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Abstract

At the time of writing, the world of real-time applications is growing
bigger at a very fast pace, and it doesn't concern anymore only the
industrial, automotive and aerospace �elds but has become much
more pervasive. Because of this fact, real-time system simulators
have become much more important, in order to have tools that are
capable of giving meaningful and correct results before the deploy-
ment of the application in the "real world". This thesis focuses in
particular in the �eld of the real-time schedulers and the most relev-
ant simulators that can be currently found in the reasearch �eld. In
the course of this paper the following real-time scheduling simulators
will be analyzed:

• Cheddar

• RTSim

• LitmusRT

• TrueTime

displaying their most important feature, how to use them and their
advantages and disadvantages. The purpose of this thesis is to make
some proposal in how these tools could be improved, in anticipation
of some development or maybe the creation of a brand new simula-
tion tool.
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Italian abstract

In questo momento, il mondo delle applicazioni real-time sta cres-
cendo molto velocemente e non interessa più solamente il campo
industriale, automobilistico e aerospaziale, ma è diventato molto
più pervasivo e di�uso. Proprio per questo motivo, i simulatori si
sistemi real-time sono diventati molto più importanti, in modo da
avere degli strumenti che possano dare dei risultati sensati e cor-
retti prima dell'e�ettiva distribuzione dell'applicazione nel "mondo
reale". Questa tesi si concentra in modo particolare nel campo de-
gli scheduler real-time e dei simulatori più importanti che possono
essere trovati nell'ambito della ricerca. In questa tesi i seguenti sim-
ulatori di scheduling real-time verranno analizzati:

• Cheddar

• RTSim

• LitmusRT

• TrueTime

mostrando le loro caratteristiche principali, come usarli e i loro
vantaggi e svantaggi. L'obiettivo di questa tesi è quello di pro-
porre dei modi in cui migliorare questi strumenti, per un loro futuro
sviluppo o per la creazione di nuovi strumenti di simulazione.
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Chapter 1

1 Introduction

1.1 Real-time systems

The formal de�nition of a real-time system states that real-time sys-
tems are those systems in which the correctness not only depends
on the result of the computation, but also on the time at which the
results are produced. An example of a real-time system in the real
world could be composed of sensors, a computer and actuators: the
sensors have to read some values from the environment (i.e. tem-
perature, humidity etc.), the computer processes those readings and
send signals to the actuators that perform some prede�ned action.
The important aspect of a real-time system like the one described
above (and like many di�erent others) is that the computer must
compute the data in a limited amount of time, so that the actions
made by the actuators are correct. The de�nition of real-time sys-
tems applies also to schedulers.

1.2 Real-time schedulers

Typically, the task of a scheduler is to assign di�erent tasks that
must be executed to the CPU of a computer, in order to com-
plete the execution of those tasks; this means that the purpose of a
scheduler is to guarantee the correct and complete execution of the
tasks. Real-time schedulers have the same purpose of a non real-
time scheduler, but with an additional contraint: the tasks must
complete within a certain bound of time. Here follows a list of the
terms used in order to fully understand the characteristics of real-
time schedulers and tasks:

• Deadline: time limit within which a task must be complete
after it is released.

• Release time: time at which a task is ready for execution.

• Priority: tasks with an higher priority must be executed before
the ones with lower priority. It's often indicated by a integer
number.

• Worst case execution time (WCET): maximum time that the
task can use to complete execution.
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• Periodic task: a task that activates to be executed at �xed
intervals of time.

• Aperiodic task: a task that activates at irregular intervals of
time.

• Sporadic task: a task that activates with minimal delay between
two successive activations.

• Ready queue: task queue in which are placed the tasks that
have already been released and that are ready for execution.

• Release queue: task queue in which are placed the tasks that
waits for release.

Many real-time schedulers have been developed and are currently
used, the most common are the following ones:

• Round robin (RR): time slices are assigned to each process
that is ready for execution (i.e. is placed in the ready queue) in
circular order and in order of release time. For example, if task
1, 2 and 3 are ready for execution and they have been released
in that order, the �rst time slice is assigned to task 1, the next
one to task 2, the next one to task 3 and then again to task 1.
Round Robin is not always used as a real-time scheduler, it is
used in the real-time �eld only if the periods and deadlines of
the tasks are much greater than the time slices assigned to the
task.

• Fixed priority (FP): every time the scheduler has to make a
scheduling decision, it chooses the task with the highest priority
among the tasks ready for execution.

• Earliest deadline �rst (EDF): when a scheduling event occurs,
the scheduler chooses the task with the closest deadline among
the tasks ready for execution

• Deadline monotonic (DM): tasks are assigned priorities accord-
ing to their deadline, the closest the deadline the highest the
priority. Once assigned a priority to every ready task, the dead-
line monotonic scheduler works like a �xed priority one. The
main di�erence between EDF scheduler and DM scheduler is
that, with DM the scheduling decisions are made considering
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the priority which is �xed once assigned, while with DM the
scheduling decisions are based on the deadline that can change
over time (that's the reason why the EDF is considered a dy-
namic scheduler).

The terms �scheduling decision� and �scheduling event� refer to the
fact that periodically the scheduler takes action to decide which task
must be executed by the CPU, accordingly to the scheduling policies
as de�ned above. If there is a task ready for execution that must
be run because has an higher �urgency� (that is the priority in case
of FP and DM or the deadline in case of EDF) with respect to the
running task, the running task is preempted (that is, its execution
is suspended and the CPU is no longer assigned to it) and the ready
task with the higher �urgency� is run. For example, in the case of
a FP scheduler, when a scheduling decision occurs, the scheduler
checks if in the ready queue there is a task with an higher priority
with respect to the task that is currently running; if there is one such
task the scheduler makes a preemption, suspending the execution of
the running task and starting the execution of the task in the ready
queue with the higher priority.

