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Abstract

This work focuses on the development and implementation of multiple techniques
to estimate a vehicle slip angle, the offset between the tires direction and the real
direction followed during a maneuver, caused by non-perfect adherence between
the tires and the road. This quantity, together with the vehicle input commands,
is enough to estimate and predict the lateral vehicle dynamics, allowing the in-
troduction of advanced safety and control features. Slip angle measurement is
traditionally performed only in critical situations, by using dedicated optical or
inertial sensors. The spread of low cost, MEMS-based positioning and inertial sen-
sors is leading to the development of new algorithms, that combine these data to
produce reliable values, allowing a more general use of this information.

A common control theory tool, the Extended Kalman Filter, has been applied
multiple times for this specific purpose, but different approaches can lead to im-
provements in terms of computational cost and precision. The presented estimation
methods are built around two different theoretical backgrounds: a common con-
trol technique for nonlinear systems called feedback linearization, and a recently
developed parameter identification technique for nonlinear systems, based on the
Linear Fractional Transformation (LFT). Both approaches are explained in full
and used to build multiple estimators, that are then tested against data sets from
a properly-simulated environment and a real unmanned ground vehicle, even in
a complete non-adherence situation called drifting. The robustness of each case
is analyzed, with the aim of providing high-bandwidth supporting tools for an
assisted control solution. Finally, the difficulties linked to the implementation of
the algorithms on an on-board microcontroller are treated.

KEYWORDS: Slip Angle; Sideslip Angle; LFT; Linear Fractional Transform;
Feedback Linearization; IMU; GPS; GNSS; Lateral control; UGV; EKF.
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Chapter 1

Introduction

1.1 Motivations

Control theory applications are rising exponentially in both industrial and civil-
ian fields, as the performance requested to control systems in terms of precision
and bandwidth. This is leading to an increase in the research activity, aimed at
optimizing the underlying theory and finding faster and cheaper way to achieve
results.

The automotive industry is of particular importance, since control solutions of
increasing complexity are nowadays a fundamental part of a vehicle circuitry,
for safety, simplicity or luxury purposes. A commercial car is shipped with up
to 100 microcontroller units (MCU), each one including its annexed sensors and
actuators, that are responsible of a wide variety of tasks at multiple levels, from
ignition to mandatory safety systems like ABS and ESP, from active suspensions
to collision avoidance systems, a market evaluated over 32 billions in 2017 [28].
In particular, so called driver assistance systems (DAS) are a relevant part of the
added value of a car, consisting in features that provide processor-aided assistance
to a driver in standard or critical conditions: solutions have been developed for
driving with low adherence, avoiding collisions and even easing lane change and
parking. These procedures represent an intermediate step between full manual
control and autonomous driving.

Stability control is one of the most sensitive task of driver assistance systems, as it
consists in preventing the vehicle from spinning, drifting and rolling over [34], or
even guaranteeing controllability in these situations, an operation whose efficacy
depends on the accuracy and responsiveness of the control algorithms, requiring
a much lower response time than the one of non-critical features. In particular,
yaw stability refers to the ability of keeping the car on the desired trajectory
by monitoring the lateral dynamics, i.e. the lateral forces and displacements that
influence the trajectory. While the phenomenon can be modeled in many ways, a
common characteristic component is the slip angle, defined as the offset between
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2 INTRODUCTION

the wheels direction and the real direction followed by a vehicle, that arises during
a maneuver. The slip angle is an indicator of slippage, a complex phenomenon that
is due to tires deformation and non-perfect adherence between tires and road. Its
value can be used for assessing the adherence, thus avoiding dangerous situations,
and even to track the whole lateral dynamics, allowing to control a vehicle even in
non-adherence conditions. Slip angle is only available in critical situations, since
its direct measurement requires expensive dedicated sensors, using an optical or
inertial working principle.

The spread of low cost positioning and inertial sensors, shipped in form of MEMS
devices, like the one represented in Figure 1.1, together with microcontrollers of
increasing power, is leading to the development of new safety systems that keep
into account both the new inputs and the bigger computational capability, creating
a whole new level of automation for standard cars and unmanned ground vehicles.
In particular, by introducing sufficiently powerful microcontrollers into a vehicle,
it is possible to simulate in real time dynamic models, differential equations that
take into account measurements from multiple sensors and provide a much more
complete representation of the phenomenon of interest than the one provided by
single sensors.

Figure 1.1: The MPU6050, a common 6-dof IMU

The slip angle is not immune to the process, as it can be measured indirectly by
feeding data from multiple sensors (generally positioning and inertial sensors) into
a dynamic model, making the value available as input for standard safety features
or even control in extreme conditions. This task is unfortunately subjected to a
series of limitations, shared with many other control theory applications to a real
world scenario:

• The accuracy of the chosen model influences significantly the precision of the
system. It can be enhanced by increasing the model complexity, requiring
more sensors and more computational power.

• Dynamic models of sufficient complexity are generally nonlinear and contains
uncertainties, e.g. unknown or time-varying parameters, and are not covered
by the traditional approach to the matter. Many methods have been devel-
oped to simulate nonlinear models and estimate their uncertainties, the most
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common being the Extended Kalman Filter (EKF), a consolidated control
theory tool. The EKF has been applied multiple times to the lateral vehicle
dynamics field [37] [24] [40] [32], but is subjected to serious limitations in
terms of response time, accuracy and computational power requirements.

• The available sensors have a limited precision and bandwidth. These charac-
teristics can worse or improve when data from multiple sensors is processed
at the same time (e.g. when using a sensor fusion technique [36]), and must
be kept into account. Generally, any solution must be tailored to the specific
problem.

These issues are are addressed by a constant research activity: multiple approaches
have been proposed for the slip angle estimation problem, and in general for the
task of using nonlinear or uncertain models for high-bandwidth applications.

In this thesis, a series of slip angle estimation methods are analyzed and tested
against data provided by common sensors, with the aim of implementing practical
algorithms that can be used as supporting tools for real-time control systems.

The existing approaches are briefly explained and categorized; in particular, two
existing methods are resumed, with the aim of comparing their results to the ones
produced by newer approaches:

• An estimation technique based on the application of the EKF on a vehicle
dynamics model called single track, fed by measurements from a positioning
sensor. This approach constitutes one of the most common setup used in the
sideslip estimation field.

• An estimation technique based on the Linear Fractional Transformation
(LFT) formalism, a recently-developed technique for parameter identifica-
tion, that makes use of measurements from a positioning sensor, applied to
the single track model to identify up to two uncertain parameters. [8] [10]

The main limitations of these techniques are treated and used as starting point to
build and implement two new approaches:

• An estimation technique developed around the Feedback Linerization tech-
nique, based on measurements from a positioning sensor. This approach,
partially developed in literature [27], is improved and tested against data
from a simulated scenario and a real world use case.

• An estimation technique based on the LFT formalism, applied to the single
track model, fed by measurements from both a positioning and a IMU sensor,
and characterized by up to four uncertain parameters.

Advantages and disadvantages in terms of resolution and robustness are then dis-
cussed and supported with available results. The new tools constitute an improve-
ment in terms of precision, noise sensitivity and computational power requirements
with respect to some of the approaches proposed by the existing literature. In par-
ticular, the tools are intended to partially compensate the problems linked to
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the use of GNSS-based positioning sensors, almost mandatory in open spaces but
characterized by a low bandwidth and low resolution. At the same time, the work
demonstrates that the LFT-based parameter identification procedure for nonlinear
systems constitutes an efficient alternative to existing tools.

1.2 Organization

The work is organized in the following chapters:

Chapter 2 is dedicated to the state of the art regarding lateral control, dynamics
tracking and slip angle measurement or estimation. Furthermore, a brief explana-
tion of the used sensors is provided.

Chapter 3 explains the lateral behavior of a vehicle during a maneuver and the
mathematical model derived to reproduce it; a common tyre model, called Pacejka
model, is explained, and a simplified model called single track is derived through
successive approximations.

Chapter 4 explains the canonical application of the Extended Kalman Filter to
the lateral vehicle dynamics field: a tool is developed to identify the uncertain pa-
rameters of the single track model, resulting in a working estimator. The algorithm
is then tested against available data.

Chapter 5 is dedicated to the slip angle estimation method derived from the
application of the feedback linearization control technique on the unicycle model.
Working principle of feedback linearization is explained, as its application to vehi-
cle dynamics. The estimator is then tested against experimental data and upgraded
to provide a sufficient degree of robustness.

Chapter 6 is dedicated to a first application of the LFT estimator on the vehicle
dynamics. The Linear Fractional Transformation is introduced, together with one
of its possible applications to the static minimization problem, then the procedure
is applied on the single track model to derive a first estimator, that works through
a positioning sensors. The tool is then tested against simulated data and results
are analyzed.

Chapter 7 is dedicated to the possible improvements of the LFT-based slip angle
estimator. Three possibilities are analyzed and tested: the introduction of data
from IMU, an additional variability of the model and the repeated estimation over
time. Finally, the LFT-based estimation is analyzed and suggestions for future
improvements are given.



Chapter 2

State of the art

2.1 Stability control

As already introduced, an important group of driver-assistance systems is dedi-
cated to driving stability, aimed at increasing safety or ride quality by control-
ling the vehicle dynamics. Safety solutions are developed around the detection of
dangerous situations, while ride quality solutions focuses on the compensation of
vibrations or deviations from the desired path. The need for better safety systems
is the reason that has led to the introduction of controllers into the automotive
field: the Anti-lock braking system (ABS) was introduced in the 70’s, consisting
in wheel speed sensors, hydraulic valves and a controller able to detect excessive
differences between a wheel velocity and the vehicle velocity, thus modulating the
braking to avoid a loss of longitudinal adherence. Regarding lateral dynamics, the
most advertised assisted control solution is probably the Electronic Stability Con-
trol (ESC), introduced in the 90’s and mandatory in the European Union from
2014, that monitors the deviation between the vehicle velocity direction and the
direction imposed by the steering wheel, braking automatically in case of excessive
loss of control. Nowadays, stabilizing systems are available for controlling almost
every part of vehicle dynamics. A possible categorization can be performed by di-
viding the systems with respect to the controlled axis of a vehicle reference frame
[34]:

• Longitudinal safety and control systems, that acts on the longitudinal vehicle
axis, like ABS or cruise control.

• Lateral safety and control systems, that focuses on lateral forces or steer-
ing, like ESC and more recently yaw control systems and lane departure
avoidance [29].

• Vertical safety and control systems, like active suspensions and anti-vibration
solutions.

Of course modern cars are shipped not only with stabilizing solutions, but also with
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advanced driver assistance solutions (ADAS) that automatize a series of complex
tasks, like parking, avoiding collisions and protecting pedestrians, systems that
work at a higher level and at a slower speed than the arguments considered in this
work, and therefore can work properly only if lower level controls have a faster
response.

This world of mechatronic devices requires a precise tracking of the vehicle dy-
namics, a task traditionally performed on race cars and now required on standard
cars, that like all low-end products cannot be shipped with complex or expensive
components.

2.2 The slip angle

We focus on lateral control solutions, that monitors the lateral forces or displace-
ments for safety or control purposes. A part of these systems rely on the ability
of knowing fully or partially the kinematic and dynamic quantities of a vehicle in
real-time, e.g. position, velocity and applied forces of its center of gravity or tires:
the more data is available, the more the possibilities are.

Since a ground vehicle can be modeled as a relatively simple mechanism, with a
low number of inputs (a standard car has just 3 pedals and a wheel), the problem
of tracking its kinematic can appear trivial: we could, for instance, measure the
velocity and the steering wheel position, and use the dead reckoning method to
predict the car position over time. Experimental results show that this approach
leads to increasing errors [16], not only due to the drift (accumulation of measure-
ment errors over time), but also due to the non-perfect adherence of the wheels
with the terrain, caused by the road conditions and the strain of the tires, a phe-
nomenon difficult to characterize that translates into a lateral force and an offset
between the desired direction, imposed by the wheels direction, and the real car
direction, generally indicated with the term slip angle.

β

Figure 2.1: Deviation from desired trajectory (dotted) during a maneuver
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In literature, the slip angle relative to a single wheel is called wheel slip angle
and referred as α, while the sleep angle relative to the entire vehicle is called
sideslip angle, and referred as β [31] [19]. The experience shows that this value
increases with the velocity and the steering angle, but also decreases while the
adherence with the terrain increases. In practice, it is a direct consequence of the
stress sustained by the tires, that can be modeled as a lateral force applied at the
contact point of the tires or at the center of gravity of the vehicle. In particular,
two working zones can be identified: one in which β rises linearly with the lateral
force, typical of low slip angle values, and one in which β rises independently of the
lateral force, a sign that the adherence limit has been reached. The ratio between
the force and the slip angle depends on a series of factors, and its behavior will be
explained in the vehicle dynamics chapter.

The measurement or estimation of β allows to correctly reconstruct the vehicle
lateral dynamics, by simply summing up it to the wheel direction, obtaining the
real vehicle direction. Another value that is strictly linked to the slip angle is the
road friction coefficient (µ), that taken alone cannot constitute a link with the
dynamic quantities, but can help the reconstruction of β and is often estimated
concurrently.

Given these considerations, there are many reasons to equip a vehicle with a slip
angle measurement system:

• to evaluate the tires performance, with respect to the road condition and
sustained stress.

• to detect dangerous situations, like skidding (loss of traction), and to imple-
ment advanced safety solutions that make use of the entire vehicle dynamics.

• to implement lateral control solutions, providing them with the needed dy-
namical quantities.

2.3 Slip angle measurement

Many methods have been proposed to measure or estimate the slip angle, ex-
plained in literature or implemented in commercial products. Sideslip angle and
lateral velocity can be measured directly only with dedicated optical sensors, un-
available in most situations, a reason that has led to the development of a series of
estimation techniques over the year, partially based on control theory approaches,
that combine data from available sensors to perform an indirect measurement. A
comprehensive list cannot be compiled with precision, although a basic catego-
rization can be tried, based on the working principle of the systems, even if some
state-of-the-art techniques use combinations of multiple approaches.

The choice of one or another measurement system depends on budget and avail-
able space (a dedicated sensor cannot generally fit on a small unmanned ground
vehicle), and also by the needed bandwidth and accuracy. Direct optical sensors
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have the highest resolution, and are used for precise tests or performance moni-
toring. This level of precision is not needed on safety systems and is redundant
for some control algorithms.

Estimation techniques have generally a limited range and a low accuracy, a fact
that constitutes the main reason for the continuated research activity around
them. This difficulty is outlined in the normative dedicated to the evaluation of
the dynamic behavior of a vehicle, that defines as acceptable an absolute error
of 0.5◦ in sideslip estimation [23], a shift not negligible when compared to β in
standard situations (0 − 2◦ [19]), leading to a relevant relative error. Therefore,
this kind of systems are generally not fit for performance monitoring.

All estimation methods are based on sensors that measure position, inertial quan-
tities (like acceleration and angular rate) or velocity, in one or multiple points of
the vehicle chassis. Available data is then elaborated in a dynamical system to
perform the estimation. Bandwidth and accuracy greatly depend not only on the
chosen approach, but also on the sensors characteristics. This constitutes the main
limitation, as these systems are highly sensitive to measurement errors, but also
a possibility of improvement: it is possible to reuse already-developed algorithms
with newer sensors, obtaining better results without modifying the underlying
algorithm.

Optical sensors

The industry standard method to directly measure a slip angle consists in using a
contact-less optical correlation sensor, placed on the desired point, on the chassis
or on the tyre, and facing the road. Infrared light beams are used to measure the
longitudinal and vertical velocities [24], and wheel slip angle (or vehicle sideslip
angle) is obtained through its definition

α = arctan
(
v

u

)
(2.1)

where v is the lateral velocity, and u the longitudinal velocity. Typical resolution
is below 0.01◦, with a bandwidth up to 250 Hz [1]. As already mentioned, the
problem of this system is its cost (thousands of dollars) and the need of mounting
a visible, bulky and sensitive sensor, a task often performed during tests of race
cars, but seldom in other contexts.

Position-based estimators

A first family of estimators (GPS/INS) process data from a single satellite-based
positioning sensor and an Inertial Navigation System (INS), placed at the point
of interest, to obtain measurements of position, lateral acceleration and yaw rate.
Position values are updated with INS values through an arbitrary method, the
most common being the averaging observer or the Extended Kalman Filter (EKF)
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[37], an important tool that will be treated in Chapter 4. The slip angle is then
found by simply computing the difference between the vehicle attitude γ and the
velocity direction (yaw angle) ψ

β = γ − ψ (2.2)

By using a high-resolution GPS implementation (like Real Time Kinematic) it is
possible to obtain slip angle resolutions of 0.1◦, and a bandwidth of almost 10 Hz
[24]. The sensors and processing unit are usually shipped into a single, portable
box, that is placed inside the vehicle.

Another estimation technique that can fall into this category is the one that uses
two GPS sensors, placed at opposite sides of the vehicle: this method results in
a much more precise computation of the vehicle direction [4], that is otherwise
subjected to drift and bias errors. Slip angle computation is performed in a similar
way to the previous case.

Dynamic model-based estimators

The performance of position-based estimators can be enhanced by adopting a
model of the vehicle lateral dynamics, a representation of the phenomenon through
differential equations, that links together the slip angle with lateral forces, attitude
and position. It is then possible to adopt one of the many control theory approaches
that allow observation of non-measured state quantities by relying on a previous
knowledge of the system model. Multiple techniques for linear or nonlinear models
can be used to minimize the error between data from available sensors and the
output of a virtual model, that has the slip angle in its state variables.

Observers and Extended Kalman Filters are the standard tools to perform this
task. An alternative technique consists in using the feedback linearization proce-
dure in a closed loop, obtaining an observer without the approximation typical
of linear systems, a procedure initially developed for stabilizing robot movements
[27], that will be analyzed in this work.

Parameter identification-based estimators

Model-based estimators can be improved by introducing uncertain parameters in
the equations. This allows a further modeling of the car lateral dynamics, highly
dependent on road and tire conditions. Model parameters can be identified pro-
gressively or in a single step, and the resulting system can be used for predictive
estimations.

