM frame-
work such discretization strategy results in a second integration of weakly singular
kernels. We know how to treat the singular integrals that naturally appear in the BIE
using specific quadrature formulas. Yet, a second integration would increase the com-
putational complexity of the BEM. Therefore we consider a common approach for the
solution of boundary integral equations in the engineering community, which is repre-
sented by the collocation boundary element method [40]. The collocation method con-
sists in replacing the continuous function φ with its numerical approximation φh ∈ Vh

which represents the discretized potential in the finite dimensional space, and collo-
cating the BIE on a number of points equal to the number of unknowns. When linear
finite elements are selected, such collocation points coincide with the nodes of the nu-
merical quadrilateral grid (Figure 2.1). Another possible choice would be to collocate

Figure 2.1: Linear finite element on quadrilateral cell.

the equations close to, but not on the boundary, in such a way the integrals appearing
in equation (1.24) would not be singular at all. However, if the domain presents sharp
corners or cusps, the point selection may not be straight-forward. In this work, we
collocate these points on the boundary Γh and on the trailing edge in order to deal with
the Kutta condition exactly. In our method there will be the possibility of having two
logical distinct points but geometrically identical at the trailing edge, so that we will
be able to impose two conditions, namely the boundary integral equation and the Kutta
condition.
Let ψ j(x) be the basis functions of Vh such that Vh = span{ψ j}

N
j=1, where N denotes the

dimension of the finite dimensional space, such that N = Nb + Nw where the numbers
of degrees of freedom are Nb on the body and Nw on the wake respectively, then for
any φh ∈ Vh we have

φh(x) =

N∑
j=1

φ jψ j(x), (2.2)
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so that φh is uniquely identified by the vector φ = {φ j}. In this framework, the degrees
of freedom are the values of the potential at the collocation points xi with i = 1, ...,Nb,
on the body, and the boundary integral equation becomes

α(xi)φh(xi) +
∫

Γb
φh(y)∂G(xi−y)

∂n dy +
∫

Γw
φh(y)∂G(xi−y)

∂n dy =∫
Γb

G(xi − y)∂φh(y)
∂n dy if xi ∈ Γb, (2.3)

where, on Γw, φh is the potential jump across the wake and the contribution in the right-
hand side of the jump of φh(y)

∂n is null for equation (1.31).
In the discrete form, equation (2.3) becomes

α(xi)
∑N

j=1 φ jψ j(xi) +
∑Kb

l=1

∑N
j=1

∫
Kl
φ jψ j(y)∂G(xi−y)

∂n dS

+
∑Kw

l=1

∑N
j=1

∫
Kl
φ jψ j(y)∂G(xi−y)

∂n dS =∑Kb
l=1

∑N
j=1

∫
Kl

G(xi − y)φ j
∂ψ j(y)
∂n dS if xi ∈ Γb, (2.4)

where φh(xi) in (2.3) is replaced with its discrete counterpart
∑N

j=1 φ jψ j(xi) in (2.4)
according to (2.2) with N as the number of degrees of freedom. The integral on Γb in
(2.3) is replaced with the summation of the Kb contributions obtained from the integrals
on the body cells. The same argument explained for the integrals on Γb holds for the
discretization of the integral on Γw. The integral of a function f (y) over each cell is
performed in the numerical framework according to∫

Kl

f (y)dS =

Nq∑
q=1

f (xq)Jq
l . (2.5)

The integration over each body cell is carried out through the sum of the discrete
values on the Nq quadrature nodes of the integral argument f (xq). Each element of
such sum is multiplied by Jl

q. It represents the value of the determinant of the local
Jacobian of the mapping from the reference cell K̂ to the cell Kl ∈ Γh at each quadrature
node xq and its corresponding quadrature weight. For the complete discussion of the
mapping, its Jacobian and the quadrature weights, we refer to [3]. The integrals on
the reference cell, that in discrete form is the summation on Nq, are performed using
different quadrature schemes. When the collocation point does not lie inside the cell we
simply use bidimensional Gauss scheme, if the collocation point is inside the current
cell we need a different strategy since the kernels G and ∂G

∂n are weakly singular, in
particular we use bidimensional Telles quadrature formula [26].
We can now write the linear system of equations

(A + N)φ = b, (2.6)
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where

Ai j = α(xi)ψ j(xi) (2.7)

Ni j =

Kb∑
l=1

Nq∑
q=1

ψ j(xq)
∂G(xi − xq)

∂n
Jl

q +

Kw∑
l=1

Nq∑
q=1

ψ j(xq)
∂G(xi − xq)

∂n
Jl

q (2.8)

bi =

Kb∑
l=1

Nq∑
q=1

G(xi − xq)
∂ψ j(xq)
∂n

Jl
q. (2.9)

Matrices A and N belong to RNb×N and vector b ∈ RNb . In particular, choosing the
collocation points xi as the support points of the nodal basis function ψi(x), we obtain
ψ j(xi) = δi j, where δi j is the delta of Kronecker. This choice simplifies the structure of
the matrix A, in fact it becomes diagonal.

Aii = α(xi) (2.10)
Ai j = 0 with i , j.

We also know, see [8], that for the internal problem

α(xi) = −

∫
Γb

∂G(xi − y)
∂n

dy, (2.11)

thus for external problem we obtain

α(xi) = 1 −
∫

Γb

∂G(xi − y)
∂n

dy = 1 −
Kb∑
l=1

Nq∑
q=1

∂G(xi − xq)
∂n

Jl
q. (2.12)

Considering that
∑N

j=1 ψ j(y) = 1 for Lagrangian elements, matrix A can be computed
summing up the columns of matrix N

Aii = 1 −
∑

j

Ni j. (2.13)

Equation (2.6) is satisfied on the body, that is for the φi corresponding to xi ∈ Γb.
The treatment of external flow for non lifting bodies was already implemented in π-
BEM. We now discuss the imposition of the nonlinear Kutta condition on the nodes at
the trailing edge, and describe both the resultings nonlinear problem and the Newton
method adopted for its resolution. All such aspects of implementation are fundamental
for the potential flow simulations past lifting bodies and were implemented in the
framework of the present master thesis work.
On the wake we have to impose other conditions for the degrees of freedom associated
to the collocation points xi with i = 1...Nw. We assume now that the wake is a flow
surface, then in section 2.4 we will show which is the procedure in order to ensure
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this assumption. On Γw we have to impose the analogous of condition (1.47) in the
algebraic form [

φ
]
i = φ(T E+

i ) − φ(T E−i ) with i : xi ∈ Γw, (2.14)

or equivalently [
φ
]
i − φ(T E+

i ) + φ(T E−i ) = 0 with i : xi ∈ Γw, (2.15)

where the notation T Ei refers to the corresponding node on the trailing edge of the
node with index i, id est xi belongs to the streamline leaving T Ei.
On the boundary of the wake ∂Γw excluding the trailing edge we have the same of
equation (1.48) in algebraic form[

φ
]
i = 0 with i : xi ∈ ∂Γw. (2.16)

These conditions (2.15) and (2.16) on the wake in discrete form generate a matrix
C ∈ RNw×N with Cii = 1 and for the xi ∈ Γw we have Ci j = −1 for j = T E+

i and Ci j = 1
for j = T E−i and the other entries null, while for the xi ∈ ∂Γw all the other entries
are null. The right-hand side related to the wake conditions has null entries. We can
generate the full matrix describing the system of equations as:

Z =

[
A + N

C

]
and the full right-hand side as:

d =

[
b
0

]
where Z ∈ RN×N and d ∈ RN . In order to solve this linear system of equations, since
the matrix A + N and so matrix Z is non symmetric and dense, we use an iterative
GMRES Krylov solver. We here remark that such iterative solver is also used to solve
all the other linear systems involved in our numerical methodology. In particular, the
linear systems resulting from the gradient recovery strategy (equation (2.23)) and the
linear system needed to invert the Jacobian in the Newton iterations (equation (2.42)).
Both parts of the overall numerical model will be illustrated in the next sections.
On the lower trailing edge we have to impose the boundary integral equation. In this
case, since at the trailing edge we have two geometrically identical, but logically dis-
tinct, points in writing such boundary integral equation we have to consider an angle
α for both the φ at upper and lower trailing edge sides as shown in Figure 2.2.
So equation (1.46) becomes

α(T E+)φ(T E+) + α(T E−)φ(T E−) +
∫

Γb
φ(y)∂G(x−y)

∂n dy +
∫

Γw

[
φ
]
(y)∂G(x−y)

∂n dy =∫
Γb

G(x − y)∂φ(y)
∂n dy with x ∈ T E−. (2.17)

On the trailing edge we have to impose the Kutta condition on the upper side, instead
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α(T E+)

α(T E−)

Figure 2.2: BIE at the trailing edge considering the right angle.

on the lower side we can use equation (2.6) with the correction discussed in equation
(2.17), so it is enough to modify the rows of the linear system. In particular the angle
α calculated on the trailing edge using equation (2.13) is the total angle seen by the
trailing edge, so we have to divide by two and put the result in Aii and in Ai j with j the
corresponding index of the upper trailing edge associated with the lower trailing edge
of index i.
The system of equations of the discretized problem is linear, but when introducing the
Kutta condition nonlinear equations will be added.

