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Abstract

This project, developed at Surgical Robotics Lab, University of Twente, The Netherlands,

is part of a vast field of research and development called ‘Minimally Invasive Surgery’

(MIS). MIS deals also with the development of robotic devices for automatic or semi-

automatic applications in the surgical field. The introduction of robotics aims to bring

innovations especially in terms of reduction of invasivity and recovery time after oper-

ation, increase quality and precision of operations and in the performance of complex

automated tasks that would be impossible to do for a surgeon without the help of this

technology.

Cardiac catheterization is an example of application field of MIS that is undergoing a

strong evolution in recent decades. Rigid and passive tools have been replaced over the

years by continuous manipulators, a class of elastic instruments able to bend along their

length in a continuous manner, in a controlled workspace. This new technology has made

possible to improve the performance of some applications and introduce new ones that

were previously impossible.

Different types of control of these devices have been developed, including magnetic con-

trol. BigMag, a novel platform capable of magnetic steering of endovascular catheters,

has been developed in Surgical Robotics Lab. BigMag falls into this field because its

purpose is to develop a technology to deflect the tips of continuum manipulators in or-

der to enable automated endovascular surgery, for medical applications like angioplasty,

aneurysm repair and electrophysiology. A good estimation of the shape of endovascular

catheters is an essential step enabling control of the device.

Since these catheters are part of the continuum manipulator family, it is necessary to de-

rive mathematical models to describe their behavior from the data collected online by
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tracking systems: this task is complex in the search for a trade off between accuracy and

speed of calculation.

This project aimed at developing an advanced model-based tracking algorithm on MAT-

LAB in order to improve the current techniques used for BigMag. The main purpose of

the algorithm was to obtain information on the configuration of the catheters used for Big-

Mag system with high precision, with a particular focus on the evaluation of the catheter’s

tip, fundamental for the control of the catheter itself.

The catheter exploited in this project has a 5cm length and 2mm diameter elastic cylindric

body with a magnetic component mounted on its tip in order to enable the magnetic con-

trol. Two algorithms have been developed and validated. The first model-based tracking

algorithm has been developed with a linear fitting technique to describe the continuum

manipulator as a series of rigid links connected by joints. In order to obtain this model, a

discretization of the catheters in cloud-points has been performed to enable the processing

on MATLAB.

This first phase of the project has seen the design of catheters models on Solidworks and

Maya, in order to create synthetic datasets comparable with the one generated by Big-

Mag’s stereo vision system. Synthetic dataset has been useful for improving the linear

fitting algorithm, by simulating particular static situations or animations of the model it-

self, and to validate its performance. The models obtained through these software have

been processed differently in order to simulate multiple tracking systems such as stereo

vision and ultrasounds, thus comparing their performance. Synthetic point clouds have

also been reworked with the addition of a noise in the three directions of the axes in order

to make them more similar to the real data collected by clinical tracking systems.

The linear fitting algorithm has been validated in the reconstruction of configuration pa-

rameters such as the radius of curvature, the position of the catheter’s tip and other param-

eters to describe its positioning and orientation in the workspace. Two validation methods

A and B with three experimental protocols each have been developed in order to validate

the algorithm. Both synthetic point clouds and data actually collected from the BigMag’s

stereo vision system were used and the results were evaluated and reprocessed by filtering

to make them more suitable for the perspective of catheter’s control.

The second algorithm has been developed exploiting the Pseudo-Rigid-Body-Model tech-
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nique. This technique allowed to describe the relationship between the various joints and

the segments that linked them through the introduction of torsional springs and local ref-

erence systems. Given a force acting on the tip of the model, it became possible to derive

the configuration of all the joints belonging to it.

Furthermore, thanks to the PRBM it has been possible to implement the relationship be-

tween the magnetic field provided by BigMag and the final configuration of the model and

therefore the position and orientation of the catheter. The magnetic field provided by Big-

Mag generated a torque due to interaction with permanent magnet at the tip of the catheter,

thus causing a change in the configuration of the whole manipulator; the torque has been

processed by the algorithm in order to reconstruct the configuration model through the

existing relationships between the joints.

This model has been enhanced to evaluate its performance, constantly improving certain

parameters such as the compliance of the springs, which modulates the elastic character-

istics of the real catheter, so as to maximize the accuracy of the reconstruction.

The model was also implemented on Simulink in order to automate simulations through

the use of real data provided by the stereo vision system. A validation Method C with

three experimental protocols has been developed in order to compare results and highlight

the weaknesses of the model. A different variable compliance model was also introduced

as a function of the bending angle.

Finally, a Luenberger state observer has been implemented in the PRBM algorithm to

maximize the accuracy in the reconstruction of the configuration of all the joints through

the introduction of a corrective factor that related to the information collected from the

previous iteration.

A fourth experimental protocol has been developed in order to validate the PRBM al-

gorithm in the evaluation of the tip position, comparing the results with the validated

linear fitting algorithm implemented on BigMag exploiting information from the Optical

System. The evaluations of the first linear fitting algorithm showed a behavior compa-

rable with literature with sample mean and standard deviation of the relative error of

1.2± 0.86% in the reconstruction of the radius of curvature and a maximum variation

of 0.38± 0.1mm from the origin positions in the case of noise up to 90% of the radius

length. As regards the evaluation of the variable curvature in a 3-D model printed and
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analyzed with the linear fitting algorithm, has been reported errors below 10% despite the

necessary user intervention in the evaluation of the curvature.

Also the evaluation of the catheter configuration parameters showed a good accuracy and

repeatability of the algorithm both with synthetic dataset and with the real one provided

by the stereo vision system. Important was the quality of the synthetic data provided by

Maya software in the simulation of the catheter movement. The relative maximum errors

with regard to the synthetic data were (2.39,1.64%) in the evaluation of the radius of

curvature. The simulation error was much higher (22.81,5.61%) while exploiting infor-

mation given by a trial ultrasound scanning processing rather than the stereo vision one,

showing a general overestimation of the value and therefore requiring a different process-

ing.

The evaluations of the second algorithm showed a constant improvement of the model’s

performance during the evaluation of the compliance and a definitive satisfactory result

after the implementation of the Luenberger observer with a maximum average sample

error in the evaluation of the tip’s position of (−0.007,0.11cm) compared to BigMag ref-

erence values, much better than the maximum result obtained from previous evaluations

where the average minimum error in this assessment was (0.51,0.68cm), too high com-

pared to literature.

Taking a cue from what has been achieved in this project it is certainly possible to continue

the improvement of the fitting algorithm, always aiming at improving accuracy and adapt-

ability without increasing the computational cost. Improving the quality in the production

of synthetic data for model training with the introduction of the environment could make

it possible to adapt the algorithm to clinical conditions by testing it directly with realistic

virtual animations.

The further study of the materials and the parameters of the models, together with the de-

velopment of state observers, could lead to real-time, high-precision model-based tracking

suitable for clinical applications.
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Sommario

Questo progetto, sviluppato al Surgical Robotics Lab dell’Universitá di Twente in Olanda,

rientra in un campo di ricerca e sviluppo molto ampio denominato ‘Chirurgia Robotica

Mini-Invasiva’ (MIS), il cui scopo principale é lo sviluppo di dispositivi robotici auto-

matici o semiautomatici per applicazioni in campo chirurgico. L’introduzione della robot-

ica e l’utilizzo di innovazioni tecnologiche d’avanguardia si pongono come obiettivo la

riduzione dell’invasivitá e del tempo di ricovero ospedaliero, l’aumento della qualitá e

della precisione delle stesse operazioni e la possibilitá di svolgere operazioni complesse

altresí impossibili per un chirurgo con i metodi utilizzati tradizionalmente.

La cateterizzazione cardiaca é un esempio di campo applicativo della MIS che si sta evol-

vendo rapidamente negli ultimi decenni. Strumentazioni rigide e passive sono state sos-

tituite negli anni da manipolatori continui, cioé quella classe di strumenti che grazie alle

loro caratteristiche elastiche possono essere flessi in modo continuo in uno spazio di la-

voro. Questa nuova tecnologia ha permesso di migliorare la performance di alcune appli-

cazioni di cateterizzazione cardiaca ed introdurne di nuove, prima impossibili.

BigMag, un nuovo dispositivo che permette di controllare magneticamente il movimento

di cateteri intravascolari, é stato sviluppato al Surgical Robotics Lab. BigMag rientra

all’interno di questo campo di ricerca poiché mira a sviluppare una tecnologia per la

movimentazione ed il controllo di manipolatori continui al fine di automatizzare la chirur-

gia intravascolare per applicazioni come l’angioplastica, la riparazione di aneurismi e

l’elettrofisiologia. Proprio perché questa tipologia di cateteri intravascolari rientra nella

famiglia dei manipolatori continui, é necessario implementare modelli matematici, per

descriverne il comportamento a partire dai dati raccolti online da sistemi di tracking. Lo

sviluppo di questo campo é complesso poiché in una continua ricerca di equilibrio fra
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accuratezza del modello e velocitá dell’algoritmo.

Questo progetto si é proposto di sviluppare un avanzato algoritmo di model-based track-

ing su MATLAB per migliorare le tecniche di visualizzazione utilizzate su BigMag. Lo

scopo principale dell’algoritmo era quello di ottenere informazioni sulla configurazione

dei cateteri utilizzati dal sistema BigMag con elevata precisione, con particolare atten-

zione alla valutazione della punta del catetere, fondamentale per il controllo di BigMag

sul catetere stesso. Il catetere sfruttato per questo progetto era composto da un corpo

cilindrico lungo 5cm con diametro di 2mm dotato di una componente magnetica fissata

sulla punta per permetterne il controllo magnetico. Due algoritmi sono stati sviluppati e

validati.

Il primo algoritmo di model-based tracking é stato sviluppato grazie ad una tecnica di re-

gressione lineare al fine di descrivere il manipolatore continuo come una serie di segmenti

rigidi connessi da giunti. Per ottenere questo modello é stato necessario discretizzare il

catetere per ottenere una nuvola di punti analizzabile su MATLAB. Questa prima fase

ha visto la progettazione di modelli di catetere comparabili con quelli utilizzati da Big-

Mag, attraverso l’utilizzo di software CAD quali Solidworks e Maya. Questi modelli

hanno permesso la generazione di dati sintetici, utili per lo studio ed il miglioramento

dell’algoritmo. I dati sintetici hanno infatti permesso di ricostruire simulazioni del mod-

ello in particolari situazioni statiche e animazioni, grazie alle quali é stata eseguita una

parte della validazione dell’algoritmo di fitting lineare.

I modelli ottenuti grazie a questi software sono stati elaborati diversamente su MATLAB

per riprodurre virtualmente il funzionamento di due sistemi di tracking ampiamente utiliz-

zati in letteratura: il sistema ottico ed il sistema ad ultrasuoni. Le nuvole di punti ottenute

dagli algoritmi sono state inoltre rielaborate per introdurre un rumore nelle tre direzioni

degli assi di riferimento con lo scopo di renderle il piú simili possibile a quanto ottenuto

dal sistema di tracking ottico.

L’algoritmo di fitting lineare é stato valutato nella ricostruzione di parametri fondamen-

tali per la valutazione della configurazione quali il raggio di curvatura del catetere, la po-

sizione della sua componente magnetica ed altri parametri utili per la ricostruzione della

posizione ed orientamento nello spazio di lavoro. Due metodi di valutazione A e B con

tre protocolli sperimentali ciascuno sono stati sviluppati per la validazione dell’algoritmo.
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Per questa validazione sono stati utilizzati sia i dati sintetici, sia dati reali ottenuti dal

sistema ottico installato su BigMag; entrambi i dataset sono stati poi elaborati affinché

risultassero piú efficaci ai fini del controllo del catetere eseguito da BigMag.

Il secondo algoritmo é stato sviluppato sfruttando la tecnica del modello di corpo pseudo

rigido (PRBM). Questo modello ha permesso di descrivere la relazione fra i vari giunti

rotazionali del modello ed i segmenti di collegamento attraverso l’introduzione di molle

torsionali e sistemi di riferimento solidali ai giunti grazie ai quali, applicata una torsione

agente sulla punta del catetere, é stato possibile ottenere la configurazione di ciascun

giunto del modello stesso. Sfruttando il PRBM é stata inoltre implementata la relazione

fra il campo magnetico prodotto da BigMag e la configurazione finale del modello, cioé

la posizione e l’orientamento del catetere stesso. Il campo magnetico fornito da BigMag

permetteva infatti di generare una torsione sulla punta del catetere, dovuta all’interazione

fra il campo stesso ed il magnete permanente del catetere, provocando in tal modo una

variazione della configurazione di tutto il manipolatore continuo. Il momento torcente é

stato quindi elaborato dall’algoritmo per poter ricostruire la configurazione del modello

attraverso la relazione fra i giunti.

L’algoritmo é stato progressivamente migliorato per valutarne le performance, interve-

nendo su parametri come la rigidezza delle molle, che permetteva di modellizzare le

caratteristiche elastiche del catetere reale, massimizzando cosí l’accuratezza nella ri-

costruzione.

Questo secondo algoritmo é stato implementato il modello su Simulink per automatizzare

la simulazione grazie all’uso di dati forniti dal sistema di ottico di BigMag. Un metodo di

valutazione C con tre protocolli sperimentali sono stati sviluppati per comparare i risultati

ed evidenziare i punti di forza e debolezza del modello. E’ stato inoltre introdotto un

modello di compliance variabile in relazione all’angolo di bending.

Nella fase finale del progetto é stato invece sviluppato un osservatore di stato di Lu-

enberger nell’algoritmo PRBM per massimizzare l’accuratezza nella ricostruzione della

configurazione del catetere attraverso l’introduzione di un fattore correttivo che tenesse

conto delle informazioni ottenute nell’iterazione precedente.

Un quarto protocollo sperimentale é stato sviluppato per per la validazione dell’algoritmo

PRBM nella valutazione della posizione della punta del catetere, comparando i risul-
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tati con i valori di riferimento forniti dall’algoritmo di fitting lineare validato ed imple-

mentato nel sistema ottico di BigMag. La valutazione delle performance del modello

di fitting lineare ha mostrato un comportamento dell’algoritmo paragonabile alla letter-

atura, con una media campionaria e relativa deviazione standard dell’errore relativo pari

a (1.2±0.86%) per il raggio di curvatura ed una variazione massima della posizione dei

giunti di (0.38± 0.1mm) nel caso di rumore sui punti fino al 90% della lunghezza del

raggio. Anche la valutazione di due curvature note sullo stesso modello 3-D stampato

e successivamente analizzato da BigMag ha mostrato valori d’errore sempre inferiori al

10%, evidenziando peró la necessitá di un operatore nella scelta dei giunti da utilizzare

per la valutazione della curvatura.

Anche la valutazione dei parametri sulla configurazione del catetere ha mostrato una

buona accuratezza e ripetibilitá dell’algoritmo sia con dati sintetici sia con dati reali dal

sistema ottico. Importante é stato inoltre il contributo fornito dal software Maya nel gener-

are set di dati sintetici di elevata qualitá permettendo anche di simulare il movimento del

catetere. L’errore relativo massimo é risultato basso (2.39,1.64%) per quanto riguarda il

raggio di curvatura. Simulando invece il processing di una sonda ad ultrasuoni sui dati

sintetici gli errori si sono rivelati piú alti (22.81,5.61%), mostrando una generale sovras-

tima del parametro che richiederebbe quindi una variazione dell’algoritmo di processing.

La valutazione del secondo algoritmo ha mostrato un costante miglioramento della per-

formance del modello durante la correzione dei parametri dei giunti ed un definitivo in-

cremento dell’accuratezza nella ricostruzione dopo l’implementazione dell’osservatore di

stato di Luenberger. L’errore medio campionario e relativa deviazione standard nella val-

utazione della posizione della punta del catetere dopo l’implementazione dell’osservatore

sono risultati pari a (−0.007,0.11cm) rispetto ai valori di riferimento forniti da BigMag,

nettamente piú performante ripetto al miglior risultato ottenuto nelle valutazioni prece-

denti (0.51,0.68cm), troppo alto se comparato alla letteratura. Dall’analisi dei risultati di

questo progetto é possibile affermare che vi sia ancora la possibilitá di migliorare ulterior-

mente l’algoritmo di fitting, con l’obiettivo di incrementarne l’accuratezza e l’adattabilitá

senza incrementarne eccessivamente il costo computazionale. Il miglioramento della

qualitá nella produzione di dati sintetici per i test sui modelli con l’introduzione dell’

environment potrebbe inoltre permettere test di adattabilitá dell’algoritmo in condizioni
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cliniche testandolo direttamente con animazioni virtuali realistiche.

Lo studio ulteriore sui materiali e sui parametri dei modelli, insieme allo sviluppo di os-

servatori di stato, potrebbe infine portare ad un’accuratezza nella ricostruzione e quindi

predizione della configurazione del catetere tale da permettere future applicazioni nel

campo chirurgico.
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Introduction

1.1 Surgical Robotics

Robotics in general and surgical robotics in particular are examples of translational re-

search: originally, research funding was provided primarily by the defense and devel-

opment departments of the countries: for example the prototype of Surgical’s da Vinci

System, a robotic system that nowadays is commonly used in the prostate removal pro-

cedure, cardiac valve replacement, gynecological surgery and any abdominal or thoracic

surgical procedures, was developed in the late 1980s under contract to the US Army for

performing remote surgery in the battlefield (Gomes [2011]).

Robotic surgery is a field of research in strong development which aim is to explore new

approaches to improve outcomes for patients by making procedures safer and more effec-

tive through the application of cutting-edge technologies.
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Fig. 1.1: Evolution of Minimally Invasive Surgery devices in the last decades (Burgner-Kahrs et al.

[2015]).

A strongly growing branch within this field is certainly minimally invasive surgery

(MIS): ‘minimally invasive’ means that surgical instruments could be inserted into little

incision instead of operating the patients through large incisions.

The agenda for minimally invasive surgery continues to be driven towards the minimiza-

tion of the number and size of visible skin incisions increasing surgical precision, thus

reducing postoperative pain to the patient, shortening recovery time, improving cosmesis

and ensuring overall cost-effectiveness. The main object of such smart instruments is to

reduce drastically or eliminate patient trauma caused to the tissue due to open surgery,

in order to improve the diagnostic accuracy and therapeutic outcome requiring often no

more than ‘a few minutes’ training for the surgeons (Burgner-Kahrs et al. [2015]).

The use of robot assistance has helped to realize the full potential of MIS with improved

consistency, safety and accuracy.

In addition, compared to open surgery, robotics surgery allows surgeons to perform com-

plex surgical tasks like operations in very narrow spaces in the body that would otherwise

only be accessible through open surgery with long incisions. Specialized instrumenta-
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tion with enhanced, integrated flexibility, stability and dexterity to reach the operative

target sites through complex anatomical pathways is then required. The development of

articulated precision tools to enhance the surgeon’s dexterity has evolved in parallel with

advances in imaging and human-robot interaction, improving the hand-eye coordination

and manual precision down to micro scales (Burgner-Kahrs et al. [2015]), (Vitiello et al.

[2013]).

Despite all these benefits, new technologies require surgeons to be trained with the latest

tools or platforms, available to modify the conventional surgical workflow and sometimes

they have to compensate for counter intuitive ergonomic principles. Furthermore, sur-

geons rely mostly on sight and touch feedback that came through considerable changes:

the latest robotics surgical platforms have recently been introduced to the clinical arena

and offer solutions to increase dexterity, manipulability as well as stability and motion

accuracy (Burgner-Kahrs et al. [2015]).

In addition, surgical robots are often very expensive compared to traditional approaches

and do not replace human intelligence, skill and experience. There are still significant

drawbacks associated with conventional MIS including inaccurate control of the instru-

ment caused by rigid instrumentation (Center [2017]).

Generally, minimally invasive access can be splitted in four different categories:

1. Extraluminal: procedures where a cavity is accessed directly through skin incisions

like Laparoscopy and thoracoscopy.

2. Intraluminal: procedures performed through tubular anatomical structures like ure-

thra, esophagus and arteries without breaching their luminal boundaries; an exam-

ple of application is the use of the endoscope.

3. Transluminal Access: expansion of intraluminal operations thanks to new MIS

technologies.

4. Hybrid Approaches: these procedures are a combination of the ones described be-

fore and allow a strategy to mitigate the invasiveness of particular procedures that

otherwise might require large incisions.

3
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Fig. 1.2: Shown the different workspaces of MIS procedures (Burgner-Kahrs et al. [2015]).

1.2 Cardiac Catheterization

Cardiac catheterization is a common example of Hybrid approach of robotic surgery. A

thin hollow tube called catheter is usually inserted into the iliac artery that leads to the

heart.

A cardiac catheterization provides information on how well the organ works, identifies

problems and allows for procedures to open blocked arteries. For example, during car-

diac catheterization (Association [2017]) is possible to:

• Take X-rays using contrast dye injected through the catheter to look for narrowed

or blocked coronary arteries. This is called coronary angiography or coronary arte-
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riography.

• Perform a percutaneous coronary intervention (PCI) such as coronary angioplasty

with stenting to open up narrowed or blocked segments of a coronary artery.

• Take samples of blood to measure the oxygen content in the four chambers of the

heart.

• Perform Intracardiac electrogram

• Look for defects in the valves or chambers of heart with cameras.

• Remove and examine under microscope a small piece of heart tissue.

In order to perform these operations it is necessary to use tools that allow to reach the

target enabling the transportation or insertion of miniaturized support devices such as

electrodes, cameras, surgical instruments and other types of sensors.

The class of instruments used for such applications are called continuum manipulators

and consist of an elastic structure which allows to bend along their length in a continuous

manner (Roesthuis and Misra [2016]), (Khoshnam et al. [2012]). This class of instruments

exhibits several useful properties in medical applications, due to the elastic characteristics

and a non rigid structure, that allow the instruments to bend through narrow vessels and

soft materials easily without producing dangerous mechanical loads during contacts with

human tissues, as instead it could be done using traditional methods (Piorkowski et al.

[2011]). The insertion into an unknown environment must be safe and accurate and there-

fore, during exploration through tortuous pathways inside the body, reliable methods to

minimize the force interaction between tissues and continuum robots are required (Gold-

man et al. [2014]).

The elongated shape of these catheters enables their use in endovascular surgery in which

the motion environment is made of narrow and winding cavities of the human body: the

main requirement for such endeavours is the ability to access different target anatomy

from access sites that are not aligned in the most direct and ergonomic position. Flexi-

ble access surgery characterizes these novel techniques for the next evolutionary phase of

5
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MIS.

Catheters can be definitely considered essential instruments used in cardiology. Whereas

in the past they were designed as flexible tubes, used for drug dealing or monitoring,

nowadays catheters have evolved into more dedicated instruments with additional tip

functionality (Ali et al. [2016]). A very large variety of commercially available catheters

exists, being adopted in different treatments like heart valve repair or replacement, abla-

tion of atrial fibrillation (AF) or repair of congenital heart defects.

However, the position of the catheter’s tip inside the heart must be as precise as possible

and remains one of the most important challenge in interventional cardiology due to the

heart’s continuous motion generated by breathing and the heart-beat. Additionally, the

shape of the vessels, the complex three-dimensional structure and the lack of vessel wall

support in the heart further limit the ability for accurate steering.

1.3 Catheter’s control

In an effort to overcome these complications in catheter-based therapies, both manually

and robotically steerable systems have emerged in the past years. Several studies have

shown improvements in operation time and patient safety by using steerable catheters in

cardiology instead of conventional unsteerable ones. Furthermore, in some cases, the use

of steerable catheters even allowed successful treatments in cardiac patients who couldn’t

be treated otherwise. These new devices can be called continuum robots and do not con-

tain rigid links and rotational joints; instead they bend continuously along their length

and produce motion performing smooth curves (Robinson and Davies [1999]). Contin-

uum robots can be classified in three different groups:

• Single backbone: Central elastic structure that supports the passage of actuation/-

trasmission elements.

• Multi backbone: Multiple elements in parallel

• Concentric tubes: Multiple elements arranged one inside the other

6
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However, with the various degrees of steerability being available and numerous tech-

niques being developed to achieve this steerability, different steering options have been

developed.

Based on the actuation method in the distal tip, steerable catheters were labeled under the

term ‘Actuation-Dependent Steering’ to differentiate them from the conventional ones.

Subsequently, two categories of steering were identified (Ali et al. [2016]):

• Force transmission to tip, (Camarillo et al. [2008b])

1. Hydraulic chamber actuation

2. Micro-motors

3. Pneumatic actuation

4. Tendon and cable actuation (Vrooijink et al. [2013])

• Force generation in tip

1. Electric actuation: Based on the direct or indirect response of materials to an

electric current by bending

2. Thermal actuation: Generation of a bending force and motion when thermally

active elements are actuated by an electric current. When placed in the tip,

these materials respond to a sudden change of temperature generating a de-

flection of the catheter

3. Magnetic actuation

1.4 State of the Art

1.4.1 Magnetic Control

Magnetic actuation is based on alterations of a magnetic field, either internal or exter-

nal, which is applied to the tip of the catheter having electro-magnetic elements inside its

body. In the state of art are present different types of catheters with magnetic components
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inside them and also the number of components is variable according to the different ap-

plications or researches (Liu et al. [2016]).

