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Abstract

This dissertation is about periodic event-based control, and has a twofold
purpose. From a methodological viewpoint, the possibilities offered by having
the sensor transmit past values of the controlled variable in addition to the
one that triggered the event, are explored, and the consequent stability anal-
ysis is formalized. From the technological and implementation-related point
of view, a Modelica library is presented to experiment with the theoretical
ideas just sketched. The library comprehends several controller structures
and event triggering techniques, with or without past samples transmission,
and structures the represented control blocks so as to separate sensor, event
generators and controllers, for maximum flexibility. The presented ideas look
promising, and future work will be devoted to further investigate the stability
of event-based control loops encompassing past samples transmission. Also,
there is much room to expand the library by adding new models for the
different event-based components.
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Sommario

Questo lavoro riguarda il controllo ebent-based periodico e ha un duplice
scopo. Da un punto di vista metodologico, vengono esplorate le possibilità
offerte dal fatto che il sensore trasmetta valori passati della variabile control-
lata in aggiunta a quello che ha innescato l’evento, e la conseguente analisi
di stabilità viene formalizzata. Dal punto di vista tecnologico e di imple-
mentazione, viene presentata una libreria Modelica per sperimentare le idee
teoriche descritte sopra. La libreria comprende diverse strutture di control-
lori e diverse tecniche per la generazione di eventi, con o senza la trasmissione
di campioni passati; inoltre, la libreria struttura i blocchi di controllo rapp-
resentati in modo da separare sensori, generatori di eventi e controlori, per
ottenere la massima flessibilità. Le idee presentate sembrano promettenti e in
futuro la ricerca si concentrerà su ulteriori indagini a proposito della stabilità
dei loop di controllo event-based (sempre di tipo periodco) comrpendenti la
trasmissione dei campioni passati. Inoltre, c’è molto spazio per espandere
la libreria aggiungendo nuovi modelli per i diversi componenti di un loop
event-based.
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Chapter 1

Introduction

For decades, the time triggered (periodic) control has been always the
traditional choice for implementing the feedback control laws in digital con-
trolled system. Using a fixed sampling time qs to acquire measurements
and calculate the control signal periodically, then update the actuator us-
ing zero-order holder (ZOH). Furthermore, the periodic control is the stan-
dard method for discretizing the continuous controller with qs sampling time,
thanks for the solid theories that periodic control has established through all
the past years.
However, in the informatics world where the amount and size of transferred
data is contentiously increasing specially in a big scaled plant where it has
a large number of control components (sensors, controllers, actuators) that
need to communicate to each others. Hence the periodic control becomes less
efficient where the communication traffic is excessively increased and cause
bandwidth problem and waste in the energy resources. Therefore, many re-
searches recently start going in the direction of Event Based Control (EBC).
In matter of fact, EBC is not a new topic, but the lack of the theories have
prevented using it in the digital controlled system. Even though, many appli-
cations use EBC naturally. For example, encoders are event based sensors,
Relay systems with on-off control and satellite thrusters are event based con-
trol and many others [1].
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1.1 EB Control (Aperiodic Control)

Different from the periodic control, EBC acquires measurements, takes
decisions and/or applies actions only when needed. As a result, there are
numerous benefits come from using EBC. So by reducing the number of
sampling, not only the communication traffic in a networked system is re-
duced and the bandwidth is saved, but also helps to efficiently utilize the
system’s resources. For instance, less number of transmitted measurement
for a battery powered sensors in wire/wireless network implies a reduction
of the sensor’s battery consumption. Therefore, the battery lifetime signif-
icantly increases and obtains saving not just in energy, but also in the cost
and maintenance effort specially for wireless sensors in remote places. It is
farther assumed that the energy consumption of message transmission by the
wireless sensor is much greater than energy consumption of calculation inside
the sensor [2]. In addition, EBC reduces the number of tasks that has been
computed by the controller’s CPU in order to avoid computing a control ac-
tion that brings no improvement to the process which is clearly a waste of
the CPU computational resources. Another key point is that updating the
actuators only when it is necessary increases the life cycle like reducing the
wear in valves.

1.2 Main Contribution

In spite of the EBC’s advantages, there are still many open problems that
prevent us from fully use this powerful technique. One of the open problems
is how to keep the state of the controller consistent with that of the controlled
plant in the case of a long time span between two subsequent control events.
This problem has many facets, and it is particular important if the control
is implemented by means of state feedback, but also need to be consider in
the case of any other standard industrial controller. The proposed solution
is to have a sensor transmit not only the value of the measured variable
when the event was triggered, but also a convenient number of past ones
at fixed internal sampling rate. Consequently, it will slightly increase the
transmitted information, but can be used straightforwardly to reconstruct the
plant state, or simply to update that of a generic output- feedback controller,
provided some conditions are met. Unfortunately, using this method rises
a new problem, this time is related to stability. The EBC will have two
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dynamic states matrices and based on violating the chosen trigger rule it will
contentiously switch between them. However, it is important to proof the
stability under arbitrarily number of switchings hence the system is stable in
regardless of the selected trigger rule.

k-th event triggered

u(k) = aC1u(h(k)−1)+ac2u(h(k)−2)+bc0(r(h(k))− y(h(k)))+bc1(r(h(k)−1)− y(h(k)−1))+bc2(r(h(k)−2)− y(h(k)−2))

t,h

y(t)

q

u(t)

Figure 1.1: Operation of the proposed event-based scheme coupled to send-on-

delta triggering with threshold ∆: diamonds indicate the controlled variable sam-

ples that trigger events, circles the past samples (two in this example) that are

transmitted together with the triggering one, squares the new controls computed

based also on past control samples, clearly known to the controller (two in the

example) and denoted by circles as well; the semi-transparent bands indicate the

±∆ ranges around the last transmitted output, and ticks on the upper horizontal

axis mark the sensor sampling at step q.

As can be noticed, Figure 1.1 shows how the multi-sampling sensor op-
erates. In this example particularly, the sensor is the single source of events
coupled with send-on- delta policy. When an event is generated, as indicated
by the dashed coloured arrows, the sensor transmits the present control vari-
able y and the required number of the past samples of it, based on which
(and on its internal state memory) the controller obtains a new value for
the control command u, that is held till the next event. Although it is not
shown in the figure in order to not impair clarity, it may happen that two
subsequent events occur at distance in the h sampling less than the number
of past control samples. In other words, the past control samples are not
necessary all equal. Optionally, the sensor could be farther optimised to not
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transmit replicated samples when events are close enough to generate some.
It is important to mention that with past values’ transmission works best
with controller has order higher than one because it is safer to implement
controllers that need more than one past value of controller variable, i.e. to
go beyond the PID controllers.
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Chapter 2

Literature Review

EBC has gained much of interests in the last years as mean to act on a
controlled system ”only when this is necessary”, see e.g. [1] and the papers
quoted therein. Therefore the literature offers a wide variety of works on
a wide range of applications from solar collectors [3] to room temperature
control [4] and thermal management of high-density micro processor [5].

