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Sommario

Uno dei principali obiettivi della robotica mobile autonoma è lo sviluppo di

robot che siano in grado di agire indipendentemente dal controllo umano e

di operare in modo efficiente nell’ambiente in cui si trovano. In molti casi, ciò

richiede che il robot abbia la capacità di costruire una mappa dell’ambiente

e, simultaneamente, di localizzarsi al suo interno, un compito che è noto con

il nome di Simultaneous Localization And Mapping (SLAM). L’importanza

di questo problema ha spinto la comunità scientifica a sviluppare un elevato

numero di algoritmi SLAM e a proporre una vasta gamma di soluzioni per

la valutazione delle loro prestazioni. Tali soluzioni sono però utilizzabili solo

per valutazioni a posteriori su dati già collezionati e non permettono di fare

previsioni sulla prestazione attesa di un algoritmo SLAM su un ambiente

non ancora visitato.

L’obiettivo di questa tesi è di contribuire a colmare questa lacuna medi-

ante lo sviluppo di uno strumento software che permetta la predizione della

prestazione attesa di un algoritmo SLAM su un ambiente non ancora visi-

tato, sulla base di caratteristiche note dell’ambiente stesso. Il nostro metodo

utilizza simulazioni robotiche automatizzate per misurare le prestazioni di

un algoritmo SLAM su un dato insieme di ambienti, costruisce un modello

della relazione tra i valori misurati e le caratteristiche degli ambienti in cui

sono stati osservati, e utilizza tale modello per predire la prestazione attesa

dell’algoritmo SLAM in nuovi ambienti partendo dalle loro caratteristiche.

Il nostro studio considera diverse caratteristiche per descrivere gli am-

bienti e molteplici metodi di regressione per costruire i modelli, e prevede

l’analisi delle loro prestazioni in diversi scenari di valutazione. I risultati ot-

tenuti sia in ambienti simulati sia in esperimenti con robot reali mostrano

che il nostro metodo è in grado di catturare in modo adeguato la relazione

esistente tra la struttura di un ambiente e la corrispondente prestazione di

un algoritmo SLAM, e di predire la prestazione dell’algoritmo SLAM in un

nuovo ambiente con notevole accuratezza.

iii





Abstract

One of the main goals of autonomous mobile robotics is the development of

robots that are able to act independently from continuous human control

and efficiently operate in their environments. In many cases, this requires

a robot to build a map of its surroundings while simultaneously keeping

track of its position within it, a task that is known as Simultaneous Local-

ization And Mapping (SLAM). The relevance of this problem has led the

research community to develop a huge number of SLAM algorithms and

to propose several methods for their evaluation. However, such evaluation

methods are designed to operate on already collected data and cannot pre-

dict the expected performance of a SLAM algorithm on a yet to be explored

environment.

The goal of this thesis is to take a first step towards overcoming the limi-

tations of the current SLAM evaluation techniques by developing a software

tool that employs known features of unexplored environments to predict the

performance of SLAM algorithms in those environments, without requiring

the availability of already collected data. The proposed method uses autom-

atized robotic simulations to collect the performance measures of a SLAM

algorithm on a number of environments, builds a model of the relationship

between the measured performance values and the features of the environ-

ments, and exploits such model to predict the performance of the algorithm

in unseen environments, starting from the analysis of their features.

We investigate the usage of several types of environmental features and

models based on regression methods, and we assess their performance in

different evaluation scenarios. Our results on both simulated environments

and real robot experiments show that our approach is able to adequately

capture the relationship between an environment’s structure and SLAM

performance and to predict the performance of a SLAM algorithm in an

unseen environment with high accuracy.
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Chapter 1

Introduction

One of the main goals of autonomous mobile robotics is the development of

robots that are able to act independently from continuous human control

and efficiently operate in their surroundings. Among the many prerequisites

that a mobile robot must possess in order to fulfill this goal, moving safely in

an environment and being able to reach a goal location are fundamental [1].

These tasks usually require the robot to use its sensors to continuously track

its position within an internal representation of the environment known as

map.

In some cases, a map of the environment may be already known to the

robot prior to the execution of its assigned task. In most cases, the robot has

to build a map of its surroundings while simultaneously keeping track of its

position within it, a problem that is known as Simultaneous Localization And

Mapping (SLAM) or Concurrent Mapping and Localization (CML). Its rel-

evance towards the achievement of higher levels of robot autonomy has lead

the research community to develop a wide variety of SLAM algorithms, with

new ones being continuously proposed, as surveyed in publications like [2–4],

and to develop an equally broad range of approaches for their evaluation,

both in terms of testing scenarios [5–8] and of performance metrics [9–12].

However, a common trait of all the proposed evaluation methodologies is

that they are designed to conduct evaluations on already collected data, i.e.,

to assess the performance of a SLAM algorithm in a certain environment

only after the environment has been explored. This represents a significant

obstacle towards a widespread adoption of autonomous mobile robots, as

ex post performance evaluation is often impractical and offers very little

information about the expected level of performance of a SLAM algorithm

in environments other than those on which the evaluation has already been

performed.
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The goal of this thesis is to take a first step towards overcoming the lim-

itations of the state of the art SLAM evaluation techniques by developing

a software tool that employs known features of unexplored environments to

predict the performance of SLAM algorithms in those environments. This

approach provides a significant impact on the development and deployment

of autonomous mobile robots, as it allows designers and manufacturers to

assess the suitability of a SLAM algorithm for a given application scenario

at design time, eliminating the need for extensive field testing sessions and

therefore reducing the cost and length of the development cycle. It also opens

up the possibility to perform more extensive, albeit predictive, comparisons

between SLAM algorithms, and to estimate the SLAM performance of an al-

ready developed robot in a real world scenario in absence of accurate ground

truth positioning data.

The starting point of our work is the selection of a performance metric to

evaluate the performance of a SLAM algorithm in an environment. Several

approaches have been proposed in the literature for this purpose, some of

which rely on the visual similarity between the map built by the SLAM al-

gorithm and a ground truth map of the environment [3,13], while others are

based on the assessment of particular properties of the reconstructed map

or of the estimated trajectory [9–11]. In this work, we use the localization

error performance metric proposed by Kümmerle et al. in [11], which mea-

sures the performance of a SLAM algorithm as a function of its ability to

accurately reconstruct the trajectory followed by a robot in a run executed

in an environment. However, the original method proposed in [11] requires a

significant amount of human intervention and does not capture the potential

variability of SLAM algorithm performance across different runs in the same

environment.

We therefore introduce a generalization of this metric to represent the

expected localization error of a SLAM algorithm in an environment and we

propose a system for its prediction that does not depend on the availability

of already collected data. In this sense, the proposed method opens the

possibility to perform a predictive benchmarking of SLAM algorithms, i.e.,

to anticipate the performance results that would be obtained by a SLAM

algorithm in a previously unseen environment.

The proposed method uses automatized robotic simulations to collect the

performance measures of a SLAM algorithm on a number of environments,

builds a model of the relationship between the measured performance values

and the features of the environments, and exploits such model to predict

the performance of the algorithm in unseen environments, starting from the
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analysis of their features.

In this work, we consider the well-known GMapping [14] SLAM algo-

rithm as the subject of our analysis in view of its widespread usage in the

mobile robotics research community. Although GMapping uses odometry

and laser data to perform localization and mapping, our methodology does

not assume the usage of any particular type of sensor, and is therefore ap-

plicable to a wide range of algorithms and application scenarios.

We investigate the usage of several features of the environments based on

their geometrical, topological, and structural properties, and we propose two

novel quantities that characterize the environments based on the analysis of

the environments’ skeletons represented by their Voronoi graphs.

We explore the effectiveness of both simple linear regression models and

multiple linear regression models in terms of average prediction accuracy and

explained error variance on a wide range of simulated indoor environments.

We also validate our method on sensory data collected by real robots, both

on a publicly available dataset and on our own set of experiments conducted

at the AIRLab laboratory at Politecnico di Milano. Our evaluations show

that simple linear models based on properties of Voronoi graphs are able to

adequately capture the relationship between an environment’s structure and

the expected localization error of GMapping, and that predictions based on

our methodology are able to achieve a high level of accuracy in simulations

as well as in real world experiments.

The thesis is structured as follows.

In Chapter 2, we present an extensive, although not exhaustive, review

of the state of the art of the field of autonomous exploration and mapping in

mobile robotics, we survey some relevant examples of SLAM algorithms, and

we review some of the most significant techniques for the evaluation of their

performances. We also introduce the problem of performance generalization

and prediction, examining some of the shortcomings of the aforementioned

evaluation solutions and reviewing the research on this topic within the

broader field of autonomous robotics.

In Chapter 3, we discuss the main motivations and goals of this research,

we provide a formal characterization of the problem that we aim to solve,

and we review the assumptions behind our work.

