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Abstract

In a human-robot collaborative framework, endowing the robot with the capa-
bility of recognizing in advance the operator’s intention proved to be beneficial
for enhancing the quality of the cooperation. In this Thesis the problem of in-
tention inference is addressed by using a new recursive Bayesian classifier which
is capable of inferring simultaneously the most likely right hand and left hand
reaching targets, relying on a set of measured skeletal positions. These measure-
ments, retrieved by means of an RGB-D camera, include both wrist positions
and an estimate of the operator’s gaze. Indeed, this latter measure constitutes
a powerful means of nonverbal communication exploited by humans to make
their inner intents more explicit. In a collaborative framework, its use appears
to be crucial for further improving the inference process, since its observation
could provide an additional indication about the target the operator’s hand will
be intended to reach. The likelihood function which jointly considers the contri-
bution of this wide set of observations is modelled through a Gaussian Mixture
Model (GMM), learnt from data in a supervised manner. Since the exact goal
positions are uncertain, each target location is described as a random variable
having a certain probability distribution. The performance achieved through the
new inference algorithm highlighted that the gaze measure was fundamental for
guaranteeing higher robustness to the inference process. Moreover, the ben-
efits of establishing a human-robot bidirectional information exchange during
the collaborative process are investigated. Indeed, while the inference process
is ongoing, the human co-worker could be kept informed about the prediction
performed by the robot, for instance, by receiving an haptic feedback in the
crucial phases of the collaboration. Considering all these aspects together can
definitely improve the effectiveness of the collaboration.
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Sommario

Nell’ambito della collaborazione uomo-robot, dotare il robot della capacità di
riconoscere in anticipo l’intenzione dell’operatore si è rivelato vantaggioso al
fine di migliorare la qualità della collaborazione. In questa Tesi il problema
di dedurre la suddetta intenzione è affrontato ricorrendo a un nuovo classifi-
catore ricorsivo Bayesiano capace di stimare simultaneamente quale sia il più
probabile goal che verrà raggiunto da ciascuna mano, basandosi su un insieme
di posizioni scheletali di interesse misurate. Tali misure, ottenute tramite una
telecamera RGB-D, includono la posizione di entrambi i polsi e una stima dello
sguardo dell’operatore. Quest’ultima misura, infatti, costituisce un potente
mezzo di comunicazione non verbale impiegato dall’uomo per rendere più es-
plicite le proprie intenzioni. In un contesto collaborativo il suo impiego appare
fondamentale per migliorare il processo di inferenza, dal momento che questa
osservazione può fornire un’indicazione aggiuntiva dell’obiettivo che la mano
dell’operatore è intenzionata a raggiungere. La funzione di verosimiglianza che
considera congiuntamente il contributo di questo ampio insieme di osservazioni
è modellizzata mediante un Gaussian Mixture Model (GMM) appreso dai dati in
modo supervisionato. Poiché le posizioni obiettivo potrebbero essere non note
con esattezza, ognuna di esse è espressa come variabile aleatoria caratterizzata
da una certa distribuzione di probabilità. Le prestazioni raggiunte mediante il
nuovo algoritmo di inferenza evidenziano che la misura dello sguardo è fonda-
mentale per garantire una maggiore robustezza al processo di inferenza. Sono
stati inoltre analizzati i vantaggi di stabilire uno scambio di informazioni bidi-
rezionale tra uomo e robot durante il processo di inferenza. Infatti, mentre
quest’ultimo è in corso, l’uomo potrebbe esser tenuto informato sulla predi-
zione effettuata dal robot, ad esempio, ricevendo un feedback tattile durante le
fasi cruciali della collaborazione. Considerare congiuntamente i suddetti aspetti
migliora significativamente l’efficacia della collaborazione.
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un ambito fortemente innovativo e attuale, quale la robotica collaborativa.
A questo proposito un ringraziamento particolare è rivolto al Professor Rocco
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Ringrazio particolarmente il Dott. Casalino per la sua profonda dedizione,
pazienza, i preziosi consigli, fondamentali per lo svolgimento di questo lavoro e
per il tempo dedicato a seguire ogni sviluppo di questa Tesi.
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viii



Contents

Abstract iii

Sommario v

Ringraziamenti vii

1 Introduction 1
1.1 Collaborative robotics . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Human intention inference: state of the art . . . . . . . . . . . . 3
1.3 Thesis purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background on Bayesian framework and inference algorithm 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The concept of human intentions . . . . . . . . . . . . . . . . . 11
2.3 Bayesian framework . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Intention inference algorithm: background . . . . . . . . . . . . 17

3 Modelling the ideal human hand reaching path 27
3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Human hand path: state of the art . . . . . . . . . . . . . . . . 28
3.3 Minimum curvature path . . . . . . . . . . . . . . . . . . . . . 31
3.4 Taking into account the position of the center of the shoulder . . 36
3.5 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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1

Introduction

1.1 Collaborative robotics

In recent years a revolutionary change in the paradigm of industrial robots oc-
curred. Indeed, the definition of the industrial manipulator traditionally makes
reference to a programmable, sensorized mechanical system mainly devoted to
handling massive loads in manifacturing operations, designed to work without
the supervision of a human operator and rigidly segregated in specific environ-
ments.
Far from this framework, while the so-called ‘Industry 4.0’ is redefining the
trend for smart factories and pushing on the concept of interoperability, the
term ’cobot’ –listed as a new word by Wall Street Journal on Jan. 1, 2000– is
now spreading, becoming part of the current robotic dictionary and paving the
way for a new concept of robot [35].
The term ‘cobot’ is therefore used to identify a collaborative robot: a smaller
and lighter manipulator that does not need to be surrounded by any protection
fences, that shares its workspace with the human operator, specifically designed
to assist him and work in close proximity and cooperatively with him. In fact,
the collaborative robot is intended to be a co-worker that helps human in car-
rying out a sequence of operations. In the light of the above, a collaboration
between human and robot makes it possible to combine the human capability
of performing very complex tasks and the cobot ability to execute repetitive and
high-precision operations. Taking all these factors into consideration, this can
lead to an increase in the overall production and improving the quality of the
final products, while reducing the cycle time and variable costs.
Indeed it has been recently found that the cooperation between humans and
robots has the effect of enhancing the productivity of about 85% with respect
to the corresponding work done by only humans or robots.
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Chapter 1 - Introduction

Figure 1.1: The evolution of the robot’s history

This scenario provides the foundation for the definition of two important con-
cepts: on the one hand the ‘collaborative workspace’ –namely, the region where
human and robot are supposed to jointy work–, on the other hand the ‘collab-
orative operation’ –for instance, the task or the sequence of tasks that they are
willing to perform together, taking advantage of their own skills and capabili-
ties.
In this scenario it is essential to guarantee that the overall collaboration is car-
ried out safely, to avoide damages to the human operator. Hence the robot is
tasked with performing those operations which are highly stressful, tiring and
repetitive for most individuals.
This latter aspect is practically solved in industrial context by creating cobots
that exploit their characteristic kinematic redundancy to move as close as pos-
sible the way the human arm moves, so as to reduce the physical stress of the
operator and ensure him a more ergonomic work.
For what concerns the field of safe human-robot interaction, the international
boards define the standards and guidelines, together with protective measures
and information for the use of these industrial robots. Moreover the technical
specification ISO/TS 15066, a recent update and concretization of ISO 10218,
assesses that the contact between robot and human operator is possible, pro-
vided that the values of maximum force and maximum energy that can be
applied on a human without any harm are not overcome.
Hence, the collaborative robots are lighter than the traditional ones and with-
out sharp edges; furthermore they are generally topped with filling that can
soften the strenght of the impact with human. In addition these cobots are
equipped with a variety of sensors which allow them to be intrinsically safe and
precise: they can promptly recognize the presence of a potential obstacle and
stop immediately or reduce the speed to avoid collisions.
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Chapter 1 - Introduction

It is quite evident that the use of a cobot can provide significant advantages:
fast set-up and programming, operational flexibility that allows to employ them
in a variety of applications, a reduction of the time-to-market, an easy re-
programming; finally, the capability of working safely and efficiently. Due to
their simple and non-invasive layout, they generally take up less space than the
traditional robots and require a very simple equipment and work environment,
resulting in reduced establishment costs.

Ultimately, the collaboration between robot and human operator guarantees
that the task is constantly supervised, thus improving the quality of the final
products and, in view of the shared workspace, a reduced occupancy of the
working area.

The collaborative robotics is a growing sector which represents an intermediate
segment between completely automated assembly plants, characterized by large
and fixed production batches, and those completely manual, with small and
variable production batches.
Due to their advantages, cobots are supposed to spread everywhere, not solely
in the industrial context; however the traditional robots will remain a valuable
alternative in those industrial contexts characterized by high productivity and a
fixed production.

The statistics reported by the International Federation of Robotics (IFR) confirm
that the overall interest in collaborative robotics is actually growing and it is
expected to increase further during next years: the guideline of this revolution is
the transformation of the robot in a cyber-physical system that can store data,
communicate via cloud, that is equipped with sophisticated artificial intelligent
software, a system that is easily adaptable and capable of cooperating efficiently
with the human.

1.2 Human intention inference: state of
the art

In a collaborative scenario, endowing the cobot with the capability of predicting
what the human operator is going to do and how he will perform it can guaran-
tee numerous advantages as allowing for planning ahead for reactive responses
to human activities and improving the quality of the overall collaboration [17],
ensuring a fluent meshing of operator and manipulator activities. In fact, it can
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be easily noticed that, even in the framework of human-human cooperation in
day-to-day activities, the effectiveness of the collaboration is significantly de-
termined by their level of coordination-synchronization and by the quality of
their interaction. In other words, the success of the cooperation depends on
the capability of anticipating the partner’s next activity, i.e. the ability of un-
derstanding implicit commands and not directly observable desires. This aspect
can be equivalently valid in a context where human an robot cooperate, as long
as the manipulator behaves in a similar manner to its human counterpart and
cooperating with it becomes as intuitive as working with other human opera-
tors. Hence, it is apparent that the cooperation between humans and robots
could become more appealing if the robot is able to make anticipative decisions
that matches the operator’s ones, as long as the human-robot joint activity is
well synchronized.
The cognitive mechanism and, more specifically, the problem of human inten-
tion inference has become relevant during last years. Indeed, this issue has
been widely addressed in the literature: in [23] a method based on Anticipatory
Temporal Conditional Random Field (ACTRF) was used to predict the human’s
next action. Each observed human activity was first modeled using a spatio-
temporal graph denoted as conditional random field (CRF); then, in order to
anticipate the future human action, a temporal segment was added to the CRF
so as to create the ATCRF model, where each ATCRF represents a kind of
evolution of the current CRF. By considering each possible ATCRF as a particle
and exploiting particle filtering algorithm, the probability distribution over the
possible ACTRF was computed and the most likely future action was estimated.
In [19], based on a RGB-D video of a human performing some operations in
a certain environment, the authors were able to predict his future activity and
his future pose by using Gaussian Process Latent Conditional Random Field
(GP-LCRF): a structure which allowed them to jointly model the human mo-
tion dynamics and poses. Then, they applied Gibbs sampling for evaluating the
possible future human configurations and to anticipate the next human action.
In [42] a Bayesian Network called Sequential Interval Network (SIN) was used
to graphically model the human intention evolution. In fact, a SIN is basically
a graphical model where the variable nodes represent the start and end times
of component actions: hidden nodes are action timings, observed nodes are the
output of primitive action detectors and edges describes the relations between
action and action or action and detection. Once the conditional probability
table describing the dependencies of the network had been learnt, the message-
passing algorithm was used to perform exact inference.
[21] used a trained HMM to estimate the most likely human future activity from
the perspective of a mobile robot.
[32] proposed a method that allowed real-time online prediction of the goal
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which the human hand is willing to achieve by representing the human motion
realized at each time step as a multivariate gaussian distribution over the degrees
of freedom of the human arm. The prediction was then obtained by perform-
ing a Bayesian classification using the initial portion of the trajectory executed
by the human arm. Clearly, this mechanism required an offline training phase
prior to proceeding with online data processing. This approach overcomed the
performances of [27] attaining a faster prediction. In fact, also in [27] a library
of human motion trajectories was codified offline using a GMM and the swept
volumes were computed. Then, during the online phase, the GMM was used
to compute the robot activity that minimizes the interference with the human,
after the prediction of the workspace ocuppancy had been carried out.
In [24] the operator’s hand position was identified through the use of a 3D
occupancy grid: this position constituted the input for a trained HMM which
was used to estimate the action that the human will perform.
[33] modeled intentions as the target locations of reaching motions in the 3D
space, where the motion was represented as a nonlinear function whose param-
eters were human intentions. These parameters were learned using a neural
network and intentions were inferred by applying an approximate version of the
customary expectation-maximization algorithm. Moreover an adaptive identi-
fier was used to take into account the possible variations of human motions
due to different initial conditions or different human subjects performing the
experiment.
Finally, [2] used a probabilstic state machine to recognize human intentions.
They considered two possible situations: explicit intention, namely, when the
human was truly collaborating with the robot, and implicit intention, i.e when
the human was not actively cooperating and the robot decided to initiate a
proactive collaboration on the basis of the observed scenario and the human
actions. The set of objects, admissible human actions, and possible human
intentions were defined prior to running the intention recognition algorithm.

It is clear that the majority of the previous approaches required an offline training
phase and a subsequent a priori classification of set of objects, human actions
and, sometimes human intentions. The works which will be explained afterwards
are quite similar to the method that will be presented in this Thesis.

[31] proposed a method that acts by continuously tracking the human arm po-
sition and, given a predefined set of goals, infers their probability distribution
on the basis of the movement of human arm. For what concerns the cobot
action given the human one, they used a module called POMPD (Partially Ob-
servable Markov Decision Process) which idenitified the best robot behaviour
and, assuming that human and robot cannot achieve simultaneously the same

5



Chapter 1 - Introduction

goal position, generated commands for the robot arm which reaches for the
closest free target. In order to update the probability distribution of the goals,
the Bayes rule was applied and the likelihood function was evaluated using a
model where the probability decreases exponentially with the cost, that is, the
Euclidean distance. This technique adapts to the HRC the one developed in
[12] for teleoperation to human-robot shared workspace collaboration. In [37]
the problem of recognizing the most likely human reaching target was addressed
from a different perspective. In fact, the recognition problem was solved by us-
ing a probabilistic model that inferred the human intentions from the observed
actions. The use of this probabilistic model was motivated by the fact that
these observations, together with the correlation between observed actions and
corresponding intentions, were subject to uncertainty. More specifically, they
used a Hybrid Dynamic Bayesian Network (HDBN), where ‘hybrid’ referred to
the fact that both continuous and discrete-value states were used to model the
relations between sensors measurements, intentions and actions. The advan-
tage of this model is that it allows to consider the causal dependency of the
user actions from its unknown intentions, that is why is denoted also as ‘forward
model’.
Lastly, in [34] the intention inference issue was addressed in a different manner.
One of the benefits of this approach was that it did not require a preliminarly
training phase. Hence, this method was extremely advantageous, since it could
be applied in all sort of contexts, eliminating the time usually required during
the training set-up.
With this approach the human hand reaching path was modelled with a mini-
mum curvature trajectory and the probability of reaching each target was com-
puted by exploiting the recursive Bayes’ rule. The measurement monitored at
each time step was a single position: the location of the operator’s wrist. At
each iteration, the tangent vector associated with the measured wrist position
was compared with the corresponding tangent vector associated with the ideal
reaching path that leads from the measured wrist position to each goal center
of mass. The angle betwen the abovementioned tangent vectors was evaluated
according to a Gaussian distribution; hence, the corresponding conditional prob-
ability of observing this angle under the assumption of reaching a certain goal
position was used to update the probability associated to that target. How-
ever, each target was represented by a single point coordinate, without taking
into account the uncertainty associated with the knowledge of the exact target
position. Moreover the intended goal was inferred relying on the single wrist po-
sition, as explained previously, without taking into consideration the information
related to other skeletal measurements.
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1.3 Thesis purpose

The aim of this Thesis is to propose a novel intention inference algorithm which,
based on the application of a recursive Bayesian classifier, is capable of inferring
simultaneously the most likely human reaching goals of both hands by exploiting
a large number of observations. Indeed, this work is inspired by a previous infer-
ence algorithm ([34]) where only the single wrist position was used to estimate
the target the measured wrist was heading to.
In this Thesis, the set of observations which will be used to perform inference
on both hands reaching targets will include the positions of both right and left
wrists along with the orientation of the operator’s head which is considered to
be an estimate of his/her gaze. These quantities will be retrieved by means
of a Microsoft Kinect camera. The proposed inference algorithm, in fact, will
recursively estimate the human intention by characterizing it (from a proba-
bilistic point of view) as the goal position that, when the operator’s hands are
moving, iteratively acquires a higher value of probability with respect to the
others which are part of the finite set of possible target locations. Hence, these
goals corresponds to the positions of the objects which could be intended by
the human operator during the collaboration with the robot.
The purpose of the intention inference is to ensure a fluent meshing between
the robot and the human counterpart. In fact, if the robot is endowed with
the capability of recognizing in a robust way the task of its human partner, it
can start to complement appropriately the human activity, thus guaranteing a
reactive behaviour towards human intentions as well as an overall proactive col-
laboration. Even in the case of human-human collaboration, the gaze is proved
to beneficial since it consitutes a means of non verbal communication through
which individuals can make more explicit their latent intentions, [39], [43].
Motivated by these facts, this Thesis will investigate how the gaze estimate,
when jointly exploited with the other available observations contributes to im-
proving the performance of the overall inference process.
At a first stage this work will be focused on investigating whether a suitable
model of the human hand’s reaching path can be determined such that it could
result to be particularly effective for further improving the inference process.
Moreover, once the likelihood function has been properly modelled, the pro-
posed algorithm must be able to work online.

In order to implement this algorithm, the following elements are needed:

� some prior knowledge about the workspace: in particular, the number and
location of the targets which the human operator could intend to reach
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must be defined before starting the inference process;

� a possible model describing the actual reaching path followed by the op-
erator’s hand when reaching a goal;

� a model for the likelihood function which includes the joint contribution
of all the available observations.

1.4 Achievements

The results achieved in this Thesis through the application of the novel intention
inference algorithm are here summarized:

� the intended goal is correctly recognized at approximately half of the hand
reaching path, thus obtaining a slight improvement with respect to the
corresponding result described in [34].

� including the information related to the distance between each wrist po-
sition and the goal center of mass within the features vector used to
evaluate the likelihood allows to obtain a significant reduction of the
percentage of ‘true negatives’, i.e., those cases where an intended goal
is not recognized by the inference algorithm, compared to the approach
described in [34].

� introducing also the estimate of the operator’s gaze in the features vector
helps to further increase the robustness of the inference process, since
it leads to a reduction of the percentage of the ‘false positives’, i.e, the
cases where a high value of probability is assigned to non intended goal
positions, with respect to the method used in [34].

� equipping the operator with a wearable device that sends him a vibrotactile
feedback during the crucial phases of the cooperation with a collaborative
robot has the advantageous effect of creating a bidirectional communica-
tion channel between human and robot. This means that, while the robot
estimates the operator’s intended goal exploiting the inference algorithm,
its human partner is kept informed on the current state of the inference by
means of the haptic feedback. This additional contribution enhance the
effectiveness of the human-robot cooperation. Moreover, for non-skilled
subjects a reduction of the average time required for executing the overall
collaborative task has been observed.
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1.5 Thesis structure

The rest of this Thesis is structured as follows. In Chapter 2 an overview of
the previous approach which exploited one single observation to update the in-
tentions’ estimate will be presented together with the probabilistic framework
that lays on the basis of the early prediction of humans intentions, namely, the
Bayesian approach. This approach was extended in this Thesis. In Chapter 3
the problem of finding a suitable model for descibing the actual path followed by
the human hand during its reaching motions will be addressed. Different types
of paths will be presented and their performance will be analyzed and compared
with the corresponding state of the art in order to draw conclusions about their
contribution to enhancing the process of intention inference. In Chapter 4, the
possibility of including a larger set of observations such as the estimated gaze,
head position, hands’ distance from the target and both hand positions to im-
prove the inference process will be discussed. Thus, the new intention inference
algorithm which estimates the operator’s intention based on the quantities dis-
cussed so far will be described. In Chapter 5 the uncertainty associated with the
exact position of each goal will receive a proper probabilistic characterization
such that each goal will be represented as a random variable having a certain
probability distribution. Chapter 6 will describe the results achieved through
the application of the new inference algorithm and its performance in terms of
average distance at which the goal is correctly recognized; furthermore, some
statistics about the robusteness properties will be shown. These results will be
compared to the performance achieved by applying the algorithm described in
Chapter 2. In Chapter 7 a realistic collaborative experiment between a human
operator and a dual-arm collaborative robot will be described. The aim will be
not only to further highlight the benefits gained with a correct estimation pro-
cess, but also to investigate how beneficial could be sending an haptic feedback
to the operator as soon as the robot, based on the new algorithm, understood
his/her intention. In Chapter 8 some conclusions about this work will be drawn
and future developments will be discussed.