2.2 Kutta condition
We cannot write equation (1.39) in the algebraic form, since the gradients of the basis
functions ψ j are not defined in the collocation points xi but only inside a single cell of
the mesh, in fact across the cells the gradients are discontinuous. So we have to recover
the value of the φ gradient on the nodes and then calculate the value of equation (1.39).
We want to find a function ∇Φ that is the L2-projection of the φ gradient we have on
the cells ∇Φc, so for each component k = 1, . . . , d we solve

(∇Φ[k], v) = (∇Φc[k], v) ∀v ∈ Vh. (2.18)

Using the basis functions, we can write ∇Φ(x)[k] = ci[k]ψi(x) and we choose as test
functions again the basis functions ψ j so that we obtain

ci[k](ψi, ψ j) = (∇Φc[k], ψ j) ∀ j, (2.19)

where the gradient of the total potential can be split in the two contributions deriving
from the gradient of the perturbation potential and the inflow velocity of the fluid.

∇Φc[k] = ∇φc[k] + V∞[k]. (2.20)

Moreover the gradient of the potential is the sum of two contributions, one normal to
the cell, the other tangential

∇φc[k] = ∇Sφc[k] + ∇φc[k] · n, (2.21)
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where ∇S is the superficial gradient operator.
Using again the basis functions we can write the gradient of the potential on a cell

∇Φc[k] =

N∑
i=1

(φi∇Sψi[k] +
∂φi

∂n
[k]ψi) + V∞[k]. (2.22)

In algebraic form equation (2.18) becomes

Mc[k] = r[k], (2.23)

where c[k] is the vector with components ci[k] and M is a mass matrix

Mi j =

∫
Γ

ψiψ jdS =

K∑
l=1

Nq∑
q=1

ψi(xq)ψ j(xq)Jl
q. (2.24)

In particular using Lagrangian elements, we do not have to integrate all over the do-
main Γ, but it is sufficient to integrate over the cells having that share the degree of
freedom with index i, since otherwise the product of the basis functions is null.
The right-hand side is given by

ri[k] =
∫

Γ

(∑N
i=1(φi∇Sψi[k] +

∂φi
∂n [k]ψi) + V∞[k]

)
ψ jdS

=
∑K

l=1
∑Nq

q=1

(∑N
i=1

(
φi∇sψi[k](xq) +

∂φi
∂n [k]ψi(xq)

)
+ V∞[k]

)
ψ j(xq)Jl

q. (2.25)

Solving the linear system (2.23) we obtain the coefficients of the L2-projection of the
gradient.
Once we have recovered each component of the gradient, we can construct the full
gradient, hence we can calculate the pressure on each node.

p =
1
2
|∇Φ|2 =

1
2

 d∑
k=1

∇Φ[k]2

 . (2.26)

In particular we can use the procedure described to evaluate the pressure on the upper
and lower sides of the trailing edge, once the potential vector φ = {φ j} is assigned. But
in order to determine the correct potential φ, we need to impose the Kutta condition
and find the potential resulting in a null pressure jump at the trailing edge. As Kutta
condition is quadratic, the result in nonlinear problem is solved by means of Newton
iteration scheme.

2.3 Newton method for the nonlinear algebraic problem
We want to impose the condition of null pressure jump at the trailing edge. We have
seen in section 2.2 how to evaluate the pressure values on the trailing edge, once φ =
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{φ j} is assigned. The correct φ value is then the one satisfying the nonlinear system
f(φ) = 0. To find such value, we resort to Newton iterations.
Given an initial guess φ0, we seek for the increment ∆φ such that f(φ0 + ∆φ) = 0. If
we use a first order approximation of this equation, we obtain f(φ0 + ∆φ) = f(φ0) +

f′(φ0)∆φ = 0, that leeds to solve this iterative system of equations

f′(φn)∆φ = −f(φn) (2.27)
φn+1 = φn + ∆φ. (2.28)

We first find the increment ∆φ then we update the value of φn+1 and continue this
procedure until f(φn+1) is small, in particular until the L2-norm of f(φn+1) is less than
a certain threshold.
In order to solve iteratively the Newton scheme, we use the package NOX (Nonlinear
Object-Oriented Solutions) of the library Trilinos [41], that is designed to solve
large-scale systems of nonlinear equations. This package needs two main functions:
the first is the evaluation of f(φ), the second is the result of the product between f′(φ)
and the increment ∆φ given in input.
We have to define the residual f(φ) for the problem as follows

f(φ) =


(A + N)φ − b on Γb and T E−[

φ
]
− φ(T E+) + φ(T E−) on Γw[

φ
]

on ∂Γw

p(T E+) − p(T E−) on T E+.

(2.29)

In order to solve the problem also with high angle of attack, on the upper trailing edge
we can also impose

∇Φ(T E+)x − ∇Φ(T E−)x = 0 on T E+. (2.30)

The Jacobian matrix is given by J = f′ = ∂f
∂φ

. We have to take the residual and
differentiate it by the variable φ. On the body and the lower trailing edge the function
f is a linear function of φ, so the Jacobian is simply

J = (A + N) on Γb and T E−, (2.31)

on the wake we impose the same constraint as in the residual

Jii = 1 JiT E+ = −1 JiT E− = 1 for nodes i on Γw, (2.32)

on the lower trailing edge we have to impose

J =
∂p(T E+)
∂φ

−
∂p(T E−)
∂φ

, (2.33)

or alternatively

J =
∂∇Φ(T E+)x

∂φ
−
∂∇Φ(T E−)x

∂φ
. (2.34)
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We want to know

∂p(T E)
∂φ

=
∂1

2

(∑d
k=1 ∇Φ[k]2

)
∂φ

=
1
2

d∑
k=1

∂∇Φ[k]2

∂φ
=

d∑
k=1

∇Φ[k]
∂∇Φ[k]
∂φ

. (2.35)

The values of ∇Φ[k] are obtained by the gradient recovery procedure introduced in
section 2.2, while we do not have the values of ∂∇Φ

∂φ
, because we have only numeri-

cal values of the gradient at the trailing edge. We need to exploit a method that can
bring back the derivatives of the gradients. Using the package Sacado of the library
Trilinos, that is a set of automatic differentiation tools, we can build the residual
in (2.23) bringing back all the derivatives of the gradient’s components. In particular,
while we compute the right-hand side as shown in equation (2.25), we differentiate this
formula by the variable φ. Differentiating equation (2.23) on both sides, we obtain for
each component k

MJ∇Φ[k] = Jrhs[k], (2.36)

where M is the mass matrix, J∇φ is the Jacobian of the gradient that we want to know
and Jrhs is the Jacobian of the right-hand side of equation (2.25) that we have built
by differentiation. The most important thing is that it is not necessary to solve this
equation for the matrix J∇Φ, because we do not need to know it. Our goal is to calculate
the product between the Jacobian matrix J and the increment ∆φ. So multiplying
equation (2.36) by the increment ∆φ, we obtain

MJ∇Φ[k]∆φ = Jrhs[k]∆φ. (2.37)

The term J∇Φ[k]∆φ is what effectively we need to put in the function of NOX. So this
equation leeds to

J∇Φ[k]∆φ = M−1Jrhs[k]∆φ. (2.38)

In order to solve this system, the NOX routine needs the scalar product function between
a given increment ∆φ and the matrix M−1Jrhs[k]. So, in our implementation of such
function, we first multiply the increment ∆φ by the Jacobian matrix Jrhs[k] to obtain
t = Jrhs[k]∆φ. Then to evaluate the action of M−1 on t we solve the linear system
My = t, the result of which is the jacobian matrix vector product required by NOX
program.
In particular if we consider the imposition of the Kutta condition expressed in equation
(2.33), the Jacobian is

s =

d∑
k=1

diag (∇φ[k]) M−1Jrhs[k]∆φ, (2.39)

where diag (∇φ[k]) is the diagonal matrix such that diag (∇φ[k])ii = ∇φ[k]i.
Otherwise if we impose equation (2.34) the Jacobian is

s = M−1Jrhs[1]∆φ cos(β) + M−1Jrhs[2]∆φ sin(−β). (2.40)
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So we can summarize that the product between the Jacobian matrix and the increment
is

J∆φ =


(A + N)∆φ on Γb and T E−

∆φi − ∆φT E+ + ∆φT E− on Γw

∆φ on ∂Γw

sT E+ − sT E− on T E+,

(2.41)

where sT E+ and sT E− are the components of the s vector at the indices referring the
degrees of freedom on the upper and lower trailing edges respectively.
NOX will solve iteratively these equations

J(φn)∆φ = −f(φn) (2.42)
φn+1 = φn + ∆φ. (2.43)

In particular also the internal equation (2.42) is solved iteratively with a GMRES
Krylov solver by this package in order to obtain the increment, in fact the program
needs the effect of the Jacobian matrix on a vector, not its inverse.
The routine of the algorithm combined with NOX tools is presented in the pseudocode
Algorithm 1.

Algorithm 1 Newton’s algorithm
1: Newton loop:
2: Assemble mass matrix M
3: Assemble Jacobian matrices Jrhs[k]
4: Recover the gradient and the pressure Mc[k] = r[k]
5: Compute residual f(φ)
6: if residual < threshold then
7: Exit Newton loop
8: else
9: Jacobian loop J∆φ = −f(φ)

10: Update potential value φn+1 = φn + ∆φ

2.4 Wake relaxation routine
In section 1.4 we pointed out that the position of the wake is an unknown of the
problem. At the stage of the solution of the nonlinear problem in section 2.3, we
only impose the conditions (1.35) and (1.31). There is indeed no guarantee that the
shape guessed for the wake results in a streamline or flow surface. Thus, we iteratively
adjust the wake position and repeat the solution of the nonlinear system until the wake
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position is stable.
The first problem is how to move the wake to guarantee that it is aligned to the stream-
lines detaching from the trailing edge. To impose this, we move the nodes of the mesh
according to the following iterative process

xnew
i+1 = xi + ∇φ(xi) + V∞, (2.44)

that means that the new position of the node downwind xi+1 is the one of the previous
node translated by the velocity of the flow (Figure 2.3).

xi+1

∇φ(xi) + V∞

xi

xnew
i+1

start wake iteration

end wake iteration

Figure 2.3: Wake relaxation routine in 2D.