Fig. 1.3: In the picture is shown a common tendon-driven catheter with a coil inserted

in the tip. In yellow the external magnetic force applied to steer the catheter

(http://www.surgicalroboticslab.nl).

Magnetically-actuated continuum manipulators are steered by introducing them an

external magnetic field, thus exerting a torque on their magnetic components. The mag-

nitude and the direction of the resulting magnetic torque are determined by the properties

of the magnetic element as well as the magnetic field. In (Le et al. [2016]) for example,

the external magnetic field is generated by driving the electromagnets with a set of elec-

tric currents, called ‘driving current’: once the workspace is calibrated with respect to the

external magnetic field, by controlling its orientation and magnitude, the magnetic com-

ponent of the catheter’s tip can be steered inside the workspace. Therefore the magnetic

field generated by the eight electromagnet systems has been accurately modeled.

Magnetic control of the catheter allows to minimize interactions with the body in which

it is inserted keeping invasiveness very low. For devices controlled by cable, for example,

there is a higher risk of friction which increases with the length of the device itself. With

no need of transmission elements, magnetic devices can have a simple structure ensuring
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high accuracy as the tip is directly actuated.

The only risk of these equipment is the high temperatures that are generated on the coils

crossed by current to generate the external magnetic field. Therefore, distance between

the patient and the magnetic system is a factor not to be overlooked in the design of these

devices.

These technologies allowed an effective control of this type of devices making them us-

able also in tough tasks of surgical field.

There are three different types of devices to exert magnetic actuation:

• Mobile permanent magnets

• Static coils

• Mobile coils

In the state of art there are many examples of devices that use this kind of technology

(Sikorski et al. [2017]),(Le et al. [2016]). With the introduction of these new systems in

the clinical field, for example, the surgeon no longer has to insert the catheter into the

patient’s vessel manually during the surgical operation. Manual operation is usually very

imprecise and requires skilled personnel in order to perform the task correctly without

endangering patient’s safety.

In addition, with respect to conventional surgical operation, techniques using flexible in-

struments presents a higher degree of difficulty. The relationship between hand gestures

and the actual instruments trajectories is not that linear and visual or tactile feedback sys-

tems often do not provide an efficient support to the surgeon during complex steps of the

operation.

The introduction of partially and fully automated steering mechanisms has shown poten-

tial facilitations for many endovascular surgery procedures, improving the outcomes in

terms of safety, precision and invasiveness (Ali et al. [2016]).

However, these new automatic steering systems require real-time information during the

surgical operation in order to perform the task in an appropriate manner.

9



1. INTRODUCTION

1.4.2 Shape Reconstruction Tecnhiques

One of the main parameters to be monitored in real-time is the shape of the manipulator.

Indeed for rigid robotic manipulators the end-effector position and the joint angles would

be enough for a good control; however, in continuum manipulators the flexibility intro-

duces motions that are much more difficult to measure and predict. For a flexible device,

there are not well-defined joints and the continuum manipulators articulate by means of

material compliance (Camarillo et al. [2008a]). To overcome this problem, sensing for

flexible devices had been developed.

In the state of art can be found examples of strain measurement to quantify the articu-

lation of the catheter applying piezoelectric actuators and sensors to the device’s body.

Applying these types of sensors can be really difficult considering the thin and reduced

size of the catheters.

Fiber optic sensors have also been developed for measuring strain of flexible objects: as

an example Fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed

in a segment of an optical fiber.

Fig. 1.4: On the top the structure of a Fiber Bragg Grating, in the middle the refractive index

profile of the inner part of the fiber and in the bottom the spectral response.
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This sensor has a different reflection behavior with specific wavelengths varying the

shape of the optic fiber. In (Roesthuis and Misra [2016]) FBG sensors are used both for

3-D shape reconstruction of a continuum manipulator and as a feedback for closed-loop

control of the manipulator demonstrating also the possibility of FBG sensors to measure

interaction forces while using them for shape sensing. In order to have a good recon-

struction of the 3-D shape, arrays of FBG must be placed in several locations among the

manipulator shalf.

Many applications use FBG technology for shape sensing as a technology that guarantees

good accuracy as demonstrated by the state of the art (Roesthuis and Misra [2016]) in

which the average error in the estimation of the tip position is below 1mm. It also pro-

vides information at a sufficiently high speed for real-time applications without increasing

the invasiveness of the object on which it is applied.

However, shape sensing based on strain measurement can be inaccurate due to incom-

plete and over-simplified models. This is one of the reasons why other shape-sensing

technologies evolved in the last decades exploiting stereo vision and ultrasound systems,

as it is possible to obtain a reconstruction of the studied device from the diagnostic images

they can generate. Stereo vision systems usually use silhouettes-based or Voxel carving

technologies to reconstruct the 3-D object (Camarillo et al. [2008a]).
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Fig. 1.5: An example of 3-D Volume Reconstruction with Voxel Carving technique. The resolu-

tion of the volume reconstructed is proportional to the number of cameras mounted on

the setup. Above a setup with two cameras, below a setup with six cameras.

Voxel carving is a particular volume reconstruction technique that exploits images

from calibrated cameras and their orientation to reconstruct the volume of an object. The

object is then described as point cloud situated with a precise position and orientation in

the workspace.

Voxel carving technique is commonly used in many tracking systems in the state of art

(Sikorski et al. [2017]).

1.4.3 Model-Based Tracking System

Automated detection and tracking of robotic instruments is an important problem in min-

imally invasive surgery. Due to the indirect visualization of the workspace during MIS

intervention, image guidance is necessary to improve the accuracy of the procedures:

with intraoperative imaging, and the use of a patient specific model, it becomes possible

to guide the robot along a planned path, minimizing risk for the patient.

Indeed, in order to perform this type of intervention effectively, it is necessary to know
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and monitor the position of the catheter throughout the operation, paying particular atten-

tion to the position of the tip in the workspace. Monitoring the tip is crucial as the drug is

supplied right from the end of the catheter as well as surgical instruments.

By automatically detecting and tracking instruments, it is possible to provide enhanced

navigational cues to the clinician in the form of overlays of virtual fixtures and is also

possible to employ image-based servoing to perform certain tasks of a procedure using

medical robotics.

For this purpose, the surgical rooms are equipped with systems for real-time monitoring

of instruments used by the surgeons during these types of intervention. In order to de-

termine the position of the catheter tip in the surgical room, it is important to map the

local coordinate system of the catheter into the global coordinate system of the magnetic

system or the surgical room and retrieve information about its shape and orientation.

Unlike a rigid robotic manipulator which employs encoders and potentiometers to mea-

sure joints angle and determine the end effector position, continuum manipulators are

flexible introducing motions much difficult to measure.

Multiple sensing modalities are used to track these new surgical instruments, such as

electromagnetic tracking (EMT), image-based tracking, ultrasonic sensor tracking (UST),

optical tracking (OPT), mechanical tracking, as well as some hybrid systems integrating

more than one of these modalities (Vrooijink et al. [2013]), (Reiter et al. [2011]) and

(Chmarra et al. [2007]).

In addition Ultrasound imaging can be used to aid with guidance and soft tissue identifi-

cation in MIS, X-rays together with contrast material can be useful for endovascular ap-

plication and MRI technology is exploited in cardiac procedures and research (Vrooijink

et al. [2013]). This technology is currently used in medical imaging such as echography,

but can also be used to monitor the position and the behavior of a surgical object during

an intra-body operation.

However, the ultrasound system has an important disadvantage compared to the optical

system: the ultrasound technology does not allow a volume scan in real-time with the

use of simple 2-D probe that scan only one 2-D slice at a time. With this technique is

not possible to have information about the whole workspace in real-time as it would be

necessary to move the probe very quickly in order to scan all of it. Moreover, the probe
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would not provide enough frames per second to perform the reconstruction of the entire

volume in real-time with a high resolution.

Therefore there is no perfect methodology and for each type of application it is necessary

to evaluate the optimal tracking or monitoring system.

Ultrasound System

In the state of the art there are tracking systems that use ultrasound technology to monitor

and model fixed or moving objects inside a body. Sounds or sound waves are radiations

of a mechanical nature and, for this, they need a material to propagate.

Ultrasounds are very high frequency sound waves and are so called because they are not

audible to the human ear, which is able to perceive sounds in the range of 20-20’000 Hz,

which is the unit of measurement of the frequency of cyclical phenomena and is equal to

one cycle per second; utrasounds are located above 20’000 Hz.

Ultrasound systems usually include an instrument called probe or transducer which is re-

sponsible for the production and reception of ultrasounds.

The ultrasounds emitted by the probe pass through the tissues with a speed and, above all,

with an impedance that will be characteristic of each tissue. During the crossing of the

various tissue structures, the energy possessed by the ultrasound is progressively attenu-

ated mainly for reflection, transmission and refraction.

The change of impedance between different materials generates echoes which are re-

ceived by the probe and processed, so the diagnostic images that exploit this technology

usually present a good contrast between different materials highlighting the boundary that

separates them. In contrast to other types of waves such as X-rays, ultrasound technology

is not harmful to body tissues, but it can not be used to study tissues very deeply due to

the rapid attenuation along the body path that characterizes the ultrasounds.

Therefore, accurate ultrasound tracking systems allow to recognize different materials that

make up an object inside a workspace (Vrooijink et al. [2013]),(Abayazid et al. [2015]).
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Fig. 1.6: (1) Needle (2) Soft-tissue phantom used to simulate a body-like behavior of the material

(3) Ultrasound Trasducer used to track the needle (4) 2-D slice obtained by the ultra-

sound probe which provides a cross-sectional view of the needle. During insertion the

ultrasound probe is robotically repositioned to track the tip in real-time (Vrooijink et al.

[2013]).

Stereo Vision System

Computer stereo vision is the extraction of 3-D information from digital images. By com-

paring images of a scene from two cameras in two different positions, 3-D information

can be extracted by examination of the relative positions of objects in the two panels.

One of the most important information for surgical purposes is the position of the objects

in the workspace. Through a stereo visual system, it is indeed possible to obtain the po-

sition of all the devices inside the workspace with respect to a pre-established common

reference system (Reiter et al. [2011]).

For example in (Camarillo et al. [2008a]) is described a new vision based system for esti-

mating and registering the full 3-D shape of a continuum manipulator in real-time using

a technique called shape-from-silhouette, which is a tracking algorithm usually applied

for human body pose estimation. This algorithm doesn’t require markers, but multiple

cameras are placed at different viewing angles around the workspace, and each camera
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extracts a silhouette of the moving target. By projecting these silhouettes and finding their

intersections is possible to obtain the final 3-D shape of the object. The mean Relative

Error in the estimation of the tip position reported in the article is 4,9%.

Fig. 1.7: Vision-based 3-D shape sensing system. The manipulator shown is an intracardiac

catheter produced by Hansen Medical (Camarillo et al. [2008a]).

However, this system has limits in the surgical field: indeed, as it is possible to see in

the figure ( 1.7), the workspace is well defined and the catheter is easily recognizable with

respect to the background and it is in direct contact with the cameras arranged around it.

Therefore, this method can be used only in the absence of materials or objects around the

catheter that could limit or prevent visibility.

For example, by using stereo vision systems exploiting only the light of the visible, it is

not possible to track a moving object inside the patient’s body without open-surgery due

16



1. INTRODUCTION

to the presence of the body structures around the region of interest.

1.4.4 Linear Fitting Technique

As in the example above, tracking systems do not have the only function of recogniz-

ing an object with respect to a workspace, but they can rework the information collected

to obtain a model of the observed object. Subsequently, the model derives useful infor-

mation on the object itself. For example a point cloud without processing provides few

information about the shape of the device. It is therefore necessary to derive a model that

describes the dataset as accurately as possible in order to retrieve such information. It

may involve either interpolation, where an exact fit to the data is required, or smoothing,

in which a ‘smooth’ function approximately fits the data.

Linear fitting technique is a mathematical procedure for finding the best-fitting curve to

a given set of points by minimizing the sum of the squares of the offsets (‘the residuals’)

of the points from the curve. A commonly used technique in literature to obtain useful

information from the point cloud of a thin flexible catheter is to approximate it to a series

of links connected by rotational joints. Linear least square is the method of solving math-

ematics/statistical problems that can be used for this purpose: indeed, linearity allows to

approximate a dataset of points to the segment that best approximates them (Camarillo

et al. [2008a]).

Therefore, from the initial point cloud obtained with the previously described tracking

systems, it is reached a simplified model of the continuous manipulator. The modeling of

a flexible object is indeed very complex because it can be considered as an object with

infinite degrees of freedom and therefore requires simplifications especially if the purpose

of modeling is real-time monitoring and control of the device itself. Due to the flexible

nature of continuum manipulators, steering them is challenging and requires models that

describe the manipulator shape during steering.

Therefore it is not sufficient to approximate the point cloud as a single segment because it

would simplify the model too much and would not adequately describe the elastic charac-

teristics and behavior of the continuum manipulator. Multiple links with rotational joints
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allow to approximate better the real shape of the catheter with the relationship between

each couple of links described by the bending angle of the rotational joint between them.

A model with these characteristics that is widely used in the literature is called Pseudo-

Rigid-Body Model (PRBM).

1.4.5 PRBM Technique

The Pseudo-Rigid-Body Model was introduced by Larry L. Howell in 1994. It is an ap-

proximation technique for modeling a compliant/flexure mechanism, especially for those

where the compliant joints experience large deflection and lead to non-linear behavior.

It can be considered a bridge between classical rigid-body mechanism theory and com-

pliant mechanism analysis and offers a good trade-off between computational complexity

and accuracy by reducing the dimensionality of the system while retaining its compliant

characteristic. It also consists in a serial chain of rigid links connected by revolute joints.

The elasticity of a continuum manipulator can be modeled by torsional springs linked to

the joints in order to reconstruct its behavior. In the state of art are present multiple studies

about compliant mechanisms modeling via the PRBM (Goldman et al. [2014]), (Greigarn

and Çavuşoğlu [2014]), (Gravagne and Walker [2002]).
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Fig. 1.8: Representation of a PRBM with one single joint. The force F applied to the tip generates

a rotation of the joint which characteristics are related to the torsional spring applied to

the joint itself (www.ScienceDirect.com).

This model is then reconstructed with the information collected from the object during

the movement.

The great potential of the PRBM compared to the simple curve fitting is that is possible

to implement a relationship between the configuration of the model and an external force

acting on it, thus not depending on the quality of the tracking. Using this technique, the

model reconstruction is not based on the point clouds obtained from optical or ultrasound

systems, but from the forces acting, for example, on the end-effector of the model. In case

of catheters with external actuation, such as those with magnetic control, it is necessary

to derive the relationship between the configuration of the continuum manipulator and the

external magnetic field applied to the magnetic component of the catheter (Greigarn and

Çavuşoğlu [2014]).

Thanks to this technique, a model-based tracking system based on PRBM can combine

information provided either by an optical system or ultrasound, or by the control system

used for the catheter’s actuation. Indeed the Optical System can be exploited to obtain the

position of the catheter’s base in the absolute reference system, while from the magnetic
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field applied to the magnetic component, known its magnetic characteristics, it is possible

to derive the force or the moments acting on the model itself. Subsequently, it is possible

to obtain the angles of each single joint of the PRBM and therefore the final configuration

in the workspace.

This type of reconstruction does not always adequately describe the current behavior of

the device as a modeling often includes simplifications: sometimes it can happen that

a real behavior can not be completely defined by the model that does not adequately de-

scribe its evolution over time. The model is an approximation of reality and the simulation

often generates errors that add up over time, worsening the quality of the simulation itself.

To overcome this problem is necessary to retrieve information regarding the real behavior

of the device in order to correct possible model’s errors during activity.

PRBM Technique with State Observer

A possible solution widely used in the state of art is the implementation of a state observer

(Tripathi et al. [2016]), (Taylor et al. [2016]). In control theory, a state observer is a system

that provides an estimate of the internal state of a given real system, from measurements

of the input and output of the real system.

Given the model’s state equations, it is possible to reconstruct the behavior of the model

itself and perform an estimate of the future behavior if manipulator properties are known.

The Kalman filter is an efficient recursive filter that evaluates the state of a dynamic system

starting from a series of measures subjected to noise and can be used as a state observer.

Due to its intrinsic characteristics, it is an excellent filter for noise and noise acting on

non-zero Gaussian system, it is usually computer-implemented and can provide the basis

for multiple practical applications.

The Extended Kalman Filter (EKF) (Yang and Baum [2017]) is a non-linear version of

the Kalman filter used when the evolution or observation of the system state is non-linear.

In (Hajimolahoseini et al. [2014]), for example, an Extended Kalman Filter is used as an

observer to estimate and tracks the movement parameters of an object in space using the

model’s equations and the error in the angle evaluation is less than 0.2 degrees.
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A particular type of state observer is called Luenberger observer, which introduces an

additional corrective term in order to ensure the convergence of the state to a condition

of stability. In particular the Luenberger observer exploit information about the outputs

of the system. In literature there are not Luenberger state observers implementations in

PRBM models.

1.5 Aim of the project

The project, in collaboration with Surgical Robotics Lab, University of Twente, The

Netherlands, aimed at developing an advanced model-based tracking algorithm in order

to improve the current techniques used for BigMag, a device that allows to control en-

dovascular catheters with magnetic components through the use of six mobile coils.

The main purpose of the algorithm was to obtain information on the configuration of the

catheters used for BigMag system with high precision, with a particular focus on the eval-

uation of the catheter’s tip, fundamental for the control of the catheter itself.

A first model-based tracking algorithm has been developed with a linear fitting technique

to describe the continuum manipulator as a series of rigid links connected by joints. In

order to obtain this model, a discretization of the catheters in cloud-points has been per-

formed.

Two validation methods with different protocols have been developed to evaluate its per-

formance:

1. Catheter’s Curvature Analysis

• Evaluation of the curvature by analyzing a synthetic catheter model with known

constant curvature (with subsequent introduction of random noise)

• Evaluation of 90 models of synthetic catheters with known variable curvature

• Evaluation of a 3-D printed object with known curvatures, with data provided

by the BigMag stereo vision system

2. Configuration Parameters Evaluation during Catheter’s Animation
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• Qualitative evaluation of the configuration parameters obtained from a real

dataset provided by BigMag (comparison of results before and after filtering

with evaluation of the position of the catheter)

• Evaluation of configuration parameters with synthetic data created on Maya

• Evaluation of the radius of curvature with synthetic data created on Maya

Subsequently, a second algorithm was implemented with a PRBM model known in the

literature that allowed to obtain the catheter configuration starting from the data on the

torque provided by BigMag to the magnetic component of the catheter. Therefore this

algorithm did not exploit the point cloud to obtain the catheter configuration but rather

the wrench applied to the catheter’s magnetic tip. To evaluate and improve the quality of

this model compared to the state of the art, a validation divided into four protocols was

performed:

1. Evaluation of the joints angles after improving the initial compliance values of the

PRBM (recalculation of the initial compliance values exploiting the new datasets)

2. Evaluation of the joints angles by introducing a cubic compliance model to the

PRBM

3. Evaluation of the joints angles by introducing a Luenberger state observer to the

PRBM

4. Final comparison of all PRBM models in the evaluation of the tip’s position

All four evaluations of the PRBM models were performed comparing the results with

the information provided by the linear fitting algorithm implemented on BigMag stereo

vision system and used as a reference value.
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Materials and Methods

2.1 Catheter’s Characteristics

The catheter used for this project was designed as a 5cm length and 2mm diameter cylinder

with a single, axially-magnetized, ring shaped magnet mounted at its tip. The presence

of the magnetic component increased the diameter of the distal part of the catheter up to

6mm.

Fig. 2.1: Examples of catheters with a magnetic component on the tip and different body’s material

As shown in figure (2.1), the material of which they were composed was elastic to
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allow them to bend. The only forces acting on these catheters were the force of gravity

and the torque generated on the magnetic component by an external magnetic field.

2.2 BigMag

BigMag is a novel platform developed in the Surgical Robotics Lab of Twente University.

This device uses an array of mobile coils for 3-D magnetic actuation of continuum ma-

nipulators mounted on a 1.55x1.35m aluminium structure. It is composed by six coils,

held in two symmetrical mobile frames.

Three coils are suspended above the horizontal centre plane of the workspace, the other

three are located below it. Such an arrangement is proposed in order to make the workspace

accessible through its centre plane with 360◦ clearance (Sikorski et al. [2017]).

It can’t provide enough workspace for trials on human-like models but is sufficient for

trials on ex vivo specimen and on models of human heart. The system generates mag-

netic fields of at least 40mT in any direction within its workspace, and provides gradients

of up 1T/m. The field of each coil of Big Mag can be controlled independently. This

structure is capable to apply known magnetic wrenches to a continuum manipulator in

the workspace. The small size of the coils allows to reduce the inertia and inductance,

increasing the bandwidth of the system.

Each mobile frame is moved by a motor and rotates independently along a common ver-

tical axis and the current in each coil can reach 8A maximum.
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Fig. 2.2: On the left the entire BigMag system. On the right a focus on each detail: (1) Mobile

Coils (2) Inserter of continuum manipulators (3) Top Camera (4) Side Camera (Sikorski

et al. [2017]).

On BigMag has been developed a fully automated closed-loop steering method for

continuum manipulator, under the guidance of widely used clinical tracking modalities.

The two cameras used are Dalsa Genie Nano C1940 Red-Green-Blue (RGB).

Different technologies can be used to monitor the catheter’s movement and collect in-

formation in real time about its behavior, geometrical characteristics and position in the

workspace. BigMag is equipped with an Optical Tracking System made of two cameras

orthogonal to each other and arranged above and to the side of the workspace. This ar-

rangement is made to visualize the entire workspace and allowing for 3-D reconstruction

of the position of objects in it.

Jelly phantoms could be inserted into the workspace to simulate the behavior of contin-

uum manipulators in body-like environments.
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Fig. 2.3: In the picture the workspace of BigMag. In the selected region, catheters are inserted in

order to be steered magnetically by the system (Sikorski et al. [2017]).

The system is also equipped with an automated advancer that allows the insertion

of continuum manipulators with diameters between 1 and 5 mm in the workspace. The

advancer is steered by a linear actuator. The field generated by the six coils is used to

steer the tip of the catheter in any direction in the workspace.

2.3 Software for Modeling: Solidworks

For the validation methods, it was necessary to generate synthetic data for the evaluation

of the first fitting algorithm. In order to generate synthetic models and extract datasets

similar to those provided by the stereo vision system present on BigMag, Solidworks has

been used.

SolidWorks is a three-dimensional parametric design software, produced and marketed by

Dassault Systémes. Born as software specifically dedicated for mechanical engineering,

is therefore particularly useful for the design of complex mechanical devices.

The software is useful for the creation of 2-D and 3-D drawings of solids and surfaces,

through a parametric and fully customizable geometric system. Solidworks allows to

bring drawings from two to three dimensions and vice versa, with simple operations, im-
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porting and exporting AutoCAD files (DWG, DXF).

The software is also able to import and export geometries in a large variety of three-

dimensional formats and the parametric design allows you to set up many types of re-

lationships (parallelism, concentricity, perpendicularity, collinearity, equality, coaxiality,

symmetry and many others). The equations tool also allows you to set relationships be-

tween geometric dimensions.

2.3.1 Synthetic Model of the Catheter

The model of the catheter to obtain synthetic data has been developed using Solidworks

with known geometrical information: a cylindrical body with 5cm length and 2mm di-

ameter. The tip of the catheter had a bigger diameter up to 6mm due to the magnetic

component’s dimension. The curvature has been parameterized to allow the generation of

known curvature models in order to compare Solidworks real information with what has

been obtained by the developed algorithm. Each catheter’s model has been then exported

as a STL file: STL (Stereo Lithography interface format) format represents a solid whose

surface has been discretized into triangles. The STL format has advantages such as sim-

plicity, since it is very easy to generate and to process, while to its disadvantage it has an

approximate geometry and its data structure, which is simple, can present the same vertex

multiple times.

The first model generated on Solidworks had a single curvature constant on the XZ plane

with a bending angle between the base and the tip of the catheter equal to 60◦ as shown

in figure ( 2.4).

27



2. MATERIALS AND METHODS

Fig. 2.4: On the top the initial catheter’s model generated on Solidworks. On the bottom the

catheter has been bended 60◦ with constant curvature

The catheter has been rendered in a 3-D space so as to be able to export a synthetic

volume of the object to be analyzed on Matlab.

The reference frame on Solidworks has been set up to be similar to the catheter insertion

position in BigMag workspace reference frame. The positioning of the reference system

was necessary for the correct initialization of the fitting algorithm.
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Fig. 2.5: 3-D Representation of the catheter generated on Solidworks with the respective coordi-

nate system.

2.4 Processing on Matlab

2.4.1 Linear Fitting Technique Implementation

This algorithm has been developed and tested on the synthetic catheter point clouds sim-

ulating a stereo vision system dataset and processing. Once the points were sorted and

filtered, a function that allowed to approximate the position of the center of the catheter

base in the workspace has been developed, as reported in appendix (.2.8).

Subsequently, a linear regression model with the least linear squares method was used to

derive a good approximation of the point clouds.

β = (XT ∗X−1)XT y (2.1)
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where X contains the information on the data points, β is the coefficient vector which fit

the equations “best”, solving the quadratic minimization problem, XT is called Gramian

matrix of X and XT y is known as the moment matrix of regressand by regressors.