In Chapter 4, we provide a detailed explanation of our approach to data

collection, highlighting the main limitations of the methodology proposed

by Kümmerle et al. in [11] and proposing a series of enhancements to im-

prove the scalability, accuracy, and representativeness of the localization

error performance metric.
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In Chapter 5, we provide an in-depth explanation of the logical design

of our solution. We discuss the features that we consider for the character-

ization of the environments, we present the regression techniques that we

adopt for model learning, and we explain how we use the obtained models

to perform prediction.

In Chapter 6, we present the architecture of our system and we provide a

thorough explanation of the main software components that implement our

solution. For each component, we discuss the details of its implementation

and we review the technical choices behind its design.

In Chapter 7, we present the setup and the results of the experiments

that we conducted to evaluate the validity of our approach. We start by

discussing the evaluation procedure and the metrics that we adopted to

assess the quality of our models, and we subsequently describe the tests

that we performed on our system and the results that we obtained.

In Chapter 8, we give a summary of our work, we draw some conclu-

sions on our results and we offer some suggestions for future research and

improvements.

In Appendix A, we provide a reference manual of the parameters that

control the behavior of our system and we detail the configurations we

adopted for our experiments.
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Chapter 2

State of the art

In this chapter, we present an extensive, but not exhaustive, review of the

state of the art of the field of autonomous exploration and mapping in mo-

bile robotics. At first, we overview some of the most relevant issues con-

nected with the navigation, exploration and mapping of environments by

autonomous robots. Next, we survey some relevant examples of systems

taken from the landscape of algorithms that have been proposed to solve the

problem of Simultaneous Localization and Mapping (SLAM); this section is

by no means a complete study of all the available solutions, but is intended

to provide an overview of the most successful approaches. Afterwards, we

review some of the most significant techniques for the evaluation of the per-

formance of SLAM algorithms, focusing on several evaluation methodologies

and performance metrics. Finally, we introduce the problem of performance

generalization and prediction, examining some of the shortcomings of the

aforementioned evaluation solutions in real-world applications and reviewing

the research on this topic within the broader field of autonomous robotics.

2.1 Exploration and mapping

As noted by Ceriani et al. [1], among the many abilities that a mobile robot

must possess in order to act autonomously, moving safely in an environment

and being able to reach a goal location are fundamental ones. In particular,

this requires the robot to be able to localize itself and its goal in the envi-

ronment, a task that typically involves the usage of some form of explicit

representation of the environment, i.e., a map, and the localization of the

pose of the robot and of its goal on such map.

In some cases, a map of the environment may be already available for

the robot to use. The robot is thus only required to perform self-localization
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and navigation, using its sensors to gather sufficient information to produce

an accurate estimate of its pose within the map and planning a feasible path

from its current pose to the goal.

In other instances, a map of the environment in which the robot oper-

ates may not be known in advance. In these cases, the robot must also be

capable of building a map of the environment by itself. The combined prob-

lem of constructing or updating a map of an unknown environment while

simultaneously keeping track of the agent’s location within it is called Simul-

taneous Localization and Mapping (SLAM) and is one of the most difficult

and challenging tasks that autonomous agents are required to perform.

In order to devise an effective solution for the SLAM problem, several

other sub-problems have to be faced and dealt with first; in the following

sections, we are going to review some of the most significant ones.

2.1.1 Map representation

A first problem to be solved while designing a comprehensive solution for

autonomous navigation and mapping is the choice of the map representation.

A typical choice is to use occupancy grid maps, where the environment is

modelled as a two-dimensional matrix where each cell stores the probability

of its corresponding region of the environment being occupied by an obsta-

cle. Examples of grid-based approaches can be found in [15], [16], and [17].

One way to store and visualize occupancy grid maps is to normalize the

probability values of the cells to the range of natural numbers between 0

and 255 and thus employ a 8-bit grayscale representation. Figure 2.1a il-

lustrates this approach when the state of each cell is known with certainty,

while Figure 2.1b shows the usage of gray shades to denote areas for which

no occupancy information is available.

Another approach that is often used for its memory efficiency is line-based

mapping. In this case, the map uses line segments anchored to an absolute

two-dimensional metric frame to represent obstacles, while free areas are not

explicitly stored. Figure 2.1c shows an example of this approach. Some works

using line segments for mapping purposes are [18], [19], [20], [21], and [22].

Both occupancy grid maps and line-based maps belong to the family of

metric maps, as they place objects in a 2D or 3D space. On the contrary,

topological maps only consider places and relations between them, building

a graph whose nodes represent places and arcs represent paths. An example

of this approach is shown in Figure 2.1d, in which each node is associated

to a room and arcs represent the possibility to directly move from a room

to another, for example by means of a door connecting the two. These maps
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(a) A binary occupancy grid map (b) A grayscale occupancy grid map

(c) A line-segments map (d) A topological map

Figure 2.1: The same floor plan represented with four different types of maps.

often, but not necessarily, also store the relative distances between places.

Topological maps have been used, either alone or in combination with metric

maps, in several works, including [23], [24], [25], and [26].

2.1.2 Exploration strategy

Besides the choice of an appropriate map representation, another significant

problem is the selection of the exploration strategy. Although a robot could

roam the environment in a completely random fashion and still eventually

collect enough data to build a complete map, real-world applications require

a much higher level of efficiency.

One possible option that has traditionally been employed in mobile

robotics is to have the robot being remotely controlled by a human op-

erator. However, this approach severely limits the ability of the robot to act

on its own and is therefore of limited interest towards the achievement of

higher levels of robot autonomy.

Early proposals to overcome this problem include [27], in which Mataric

introduced the idea of wall-following exploration, and [23], where Thrun

et al. discussed a greedy approach in which the robot uses value iteration

to always move on a minimum-cost path to the nearest unexplored grid

7



cell. However, both these approaches have very limited applicability, as they

require all walls to intersect at right angles and be clearly visible to the

robot.

To overcome these shortcomings, Yamauchi [28] proposed a frontier-

based exploration paradigm, in which the robot tries to maximize the amount

of useful gathered information by moving towards one of several available

frontiers, i.e., regions on the boundary between free known space and un-

explored space. Figure 2.2 illustrates this concept by highlighting frontiers

in blue. This approach has essentially become a de-facto standard since its

introduction, both in single agent and multiple agents scenarios [29,30]. How-

ever, the order in which frontiers are explored has a significant impact on

the time required to build a complete map of the environment. Several fron-

tier selection approaches have been proposed, from very simple exploration

strategies like nearest frontier [28], farthest frontier, and nearest frontier

cluster, to more complex ones, as in [31], [32], [33] and [34]. Work has also

been done to quantitatively compare the performance of these approaches,

as in [35], [36] and [37].

Figure 2.2: A snapshot of the occupancy grid map of an indoor environment during

exploration. Frontiers are highlighted in blue in the rightmost image.

2.1.3 Sensors selection

Finally, a fundamental aspect in the development of SLAM algorithms is

the selection of available sensors. Much like the various human senses cover

different aspects of reality, the sensors of a robot determine which facets of

the environment it is able to perceive and use for localization and mapping.

Ultrasound proximity sensors, or sonars, are typically insufficient to per-

form reliable localization, although there have been attempts to do so [38,39],

and are most frequently used in conjunction with other sensors [40] or to

perform collision avoidance. Odometry measurements, either coming from

rotary informations on wheeled robots or obtained through an Inertial Mea-
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surement Unit (IMU) [41], are also used to keep track of the amount of

distance and rotation travelled by the robot.

Laser range scanners represent a much more complete source of infor-

mation, as they can operate on distances that range from few millimeters

to several meters, are able to work in the darkness, and have a significantly

higher accuracy than sonars. In fact, they are a typical choice for high per-

formance applications, and several algorithms [42–45] have been designed to

take advantage of their capabilities.

Many approaches to perform localization and mapping using visual in-

formation, known as Visual SLAM, have also been proposed. In this case,

the information may come from plain monochrome [46, 47] or RGB [48]

cameras, or from RGB-D cameras that are also able to capture information

about depth [49,50].

The integration of multiple sensors to perform the same task is called

sensor fusion and can substantially enhance the performance of SLAM al-

gorithms by compensating for the limitations of each sensor type. However,

the choice of the sensors is often dictated by requirements about cost, space,

or power consumption, thus practically limiting the amount and diversity of

sensory information that can be exploited.

2.2 SLAM algorithms

With SLAM being such a significant problem to solve towards achieving

higher levels of robot autonomy, a lot of research has been done on developing

efficient solutions.

In 2003, Thrun [51] conducted a survey of the main 2D SLAM techniques

available at the time, without focusing on any particular implementation;

a similar approach was adopted in 2009 by Kümmerle et al. [11], who clas-

sified several 2D SLAM methods according to their underlying estimation

techniques. On a more practical note, a 2007 study by Balaguer et al. [2]

identified three popular SLAM algorithms for laser-equipped robots. In 2013,

Santos et al. [3] surveyed four additional laser-based SLAM techniques avail-

able as packages for the Robot Operating System (ROS) middleware. Similar

surveys continue to be conducted [4] in order to keep track of the latest ad-

vancements on SLAM techniques.