In [6], the author states that the resurgence of EB debate is due to the in-
creasing popularity of (shared) wired and wireless networked control systems
(NCS) that rise the importance of explicitly addressing energy, consumption,
and communication constraints when designing feedback control loops.

In regards to resources utilization, there are exist many works that focus
in reducing the sampling numbers and calculation with saving resources [7]
[8] [9] [10].

Other reasons that attract the researcher to EBC are mentioned in [1]
and [7]. For instance, EB sampling is used in the process industry when
statistical process control (SPC) is implemented in closed loop. In order
not to disturb the process, a new control action is only calculated when a
statistically significantly deviation has occurred. Also in the process indus-
try that has many production units where buffer tanks are typically used
for smoothing the production variations. EB can be applied to avoid any
frequent change in production rates that cause upsets. Furthermore, mod-
ern distributed control systems impose system architectural constraints that
make it difficult to stick to the time-triggered paradigm thus EB provides an
alternative. This is specifically the case when control loops are closed over
computer networks or buses, e.g., field buses, local area network or ATM net-
work. Another reason why EBC is interesting is that it is closer in nature to
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the way a human behaves as a controller. For example, the human motion
control and also the manual control is EB rather than time triggered.

The major problem with EBC is the impossibility of analysing the system
with well established and powerful theory as that available for the fixed rate
case [9]. Therefore, there are many viewpoints on the matter have been
proposed. Conditions on tuning parameters for the existence of equilibrium
points have been investigated, see, e.g. [11], and modifications of the most
commonly used laws, typically PI/PID and their tuning [7] [8] [12].

In particular many researches focused on PIDs controller. For exam-
ple, [13] shows that the increased use of wireless sensors and actuators in
industrial plants have stimulated a significant interest in event-based PI(D)
controllers from academic and industrial researchers [7], [8], [14], [9], [15],
[16], [17], [18], [19], [20] (in many cases the derivative part is not used). In
fact, some works shows that this kind of controllers is able to reduce the
power consumption of the devices and therefore to increase the battery life
time. Further, the reduction of the communication load allows the reduction
of the risk of lost data and stochastic time delays [21], [22], [23].

The author of this work [18] states that generally all the control laws
should be adapted to the irregular intervals in order to use them in EB.
Moreover, sensors and controllers in closed loop compose four different sam-
pling configurations vary between time based and event based. The most
promising configuration is when the both controller and sensor are event
based what is called pure event based. However, in practical the event based
mechanisms are completed with time triggered event to reduce the uncer-
tainty that can be created from the pure event based system in some cases.

The work [2] highlights a relationship between the energy efficiency of
wireless sensor and tuning PI controller in the case of level crossing sampling.
It has been found that the best trade off between energy efficiency and control
quality is reached by a setting with nearly no overshoot, while for periodic
controller more overshoot is usually advantageous.

Another relevant problem in EB realisation is showed in [24] where Leva
poses a challenge of how to keep the state of controller consistent with that of
the controlled plant in the case of a long time span between two subsequent
control events. the proposed solution in the paper is suggesting that the
sensor transmits not only the value of the measured variable, but also a
convenient number of that past ones at a fixed internal sampling rate. The
transmitted information then can be used to reconstruct the plant state, or
simply to update that of a generic output-feedback controller.
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Regarding the stability, [9] provides a simple (sufficient) stability condi-
tion for EB realization of a PID and it is assumed that any event could be
triggered only on a time instant that is an integer multiple of quantum qs.
In addition, it showed that there exists a close relationship between EB and
switching systems. Moreover, the paper [9] states that the stability must
be ensured independently of the triggering rule, therefore, it is done under
arbitrary number of switching regardless of te triggering rule.

In Leva work [24], the dynamic matrix (state matrix) demonstrates the
switching nature by taking two values when the control signal is updated or
maintained.

There are several ways to design the control signal generator was dis-
cussed. In [1] , one method has advantage that the EB system is equivalent
to a non linear system in case if it is free from modelling error and distur-
bance.

The design of triggering rule for EB systems are also widely discussed and
there exist in literature many results which present a new event triggering
rule scheme that guarantee the resulting event-triggering feedback system
to be asymptotic stable. For example in [25], it represents non quadratic
Lyapanuv-based triggering rule that ensure the asymptotic stability provided
that the continuous systems are stabilizable.

This work [26] proposes a simultaneous design of the state feedback law
and the event-triggering conditions ensuring local exponential stability and
LQ performance in the presence of plant input saturation and of a com-
munication channel between the controller output and the saturated plant
input.

In this brief review, a various topics on EB have been through such as
open problems in EB and the different triggering rules and schemes. But
there does not exist in the literature a simulation library that contain all
the different EB schemes and the triggering rules hence allow us to do a
comparative studies, also there is no such rule in EB that takes into account
using the past values of the control variables which they are going to be the
core of this research.
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Chapter 3

Modeling EB Control Loop

EB has various schemes, depending on how the event source(s) and trig-
gering rule(s) make the sensor, the way that the controller and the actuator
interact. In the next sections, we are going to talk about the triggering rules
that used to build the Event-Generator (EG), the control laws and then
build the scheme of the considered model and use the multi- sampled sensor
and show the advantages and the consequences issue in stability.

3.1 Event Generators (EG)

Starting with the event generator (EG) which is the Essence of EBC
system. The EG is responsible of firing events that are used with both the
sensors to acquire measurements and the controllers to calculate a new con-
trol signal (CS). These events are triggered based on a specific triggering
rules. In fact, there are four rules that have been modeled in a separate
blocks, each rule will be discussed next in details. Another point to remem-
ber, EG is time based where it test the violation of these rules periodically
with the same sample period corresponding to the time triggered controller
and sensor [7].

3.1.1 Triggering Rules

The triggering rules generally vary between two policies, SOD (Send on
Delta) and SOA (Send on Area), and vary in the used signal whether error
signal or controlled variable. Farther more, each rule can be merged with
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timeout condition where EG force an event after a certain amount of time
elapse in regardless of triggering rule’s violating state.