Parameter identification is a recurring problem in engineering, and multiple meth-
ods have been developed for this purpose. The most used is the Kalman Filter and
its evolutions for nonlinear models (Extended Kalman Filter (EKF), unscented
EKF, hybrid EKF).
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This approach has two main limitations. The first is that the considered models
have inherent uncertainties [19], and can be used only with specific assumptions
and for a limited timespan, after which parameters must be updated. The second
is that these equations are highly nonlinear, so either a linearization or a method
for nonlinear systems must be used. Computational power requirements must also
be taken into account when dealing with nonlinear systems.

The Kalman Filter for linear systems and the linearization procedure are still used
in some sideslip estimators, when there are computational cost constraints or in
special cases, like articulated heavy vehicles, that require a complex model [11]
[30].

A relevant part of these approaches are based on the application of the EKF on
a variant of the single track model, a simplified vehicle dynamics model unani-
mously used [32]: the drawback is its excessive computational cost with respect
to alternative methods. Among the various works, an interesting proposal consists
in using a two-step procedure, that parses inertial measurements and velocities to
estimate the tire lateral forces, and then lateral forces to estimate the slip angle
through the single track model [20], analyzed in a previous thesis work [10].

An evolution in terms of precision can be provided by the addition of a tyre model,
like the Pacekja magic formula, a semi-empirical formula that links the lateral force
to the slip angle and other quantities through a series of parameters [31], that must
be properly identified. An improved tool, using the EKF and Pacejka model, can
be built by placing accelerometers on the tires, measuring directly their force [40],
an option not suitable for common vehicles. Among the proposals that do not
make use of the EKF, an interesting approach constists in using a two-stage (TS)
method for parameter identification, alternative to the EKF and, according to its
authors, more efficient [17].

Unscented EKF has been applied with success to alternative tyre models (Dugoff
tyre model) for sideslip estimation [14], another example of the possibilities offered
by a model-based approach.

Another technique alternative to the EKF is based on a formalism called Linear
Fractional Transformation (LFT), that separates respectively the uncertainties,
the linear and nonlinear parts of a nonlinear model, and its exploitation for pa-
rameter identification. The method has been applied multiple times to identify
the single track model parameters by using position measurements [8], and can be
improved with a proper validation.

Training-based estimators

The rise of self-learning computing algorithms, the most famous being the neural
network, is leading to their application in multiple fields, even in the parameter
identification procedure. A system can progressively learn how to identify and
estimate the sideslip angle and the other vehicle dynamic quantities, starting from
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ground or with the help of a model. This approach has been proposed in literature
and partially tested [10] [18], resulting in tools which produce discrete results,
although with higher response times and computational power requirements than
their model-based counterparts.

2.4 Position and inertial sensors

Before introducing the theoretical part, a brief explanation of the sensors referred
in the work is provided. The efficacy of sideslip estimation techniques greatly de-
pends on sensor characteristics, and they have a predominant role in the final
accuracy of the results: therefore, knowing their limitations in terms of resolution
and bandwidth allows an evaluation on what we can expect from a certain final
tool, giving its sensitivity to measurements. Furthermore, data from multiple sen-
sors can be combined to strengthen a certain measurement, a technique known as
sensor fusion.

Position sensors

As a position sensor we refer to a device that measures the position of an object
through numerical values. In case of vehicles, we are interested in contact-less de-
vices that allow the measurement of the chassis planar displacement with respect
to an external reference frame, or with respect to the geographic coordinates (lon-
gitude and latitude). The main benefit of using data from a sensor that refers to
an external point is that it allows to compensate progressive drift errors typical
of devices that use the vehicle itself as a reference frame, like accelerometers and
gyroscopes.

A series of sensors have been developed for position measurement in closed or
limited spaces, based on lasers, ultrasounds and cameras, generally not suitable
for a common usage. The data used to validate the proposed estimators comes
from the tracking of a vehicle through an optitrack system, a commercial name
for a camera-based tracking system, that processes data from multiple cameras
to detect a marker position. Data can then be transmitted to a processor or to
an on-board controller in various way, for instance, through the use of a Wireless
Local Area Network (WLAN).

The only way to continuously track an item position in a general, open space,
consists in using an on-board Global Navigation Satellite System (GNSS) sensor.
GNSS technology, in development since the 60’s, nowadays is based on the presence
of a set of 10-30 satellites in multiple orbits, that periodically emits digital radio
signals, containing their position and the time of the message. Sensors are able to
receive signals from visible satellites and to compute the time difference between
the signals, obtaining the geographic coordinates.
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Available GNSSs are developed and maintained by the main world superpowers for
military and civil applications: Global Positioning System (GPS) is owned by the
United States, GLONASS by Russia, Galileo by the European Union and BeiDou
by China. GPS is the the most famous, often used as an acronym for GNSS, but
since 2017 most of the alternative systems offer a global coverage, although they
require capable sensors.

Civilian GNSS receivers are usually characterized by low resolutions (1 − 3 m)
and bandwidth (1− 10 Hz), and cannot be used everywhere due to their working
principle, as the signal cannot be received clearly in closed places.

In particular, signals are subjected to particular errors: while the noise is usually
limited [36], the presence of obstacles capable of reflecting radio signals, like woods,
mountains or big constructions, causes the wrong computation of the signal timing,
that translates in sudden shifts in the measurements.

A series of improvements has been developed over the years and can significantly
influence the system performances, leading to their introduction in some of the
GNSS-based commercial sideslip sensors:

• Real Time Kinematic (RTK) is a GPS enhancement technique that relies
on the additional measurement of the signal phase, and uses an additional
ground receiving station to compute the phase difference, increasing resolu-
tion up to 0.01 m.

• Various augmentation techniques have been developed, using additional ground-
based and satellite-based signals, available on local basis (WAAS, EGNOS,
SDCM), to improve the position measurement.

• The capability of scanning available Wi-Fi hotspots, together with a database
of locations of known wireless access points, is often used to improve the GPS
measurement or to totally replace it (Wi-Fi positioning systems).

GNSS sensors are set to become more and more precise in the future, and their low
cost and diffusion make them considerable for current and future control theory
applications.

IMU sensors

An Inertial Measurement Unit (IMU) is an electronic system that encapsulates
multiple inertial sensors, in particular accelerometers, gyroscopes and magnetome-
ters. An accelerometer is a device that measures the acceleration along a specific
axis; a gyroscope is a device that measures the angular rate around a specific axis;
a magnetometer is a device that measures the magnetic field along a specific axis.

IMU platforms were developed in the 50’s for space and aerial applications, but
are now produced in the form of Micro Electro Mechanical Systems (MEMS) and
shipped with low-end products, like smartphones and drones.
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An IMU can contain a variable number of accelerometers, gyroscopes and mag-
netometers, placed on different axes; in this work a 6 degrees-of-freedom IMU is
considered, consisting of 3 accelerometers on 3 independent axes, and 3 gyroscopes
on 3 independent axes. Regarding sideslip estimation, only the yaw rate (angular
rate around vertical axis) and the lateral acceleration are significant.

The main problem with modern MEMS IMU is that their measurements are char-
acterized not only by a strong gaussian noise, but also by a significant bias error,
generally not removable by acting on the sensor position. An electronic calibra-
tion is required, manually or through an automatic algorithm [33], along with a
periodic check, since any change to the setup can lead to new errors.

The high noise level constitute a problem also when integrating values from these
kind of sensors, e.g. integrating the acceleration to obtain the speed or the yaw rate
to obtain the attitude, a practice sometimes performed but generally discouraged,
as errors do accumulate over time. Data generated from integrations is generally
corrected through a merging with data from sensors that provide an absolute
reference, like a positioning sensor.

The orientation, which is a useful quantity in the vehicle dynamics field, can also
be computed from a magnetometer, but its use has been discarded, due to the
sensitivity of this kind of sensor to external magnetic fields, that can critically in-
fluence the robustness of the algorithm. In previous works it was demonstrated that
magnetometer measurements are not reliable and have to be processed through a
specific filter before being used in a sideslip estimator [42].



Chapter 3

Lateral Vehicle Dynamics

In this chapter the basic behavior of the vehicle dynamics, restricted to the lat-
eral axis, is introduced and progressively modeled, up to two common systems of
differential equations used by the estimators presented in this work, the unicycle
and the single track model. Particular emphasis is given to the approximations
performed during each step, that allow to predict the working range in which
the estimators will work and offer a future possibility of improvement, as they
are associated to the uncertainties that are the main limitation of model-based
estimators.

3.1 Pacejka tyre model

Dynamic modeling for any ground vehicle starts from tires, whose characteristics
are of crucial importance in determining the overall vehicle behavior. The interface
between a rolling tyre and the road is usually denoted as single contact point, but
in reality we must think of it as a contact patch, with multiple points in contact
between the two surfaces. Inside this patch, tire forces are generated due to two
reasons: the friction in the patch and the elastic deformation of the tyre [15].

The friction phenomenon is seldom analyzed directly due to complexity reasons,
but is instead modeled with coefficients and formulas. Tires makes no exception,
and a series of model has been developed, based on simple physical considerations
or experimental data. We are interested in dynamic models, able to represent
both the transient and the steady-state part of the response. The most used and
famous tyre model is the one developed by Pacejka, explained in dedicated books
[31], available in simulation environments (here Dymola) and even video games
(e.g. in the popular Unity Engine). An introduction to Pacekja model is provided,
as its quantities are used throughout the work and are at the base of the common
single track model.

A rolling tyre in contact with the road can be modeled as in Figure 3.1, where the
following quantities are defined:

14
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• α is the wheel slip angle.

• Fx , Fy and Mz are the forces and aligning torque that arise at the contact
patch with the road, respectively Fz is the reaction force due to the vertical
load (mass of the vehicle).

• V is the velocity vector of the wheel, pointing in the direction imposed by the
slip angle; v and u are the projections of V on the lateral and longitudinal
axes.

• Ω0 is the rotation speed of the wheel.

Mz

Fz Fy

Fx

α
V

u

v

Ω0

Figure 3.1: Rolling tyre and quantities involved

Lateral slip angle can be defined as the ratio between the two velocity components

α = arctan
(
−v

u

)
(3.1)

Other quantities used in literature are the longitudinal slip κ, that arises in cases
of an applied torque on the wheel, and the camber angle γ, which is the inclination
of the wheel with respect to the road. Forces and aligning torque can be modeled
as functions of just α, κ, γ and Fz

Fx = Fx (κ,α, γ,Fz) (3.2)
Fy = Fy (κ,α, γ,Fz) (3.3)
Mz = Mz(κ,α, γ,Fz) (3.4)

The influence of the arguments on each quantity has been determined experimen-
tally; in particular, the characteristic shape of α versus Fy and Mz , considering
κ = 0, γ = 0 is shown in Figure 3.2. Of course a nonzero longitudinal slip (typical
of braking) or camber angle influence the shape of the curve, but their effect is
considered separately.
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Mz

α

Fy

Figure 3.2: Slip angle influence on lateral force and aligning torque

The slope of each of these “pure slip” curves is called stiffness, and denoted with the
letter C . Using this definition, a linearization of the force and moment expressions
leads to this result

Fx = Cf κκ (3.5)
Fy = CFαα + Cf γγ (3.6)
Mz = −CMαα + CMγγ (3.7)

Focusing the on lateral slip stiffness (cornering stiffness Cf α), experimental results
have shown that

• Cf α is not influenced by road conditions and longitudinal speed at low slip
angles, while at high angles both factors concur to decrease the slope.

• Cf α is highly influenced by the load Fz and the vehicle type (articulated
heavy vehicles require a different approach).

This leads to conclude that the cornering stiffness value depends on the specific
vehicle and the specific conditions, but is almost constant for low slip angle values,
an assumption that is at the base of some estimators.

The showed curve can be modeled with the semi-empirical Pacekja Magic formula,
whose parameters, explained in dedicated literature, depends on the tyre size,
constitutive material, inflation, pressure, deterioration and other properties, and
are usually estimated from experimental data [17]. The Fy and Cf formulas are
reported below, to show the α and Fz influence.

Fy = D sin[C arctan[Bα− E (Bα− arctan(Bα)]] (3.8)
Fy ,peak = D = µFz (3.9)

Cf α = BCD = c1 sin[2 arctan(
Fz

c2
)] (3.10)
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3.2 Single track model

Considerations on tire behavior could be used to directly estimate the slip angles
of each wheel, given the possibility of placing a series of sensors on each single tyre,
an operation impossible for small ground vehicles and not suited for commercial
cars. An option consists in linking the tires dynamic quantities with the one of the
vehicle, represented as a concentrated body in its center of gravity (COG). The
tyre model can be transformed in a full ground vehicle model with the following
assumptions:

• track width is negligible with respect to the circular motion radius;

• steer and slip angle assume low values, so it is possible to use trigonometric
approximations like cosα ≈ 1, sinα ≈ α, tanα ≈ α;

• roll moment remains small;

• speed of travel is considered to be almost constant; theory can hold in case
of quasy-steady-state situations like moderate braking [31];

• lateral component of longitudinal forces Fx are neglected;

• the contact points of the tires is influenced by braking or accelerating, and
it shifts rearwards or backwards; this is neglected;

The first hypothesis allows to neglect the car width, making possible the modeling
of a standard 4-wheel vehicle with a two-wheel vehicle, as in Figure 3.3, upon
which it is possible to build the single track model (or bycicle model), originally
proposed in the 40’s [29] and still used today in most of the sideslip estimation
techniques.

x

y

δ

αf

αr

Fyr

Fyf

r

u-v

b

a
Mzr

Mzf

ψ

Figure 3.3: Single track model
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The following terms are defined:

• m and Iz are the mass and inertia of the chassis;

• u and v are the longitudinal and lateral component of the chassis velocity
vector;

• a and b are the distances of the rear and front tyre axes from the center of
mass;

• Fy and Mz are the lateral force and aligning torque present at the contact
patch of the two virtual tires;

• αr , αf are the slip angles of the tires;

• δ is the steering angle, applied only to the front tyre;

• r is the yaw rate;

• x , y are the cartesian coordinates of the vehicle center of mass, and ψ its
orientation with respect to the origin;

Two reference frames are used, one moving with the vehicle center of gravity and
one fixed. The moving frame is used to define the velocity, through its components
v (lateral) and u (longitudinal), and yaw rate r , while the fixed frame is used for the
cartesian coordinates x , y and the orientation ψ. Relationships between quantities
in the two frames are expressed through the standard rotation matrix

ẋ = u cosψ − v sinψ (3.11)
ẏ = u sinψ + v cosψ (3.12)
ψ̇ = r (3.13)

These formulas can be used to link the position with the velocity and yaw rate,
forming the unicycle model, which is a useful kinematic representation of a moving
object and will be used later.

By applying the virtual work principle on Figure 3.3, neglecting higher-order terms
and approximating the trigonometric functions, it is possible to obtain these equa-
tions of motion

m(v̇ + ur) = Fy ,f + Fy ,r (3.14)
Iz ṙ = aFy ,f − bFy ,r (3.15)

We now need to link the lateral forces to the slip angles, using the provided theory;
the simplest way consists in using the previously-defined cornering stiffnesses

Fy ,f = Fy ,f (αf ) ≈ Cf αf (3.16)
Fy ,r = Fy ,r (αr ) ≈ Crαr (3.17)
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Finally, the slip angles, that by definition are the offset between the tires physical
directions and their velocities, are linked to the inertial properties of the vehicle
COG, and to the steering angle (G is used as steering gain)

αf = Gδ − 1

u
(v + ar) (3.18)

αr = −1

u
(v − br) (3.19)

The overall vehicle sideslip angle β can then be computed through its definition.

The complete single track model is given by

m(v̇ + ur) = Fy ,f + Fy ,r

Iz ṙ = aFy ,f − bFy ,r

Fy ,f = Cf αf

Fy ,r = Crαr

αf = Gδ −
1

u
(v + ar)

αr = −
1

u
(v − br)

ψ̇ = r

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

β = arctan( v
u

)

(3.20)

An alternative formulation, used in previous works, can be obtained by replacing

u = v cos β (3.21)

resulting in this system

mv cos(β) (β̇ + r) = Fy ,f + Fy ,r

Iz ṙ = aFy ,f − bFy ,r

Fy ,f = Cf αf

Fy ,r = Crαr

αf = −β −
ar

v cos β
+ Gδ

αr = −β +
br

v cos β
ψ̇ = r

ẋ = v cos(ψ + β)

ẏ = v sin(ψ + β)

(3.22)
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Steering angle δ and longitudinal velocity u are usually considered as inputs; u,
as already seen, has an influence on Cf , so it must not be subjected to excessive
variations. Also δ influences Cf , since it is part of the front tyre slip angle.

The model validity range depends on how the various parameters are handled:

• Cornering stiffnesses can be considered as constant parameters, allowing
the use of simple identification techniques, but this assumption narrows the
model operating range in the low slip angle zone (α < 5÷10◦). Alternatively,
stiffnesses can be modeled through a semi-empirical formula, but in this way
more uncertain parameters have to be identified.

• The vehicle mass and inertia could be subjected to small variations, due to
vehicle loading or longitudinal stress (neglected here): their use as constants
could be a limiting factor.

It is also important to observe the presence of the longitudinal velocity in some
denominators, that creates a singularity for u → 0. This limitation is typical of
vehicle dynamic models and must be handled properly in implementations, for
instance by detecting the problem and resetting the system before incurring in a
critical error.



Chapter 4

Slip angle estimation through the
Extended Kalman Filter

This chapter is dedicated to an implementation of a sideslip estimator based on
the Extended Kalman Filter, the tool upon which a great quantity of estimation
techniques have been developed in both the academic and industrial world, as
mentioned in the state of the art chapter. The algorithm is first briefly explained,
then an estimator is developed around the single track model and implemented
with the available software. Tests are performed by using data sets from a simu-
lated environment and a real UGV, with the aim of producing results that can be
compared to the ones of the new estimators presented in this work.