Here, we present an overview of the most significant SLAM approaches

that have been proposed over the years, as well as some of the most widely

used implementations. This section is by no means a complete survey of the

available techniques, but is intended to give a general perspective on the

9



methodologies that have been explored and that continue to be developed

by the research community.

2.2.1 Extended Kalman Filters

Extended Kalman Filters (EKFs) were among the first solutions to be pro-

posed to perform simultaneous localization and mapping [52–54], but are

still actively explored and improved by the research community [55,56]. The

idea of EKF-SLAM algorithms is to exploit landmarks, i.e., predefined items

that can be perceived by the robot sensors, to identify recurrent locations in

the environment. The type of landmarks to be used is strictly dependent on

the kind of sensors the robot is equipped with. A landmark may be identified

through collisions, proximity detection, computer vision techniques or other

means; for instance, Leonard et al. [57] proposed a method that uses sonar

information to detect the presence of geometric beacons in the environment.

In EKF-based SLAM, the map does not directly represent a 2D depiction

of the environment, as with the case of occupancy grid maps; instead, it is

a Gaussian variable that links the current estimate of the robot pose to the

estimated pose of every other landmark in the environment.

As with plain Kalman Filters, there are two steps that contribute to the

estimation of the robot’s pose: the prediction step, which is performed when-

ever the robot moves and reflects the expected effect of the motor control

process on the robot pose, and the correction step, which is triggered by the

robot observations of the landmarks. This process can be seen as an appli-

cation of the Bayes formula, in which the Kalman prediction represents the

prior and is combined with the information obtained by the sensory obser-

vations to produce a more accurate estimation of the robot’s pose. A similar

principle is also used to continuously update the map of the environment.

An example of an algorithm that relies on EKFs is MonoSLAM 1,2 [48],

which uses a standard monocular camera to perform real-time 3D localiza-

tion and mapping.

The main limitation of EKFs for SLAM applications is their computa-

tional complexity, which is quadratic in the number of features, or land-

marks, in the environment. This effectively reduces the applicability of full

EKFs solutions to small and relatively feature-poor environments, and hin-

ders their scalability to more complex and realistic scenarios. To overcome

this limitation, Neira et al. [56] proposed an EKF implementation based on

divide-and-conquer that has a reduced computational complexity of O(n).

1https://openslam.org/ekfmonoslam.html
2https://github.com/rrg-polito/mono-slam
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Independently, Thrun et al. [58] and Eustice et al. [59] investigated the pos-

sibility to introduce approximations to enforce sparsity in the information

form of EKFs, also known as Extended Information Filters (EIFs), to en-

hance their performance.

2.2.2 Particle Filters

Similarly to EKFs, Particle Filters (PF) are an application of Bayes filters.

A particle filter is a non-parametric and recursive Bayes filter in which the

posterior probability is directly represented by a set of weighted samples

known as particles. Each particle is an hypothesis about the state of the en-

vironment, which may comprise an estimate of the robot pose, a candidate

map of the environment seen so far, or both. The fundamental assump-

tion behind PFs is that the next state of the environment depends only on

the current one, i.e., the estimation process is Markovian [60]. Among the

many advantages of PFs over traditional EKFs, their ability to represent un-

certainty through multimodal distributions and to deal with non-Gaussian

noise are particularly important ones.

Some of the most relevant algorithms that are based on this kind of

approach are FastSLAM, TinySLAM, DP-SLAM, and GMapping.

FastSLAM [61] uses a peculiar combination of PFs and EKFs to obtain

better performance than plain EKF-based algorithms. While at its core it

is built around a Kalman filter that tracks the position of a fixed number

of predetermined landmarks, it also uses a particle filter to estimate the

path posterior and update the estimated robot pose. The particle filter is

subject to Rao-Blackwellization, a factorization technique that breaks the

problem of jointly estimating the robot pose and the map in two separate

problems; as the map strongly depends on the estimated pose of the robot,

this marginalization process makes the estimation considerably more effi-

cient. FastSLAM has been shown to work with over 50,000 landmarks at a

time.

TinySLAM 3,4 [43], also known as CoreSLAM5 in one of its implemen-

tations for the Robot Operating System (ROS) robotic middleware6, is a

200 lines of C-language code SLAM algorithm that was designed to be as

simple and easy to understand as possible, while simultaneously maintain-

ing an acceptable level of performance. In order to perform localization and

3https://openslam.org/tinyslam.html
4http://wiki.ros.org/tiny_slam
5http://wiki.ros.org/coreslam
6http://www.ros.org/
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mapping, TinySLAM requires both odometry information and obstacle dis-

tance data provided by a laser range scanner. In TinySLAM, each particle

is an hypothesis on the current pose of the robot in the environment and

has an associated weight, which represents the likelihood of that hypothesis

being true, that gets updated at every new laser observation according to a

scan-to-map distance function; the best hypotheses are kept, the worst are

eliminated, and new ones are generated. To keep complexity to a minimum,

the algorithm maintains a single estimate of the environment’s map at any

time.

Although still based on particle filters, DP-SLAM 7 [62] implements a

much more complex technique for SLAM estimation. From a sensory point

of view, it requires the same data of TinySLAM, i.e., odometry and laser

scans. However, instead of using particles to just represent hypotheses on

the robot pose, DP-SLAM uses them to store both the estimated robot pose

and a candidate map of the environment. It does so by using a peculiar data

structure known as Distributed Particle (DP), which allows the algorithm to

share common map parts across several particles, thus significantly reducing

the memory footprint per particle and allowing for a much higher number

of hypotheses at any given time.

Developed by Grisetti et al. [14,42], GMapping8,9 also uses sensory infor-

mation from odometry and laser scans to perform localization and mapping.

Differently from DP-SLAM, particles carry individual candidate maps of the

environment, without sharing any data and with no explicit modelling of the

robot pose. Similarly to FastSLAM, the particle filter is Rao-Blackwellized;

however, GMapping also relies on two additional techniques to improve the

overall mapping accuracy. First, the particles distribution is built by directly

incorporating information from the latest laser observation into the model,

instead of relying just on odometry data; this significantly reduces the esti-

mation error, so that less particles are required to represent the posterior.

Second, adaptive resampling is used to reduce the total number of parti-

cles only when needed, thus keeping a greater variety of hypotheses and

increasing the accuracy of the estimation.

2.2.3 Constrained optimization techniques

Finally, the SLAM problem has also been faced from the point of view of

constrained optimization methods. The idea behind this family of techniques

7https://users.cs.duke.edu/~parr/dpslam/
8https://www.openslam.org/GMapping.html
9http://wiki.ros.org/slam_GMapping
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is that, at its core, SLAM is an optimization problem, whose goal is to

find the most likely hypothesis for the environment’s map and the robot

pose within it given the available sensor observations. Traditional maximum

likelihood approaches are unapplicable to SLAM due to the high number of

constraints that need to be taken into account; however, several techniques

have been presented to overcome this issue by using approximations [38,63].

One of the most wildly used algorithms based on this approach is Hec-

torSLAM 10 [45]. HectorSLAM is designed to work with laser range scanners,

or LIDARs, and it supports 3D navigation using an inertial sensing system.

As it does not rely on odometry, it is an ideal candidate for aerial appli-

cations; however, this can be a drawback in applications where odometry

information is available. The algorithm matches the scans obtained by the

LIDAR sensor using a Gauss-Newton optimization method to solve a least

square error minimization problem and find the rigid transformation that

best fits the projected laser beams with the map. For aerial applications

that need 3D state estimation, an EKF is also used.

Another method based on constrained optimization is LagoSLAM [64],

a graph-based SLAM algorithm developed by Carlone et al. in which nodes

represent the relative poses assumed by a mobile robot along a trajectory

and edges denote the existence of a relative measurement between two poses.

The algorithm attempts to estimate the set of absolute poses P in the refer-

ence frame F that maximize the likelihood of the observations by minimizing

a nonlinear, non-convex cost function through a series of local convex ap-

proximations.

Finally, it is worth noting that progress in this field has not been confined

to the academic research community, but has also seen active development

within the robotic industry. An example of commercial graph-based SLAM

algorithm is KartoSLAM 11, a localization and mapping solution developed

by Karto Robotics12.

2.3 SLAM performance evaluation

As the number of algorithms developed to solve the SLAM problem keeps

growing, finding reliable ways to assess their performance has become a sig-

nificant challenge for the robotics research community. This problem is in

fact non trivial, as different SLAM algorithms applied to the same environ-

ment may produce very different results, as shown in Figure 2.3. In addition,

10http://wiki.ros.org/hector_slam
11http://wiki.ros.org/slam_karto
12https://www.kartorobotics.com
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different SLAM algorithms may use different map representations, making

the comparison of their results difficult.