3.1.1.1 SOD Error Difference

SOD Error Difference basically uses the error signal (the difference be-
tween CV and set point (SP ), e = SP − CV ) and takes the absolute dif-
ference between the current error and the last triggered error event. Then,
a new event is fired when the absolute difference is equal or greater than a
predefined threshold as shown below:

abs(e− eLast) >= threshold (3.1)

Briefly, SOD Error Difference has relatively shown a higher sampling number
comparing to other triggering rules such as SOD error. However, it has shown
also a smaller steady sate error [12].

3.1.1.2 SOD Error

This triggering rule is similar to SOD Error Difference, but instead of
comparing the difference between current error and the last triggered error,
only the current error is taken into account and compared with a predefined
threshold. The triggering rule is shown in equation 3.2:

abs(e) >= threshold (3.2)

That is to say, SOD Error has shown less sampling number comparing to
SOD error difference but has a larger steady sate error [12].

3.1.1.3 SOD Control Variable Difference

The main difference here lies in using the control variable instead of the
error where the absolute difference between the current CV and last trans-
mitted value CVLast is calculated. The equation 3.3 below illustrates the
triggering rule:

abs(CV − CVLast) >= threshold (3.3)

Generally speaking, SOD CV Difference has a very low sampling error and
that explains the high oscillation in the plant response that occur due to the
decreased number of the updated measured CV .
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3.1.1.4 SOA Control Variable Difference

SOA CV Difference triggers a new event when the integrated area (Π)
under the difference between the current CV (t) and the last transmitted
control variable (CVLast(t)) along time is greater or equal than the predefined
threshold (see equations 3.4 and 3.5). Subsequently, the area Π is reinitialize
to zero after each time a new event is triggered.

Π (tlast, t) =

t∫
tlast

(CV (t)− CVlast) dt (3.4)

abs(Π) >= threshold (3.5)

Moreover, SOA has shown a better performance comparing to SOD in term
of sampling numbers in a highly noisy systems where it avoids unnecessary
sensor data transmissions [27]. Having said that, SOD does not detect signal
oscillation or steady-state error very efficiently if the difference (∆) remains
within the threshold range for a long time, but this problem has been coun-
tered in SOA [28].

3.2 Controllers (C)

PID controller is the most used in the industrial field. In order to use
it in EBC system, a modification in PID structure is necessary. Therefore,
there are several different models that vary mainly in the used method of
discretizing the integral part and also in the used EG. The control algo-
rithm is integrated with a various control signal generators, in this work we
are implementing the Zero Order Hold (ZOH) and Impulse Hold (IH). In
absence of a new event, the ZOH holds the value of the CS from the last
triggered event till the next event occurs. While the IH sets the CS to zero
all the time except for those instants when an event is triggered, then CS
can has any value. However, all the controller models that are discussed next
are represented in its digital form after discretization.

3.2.0.1 Fixed Rate PID

Fixed rate PID is a simple time triggered based. The control signal is
computed periodically with a fixed sampling period (cycle time). Indeed, the
CS is the sum of three parts, each part is demonstrated shown below:
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1. Proportional part (up):

up = Kp (βSP − CV ) (3.6)

where Kp is the proportional gain and β is the SP weighting. In matter
of fact, discretizaion for proportional part is straightforward [7].

2. Integral part (ui):

ui = ui +

(
Kp cycletime

Ti

)
(SP − CV ) (3.7)

Ti represents the integral time. In order to discretize ui, backward
approximation with most recent error value is used [8].

3. Derivative part (ud):

ud =

(
Td

Td +N cycletime

)
ud −

(
Kp Td N

Td +N cycletime

)
(CV − CVLast)

(3.8)

where Td is the derivative time and N is the low pass filter cut off fre-
quency. Backward approximation is used for discretizing the derivative
part [2].

After calculating each part, the new CS will be the sum of tall the three
parts as shown below:

CS = up + ui + ud (3.9)

3.2.0.2 Arzen’s PID

Now shifting to EB controllers and starting with Arzen which is going
to be discussed first and it will be the starting point for the rest of EB
controllers. More accurately saying, the used Arzen model is an improved
model where the difference from the known standard Arzen lies in using the
backward discretzing method for the integral part instead of the forward
discretzing method. The reason behind that is for anticipating the next
event for forward method is not possible in practice. Opposite the fixed rate
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controllers, the interval between two subsequent events (I) is not fixed and
equal to an integer multiple (h) of the nominal sampling time (cycle time):

I = h cycletime (3.10)

In addition, Arzen can internally force a control event independent from the
violation of the EG triggering rule. In other words, Arzen Implies the time
out safety condition where a controller forces a new event after satisfying the
following rule:

I >= hmax (3.11)

where hmax is the maximal safety interval time.
A new CS (see eq 3.9) is generated each time an event is triggered by EG or
forced event by the safety condition. Likewise, the proportional part remains
same as in FR controller (see eq 3.6) while the integral and the derivative
parts differ by only replacing the nominal cycle time with varying interval
(I) as shown below:

ui = ui +

(
KpI

Ti

)
(SP − CV ) (3.12)

ud =

(
Td

Td +NI

)
ud −

(
KpTdN

Td +NI

)
(CV − CVLast) (3.13)

3.2.0.3 Durand’s PID

Durand is merely an improvement on Arzen to avoid a repetitive compu-
tations, specially in the long steady state where a very few new events are
triggered from the violation in the EG’s triggering rules [8]. The time out
safety condition is removed and only EG remains responsible to generate
events which effects directly in reducing the number of event, but overshoots
appear after long steady state intervals. To solve this issue, modifications in
the integral part are introduced to Durand in the next following models.

3.2.0.4 Durand’s PID with Saturation

The only difference from Durand is the modification on the integral part to
solve the above mentioned problem. The idea of this modification is bounding
the product between the sampling interval (I) and the error (e = SP −CV )
after a long steady state. Thus, when the sampling interval becomes too
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large, the product (I ∗ e) is saturated. Otherwise, the Ie will takes its real
value. In this case, ui will be same as in equation 3.7. The algorithm is
shown below:

if I >= hmaxI then

Ie = (I − cycletime)threshold+ cycletime e (3.14)

else
Ie = Ie (3.15)

end
where hmaxI is maximal time interval for Integral part, and beyond it the
product Ie is saturated. threshold equals to the value of the same parameter
in EG. After all, the integral part can be written like this:

ui = ui +
KpIe

Ti
(3.16)

3.2.0.5 Durand’s PID with Exponential Forgetting Factor

Similar to Durand with saturation, but the sampling interval will be re-
duced after long steady state. This time, by adding an exponential forgetting
factor. Then a new interval (Iexp) will be computed and used in the integral
part ui.