In this way we can ensure that, after some time steps, the nodes of the wake leaving the
trailing edge will lay on a streamline, so that condition (2.14) is satisfied. This routine
continues until all the wake is aligned with its local velocity, so when the L2-norm
of the difference between the nodes’ position at consecutive time steps is less than a
certain threshold.
We cannot calculate the value of the potential gradient on the wake using the gradient
recovery strategy, since we do not know the value of the potential and its normal deriva-
tive. In fact the solution of the BEM problem only results in the potential jump

[
φ
]

on
the wake. So we need to exploit equation (1.53). We recall that this formula has no
meaning in presence of edges, so we cannot use it to calculate the velocity on the
trailing edge. Moreover the presence of a hypersingular term makes it difficult to deal
with. We will see in section 2.5 how we treated it.
Since the trailing edge belongs to the body, here we know the potential and its normal
derivative, so we can use the gradient recovery strategy. So, for the position of the
first nodes of the wake after the trailing edge, we have to plug the mean value of the
gradients of the potential calculated at the upper and lower trailing edges in equation
(2.44), namely

∇φ(xT E) =
1
2

(∇φ(xT E+) + ∇φ(xT E−)). (2.45)

This last condition ensures that the wake leaves the body exactly with the mean angle
between upper and lower trailing edges.
In 3D simulation, we compute the velocities on each strip of nodes and move the first
nodes downwind according to equation (2.44), while the other nodes downstream are
moved according only to the wind direction V∞ as shown in Figure 2.4.
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(a) Time step 1. (b) Time step 2.

(c) Time step 3. (d) Final time step.

Figure 2.4: Wake relaxation routine in 3D.

2.5 Singular and hypersingular terms
In this section we show how we treat the singular and hypersingular terms coming from
the boundary integral formulation. There are some problems arising in the integration
terms with x − y at the denominator while y approaches x.
In equation (2.3), there are the terms with G(x−y) that goes to infinity as y approaches
x, but we need to integrate them. The term ∂G

∂n , that is ∇G · n, is bounded, even though
∇G is more singular than G. This happens since we have that ∇G and n become or-
thogonal, because the gradient is tangential to the surface, so their scalar product is
0. Conversely G becomes singular, since 1

4π|x−y| = 1
4π|r| → ∞ as |r| → 0. To avoid

this problem, we can pass in polar coordinates, so that we obtain |r| from the Jacobian
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determinant so that the |r| at the denominator is simplified [27, 28, 29].
Another integration problem arises from (1.53), due to the presence of the hypersingu-
lar term ∇x

∂G(x−y)
∂n . This term gives problems when calculating the velocity in equation

(1.53), in particular only in the integral concerning the wake surface
∫

Γw

[
φ(y)

]
∇x

∂G(x−y)
∂n .

This happens since, in order to know the velocities at the nodes of the wake, the inte-
gration variable y reaches x.
We know the following result [35]

∇x

∫
Γw

[
φ(y)

] ∂G(x − y)
∂n

dS = −∇x ×

∫
Γw

γ(y)G(x− y)dS −∇x ×

∫
∂Γw

G(x− y)
[
φ(y)

]
dl,

(2.46)
where dl is the counter-clockwise direction of Γw with respect to n and

γ(y) = n × ∇S
[
φ(y)

]
. (2.47)

We cannot use this formulation to calculate the velocity since the first term remains
hypersingular. In order to avoid this integral, if we assume

[
φ(y)

]
=

[
φ
]

constant, we
have γ = 0 because the surface gradient of the potential is null [5]. So we can write

∇x

∫
Γw

[
φ
] ∂G(x − y)

∂n
dS = −

[
φ
]
∇x ×

∫
∂Γw

G(x − y)dl = −
[
φ
] ∫

∂Γw

∇xG(x − y) × dl.

(2.48)
This integral can be computed, since when y approaches x on ∂Γw the terms ∇xG(x−y)
and dl become parallel, so their vector product is null.
In this work we consider

[
φ
]

constant on mesh cells between two streamlines. Doing
so equation (2.48) in numerical form becomes

∇x

∫
Γw

[
φ
] ∂G(x − y)

∂n
dS =

Ns∑
i=1

Nw∑
j=1

[
φ
]
i

∫
l j

∇xG(x − y) × dl, (2.49)

where Ns is the number of trailing edge cells and Nw is the number of streamline cells.
We underline that the hypothesis that

[
φ
]

is constant on the wake is used only in this
calculation to obtain the velocity, otherwise

[
φ
]

has the same behaviour of φ on the
body.

2.6 Final simulation algorithm
The pseudocode presented in Algorithm 2 summarizes the complete numerical proce-
dure.
The convergence criterion adopted for the external loop is based on the L2-norm of the
difference of potentials of two iterations that should be lower than a given threshold.
The same is done on the position of the wake. The initial guess for the Newton loop is
the solution of Zφ = d for the first iteration of the while loop, while for the following
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Algorithm 2 Complete algorithm
1: Initialization
2: Read domain and parameters from external files
3: Create mesh
4: while Not converged do
5: Compute normals at nodes n
6: if First time in while loop then
7: Assemble system matrices A and N and right-hand side b
8: Impose constraints in matrix C
9: Assemble final matrix Z and final right-hand side d

10: Solve the system without Kutta condition Zφ = d
11: else
12: Update matrix Z
13: Newton loop in Algorithm 1
14: Update wake

iterations the initial guess is the solution at the previous step.
The row 12 of the algorithm is done in order to reduce the computational cost. Every
wake cycle, we modify the position of the wake. This influences the matrices of the
boundary integral equations. Since matrix Z has the following structure:

Z =

[
Zbb Zbw
Zwb Zww

]
where Zbb takes into account the contribution of the body on the body itself, Zbw is the
contribution of the wake on the body and so on. Since the wake must satisfy equation
(2.14), Zwb and Zww do not change, because every row has a diagonal 1 and on the
corresponding upper and lower trailing edges −1 and +1, respectively. Moreover, even
the matrix Zbb remains the same, since the contribution of the body is not changed. So
it is not necessary to assemble all the matrix Z, but only the section Zbw, that is the
influence of the wake on the body. In particular we do not change the matrix A that is
diagonal so it does not compare in Zbw, but we modify only the matrix Nbw.
An analogous argument is used for the updating the right-hand side. We have[

db
dw

]
=

[
Dbb Dbw
Dwb Dww

] [ ∂φ

∂n b
∂φ

∂n w

]
Since we have dw = 0 due to equation (2.14) and ∂φ

∂n w = 0 for the mass conservation
across the wake (1.31), the only part of matrix D that contributes to the right-hand side
is Dbb that does not change, so we do not have to modify the right-hand side.
In order to give an idea of which is the computational effort for the simulations, in
table 2.1 we present some computational times for the simulation in 2D and 3D. In 2D
the simulation is done on a NACA 0012 profile with 3083 degrees of freedom (2059
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on the body, 1024 on the wake). In 3D the simulation is done on a NACA 0015 wing
with 4700 degrees of freedom (2815 on the body, 1885 on the wake).

simulation body
dofs

wake
dofs

assemble
matrix

Newton
loop

wake routine update
matrix

2D 2059 1024 90 s 32 s 50 s 15 s
3D 2815 1885 210 s 450 s 845 s 35 s

Table 2.1: Analysis on the computational cost for 2D and 3D simulations expressed in
seconds. We specify the number of degrees of freedom on the body and on the wake.
The analysis is done on the time spent in assembling the system matrix, in solving the
Newton problem, in updating the wake position and in updating the system matrix.

We can see how updating the system matrix, instead of assembling it from the begin-
ning, implies a significant reduction of the computational times. The most expensive
loop even for 2D and 3D simulations is the wake relaxation routine in order to align it
as a flow surface.
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Chapter 3