9





2

Background on Bayesian framework
and inference algorithm

2.1 Introduction

In this chapter the approach described in [34] will be resumed. That method
made it possible to infer the human hand reaching target based on one single
observation, the wrist position, exploiting a model-based trajectory to represent
the human-hand reaching path. Moreover, this procedure lays the foundations
for the new inference algorithm which will be described afterwards.
Furthermore, the very first part of this chapter will address the probabilistic
theory and, more specifically, the principles of Bayesian inference underpinning
the abovementioned algorithm.

2.2 The concept of human intentions

Before adressing the issue of human intention estimation it is worth defining
properly the meaning assigned to the concept of human intention along with the
reason for applying a probabilistic approach. From an abstract point of view,
the expression ’human intention’ obviously refers to a latent human will, be-
longing to a variety of possible willingnesses, which progressively becomes more
and more evident due to the observation of actions, movements and gestures
the human does. As a matter of fact, these latter information, when consid-
ered together, help in clarifying the underlying intention. More specifically, in
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this Thesis, the variety of possible human intentions will be confined to the
framework of human robot collaboration and will be used to refer to the set
of human hand reaching targets. As a consequence, it is then apparent that,
from a practical perspective, the set of operator intentions will be limited to a
number of physical goals which the human hand could be directed to. Hence
the willingness of reaching one of the targets can be interpreted as hidden state
[37] that, living in the operator’s mind, cannot be directly observed. However,
this state can be progressively estimated through the set of gestures the worker
performs and through the analysis of the environment in which he is operat-
ing. In fact, since human actions generate observable events, they can be easily
recognized.

Figure 2.1: Schematic illustration of unobservable human intention (X) and
observable human actions (Y) through which the intention can be deduced

Therefore, if we denote the underlying intention with the variable X and the set
of observable human actions with the variable Y , these latter will be somehow
related to the unknow intention through a certain function f . Since this function
is not deterministically given, and, as observed in [37], the relationship between
intentions and actions suffers from uncertainty, it seems reasonable to model
it from a probabilistic perspective; namely, in a way that make it possible to
progressively infer the intention, by exploiting the likelihoood of the observations
of the human actions, the working environment, and the knowledge of the finite
set of possible goals.

The tool that allows us to address this problem is the Bayesian analysis.
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2.3 Bayesian framework

The Bayesian analysis is a probabilistic tool that constitutes the very heart of
statistical inference. Bayesian intention inference was already addressed in lit-
erature when dealing with estimation matters: in [34] the recursive Bayesian
method, applied to the observations related to the predictive hand reaching
path, was used to make inference about the operator’s intended target. In ad-
dition, in [5] this procedure was used to predict the intended goal destination
and the agent’s future trajectory which was considered conditional on the in-
tention of the agent and known to the agent itself only.
In fact the recursive Bayesian method makes it possible to evaluate the prob-
ability of a certain event by iteratively updating its estimate while including at
each iteration the information related to the new incoming observation along
with the a priori probability of that event. This probability is usually denoted
as ‘prior’.
Hence the Bayes’ rule allows us to compute the so-called ‘posterior’ probability
of a certain event, starting from the knowledge of its prior and the so-called
‘likelihood’ or ‘evidence’ of the data, a quantity that represents how likely is a
certain observation under a prescribed assumption.

Due to the possibility of applying this method in a recursive way, the Bayesian
Inference provides a way to be reactive to the changing system conditions.
Therefore, it clearly becomes a powerful tool that is particularly advantageous
in dynamic circumstances, when the probability of the event at a certain time
instant strongly depends on the new information acquired by the measurement
system, other than the probability at the previous time instant.

As previously explained, the recursive Bayesian approach operates by applying
the following formula, denoted as ‘Bayes’ rule’ [15], in a recursive way:

Proposition (Bayes’ rule) Let (Ω,F ,P) be a probability space1 and F1,F2,...,Fn

1A probability space, [15], is the triple (Ω,F ,P) where Ω is the sample space that contains
all possible outcomes, F is the event space and P is the probability function P : F → R for
which the following axioms must be fulfilled:

� P (E) ≥ 0 ∀ E ∈ F ;

� P (Ω)=1;

� if E1,E2,...∈ F are disjoint events, for instance, Eh ∩ Eh = ∅ if h 6= k, then
P (
⋃inf

k=1 Ek) =
∑inf

k=1 P (Ek).

.
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∈ F a finite partition Ω such that P (Fk) > 0 for k=1,..n. If E ∈ F is such
that P (E) > 0, then

P (Fh | E) =
P (E | Fh)P (Fh)∑n
k=1 P (E | Fk)P (Fk)

h = 1, ..., n (2.1)

In view of this reasoning, it is possible to find a way to solve even the problem
of estimating the human intention, by exploiting the Bayes method. In fact,
given the location of a number of objectives that the operator might reach, the
intended target location can be interpreted, from a probabilistic point of view,
as that goal position that is acquiring a higher probability with respect to the
others, given at each iteration the observation related to a certain set of human
movements. Hence, the recursive application of the Bayes formula allows us to
infer at each iteration how the probability is distributed over the number of the
goals.

In order to better specify, let us assume that we want to address the problem
of computing the probability which at the generic kth step the human hand
reaches a certain goal position pGi

that belongs to a set of viable goal positions
G .

Let us also suppose that the set of goal positions is a priori known and consi-
tutes a sort of common knowledge shared by both the human and the robot.
Moreover, let each goal position pGi

be described, for the time being, as the
three-dimensional vector that expresses the coordinates of the center of mass of
each target (as done in [34]). In Chapter 5 a broader description of the target
positions will be provided and the possibility of representing them in a more
specific way will be discussed.

Figure 2.2: The goal position pGi
∈ G that the human hand is intended to

reach must be inferred
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Thus, the ith goal position is, for the time being, defined as:

pGi
=
[
xGi

yGi
zGi

]T
Before proceeding with the mathematical formulation, it is possible to prelimi-
narly define the meaning assigned to some quantities.
Let us denote with:

� P (0)(pGi
) the a priori probability distribution associated to the ith goal

position pGi
∈ G (at iteration zero);

� x(0:k−1) the set of contextual observed measurements related to the move-
ment of the human operator that have been collected from time step zero
to time step k − 1;

� f(pGi
| x(0:k−1)) the conditional probability density function (pdf) of the

goal given the set of observations x(0:k−1);

� f(x(0:k−1) | pGi
) the conditional probability density function (pdf) of ob-

serving the measures x(0:k−1) given the willingness of reaching goal posi-
tion pGi

, also called ‘likelihood of the observation’.

Then, the a posteriori probability of the goal position pGi
at the kth time step

can be written as:

P (k)(pGi
∈ G ) = f(pGi

| x(0:k)) (2.2)

hence, at each kth time step, the probability of reaching the goal position pGi

can be updated by iterating Bayes’ rule:

P (k)(pGi
∈ G ) = f(pGi

| x(0:k)) =
P (0)(pGi

)f(x(0:k) | pGi
)∑

pGi
∈G P

(k)(pGi
)

(2.3)

that for the first time step clearly reduces to,

P (1)(pGi
) =

P (0)(pGi
)f(x(0:1) | pGi

)∑
pGi
∈G P

(k)(pGi
)

(2.4)

Thus, it can be easily noticed that at the subsequent time step k + 1, the
quantity P (k)(pGi

) that at time step k represented the posterior probability of
pGi

, acquires a new meaning, becoming now the prior probability associated to
pGi

.
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This means that, essentially, apart from the normalization term of the denomi-
nator, the following relation holds:

P (k+1)(pGi
) ∝ P (k)(pGi

)f(x(k+1) | pGi
, x(0:k)) (2.5)

where f(x(k+1) | pGi
, x(0:k)) represents the conditional density of observing the

measure coming at k+1 given the intention of reaching pGi
and all the previous

history of observations from the initial time step to the kth step.

It is now evident that the process of considering at each time step the con-
tribution given by the whole sequence of observations up to the current time
instant has two disadvantages, as observed in [34]: firstly, the application of this
procedure would require an amount of memory that increases at each iteration;
secondly, the next expected observation would be considered strongly dependent
on the trend obtained according to the previous history of observations.

As suggested in [34], if the sequence of incoming of observations x(0:k) is in-
terpreted as a Markov’ chain such that the Markov assumption 2 holds, the
previous formula can be easily reduced to

P (k+1)(pG) ∝ P (k)(pG)f(x(k+1) | pG, x(k)) (2.6)

thus obtaining the advantage of decreasing the computational complexity and
of softening the dependance of the expected observation from the course of all
the preceeding ones.

A proper model of the prior probability and of the likelihood will be discussed
in section 2.4.

So far x(k) was used to denote the set of observations that can be used at time
step k to compute the likelihood, hence, the measurements that can provide
significant cues for estimating the agent’s unknown intention. It is important to
underline that the number and the type of measurements that are used within
the expression of the likelihood is completely arbitrary and depends on how the
intention recognition mechanism is organized. For the time being, the state
variables x(k) are confined to:

2The Markov property [14] states that the conditional probability x(k+1) = j, x(k) = i,
x(k−1) = i(k−1), . . . , x(1) = i(1), x(0) = i(0) is the same as the conditional probability
xk+1 = j given only the previous state x(k) = i. In other words, the conditional probability
of the future states depends only upon the current state, not on the whole sequence of
preceeding states so that any other information about the past is irrelevant for predicting
x(k+1).
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� the position of the centre of the right wrist, denoted as pRW ;

� the position of the centre of the left wrist, denoted as pLW ;

Here, the wrist position is supposed to be a good estimate of the operator’s hand
position. So, from now on, the operator’s hand will be equivalently referred as
operator’s wrist.
In view of the previous considerations, the state vector whose evolution can be
considered is:

x(k) =

[
p

(k)
RW

t
(k)
RW

]

or

x(k) =

[
p

(k)
LW

t
(k)
LW

]

where tRW and tLW represent the derivative of the right and left wrist positions,
respectively, with respect to the natural coordinate s that describes the ideal
path followed by the human operator.
In Chapter 4 an extention of this state vector will be discussed and it will be ex-
plained that it is possible to include the observations related to the head position
and an estimate of the human gaze to improve the inference process.

2.4 Intention inference algorithm: back-
ground

Once the main components that are needed to perform Bayesian inference have
been explained, it is possible to show in detail how all this information can be
combined to estimate the human hand reaching target. Hence, in this section
an overview of the procedure used in [34] will be proposed.
This approach, in fact, made it possible to infer the intended goal based on the
measurement of the single wrist position.
Indeed, the structure of the inference algorithm becomes more and more com-
plex as the number of observations that are simultaneously exploited to make
inference increases. Therefore, it seemed reasonable to provide a first descrip-
tion of the basic architecture used when dealing with a single observation so
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as to understand the general mechanism of functioning of an intention infer-
ence algorithm. The latter, in fact, lays the foundations for the new algorithm
proposed in this Thesis, that updates the estimate of each goal by exploiting a
larger set of observations (refer to Chapter 4).

Therefore, let us focus on the analysis of the generic structure of the inference
algorithm that relies on one single observation, the wrist position.
As previously said, in order to infer the operator intended goal, the intention es-
timation algorithm basically receives as input the three-dimensional coordinates
of the target positions. Clearly, these goal positions represent the objectives of
the collaboration between the human operator and the cobot: hence, it is im-
plicit that the layout of the human-robot common workspace must be uniquely
determined before starting the estimation. This issue will be widely addressed in
Chapter 5. Moreover this algorithm receives as input the position of the right
wrist or of the left wrist, according to the hand that the operator is moving
to reach the intended object. In fact, in this chapter it is assumed that the
operator executes a sequence of tasks by using a single hand for all the duration
of the task: be it the left one or the right one.

Figure 2.3: The Kinect camera detects the skeletal points of the human operator

The right hand or left hand positions can be easily retrieved by means of a sensor
device. In fact, a Microsoft Kinect depth camera is used to return an estimate
of the set of interesting points of the operator’s body. These positions, usually
denoted as ‘skeletal points’, are schematically represented in Figure 2.3. As
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previously exposed, the relevant variables (see Chapter 4) that will be exploited
in this Thesis will be the ones illustrated in Figure 2.3.

� position of the centre of the right wrist, denoted as pRW ;

� position of the centre of the left wrist, denoted as pLW ;

� position of the centre of the head, denoted as pH ;

� vector that provides an estimate of the head’s orientation, denoted as
zHeadV ector.

The algorithm returns, for each set of input positions received, the most likely
human reaching target.

Figure 2.4: Schematic illustration of the input and output of the intention
estimation algorithm

Let us come back to consider the case where only pRW or pLW are available.
The algorithm works as follows.
Once the goal positions have been defined and their number is known, it is
fundamental to assign to each one of them a certain value of probability, that
will represent the prior probability of each goal at the initial time step. Since
at the beginning of the collaboration the operator has not yet reached any
target and there is no evidence that one is more likely than the others, it
seems reasonable to consider the probability to be uniformly distributed over
the number of the goals; namely, each target is assigned a value of probability
that is equal to the ratio between 1 and the total number of targets.

Once the algorithm receives as inputs goal positions, skeletal measures, initial
probabilities associated with the goal location, it collects all this information in
a structure that from now on will be referred to as ‘Inference Engine’. This
structure is in charge of processing the new incoming information and updating
the probabilities.

Going into the implementative details, the Inference Engine is endowed with a
buffer which has the task of storing the wrist position returned by the Kinect at
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each iteration. Each buffer is a 3xDb matrix whose rows represents respectively
the x, y, z coordinates associated with the wrist position observed at a certain
k iteration, p

(k)
W . The dimension of the buffer, Db, is an arbitrary odd number

which must be selected so as to allow the collection of a sufficient number of
observations.

Figure 2.5: A schematic picture of the buffer filled according to a FIFO logic

The buffer is filled according to a First-In-First-Out (FIFO) logic.

To be more precise, when a new admissible measure p
(k)
W arrives, firstly, all the

measurements already present in the buffer are moved back one place; secondly,
the new acquired one is positioned in the last position of the buffer (see the
column marked in red in Figure 2.5). Clearly this logic is iterated for each new
relevant measure retrieved. This way the measurements stored in the buffer are
always ordered from the oldest one to the most recent one. To be inserted in
the buffer the new measure must overcome a specified ‘spatial’ threshold, which
is an arbitrary parameter of the algorithm. Thus, this specifies the minimum
distance that two subsequent detected skeletal positions must have to become
part of the buffer. More specifically, the criterion for deciding whether or not
to introduce in the buffer the skeletal position p

(k)
W measured at time step k is

the following:

{
put p

(k)
W in the buffer if ||p(k)

W − p
(k−1)
W || > threshold

do not put p
(k)
W in the buffer otherwise

(2.7)

where p
(k−1)
W is here used to denote the last measure previously introduced at

the end of the buffer.

Thus, the role of the buffer is to store some acquired samples in order to estimate
the direction of the wrist position; namely, the buffer allows the computation
of these two quantities:

� the one that from now on will be referred to as ‘previous tangent vector’,
t̂prev
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� the one that from now on will be referred to as ‘future tangent vector’,
t̂fut.

In order to clarify the mechanism for computing them, let us consider the situa-
tion depicted in Figure 2.6 that shows the sequence of wrist positions measured
by the Kinect when the operator moves from goal position 1 to goal position
4:

Figure 2.6: An example of the set of the wrist poitions (black stars on the path)
returned by the kinect camera when the human hand moves from goal position
1 to goal position 4

Let us assume that the measurements satisfying the spatial threshold have been
introduced in the buffer and that it became full. Since these measurements
belong to the real curve followed by the human operator when moving from a
generic starting position to a prescribed goal position, it is possible to compute
the tangent vector to the curve as the partial derivative of a vector position
with respect to the spatial coordinate s that parametrizes the curve:

t =
∂p

∂s
(2.8)

Then the associated unit tangent vector can be computed as

t̂ =
t

|t|
(2.9)
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The motivation behind this computation is that the tangent vector intrinsically
expresses a direction associated with a position. Thus, the tangent vector
associated with the set of measured wrist positions can provide a clue where
the hand of the operator is directed to and can help inferring the intended goal.
In fact, in [34] the path followed by the operator’s hand when moving from a
certain measured position to a goal positon was modelled by using third-order
polynomial.
Then, for each ith target, the value of the angle θWi

between the unit tangent
vector predicted on the ideal path that leads to the center of mass of that
goal and the unit measured future tangent vector can be used to determine
the probability that the human hand is intended to reach the considered target.
Moreover, in that case the likelihood of observing θWi

under the assumption of
reaching the ith target was modelled as a univariate Gaussian distribution:

f(θWi
|pGi

) ∼ N (µ, σ2) (2.10)

Thus, in order to allow the computation of the so-called ‘future tangent vector’
it is necessary to split the buffer in two parts. In fact, since it stores the mea-
surements that are ordered according to the FIFO logic previously dismissed, at
each iteration, position Db

2
can be considered the last position acquired in the

past, so it will be denoted from now on as ‘previous position’, pprev. Then, if
the last position of the buffer (Db) is regarded from the perspective of position
Db
2

it will represent, for each iteration, the future location of the operator’s hand
after a certain number of samples. Hence it will be denoted as ‘future position’,
pfut as shown in Figure 2.7.

Hence, at each kth iteration of the algorithm, the ‘previous tangent vector’ t̂
(k)
prev

is computed as:

t̂(k)
prev =

(p
(Db

2
)

W − p(1)
W )

||p(Db
2

)

W − p(1)
W ||

(2.11)

where p
(1)
W is the wrist position stored in the first column of the buffer.

And the ‘future tangent vector’ t̂
(k)
fut is computed as:

t̂
(k)
fut =

(p
(Db)
W − p(Db

2
)

W )

||p(Db)
W − p(Db

2
)

W ||
(2.12)

where:
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Figure 2.7: column Db
2

stores the three-dimensional coordinates of pprev, the
point from which the human hand path is supposed to start the reaching motion
at each iteration; columns Db contains the three-dimensional coordinates of
pfut, the location reached by the human wrist starting from position stored in
the Db

2
-th column of the buffer

� t̂
(k)
prev is used as initial condition for computing the cubic polynomial ideal

path.

� t̂
(k)
fut is exploited for the computation of the angle θ

(k)
Wi

, hence for evaluating
the likelihood (refer to equation 2.10) and make inference on the intended
goal.

Once the prior probabilities of each goal have been initialized as previuosly
mentioned, for each new set of skeletal positions retrieved by the Kinect, the
intention inference algorithm takes the following steps:

For each kth sample acquired and for each ith target position:

1. once the buffer is full, the previous position are moved back one step and
the newly acquired measure is introduced in the last position as previously
mentioned;

2. t̂
(k)
prev and t̂

(k)
fut are computed according to the mechanism discussed so far;

3. the minimum curvature path (cubic curve) representing the ideal reaching
path is evaluated, imposing the following boundary conditions:

p(0) = p(k)
prev p′(0) = t̂(k)

prev p(1) = pGi
; (2.13)

4. the predicted tangent vector t̂
(k)
predi

is evaluated as the spatial derivative
of the forecasted position on the minimum curvature path that leads to
the ith goal position with respect to the spatial coordinate s.
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Figure 2.8: Schematic illustration of the meaning of t̂
(k)
prev, t̂

(k)
fut, t̂

(k)
predi

: the ideal

path departing from the sixth position stored in the buffer, p
(k)
prev with initial

tangent equal to t̂
(k)
prev leading to each target position is computed. Then the

predicted tangent vector t̂
(k)
predi

associated with the path leading to the ith target

is compared with the measured tangent vector, t̂fut(k)

5. the angle θ
(k)
Wi

between the predicted unit tangent vector and the measured
unit future tangent vectors is computed as:

θ
(k)
Wi

= arccos((̂t
(k)
predi

)T (̂t
(k)
fut)) (2.14)

as shown in Figure 2.9:

Figure 2.9: For each target, the angle θ
(k)
W between the measured future tangent

and the predicted one is computed

6. the likelihood is evaluated according to (2.10) and the posterior probability
of each goal is updated following the Bayes’ rule.

f(pGi
|θ(k)
Wi

) = P (k−1)(pGi
)f(θ

(k)
Wi
|pGi

) (2.15)
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hence, the recursive updating rule is:

P (k)(pGi
) = P (k−1)(pGi

)f(θ
(k)
Wi
|pGi

) (2.16)

7. the value of the posterior probability is normalized only if the product
P (k−1)(pGi

)f(θWi
|p(k)
Gi

) overcomes 1 so that if the operator’s hand is di-
rected to another location different from the prescribed target positions,
this event can be recognized from a probabilistic point of view.
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3

Modelling the ideal human hand
reaching path

3.1 Context

The overall problem of human intention inference can be regarded as the in-
terrelation of two subproblems: the first one, as previously explained, is the
probabilistic characterization of the human intention; the second one is the
search for a model which reproduces quite accurately the actual human hand
reaching paths.
The idea behind this issue, in fact, is that if it is possible to know or model
appropriately the human hands motion, it could be also easy to define, for each
detected hand position, the ideal path connecting a certain measured position
to the center of each possible goal. Indeed, in this case, it would be also possible
to foresee on all these paths the future hand position and to evaluate, based on
the angle between the predicted tangent and the observed one, the most likely
reaching target, as shown in Figure 3.1.