The least linear squared method in equation (2.1) has been adapted to the fitting problem

to find the coefficient of the line which better approximates the selected point cloud, as

reported in appendix (.2.1).

The continuum manipulator has been modeled as a series of rigid links with known length

connected by rotational joints. In order to obtain the model, the regression algorithm has

been applied iteratively. Known the position of the initial center and the number of links

of the final model, the points were selected with a distance to the initial center less than

or equal to the length of a single segment, as showed in appendix (.2.4).

The position of the successive center was then obtained thanks to the linear least square

method as shown in (.2.1): this method allowed to retrieve the line that best approximates

the selected points; the point on the line with a distance equal to the length of the segment

is set as the subsequent center that is used as the initial origin of the successive iteration.

During the final step of each iteration, the points selected were removed from the point

clouds so that each point could be selected just once.
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2.4.2 Model Fitting with not-fixed number of segments

Fig. 2.6: Representation of the point clouds during one step of the model fitting iteration.

At the end of the model fitting algorithm a model was obtained with n joints connected

by n−1 segments of length 5cm
(n−1) .

Curvature of a continuum manipulator could be not so easy to be modeled with a series

of links, so the number of segments of the fitting algorithm could be changed to find the

best ratio between computational cost and accuracy.

2.5 Validation Method A: Curvature Analysis with Linear Fitting

Algorithm

2.5.1 Initial Evaluation

Initially a geometric consideration was made: the file format STL indeed generates tri-

angles and therefore vertices only on the surface of the 3-D object. The cloud of points

obtained was then made of a series of points organized in circles whose centres lied on the

hypothetical line that passed through the center of the catheter’s body. The distance of the
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points from the segments of the fitting model was then evaluated considering as real value

1mm which was equivalent to the radius of the cylinder, as reported in appendix (.2.3).

This simple method of geometric validation was however limited to the catheter body as

the diameter of the tip progressively increased up to 6mm due to the permanent magnet.

Furthermore, the catheter’s tip was an important component to be studied because the

catheter control was exerted by BigMag through the magnetic component.

The ultimate goal of the model fitting was to gather information on the geometry of the

catheter in order to accurately trace the position of the magnetic component. For this pur-

pose, to evaluate the quality of the fitting algorithm two validation methods has been used.

Curvature refers to a series of geometric concepts linked to each other, which intuitively

refer to the measure of how much a given object deviates from being flat. The measure-

ment of the curvature is defined in different ways according to the geometric entity to

which it is applied. The curvature of a continuum manipulator bended in a 3-D volume

could be very hard to be described.

Therefore, the validation of the model fitting algorithm has been achieved considering a

constant curvature of the catheter’s body on a single plane: in this way the model could

be considered as a part of a circumference.

In appendix (.2.2) has been implemented the function to reconstruct the circumference

from three known points in order to evaluate the curvature.

The circumference offers the simple model of extrinsic curvature: since in a plane the

curvature k ad a point P indicates the sensitivity of the tangent in P, circumferences with

greater diameter have a smaller radius R and vice versa. The curvature is defined as the

reciprocal of the radius of the osculating circle at a point.

k =
1
R

(2.2)

2.5.2 Experimental Protocol A1: Single Constant Curvature

In the first validation phase, the evaluation of the curvature by analyzing a synthetic model

with known constant curvature has been performed. Values obtained with the linear fitting
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algorithm has been compared to the reference value given by Solidworks model. After

this first comparison, we focused on making more realistic synthetic point clouds. As

shown in figure ( 2.7), the distribution of the points is not homogeneous in the body of the

catheter, but well organized in circles equally spaced from each other and in which the

points are equidistant. Datasets from BigMag’s stereo vision system were very different

because the points obtained with a voxel carving technique were much more spread in the

entire volume of the catheter and not just on the surface like in the STL format.

Therefore, we introduced a random noise to the coordinates of each point in all three di-

rections of the reference system, as reported for example in appendix (.2.5).

Fig. 2.7: Representation of the catheter’s model to highlight the difference before and after the

introduction of noise to the point clouds. Points with noise in red show a more homoge-

neous spatial distribution than blu initial ones.

A multiplicative factor has also been added to the noise in order to modify its max-

imum amplitude to verify the different response of the fitting algorithm. With the intro-

duction of noise in synthetic data, the point clouds was more similar to the one obtained

by the system installed on BigMag.

The performance of the algorithm with and without the noise to the point clouds has been

evaluated.
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2.5.3 Experimental Protocol A2: Synthetic Models with Variable Known Curvature

The second validation protocol saw the generation of multiple models on SolidWorks in

which the bending was not constant, as in the case of the first validation protocol, to test

the robustness of the fitting algorithm. For this purpose, the function to derive the ini-

tial origin of the catheter has been modified in order to avoid errors caused by excessive

bending of the catheter: a control on the distance of the recruited points was introduced

to avoid points not belonging to the base of the catheter body.

On Solidworks, one hundred and eighty models of the catheter have been generated with

a progressively increasing bending angle from 1 ◦ to 180 ◦ degrees. This progressive in-

crease in the angle was designed to simulate a hypothetical movement over time of the

catheter. STL files have been loaded iteratively on MATLAB in order to save the data of

each model on the same array.

In this way each file could be theoretically compared to a frame obtained from the stereo

vision system during a test; frame-by-frame it has been possible to derive the curvature

parameter through the model fitting algorithm and compare it with the known information

provided by the Solidworks models.

2.5.4 Experimental Protocol A3: Evaluation of a 3-D Printed Object with Known

Curvatures

The final validation protocol of the linear fitting algorithm and the evaluation of its be-

havior was obtained with the following procedure:
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Development of a catheter model in Solidworks

Fig. 2.8: Model of the catheter created on Solidworks. The green part has a curvature of 100m−1,

the light blue part of 200m−1.

The catheter has been approximated as a cylinder with 5cm length and 2mm diame-

ter. Subsequently were applied two different bendings to the model with a curvature

of 100m−1 and 200m−1 respectively. The dimensions were therefore comparable with the

real ones of the catheters used for steering.

Object’s Fabrication

The catheter has been fabricated with a 3-D printer (resolution of 0.2mm) using the model

generated on Solidworks. The material used for the fabrication was a rigid plastic mate-

rial that did not allow the object to bend due to gravity during the validation operations.

Setup: Image Recording

The 3-D printed object was then positioned in BigMag’s workspace and eighty-five im-

ages were recorded through the Optical System mounted and calibrated on BigMag Sys-

tem. The object was not moved during the entire acquisition.
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Image Processing

A Voxel Carving technique was applied by the Optical System to each couple of images,

one for each camera, in order to reconstruct the volume of the catheter as a 3-D point

clouds. Later on has been used the linear fitting algorithm to describe the point clouds

as a series of nineteen rigid links connected by joints. Subsequently, the position of each

joint has been filtered through a three-points window moving average filter.

Fig. 2.9: Point clouds from Stereo Vision System representing the catheter. The origins before and

after filtering are represented with two different colors: black and red for unfiltered data

respectively.

Curvature has been evaluated both before and after filtering.
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2.6 Validation Method B: Catheter’s Analysis during Animation with

Linear Fitting Algorithm

2.6.1 Comparison Parameters and Animation

A first study of the movement of a magnetically controlled real catheter by BigMag was

performed by making the tip of the catheter accomplish a specific circular trajectory

within the workspace. This apparently simple movement allowed to verify the quality

of the catheter tip control in all directions.

All the information obtained by the system during this test were saved in CSV files or-

ganized in arrays in which each row gathered all the information regarding one frame:

in each row the coordinates of each voxel obtained from the stereo vision system were

reported.

On these images information on the position and orientation of the catheter during the

movement has been evaluated rather then the quality of the model fitting algorithm.

Being able to derive high precision key parameters frame-by-frame of catheter’s configu-

ration was an important result to be achieved.

For this purpose, three parameters were introduced, making it possible to have a complete

reconstruction of the catheter configuration at every instant:

• Tip X axis Distance x

• Tip Distance d

• Tip Bending angle α
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Fig. 2.10: In the picture are shown the three parameters used to describe the orientation of the

catheter in the workspace during the animation.

The distance x was measured considering the distance in the X axis between the first

origin of the catheter and the projection of the catheter tip P on the line parallel to the X

axis passing through the origin itself.

The distance d has been instead evaluated measuring the distance between the tip position

and the point P.

Finally, the bending angle α was the angle in the Y Z plane formed by the intersection

between the line on which lay the distance d and the axis parallel to the y-axis passing

through the origin at the base of the catheter. These three parameters allowed the de-

scription of the catheter configuration in the case of a constant bending of the catheter as

described previously.
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2.6.2 Experimental Protocol B1: Qualitative Evaluation of BigMag dataset

Through the linear fitting algorithm, perfomed iteratively for all the frames collected in

the file obtained from the stereo vision system mounted on BigMag, it has been possible

to obtain the three parameters throughout the catheter movement, thus being able to study

its behavior. MATLAB function is reported in (.2.5).

In particular, it was decided to represent them by performing a permutation with respect

to the frames they belonged to.

Low Pass Filter

On this data, a qualitative evaluation was carried out initially to evaluate the efficiency of

BigMag in the catheter control, subsequently a low pass filter was applied to the obtained

parameters.

y(n) =
1
M

M−1

∑
k=0

x(n− k) (2.3)

In (2.3) a moving average filter where x(n) is the filter input, y(n) the output and M the

number of points in the window.

A moving average low pass filter has been implemented on MATLAB and has been ap-

plied to the coordinates of the tip’s position in each frame. The main function of the filter

was to limit the oscillations at high frequency of the tip position and therefore of the three

parameters, generated mainly by a not yet perfect control of the magnetic component and

the accuracy limits of the model fitting algorithm.

Through filtering, we tried to make the variation of the tip’s position smoother, being able

to derive filtered parameters accordingly. Any sudden changes in these parameters and

in the coordinates of the catheter tip would negatively affect the catheter’s control, which

is based precisely on the position of the magnetic component in the tip to establish the

magnetic field to be generated for a given task.
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2.6.3 New Software for Synthetic Models: Maya

After studying the catheter’s movement in BigMag’s workspace, Solidworks limits for

device animation were evident: indeed, the generation of a specific movement of the

catheter was anything but intuitive and easy to do, so much so that in the generation of

synthetic data described previously, where the bending angle grew progressively, it was

necessary to modify the curvature value before exporting each frame.

To avoid this limit, a search was carried out to identify a software that could make the

catheter animation easier.

Two software with similar features to Solidworks but with a more intuitive and simple

possibility to develop an animation were Blender and Maya. Maya is 3-D computer ani-

mation software with powerful modeling, rendering, simulation, texturing and animation

tools.

The particularity of Maya compared to Solidworks is the presence of a very simple time-

line on which is possible insert key-points. These key-points are nothing but values at-

tributed to the parameters of interest. For example, once a value has been assigned to a

parameter and is different from the initial one, in all the frames contained in the interval

between the beginning frame and the key-point, the parameter progressively changes to

reach exactly the value at the key-point and then remains constant until the end of the

animation.

The number of key-points that can be added is unlimited, so it was very easy to make the

catheter moving with a precise task.

An animation of the catheter model similar to the one seen previously was developed in

order to obtain the same x, d and α parameters, thus comparing the results obtained by

the algorithm by analyzing the data on the movement of a real and a synthetic catheter.

Although Maya offered a wide choice of functions to simulate the real behavior of the

model, such as force and gravity fields and material’s characteristics, to simulate the spe-

cific task of the catheter with circular motion already performed on BigMag it was suf-

ficient to use the bending functions and rotation around the axes of the reference system

based on the model itself.
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Fig. 2.11: In the figure is shown Maya platform. In this case, rotation happened around the x

axis in red and the bending is constant during rotation. Below the timeline in which is

possible to add key points.

In figure (2.11) the catheter is shown in green with the relative reference system. The

dimensions of the catheter are similar to those of the Solidworks model and the circum-

ferences have been traced in order to measure the curvature geometrically. Therefore, the

subsequent synthetic datasets to simulate the catheter movement with the stereo vision

system have been generated through this new software.

However, it was necessary to partially modify the data loading function on MATLAB

because the default Maya software did not have the possibility to export the files in STL

format and on the updated version there was no working patch that would allow it.

The OBJ format has been chosen as an alternative: OBJ is a file format for defining 3-D

geometries. It has a data-format that represents only the 3-D geometry, that is the position

of each vertex, the normals and the faces that build up the model. The vertices are stored

by default in a counter clockwise order and do not have units of measure.

The movement of the catheter generated by BigMag was then reconstructed setting key-

points on Maya with a constant 2-D bending and a rotation with constant angular velocity

around the longitudinal axis of the catheter before bending. Naturally, at each iteration

the constant curvature and the bending angle α with respect to the rotation axis integral
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with the base of the model were known and stored.

2.6.4 Experimental Protocol B2: Evaluation of Configuration Parameters with Maya’s

Dataset

Known the real values of the configuration parameters provided by the Maya software, it

was possible to validate the quality of the linear fitting algorithm in the reconstruction of

the three parameters x, d and α .

A comparison between the results and the Maya’s reference values has been performed

exploiting 200 frames stored in the dataset.

2.6.5 Experimental Protocol B3: Evaluation of the Radius of Curvature with Maya’s

Dataset

Subsequently, a further validation of the algorithm in the evaluation of the radius of curva-

ture of the catheter was performed, exploiting the formula reported in (2.2). Two different

methodologies has been compared. In the first methodology, used in the first validation

phase, MATLAB processing was performed on the entire point cloud, thus simulating a

stereo vision system. In the second methodology instead, the data processing was modi-

fied to simulate the use of an ultrasound system, obtaining the whole point clouds as the

sum of many slices, each obtained in one iteration. The validation has been performed on

the same dataset as the Protocol B2.

Ultrasound Probe Scanning Simulation

Since the stereo vision system was not an optimal tracking mode for objects within a

volume, a possible reliable alternative system was an ultrasound system. The production

of synthetic data to simulate the activity of an ultrasound scanner was then developed, in

order to test new solutions. The characteristics we have considered in creating synthetic

data similar to ultrasound diagnostic images, implemented and reported in appendices

(.2.15) and (.2.16), are mainly three:

1. The point cloud is not read all at the same time but is generated one slice for each
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iteration, since the ultrasound technology that does not allow to obtain information

on the whole volume with a simple probe, but only about the single slice in which

the ultrasounds are emitted. Therefore, the previous data loading algorithm has

been changed and adapted to the new technology.

2. The 2-D slice generated by the ultrasound probe doesn’t have a thickness that is

considered only for a 3-D reconstruction of the tissue from a series of 2-D images,

so we have used different values of this parameter to recruit a different number of

points to describe each slice.

3. Simulation of the US scanning (Linear Actuator): the scanning direction was also

designed to simulate the presence of a probe that moves at a certain velocity and

direction guided by a linear motor. Due to the size of the workspace of BigMag

it would have been necessary to insert a linear motor to move the probe along the

entire workspace in order to scan the catheter inside the phantom; the analysis of

the volume and therefore the data acquisition in the MATLAB simulation had to

respect the movement due to the motor.

Fig. 2.12: The image shows the processing of data received from BigMag to simulate the scanning

of an ultrasound probe. In this example the slice thickness was 1.5mm.
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The main difference between the synthetic data and the data from diagnostic images

of an ultrasound machine is the absence of the background that it is necessary to remove.

Usually the tracking with ultrasound systems is equipped with tracking and filtering al-

gorithms that allow to isolate the object studied from the background. The synthetic data

that were generated on Maya already refers to the dataset already without the environment.

2.7 Flowchart of the Linear Fitting Algorithm

Fig. 2.13: Flowchart of the linear fitting algorithm.
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At the top of 2.13 the sources from which the datasets were derived, CAD software and

BigMag respectively.

Raw data, made of point-clouds coordinates, were subsequently processed on MATLAB.

On the right the function in order to obtain the first joint of the regression model. On the

left three MATLAB functions that were used iteratively to build the final model.

Once the model was obtained, validation methods were exploited to evaluate the perfor-

mance of the algorithm. All the validation methods have been implemented on MATLAB

in the main function of the linear fitting algorithm.

2.8 Validation Method C: PRBM Algorithm Evaluation and Valida-

tion

After a first evaluation analysis and validation of the linear fitting algorithm, a second

algorithm has been implemented on MATLAB with a PRBM model known in the lit-

erature that allowed to obtain the catheter configuration starting from the data on the

torque provided by BigMag to the magnetic component of the catheter. Therefore this

algorithm did not exploit the point clouds to obtain the catheter configuration. Two mod-

els have been evaluated before MATLAB implementation: Roesthuis’s and Greigarn’s

PRBM (Roesthuis and Misra [2016]), (Greigarn and Çavuşoğlu [2014]).

2.8.1 PRBM Algorithm: Description and Implementation

A good approximation of continuum manipulators like the catheters used with BigMag

could be obtained with Pseudo-Rigid-Body Models: a serial chain of rigid links connected

by elastic joints with variable characteristics of rigidity could be considered sufficiently

performing for the description of the catheter as we saw in the state of art.

The angles between each joint were not derive directly from the images or from Solid-

works models, as the reconstruction had to be done starting from information about the

magnetic field provided by BigMag.

Indeed, the goal was to derive a good and accurate relationship between joints angles and

the magnetic field applied to the tip of the catheter. In addition to gravity, the only bending
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component of the catheter was generated by the activity of the coils installed on BigMag.

This magnetic force could be defined as wrench W and is made of forces ft and moments

τt generated on the three axes. In our case, being the permanent magnet installed in the

tip of the catheter, the wrench has been applied only in the tip.

W = [ ft τt ] (2.4)

It was therefore necessary to introduce a parameter Kr describing the stiffness of each joint

along the axes of the reference system solidal with the catheter: this parameter has been

necessary to allow a more realistic description of the continuum manipulator’s stiffness.

Rotational springs were assigned at the origin and the end of each link.

In the simplification of the continuum manipulator to a PRBM, constant curvature arcs

have been approximated to rigid links and the energy Us stored in the springs could be

described in terms of joints bending angles (Roesthuis and Misra [2016]).

Us =
1
4

Krθ
2 (2.5)

Introducing the Young’s modulus E, the link’s length ls and the area moment of inertia I

of the manipulator, the following expression for Kr can be found:

Kr =
2EI
ls

(2.6)

Given this stiffness Kr, the torque at ith joint can be written as:

τi = Krqθ ,i (2.7)

where qθ ,i is the joint angle related to the amount of bending.

Starting from the equation (2.7), it was therefore possible to develop a relationship be-

tween torque applied to the tip and configuration of the PRBM: the equilibrium between

magnetic wrench and internal bending moment of each joint was the hypothesis necessary
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to find the joints angles.

Roesthuis’s PRB Model

The first PRBM that has been studied consider a three-dimensional shape of a continuum

catheter as a serial chain of rigid links connected by rotational joints. Each links describes

a constant-curvature arc with fixed length ls and each arc is defined by a bending angle

(θi) and bending direction φi. In addition, the orientation of each joint is defined by two

angles qφ ,i and qθ ,i that are related to the bending direction and the amount of bending

respectively. A rotational spring (Kθ ) is assigned to each joint in order to describe the

manipulator stiffness Kr (Roesthuis and Misra [2016]). Since the length of the catheter is

considered much higher than the diameter, shear strains are small compared with bending

ones and therefore the deflection is generated by bending only. In addition, the extension

of the manipulator is neglected. Each links describes a constant-curvature arc defined by

the three parameters ls, θi, and φi.
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Fig. 2.14: (a) Is the shape of a continuum manipulator: the orange lines are the rigid links con-

nected by rotational joints. Each link represents a constant-curvature arc (ls) that has a

particular direction and angle (θi, φi). (b) The first angle ( qφ ,i) is related to the bending

direction, ( qθ ,i) is related to the amount of bending. Kθ is a rotational spring assigned

to each joint.

The transformation between two joints can be described by three consecutive rotation:

Ri
i+1 = Rz(qϕ,i)Ry(qθ ,i)Rz(−qϕ,i) ∈ SO3 (2.8)

where Rz,Ry ∈ SO3 are rotations about the z-axis and y-axis respectively.

The final transformation H between the joints i and i+1 can be written as follow:

H i
i+1 =

Ri
i+1 pi

i+1

03 1

 ∈ SO3 (2.9)

where pi
i+1 is the position of the current joint with respect to the previous one.

Once evaluated the stiffness Kr of each joint, the relation with the torque τi at each joint
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can be written as:

τi = Kr ∗qθ ,i (2.10)

In order to determine the manipulator shape is defined the internal bending moment mi

that is related directly to the joints angles of the rigid link model and can be defined as

follow:

m∗i = ∑M j + pi
F ×F (2.11)

where qθ ,i and qϕ,i can be related to the magnitude and direction of the bending moment.

Kr ∗qθ ,i = ‖m∗i ‖ (2.12)

qϕ,i = ∠m∗i (2.13)

In (2.11) M j is the moment resulting from actuation, F denotes an external force applied

to the joint. Since the position of the vector pi
F is the result of the configuration of the

PRBM, in order to calculate the manipulator shape is necessary to solve a set of non linear

equation to find the most suitable angles.

From the rigid-link model is then easy to derive the manipulator Jacobian J(q) that is very

useful for the control of the tip because it relates joint velocities q̇ to end-effector velocity

ve (Murray et al. [1994]).

The Jacobian (2.14) is the matrix of which the elements are the partial derivatives of the

kinematics equations. The relationship between the end-effector velocity and the joint

velocities is thus fully described by the Jacobian.
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J =


∂x1
∂θ1

· · · ∂x1
∂θn

... . . . ...
∂xm
∂θ1

· · · ∂xm
∂θn

 (2.14)

The end-effector velocity is a linear function of the joint velocities and therefore can be

evaluated using the Jacobian.

ve =

ωe

ṗe

= J(q)q̇ (2.15)

where ωe and ṗe are the angular velocity and the linear velocity of the end-effector re-

spectively. In Roesthuis’s model, the Jacobian J can be related to the twist coordinates ξϕ

and ξθ of the joints as expressed in the following equation:

Ji(q) =
[
ξ ′varphi ξ ′theta

]
(2.16)

ξ ′ϕ and ξ ′
θ

are related to the direction and the bending angle respectively, that can be found

directly by transforming the unit joint twist ξ j to the current manipulator configuration.

ξ
′
j = AdHO

j−1
ξ j (2.17)

in (2.17) AdHO
j−1

is the adjoint matrix, which depends on manipulator configuration (Roesthuis

and Misra [2016]).

"The most general rigid body displacement can be produced by a translation along a line

followed (or preceded) by a rotation about that line." (Kumar [2000]). Starting from the

screw theory, described in Chasles’s Theorem, we could say that a twist describes the

velocity of a rigid body as an angular velocity around an axis and a linear velocity along

the same axis, as described in equation (2.18). Therefore all points of a rigid body have

the same angular velocity along the axis, but greater is the distance from the axis, greater

is the velocity in the plane perpendicular to the same axis.
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For a revolute joint, the axis of rotation passes through the point r and is directed along

the vector ω̂ . Since all joints are revolute, the unit twist of each joint with respect to the

previous joint is given as:

ξ j =

 ω̂

r× ω̂

 (2.18)

where ω̂ is the angular velocity and r the position vector from the origin of the previous

joint and the origin of the current one. This PRBM has been studied from literature in

order to understand the model’s characteristics and behaior, but not implemented in our

project.

Greigarn PRB Model

In this section is described the matematical derivation and implementation of the PRBM

obteined by Greigarn, (Greigarn and Çavuşoğlu [2014]), and achieved through three steps:

forward kinematics, angular velocity evaluation and the actuation of the catheter. The part

of the article concerning the analysis of the movement has been neglected.

As for direct kinematics, like the previous model, the PRBM consists of a series of n rigid

links connected by rotationsl joints and the characteristics of the material are modeled

as torsional springs attached to the joints. Shear strains are neglected as described the

previous model.
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Fig. 2.15: Continuum and pseudo-rigid-body model of the catheter. ξix and ξiy are orthogonal

twists and represent the rotation of the ith joint.

Each joint can be modeled as a 2-DOF spherical joint with only bending and the ro-

tation of each joint is expressed in terms of two orthogonal twists, denoted by ξix and

ξiy among the two orthogonal axes ωix and ωiy of the ith joint. The linear combination

between the two can be written as follow:

ωiθi = ωixθix +ωiyθiy (2.19)

where θix and θiy are the rotation angles around each axis respectively. ωix and ωiy are

chosen to be orthogonal to the initial direction of the next link.

Therefore, the configuration of the catheter’s tip can be found using the product of expo-

nentials formula as follow,

gst(θ) = eξ̂1θ1eξ̂2θ2 · · ·gst(0) (2.20)

In (2.20) gst(θ) ∈ SE(3) is the configuration of the catheter’s tip for a given set of

angles θ with θ =
[
θ1x θ1y · · · θnx θny

]
, gst(0) is the initial configuration and as
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reported in (Greigarn and Çavuşoğlu [2014]), ξ̂i ∈ se(3) is the twists given by:

ξ̂i =

ω̂i −ωi×qi

0 1

 (2.21)

where qi is the location of the ith.