The scheduling events can be periodic or can be based upon
events, this leads to the de�nition of a kernel using ticks and tickless
kernel:

• Kernel with ticks: in this case the scheduling events occurs
when a tick happens, that is when the system timer managed
by the kernel activates. For example, if the system timer is set
to 10 ms, every 10 ms there is a tick, so the scheduler activates
and make a scheduling decision. This approach has two main
downsides:

� if the interrupts of the system timer are sent with a too
low frequency, the scheduler performances are not optimal,
because a lot of time are wasted waiting for the scheduler
to make a decision.

� if the interrupts are sent with a too high frequency, a lot
of time is wasted because the scheduler intervenes even
when there is no need of a scheduling decision and the
scheduler uses computer resources that could be used for
task execution instead.
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• Tickless kernel: in this case the scheduling decisions are made
when an event occurs (for example a task �nishes its budget
for execution) and not when a �xed timer sends an interrupt.
Using a tickless kernel negates the tradeo�s of using ticks, be-
cause there isn't anymore a �xed interval at which scheduling
events occurs, but the interval can change accordingly to the
needs of the situation.

1.3 Overview

This thesis is organized as follows.
In chapter 2, the main tools today available for the simulation

of real-time scheduler are examined, especially LitmusRT and True-
Time. First, an overview of the simulation tool is given, then follows
a description of the scheduler available and how they are implemen-
ted. Lastly, the advantages and disadvantages of each tool are listed
and described. In the TrueTime section there is a description of the
changes made to the code of the kernel of the simulator, in order to
separate the scheduler logic from the kernel and to implement the
round robin as an additional scheduler available.

In chapter 3, the conclusions are made, wrapping up what is
described in the paper and listing possible future reaserch topics.

Chapter 2

2 Tools for scheduler simulation

In order to assess the correctness and e�ciency of a real-time sched-
uler (and more in general of a real-time system) it is important to
simulate its behavior while it runs. While the simulation of a sys-
tem is important in many scopes, it's particularly signi�cant with
real-time systems in order to test them in an ideal condition, be-
cause verifying thei correctness when already deployed could be mis-
leading. During the run time execution of a real-time system (and
scheduler) could occurs many events that can make the extraction
of signi�cant data really hard or even impossible. If we think about
a simple real-time system composed, for example, of acceleromet-
ers for drone control or encoders to control the position of a robot,
once deployed some interferences and disturbances could alter the
readings and the developer who created that system cannot know if
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the wrong readings are caused by interferences, by sensors faults or
other reasons. The same happens for real-time schedulers as well:
making the testing phase with the scheduler already implemented
and deployed could be di�cult because often there is no control over
the release and creation of new real-time tasks and maybe the be-
havior of those tasks is unknown. This shows that, when developing
a new real-time scheduler, it's important to simulate its behavior to
understand if in the best conditions it works as intended. Another
important step in the simulation is to also include some disturbances
that could a�ect the behavior of the scheduler, in order to test its
performances and check its robustness.

2.1 Cheddar

Cheddar is a real-time scheduling simulation tool developed by a
team from the University of Brest. Cheddar has two main features:
an editor to model real-time systems that has to be analyzed and a
framework to perform the analysis.

In Cheddar, an application consists of a set of processors, bu�ers,
shared resources, messages and tasks which are de�ned by three
parameters: deadline, period and capacity (that express the units
of time of the budget the task has every time it is executed). In order
to make a scheduling simulation all the features and attributes of the
elements listed above must be set. Firstly, a core must be de�ned
using the window showed below
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Figure 1: Core de�nition in Cheddar

The most important �elds that we can �nd in this window are the
following:

• Name: the name of the core.

• Scheduler Type: the scheduler used by the core. The user can
choose among a set of implemented schedulers that includes

� Earlies Deadline First

� Least Laxity First: tasks are scheduled according to their
laxity

� Rate Monotonic

� Deadline Monotonic

� Round Robin

� POSIX 1003.1b: tasks are scheduled according to their pri-
ority and the policy of the scheduler, which de�nes the
queueing pattern of the tasks.

• Preemptive type: if the scheduler use preemption or not.

After the de�nition of the core, a processor must be created and one
or more of the cores previously de�ned have to be added to it. Also,
a de�nition of an address space is needed; an address space models
a memory which contains tasks, bu�ers and shared resources. After
the creation of those elements, a task must be de�ned using the
following window
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Figure 2: Task de�nition in Cheddar

The �elds that can be found here and that must be �lled are:

• Name: the name of the task.

• Task type: describes the type of task that is created. It can be

� Aperiodic
� Periodic
� Sporadic
� Poisson process: the task is activated many times and the
delay between activations is random; the law used to gen-
erate these delays is a Poisson (exponential) one

• CPU name: the processor on which the task will run.

• Address space name: the address space in which the task will
be placed.
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• Capacity: bound on execution time of the task.

• Deadline: the deadline of the task.

• Start time: time of the �rst activation of the task.

• Priority: the �xed priority of the task.

• Blocking time: bound on a shared resource waiting time.

• Policy: de�nes how a task is chosen when many tasks have the
same priority.

• Text memory size and stack memory size: size of the resources
(text memory and stack memory) used by the task during sim-
ulation.

• Criticality level: de�nes how much a task is critical, that is the
need to complete the task as soon as possible.

• Jitter: maximum delay of the wake up time of the task.

• Period: time between task activations, that is the time that
passes between the moment at which the task activates and
the next activation.

• Activation rule: rule that speci�es what a task must do when
activates, this rule is user de�ned.

• Predictable/Unpredictable: in case of a poisson process task,
if �predictable� is selected the value in the seed �eld is used
to generate the delay of activations time, if �unpredictable� is
selected the seed is computed at simulation time.