Mesh generation

The development of Computer Aided Design (CAD) technologies has posed new chal-
lenges on the construction of a mesh that well approximates the surface geometry.
With CAD modelers it is possible to represent surfaces with complicated topology and
geometry through composite parametric surfaces. These types of surfaces consist of
smoothly parametrized patches that meet at their common boundaries (curves and ver-
tices). The approximation of these surfaces should guarantee that the topology and
geometric features of the original surface are preserved, the number of elements with
respect to the desired resolution has to be small, the elements have to be nicely shaped.
In this work the goal has been to generate a curvature-adapted surface mesh refining an
extremely coarse initial grid. Using this strategy of meshing the result will be a denser
anisotropic mesh where the curvature is high, while nearly flat regions there will be
almost equilateral elements. When creating new nodes fulfilling the quality require-
ments, they will be projected on the surfaces, so that the values for the local surface
normals are obtained by the underlying CAD. The method used in our algorithm is
based on the projectors illustrated by Dassi, Mola and Si in [42].
A common method for generating grids on CAD surfaces is placing the new nodes
on the surface in a parametric way on CAD patches. This approach is not applicable
when there are small gaps or overlaps among the patches, but also even in presence
of a continuous junction between two patches the mesh can present non conformal
elements. In order to avoid these problems, in [42] a surface projector is implemented
which queries the CAD data structure to obtain the surface projection of the newly
generated points. In practice such projection is realized by intersecting a straight line
passing through the point and directed along the specified direction with each of the
surface patches. The projected point is selected as the closest intersection with respect
to the original point between the line and the surface. In particular the direction used
is the normal.
The grid generated with this strategy will not have nodes located on the patches junc-
tions. Moreover, when the grid is refined near an edge, the new nodes are projected
on the curve by an arc-projector, that identifies the point splitting the arc at a specified
length fraction.
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In the resulting algorithm it is possible to refine automatically, using different strate-
gies, a mesh over a CAD file in 2 and 3 dimension using the library OpenCASCADE that
allows us to deal with CAD surfaces and curves. So the user gives an input parameter
file specifying the CAD curves and surfaces to be imported, the refinement strategies
to adopt and how many cycles of refinement to carry out. The algorithm is also able
to deal with hanging and double nodes (the latter ones being important in the BEM
discretization on sharp corners such as the trailing edge).
The 3D meshing strategy already present in π-BEM has been extended in this work to
treat 2D cases. In addition, we also introduced the management of the wake surface
and the identification of the trailing edge nodes. The trailing edge and the wake sur-
face are specified in the user’s parameters with an identification flag. It is possible
to identify the upper and lower trailing edges and of the wake in order to be able to
impose all the conditions for the solution of the problem: the Kutta condition for the
upper trailing edge, the BIE (2.17) for the lower trailing edge , the condition (2.14) on
the potential jump for the trailing edge wake. The nodes of the wake will be related
to the corresponding nodes at the trailing edge, in order to to satisfy the condition of
same potential jump on a streamline of equation (2.14). In particular we ensure that in
the wake there are no hanging nodes, so that the identification of a streamline required
by the relaxation routine procedure results easier.

3.1 2D refinement
For two dimensional geometries the refinement strategy is based either on a global re-
finement or on the curvature.
The first strategy simply consists in splitting all the elements of the mesh in two.
In the second strategy we first identify the unrefined elements in high curvature regions,
as those for which the angle between the cell normal and that of the neighbouring cells
is more than a given threshold. For example, considering the situation sketched in
Figure 3.1, if arccos(n2 · n1) > αthreshold we flag the elements for refinement. After all
the flags are set, all the segments representing the cells are split in two halves, and the
new nodes are projected on the CAD curve of the airfoil.
One problem arising when using these refinement strategies is that two neighbour ele-
ments can have very different dimensions. In this case the largest element is selected
for refinement.
In two dimensions, in order to obtain Pn,1 (respectively Pn,2), the new location is ob-
tained as that of the points that splits the curvilinear distance of points P1 and P2

(respectively P2 and P3) alon (Figure 3.1).

47



����

��

����

����

�� ��
��
��
��

��
��
��
��

P1 P3

n2
P2

n1
Pn,1

Pn,2

Pm,1 Pm,2

Figure 3.1: 2D mesh.

3.2 3D refinement
In 3D meshing the refinement strategies employed are, as before, global refinement
and curvature based refinement. Along with these, an anisotropic refinement strategy
based on the aspect ratio has also been employed.
The first strategy consists in dividing all the cells of the mesh in four smaller cells, by
bisection (Figure 3.2).
The strategy based on the curvature consists in calculating through an estimate of the
mean curvature of the underlying CAD surface within the cell. To obtain such esti-
mate, the CAD geometry is interrogated to obtain the maximum local curvature in all
the four nodes of each cell (wich lie on the surface). The average of such maximum
local curvature values is computed and the cell is flagged for refinement if the curva-
ture is larger than a certain threshold.
In the third strategy we divide the cells that have aspect ratio larger than a given thresh-
old. Since the aim of such refinement strategy is to obtain cells with low elongation,
the cells are only split along their direction of maximum elongation. The aspect ratio
is here computed as the biggest ratio between two consecutive edges of the cell. If a
low threshold is set, the resultant cells will be similar to squares. Otherwise, they are
rectangles of prescribed maximum ratio between the dimensions.
At each refinement step, the new nodes are initially generated on the quadrilateral
elements, as shown in Figure 3.2. The new vertices are then projected on the surface
along the direction normal to the mesh cells.
One problem arising from this type of meshing is that, if we have two neighbour iden-
tical cells and we refine only one of them, we obtain a cell which area is a quarter of
the other one. This jump between the dimensions of the two cells can produce some
numerical errors in the computations. So such jumps need to be avoided in critical
regions, in which strong solution gradients require finer resolutions.
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Figure 3.2: 3D mesh refinement of a quadrilateral cell. The new nodes are projected
onto the parametric geometry specified by means of a CAD file.

3.3 Hanging and double nodes
During the meshing it is possible to create hanging nodes. These nodes appear when
we refine a cell, but not its neighbour (Figure 3.3). In this case all the quantities we
calculate on the hanging nodes will be imposed equal to the mean of the quantities
evaluated on the two neighbour nodes. For clarity, the potential evaluated in P3 will
not result from a BIE collocated in P3, but from the imposition of the constraint in the
BEM linear system φ(P3) =

φ(P1)+φ(P2)
2 . The same constraint is enforced for ∂φ

∂n , ∇φ, the
pressure p.

P2P3P1

Figure 3.3: Hanging nodes.

Double nodes appear on the contrary when two cells belong to two different surfaces,
but have a common edge on a curve (Figure 3.4). In this case we have two logically
different vertices which lie in the same geometric position. This results in the duplica-
tion of the degrees of freedom on the edges, which results in the possibility to impose
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more than one condition at the trailing edge as we have already seen in section 2. As
for the nodes of the other edges, the constraint imposed is that the potential calculated
on one side of the edge is equal on the other one. Namely, considering Figure 3.4, the
potential evaluated in P2 will be φ(P2) = φ(P1). In this case, due to the fact that we
have different normal vectors, we will have different ∂φ

∂n .

n1

n2
P2

P1

Figure 3.4: Double nodes.

3.4 Adaptive refinement
To further exploit the mesh refinement capability described in the previous section, we
have also considered a strategy for the adaptive refinement of the grid based on the
solution. In order to select the cells to refine, we adopted a strategy based on an error
estimator on the pressure coefficient. The error estimator requires the evaluation of the
gradient of the pressure coefficient on each cell and compute the jump of this quantity
between two neighbour cells. Where this difference is large, the error is large and the
cells are refined, otherwise not. If it is necessary to refine, the selected cell is divided
in four smaller cells. The error indicator introduced by Kelly, Gago, Zienkiewicz and
Babuska in [43] approximates the error on each cell by integrating the jump of the
gradient solution along the faces of each cell,

η2
K =

∑
F∈∂K

hF

2pF

∫
∂KF

[
∂uh

∂n

]2

do, (3.1)

where ηK is the error estimator on the cell K, hF is the face diagonal, pF is the maxi-
mum polynomial degree of adjacent elements,

[
∂uh
∂n

]
is the jump of the gradient of the

prescribed quantity at the face, the summation is done on the cell’s faces and the in-
tegration is computed on the boundary edges of the current cell. This operator was
already implemented in deal.II [2, 3] but it is used in this work to compute the error
on the pressure coefficient only for the cells on the body. In particular we select the
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cells that contributes as a certain percentage on the global error set in input by the user.
In Figure 3.5 it is shown the procedure on a NACA wing, where the mesh is refined
at the leading edge where high gradients of the pressure coefficient are present. The
adaptive refinement concentrates in the middle of the leading edge, since in the lateral
parts of the wing there are lower gradients of velocity and pressure.

(a) Initial mesh.

(b) Adaptive refinement cycle 1.
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(c) Adaptive refinement cycle 2.

(d) Adaptive refinement cycle 3.

(e) Adaptive refinement cycle 4.
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(f) Adaptive refinement cycle 5.

Figure 3.5: Mesh adaptivity over a rectangular wing with NACA 0015 airfoil. Starting
from the mesh in plot a) we refine the grid according to the error estimator until we
obtain the mesh in plot f).
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Chapter 4

Numerical results

In this chapter we will present the numerical results obtained in this work to provide
an adequate assessment of the accuracy mathematical and numerical model introduced
in the previous chapters. Such results will be compared to equivalent results obtained
with other numerical models and with experimental data available in the literature.
Most of the results here reported will refer to 2D airfoils and 3D wing shapes obtained
as extrusions of airfoil sections. For such reason, we here recall some aeronautic
terminology used in the following analysis (Figure 4.1). For each section of the wing
the chord is the imaginary straight line joining the leading and the trailing edge. The
chord length c is the distance on such line between leading and trailing edge. For
each airfoil section, a mean (or camber) line can be identified along with a distribution
of thickness. We indicate the maximum airfoil thickness with d. In 3D wing the
maximum extension s in the direction normal to the airfoil sections is indicated as
span. Finally we define the angle of attack α as the angle between the asymptotic
speed V∞ and the chord. The aspect ratio is defined as AR = s/c.

span

local thickness

trailing edgechord camber line

leading edge

Figure 4.1: This figure shows the different parameters defining chord, camber line,
local thickness and span.

54



4.1 2D results
In this section we will first present some analysis on the influence of grid geometrical
and wake parameters on the model predictions. After such assessment, we will proceed
comparing the model results with corresponding literature results.

4.1.1 Grid convergence analysis
In this paragraph we report the results of analysis on the convergence of the solution
with respect to the mesh size on the body, or, in alternative, as a function of the degrees
of freedom.