Together with the forward kinematics, another parameter that is calculated is the angular

velocity, which is necessary to construct the Jacobian manipulator and study the singu-

larities of the model. The angular velocity can be expressed as the sum between the two

components on the x−axis and y−axis. From the equation (2.19) could be considered ω

as a parameter that contain both magnitude and direction of the rotation.

ω(t) = ωxθx(t)+ωyθy(t) (2.22)

The rotation can be written as an element in the Lie algebra so(3) as follows,

ω̂ =


0 0 θy(t)

0 0 −θx(t)

−θy(t) θx(t) 0

 (2.23)

Knowing that the magnitude of θ can be easily obtained from θx and θy from the equation

θ = (θ 2
x +θ

2
y )

1/2, (2.24)

the angular velocity can be expressed as a linear combination of the velocity axes like in

(2.22):

ω
s =


1− θ 2

y
θ 2 (1− sinθ

θ
)

θxθy
θ 2 (1− sinθ

θ
)

θy
θ 2 (1− cosθ)

 θ̇x +


θxθy
θ 2 (1− sinθ

θ
)

1− θ 2
x

θ 2 (1− sinθ

θ
)

θx
θ 2 (1− cosθ)

 θ̇y (2.25)
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From the equations (2.22) and (2.25), it is possible to introduce the parameter Ω =

[ωx ωy], which has been implemented on MATLAB to retrieve the angles (.2.11) as

follow:

Ω =


1− θ 2

y
θ 2 (1− sinθ

θ
)

θxθy
θ 2 (1− sinθ

θ
)

θxθy
θ 2 (1− sinθ

θ
) 1− θ 2

x
θ 2 (1− sinθ

θ
)

θy
θ 2 (1− cosθ) θx

θ 2 (1− cosθ)

 (2.26)

The Jacobian Ju can be calculated starting from Jb
su in the body frame. Jb

su can be expressed

as follow,

Jb
su =

[
ξ

†
1x ξ

†
1y · · ·ξ

†
kx ξ

†
ky 0 · · ·

]
(2.27)

where for each i = 1, · · · ,k,

ξ
†
1x = Ad−1

gi(θ)
ξix and ξ

†
1y = Ad−1

gi(θ)
ξiy (2.28)

Ad−1 is the inverse of the adjoint described before and gi(θ) is defined as

gi(θ) = e(ξ̂ixθix+ξ̂iyθiy) · · ·e(ξ̂kxθkx+ξ̂kyθky)gsu(0) (2.29)

Considering g as a matrix containing a rotation matrix, the inverse adjoint transformation

can be calculated as below,

g =

R p

0 1

→ Ad−1
g =

RT −RT p̂

0 RT

 (2.30)

the final equations of the Jacobian’s columns can be written as:
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ξ
†
ix =

RT
i −RT

i p̂i

0 RT
i

−ωix×qix

ωix



ξ
†
iy =

RT
i −RT

i p̂i

0 RT
i

−ωiy×qiy

ωiy


(2.31)

Greigarn PRBM has been implemented on MATLAB, (.2.12), to have a performing mod-

eling of the continuum manipulator and has been used some features from the Robotics

Toolbox, (P.I.Corke [2017]). As described before, the evaluation of the angles in each

joint has been made not graphically from the images, but as the solution of a system of

non-linear equations.

Indeed, considering the stereo vision data obtained from BigMag, initially only the wrench

applied to the tip of the catheter was known, as shown in the given function reported in

appendix (.2.7),and not each single moment applied to the joints of the PRBM. Therefore

the last component implemented in the modeling of the continuum manipulator has been

the actuation of the catheter, which allowed to relate the moments applied to the tip of

the catheter to the angles of the joint through the Jacobian obtained previously. All the

stresses and the angles were set to zero by default and the Jacobian was initialized with

those parameters too.

Knowing from (Greigarn and Çavuşoğlu [2014]) that:

τ = (Jb
su)

T (θ)

 03×1

m×b

 (2.32)

where τ is the joint torque vector, m is the magnetic moment of the actuator, b is the mag-

netic field applied and Jb
su the body manipulator Jacobian, through the minimization of the

difference between the current stresses (τtotal) and the product between the transposed of

the Jacobian and the wrench (τres) it has been possible to find the optimal stress in each

single joint and therefore the angles, as reported in appendix (.2.9).

55



2. MATERIALS AND METHODS

τtotal− τres→≈ 0 (2.33)

τres = JTW (2.34)

where W is the wrench described in (2.32).

Once found all the joints angles the final configuration of the PRBM would have been

been reconstructed.

In order to minimize this difference and find the angles, we decided to use f solve.

Fsolve Function

Fsolve is a MATLAB function that solves systems of non-linear equations of several

variables. It requires an optimization function, a parameter to be optimized and general

operating options such as the maximum number of iterations, the tolerance value that al-

lows to exit the iteration.

The function in our case was the minimization of the difference described by the equation

(2.33), which MATLAB implementation is reported in appendix (.2.13).

The second unknown factor in the reconstruction of the angles was the stiffness applied to

each joint of the continuum manipulator. The stiffness indeed had to be certainly different

between the joints given the different elasticity of the catheter base with respect to the tip

for example. Starting from stiffness values inherited from previous studies, we analyzed

real data obtained with the BigMag system in order to obtain the best approximation of

the stiffness possible.

From the obtained PRBM, together with the applied wrench and the stiffness values, the

angles of each joint has been reconstructed and compared to the values provided by the

stereo vision system. This comparison has been made made in all subsequent steps to

evaluate the improvement of model performances.

To simplify all the analysis, four-joint PRBM models were built and the comparison has

been made between the angles in the two directions x and y, in the reference system of

each joint, for each subsequent step.
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2.8.2 Simulink Implementation of PRBM Algorithm for Validation Protocols

In order to perform the validation protocols, the PRBM algorithm has been implemented

on Simulink. Simulink is a software for modeling, simulation and analysis of dynamic

systems, developed by the American company MathWorks. This software is tightly inte-

grated with MATLAB.

Fig. 2.16: Simulink model: the constant is the wrench applied that is multiplied by a sine function.

The result of the product becomes input of the MATLAB function which provides the

corresponding angles.

The first Simulink implementation has been performed to verify graphically the be-

havior of the model. As shown in the picture ( 2.16), it has been introduced a sinusoidal

input which, multiplied to a constant wrench, provided a periodic input to the function.

Through this implementation we wanted to obtain a first graphic feedback of the algo-

rithm simulating a hypothetical wrench generated by BigMag coils, evaluating the quality

of the functioning.

The algorithm that allowed to obtain the angles starting from a wrench applied to the tip

was inserted inside a functional block of Simulink, called Interpreted MATLAB Function,

in which was possible to set both the input and the output ports of the block. All the angles

obtained during the simulation have been saved in order to be analyzed on MATLAB.

Subsequently, the Simulink model was extended to allow the comparison between the

angles obtained directly from BigMag and those reconstructed through the PRBM algo-
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rithm.

Saving all information during the simulation would have allowed parallel processing of

both datasets simplifying the identification of possible improvements to the previously

implemented algorithm.

Fig. 2.17: Simulink model: the second Simulink block is shown. The first function output is

wrench composed of a 6×1 array and the angles also contained in a 6×1 array. High-

lighted in blue BigMag data storage. Display blocks used to show results during the

iteration.

As it is possible to see in the image ( 2.17), the first functional block allowed to exe-

cute the algorithm of loading and processing of BigMag’s dataset thus obtaining frame-

by-frame the wrench applied to the tip and the configuration of the PRB model.

The output of the first functional block was then splitted and redirected: the angles ob-

tained by BigMag’s stereo vision system were saved directly while the applied wrench

was used as input for the previously implemented functional block. The angles obtained

from the second block were also saved and subsequently compared with BigMag data.
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2.8.3 Experimental Protocol C1: Evaluation of the joints angles with new compliance

values

For all four experimental protocols, the same dataset provided by the linear fitting tracking

system implemented on BigMag was used and compared. This dataset has been generated

by moving the catheter with a helical path and consists of 1640 frames.

Compliance Evaluation

Compliance is an intrinsic characteristic of a material and can be defined as the recipro-

cal of the stiffness (Mahvash and Dupont [2011]). BigMag stereo vision files has been

processed to find the compliance of each individual test. The linear fitting algorithm im-

plemented on BigMag allowed in fact to obtain the angles of the joints directly from the

optical system; initially the angles and the wrench applied to each frame were saved and

loaded on MATLAB.

Subsequently, compliance was obtained by modifying the equation previously used to ob-

tain the angles as follow:

C = pinv(θ)∗ JT ∗W (2.35)

where C is the compliance, θ is a matrix
[
2∗n∗m, 2∗n

]
, in which n and m are the

number of joints and frames respectively, composed of m diagonal matrices containing

θx and θy angles of each joint, JT is the transpose of the Jacobians and W is a matrix[
2∗n∗m, 1

]
containing all the wrenches applied to the tip for each frame.

The function pinv, described in appendix (.1), is the Moore-Penrose pseudoinverse and

has been used the MATLAB function cond to evaluate the reliability of the results. The

condition number, that is the output of the function cond, of a matrix measures the sen-

sitivity of the solution of a system of linear equations to errors in the data. It gives an

indication of the accuracy of the results from matrix inversion and the linear equation so-

lution. Values of cond(X) or cond(X , p) near 1 indicate a well conditioned matrix.
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Since the outputs from the cond function were less than 3, we considered the compli-

ance’s values obtained reliable.

It has been also necessary to perform a temporal shift to overcome a delay between the

reconstructions of the angles and the real ones. This delay has been also assessed in ob-

taining the compliance the accuracy in the reconstruction of the PRBM configuration.

In the International System, flexural stiffness is measured in Newton-meters on radians,

as explained in this relation k = M
θ

, therefore compliance C is measured in radians on

Newton-meters.

Compliance values were obtained from the new BigMag datasets. With the new PRBM

algorithm (called ModelNC), joints angles were obtained from the wrench applied at the

tip. Results were compared with reference values detected by the stereo vision system

(BigMagDataset), with the PRBM algorithm with initial compliance (ModelQ) and with

a different PRBM algorithm including the initial bending of the catheter generated by

gravity force (ModelGQ).

2.8.4 Experimental Protocol C2: Evaluation of the joints angles with a cubic

compliance model implemented on the PRBM

Cubic Compliance Model

From previous studies on BigMag in the control of the catheter in the workspace, it was

evident a lack of homogeneity of compliance both according to the position of the joint

with respect to the catheter base, and to the variation of curvature: in the first case, the

base of the catheter was less elastic than the central part of the catheter and furthermore

an increase or a decrease of the bending caused a variation of the elastic characteristics of

the material.

Therefore, a constant compliance might not be the best solution to have an optimal per-

formance of the algorithm. Later on a compliance which also introduced a corrective

factor to compensate for the angle’s variation has been studied developed. In order to

add a corrective factor, a cubic rather than linear compliance was also evaluated, such as

previously calculated.

In equation (2.35), θ was changed as follow:
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θ = [θ 3
θ ] (2.36)

The cubic compliance provided two terms for each joint and for each direction x and y of

which a first-degree factor and a corrective third-degree factor. It has been necessary to

modify both the algorithm to obtain the angles and the function used by f solve to derive

the optimal configuration of the PRBM. The algorithm was then able to exploit both the

terms of the cubic compliance, as implemented in appendices (.2.10) and (.2.14).

The time necessary for the f solve function to derive a solution starting from the two dif-

ferent optimization functions was also compared to verify the possibility of implementing

them in a real-time control algorithm. To evaluate the convergence speed of f solve the

stopwatch function of MATLAB was used, in which the command tic starts a stopwatch

timer to measure performance.

The function records the internal time at execution of the tic command and display the

elapsed time after the toc command. By inserting in the algorithm, the commands tic

and toc before and after the f solve line respectively it has been possible to measure its

performance.

The PRBM algorithm with the cubic compliance model (called ModelSK) has been

evaluated in comparison with reference values of the stereo vision system. Joints an-

gles have been compared both with reference values and the best result of the previous

validation protocol.

2.8.5 Luenberger State Observer Implementation on PRBM Algorithm

The final step of the project involved the implementation of a state observer on PRBM al-

gorithm to limit sudden oscillations in the catheter control as shown in the tests performed

on BigMag. A state observer could be very useful for this purpose because knowing the

system state is necessary to stabilize a system using for example state feedback; in this

way the algorithm did not obtain information about angles only from the wrench applied

at the current iteration, but also taking advantage of the values obtained previously.
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Therefore a state observer was designed to perform mainly a filtering that would make the

reconstruction of the corners more smoothed and precise.

Analyzing the state observer to be used, the extended Kalman filter and Luenberger state

observer were evaluated.

However, the extended Kalman filter has been discarded as it was not possible to adapt

the merger between the algorithm and BigMag stereo vision system to the filter itself.

Luenberger State Observer

Luenberger observer is a dynamic system that can be used to obtain one or some of the

state of a system and it is called full-state observer when used to estimate all the states. In

our project it has been adapted for a discrete-time system because we were working with

images recorded by the stereo vision system.

In general, the main purpose of the observer is to obtain an estimate of a state x(t) based

on the measured output y(t) and the input to the system u(t), which are assumed to be

exactly measurable.

The number of state’s variable n determine the order of the dynamic system and if the

observer is used as a part of a feedback control system, the estimate x̂(t) will be used by

the controller as if it were the true state x(t).

There are several ways to derive the state equations for a state observer and can be added

a correction term based on the output and the estimate of what that output is expected to

be.

For example, for an actual system described by
x′(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)
(2.37)

the observer is modeled as follows,

x̂′(t) = Ax̂(t)+Bu(t)+L(y(t)− ŷ(t)) (2.38)
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where ŷ(t)=Cx(T )+Du(t) and L is called Luenberger correction term and can be consid-

ered as a gain matrix for the observer. Higher is the gain, higher is the correction velocity.

L is multiplied by the difference between the true output measured and its estimation.

Model’s Equations for Implementation in the PRBM algorithm

To derive control’s equations to implement the state observer it has been necessary to

start from the relation between the Jacobian and the configuration of the joints described

in (2.32), introducing also the force generated by gravity Fg, explaining the compliance C

and the configuration of the joints q:

JT (q)Wt = JT (q)



02×1

−Fg

τx
µ

τ
y
µ

0


=Cq (2.39)

the differentiation of (2.39) allows to rewrite it as follows,

J̇(q)TWt + J(q)TẆt =Cq̇ (2.40)

where q̇ is the PRBM joint rate. Using the chain rule which says that:

D[ f (g(x))] = f ′(g(x)) ·g′(x) (2.41)

the differentiation of becomes:

J̇(q)TWt =


−δJ3.1

δq Fg +
δJ4.1

δq τ
µ
x + δJ5.1

δq τ
µ
y

· · ·

−δJ3.2n

δq Fg +
δJ4.2n

δq τ
µ
x + δJ5.2n

δq τ
µ
y

 q̇ (2.42)
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where the matrix can be defined as Γ(q,τµ).

The final equation for PRB joint rate used for the Luenberger observer becomes,

q̇ = (C−Γ(q,τµ))
−1JT (q)[01×3 τ̇

T
µ ]

T (2.43)

Since the data on the BigMag model were discrete data, to simplify the differentiation of

the parameters to obtain Γ, we chose to perform a numerical differentiation, which in nu-

merical analysis describes the algorithms for estimating the derivative of a mathematical

function using the values of the same function.

The easiest way to perform the numerical differentiation is to use finite difference approx-

imations. A two-point estimation is to compute the slope of a nearby secant line through

the points (x, f (x)) and (x+ h, f (x+ h)). Chosen a small number h, which represents a

small change in x and can be either positive or negative.

The slope of the secant line differs from the slope of the tangent line by a value that is

proportional to h. The true derivative of f at x is the limit of the value, for h that ap-

proaches zero, of the difference quotient as the secant lines get closer and closer to being

the tangent line.

f ′(x) = lim
h→0

f (x+h)− f (x)
h

(2.44)

For our purpose we used a different two-point formula as follows,

f (x+h)− f (x−h)
2h

(2.45)

This formula is known as the symmetric difference quotient and has bee implemented and

is reported in appendix (.3.2), where f is the Jacobian and x the configuration angles.

Correction Parameter

The gain matrix L in equation (2.38) that is used as a correction parameter and its values

should be chosen so that the eigenvalues of A−LC are strictly left half of the complex

plane to guarantee the stability of the system, and the estimation error should decay to
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zero over time. As a first attempt L has been considered as a diagonal matrix multiplied

with three constants minor than one to guarantee the stability of the observer. Has been

chosen the constant 0.3, 0.5 and 0.9.

The final equation becomes:

q̇i = q̇i−1 +L(C−Γ(qi,τµ))
−1JT (qi)[01×3 τ̇

T
µ ]

T (2.46)

where i is the current iteration.

Simulink Model of PRBM algorithm with Luenberger Implementation

The Luenberger observer has been implemented on Simulink by expanding the previous

model. A data saving and reading system was generated in order to obtain information

on the previous state during the iteration, thus simulating a hypothetical real-time test on

BigMag.

Fig. 2.18: Simulink Model: (1) is a function used to load the angles of the previous iteration

(2). It chooses which angles to use depending on whether it is the first iteration or the

following ones (appendix .3.1) (3). Is a function that derives the angles exploiting the

observer of Luenberger. Corners are saved at the end of each iteration.
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2.8.6 Experimental Protocol C3: Evaluation of the joints angles with a Luenberger

state observer implemented in the PRBM

The results of the Luenberger PRBM algorithm (called ModelL) with different L values

were then compared with the results obtained from the stereo vision system present on

BigMag, always in relation with the best performances of the previous validation proto-

cols.

2.8.7 Experimental Protocol C4: Final comparison of all PRBM models in the

evaluation of the tip’s position

The position of the catheter tip in the workspace was calculated as the last validation

phase. For each model used for the previous validation protocols, the coordinates of the

end-effector, corresponding to the catheter tip, were calculated. The data obtained from

the first model (ModelG), the cubic compliance model (ModelSK) and the latest PRBM

model with Luenberger (modelL) were compared to the BigMag reference values.
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2.9 Flowchart of the PRBM Algorithm

Fig. 2.19: Flowchart of the PRBM algorithm.

In flowchart (2.19) is shown the organization of the PRBM algorithm and the evaluation

protocols. Raw dataset at the top of the chart is given by BigMag and is composed by the

wrench applied by BigMag to the magnetic component in the catheter’s tip. MATLAB

processing was differentiated into two blocks depending on the compliance model used,

due to differences in minor functions used to find a solution to the f solve function.
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The output of both MATLAB Processing blocks is the PRBM. Joints angles have been

evaluated in Protocol C1, C2 and C3 and finally in Protocol C4 the evaluation of the tip

position.

68



3

Results

3.1 Initial Evaluation

The first phase of the project involved the generation of synthetic data in order to develop

a model fitting algorithm. Once the point clouds were extracted from Solidworks models

with the same characteristic curvature but different resolution, the quality of the recon-

struction of the catheter model was evaluated.

As points generated by the STL file were arranged in circles whose centers all lay along

the hypothetical line passing through the center of the catheter, the minimum distance

between each circle and the fitting model has been evaluated. This distance should corre-

spond to the radius of the catheter body that was known.
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Fig. 3.1: In the vertical axis the relative error between the evaluated distance and the real one. In

the horizontal axis the points.

Variable number of segments

By varying the number of segments the relative error did not show changes worthy of

note, nevertheless a variation of the effectiveness of the model was reported, as evident in

figure ( 3.2). Indeed, considering the description of the tip’s position the most important

detail, the model fitting algorithm behaved differently changing the number of segments.
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Fig. 3.2: Catheter’s plot, each STL point is represented as a circle. Ideal radius compared to

measured ones.

Clearly, as shown in ( 3.1), this parameter could be considered valid only for the

catheter body because the tip of the catheter, equipped with the magnetic component, had

a different body size, not homogeneous and not spherical so that it was not possible to

accurately evaluate the catheter distance from the hypothetical line mentioned above.

3.2 Validation Method A

3.2.1 Experimental Protocol A1

Exploiting the relation (2.2) between the curvature of the circle and the radius of the cir-

cumference, curvature radius reconstruction has been evaluated starting from the joints

obtained from the model fitting, considering iteratively the circle passing through three

successive origins.
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Curvature Evaluation

Tab. 3.1: Model Fitting. Radius Comparison

Origins Real Radius (mm) Model Radius (mm) R.Error (%)

1-2-3 47.62 42.86 9.98

2-3-4 47.62 46.01 3.38

3-4-5 47.62 52.4 10.04

4-5-6 47.62 44.27 7.04

5-6-7 47.62 47.26 0.77

5-7-8 47.62 46.24 2.89

1-4-8 (Av.) 47.62 47.57 0.1

The first value of the third column expressed in the table ( 3.1) is therefore equivalent to

the radius of curvature obtained from the circle inscribed respectively in the 1st ,2nd and

3rd origin of the fitting model, the same value in the second row from the 2nd ,3rd and 4th

origin respectively and so on.

The graph shows the results for a model with eight origins. The last value represents

instead the radius obtained considering the 1st , the 4th and the 8th origins respectively.

The last column represents the relative error of the measurement compared to the real

one in the second column taken from Solidworks model and has been obtained by the

following equation:

E%
Rel = |

Vmis−Vreal

Vreal
| ·100 (3.1)

In ( 3.3) are shown grafically table’s results.
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Fig. 3.3: In blue the real radius of the catheter. Light blue the measured one and in yellow the

relative error.

3.2.2 Experimental Protocol A2

2-D Bending

The fitting algorithm was also tested with a catheter model with variable curvature over

time. The algorithm’s results were evaluated with respect to the real values obtained from

Solidworks.
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Fig. 3.4: Above in the vertical axis Solidworks radius values in blue and in orange the values

obtained with the average model. Below the relative error, always below the 3%. In the

horizontal axis the bending angle.

Test performed with Solidworks models with increasing bending angle from 10◦ to

60◦ degrees. Sample mean and standard deviation has been equal to 1.2±0.86%.

Noise Addition

After adding the noise in the coordinates of the points to make the point cloud more

realistic, the comparison between the models generated before and after the addition of

noise has been evaluated as shown in the figure ( 3.5):
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Fig. 3.5: In this figure is shown an example of model fitting evaluation with 3-D bending and

noise addition. Noise has been added with different amplitudes, 10%, 50% and 90% of

the radius length. Black links has been found considering the initial poin clouds, red

links after the noise addition.

The differences compared to the values before adding the noise are shown in the table

below.

Tab. 3.2: Noise Addition

Max Noise Amplitude (%radius) 10% r. 50% r. 90% r.

Mean (mm) 0.07 0.2 0.38

Std (mm) 0.046 0.176 0.103

3.2.3 Experimental Protocol A3

All the data collected by the stereo vision system have been processed for the extraction

of point clouds and the evaluation of the two curvatures present in the printed object for

validation. After a first part of the catheter with zero bending angle there was a curvature

of 100m−1 and then 200m−1.

The data were obtained considering three different reference joints, since the exact curva-

ture starting points were not known.
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Curvature before filtering

Below the two graphs with the values obtained for the two curvatures.

Fig. 3.6: Three different Tracker evaluations considering different reference joints. First Curva-

ture.
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Fig. 3.7: Three different Tracker evaluations considering different reference joints. Second Cur-

vature.

Curvature after filtering

Before calculating the curvature again, the coordinates of the joints obtained from the

fitting model were filtered.

For the filtering a 3-sample moving average was implemented per window with the MAT-

LAB movmean function.
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Fig. 3.8: Three different Tracker evaluations considering different filtered joints. First Curvature.

Fig. 3.9: Three different Tracker evaluations considering different filtered joints. Second Curva-

ture.

In tables below the results for the two different curvatures both before and after filter-

ing and the simple difference between both cases and the real value.
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Tab. 3.3: Curvature Evaluation

Curvature (m−1) Mean Std

1st Curv. (100m−1) 93.32 5.13

1st Curv. (100m−1) Filt. 92.73 1.57

2nd Curv. (200m−1) 189.79 7.14

2nd Curv. (200m−1 Filt. 192.66 4.95

Tab. 3.4: Curvature Error

Evaluation Error (m−1) Mean Std

1st Curv. (100m−1) -6.68 5.13

1st Curv. (100m−1) Filt. -7.27 1.57

2nd Curv. (200m−1) -10.21 7.14

2nd Curv. (200m−1 Filt. -7.34 4.95

3.3 Validation Method B

3.3.1 Experimental Protocol B1

Then we moved on to the data set provided by BigMag’s stereo vision system, made of

600 frames describing a helical trajectory. On this data collected on the catheter, being

supplied by an optical system and not directly from a synthetic software design, a quali-

tative rather than quantitative evaluation has been performed.

Therefore, the accuracy of the parameters obtained was not evaluated, rather more how

much they were realistic. The three evaluated parameters were represented and the tip

position has been evaluated before and after filtering.
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Evaluation before Low Pass Filter

Given the particular helical motion generated by BigMag, the parameters x and d would

have had to settle at a constant value after a first settling moment. All the frames gener-

ated by BigMag were processed to compare their parameters.

Fig. 3.10: In figure the permutation of all frames to compare x.

The figure ( 3.10) shows the trend of x that represents the distance along the x axis

between the catheter tip and catheter’s insertion point.