2.3.1 Evaluation scenarios

The first step in the development of reliable SLAM evaluation approaches

is the identification of appropriate evaluation scenarios in which SLAM al-

gorithms can be tested.

One approach that has been extensively investigated by the research

community is to perform robotic competitions. In a robotic competition, a

custom evaluation environment is created to either mimic a real application

environment or to be particularly hard for a robot to handle. The robot is

then assigned a task whose execution typically requires it to move from one

point of the environment to another; the performance of the used SLAM

algorithm is then indirectly evaluated by means of the overall performance

of the robot at the given task. As the quality of the reconstructed map af-

fects the ability of the robot to successfully complete the task, it is assumed

that the systems that achieve the highest overall performance are also the

best performing on the SLAM subtask. This approach has been used to

evaluate, among others, the performance of cleaning robots [IROS, 2002],

self-driving cars in an urban area [Darpa, 2007], rovers moving in a simu-

lated Mars setting [ESA, 2008], and robots operating in Urban Search and

Rescue scenarios [RoboCup Federation, 2009]. It has also been used for the

evaluation of domestic service robots and industrial robots in the context

of the RoCKIn project13 of the European Robotic League14, as documented

in [5], [65], and [66].

(a) HectorSLAM (b) GMapping (c) KartoSLAM (d) CoreSLAM (e) LagoSLAM

Figure 2.3: Occupancy grid maps of the same environment obtained by different SLAM

algorithms through Stage simulations [3].

Two important shortcomings of robotic competitions are their limited

scale and little resemblance to real application environments. This is due to

13http://rockinrobotchallenge.eu/
14https://www.eu-robotics.net/robotics_league/
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the complexity and cost of setting up a mock evaluation environment, which

results in most competitions being held in relatively small settings that are

poor proxies for the variety of environments that characterize real-world

applications.

Another significant shortcoming of competitions is the significant com-

plexity and diversity of hardware and software settings that have an impact

on the robots’ performances. As each robot has a different hardware archi-

tecture, software stack, and selection of navigation and mapping parameters,

it is extremely difficult to say how much of a robot’s performance is due to

the choice of the SLAM algorithm and how much is instead due to other

factors. Moreover, the task is typically performed a limited number of times,

or in some cases just once; as we will discuss in Section 3.2, however, the

performance of a SLAM algorithm is not guaranteed to remain stable across

multiple repetitions of the same task, so that an individual execution of the

task may not be an accurate depiction of the actual average performance of

the algorithm at that task.

These limitations, in addition to both hardware and software settings of

the robots being tuned to the specific context of each competition, make it

difficult to draw conclusions on the expected performance of a given SLAM

algorithm in more realistic settings.

To overcome some of these problems, the robotics community has pro-

posed to collect and publish collections of standard datasets for anyone to

use as benchmarks. Evaluating SLAM algorithms on standardized sets of

environments and robot settings is also a good experimental practice, as it

ensures reproducibility, replicability, and comparability of the results sim-

ilarly to what well-defined experimental methodologies guarantee in other

branches of science.

Radish15,16 [6] is one of the oldest efforts in this direction. Proposed

by Howard and Roy in 2003, it offers a collection of over 40 datasets of

explorations conducted by real robots in many different, although mostly

indoor, environments. The datasets typically consist of records of the sen-

sory data collected during a run of a robot, an indication of which SLAM

algorithm has been used, and a visual representation of the final map pro-

duced. However, the datasets do not adhere to a common standard and have

different levels of completeness. Most of them include laser scans and odom-

etry data, while others include sonar data or monocular camera snapshots.

The recorded data are sometimes offered in Carmen Log File (CLF) format,

as it is commonly used in conjunction with ROS, but this is not always the

15http://radish.sourceforge.net
16http://cres.usc.edu/radishrepository/view-all.php
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case. Some of the environments are explored by autonomous robots, whereas

in others the robots are tele-operated. Almost none of the available datasets

include ground truth data, neither of the followed trajectory nor of the floor

plan of the building, preventing the evaluation of many performance metrics

that are based on some form of a priori knowledge about the actual map

and trajectory. Finally, although it is still currently widely used by the re-

search community, the website has not been updated in over eight years, so

it doesn’t reflect the state of the art of SLAM technology anymore.

Fontana et al. [1] conducted a similar, but more ambitious, effort in 2008

called the RAWSEEDS project17 [7]. It was proposed to overcome the limi-

tations of Radish by performing multiple explorations of each environment,

publishing recorded data in a defined and well-documented standard, si-

multaneously collecting information from a variety of sensors, and offering

ground truth data of both the robot trajectory and the building floor plan

of each exploration. Unfortunately, it only collected very few datasets, and

it hasn’t been updated since 2009.

Other publicly available datasets include runs performed at the KTH

Royal Institute of Technology18 and at the MIT Killian Court location19,

both of which were collected in the early 2000s. More recent efforts include

dataset collections from the Computer Vision Group of the Technical Uni-

versity of Munich20 [67,68]. Additional resources can be found on the website

of the OpenSLAM initiative21.

Having a real robot roaming a physical environment, either autonomously

or in a tele-operated fashion, is also a major hurdle for the evaluation of

SLAM algorithms because of the significant time and money that are neces-

sary to perform the experiments. Moreover, it dramatically limits the scale

and diversity of the tests that can be reasonably conducted to rather small

environments, like specially fitted laboratory rooms, that fail to replicate

the complexity of many real-world application environments. Simulation

has been proposed as a possible solution to this problem, leading to the

development of several robotic simulators.

The Player/Stage Project22 [8] is a suite of robotic tools developed by

Howard et al. since 2003 to simplify the design, implementation and testing

of robots. While Player provides a distributed, simple and clean control

17http://www.rawseeds.org/home/
18urlhttp://www.nada.kth.se/ johnf/kthdata/dataset.html
19http://www.ijrr.org/contents/23_12/abstract/1113.html
20https://vision.in.tum.de/data/datasets
21http://openslam.org/
22http://playerstage.sourceforge.net
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interface for a robot’s sensors and actuators, Stage23,24 is a lightweight robot

simulator that can handle populations of hundreds of virtual robots in a two-

dimensional bitmapped environment. Stage supports a variety of actuators

and sensors, including grippers, wifi modules, blinking lights, lasers, sonars

and infrared ranger sensors. Simulated robots can be differential-steer drive

models, omnidirectional models, or car-like; a simple odometry model allows

to simulate the effects of a uniformly distributed random error on odometry

readings. The suite can also be used in conjunction with ROS.

To overcome the limitations of two-dimensional simulations, Howard et

al. introduced Gazebo25,26 [69], an open-source robotic simulator that recre-

ates 3D dynamic multi-robot environments. It is built on top of the Open

Dynamics Engine27 to accurately simulate the dynamics and kinematics of

articulated rigid bodies. Compared to Stage, which simulates a purely 2D en-

vironment, Gazebo enables more complex simulations that accurately mimic

real-world physics and offer the possibility to simulate a broader range of

actuators and sensors, which can also be extended via third party plugins.

USARSim28 [70] is an alternative robotic simulator developed by Carpin

et al. to support the virtual robots competition within the RoboCup initia-

tive. Despite being originally conceived for Urban Search and Rescue ap-

plications, it has evolved into a full-fledged, general purpose multi-robot

simulator that can be extended to model arbitrary application scenarios.

USARSim leverages Unreal Engine29, a commercially available game engine

produced by Epic Games, Inc.30, to simulate 3D environments with high

fidelity. Like Gazebo, it supports a wide range of actuators and sensors that

can be extended via third party plugins.

2.3.2 Performance metrics

The second step in the development of reliable SLAM evaluation approaches

is the definition of a suitable performance metric. To this regard, several

approaches have been proposed over the years.

In [2], Balaguer et al. assess the performance of three SLAM algorithms -

GMapping, GridSLAM, and DP-SLAM - by visually estimating the fidelity

of the reconstructed maps of a set of indoor environments with respect to

23https://github.com/rtv/Stage
24http://wiki.ros.org/stage
25http://gazebosim.org
26http://wiki.ros.org/gazebo_ros_pkgs
27http://www.ode.org
28https://sourceforge.net/p/usarsim/wiki/Home/
29https://www.unrealengine.com
30https://www.epicgames.com
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their ground truth counterparts, both in real world and in simulation with

USARSim. However, the study lacks rigour and replicability, as the chosen

performance metric is inherently subjective.

In [13], Amigoni et al. propose a methodology to address these shortcom-

ings. According to this study, in order to effectively evaluate and compare

different SLAM algorithms it is necessary to: i) provide extensive information

about the produced maps, ii) report the behavior of the mapping system for

different values of the parameters, iii) include one or more examples of maps

produced following a closed loop path, and iv) whenever a ground truth

map is available, use it to assess the quality of the estimation by evaluating

its distance from the produced map according to a well-defined similarity

metric. Furthermore, the datasets used to perform the evaluation must be

publicly available, in order to let other researchers replicate the results.