4.1 The Extended Kalman Filter

The Kalman Filter and its variants (Extended Kalman Filter (EKF), Unscented
EKF, Hybrid EKF), are tools that allow to exploit available measurements to in-
crease the precision of measured quantities or estimate non-measured quantities,
through the use of a dynamic model. Despite their age, these algorithms remain
along the most used tools in the control and estimation field, due to their simplic-
ity and efficacy. In particular, they represent the standard approach in the sideslip
estimation field, since they can adapt very well to common and uncommon sit-
uations without the need of changing the underlying math. A great quantity of
academic material have been produced in the past years [19] [14] [5] [41] [24] [4],
with results that are still competitive with the ones of newer techniques in terms
of robustness and precision.

A detailed explanations of the Kalman Filter is available in dedicated literature
[39]; in this work, we are not interested in covering all the aspects and variants
of the tool, but in explaining briefly the theory related to a specific case (when
the considered system is nonlinear and the EKF-variant is used) and using this
knowledge to implement an already consolidated sideslip estimator.

21
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We first consider a linear, time-varying, continuous system in the form
ẋ(t) = F (t)x(t) + G (t)u(t) + L(t)w(t)

y(t) = H(t)x(t)
(4.1)

where x(t) is the model state vector, y(t) the output vector, u(t) the input vector,
w(t) a gaussian noise and F (t), G (t), L(t), H(t) are time-varying matrices.

We can observe the system output y only throughout a set of measurements z ,
that also include a gaussian noise n

z(t) = y(t) + n(t) = H(t)x(t) + n(t) (4.2)

The initial state and noise vectors at each step are assumed to be mutually inde-
pendent.

We suppose the available measurements z are “corrupted”, i.e. they are very noisy,
or there is a state variable in vector x that is not measured directly.

We want to compute an estimate of the full state x̂(t) and the output ŷ(t) = H(t)x̂ ,
such that the result is coherent with the available measurements (the hat denotes
an estimation). We can define a measurement residual error

ε(t) = z(t)− H(t)x̂(t) (4.3)

and minimize it (iteratively finding its minimum) by minimizing a weighted quadratic
cost function

J(t) =
1

2
ε(t)TS−1ε(t) =

1

2
[z(t)− H(t)x̂(t)]TS−1[z(t)− H(t)x̂(t)] (4.4)

where S is a weighting matrix, usually chosen to weight the different covariances
of z and x .

The problem of this method is that the minimization can be performed only after
all the measurements have been collected along the entire timespan; it is better
to develop a method that can minimize the cost function while measurements are
still gathered, and can integrate any future event (input or measurement noise)
without doing a complete recalculation.

By considering n as a gaussian noise and propagating the statistic properties (co-
variance and mean) of both n and x , exploiting the necessary optimality condition
and doing a series of intermediate steps, it is possible to transform the problem
of minimizing equation (4.4) into the simulation of the following system, that also
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consider the evolution of state vector x dictated by the dynamic model (4.1)


˙̂x(t) = F (t)x̂(t) + G (t)u(t) + Kc(t)[z(t)− H(t)x̂(t)]

Ṗ(t) = F (t)P(t) + P(t)F (t)T + L(t)Q ′c(t)LT − P(t)H(t)TR−1c H(t)P(t)

Kc(t) = P(t)H(t)TR−1c

given x̂(0) = x0

given P(0) = P0

(4.5)

where:

• x̂(t) is an estimate of the model state vector, u(t) the input vector (fully
known);

• F (t), G (t), L(t), H(t) are time-varying matrices;

• P(t) is the error covariance matrix, that represent the estimation error at
the given time t;

• Kc is the gain matrix, calculated through P , that weights the error between
the measurements z and the system output.

• Rc is the covariance matrix of the measurement noise;

• Q ′c is the spectral density matrix of the process.

The equation related to matrix P is a Riccati Differential Equation, a standard
equation that is a solution to the problem of minimizing a quadratic function, like
the one expressed in (4.4). The system above is called Kalman-Bucy Filter and is
an optimal estimator for linear systems.

Unfortunately the dynamic models used in the vehicle dynamic field are nonlinear,
and are in the form ẋ(t) = f [x(t), u(t),w(t), t]

y(t) = h[x(t), t]
(4.6)

where f and h are function vectors; u(t) and w(t) are not assumed to appear in
the system output y .

Therefore the base version of the Kalman Bucy filter cannot be used for the scope.
A linearization can be performed, at cost of introducing a significant approxima-
tion in the results, alternatively the algorithm needs to be upgraded to account
for this scenario.

Among the variants of the Kalman Filter designed for nonlinear systems, the
Extended Kalman Filter is the most immediate, as it consists in replacing the
linear model simulation in first equation of system (4.5) with a nonlinear one,
while keeping the error propagation mechanism as it is, replacing the elements
of the linear model with approximations, since it can be demonstrated that the
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covariance and mean of x and n propagate in a similar way to the linear case [39].
The filter results as follows

˙̂x(t) = f [x̂(t), u(t),w(t), t] + Kc(t)[z(t)− H(t)x̂(t)]

Ṗ(t) = F (t)P(t) + P(t)F (t)T + L(t)Q ′c(t)LT − P(t)H(t)TR−1c H(t)P(t)

Kc(t) = P(t)H(t)TR−1c

given x̂(0) = x0

given P(0) = P0

(4.7)

where F (t), G (t), L(t), H(t) are linearizations of the nonlinear model in the neigh-
borhood of the considered time instant

F (t) =
∂f

∂x

∣∣∣∣∣
x(t),u(t),w(t)

(4.8)

L(t) =
∂f

∂w

∣∣∣∣∣
x(t),u(t),w(t)

(4.9)

H(t) =
∂h

∂x

∣∣∣∣∣
x(t),u(t),w(t)

(4.10)

1/s++

F a

L a

x ax a
.

u

u

u

1/s
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y
Ha

y
Kc

P
.

P

Figure 4.1: Block diagram of the Extended Kalman Filter

The state estimation is not guaranteed to be optimal, and there are convergence
and stability problems related to the choice of the initial conditions x0 and to the
value of x over the considered timespan; moreover, the model must be linearized



SLIP ANGLE ESTIMATION THROUGH THE EXTENDED KALMAN FILTER 25

at each time step, an operation with an high computational cost. Nevertheless,
the tool should work if proper values of x0, P0, Q ′c and Rc are chosen.

The block diagram of the complete system is reported in Figure 4.1.

4.2 Application

We now have a tool that, given a dynamic model, can estimate a set of state
variables from available measurements, an operation that is particularly fit for
estimating the sideslip angle, that as already said in the state of the art chapter,
is generally not measured directly, but through the merging of data from sensors
with a different purpose.

The estimator described in this section represents one of the most typical applica-
tions of the EKF to the vehicle dynamic field, and it requires a single positioning
sensor and the vehicle input commands to achieve the desired result.

We recall the single track model (equations (3.20)), written in this canonical form

v̇ = 1
m

[Cf (−v
u
− a r

u
+ Gδ) + Cr (−v

u
+ b r

u
)]− ur

ṙ = 1
Iz

(aCf (−v
u
− a r

u
+ Gδ)− bCr (−v

u
+ b r

u
))

ψ̇ = r

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

(4.11)

where the state vector x is

x =
[
v r ψ x y

]T
(4.12)

The longitudinal velocity u is usually measured through an encoder on a vehicle
rear wheel, while the steering angle δ is usually read from the control system (in
case of an UGV) or measured from the steering wheel position; we assume both
values are available as inputs, and insert them in the input vector

u =
[
u δ

]T
(4.13)

Given a set of measurements y , an application of the Extended Kalman Filter on
the model should allow to estimate the lateral velocity v , that is a state variable,
and consequently the sideslip angle, through the formula

β = arctan

(
v

u

)
(4.14)

Of course matrix Q and R must be properly filled with values that indicate the
covariance of respectively the state vector and the measurement noises, as well as
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L = ∂f /∂w , that links the noise w to the state vector. Q and L are not needed at
the moment, while values proven to be reliable for R , relative to the considered
tests, are

R =

[
10−3 0

0 10−3

]
(4.15)

where non-diagonal terms are empty because there must be no correlation between
noises.

A set of constant parameters is needed to simulate the model. The mass m, the
inertia Iz , the distances a, b can be measured before using the tool, and their value
assumed constant.

Nevertheless the front and rear cornering stiffnesses Cf and Cr , depend on a se-
ries of factors, including the terrain and tire conditions, and cannot be assumed
static. Their values cannot be estimated offline, but must be treated as uncertain
parameters.

There exist a popular technique which allow to exploit the Extended Kalman
Filter to identify uncertain parameters: the first step consists in augmenting the
state vector with an additional element for each uncertain parameter, in this case
one for Cf and one for Cr

xa =

 x̄
Cf

Cr

 =

 x̄x6
x7

 (4.16)

the original parameters are replaced in the dynamic model with the corresponding
augmented state variable; in this case, we obtain

v̇ = 1
m

[x6(−v
u
− a r

u
+ Gδ) + x7(−v

u
+ b r

u
)]− ur

ṙ = 1
Iz

(ax6(−v
u
− a r

u
+ Gδ)− bx7(−v

u
+ b r

u
))

ψ̇ = r

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

(4.17)

then some fictitious noises v1 and v2 are summed to the unknown parameters in
the model, obtaining

v̇ = 1
m

[(x6 + v1)(−v
u
− a r

u
+ Gδ) + (x7 + v2)(−v

u
+ b r

u
)]− ur

ṙ = 1
Iz

(a(x6 + v1)(−v
u
− a r

u
+ Gδ)− b(x7 + v2)(−v

u
+ b r

u
))

ψ̇ = r

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

(4.18)

these noises are not required in the majority of cases, but they are added as
precaution, as the EKF is known to result in wrong estimations when there is not
enough noise on the measurements [39].
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The model is then augmented with one equation for each uncertain parameter,
that imposes the convergence of the parameter value, by setting ḋ = v (where d
is the parameter and v is another fictitious noise). In this case

Ċf (t) = v3(t)

Ċr (t) = v4(t)
(4.19)

Finally, matrices Fa, La and Ha can be calculated through their definition in equa-
tions (4.8)-(4.10), obtaining the complete estimator reported below.

xa =
[
v r ψ x y Cf Cr

]T
(4.20)

u =
[
u δ

]T
(4.21)

y =
[
x y

]T
(4.22)

Fa =



−x6
mu1
− x7

mu1

−x6a
mu1

+ x7b
mu1
− u1 0 0 0 −x1

u1m
− a x2

u1
+ G u2

m
−x1
u1m

+ b x2
u1

−ax6
Iz u1

+ bx7
Iz u1

−a2x6
Iz u1
− b2x7

Iz u1
0 0 0 Gau2

Iz
− a2x2

Iz u1
− ax1

Iz u1

bx1
Izu1
− b2x2

Izu1

0 1 0 0 0 0 0
− sin x3 0 −u1sinx3 − x1cosx3 0 0 0 0
cos x3 0 u1cosx3 − x1sinx3 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


(4.23)

Ha =

[
0 0 0 1 0 0 0
0 0 0 0 1 0 0

]
(4.24)

La = [7× 4] =



Gu2

m
− x1

mu1
− ax2

mu1

bx2
mu1
− x1

mu1
0 0

Gau2

Iz
− a2x2

Izu1
− ax1

Izu1

bx1
Izu1
− b2x2

Izu1
0 0

... ... ... ...
0 0 1 0
0 0 0 1


(4.25)

R =

[
10−3 0

0 10−3

]
(4.26)

The following covariance matrix was chosen, with each column corresponding to
one of the previously-introduced fictitious noises. The non-diagonal terms are
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empty because there must be no correlation between noises

Q ′c =


103 0 0 0
0 103 0 0
0 0 103 0
0 0 0 103

 (4.27)

This augmented system is only used by the error estimation mechanism (second
and third equation of (4.7)), and not by the simulation of the nonlinear model
(first equation of (4.7)), that instead uses only the non-augmented part of the
state vector.

The entire system can finally be implemented through the simulation software
Simulink, in a way that resembles the already-shown block diagram in Figure
4.1, leaving the simulation options with their default values (integration through
ode45s, time-varying steps).

4.3 Simulation results

It is now possible to test the tool against data sets from a simulated environment.
The one used in this work is described in Appendix A, along with the corresponding
test trajectories.

The static parameters required by the model, m, Iz , a, and b have been filled to
resemble the values from the vehicle datasheet. The starting value of the uncertain
parameters can be set through the last two elements of the initial condition vector
x0, chosen to be approximately at the middle of the tool operating range

x0 =
[
0 0 0 0 0 50000 50000

]T
(4.28)

while the initial conditions of vector P can be left zero

P0 = [7× 7] =

 0 0 0 0 0 0 0
... ... ... ... ... ... ...
0 0 0 0 0 0 0

 (4.29)

Roundabout trajectory

A first test can be performed against data from the virtual vehicle running at a
constant longitudinal velocity of 80 km/h and following the roundabout trajectory
(Section A.3), with the wheel oriented at 45◦, reported again in Figure 4.2a for
clarity reasons. Ideal position measurements are fed into the estimator.

Results displayed in Figure 4.2b show that the estimator is able to track the sideslip
angle, but a drift error arises and remains constant, due to the uncertainties present
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in the static parameters of the model. This problem also affect the other model-
based estimators treated in this work: the mass, inertia and distances a and b of
the single track model have a very high influence on the precision of the results, a
phenomenon that will be discussed in the subsequent chapters.
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(b) Estimation

Figure 4.2: Results of the EKF estimator against the roundabout trajectory

The evolution of the cornering stiffness parameters (the last two elements of the
augmented state vector) is shown in Figure 4.3, clearly showing that the estimation
stabilizes around two constant values, that corresponds to the one identified by
alternative methods (the greybox procedure provided by Dymola results in Cf ≈
57000 and Cr ≈ 47000).
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Figure 4.3: Evolution of Cf and Cr with the EKF estimator

GNSS robustness

The measurement noise robustness can be tested by running the estimator against
data from the same simulation, but this time using position measurements affected
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by a GNSS error model, subjected to sudden drifts, as explained in Section A.2
and represented by the noise map in Figure 4.4a. The variance and mean of the
noise are set to respectively 0.02 m and 5 m, causing sudden drifts like the one
represented in Figure 4.4b.
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Figure 4.4: GNSS error model applied to the roundabout trajectory

The estimation is negatively affected by the GNSS noise model, and the induced
errors are compensated only after some seconds, resulting in sideslip values differ-
ent from the ones of the original test, as shown in Figure 4.5. This is expected,
since the EKF, when used for identifying parameters, is very sensitive to measure-
ment errors, as it does not consider the measurements over the entire timespan,
but only the ones received until the considered time instant. A solution consists
in decreasing the noise covariances in R and Q, but this would also affect the
bandwidth of the tool, so it is not advisable.
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Figure 4.5: Results of the EKF estimator against the roundabout trajectory, with the GNSS
error model
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Slalom trajectory

Another test can be run against data from the virtual vehicle running at a con-
stant longitudinal velocity of 80 km/h and following the slalom trajectory (Section
A.3) reported in Figure 4.6a. This time the drift error is less present, as the tool
continuously vary the uncertain parameters to adapt itself to the variability of the
track, a clear advantage over other approaches, that use constant values of Cf and
Cr over the entire timespan, resulting in worse estimates.
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(b) Estimation

Figure 4.6: Results of the EKF estimator against the slalom trajectory

4.4 Experimental results

A round of tests can be performed against real data sets obtained from the driving
of the unmanned ground vehicle described in Appendix B. Among the various
experiments performed, a single data set has been chosen to show the effectiveness
of the tools treated in this work and to compare the results between each other.
The initial condition vector is filled with measurements corresponding to the first
considered time instant, and the starting values of the uncertain parameters are
lowered on the basis of previous tests

x0 =
[
0 0 ψ0 x0 y0 25 25

]T
(4.30)

The other parameters needed by the filter are left unchanged.

The input quantities related to the test are represented in Figure 4.7. Results of
the estimation of the entire state vector of the single track model, used by the tool,
are reported in Figure 4.8. The values compared with the estimated quantities and
used as reference are:

• For the sideslip angle, the value computed by the optitrack system through
the vehicle velocity;
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• For any other quantity, the value read by its dedicated sensor, i.e. the gyro-
scope for the yaw rate and the optitrack for the position and attitude.

An offset is clearly visible between the sideslip value given by the optitrack and
the one given by the estimator, even if the latter is able to correctly interpolate
the position measurements, as shown in Figure 4.8d and Figure 4.8e.
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Figure 4.7: UGV Inputs

The quality of the estimate can be asserted by introducing the Theil index, a
statistic used to evaluate the difference between a model output and the available
measurements, defined as

TIC =

√∑
i (yi − ym,i )2√∑

i y
2
i +

√∑
i y

2
m,i

(4.31)

where i is the time index, yi the output of the model at time instant ti , ym,i the
corresponding measurement.

The TIC parameters corresponding to the two measurements used in this test,
that are the vehicle position values referred to the x and y axes, are reported in
the table below.

TICx 0.0011909

TICy 0.00076763
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Figure 4.8: Results of the EKF estimator against data from a UGV
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4.5 Conclusions

A sideslip estimator based on the Extended Kalman Filter, the de-facto standard
when dealing with parameter identification, has proven to be a versatile tool that
can be applied to different situations without particular difficulties, although the
convergence of the estimation can not be guaranteed, as it depends on the choice
of the initial conditions and on the values of the matrices Q and R .

At the same time, a series of limitations have emerged:

• The tool is highly sensible to sudden shifts in the measurements, like the one
introduced by a GNSS error model, and struggles to compensate the error,
sometimes resulting in wrong estimates.

• The static parameters can critically influence the result precision, introduc-
ing an irremovable bias error, an issue shared with all the vehicle dynamic
model-based estimators. A solution consist in augmenting the number of
uncertain parameters, at cost of introducing more sensors, but the estima-
tion would result more difficult. Moreover, the behavior of the tool with
additional uncertain parameters is all to be proven.

• The tool does not provide any mechanism to define a proper search direc-
tion, to weight the various estimation errors and to impose constraints: a
solution is always searched unconditionally. This can constitute a serious
limitation in case of noisy data sets, or when multiple uncertain parameters
are introduced.

These conclusions will serve as a basis for the implementation and analysis of the
tools presented in the next chapters.