Fig. 3.11: In figure the permutation of all frames to compare d.

The figure ( 3.11) shows the trend of d which represents the distance between the
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catheter tip and line parallel to the x-axis passing through catheter’s insertion point.

Fig. 3.12: In figure the permutation of all frames to compare α .

The figure ( 3.12) shows the trend of α that represents the angle between the line

passing through d and the line parallel to the z-axis passing through intersection between

the previous line and line parallel to the x-axis passing through catheter’s insertion point.

Tip Coordinates

In the figures below the coordinates of the catheter tip before filtering.

Fig. 3.13: X tip position during the helical movement.
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Fig. 3.14: Similar sinusoidal function in the y-axis due to the helical movement generated by Big-

Mag.

Fig. 3.15: Similar sinusoidal function in the x-axis due to the helical movement generated by Big-

Mag.

Evaluation after Low Pass Filter

A moving average has been performed using MATLAB function movmean with four sam-

ples in each window. The filtering was performed not on the three parameters but on the

position of the catheter tip, the main element for the control of the catheter itself.
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Tip Coordinates

In the figures below the coordinates of the catheter tip, in the same test as ( 3.13), ( 3.14)

and ( 3.15), after the moving average.

Fig. 3.16: X-axis coordinates after low pass filtering.

Fig. 3.17: Y-axis coordinates after low pass filtering.
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Fig. 3.18: Z-axis coordinates after low pass filtering.

3.3.2 Experimental Protocol B2

Maya’s Synthetic Dataset Evaluation

Maya software allowed to obtain a point clouds of the synthetic catheter that was very

similar to the one obtained from the data provided by BigMag.

An animation of the catheter model was also simulated performing a movement very sim-

ilar to the one performed previously. The animation has generated a total of 200 frames

saved and processed with the OBJ format.

The results for the three configuration parameters x, d and α , obtained by the linear fitting

algorithm during the simulation, are shown below.

Parameter x

In ( 3.19), ( 3.20) show the values obtained for the parameter x compared with the data

provided by the Maya model with a respective graph of the relative error with respect to

the real value.
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Fig. 3.19: In figure the permutation of all frames to evaluate x. Maya’s value is constant during all

the animation.

Fig. 3.20: Relative error for the parameter x.

Parameter d

In ( 3.21), ( 3.22) are show the values obtained for the parameter d compared with the data

provided by the Maya model with a respective graph of the relative error with respect to

the real value.
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Fig. 3.21: In figure the permutation of all frames to evaluate d. Maya’s value is constant during

all the animation.

Fig. 3.22: Relative error for the parameter d.

Bending Angle Evaluation

Figures ( 3.23), ( 3.24) show the values obtained by the linear fitting algorithm for the

parameter α compared with the data provided by the Maya model with a respective graph

of the relative error with respect to the real value.
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Fig. 3.23: In figure the permutation of all frames to evaluate α .s Angular velocity was not constant

during all the animation.

Fig. 3.24: Relative error and Error for the parameter α .

All the results for parameters x, d and α have been reported in the table below.
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Tab. 3.5: Parameters Evaluation

Relative Error (%) Parameter x Parameter d Parameter α

Mean 1.35 1.72 0.95

Std. 0.86 1.02 1.44

The simple difference between the αmis and αreal reported with the orange line in

figure ( 3.24), showed a very low sample average error and a good standard deviation

(−0.02,0.97◦).

3.3.3 Experimental Protocol B3

Radius Evaluation

Figures ( 3.25), ( 3.26) show the values obtained by the linear fitting algorithm for the

radius compared with the data provided by the Maya model with a respective graph of the

relative error with respect to the real value.

Fig. 3.25: In figure the permutation of all frames to evaluate α . Curvature was constant during all

the animation and so the radius.
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Fig. 3.26: Relative error for the radius.

Ultrasound Scanning Simulation Evaluation

After developing the data processing algorithm to simulate a scan with an ultrasound

probe, the compatibility of the stereo vision algorithm in the reconstruction of the radius

of curvature has been evaluated starting from the centers of the slices obtained with the

simulation. Maya’s model has been analyzed simulating the ultrasound probe.

Radius evaluation

Figures ( 3.27), ( 3.28) show the values of the radius obtained in relation to the informa-

tion provided by Maya’s model and the graph of the relative error with respect to the real

value.
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Fig. 3.27: In figure the permutation of all frames to evaluate the radius. Curvature and therefore

radius were constant during all the animation.

Fig. 3.28: Relative error for the radius obtained with the ultrasound simulation.

The comparison between results obtained with stereo vision and ultrasound process-

ing evaluating the radius have been reported in the following table:
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Tab. 3.6: Radius Evaluation

Relative Error (%) Stereo Vision Ultrasound

Mean 2.39 22.81

Std. 1.64 5.61

For stereo vision processing, sample mean and standard deviation of the simple differ-

ence between the measured and the real radius resulted 0.017cm and 0.1cm respectively.

3.4 Validation Method C

3.4.1 Experimental Protocol C1

Once the development PRBM algorithm on MATLAB and Simulink was completed and

the model’s behavior was verified with data supplied artificially through functional blocks

on Simulink, the joints angles obtained by the linear fitting algorithm, implemented in

BigMag’s stereo vision system, and those obtained by the PRBM model were compared.

To simplify the analysis of the PRBM model and the comparison between the angles in

the two directions x and y, in the reference system of each joint, four-joints models, con-

sidering the tip too, were built.
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Fig. 3.29: In figure the angles given by BigMag for the first test for each joint and direction.

The simulations of the PRBM were performed with a 1640 frames dataset in which

was stored and helycal trajectory of the catheter.

In the first two simulations the contribution due to the gravity force in the ModelG was

considered and the comparison was made with a model that included also the initial de-

flection due to the gravity itself (ModelGQ).
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Fig. 3.30: In blue BigMag’s dataset, in red ModelG dataset and in green ModelGQ dataset.

Compliance evaluation

Since the first results showed an excessive amplitude of the output evaluating the model,

it has been decided to modify the elastic constant of the springs in the joint so that the

error in the reconstruction of the corners could be reduced.

The initial guess for compliance values for each joint and direction was:

C =
[
0.0076 0.008 0.0011 0.0011 0.0022 0.0022

] rad
Nm

(3.2)

in which:

C =
[
Cx

1 Cy
1 Cx

2 Cy
2 Cx

3 Cy
3

]
(3.3)

From the supplied dataset the compliance has been obtained again through the formula

described in (2.35) to verify if the quality of the reconstruction of the angles depends on
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this parameter.

The new compliance values obtained (3.4) were used to perform the new simulations.

C =
[
0.0021 0.0019 0.0018 0.0017 0.0027 0.0028

] rad
Nm

(3.4)

The model which included the new compliance has been called ModelNC.

Fig. 3.31: In blue BigMag’s dataset, in red ModelG dataset and in green ModelNC dataset.

Temporal Shift

Since the first graphs we noticed a temporal shift between the corners of the dataset and

the reconstructed angles from the applied wrench, probably due to some delay in the Big-

Mag control operations and saving. The delay has been evaluated and the compliance has

been recalculated by shifting the wrenches values to make them matching with the correct
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angles of the catheter.

The delay was evaluated with the f inddelay function on MATLAB and quantified in

about 19 frames as the average between the tests performed.

Shifted Compliance Evaluation

Applying the same procedure used previously and taking into account the calculated de-

lay, new compliance values were obtained as follows:

C =
[
0.0023 0.0019 0.0020 0.0018 0.0029 0.0029

] rad
Nm

(3.5)

The model with the compliance obtained considering the delay was named ModelS, which

has been compared with ModelNC.
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Fig. 3.32: In blue BigMag’s dataset, in red ModelS dataset and in green ModelNC dataset.

3.4.2 Experimental Protocol C2

Cubic Compliance Evaluation

Subsequently, obtained the variable cubic compliance through (2.36), according to the

amount of bending, a new model has been designed and called ModelSK. The model was

modified because the new compliance was not made of six values only, one for each joint

and management, but twelve. Both the optimization function contained in f solve and the

angle calculation function have been updated and adapted to the new compliance while

maintaining the same convergence speed of the optimization function, around 0.082s and

0.075s respectively.
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The new compliance has been set as follow:

C =

C3x
1 C3y

1 C3x
2 C3y

2 C3x
3 C3y

3

Cx
1 Cy

1 Cx
2 Cy

2 Cx
3 Cy

3

 (3.6)

C =

−0.0073 −0.0029 −0.0033 −0.0005 −0.0010 −0.0188

0.0027 0.0020 0.0023 0.0017 0.0033 0.0034

 rad
Nm

(3.7)

This new ModelSK has been compared with ModelS.

Fig. 3.33: In blue BigMag’s dataset, in red ModelS dataset and in green ModelSK dataset.
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3.4.3 Experimental Protocol C3

Luenberger Observer

Finally, the Luenberger observer was implemented in the PRBM algorithm with differ-

ent correction coefficients. The new model, called ModelL has been compared with the

previous models. In the figures below is reported the comparison with ModelSK with

corrective factors of 0.9 and 0.5 respectively.

Fig. 3.34: In blue BigMag’s dataset, in red ModelL dataset with 0.9 correction factor and in green

ModelSK dataset.

Three different corrective factors were tested to verify the different behavior of the

model in the prediction of angles.

The value of this fitter was directly proportional to the actual amount of correction per-

formed on the reconstruction of the angle, thus varying the speed of convergence to the
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true value of the previous output.

Fig. 3.35: In blue BigMag’s dataset, in red ModelL dataset with 0.5 correction factor and in green

ModelSK dataset.

3.4.4 Experimental Protocol C4

To verify the quality of the models, the position of the catheter tip has been evaluated dur-

ing the test. Fundamental for steering control purposes was the accuracy in the evaluation

of the position of the catheter, because the magnetic component in the tip should have

been located accurately to evaluate the correct wrench for a certain task in real time.

The graph below shows the comparison between the coordinates of the tip obtained with

the first ModelG model compared to ModelSK and ModelL.
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Fig. 3.36: In blue BigMag’s dataset, in black ModelL coordinates, in red ModelSK coordinates

and in green the values with ModelG.

From the data obtained in, the errors in the reconstruction of the angles were calculated

to evaluate the reliability of the developed models.
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Fig. 3.37: In black ModelL error, in red ModelSK error and in green the error values obtained

with ModelG, all compared with BigMag dataset.

The average sample errors and relative standard deviations are shown in the tables

below, grouped according to the considered axis.

Tab. 3.7: Tip Position Coordinate X

Error (cm) ModelG ModelSK ModelL

Mean 0.69 0.51 -0.007

Std. 1.16 0.68 0.11
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Tab. 3.8: Tip Position Coordinate Y

Error (cm) ModelG ModelSK ModelL

Mean 0.24 0.38 -0.004

Std. 1.61 0.76 0.08

Tab. 3.9: Tip Position Coordinate Z

Error (cm) ModelG ModelSK ModelL

Mean -2.26 -0.12 0.001

Std. 0.86 0.25 0.05
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Discussion

Once finished the writing of numerical results, it has been fundamental to reflect on them

in order to describe the performance of the developed algorithm. In this section I have

tried to give an objective interpretation of the outcome focusing on its strenghts and lim-

its. I have divided the review of all the results in three macro areas: in the first part I will

focus on the modeling of the catheter and the initial development and evaluation of the

algorithm, in the second part I will discuss the evaluation of the parameters, obtained with

the linear fitting algorithm, useful for shape reconstruction and movement evaluation both

for tracking and control purposes using different types of datasets. Finally I will analyze

the development of the PRBM focusing on the possible limits and future developments.

4.1 Initial Evaluation

The first phase of the project focused on the generation of a catheter model with Solid-

works in order to obtain good synthetic data to develop the linear fitting algorithm. The

first limit showed by this method is the particular generation of the point clouds, in which

the points were distributed in ordered circles due to the approximation method of the sur-

face used by the STL format.

This problem increased further in cases where the catheter flexion angle was zero or a

few degrees. In this case the simplified modeling of the STL reduced the point clouds to

very few points, insufficient in order to use them properly in the linear fitting algorithm.
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During the development phase of the model it we have decided to increase the resolution

of the STL format or introduce alterations on the surface to increase the generation of

triangles on it.

The initial evaluation the linear fitting quality, described in figure ( 3.1), showed a good

performance of the algorithm in evaluating the body of the catheter; the only outlier was

a point in the initial part of the catheter body, generated by Solidworks. The high error

values in the right part of the graph are justified by the fact that the distance of the points

in the catheter’s tip was much greater than the radius of the body.

The algorithm has been designed to be easily adapted to different cases, for example by

setting a variable number of segments. A model with only a few segments would be suf-

ficient for low bidimensional flexions. Increasing the complexity, for example with a 3-D

flexion, or the amount of the flexion would instead increase the number of segments to

better describe the evolution of the catheter. However, the graph ( 3.2) has shown that the

increase in the number of segments does not always correspond to an improvement in the

description of the catheter for two reasons:

• A fixed segment length combined with the inevitable errors of the fitting algorithm

have produced a quality loss in the description of the tip. The model with 7 links

showed a better modeling of the tip compared to the 14 links model. Indeed, due

to the errors, the model ‘takes a longer path’ than the one that theoretically should,

reaching in this case the catheter’s length of 5cm before reaching the tip of the

catheter.

• Increase of computational cost.

4.2 Validation Method A

The first experimental Protocol A1, developed for the linear fitting algorithm, showed

a poor reliability in evaluating the curvature radius considering three consecutive points

with relative errors up to 10%: probably this is due to the fitting error that does not ex-

actly follow the line passing through the center of the catheter body but deviates laterally

generating errors in the calculation of the curvature.
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However, as it is possible to see in table (3.1), for a single measurement the radius evalu-

ated with the average model has given a relative error of 0.1% which can be considered a

very good result compared to the literature.

The goodness in the evaluation of the radius of curvature has been demonstrated in the

Protocol A2 in the subsequent test, showed in (3.4), in which models with decreasing cur-

vature radius were implemented. These tests showed a good behavior with sample mean

and standard deviation of the relative error of 1.2±0.86%.

Figure ( 2.9) showed how a stereo vision point clouds looked like. To increase the simi-

larity between the real stereo vision point clouds and the synthetic one, the noise has been

added with different amplitude.

With a high resolution of the STL model and the addition of random noise in the three di-

mensions it has been possible to generate populations of points similar to those generated

by the system mounted on BigMag. The addition of noise clearly affected the effective-

ness of the fitting algorithm together with 3-D flexion attempts. The table (3.2) shows

however a very low average sample variation, equal to 0.07±0.046mm, with a maximum

noise equal to 10% of the radius length; increasing the variations proportionally to the

noise up to a maximum of 0.38± 0.1mm in the case of noise up to 90% of the radius

length, which is still comparable with literature. Figure ( 3.5) has shown a good behavior

of the model fitting with both point clouds.

The evaluation of the curvature tested in the Protocol A3, showed a further limitation in

the evaluation of the fitting algorithm using only the simple positions of the virtual joints.

The variation of curvature, clearly visible in the 3-D printed object, could not be related to

the model if not a priori by the user because on the catheter there was no reference mark

that allowed to recognize the exact starting point or variation of the bending.

The intervention of the user has led to more variable results compared to previous tests,

demonstrating however in each test a good quality of evaluation of the angle and repeata-

bility of the linear fitting algorithm.

In general the results are similar for the both curvatures, with a comparable underesti-

mation of the parameter both before and after filtering. As reported in the table (3.3), in

the evaluation of the first curvature of 100m−1, the unfiltered and filtered models behaved

similar with an estimation of (93.32,5.13m−1) and (92.73,1.57m−1) respectively, with
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the only exception of the sample standard deviation which has been reduced after filtering

operations.

Of the same trend the results obtained for the curvature equal to 200−1, in which for un-

filtered and filtered model the results has been (189.79,7.14m−1) and (192.66,4.95m−1)

respectively.

Therefore it has been possible to state that the filtered model was slightly better per-

forming from the point of view of the mean error, with a maximum of −7.3m−1 against

−10.2m−1 of the unfiltered one, with a lower variability of the measurement confirmed

by the range of sample standard deviation of the error of (1.57−4.95m−1) against (5.13−

7.14m−1) of the unfiltered one, as reported in table (3.4).

The evaluation of the curvature has once again proved to be good compared to the state

of art and considering the necessary intervention of the user in the selection of the joints

to be used for the calculation of the parameters.

4.3 Validation Method B

The Protocol B1 of this validation method was not aimed at assessing the quality of the

linear fitting algorithm, but rather to test a first approach with real data provided by Big-

Mag and verify the quality of the magnetic control on the catheter in the performance of

a helical trajectory.

In this task, after an initial settling phase, the parameters x and d should have set to a con-

stant value and the variation of the bending angle α due to the constant angular velocity

should be linear as required by the task.

Graphs ( 3.10) and ( 3.11) showed a lack of control of BigMag system that was still

not perfect because the values obtained by the linear fitting were not constant during the

whole test. However, it has been possible to see a periodic behavior of both parameters,

that could mean a different behavior of the catheter depending on the direction of bend-

ing due to an inhomogeneity of the material and not only an imperfection in the control,

which is much more likely to be the reason for high-frequency noise visible for example

just before frame 300.
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Also the evaluation of α parameter has shown an angular velocity not completely con-

stant, with a less important noise at high frequencies.

The evaluation of the quality of the catheter control has moved to the position of the

catheter tip, which is essential for the control. Graphs ( 3.13), ( 3.14) and ( 3.15) has

shown a good estimation of the tip’s coordinates with the exception of the frames before

the 300th where the large high frequency noise generates abrupt variations of the tip posi-

tion.

This effect should be clearly avoided from the perspective of a future biomedical appli-

cation, so it has been decided to perform a low pass filtering in order to eliminate these

sudden variations and provide a smoother movement to the control algorithm. Indeed, a

rapid variation generates a different response of correction of the movement, thus engag-

ing a chain reaction that causes the large variations at high frequency shown in the graphs.

The moving average filter applied to the tip coordinates has given good results for control

purposes showing a much smoother behavior.

After a first qualitative analysis of the three parameters, a validation of the linear fitting

algorithm’s quality was performed through the comparison with known values provided

by the new Maya software used for modeling and catheter animation, as described in the

Protocol B2.

As regards parameter x, from table (3.5), an overestimation of the parameter was gener-

ally obtained with a relatively small relative error (1.35,0.86%) which has been confirmed

opposite but similar also for parameter d (1.72,1.02%). The two results showed a corre-

lation because a greater distance x from the origin of the catheter assumes a lower bending

angle and therefore a smaller parameter d. The error could therefore be due to the lack of

accuracy in the estimation of the tip’s position by the fitting algorithm.

From table (3.5) is also described the behavior of the fitting algorithm in bending angle α

evaluation. Results for relative error showed a high sample standard deviation compared

to the mean sample error (0.96,1.44%): this particular dynamic is explained by the graph

( 3.24) in which we can see a relative error peak at the 100th frame, which correspond to

the 0◦ angle from picture ( 3.23).

Clearly the angle’s relative error is strongly influenced by the amplitude of the angle value

in case of equal angular variation. The measured difference between the two angles has
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been reported too, showing a more constant behavior over time with a good performance

of the algorithm in the estimate of α (−0.02,0.97◦).

It also showed that the algorithm did not undergo any noticeable changes in the perfor-

mance between the first and last phases of the simulation with variable angular velocity

and the central phase with almost constant angular velocity.

The simulation also highlighted a high performance of the linear fitting algorithm compa-

rable to the literature. Futhermore was clear the possibility of further development of the

Maya software for movement and animation simulations with the possible introduction of

gravity force and force fields for the simulation not only of the catheter but of the entire

environment.

In Protocol B3, the evaluation of the curvature radius with the model fitting algorithm

for stereo vision system showed a good performance regarding the difference between

measured and real value (0.017,0.1cm) with a relative average error of (2.39,1.64%) as

reported in table (3.6). On the contrary, the sample mean of the relative error found by

the same algorithm exploiting not the model’s joints but the centers of the slices obtained

with the ultrasound processing showed a much higher error (22.81,5.61%).

Comparing it to what has been obtained with the processing of stereo vision data, it has

been noticed that the average error is ten times higher, therefore an excessive relative error

in order to be considered as a good result; however the sample standard deviation showed

a smaller value in proportion to the magnitude of the error, reduced to three times the

error with stereo vision processing, meaning a general overestimation of the parameter

but a good robustness and a good repeatability of the algorithm.

Moreover, for real-time tracking purposes, it would not be possible to exploit the centers

of all the slices given the limited speed of movement of the probe. A hypothetical future

algorithm should use only a small part of the slices corresponding to a small part of the

catheter in order to provide the parameters in real-time.
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4.4 Validation Method C

With the introduction of the PRBM algorithm, the validation was concentrated in the

evaluation of the algorithm comparing it to an optical tracking system according to the

literature and based on the linear fitting algorithm developed previously. In the various

validation protocols, a progressive improvement of the performance has occurred thanks

to the changes made on the initial PRBM algorithm.

The model used for the implementation of the PRB has been intuitive in conceiving the

bending angle of each joint as a simple rotation around a vector lying on a plan orthog-

onal to the initial direction of the link, as inspired by Chasles’s screw theory. Moreover,

the creation of a relationship between the joints and the local reference systems allowed

to generate a single global response of the model to an external input provided in the tip

only.

After the first phase of implementation of the model on MATLAB, we have passed di-

rectly to the simulation on Simulink in order to verify the behavior of the model based on

the artificial inputs supplied.

For the first time during the whole project, a relationship between the applied magnetic

field and the model configuration has been created through a model implemented on MAT-

LAB.

Thanks to the comparison with the data provided by BigMag, shown in figure ( 3.29), it

was possible to immediately verify the quality of the configuration reconstruction. All the

models described below have been implemented on MATLAB and loaded on the Simulink

model in order to simulate a hypothetical test in real time.

In Protocol C1, results in figure ( 3.30) showed immediately that the PRBM algorithm

was correctly implemented because the reconstruction of the angles followed the periodic

trend of BigMag’s dataset.

In ModelG, only the gravity component has been inserted in addition to the magnetic

component provided by BigMag. The trend was smoother than the ModelGQ in which

the initial bended configuration of the catheter due to gravity was also considered, calcu-

lated with the stereo vision system.

Precisely because in the graph was evident an excessive amplitude both positive and neg-
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ative in the measurement of the angles for all joints and directions, we have decided to

evaluate the compliance of the joints, the parameter that directly connect the wrench ap-

plied to the magnetic tip and the configuration of the whole model.

Starting from BigMag’s dataset, the compliance was then analytically calculated and re-

placed with the one supplied at the beginning and the subsequent ModelNC implemented

with the new compliance proved to be much more performing than the initial model, as

shown in the figure ( 3.31).

The new compliance showed comparable but not equal values in both directions x and y

for the first two joint and a higher value for the third joint, justified by the fact that in

the last part of the catheter was installed the permanent magnet, much more rigid of the

flexible catheter body. In these early phases the amount of the error was not evaluated

quantitatively but only qualitatively because the error in the prediction was much higher

than 100%.

However, analyzing the images, we found a temporal shift between the angles saved on

the BigMag CSV file and the wrench applied in the same frame. The shift, explained

both by the fact that the introduction of a magnetic moment in the tip would inevitably

generate a delay in the generation of the respective angle, and a possible delay due to

the control algorithm, was quantified by f inddelay MATLAB function in 19 frames in

average, corresponding to about 1.9s. However, an in-depth study of the delay has not

been performed.

After the new evaluation of the compliance taking into account the temporal shift, the

angles obtained by the new ModelS, shown in figure ( 3.32), were revalued, showing a

further improvement of the performance both in amplitude and in phase shift with respect

to the previous model.

At this point of the development, the error was qualitatively still too high compared to

the literature and the reference value of the linear fitting algorithm. Therefore it was not

possible to allow a validation of these initial models of PRBM algorithm, with a too high

difference with the dataset in the positive and negative peaks rather than in the ascending

or descending phases.

Analyzing the real catheter, a different elasticity of the catheter has been found when the

bending tip was changed. Compliance could therefore not be constant throughout the test
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and in part this information could explain the greater reconstructed angle than the real

one.

For this reason, we decided to introduce non-constant compliance with a cubic component

linked to the bending angle and a first-degree component, therefore introducing a correc-

tive factor to compliance directly proportional to the bending angle. The new compliance

has required the modification of the whole optimization algorithm for the reconstruction

of the angles, but has nevertheless led to a further improvement of the model, impossible

to achieve with the previous constant compliance.

In (3.7) are reported the final values evaluated for the compliance, showing a negative

corrective cubic factor and a linear component similar to the previous one.

From figure ( 3.33) of the Experimental Protocol C2, it has been possible to say that the

ModelSK with cubic compliance behaved better than the constant one especially in the

maximum and minimum peaks during the task, areas where the previous models made

the bigger errors in the reconstruction of the joints angles.

The analysis of the resolution speed of the optimization algorithm produced comparable

values in terms of the resolution time of the f solve function, both below the tenth of a

second (0.082,0.075s); the time can be considered valid for real-time implementation of

the algorithm.

However, even this model showed still high errors especially in the two directions of

the first joints and sudden variations concentrated in the maximum and minimum points

mainly. Analyzing the results we have concluded that the complexity of the elastic be-

havior of the whole catheter in different directions most likely could not be described

sufficiently adequate by a single parameter in order to obtain an accurate reconstruction

of the angles throughout the entire trajectory required in the task.