1e+1 1e+2 1e+3 1e+4

1e−9

1e−8

1e−7

1e−6

1e−5

1e−4

1e−3

1e−2

1e−1

1e+0

Number of unknowns

E
rr

o
r

L2 norm

order 1

order 2

order 2.5

order 3

Linf norm

order 1
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Figure 4.2: Pressure coefficient convergence as the number of degrees of freedom
of the airfoil grid is increased. The circled blue line indicates the L∞-norm of the
difference between the cp obtained for the current solution and the solution with 8152
degrees of freedom. For reference, order 1 (black line) convergence rate curves is also
included. The asterisks and the corresponding blue line represent the L2-error as a
function of the unknowns. As in the previous case, the error is computed as the L2-
norm of the difference between the solution at the current grid and that at 8152 degrees
of freedom. For reference, order 1 (red line), 2 (green line), 2.5 (violet line) and 3
(cyan line) convergence rate curves are also included.

Such analysis has been carried out considering the flow past a NACA 0012 profile with
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angle of attack α = 6◦. The study is done comparing solutions obtained with numbers
of unknowns increasing from 45 to 8152. For the present investigation, the number of
unknowns is intended as the number of degrees of freedom on the body. Hence, we do
not take into account the number of unknowns of the wake. Also for this test, due to
the lack of an analytic solution, we define the error as the difference between cp for the
best available grid and that for the other ones. With L2- and L∞-errors we indicate the
L2- and L∞-norms of the error defined in such way.
Figure 4.2 illustrates the convergence of L2- and L∞-norms of the pressure coefficient
errors as a function of the number of degrees of freedom. We must remark that we
do not take into account the last cells at the trailing edge, since, if the grid becomes
too much refined in that region, the pressure coefficient starts to oscillate and assume
non physical values. As pointed out in [1], this might be related to specific problems
related to the singular quadrature implementation in the Laplace solver employed.
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Figure 4.3: Lift coefficient convergence as the number of degrees of freedom of the
airfoil grid is increased. The asterisks and the corresponding blue line represent the
error as a function of the unknowns. The error presented is evaluated as the difference
between the CL at the current grid and that at 8152 degrees of freedom. For reference,
order 1 (red line), 1.25 (green line) and 1.5 (violet line) convergence rate curves are
also included.
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We can see that the rate of convergence of the L2-error (blue asterisks) fits the trend of
the violet line that represents the convergence order of 2.5, so the L2-error is o(( 1

n )2.5)
with n number of degrees of freedom on the body. The L∞-error’s convergence (circled
blue line) follows the black line that represents the linear convergence rate, so the L∞-
error is o( 1

n ). We remark that, since in these analysis we used a global refinement
strategy, the number of degrees of freedom doubles at each refinement cycle and the
length of each element is halved.
The plot suggests that an L2-error of 10−2 is reached with a simulation with only 45
degrees of freedom. If we want instead to have L∞ = 10−2 we have to require a finer
mesh, which reaches more than 1000 degrees of freedom.
A similar analysis on the convergence of the lift coefficient CL is shown in Figure
4.3. Here the error is evaluated as the difference between the CL with 8152 degrees of
freedom and CL obtained with coarser grids.
The rate of convergence of the lift coefficient (blue dotted line) fits the violet line that
represents the convergence order of 1.25, so the error on the lift coefficient is o((1

n )1.25).
In this case, an error of 10−2 is reached for 400 degrees of freedom.

4.1.2 Wake iterations analysis
A first investigation aimed at assessing how many iterations in 2D simulations are
required to reach convergence of the wake geometry. This qualitative analysis has
been carried out on the geometry of a NACA 0012 airfoil and is presented in Figure
4.4.

(a) Wake step 1.

(b) Wake step 2.

(c) Final wake step.

Figure 4.4: NACA 0012 airfoil and wake profile for α = 6◦ at different wake relaxation
steps. The upper figure presents the geometry at the first step. The middle figure
depicts the wake after two steps, when the Newton problem has been solved two times.
The lower figure presents the wake configuration at convergence.

By a qualitative standpoint, we can see that at the second iteration the wake has already
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reached convergence as the second and final iteration look identical. Figure 4.4c also
shows how the wake leaves the body tangentially with respect to the trailing edge
orientation. Far from the body it instead aligns to the wind direction V∞, thus, as
expected the wake seems to assume the shape of a streamline.

4.1.3 Length wake analysis
In this paragraph we assess the influence of the wake length on the body potential
field and the pressure coefficient cp. To do so, we obtained an overall evaluation of
the influence of the wake length on the body solution by computing the value of the
lift coefficient CL and plot it against the wake length (see Figure 4.5). Once again the
analysis has been carried out on the NACA 0012 airfoil geometry at α = 6◦.

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

x_w/c

C
L

Lift coefficient vs wake length

0 100 200 300 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

x_w/c

C
L

Lift coefficient vs wake length

Figure 4.5: Lift coefficient versus wake length. The left plot depicts the computed CL

as a function of the considered wake length. The right plot represents a close up of the
previous one, so as to better appreciate the influence of wake length on CL in the lower
ranges.

The plots suggest that after approximatively 70 chord lengths, CL has reached a value
differing 1% from the final one, obtained for a wake measuring 21000 c. For a CL

differing 0.1% from the final one, the plots suggest a wake length of 300 c.
We then evaluate the error on the lift coefficient as the difference between the solution
obtained with wake length 21000 c and the solutions for different wake lengths.
In Figure 4.6 we can see that the error trend on the lift coefficient (blue dotted line)
fits the linear convergence rate, thus the error is o( 1

xw/c
). This convergence rate repre-

sents the expected behaviour, as the cells in the wake exert their influence on the body
through the Green function gradient, that in 2D dacays as 1

r as the last point of the
wake reaches a distance r from the airfoil.
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Figure 4.6: Lift coefficient convergence for increasing wake lengths. For each xw in
the blue dotted line, the error presented is evaluated as the difference between the CL

for xw = 21000 c and the current one. The red continuous line, added for reference,
indicates a linear convergence rate.

4.1.4 NACA 0015
To run the NACA 0015 test case, we first produced a CAD curve describing the profile
of such symmetric airfoil. Then, once the initial grid composed of 7 cells is specified,
the desired grid is obtained only prescribing the parameters for the automatic mesh
refinement. Figure 4.7 portrays the result of the mesh refinement procedure with a grid
that accounts for 206 nodes.
Figure 4.8 depicts a comparison of the computed pressure coefficient cp and lift co-
efficient CL with experimental results on NACA 0015 at different angles of attack.
Plots a), b), c) respectively show the pressure coefficient distribution along the airfoil
chordwise coordinate for angles of attack α = 0◦, 6◦, 12◦. In the case of α = 0◦, the
comparison is done with experimental results from Abbott-VonDoenhoff-Stivers [45]
(green line) and McAlister-Takahashi [44] (red line). In the cases of α = 6◦, 12◦ and in
the analysis of the lift coefficient as a function of α the comparison is done only with
McAlister-Takahashi.
Figure 4.8 shows that, for α = 0◦, the results of the developed model (blue line) fit with
good accuracy the experimental data by Abbott [45] (green curve). The measurements
presented in McAlister [44] NASA report (red curve) appear to overestimating both
the present cp curve and the Abbott’s one by a somewhat constant offset of approxima-
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(a) Initial grid.

(b) Final grid.

Figure 4.7: On the top there is the initial two dimensional mesh of a NACA 0015
profile, that is the input file given to the algorithm. On the bottom it is presented the
final grid after global refinements and curvature based strategy.

tively 0.2. The same trend is observable in the plots regarding α = 6◦, 12◦ for which
Abbott’s results are not reported. Still the comparison with McAlister data suggests
that our model consistently underestimates the pressure coefficient coming from those
experiments by an approximatively constant 0.2 offset. In their report, the authors
of such experimental campaign seem to suggest that the reduced wind tunnel dimen-
sion makes the comparison to numerical simulations of wings in free stream rather
inaccurate. Indeed a more meaningful comparison would be obtained considering the
actual wind tunnel dimensions in the simulations, so as to account for the blocking
effect that might be responsible for the lower experimental cp. Despite such under-
estimation of the cp data, the lift coefficient data by McAlister seems to be correctly
reproduced at most angles of attack, as can be appreciated in Figure 4.8d. We see in
fact that for α below 10◦ the predicted curve matches the experimental data, while in
the region between 10◦ and 14◦ the model of potential flow is not able to reproduce the
incipient flow detachment leading to the CL − α curve slope reduction. Such problem
is particularly noticeable at lower Re.
We must remark that the possibility to refine the mesh where the CAD surface has a
higher curvature results in an accurate reproduction of the stagnation point in the front
of the body where cp has unit value, since in that point the fluid has null velocity. Au-
tomatically refined grid reproduces in the proper way the leading edge region and its
normal distribution.
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(a) Pressure coefficient at α = 0◦.
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(b) Pressure coefficient at α = 6◦.
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(c) Pressure coefficient at α = 12◦.
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Figure 4.8: Comparison between numerical predictions (blue line) and experimental
data referred to a NACA 0015 airfoil presented in [44] (red curve) and [45] (green
curve). Plot a) depicts the local pressure coefficient cp as a function of the chordwise
coordinate for a null angle of attack α. Plots b) and c) present similar cp curves for
α = 6◦ and α = 12◦ respectively. Finally, plot d) shows the lift coefficient CL as a
function of the angle of attack α.