• Context switch overhead: de�nes the overhead used when a
context switch happens.

• O�sets table: de�nes the wake up time of a certain activation
of the task.

• User's de�ned parameters: this table contains user de�ned
parameters that are used by user de�ned scheduler.

When all the tasks are de�ned and added to the task pool, the
scheduling options can be de�ned using the following window:
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Figure 3: Cheddar scheduling options

The options that can be customized with this window are:

• O�sets: the simulation considers the o�sets de�ned by the user
when the tasks placed in the task pool are created.

• Precedencies: the simulation takes care of the dependencies
between tasks during the simulation (these dependencies can
be de�nes with a dedicated window)

• Resources: if checked, the access to shared resources by tasks
are simulated.

• Seed options: using these options the user can de�ne how ran-
dom activation timer are generated.

• Generate events: with these checkbox the user can decide which
events will be generated in the event table during the simula-
tion.
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When all the necessary settings are done, one of the two of the
analysis tool provided by Cheddar can be used:

• Feasibility analysis tool, that computes the feasibility of the
de�ned tasks without the actual scheduling of the tasks.

• Simulation analysis tool, that computes the scheduling of the
tasks and shows the scheduling diagram and some information
regarding the scheduler simulation.

Speaking of the simulation analysis tool, when the simulation is run
a window containing all the information regarding the scheduling
simulation is shown:

Figure 4: Cheddar simulation results

In the upper part of the window, the simulation diagram is shows.
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Intuitively, the �rst row represents the simulation time. Below that,
there is a row for each task that has been inserted to the task pool.
The vertical red lines represents the wake up times of the task, while
the black rectangles represents the execution time of the task.

The lower part of the window shows some interesting acts about
the simulation, such as the number of context switches and preemp-
tions and, above all, if the task set is schedulable or not.

One of the main advantages in using Cheddar is that is very
�exible: there are a lot of options that can be used to customize
the simulation (many of them are not even shown in the pictures
above), it also allows to simulate the access to shared resources like
memories and bu�er which is not a common feature for real-time
simulators. Also, using the graphical user interface to make the
con�gurations is very easy and user friendly, so even if someone is
not able to write code, he/she can use all the features included in
Cheddar without any problem.

2.2 RTSim

RTSim is a real-time system simulator developed at Retis Lab of
the Scuola Superiore Sant'Anna. RTSim has four components:

• metasim: a generic C++ library used for the simulation of
discrete event systems.

• rtlib: based on metasim, is the core library of RTSim. It is
used for the simulation of scheduling algorithms and real-time
tasks.

• ctrlib: a library for the simulation of real-time control systems.

• jtracer: a java tool for the visualisation of schedule traces pro-
duced by a rtlib program.

To make the simulation, the user has to write a C++ source �le,
using the main() function and including all the needed libraries (all
the examples shown from this point onward refers to the implement-
ation of an EDF scheduler).

17



Figure 5: RTSim needed headers and namespaces

Then, the chosen scheduler must be created and has to be associated
with the kernel. Note that there is a class for each implemented
scheduler: EDFScheduler for Earliest Deadline First, FPScheduler
for Fixed Priority, etc.

Figure 6: RTSim scheduler de�nition

After that, the tasks that have to run in the simulation must be
de�ned and the code they run is associated to them.

Figure 7: RTSim task de�nition

In the case illustrated above, two tasks are created; they are both
periodic task. The �rst argument of the periodic task constructor
represents the period, the second argument is the realtive deadline,
the third argument is the starting time and the last argument is the
name of the task. The t1.insertCode("delay(unif(2,4));") piece of
code speci�es that the task has a variable execution time that varies
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between 2 and 4 milliseconds. Apart from periodic tasks, real-time
tasks can be created too using class RTTask instead of PeriodicTask .

Next, the traces that will be used later for the visualisation of
the scheduling scheme must be created and associated to the tasks

Figure 8: RTSim tracing de�nition

There are two ways to accomplish the tracing for the visualisa-
tion: using a JavaTrace object and then associating the tasks to
this object using the setTrace method, or using a TextTrace object
and associating the tasks using the attachToTask method. This two
procedures are equivalent, so only one of them can be used and the
tracing visualisation will be performed correctly.

Finally, the code to specify that the tasks will be scheduled us-
ing the instantiated scheduler is added, and then the simulation is
started using the command Simulation::run(500), where 500 is the
number of units of time for which the simulation will run.

Figure 9: Run the simulatio in RTSim

With all the code written, the main program will look something
like this:
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Figure 10: RTSim complete simulation code

When the code is complete, the simulation che be run and the visu-
alisation of the tracing can be seen. For example, this is the trace of
a simulation using �ve tasks and the Earliest Deadline First sched-
uler.
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Figure 11: RTSim simulation results

In the scheduling trace, the vertical arrows represents the wake up
time of each task.

RTSim is, in a way, both easier and harder to use with respect to
Cheddar: harder because it requires that the user know how to write
programs in C++ (even though the coding is very simple), easier
because, in order to run a complete simulation, Cheddar requires
the user to con�gure a lot of options and some of them might not
be of immediate understanding for someone who doesn't use very
often real-time systems and schedulers. While using RTSim can be
useful to perform a simple and immediate scheduler simulation, it
doesn't go very deep in the topic of real-time scheduling: Cheddar
is a bit more complete since it allow the user to customize a lot of
features of the simulation and gives away a lot more information,
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such as the scheduling feasibility, the number of context switches
and the number of preemptions.

2.3 LitmusRT

LitmusRT (Litmus for short) is a Linux kernel modi�ed to support
multiprocessor real-time scheduling; so unlike the previous cases
with Cheddar and RTSim, Litmus is not a simulator but a real
kernel.