In [9], Colleens et al. argue that comparing the map produced by a SLAM

algorithm to its ground truth counterpart is not an appropriate evaluation

metric. In fact, they claim that the main purpose of SLAM algorithms is not

to produce human-understandable maps, but rather to create an appropriate

representation of the robot’s surroundings to enable the execution of some

other task, like navigation. In this context, the degree of accuracy of a pro-

duced map with respect to a known ground truth does not necessarily reflect

its usefulness, as schematic representations of the environment could still be

sufficient for the completion of the desired task while more visually faithful

representations could lack details, like doors and passages, that are crucial

for the successful completion of the task. For this reason, they propose to

use two different metrics: the first is the degree to which the paths created

in the generated map would cause the robot to collide with a structural

obstacle in the real world, and are therefore invalid; the second is the degree

to which the robot should be able to plan a path from one pose to another

using the generated map, but cannot because such paths are invalid in the

ideal map. However, this approach also suffers from two main limitations,

as it can only be applied to SLAM algorithms that produce occupancy grid

maps as outputs and it requires precise alignment of the produced map with

the ground truth map in order to verify whether paths identified in one of

the two maps are also viable in the other.

In [7] and [10], Fontana et al. propose the adoption of several methodolo-

gies for SLAM algorithms evaluation depending on the context of applica-

tion. Expanding on the idea described by Colleens et al. in [9], they propose

to adopt performance metrics that capture the ability of SLAM algorithms

to produce useful maps in the contexts of localization and navigation. Their

main contribution in this respect is the introduction of a Self-Localization
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Error metric, computed by processing the distance errors between the esti-

mated pose of the robot and the corresponding pose from the ground truth

trajectory, and an Integral Trajectory Error metric, which is similar to the

self-localization error but focuses on the overall distance between the recon-

structed and ground truth trajectories over the whole path of the robot.

It must be noted that both these metrics require ground truth trajectory

information; Ceriani et al. address this problem in [1], in which they present

two methodologies for collecting ground truth data for indoor localization

and mapping based, respectively, on a network of fixed cameras and on a

network of fixed laser scanners.

A significant drawback of metrics that rely on absolute poses is that

they are strongly influenced by the timestamp at which an error occurs. This

introduces a strong bias in the evaluation, as the same error may lead to very

different results depending on whether it is introduced at the beginning, in

the middle, or at the end of an exploration. Consider for instance a rotation

error of a few degrees: if the error is introduced at the end of an exploration,

its effect will be limited to a very small number of poses and its impact on the

overall performance will be negligible; if however it occurs at the beginning

of the exploration, the reconstructed trajectory will rapidly diverge from the

ground truth one, leading to a much higher measured error despite the map

still being substantially correct.

To overcome this limitation, Kuemmerle et al. in [11] and in [71] propose

a metric that considers the deformation energy that is needed to transfer the

estimated trajectory onto the ground truth trajectory, i.e., that is based on

the relative displacements between poses. However, Kuemmerle et al. do not

provide a definite criterion to choose which relative displacements should be

considered to compute the metric, noting that, in absence of ground truth

information, close-to-true relative displacements can be obtained by other

sources of information, such as background human knowledge about the

length of a corridor or the shape of a room.

In the context of SLAM evaluation through map evaluation, Birk et al.

investigate in [12] and in [72] the possibility to use topology graphs derived

from Voronoi diagrams to capture high-level spatial structures of indoor

environments. A Voronoi diagram is a partition of the space into cells; each

cell encloses a site, i.e., a point on the map that represents an obstacle, and

contains all points of the map whose distance to the site is not greater than

their distance to all other sites. The graph is then obtained by considering

the boundaries of said cells and applying a number of post-processing steps.

Figure 2.4 shows a examples of filtered topology graphs.

In [3], Santos et al. evaluate the performance of five SLAM algorithms
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Figure 2.4: Topology graphs of two sample maps.

- HectorSLAM, GMapping, KartoSLAM, CoreSLAM and LagoSLAM - in

terms of distance between the generated map and the ground truth map

using a performance metric based on the k-nearest neighbor concept.

Finally, Krinkin et al. [73] propose to evaluate the quality of generated

maps by measuring three different aspects: the proportion of occupied and

free cells to determine blur, the amount of corners in the map, and the

amount of enclosed areas.

2.4 Performance generalization and prediction

As documented in the previous section, the research community has not

agreed on a single method for SLAM algorithms evaluation, proposing in-

stead several metrics to measure different aspects of their performance.

However, a common trait of all these solutions is that they are designed

to conduct evaluations on already collected data, i.e., they can assess the

performance of a SLAM algorithm in a certain environment only after the

environment has already been explored. This is a significant limitation for

three reasons.

The first is that ex post evaluations are typically rather difficult to per-

form, especially in large environments. This is due to the need of gathering

both sensory information and ground truth data in order to assess how much

the SLAM algorithm’s results differ from reality in term of quality of map

reconstruction and trajectory estimation. While reference floor plans and

blueprints can usually be obtained with ease, the same doesn’t hold true for

ground truth trajectory data, which requires extremely accurate tracking

systems in order to be measured with adequate precision. An example of

such a system is OptiTrack31, a positioning system developed by Natural-

Point, Inc.32 in 2009 that uses a variable number of synchronized infrared

31https://www.optitrack.com
32https://www.naturalpoint.com
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cameras, each containing a grayscale CMOS imager capturing up to 100

FPS, to triangulate the pose of an infrared reflector placed on the robot

itself. As the environment becomes larger, the number of required cameras

grows in the hundreds, making the system impossibly expensive and complex

to operate.

Even when it is possible to have highly accurate ground truth data, ex

post evaluations in real environments may be impractical to perform. All

settings being equal, the performance of a SLAM algorithm in an environ-

ment may in fact vary across multiple explorations, so that an individual

exploration of the environment may not accurately represent the actual aver-

age performance of the algorithm in that setting. A possible countermeasure

is to repeat the measurements many times, which however turns the eval-

uation procedure into a quite time-consuming process. We will discuss this

issue more in depth in Section 3.2.

These two limitations can be overcome by taking advantage of computer

simulations, which offer perfect pose tracking and can be often executed in

parallel on dedicated servers to increase the throughput, while still provid-

ing reasonably accurate results [2,4]. However, there is a third fundamental

limitation of these evaluation methods that affects both real-world and sim-

ulated explorations: their lack of generalization capabilities.

Generalization is a fundamental aspect in all branches of science, as it

provides the means to make predictions on the general behavior of a system

in a wide range of situations starting from a much smaller set of observa-

tions. In our context, by generalization we mean the process of identifying

significant correlations between the performance of a given SLAM algorithm

in a setting and its performance in a different setting. A setting is defined

by the environment in which the algorithm is tested, the accuracy and the

capabilities of the robot sensors, and the specific values of the algorithm

parameters. Each of the examined evaluation methods proposes a different

and potentially equally valid way to assess the a posteriori performance of

a SLAM algorithm after an exploration has taken place; however, none of

them provides a way to use previously collected performance data to make

predictions about the performance of a SLAM algorithm in a setting before

actually exploring the environment.

This limitation is significant, since knowing how well a SLAM algorithm

performs in a certain setting does not immediately provide any information

as to how well it will perform in a different setting, as the measured level of

performance is strictly dependent on the characteristics of the setting itself.

The problem is exacerbated by the fact that there is no single best SLAM

algorithm for every scenario. As an example, a study [4] conducted by Tur-

21



nage using the Hausdorff distance between the ground truth map and the

reconstructed map as a metric to assess the relative level of performance of

HectorSLAM, CoreSLAM, and GMapping on three different environments

shows that, while HectorSLAM outperforms both CoreSLAM and GMap-

ping in two environments out of three, CoreSLAM performs best in the

remaining one, with HectorSLAM and GMapping performing the same.

However, the ability to perform a prior assessment is crucial towards en-

abling more pervasive applications of mobile robotics, as it vastly simplifies

the deployment of robots in real-world contexts. The absence of generaliza-

tion in SLAM performance assessment increases the difficulty in knowing at

design time which SLAM algorithm and robot configuration best fits a given

application scenario, often requiring a cumbersome and expensive trial and

error process.

Research has been done on the broader topic of promoting generalization

in robotics. On one hand, there have been attempts to explicitly improve

the generalization capabilities of algorithms for robotic applications. One

such example is [74], in which Pinville et al. propose a supervised learning

approach to improve the generalization capabilities of controllers in evolu-

tionary robotics. On the other hand, researchers have focused on the problem

of developing approaches to predict robotic performance in a wide variety

of contexts.

In [75], the authors investigate the usage of neural networks, fuzzy sys-

tems, genetic algorithms, and other soft computing techniques to predict

the performance of several industrial machining processes.