Chapter 5

Slip angle estimation through
Feedback Linearization

This chapter is dedicated to a sideslip estimator based on the feedback lineariza-
tion technique. Dynamic equations are taken from the unicycle model, a simple
relationship between the vehicle kinematic properties. The algorithms exploits
measurements from a single position sensor (optical and GNSS are considered).
The tool is presented, improved considering practical issues, and tested against
available data. Finally, implementation notes are provided.

5.1 Motivations

As already mentioned in the state of the art chapter, a series of estimators are
based on simple kinematic considerations, and do not make use of a vehicle dy-
namic model, that introduces a series of limitations due to its assumptions and
uncertainties. In particular, GPS/INS-based estimators calculate the sideslip angle
β by simply removing the attitude (ψ, yaw angle) from the heading (car direction,
θ)

β = θ − ψ (5.1)

These values can be computed by feeding the measurements from one or two
GPS and INS to a filtering algorithm like the Extended Kalman Filter [37]. This
approach has at least two limitations:

• Extended Kalman Filter is composed by at least 3 differential equations, and
requires a repeated linearization of the system to propagate the statistical
properties, a procedure which, depending on the implementation, is associ-
ated to a considerable computational cost, particularly negative if our aim
is providing estimations with a high bandwidth.

• β is highly influenced by the measurement accuracy, which depends on the
sensor characteristics. As already explained, GNSS sensors are characterized

35
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by a low resolution, noise and sudden shifts in presence of obstacles. The EKF
is able to filter out the noise, but the effect is limited and the bandwidth is
reduced.

The accuracy problem can only be solved by an upgrade of the sensors; we can
instead focus on optimizing the computational cost, an operating that can be
performed by replacing the filtering algorithm with a lighter procedure.

v
β

x

y

ψ

Figure 5.1: Unicycle model

To build this procedure, we have to start from a proper differential model. We
consider the Unicycle model represented in Figure 5.1, a simple differential model
that links a body velocity vector v and yaw rate ω with its absolute position and
heading, represented in this chapter as the sum of the attitude and sideslip angle
(ψ + β) 

ẋ = v cos(ψ + β)

ẏ = v sin(ψ + β)

ψ̇ + β̇ = ω

(5.2)

The idea is to use the position measurements x and y to obtain values of the other
two variables, v and θ+β. x and y need an integration, so they must be considered
state variables of the system and can not be inserted directly. Instead, the model
must be simulated and updated with available measurements, a practice performed
through an observer, a standard control theory tool, similar to the Kalman Filter
(although built on different basis). The task is difficult due to the non linearity
of the equations: unlike the linear case, implementing an observer for a nonlinear
system is non trivial and requires a specific approach.

A first option consists in linearizing the system through the standard jacobian
method and using the canonical observer for linear systems, but it would introduce
a significant approximation with a negative influence on the results. The feedback
linearization is one of the available alternatives, as it allows to build an observer-
like system without approximations.
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The application of feedback linearization to the unicycle has been proposed in
several works and for various purposes [10] [38]. Its robustness is still to be tested,
in particular with respect to the characteristics of available sensors. A robust
implementation could provide an easy sideslip estimation algorithm, particularly
suitable when precise positioning systems are available.

5.2 Feedback Linearization

Feedback linearization is an approach to control design that aims at transforming
nonlinear dynamic models into equivalent linear models, which can be used with
standard control techniques, such as PID, LQR or Pole Placement. It requires a
time invariant, nonlinear model that can be written in this standard formẋ = f (x) + g(x)u

y = h(x)
(5.3)

where x(t) is a n-dimensional state vector and u(t) a m-dimensional vector of
input variables. The method consists in finding an arbitrary transformation of the
state variables z = T (x) that allows to build a new, linear system, equivalent to
the original one [21], such as ż = Az + Bv

w = Cz
(5.4)

where z is an r -dimensional vector of transformed state variables, v is a m-
dimensional vector of transformed input variables, w is a m-dimensional vector
of transformed output variables and A,B,C are constant matrices.

The nonlinear part, removed through the transformation, is moved in a control
law, that precedes the original system. In some cases, linearization can be achieved
with a static control law, while in others a nonlinear dynamic state feedback law
(compensator) is required: ξ̇ = a(x , ξ) + b(x , ξ)v

u = c(x , ξ), +d(z , ξ)v
(5.5)

where ξ is a q-dimensional vector of compensator state variables.

In practice, an additional closed loop is introduced to actively update the addi-
tional control law, as shown in Figure 5.2. The overall loop can be considered as
the one of a completely linear plant, but without the approximations introduced
by the standard Jacobian linearization.

The transformed system is usually equivalent to a set of decoupled input-output
chains of integrators, and so can be simulated with standard numerical methods.
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Figure 5.2: Feedback linearization

5.3 Application

Linear dynamic models can be used to estimate or update state variables through
the implementation of observers, virtual systems fed by available state variables
and control actions, that predict output values and use these predictions to correct
themselves through a closed loop. An observer based on a linear system has this
typical form, also represented in block diagram form in Figure 5.3a ˙̂x = Ax̂ + Bu + K [y − ŷ ]

ŷ = Hx̂
(5.6)

Where quantities denoted with the hat are estimations, while the others are avail-
able quantities, fed into the system at every iteration. Error convergence is ensured
by the term K [y − ŷ ], whose gain K dictates the bandwidth.

Feedback linearization should allow to exploit this approach with any nonlinear
system, by applying the previously described transformation. A possible imple-
mentation is shown in Figure 5.3b: the system has been replaced with an equivalent
linear system, preceded by a control law.

The gain has also been replaced by a generic regulator, that will be defined ac-
cording to requirements.

We can now go back to the unicycle model defined in equation (5.2). We are
interested in estimating the state variables x and y : since we know that the result
will be a chain of integrators, some variables able to control independently the
position values are their accelerations. The equations corresponding to x and y
are derivated, obtainingẍ = v̇ cos(ψ + β)− v(ψ̇ + β̇) sin(ψ + β)

ÿ = v̇ sin(ψ + β) + v(ψ̇ + β̇) cos(ψ + β)
(5.7)
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Figure 5.3: Feedback-linearized observer compared to a normal observer

We consider the nonlinear law developed for the tracking of the unicycle [27]
ξ̇ = u1 cos(ψ + β) + u2 sin(ψ + β)

v = ξ

(ψ̇ + β̇) =
u2 cos(ψ + β)− u1 sin(ψ + β)

ξ

(5.8)

and replace v and (ψ̇ + β̇) in the previous equations

ẍ = u1 cos2(ψ + β) + u2 sin(ψ + β) cos(ψ + β)+

− u2 cos(ψ + β) sin(ψ + β) + u1 sin2(ψ + β) (5.9)

ÿ = u1 cos(ψ + β) sin(ψ + β) + u2 sin2(ψ + β)+

+ u2 cos2(ψ + β)− u1 sin(ψ + β) cos(ψ + β) (5.10)

from which it is clear that x and y are independently linked to the inputs u1 and
u2, and controllable through them ẍ = u1

ÿ = u2
(5.11)

It is important to emphatize the fact that the control law has a singularity in
ξ = v = 0, that verifies when the unicycle is not rolling, a common limitation al-
ready anticipated in the vehicle dynamics chapter. Despite the fact that a sideslip
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estimator for v → 0 is useless, this issue must be kept into account when imple-
menting the controller [27], for instance by choosing an adeguate initial value for
ξ and by resetting it when a threshold is passed. The transformed model resultsż1 = ¨̂x = u1

ż2 = ¨̂y = u2
(5.12)

This represents a chain of two input-output integrators, in which it is evident that
x and y are decoupled and controllable separately by u1 and u2.

We can now transform the system into an estimator, by ensuring the error con-
vergence between the state variables and the measurements, using a regulator. We
select a standard PID control, without the integral action, since the system itself
is already equivalent to a double integrator. The control actions are fed into the
new inputs of the feedback-linearized system:

u1 = kp(x − x̂) + kd (ẋ − ˙̂x) (5.13)
u2 = kp(y − ŷ) + kd (ẏ − ˙̂y) (5.14)

kp and kd can be tuned to achieve a desired bandwidth. The resulting tool, shown
in Figure 5.4, is undoubtedly lighter than Extended Kalman filter and similar
techniques; moreover, the convergence between the measurements and the position
components can be controlled more easily, thanks to the dedicated PD regulators,
while in the EKF it is generally difficult to tune a single state variable, although a
precise statistics propagation method is present. Of course, a precise performance
comparison can be performed, and is left to a future work.

As already anticipated, the robustness of the proposed estimator against available
sensors is all to be tested, and can only be determined experimentally.
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Figure 5.4: Feedback linearization-based sideslip estimator

The sideslip estimator can be implemented in Simulink through the use of blocks,
resembling Figure 5.4. The equations are integrated with the default ode45s esti-
mator and a varying time step.
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Figure 5.5: Setup of the complete FL-based estimator

The only parameters that have to be tuned are the PD gains of the estimators,
that dictate the internal loop bandwidth and is usually limited by stability issues,
not present in this case. The choice is limited only by the need of obtaining a
reasonable simulation speed, since an high bandwidth causes smaller integration
time steps. Typical gains can be

kp = 500 (5.15)
kd = 100 (5.16)
N = 100 (5.17)

Since the control is a PD, equivalent to a zero, an additional pole has to be
introduced to restore causality, controlled by the N parameter. The slip angle β is
finally obtained by subtracting the vehicle attitude ψ from the estimator output
(ψ + β). The result can be compared to the value measured by an ideal sensor.
The final Simulink setup is shown in Figure 5.5.

5.4 Simulation results

The tool has been tested against data sets from the simulated environment used
throughout the entire work, whose setup and characteristics are reported in Ap-
pendix A.

Roundabout trajectory

A first test can be performed against data from the simulation of a vehicle running
at a constant longitudinal velocity of 80 km/h and following the roundabout tra-
jectory (Section A.3), with the wheel oriented at 45◦, shown in Figure 5.6a, using
the ideal position measurements as the estimator input. Results, reported in Fig-
ure 5.6b, show that the proposed estimator is perfectly able to follow the behavior
of the car model implemented in Dymola, with a negligible steady-state error.
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Eventual oscillations can be mitigated by a better tuning of the PID parameters
of the loop.
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Figure 5.6: Results of the FL estimator against the roundabout trajectory

GNSS robustness

We proceed to introduce the GNSS error model on the position measurements,
as described in Section A.2 and in the same way as performed with the previous
estimator. The noise map is the same as Figure 4.4, to allow a precise comparison.

Results of the new simulation are shown in Figure 5.7. We can observe a measure-
ment noise effect, and a series of sudden jumps in the estimation, corresponding
to a change of GNSS quality, that however are immediately compensated. The
stability seems not affected by sudden shifts in the position measurements, and is
apparently very robust against disturbances, a major improvement with respect
to the EKF-based estimator described in Chapter 4.
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Figure 5.7: Results of the FL estimator against the roundabout trajectory, with the GNSS
error model
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The noise, both in terms of variance and shifts, can be filtered out. Various tests
have concluded that it is better not to edit the PID gains for this scope, as lower
PIDS cause a decrease of bandwidth, with a slower error compensation. An al-
ternative and flexible solution consists in using two blocks of low-pass filters, one
placed on the estimator input, and the other on the estimator output, as shown in
Figure 5.8: various combinations of tuning allow the estimation of proper values
for almost any analyzed situation.

LPFIN

LPFIN

x ref

y ref
ESTIMATOR

β
LPFOUT

Figure 5.8: Filtered FL estimator

Angle normalization

By increasing the estimator bandwidth or using data sets from real tests, it is
possible to incur in the situation shown in Figure 5.9: while the error converges to
zero, β stabilizes around increasing values.
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Figure 5.9: Simulation without angle wrapping

Repeated testing allows to assert that this problem depends on two distinct phe-
nomena:

• The heading, subtracted from the estimator output (ψ + β), could not
wrapped in a reasonable range.
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• The estimator gains are so high that β stabilizes around progressively higher
values, since it passes through trigonometric functions and an integration
that do not care about its real value.

A solution for both problems consists in wrapping the estimator output value in
the range (−180◦; +180◦]. A decrease of the PID gains is also possible, but with
the drawback of a less responsiveness to errors.

-v

β+θ

Figure 5.10: Beta meaning in case of negative velocity state values

Another problem arises when the velocity state variable of the estimator becomes
negative, a problem caused by the tool bandwidth or by excessively disturbed
data. In this case, to get a proper β, it is necessary to detect the phenomenon and
add ±180◦, according to the beta sign, as can be deducted from Figure 5.10.
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(b) Estimation

Figure 5.11: Results of the FL estimator against the slalom trajectory
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The complete tool can be tested against data from the vehicle running at 80 km/h
and following the slalom trajectory (Section A.3). Since the robustness of the
tool against measurement shifts has already been demostrated and addressed,
the GNSS model parameters (variance and shift) have been drastically increased
to test the reliability of the final version of the tool. The estimation, reported in
Figure 5.11b, is apparently not influenced by longitudinal velocity, road adherence,
variability of forces and other factors that constitute a problem in parameter
identification-based estimators.

Drifting simulation

An additional test has been performed by using data from the simulation of a sin-
gle track model in a complete non-adherence situation, called drifting, stabilized
through the pole placement technique. In such scenario, a precise sideslip identi-
fication cannot be performed by most estimators that use the single track model
with a constant cornering stiffness, as Fy and Cf become completely unrelated due
to saturation. Since the considered method does not use a lateral dynamics model,
the situation can be handled, as clearly shown in Figure 5.12. The oscillation at
the end of the plot is a glich caused by the time-varying simulation, also present
in other tests against data sets from “perfect” simulations and without noise.
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Figure 5.12: Results of the FL estimator against a drifting simulation

5.5 Experimental Results

An estimation has been performed against a data set from the driving of the Un-
manned Ground Vehicle described in Appendix B, used throughout the work. The
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low-pass filters introduced during the simulation phase have been implemented as
second-order low pass filters, with a damping factor of 1.5.

The slip angle plot of Figure 5.13 shows that the values provided by the tool and
the one provided by the optitrack system, used as reference, are characterized by a
very little relative error. This is expected, since both are based on the same mea-
surements (the vehicle position), and do not perform any merging with data from
other sensors. This constitutes a limitation, since any possible measurement error
can not be compensated. Nevertheless, considering the simplicity of the tool, it is
safe to assume that realistic estimates can be provided after a proper calibration.
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Figure 5.13: Results of the FL estimator against data from a UGV

5.6 Implementation notes

Since the estimator is meant to be used as a supporting on-board tool, the algo-
rithms have been successfully implemented for testing purposes in a Robot Oper-
ating System (ROS) node, to be used in a ROS-running machine. ROS is not a real
operating system nor a hard real time system, but a set of programs and libraries
that provide a strong underlying platform for the development and interaction of
control system components.

The writing of such estimator in a programming language presents more or less
the same problematics, independently from the platforms, so the one encountered
for the specific case are reported in this section.

The core of the estimator is a set of first-order Ordinary Differential Equations
(ODEs), that must be solved through a numerical method, that have to be chosen
and implemented, or called through available libraries. The choice of a simple
integration algorithm with a deterministic execution time can nevertheless lead to
decent results, in particular if bandwidth is a constraint or there are no libraries
available, like in the case of a microcontroller.
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Another task is the realization of the PD regulator: it can be directly expressed
in time domain or realized from Laplace domain through a proper transformation
(Tustin, explicit Euler, implicit Euler).

As introduced in multiple points, the estimator has a singularity for v → 0: before
computing the control law of the feedback linearization, the implementation must
verify that abs(v) > tollerance, otherwise the tool must enter in a reset mode,
where integrated variables are set back to their initial value, and internal position
is imposed as the current position.

An important aspect is related to the step synchronization with respect to the
input values:

• The loop containing all the solving procedures can be run synchronously
with respect to incoming data from sensors: in this way the implementation
is simpler, but output frequency depends on the one of the input data.
Moreover, big time intervals between samples could influence the estimator
stability, that must be kept under control.

• The loop can otherwise be run asynchronously, using the zero order hold
method and outputting values at constant rate. Aliasing must be avoided,
and implementation is more difficult, since two tasks (data gathering and
model simulation) must be run concurrently, making necessary the use of
methods for parallelization, like asynchronous programming or threads.

5.7 Conclusions

The proposed approach is much cheaper than standard solutions both in terms of
economic cost and required computational power; it works well when a uniform
GNSS signal is available, can work with minor adjustments when the signal level
varies. It is also relatively simple to implement on any possible platform, as the
underlying math is limited. The system is also the most reliable when dealing
with large slip angle values, as it does not depend on a vehicle dynamic model
and can handle better a change of behavior, at cost of a greater dependency on
the measurements accuracy.

The cons are a limited bandwidth and robustness, since they are both dictated by
sensor characteristics. Furthermore, control parameters must be tuned manually,
according to the current scenario.

Since the only input is constituted by positioning measurements, the possibilities
of improvements are limited:

• The positioning sensor can be replaced with a more precise system.

• A more precise positioning system could be obtained by feeding inputs from
both a position sensor and a IMU sensor into an Extended Kalman Filter,
increasing the bandwidth.



Chapter 6

Base slip angle estimation
through LFT

This chapter is dedicated to a sideslip estimator based on the single track model,
a vehicle lateral dynamics representation, and on a parameter identification tech-
nique for nonlinear models developed by exploiting a Linear Fractional Transfor-
mation (LFT) of the model, in order to minimize the error between the predicted
output and available measurements. This technique, highly flexible, is explained
starting from the static minimization problem and applied to the problem through
an existing toolbox, improved with the introduction of new functionalities. An im-
plementation of the system is then tested against available data.

6.1 Motivations

While a sideslip estimator based exclusively on kinematic considerations, like the
one based on the feedback-linearized unicycle, is characterized by a good flexi-
bility (after a proper tuning), a series of limitations are also evident: robustness
is highly dependent on the measurements accuracy, that can change over time,
and bandwidth is limited by the frequency at which sensor values are provided.
This can constitute a problem if we need a higher bandwidth, for instance if the
estimation is intended for a safety system, or if we need to perform predictions,
i.e. estimating beta values in the future, according to a certain steering angle and
velocity reference.