4.1.5 NACA 0012
Figure 4.9 presents a comparison of the pressure coefficient computed in this work,
between numerical and experimental results on NACA 0012. Such symmetric airfoil
has a lower thickness with respect to the NACA 0015 which typically implies higher
leading edge curvatures, and results in higher cp values. The analysis carried out con-
sisted in computing the trend of the pressure coefficient distribution on the airfoil for
angles of attack α = 0◦, 6◦, 8◦, 10◦, 12◦, 15◦. The predicted cp curves are compared
against numerical results available in the literature [7, 46, 47, 48].
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The plots suggest that the results of the present model (blue lines) are very similar
to the numerical and experimental data reported for comparison (red lines). Also here,
as was the case for NACA 0015, the automatic grid refinement in the high curvature
regions results in an accurate reproduction of the stagnation point where cp has unit
value.
Figure 4.10 presents the lift coefficient curve as a function of the angle of attack α.
The plot reports the comparison between the present model prediction (blue line with
asterisks) and experimental data from Abbott et al. [45] (red line).
The trend of the lift coefficient is well fitted. As already pointed out for the NACA 0015
analysis, we see that if the angle of attack is bigger than 15◦ the model of potential flow
is, as expectable, not able to reproduce the stall occurring due to the flow separation.
In fact the lift coefficient calculated in our work has a linear trend also for high angles
of attack.
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Figure 4.9: Comparison between numerical predictions (blue line) and numerical data
referred to a NACA 0012 airfoil presented in [7, 46, 47, 48] (red curve). Plot a) depicts
the local pressure coefficient cp as a function of the chordwise coordinate for a null
angle of attack α. Plots b), c), d), e) and f) present similar cp curves for α = 6◦, α = 8◦,
α = 10◦, α = 12◦ and α = 15◦ respectively.
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Figure 4.10: Lift coefficient of NACA 0012 as a function of the airfoil angle of attack.
The present work numerical prediction (blue curve) is here compared with measure-
ments (red curve) reported in [45].

4.1.6 NACA 4412
To run the NACA 4412 test case, the mesh has been automatically generated as illustrated
in the previous cases. The initial grid composed of 7 cells is refined in order to obtain
a resultant grid that accounts for 220 nodes as shown in Figure 4.11.
Figure 4.12 depicts a comparison of the computed pressure coefficient cp with numeri-
cal results on NACA 4412 at different angles of attack available in the literature [7, 47].
Plots a), b), c), d), e) respectively show the pressure coefficient distribution along the
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(a) Initial grid.

(b) Final grid.

Figure 4.11: On the top there is the initial two dimensional mesh of a NACA 4412
profile, that is the input file given to the algorithm. On the bottom it is presented the
final grid after global refinements and curvature based strategy.

airfoil chordwise coordinate for angles of attack α = 0◦, 1.87◦,−2◦,−5◦,−10◦.
We see that even for this non symmetric airfoil this work’s results (blue lines) are fairly
similar to the numerical results (red line). Also in this case, as well as in the previous
ones, the numerical predictions correctly reproduce the leading edge stagnation point,
where the pressure coefficient is one. Again, this is made possible by refining high
curvature regions.
Finally, the predicted lift coefficient for the NACA 4412 as a function of the angle
of attack is compared both with numerical [47, 48] (red and green lines) and with
experimental data [45] (black line) (Figure 4.13).
The trend of the lift coefficient is well fitted in the central part. As already mentioned
for the previous comparisons, we see that if the angle of attack is bigger than 10◦ or
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(d) Pressure coefficient at α = −5◦.
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(e) Pressure coefficient at α = −10◦.

Figure 4.12: Comparison between numerical predictions (blue line) and numerical data
referred to a NACA 4412 airfoil presented in [7, 47] (red curve). Plot a) depicts the
local pressure coefficient cp as a function of the chordwise coordinate for a null angle
of attack α. Plots b), c), d), e) and f) present similar cp curves for α = 1.87◦, α = −2◦,
α = −5◦ and α = −10◦ respectively.

lower than −10◦, the model of potential flow is not accurate. In fact the lift coefficient
calculated in this work has a linear trend also for higher or lower angles of attack. On
the contrary in experimental data and in numerical data from non potential works, the
pressure has a drop if the angle of attack is bigger than 10◦ or smaller than −10◦. As
pointed out, this expected behaviour is the consequence of the inability to observe a
flow separation through a potential flow model.
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Figure 4.13: Lift coefficient of NACA 4412 as a function of the airfoil angle of attack.
The present work numerical prediction (blue curve) is here compared with numerical
data reported in [47] (red curve) and [48] (green curve) and measurements reported in
[45] (black curve).

4.2 3D results
This section will present some analysis carried out to establish a suitable confidence on
the behaviour of the three dimensional version of the fluid dynamic solver developed.
Such analysis, which involves assessments of the solution sensitivity to wake position
and grid refinement, will be the base for the comparison against experimental results
presented in the next section. Then numerical results will be tested against numerical
and experimental data available in the literature for a variety of benchmark problems.
We will then present some further results obtained with the 3D simulations so as to
highlight the model ability to readily tackle problems with arbitrary geometries.

4.2.1 3D wake analysis
In this section we analyse the influence of the wake on the predicted flow past a rect-
angular NACA 0015 wing with aspect ratio AR = 6.58 at an angle of attack of 12◦.
The influence of the wake is analysed considering increasing wake length and looking
at the central section of the wing. A further set of simulations aimed at understanding
how the wake geometry (and in particular its roll up) at different streamwise distances
from the body is affected by the number of wake iterations performed in the simulation
and by the grid refinement.
Figure 4.14 reports the convergence of the L2- and L∞-norm of the errors on the pres-
sure coefficient at the central section z/s = 0 as the length of the wake considered in the
simulations is increased. The error presented in the plot is computed as the difference
between the cp obtained for each solution, and that computed with the best available
wake length (∼ 460 c).
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Figure 4.14: Pressure coefficient error as the wake length increases at the section at
z/s = 0 for the wake past a NACA 0015 rectangular wing with AR=6.58 at an angle
of attack α = 12◦. The blue line with circles indicates the L∞-norm of the difference
between the cp obtained for each solution and the solution with wake length of 460. For
reference, order 2 (green line) convergence rate curves is also included. The asterisks
and the corresponding blue line represent instead the L2-error as a function of the wake
length. For reference, order 4 (red line) convergence rate curves is also included.

We can see that the rate of convergence of the L2-error (blue asterisks) fits the trend
of the red line that represents the convergence order of 4, so the L2-error is o(( 1

xw/c
)4).

The L∞-error’s convergence (circled blue line) follows the green line that represents the
quadratic convergence rate, so the L∞-error is o(( 1

xw/c
)2). Such convergence rates ap-

pear significantly higher than those observed in 2D simulations. This is not surprising.
We recall in fact that the cells in the wake exert their influence on the body surface
through the Green function gradient appearing in the BIE. In the 2D case such func-
tion decays as 1

r as the last point of the wake reaches a distance r from the body. In the
3D case instead, the Green function gradient decays as 1

r2 .
The result of such investigation suggests that to obtain a difference in L2-norm of 10−6

with respect to the best available solution the wake has to be long at least 30 times the
body length. In such case the L∞-error will be of 10−2.
A similar analysis is done on the convergence of the lift coefficient, as shown in Figure
4.15. Here the error presented is evaluated as the difference between the CL obtained
for each solution and that obtained for the solution with wake length of 460 c.
The rate of convergence of the lift coefficient (blue dotted line) fits the red line that
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Figure 4.15: Lift coefficient error as the wake length increases at z/s = 0 for the wake
past a NACA 0015 rectangular wing with AR=6.58 at an angle of attack α = 12◦. The
asterisks and the corresponding blue line represent the error as a function of the wake
length. For reference, order 2 (red line) convergence rate curves is also included.

represents the convergence order of 2, so the lift coefficient converges quadratically as
the wake length is increased. If we want an error of 10−3, the wake has to be long at
least 30 times the body length.
A further analysis presented in Figure 4.16 is carried out to assess the number of
iterations needed to reach convergence of the wake geometry. The simulation used
for such investigation accounts for 1885 wake degrees of freedom and 1547 body de-
grees of freedom. The plots in the Figure depict vertical cuts of the wake at different
downstream locations past the wing.
The plots show a rather clear convergence of the wake to an asymptotic solution. Aside
from the curve associated with the first iteration, the other tend to cluster around a final
solution. This is particularly evident in the center wing section, but is quite appreciable
also in correspondence with the wake roll up regions due to the tip vortex presence. So,
even for 3D simulations, the wake relaxation algorithm proposed seems to be effective
in convergence to a stable solution.
The analysis also suggests that the difference between the first and final iteration is
higher downstream. To make sure that at the end of the wake reaches convergence we
need more iterations, since the influence of the body takes more iterations to propa-
gate.
A mesh sensitivity predicted analysis reported in Figure 4.17 has been carried out to
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investigate on the influence of the number of degrees of freedom at the trailing edge on
the wake geometry. Using a refinement strategy that allows us to increase the number
of cells only at the trailing edge, we have analysed the wake roll up dependence on
the trailing edge’s degrees of freedom. In particular the number of trailing edge’s de-
grees of freedom are 33, 65, 129, corresponding to a total number of wake degrees of
freedom which are respectively 1584, 3120 and 6192, while the body degrees of free-
dom are 1155,1421 and 1943. We remark that the body degrees of freedom increase
is the result of the constraint in order to have a conformal trailing edge mesh. So, as
the nodes are increased, the mesh is finer at the trailing edge, while the leading edge
resolution is not modified.
The plots show that the central part of the wake is well captured even with a coarser
mesh since at all sections there is not a significant wake geometry difference between
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Figure 4.16: Convergence analysis for the wake past a NACA 0015 rectangular wing
with AR=6.58 at an angle of attack α = 12◦. The plots show vertical cuts of the wake
surface on planes perpendicular to the V∞ direction and located at increasing distances
from the wing trailing edge at different iterations of the algorithm proposed.

the three simulations. On the contrary at the external part of the wake, finer meshes
can better capture the wake roll up. In such region, a spacial convergence is not yet
achieved with the finest mesh tested. Given such results, further investigations are be-
ing considered, in which the trailing edge refinements are only concentrated in the tip
region, so that a spacial convergence in such region can be fully achieved.
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Figure 4.17: Analysis on the trailing edge number of degrees of freedom for the wake
past a NACA 0015 rectangular wing with AR=6.58 at an angle of attack α = 12◦. The
blue curve refers to the simulation with 33 degrees of freedom at the trailing edge, the
red one 65 and the green one 129.