Obviously, this aspect could be beneficial not only from the intention’s recogni-
tion perspective but also from the point of view of efficient work coordination,
since it would allow to plan ahead the robot trajectory that synchronizes with
the human counterpart’s motion.
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Figure 3.1: For each goal position the predictive hand reaching path starting
in correspandance of the measured wrist position and leading to the center of
each target can be determined

3.2 Human hand path: state of the art

In the literature there are many discussions that address the problem of de-
termining the ideal human hand reaching motion. However, this issue can be
considered mainly solved according to two different approaches:

1. by exploiting a model-based trajectory;

2. by applying a data-driven approach.

Let us focus on the first one.
The idea behind this approach (refer to [16], [29], [40]) is that, when a hand
receives the input to move towards a certain target, the problem of trajec-
tory planning and control is solved by the Central Nervous System (CNS) at a
higher level, namely, in the task-oriented coordinates. To be more accurate, it
is believed that when the human CNS commands the hand to move from its
actual position to the desired one, it does so according to a certain criterion
that makes it possible to eventually select one specific trajectory among infinite
possible choices which could connect the actual position to the intended one. In
other words, the CNS chooses the trajectory that optimizes a certain objective
function. By the way, since this criterion is unknown, the open question is what
this cost function is and how it can be determined.
In literature there are numerous theories related to the definition of the above-
mentioned cost function, however the features that have been jointly observed
are the following: the unconstrained motions between two pairs of targets are
approximately straight and characterized by a bell-shaped tangential velocity
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profile. Moreover, it has been noticed [16] that this kind of behaviour is main-
tained, regardless of the workspace size. In this thesis, only the point-to-point
motions will be considered of particular interest, since the operator, when co-
operating with the robot, repeates a sequence of motions that start from an
arbitrary position of the workspace to a target one.
In [16], it is proposed the so-called minimum jerk model. In fact, it has been
observed that human movements are commonly smooth and graceful. This as-
pect seems to indicates that the CNS could be intended to select the smoothest
movement possible when moving the hand from a certain equilibrium position
to another one. Thus, since the jerk is obtained by deriving the acceleration
and intrinsically describes the rate of change associated with acceleration, it
seems reasonable to select the trajectory that, minimizing the jerk, maximizes
the smoothness.
Consequently, the proposed cost function tends to minimize the time integral of
the square of the magnitude of the jerk Cjerk, as expressed in equation 3.1:

Cjerk =
1

2

∫ tf

0

((
d3x

dt3
)2 + (

d3y

dt3
)2)dt (3.1)

where tf is the movement duration and x(t), y(t) are the coordinates of the
hand position.
The advantage of this method is that the minimum jerk model is independent
from the neuromuscular dynamics. It is only necessary that the movement
remains within the capabilities of the neuromuscular system. Hence, some con-
straints on achievable movements are required.
The intuition about the existence of a unifying rule governing all human hand
motions has been disputed, based on the observation that two identical move-
ments are never performed twice. However, the supporters of the minimum jerk
model explained that their approach does not force all movements to be exactly
the same. Indeed, they motivated the variability in hand’s motions because of
a slightly change in the perceived location of the positions the hand is heading
to. This model also confirms the idea related to an hierarchical organization
of motor command: hence, the fact that trajectories are firstly planned at a
higher level where the mechanical nature of human actuators is neglected and
then, at a lower level, they are converted in terms of torques and forces which
are needed to generate that motion.
In [40] an objective function which was related to the physical variables con-
cerning the arm’s dynamics was proposed. The resulting criterion function was
the one that minimizes Ctorque:
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Ctorque =
1

2

∫ tf

0

(
n∑
i=1

dzi
dt

)2dt (3.2)

where zi is the torque generated by the ith out of the n actuators. In fact, ac-
cording to this model, it is considered that the human hand trajectory is planned
and controlled in a way that ensures the minimum variation of the motor torque.
Hence, even though those that used this model agreed on the characteristics
of the point-to-point motion previously discussed, they disagreed on the fact
that hand motions are independent from the dynamics of the musculoskeletal
system and the region of the workspace where the movement is performed.
The disadvantage of this model was that it is very difficult to deal with since
it would ideally require to specify the dynamic equations of the musculoskeletal
system. To overcome this difficulty, in [40] the dynamic equations of a two-joint
manipulator were exploited and the nonlinear optimization problem was solved
by using an iterative learning scheme; while in [41] a neural network model was
exploited. However the use of the dynamic equations of a SCARA manipulator
allows to model only planar motions.
In [7] it is argued that the trajectory planning is performed at joint level by
means of a path planning mechanism. More precisely, under this theory, the
arm’s movements are generated by the CNS according to the ratio of the ten-
sions between antagonist and agonist muscles. Hence the transition from an
equilibrium state to another depends on the muscular contraction time and on
the mechanical arm’s properties. In [34] the use of a cost function which aimed
at minimizing the overall curvature of the reaching path was suggested .

For what concerns the second approach, applied in [32], [25], typically multi-
ple demonstrations of human hand reaching motions were tracked for a certain
amount of time so as to collect a sufficiently large training datatset. Then,
a library of possible motion trajectories was offline learnt, for instance, using
a generic unsupervised classification algorithm, commonly, a gaussian mixture
model. Hence, given an observed portion of trajectory, it was possible to foresee
its remaining part by exploiting a gaussian mixture regression. In [3] this ap-
proach was applied to learn and then predict the trajectories of walking people.
In [26] the Inverse Optimal Control was used to learn the cost function that
best explains the human motion starting from a number of example trajecto-
ries.

Other approaches, as in [24], used a 3D occupancy grid to retrieve the opera-
tor’s hand position. The approach followed by [10] interpreted the time-varying
configuration achieved during reaching movements as the resultant of the com-
posite of attractive and repulsive potential forces acting on the hand. In [20] a
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4 degrees of freedom (redundant) arm model capable of generating trajectories
in the 3D space was created and the chosen criterion function was the minimum
angular jerk. A proper time adjustment was also included for both shoulder and
elbow motion so as to reproduce in a correct manner the characteristics of the
actual human arm trajectories.

In this Thesis a model-based approach has been preferred due to the possibility
of avoiding the bundersome offline training phase and considering the significant
advantage that a model-based trajectory could produce: namely, the chance of
applying it to any reaching motion performed by the operator, despite the spe-
cific collaborative task.
Hence, three different model-based paths will be discussed in order to find the
best one capable of reproducing the actual path followed by the human op-
erator, thus enhancing the performance of the intention inference process. It
should be recalled that the term ‘path’ denotes the sequence of positions fol-
lowed by the human hand in the space. Hence, since in this Thesis the problem
of finding a model for the hand reaching path will be addressed, it means that
here there is no interest in analyzing the time sequence of the velocities during
the movements along the path.

3.3 Minimum curvature path

A first attempt of reproducing the ideal human hand reaching path was the
selection of a minimum curvature path, following the approach used by [34].
This choice, in fact, appears to be consistent with the observed human paths
that, as previously said, are approximately straight.
Considering that the resulting path is obtained by minimizing the integral of a
certain function over a certain temporal or spacial horizon, it is apparent that
if a time-based method was used, this would force us to impose a limit on the
duration of each reaching motion (see the parameter tf in the cost function
of 3.1 and 3.2). This aspect would not be consistent with the purpose of a
collaborative operation. Indeed, we are interested in imposing that during the
collaborative task the predictive path lead the human operator to a prescribed
position of the space (the target one), no matter the amount of time required
to reach the goal. In this way the ideal path would also be consistent with the
purpose of a generic operator’s reaching motion, which, for sure, at any point,
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will be headed to one of the goals.
In this Thesis, the path p will be parametrized with respect to the natural
coordinate s where s ∈ (0, 1), hence:

p = p(s) (3.3)

As a consequence, the minimum curvature path can be found by minimizing
the following objective function JminCurv:

JminCurv =

∫ 1

0

p′′(s)Tp′′(s)ds (3.4)

where p′′(s) denotes ∂2p
∂s2

the second derivative of the wrist position with respect
to coordinate s.

In order to reproduce the constraints of the actual human motion from a generic
initial point to the ith target, the following boundary conditions can be intro-
duced:

p(0) = p(k)
prev p′(0) = t̂(k)

prev p(1) = pGi
(3.5)

Their meaning is the following:

� at iteration k the path must start in the previously observed wrist position
p

(k)
prev. In Chapter 4 it will be explained that at each iteration a buffer will

be in charge of storing the left wrist and right wirst position detected at
some past instants. p

(k)
prev will refer to the position that at iteration k was

contained in a certain location of buffer which corresponds to a prescribed
previous time instant.

� the initial direction of the path will correspond to the previously observed
unit tangent vector t̂

(k)
prev. In Chapter 4 the procedure for computing this,

relying on the buffer, will be explained.

� the path must end in the considered (ith) target position.

In order to solve the optimization problem, the desired path can be chosen as a
3rd order polynomial satisfying the constraints and minimizing JminCurv(C

?).

p(s) = a0 + a1s+ a2s
2 + a3s

3 (3.6)

where a0, a1, a2, a3 are three-dimensional vectors.
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Since we are interested in solving a constrained optimization problem: namely,
in finding the minimum of a certain function JminCurv(C

?) subject to equality
constraints g(C?) = 0, a commonly used solution is the application of the
method of Lagrange multipliers. This procedure allows to solve the optimization
problem by minimizing the so-called Lagrangian expression:

J?minCurv(C
?, λ) = JminCurv(C

?)− λg(C?) (3.7)

where C? is the matrix of coefficients that have to be found:

C? =


a0

a1

a2

a3

 (3.8)

Therefore, the steps performed for solving the minimization problem are:

1. compute the partial derivative of p(s) with respect to s.

p′(s) = a1s+ 2a2s+ 3a3s
2 (3.9)

and the corresponding second derivative:

p′′(s) = 2a2 + 6a3s (3.10)

2. substituting the initial conditions on p(0) and p′(0), retrieve the trivial
expressions of the coefficients a0 and a1:

a0 = p(k)
prev a1 = t̂(k)

prev (3.11)

3. re-write JminCurv substituting in p′′(s) the expression of the coefficients
of 3.11:

JminCurv =

∫ 1

0

([
2a2 6a3

] [1
s

] [
1 s

] [2a2

6a3

])
ds (3.12)

Thus, denoting with:

C =

[
2a2

6a3

]
(3.13)

and:

β =

[
1 1

2
1
2

1
3

]
(3.14)

equation 3.12 can be re-written as:

JminCurv = CTβC (3.15)
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4. substituting both the initial the final condition p(1) = pGi
and the ex-

pression of a0 and a1 in the expression of p(s), obtain the so-called ‘ho-
mogeneous constraint equation’:

[
1 1

] [a2

a3

]
− (pGi

− p(k)
prev − t̂(k)

prev) = 0 (3.16)

let us name E the row vector [1 1] and α2 the expression pGi
− p(k)

prev −
t̂
(k)
prev.

5. write the expression of J?minCurv(C
?, λ):

J?minCurv(C
?, λ) = CTβC + λT (EC? − α2) (3.17)

where:

C =

[
2 0
0 6

]
C? (3.18)

6. subistituting the expressions of C, β, E and J?minCurv(C
?, λ) in 3.17,

obtain the final equation:

J?minCurv(C
?, λ) = 4a2

2 +12a2a3 +12a2
3 +λT (a2 +a3−pGi

+p(k)
prev+ t̂(k)

prev)
(3.19)

7. in order to find the stationary points of this function and retrieve the ex-
pression of coefficients a2 and a3, solve the following system of equations:

∂(J?(a2,a3,λ))
∂a2

= 0
∂(J?(a2,a3,λ))

∂a3
= 0

(∂(J?(a2,a3,λ))
∂λ

)T = 0

(3.20)

In conclusion, the coefficients of the cubic minimum curvature path are:

a0 = p(k)
prev (3.21)

a1 = t̂(k)
prev (3.22)

a2 =
3

2
pGi
− 3

2
t̂(k)
prev −

3

2
p(k)
prev (3.23)

a3 = −1

2
pGi

+
1

2
t̂(k)
prev +

1

2
p(k)
prev (3.24)
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Figure 3.2: The minimum curvature path (magenta) that connects goal 1 to
goal 2 is shown together with the set of predicted tangent vectors (black arrows
on the magenta path) obtained at each iteration. The overall path represented
in magenta is composed by the sequence of predicted segments obtained at
each kth iteration based on the measured p

(k)
prev and t̂

(k)
prev

In Figure 3.2 the obtained minimum curvature path is compared with corre-
sponding one retrieved by means of the Kinect camera, for an observed reaching
movement.

As can be easily noticed by observing the figure, the predictive path reproduces
quite well the measured one. However, a number of discontinuities are visible
on the predictive path.
This aspect can be explained as follows: let us assume that at generic iteration
k the algorithm that is in charge of computing the predictive path, receives
the initial measured position p

(k)
prev, the ith target position pGi

, and the spatial
displacement at which it has to evaluate the next position along the minimun
jerk path. Hence, at iteration k, the algorithm will compute the minimum jerk
path p(s) that starts in p

(k)
prev and ends in pGi

, by imposing that p(0) = p
(k)
prev,

p′(0) = t̂
(k)
prev and p(1) = pGi

.
Notice that the final condition imposed at each kth iteration is always p(1) = pGi

and not p(1 −∆s(k→k+1)) = pGi
, where ∆s(k→k+1) represents the spatial dis-

placement between p
(k)
prev and p

(k+1)
prev .

At the new iteration k + 1 the minimum jerk path must be computed again
according to the same criterion as before: however this time it is imposed to
find the path p(s) that starts in a forward position of the space, p

(k+1)
prev , and
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ends in the same target position as before ,pGi
, by imposing that p(0) = p

(k+1)
prev ,

p′(0) = t̂
(k+1)
prev and p(1) = pGi

, as previously explained.
Consequently, when computing the path at time instants k + 1 it is not taken
into account the previous history of path.
This aspect is consistent with the Markovian hypotheis expressed in section 2.3,
namely, the fact that the new observed state dependes only on the previously
observed one, but has the disadvantage of producing a sequence of path seg-
ments that are discontinuous.

In addition, it could be argued that the choice of a path that attempts at min-
imizing the overal curvature af a reaching motion could result, to some extent,
in contrast with the observation that a slight curvature on human reaching path
should be always accounted for, due to the presence of the shoulder that inher-
ently provides a sort of pivot for arm’s motions [38].
This is the reason why in this Thesis an attempt of creating a path having cer-
tain characteristics has been made. In fact the aim was to create a path that on
the one hand was capable of satisfying the observed human path features and
on the other hand took into consideration the impact of the observed shoulder
position in determining the shape of the actual human path. That aspect will
be addressed in the following section.

3.4 Taking into account the position of
the center of the shoulder

The aim of this section is to present a new path formulation which takes into
account the shoulder position. The purpose is to investigate whether and how
it is possible to include this information in order to better reproduce the human
behaviour in terms of reaching motions. Let us consider that the following
observations are available:

� initial position p
(k)
prev:

pprev(k) =

p
(k)
prevx

p
(k)
prevy

p
(k)
prevz

 (3.25)

36



Chapter 3 - Modelling the ideal human hand reaching path

� initial tangent t̂
(k)
prev:

t̂(k)
prev =

t̂
(k)
prevx

t̂
(k)
prevy

t̂
(k)
prevz

 (3.26)

� final position which corresponds to the ith target position pGi
:

pGi
=

pGix

pGiy

pGiz

 (3.27)

� position of the center of the shoulder p
(k)
s :

p(k)
s =

p
(k)
sx

p
(k)
sy

p
(k)
sz

 (3.28)

Therefore, in order to obtain a slightly curved path that reproduces as much
as possible the features of the observed ones (refer to [38]), it can be initially
considered the ideal circumference which is centred in shoulder position, has
radius equal to the Euclidean distance between p

(k)
s and p

(k)
prev and lays on the

plane which contains p
(k)
prev, p

(k)
s and pGi

, as shown in Figure 3.3. In this way
the shoulder can be interpreted as a sort of pivot for the reaching motion.

Figure 3.3: Ideal circumference centred in the shoulder position and having
radius equal to the distance between p

(k)
s and p

(k)
prev

Hovewer it must be also ensured that the path ends in pGi
since it is the

objective of the operator reaching motion. In order to take simultaneously into
considerations all these requirements, it is necessary to find a path that on
the one hand keeps as much as possible close to the curve describing the ideal
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circumference and on the other hand fulfills the constraints related to the initial
position, initial tangent and final position. To this end, let us first consider a
generic 4-th order polynomial:

p(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 (3.29)

In order to obtain the desired path, this polynomial must comply with the
following initial conditions:

p(0) = p(k)
prev p′(0) = t̂(k)

prev (3.30)

and final conditions:
p(1) = pGi

p′(1) = 0 (3.31)

Thus, substituting conditions 3.30 in 3.29 one obtains the trivial expressions of
a0 and a1:

a0 = p(k)
prev a1 = t̂(k)

prev (3.32)

The schematic illustration of the abovementioned path and circumference is
shown in Figure 3.4:

Figure 3.4: The forth order polynomial path that fulfills the constraints on initial
and final position can be determined

Assuming that the expression of the circumference centred in the shoulder po-
sition and having radius equal to ||p(k)

s − p
(k)
prev|| has been determined, let us

consider Nc intermediate points laying on this curve, as shown in Figure 3.5
where σj be the jth intermediate point.
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Figure 3.5: Equally spaced intermediate points laying on the ideal circumference
centred in the shoulder position

Let us also consider the corresponding equally spaced intermediate points laying
on the polynomial path, as illustrated in Figure 3.6:
where p(σj) represents the jth intermediate point laying on this path.

Figure 3.6: Equally spaced intermediate points laying on the 4-th order polyno-
mial path

Hence, the objective function that is capable of generating the desired path
could be the one that minimizes the sum of the distances between each jth
intermediate point laying on the circumference and the corresponding interme-
diate point laying on the 4-th order polynomial path.
The minimization problem can be expressed as minimizing JdistCS:

JdistCS =
Nc∑
j=1

((p(σj)− σj)T (p(σj)− σj)) (3.33)
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subject to:

p(1) = pGi
p′(1) = 0 (3.34)

Figure 3.7: The minimization problem can be equivalently reformulated from a
mechanical point of view as the minimization of the sum of the displacements
of Nc springs which link each σj to each p(σj)

In order to solve the minimization problem, the procedure is the same applied
in section 3.3 for finding the minimum curvature path. Thus:

1. substitute in equation 3.29 the coefficients of equation 3.30; hence p(s)
can be re-written as:

p(s) = a0 + t(k)
prevs+ w(s)C? (3.35)

where

w(s) =
[
s2 s3 s4

]
C? =

a2

a3

a4

 (3.36)

2. rewrite expression 3.33 substituting to the abovementioned quantities.
After some computation the minimization problem can be expressed as:

JdistCS = C?TβC? + C?Tα (3.37)

where:

� β =
∑Nc

j=1 w
T (σj)w(σj).
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� α = 2
∑Nc

j=1w
T (σj)(p

(k)
prev + t̂

(k)
prevσj − σj); These quantities can be

evaluated once the intermediate points have been found out.

3. write the Lagrangian expression:

J?(C?, λ) = C?TβC? + C?Tα + λT (EC? − α2) (3.38)

where:

E =

[
1 1 1
2 3 4

]
α2 =

[
pGi
− p(k)

prev − t̂(k)
prev

−t̂(k)
prev

]
(3.39)

4. in order to find the stationary points of J?(C?, λ) and retrieve the expres-
sion of coefficients a2 and a3, solve the following system of equations:{

(∂(J?(C?,λ))
∂C? )T = 0

(∂(J?(C?,λ))
∂λ

)T = 0
(3.40)

5. therefore, in order to obtain the coefficient of matrix C?, the following
system must be solved:[

2β ET

E 0

] [
C?

λ

]
=

[
−α
α2

]
(3.41)

6. Let us name A and γ the following matrices:

A =

[
2β ET

E 0

]
γ =

[
−α
α2

]
(3.42)

Consequently, the coefficient matrix C∗ can be obtained by first comput-
ing matrix M :

M = (A)−1γ (3.43)

where M is a 5x5 matrix. Therefore, the matrix of coefficient C? can be
easily obtained as the 3x5 submatrix of M . It should be noticed that γ
(see equation 3.43) only depends on the values of p

(k)
prev, t̂

(k)
prev and pGi

,
while A is affected by the number and the values of the intermediate
points.