Litmus adds to the Linux kernel a lot of scheduling policies which
are implemented as scheduler plugins. The following scheduler plu-
gins are currently working in Litmus:

• Linux: this is a dummy plugin, it just disables the real-time
functionality handing over the control of the kernel to the de-
fault Linux kernel.

• Partitioned Fixed Priority scheduler (P-FP): with this plugin
each task has a �xed priority and it's assigned to a certain
processor. The scheduling decisions are made considering the
priority: every time the scheduler must decide which task to
run, it makes a certain processor run the highest priority task
assigned to it.

• Partitioned Dynamic Priority Earliest Deadline First (PSN-
EDF): this scheduler works like just an EDF scheduler, the
only peculiar feature is that (being it partitioned), the sched-
uler makes each processor run the task with the closest deadline
among the tasks that are assigned to it.

• Global Earliest Deadline First (GSN-EDF): this scheduler is
like the previous one (PSN-EDF), with the only di�erence that
it is not partitioned, but it's global. This means that the tasks
are not assigned to a particular processor and so the scheduler
makes each processor run the task with the closest deadline
among all tasks.

• Clustered Earliest Deadline First (C-EDF): this scheduler is a
hybrid of PSN-EDF and GSN-EDF. Some non-overlapping sets
of processors are scheduled independently with a global policy.
These clusters are built using cache topology; the cluster value
can be "L1", "L2", "L3" or "ALL", where "ALL" is equivalent
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to global scheduling (so the scheduling policy will be the same
as GSN-EDF) and "L1" is equivalent to partitioned scheduling
(the scheduling policy will be the same as PSN-EDF).

• Proportionate Fair (PFAIR): this scheduling policy is based on
the PD2 algorithm.

• Reservation Based (P-RES): this scheduling policy is based on
reservations, that are "object" to which tasks are assigned to.
Litmus supports three types of reservations (the way reserva-
tions work will be explained later on in this chaper):

� periodic polling server

� sporadic polling server

� table-driven reservations

While using Litmus, shell commands can be used to perform almost
all the operations regarding the schedulers management. For ex-
ample, the command showsched can be used in order to check the
currently active scheduler plugin.

Figure 12: Litmus showsched command

The command setsched can be used to make Litmus use one of the
de�ned plugins, using the name in paratheses as shown in the list
above. The following picture shows how to make the kernel use
Partioned Fixed-Priority (P-FP) scheduler.
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Figure 13: Litmus setsched command

2.3.1 Real-time tasks in Litmus

In Litmus, real-time tasks are characterized by these parameters,
that must be set before the task is run:

• Worst-case execution time (WCET): this is the budget of a
tasks, that is the maximum execution time the task can have
every time is executed.

• Period: the time interval between two successive activations of
a task.

• Deadline: as explained in section 1.2, this is the time limit
within which a task must complete after it is released.

• Partition: in the case of partitioned schedulers (such as P-FP
and PSN-EDF), this parameter specify the partition the task
belongs to.

Real-time tasks can be executed in Litmus by using one of the
two commands available: rtspin and rt_launch. rtspin creates a
"dummy" real-time task that loops for the duration speci�ed by the
user and is useful for simulating CPU workloads and testing. For
example, the following command must be used in order to run a
real-time task for 5 seconds, on core 1 with a period of 10 ms and a
WCET of 1.5 ms:
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Figure 14: Litmus rtspin command

The other command used to run real-time tasks in Litmus is rt_launch.
This command is useful to run any task in real-time mode, even code
that has not been designed to run in a real-time environment. For
example, the following command must be used in order to run the
�nd program as a real-time task on processor 1, with a period of
100 ms and a budget of 10 ms:

Figure 15: Litmus rt_launch command

Litmus gives the user the possibility to make many tasks commence
execution only after all the tasks have been initialized; in this way
all tasks share the same starting time and this is important for the
simulation of the tasks execution. In order to do this, when de�ning
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the execution of a real-time task with rtspin or rt_launch, the user
must use the -w option (that means that the task must wait for
a synchronous time release) add a $ character at the end of the
command, in this way the task waits in background for the release.
After all the tasks have been deined and initialized, the user can use
the release_ts command in order to start all the previously de�ned
tasks.

Figure 16: Litmus release_ts behavior

2.3.2 Tracing in Litmus

Litmus allows the user to trace both schedule and system overheads
(like context switches costs and scheduling costs).

Schedule tracing In order to trace a schedule, the user has to use
the st-trace-schedule command. The outline to make a complete
schedule tracing is the following:

• issue the st-trace-schedule command to start recording the sched-
ule.
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• Initialize all the tasks that will run using rtspin or rt_launch,
making them wait for a synchronous release using the -w op-
tion.

• Use the release_ts command in order to release all the previ-
ously de�ned tasks.

• Stop st-trace-schedule to stop the tracing of the schedule when
the tasks have completed their execution.

Figure 17: Litmus, how to use the st-trace-schedule command

The st-trace-schedule tool records event while the tasks run, in order
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to have a complete decription on which scheduling decisions are
made. In particular, the events recorded by the tracing tool are:

• the start of execution of a task.