4.2.2 Mesh adaptivity qualitative analysis
We have seen in section 3.4 that the mathematical and numerical set up allows for the
use of adaptive refinement strategy in our algorithm. Figure 4.18 shows a qualitative
comparison between the results obtained with adaptive and global refinement for a
NACA 0015 rectangular wing with aspect ratio 6.58 at an angle of attack 12◦. We
must here remark that in absence if an analytical solution, a proper quantitative er-
ror evaluation with respect to the best grid available can only be done projecting the
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adaptive solutions on such grid. We have not yet employed such feature, which will
be considered in the further developments. The plot depicts the cp distribution on the
central wing section (z/s = 0). The solutions obtained with successive steps adaptive
refinement (yellow, red, green, cyan, magenta and blue lines) are compared to the so-
lution obtained with the best available grid. Such grid is obtained by adding two global
refinement cycles to one cycle of curvature refinement (black line).
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Figure 4.18: Pressure coefficient at the central section z/s = 0 for a NACA 0015 rect-
angular wing with aspect ratio 6.58 at an angle of attack 12◦. The results are showed
with different colours: in black for a mesh with global and curvature refinement with
number of degrees of freedom on the body N=10820, in yellow for the starting mesh
with N=1340, in red after the first cycle of adaptive refinement N=1430, in green after
the second cycle N=1615, in cyan after the third cycle N=1815, in magenta after the
fourth cycle N=2070, in blue after the fifth cycle N=2570.

We can see that as the adaptive refinements are carried out, only the number of cells
in the leading edge region is incremented. The solution obtained after five adaptive
refinement cycles (blue line) is very close to the one obtained with the global refine-
ment strategy (black line). Moreover, in the central part of the profile section the same
solution is obtained with less degrees of freedom. So we have obtained a problem
solution with comparable accuracy, at a lesser computational cost with respect to the
reference solution. In fact we used only 2570 degrees of freedom on the body (32
in the section illustrated in the plot) in comparison to the 10820 ones (66 in the sec-
tion) for the global refinement strategy. Yet, in the adaptive refinement framework,
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obtaining the last result shown required to run the previous 5 simulations. So to obtain
a fair comparison we need to compare the computational cost of the global refinement
solution with the overall cost of the 6 simulations involved in the adaptive refinement
cycles. We recall that the computational cost of assembling and solving the BEM
linear system is O(n2) flops. Considering a 104 grid in the case of the global strategy
such cost is proportional to flops 108. With the adaptive strategy overall computational
cost must be obtained as the sum of the computational costs of six problems having
1340, 1430, 1615, 1815, 2070 and 2570 unknowns respectively. Assuming that the
number of Newton iterations and wake cycles remains the same as in the global refine-
ment case, it turns out that the cost of all cycles is about 107 flops, resulting in a clear
reduction even accounting for all the refinement process. Using this strategy the gain
is not only that of lowering the computational cost, but it also lies in the possibility of
obtaining a solution with high resolution in some regions (such as at the leading edge)
where the physical solution presents strong gradients which require finer resolution to
be captured adequately. With the heavy memory requirements of a direct BEM solver,
in fact, saving nodes in regions where they are not needed is very important as it al-
lows to increase the resolution in other regions in which more degrees of freedom are
needed.
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4.2.3 NACA 0015
The first results we present are referred to the flow simulation past a rectangular wing
with a NACA 0015 foil section with square tip and aspect ratio AR = 6.58 (Figure
4.19).

(a) Initial grid. (b) Final grid.

Figure 4.19: The left image represents the initial mesh on the NACA 0015 wing. Such
grid is the input file along with the CAD model of the wing. The right illustration
depicts the grid used for the simulations. Such grid is obtained after aspect ratio re-
duction, curvature based and global refinement strategy cycles.

The solver input is a grid file containing the vertices and the connectivity of the initial
cells (as illustrated in Figure 4.19a) along with CAD surfaces and edges on which the
new vertices will be generated upon each mesh refinement. The software also reads a
parameter file prescribing the tolerances and the number of cycles of refinements based
on aspect ratio reduction, on the curvature and on global refinement. The resulting grid
with maximum aspect ratio of 2.5, one curvature cycle and one global refinement cy-
cle is displayed in Figure 4.19b. As expected a finer mesh resolution is obtained at
the leading edge, where the surface curvature is higher. We remark that in presence
of sharp edges (such as the trailing edge or the wing tips) the refinement based on the
curvature uses the curvature of the curve describing the edge, not the surface curvature
that is infinite in presence of a sharp edge.
The mesh illustrated in Figure 4.19b has been used to carry out a simulation of the
potential flow past a NACA 0015 rectangular wing. Figure 4.20 depicts contours of
pressure coefficient on the surface of the wing.
The Figure confirms that the pressure coefficient value is close to 1 at the stagnation
point whereas it becomes negative on the top as the fluid increases its flow velocity
to turn around the obstacle represented by the wing. Moreover, the airfoil section
maximum pressure coefficient decreases near the tips. This phenomenon is in line
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Figure 4.20: Contours of pressure coefficient on the surface of a NACA 0015 rectan-
gular wing with AR=6.58 at an angle of attack α = 12◦.

with experimental data, since at the wing tips the flow can turn around the body from
the sides with much less acceleration. This effect is well captured by our model of
potential flow, although the results quality of the predictions at the tip sections drop
due to the presence of viscous effect due to the tip vortex detachment from the sharp
edges of the wing.
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Figure 4.21: Comparison between numerical predictions (blue line) and experimental
data referred to a NACA 0015 rectangular wing with AR=6.58 at an angle of attack
α = 12◦ in [44] (red curve) at different z/s distances from the center of the wing.

In Figure 4.21 we slice the wing at different z/s distances from the center of the wing
and we show the trend of pressure coefficient as a function of x/c in comparison to
experimental data in [44].
The behaviour of the cp is captured quite well by the potential flow model. However,
we can notice that the present model results (blue lines) and experimental ones (red
lines) by McAlister et al. in [44] differ in a rather consistent way. Such rather uniform
shift of the pressure coefficient curve has been also observed in the comparison of
the two dimensional simulations for the same profile with the McAlister experimental
data. As already said for the 2D case, the authors of such experimental campaign seem
to suggest that the reduced wind tunnel dimension makes the comparison to numerical
simulations of wings in free stream rather inaccurate. Further investigations are being
considered in this regard.
Figure 4.22 displays the distribution of the velocity potential on the wing and its finite
jump on the wake. We can see that the condition

[
φ
]
∂Γw

= 0 is satisfied and that the
most important contribution of the potential jump comes from the central part of the
wake where its maximum value is located. On the side edges of the wake sheet we can
also clearly see the typical roll ups due to the presence of tip vortices.
The distribution of the potential jump on the wake can be also found in Figure 4.23
which depicts the section circulation as a function of the normalised spanwise coor-
dinate z/s on the wing. We recall that in potential flows the circulation is equivalent
to the potential jump at the trailing edge, so the plot represents actually the potential
jump. This trend fading at the wing tips is what we expected from the theory.

77



Figure 4.22: A three dimensional representation of the wake past a NACA 0015 rect-
angular wing with AR=6.58 at an angle of attack α = 12◦. The visualization includes
the wing surface. Wake surface roll ups due to the presence of tip vortices are clearly
visible on the side edges of the wake sheet. The wing is coloured according to contours
of velocity potential φ, while the wake is coloured according to potential jump

[
φ
]
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Figure 4.23: Spanwise distribution of the section circulation on the surface of the
NACA 0015 rectangular wing with AR=6.58 at an angle of attach α = 12◦.
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4.2.4 Tapered wing
In order to show the ability of the method in analysing different geometrical configu-
rations, we consider now a tapered wing with a NACA 0015 profile. The chord length
is varied linearly to obtain a taper ratio 1/3 and the straight line along which the airfoil
section is swept is inclined of the sweep angle β = 60◦ with respect to the symme-
try plane. A scheme of the wing geometry is presented in Figure 4.24. The tapered
wing has been prepared with such geometrical specifications to match the numerical
experiments reported in [15] The numerical results are compared with similar results
presented by Morino et al. in [15]. The computational grid has been automatically
refined on the CAD surface of the wing.

1/3

1

β

s = 2

Figure 4.24: The geometry of the swept and tapered wing NACA 0015 considered by
Morino et al. [15]. The wing has a 1:3 taper ratio and a positive sweep angle β = 60◦.