Iexp = Ie(cycletime−I) (3.17)

ui = ui +

(
KpIexp
Ti

)
e (3.18)

3.2.0.6 Durand’s Hybrid PID

Hyprid algorithm uses the both modification, saturation and exponential
forgetting factor. As a result, the product (Ie) will be modified as following:

if I >= hmaxI then
Iexp = Ie(cycletime−I)

Ie = (Iexp − cycletime)threshold+ cycletime e
else
Ie = Ie

end
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And the integral part ui is written as following:

ui = ui +
KpIe

Ti
(3.19)

3.3 EBC Modelling

In this work, we are considering single input, single output (SISO) EB
loop with single source of events. More precisely, we assume that the sensor
is the single source of events. And the triggered event cause the computation
of a control action which is actuated contextually.

Event-based
controller

Actuator Plant Sensor

(Event generator)

r(k) u(k)

d(t)

u(t) y(t)

y(k)

Figure 3.1: Block diagram of the considered EB loop

The considered scheme of EB loop is shown in Figure 3.1. The black solid
lines represent contentious time signal t or could be FR (fixed rate) sampling
time q where t = Nq and N is an integer. Moreover, red dashed lines repre-
sent signals sampled at event and k is an integer index counting the events.
r,y,u and d are respectively the set point, the controlled variable, the control
signal and the disturbance. The hatched blocks are the interfaces between
the event based world of the controller, and the contentious time one of the
plant.
However, EB system is hybrid control loop where it contentiously switches
between two operating modes. In other words, there are two dynamic be-
haviours (two state matrices) representing the EB system. The first mode
is when an event is triggered by the sensor then it sends the controller the
latest measurement in order to compute a new control signal (u(k + 1) and
update the actuator with the new value by using ZOH (zero order holder)
or any used control signal generator. And the state matrix for this system
called Arun. the second mode happens in case of no events (absent of events),
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then the system runs in open loop and the sensor does not transmit any new
values to the controller; hence the controller holds the latest control signal
computed from the last event using ZOH and the state matrix for this system
called Ahold.

3.3.1 Hypothesises

Before starting to write the system’s equations, it is important to state
the hypothesises that system has been modelled in. Listed below:

� The process plant is SISO (single-input single-output) LTI (linear and
time-invariant) with a transfer function P (s) and it is always assumed
to be strictly proper, dp = 0.

� The contentious time controller is SISO LTI that has been already
synthesised to fulfil the closed loop specifications as stability and per-
formance. And it has a transfer function C(s) where it is assumed to
be strictly proper (it is not necessary for the controller to be strictly
proper but in this work it is assumed to be).

� The plant and the controller are discretized using a sampling time qs
in such way that the stability degree and other properties remain ac-
ceptable, suitable for fixed rate realisation of the controller.

3.3.2 State Space Representation

The process plant is represented in discrete state space equations (state
equation 3.20a and the output equation 3.20b). Furthermore, the system has
np order an integer number and xp(k) is a column vector of state variables
that has np elements such that xpi(k) is the ith element where i=1,2...,np,
and k is an integer counts the events.

xp (k) = Apxp(k − 1) + bpu(k − 1) (3.20a)

y(k − 1) = cpxp(k − 1) (3.20b)

Similarly, the controller is represented in discrete state space (state equation
3.21a and output equation 3.21b). Also the controller has order nc an integer
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number and xc(k) is the state variables column vector with nc elements such
that xci where i=1,2...nc.

xc (k) = Acxc(k − 1) + bce(k − 1) (3.21a)

u(k − 1) = ccxc(k − 1) + dce(k − 1) (3.21b)

Where e(k) = r(k)− u(k) is the error at the kth event
However, a SIMO (single-input multi-output) system with order equal to
np + nc arises from connecting the process plant and the controller together.

3.3.3 EB in Closed Loop (Run)

Starting with the first operating mode (run) that we enter when an event
is triggered. The state space equations for the closed loop where a new
control signal u is computed, the system is shown as following:[

xp (k)
xc (k)

]
= Arun

[
xp (k − 1)
xc (k − 1)

]
+

[
bpdc
bc

]
r(k − 1) (3.22a)

[
y(k − 1)
u(k − 1)

]
=

[
cp 01×nc

−dccp cc

] [
xp (k − 1)
xc (k − 1)

]
+

[
0
dc

]
r(k − 1) (3.22b)

where

Arun =

[
Ap − bpdccp bpcc
−bccp Ac

]
(3.23)

Note that Arun is obtained directly by simply substitute equation 3.21b in
equation 3.20a. In contrast, we will see that deriving Ahold is more complex.

3.3.4 EB in Open Loop (Hold)

In the second operating mode (hold), there is no triggered event, the
system is in open loop and the controller holds the control signal from the
last event, see equation 3.24.

u(k) = u(k − 1) (3.24)

Furthermore, the evolution of the plant’s state xp(k) is not effected and re-
main in same way as in run mode, only the controller’s state xc(k) here is
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needed to be computed and determined instead of depending on it as usual.
Accordingly, we need to write nc scalar equations where nc is the order of
the controller. And one way is to propose that the sensor transmits not only
the value of the present measured variable when the event was triggered, but
also a convenient number of past ones at its fixed internal sampling rate in
order to use them in the absent of event, hold mode, to write the necessary
nc equations.
However, let C(z−1) be the transfer function obtained by taking the Z-
transform for the controller state space, and write

C(z−1) =
Bc(z

−1)

1− Ac(z−1)

=
bc0 + bc1z

−1 · · ·+ bcmcz
−mc

1− ac1z−1 · · · − acncz
−nc

(3.25)

Assume we are at time k in he hold mode thus we need to determine the
controller state xc(k) by writing nc singular equations using the following
information: the sensor provides 1 + mc measured variables transmitted at
time instant k− 1 {y(k− 1) . . . y(k− 1−mc)} and a similar set is also saved
for the reference signal in an internal buffer {r(k− 1) . . . r(k− 1−mc) where
the present one r(k) is known as well. Also nc past control signals {u(k −
1) . . . u(k−nc) } is saved in an internal buffer. Later we are going to explain
how these information are exploited to write the nc singular equations.
Back to the main argument, in the hold mode where the value of the control
signal u(k) is held constant equal to the previous one u(k − 1) until a new
event is generated.
Starting from equation 3.24 we obtain the following:

ccxc(k) = u(k − 1)− dce(k)