Model-based estimators are intended to address these limitations, as they provide
the needed values through a simulation of a vehicle dynamic model. The drawback
is a reduced operating range, since the models have inherent uncertainties and can
rarely be reliable without the introduction of limiting assumptions.

The most used model in sideslip estimation is the already introduced single track
(equations (3.20)), sometimes coupled with a tyre model (Pacejka, Burckhardt or
Kiencke and Daiss). Its differential equations include at least 6 parameters (a, b,

48
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m, Iz , Cf , Cr ), that must be chosen to replicate the current vehicle behavior. While
the vehicle geometric properties a and b (distance of COG from front and rear
wheel axle) and also inertial properties m and Iz can be read from datasheets or
estimated through common methods, the cornering stiffnesses Cf and Cr depend
on the road and vehicle specific conditions, and must be identified during the
vehicle motion, by placing an algorithm on a processing unit in the car, fed by
available sensors. This constitutes an additional task, harder than usual due to the
fact that the model is nonlinear, so a large part of the control and identification
theory approaches cannot be applied.

The most used tool to perform this kind of work is undoubtedly the Extended
Kalman Filter, not only because of its reliability, but also because the parameter
identification procedure is performed in the same step of the model output com-
putation, resulting in a simple tool, as shown in Chapter 4. However, a series of
limitation are present:

• the model has to be continuously linearized, an operation with an high com-
putational cost;

• the parameter identification procedure, that consists in augmenting the sys-
tem with an additional equation that calculates the error due to the param-
eter value, is slow and difficult to control, since its convergence is controlled
by the covariance matrix P , that is intended for dictating the covariance of
the state values;

• the convergence of the parameter identification procedure strongly depends
on the initial conditions of the model.

Different approaches can be developed, especially if the identification problem and
the estimation problem are split up. We could, for instance, split the problem in
two separate parts:

1. Identify the uncertain parameters of the model, by minimizing the error
between the model output and available measurements, obtained in a certain
timespan.

2. Compute the output of the model, using the identified parameters, until a
new identification is necessary. The identification can be performed before
or during the output computation, in a parallel process.

We focus on the identification problem, that can be expressed as a static min-
imization problem, intended as a problem in which the error between available
measurements and model output is minimized, and the operation is performed
once for each considered timespan.

This operation is particularly difficult for nonlinear systems, in terms of algo-
rithms and computational costs. The available numerical algorithm to solve the
minimization problem use extensively gradient matrices, Hessian matrices and
Gauss-Netwon directions, that are typically obtained through an inefficient lin-
earization of the system. Moreover, the matrices are often inverted, a procedure
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with an high computational cost (it is the bottleneck of the EKF [39]) and sub-
jected to errors in case of high condition numbers.

Various alternative approaches have been developed, based on prediction Error
Method (PEM) [25], two-step method (TS) [17], backtracking search algorithms
[12], white box, grey box [26] and many more.

In this work, the analyzed parameter identification approach is based on the Lin-
ear Fractional Transformation (LFT) formulation of nonlinear systems, a common
formalism used both in control and identification, that separates the linear, nonlin-
ear and uncertain part of the system. A model written in LFT form can be passed
to a properly-built algorithm, presented in the next section, that computes the
gradient and Hessian at each time instant, efficiently and without any approxima-
tion. Then, the chosen numerical algorithm can solve the minimization problem,
obtaining the most suitable parameters.

This technique allows to identify the missing parameters of the single track model,
that can then be simulated at arbitrary time instants, estimating β, even in the
future (predictor). The process is highly flexible, as the choice of the parameters to
identify, the available measurements used for the minimization and the frequency
of the identification is left to the user.

In the following sections, the two-stage LFT algorithm is explained and applied
to the single track model in its base form.

6.2 Two-stage LFT estimator

6.2.1 Parameter identification problem

We consider a discrete nonlinear modelx(k + 1) = f (x(k), u(k), d)

y(k) = h(x(k), u(t), d)
(6.1)

where f and h are function vectors containing the model equations, d is a vector
containing uncertain parameters, x(k) is the model state vector at time instant
tk , u(k) the input vector, y(k) the output vector.

The parameter identification problem can be formulated as a minimization prob-
lem (least squares problem), with the following syntax [7]: given inputs u(k) and
output measurements y(k) at sampling instants tk , with k = 1, ...,N, find the val-
ues δ̂ that minimizes the quadratic cost function

J(δ) =
1

2N

N∑
k=1

e(k , δ)Te(k , δ) (6.2)
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Where e at a certain time instant tk is the error between the predicted output
and a set of chosen measurements, that must have a corresponding variable in the
model output vector ŷ

e(k , δ) = y(k)− ŷ(k , δ) (6.3)

Neglecting the case in which J is trivial and an algebraic solution exists, the
problem can be solved through one of the available numerical methods for mini-
mization, run in a loop until the error drops below a certain tolerance. The most
common are listed below.

Simple iterative search

The minimum value of J can be simply searched iteratively for the smallest value,
avoiding the computation of the gradient or Hessian:

Jn+1 = Jn + ∆Jn+1(δn + ∆δn+1) (6.4)

where n is the step index and ∆ is an arbitrary-chosen step value. This method is
generally inefficient.

Gauss-Newton algorithm

This algorithm is a modification of the Newton method (a root-finding algorithm),
applied to the minimization field, that introduces the gradient and Hessian into
the problem. A necessary condition for optimality is that the gradient of the cost
function must be zero with respect to the optimizing parameters [39]

∂J

∂δ
= 0 (6.5)

The considered cost function can be approximated around a nominal unknown
parameters vector δ0 through the Taylor expansion, truncated at the second order
term

J(δ) ≈ J(δ0) +

(
∂J

∂δ

∣∣∣
δ=δ0

)T(
δ − δ0

)
+

1

2

(
δ − δ0

)T
∂2J

∂δ2

∣∣∣
δ=δ0

(
δ − δ0

)
(6.6)

The necessary optimality condition results

∂J

∂δ
=

(
∂J

∂δ

∣∣∣
δ=δ0

)T

+

(
δ − δ0

)T
∂2J

∂δ2

∣∣∣
δ=δ0

= 0 (6.7)

By equating with zero and solving with respect to δ, we obtain

δ = δ0 −
(
∂2J

∂δ2

∣∣∣
δ=δ0

)−1(
∂J

∂δ

∣∣∣
δ=δ0

)T

(6.8)
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This can be written in recursive formulation and smoothed with a step size α,
obtaining the final formula

δn+1 = δn − αn

(
∂2J

∂δ2

∣∣∣
δ=δn

)−1(
∂J

∂δ

∣∣∣
δ=δn

)T

(6.9)

where n is the step index.

Since we are using a quadratic cost function (equation (6.2)), the terms in brackets
can be simplified:

• The first term in brackets is the Hessian vector H(J), which can be expanded
as follows, neglecting the second order term

H(J) =
∂2J

∂δ2

∣∣∣
δ=δn
≈ 1

N

N∑
k=1

(
∂e

∂δ

∣∣∣
δ=δn

)T
∂e

∂δ

∣∣∣
δ=δn

=

=
1

N

N∑
k=1

ET (k , δn)E (k , δn) (6.10)

where E is the Jacobian of the prediction error e, at time instant tk , with
respect to the unknown parameters vector δ

E (k , δ) =
∂e

∂δ
= −

[
∂ŷ

∂δ1

∂ŷ

∂δ2
...

∂ŷ

∂δq

]
(6.11)

we recall that the prediction error is given by

e(k , δ) = y(k)− ŷ(k , δ) (6.12)

• The second term in brackets is the gradient vector ∇J , which can be ex-
panded as

∇J =
∂J

∂δ
=

1

N

N∑
k=1

(
∂e

∂δ

∣∣∣
δ=δn

)T

e

(
t, δ

)
=

=
1

N

N∑
k=1

ET (k , δn)e(k , δn) (6.13)

In case of non-quadratic cost functions, the derivatives are calculated by linearizing
the cost function (Newton-Raphson iteration).
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Steepest-descent algorithm

This method avoids the computation of the Hessian matrix, that is replaced with
a scalar constant ε (gain)

δn+1 = δn − ε
(
∂J

∂δ

∣∣∣
δ=δn

)T

(6.14)

ε dictates the convergence bandwidth: if it is too small, convergence is slow, if too
large, the convergence oscillates or may fail. The best solution is using an adaptive
gain, with the following adjustment rule:

1. J1 is calculated by using a first try ε;

2. J2 is calculated by using 2 · ε;

3. if J1 > J2, there’s a quadratic fit through 3 points to the optimal ε;

4. otherwise, J3 is calculated with 4 · ε.

Quasi-Newton methods

This family of methods does not require the computation of the Hessian, and due
to their flexibility they are available in most of scientific software and libraries (in-
cluding Matlab). Cost function is expanded with Taylor and truncated at second
order, like in the Newton Method. A quasi-Newton method replaces the Jaco-
bian and Hessian in the equation with approximations in the neighborhood of the
considered optimization point

J(δ) ≈ J(δ0) +

(
∂J

∂δ

∣∣∣
δ=δ0

)T(
δ − δ0

)
+

1

2

(
δ − δ0

)T

B

(
δ − δ0

)
(6.15)

where δ0 is the optimization point and B is an approximation of the Hessian
matrix, while the Jacobian results

∂J

∂δ
=
∂J

∂δ

∣∣∣
δ0

+ B

(
δ − δ0

)
(6.16)

Setting the Jacobian to zero provides the optimality condition

δ = δ0 − B−1
∂J

∂δ

∣∣∣
δ0

(6.17)

B is chosen to satisfy formula (6.16) with progressive approximations, through
a so-called secant equation. Various formulas have been developed to numerically
solve the secant equation, some requiring a quadratic cost function, like the David-
son, Fletcher, and Powell (DPF) algorithm, or Broyden, Fletcher, Goldfarb, and
Shanno (BFGS) algorithm [9].
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Trust-region methods

A variant of this family of methods is the one provided by Matlab and used in
the LFT toolbox that will be proposed in the following sections. The problem of
minimizing a quadratic cost function is well known, and, as already seen, leads to
known solutions. We consider a generic cost function, this can be approximated
as a quadratic form in a certain region

qk(δ) ≈ J(xk) +∇J(xk)T ∆δ +
1

2
∆δTBk∆δ (6.18)

where δ is the optimizing vector, J is the cost function, ∇J the Jacobian, B a
Hessian approximation.

The quadratic form can then be tested for correctness, by computing the ratio be-
tween the predicted value corresponding to a chosen step, and the same operation
performed with the original cost function

ρk =
J(xk)− J(xk+1, δk)

qk(0)− qk((δk)
(6.19)

If the ratio is close to 1, then the quadratic form is a good approximation, and
the region can be expanded, otherwise it is reduced.

From the discussed methods, we can deduce that the Hessian and gradient of
the cost function play an important role in most of the numerical methods for
minimization, but their computation is problematic, especially if the cost function
is nonlinear, and is often avoided by replacing them with approximations.

6.2.2 LFT Formulation

The proposed LFT-based tool, developed for the identification problem, tries to
provide both Hessian and gradient with a low computational cost and without ap-
proximations. The values are then passed to an arbitrary minimization algorithm,
allowing the use of parameter identification in fields previously unavailable due to
bandwidth constraints.

The Linear Fractional Transformation (LFT) formulation of a nonlinear differen-
tial model is a widely used formalism, for both identification and control purposes
[13], in which the linear part, the nonlinear part and the uncertainties of the model
are kept separated. Given a generic, differential model with uncertainty vector δẋ(t) = f (x(t), u(t), δ)

y(t) = h(x(t), u(t), δ)
(6.20)
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This can be rewritten, without approximations, in the following system, also rep-
resented in Figure 6.1

ẋ(t) = Ax(t) + B1w(t) + B2ζ(t) + B3u(t)

z(t) = C1x(t) + D11w(t) + D12ζ(t) + D13u(t)

ω(t) = C2x(t) + D21w(t) + D22ζ(t) + D23u(t)

y(t) = C3x(t) + D31w(t) + D32ζ(t) + D33u(t)

w(t) = ∆z(t) = diag{δ1Ir1 , ..., δqIrq}z(t)

ζ(t) = Θ(ω(t))

(6.21)

where A; B ; C ; D; are 16 constant matrices, whose size depends on the original
model. We can distinguish 3 parts:

• A linear model (first equation and 4th equation), with x , y and u as the
state, output and input vectors respectively. During a system simulation,
vector ẋ is integrated to obtain x .

• A nonlinear model (last equation), composed by the function vector Θ(ω),
whose argument is the auxiliary vector ω, which is determined by the 3rd
equation. During a system simulation, Θ(ω) evaluated to determine the value
of vector ζ.

• A uncertain part (5th equation), where ∆ = diag(δ1, ..., δq) is the unknown
parameters vector. This is accessible through the auxiliary vector w , multi-
plied by another auxiliary vector, z , that is determined using the 2nd equa-
tion. During a system simulation, vector ∆ is multiplied by z , returning the
results in w .

It is important to empathize the fact that the simulation of a LFT formulation of
a given system is formally equivalent to the simulation of the original system.
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Figure 6.1: LFT formulation

This formalism was developed for a generic use, as the separation of parts can be
exploited for multiple purposes; its usage for Hessian and gradient computation
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has been the subject of many researches [22], and different methods have been
proposed.

6.2.3 Writing procedure

Deriving the LFT formulation of a nonlinear system is a non-trivial task [7], mainly
because there is not a unique solution: variables can be arranged in many ways, as
there are two auxiliary vectors w and z that can be determined arbitrarily, and it
is not necessary to move all the linear parts of the system into the linear equations,
as they can stay in the nonlinear vector Θ at cost of a lower computational speed.
Furthermore, unknown parameters can be present in parts of the equations difficult
to disassemble, a situation that could require an extended reasoning. Nonetheless,
a series of methods have been developed, both manual and automatic (working
with a symbolic formulation of the system).

The method described below is a self-developed algorithm, that can be manually
applied to different systems, including the vehicle dynamic model later used in
this work, and can be easily implemented in an automatic program.

As an example, we consider this simple dynamic model, whose LFT formulation
will be derived ẋ1 = d1x1 + x2

1+d2

ẋ2 = u1
(6.22)

where d are the uncertain parameters.

The steps are the following:

1. Parameters that have to be estimated are put in δ =
[
δ1 ... δq

]
.

Example: d1 and d2 are put into δ: δ =
[
d1 d2

]
.

2. Each δ has to multiply another variable. Otherwise, equations are modified
to get the result.

Example:
x2

1 + d2
becomes

x22
x2 + x2d2

3. Each x , ζ or w linearly dependent on a single δ (even at a denominator) is
put in the z slot corresponding to the considered δ. Each zδ gets replaced
by w .

Example: we impose
z1 = x1 z2 = x2
then
w1 = z1δ1 w2 = z2δ2
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4. Each nonlinear part dependent on one or multiple x , u or w is put in a ζ,
and each x , u or w needed in these parts is put in a ω.

Example: since we have
x22

x2 + x2d2
, we define

ω1 = x2 ω2 = w2 = z2δ2
then
Θ(ω) =

ω2
1

ω1 + ω2

5. The previous two steps are repeated until necessary.

If multiple ζ are present in a single equation, is useful to group them all in a single
ζ, to simplify the system.

Here is reported the final LFT formulation corresponding to the example model
(6.22)

z =
[
x1 x2

]
w =

[
z1δ1 z2δ2

]
(6.23)

ω =
[
x2 w2

]
ζ = Θ(ω) =

ω2
1

ω1 + ω2
(6.24)

ẋ =
[
d1x1 + ζ1 u1

]
(6.25)

The resulting equations then have to be translated into the matrix formulation
(6.21), reported again for simplicity purposes, by properly filling the constant
matrices 

ẋ(t) = Ax(t) + B1w(t) + B2ζ(t) + B3u(t)

z(t) = C1x(t) + D11w(t) + D12ζ(t) + D13u(t)

ω(t) = C2x(t) + D21w(t) + D22ζ(t) + D23u(t)

y(t) = C3x(t) + D31w(t) + D32ζ(t) + D33u(t)

w(t) = ∆z(t) = diag{δ1Ir1 , ..., δqIrq}z(t)

ζ(t) = Θ(ω(t))

(6.26)

6.2.4 Using the LFT form as estimator

Given a system in the LFT formulation, the Hessian and gradient needed by a
minimization method can be computed through a recently-developed two-pass
algorithm [6], already applied to multiple problems [7] [8].

As already explained, Hessian and gradient of the parameter identification cost
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function can be written as

H(J) =
1

N

N∑
k=1

ET (k , δ)E (k , δ) (6.27)

∇J =
1

N

N∑
k=1

ET (k , δ)e(k , δ) (6.28)

Using the definitions of prediction error and its Jacobian

e(k , δ) = y(k)− ŷ(k , δ) (6.29)

E (k , δ) =
∂e

∂δ
= −∂ŷ(k , δ)

∂δ
(6.30)

we can replace them in (6.27) (6.28), obtaining

H(J) =
1

N

N∑
k=1

(
∂y(k , δ)

∂δ

)T(
∂ŷ(k , δ)

∂δ

)
(6.31)

∇J =
1

N

N∑
k=1

(
∂y(k , δ)

∂δ

)T[
ŷ(k , δ)− y(k)

]
(6.32)

Both equations depend only on y(k , δ) (input measurement values), ŷ(k) (pre-
dicted output) and ∂ŷ(k,δ)

∂δ
(its Jacobian, or sensitivity): we can compute the last

two using two different LFT formulations.

First stage

A new system can be built from the LFT model as followsM ˙̂x = f (x̂ , u)

y = g(x̂ , u)
(6.33)

where

x̂ = [xT zT ωT ]T (6.34)

M =

 In 0n×nz 0n×nω

0nz×n 0nz×nz 0nz×nω

0nω×n 0nω×nz 0nω×nω

 (6.35)

f (x̂ , u) =

 Ax + B1w + B2ζ + B3u
C1x + (D11∆− Inz )z + D12ζ + D13u
C2x + D21w + D22ζ − ω + D23u

 (6.36)

g(x̂ , u) = C3x + D31w + D32ζ + D33u (6.37)

where n is the size of vector x , nω the size of ω, nz the size of z .
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This represents an index-1, semi-explicit Differential Algebraic Equations (DAE)
system, that can be solved through a numerical integration method, obtaining
y = ŷ .