The resulting computational mesh based on curvature adaptive refinements strategy is
shown in Figure 4.25. We can see that the grid is finer at the leading edge where the
curvature is high. In this specific case, a specific refinement cycle in the trailing edge
region has been added. The grid also features coarser cells in the centre of the body,
where the surface is flatter. On the wake, the wake roll ups at the side edges of the
converged grid are clearly visible.
Figure 4.26 portrays contours of pressure coefficient over the tapered wing at an angle
of attack of α = 5◦.
The maximum value of the pressure coefficient is assumed exactly in the central sec-
tion. Such maximum value is clearly lower than the theoretical value 1. This is due
to the fact that just as the case of the trailing edge, the BEM library used in this work,
treats the sharp edges assigning two separate sets of degrees of freedom for each side
of the edge. Since there is a sharp connection between the two parts of the wing, there
are two different normals and two non null velocities on the two sides of the central
section. Thus, there is no stagnation point. This is also the case for the leading edge on
all other sections of the wing. In fact these types of swept wings have the peculiarity of
reducing the pressure coefficient at the leading edge which is not in fact perpendicular
to V∞. The maximum sectional value of the pressure coefficient in fact is related to the
sweep angle β.
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Figure 4.25: A visualization of the computational grid for the NACA 0015 tapered
wing with the geometrical specifications reported in [15] at an angle of attack α = 5◦

test case. The picture depicts both the non conformal grid on the wing surface and the
converged wake sheet.

Figure 4.26: Contours of pressure coefficient on the surface of a tapered wing NACA
0015 at an angle of attack of α = 5◦.

In this test case we can see tip effects in the lateral parts of the wing, but also, at a
lower extent, in the central part since the connection between the two parts is, as said,
not smooth. In such regions the pressure coefficient has a different distribution with
respect to that observed in the central region of each half of the wing. This effect of
the non sharp connection between the different surfaces, also has some effect on the
wake shape, which bends upwards in the symmetry plane region.
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Figure 4.27 presents a comparison between the present model results and those ob-
tained by Morino et al. [15] in this wing tapered test case. The plot refers to the
section located at z/s = 0.549, reporting the cp for the flow past the tapered wing at an
angle of attack α = 5◦.
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Figure 4.27: Pressure coefficient comparison for the flow past the NACA 0015 tapered
wing at an angle of attack α = 5◦. The plot represents the cp on the upper and lower
portion of a longitudinal wing section locate at a z/s = 0.548 fraction of the wing span.
The blue line represents the prediction obtained in this work, while the red line refers
to data presented by Morino et al. in [15].

We can see that the results obtained in the present work (blue line) fit well the numerical
data obtained by Morino et al. (red line). The only appreciable difference is a modest
deviation on the trailing edge, which might be due to an insufficient refinement of the
mesh in that region.
As already mentioned, the maximum value of the pressure coefficient in this section is
not 1 but it is about 0.65, because of the shape of the tapered wing.

4.2.5 Double NACA
The capability of the proposed method to treat multiple wing geometries is tested by
considering a double rectangular wing with NACA 0015 foil section and square tip
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(Figure 4.28). This analysis is done sloping the first profile of an angle of 10◦ and with
an angle of attack of 0◦.

1

11.2

β

Figure 4.28: The geometry of the double NACA 0015 wing with AR=6.58. The two
profile are identical, but the first one is sloped by β = 10◦.

Figure 4.29: Contours of pressure coefficient on the surface of the double NACA 0015
at an angle of attack of α = 0◦.

In Figure 4.29 we present the contours of pressure coefficient on the surfaces of the
two bodies at null angle of attack.
We can see more clearly in Figure 4.30 how the pressure coefficient profile evaluated
in the central line is influenced by the close presence of the bodies.
We see that in the first body (Figure 4.30a) the trend on the leading edge is standard and
the stagnation point is in the bottom of the NACA profile, while we have an influence
on the trailing edge. The situation on the second body is more important: in absence
of the upwind body, the pressure coefficient would be symmetric because the angle of
attack is 0◦, but now it is not. We see in Figure 4.30b that the stagnation point is at the
top of the body. The presence of the first body creates a downwash effect, changing
the effective angle of attack on the second wing. This fact influences also the roll up
of the two wakes, in fact the first body’s wake roll up is in the upper direction while
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(a) Pressure coefficient first body.
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(b) Pressure coefficient second body.

Figure 4.30: Pressure coefficient contours for the flow past the double NACA 0015 at
an angle of attack α = 0◦. The plot represents the cp on the upper (blue line) and lower
(red line) portion of a longitudinal wing section located at a z/s = 0 fraction of the
wing span. On the left there is the pressure coefficient of the first body, while on the
right we have the second body’s one.

Figure 4.31: Contours of velocity potential φ on the bodies and potential jump
[
φ
]

on
the wakes on the surface of the double NACA 0015 at an angle of attack of α = 0◦.

the wake of the second body rolls up in the other direction.
The potential jump on the wake, and therefore the circulation, is positive for the first
body, while negative for the second one as shown in Figure 4.31. In both cases, we see
that the condition of null potential jump at the edges of the wake is satisfied.
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4.2.6 Nacelle
Finally we consider a different geometrical configuration where we analyse the poten-
tial flow around a nacelle.

1

1

β

rotation axis

Figure 4.32: The geometry of the nacelle with NACA profile sloped by an angle of
β = 5◦ and distant from the rotation axis of 0.5.

This geometry is obtained by rotating a NACA profile around an axis (see Figure 4.32).
This domain has an axial symmetry, so the pressure coefficient, when the angle of at-
tack is null, has the same trend in each section of the body, whereas, when the angle of
attack is not null, we have different results in the sections.
In Figures 4.33 and 4.34 we want to show how the mesh over two nacelles, obtained
by the rotation of NACA 0006 and NACA 0015 profiles, is generated and some results
on the pressure coefficient. Figures 4.33a and 4.34a show the input grids given to the
algorithm, while Figures 4.33b and 4.34b present the resulting meshes.
The first profile is slimmer and in order to obtain pressure coefficient at the stagnation
point close to 1 the mesh needs to be refined a lot in that region. Using a refinement
based on the curvature, the mesh is sharp on the leading edge, but not enough to obtain
pressure coefficient 1 (Figure 4.33c).
The second profile is thicker, so it is needed less refinement based on the curvature in
order to capture the stagnation point (Figure 4.34c).
In both profiles we see how the flow accelerate either outside or inside the profile. This
is due to the fact that in the first case the flow has to turn around an obstacle, in the
second one the flow passes through a constriction and it is explainable by the Venturi
effect.
In Figure 4.34d we consider the NACA 0015 nacelle with an angle of 5◦. The result is
that we continue to catch the stagnation point, the pressure coefficient is no more axial
symmetric and the wake shape is influenced by this rotation. In particular we can see
that the pressure coefficient is smaller in the top outer region in Figure 4.34d than in
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(a) Starting mesh. (b) Final mesh.

(c) Pressure coefficient contours

Figure 4.33: Results over nacelle NACA 0006. The first figure presentsthe initial
mesh, that is the input file we give to the algorithm. The second one depicts the final
mesh obtained using a refinement strategy based on the curvature and projecting the
new vertices of the cells on the CAD surfaces and edges. In the third one it is shown
the pressure coeffcient contours for the flow past the nacelle NACA 0006 at an angle
of attack α = 0◦

Figure 4.34c according to what we expected. The pressure coefficient increases as we
go at the bottom of the nacelle. Since we do not have edges effect, there is no wake
roll-up in all nacelle simulations.
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(a) Starting mesh. (b) Final mesh.

(c) Pressure coefficient nacelle NACA 0015
α = 0◦.

(d) Pressure coefficient nacelle NACA 0015
α = 5◦.

Figure 4.34: Results over nacelle NACA 0015. The first figure presentsthe initial
mesh, that is the input file we give to the algorithm. The second one depicts the final
mesh obtained using a refinement strategy based on the curvature and projecting the
new vertices of the cells on the CAD surfaces and edges. In the third and in the fourth
figure it is shown the pressure coeffcient contours for the flow past the nacelle NACA
0015 at an angle of attack α = 0◦ and α = 5◦
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Conclusions and future developments

In this work we have seen how to deal with lifting problems in 2D and 3D simulation
using a potential flow model derived from an existing Boundary Element library that
was able to treat only non lifting problems. In particular we have implemented a new
way to impose the Kutta condition in terms of pressure, solving a nonlinear system of
equation. We also see how to treat the wake, since its position is an unknown of the
problem. We see how it is not easy to deal with hypersingular terms, so it is useful
to change the formula for the computation of the velocity. A key characteristic of the
proposed method is related to the possibility of generating a grid over a CAD surface
by automatic mesh adaptivity and thus accelerating the global simulation process.
Part of this work has been devoted to the validation of the model developed. Several
experimental and numerical benchmark test cases available in the literature have been
considered and reproduced. The results confirm that the model presented in this work
well reproduces the potential flow of a fluid past airfoils and wings.
Several further improvements of our algorithm are possible, in order to extend the
range of possible engineering problems that can be solved.
The first extension may be the solution of time-dependent problems of unsteady flows
or moving domain. In this case the boundary integral equation will be the same, but the
constraint on the potential jump on the wake (1.35) and the Bernoulli equation (1.5)
will be different, because they have to consider the term ∂φ

∂t .
The second possible improvement may be the solution of potential flow around thin
bodies. In this case the governing equation won’t take into account the potential φ and
its normal derivative ∂φ

∂n , but their jump
[
φ
]

and
[
∂φ

∂n

]
. The trailing edge condition will

be slightly different, because we will have to write it in term of potential jump. Thus
would allow to consider other families of engineering problems such as sail aerody-
namic analysis.
The third aim is to couple our program with another one using the same library that
solves problems of ship-wave interaction [8]. The contribution that can come from this
work is to simulate the flow around the drift and the rudder blade or even to the foils
of modern sailing boats.
Our intent in this work was focused on the computational performance of the code,
however there exist some techniques that can speed up this algorithm. Such tech-
niques are the parallelization of the code, the fast multipole method and high order
elements [1].
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