Therefore, notwithstanding the initial model, a clear improvement in the quality of recon-

struction had been achieved and it was decided that, from a perspective of development

and further improvement, it was necessary to exploit further information for the recon-

struction of the parameters.

A further development of the PRBM algorithm performance considering only the param-

eter compliance would have required an analysis and improvement of the real catheter

itself, in the search of similar elastic characteristics for all directions of movement, anal-
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ysis that was not carried out in this project.

Since BigMag system was operating at a speed sufficient to allow real-time control, it was

decided to introduce a state observer that would have exploited both the model equations

seen previously in (2.46) and the information obtained in output in the previous frame for

the evaluation of the current angles.

Luenberger state observer has been implemented in a necessarily simplified version, us-

ing finite difference approximations to obtain numerical differentiation and thus obtain

the solutions of the model equation and by simplifying the Luenberger L factor to a di-

agonal matrix multiplied by a preset corrective factor. The observer’s gain L had to be

chosen to make the continuous-time error dynamics converge to zero asymptotically.

Luenbeger state observer has been chosen instead of a common Kalman Filter or an Ex-

tended Kalman filter because in our case the only information available were the equations

of the model and the output of the previous iteration. Kalman filters are called estimators

because they are mainly used for stochastic cases, in which measurements and measure-

ment errors are known or introduced. In our case the estimation of the measurement

error was not easily quantifiable since it was a reconstruction from a model and not a true

measurement for which we chose to use a Luenberger observer and consider the test as

deterministic.

In Protocol C3, Luenberger observer has been implemented in the PRBM algorithm

(called ModelL) and evaluated. The results obtained in the reconstruction of the joints

angles, shown in the figures ( 3.34) and ( 3.35), described a significant improvement in

the quality of the output, comparing what obtained with the best result of the previous

steps. In each direction and for all the joints, the model adequately described the values

of the parameters, highlighting a wider oscillation at another frequency in the case of a

higher correction factor.

This is determined by the fact that when the observer gain L is high, the linear Luenberger

observer converges to the system states very quickly. However, high observer gain leads

to a peaking phenomenon in which initial estimator error can be prohibitively large. Re-

ducing the gain factor of the model slowed down the speed of convergence, achieving a

smoother output that could be more effective from the point of view of control over the

catheter.
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Once obtained these results and considered them qualitatively consistent, the actual posi-

tion of the catheter tip was evaluated with respect to the value provided by the BigMag

stereo vision system, evaluating the error in the estimate of the coordinates.

After the evaluation of the angles of the joints, fundamental for the improvement of the

PRBM algorithm, the validation of the main models obtained was performed. In Protocol

C4, the initial model ModelG, the ModelSK and ModelL have been compared to the lin-

ear fitting algorithm implemented on BigMag, which could be considered a comparison

with literature. Tip’s position has been evaluated for each model and compared in figure

( 3.36).

The graph showed a marked improvement in the quality of the reconstruction between the

first and last model, especially in the z axis. The error in tip’s position has been evaluated

in figure ( 3.37) and reported in tables (3.7), (3.8) and (3.9).

From the results it could be seen that for the x coordinate the average sample error

with the ModelL has been almost zero with a small deviation (−0.007,0.11cm), much

higher the results for the other two models ModelSK and ModelG, (0.51,0.68cm) and

(0.69,1.16cm) respectively, with a sample standard deviation at least six times ModelL.

The evaluation on the other two axes can be considered analogous with a particularly high

error of the ModelG with respect to the mean error in the evaluation of the z coordinate

equal to −2.26cm.

The results thus confirm the goodness of ModelL which performance is totally compara-

ble to the system mounted on BigMag that exploits visual information widely used in the

state of the art.
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Conclusions and Perspectives

This thesis, in collaboration with Surgical Robotics Lab of the University of Twente, has

supported the development of the complex BigMag system by approaching and deepen-

ing different issues.

The whole project has been developed on three main themes: the first one included

catheter modeling, conceived as a continuum object in a workspace, data processing and

the development of a fitting algorithm to model the catheter itself. As a result it has been

possible to describe its position and orientation with respect to a pre-established reference

system. The second theme has been the validation of this linear fitting algorithm, focusing

mostly on the evaluation of important parameters, especially in a perspective of control of

the same catheter by BigMag. The last one consisted in the development and validation

of a PRMB that widened the relationship between the various joints, calculated with the

fitting model, in order to relate the catheter model with the forces acting on it.

The first phase of the project showed the fundamental contribution of synthetic data for

the development and testing of the linear fitting algorithm, through the use of software

such as Solidworks and Maya. The former, a software widely used in the designing field,

it is characterized by high precision, but lacks of the ability to generate a large volume of

data in an automated way.

In this sense, Maya proved to be more suitable for this purpose, allowing to animate the

same object and obtain the automatic saving of each frame, speeding up the generation of

synthetic data and allowing to simulate with a good design quality a real movement of a
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catheter, as shown in this study.

In the deepening of Maya software, I also discovered the possibility of inserting grav-

ity, force fields and disturbing agents such as wind, and countless other components that

could be present in an environment in the workspace. From this point of view, there could

be also a strong evolution and improvement of synthetic data in order to increase the de-

velopment of technology in this field.

The initial development of the linear fitting algorithm showed a good overall quality in

describing a point clouds in comparison with literature, highlighting however the limits

related to the relationship between quantity of flexion and quality in the description. A

model with many segments could adequately provide high flexion while the quality in the

description of the final part of the catheter is lost due to geometric limits and errors and

vice versa. Therefore this type of modeling needs to be able to adapt to different situa-

tions, and in this sense a dynamic model could be implemented.

To overcome the quality problem a different kind of model could be generated. It should

either be made by curves or functions of a higher degree than the first, or be a cylindri-

cal one that already incorporates the volumetric characteristics of the object it describes.

Clearly the evolution in this sense would rationally lead to an increase in the computa-

tional cost.

The second step showed how an algorithm with an overall reduced computational cost

could still provide valid information for use in real time.

The evaluation of the parameters addressed in this study provided good results also in

the description of the catheter tip position, fundamental both for the control and for a

biomedical application, where the tip becomes the application point of an end-effector

instrument, of medicine release or a control point.

Low-pass filtering of data has proved to be a concrete help, especially in terms of external

control of the device.

The limit of the linear fitting algorithm found in the evaluation of complex shapes, with

the presence of two different curves in the model, has also introduced the problem of user

intervention in the evaluation of the parameter. It could be overcome in differente ways: a

possibility is to introduce a control on the positions of adjacent joints in order to recognize

a geometric variation of the configuration and identify the joints where the change occurs
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or from which it originates. Another option is to use other types of sensors such as FBGs,

which due to their small size could be installed inside the catheter, thus more effectively

monitoring a configuration of the catheter even more complex.

The comparison in Validation method B showed that processing of stereo vision data

seemed more accurate than ultrasound data processing in the analysis of motion parame-

ters exploiting the same linear fitting algorithm. A further study on the ultrasound system

could lead to an improvement of the performances, considering that with a simple 2-D

ultrasound probe it would not be possible to analyze the entire workspace. Therefore it

would be necessary to develop an algorithm able to provide information on the whole

model starting from only a part of it.

However, this system would have greater potential than the stereo vision in the perspec-

tive on an application of the catheter within a body volume, in which the latter would not

be able to track it correctly.

In the end, a PRBM was implemented that provided further information on the model,

starting from its basic elastic characteristics, and a relationship between each joint was

generated. In this way the effect of an external event applied to the catheter tip would

affect the configuration of the whole model.

Thanks to the PRBM algorithm, it has been possible to relate the external magnetic field

acting on the magnetic component to the configuration of each joint and therefore to the

catheter’s.

All the study of the parameters indicated how wide the margins for improvement of a

model are in updating and developing the parameters used: an example of this is the in-

troduction of a more complex compliance. In order to help describing the not always

homogeneous behavior of the catheter due to imperfections of the material or the setup,

further studies could focus on other parameters, which also allow the model to adapt more

easily to different conditions of use.

Despite the marked improvement in the early stages of the development of the PRBM,

it was not possible to obtain qualitatively comparable results with the tracking technique

mounted on BigMag and used as a reference. Furthermore, a thorough study of the ma-

terial and a high quality realization of the catheter could lead to an improvement of the

algorithm’s performance.
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Finally, an initial approach to the theory of state observers and a first implementation of a

Luenberger state observer in the PRBM algorithm showed a remarkable improvement of

the model through the control on the previous output in order to correct the current evalu-

ation. The results in the reconstruction of the position of the catheter’s tip are comparable

to the reference technology and therefore to the tracking systems used in literature.

Such a small error in the evaluation of the position of the catheter tip could allow the de-

velopment of a clinical application of the instrument at least in the performance of simple

tasks. The great potential of the PRBM algorithm is to obtain the configuration directly

from the relation between the known applied magnetic field and the magnetic component

of the catheter, an additional information compared to a simple visual reconstruction.

These two technologies could be merged together in order to maximize the collection of

real-time information on catheter behavior.

The development direction of the last phase of the project seems to lead to very satis-

factory results from the point of view of quality, reconstruction reliability and therefore

the control by optimizing the corrective factors and reducing the oscillations at high fre-

quency. However, it would be necessary to verify the possibility of implementing it on

BigMag without preventing the system from working in real time.

117



Appendices

118



.1 Moore-Penrose Pseudoinverse

Moore-Penrose pseudo-inverse provides a least squares solution to a system of linear

equations. There are two main modalities to compute the pseudo-inverse:

• Singular Value Decomposition (SVD): Decomposition of a matrix C (m×n) is mate

by factorization of C into the product of three different matrices:

C =UΣV T (.1)

where U is a m× n unitary matrix, Σ a rectangular diagonal matrix with non-

negative real numbers of the same dimension on U and V is a n× n unitary matrix.

It can be proved that:

C† =UΣ
†V T (.2)

Σ is a diagonal matrix so it is simple to compute its pseudo-inverse: the elements

can be considered smaller than a tolerance ε to be null and we substitute every non-

null elements on the diagonal with their reciprocal.

• C has linearly independent columns, therefore (CTC) is invertible and:

C† = (CTC)−1CT (.3)
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.2 Main Functions

.2.1 Linear Least Square Function

1 %L i n e a r l e a s t s q u a r e s f u n c t i o n

2 f u n c t i o n [m, R , Q2]= l s f i t ( pos , v e c t _ l s d a t a , Q, sum_vect , s e g _ l e n )

3 %v e c t _ l s d a t a c o n t a i n s t h e c o o r d i n a t e s o f t h e s e l e c t e d

p o i n t s

4 %Q i s t h e c u r r e n t j o i n t

5 %s e g _ l e n i s t h e l e n g t h o f each l i n k

6 i =0 ;

7 C= z e r o s ( pos * 3 , 1 ) ;

8 T= z e r o s ( pos * 3 , 3 ) ;

9 %y=mx+q l o o k i n g f o r m wi th l e a s t s q u a r e s f i t t i n g

10 f o r j = 1 : pos

11 f o r k = 1 : 3

12 i = i +1 ;

13 %C= d i f f e r e n c e ( y−q )

14 C( i ) = v e c t _ l s d a t a ( j , k )−Q( k ) ;

15 %T i s t h e d i a g o n a l d i s t a n c e v e c t o r

16 T ( i , k ) =sum_vect ( j ) ;

17 end

18 end

19 %T r a n s p o s e o f t h e d i a g o n a l d i s t a n c e

20 R= t r a n s p o s e ( T ) ;

21 %F i n d i n g t h e c o e f f i c i e n t m

22 m= i n v (R*T ) *R*C ;

23 m=m/ norm (m) ;

24 Q2= s e g _ l e n * t r a n s p o s e (m) +Q;

25 %New j o i n t c a l c u l a t i o n wi th new f i t t i n g l i n e

26 end
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.2.2 Curvature and Radius Evaluation

1 %F u n c t i o n f o r r a d i u s and c u r v a t u r e e v a l u a t i o n

2

3 f u n c t i o n [ c , r , k ] = c a l c _ c i r c l e 3 D ( pt1 , pt2 , p t 3 )

4 %V e c t o r s g e n e r a t i o n

5 t = pt2−p t 1 ;

6 u = pt3−p t 1 ;

7 v = pt3−p t 2 ;

8 w = c r o s s ( t , u ) ;

9 t 2 = sum ( t . ^ 2 ) ;

10 u2 = sum ( u . ^ 2 ) ;

11 w2 = sum (w. ^ 2 ) ;

12 %P a r a m e t e r s e v a l u a t i o n

13 c = p t 1 +( t 2 *sum ( u . * v ) *u−u2*sum ( t . * v ) * t ) / ( 2 * w2 ) ; %C e n t r e

14 r = 1 /2* s q r t ( t 2 *u2*sum ( v . ^ 2 ) / w2 ) ; %Radius

15 k= 1 . / r ; %C u r v a t u r e

16 end

.2.3 Validation Error First phase

1 %F u n c t i o n used t o e v a l u a t e t h e e r r o r i n t h e f i r s t

v a l i d a t i o n phase

2

3 f u n c t i o n [ e r r o r , c o u n t ]= c h e c k E r r o r ( v e c t _ l s d a t a , o r i g i n , k ,

e r r o r , c o u n t )

4

5 Q1= o r i g i n ( k , : ) ;

6 Q2= o r i g i n ( k + 1 , : ) ;

7 f o r i = 1 : l e n g t h ( v e c t _ l s d a t a )

8 %Find d i s t a n c e o f each p o i n t t o t h e l i n e
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9 e r r o r ( count , 1 ) = norm ( c r o s s ( Q2−Q1 , v e c t _ l s d a t a ( i , : )

−Q1 ) ) . / norm ( Q2−Q1 ) ;

10 %R e l a t i v e e r r o r wi th i d e a l r a d i u s e q u a l t o 1mm

11 e r r o r ( count , 2 ) = abs (1 − e r r o r ( count , 1 ) ) . * 1 0 0 ;

12 c o u n t = c o u n t +1 ;

13 end

14 end

.2.4 Iterative Points Selection

1 %F u n c t i o n used t o check which p o i n t s have a d i s t a n c e from

t h e c u r r e n t o r i g i n lower t h a n t h e segment ’ s l e n g t h

2

3 f u n c t i o n [ v e c t _ d a t a , d a t a _ o u t , j , sum_vect ]= c h e c k P o i n t s ( da t a , Q

, s e g _ l e n )

4 j = 0 ;

5 pos =1;

6 to_remove = z e r o s ( s i z e ( da t a , 1 ) , 1 ) ;

7 d a t a _ o u t = d a t a ;

8 f o r k = 1 : l e n g t h ( d a t a )

9 s u m _ c u r r e n t = norm ( d a t a ( k , : )−Q) ;

10 i f s u m _ c u r r e n t < s e g _ l e n

11 j = j +1 ;

12 sum_vect ( j ) = s u m _ c u r r e n t ;

13 to_remove ( k ) =1;

14 end

15 k = k +1;

16 end

17 v e c t _ d a t a = z e r o s ( j , 3 ) ;

18 sum_vect = z e r o s ( j , 1 ) ;

19 f o r z = 1 : l e n g t h ( d a t a )
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20 i f to_remove ( ( l e n g t h ( d a t a )−z +1) , : ) == 1

21 %Saving each p o i n t d i s t a n c e

22 sum_vect ( pos ) = norm ( d a t a ( ( l e n g t h ( d a t a )−z +1) , : )−Q) ;

23 %Coping each p o i n t v a l u e

24 v e c t _ d a t a ( pos , : ) = d a t a ( ( l e n g t h ( d a t a )−z +1) , : ) ;

25 pos= pos +1;

26 %C l e a n i n g d a t a ( each p o i n t can be c o n s i d e r e d once )

27 d a t a _ o u t ( ( l e n g t h ( d a t a )−z +1) , : ) = [ ] ;

28 end

29 end

30 end

.2.5 Stereo Vision Processing

1 seg_num =7;

2 s e g _ l e n = 5 . / seg_num ;

3 f o l d e r _ n a m e = ’ c u r v a t u r e f o u r t y / ’ ;

4 %Noise a m p l i t u d e

5 n o i s e _ a m p l i t u d e = 0 . 3 ;

6 %Data s t o r a g e

7 l o a d ( ’ c u r v a t u r e f o u r t y / v o x e l s _ f r a m e . mat ’ ) ;

8 o r i g i n s _ g l o b a l = z e r o s ( seg_num +1 ,3 , s i z e ( vo xe l s _ f r a me , 2 ) ) ;

9 s t a b i l i t y _ t o t a l = z e r o s ( seg_num , 3 , s i z e ( v ox e l s_ f r am e , 2 ) ) ;

10 s t a b i l i t y = z e r o s ( seg_num , 3 ) ;

11 %Frame−by−f rame c u r v a t u r e and r a d i u s

12 c u r v a t u r e _ t o t a l = z e r o s ( seg_num , 1 , s i z e ( vo xe l s _ f r a me , 2 ) ) ;

13 r a d i u s _ t o t a l = z e r o s ( seg_num , 1 , s i z e ( v ox e l s_ f r am e , 2 ) ) ;

14

15 f o r z= 1 : s i z e ( v ox e l s_ f r am e , 2 )

16 %Array of c u r v a t u r e , r a d i u s and c e n t e r i n f o below

17 c u r v a t u r e = z e r o s ( seg_num , 1 ) ;
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18 r a d i u s = z e r o s ( seg_num , 1 ) ;

19 c i r c l e = z e r o s ( seg_num , 3 ) ;

20 n o i s e _ s i g n a l = z e r o s ( s i z e ( v o x e l s _ f r a m e { z } , 1 ) , 3 ) ;

21

22 %Noise a d d i t i o n t o p o i n t c l o u d s

23 f o r u= 1 : s i z e ( v o x e l s _ f r a m e { z } , 1 )

24 d i s t u r b = n o i s e _ a m p l i t u d e * rand ( 1 ) ;

25 i f mod ( d i s t u r b , 0 . 0 0 2 ) > 0 .001

26 n o i s e _ s i g n a l ( u , 1 ) = v o x e l s _ f r a m e { z } ( u , 1 ) +

d i s t u r b ;

27 e l s e

28 n o i s e _ s i g n a l ( u , 1 ) = v o x e l s _ f r a m e { z } ( u , 1 ) −

d i s t u r b ;

29 end

30 end

31 f o r u= 1 : s i z e ( v o x e l s _ f r a m e { z } , 1 )

32 d i s t u r b = n o i s e _ a m p l i t u d e * rand ( 1 ) ;

33 i f mod ( d i s t u r b , 0 . 0 0 2 ) > 0 .001

34 n o i s e _ s i g n a l ( u , 2 ) = v o x e l s _ f r a m e { z } ( u , 2 ) +

d i s t u r b ;

35 e l s e

36 n o i s e _ s i g n a l ( u , 2 ) = v o x e l s _ f r a m e { z } ( u , 2 ) −

d i s t u r b ;

37 end

38 end

39 f o r u= 1 : s i z e ( v o x e l s _ f r a m e { z } , 1 )

40 n o i s e _ s i g n a l ( u , 3 ) = v o x e l s _ f r a m e { z } ( u , 3 ) ;

41 end

42 %S o r t e n i n g a r r a y

43 B = s o r t r o w s ( n o i s e _ s i g n a l , 1 ) ;
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44 n o i s e _ s i g n a l = B ;

45 Q2 = f i n d O r i g i n t o r s i o n M a y a ( n o i s e _ s i g n a l ) ; %F i r s t v e c t o r

o r i g i n

46 Q = Q2 ;

47 o r i g i n s ( 1 , : ) =Q; %Array of o r i g i n s from l s s q u a r e

48 l s d a t a _ n = n o i s e _ s i g n a l ; %C r e a t e a copy of n o i s y d a t a

49

50 %% P r o c e s s i n g

51 %New p o i n t s depend ing on d i s t a n c e

52 f o r k =1: seg_num

53 [ v e c t _ l s d a t a , l s d a t a _ n , pos , sum_vect ] = c h e c k P o i n t s (

l s d a t a _ n , Q, s e g _ l e n ) ;

54 dataX= v e c t _ l s d a t a ( : , 1 ) ;

55 dataY= v e c t _ l s d a t a ( : , 2 ) ;

56 da taZ = v e c t _ l s d a t a ( : , 3 ) ;

57 %L e a s t s q u a r e e r r o r

58 [m, R ,Q] = l s f i t ( pos , v e c t _ l s d a t a , Q, sum_vect , s e g _ l e n

) ;

59 %Update o r i g i n s d a t a s t o r e

60 o r i g i n s ( k + 1 , : ) = Q;

61 %Computing x p a r a m e t e r

62 s t a b i l i t y ( k , 1 ) = abs ( o r i g i n s ( k +1 ,1 )−o r i g i n s ( 1 , 1 ) ) ;

63 %Computing d p a r a m e t e r

64 s t a b i l i t y ( k , 2 ) = norm ( o r i g i n s ( k + 1 , : )−[ o r i g i n s ( k

+1 ,1 ) , o r i g i n s ( 1 , 2 : 3 ) ] ) ;

65 %Computing a l p h a p a r a m e t e r

66 s t a b i l i t y ( k , 3 ) = ( ( ( a s i n ( norm ( c r o s s ( [ 0 , 1 , 0 ] , [

o r i g i n s ( k + 1 , : )−[ o r i g i n s ( k +1 ,1 ) , o r i g i n s ( 1 , 2 : 3 )

] ] ) ) / norm ( [ o r i g i n s ( k + 1 , : )−[ o r i g i n s ( k +1 ,1 ) ,

o r i g i n s ( 1 , 2 : 3 ) ] ] ) ) ) *360) / 2 ) / p i ;
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67 %Bending ang le , 4 q u a d r a n t s

68 i f o r i g i n s ( k +1 ,3 ) < o r i g i n s ( 1 , 3 )

69 i f o r i g i n s ( k +1 ,2 ) < o r i g i n s ( 1 , 2 )

70 s t a b i l i t y ( k , 3 ) = 270 + (90− s t a b i l i t y ( k , 3 ) ) ;

71 e l s e

72 s t a b i l i t y ( k , 3 ) = 180 + s t a b i l i t y ( k , 3 ) ;

73 end

74 e l s e

75 i f o r i g i n s ( k +1 ,2 ) > o r i g i n s ( 1 , 2 )

76 s t a b i l i t y ( k , 3 ) = 90 + (90− s t a b i l i t y ( k , 3 ) ) ;

77 end

78 end

79 i f ( k >= 2 && k < seg_num )

80 [ c i r c l e ( k−1 , : ) , r a d i u s ( k−1 , : ) , c u r v a t u r e ( k−1 , : )

] = c a l c _ c i r c l e 3 D ( o r i g i n s ( k−1 , : ) , o r i g i n s ( k

, : ) , o r i g i n s ( k + 1 , : ) ) ; %c u r v a t u r e e v a l u a t i o n

81 end

82 i f k == seg_num

83 [ c i r c l e ( seg_num , : ) , r a d i u s ( seg_num , : ) ,

c u r v a t u r e ( seg_num , : ) ] = c a l c _ c i r c l e 3 D (

o r i g i n s ( 1 , : ) , o r i g i n s ( 4 , : ) , o r i g i n s ( 8 , : ) ) ; %

c u r v a t u r e e v a l u a t i o n

84 end

85 end

86 %Data S t o r a g e

87 o r i g i n s _ g l o b a l ( : , : , z ) = o r i g i n s ;

88 s t a b i l i t y _ t o t a l ( : , : , z ) = s t a b i l i t y ;

89 c u r v a t u r e _ t o t a l ( : , : , z ) = c u r v a t u r e ;

90 r a d i u s _ t o t a l ( : , : , z ) = r a d i u s ;

91 f o r q= 1 :200
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92 a n g l e s ( q , 1 ) = s t a b i l i t y _ t o t a l ( 7 , 3 , q ) ;

93 c u r v a t u r e ( q , 1 ) = c u r v a t u r e _ t o t a l ( 7 , 1 , q ) ;

94 d i s t a n c e d ( q , 1 ) = s t a b i l i t y _ t o t a l ( 7 , 2 , q ) ;

95 d i s t a n c e x ( q , 1 ) = s t a b i l i t y _ t o t a l ( 7 , 1 , q ) ;

96 end

97 end

98 %% Example o f P a r a m e t e r P l o t

99 f i g u r e

100 p l o t ( permute ( s t a b i l i t y _ t o t a l ( 7 , 3 , : ) , [ 3 , 2 , 1 ] ) ) ;

.2.6 Tip Position

1 %F u n c t i o n t o e v a l u a t e t h e p o s i t i o n o f t h e c a t h e t e r ’ s t i p

from j o i n t s a n g l e s .