Mass matrix M is singular, therefore the existence of a solution depends on pro-
viding a consistent initial state vector ˆ̇x(0) [7]: in this way the first n equations
are solvable and can provide a result.

Second stage

A second system can be built as follows



ẋ ′i = Ax ′i + B1w
′
i + B2ζi + B1∆δi

z

z ′i = C1x
′
i + D11w

′
i + D12ζ

′
i + D11∆δi

z

ω′i = C2x
′
i + D21w

′
i + D22ζ

′
i + D21∆δi

z

y ′i = C3z
′
i + D32w

′
i + D32ζi + D31∆δi

z

w ′i = ∆z ′i
ζ ′i = Θω(ω)ω′i

(6.38)

where subscript i and superscript ′ denote a new set of vectors. The nonlinear
function vector has been replaced by its derivative with respect to each ω

Θω(ω) =
∂Θ(ω)

∂ω
(6.39)

while matrix ∆ is equivalent to the one of the original system, and

∆δi
=
∂∆

∂δi
= diag(0, ..., Iri

, ..., 0) (6.40)

The last two equations are solved, obtaining w(z) and ζ(ω): the results are used
to solve the 2nd and 3rd equation, obtaining ω and z ; finally, w , ζ, ω are replaced
in the 1st and 4th equation, obtaining a linear, time-varying system

ẋ ′i = Â(ω)x ′i + B̂(ω)∆δi
z

y ′i = Ĉ (ω)x ′i + D̂(ω)∆δi
z

(6.41)



60 BASE SLIP ANGLE ESTIMATION THROUGH LFT

where

Â(ω) = A +
[
B1∆ B2Θω(ω)

]
W (ω)

[
C1

C2

]
(6.42)

B̂(ω) = B1 +
[
B1∆ B2Θω(ω)

]
W (ω)

[
D11

D21

]
(6.43)

Ĉ (ω) = C3 +
[
D31∆ D32Θω(ω)

] [C1

C2

]
(6.44)

D̂(ω) = D31 +
[
D31∆ D32Θω(ω)

] [D11

D21

]
(6.45)

W (ω) =

[
Inz − D11∆ −D12Θω(ω)
−D21∆ Inω − D22Θω(ω)

]−1
(6.46)

Solving system (6.41) is equivalent to computing y ′ = ∂ŷ(k,δ)
∂δi

.

Since the second stage requires the value of ω(t) computed in the first stage, the
two systems must be run in cascade, as in Figure 6.2, that shows the complete
procedure.
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Figure 6.2: Two-stage LFT-based algorithm for parameter identification

There are a couple of problems that must be considered when implementing the
algorithm. First of all, time instants selected by the solver to integrate respectively
the first and second stage are usually different, making impossible the usage of ω
by the second stage. A solution consists in rewriting (6.41) as

ẋ ′i = Γ(ω)

[
x ′i

∆δi
z

]
(6.47)

Γ(ω) =
[
Â(ω) B̂(ω)

]
(6.48)
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Thus isolating ω into Γ. The latter is computed with the ω(t) used by the first
stage, saving the values and their times. When the second stage needs Γ, it is
calculated by interpolating available data with the right time instant.

Another problem is related to the identificability of a parameter: a δ̂ is locally
identificable if the Hessian Ĥ is positive definite in δ̂, i.e. if its rank is equal to
dim(δ) = q. Otherwise the estimated parameters are not unique. In this case, the
Hessian is decomposed in two subspaces, one of which identificable

Ĥ =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V T
1

V T
2

]
(6.49)

where U1 is the subspace of δ that can be identified from the measures, U2 the
non-identifiable subspace, Σ1 and Σ2 are arbitrary matrices chosen to split singular
values from the others, and V the rest of the system.

The tool can now be coupled with an optimization method to estimate the un-
certainties of the system. It is important to emphatize the fact that while this
approach strongly reduces the computational cost linked to the Hessian deriva-
tion, the optimization time is still strongly dependent on the numerical algorithm,
that must be chosen accordingly to the needed application and eventually limited
in its execution time, if bandwidth is a constraint.

6.3 The LFT Toolbox

6.3.1 Description

The previously described two-stage estimator is available in a ready-to-use Matlab
implementation [6], still maintained as 2017. While the code is intended for pro-
cessing Eclipse-generated problems, it provides two main functions for a generic
usage:

• [output] = lftSolver(lftfun, input, initialConditions, options)

solves a system in LFT formulation, given its LFT matrices, nonlinear func-
tions, derivatives of the nonlinear functions with respect to each variable ω,
inputs, initial conditions, uncertain parameter values, timespan.

• [delta] = lftOptDelta(lftfun, Input, InitialConditions, solverOptions, y , optimOptions)

run the two-stage estimator on the given LFT system, performing the min-
imization of the error between the system output and a provided set of
experimental data y .

The integration numerical method is provided by ode15s, a Matlab-provided 1st-
5th order method with a medium resolution [3], while the minimization numerical
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method is provided by fminunc , that by default uses a trusted-region algorithm.
Both steps are tunable through a set of options.

An interesting feature consists in the possibility of weighting the error cost rela-
tive to each available measurement; in case of quadratic cost functions (like our
objective, that is still equation (6.2)), this operation is usually performed through
a weighting matrix (xTQx), but the toolbox uses this alternative method

e(k , δ) =

[
y1(k)− ŷ1(k , δ)

W1
...

yn(k)− ŷn(k , δ)

Wq

]
(6.50)

E (k , δ) =

[
−
∂ŷ1(k)/∂δ

W1
... −

∂ŷq(k)/∂δ

Wq

]
(6.51)

where W is a vector, with length q equal to the one of the available measurements
vector y . A larger value in a certain index corresponds to a lower weight of the error
between the corresponding measurement and the system output, and vice-versa.
This options will be useful when dealing with data from different sensors.

6.3.2 Improvements

The available toolbox already provides the entire estimation procedure, but a
couple of improvements can be implemented with the aim of avoiding useless cal-
culations and easing the optimization, before proceeding to a possible application.

Beside the listed features, also the derivation of the Jacobian of the nonlinear
function vector Θ can be automatized through the symbolic toolbox. This part,
however, is not reported since it is trivial.

Parameter normalization

It is important that all the members of the optimizing parameter vector δ stay
as much as possible in the range ±1 during the estimation, from initial value
to optimal value [7]. While a reason is not provided by available literature, it is
probably to be found in the necessity of inverting the Hessian matrix, an operation
performed by the numerical methods, as very different optimizing parameter values
can lead to high condition numbers and so to to an ill-formed problem. Normalized
parameters δ̄ ∈ [−1; 1] can be introduced through this definition

δi =
δi ,max + δi ,min

2
+

δi ,max − δi ,min

2
δ̄i (6.52)

where δi ,max and δi ,min are the boundaries of a reasonable range in which the uncer-
tainties will be searched. This additional step can be performed manually, obtain-
ing more complex LFT formulations [8] [10]; in this work an automatic procedure
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is derived. By introducing the previous definition in the w equation of the LFT
formulation (6.21), we obtain

w = diag(δ)z = diag

(
δi ,max + δi ,min

2
+

δi ,max − δi ,min

2
δ̄i

)
z =

= Ez + diag(δ̄)Fz (6.53)

where we have defined, for simplicity reasons

E = diag

(
δi ,max + δi ,min

2
, ...

)
(6.54)

F = diag

(
δi ,max − δi ,min

2
, ...

)
(6.55)

we define the transformed w and z as

w̃ = diag(δ̄)Fz = diag(δ̄)z̃ (6.56)
z̃ = Fz (6.57)

and replace w̃ in the w equation

w = Ez + w̃ (6.58)

w is replaced in the other equations
ẋ = Ax + B1Ez + B1w̃ + B2ζ + B3u

z = C1x + D11Ez + D11w̃ + D12ζ + D13u

ω = C2x + D21Ez + D21w̃ + D22ζ + D23u

y = C3x + D31Ez + D31w̃ + D32ζ + D33u

(6.59)

z can be solved from the 2nd equation

z = (I − D11E )−1[C1x + D11w̃ + D12ζ + D13u] =

= G [C1x + D11w̃ + D12ζ + D13u] (6.60)

where we have defined, for simplicity reasons

G = (I − D11E )−1 (6.61)

z is then replaced in the other equations
ẋ = Ax + B1EG [C1x + D11w̃ + D12ζ + D13u] + B1w̃ + B2ζ + B3u

ω = C2x + D21EG [C1x + D11w̃ + D12ζ + D13u] + D21w̃ + D22ζ + D23u

y = C3x + D31EG [C1x + D11w̃ + D12ζ + D13u] + D31w̃ + D32ζ + D33u

(6.62)
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z is also replaced in z̃

z̃ = FG [C1x + D11w̃ + D12ζ + D13u] (6.63)

By merging (6.56), (6.62) and (6.63) and rearranging the terms, we obtain

ẋ
z̃
ω
y

 =


A + B1EGC1 B1 + B1EGD11 B2 + B1EGD12 B3 + B1EGD13

FGC1 FGD11 FGD12 FGD13

C2 + D21EGC1 D21 + D21EGD11 D22 + D21EGD12 D23 + D21EGD13

C3 + D31EGC1 D31 + D31EGD11 D32 + D31EGD12 D33 + D31EGD13



x
w̃
ζ
u


(6.64)

This system allows to obtain the matrices of to a new, normalized LFT formula-
tion, i.e. Ã = A + B1EGC1.

The transformation can be applied to the nominal matrices before using the tool-
box, avoiding a manual calculation.

Constrained search

The considered numerical minimization methods work well in most of the cases,
but repeated testings have revealed that the estimator is not very robust against
measurements with lot of noise, or measurements relative to a phenomenon that
does not resemble enough the considered model, or in case of multiple uncertain
parameters, that require a high number of iterations to converge, or in case of
wrong initial conditions. If the solver does not properly detect the search direction,
it could decide to increase the step size α or the optimizing parameters indefinitely,
probably incurring in a singularity and exiting without giving results.

A solution to increase the robustness of the estimator consists in switching from
an unconstrained optimization procedure to a hard-constrained optimization pro-
cedure, that does not allow the parameters to exit a certain range, set by one or
more inequality constraints. This is obtained in literature by augmenting the cost
function with a equality constraint, through a coefficient µ (adjoint vector) [39]

JA = Jorig + µeff ceff (6.65)

where ceff is a equality constraint in the form c(δ) = 0, that is active when the
inequality constraint limits are reached. This constraint can be −1 ≤ δ ≤ 1,
forcing the unknown parameters to assume a value inside the normalized range.

To introduce the feature, it is enough to replace the standard Matlab nonlinear
optimization function fminunc with fmincon (trust region reflective algorithm),
providing needed parameters.
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6.4 Estimation with position measurements

It is now possible to build a sideslip estimator based on the explained concepts.
The tool explained in this section is similar to the one already implemented in
previous works [8] [10], although built on a different model, and is analyzed as a
starting point for possible improvements.

6.4.1 Formulation

We recall the single track model (equations (3.20)), written in this canonical form

v̇ = 1
m

[Cf (−v
u
− a r

u
+ Gδ) + Cr (−v

u
+ b r

u
)]− ur

ṙ = 1
Iz

(aCf (−v
u
− a r

u
+ Gδ)− bCr (−v

u
+ b r

u
))

ψ̇ = r

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

(6.66)

A beta estimation can be performed by simply simulating the model in real-time,
obtaining the value through its definition

β = arctan
(
v

u

)
(6.67)

We now need to decide what is fed into the model during the simulation and what
instead needs to be identified. Choices relative to the input and state vector are
similar to the one performed for the EKF-based estimator in Chapter 4:

x =
[
v r ψ x y

]T
(6.68)

u =
[
u δ

]T
(6.69)

Cf and Cr are the critical uncertain parameters, due to their dependency on the
road and vehicle specific conditions; a first tool can be built to identify only the
stiffnesses, that are inserted in the unknown parameters vector δ

δ =
[
Cf Cr

]T
(6.70)

The other model parameters, m, Iz , a and b, must be estimated separately and
treated as constants. This will represent a problem, since any uncertainty will lead
to an estimation error.

The last operation consists in choosing what kind of measurements the identifi-
cation will be based on. As first a try, we can use the vehicle absolute position
measurements, as they constitute an absolute reference that is always useful to
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mitigate drift. The comparison measurements are linked to the state variables
through the output vector y

y =
[
x y

]T
(6.71)

The LFT formulation can now be derived from the complete system, by using the
procedure described in Section 6.2.3. Multiple formulations are possible and valid.
A general rule consists in choosing the option with the less number of nonlinear
functions Θ(ω). The one used in this work is reported below.

x =
[
v r ψ x y

]T
(6.72)

y =
[
x4 x5

]T
(6.73)

δ =
[
Cf Cr

]T
(6.74)

w =
[
z1δ1 z2δ2

]T
(6.75)

ω =
[
x1 x2 x3 u1 u2 w1 w2

]T
(6.76)

z =
[
ζ1 ζ2

]T
(6.77)

ζ =



−ω1

ω4
− aω2

ω4
+ Gω5

−ω1

ω4
+ bω2

ω4

ω4 cosω3 − ω1 sinω3

ω4 sinω3 + ω1 cosω3
1
m

[ω6 + ω7]− ω4ω2




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


ζ5

1
Iz

[aw1 − bw2]

x2
ζ3
ζ4

 (6.78)

From these equations it is possible to extract all the coefficients of the matrices
present in system (6.21), and setup an identification procedure through the tool-
box. Of course the real formulation used in the estimator is more complex, as it
includes the automatic parameter normalization procedure, and is not reported
for simplicity reasons.

6.4.2 Simulation results

The efficacy of this approach can now be verified by using available data, starting
from the one obtained from the Dymola-Simulink test environment described in
Appendix A. A few additional steps are needed, with respect to the feedback
linearization-based estimator, before the estimator is ready to use.

To begin with, all the various static parameters need to be set or identified:

• Geometrical properties a and b can be read from the vehicle properties;

• Steering gain G and inertial properties m and Iz , referred to the center of
mass, can be estimated through a grey-box procedure; in this case, Dymola
provides a dedicated block.
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An important aspect is the definition of a reasonable range in which the cornering
stiffnesses will be identified, that will also be used to normalize the parameters,
as explained in the dedicated section. This operating zone can be deducted from
multiple tests or from vehicle properties. In this case, the estimated values reported
in Appendix A have led to the choice of the ranges reported in the table below.

Front stiffness range Cf 10000− 200000 N/rad

Rear stiffness range Cr 10000− 200000 N/rad

Another required task before running the tool consists in filling the initial state
vector of the LFT model: this operation is particularly important as it influences
the convergence of the solution (in literature this is denoted as a major limitation of
least squares-based estimators [17]). Values can be taken from sensors or previous
simulations.

Roundabout trajectory

A first estimation is performed against data from the Dymola simulation of a
vehicle running at 80 km/h in the roundabout trajectory (Section A.3), with the
steering wheel oriented at 45◦ for 30 seconds. Samples are limited in quantity
(200 samples), not to result in an excessive computation time, and ideal position
measurements are fed into the identification procedure, that is run once. After
identification, the LFT model is simulated with the identified parameters, over
the same timespan, obtaining beta.

The results, shown in Figure 6.3, already constitute a clear indicator of the main
limitation of this approach: the value is characterized by a constant bias error,
dependent on the choice of the static parameters m and Iz , that must be manually
tuned to solve the problem.
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Figure 6.3: Results of the untuned LFT estimator against the roundabout trajectory
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Parameter sensitivity

The dependency of the estimation from the static parameters can be analyzed in
a more detailed way: the simulation can be repeated multiple times, varying mass
and inertia values. It is possible to discover that a 30% increase of m causes a 20%
variation of the estimated slip angle. An increase of Iz causes the opposite effect,
as shown in Figure 6.4.
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Figure 6.4: LFT estimator sensitivity to parameters variation

If slip angle measurements are available from a more precise method (for instance,
feedback linearization) an option consists in setting m and Iz through a trial-and-
error procedure, until the estimation error drops below a certain value. In this
way, a working estimator can be obtained, however the resulting tool cannot take
into account eventual variations of the parameters over time, a situation that can
happen due to additional loading or solicitations. This constitutes a critical issue
that prevents a real-world application of the approach.

GNSS robustness

The estimation is characterized by a low sensitivity to measurements errors: their
presence minimally influences the identification procedure, since it is based on the
least squares minimization of an error function, and sudden measurement shifts
are not reflected in the estimated beta value, since the latter is obtained from the
simulation of a “perfect” model.

This behavior can be shown by introducing the previously-built GNSS error model
into the position measurements, as shown in Figure 6.5b: the model state variables
x and y , represented in Figure 6.5c, are able to track perfectly the real position,
even if subjected to relevant shifts, resulting in a correct estimation.
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(c) Estimated position
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(d) Estimated slip angle

Figure 6.5: Results of the LFT estimator against the GNSS error model

Slalom trajectory

A simulation of the slalom trajectory, shown in Figure 6.6, allows to demonstrate
an already anticipated intrinsic limitation of this approach: a single estimation
of the cornering stiffnesses is unable to account for the non-linearities that arise
when the tyre solicitations exits outside a safe range. This limitation can only be
addressed with an improvement of the system, like a better identification procedure
or the introduction of a full tyre model, or by a repeated identification of the
stiffnesses.

Another demonstration of the phenomenon can be performed by measuring the
steady-state absolute error of an estimation against the roundabout path, for
increasing longitudinal velocities (corresponding to increasing solicitations), as
shown in Figure 6.7: the error rises almost linearly with the velocity, and so with
the stress.
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Figure 6.6: Results of the untuned LFT estimator against the slalom trajectory
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Figure 6.7: Absolute error of the LFT estimator for increasing velocities

6.4.3 Experimental results

The discussed concepts were validated by running the estimator against measure-
ments from sensors placed on the unmanned ground vehicle described in Appendix
B. The identification ranges of the cornering stiffnesses are reported in the table
below.