• The preemption of a task

• The suspension of a task

• The resuming of a task

When the tracing is run, a �le containing the above events is created
for each cpu used to run the tasks.
In order to have a clearer and more readable representation of the
traced schedule, it's possible for the user to use a tool to draw the re-
corded schedule. This tool is called st-draw and is based on pycairo;
the command syntax is the following:

Figure 18: Litmus st-draw command

Where schedule_host\=litmus_scheduler\=GNS-EDF\=mytrace_cpu\=*.bin
indicates that the tool must draw the schedule of all the �les created
by the tracing tool (to obtain the name of each �le, just replace the
* with the number associated to the CPU. For example in this case
the kernel uses to CPUs, so there are two �les, one with 0 and one
with 1 where the + is located). The product of the st-draw tool is
drawing of the schedule that looks like this:
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Figure 19: Results of the schedule tracing in Litmus

In this drawing we can see a graph for each task that has been
executed, with the task id at the left of the graph (in this case the ids
are 2812, 2813, 2814, 2815). The colored rectangles represents the
time intervals in which the tasks are executed, and are in di�erent
color depending on which CPU has executed the task. For example,
in this case tasks 2812 and 2814 have been executed by CPU 0,
while tasks 2813 and 2815 have been executed by CPU 1. With this
drawing the user can easily verify that the task settings speci�ed
during task de�nition with rtspin are respected and the scheduling
decision are done accordingly. Zooming out a bit, we can also see
that all the tasks have a period of 100 ms and that the end of the
period is marked with a vertical arrow.

Figure 20: Showing the task period in the results of the schedule tracing

Overhead tracing In order to trace overhead during a schedule,
Litmus allows the user to use the Feather-Trace tool that is used in
the following way (the operations are very similar to the ones used
for schedule tracing):

• issue the ft-trace-overheads command to start recording over-
heads.

• Initialize all the tasks that will run using rtspin or rt_launch,
making them wait for a synchronous release using the -w op-
tion.

• Use the release_ts command in order to release all the previ-
ously de�ned tasks.

• Stop ft-trace-overheads to stop the tracing of the overheads
when the tasks have completed their execution.
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Figure 21: Litmus, how to use the ft-trace-overheads command

With Feather-Trace, two �les are created for each CPU: one for CPU
local events like context switches and one for messages such as res-
chedule noti�cations. The �les produces by Feather-Trace contains
a list of event records, which consists of the following �elds:

• an event ID
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• the ID of the CPU on which the event occurred

• a sequence number

• the PID of the process that is related to that event

• the type of process related to that event

• a timestamp

• a �ag that shows if any interrupts occurred since the previously
recorded event

• a counter of the interrupts occurred since the previously recor-
ded event

Once the overhead trace �les are generated by the tool, the user
can apply several other tools in order to analyse the data and ex-
tract meaningful information from them. Among the several tool
available, the most signi�cant are the high level tool, which are the
following:

• Sorting: using the command ft-sort-traces , the user can sort the
�les in order to ensure that there are not out-of-order samples.

• Extracting samples: using the command ft-extract-samples , the
user can extract the samples from the �les and also discards any
samples that were disturbed by interrupts.

• Combining samples: using the command ft-combine-samples ,
the user can combine many data �les into one for further com-
putation.

• Counting samples: using the command ft-count-samples , the
script determines the minimum number of smaples recorded.

• Random sample selection: using the command ft-select-samples ,
the user can extract from the �le generated by ft-count-samples
a random set of samples that will be used for further compu-
tation. This procedure is used in order to obtain unbiased
statistics.

• Computing simple statistics: using the command ft-compute-
stats , the user can obtain the maximum, average, median, min-
imum, standard deviation and variance of the traced overheads.
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All these tools are best used in chain, creating a toolchain that
will provide the user meaningful data extracted from the overhead
tracing.

Figure 22: Overhead tracing toolchain in Litmus

2.3.3 Creating a new plugin in Litmus

Litmus allows the creation of new scheduler plugins that can later be
added to the list of available scheduler, in order to let the user test
the performance of the custom scheduler he/she de�ned. In order
to do this, the user has to create a �le in the folder /opt/litmus-
rt/litmus with a .c extention, for example sched_demo.c. Also,
the user has to add sched_demo.o in the obj-y list in the Make�le
situated in the litmus directory. After these preliminar actions,
the user can then write the code of the scheduler. In this section
every part of the code needed by the scheduler will be decribed and
explained.
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Scheduler de�nition and initialization

Figure 23: Litmus, scheduler de�nition and initialization

Since all the plugins in Litmus are kernel modules, themodule_init(init_demo)
macro is used in order to tell the compiler which function must
be called during initialization. In this case the function called is
init_demo, which is de�ned above. The init_demo function calls
the register_sched_plugin function, that adds this plugin to the list
of available schedulers in Litmus. Above the init_demo function,
there is a struct called demo_plugin which contains all the inform-
ation of the custom de�ned plugin and all the functions that must
be called in case a particular event occurs. For example, while us-
ing the demo plugin, when a task wakes up the demo_task_resume
function will be called, or when a scheduling decision must be made,
the demo_schedule function will be called.

In order to make the following functions work, several headers
must be included in the plugin �le.
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Figure 24: Litmus, headers needed for the de�nition of a new scheduler

De�ning the per-processor state

Figure 25: Litmus, de�ning the per-processor state

In order to make the plugin work, the user must de�ne the vari-
ables that de�ne the state of each processor. This is done using the
struct demo_cpu_state, which contains: the variable local_queues
that represents the two queues needed by the scheduler (the ready
queue and the release queue), the cpu variable that indicated the
cpu id, the scheduled variable that shows the task that is currently
scheduled. The DEFINE_PER_CPU is a macro that allocate the
state of the plugin for each cpu, and the macros below wrap Linux's
per-cpu data structure, they are not strictly needed but are used in
order to make the code more readable.
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Initializing the per-processor state

Figure 26: Litmus, initializing the per-processor state

In order to initialize the state for each processor, the demo_activate_plugin
function is used, which is the function that is called when the plu-
gin is activated (that is when the user issues the setsched com-
mand). The only thing that this function does is to initialize the
demo_cpu_state that was de�ned before for each cpu. The import-
ant instructions in this piece of code are:

• state = cpu_state_for(cpu) which use the before de�ned macro
to initialize the ste for every cpu.

• state->scheduled = NULL that means that there isn't any cor-
rently scheduled task because the plugin is just activated.