= u(k − 1)− dc(r(k)− cpxp(k))

= u(k − 1)− dcr(k) + dccp(Apxp(k − 1) + bpu(k − 1))

(3.26)

It is worth to mention that solving equation 3.26 and determining xc(k) is
not always feasible neither trivial task.
For example in the case of a non strictly proper controller, if the set point has
changed then we must be in run mode not in hold mode because it interferes
with the event triggering mechanism. Consequently, there is no solution in
the hold mode in this particular case.
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On the other hand, if we are in the hold mode and the set point is fixed,
r(k) = r(k − 1), equation 3.26 is solvable and become as following:

ccxc(k) = u(k − 1)(1 + dccpbp) + dccpApxp(k − 1)− dcr(k − 1) (3.27)

In the case of a strictly proper controller where dc = 0, a solution is exist
and equation 3.26 is simplified as shown below.

ccxc(k) = u(k − 1) (3.28)

For sake of simplicity, we are going to proceed in the hypothesis of strictly
proper controller. Now to compute xc(k), we need nc singular equation and
3.28 represents the first equation. For the rest of nc − 1 equations, we are
going to show how to derive them using the controller past outputs.
Starting with deriving the second equation:

ccxc(k − 1) = u(k − 1) (3.29a)

where u(k− 1) is known, exogenous signal, and we need to express xc(k− 1)
as a function of our unknown state variable(s) xc(k). Therefore, solve the
state equation 3.21a for xc(k − 1). And to do so, the state matrix Ac must
be non singular and has no delay in the controller which is reasonable.

xc(k − 1) = A−1
c (xc(k)− bcr(k − 1) + bccpxp(k − 1)) (3.29b)

Now, substitute equation 3.29b in equation 3.29a and solve for xc(k).

ccA
−1
c xc(k) = −ccA−1

c bccpxp(k − 1) + ccA
−1
c bcr(k − 1) + u(k − 1) (3.29c)

The second equation is shown above in 3.29c where ccA
−1
c bcr(k−1)+u(k−1)

are exogenous input signals.
In similar manner, the third equation is derived:

ccxc(k − 2) = u(k − 2) (3.30a)

xc(k − 2) = A−1
c (xc(k − 1)− bcr(k − 2) + bccpxp(k − 2))

= A−1
c

(
A−1

c (xc(k)− bcr(k − 1) + bccpxp(k − 1))− bcr(k − 2) + bccpxp(k − 2)
)

(3.30b)

As we did for xc(k− 1) in 3.29b, solve the plant state equation for xp(k− 2),
holding that Ap is non singular.

xp(k − 2) = A−1
p (xp(k − 1)− bpu(k − 2)) (3.30c)

18



Then substitute 3.30c in 3.30b.

xc(k − 2) = A−2
c xc(k)− A−2

c bcr(k − 1) + A−2
c bccpxp(k − 1)− A−1

c bcr(k − 2)

+A−1
c bccpA

−1
p xp(k − 1)− A−1

c bccpA
−1
p bpu(k − 2) (3.30d)

Now substitute 3.30d in 3.30a and solve for xc(k)

ccA
−2
c xc(k) = −cc(A−2

c bccp + A−1
c bccpA

−1
p )xp(k − 1) + ccA

−2
c bcr(k − 1)

+ccA
−1
c bcr(k − 2) + (1 + ccA

−1
c bccpA

−1
p bp)u(k − 2) (3.30e)

In the same way, the fourth equation is written as following:

ccA
−3
c xc(k) = −cc(A−3

c bccp + A−2
c bccpA

−1
p + A−1

c bccpA
−2
p )xp(k − 1)

+ccA
−3
c bcr(k − 1) + ccA

−2
c bcr(k − 2) + ccA

−1
c bcr(k − 3)

+(1 + ccA
−1
c bccpA

−1
p bp)u(k − 3)

+(ccA
−2
c bccpA

−1
p bp + ccA

−1
c bccpA

−2
p bp)u(k − 2) (3.31)

In conclusions, to write nc singular equations we always set the first equation
to be ccxc(k− 1) = u(k− 1) and the rest nc− 1 equations (when nc > 1) are
obtained recursively using the general law below.

ccA
−h
c xc(k) = −cc

(
h−1∑
l=0

Al−h
c bccpA

−l
p

)
xp(k − 1) + cc

h∑
l=1

Al−h−1
c r(k − l)

+u(k − h) + cc

h∑
l=2

Al−h−1
c bccpA

−1
p bpu(k − l) + cc

h−1∑
l=2

Al−h
c bccpA

−2
p bpu(k − l)

+cc

h−2∑
l=2

Al−h+1
c bccpA

−3
p bpu(k − l) + . . . . . .

· · ·+ cc

h−s∑
l=2

Al−h−1+s
c bccpA

−1−s
p bpu(k − l) (3.32)

Where h and s are integer numbers such that h = 1 . . . nc − 1 where nc > 1
and s = 0, 1, 2 . . . h− 2 when h > 1.
Writing the nc equations together in a matrix form , we can obtain the
following:

Mxc(k) = Qxp (k − 1) + Inputs (3.33a)
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Where M , Q and the Inputs are matrices such that:

M =


cc

ccA
−1
c

ccA
−2
c

...
ccA

−h
c

 (3.33b)

Q =


01×np

−ccA−1
c bccp

−cc(A−2
c bccp + A−1

c bccpA
−1
p )

...

−cc
(∑h−1

l=0 A
l−h
c bccpA

−l
p

)

 (3.33c)

Inputs =


0

ccA
−1
c bcr(k − 1)

ccA
−2
c bcr(k − 1) + ccA

−1
c bcr(k − 2)

...

cc
∑h

l=1A
l−h−1
c bcr(k − l)

 (3.33d)

+


u(k − 1)
u(k − 1)

(1 + ccA
−1
c bccpA

−1
p bp)u(k − 2)

...

u(k − h) + cc
∑h−2

s=0

∑h−s
l=2 A

l−h−1+s
c bccpA

−1−s
p bpu(k − l)


Obviously, the equations are still not ready to write the controller’s state
equation. First, simplify the Inputs term by substituting all the control
signal u(k − 1) . . . u(k − h) with its known output equation and write them
in term of xc(k − 1) in such way u(k − 1) = ccxc(k − 1), but it gets more
complicated for u(k−2) and u(k−3) . . .u(k−h) because it applies recursive
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formula as it is shown below:

u(k − 2) =
ccA

−1
c xc(k − 1)− ccA−1

c bcr(k − 2) + ccA
−1
c bccpA

−1
p xp(k − 1)