Front stiffness range Cf 10− 60 N/rad

Rear stiffness range Cr 10− 60 N/rad

Results provided by the tool are reported in Figure 6.8: the model is able to track
the vehicle position and to obtain reasonable state values, in a way similar to the
one of the EKF-based estimator. The main difference concerns the handling of
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the uncertain parameters: while the EKF estimator vary these values during the
simulation to compensate the errors, the LFT estimator identify a single set of
parameters for each timespan, and then simulates the system.
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(c) Attitude
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(d) Position (x axis)
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Figure 6.8: Results of the LFT estimator against data from a UGV

It is difficult to assert which of the two estimators is better, in terms of precision:
the EKF is undoubtedly more sensitive to measurement errors, that are almost
completely rejected by the LFT; on the other hand, the EKF seems to interpolate
better the given measurements. This can be demostrated by computing the TIC
statistic for each available measurement and output (equation (4.31)). Results
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relative to the LFT-based estimator, reported in the table below, have an higher
order of magnitude than the ones of the EKF-based estimator.

LFT-based estimator EKF-based estimator

TICx 0.084112 0.0011909

TICy 0.071208 0.00076763

6.4.4 Conclusions

The benefits of model-based estimators, that include a flexible bandwidth and a
robustness against estimation errors, have lead to their consideration in most of
the research activity dedicated to lateral vehicle dynamics.

The LFT approach for parameter identification undoubtedly constitutes an inno-
vation with respect to the standard Extended Kalman Filter, in terms of compu-
tational cost and convergence. A weakness is constituted by the necessary choice
of the initial state values, that influences the convergence and correctness of the
estimation.

Nonetheless, limitations in the considered variant, that uses static vehicle mass
and inertia, considers as uncertain only the cornering stiffnesses and exploits the
position measurements in the identification procedure, critically influence the es-
timation precision. Static parameters have a large influence on the accuracy, and
must be tuned to obtain a good result, by using as reference a more precise es-
timation system. Any variation in static parameters during the test introduce
irremovable bias errors. If precision is not a relevant factor, like in case of some
safety systems, the tool can be adopted, otherwise it must be improved.

Another factor that must be considered when choosing an estimation method, is
that the numerical algorithms used in the optimization procedure do not have a
fixed execution time, so they are not deterministic. This can constitute a serious
limitation if the aim is implementing the algorithm in a hard real time system. The
feedback linearization technique also uses numerical algorithms for integration, but
these are generally lighter than numerical algorithms for optimization; moreover,
there exists some deterministic integration methods, that can be used if a fixed
execution time is required. This limitation involves only the identification step,
and not the estimation, so it can be mitigated by increasing the period between
identifications.



Chapter 7

Improved slip angle estimation
through LFT

This chapter is dedicated to some of the possible improvements that can be per-
formed on the LFT-based sideslip estimator: by considering additional measure-
ments in the identification procedure or by introducing more uncertain parameters,
precision and flexibility of the results can be sensibly influenced. A series of vari-
ants, that consider the presence of an on-board IMU sensor, are presented and
tested against available data.

7.1 Motivations

The limitations of a slip angle observer based only on position measurements
have been explained, but at the same time a full description of the LFT-based
parameter identification procedure has been provided, allowing the development
of alternative variants of the algorithm, that can mitigate the precision problem.

Multiple paths can be followed, since a model-based estimator, coupled with a
parameter identification technique, is a very flexible tool. Some of the available
options are listed below:

• The model complexity can be increased, as more parameters can be intro-
duced to better describe the phenomenon. This operation can be performed
through one of the available tyre models, as multiple EKF-based estimators
already do.

• The number of system outputs can be increased, allowing an estimation
based on measurements from different sensors, that can have very different
characteristics in terms of precision and bandwidth.

• More parameters can be estimated online, for instance the mass or the inertia
of the vehicle, that constitute a major weakness of the base LFT estimator,
as already discussed.

73
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The last two possibilities are addresses in this chapter, in particular:

• An estimator is built to consider in the identification process also the values
provided by an IMU sensor, placed at the center of mass of the vehicle. IMU
values, as already introduced, are very useful when dealing with forces and
accelerations, but cause progressive errors when the quantities are integrated.

• An estimator is built to identify, beside the cornering stiffnesses, also the
mass and inertia.

This are just two of the possible variants of the algorithm, that can be arbitrarily
increased in complexity and uncertain parameters, but whose convergence depends
on the ability of available data of correctly identify all the parameters. As this work
has the scope of developing a supporting tool for a control algorithm that will be
applied to a small unmanned ground vehicle, the only considerable inputs are the
one of a IMU and GNSS sensors placed at the center of gravity. This set of data
is unfortunately too small to estimate the parameters of a full tyre model.

To implement the tool in an on-board processing unit, we also have to “discretize”
the estimation, as it requires a set of samples over a certain time window. This
time window must be defined, and influences the solution convergence. Problems
linked to this variant are addressed in the last sections of the work.

7.2 Estimation with position and IMU measure-
ments

7.2.1 Formulation

An improved estimator can be built by introducing in the identification process
measurements from both a position and IMU sensor, placed at the center of gravity
of the vehicle. The possible benefits include not only a more precise estimation of
the stiffnesses, but also an increased robustness against GNSS sensor errors due
to weak or absent signals, a very frequent situation, that is also the limiting factor
of the feedback linearization-based estimator.

A 6-DOF IMU sensor provides measurements of acceleration and angular rate in
3 directions, but only the yaw rate and lateral acceleration are matter of interest
for the lateral vehicle dynamics. In particular, the lateral acceleration directly
provides a lateral velocity estimation through

a = v̇ + ur (7.1)

where a is the lateral acceleration, v the lateral velocity, r the yaw rate, u the
longitudinal velocity and ur = u2/R is the quantity associated to the centripetal
force caused by a curved trajectory with radius R . This definition alone is usually
hard to exploit, since it requires an integration, that in case of data from an IMU
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sensor causes a progressive drift error. Instead, we can link a to the quantities of the
considered model, avoiding a direct integration: by replacing v̇ with the definition
provided by the single track model (equations (6.66)), the formula results

a =
1

m

[
Cf

(−v
u
− a

r

u
+ Gδ

)
+ Cr

(−v
u

+ b
r

u

)]
(7.2)

We can finally add both the yaw rate (state variable r) and the lateral acceleration
to the output vector y , to consider them in the identification process

y =


x
y
r

1

m

[
Cf

(
− v

u
− a

r

u
+ Gδ

)
+ Cr

(
− v

u
+ b

r

u

)]
 (7.3)

The LFT formulation can then be modified accordingly. The one used in the
experimental tests is reported below.

x =
[
v r ψ x y

]T
(7.4)

y =
[
x4 x5 x2 ζ6

]T
(7.5)

δ =
[
Cf Cr

]T
(7.6)

w =
[
z1δ1 z2δ2

]T
(7.7)

ω =
[
x1 x2 x3 u1 u2 w1 w2

]T
(7.8)

z =
[
ζ1 ζ2

]T
(7.9)

ζ =



−ω1

ω4
− a−ω2

ω4
+ Gω5

−ω1

ω4
+ bω2

ω4

ω4 cosω3 − ω1 sinω3

ω4 sinω3 + ω1 cosω3
1
m

[ω6 + ω7]− ω4ω2
1
m

[ω6 + ω7]




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


ζ5

1
Iz

[aw1 − bw2]

x2
ζ3
ζ4

 (7.10)
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7.2.2 Simulation results

Roundabout trajectory

A first estimation is performed by using the same data tested against the pre-
vious estimator (vehicle running at 80 km/h, steering wheel at 45◦, roundabout
trajectory, 30 s), providing ideal measurements to the identification procedure.

Results in Figure 7.1 show again the presence of a bias error in the estimation,
mitigated with respect to the base variant of the algorithm: apparently the intrin-
sic uncertainties of the model parameters cannot be fully compensated with this
method.
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Figure 7.1: Results of the IMU-based estimator against the roundabout trajectory

Parameter sensitivity with respect to static parameters is also similar to the pre-
vious case: any change correspond to an irreversible bias error.

IMU role at high speeds

Nonetheless, an interesting phenomenon can be observed by progressively increas-
ing the cruise velocity: the estimation becomes more and more precise, due to
the fact that the lateral velocity detected by the accelerometer, that constitutes a
direct link to the slip angle, progressively increases and becomes more and more
relevant in the identification procedure. This is confirmed by plotting the abso-
lute measurement error for increasing velocities, as in Figure 7.2. It seems like
the static parameters influence only the role of the position measurements in the
estimation, and not the IMU one.
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Figure 7.2: Absolute error of the IMU-based LFT estimator for increasing velocities

It is important to specify that the unknown parameters Cf and Cr now have a
different physical meaning: while they are intended to represent the cornering
stiffnesses, as defined in the Pacejka formula, now they are chosen to make the
model reflect the lateral dynamics phenomenon, even if it is very different from
the representation given by the equations. Anyway, this approach should work,
because the IMU measurements provide a direct link to the sideslip angle, as
represented in equation (7.1), and their contribution is predominant, with respect
to position measurements, for increasing slip angles.

Error convergence can be enhanced by tuning the measurement weighting vector
introduced by the toolbox (equations (6.51)-(6.50)), assigning a greater weight to
the IMU measurements, in particular to the yaw rate, otherwise difficult to track
adequately. A proper weighting vector could be

W =
[
10 10 10−3 10−1

]
(7.11)

where each term is referred to the corresponding output defined in vector (7.3),
reported again for simplicity purposes

y =
[
x y r a

]
(7.12)

Unfortunately this tuning is not enough to eliminate the bias error at low longitu-
dinal speeds, due to the fact that static parameters influence too much the model
behavior in this operating range.

Slalom trajectory

The tracking of a slalom trajectory at high speeds is also performed better than
the original tool, but another difficulty arises, as the passage between the linear
zone and the nonlinear zone in the relationship between C and Fy (Figure 3.2) at
high sideslip values cannot be reproduced by the model, and the saturation is not
detected, as shown in Figure 7.3.
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(a) Estimation
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Figure 7.3: Results of the IMU-based estimator against the slalom trajectory

The plot of the absolute estimation error for different velocities in Figure 7.3
summarizes the limitations of this approach: higher velocities correspond to a
lower error, but the estimation saturates after a certain limit.

Estimation without GNSS signal

The behavior of a least squares-based estimator against weak GNSS signals has
already been tested, and the considered variant is not different with regard to
this aspect. The introduction of IMU measurements should result in an additional
degree of robustness, that consists in the possibility of performing a limited esti-
mation in case position measurements are completely unavailable.

By discarding the position measurements in the identification process, the esti-
mation error results very low, as show in Figure 7.4, but a progressive drift error
arises and is clearly visible.
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Figure 7.4: Results of the IMU-based LFT estimator in case of absent GNSS signal

This behavior is typical of estimations based only on inertial sensors, that are
based on integrations and lacks an absolute reference, and prevents their use as
standalone tools for this kind of measurements.

7.2.3 Experimental results

Tests can now be repeated against data from the Unmanned ground vehicle de-
scribed in Appendix B, and in particular against the data set used throughout the
work.

Results are shown in Figure 7.5: while the beta estimation is similar to the one of
the previous case, the introduction of the lateral acceleration and yaw rate lead to
a slightly better interpolation of the data set, with respect to the LFT estimator
based exclusively on position measurements, as demostrated by the TIC statistics
reported in the table below.

position and IMU-based LFT estimator position-based LFT estimator

TICx 0.082263 0.084112

TICy 0.06969 0.071208

TICω 0.040071 -

TICay 0.096856 -
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(a) Slip angle
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(b) Yaw rate
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(c) Attitude
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(d) Position (x axis)
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(e) Position (y axis)
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(f) Lateral acceleration

Figure 7.5: Results of the IMU-based LFT estimator against data from a UGV
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7.2.4 Conclusions

The introduction of IMU measurements in the estimation procedure is not enough
to compensate the uncertainties introduced by the static parameters of the single
track model. Nonetheless, the tool can output reliable values at high speeds (in
case of a repeated estimation), so it is although an improvement.

The robustness of the tool in case of absent or weak GNSS signal constitutes a
significant improvement, but position measurements cannot be fully eliminated
from the estimation, otherwise a drift error arises and makes the system useless.

7.3 Estimation with 4 uncertain parameters

7.3.1 Formulation

An attempt to overcome the main limitations of the state of the art LFT-based
sideslip angle estimator, that are linked to its dependency on static parameters and
their uncertainties, can be performed by introducing in the identification procedure
also the mass and inertia of the vehicle, testing if the available measurements from
a position and IMU sensor are enough to compute a proper estimation.

Cf , Cr , m and Iz now have to be identified together prior to the model simulation,
and are inserted in the unknown parameters vector δ

δ =
[
Cf Cr m Iz

]T
(7.13)

The LFT formulation can now be derived as usual, but some additional steps are
required:

• The state equation corresponding to r , that includes the new uncertain pa-
rameters Iz at the denominator, has to be moved in vector ζ, as it is not
linear anymore.

• A multiplying factor z must be chosen for the new parameters. Since they
both appear at the denominator, the best choice would consist in using
the inverse of their numerator. This causes an integration error with the
current numerical method (ode15s) so an alternative consists in using a “1”
as multiplying factor, imposed through an additional nonlinear function in
ζ.

• The presence of uncertain parameters at a denominator causes the current
implementation of the estimator to exit prematurely, since it detects a sin-
gularity at the initial point. A workaround consists in summing a small
quantity to the variable corresponding to the uncertain parameters in the
equations, avoiding the singularity.
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The used formulas are reported below.

x =
[
v r ψ x y

]T
(7.14)

y =
[
x4 x5 x2 ζ6

]T
(7.15)

δ =
[
Cf Cr m Iz

]T
(7.16)

w =
[
z1δ1 z2δ2 z3δ3 z4δ4

]T
(7.17)

ω =
[
x1 x2 x3 u1 u2 w1 w2 w3 w4

]T
(7.18)

z =
[
ζ1 ζ2 ζ7 ζ7

]T
(7.19)

ζ =



−ω1

ω4
− a−ω2

ω4
+ Gω5

−ω1

ω4
+ bω2

ω4

ω4 cosω3 − ω1 sinω3

ω4 sinω3 + ω1 cosω3
1

0.001+ω8
[ω6 + ω7]− ω4ω2
1

0.001+ω8
[ω6 + ω7]

1
1

0.001+ω9
[aω6 − bω7]




ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


ζ5
ζ8
x2
ζ3
ζ4

 (7.20)

The proposed identification procedure requires far more computational power than
the other considered methods. Furthermore, the minimization algorithm is very
critical with respect to the other cases, and a series of factors that before were
marginal now assume a relevant role:

• The minimization can seldom be performed with success without the addi-
tion of hard constraints on the optimizing parameter values, described in
Section 6.3.2.

• Initial guesses of the parameters must be sufficiently near their real value,
otherwise the iteration results in a wrong estimation.

• Even in case of a constrained search, convergence depends on the specific
combination of initial values, weighting matrix and tolerances of numerical
algorithms, values that often need to be changed arbitrarily to unstuck the
optimization algorithm.

• After finding a working combination, the tolerance can be decreased to lower
the estimation error.

Nonetheless, the tool can be run after a proper tuning.
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7.3.2 Simulation results

The additional uncertain parameters require the choice of proper ranges. Values
relative to the simulation environment, in addition to the one already reported in
Section 6.4.2, are reported in the table below: they are left big enough to allow
the estimator to properly detect a search direction.

Mass range m 100− 5000 kg

Inertia range Iz 100− 5000 kgm

Roundabout trajectory

An estimation performed against the same data set used with the previous esti-
mators (vehicle running at 80 km/h, steering wheel at 45◦, roundabout trajectory,
30 s) shows that the tool is indeed able to identify a set of parameters that, inserted
in the vehicle dynamics model, can correctly estimate the slip angle at almost any
velocity (before saturation occurs), as shown in Figure 7.6.
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Figure 7.6: Results of the 4-parameters LFT estimator against the roundabout trajectory

The error decreases with the minimization procedure tolerance, that must be sig-
nificantly less than the one used on other methods.

Like in the previous case, unknown parameters are identified not to respect their
physical meaning (m is not chosen to represent the mass), but to make the model
output reflect the measurements, even if it does not reflect well the vehicle behav-
ior. This can be performed without particular problems for limited timespans, but
the efficacy of the tool must be verified for each specific case.
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The plot of the absolute error for increasing velocities, represented in Figure 7.7,
apparently show that this last variant of the LFT estimator is able to exploit the
advantages of both the IMU-based 2-parameters estimator and the GNSS-based
2-parameters estimator, by covering to the entire operating range with a low error.
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Figure 7.7: Absolute error of the 4-parameters LFT estimator for increasing velocities

Slalom trajectory

At the same time, the IMU has the same predominant role as the previous case
at high speeds, allowing a correct estimation, even if the saturation that normally
incurs above a certain stress limit cannot be represented, due to the limitations of
the single track model.
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Figure 7.8: Results of the 4-parameters LFT estimator against the slalom trajectory
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IMU error sensitivity

From the explained concepts it is clear that the inertial measurements influence
significantly the sideslip estimation. This can constitute a problem, as IMU sensors
have an intrinsic measurement noise and must be placed and calibrated correctly.
Bias errors, introduced by an improper placement or orientation of the sensor,
results in a significant error, that cannot be compensated by the position mea-
surements.

On the other hand, the measurement noise associated with these sensors has little
effect on the estimation: by introducing a gaussian white noise with a significant
variance on the yaw rate and acceleration values, and by repeating the same test
in Figure 7.6, we can see that the estimation is not particularly affected, as the
tool is built upon a minimization procedure. A smoothing of the data, like the one
required by the feedback linearization-based tool, is generally not needed, although
it can ease the minimization.
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(a) Yaw rate
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(b) Lateral acceleration
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(c) Sideslip estimation

Figure 7.9: Results of the 4-parameters LFT estimator against noise in IMU measurements
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7.3.3 Experimental results

This variant of the LFT-based estimator can be validated against the data set
from the Unmanned ground vehicle already considered in the previous cases. The
additional ranges required for the identification of the parameters are reported in
the table below.