Given the above, the problem becomes now how to determine them. More pre-
cisely, it must be defined the expression of the ideal circumference these points
belongs to.
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Let us firstly set a reference sistem, whose unitary axes are defined as:

x =
(p

(k)
prev − p(k)

s )

||p(k)
prev − p(k)

s ||
; (3.44)

z =
(p

(k)
prev − p(k)

s ) ∧ (pGi
− p(k)

s )

||(p(k)
prev − p(k)

s ) ∧ (pGi
− p(k)

s )||
; (3.45)

where vector z is orthogonal to the plane that contains p
(k)
prev, p

(k)
s and pGi

and
points outward. And:

y =
z ∧ x

||(z ∧ x)||
; (3.46)

so as to obtain a reference system consistent with the right-hand rule. Let us
also define the rotation matrix R0

1 that expresses the rotation of frame 1 with

respect to frame 0 and the vector p
(k)
s that expresses the shoulder position with

respect to frame 0:
R0

1 =
[
x|y|z

]
(3.47)

as shown in Figure 3.8:

Figure 3.8: The reference system associated with the plane that contains p
(k)
s ,

p
(k)
prev and p

(k)
Gi

is determined in order to find the ideal circumference laying on
that plane

With respect to frame 1 the circumference having radius r equal to ||p(k)
prev−p(k)

s ||
can be depicted as illustrated in Figure 3.9:

Thus, with respect to frame 1 the angle θ0 that corresponds to the arc of
circumference which starts in p

(k)
prev and ends in the intersection point between

the whole circle and the line pGi
− p(k)

s can be computed as follows:

θ0 = atan2(pGiy
, pGix

) (3.48)
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Figure 3.9: The expression of circumference that is parametrized with respect
to the natural coordinate s and having radius r can be determined with respect
to frame 1.

while, with respect to frame 0 expression 3.48 becomes:

θ0 = atan2(yT (pGiy
− p(k)

s ),xT (pGix
− p(k)

s )) (3.49)

Considering the meaning of the natural coordinate s that describes the length
of the considered arc of circumference, the circumference Cfr that lays on the
plane associated with frame 1 can be expressed with respect to frame 0 and as
a function of s ∈ (0, 1) according to the following way:

Cfr(s) = p(k)
s +R0

1(
[
r cos(sθ0) r cos(sθ0) 0

]
) (3.50)

Hence, once selected the number of intermediate points, the desired path is
completely determined. In Figure is represented the predictive path obtained
by minimizing JdistCS. This path, represented in magenta is compared with the
corresponding real path retrieved by using the Kinect camera.

Even in this circumstance, the same considerations made for the previous pre-
dictive path holds; namely, the path shows some discontinuities because of the
same motivations expressed before.
The advantage of this formulation is that, since it does not attempt at mini-
mizing the curvature, it returns a slightly curved path even in the case where
the initial position and final position are aligned. It should be recalled that,
obviously, the initial curvature of the path is also affected by the direction of
the initial tangent vector that is one of the boundary condition imposed before
solving the minimization problem.
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Figure 3.10: The path obtained by minimizing JdistCS is shown in magenta
together with the predicted tangent vectors (black arrows laying on the magenta
curve). The corresponding actual path followed by the human operator is the
black curve.

3.5 Parabola

In order to solve the problem of the aforementioned discontinuities while pre-
serving the curvature of the path, a further attempt was made by using a second
order degree polynomial, a parabolic path, exploiting the possibility of keeping
fixed its axis of symmetry, as it will be explained afterwards.
The parabola belongs to the family of conic sections. As a matter of fact, it is
obtained by intersecting the surface of a cone with a plane that is parallel to
one and only one generating line of the cone.
Being a planar and symmetric curve, another crucial element of a parabola is
its axis of symmetry.
Let us consider the traditional equation of the parabola whose axis of symmetry
is parallel to the Cartesian y-axis. This is defined by the following second order
equation:

y = ax2 + bx+ c (3.51)

It may seem that the parabola expressed in equation 3.51 is completely de-
termined, for instance, by imposing the passage through two points and the
tangent vector associated with one of the two. This is not sufficient: in fact,
in order to guarantee that only one parabola satisfying the previous conditions
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exists, also the reference system, with respect to which the axis of symmetry is
parallel must be preliminarly chosen. Here, indeed, we assume that the parabolic
path that we want to determine always has its axis of symmetry parallel to the
y-axis of the selected reference frame.
In fact, if the reference system was not a priori determined before imposing
the abovementioned conditions, it would be always possible to find an infinite
number of parabolas that fulfill these conditions, as shown in Figure 3.11:

Figure 3.11: In this picture it is illustated the parabolas (blue and purple) ob-
tained by imposing the passage through the same two points (blu and magenta)
and the same tangent (black arrow), however the reference systems with respect
to which they are computed are different, respectively x1-y1 and x2-y2. Hence
two different curves are obtained

Let us now consider the parabolic curve γ1 defined by the second order polyno-
mial expressed as a function of the usual natural coordinate s, so γ1 = γ1(s).
Hence:

γ1(s) =

a0x + a1xs+ a2xs
2

a0y + a1ys+ a2ys
2

a0z + a1zs+ a2zs
2

 =

a0x

a0y

a0z

+

a1x

a1y

a1z

 s+

a2x

a2y

a2z

 s2 (3.52)

imposing the following boundary conditions:

γ1(0) = p(k)
prev (3.53)

γ′1(0) = t̂(k)
prev (3.54)

γ1(1) = pGi
(3.55)
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the expressions of the coefficients can be easily obtained as:

a0 = p(k)
prev (3.56)

a1 = t̂(k)
prev (3.57)

a2 = pGi
− p(k)

prev − t̂(k)
prev (3.58)

This curve can be considered expressed with respect to a certain reference sys-
tem which will be named ‘frame 1’.
As can be noticed by observing the expression of the parametric curve γ1, since
the matrix of coefficients a1, a2 and a3 is full with respect to the x, y, z direc-
tions, it is not trivial to determine the orientation of the symmetry axis, as it
was done in equation 3.51.
The reason why we are interested in the direction of the axis of symmetry is
that we want to guarantee that all the segments of parabolic paths which are
iteratively returned by the intention inference algorithm belong exactly to the
same parabolic path that was computed at the first iteration (based on p

(1)
prev,

t̂
(1)
prev and pGi

), avoiding discontinuity problems.
The method which makes it possible to achieve this result is to keep fixed the
direction of the axis of symmetry obtained for the parabolic path computed at
the first iteration (iteration 1).
Hence, only at iteration 1 the axis of symmetry will be computed; then, for
all the successive iterations (2 ≥ k) the previous axis of symmetry will be iter-
atively projected in the plane which contains the newly acquired initial point,
initial tangent and the same target position p

(k)
prev, t̂

(k)
prev and pGi

, as it will be
explained afterwards.

More details about the computation of the symmetry axis will be here provided.
It can be observed that it is always possible to find the reference system whose
y-axis is parallel to the unknown axis of symmetry associated with a parabola γ1.
The problem is how to determine the aforementioned frame. Let us write the
expression of the parabolic curve assuming that its axis of symmetry is parallel
to the y-axis of a certain reference system which from now on will be denoted
as ‘frame 0’. With respect to frame 0, the parabolic curve, named γ0 can be
written as:

γ0 =

 x
ax2 + bx+ c

0

 =

0
c
0

+

1
b
0

x+

0
a
0

x2 (3.59)
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Thus, it is possible to write the transformation which links γ1 and γ0 as fol-
lows:

γ0 = T 0
1 +R0

1γ1 (3.60)

or, more compactly, [
γ0

1

]
=

[
R0

1 T 0
1

0 1

] [
γ1

1

]
(3.61)

as shown in Figure 3.12:

Figure 3.12: The homogeneous transformation matrix allows to link the expres-
sions of γ0 and γ1

Let us write the matrix R0
1 as:

R0
1 =

[
x0|y0|z0

]
(3.62)

hence, substituting in 3.60 equation 3.62 and 3.59 it results:

γ0 =
[
x0|y0|z0

](0
c
0

+

1
b
0

x+

0
a
0

x2

)
+ T 0

1 (3.63)

therefore, group the term according to the power of x:

γ0 = (cy0 + T 0
1 ) + (x0 + by0)x+ ay0x

2 (3.64)

In view of the considerations expressed at the beginning of this section, a
parabola defined by an equation of the type 3.51 has, by definition, an axis
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of symmetry parallel to the y-axis of the reference frame with respect to which
it is defined. Consequently, observing the expression of γ0 in 3.64, it clear that
the axis of symmetry of γ0 is parallel to y0 which, in fact, is the y-axis of frame
0 (see Figure 3.12).
Since γ0 can be also expressed as in 3.52 the following equivalence holds:

ay0 =

a2x

a2y

a2z

 (3.65)

where the value of coefficient a2 was already determined by equation 3.58 by
imposing the boundary conditions.
In conclusion it has been demonstrated that the direction of the axis of sym-
metry of the desired parabola corresponds to the one of the three-dimensional
coefficient a2.

In order to evaluate at each iteration k the parabola that fulfills the boundary
conditions previously explained, it is firstly defined the reference system associ-
ated with the plane containing p

(k)
prev, t̂

(k)
prev and pGi

, thus x0, y0, z0.

� y0 correspond to the normalized vector obtained in equation 3.65.

� z0 is obtained by normalizing the cross product t̂
(k)
prev ∧ (pGi

− p(k)
prev);

� x0 is obtained by normalizing y0∧z0, so as to comply with the right-hand
rule.

Then, in order to find the coefficient of the parabola expressed with respect
to frame 0, the coordinates of p

(k)
prev, t̂

(k)
prev and pGi

that belong to frame 1
are expressed with respect to frame 0 according to the following homogeneous
transformation matrix:

M0
1 =

[
x0 y0 z0 p

(k)
prev

0 0 0 1

]
(3.66)

As a consequence:

p(k)
prev0

= (M0
1 )−1p(k)

prev (3.67)

where p
(k)
prev0 defined the coordinate of point p

(k)
prev with respect to frame 0. The

same holds to obtain pGi0
and t̂

(k)
prev0 . Thus, imposing the passage through

p
(k)
prev0 and pGi0

and that the parabola is tangent to t̂
(k)
prev0 (this is eqivalent to

imposing that the discriminant is equal to zero), the following coefficients are
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obtained: 
a =

(
pGyi0 −

t̂
(k)
yprev0

t̂
(k)
xprev0

pGxi0

)
1

p2Gxi0

b = 0

c = 0

(3.68)

Let us now assume that at time step k y
(k)
0 has been determined . This is the

y-axis of the frame 0 which is parallel to the axis of simmetry of the parabola
laying on the plane which contains p

(k)
prev, pGi

and t̂
(k)
prev.

Let us now assume that at iteration k + 1 the a new initial point and intial
tangent arrives. Let us denote them with p

(k+1)
prev and t̂

(k+1)
prev . Since the direction

of the y-axis of frame 0, hence, the direction of axis of symmetry, is equal to
coefficient a2 which (refers to equation 3.58) depends on the value of p

(k+1)
prev ,

t̂
(k+1)
prev and pGi

, it could happen that the new axis y
(k+1)
0 does not lay anymore

on the same plane as before. As a consequence, in order to try to avoid that the
segment of parabolic curve computed at time step k+1 belongs to a completely
different parabola with respect to the one obtained at iteration k and, at the
same time, complying with the boundary conditions, y

(k)
0 is projected on the

new plane identified by p
(k+1)
prev , t̂

(k+1)
prev and pGi

.

Thus, the new z
(k+1)
0 is computed as before normalizing the cross product

t̂
(k+1)
prev ∧ (pGi

− p(k+1)
prev ).

Finally, the projected y0 at iteration k + 1, y
(k+1)
0proj

is computed as:

y
(k+1)
0proj

= y
(k+1)
0 − (y

(k+1)
0 z

(k+1)
0 )z

(k+1)
0 (3.69)

x
(k+1)
0 is computed, as before, so as to comply with the right-hand rule.

As it is quickly noticeable by observing Figure 3.13, the predictive path is pretty
similar to the measured one and the number of discontinuities that characterize
this parabolic path is reduced, thanks to the adopted method which consists in
recursively projecting the axis of symmetry of the parabola in order to keep fixed
its direction as much as possible. It can also be noticed that, since the parabolic
segments returned at each iteration belong to approximately the parabolic path
computed at the initial time step, it reproduces quite well the characteristics of
the actual path followed by the human operator.
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Figure 3.13: The parabolic path (magenta) that connects goal 1 to goal 2 is
represented in this figure along with the predicted tangent vectors (black arrows
on the magenta path)

3.6 Validation of the best path: the Fréchet
Distance criterion

An overview of all the types of predictive paths is illustrated in Figure 3.14 along
with a measured path:

Figure 3.14: Representation of the different predictive paths obtained for the
measured path (black curve) followed by the human operator

In order to compare the different approaches proposed for the computation of a
nominal path, [30] suggested the use of the Fréchet distance criterion, which is
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particularly exploited in the field of computational geometry as similarity metric
between a couple of curves.
The meaning of Fréchet distance will be briefly exposed. Let us suppose that
we are interested in evaluating how much two curves, namely π1 and π2, are
similar. Let us also suppose that there exist two points: P1 laying on π1 and
P2 laying on π2 which are traveling forward along the curve they belong to. Let
us also consider that the rate of speed for either points may not necessarily be
uniform. Hence, the Fréchet distance is defined as the minimum cord length
that suffices to join P1 and P2.

Let us number the curves as:

� 1, the measured path;

� 2, the minimum curvature path;

� 3, the path obtained by minimizing the distance from the ideal cicumfer-
ence centred in the shoulder position;

� 4, the parabolic path.

Therefore, we are interesting on analyzing the predictive curve that resulted
most similar to curve 1, in order to understand if the use of one predictive path
could provide a greater advantage with respect to the others.
Analyzing the results achieved in 5 different experiments, the trend respresented
in Figure 3.15 is obtained:

Figure 3.15: The histogram of the Fréchet distance obtained in each experi-
ment by analyzing the similarity between curve 1 (the measured path) and each
predictive path (curve 2, curve 3, curve 4) shows that the parabola is the most
similar to the measured path. However all the predictive paths seems to be
quite close to the real one since all the Fréchet distances are small values
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where f1j indicates the Fréchet distance beteween the jth curve (j = 2, 3, 4)
and the measure curve (curve 1). The obtained statistics are expressed in ta-
ble 3.16:

Obviously, based on the definition of Fréchet distance, the most similar path

Figure 3.16: Results of the Frechet distances of the predictive path with respect
to the real one

corresponds to the one having the lowest Fréchet distance. By observing the
trend represented in Figure 3.15, it can be concluded that, since the parabola
is the curve which always presents the smallest Fréchet distance, it may result
the best method for describing the real path followed by the human operator.
However, it can be further noticed that the method used to compute this kind
of parabola is not straightforward, (see section 3.5) and it requires more com-
putational memory than the minimum curvature path, which was used in the
original formulation ([34]). Hence, it seems reasonable to conclude that the
benefits of the application of these predictive paths are almost the same. As a
consequence, since we are interested in analyzing the possibility of enhancing
the performance of the intention inference algorithm described in [34] where a
minimum curvature path was already used, the application of a parabolic path
instead of the previous one seems not to be the most advantageous way to
improve these performance.

Therefore, from now on, the search will be focused on investigating the advan-
tages of including a larger number of observations, instead of a single one, in
order to improve the overall inference process. This aspect will be addressed in
Chapter 4.
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4

Bayesian inference with multiple
observations

4.1 Introduction

In Chapter 2 the Bayesian framework has been analyzed, as well as the archi-
tecture of the simplest intention recognition algorithm. That algorithm, in fact,
estimated the human reaching target on the basis of one single observation
during time: the wrist position.
Besides, the results achieved in Chapter 3, showed that the choice of one predic-
tive path over another seemed not to be the most advantageous way to improve
the inference process: all the predictive paths, in fact, returned pretty similar
results, almost equal to the ones described in the original formulation (see [34]).
The aim of this chapter is to discuss the possibility of enhancing the perfor-
mance of that algorithm by exploiting a wider set of observations when inferring
the intended goal position. Then, the structure of a newer intention recognition
algorithm based on this larger set of observed variables will be presented in detail.

If one observes the natural behaviour of human individuals in their daily lives,
it is evident that humans exploit, to a large extent, the chance of using simul-
taneously their hands to perform even different operations at the same time.
For instance, during activities as opening a water bottle or performing a small
assembly task or writing something on a paper, humans generally use their
principal hand to carry out the part of their work that requires a higher level of
dexterity and control, while the other hand has generally the auxiliary task of
helping finalise the overall operation. This is clearly done in accordance with
the type of activity performed.
Another important observation related to the human natural behaviour is the
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following: humans have a tendency to face the objects they are interested in
and to keep visually monitored the task they are doing for all the duration of
its realization, [43]. In this regard, the human gaze can be considered a rel-
evant link to the human latent intentions and a powerful means of nonverbal
communication even in human-human cooperation, [22]. As a consequence,
if one takes inspiration from these kind of behaviours, it is apparent that the
observation of the joint dual-arm movements and gaze direction can provide
explicits clues for the purpose of recognizing the human’s underlying intention.
In the literature the concept of gaze monitoring was already addressed even in
the field of human-robot interaction. However, some of the previous works used
the gaze estimation for reproducing human-like behaviours, as in [43].
Despite these contributions, the purpose of this Thesis is to exploit the gaze
estimate as an additional measure that, along with other available observations
such as hands positions and their actual distance from goal locations, can result
useful for inferring the intended goal.
To a similar extent, in [4] the gaze estimate was used to avoid the so-called
‘Mida’s touch problem’ which takes place when every goal which at a certain
time instant is in the operator’s field of view is considered intended. Moreover,
[8] proposed the use of a dual-feature HMM model that is capable of recogniz-
ing the intended goal on the basis of the joint gaze-hands observation. In view
of these considerations, the importance of the observation related to the gaze
during the process of intention inference appears to be confirmed.The question
is now how to acquire and manage this measure.
In this work an estimate of the operator’s gaze is obtained by exploiting the
potential of a Microsoft Kinect camera. This depth camera, in fact, is capa-
ble of detecting some facial points, computing the plane that best interpolates
them and retrieving a vector which is orthogonal to that plane, as schematically
shown in Figure 4.1.

Figure 4.1: The kinect camera is capable of detecting some facial points, finding
the plane that interpolates them and returing the vector orthogonal to that
plane. This vector is denoted as zHeadV ector
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This vector, denoted as zHeadV ector, can be considered representative of the
orientation of the user’s head while he is facing a certain target, as illustrated
in Figure 4.2.

Figure 4.2: The outcoming vector belonging to the reference system associated
with the head is representative of head direction when the human is facing a
certain target

It is important to underline that the depth camera is also capable of providing
a boolean value, vHeadV ector, that expresses a measure of the gaze validity.
In fact, when the operator head is oriented in a very different direction with
respect to the z-axis of the Kinect reference frame, the retrieved zHeadV ector has
no meaning, hence this boolean value becomes equal to 0. It should be recalled
that the Kinect camera can retrieve, as previously expressed, also the estimated
head position pH it can be considered associated with.

We conclude this discussion by pointing out that, since all these measurements
provide, also singularly, an indication of the intended goal location, it can be
expected that their joint observations will be crucial for improving the overall
inference process.

Hence, at each iteration k, the complete set of measured variables, which will
be contained in vector Θ(k), can be expressed as:

Θ(k) =
[
p

(k)
RW p

(k)
LW p

(k)
H z

(k)
HeadV ector v

(k)
HeadV ector

]
(4.1)

As a consequence, it will be necessary to find a method to model the likelihood
function associated with these wide set of observations.
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4.2 Reformulation of the system as a multi-
observations Bayesian framework

In order to visualize in a better way the circumstance where multiple observa-
tions are available and can be exploited to compute their likelihood, one can
graphically depict this framework as a multi-nodal Bayesian Network. A generic
Bayesian Network, [28], in fact, consists in a graphic model which allows to
represent the probabilistic relationships between continuous or discrete random
variables: in fact, as the name itself says, the links between random variables
are represented by means of a directed graph, hence, a network.
The reason for considering a Bayesian Network with multiple observations is
that it is supposed to be an effective tool to represent joint probabilities and
causal dependencies [37]. Indeed, in a Bayesian network each random variable
can be graphically represented by a node, while the direct dependencies between
two quantities can be expressed through a directed edge. Obviously the tip of
the arrow points towards the variable that is causally dependent upon the vari-
able stored in the node where the arc comes from. The most simple situation
is depicted in Figure 4.3:

Figure 4.3: The most simple Bayesian network with a single observation node:
the conditional probability of y given the x can be graphically depicted by a
directed edge

It is so evident that even the problem of estimating the intended goal based on
the observation of the wrist position can receive a proper graphic interpretation
by means of this Bayes Network. In fact, in that case, x stood for a generic goal
position pGi

∈ G which the algorithm had to recognize, while y represented the
measured wrist position pW . Clearly, the arc that connects x to y depicted
the conditional density function of observing the wrist measurement under the
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assumption that the human was intended to reach pGi
. Therefore, it expressed

the causal dependence of the observed action upon the intention. The node
from which the arc departs is usually denoted as ‘parent node’; the one where
the edge is directed to is named ‘child node’.
Coming back to the analysis of the context where multiple observations are
available, the situation can be represented, from a graphical point of view, as
illustrated in Figure 4.4:

Figure 4.4: The Bayesian Network with multiple observation nodes which repre-
sent the whole set of available measurements. In order to simplify the graphical
representation, the links among the children nodes are not reported in this figure

Since, in general, a task involves the simultaneous motion of both operator’s
hands, it could be possible to compute two distinct probability distributions:
the probability that the ith goal position is reached by using the right hand and
the corresponding quantity for what concerns the left hand. This is the reason
for using the subscripts R/L, where obviously R refers to the right wrist and L
to the left wrist. As in the previous case, the underlying intention of reaching
a certain goal position by using the right or the left hand, is graphically repre-
sented through the node pGR/L

, while the children nodes represent the whole set
of observations available to update the estimate. Let us focus on the meaning
of each lower node.
For what concerns θRWR/L

and θLWR/L
, their meaning will be clarified in section

4.5.
Moreover, in order to exploit the coordinated head-hands motions, under the
aforementioned observations, it is possible to consider the significant contribu-
tion given by the outcoming vector associated with the head position zHeadV ector.
In [43] it was observed that when humans are loooking at a generic target, if one
defines a virtual plane laying on the operator’s face defined by the neck and by
the eye-eye line, the line that connects the middle of the eyebrows to the target
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tends to be perpendicular to that plane. Hence, according to these considera-
tions, the value of θH , the angle between zHeadV ector and the unit vector that
connects the estimated head position pH to that target, can provide significant
clues about the human state-of-mind, hence, about his intended goal.
Furthermore, it is believed, [39], that when a person is intentioned to grasp a
certain object, prior to proceeding at reaching it by hands, it formulates a sort
of ‘mental map’ of the location of the object. It is also reported, [39], that the
ocular movements tend to occur about 100 ms before the start of an actual
hand reaching movement; namely, a little anticipatory offset can be noticed
between the gaze orientation and the corresponding hands reaching motions.
Hence, the importance of the anlysis of zHeadV ector in the process of recognizing
the intended goal is further confirmed.
Lastly, another relevant information could be dR/L, the distance of the consid-
ered wrist position from the center of mass of the target. The importance of
including the distance within Θ is obvious: in fact it is clear that if a hand is
getting away from a certain target, it is likely that the user is not interested in
reaching it by using that hand. This distance is computed as the L2-norm of
the center of each wrist from the center of mass of the considered goal.