1 + ccA−1
c bccpA−1

p bp

u(k − 3)

1 + ccA−1
c bccpA−1

p bp
=

(
ccA

−2
c −

ccA
−1
p bpccA

−1
c

1 + ccA−1
c bccpA−1

p bp

)
xc(k − 1) +(

−ccA−2
c bc +

ccA
−1
p bpccA

−1
c bc

1 + ccA−1
c bccpA−1

p bp

)
r(k − 2)− ccA−1

c r(k − 3) +(
ccA

−2
c bccpA

−1
p + ccA

−1
c bccpA

−2
p −

ccA
−1
p bpccA

−1
c bccpA

−1
p

1 + ccA−1
c bccpA−1

p bp

)
xp(k − 1)

Then, write all the terms in r(k − 1), r(k − 2), xc(k − 1) and xp(k − 1)
and obtain the following structure

Inputs = Ir1r(k − 1) + Irr(k−) +Qcxc(k − 1) (3.33e)

Where

Ir1 =


0

ccA
−1
c bc

ccA
−2
c bc

ccA
−3
c bc
...

 (3.33f)

Ir2 =



0
0
0

ccA
−1
c bc

1 + ccA−1
c bccpA−1

p bp
...


(3.33g)

Qc =



cc
cc

ccA
−1
c

ccA
−2
c −

ccA
−1
p bpccA

−1
c

1 + ccA−1
c bccpA−1

p bp
...


(3.33h)
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And for xp(k − 1), the Q matrix becomes Qp where

Qp =



01×np

−ccA−1
c bccp

−ccA−2
c bccp

−ccA−3
c bccp −

ccA
−1
p bpccA

−1
c bccpA

−1
p

1 + ccA−1
c bccpA−1

p bp
...


(3.33i)

Next, equation 3.33a is rewritten in this way:

Mxc(k) = Qpxp (k − 1) +QcCxc(k − 1) + Ir1r(k − 1) + Ir2r(k − 2) (3.33j)

Solving 3.33j for xc(k) where M matrix must be invertible and it is satisfied
when the controller is detectable and strictly proper. And in hold mode, the
reference point is assumed to be fixed where r(k − 1) = r(k − 2).[

xp (k)
xc (k)

]
= Ahold

[
xp (k − 1)
xc (k − 1)

]
+

[
0np×1

M−1(Ir1 + Ir2)

]
r(k − 1) (3.34a)

Where the state matrix in the hold mode for the strictly proper controller is
written as following:

Ahold =

[
Ap bpcc

M−1Qp M−1Qc

]
(3.34b)

Note that the evaluation of the plant’s state has not effected and it is same
as in the run mode for the strictly proper controller case, dc = 0, and there
is no change in the output equations.[

y (k)
u (k)

]
=

[
cp 01×nc

01×np cc

] [
xp (k − 1)
xc (k − 1)

]
(3.34c)

Finally, the equations 3.34a and 3.34c are the state space representation for
the EBC in hold mode for strictly proper controller.

3.3.5 The Switching Nature for EB Control Loop

Apparently, EB control loop can be seen as a switching system where
the controller is either in the run mode computing a new control signal or in
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e(k) z−1 z−1

bc0 bc1 bcmc

+ ++ + σ u(k)

acnc acnc−1 σac1 +1−σ

z−1 z−1

+ ++ + +

Figure 3.2: Block diagram for the EB controller representing the switching
between the two modes, Run mode (σ = 1) and Hold mode (σ = 0).

the hold mode holding the last control signal till a new event occurs. This
switching mechanism can be represented a in block diagram where the value
of σ decides in which mode the controller is in. The computation of the
control signal is actuated contextually, see figure 3.2.

The next step is to verify the compatibility between the block diagram
and the equation obtained from our model. At the end we should be able to
obtain a dynamic matrix A in such way:

A = σArun + (1− σ)Ahold (3.35)

Taking a general example of a strictly proper plant with order nc = 3 and
a strictly proper controller with order nc = 3. And using the observable
canonical form for the both, plant and controller. Then, the state space
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representation for the plant will be as following:

xp (k) = Apxp(k − 1) + bpu(k − 1)

y(k − 1) = cpxp(k − 1)

where

Ap =

0 0 −ap3
1 0 −ap2
0 1 −ap1

 bp =

bp3bp2
bp1


cp =

[
0 0 1

]
xp (k) =

xp1 (k)
xp2 (k)
xp3 (k)


And for the controller, the state space representation is written below:

xc (k) = Acxc(k − 1) + bce(k − 1) (3.37a)

u(k − 1) = ccxc(k − 1) (3.37b)

where

Ac =

0 0 −ac3
1 0 −ac2
0 1 −ac1

 bc =

bc3bc2
bc1


cc =

[
0 0 1

]
xc (k) =

xc1 (k)
xc2 (k)
xc3 (k)


e(k) = r(k)− y(k)

Now writing the state space for the EB control loop in the run mode using
the equations in section 3.3.3.
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[
xp (k)
xc (k)

]
= Arun

[
xp (k − 1)
xc (k − 1)

]
+ brunr(k − 1) (3.38)[

y(k − 1)
u(k − 1)

]
= C

[
xp (k − 1)
xc (k − 1)

]
(3.39)

where

Arun =


0 0 −ap3 0 0 bp3
1 0 −ap2 0 0 bp2
0 1 −ap1 0 0 bp1
0 0 −bc3 0 0 −ac3
0 0 −bc2 1 0 −ac2
0 0 −bc1 0 1 −ac1

 brun =


0
0
0
bc3
bc2
bc1


C =

[
0 0 1 0 0 0
0 0 0 0 0 1

]
The state equations are written as:

xp1(k) = −ap3xp3(k − 1) + bp3xc3(k − 1)

xp2(k) = xp1(k − 1)− ap2xp3(k − 1) + bp2xc3(k − 1)

xp3(k) = y(k) = xp2(k − 1)− ap1xp3(k − 1) + bp1xc3(k − 1)

xc1(k) = −ac3xc3(k − 1)− bc3xp3(k − 1) + bc3r(k − 1)

xc2(k) = xc1(k − 1)− ac2xc3(k − 1)− bc2xp3(k − 1) + bc2r(k − 1)

xc3(k) = u(k) = xc2(k − 1)− ac1xc3(k − 1)− bc1xp3(k − 1) + bc1r(k − 1)