• edf_domain_init(&state->local_queues, demo_check_for_preemption_on_release,
NULL) which is the function de�ned for the EDF scheduler that
initializes the two local queues.

The demo_check_for_preemption_on_release is a function that is
called when a task is released, and it check if the currently scheduled
task must be preempted in order to make the just released task run.
The function is de�ned in this way:
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Figure 27: Litmus, demo_check_for_preemption_on_release function de�ni-
tion

edf_preemption_needed and preempt_if_preemptable are EDF spe-
ci�c functions, the �rst one checks if the preemption is needed (that
is, if there is a task in the ready queue with a closer deadline with
respect to the running task), the second one performs the preemp-
tion.

Scheduling logic In this section, the function that together form
the scheduling logic are analyzed. First, the user needs to de�ne the
demo_job_completion function, which is called when a job com-
pletes. It just call the helper function prepare_for_next_period
that is a general purpose function used in the majority of Limus
schedulers, it does all the required procedures to ensure that the
scheduler is ready for the next period.

Figure 28: Litmus, demo_job_completion function de�nition

Next, the user must de�ne the demo_requeue function, which is
used to put a task in the correct queue. It simply put the task in
the ready queue is the task is already released, otherwise it places
the task in the release queue.
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Figure 29: Litmus, demo_requeue function de�nition

Also, a function used when the user deactives the plugin (that is,
when another scheduler is chosen with the setsched command) must
be de�ned. It is called demo_deactivate_plugin and it just erases
all the information regarding the scheduler.

Figure 30: Litmus, demo_deactivate_plugin function de�nition

Regarding the e�ective scheduling logic, it is de�ned in the demo_schedule
function. First, the raw_spin_lock instruction allows the sched-
uler to obtain th lock on the ready queue, then the function checks
what states the previously scheduled task was (exists , self_suspends ,
out_of_time or job_completed).
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Figure 31: Litmus, demo_schedule function de�nition

After that, the function checks if there is an higher priority task
in the ready queue that has to be executed, if that is the case the
currently running task is preempted and the higher priority task
is executed. The running task is preempted if it has suspended
execution, if it's out of time, if it has completed the job or (in the
case of EDF) if there is a ready task with a closer deadline (this case
is handled by the edf_preemption_needed function).

Figure 32: Litmus, preemption implementation

Then, if the currently running task must be preempted, it is placed
in the ready or release queue depending on its state and the higher
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priority task in put in running mode. Finally, the lock on the ready
queue is released.

Figure 33: Litmus, moving the preempted task into the right queue

Task management This section explains the functions that must be
de�ned in order to make the scheduler manage correctly the tasks
that have to be executed. First, the function demo_task_new man-
ages the new real-time tasks, that is the tasks that, while previously
not real-time, becomes real-time. When this happens, this new real-
time tasks is placed in running state if it's already running or it's
put in the correct queue using the demo_requeue previously de�ned.
After that, the function checks if there is need for preemption (that
is, if the new real-time task is put in the ready queue and has a
closer deadline than the running task, the running task must be
preempted).
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Figure 34: Litmus, demo_task_new function de�nition

There is also the need for a function that maintains the scheduler
state when a task exits. For this purpose, the demo_task_exit is
de�ned and it simply put back to NULL the scheduled variable,
indicating that there isn't a running task anymore.
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Figure 35: Litmus, demo_task_exit function de�nition

The demo_task_resume function manages the resuming task. If the
resuming task is a sporadic one and resumes after its deadline, it is
realeased assigning it a new budget (with the release_at function).
In any case the task is placed in the correct queue and then the
function checks if there is need for preemption as always.

Figure 36: Litmus, demo_task_resume function de�nition

Finally, the demo_admit_task function is needed to accept real-
time tasks, provided that they are located on the right core.
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Figure 37: Litmus, demo_admit_task function de�nition

2.3.4 Litmus advantages and disadvantages

Litmus has some relevant advantages compared to the previously
analyzed tools, Cheddar and RTSim; the most important one is that
Litmus is not a simulated environment, but it is a real Linux kernel.
This means that any test excuted using Litmus has high reliability
and many elements that could be di�cult to replicate in a simulated
environment (such as disturbances) are naturally present in a real
and not simulated system.

The main downside of Litmus is its procedure for new plugin cre-
ation. In fact, Litmus lets the user de�ne a new scheduler as we just
saw, but it does not allow for a complete customization of the new
scheduler. For example, the Litmus plugin is not capable of changing
the budget of real-time tasks at runtime, since the budget must be
de�ned when the tasks are created using rtspin or rt_launch. This
is a major �aw that, unfortunately, does not give the user complete
freedom in the scheduler de�nition.

2.4 TrueTime

TrueTime is a real-time control system simulator based on Mat-
lab and Simulink. It includes modules for the simulation of many
di�erent types of real-time systems: it has a module for network
simulation (that can simulate CSMA/CD, token bus, switched eth-
ernet and many other protocols), a module for wireless network
simulation (that can simulate WLAN and ZigBee among the other
protocols) and a module for the kernel simulation, which is the one
that will be analyzed here. In particular, in order to fully understand
how the TrueTime kernel works and how it manages the scheduler,
the threeservos example will be used for reference. Opening the
Simulink �le of the threeservos example, the following window is
displayed:
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Figure 38: TrueTime real-time control system

Here we can recognize the structure of a real-time control system,
where the tasks are simulated using the transfer functions on the
right side of the picture. The most interesting Simulink block is the
one called TrueTime kernel , that contains all the kernel logic used
for the simulation. Once the simulation is run, the code associated
with the TrueTime kernel block (which will be explained in the next
section) is executed and the result of the scheduling decisions will be
displayed in the Schedule monitor. In this example, there are many
schedulers that the user can choose, like Deadline Monotonic and
Earliest Deadline First schedulers. For instance, if the user chooses
to run the simulation and then opens the Schedule monitor to see
the result of the scheduling decision, this is what he/she can see
(also depending on the tasks parameters which will be explained in
the next section)
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Figure 39: TrueTime, result of the scheduling simulation

In the Schedule monitor we can see a row for the scheduling decisions
of each task and a di�erent value on the graph means that the task is
in a certain state at that time. Explaining the concept more clearly:
the "purple" task is not released when the graph value is 2, it is in
ready state when the graph value is 2.25 and it is in running state
when the graph value is 2.5. The same applies also to the other two
tasks.