4.3 The model of the likelihood function:
a Gaussian Mixture Model

In the previous section a graphical model has been described: a sort of multi-
observations Bayesian Network, capable of representing the contribution of a
large set of observations in the process of inferring the probability of the goal.
The problem is now how to manage and treat the dependencies between the
variables, hence, how to model the conditional density of observing these set of
measurements under the hypothesis of reaching the ith goal’s location, pGi

. The
fact that these observations are somehow interdependent is confirmed by the
following cosiderations: since any hand reaching motion is firstly programmed
at a higher level in our mind, the actual position of the wrist will be somehow
related to the direction that the head assumed and that generally points towards
the object the subject is willing to reach.
Furthermore, if one considers the framework of the human-robot collaboration
it is quite unusual that the operator reaches simultaneously a certain object
with both his/her hands. On the contrary, as previously said, it is reasonable to
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assume that the operator could simultaneously use each hand to reach different
goals. Consequently, in this framework, if there will be a strong evidence that
one hand is moving towards the same ith goal, this observation will reduce the
probability that the other hand moves towards the ith target.
Hence, in view of these considerations, it is also important to find a way to
model the conditional density functions such as to take into account the mu-
tual interrelation of the head-hands coordinated motion. In literature, [13], it
is reported that a quite common practice consists in approximating the condi-
tional density functions by using a mixture of Gaussian, hence exploiting the
so-called ‘Gaussian Mixture Models’. Hence, the situation could be graphically
re-formulated as in Figure 4.5:

Figure 4.5: Multi-observation bayesian framework: all observations are jointly
considered. In order to simplify the graphical representation. (The temporal
propagation of the network is here not reported)

Thus, let us denote with Φi the feature vector, the vector that contains the
following quantities related to the ith goal position:

Φi =
[
θRWR/Li

θLWR/Li
θHi

dR/Li

]T
(4.2)

then the conditional probability of observing Φi under the assumption that the
intended goal is pGi

can be written as:

f(Φi|pGi
) = f(θRWR/Li

, θLWR/Li
, θHi

, dR/Li
|pGi

) =
Nc∑
c=1

wcf(Φ|µc,Σc) (4.3)

where:

� Nc is the number of Gaussian components;

� f(Φ|µc,Σc) is the probability density function associated with the cth
Gaussian component having mean vector equal to µc and covariance ma-
trix equal to Σc;
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� wc is the weight associated with the cth Gaussian component.

As can be easily seen in formula 4.3, a Gaussian Mixture Model is a parametric
probability density function that can be represented by means of a weighted
sum of Gaussian component densities, also denoted as ‘clusters’ such that the
weight associated with the Gaussian components must satisfy the following
relation:

Nc∑
c=1

wc = 1 (4.4)

The probability density function associated with each component of the GMM
(refer to equation 4.3) is represented by a D-variate Gaussian (according to the
number of variables whose distribution we want to learn), namely:

f(Φ|µc,Σc) =
1

(2π)D/2(det(Σc))1/2
exp{−1

2
(Φ− µc)T (Σc)

−1(Φ− µc)} (4.5)

where D is the number of variables or features contained in vector Φ whose
distribution we want to model through a GMM.
A Gaussian Mixture Model, usually abbreviated to the acronym ‘GMM’, is largely
used in recognition applications, since it has the capability of describing a wide
class of sample distributions. In fact one of the most important aspects that
lays on the basis of the GMMs is that they are capable to smoothly approximate
arbitrarily shaped densities.
Thus, since we are interested in modeling the conditional density of the set
of observations given a certain target by using a GMM, the first step is the
collection of a very large dataset from which it is possible to apply the GMM
fitting. To do that, some subjects were asked to execute a certain number of
operations which required them to perform a large number of reaching motions
towards three possible goal locations. The layout of this experimental campaign
is depicted in Figure 4.6:

Figure 4.6: Layout for the experimental campaign for the acquisition of the
training dataset from which the GMM can be extracted
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These subjects were monitored by the Kinect camera during the execution
of each reaching motion. Then, the corresponding p

(k)
RW , p

(k)
LW , z

(k)
HeadV ector,

v
(k)
HeadV ector retrieved at each k iteration were recorded and stored. Consequently,

given the knowledge of the intended goal position for each reaching motion, it
was possible to extract from the collected data a population of samples S:

S =
[
Φ1 . . . Φm . . . ΦM

]
(4.6)

which could be used to learn the underlying GMM distribution. M is the number
of total available observations. About 1650 observations were recorded.

In our case, two different Gaussian Mixture models have been derived by apply-
ing the EM algorithm. TIn fact, we are interested in obtaining the models for
the following probability density functions:

1. f(θ
(k)
RW/LW i

, d
(k)
RW/LW i

|p(k)
Gi

), which will be used in the case v
(k)
HeadV ector is

false.
Hence, here D is equal to 2 and each Φm is the following reduced 2x1
feature vector:

Φm =
[
θRW/LW i

dRW/LW i

]T
(4.7)

The GMM model associated with these set of observations will be referred
from now on as 2D-GMM.

2. f(θ
(k)
RWR/Li

, θ
(k)
LWR/Li

, θ
(k)
Hi
, d

(k)
RW/LW i

|p(k)
Gi

), that will be exploited in the case

v
(k)
HeadV ector is true.

Hence, in this case D is equal to 4 and each Φm was the complete 4x1
vector expressed in equation 4.2.
The GMM model associated with these set of observations will be referred
from now on as 4D-GMM.

Thus, we are now interested in estimating the parameters of the components of
the GMM that best fit the two groups of collected data (those for the 2D-GMM
and those for the 4D-GMM). A common practice for obtaining the parameters of
the Gaussian Mixture density components is the application of the Expectation-
Maximization (EM) algorithm, which will be briefly reviewed in the following
section.
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4.4 The Expectation Maximization algo-
rithm

The Expectation-Maximizaton algorithm, [6], [11], is a well known technique
which is usually exploited to solve the problem of finding the Maximum likelihood
extimator for the parameters belonging to a certain probability distribution, for
instance, a mixture of gaussian density functions. Let us recall the definition of
a maximum-likeliood estimator.
Let us consider that we have extracted M samples which are indipendent and
identically distributed:

S = {Φ1,Φ2, . . . ,Φm, . . . ,ΦM} (4.8)

from an unkown distribution f which can be Gaussian or not. This distribu-
tion associated to the sampled data will be clearly characterized by a set of
parameters ΘPar.

ΘPar = {w1,Σ1, µ1, . . . , wc,Σc, µc, . . . , wNc,ΣNc, µNc} (4.9)

Then, since the samples are considered independent, the density function could
be expressed with the following product:

f(S|ΘPar) =
M∏
m=1

f(Φm|ΘPar) = L (ΘPar|S) (4.10)

where L (ΘPar|S) represents the likelihood of the parameters, given the data.
Therefore, the maximum-likelihood estimator is that set of parameters Θ?

Par

that maximize the likelihood function, namely:

Θ?
Par = arg max

ΘPar

L (ΘPar|S) (4.11)

A common practice is to maximize the log-likelihood function that makes the
problem’s solution easier from a computational point of view.
In practice, the EM algorithm results to be helpful in situations where we have a
large set of observed samples that we guess being generated from Nc different
Gaussians components but we have no a piori knowledge of which datum comes
from which Gaussian. Indeed, if the parameters of these component densities
were known, one could easily compute the probability that each point belongs
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to each cluster. However, since they are unknown, a plausible solution could be
to iteratively compute the probability that each datum belongs to each cluster.

Focusing on the problem of estimating the parameters of a Gaussian Mixture
Distribution with Nc components, let us consider again the M extracted sam-
ples of S (see 4.6).
Then, the parameters set can be described as:

ΘPar = {wc, µc,Σc} for c = 1, . . . , Nc (4.12)

and the D-variate density expressed as in 4.5. Since EM is an iterative algorithm,
let us also define the probability that at the tth iteration the mth sample belongs
to the cth Gaussian component with γ

(t)
mc. Hence,

γ(t)
mc , P (Zm = c|Ym = Φm, θPar(t)) =

w
(t)
c f(Φm|µ(t)

c ,Σ
(t)
c )∑Nc

l=1 w
(t)
l f(Φm|µ(t)

l ,Σ
(t)
l )

(4.13)

where Zm ∼ N (0, 1) and γ
(t)
mc is such that

∑Nc
c=1 γ

(t)
mc = 1.

Essentially, the EM algorithm, given a random inizialization of Nc Gaussian
distribution components, performs a soft-clustering of all the available data. In
fact, for each sample ym it computes the probability that the mth sample belongs
to the cth Gaussian and it exploits this result to extimate again the means and
covariances to fit better the available points. At each iteration the EM algorithm
not only returns the estimated mean vectors, covariance matrices and weight
vector associated to each cluster, but also a value that represents how good
is the estimate (log-likelihood). The procedure is iterated until the difference
between two consecutive values of the log-likelihood function is smaller that an
arbitrarily tiny threshold, then the algorithm ends.
The expression ‘soft clustering’, which is opposed to ‘hard clustering’, refers to
the fact that each sample is not deterministically assigned to a single cluster,
but each sample Φm is associated with a value (∈ [0, 1]) that represents the
probability that Φm belongs to that Gaussian component.
A simple example of how the EM algorithm works is shown in Figure 4.7:

Basically, after receiving the set of data points shown in Figure 4.7 on the left-
hand side, having a certain unknown distribution and coming from Nc unknown
sources, it iteratively estimates the mean vector, the covariance matrices and
the weight vector associated to each Gaussian component. As it is visible in Fig-
ure 4.7, the estimated means, which are represented by the coloured rings, are
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Figure 4.7: The EM algorithm receives a set of data points (blue) having a
certain distribution and coming from Nc unknown sources. Then it iteratively
estimates the mean, the covariance, the weights associated to each Gaussian
component. The estimated means (coloured rings) are basically equal to the
real ones (plain circles)

.

basically equal to the real ones which are represented by the full circles pictured
on that figure. For what concerns the convergence properties, it is reported
that EM suffers from sub-optimality problems, namely it is not guaranteed than
the global optimum of the log-likelihood function is found.
In order to overcome this difficulty the solution that is commonly applied is
to randomly initialize the algorithm many times and choose as final guess for
the parameters vector the inizialization that produced the highest likelihood.
Generally, k-means algorithm, [18], (where k is part of the algorithm’s name,
even if it should represent the number of components, hence, Nc in our case)
is used to obtain a good initialization, namely the mean, covariance matrix and
weigth of each Gaussian component.
The difference between k-means and EM is that the first one performs a hard
clustering of data, hence assigns each sample to a cluster or another.
Hence the k-means algorithm takes as input the whole set of available samples
and computes the mean vectors and covariance matrices of the Nc gaussians
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Figure 4.8: In order to select the proper number of Gaussian components (Nc)
defining the GMM distribution, EM is run multiple times for increasing values
of Nc. The number of components is definitively selected as the value for which
the convergence of the corresponding Log-Likelihood occurred. For instance, in
this figure Nc corresponds to 5

that are used as means and covariance matrices of the cth gaussian components
at the initial iteration (iteration zero) of Expectation-Maximization. The num-
ber Nc, that represents the cardinality of EM , must be a priori selected. This
selection is generally made as explained in Figure 4.8.
Basically, the k-means algorithm works as follows:

1. Initialization: given the number of clusters, Nc, k-means starts randomly
generating Nc centroids (one for each cluster) which represent the initial
candidate mean vectors;

2. Compute distances from centroids: since k-means is a distance-based clus-
tering algorithm, it then computes the distance of each data Φm from each
centroid.

3. Compute the minimum distance and assign a label to each datum: hence
it assigns to each data a label that represent the cluster whose centroid
resulted closer to it;

4. Data clustering: the samples that have the same label are grouped to-
gether;
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5. Compute the mean vectors: the mean vector of each cluster is computed
as the sampled mean of the data belonging to that cluster;

6. Compute the covariance matrices: the covariance matrix is obtained as
the covariance of the data that have been grouped together and become
the components of a cluster;

7. Compute the weight vector: the initial weights are evaluated by dividing
the number of data belonging to each cluster by the total number of data;

8. Convergence check: if the distance between the just found mean vectors
and the initial mean vector randomly computed is greater than an arbitar-
ily small threshold, the centroids become equal to the ones just obtained
and the procedure is iterated again from step 2. Otherwise the algo-
rithm ends and returns the obtained mean vectors, covariance matrices
and weight vector.

The steps considered by EM are, [11] :

1. Initialization: The initial estimates of the weights w
(0)
c , mean vectors µ

(0)
c ,

and covariance Σ
(0)
c , c = 1, . . . , Nc are those returned by the k-means

algorithm. Hence, it is computed the corresponding log-likelihood of the
M data points, under the assumption that each sample is extracted by
the gaussian mixture characterized by the obtained parameters:

L(0) =
1

M

M∑
m=1

log(
Nc∑
c=1

w(0)
c f(Φm|µ(0)

c ,Σ(0)
c )) (4.14)

So, L(0) represents the initial log-likelihood.

2. E-step: For each mth sample it is evaluated the probability that it belongs
to each cth Gaussian component

γ(t)
mc =

w
(t)
c f(Φm|µ(t)

c ,Σ
(t)
c )∑Nc

l=1 w
(t)
l f(Φm|µ(t)

l ,Σ
(t)
l )

,m = 1, . . . ,M, c = 1, . . . , Nc (4.15)

and, for each Gaussian component, it is evaluated the sum of the proba-
bilities that each mth sample belongs to the cth Gaussian component:

n(t)
c =

M∑
m=1

γ(t)
mc, c = 1, . . . , Nc. (4.16)

3. M-step: The new weigths, mean vectors and covariance matrices are esti-

mated, based on the pobabilities γ
(t)
mc computed at the previous time step,
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as follows:

w(t+1)
c =

n
(t)
c

M
, c = 1, . . . , Nc. (4.17)

µ(t+1)
c =

1

n
(t)
c

M∑
m=1

γ(t)
mcΦm, c = 1, . . . , Nc. (4.18)

Σ(t+1)
c =

1

n
(t)
c

M∑
m=1

γ(t)
mc(Φm − µ(t+1)

c )(Φm − µ(t+1)
c )T , c = 1, . . . , Nc.

(4.19)

4. Convergence check: The log-likelihood is evaluated again under the as-
sumptions that the data sources are now the gaussian components char-
acterized by the parameters obtained at time step t+ 1:

L(t+1) =
1

M

M∑
m=1

log(
Nc∑
c=1

w(t+1)
c f(Φm|µ(t+1)

c ,Σ(t+1)
c )) (4.20)

Return to step 2 if |L(t+1) − L(t)| > δ, otherwise end the algorithm.
Therefore, if the difference between the previous log-likelihood and the ac-
tual one is greater than a predefined threshold δ, the algorithm is iterated
again starting from step 2; otherwise the algorithm is terminated.

An example of how the Log-likelihood evolves at the various iterations of EM
before it terminates is illustrated in Figure 4.9.

Figure 4.9: An example of the evolution of the Log-likelihood during the appli-
cation of EM for a threshold δ equal to 10−3. In this case the convergence is
reached at the 33-th iteration
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Finally, it is worth underlying that the model learnt by exploiting EM is general,
in the sense that can be applied to any typology of robotic cell (assuming that
the layout of the workspace, namely, the goal locations, are known). Then it is
also obviuos that a specific GMM learned for a certain robotic cell could achieve
higher performances, when considering the inference problem, than a generic
one.

4.5 Making inference about the simulta-
neous hands’ motions

The purpose of this section is to illustate the procedure according to which the
probabilities are assigned to the goals and how they are updated. Even for the
case of multiple observations are available, the intention estimation algorithm
recursively updates a discrete probability distribution over the set of possible
goals that can be reached by the operator’s hands. Hovewer, the structure
of the intention recognition algorithm and the updating mechanism will be
organized in a different way with respect to the one described in Chapter 2.
First of all, in view of the considerations expressed in the previous sections,
the intention recognition algorithm must be endowed with the capability of
potentially recognizing at the same time each hand reaching target.
Hence, based on what has been observed at iteration k, the intention recognition
algorithms will update simultaneously the probability that at iteration k+ 1 the
generic ith target is intended by the left or by the right hand on the basis of
the whole set of retrieved measurements, that is common to both the updating
algorithms. Therefore, let us recall the recursive Bayes formula that allowed
to update the probability of reaching the ith goal position when only the wrist
position pW (left or right) was observed (see Chapter 2 for details).

P (k+1)(pGi
) ∝ P (k)(pGi

)f(θ
(k+1)
W | pGi

, θ
(k)
W ) (4.21)

where

P (k+1)(pGi
) = f(pGi

| θ(k+1)
W ) (4.22)

As shown in expression the probability of reaching a goal was based, in addition
to its prior, only on the observation of the angle (see Chapter 2) associated with
the hand that was moving: be it the right one or the left one. As a consequence
the previous intention recognition algorithm was not capable of taking into ac-
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count the mutual interrelation of the hands when only one of them was moving.

Now, as explained previously, the probability of reaching the goal with right wirst
or with the left one are simultaneosuly updated as if they were distinct quantities,
even if their ‘mutual contribution’ in increasing or reducing the probability of
each goal, is always taken into consideration, as will be explained afterwards.
Thus, let us rewrite the posterior probabilities of reaching the ith goal position,
as:

fLW (pGi
| θ(k+1)

LWL
, θ

(k+1)
RWL

, θ
(k+1)
H , d

(k+1)
LW ) = P

(k+1)
LW (pGi

) (4.23)

when inference is made for the left wrist
and

fRW (pGi
| θ(k+1)

RWR
, θ

(k+1)
LWR

, θ
(k+1)
H , d

(k+1)
LW = P

(k+1)
RW (pGi

) (4.24)

when inference is made for the right one.

Hence the Bayes formulae expressed in equations 4.25 and 4.26 can be recur-
sively applied for what concerns the left hand and for the right hand respec-
tively:

P
(k+1)
LW (pGi

) ∝ P
(k)
LW (pGi

)fLW (θ
(k+1)
LWL

, θ
(k+1)
RWL

, θ
(k+1)
H , d

(k+1)
LW | pGi

, θ
(k)
LWL

, θ
(k)
RWL

, θ
(k)
H , d

(k)
LW )

(4.25)

P
(k+1)
RW (pGi

) ∝ P
(k)
RW (pGi

)fRW (θ
(k+1)
RWR

, θ
(k+1)
LWR

, θ
(k+1)
H , d

(k+1)
RW | pGi

, θ
(k)
RWR

, θ
(k)
LWR

, θ
(k)
H , d

(k)
RW )

(4.26)

It should be underlined the fact that, regarding at equation 4.25, the probability
that the ith goal is reached by the left hand depends not only on the observation
related to the left wrist position but also on the observation that concerns the
right wrist position (refer to 4.26).
An equivalent consideration holds when evaluating the probability of reaching
the goal using the right hand. The reason for including the measure associ-
ated with the right wrist position when P

(k+1)
LW (pG) must be computed lies in

the fact that, as previously explained, we assume that the operator reaches a
certain goal location with one hand. As a consequence, if at time step k there
is a high evidence that the left hand is directed towards the ith target, this will
decrease the probability that at the same time step the ith goal is also intended
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by the right hand. If this aspect was not taken into account, the probability
distribution associated with each hand would evolve in a completely indepen-
dent manner, creating an irrealistic context.