By simplifying u(k) and writing everything in terms of u and e we obtain
the following:

u(k) = −ac1u(k − 1)− ac2u(k − 2)− ac3u(k − 3) + bc1e(k − 1) + bc2e(k − 2) + bc3e(k − 3)

(3.40)

Note that equation 3.40 corresponds to the block diagram in figure 3.2 in the
run mode (σ = 1).
In the hold mode, the EB control loop state space representation is shown
below using the equations in section 3.3.4.
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[
xp (k)
xc (k)

]
= Ahold

[
xp (k − 1)
xc (k − 1)

]
+ bholdr(k − 1) (3.41)[

y(k − 1)
u(k − 1)

]
= C

[
xp (k − 1)
xc (k − 1)

]
(3.42)

where

Ahold =



0 0 −ap3 0 0 bp3
1 0 −ap2 0 0 bp2
0 1 −ap1 0 0 bp1
0 0 −bc3 0 0 −ac3
0 0 ∗1 −1

ac3
0 ac1

0 0 0 0 0 1


bhold =


0
0
0
bc3

bc2 − bc1ac1
0


∗1 = (−bc3 +

bc2ac2
ac3ap3

− −bc1ac1
ac3ap3

)

In like manner, writing the state equations we obtain that u(k) is hold to
the previous value as it should and the equations correspond to the block
diagram in figure 3.2 in the hold mode (σ = 0).

xc3(k) = xc3(k − 1)

Also can be written as

u(k) = u(k − 1)

To sum up, the EB control loop can be represented as switching system as
has been shown in the block diagram in figure 3.2. And the equations are
compatible with the block diagram.
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Chapter 4

The Modelica Library

This chapter presents the motivations of establishing the EBC Open
Modelica library. Also showing the components that the library contains and
how they are organized where there are different models for each component.
At the end, simulations are presented as an example of using the library.
Then, the chapter ends with a conclusion.

4.1 Library Motivations

The motivations of building the EBC library come form the increasing
interests in EBC systems in the past years and due to the lack of theories
comparing to the fixed rate (FR) control systems. The library meant to be
designed and organized to have all the EBC system’s components (event
generators, controllers and sensors) and a variety of models for each com-
ponent in one library. Hence, it gives the user a freedom to build his own
EBC scheme by simply dragging and dropping blocks then connect them.
Furthermore, building and simulating different EBC schemes with different
parameters will be a great help to understand the theory behind. However,
there is no single standard scheme of event-based. Instead, there are many
different schemes encountered, depending on which event generators are used
with sensor and controller, also on the type of control signal generator. That
variety in event-based schemes is also a motivation to have such a library in
order to try a new combinations and compare the performance among the
different schemes. Hopefully, it will lead us to build a unitary EBC scheme.
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4.2 Organization and Components

This section discusses the EBC system’s components separately and how
it related to the library organization since the components were grouped
based on EBC structure. We are going to discuss them in the same order
that they are organized in the library.

4.2.1 Event Generators (EG)

Choosing the EG decides the triggering mechanism in EBC system. The
EG is designed as a separate entity and it connect with either EB controller
or EB sensor. The inputs for the EG are the set point (SP ) signal and the
control variable (CV ). The output from EG is boolean (EV ) where its value
is toggled each time an event is triggered and the other output is the CV
which it only passes through the EG to the sensor or the controller. Overall,
there are four different EG modules, each one represents a triggering rule.

1. SOD Error Difference

2. SOD Error

3. SOD Control Variable Difference

4. SOA Control Variable Difference

Each rule is modelled twice, one time for the controller and another for the
sensor where the only difference between them is that the one for controller
has additional output for the SP signal where it is only passes through.

4.2.2 Controllers (C)

The library has concentrated in the PID controllers and established dif-
ferent PID models as we have shown in section 3.2. Besides to the basic
inputs, SP and CV , there is an additional input in the block related to EB
nature called TRIG. This input is connected to EG’s output EV where the
change in its value indicates a new event has been triggered hence a new
control signal will be calculated. In additional to the control signal, there
is a new output EV has been added to the control module. Similar to the
variable EV in the EG’s output but used for different purpose. This boolean
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output in controller is useful in case of a network system where there are ex-
ist a several controllers. Then, the output EV is used to announce that the
corresponding controller has updated the CS, thus it will enable whatever
comes in sequence after. However, all the modules of PID controllers are
listed below have been modelled for each control signal generators, namely
ZOH and IH.

1. Fixed Rate PID

2. Arzen’s PID

3. Durand’s PID

4. Durand’s PID with Saturation

5. Durand’s PID with Exponential Forgetting Factor

6. Durand’s Hybrid PID

7. Past Values General Controller

And a special controller model is established for the past values technique
that has been mentioned in the previous chapter 3. The past values general
controller takes any controller that is entered as a transfer function. Note
that this type of controller is exclusively works with the past values sensor
that transmits the past measured variables and the controller save the past
control signals in an internal buffer. The reference signals have been also
saved in an internal buffer.

4.2.3 Sensors (S)

In the library, four different sensors have been modelled. They all provide
the feedback signal to the controller but in a different mechanisms, depends
on the type of the closed loop system whether it is EB or FR and if a
time-out safety condition has been added or not.

4.2.3.1 Fixed Rate Sensor

In FR sensor, the CV is fed to the controller periodically (fixed time
based). Moreover, the contentious CV is discretized with a fixed sample
time equal to qs without taking into account any other factors.
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4.2.3.2 EB Sensor

In EBC system, the sensor is selected in the most of time as the single
source of events. Particularly, EB sensor transmits a new CV based on
event where the connected EG is periodically checking the violation of the
selected triggering rules. The sensor has a boolean input TRIG, as in the
controller, that is used to detect the coming new events from the EG’s output.
Moreover, the sensor has the EV boolean outputs just as in the controller
that is similarly used to enable the next sequence action.

4.2.3.3 EB Sensor with Safety Time-Out

This model is exactly same as EB sensor with an extra added feature.
In order to keep the sensor alive, unconditional events are triggered after
passing a certain amount of time with no receiving any event by EG (the
TRIG value has not changed).