Considering autonomous wheeled robots, in [76] and in [77] Young et

al. propose a model to assess the traversal cost of a natural outdoor envi-

ronment for an autonomous vehicle using A* planning. The model exploits

information about the complexity of the environment itself, including the

slope of the terrain and the presence of vegetation, to ultimately predict the

average speed of the vehicle. In [78], Regier et al. introduce a method to

estimate the traversal time of a path by using its length, its smoothness,

and its obstacle clearance as features of a non-linear regressor. The model,

which is trained by using Gazebo simulations of an omnidirectional robot

in a variety of maps, is shown to significantly outperform predictions only

based on path length. Dawson et al. highlight in [79] the limits of several

performance prediction systems in estimating the average coverage time of

an environment in multi-robot autonomous exploration, citing the difficulty

for simulations to properly take into account the slowdowns introduced by

inter-robot communications, physical interferences and network latency.

In [80], Amigoni et al. argue that a major hurdle towards achieving a
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higher level of generalization of experimental results in autonomous robotics

is the limited representativeness of the experimental settings. This is espe-

cially true for physical experiments involving actual robots, which are often

conducted in small and carefully tuned labs that are very poor proxies for

the variety of environments that characterize real-world applications.

2.5 Summary

In this chapter, we discussed the state of the art in the field of autonomous

exploration and mapping in mobile robotics. At first, we overviewed the

main issues connected with the navigation, exploration, and mapping of

environments by autonomous robots. Next, we surveyed the landscape of

algorithms that have been proposed to solve the problem of Simultaneous

Localization and Mapping (SLAM), focusing on the most successful ap-

proaches and implementations. Next, we discussed the state of the art of

performance evaluation for SLAM algorithms, reviewing several evaluation

methodologies and performance metrics that have been proposed to this end.

Finally, we examined how the limited applicability and the lack of general-

ization capabilities of such evaluation methodologies seriously hinder their

usefulness in assessing the performance of SLAM algorithms in real-world

scenarios.
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Chapter 3

Problem formulation

In this chapter, we present a formal definition of the problem that we address

in this thesis. We start by analyzing the motivations of this research, we set

the thesis goal, and we introduce the concept of predictive benchmarking.

We then review some preliminary definitions and we provide a formal char-

acterization of the learning problem that we aim to solve. Finally, we discuss

the scope of our analysis and we list the assumptions underlying our work.

3.1 Motivations and goal

As we mentioned in the previous chapter, the state of the art of SLAM al-

gorithms performance evaluation is focused on the ex post assessment of the

results of robot runs in benchmark environments, either using simulation [2]

or with the use of benchmark datasets [5–7]. This kind of retrospective

analysis can be useful for several comparison and evaluation purposes, but

results obtained with such methodology can be difficult to generalize to the

task of estimating the expected level of performance of a SLAM algorithm

in a yet to be tested setting, like a previously unseen environment, different

operational specs and types of the robot sensors, or when alternative values

of the parameters are chosen [4]. One of the consequences of this limita-

tion is a difficulty in extending the results obtained in controlled settings

to the prediction of the expected performance of a SLAM algorithm in an

actual application environment, thus severely limiting the deployment of

autonomous mobile robots in real world and daily usage scenarios.

Consider the development of a robot for patrolling buildings. In order

to safely, efficiently, and autonomously navigate a building, the robot must

be able to build an internal representation of its surroundings and to cor-

rectly track its own pose as it roams the environment, hence it must run a
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SLAM algorithm. However, every building has its own characteristics due to

a combination of age, architectural style, purpose, number of hosted people,

and many other aspects. A kindergarten in a small mountain community is

likely to have a different shape, size, and internal structure from the office

of a large corporation, as a university campus is considerably different from

a factory, and a hospital from a home. Different applications have different

budget constraints as well as different safety and accuracy requirements, im-

posing restrictions on the sensors and the SLAM algorithm to be used. As

the performance of a SLAM algorithm is strictly dependent on the charac-

teristics of the environment in which it is run and on the capabilities of the

sensors used to collect the data, the lack of generalization of state of the art

SLAM evaluation techniques results in long and extensive phases of proto-

typing and field testing for each specific application scenario in order to tune

the robot configuration and achieve the required level of accuracy. Further-

more, as these evaluations can only be done a posteriori, it may be difficult

to get an accurate estimate of the cost associated with certain safety and

accuracy requirements before building the robot and testing it in its final

operational environment, as the same performance level may require signif-

icantly different hardware depending on the context. This severely impacts

the ability of potential customers to plan their investments and ultimately

limits the adoption of autonomous mobile robots.

The goal of this thesis is to take a first step towards overcoming the

limitations of state of the art SLAM evaluation techniques by developing a

software tool that employs known features of unexplored environments to

predict the performance of SLAM algorithms in those environments.

To this end, we introduce the concept of predictive benchmarking, a

method that reuses the performance results obtained by SLAM algorithms

in benchmark environments to predict their performance in new ones. Com-

pared to other SLAM evaluation techniques [3, 9–12, 73], predictive bench-

marking has the advantage of providing an estimate of the expected level

of performance of a given SLAM algorithm in new environments without

requiring their exploration.

While existing SLAM evaluation techniques handle every new environ-

ment as a separate standalone problem, predictive benchmarking builds

upon the knowledge gained with each new exploration to create a model

of the relationship between an environment and its associated SLAM per-

formance; this results in increasingly accurate predictions over new environ-

ments as the number of explorations used for training increases.

This approach significantly simplifies the development and deployment

of autonomous mobile robots by allowing designers and manufacturers to
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evaluate at design time the suitability of a certain choice of SLAM algo-

rithm, parameters values and sensors for a given scenario, eliminating the

need for extensive field testing sessions and therefore reducing the cost and

length of the development cycle. It may also be used as a basis to perform

comparisons between SLAM algorithms at a lower cost and on a broader

set of environments than what is possible with traditional SLAM evaluation

techniques, and to estimate the SLAM performance of an already developed

robot in a real world scenario in absence of accurate ground truth position-

ing data.

3.2 Localization error performance metric

Before we proceed with the detailed discussion of our work, it is first neces-

sary to introduce some preliminary definitions and concepts. In the following

paragraphs, we present and motivate our choice for the metric to be used

for the evaluation and the prediction of the performance of a SLAM algo-

rithm, we review its formal definition for single robot runs, and we propose

a generalization to multiple runs of a single environment.

3.2.1 Metric definition

The research community has developed a variety of metrics to assess the

performance of SLAM algorithms. In the context of this thesis, we use the

localization error performance metric proposed by Kümmerle et al. in [11].

This metric measures the performance of a SLAM algorithm as a function of

its ability to accurately estimate the trajectory followed by a robot in a single

run. To do so, the metric computes the deformation energy that is required

to transfer the estimated trajectory onto the ground truth trajectory: the

smaller the energy, the higher the accuracy of the reconstruction.

The choice of Kümmerle’s metric was dictated by its generality and

versatility. Compared to other evaluation strategies, such as those based

on the comparison of different maps of the same environment, Kümmerle’s

approach is not restricted to any particular map representation format and

can thus be used to measure the performance of any SLAM algorithm; it

is also independent of the type of sensors mounted on the robot, and is

therefore applicable to a broad range of scenarios.

We hereby recall the formal definition of the metric as given by Kümmerle

et al. in [11]:
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Definition 3.1. Let x1:T be the poses of the robot estimated by a SLAM

algorithm from time step 1 to T during an exploration of environment E,

xt ∈ SE(2), with SE(2) being the usual special Euclidean group of order 2.

Let x∗1:T be the associated ground truth poses of the robot during mapping.

Let δi,j = xj 	 xi be the relative transformation that moves the pose xi onto

xj, and let δ∗i,j be the transformation based on x∗i and x∗j accordingly.

Finally, let δ be a set of N pairs of relative transformations over the entire

exploration, δ =
{
〈δi,j , δ∗i,j〉

}
.

The localization error performance metric is defined as:

ε(δ) =
1

N

∑
i,j

(ε(δi,j))
2 =

=
1

N

∑
i,j

(δi,j 	 δ∗i,j)2 =

=
1

N

∑
i,j

[trans(δi,j 	 δ∗i,j)2 + rot(δi,j 	 δ∗i,j)2] = (3.1)

= εt(δ) + εr(δ),

where the sums are over the elements of δ, 	 is the inverse of the standard

motion composition operator, and trans(·) and rot(·) are used to separate

the translational and rotational components of the error.

3.2.2 Metric extension

As it stands, this metric is already sufficient to evaluate the performance

of a SLAM algorithm in a single robot run. However, the performance of a

SLAM algorithm in a certain environment may vary across multiple runs,

so that computing this metric over a single run is only a rough indicator

of the expected level of performance of the algorithm during the normal

operation of the robot. These oscillations may be due to multiple factors,

including noisy measurements, variations in the followed trajectory, and even

a certain level of randomness that is inherent to the behavior of some SLAM

algorithms.