2 f u n c t i o n [ EEpos ] = E n d E f f e c t o r P o s i t i o n ( t h e t a s )

3 seg_num = s i z e ( t h e t a s , 1 ) / 2 ;

4 t h e t a = z e r o s ( 2 , seg_num ) ;

5 t o t _ l e n = 0 . 0 5 ; %C a t h e t e r l e n g t h

6 H f r a m e s t a c k _ r = z e r o s ( 4 * ( seg_num +1) , 4 ) ;

7 H0=eye ( 4 ) ;

8 H f r a m e s t a c k _ r ( 1 : 4 , : ) =H0 ;

9 pos =0;

10 %Angles o r g a n i z a t i o n

11 f o r i =1 : seg_num

12 pos=pos +1;

13 t h e t a ( 1 , i ) = t h e t a s ( pos ) ;

14 pos=pos +1;

15 t h e t a ( 2 , i ) = t h e t a s ( pos ) ;

16 end

17 %I n i t i a l t r a s f o r m a t i o n m a t r i x

18 f o r i =1 : seg_num
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19 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) * 4 , : ) =H0 ;

20 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) *4−1 ,4)=H0 ( 1 : 3 , 1 : 3 ) * [ 0 ; 0 ; i

* t o t _ l e n / seg_num ] ;

21 end

22 Hframes t ack = H f r a m e s t a c k _ r ;

23 t w i s t T o t =eye ( 4 ) ;

24 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a , 2 ) , 4 ) ;

25 %T r a s f o r m a t i o n m a t r i x wi th c u r r e n t a n g l e s

26 f o r i =1 : s i z e ( t h e t a , 2 )

27 Hprev= H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i −1) , : ) ;

28 Hcurr = H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i ) , : ) ;

29 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a ( 1 , i ) + [ 0 ; 1 ; 0 ] * t h e t a ( 2 , i ) ;

30 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew ( t h e t a c u r r ) ,− c r o s s (

t h e t a c u r r , Hprev ( 1 : 3 , 4 ) ) ] ; z e r o s ( 1 , 4 ) ] ;

31 t w i s t T o t = t w i s t T o t *expm ( T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) ) ;

32 Hframes t ack ( ( 1 : 4 ) +4*( i ) , : ) = t w i s t T o t * Hcurr ;

33 end

34 %End E f f e c t o r p o s i t i o n

35 EEpos= Hf rames t ack ( s i z e ( Hframes tack , 1 ) −3:end −1 ,4) ;

36 end

.2.7 BigMag Data Extraction

1 %BigMag ’ s a l g o r i t h m t o e x t r a c t d a t a ( g i v e n f o r t h e p r o j e c t )

2 d a t a = c s v r e a d ( ’ PIDExperimentJH6 . csv ’ ) ;

3 c u t =1;

4 %Gl ob a l r e f e r e n c e sys tem

5 Hgloba l = [ [ −1 , 0 , 0 , 2 . 8 ] ;

6 [ 0 , 1 , 0 , 3 . 7 ] ;

7 [0 ,0 , −1 ,119]

8 [ 0 , 0 , 0 , 1 ] ] ;
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9 %I n i t i a l c o m p l i a n c e

10 c o m p l i a n c e = [ 0 . 0 0 1 2 ; 0 . 0 0 0 8 ; 0 . 0 0 1 3 ; 0 . 0 0 1 1 ; 0 . 0 0 2 3 ; 0 . 0 0 2 1 ] ;

11 %%

12 voxbeg =64; %Beg inn ing Index of Voxel V ec to r

13 m a n i p u l a t o r L e n g t h =50;

14 N o f P o i n t s =11;

15 t i p _ d i p o l e = 0 . 0 4 ;

16 %%

17 i =50;

18 d a t a l i n e = d a t a ( i , : ) ;

19 m a g n e t i c F i e l d _ d e b = d a t a l i n e ( 5 2 : 5 4 ) ’ ;

20 nofVoxe l s = d a t a l i n e ( voxbeg ) ;

21 c u r r e n t V o x e l M a t = z e r o s ( 3 , no fVoxe l s ) ;

22

23 H m a n i p u l a t o r =eye ( 4 ) ;

24 H m a n i p u l a t o r ( 1 , 1 : 3 ) = [ 0 ; 0 ; 1 ] ’ ;

25 H m a n i p u l a t o r ( 2 , 1 : 3 ) = [ 1 ; 0 ; 0 ] ’ ;

26 H m a n i p u l a t o r ( 3 , 1 : 3 ) = [ 0 ; 1 ; 0 ] ’ ;

27 H m a n i p u l a t o r ( : , 4 ) =[ d a t a l i n e ( ( 1 1 : 1 3 ) ) ’ ; 1 ] ;

28 H m a n i p u l a t o r = i n v ( H m a n i p u l a t o r ) ;

29

30 f o r i I =1 : no fVoxe l s

31 c u r r e n t V o x e l = Hgloba l * [ d a t a l i n e ( ( voxbeg +( i I −1) *3+1) : (

voxbeg +( i I −1) *3+3) ) ’ ; 1 ] / 1 0 0 0 ;

32 c u r r e n t V o x e l ( 4 ) =1 ;

33 c u r r e n t V o x e l = H m a n i p u l a t o r * c u r r e n t V o x e l ;

34 c u r r e n t V o x e l M a t ( : , i I ) = c u r r e n t V o x e l ( 1 : 3 ) ;

35 end

36 m a g n e t i c F i e l d = H m a n i p u l a t o r ( 1 : 3 , 1 : 3 ) * m a g n e t i c F i e l d _ d e b ;

37 %%
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38 s e g m e n t _ p o s i t i o n s = z e r o s ( 3 , N o f P o i n t s ) ;

39 f o r i I =1 : N o f P o i n t s

40 c u r r e n t _ s e g _ p o s i t i o n =[ d a t a l i n e ( ( 1 : 3 ) +10+3*( i I −1) ) ’ ; 1 ] ;

41 c u r r e n t _ s e g _ p o s i t i o n = H m a n i p u l a t o r * c u r r e n t _ s e g _ p o s i t i o n ;

42 s e g m e n t _ p o s i t i o n s ( : , i I ) = c u r r e n t _ s e g _ p o s i t i o n ( 1 : 3 ) ;

43 end

44 %% Reducing number o f segmen t s

45 Pmat= z e r o s (3* s i z e ( s e g m e n t _ p o s i t i o n s , 2 ) −3 ,1) ;

46 r egmat = z e r o s (3* s i z e ( s e g m e n t _ p o s i t i o n s , 2 ) −3 ,9) ;

47 f o r i I =2 : s i z e ( s e g m e n t _ p o s i t i o n s , 2 )

48 t t =( i I −1) * 5 0 / ( NofPo in t s −1) ;

49 Pmat ( ( 3 * i I −5) : ( 3 * i I −3) ) = s e g m e n t _ p o s i t i o n s ( : , i I )−

s e g m e n t _ p o s i t i o n s ( : , 1 ) ;

50 r egmat ( ( 3 * i I −5) : ( 3 * i I −3) , : ) =[ t t * eye ( 3 ) , t t ^2* eye ( 3 ) , t t

^3* eye ( 3 ) ] ;

51 end

52 cvec = p inv ( regmat ) *Pmat ;

53 NofSegmentsReduced =4;

54 s e g m e n t _ p o s i t i o n s _ r e d u c e d = z e r o s ( 3 , NofSegmentsReduced ) ;

55 f o r i I =1 : NofSegmentsReduced

56 t t =( i I −1)* m a n i p u l a t o r L e n g t h / ( NofSegmentsReduced−1) ;

57 s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , i I ) = s e g m e n t _ p o s i t i o n s

( : , 1 ) + t t * cvec ( 1 : 3 ) + t t ^2* cvec ( 4 : 6 ) + t t ^3* cvec ( 7 : 9 ) ;

58 end

59 %% R e f e r e n c e Frame C o n s t r u c t i o n

60 t h e t a s = z e r o s ( 2 , NofSegmentsReduced −1) ;

61 H f r a m e s _ r e f = z e r o s ( NofSegmentsReduced * 4 , 4 ) ;

62 Hframes= z e r o s ( NofSegmentsReduced * 4 , 4 ) ;

63 t w i s t s = z e r o s (4 * ( NofSegmentsReduced−1) , 4 ) ;

64 f i e l d B o d y = z e r o s ( s i z e ( m a g n e t i c F i e l d ) ) ;
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65 fo rceBody = z e r o s ( s i z e ( m a g n e t i c F i e l d ) ) ;

66 to rqueBody = z e r o s ( s i z e ( m a g n e t i c F i e l d ) ) ;

67 %%

68 H0=eye ( 4 ) ;

69 Hframes ( 1 : 4 , : ) =H0 ;

70 H f r a m e s _ r e f ( : , : ) = repmat ( H0 , NofSegmentsReduced , 1 ) ;

71 segments_ temp = s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 2 : end ) ;

72 qvec= z e r o s ( 3 , ( NofSegmentsReduced−1) ) ;

73 qvec ( 3 , 2 ) =norm ( s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 2 )−

s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 1 ) ) ;

74 qvec ( 3 , 3 ) =norm ( s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 3 )−

s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 2 ) ) +qvec ( 3 , 2 ) ;

75 qvec ( 3 , 4 ) =norm ( s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 4 )−

s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , 3 ) ) +qvec ( 3 , 3 ) ;

76 tmag= z e r o s ( 2 , ( NofSegmentsReduced −1) ) ;

77 %%

78 f o r iF = 2 : NofSegmentsReduced

79 %%

80 H0=eye ( 4 ) ;

81 q l o c =[ qvec ( : , iF ) ; 1 ] ;

82 H0 ( : , 4 ) =[ q l o c ( 1 : 3 ) ; 1 ] ;

83 i d =(4* iF−3) : ( 4 * iF ) ;

84 Hframes ( id , : ) =H0 ;

85 H f r a m e s _ r e f ( id , : ) =H0 ;

86 segments_ temp = s e g m e n t _ p o s i t i o n s _ r e d u c e d ( : , iF : end ) ;

87 %%

88 f o r i I =1 : s i z e ( segments_temp , 2 )

89 s _ t = i n v ( Hframes ( id −4 , : ) ) * [ segments_ temp ( : , i I ) ; 1 ] ;

90 segments_ temp ( : , i I ) = s _ t ( 1 : 3 ) ;

91 end
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92 t h e t a s ( 1 , iF−1)= a t a n 2 (− segments_ temp ( 2 , 1 ) , segments_ temp ( 3 , 1 )

) ;

93 t h e t a s ( 2 , iF−1)= a t a n 2 ( segments_ temp ( 1 , 1 ) , segments_ temp ( 3 , 1 ) )

;

94 t h e t a = [ 1 ; 0 ; 0 ] * t h e t a s ( 1 , iF−1) + [ 0 ; 1 ; 0 ] * t h e t a s ( 2 , iF−1) ;

95 tmag ( 1 , iF−1)=norm ( t h e t a ) ;

96 tmag ( 2 , iF−1)= s q r t ( t h e t a s ( 1 , iF−1)^2+ t h e t a s ( 2 , iF−1) ^2 ) ;

97 q l o c 2 =[ qvec ( : , iF−1) ; 1 ] ;

98 t w i s t s ( ( 1 : 3 ) +4*( iF−2) , : ) =[ skew ( t h e t a ) ,−skew ( t h e t a ) *

H f r a m e s _ r e f ( i d ( 1 : 3 ) −4 ,4) ] ;

99 t o t a l _ t w i s t =eye ( 4 ) ;

100 f o r iT =1: iF−1

101 t o t a l _ t w i s t = t o t a l _ t w i s t *expm ( t w i s t s ( ( 1 : 4 ) +4*( iT−1) , : ) ) ;

102 end

103 Hframes ( id , : ) = t o t a l _ t w i s t *H0 ;

104 end

105 %%

106 f i e l d B o d y = i n v ( Hframes ( i d ( 1 : 3 ) , 1 : 3 ) ) * m a g n e t i c F i e l d ;

107 fo rceBody = i n v ( Hframes ( i d ( 1 : 3 ) , 1 : 3 ) ) * ( [ 0 ; −0 . 0 0 0 5 5 * 9 . 8 1 ; 0 ] ) ;

108 to rqueBody = c r o s s ( [ 0 ; 0 ; 1 ] * t i p _ d i p o l e , f i e l d B o d y ) ;

.2.8 First Joint Evaluation

1 %F u n c t i o n t o e s t i m a t e t h e f i r s t o r i g i n p o s i t i o n

2

3 f u n c t i o n [Q]= f i n d O r i g i n ( v e c t _ p o i n t s )

4 %Q i s t h e f i r s t o r i g i n p o s i t i o n

5 %v e c t _ p o i n t s i s t h e a r r a y o f 3D p o i n t s

6 min = v e c t _ p o i n t s ( 1 , 1 ) ;

7 check = ’ s ’ ;

8 i = 0 ;
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9 y = 0 ;

10 x = 0 ;

11 z = 0 ;

12 %While loop end c o n d i t i o n depends on d i s t a n c e

13 w h i l e check == ’ s ’

14 i = i + 1 ;

15 i f v e c t _ p o i n t s ( i , 1 ) < ( min +1) %C o n t r o l on t h e d i s t a n c e

16 x = x+ v e c t _ p o i n t s ( i , 1 ) ;

17 y = y+ v e c t _ p o i n t s ( i , 2 ) ;

18 z = z+ v e c t _ p o i n t s ( i , 3 ) ;

19 e l s e

20 check = ’ n ’ ;

21 end

22 end

23 Q = [ x . / i , y . / i , z . / i ] ; %E v a l u a t i n g t h e a v e r a g e p o s i t i o n

24 end

.2.9 Angles Evaluation

1 %F u n c t i o n t o e s t i m a t e t h e a n g l e s from t h e moments a p p l i e d

t o each j o i n t

2

3 f u n c t i o n [ t h e t a ] = g e t T h e t a ( t a u _ t o t , k _ v a l u e s i n v e r s e ,

seg_num , q_0 )

4 t a u _ x = z e r o s ( 1 , seg_num ) ;

5 t a u _ y = z e r o s ( 1 , seg_num ) ;

6 pos= 0 ;

7 %D i v i d i n g t a u _ t o t i n 2 components x and y

8 f o r p =1: seg_num

9 pos= pos +1;

10 t a u _ x ( p ) = t a u _ t o t ( pos ) ;
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11 pos= pos +1;

12 t a u _ y ( p ) = t a u _ t o t ( pos ) ;

13 end

14 t h e t a = z e r o s ( 2 , s i z e ( tau_x , 2 ) ) ;

15 f o r i =1 : l e n g t h ( t h e t a )

16 t h e t a ( 1 , i ) =( k _ v a l u e s i n v e r s e ( i ) * t a u _ x ( i ) +q_0 ( 1 , i ) ) ;

17 t h e t a ( 2 , i ) =( k _ v a l u e s i n v e r s e ( i ) * t a u _ y ( i ) +q_0 ( 2 , i ) ) ;

18 end

.2.10 Angles Evaluation with Cubic Compliance

1 %F u n c t i o n t o e s t i m a t e t h e a n g l e s from t h e moments a p p l i e d

t o each j o i n t

2 %wi th c u b i c c o m p l i a n c e

3

4 f u n c t i o n [ t h e t a ] = g e t T h e t a _ c u b i c ( t a u _ t o t , k _ v a l u e s i n v e r s e ,

k _ v a l u e s c u b i c , seg_num , q_0 )

5 t a u _ x = z e r o s ( 1 , seg_num ) ;

6 t a u _ y = z e r o s ( 1 , seg_num ) ;

7 pos= 0 ;

8 %D i v i d i n g t a u _ t o t i n 2 components x and y

9 f o r p =1: seg_num

10 pos= pos +1;

11 t a u _ x ( p ) = t a u _ t o t ( pos ) ;

12 pos= pos +1;

13 t a u _ y ( p ) = t a u _ t o t ( pos ) ;

14 end

15 t h e t a = z e r o s ( 2 , s i z e ( tau_x , 2 ) ) ;

16 f o r i =1 : l e n g t h ( t h e t a )

17 t h e t a ( 1 , i ) =( k _ v a l u e s i n v e r s e ( i ) * t a u _ x ( i ) +q_0 ( 1 , i ) ) ;
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18 t h e t a ( 1 , i ) =( k _ v a l u e s c u b i c ( i ) * ( t h e t a ( 1 , i ) ) . ^ 3 +

k _ v a l u e s c u b i c ( i +6) * t h e t a ( 1 , i ) ) ;

19 t h e t a ( 2 , i ) =( k _ v a l u e s i n v e r s e ( i ) * t a u _ y ( i ) +q_0 ( 2 , i ) ) ;

20 t h e t a ( 2 , i ) = k _ v a l u e s c u b i c ( i ) * ( t h e t a ( 2 , i ) ) . ^ 3 +

k _ v a l u e s c u b i c ( i +6) * t h e t a ( 2 , i ) ;

21 end

.2.11 Ω Calculation

1 f u n c t i o n [ w_x , w_y ] = calc_wx_wy ( t h e t a _ x , t h e t a _ y )

2 %%

3 t h e t a = s q r t ( t h e t a _ x ^2+ t h e t a _ y ^2 ) ;

4 w_x= z e r o s ( 3 , 1 ) ;

5 w_y=w_x ;

6 i f ( ( t h e t a _ x ~=0) && ( t h e t a _ y ~=0) )

7 w_x ( 1 ) =1−( t h e t a _ y / t h e t a ) ^2*(1− s i n c ( t h e t a / p i ) ) ;

8 w_x ( 2 ) = t h e t a _ x * t h e t a _ y / ( t h e t a ^2 ) *(1− s i n c ( t h e t a / p i ) ) ;

9 w_x ( 3 )=− t h e t a _ y / ( t h e t a ^2 ) *(1− cos ( t h e t a ) ) ;

10 w_y ( 1 ) =w_x ( 2 ) ;

11 w_y ( 2 ) =1−( t h e t a _ x / t h e t a ) ^2*(1− s i n c ( t h e t a / p i ) ) ;

12 w_y ( 3 ) = t h e t a _ x / ( t h e t a ^2 ) *(1− cos ( t h e t a ) ) ;

13 e l s e

14 w_x = [ 1 ; 0 ; 0 ] ;

15 w_y = [ 0 ; 1 ; 0 ] ;

16 end

17 end

.2.12 Get Jacobian

1 f u n c t i o n [ J a c o b i a n ] = g e t _ j a c o b i a n ( t h e t a s , T w i s t s t a c k ,

H f r a m e s t a c k _ i n i t )
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2 %%

3 J a c o b i a n = z e r o s ( 6 , l e n g t h ( t h e t a s ) ) ;

4 Hsaving = z e r o s ( s i z e ( t h e t a s , 2 ) * 4 , 4 ) ;

5 t o t a l T w i s t =eye ( 4 ) ;

6 H c u r r e n t = H f r a m e s t a c k _ i n i t ( 1 : 4 , 1 : 4 ) ;

7 Hsaving ( 1 : 4 , : ) = H c u r r e n t ;

8 f o r i =1 : s i z e ( t h e t a s , 2 )

9 %%

10 [ w_x , w_y]= calc_wx_wy ( t h e t a s ( 1 , i ) , t h e t a s ( 2 , i ) ) ;

11 %T o t a l t w i s t from c u r r e n t t o l a s t j o i n t

12 f o r i I = i : s i z e ( t h e t a s , 2 )

13 t o t a l T w i s t = t o t a l T w i s t *expm ( T w i s t s t a c k ( ( 1 : 4 ) +4*( i I

−1) , : ) ) ;

14 end

15 %T o t a l T r a n s f o r m a t i o n H

16 H c u r r e n t = t o t a l T w i s t * H f r a m e s t a c k _ i n i t ( ( end−3) : ( end ) , : ) ;

17 Hsaving ( i *4+1: i * 4 + 4 , : ) = H c u r r e n t ;

18 %I n i t i a l p o s i t i o n o f t h e i t h j o i n t

19 q _ i n i t = H f r a m e s t a c k _ i n i t ( ( 1 : 3 ) +4*( i −1) , 4 ) ;

20 %F o t a t i o n a f t e r t o t a l t w i s t i t h j o i n t

21 R o t _ i t h = H c u r r e n t ( 1 : 3 , 1 : 3 ) ;

22 %F i n a l p o s i t i o n o f t h e i t h j o i n t

23 p o s _ i t h = H c u r r e n t ( 1 : 3 , 4 ) ;

24 %I n v e r s e A d j o i n t e v a l u a t i o n

25 Adj inv = [ [ R o t _ i t h ’ ,− R o t _ i t h ’* skew ( p o s _ i t h ) ] ; [ z e r o s ( 3 , 3 ) ,

R o t _ i t h ’ ] ] ;

26 %%

27 t w i s t _ x =[ c r o s s (−w_x , q _ i n i t ) ; w_x ] ;

28 t w i s t _ y =[ c r o s s (−w_y , q _ i n i t ) ; w_y ] ;

29 J a c o b i a n ( : , ( 2 * i −1) ) = Adj inv * t w i s t _ x ;
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30 J a c o b i a n ( : , ( 2 * i ) ) = Adj inv * t w i s t _ y ;

31 end

32 end

.2.13 Function Optimized by Fsolve

1 %F u n c t i o n o p t i m i z e d by f s o l v e . E v a l u a t i o n o f t h e moments i n

each j o i n t t o

2 %g e n e r a t e t h e a p p l i e d wrench . t a u _ t o t i s t h e o p t i m i z e d

p a r a m e t e r .

3

4 f u n c t i o n [ t a u _ d i f f ] = s o l v e _ m o d e l _ g r e i g a r n ( t a u _ t o t , wrench ,

seg_num , k_va lue s , q_0 , H f r a m e s t a c k _ i n i t )

5 %%

6 %O b t a i n i n g t h e t a from t h e c u r r e n t t a u _ t o t

7 t h e t a = g e t T h e t a ( t a u _ t o t , k_va lues , seg_num , q_0 ) ;

8 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a , 2 ) , 4 ) ;

9

10 %Update o f j o i n t s T r a s f o r m a t i o n m a t r i x wi th new t h e t a s

11 f o r i =1 : s i z e ( t h e t a , 2 )

12 Hprev= H f r a m e s t a c k _ i n i t ( ( 1 : 4 ) +4*( i −1) , : ) ;

13 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a ( 1 , i ) + [ 0 ; 1 ; 0 ] * t h e t a ( 2 , i ) ;

14 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew ( t h e t a c u r r ) ,− c r o s s (

t h e t a c u r r , Hprev ( 1 : 3 , 4 ) ) ] ; z e r o s ( 1 , 4 ) ] ;

15 end

16

17 %J a c o b i a n c o n s t r u c t i o n

18 [ J a c o b i a n ] = g e t _ j a c o b i a n ( t h e t a , T w i s t s t a c k , H f r a m e s t a c k _ i n i t

) ;

19 %Moment from t h e new j a c o b i a n and t h e a p p l i e d wrench

20 t a u _ r e s = J a c o b i a n ’* wrench ;
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21 %D i f f e r e n c e o p t i m i z e d by f s o l v e

22 t a u _ d i f f = t a u _ r e s−t a u _ t o t ’ ;

23

24 end

.2.14 Function Optimized by Fsolve with Cubic Compliance

1 %F u n c t i o n o p t i m i z e d by f s o l v e wi th c u b i c c o m p l i a n c e .