Let us describe the new structure of the intention recognition algorithm.
It is worth clarifying that, even if we consider two separate algorithms, one
making inference for the right wrist and the other making inference for the left
wrist, these are processed simultaneously, having a simmetric structure.
Let us denote the structures that allows to make inference about the left and
the right hand with the names ‘Inference Engine Right’ and ‘Inference Engine
Left’, respectively.
The generic structure is represented in Figure 4.10:

Figure 4.10: Flow diagram representing the general functioning mechanism of
the multi-observations intention inference algorithm. Each iteration correspond
to a new set of measures retrieved by the Kinect. This sensor device samples
the skeletal points according to a space-based criterion.

In view of these considerations, only the algorithm which recursively computes
the probability of each goal from the righ-hand perspective will be analized af-
terwards. The corresponding procedure associated with the left wrist will be
simultaneously described by putting in round brackets the terms that are used
by the complementary left-hand algorithm.

As explained in Chapter 2, we assume that the location of all the possible targets
is a finite set and a priori known. Hence, the very first step is the initialization
of the probability associated with each goal.
Even in this case, since at the beginning of the collaboration the operator has not
already reached any target and there is no evidence that one is more likely with

70



Chapter 4 - Bayesian inference with multiple observations

Figure 4.11: Two distinct probability distributions are simultaneously computed:
the probability that the ith goal is intended to be reached by the left hand and
the probability that he ith goal is intended to be reached by the right hand

respect to the others, each target is supposed to have the same probability of
being reached. Hence, the probability distribution at iteration zero is considered
uniformly distributed over the number of the goals.
Moreover, as previously said, two distinct Inference Engines (see Chapter 2) are
present:

1. Inference Engine Right, in charge of collecting the whole set of available
information (goal positions, skeletal measures, probability associated with
the goals) and making inference about the righ hand;

2. Inference Engine Left, which operates in a equivalent manner and makes
infernce about the left hand.

Clearly they have a mirror functioning.

Focusing on the implementative details, each Inference Engine is endowed with
four buffers:

� BufferRW that is in charge of collecting the measurements of the right
wrist provided;

� BufferLW that is in charge of storing the measurements of the left wrist;

� BufferHead that is in charge of collecting the measurements of the oper-
ator’s head position;

� BufferZHV that is in charge of storing the measurements related to zHeadV ector;

It should be recalled that all these measurements are obtained by means of a
Microsoft Kinect camera.
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In a similar way as set out in Chapter 2, each buffer is filled and updated ac-
cording to a FIFO logic. The updating rule of the buffers must be managed so
as to ensure that each new group of measurements introduced in the different
buffers are always syncronized.
In fact for what concerns Inference Engine Right (Inference Engine Left), if the
distance between the new acquired measures of right wrist (left wrist) and the
last one introduced in the BufferRW (BufferLW ) overcomes a spatial thresh-
old δBuffer , the positions contained in BufferRW , BufferLW , BufferHead and
BufferZHV are all moved backwards one place such as to insert the new mea-
sure in the last position of the buffer, according to the same criterion expressed
in 2.7.
This procedure ensures that all the measures remain always synchronized. How-
ever, in order to manage the observed anticipatory effect of the gaze of about
100 ms ([39]) with respect to the corresponding hand reaching motions, at each

kth iteration of the algorithm, p
(k)
RW and p

(k)
LW are introduced in BufferRW and

BufferLW respectively, while z
(k−2)
HeadV ector and p

(k)
H are introduced in BufferZHV

and BufferHead. In fact it has been observed that the temporal distance between
two consecutive samples corresponded to approximately 100 ms.
Hence the anticipative effect of the gaze direction with respect to the corre-
sponding hand reaching motion is taken into account.

Figure 4.12: When a human decides to shift its focus from one objective to
another one, the zHeadV ector changes direction and helps claryfing the intended
goal. This change in head orientation occurs slightly before the corresponding
hand reaching motion

Each buffer mantains the same function described in Chapter 2: namely, storing
a certain number of sufficiently distant measurements and using the ones related
to the wrist positions to compute the so-called ‘previous unit tangent vector’
and the so-called ‘future unit tangent vector’ (see Chapter 2).
However, the quantities ‘previous unit tangent vector’ and ‘future unit tangent
vector’ are, this time, computed in a slightly different manner than the one
illustrated in Chapter 2.

In fact, in order to take into account the evolution of the actual path followed
by the operator’s hand when moving from a certain position to a target one,

72



Chapter 4 - Bayesian inference with multiple observations

it seemed reasonable to compute tprev and tfut in a way that not all positions
used for computing them are equally weighted, but such that their weight,
hence, their contribution in computing the tangent vector, varies according to
the acquisition time: namely, the weight should be higher for the most recent
ones and should decrease for the eldest ones. This can be obtained by exploiting
the Exponentially Weighted Moving Average (EWMA) technique, [36].
Therefore, for each new measure introduced in the buffer, t̂prev and t̂fut are
computed applying the EWMA to the preceeding unit tangent vectors. This
is equivalent to the application of a low-pass filter on these vectors.
Let us assume that the dimension of the Buffers is an odd number, Db. The
buffers BufferRW and BufferLW are split in two parts. The first half is used for
computing t̂prev, while the second half is used for computing t̂fut. For the first
half of each buffer the following set of vectors are evaluated:

t̂(
Db+1

2
−i) =

p
(Db+1

2
)

W − p(i)
W

||p(Db+1
2

)

W − p(i)
W ||

∀i = 1, 2, . . . ,
Db− 1

2
(4.27)

where p
(pb)
W is the pb-th wrist position (be it left or right) stored in the considered

buffer. While for the second half of the buffers BufferRW and BufferLW the
following set of vectors are computed:

t̂(Db−i) =
pDbW − p

(i)
W

||p(Db)
W − p(i)

W ||
∀i =

Db+ 1

2
,
Db+ 3

2
, . . . , Db− 1 (4.28)

Figure 4.13: Representation of the vectors (blue arrows) which the EWMA
technique will be applied on
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These vectors corresponds to the blue arrows illustrated in Figure 4.13.

Hence, in order to compute t̂prev, these vectors are arranged in a matrix Aprev
whose ith column is equal to t̂(

Db+1
2
−i).

While, when computing t̂fut, these vectors are arranged in a matrix Afut whose
ith column is equal to t̂(Db−i).

Then, the first step of the application of the EWMA technique to compute is
to initialize zold as the oldest tangent:

zold = Aprev/fut(:, 1) (4.29)

where Aprev/fut indicates that obviously select Aprev must be used for computing
t̂prev, while Afut for t̂fut.

secondly, for the ith column of Aprev/fut:

z = (1− λ)zold + λAprev/fut(:, i) (4.30)

where λ is a tunable parameter such that 0 ≤ λ ≤ 1. Clearly λ small entails
a slow system, while λ big implies a dead-beat system. Here λ is set equal to
0.7. Eventually,

zold = z (4.31)

From a practical point of view, the EWMA technique, applying on these tan-
gents a weight that decreases exponentially from the most recent one to the
oldest one, allows to detect in a fast way whether or not a change in the direc-
tion of the tangent occurred and, eventually, take it into consideration. Thus, as
soon as a new position is introduced in the buffer, the EWMA tangents are re-
computed obtaining for each iteration the vectors depicted in Figure 4.14.

As a result, each Inference Engine contains, at each kth iteration, the following
unit tangent vectors:

� t̂
(k)
LW prev

and t̂
(k)
LW fut

;

� t̂
(k)
RW prev

and t̂
(k)
RW fut

;

having the same meaning explained in chapter 2.
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Figure 4.14: The figure displays the resulting EWMA unit tangent vectors com-
puted for all the samples that has been iteratively introduced in the buffer

Let us now describe the steps performed by the new proposed Intention Inference
Algorithm.

1. assuming that the layout of the robotic cell is known, hence, the location
of the target positions is established, the probability distribution is initially
uniformly split among the number of the goals (N), as previously men-
tioned. It should be pointed out that the algorithm can deal with a goal
description in terms of single point or in terms of confidence ellipsoid (as
it will be described in Chapter 5). Hence at iteration zero the probability
associated with the ith goal is equal to:

P (0)(pGi
) =

1

N
i = 1, . . . , N (4.32)

2. the buffers of the Right Inference Engine and those of the Left Inference
Engine are all initialized as zero matrices.

3. when a prescribed number of sampled positions have been retrieved by
the sensing device, the buffers start to be filled with the measurements
according to the logic previously described.

4. when the buffers are full, the updating mechanism of both Inference En-
gine Right and Inference Engine Left starts.

5. hence for what concerns Inference Engine Right (Inference Engine Left) it
is evaluated whether the last measure pRW (pLW ) stored in the buffer is
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inside one of the goal. Indeed, if the ith goal is described in terms of single
point, it is evaluated whether pRW (pLW ) is inside a sphere centered in pGi

having radius equal to 2 cm; otherwise, it is evaluated whether pRW (pLW )
lays inside one of the confidence ellipsoids (see Chapter 5) associated with
each goal.
If pRW (pLW ) is inside one goal, the probabilities of all the goals are kept
equal to those of the previuos time steps:

P (k+1)(pGi
) = P (k)(pGi

) ∀pGi
∈ G (4.33)

This procedure ensures that for all the iterations where the human hand
results to be located quite close to the center of mass of the target or,
actually, inside a confidence ellipsoid, the probability associated with that
keeps constant and equal to a high value.

6. otherwise, in both Inference Engine Right and Inference Engine Left,
t̂LW prev , t̂LW fut

, t̂RW prev and t̂RW fut
are computed through the application

of the EWMA technique, as previously discussed.

7. then, the minimum distance minDist between the considered actual hand
position pRW (pLW ) and the center of mass of each target is evaluated,
as shown in equations 4.34 and 4.35.

MinDist = min
pGi
∈G
||pRW − pGi

|| (4.34)

and, equivalently, for what concerns Inference Engine Left

(MinDist = min
pGi
∈G
||pLW − pGi

||) (4.35)

Moreover each target is associated with a flag, namely a boolean value,
that aims at distinguishing the potential intended goals form the not in-
tended ones. The criterion is the one expressed in the following equations:

flagi =

{
1 if (t̂RW fut

)T (pGi
− pLW ) ≥ 0

0 otherwise

and, equivalently, for what concerns Inference Engine Left:

flagi =

{
1 if (t̂LW fut

)T (pGi
− pLW ) ≥ 0

0 otherwise
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Figure 4.15: According to the previously expressed criterion and observing the
direction of the actual tangent t̂RW fut

the goals that lay below the dashed arrow
cannot be considered intended

Hence, if a goal is labelled with value 1 it means that it belongs to the
set of intended ones, otherwise it can be considered not intended. The
situation is schematically depicted in Figure 4.15.

8. thus, if no goal is intended (all the goals are labelled with 0) and the
value of MinDist is greater than a specified value δDistNI that represents
a reasonable distance for the layout under analysis (in this Thesis this
distance is set to 15 cm), it means that the considered operator’s hand is
too far from all the prescribed targets. Consequently, it can be assumed
that the operator is not intended to reach none of the goals and all the
probabilities of the whole goal set are decreased according to a penaliza-
tion coefficient PC which is a tunable parameter between 0
and 1.

P (k+1)(pGi
) = PC P (k)(pGi

) ∀pGi
∈ G (4.36)

9. otherwise, if the operator’s hand is not located inside any goal and the
previous condition is not fulfilled, the probability of all the intended tar-
gets must be updated, evaluating their likelihood. Instead, the probability
related to non intended goal locations is set equal to a small value.

It should be recalled that the vector of measurements Θ(k) which con-
tains the measured variables according to which the likelihood has to be
evaluated is:

Θ(k) =
[
pRW pLW pH zHeadV ector vHeadV ector

]
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Hence, if at the kth iteration vHeadV ector is true, the likelihood associated
with the ith goal position, LpGi

, is evaluated according to the learnt 4d-
GMM (see section 4.3) that for what concerns the right hand corresponds
to the expression 4.37:

f(θ
(k)
RWRi

, θ
(k)
LWRi

, θ
(k)
Hi
, d

(k)
RW i
|pGi

) =
Nc∑
c=1

wcf(Φ
(k)
i |µc,Σc) (4.37)

where in this case:

Φ
(k)
i =

[
θ

(k)
RWRi

θ
(k)
LWRi

θ
(k)
Hi

d
(k)
RW i

]T
(4.38)

Equivalently, when making inference about the left hand, the correspond-
ing expression will be:

f(θ
(k)
LWLi

, θ
(k)
RWLi

, θ
(k)
Hi
, d

(k)
LW i
|pGi

) =
Nc∑
c=1

wcf(Φ
(k)
i |µc,Σc) (4.39)

where in this case:

Φ
(k)
i =

[
θ

(k)
LWLi

θ
(k)
RWLi

θ
(k)
Hi

d
(k)
LW i
|pGi

]T
(4.40)

Otherwise, if at that iteration vHeadV ector results to be false, the algorithm
evaluates the likelihood according to the learnt 2d-GMM (see section 4.3).
In the 2d case, the expression of the likelihood associated with the ith goal
is:

f(θ
(k)
RWRi

, d
(k)
RW i
|pGi

) =
Nc∑
c=1

wcf(Φ
(k)
i |µc,Σc) (4.41)

where:

Φ
(k)
i =

[
θ

(k)
RWRi

d
(k)
RW i

]T
(4.42)

and

f(θ
(k)
LWLi

, d
(k)
LW i
|pGi

) =
Nc∑
c=1

wcf(Φ
(k)
i |µc,Σc) (4.43)

where:

Φ
(k)
i =

[
θ

(k)
LWLi

d
(k)
LW i
|
]T

(4.44)

Hence for computing the likelihood, the Intention Inference Algorithm at
each iteration can switch between the two learnt GMMs according to the
value of v

(k)
HeadV ector.

Let us focus on the problem of determining the likelihood:
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(a) The quantities θ
(k)
LWL

, θ
(k)
RWL

, θ
(k)
RWR

, θ
(k)
LWR

can be easily computed.
Let us explain their precise meaning of these angles and the moti-
vation for considering the subscripts L or R.

(b) When inference is made for what concerns the left hand, we evaluate:

� θLWL
represents the angle between the measured t̂LW fut

and the
normalized vector that connects the position of the left hand to
the center of mass of the considered target.

� θRWL
represents the angle between the measured t̂LW fut

and
the normalized vector that connects the position of the right
hand to the center of mass of the considered target.

as shown in Figure 4.16:

Figure 4.16: Measures retrieved by means of the Kinect Camera and used for
making inference about the left hand

On the contrary, when inference is made on the right hand, we
compute:

� θRWR
represents the angle between the measured t̂RW fut

and
the normalized vector which connects the position of the right
hand to the center of the considered target.

� θLWR
represents the angle between the measured t̂RW fut

and
the normalized which connects the position of the left hand to
the center of the considered target.

as depicted in Figure 4.17:
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Figure 4.17: Measures retrieved by means of the Kinect Camera and used for
making inference about the right hand

After these computations, the last quantities that must be evaluated
are, the distance (in the case we are exploiting the 2d-GMM) and

even θH (if v
(k)
HeadV ector is valid and we are using the 4d-GMM). As

mentioned in section 4.2, θH is the angle between z
(k)
HeadV ector and

the vector connecting the estimated head position pH to the center
of the ith target. In fact it is implicit that the value of these angles
must be evaluated for each target. Utimately, for what concerns the
inference process related to the left hand, the distance is computed
as the L2-norm of the actual left wrist position and the center of
the ith target:

dLW i
= ||pGi

− pLW || (4.45)

while, referring to the right hand, the corresponding distance is ex-
pressed as:

dRW i
= ||pGi

− pRW || (4.46)

Then, when all these variables have been properly computed for each
target, they are evaluated according to the appropriate learnt GMM
that returns the likelihood of the available group of observations Φi

under the assumption that the intended goal is the ith one. Hence,
if the considered target position is described as a single point, the
process of computing the likelihood ends, otherwise, if that goal is
described in terms of confidence ellipoids (refer to 5.3), a number H
of ‘goal samples’ that are sampled from the distribution associated
with the ith goal (gshi) are generated.
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Hence, each one of these ‘goal sample’ is considered as an hypothesis
on where the true center of mass of goal i, pGi

, is located and the
same computations from step (a) are replicated for each hth ‘goal
sample’ by substituting the coordinates of gshi to the ones of pGi

.
Therefore if the ith target is described in terms of confidence ellipsoid
that contains a number H of ‘goal samples’, there will be exactly H
likelihoods associated with each ith goal.

(c) consequently, the likelihood associated with each goal pGi
is com-

puted as the average likelihood of all the ‘goal samples’ belonging
to it, as expressed in equation:

LpGi
=

∑H
h=1 LhpGi

H
(4.47)

where LhpGi
is the likelihood associated with the hth ‘goal sample’.

10. finally, for each goal the posterior probabilities are computed according
to the recursive Bayes’ rule. For the ith target it corresponds to:

P (k)(pGi
) =

P (k−1)(pGi
)f(Φ

(k)
i |p

(k)
Gi

)∑N
l=1 P

(k−1)(pGl
)f(Φ

(k)
i |p

(k)
Gl

)
(4.48)

Then the Intention Inference Algorithm ends and for each new incoming set of
available observations retrieved by the Microsoft Kinect camera, it starts again
from step 1.

The flow diagram of the algorithm is illustrated in Figure 4.18:
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Figure 4.18: Flow diagram of Update Inference Engine Right. M is the number
of sample observed, N is the number of targets and H is the number of ‘goal
samples’



5

Identification and modelling of the
target positions

5.1 Introduction

In the previous chapters the location of the goals has been always considered
given and described by means of a three-dimensional vector that represented
the spatial coordinates associated with the center of mass of each target.

Figure 5.1: In the previous discussions each goal position was represented as
the c.om (red point) of a set of positions (blue points cloud)

However, it could be possible that the goal positions within the collaborative
workspace are not precisely a priori known and must be identified. Moreover, in
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a real context each goal is represented by a physical object that obviously has
its own shape and dimension. Therefore, identifying a goal with just its center
of mass can sometimes result limiting.
Given the above, it may be interesting to find a way to describe and represent
the target not only through the object’s center of mass but also depending on
how its dispersion is distributed in the space.
To do that, firstly a density-based clustering algorithm has been applied to all
the set of wrist positions retrieved by the Kinect, then, for the sake of simplicity
each goal position is assumed to be distributed as a multivariate Gaussian whose
mean vector and covariance matrix are the ones associated with each group of
clustered data. This will be addressed in the following section.

5.2 Application of OPTICS

As set out above, the fist step for identifying the target positions requires an
offline phase where the operator which is intended to cooperate with the robot
performs a sequence of motions so as to reach with his left or right wrist differ-
ent points of each physical object and cover the majority of the object’s surface.
After this phase, the Kinect camera returns a point cloud that represents the
sequence of positions assumed by the operator’s wrist during his reaching mo-
tions towards the goals. The wrist positions tracked by the Kinect camera are
shown in Figure 5.2.

Figure 5.2: The Kinect camera retrieves the set of the operator’s wrist posi-
tions tracked during his reaching motions: the retrieved right wrist position are
reported in this figure
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Looking at Figure 5.2 the set of points representing the target positions can be
recognized by visual inspection as the most dense areas of the point cloud, so
they can be easily distinguished from the set of position describing the executed
trajectories.
In view of these considerations it seems reasonable to use a density-based clus-
tering technique to identify the goals. In fact, the application of a clustering
approach is strongly suggested in those circumstances where we are intended
to derive the natural grouping or structure of data.

Given these assumptions, the use of OPTICS, [1], seems to be adequate. In fact
it is a density-based clustering algorithm that, given a point cloud characterized
by varying density regions, allows the identification of meaningful clusters, in
the sense that is capable of recognizing and group together the data that are
concentrated in some areas of the space. Indeed, the key idea of a clustering
algorithm is to evaluate the density of the points located in the neighborhood
of a fixed radius ε that is determined by the algorithm on the basis of the value
of parameters received as inputs.
The term ‘OPTICS’ is an acronym for Ordering Points To Identify The Cluster-
ing Algorithm and referes to the procedure followed by this algorithm to perform
the clustering.
In fact, OPTICS receives as inputs:

� the mxn matrix of the data, where m is the number of objects and n is
the number of variables;

� k which is a parameter that represents the number of objects in a neigh-
borhood of the selected object, namely, it defines the minimal number of
objects that can be considered part of cluster.

Once received these inputs, the algorithm starts ordering the initial dataset so
that the points which are located close to each other in the space become also
close in the ordering. This means that the new ordering represents the density-
based clustering structure of the input data. Moreover each point is labelled
with a number that represents the cluster it belongs to. If the point under anal-
ysis does not belong to any cluster, it is considered as noise and it is labelled
with zero. Therefore, the points that have the same label are grouped together
and create a cluster.
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The result of the application of the clustering is shown in Figure 5.3:

Figure 5.3: The clustering algorithm groups together a certain of positions
according to a density-based criterion

However, it can happen that the clustering algorithm considers as being part
of the cluster some positions that, by visual inspection, results to be residual
noise that could be further removed, as shown in Figure 5.4 .