2.4.1 The TrueTime kernel block

In this section the TrueTime kernel block code is explained in more
detail, presenting the most relevant parts of the code in order to
better understand how the kernel works and how the scheduling
decisions are made. The most important aspect to understand is
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that the code associated to the TrueTime kernel block is used to
de�ne the tasks, their parameters and the schedulers used in the
simulation. The true kernel and scheduler logics are not written
here, but are written instead in external C++ modules that will be
explained in more detail later, in the section that explains how the
separation between kernel and scheduler has been done.

First, in the TrueTime kernel block code the data structure for
the tasks must be de�ned. It contains all the parameters related to
the transfer function, since the tasks are simulated using a transfer
function.

Figure 40: TrueTime kernel block code, TaskData de�nition

After the task data structure has been de�ned, some variables con-
taining the task parameters (like periods and start times) must be
de�ned and initialized in this way:

Figure 41: TrueTime kernel block code, task parameters de�nition

Obviously in this case the task parameters are de�ned as arrays,
and each element of the array corresponds to a certain task.

After the de�nition of all the data structure and parameters re-
garding the tasks, the PID code function must be written.
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Figure 42: TrueTime kernel block code, PID code function

The most interesting part of this piece of code is the switch that uses
the concept of segment (written as seg in the code). In TrueTime
the segment represents the piece of code that should be executed by
the simulated task; the code execution is also simulated using the
transfer function that takes the input of the PID block, use them in
the pidcalc function and returns the execution time; all this is done
if the segment value is 1, that is the task has not yet completed
execution. If seg has a value di�erent from 1 it means that the task
has �nished execution, so the outputs of the PID block are written.

After the previous steps, the tasks must be created using the
ttCreatePeriodicTask function, passing the task parameters previ-
ously de�ned:

Figure 43: TrueTime kernel block code, task creation

Then, in the main function of the TrueTime kernel block, the sched-
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uler must be set depending on the user choice. The user can choose
the scheduler opening the kernel block and inserting a numerical
value, depending on this value the scheduler used in the simulation
will di�er.

Figure 44: TrueTime kernel block code, scheduler selection

In this case, for instance, with value 1 the simulation will run with
the Dead Monotonic scheduler, with value 2 the simulation will run
with the Earliest Deadline First scheduler and so on. prioDM and
prioEDF are priority functions that tell the kernel how to manage
the ready queue, they will be explained in more datail later.

2.4.2 Separating the schedulers from the kernel

This section will explain the procedure used in order to separate the
kernel logic from the scheduler logic in the TrueTime kernel. This
has been done because, before this change, the two logic were not
clearly discernable and it was di�cult to understand which instruc-
tions were relevant to the scheduler and which were relevant only
to the kernel. In this way the code has become much more read-
able and, in future, implementing new feature will be much easier,
particularly if it is a scheduler feature. In fact, this operation was
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an intermediate step in order to make the implementation of the
Round Robin scheduler easier.

First, the StatefulScheduler header �le has been de�ned. It con-
tains the StatefulScheduler class that is the main (and general)
scheduler class from which the other schedulers will inherit.

Figure 45: TrueTime, StatefulScheduler class de�nition

This class contains the parameters that were previously de�ned in
the kernel class but are relevant to the scheduler logic. In particular,
we can see:

• the running �eld, that contains the currently running task

• the readyQs �eld, which represents the queues of ready tasks

• the timeQ �eld, which represents the queue of tasks that are
waiting for release
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• the prioFcn �eld, which is a pointer to the priority function
used by the scheduler to manage the ready queue.

The concept of the priority function needs a little more explanation
to be clear. In order to determine the task that must be run, the
scheduler (and formerly the kernel) usese the ready queue: the �rst
task in the ready queue is the one that must be in running state.
This means that at every moment of the simulation the ready queue
must be ordered according to the scheduling policy. For instance,
in the case of Fixed Priority the queue must be ordered according
to the tasks priority, or in the case of Earliest Deadline First the
queue must be ordered according to the tasks deadline. The priority
function is used to compare the tasks in the ready queue and order
them according to the scheduling policy. As we can see in the picture
below, the priority function for the Fixed Priority scheduler uses the
task priority, while the priority function for the Deadline Monotonic
scheduler uses the deadline.

Figure 46: TrueTime, priority functions implementation

The methods contained in the StatefulScheduler class are all virtual
method since they are implemented in the scheduler subclasses, so
they will be explained shortly.

After the de�nition of the StatefulScheduler header, a scheduler
subclasses must be de�ned for each scheduler implemented in True-
Time. Since the already present scheduler are Fixed Priority, Earli-
est Deadline First and Rate Monotonic, three subclasses have to be
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de�ned. The following pictures shows the Fixed Priority scheduler
class (called FPScheduler) as de�ned in the header.

Figure 47: TrueTime, FPScheduler class implementation

The class does not have any �elds since the needed �elds are inher-
ited from the StatefulScheduler superclass. The methods shown are
implemented in the source �le; in order to not change the TrueTime
kernel behavior, these methods are only wrapper that wrap the in-
structions used when there was not a separation between kernel and
scheduler.
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Figure 48: TrueTime, FPScheduler methods implementation

After wrapping all the needed instructions in the kernel code, it
is clear what operations are done by the scheduler, since all the
scheduling decisions and actions are methods of the scheduler object.