E v a l u a t i o n o f t h e moments i n each j o i n t t o

2 %g e n e r a t e t h e a p p l i e d wrench . The ta g u e s s i s t h e c h a n g i n g

p a r a m e t e r

3

4 f u n c t i o n [ t a u _ d i f f ] = s o l v e _ m o d e l _ g r e i g a r n _ c u b i c (

t h e t a _ g u e s s , wrench , seg_num , k_va lues , k _ v a l u e s c u b i c k , q_0 ,

H f r a m e s t a c k _ i n i t )

5 %%

6 t h e t a _ v e c = t h e t a _ g u e s s ( : ) ;

7

8 %New e q u a t i o n f o r c u b i c k . I don ’ t need t o f i n d t h e t a

b e c a u s e t h e t a i s t h e c h a n g i n g p a r a m e t e r

9 moments_from_compl iance = d i a g ( k _ v a l u e s c u b i c k ) * d i a g ( t h e t a _ v e c

) . ^ 2 * t h e t a _ v e c + d i a g ( k _ v a l u e s ) * t h e t a _ v e c ;

10 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a _ g u e s s , 2 ) , 4 ) ;

11

12 f o r i =1 : s i z e ( t h e t a _ g u e s s , 2 )

13 Hprev= H f r a m e s t a c k _ i n i t ( ( 1 : 4 ) +4*( i −1) , : ) ;

14 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a _ g u e s s ( 1 , i ) + [ 0 ; 1 ; 0 ] * t h e t a _ g u e s s

( 2 , i ) ;

15 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew ( t h e t a c u r r ) ,− c r o s s (

t h e t a c u r r , Hprev ( 1 : 3 , 4 ) ) ] ; z e r o s ( 1 , 4 ) ] ;

16 end
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17 %Find t h e m a n i p u l a t o r J a c o b i a n wi th t h e a n g l e g u e s s

18 [ J a c o b i a n ] = g e t _ j a c o b i a n ( t h e t a _ g u e s s , T w i s t s t a c k ,

H f r a m e s t a c k _ i n i t ) ;

19 %Moments from t h e new j a c o b i a n and t h e a p p l i e d wrench

20 moments_ f rom_jacob ian = J a c o b i a n ’* wrench ;

21 %D i f f e r e n c e t h a t must be o p t i m i z e d by f s o l v e

22 t a u _ d i f f =moments_from_compliance−moments_ f rom_jacob ian ;

23 end

.2.15 Ultrasound Algorithm

1 seg_num =7;

2 s e g _ l e n = 5 . / seg_num ;

3 f o l d e r _ n a m e = ’ c u r v a t u r e f o u r t y / ’ ;

4 n o i s e _ a m p l i t u d e = 0 . 5 ;

5 l o a d ( ’ c u r v a t u r e f o u r t y / v o x e l s _ f r a m e . mat ’ ) ;

6 o r i g i n s _ g l o b a l = z e r o s ( seg_num +1 ,3 , s i z e ( vo xe l s _ f r a me , 2 ) ) ;

7 s t a b i l i t y _ t o t a l = z e r o s ( seg_num , 3 , s i z e ( v ox e l s_ f r am e , 2 ) ) ;

8 s t a b i l i t y = z e r o s ( seg_num , 3 ) ;

9 c u r v a t u r e _ t o t a l = z e r o s ( seg_num , 1 , s i z e ( vo xe l s _ f r a me , 2 ) ) ;

10 r a d i u s _ t o t a l = z e r o s ( seg_num , 1 , s i z e ( v ox e l s_ f r am e , 2 ) ) ;

11 o r v o x e l s _ f r a m e = v o x e l s _ f r a m e ;

12 n u m _ s l i c e =30;

13 v o x e l s _ s l i c e = c e l l ( s i z e ( o r v o x e l s _ f r a m e , 2 ) , n u m _ s l i c e ) ;

14 c e n t e r _ s l i c e = c e l l ( s i z e ( o r v o x e l s _ f r a m e , 2 ) , n u m _ s l i c e ) ;

15 %Adding n o i s e t o p o i n t c l o u d s

16 f o r p = 1 : s i z e ( v ox e l s_ f r am e , 2 )

17 n o i s e _ s i g n a l = z e r o s ( s i z e ( v o x e l s _ f r a m e {p } , 1 ) , 3 ) ;

18 f o r u= 1 : s i z e ( v o x e l s _ f r a m e {p } , 1 )

19 d i s t u r b = n o i s e _ a m p l i t u d e * rand ( 1 ) ;

20 i f mod ( d i s t u r b , 0 . 0 0 2 ) > 0 .001

139



21 n o i s e _ s i g n a l ( u , 1 ) = v o x e l s _ f r a m e {p } ( u , 1 ) +

d i s t u r b ;

22 e l s e

23 n o i s e _ s i g n a l ( u , 1 ) = v o x e l s _ f r a m e {p } ( u , 1 ) −

d i s t u r b ;

24 end

25 end

26 f o r u= 1 : s i z e ( v o x e l s _ f r a m e {p } , 1 )

27 d i s t u r b = n o i s e _ a m p l i t u d e * rand ( 1 ) ;

28 i f mod ( d i s t u r b , 0 . 0 0 2 ) > 0 .001

29 n o i s e _ s i g n a l ( u , 2 ) = v o x e l s _ f r a m e {p } ( u , 2 ) +

d i s t u r b ;

30 e l s e

31 n o i s e _ s i g n a l ( u , 2 ) = v o x e l s _ f r a m e {p } ( u , 2 ) −

d i s t u r b ;

32 end

33 end

34 f o r u= 1 : s i z e ( v o x e l s _ f r a m e {p } , 1 )

35 n o i s e _ s i g n a l ( u , 3 ) = v o x e l s _ f r a m e {p } ( u , 3 ) ;

36 end

37 %O r d e r i n g d a t a

38 o r v o x e l s _ f r a m e {p} = s o r t r o w s ( n o i s e _ s i g n a l , 1 ) ;

39 end

40 f o r z= 1 : s i z e ( o r v o x e l s _ f r a m e , 2 )

41 n o i s e _ s i g n a l = o r v o x e l s _ f r a m e { z } ;

42 u s c a n _ p o i n t s = s i z e ( n o i s e _ s i g n a l , 1 ) ;

43 %Probe p o s i t i o n . S e t a t f i r s t o r i g i n p o s i t i o n

44 u s c a n _ c o m p a r i s o n = n o i s e _ s i g n a l ( 1 , 1 ) ;

45 %S l i c e t h i c k n e s s
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46 s l i c e _ t h = abs ( n o i s e _ s i g n a l ( s i z e ( n o i s e _ s i g n a l , 1 ) , 1 )−

n o i s e _ s i g n a l ( 1 , 1 ) ) . / n u m _ s l i c e ;

47 v o x e l s _ t h = z e r o s ( s i z e ( n o i s e _ s i g n a l , 1 ) , 3 ) ;

48 j j = 1 ;

49 j = 0 ;

50 s = 0 ;

51 %Probe l i n e a r movement s i m u l a t i o n

52 w h i l e j j < u s c a n _ p o i n t s

53 j j = j j +1 ;

54 %Check p o i n t s i n t h e s l i c e

55 i f abs ( n o i s e _ s i g n a l ( j j , 1 )− u s c a n _ c o m p a r i s o n ) <

s l i c e _ t h

56 s = s +1;

57 v o x e l s _ t h ( s , : ) = n o i s e _ s i g n a l ( j j , : ) ;

58 e l s e

59 u s c a n _ c o m p a r i s o n = n o i s e _ s i g n a l ( j j , 1 ) ;

60 j = j +1 ;

61 v o x e l s _ t h ( ~any ( v o x e l s _ t h , 2 ) , : ) = [ ] ;

62 v o x e l s _ s l i c e {z , j } = v o x e l s _ t h ;

63 %E v a l u a t i o n o f i n i t i a l p o s i t i o n

64 c e n t e r _ s l i c e {z , j } = f i n d C e n t e r s l i c e (

v o x e l s _ t h , s l i c e _ t h ) ;

65 s = 1 ;

66 v o x e l s _ t h = z e r o s ( s i z e ( n o i s e _ s i g n a l , 1 ) , 3 ) ;

67 v o x e l s _ t h ( s , : ) = n o i s e _ s i g n a l ( j j , : ) ;

68 end

69 end

70 %A rr ay s f o r s t o r i n g c u r v a t u r e , r a d i u s and c e n t e r

71 c u r v a t u r e = z e r o s ( seg_num , 1 ) ;

72 r a d i u s = z e r o s ( seg_num , 1 ) ;
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73 c i r c l e = z e r o s ( seg_num , 3 ) ;

74 %F i r s t v e c t o r o r i g i n

75 Q2 = f i n d O r i g i n t o r s i o n M a y a ( n o i s e _ s i g n a l ) ;

76 Q = Q2 ;

77 o r i g i n s ( 1 , : ) =Q;

78 %C r e a t e a copy of n o i s y d a t a

79 l s d a t a _ n = n o i s e _ s i g n a l ;

80 c l f ;

81 %P l o t f o r Video R e c o n s t r u c t i o n

82 s c a t t e r 3 ( n o i s e _ s i g n a l ( : , 1 ) , n o i s e _ s i g n a l ( : , 2 ) ,

n o i s e _ s i g n a l ( : , 3 ) , ’ b l u e ’ ) ;

83 ho ld on ;

84 s c a t t e r 3 ( Q2 ( 1 , 1 ) ,Q2 ( 1 , 2 ) ,Q2 ( 1 , 3 ) , ’ r e d ’ ) ;

85 a x i s ([−10 10 −10 10 −10 1 0 ] ) ;

86 ho ld o f f ;

87 F ( z ) = g e t f r a m e ( g c f ) ;

88 c l f ;

89 end

90

91

92 %% Video Maker

93 v i d e o = V i d e o W r i t e r ( ’ U l t r a s o u n d ’ , ’MPEG−4 ’ )

94 v i d e o . FrameRate = 3 0 ;

95 open ( v i d e o ) ;

96 w r i t e V i d e o ( v ideo , F ) ;

97 c l o s e ( v i d e o ) ;

.2.16 Slice Center Estimation

1
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2 %F u n c t i o n t o e v a l u a t e t h e a v e r a g e p o s i t i o n o f t h e c e n t e r o f

each s l i c e

3

4 f u n c t i o n [C]= f i n d C e n t e r s l i c e ( da t a , t h i c k n e s s )

5

6 %C i s t h e a v e r a g e c e n t e r o f t h e s l i c e

7 %Data i s t h e a r r a y o f 3D p o i n t s

8 check = 1 ;

9 i = 0 ;

10 y = 0 ;

11 %x a x i s p o s i t i o n i s f i x e d by t h e moving probe s i m u l a t i o n

12 x = ( d a t a ( 1 , 1 ) + d a t a ( s i z e ( da t a , 1 ) , 1 ) ) . / 2 ;

13 z = 0 ;

14 %Loop t o c o l l e c t s p o i n t s . S l i c e ’ s t h i c k n e s s i s an i m p o r t a n t

p a r a m e t e r

15

16 w h i l e check < s i z e ( da t a , 1 )

17 i f abs ( d a t a ( check , 1 ) − d a t a ( 1 , 1 ) ) <= t h i c k n e s s

18 i = i + 1 ;

19 y = y+ d a t a ( i , 2 ) ;

20 z = z+ d a t a ( i , 3 ) ;

21 end

22 check = check +1;

23 end

24 %Average p o s i t i o n

25 C = [ x , y . / ( i ) , z . / ( i ) ] ;

26 end

.2.17 Complex Curvature Validation

1 d a t a = c s v r e a d ( ’ T r a c k i n g V a l i d a t i o n . csv ’ ) ;
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2 Hgloba l = [ [ −1 , 0 , 0 , 2 . 8 ] ;

3 [ 0 , 1 , 0 , 3 . 7 ] ;

4 [0 ,0 , −1 ,119]

5 [ 0 , 0 , 0 , 1 ] ] ;

6 voxbeg= d a t a ( 1 , 1 ) *3+2;

7 %Number o f segmen t s p a r a m e t e r

8 seg_num =19;

9 s e g _ l e n = 0 . 0 5 . / seg_num ;

10 o r i g i n s = z e r o s ( seg_num +1 ,3 ) ;

11 c u r v a t u r e f i l t = z e r o s ( s i z e ( da t a , 1 ) , seg_num , 1 ) ;

12 c u r v a t u r e d a t a = z e r o s ( s i z e ( da t a , 1 ) , seg_num , 1 ) ;

13 r a d i u s = z e r o s ( s i z e ( da t a , 1 ) , seg_num , 1 ) ;

14 c i r c l e = z e r o s ( s i z e ( da t a , 1 ) , seg_num , 3 ) ;

15 %%

16 f o r i =2 : s i z e ( da t a , 1 )

17 %%

18 c l o s e

19 nofVoxe l s = d a t a ( i , voxbeg ) ;

20 N o f P o i n t s = d a t a ( 1 , 1 ) ;

21 c u r r e n t V o x e l M a t = z e r o s ( 3 , no fVoxe l s ) ;

22 f o r i I =1 : no fVoxe l s

23 s e g m e n t _ p o s i t i o n s = z e r o s ( 3 , N o f P o i n t s ) ;

24 %%

25 f o r i I I =1 : N o f P o i n t s

26 c u r r e n t _ s e g _ p o s i t i o n = d a t a ( i , ( 1 : 3 ) +1+3*( i I I −1) ) ;

27 s e g m e n t _ p o s i t i o n s ( : , i I I ) = c u r r e n t _ s e g _ p o s i t i o n

( 1 : 3 ) ;

28 end

29
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30 c u r r e n t V o x e l = Hgloba l * [ d a t a ( i , ( ( i I −1)*3+1+ voxbeg ) : ( (

i I −1)*3+3+ voxbeg ) ) ’ ; 1 ] / 1 0 0 0 ;

31 c u r r e n t V o x e l M a t ( : , i I ) = c u r r e n t V o x e l ( 1 : 3 ) ;

32 end

33 %% Movin Average t o t h e j o i n t s ’ p o s i t i o n s and

e v a l u a t i o n o f t h e r e s u l t s

34 o r i g i n s _ f i l t ( 1 , : ) = movmean ( s e g m e n t _ p o s i t i o n s ( 1 , : ) , 3 ) ;

35 o r i g i n s _ f i l t ( 2 , : ) = movmean ( s e g m e n t _ p o s i t i o n s ( 2 , : ) , 3 ) ;

36 o r i g i n s _ f i l t ( 3 , : ) = movmean ( s e g m e n t _ p o s i t i o n s ( 3 , : ) , 3 ) ;

37 o r i g i n s _ f i l t ( : , 1 ) = s e g m e n t _ p o s i t i o n s ( : , 1 ) ;

38 o r i g i n s _ f i l t ( : , 1 9 ) = s e g m e n t _ p o s i t i o n s ( : , 1 9 ) ;

39 s c a t t e r 3 ( o r i g i n s _ f i l t ( 1 , : ) , o r i g i n s _ f i l t ( 2 , : ) ,

o r i g i n s _ f i l t ( 3 , : ) , ’ r e d ’ ) ;

40 p l o t 3 ( s e g m e n t _ p o s i t i o n s ( 1 , : ) , s e g m e n t _ p o s i t i o n s ( 2 , : ) ,

s e g m e n t _ p o s i t i o n s ( 3 , : ) , ’ b l a c k ’ ) ;

41 p l o t 3 ( o r i g i n s _ f i l t ( 1 , : ) , o r i g i n s _ f i l t ( 2 , : ) , o r i g i n s _ f i l t

( 3 , : ) , ’ r e d ’ ) ;

42

43 %% C u r v a t u r e i s e v a l u a t e d here , v a r i a b l e j o i n t s t o

check q u a l i t y

44 s t a b i l i t y = s e g m e n t _ p o s i t i o n s ’ ;

45 s t a b i l i t y f = o r i g i n s _ f i l t ’ ;

46 [ c , d , c u r v a t u r e f i l t ( i , seg_num , : ) ] = c a l c _ c i r c l e 3 D (

o r i g i n s _ f i l t ( : , 1 1 ) , o r i g i n s _ f i l t ( : , 1 4 ) , o r i g i n s _ f i l t

( : , 1 9 ) ) ;

47 c u r 1 f ( i , 1 ) = ( ( ( a s i n ( norm ( c r o s s ( [ 0 , 1 , 0 ] , [ s t a b i l i t y f

( 1 0 , : )−[ s t a b i l i t y f ( 1 0 , 1 ) , s t a b i l i t y f ( 6 , 2 : 3 ) ] ] ) ) / norm

( [ s t a b i l i t y f ( 1 0 , : )−[ s t a b i l i t y f ( 1 0 , 1 ) , s t a b i l i t y f

( 6 , 2 : 3 ) ] ] ) ) ) *360) / 2 ) / p i ;
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48 [ c , d , c u r v a t u r e f i l t ( i , seg_num −1 , : ) ] = c a l c _ c i r c l e 3 D (

o r i g i n s _ f i l t ( : , 6 ) , o r i g i n s _ f i l t ( : , 8 ) , o r i g i n s _ f i l t

( : , 1 2 ) ) ;

49 [ c , d2 , c u r v a t u r e d a t a ( i , seg_num , : ) ] = c a l c _ c i r c l e 3 D (

s e g m e n t _ p o s i t i o n s ( : , 1 1 ) , s e g m e n t _ p o s i t i o n s ( : , 1 4 ) ,

s e g m e n t _ p o s i t i o n s ( : , 1 9 ) ) ;

50 [ c , d , c u r v a t u r e d a t a ( i , seg_num −1 , : ) ] = c a l c _ c i r c l e 3 D (

s e g m e n t _ p o s i t i o n s ( : , 6 ) , s e g m e n t _ p o s i t i o n s ( : , 9 ) ,

s e g m e n t _ p o s i t i o n s ( : , 1 1 ) ) ;

51 cu r1 ( i , 1 ) = ( ( ( a s i n ( norm ( c r o s s ( [ 0 , 1 , 0 ] , [ s t a b i l i t y ( 1 0 , : )

−[ s t a b i l i t y ( 1 0 , 1 ) , s t a b i l i t y ( 6 , 2 : 3 ) ] ] ) ) / norm ( [

s t a b i l i t y ( 1 0 , : )−[ s t a b i l i t y ( 1 0 , 1 ) , s t a b i l i t y ( 6 , 2 : 3 ) ] ] )

) ) *360) / 2 ) / p i ;

52 end

.3 Simulink Additional Code

.3.1 Simulink: choose the correct Angles and Wrenches

1 %F u n c t i o n t o choose t h e c o r r e c t a n g l e

2 f u n c t i o n [ t h e t a ]= C h o s e t h e t a s ( k , the tam , t h e t a k )

3 k= round ( k ) ;

4 i f k<2

5 t h e t a = t he t a m ;

6 e l s e

7 t h e t a = t h e t a k ;

8 end

9 end

10 %F u n c t i o n t o choose t h e c o r r e c t wrench

11 f u n c t i o n [ wrench ]= Chosewrenches ( k , wrenchm , wrenchk )

12 k= round ( k ) ;
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13 i f k<2

14 wrench=wrenchm ;

15 e l s e

16 wrench=wrenchk ;

17 end

18 end

19 %F u n c t i o n t o e x t r a c t t h e c o r r e c t i t e r a t i o n a n g l e s

20 f u n c t i o n [ t h e t a ]= Displayhome ( k )

21 k= round ( k ) ;

22 i f k<2

23 t h e t a = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

24 e l s e

25 d a t a = l o a d ( ’ t h e t a s J H 3 l u e n b e r g e r o b s e r v e r 0 _ 2 k 2 . mat ’ ) ;

26 t h e t a = d a t a . ans ( 2 : 7 , k−1) ;

27 end

28 end

.3.2 Simulink: Luenberger Observer

1 %%

2 f i e l d B o d y = i n v ( Hframes ( i d ( 1 : 3 ) , 1 : 3 ) ) * m a g n e t i c F i e l d ;

3 fo rceBody = i n v ( Hframes ( i d ( 1 : 3 ) , 1 : 3 ) )

* ( [ 0 ; −0 . 0 0 0 5 5 * 9 . 8 1 ; 0 ] ) ;%+magForce ( : , i ) ) ;

4 to rqueBody = c r o s s ( [ 0 ; 0 ; 1 ] * − t i p _ d i p o l e , f i e l d B o d y ) ;

5 %C o r r e c t o u t p u t f o r S i m u l i n k

6 wrench = [ 0 ; 0 ; 0 ; to rqueBody ] ;

7 u= z e r o s ( 6 , 1 ) ;

8 u ( 4 : 5 ) =( w r e n c h p l u s ( 4 : 5 )−wrench ( 4 : 5 ) ) . / 0 . 1 ;

9

10 %New loop f o r Hf rames t ack wi th c h a n g i n g segment number

11 H0=eye ( 4 ) ;
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12 H f r a m e s t a c k _ r ( 1 : 4 , : ) =H0 ;

13 f o r i =1 : seg_num

14 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) * 4 , : ) =H0 ;

15 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) *4−1 ,4)=H0 ( 1 : 3 , 1 : 3 )

* [ 0 ; 0 ; i * t o t _ l e n / seg_num ] ;

16 end

17 Hframes t ack = H f r a m e s t a c k _ r ;

18 %%

19 %I n i t i a l c o n f i g u r a t i o n

20 t w i s t T o t =eye ( 4 ) ;

21 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a s , 2 ) , 4 ) ;

22

23 f o r i =1 : s i z e ( t h e t a , 2 )

24 Hprev= H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i −1) , : ) ;

25 Hcurr = H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i ) , : ) ;

26 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a ( 1 , i ) + [ 0 ; 1 ; 0 ] * t h e t a ( 2 , i ) ;

27 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew ( t h e t a c u r r ) ,−

c r o s s ( t h e t a c u r r , Hprev ( 1 : 3 , 4 ) ) ] ; z e r o s ( 1 , 4 ) ] ;

28 t w i s t T o t = t w i s t T o t *expm ( T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) )

;

29 Hframes t ack ( ( 1 : 4 ) +4*( i ) , : ) = t w i s t T o t * Hcurr ;

30 end

31

32 pos =0;

33 J a c o b i a n = g e t _ j a c o b i a n ( t h e t a s , T w i s t s t a c k , H f r a m e s t a c k _ r )

;

34 f o r j =1:3

35 f o r k =1:2

36 pos=pos +1;

37 t h e t a p l u s = t h e t a s ;
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38 t h e t a m i n u s = t h e t a s ;

39 d e l t a j = z e r o s ( 6 , 6 ) ;

40 % Numer ica l D i f f e r e n t i a t i o n 1 s t P a r a m e t e r

41 t h e t a p l u s ( k , j ) = t h e t a p l u s ( k , j ) + c o n s t a n t ;

42 %Update r e f e r e n c e f rame

43 H0=eye ( 4 ) ;

44 H f r a m e s t a c k _ r ( 1 : 4 , : ) =H0 ;

45 f o r i =1 : seg_num

46 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) * 4 , : ) =H0 ;

47 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) *4−1 ,4)=H0

( 1 : 3 , 1 : 3 ) * [ 0 ; 0 ; i * t o t _ l e n / seg_num ] ;

48 end

49 Hframes t ack = H f r a m e s t a c k _ r ;

50 %%

51 %I n i t i a l c o n f i g u r a t i o n 1 s t phase

52 t w i s t T o t =eye ( 4 ) ;

53 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a p l u s , 2 ) , 4 ) ;

54 f o r i =1 : s i z e ( t h e t a , 2 )

55 Hprev= H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i −1) , : ) ;

56 Hcurr = H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i ) , : ) ;

57 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a p l u s ( 1 , i ) + [ 0 ; 1 ; 0 ] *

t h e t a p l u s ( 2 , i ) ;

58 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew (

t h e t a c u r r ) ,− c r o s s ( t h e t a c u r r , Hprev ( 1 : 3 , 4 )

) ] ; z e r o s ( 1 , 4 ) ] ;

59 t w i s t T o t = t w i s t T o t *expm ( T w i s t s t a c k ( ( 1 : 4 ) +4*(

i −1) , : ) ) ;

60 Hframes t ack ( ( 1 : 4 ) +4*( i ) , : ) = t w i s t T o t * Hcurr ;

61 end

62 %End c o n f i g u r a t i o n 1 s t phase
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63 J a c o b i a n p l u s = g e t _ j a c o b i a n ( t h e t a p l u s , T w i s t s t a c k ,

H f r a m e s t a c k _ r ) ;

64 %Numer ica l D i f f e r e n t i a t i o n 2nd P a r a m e t e r

65 t h e t a m i n u s ( k , j ) = t h e t a m i n u s ( k , j )−c o n s t a n t ;

66

67 %Update r e f e r e n c e f rame

68 H0=eye ( 4 ) ;

69 H f r a m e s t a c k _ r ( 1 : 4 , : ) =H0 ;

70 f o r i =1 : seg_num

71 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) * 4 , : ) =H0 ;

72 H f r a m e s t a c k _ r ( ( i +1) *4−3:( i +1) *4−1 ,4)=H0

( 1 : 3 , 1 : 3 ) * [ 0 ; 0 ; i * t o t _ l e n / seg_num ] ;

73 end

74 Hframes t ack = H f r a m e s t a c k _ r ;

75 %%

76 %I n i t i a l c o n f i g u r a t i o n 2nd phase

77 t w i s t T o t =eye ( 4 ) ;

78 T w i s t s t a c k = z e r o s (4* s i z e ( t h e t a m i n u s , 2 ) , 4 ) ;

79

80 f o r i =1 : s i z e ( t h e t a , 2 )

81 Hprev= H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i −1) , : ) ;

82 Hcurr = H f r a m e s t a c k _ r ( ( 1 : 4 ) +4*( i ) , : ) ;

83 t h e t a c u r r = [ 1 ; 0 ; 0 ] * t h e t a m i n u s ( 1 , i ) + [ 0 ; 1 ; 0 ] *

t h e t a m i n u s ( 2 , i ) ;

84 T w i s t s t a c k ( ( 1 : 4 ) +4*( i −1) , : ) = [ [ skew (

t h e t a c u r r ) ,− c r o s s ( t h e t a c u r r , Hprev ( 1 : 3 , 4 )

) ] ; z e r o s ( 1 , 4 ) ] ;

85 t w i s t T o t = t w i s t T o t *expm ( T w i s t s t a c k ( ( 1 : 4 ) +4*(

i −1) , : ) ) ;

86 Hframes t ack ( ( 1 : 4 ) +4*( i ) , : ) = t w i s t T o t * Hcurr ;
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87 end

88 %End c o n f i g u r a t i o n 2nd phase

89

90 J a c o b i a n m i n u s = g e t _ j a c o b i a n ( t h e t a m i n u s ,

T w i s t s t a c k , H f r a m e s t a c k _ r ) ;

91 %Numer ica l D i f f e r e n t i a t i o n Formula

92 d e l t a j =( J a c o b i a n p l u s−J a c o b i a n m i n u s ) . / ( 2 *

c o n s t a n t ) ;

93 %Gamma m a t r i x e v a l u a t i o n

94 f o r z =1:6

95 gamma ( z , pos ) =gamma ( z , pos )−d e l t a j ( 3 , z ) *9 .81+

d e l t a j ( 4 , z ) *u ( 4 ) + d e l t a j ( 5 , z ) *u ( 5 ) ;

96 end

97 end

98 end

99 %Outpu t

100 t h e t a K p l u s = t h e t a K + 0 . 5 . * i n v ( d iag_c−gamma ) * ( J a c o b i a n ’*

u ) ;

101 end

102 end
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