Figure 5.4: Samples that need to be a priori removed before applying OPTICS

In order to solve the problem the adopted technique is to make a prefiltering of
the data so as to obtain a reduction of the initial dataset and, hopefully, the
removal of the most significant component of the noise. This prefiltering of
the initial samples can be performed according to the following consideration:
since the goal positions represents the arrival points of each reaching motion,
so, the set of points where the human wrist stopped, it is possible to make
an a priori selection of the candidate goal positions by evaluating the distance
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between each two consecutive acquired samples.
Indeed, once a reasonable threshold δstPos has been selected, it can be evalu-
ated whether the distance between the kth and the k + 1th measure overcomes
the threshold. In this case the kth point is rejected, otherwise it is considered a
candidate goal position.

if

{
||p(k+1)

W − p(k)
W || ≥ δstPos =⇒ reject p

(k)
W

||p(k+1)
W − p(k)

W || < δstPos =⇒ accept p
(k)
W

(5.1)

The application in cascade of the pre-selection and the clustering algorithm
leads to the result shown in Figure 5.5:

Figure 5.5: The application of the prefiltering and of OPTICS in cascade makes
it possible to identify in a efficient way the group of points representing the goal
positions

5.3 The confidence ellipsoids

Once the sets of points representing the goal positions have been identified by
the clustering algorithm, it is useful to find a method that allows us to describe
the region of the space (volume) which represents each goal position.
In this way it will be possible to evaluate (refer to the initial step of the algo-
rithm described in section 4.5) whether or not each position retrieved by means
of the Kinect camera is inside one of the goal volumes.
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A viable solution is the creation of the so-called ‘confidence ellipsoid’. Assum-
ing that the each group of data returned by the clustering algorithm is normally
distributed in the 3D space, it is possible to derive for each obtained cluster the
volume that contains an arbitrary percentage δPerc of the considered group of
samples. The δPerc - confidence ellipsoid is the name of the entity which defines
that volume.
In fact, the probability density function of a multivariate normal distribution is
characterized by surfaces of equal density, which are represented by ellipsoids.

Hence, for each ith group of clustered data, in order to compute the δPerc-
confidence ellipsoid associated with the ith cluster dataset, the following steps
can be performed:

� Compute the mean vector µi and the covariance matrix Σi associated
with the ith cluster dataset:

xi

yi

zi

 ∼ N(

µxiµyi
µzi

 ,
 var(x)i cov(x, y)i cov(x, z)i
cov(y, x)i var(y)i cov(y, z)i
cov(z, x)i cov(z, y)i var(z)i

) (5.2)

µi =

µxiµyi
µzi

 Σi =

 var(x)i cov(x, y)i cov(x, z)i
cov(y, x)i var(y)i cov(y, z)i
cov(z, x)i cov(z, y)i var(z)i

 (5.3)

� compute the eigenvalues and eigenvector associated with each ith group
of data.
Where the matrix of eigenvalues is:

Λi =

λ1i 0 0
0 λ2i 0
0 0 λ3i

 (5.4)

where λ1i , λ2i , λ3i represent the eigenvalues and describe the magnitude
of data spread along the Cartesian x-axis, y-axis and z-axis respectively.
Therefore they represent the variance of the data along those directions.

And the matrix of eigenvectors is:

Ui =
[
u1i |u2i |u3i

]
(5.5)
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where u1i is the eigenvector associated with the first eigenvalue, u2i the
eigenvector associated with the second eigenvalue and u3i the one that
is related to the third eigenvalue.

� define a temporary reference system centered in zero whose axes coincides
with the canonical x,y,z-axes. Let us denote this frame with number 0.

� compute the ellipsoid that is centred in zero, whose semi-axes coincide
with the directions of frame zero and semiaxes’ magnitude correspond to
the retrieved eigenvalues:

Figure 5.6: Schematic picture of the zero mean axis-aligned ellipsoid

In order to compute this ellipsoid, let us recall the equation of a zero-
mean ellipsoid whose semi-axes are aligned with the directions of the
usual Cartesian reference system.

(
x

a

)2

+

(
y

b

)2

+

(
z

c

)2

= 1 (5.6)

where a, b and c are the lengths of the ellipsoid semi-axes along the
Cartesian x,y,z axes. Since, according to the previous considerations, the
magnitude of the semiaxes is the variance of the data that, in this case
coincides with the eigenvalues of the covariance matrix, equation 5.6 can
be re-written as:

(
x

λ1

)2

+

(
y

λ2

)2

+

(
z

λ3

)2

= 1 (5.7)

Since each data point is considered to be extracted by a trivariate Gaussian
distribution characterized, for the time being, by a diagonal covariance
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matrix and zero mean, the random variables x, y and z can be considered
normally distributed too.
Hence, in view of these considerations, the terms x

λ1
, y
λ2

, z
λ3

will corre-
spond each to a standard normal:

x

λ1

∼ N (0, 1) (5.8)

y

λ2

∼ N (0, 1) (5.9)

z

λ3

∼ N (0, 1) (5.10)

Therefore, recalling that the square of standard Normal random variable
is also known as a 1-degree of freedom Chi-square distribution:

(
x

λ1

)2

∼ (N (0, 1))2 ∼ χ2
1 (5.11)

(
y

λ2

)2

∼ (N (0, 1))2 ∼ χ2
1 (5.12)

(
z

λ3

)2

∼ (N (0, 1))2 ∼ χ2
1 (5.13)

where expression χ2
1 represents the 1-degree of freedom Chi-square dis-

tribution. Therefore, equation 5.7 defines the sum of three 1-degree of
freedom Chi-square distributions. This sum S can be also expressed as
3-degrees of freedom Chi-Square Distribution.

Since we are interested in determining that ellipsoid whose dimension is
defined and scaled according to a prescribed confidence level δPerc, equa-
tion 5.7 should be modified accordingly.

(
x

λ1

)2

+

(
y

λ2

)2

+

(
z

λ3

)2

= S (5.14)

Let us set δPerc to be equal to 95%.
Hence, since we are interested in the 95% confidence interval, the value
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of that sum S can be determined by evaluating that S such that the
probability that S is less then or equal to a specific value is equal to δPerc,
as follows:

P (S ≤ χ2
3,δPerc

) = δPerc (5.15)

Hence S can be easily obtained by looking at the Chi-square cumulative
probability table.
The cumulative probability of a χ2

3,0.95 corresponds to 7.815. Hence the
equation of the confidence ellipsoid with respect to frame 0 can be rewrit-
ten as:

(
x

λ1

)2

+

(
y

λ2

)2

+

(
z

λ3

)2

= 7.815 (5.16)

Figure 5.7: Zero mean confidence ellipsoid scaled according to the desired
confidence level and expressed with respect to frame 0

Thus, for an axis-aligned 95% confidence ellipsoid the length of the ith
semi-axis is equal to

√
λiS as shown in Figure 5.7.

� in order to find the 95% confidence ellipsoid that represents the original
cluster dataset, it is possible to perform a roto-translation, as will be de-
scribed afterwards.

Let us define a new reference system, denoted as frame 1, that is centered
in µi (refers to equation 5.3) and oriented according to the directions of
the eigenvectors matrix (refer to equation 5.5).
Let us also define the rotation matrix R0

1 that describes the rotation of
frame 1 with respect to frame 0. This rotation matrix coincides with the
eigenvectors matrix.
Hence, defining the homogeneous transformation matrix A0

1 as follows:
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A0
1 =

[
u1i u2i u3i µi
0 0 0 1

]
(5.17)

it holds that:


x(0)

y(0)

z(0)

1

 = A0
1


x(1)

y(1)

z(1)

1

 (5.18)

then from equation 5.18 it is possible to find x(1), y(1) and z(1) which
are the three-dimensional coordinates of a generic point belonging to the
confidence ellipsoid expressed with respect to frame 1.

Hence the ellipsoid shown in Figure 5.8 is obtained.

Figure 5.8: Schematic illustration of the ellipsoid obtained by applying a roto-
translation of the initial zero mean axis-aligned ellipsoid

An example of the 95% confidence ellipsoid obtained for one of clusters de-
scribed in section 5.2 is shown in Figure 5.9.

Figure 5.9: The 95% confidence ellipsoid stores the 95% of each cluster’s data
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Hence, the confidence ellipsoids that represent the volumes associated with each
initial clustered positions (see Figure 5.5) are shown in Figure 5.10.

Figure 5.10: Confidence ellipoids associated with each group fo data returned
by the clustering algorithm

In order to evaluate whether or not each new retrived wrist position lays inside
one of the ellipsoids (refer to section 4.5), it is firstly performed a rototransla-
tion that allows to express the new acquired skeletal position with respect to
the reference frame associated with the considered ellipsoid; then, evaluating
whether the position is inside it or not is straightforward.

5.4 Definition of the ‘goal samples’

As expressed in section 4.3 the computation of the feature vector Φi (refer to
4.2 and 4.3) and the evaluation of the likelihood function requires the knowl-
edge of the exact position of each ith goal.
Since the exact goal positions are not precisely known, each target is actu-
ally described as a random variable having a certain probability distribution,
as already explained in this chapter. Then, in order to take into consideration
the uncertainty affecting each target’s center of mass, the inference algorithm
considers a set of possible locations drawn from the stochastic distribution de-
scribing each goal position. Hence, each point belonging to the ith set can be
used to represent an hypothesis on the exact location of the ith target, as will
be explained afterwards.
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To characterize this uncertainty when evaluating the likelihood of the observa-
tion under the hypothesis that the intended target is the ith, it is then possible
to define a number of points that are randomly sampled from the multivariate
Gaussian Distribution (described by µi and Σi) associated with the ith target.
These points are referred as ‘goal samples’. Let us assume that a total number
of H ‘goal samples’ are obtained, as shown in Figure 5.11.

Figure 5.11: Illustration of the goal samples randomly generated according to
the multivariate Gaussian parameters that describes the cluster’s data

The uncertainty on the exact goals locations is evident by observing that, even
if the coordinates of the position of the intended goal were precisely known,
the human hand, when heading to that target, would not always reach the
same exact position during its reaching motions. In this regard, the set of ‘goal
samples’ associated with goal i represents the spread of the possible positions
of arrival of the human hand within the volume of the ith target. Let us denote
the hth goal sample, out of the H associated with the ith goal as gshi. As a
consequence, each gshi is considered as a plausible hypothesis about the true
location of the ith target. Hence it is possible to compute for each hth sample
belonging to the ith goal, its likelihood function LhpGi

and then evaluate the

likelihood associated with the ith goal as indicated in equation 4.47.
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6

Comparison of the implemented in-
ference strategies

6.1 Introduction

In this chapter an overview of the results achieved through the application of
the intention inference algorithm will be presented. The metrics that will be
used to evaluate the performance described so far will be the distance at which
the considered goal is correctly recognized and the percentages of false posi-
tives and true negatives. Ultimately, the advantages and disadvantages of the
various implementations of the algorithm will be discussed and compared with
the performance attained in [34].

6.2 Analysis of the different formulations
of the algorithm

In the previous chapters the methodology through which the algorithm is capa-
ble of performing the inference process has been analyzed in detail. Indeed, it
has been explained that the algorithm returns, for each iteration and based on
the observed features and the prior probabilities of each goal, how the proba-
bility distribution is split among the goals.
As a consequence, at each kth iteration, the estimated intended goal will corre-
spond to the one that has acquired the highest value of probability.
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In order to offer the reader a deeper insight on how the algorithm works and
on the output produced, Figure 6.1 reports the evolution of probabilities during
some reaching movements.

Figure 6.1: Schematic illustration of the evolution of probabilities returned by
the inference algorithm at each iteration during some reaching movements. On
the left hand side the upper body of the human operator which is performing a
certain task can be visualized, while on the right hand side the corresponding
estimated goal while the operator is moving is illustrated. The colors shown in
the right hand plot correspond to the ones of the goal centers of mass illustrated
on the left hand side. Here the initial phase of the inference algorithm is shown

Figure 6.1 represents the results obtained when inference is made on the left
wrist by analyzing the first 100 detected samples. By looking at the plot on
the right, it is clearly visible what has been explained in Chapter 4: initially the
probability is uniformly distributed over the number of the goals. This aspect
is evident by looking at the plot on the right hand side where a segment can
be seen in correspondence of 0.25 for about the first 50 samples. As the buffer
becomes full, the algorithm starts making inference and recognizes that the
operator’s hand is standing initially still in home position (blu goal). As, the
operator starts moving from goal 1 to goal 2 the probability associated with
target 2, the purple one, starts growing. Finally, as it is visible looking at the
green curve that describes the movement performed by the left wrist of the
operator (in the left figure), the subject comes back to goal 1 (home position).
It should be noticed that, as depicted in Figure 6.1, the fact that the operator’s
wrist is intended to reach goal 1 has been already recognized (notice the high
value associated with blue probability on the right hand plot) before his left
hand actually reached the considered goal, as shown in detail in Figure 6.2.
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Figure 6.2: Detail of the probabilities shown in Figure 6.1

Obviuosly an equivalent result is returned, at the kth iteration, by the intention
inference algorithm that makes inference about the right hand.

Now we are interested in evaluating the contribution given by the application of
each single type of methods described above, in order to highlight the benefits
that their use could provide to enhance the inference process.
The basis for comparison is the approach proposed in [34] and described in
Chapter 2.

6.2.1 Comparison of the different implemented
predictive paths

The first proposed comparison focuses on the very first aspect analyzed in this
Thesis: namely, we want to understand whether the use of a certain predictive
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path or another can actually help to improve the overall performance of the
intention inference algorihm. Since, in this case, we are interested in analyzing
only the contribution of the predictive path, without taking into consideration
other potential avdvantageous features, the comparison will be structured as
follows.

� all the goals will be considered equal to their centers of mass, as in [34];

� the vector of measurements is composed by a single observation: the
wrist position pW ;

� the likelihood of observing pW under the hypothesis of reaching the ith
target is evaluated according to a N (µ, σ2), following the idea of [34].

On the basis of those general aspects, the following method for computing the
predicted path are compared:

1. minimum curvature path, hence the method proposed in [34], denoted as
‘curve 1’;

2. path resulting by minimizing the distance from the circumference centred
in the shoulder position, denoted as ‘curve 2’;

3. parabolic path with recursive projection of the axis of symmetry, denoted
as ‘curve 3’.

Some reaching movements were recorded and only the first method was ap-
plied online, while the other two were simulated off-line by exploiting the same
measurements retrieved during time. Two goals were kept monitored for this
comparison, and the corresponding reaching motions performed by three differ-
ent subjects were analyzed to extract meaningful informations.
The total number of reaching motion was 22.

The results are evaluated in terms of distance of recognition before reaching the
desired goal. Here, the sample at which the ith goal was considered recognized
was the one for which the corresponding probability has overcome the threshold
of 0.8, for each reaching motion.

The distribution of the distance at which the considered goal was correctly rec-
ognized are illustrated in Figure 6.3 for each method previously described.
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Figure 6.3: For each considered method (1,2,3) the boxplot shows the median
(red line), the minimum value (black segment on the bottom) and maximum
value (black segment on the top) obtained

Moreover, we define as an additional evaluation criterion: the number of false
positives and of true negatives. The expression ‘false positive’ is used to de-
scribe the case where the probability of the ith goal has risen beyond the 0.8
threshold, but the operator was not directed towards that target; while that of
‘true negative’ refers to the case where the operator was actually going to the
ith target but the corresponding probability did not reach the threshold.

Figure 6.4: Percentage of false positives and true negatives with respect to the
total number the operator went to the monitored goals, 22

These results confirm, to a certain extent, what the Fréchet distance analysis
had already underlined: the performance obtained by using these predictive
paths are quite similar.
In fact, even if the parabola seems to recognize earlier the correct goal with
respect to method 1, it has to be considered that, by looking at 6.4 in about
45% of the overall reaching motions the goal was not recognized, hence its
performance are worse with respect to both 1 and 2.
Equivalently, the performance of method 2 can be considered to be comparable
to those of 1. Notice that 2 samples are beyond the whiskers in the boxplot
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related to 2.
To further understand how similar are the performance of the three methods,
it is possible to look at Figure 6.5 which shows that only few samples occur
between the time when the 0.8 threshold is overcome by the first curve and
when the same happens for the other curves.

Figure 6.5: Probability plot that shows how fast the three methods raise be-
yond the recognition threshold (0.8). The difference also in term of number of
samples is pretty negligible

By looking at these results it seems reasonable to conclude that the use of a
predictive path, though well-structured and quite similar to the measured one,
does not result to be so beneficial for what concerns the inference process. In
other words, the use of a quite complex predictive path seems not be the key
for obtaining a better intention estimate.

It should be recalled that up to now the predictive path was used to compute the
predicted tangent t̂Wpredi

involved in the computation of the angle θWi
required

to evaluate the likelihood:

θWi
= arccos((̂tWpredi

)T (̂tWfut
)) (6.1)

The above results, by the way, seem to underline that it could be convenient
to tackle the problem of computing θWi

in a different, more simple, way. Thus,
we are interested in computing this angle by applying a method that does not
require the use of a predictive path.

Hence, we evaluated the possibility of computing the generic angle θWi
in the

most simple way, as follows:
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θWi
= arccos((̂tGi−W )T (̂tWfut

)) (6.2)

where

t̂Gi−W =
pGi
− pWfut

||pGi
− pWfut

||
(6.3)

and the subscript W denotes the wrist position (left or right according to the
hand we are making inference about).
In other words, the angle between the normalized vector connecting the last
measured wrist position pWfut

to the center of mass of the ith goal and last

measured unit tangent vector t̂Wfut
is used as a criterion for evaluating the

likelihood, as shown in Figure 6.6:

Figure 6.6: The angle between the measured unit tangent vector t̂Wfut
and the

normalized vector connecting the wrist position to the center of mass of the ith
target is now computed.

hence the computation of angles θRWR
, θLWR

, θLWL
and θRWL

, whose meaning
was explained in chapter 4, is now changed accordingly.

The use of a very simple method for computing the angle, in fact, offers a two-
fold benefit: on the one hand the computational complexity of the algorithm
reduces, due to fact that the difficult computation of the predictive path is no
more required; on the other hand, if this method is compared with the previous
ones for the same data, the percentage of true negatives reduces a lot (it even
goes to zero in this specific case), while the other statistics remain quite similar.
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This aspect seems to offer a further motivation for using this method from now
on.

6.2.2 Comparison of the use of single gaussian,
2D-GMM and 4D-GMM

As explained in Chapter 4 a further attempt to improve the performance of the
basic intention inference process was the introduction of a larger number of
observations to evaluate the likelihood and compute the posterior probability of
each goal.
The new observations that had been included in the measurements’ vector
were:

� dW the distance of the wirst from the target’s center of mass;

� the joint observations of the wrist angles (for instance, θRWR
and θLWR

for the right wrist and the corresponfing one when making inference on
the left wrist) as well as an estimate of the head orientation zHeadV ector
associated with the head position;

� the boolean value, vHeadV ector always returned together with zHeadV ector,
that expresses a measure of the gaze validity.

Thus, the second proposed comparison aims at highliting the contribution that
these two groups of obervations can provide in addition to the wrist measure-
ment. As already done in Chapter 4 we will denote as:

� 2D-GMM the likelihood function that jointly evaluates the measurements
of wrist position pW and dW ;

� 4D-GMM the likelihood function that jointly evaluates all the available
measurements. For instance, for what concerns the right hand it exploits:
θRWR

, θLWR
, zHeadV ector, dRW . Equivalently it is done for what concerns

the left hand.

Therefore, still assuming that each goal under analysis coincides with its center
of mass and computing the angles according to the method previously explained
(refer to equation 6.2), the following formulations will be compared:

� method proposed in [34] (which considers only the wrist position as avail-
able measure), denoted as ‘1G’;
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� approach that updates the probabilities and computes the likelihood al-
ways using the 2D-GMM (simulating that the measure zHeadV ector is un-
available for all the duration of the simulation). This approach is denoted
as ‘2D-GMM’;

� approach that updates the likelihood according to the 4D-GMM when
vHeadV ector is true and switches to the corresponding 2D-GMM when the
gaze measure results to be not valid. (Obviously, in order to ensure that
contribution of the measure zHeadV ector was not negligible and could be
correctly evaluated, it was checked that vHeadV ector was true for at least
90% of the overall collected samples). This approach is denoted as ‘4D-
GMM’.

The results are illustrated in Figure 6.7:

Figure 6.7: The boxplot shows that the performances in terms of distance of
recognition improves as the number of observations increases

Moreover, also the performance in terms of false positives and true negatives
must be evaluated. Their percentage, which has been extracted with respect
to the total number of times (22) the operator went to the considered goal, are
represented in Figure 6.8 :

103



Chapter 6 - Comparison of the implemented inference strategies

Figure 6.8: Percentage of false positives and true negatives with respect to the
total number the operator went to the monitored goals, 22

By jointly looking at the results obtained in terms of distance of recogniton and
robustness, the following conclusion can be drawn:

� including the distance into the set of measurements available for the com-
putation of the likelihood has the advantage of largely reducing the num-
ber of true negatives that goes to zero. In other words, the introduction
of the observation related to the distance helps to avoid the possibility
that there exists a goal which is not recognized and improves the distance
before recognition of the goal of about 40% with respect to the approach
used in [34]. This aspects are obtained at the cost of increasing the reac-
tivity of the algorithm that is highlighted by the growth of the number of
false positives with respect to the base case, ‘1G’. Therefore, adding only
the distance (beyond the wrist measure) seems to provide only partial
advantages.