Figure 49: TrueTime, example of the wrapping done by the scheduler methods
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In order to make this all work, the correct scheduler object must
be instantiated accordingly to the scheduler chosen by the user:
since the TrueTime kernel block code passes the priority function to
the kernel code, this is used to determine which scheduler must be
created.

Figure 50: TrueTime, creation of the right scheduler using the SchedulerFactory
class

SchedulerFactory is a class used for instantiating the correct sched-
uler depending on the priority function passed by the block kernel
code. The method createScheduler is de�ned as follows:
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Figure 51: TrueTime, createScheduler method implementation

2.4.3 Implementing the Round Robin scheduler

In order to implement the Round Robin scheduler in TrueTime, a
new class for this type of scheduler must be created. The class struc-
ture is essentially the same as the previously implemented scheduler.

Figure 52: TrueTime, RROBINScheduler class de�nition

While also most of the methods implementation is the same, the
big di�erence is the getTaskToRun method: this method returns to
the kernel the task that must be in running time at that particular
moment. For the other schedulers this method is just a wrapper
for the method getFirst of the queue class that returns the �rst
task in the queue (because as explained earlier the �rst task in the
ready queue is the task that must be running), but in the case of
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the Round Robin scheduler is a little more complex. The code is as
shown in the picture below.

Figure 53: TrueTime, getTaskToRun method implementation

The getTaskToRun method, in order to return the correct task to
run, does the following:

• in order to implement the preemption when a task �nishes its
burst, if there is currently a running task and that task is a
UserTask (meaning that is not a timer) and that task has �n-
ished its burst, the function moves the task back to the ready
queue. In this way the task is placed in the ready queue, which
is then automatically ordered accordingly to the priority func-
tion. Since the priority function for the Round Robin scheduler
returns the priority of the task, the queue is ordered accord-
ingly to the tasks priorities. In the case of the Round Robin
scheduler, the priorities are set to their default value and can-
not be changed, in this way, since the priorities are all equal,
the tasks order in the ready queue is based on each task's ar-
rival time. This behavior guarantees the cycling of the tasks
typical of the Round Robin scheduler.

• After the preempted task is placed back in the ready queue,
the method uses the getFirst function in order to take the task
that must be run (since the queue is now correctly ordered as
explained before).

54



• If the task that must be run is not NULL (meaning that the cpu
is not in idle state but has to run a task), then the next burst
for the task (here called minBurst) is computed. Its value will
be the minimun between the task budget (which in TrueTime
has the same value of the WCET) and the remaining execution
time (here called execTime). This is done in order to guarantee
that when the remaining execution time for a task is less that
the assigned budget, the task will be preempted.

The last step that must be done in order to make the Round Robin
scheduler work is to decrement the budget of the task while it runs.
This is done using what in TrueTime is called hooks: hooks are
pieces of code that are executed in predetermined moments of the
simulation. For example there is a runkernel hook that is executed
when the kernel runs, a release hook that is executed when a task
is released, and so on. In our case, the runkernel hook is used to
decrement the budget for the running task.

Figure 54: TrueTime, task budget decrease

3 Conclusions

In the course of this paper, some tools for real-time schedulers (and
in general systems) have been described and analyzed.

Cheddar is a very powerful tool regarding the scheduling simula-
tion, because it allows the user to customize nearly every aspect of
the system that will be simulated, it also let the user de�ne custom
schedulers. The main Cheddar downside is that, despite the high
level of customization, the results don't deliver much information to
the user since they mainly focus on the feasibility of the schedule.

RTSim is a much simpler tool than Cheddar, if the user is able to
write C++ code, he/she can create a simulation very quickly. This
obviously comes with a downside, that is the fact that RTSim does
not o�er the level of customization that Cheddar does. The results
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given by RTSim are similar to the ones given by Cheddar: they
primarly focus on scheduling feasibility and the scheduling decisions,
but don't go further than that.

Litmus is very di�erent from the scheduling simulation tools just
described: it doesn't focus on giving the user a scheduling scheme in
which the scheduling decision are shown, but, since it is a real ker-
nel and not a simulation tool, it focuses on letting the user test the
task behavior on a real operating system. The obvious advantage
is that the results that the user can obtain from using Litmus are
much more reliable that the ones obtained from a simulation tool.
The main Litmus disadvantages is its inability to provide complete
support for a real scheduler customization; it's true that it let the
user de�ne new scheduler plugins but, as shows in the Litmus sec-
tion, there are many aspect that the user cannot customize and that
he/she cannot control.

TrueTime is like the tradeo� between the elements that we have
been talking about in this section: it provides the means for the
user to test the feasibility of a schedule, while customizing the tasks
that have to run in the schedule and deciding which scheduler to
use. TrueTime also allows the user to customize the schedulers and
adding new ones, not only that, the user can customize the entire
kernel code. The main downside is that the kernel code is a bit
convoluted and it can be hard to fully understand what each piece
of code does. With our contribution in separating the kernel and
scheduler code in TrueTime, we hope to have made the code more
readable for future developers and users who want to further cus-
tomize the TrueTime kernel and scheduler. Also, with the addition
of the Round Robin scheduler, we hope to have made the TreuTime
system even more complete that it already was.

One �nal note worth of notice is that, while all the tools for real-
time scheduling simulation provides the means to obtain scheduling
statistics and a graphical representation of the scheduling decisions,
only a few allow the developer to really de�ne and customize new
schedulers. Even the tools that have such feature (like Litmus),
it is not really supported and the customization options are not
complete. Our hope is that, in future, many more tools for real-time
scheduling simulation will provide this feature, in order to make the
de�nition of new schedulers and scheduler policies easier.
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