For instance, consider the case of SLAM algorithms based on particle fil-

ters, like FastSLAM and GMapping. These algorithms maintain a predefined

number of hypotheses about the state of the environment which are continu-

ously updated and discarded according to the information provided by each

new observation. The selection of which particles should be maintained at

each update step is based on a maximum likelihood probabilistic approach,

so that particles with low weights tend to be replaced as time progresses.
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However, this behavior often leads to particle depletion, a phenomenon in

which the variability of the hypotheses decreases to the point of compromis-

ing the ability of the algorithm to successfully perform loop-closure, i.e., to

correctly identify a place in the environment that the robot has already seen.

As the whole particles update and resampling process is probabilistic, there

is no guarantee that two different exploration runs of the same environment

will lead to the same particles being retained. Furthermore, transient errors

introduced by noise in the observations may compromise the quality of the

particles selected by the resampling process, leading to an unpredictable

decrease of performance in an exploration run that may not be present in

another.

Table 3.1: Mean and standard deviation of εt(δ) for 12 different exploration runs in 5

sample indoor environments (in meters).

Building 1 Building 2 Building 3 Building 4 Building 5

εt(δ) mean 0.191 0.195 0.225 0.263 0.195

εt(δ) st.dev. 0.028 0.040 0.032 0.034 0.053

1 2 3 4 5 6 7 8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

Exploration runs

ε t
(δ

)
[m

]
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Building 2

Building 3

Building 4

Building 5

Figure 3.1: Values of εt(δ), in meters, for 12 different exploration runs of 5 sample

indoor environments (ordered by their magnitude).

The overall conclusion is that the performance of a SLAM algorithm in

an environment is subject to a certain degree of variability which cannot

be captured by a single robot run. As an example, Figure 3.1 plots the

values of εt(δ) obtained by GMapping in 5 different environments across

12 exploration runs, while Table 3.1 reports the corresponding means and

standard deviations.
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The variability of the measurements clearly shows that choosing the re-

sult obtained by GMapping in any individual exploration run of an environ-

ment as a measure of its expected performance in that environment would

produce an approximation of the real performance that can be obtained. It

is important to notice that the extent to which the aforementioned sources

of uncertainty influence the exploration result may vary depending on the

capabilities of the sensors, the characteristics of the environment, and the

choice of the SLAM algorithm, so that it is certainly possible for some of

them not to be significant in certain scenarios. As we tackle the problem

from a general point of view, however, we see the necessity of using a perfor-

mance metric that is able to take into account these oscillations and provide

a more comprehensive picture of the range of possible behaviors a SLAM

algorithm may exhibit.

To do so, we propose the following straightforward generalization of the

previous definition to model the concept of expected localization error of a

generic exploration run of an environment.

Definition 3.2. Let pδE be the probability of observing the δE set of relative

pose transformations during an exploration run.

We define the mean translational localization error of environment E, de-

noted as E[εt(E)], as the expected value of the translational component of

the localization error over all the possible exploration runs on E:

E[εt(E)] =
∑
δE

εt(δE) ∗ pδE (3.2)

We therefore define the standard deviation of the translational localization

error of environment E, denoted as σ[εt(E)], as:

σ[εt(E)] =
√
E[εt(E)2]− E[εt(E)]2 (3.3)

Similarly, we define the mean rotational localization error of environment

E, denoted as E[εr(E)], as the expected value of the rotational component of

the localization error over all the possible exploration runs on E:

E[εr(E)] =
∑
δE

εr(δE) ∗ pδE (3.4)

We therefore define the standard deviation of the rotational localization

error of environment E, denoted as σ[εr(E)], as:

σ[εr(E)] =
√
E[εr(E)2]− E[εr(E)]2 (3.5)
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In practice, we approximate the above quantities with their sampled

versions, since the weak law of large numbers guarantees their convergence

to the theoretical definitions as the number of exploration runs |RE | in an

environment E increases [81].

Definition 3.3. Let E be a set of environments for which exploration re-

sults are available, E ∈ E be one of such environments and RE the set of

exploration runs performed on E.

The sample mean and sample standard deviation of the translational local-

ization error of E are defined as:

εt(E) =

∑
R∈RE

εt(δR)

|RE |
(3.6)

s(εt(E)) =

√√√√√ ∑
R∈RE

[εt(δR)− εt(E)]2

|RE |
(3.7)

The sample mean and sample standard deviation of the rotational localiza-

tion error of E are defined as:

εr(E) =

∑
R∈RE

εr(δR)

|RE |
(3.8)

s(εr(E)) =

√√√√√ ∑
R∈RE

[εr(δR)− εr(E)]2

|RE |
(3.9)

Figure 3.2 shows an example of the utility of our proposed generalization

of the localization error performance metric. In environment Ea of Fig. 3.2a,

GMapping has a mean translational localization error of εt(Ea) = 0.31 m,

but the translational localization error of one of the runs is 0.43 m. In en-

vironment Eb of Fig. 3.2b, GMapping has a mean translational localization

error of εt(Eb) = 0.52 m, but the translational localization error of one of

the runs is 0.39 m. Therefore, looking only at the two single runs, one could

conclude that GMapping performs better in Eb than in Ea, but, on average

(and with a statistically sound number of runs), the opposite is true.
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(a) Ea, 1,400 m2 (b) Eb, 2,400 m2

Figure 3.2: Two environments for which the performance of GMapping measured with

a single run is not informative.

Finally, we want to stress the fact that the performance of a SLAM

algorithm in a certain environment may also be influenced by the specs of

the actual robot and of its sensors. For example, considering the environment

of Figure 3.3a, the mean translational localization error made by GMapping

is 0.68 m if the range of the laser range scanner is 30 m and 0.91 m if the

range is 15 m; in both cases, the laser’s field of view was 270° and the robot

odometry error was estimated to be not greater than 0.01 m/m and 2 °/rad

for the translational and rotational component respectively.

(a) The MediaCache environment. (b) The Freiburg79 environment.

Figure 3.3: Two environments for which changing the range of the laser range scanner

significantly changes the observed localization error.
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The same phenomenon can be observed for the environment of Fig-

ure 3.3b, for which the mean translational localization error made by GMap-

ping is 0.38 m if the range of the laser range scanner is 30 m and 0.55 m if

the range is 15 m. The intuitive explanation for this performance difference

is that the increased laser range of the second setting allows GMapping to

rely on additional information to perform scan matching and update its in-

ternal estimate of the state of the world, while simultaneously reducing the

amount of distance travelled by the robot and therefore limiting the amount

of error introduced by imprecise odometry readings.

Overall, these examples clearly show that the results obtained by a

SLAM algorithm in a certain setting only allow for very limited conclu-

sions on the expected level of performance of that algorithm in a different

setting. In the following, we focus on the specific sub-problem of generalizing

the results obtained by a SLAM algorithm in a certain environment to pre-

dict its performance in a different, and potentially unexplored, environment;

however, our approach can be easily extended to encompass variations of the

other aspects that define a setting, like the characteristics of the robot’s sen-

sors and the parameters that control its behavior in terms of exploration,

navigation, localization, and mapping.

3.3 Problem formalization

The approach we follow to solve the problem of predicting the performance

of SLAM algorithms in unexplored environments is that of supervised learn-

ing. Supervised learning is a machine learning technique that aims to infer

a function from sample pairs of training data, the first element of the pair

being a vector of features and the second being the desired output value. In

the context of this work, the desired output value is one of the four compo-

nents of the expected localization error, i.e., E[εt(E)], σ[εt(E)], E[εr(E)], or

σ[εr(E)], depending on the specific model that is being trained.

Definition 3.4. Let E be the set of possible environments in which a SLAM

algorithm can be run. A feature is a function f : E 7→ R that, given any

environment E ∈ E, returns a real number that denotes some property of E.

Let F be the set of all possible such functions.

Examples of features can be the area, the perimeter or the number of

walls. We discuss features more in detail in Chapter 5.

Definition 3.5. A model is a function m : F 7→ R that, given a set of

features F ⊂ F evaluated over an environment, returns the predicted SLAM
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performance of the robot in that environment in terms of a component of

the expected localization error. Let M be the set of all possible such models.

Let E[εt(E)]m be the value of the mean translational localization error

for environment E predicted by model m, and let σ(εt(E))m be the predicted

value of the standard deviation of the translational localization error.

Furthermore, let E[εr(E)]m and σ(εr(E))m be the corresponding quantities

of the rotational localization error.

Definition 3.6. The learning problem is to find a set of subsets of features

F1,F2,F3,F4 ⊂ F and a set of models mi : Fi 7→ R that are solutions to the

following optimization problems:

m1 = arg min
m

∑
E∈E

[E[εt(E)]m − E[εt(E)]]2

m2 = arg min
m

∑
E∈E

[σ(εt(E))m − σ[εt(E)]]2

m3 = arg min
m

∑
E∈E

[E[εr(E)]m − E[εr(E)]]2

m4 = arg min
m

∑
E∈E

[σ(εr(E))m − σ[εr(E)]]2

It is important to highlight that this problem does not realistically admit

an exact solution, because the expected localization error of a generic en-

vironment is unknown by definition. In order to actually solve the learning

problem, it is therefore necessary to approximate the four components of the

expected localization error, i.e., E[εt(E)], σ[εt(E)], E[εr(E)], and σ[εr(E)],

with their sample versions, i.e., εt(E), s(εt(E)), εr(E), and s(εr(E)).