� if the information about the gaze is further introduced, the performance
in terms of distance before correct recognition remains more or less the
same (with respect to the case 2D-GMM). However, as indicated in Figure
6.8, it contributes in reducing of about 18% the number of false positives,
while keeping fixed to zero the percentage of goals not recognized.

In conclusion it can be pointed out that adding dW as a further available ob-
servation helps recognizing more quickly the intended goal and contributes in
reducing largely the possiblity that an intended goal is not recognized, while
the role of the gaze estimate is to guarantee a higher robustness during the
inference process.
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6.2.3 Managing the uncertainty for the goal lo-
cations

Until now the effectiveness of the so-called 4D-GMM method has been dis-
cussed but still tested on the case where the considered goals were represented
by means of their centers of mass.
Now we propose a last comparison between the performance obtained using
[34] and the ones that could be achieved by applying complete approach pro-
posed in this Thesis. The expression ‘complete approach’ refers to the following
aspects:

� the goals representation in terms of the set of ‘goal samples’;

� use of the likelihood function denoted as 4D-GMM (taking care to switch
to the corresponding 2D-GMM when the measure of the gaze is not valid)

� computation of the angles required for evaluating the likelihood function
according to the last explained method.

Therefore, let us indicate the approach used in as ‘Initial method’, and the one
just described as ‘4D-GMM+GS’ where the acronym ‘GS’ refers to the goal
description in terms of set of ‘goal samples’.

In this circumstance, in order to allow to understand the effectiveness of the
use of the population of goal samples instead of a point-shaped goal, another
dataset was required where the subject were asked to perform some reaching
movements that did not lead necessarily to the center of mass of the goals. The
results, that included 22 reaching motions, are reported in Figure 6.9:
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Figure 6.9: The two boxplots allows us to evaluate the percentage of overall
improvement obtained through the application of approach ‘4D-GMM+GS’ with
respect to the method described in [34], denoted as ‘initial method’

Figure 6.10: Percentage of false positives and true negatives for the case ‘Ini-
tial method’, the one described in [34], and of the complete approach, ‘4D-
GMM+GS’. The percentages are computed with respect to 22 reaching motions
under analysis.

These results confirm what already observed in section 6.2.2: evaluating the
distance avoid that a goal is not recognized but, conversely, increases a little
the percentage of the so-called false positives obtained in the case 2D-GMM,
introducing also the gaze estimate decreases that number again. To this extent,
the information of the gaze helps increasing the robustness of the overall infer-
ence process, thus reducing the number of false positive and keeping to zero
the numbers of true negatives. In terms of early recognition of the goal, it is
clear that the performances achieved by the method described in [34] could be
already considered quite satisfactory (the intended goal is recognized at almost
one half of the entire path); in particular, considering that the goal is inferred
by using an inference algorithm that works online without resorting to an offline
trained model which is only applied online at a later stage.
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However, in this circumstance, namely, when the uncertainty on the exact goal
location is taken into account and a 4D-GMM is used, a small improvement
in terms of distance of recognition can be noticed, without decreasing the ro-
bustness performance. This aspect seems to indicate that representing a goal
in terms of confidence ellipsoid can help enhancing a little the overall perfor-
mances.

In conclusion it should be recalled that the performance of the inference process,
being based on the detected measurements, also depends on the quality of the
measures retrieved by the sensing device. This aspect could partially explain the
variability in terms of results and performance observed when the same method
is applied to a different dataset.
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7

Human-robot interaction: experi-
mental test

7.1 Introduction

This chapter describes a collaborative task where the intention inference algo-
rithm discussed in Chapter 4 is used to infer, at each iteration, the most likely
human reaching target.
The purpose of this experimental section is to demonstrate how the improve-
ments achieved by the new inference algorithm (described in Chapter 4) proved
to be beneficial in a true collaborative scenario which involved the presence of
the robot and where a vibrotactile feedback was sent to the operator (as soon as
his intended goal was recognized) to inform him that the robot understood his
intention. Indeed the importance of recognizing in adavanced the human’s next
action will be further highlighted. In fact, it will be shown that, particularly in a
true collaborative task, the earlier the human intention is correctly recognized,
the earlier the feedback can be sent and the better the overall cooperative pro-
cess turned out to be.
Moreover even the advantages of the use of this wearable interface, capable
of informing the operator about prediction’s reliability, will be discussed and
tested.
In fact, it is believed that, if the human operator can receive an acknowledg-
ment that makes him aware of the current prediction process, confirming him
that the prediction returned by the algorithm is correct too, a double advantage
is obtained. On the one hand the operator can avoid keeping monitored the
robot’s complementary operation and can starts performing the next one, as
soon as he receives the haptic feedback; on the other hand a reduction of the
waiting time can be obtained.
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7.2 Description of the collaborative ex-
periment

During this collaborative task the human and the robot are required to cooperate
in order to assemble a small box that is meant to host a USB pen drive, as
shown in Figure 7.1:

Figure 7.1: Illustration of the small box that has to be assembled during the
collaborative operation and the pen drive which have to put in there

As represented in Figure 7.1, the box is composed of four different parts:

� the metallic base, denoted as ‘1’ in the figure;

� a first thin layer of foam, not visibile in the figure;

� a second moulded and thick layer of foam, denoted as ‘3’ in the figure;

� a metallic cover, denoted as ‘4’ in the figure;

Since the metallic box is equipped with soft components (the two foam layers),
that are difficult to be managed by a robot, the latter will be required to deal
with a more resistent metallic component (the cover). In fact, the manipulator
employed in the experiment is an ABB dual-arm robot YuMi equipped with a
suction tool that allows it to easily grasp the complete assembled box.
The experimental set-up also involves the use of a Microsoft Kinect depth cam-
era to track the operator’s motions by detecting his skeletal points together
with his head orientation zHeadV ector.
The operator’s left hand can be further equipped with a vibrotactile ring which
is intended to send him acknowledgments during the crucial phases of the col-
laboration, as it will be explained afterwards.
This vibrotactile ring, realized by the University of Siena, [9], and shown in Fig-
ure 7.2, is a wearable device which is also equipped with a small controller box
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which contains a 4 mm vibration motor and is controlled through an Arduino
Pro Mini5.

Figure 7.2: Illustration of the vibrotactile ring realized by the University of Siena.
This ring can during the experiment is worn on the operator’s left hand and
the controller box is attached to the Velcro bracelet worn on the operator’s left
forearm. The communication with the ring is wireless

Both the sensing device, the vibrotactile ring and the dual-arm robot are con-
nected to a CPU which implements the inference algorithm. Hence, at each
iteration, the data retrieved by the Kinect camera are read by the CPU that,
according to the logic of the inference algorithm described in Chapter 4, pro-
vides the estimated probability distribution over the goals and send commands
to both the ring and the robot accordingly.

The layout of the collaborative task, represented in Figure 7.3, is composed by
the following 5 operator’s target positions:

1. home position, goal 1;

2. feeder of the moulded thick layer foam, goal 2;

3. feeder of the thin layer foam, goal 3;

4. collaborative station, goal 4;

5. feeder of the empty metallic boxes and pen drives goal 4.

The human-robot collaborative task is organized according to the following
sequence of operations:

1. the operator takes the empty box from goal 5 and takes it back to the
home position; then it fills it with the two foam layers and the USB stick;

2. the operator brings the filled box from the home position 1 towards the
collaborative station, goal 4;
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Figure 7.3: Layout of the experimental colaborative framework: the goal posi-
tions are marked with dotted ellipses

3. the robot puts the cover over the box;

4. the operator fixes the cover to the box with some tape and can do a new
cycle starting from 1;

5. the robot takes away the finished box and puts it in a storage box.

The vibrotactile ring is exploited twice during the two critical phases of the
collaborations: the first time to convey the information to the operator that,
thanks to the inference algorithm, the robot understood his intention of bringing
the filled box to the collaborative station (goal 4). This corresponds to the
beginning of the operation 2. The second time the haptic device is used when
the operator has finished covering the box with the tape (end of operation 4)
to inform him that it understood that the operator has completed step 4.
The logic according to which a vibration is sent through the ring and the robot
is allowed to start complementing the human operation, is obviously based on
the probability distribution returned at each iteration by the inference algorithm
and according to the evolution of the state machine visible is Figure 7.4.

Initially the state machine persists in state 0, meaning that no human has been
detected on the scene by the Kinect camera. As soon as at least one human is
tracked, the state machine moves to state 1.
The machine persists in this state until the probability associated with goal
4 (the collaborative station) raises beyond a predefined threshold, which is
completely arbitrary and corresponds, in the current case, to 0.8. When this
threshold is overcome, in fact, it means that the operator has completed the
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Figure 7.4: A finite state machine describes is used to describe the logic ac-
cording to which a vibration burst is send to the human operator

set of operations that involved the box filling and he is intended to deliver the
filled box towards the collaborative station to let the robot putting the cover.
So, as soon as P (pG4) > 0.8 the machine goes to state 2 and send to the ring
worn by the operator a vibration burst lasting 120 ms.
The machine remains in state 2 until the probability of goal 1 overcomes the
threshold, meaning that the operator has finished fixing the cover to the box
with the tape (operation 4 is terminated) and he is coming back to the home
position (goal 1) to start a new cycle. The same type of vibration as before is
sent to the operator.
Eventually, when the operator has completed all the cycles, he exits the scene
and the state machine comes back to its initial state. The ring represents, in
this way a reactive means of explicit communication between the robot and
the human: in fact, through this the robot infroms the operator that it has
understood his/her intention.

7.3 Results of the collaborative experi-
ment

16 subjects were asked to take part to the experiments which consisted in
performing (5 times for each subject) the cooperative task previously described.
Half of the partecipants carried out the experiment by wearing the haptic device
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on their left hand and were instructed about the meaning of the vibration’s burst;
half performed the same experiment without it. In both groups only 5 out of 8
could be considered ‘not skilled’ since they declared they had never cooperated
with a robot before and they were not familiar with the use of robots in general.
The subject’s left hand was tracked by the Kinect and the execution time of
each trial was recorded.

In [34] it was already demonstrated, that the possibility of performing a early
recognition of the human intention could improve the quality of the overall
collaboration. However in [34] the operator was never informed about the
correct estimate of its intention through a feedback of any type. Hence, the
human was not explicitly aware whether the robot had estimated correctly his
intention or not, unless he waited and see the next robot move. In fact, in
that case, the robot was instructed to proceed by choosing the complementary
human’s assembly action to complete the overall task.

In view of the improvements (in terms of robustness and recognition distance)
obtained by reformulating the overall inference algorithm as illustrated in the
previous chapters, it is now possible to evaluate the further advantages that can
be obtained by equipping the operator with a feedback that makes him aware
about his/her estimated intention.

Also this time we want to compare the performance obtained by applying the
following methods:

� method proposed in [34];

� method that computes the likelihood always according to the 2D-GMM;

� method that computes the likelihood according to the 4D-GMM when the
gaze measure is valid and exploits the corresponding 2D-GMM otherwise;

The results are shown in Figure 7.5:
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Figure 7.5: Comparison of the implemented inference methods for the case
during the collaborative experiments. Distributions of the distance at which
goal 4 was correctly recognized

for what concerns the robustness performance, one can in this case refer to
table 7.6:

Figure 7.6: Percentages of false positives and true negatives during the col-
laborative experiments. These results refers to a total number of 22 reaching
motions towards goal 4.

Also in the case that involved the collaboration between the human operator
and the robot the obtained results confirm what had already been observed
even in absence of the robot (see section 6.2.2): hence the performances in
terms of distance before recognition are quite similar for all the methods (even
if a slight improvement can be observed in the case 4D-GMM with respect to
the case 1G), however the introduction of the distance as a further observation
contributes in a significant reduction of the possibility that an intended goal
is not recognized (zero for the considered experiments), while the recognition
distance does not decreases. This is obtained at the cost of decreasing of the
robustness of the algorithm, thus increasing the number of false positive. The
role of the additional gaze estimate is to improve the robustness of the algorithm
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without worsening the abovementioned performance.
For what concerns the benefit of using the haptic feedback the cycle time can
be analysed:

Figure 7.7: Cycle time with and without feedback for the all the partecipants

The performance achieved by the introduction of the vibrotactile ring when the
overall population of skilled and non skilled partecipants is observed was a re-
duction of the variability cycle time. By looking at Figure 7.7 is also visible a
small decrease of the average cycle time. Hovewer the reduction of the average
cycle time in this case was smaller with respect to what is shown in Figure 7.8
that refers to non-skilled people only. The reason which could motivate this fact
is that the assembly task previously presented is quite simple, as a consequence
people with previous experience in robotics do not seem to take advantage of
the haptic feedback.

Figure 7.8: Cycle time with and without feedback for non-skilled partecipants

As already said, by observing the results shown in Figure 7.8 that considers only
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the group of non skilled partecipants, the reduction of the average cycle time
when they received the feedback is clearly visible, while, this time, an equivalent
decrease in terms of variability of the cycle time cannot be observed. By the
way, the results obtained for non-skilled people are, to some extent, significant,
since these perfomance could probably be representative of what could happen
in a real industrial framework where the production lines change freequently.
In that case, in fact, the operators usually have to learn the new sequence of
operations very often without having a preliminarly experience in the new se-
quence of operation they will have to do; hence, to some extent, they could be
considered as they were always non-skilled people.
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8

Conclusions

8.1 Conclusions and future developments

In this Thesis a novel inference algorithm capable of estimating the operator’s
intention within a collaborative scenario was presented. The inference process
is accomplished by exploiting a recursive Bayesian classifier which, at each it-
eration, provides the estimate of the most likely human hand reaching target
among a prescribed and finite set of possible goal positions. In order to manage
the uncertainty on the exact target’s location, the proposed algorithm considers
a set of possible positions drawn from a stochastic distribution which describes
the goal location. This way the unpredictability on the actual goal position can
assume a probabilistic meaning. Besides, the variability characterizing the pos-
sible positions of arrival of the operator’s hand reaching motions can be taken
properly into consideration.
The algorithm presented in this Thesis infers the most likely reaching target
relying on the skeletal points retrieved by means of a Microsoft Kinect cam-
era. This approach had already been adopted in a previous work described in
[34], where the user’s intention was, however, estimated based on the observed
wrist measure only. The novel algorithm is structured in a way that allows to
handle the situation where the operator simultaneously exploits both his hands
to execute a certain task. This is practically done by updating, at each itera-
tion, two different probability distributions: namely, it is made inference on the
most likely reaching target from the perspective of the right hand and from the
perspctive of the left hand. Furthermore, the novel inference algorithm extends
the approach of [34], by taking into consideration a larger set of measurements
that comprehends the joint observation of both hands’ positions (independently
on the one we are making inference on), the distance of the hand from the goal
center of mass and an estimate of the gaze direction.
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In fact it is claimed that this particular set of observations, when jointly ex-
ploited, can improve from different perspectives the overall performance of the
inference algorithm. For instance, considering where both hands are located
or are about to move, can enhance the evidence of where each one of them is
directed to. Moreover, taking into account the wrist distance from the target
center of mass can help discriminating the intended goal when more than one
is almost equally likely; lastly, the head orientation can provide an additional
clue on what the intended reaching target is and increasing the robustness of
the overall inference process.
These expectations are confirmed: by using the novel approach, the so-called
4D-GMM and taking into account the uncertainty related to each goal position,
as described so far, the distance before goal’s recognition slightly improves of
about 40% with respect to the corresponding result mentioned in [34]. This
means that the goal is correctly recognized at approximately half of the hand
reaching path. Moreover, the use of the observed distance between the wrist
and the goal center of mass allows us to obtain a significant reduction of the
percentage of true negatives. For instance, during the previously mentioned
experimental test, for identical boundary conditions (same robotic cell, same
goal locations), the percentage of true negatives resulted to be equal to zero
with respect to the corresponding case where the algorithm of [34] was applied.
In addition, the presence of the gaze estimate allows us to achieve greater ro-
bustness performance, decreasing significantly the percentage of eventual false
positives.
Through an experimental campaign where 16 volunteers partecipated, the bene-
fits of the improvements obtained after the actual reformulation of the inference
algorithm were further highlighted and the importance of recognizing in advance
where the human hand is heading to was further pointed out by the presence
of the haptic feedback. Indeed, the proposed algorithm was applied to a true
collaborative assembly task which included the use of a vibrotactile ring to send
a feedback to the human operator that worn it.
Even in this case, similar results to those just mentioned were achieved. During
the experimental test, half of the partecipants were equipped with a wearable
vibroctile ring which sent the operator the haptic feedback to make him aware
of when the robot infers correctly his intention. The contribution provided by
the addition of the vibrotactile feedback was more evident in the case of non-
skilled subjects, where the average execution time significantly decreased with
respect to the case where the haptic device was not exploited.
The performance obtained by combining the presented inference algorithm with
the wearable vibrotactile ring are quite satisfactory and seem to pave the way
for considering their applicability on a variety of human-robot collaborative sce-
narios.
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In fact, as highlighted by the experimental results, the better the inference
process, the earlier the prediction of the operator’s intention, the greater the
time available to send a feeeback to the human and improve the quality of the
collaboration. It should be recalled that an additional beneficial aspect of this
inference algorithm is that it could be applied to whatever robotic cell, without
requiring an additional a priori training phase.

Future works could address the possibility of using a single device, worn, for
instance, on the operator’s arm and capable of sending feedback to the human
worker as well as helping in the process of retrieving its skeletal points by making
use of some sensor fusion techniques to consider also the measurements coming
from the Kinect camera.
Moreover, some pattern recognition techniques could be exploited to understand
the usual sequence of goals reached by the operator when performing a certain
task. This information could be then effectively used to improve the robustness
of the overall inference process. In fact, if a high evidence about a certain
sequence of goals was derived after the application of these techniques, at each
iteration the intention inference algorithm could penalize the goal or the set of
goals which, given the expected sequence, resulted to be less likely.

121





Bibliography

[1] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. In ACM, editor, Proceedings of
the ACM SIGMOD ’99 International Conference on Management of Data,
Philadelphia, 1999.

[2] M. Awais and D. Henrich. Human-robot collaboration by intention recog-
nition using probabilistic state machine. In IEEE, editor, Robotics in Alpe-
Adria-Danube Region (RAAD), 2010 IEEE 19th International Workshop,
2010.

[3] L. Bascetta, G. Ferretti, P. Rocco, H. Ardö, H. Bruyninckx, E. Demeester,
and E. Di Lello. Towards safe human-robot interaction in robotic cells:
an approach based on visual tracking and intention estimation. In IEEE,
editor, 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2011.

[4] R. Bednarik, H. Vrzakova, and M. Hradis. What do you want to do
next: a novel approach for intent prediction in gaze-based interaction.
In ACM, editor, Proceedings of the symposium on eye tracking research
and applications, 2012.

[5] G. Best and R. Fitch. Bayesian intention inference for trajectory prediction
with an unknown goal destination. In IEEE, editor, Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference, 2015.

[6] J. A. Bilmes. A gentle tutorial of the EM algorithm and its application
to parameter estimation for gaussian mixture and hidden markov models.
April 1998.

[7] E. Bizzi, W. Accornero, W. Chapple, and N. Hogan. Posture control and
trajectory formation during arm movement. The Journal of Neuroscience,
1984.

[8] M. Carrasco and X. Clady. Prediction of user’s grasping intentions based
on eye-hand coordination. In IEEE, editor, Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, 2010.

123



Bibliography

[9] R. Casalino, C. Messeri, M. Pozzi, A. M. Zanchettin, P. Rocco, and
D. Prattichizzo. Operator awareness in human-robot collaboration through
wearable vibrotactile feedback. submitted for RA-L and IROS to the IEEE
Robotics and Automation Letters (RA-L) on February 24, 2018.

[10] W. Chen, C. Xiong, and S. Yue. On configuration trajectory formation
in spatiotemporal profile for reproducing human hand reaching movement.
IEEE Transactions on Cybernetics, 2016.

[11] Y. Chen and M. R. Gupta. EM demystified: an expectation-maximization
tutorial. February 2010.

[12] A. D. Dragan and S. S. Srinivasa. A policy-blending formalism for shared
control. The International Journal of Robotics Research, 2013.

[13] E. Driver and D. Morrell. Implementation of continuous bayesian networks
using sum of weighted gaussians. In Besnard and Hanks, editors, Pro-
ceedings of the 11th Conference on Uncertainty in Artificial Intelligence,
1995.

[14] R. Durrett. Essential of stohastic processes. August 21, 2010.

[15] I. Epifani, L. Ladelli, and G. Posta. Appunti per il corso di calcolo delle
probabilità. 2005.
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