4.2.3.4 EB Sensor Past Values

It has the exact concept of EB sensor with safety time-out, but with some
difference in the output form. However, when an event occurs whether by
the EG or forced by the safety time-out, the sensor will not only transmits
the present value of the controller variable CV (t), but also an integer number
(k) of the past values (CV (t − k)) and it is used exclusively in the library
with the past value general controller

4.3 Example and Conclusion

A simulation consists of FR system and EBC system compared with
contentious time (CT ) system is shown as an example of creating EB control
loops using the components in the library by dragging and connecting them,
see figure 4.1. In this example, a first order plant and a step input reference
are used in all the systems, but each system has a different controllers (PID).
In addition, the FR and EBC systems use different sensors. The system’s
components parameter conflagration are going to be discussed next.
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Figure 4.1: Block Diagram of the simulated system

4.3.1 Common Used Blocks in all Systems

The following components and their conflagration parameters are exactly
same in all the systems.

4.3.1.1 Plant

The plant is a first order system with a gain (k) and a time constant (τ)
equal to 1 and 2, respectively.

4.3.1.2 Input Reference

From OpenModelica blocks built-in library, a step input is used as an
input reference (Set Point, SP ). The step height is equal to 1 and it start at
time equals to 1 second.

4.3.2 Blocks are Used Only in FR System

Beside to the common components, the controller and the sensor are
different in the FR system. The used controller is fixed rate PID with ZOH
as a CS generator. The configuration parameter is shown in figure 4.2. For
the sensor, FR sensor is used with nominal sampling time (qs = 0.1 sec).
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Figure 4.2: Fixed Rate PID configuration

4.3.3 Blocks are Used Only in EB System

Different controller and sensor are used in EB and FR systems.

4.3.3.1 Arzen PID

Arzen PID model is the chosen controller for EB system with the same
common configuration parameters in Fixed Rate PID, shown in figure 4.2.
The additional parameter in Arzen is for safety timeout (hmax = 5) to decide
number of instants that allowed to be without event before force one. Since
the controller is EB, it is necessary to select an event generator and connect
it with controller. Delta Error EG is chosen with following parameters,
cycletime = 0.1 sec and threshold = 0.1.
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4.3.3.2 EB Sensor with Time-out

The configuration parameters for the sensor are showed as following:
Nominal sampling time (qs = 0.1 sec). For safety time-out, the integer
multiple of qs (N = 10). EG must connect with EB sensor. The Delta Error
EG is selected with (cycletime = 0.1 sec and threshold = 0.1).

4.3.3.3 Blocks are Used Only in CT System

All the used blocks in CT system have been taken from OpenModelica
built-in library. Moreover, no special sensor model is needed to provide the
feedback signal where the plant output (CV ) is directly connected as an
input to Feedback block which takes also the input reference as input too.
the output of Feedback block (error) is the input to the CT controller (PID
block from OpenModelica). The PID’s parameters are the same as in FR
and EB PIDs (k=2, Ti=1, Td=0 and Nd=1).

4.3.4 Simulation Result

Figure 4.3: Response for FR,EB and CT systems with sampling times
(cycletime = 0.1 sec, qs = 0.1 sec)

After running the simulation for 60 seconds. The plant response of the
three closed loop systems are shown in figure 4.3. The figure shows that
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CT controller provides the best response, less overshoot and the fastest to
settle down, and so it will be our reference for comparison. The response of
FR system comes in the second place, relatively close to the CT system’s
response with slightly bigger overshoot. The FR sensor sent feedback val-
ues periodically (600 events) and the controller needed to compute a new
control signals also periodically (600 events). Obviously, the EB system’s
response has higher overshoot and the longest settling time. On the bright
side, the EB system has significantly reduced the number of events for both
the controller and the sensor where they triggered only 150 and 70 events,
respectively. Comparing to FR system, the number of events in EB is 75%
less for the controller and 83% for the sensor.
The figure 4.4 marks all the events triggered in the EB sensor where each
event transmits data to the controller. And distinguishing between those
events that originated by the violation of the threshold, EventT imeStamp =
1, from the ones that has been triggered due to the safety time-out expiring,
EventT imeStamp = −1. In the absence of events, EventT imeStamp = 0.
Notably, all the events that were originated by violation the threshold are
triggered before the system is settled down and when it settles, after 25 sec-
onds, all the events afterwards are originated by the time-out condition in
order to keep the system alive.

Figure 4.4: Event time-stamp for EB sensor with sampling time qs = 0.1 sec

It can easily vary the parameters and re-simulate the system. For in-
stance, the sensor’s sampling time in FR and EB is decreased to 0.05 sec.
Figure 4.5 shows that the FR system’s response will act very similar to the
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CT system, but the cost is increasing in the number of events to double (1200
events). The figure 4.5 shows also that EB has now a better performance
(less osculation and smaller settling time). Again, the pay off is the increased
number of events. The sensor has triggered 128 events while the number of
the control events has not changed (150 events). Despite of the increasing
in the number of events, the sensor in EB system has triggered much less
events compared with the number of events triggered in FR, 89% less.

Figure 4.5: Response for FR,EB and CT systems after reducing the sam-
pling times (cycletime = 0.1 sec, qs = 0.05 sec)

4.3.5 Conclusion

The increased need to a tool that allows building and simulating EBC
systems is significantly crucial to understand the theory behind. Moreover,
the flexibility to build a wide range of different EBC schemes, not only the
familiar ones is one of the keys behind creating the EBC library. Importantly,
modifying the system’s components is fairly simple by the library. where the
user needs only to remove and add blocks. Also the library has made it simple
to vary system parameters as it has been shown in the first example. Above
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all, the library enhance studying and comparing several EBC components
as well as analysing the system behaviour.
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Chapter 5

Conclusions

This dissertation dealt with the problem of inconsistency between the
controller and plant states. Background on the Event Based (EB) control
paradigm was first given and a literature studies was reviewed.

In the beginning of chapter 3, it has been introduced the main general
components in the EB control loop, including the EG with a various trig-
gering rules and also a several models for the PID controllers. Then it
presented the analysis and development of the EB control model that was
resulted from using the past values. Writing the state space representation
for the EB control loop has revealed two state matrices, run and hold modes,
and showed the switching nature between these two modes. The plant states
evaluate in the same manner whether it was in the run or hold mode. In
contrast, the controller states is evaluate differently. And it is not always
possible to determine the state of the controller in case of hold mode. For
this reason, only strictly proper controller was considered in this work.

This chapter 4 was dedicated to the technological and implementation-
related point of view. First, it presented the motivations of creating the
Modelica library. And the library components were shown and structures
the represented control blocks so as to separate sensor, event generators and
controllers, for maximum flexibility. Then, an example on using the library
was demonstrated.

Concerning future developments of this work, a further investigate the
stability of event-based control loops encompassing past samples transmission
and study the case of non strictly proper controller. Also, there is much room
to expand the library by adding new models for the different event-based
components.
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