Mass range m 1− 5 kg

Inertia range Iz 0.01− 0.5 kgm2

Results provided by the algorithm, reported in Figure 7.10, are similar to the ones
obtained by the other variants of the estimator, with the advantage that a precise
measurement of the mass and inertia of the vehicle is not necessary.

The estimation error is higher for low sideslip angles: there seems to be a thresh-
old value (about 2◦) below which the output tends to zero. Since this issue was
not noticed while testing the tool against simulated data sets, it is probably a
consequence of the tuning of the IMU platform: a wrong orientation can lead to
significant errors. Nonetheless, this problem is solvable by a proper setup of the
sensors.

TIC values, calculated through equation (4.31) and reported in the table below,
show that this tool is the best among the ones considered when dealing with the
interpolation of available inputs, a characteristic expected, since it is the most
flexible, but not corresponding to a better ability in estimating β.

position and
IMU-based LFT
estimator with 4

uncertain parameters

position and
IMU-based LFT
estimator with 2

uncertain parameters

position-based LFT
estimator with 2

uncertain parameters

TICx 0.076978 0.082263 0.084112

TICy 0.018328 0.06969 0.071208

TICω 0.022698 0.040071 -

TICay 0.085612 0.096856 -
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(b) Yaw rate
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(c) Attitude
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(d) Position (x axis)
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(e) Position (y axis)
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(f) Lateral acceleration

Figure 7.10: Results of the 4-parameters LFT estimator against data from a UGV
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7.3.4 Conclusions

The considered variant of the tool is probably the most flexible, as all needed pa-
rameters are identified online and chosen to reflect the dynamics of the considered
vehicle.

Sensitivity to IMU measurements can constitute a problem, that must be solved
through a proper tuning of the sensor. The LFT-based estimator with only two
uncertain parameters has proven to be more effective when dealing with real data
sets, as its precision is less affected by measurement noise. A solution for increasing
the robustness consists in choosing a narrower identification range for one or more
parameters, or constraining one parameter to a static value: this operation can
be performed without changing the underlying math, but simply by tuning the
identification algorithm.

Unfortunately, the parameter identification procedure is slow and critical, and
a wrong choice of initial state values and parameters can lead to an ill-formed
problem, at least with the considered minimization method (Matlab-implemented
trust region algorithm). The actual Matlab implementation of the tool is fit as
an offline tool, while it can hardly be used as an on-board sideslip estimator.
Nonetheless, a future version, focused on performance, could work as expected.
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7.4 Repeated identification

7.4.1 Working principle

Until now the two steps of the LFT-based estimation have been performed once
for each data set, and on the same timespan. A single identification has followed
a single simulation of the model. This scenario is critical for two reasons:

• Cornering stiffnesses depend on the considered terrain, so it is not appropri-
ate to estimate them once.

• Cornering stiffnesses cannot be considered as constants, as they slowly de-
crease while β increases, up to a saturation point.

A considerable improvement consists in splitting the estimation procedure from
the parameter identification procedure, that is repeated with a fixed period, using
the samples gathered after its last run, as schematized in Figure 7.11. Efficiency
could be improved by considering only the samples gathered in a reduced time
window, but this collides with the main limitation of this approach: the identifi-
cation requires the entire initial condition vector, that in case of the considered
model consists in values of v , r , ψ, x , y at the initial time sample. These can
be partially obtained from available sensors, except from the lateral velocity v
(it can be obtained through the integration of the lateral acceleration, but this
operation was discarded not to introduce a drift error). The missing value can be
computed from a different measurement system or, more easily, extracted from
the final state vector of a previous estimation, that must end at the exact time
instant in which the next estimation starts, making necessary the consideration of
sequential samples.

t

DATA
GATHERING

DATA
GATHERING

DATA
GATHERING

IDENTIFICATION IDENTIFICATION IDENTIFICATION

SAMPLES

Figure 7.11: Working principle of the repeated LFT identification procedure

This approach can be applied to all the considered variants of the formulation: for
simplicity reasons, it is demonstrated with the formulation that uses position and
IMU measurements to identify the cornering stiffnesses.
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7.4.2 Simulation results

A first test can be performed against data from the usual simulation (vehicle
running at 80 km/h, steering wheel at 45◦, slalom trajectory, 60 s), imposing a
period of 2 seconds between identifications.

As already anticipated, the weakness of the system is constituted by the choice
of the initial state vector of both the identification and the model simulation.
By filling x0 with ideal measurements, results show that this approach is able
to estimate almost every situation, even the one not trackable by the considered
model, like in case of not constant cornering stiffness values due to increasing
solicitations, as shown in Figure 7.12.
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(a) Estimation with ideal initial state vector
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Figure 7.12: Results of the repeated LFT identification procedure

The problem arises when x0 is filled with real measurements from available sensors
and previous simulations of the model (as mentioned early, measurements are not
enough to fill the entire vector): the system is unable to track the non-linearities
that arise at high speeds, in a way similar to the one of the single identification-
based estimator.

Furthermore, the estimator performs worse than the others, as multiple identifi-
cations are unable to account for the entire behavior of the vehicle, and properly
eliminate the error. This can be mitigated by increasing the period between identi-
fications. A comparison of results obtained with different time periods is reported
in Figure 7.13: by using a longer timespan it is possible to obtain more precise es-
timations, but since the choice of the initial state is critical, successive estimations
perform worse than the previous ones.
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Figure 7.13: Results of the repeated LFT identification procedure for increasing periods

7.4.3 Conclusions

A repeated identification procedure is necessary to use a LFT-estimator variant
as a real time beta sensor. Unfortunately, the precision of the results depend on
the robustness of the previous identifications.

A useful feature that could be added to an implementation consists in a reset pro-
cedure, similar to the one developed for the feedback linearization-based estimator
and described in Section 5.6, that automatically detects improper estimations and
reset the state values. Repeated testings show that this approach allows estimators
with limited stability to perform in every context.
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7.5 Future improvements

The flexibility of the LFT approach for parameter identification allows to improve
the performance of the base sideslip estimator, by adding arbitrary comparison
measurements or uncertain parameters. Moreover, a real world usage is is possible
by implementing a repeated identification procedure, even if less precise than the
single estimation one.

Nonetheless, the considered tool requires significantly more computational power
than simpler systems, like the feedback linearization-based one, and the error
convergence depends on a series of technical parameters that must be tuned ac-
curately. Improvements in this field have been represented by the addition of a
constrained search to the toolbox, but a more accurate study needs to be per-
formed around the stability of the minimization algorithm.

Apart from the problems linked to the identification procedure, the implemented
system works well in standard situations, while it seldom works in non-adherence
conditions like drifting, due to the limitations of the considered relationship be-
tween the lateral force and the slip angle. A considerable improvement would
consist in the addition of a full tyre model, a path already followed in similar
works. This would result additional computational requirements, additional pa-
rameters to identify, and probably to additional required measurements, that can
come from additional inertial sensors placed in multiple parts of the vehicle.

Another technique for obtaining a realistic sideslip estimation could consist in
using together multiple approaches, weighting differently their contribution ac-
cording to the speed: as already seen, the LFT-based estimator behaves well at
high speeds, regardless of static parameters, so it could be accompanied by a
another algorithm, that is considered at low speeds.



Appendix A

Simulation environment

All the estimators presented in this work have been tested against data provided
by a virtual environment, whose setup and characteristics are reported in this
section. The test workbench has been built through the software Dymola and
Simulink.

A.1 Setup

Figure A.1: Dymola part of the simulation environment

Dymola allows to setup a vehicle simulator, able to receive standard driving com-
mands and output kinematic variables. The software is a commercial implementa-
tion of the Modelica language, used to build dynamic models, and includes a GUI
and specific libraries [2]. The simulator built for the tests, displayed in Figure A.1,
is composed by the following components:
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• An electric vehicle model, provided by the Vehicle Dynamics Library, that
is based on a gearless DC motor replica and four tires, while the lateral
dynamics simulation is provided by a modified Pacejka model, similar to the
one discussed in Chapter 2, but characterized by saturation limits that arise
under high stresses;

• An open-loop automatic driver, a model that allows the direct control of
the vehicle through numeric values of acceleration and steer angle. These
commands are linked to an input interface.

• A series of ideal sensors on the vehicle chassis, linked to an output interface,
that provide measurements of position, yaw angle and slip angle of the center
of mass of the vehicle.

• A flat terrain environment, with editable friction coefficient.

The characteristic parameters of the vehicle are shown in the table below. The
cornering stiffnesses value Cf and Cr are just estimates, as the underlying model
is more complex than the one presented in Chapter 2.

Vehicle mass m 1100 kg

Vehicle inertia Iz 1504 kgm2

Steering gain G 1/15.9111 -

Distance of front axle from C.O.G. a 1.00005 m

Distance of rear axle from C.O.G. b 1.46986 m

Front stiffness range Cf 59420 N/rad

Rear stiffness range Cr 40315 N/rad

The simulator can exchange data via Simulink (Matlab block diagram system),
which is used to implement the control part, that consists in a cruise control and
a series of inputs and outputs, that are made available to each estimator.

The simulation requires the setup of a longitudinal velocity feedback (cruise con-
trol), that has to be properly tuned. The use of a complex multibody vehicle
model provides a more real behavior with respect to a simpler model (including a
not-null slip angle), but an analysis needs to be done to derive a simplified model
that can be used to tune an automatic control system. By inspecting the Dymola
components, it is possible to discover that the accelerator signal, provided through
the input interface, is multiplied by a factor and used as reference in a closed loop
that controls motor torque, with its unitary value corresponding to the maximum
deliverable torque. If the torque saturation is neglected and the electrical dynamics
are much faster than the mechanical ones, we can assume that the model behaves
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like this simple dynamic system:
τ = Gt · accelerator
J dω

dt
+ Dω = τ

v = Gv · ω
(A.1)

where ω is the motor speed and v is the longitudinal vehicle velocity. By ap-
plying the Laplace transform, it is evident that the the relationship between the
accelerator signal and the vehicle velocity is a first order transfer function:

G (s) =
v(s)

accelerator(s)
=

Gt · Gv

Js + F
=

µ

Ts + 1
(A.2)

An estimation of all the parameters is useless, since a first order transfer function
is characterized only by two parameters (gain µ and time response T). These
can be found by feeding the system with a step input, ensuring not to exceed
the saturation limits, and passing the output measurements to a linear estimator,
that can be built, for instance, through the Grey-box module provided by Matlab,
obtaining the values. A comparison of the first order model response with the
original system response outlines a very low relative error. It is now possible to
draw the Bode Diagram of the transfer function between the vehicle accelerator
signal and velocity, as in Figure A.2.
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Figure A.2: Transfer function between accelerator and velocity

We can now tune the cruise control, implemented as a PI regulator. We want to
enforce a crossover frequency, for instance, of 10 rad/s, limited by the saturation
of the motor accelerator. Suitable control parameters can be found by considering
the loop transfer function (product of plant G and regulator R):

L(s) = R(s) · G (s) = Kp(1 +
1

sTi
) · µ

Ts + 1
(A.3)
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By imposing the crossover frequency and inverting the equation, Kp is obtained,
while Ti can be set arbitrarily, at the condition that the associated zero is posi-
tioned before the critical frequency. Finally, we have to make sure that the integral
action of the regulator does not increase indefinitely due to a saturated acceler-
ation signal: a common technique is called anti-windup and is available in the
Simulink PID block. The cruise control can finally be added in the Simulink part
of the environment, as shown in Figure A.3.

Figure A.3: Simulink part of the simulation environment

A.2 GNSS error model

The experimental testing of all the proposed estimators is mostly dedicated to an-
alyze their robustness against available sensor characteristics. The high sensitivity
to measurement accuracy, typical of GNSS-based estimators, has already been in-
troduced in Chapter 2, as the limitations of positioning sensors. A modeling of
the latter could therefore allow an evaluation of the real world performance of the
tool. Based on the characteristics of GNSS sensors already explained in the state
of the art chapter, it is possible to build a model of the expected errors, that can
be applied on ideal position measurements.

Various complex models have been developed to simulate the physical behavior of
a GNSS sensor [36]. We are not interested in replicating its exact behavior, but
only the associated noise: from this consideration, it is possible to build a simpler
system. We know that the sensor, despite being affected by a low measurement
noise, is highly influenced by the receiving quality of the radio signals, that can
change suddenly in presence of obstacles due to the multipath effect [35], causing
a shift of several meters in the estimated position.

We can model this behavior by mapping the terrain into a discrete grid, and
assigning each pixel a specific signal quality, represented in Figure A.4 as color
intensities from black (low) to white (high).

Grid size must not be too big, in order to ensure the presence of homogeneous
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zones: previous testings have shown that the value shift is sudden and constant
for similar zones.

When the vehicle enters a pixel, the signal quality is read and a corresponding
value shift can be applied to the position value.

Figure A.4: Example of grid for the GPS error model

An implementation of the model consists in drawing a black and white image in
an arbitrary image editing software, with the color intensity of each pixel corre-
sponding to a quality level. The image can be converted through Matlab into a
matrix of real numbers. These can be mapped to the terrain and interfaced to
Simulink through a 2D lookup table. It is important to use the table in flat mode,
an option that forbids the interpolation of values if a position is not at the center
of a zone, otherwise shifts are not present in the final result.

x,y

LOOKUP
TABLE

++ ++

GAIN RANDOM
VARIABLE

Figure A.5: GPS error model

To obtain a simulated GPS value, the current position is fed into the lookup table,
obtaining the quality level. The quality level is then associated to a displacement
(in this case, 3 meters corresponds to the lowest quality level), that is added to
the position. Finally, a low measurement noise is added to the value. The entire
system is represented in Figure A.5.
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A.3 Trajectories

A non-null steering signal must be provided to cause a non-null sideslip angle.
The following testing trajectories were chosen not only to replicate particular
situations, but also to compare the results with the one of similar works.
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Figure A.6: Roundabout trajectory

A step-like steering signal, shown in Figure A.6, corresponds to driving in a round-
about. While the trajectory is not excessively realistic, its use with a sideslip es-
timator allows a clear evaluation of the system responsiveness for the given speed
and steer angle, as it is similar to a step input, typically used for this purpose.
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Figure A.7: Slalom trajectory
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A sine wave steering signal, shown in Figure A.7, corresponds to a common driving
path that causes a continuous variation of the vehicle forces, making the slip angle
continuously varying with time. The ability of an estimator to work properly with
such trajectory and high lateral force values depends on its ability to consider the
variability in the relationship between the lateral forces and the slip angles.



Appendix B

Unmanned ground vehicle

Experimental tests were performed against data sets obtained from the driving
of an unmanned ground vehicle, performed in a laboratory at the DEIB depart-
ment of Politecnico di Milano. The small car, a standard test asset used for many
researches, is equipped with the following components:

• A microcontroller, running the Robot Operating System (ROS), equipped
with a Wi-Fi antenna and a radio receiver, and linked to all the on-board
sensors;

• An encoder on the left rear wheel, linked to an additional microcontroller
(an Arduino) that is in turn linked to the main microcontroller;

• a 9-DOF IMU sensor, providing measurements from an accelerometer, a
gyroscope and a magnetometer;

• a positioning sensor compatible with an optitrack system.

Position measurements come from an optitrack system, an optical tracker-based
system that is able to detect the vehicle positioning sensor through a set of cameras
fixed to the laboratory ceiling. The resolution is greater than most GNSS sensors
and is not affected by problems linked to obstructed satellite signals, although the
values are sometimes characterized by sudden shifts.

Measurements gathered on the vehicle and by the optitrack system are transmitted
through a Wi-Fi network to a ground station, and gathered through the ROS
framework. The resulting data set is then recorded in a standard format.

The characteristic parameters of the vehicle, measured or estimated off-line, are
reported in the table below.
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Vehicle mass m 1.454 kg

Vehicle inertia Iz 0.015 kgm2

Steering gain G 1 -

Distance of front axle from C.O.G. a 0.1448 m

Distance of rear axle from C.O.G. b 0.1144 m

A proper measuring of the vehicle inputs (steering signal and longitudinal velocity)
is critical, as these two values are assumed certain and influence sensibly the
correctness of the simulation. The other sensors have also to be tuned, but can
contain moderate measurement noise without influencing the estimation.

A preliminary processing phase has been introduced for estimation algorithms re-
quiring measurements from the steering wheel, encoder, gyroscope or accelerome-
ter sensors, in which the values are calibrated, cleared and smoothed.

The following procedure has been applied on the available samples:

• The steering signal is time-shifted forward of some milliseconds to compen-
sate the actuation time.

• The longitudinal velocity can normally be obtained through the encoder, but
if the latter is unavailable, an alternative procedure to extract the needed
quantity consists in projecting the vehicle velocity, tracked by the optitrack,
on the vehicle reference frame, through a rotation with the vehicle orientation
angle, provided by the optitrack or alternatively by the magnetometer (the
latter can be used since the laboratory is a closed and limited space; in other
situations its use is discouraged).

• IMU measurements have to be calibrated to refer to the proper directions.
A method consists in stopping the vehicle and rotating the measurement
vector through a rotation matrix, until the acceleration is concentrated on
the z-axis, pointing to the ground. At this point, it is possible to compare
values of the on-board magnetometer z-axis, indicating the IMU orientation,
with values of the vehicle orientation provided by the optitrack, as they have
to differ by a constant offset (due to a different absolute reference). Finally,
the resulting rotation matrix can be applied to each IMU sensor.

• The starting orientation of the vehicle has to be set manually through a
constant offset, as it is impossible to determine with available sensors.

All values have been fitted with a smoothing spline curve, with a smoothing pa-
rameter of 0.995.

Finally, since measurements from different sensors are referred to different time
instants, all the data set must be referred to a common time series, that has to be
used to interpolate the values. The choice of a time series with a uniform spacing
between time instants allows to account for missing measurements.
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Visual comparison between all
estimation methods

Sideslip estimations provided by all the tools treated in this work, relative to
the same data set, obtained by the driving of the unmanned ground vehicle, are
reported in Figure C.1. The reference value is provided by the optitrack system,
that makes use of the vehicle velocity to compute the quantity of interest.
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Figure C.1: Visual comparison between all estimation methods
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