In order for the learned models to represent a meaningful approximation

of reality, it is essential to gather a large amount of data concerning a wide

variety of training environments. This represents a fundamental requirement

to ensure that the identified solutions effectively capture the true relation-

ship between an environment’s features and observed localization error, and

to limit the effect of random noise on the model. We will extensively discuss

our strategy to obtain such data in Chapter 4.

In addition, it is necessary to adopt training techniques that promote

the ability of the obtained models to generalize to new samples, and to use

validation techniques that are able to effectively assess such ability. We will

provide an in-depth review of our strategies for model learning and model

validation in Chapters 5 and 7, respectively.
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3.4 Assumptions

The research community has developed over the years a wide variety of

approaches to solve the SLAM problem. While the ample choice of sensors,

algorithms, and parameters enriches the landscape of available solutions and

broadens the range of possible applications, it also represents a significant

obstacle to a comprehensive study of the field. In this work, we make some

assumptions on the characteristics of the robots, of the environments, and

of the data collection process.

Robots The first set of assumptions we make is about the capabilities of

the robot. We assume the robot is equipped with an odometry sensor and a

LIDAR sensor, a standard choice for autonomous mobile robots. We also re-

strict our attention to a subset of all commercially available LIDAR sensors,

investigating only a limited number of range and field of view values. We

also assume the robot is equipped with the necessary hardware and software

stack to run the GMapping SLAM algorithm; the choice of GMapping as

a representative of SLAM algorithms is dictated by its widespread usage

in the mobile robotics research community, its moderate computational re-

quirements and its robustness to noise.

Environments The second set of assumptions we make is about the char-

acteristics of the environments. In the context of this thesis, we work exclu-

sively with indoor, single-floor environments. We assume the environments

to be sufficiently wide and uncluttered to allow the robot to explore them in

their entirety. In addition, we assume all obstacles, such as walls and doors,

to be opaque and made of non-transparent materials, in order to be detected

by the LIDAR sensor of the robot. Moreover, we assume environments are

static, i.e., they don’t change during explorations, and can be represented as

two-dimensional entities, i.e., E ⊂ R2. For the feature extraction method-

ology that leverages the work of [82] and [83] on layout reconstruction, we

require the environments to follow the Manhattan world assumption, i.e., to

only have orthogonal planar walls; this assumption however is not required

for the feature extraction methodology based on Voronoi diagrams. Fig-

ures 3.4a and 3.4a show two environments for which the Manhattan world

assumption is, respectively, satisfied and unsatisfied. Lastly, we assume to

have access to an accurate representation of the environment in the form of

a bitmap floor plan of known scale.
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(a) A Manhattan environment. (b) A non-Manhattan environment.

Figure 3.4: An environment that follows the Manhattan world assumption (left) com-

pared to one that doesn’t (right).

Data collection The third set of assumptions we make is about the data

collection process. In particular, we assume to be able to gather ground

truth trajectory data of autonomous robotic explorations with millimeter

precision, in order to accurately compute the localization error performance

metric we introduced in Definition 3.3 on the environments that we use to

train and validate our models. Importantly, this assumption is not required

to actually use the final models to predict the performance of a SLAM

algorithm in new environments, and is only necessary for model training and

validation. We will further discuss the steps we take to ensure the validity

of this assumption in Chapter 4.

3.5 Summary

In this chapter, we presented a formal definition of the problem addressed

in this thesis. We introduced the concept of predictive benchmarking as a

response to the limitations of existing SLAM evaluation techniques and we

provided a mathematical characterization of the learning problem that we

aim to solve. Lastly, we discussed the scope of our analysis and we listed the

assumptions underlying our work.
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Chapter 4

Data collection

In this chapter, we present the methodology we adopt to collect data. We

start by introducing the problem of obtaining ground truth trajectory data,

we discuss the methodology proposed by Kümmerle et al. in [11] and we

show its limitations in terms of scalability, accuracy, and representativeness

of SLAM performance. We then propose a revised approach that aims to

overcome these limitations through the usage of automatized robotic simu-

lations and we discuss its application to the execution of multiple exploration

runs per environment.

4.1 The problem of ground truth trajectory data

As we mentioned in the previous chapter, the goal of this thesis is to develop

a software tool that employs known features of unexplored environments to

predict the performance of SLAM algorithms in those environments. To

do so, we leverage the paradigm of supervised learning to determine the

relationship between the value of several candidate environmental features

and the corresponding observed localization error, in order to build a model

that can be subsequently used for prediction. As a preliminary step, we

therefore have to build a dataset of explored environments for which the

localization error is known and for which the environmental features can be

extracted.

In Section 3.2.1, we formally defined the localization error of a δE run

of an environment E, ε(δE), as the deformation energy that is required to

transfer the SLAM estimate of the robot’s trajectory in that run onto the

corresponding ground truth trajectory. This computation requires knowl-

edge of both the estimate of the trajectory produced by the SLAM algo-

rithm and of the exact trajectory followed by the robot in the run, in order
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to compute the δi,j and δi,j∗ relative transformations that constitute the

basis of the performance metric.

In general, the problem of obtaining ground truth trajectory data is

not trivial. The exact knowledge of the path followed by a robot during

an exploration run is obtained by accurately tracking its movements and

pinpointing its pose in the environment at every time step, a task that is

usually performed by SLAM algorithms. However, for SLAM evaluation to

be meaningful, ground truth positioning data has to come from a different

and more reliable source of information, significantly more accurate than the

pose estimates obtained from any SLAM algorithm. This usually involves

the usage of complex and expensive tracking technologies that need to cover

the whole environment, thus requiring a setting that can be seldom deployed

in real world scenarios.

To overcome this problem, Kümmerle et al. propose in [11] a method-

ology that leverages background human knowledge of the explored environ-

ments to manually determine the set δ∗i,j of reference relative transforma-

tions, or relations, between pairs of poses to be used as ground truth. In

this approach, the robot is equipped with a laser range scanner and records

a laser scan of the environment at every time step. After the exploration, a

human operator analyzes the scans to determine which observations in the

dataset cover the same part of the space and manually aligns them until they

match; the amount of displacement required for the alignment is then stored

as the relative transformation between the two. This process only enforces

local consistency of the measurements; to enforce global consistency, relative

transformations between scans that don’t cover the same area of the envi-

ronment must also be added. However, as the latter refer to different areas

of the environment, their displacement cannot be determined through scan

matching; in this case, the human operator has to rely on external sources

of information to obtain additional data, such as the exact distance between

pairs of reference objects in the two scans.

This approach has the advantage of not requiring any special hardware

setup to obtain ground truth trajectory data, which makes it potentially

applicable to a variety of environments. However, it suffers from three major

drawbacks that severely limit its applicability.

The first major drawback is its limited scalability. As it requires hu-

man intervention to manually align the laser scans and obtain the reference

relative transformations, this method can’t efficiently scale as the number

of laser scans increases. This effectively prevents its employment in many

real-world application scenarios, imposing a compromise between the cov-

ered area of the environment and the temporal resolution of the scans. This
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issue is even more evident in the case of multiple explorations of the same

environment.

The second major drawback is its limited ability to portray the actual

localization accuracy of a SLAM algorithm. Relations obtained through scan

matching can be used to enforce local consistency, but often result in a signif-

icant underestimation of the true localization error of the SLAM algorithm,

as scans that refer to the same area of the environment are likely to have

been taken at short temporal distance from one another and consequently

to show little to no error. The alignment of scans taken at loop closures rep-

resents a better choice, but their presence and quantity is largely dependent

on the environment’s structure and on the followed path. A more realistic

estimate of the localization error can be obtained by complementing the rela-

tions obtained through scan matching with additional relations derived from

background knowledge of the environment to account for errors associated

to pairs of poses that are very far from each other; however, the information

required for this kind of corrections is seldom available with the necessary

accuracy to represent a valid source of additional ground truth data. There-

fore, this methodology often underestimates the actual localization error of

the tested algorithms and provides optimistically biased estimates of their

accuracy.

The third and perhaps most significant drawback of this approach is its

level of arbitrariness in the choice of the relative transformations to be used

as ground truth relations. This selection, which is left entirely to the human

operator’s discretion, may have a significant impact on the computation of

the metric and consequently undercut the validity and replicability of the

evaluation results. This issue is particularly evident when considering the

usage of additional relations to enforce global consistency, as their presence,

accuracy, and amount can dramatically alter the computed localization er-

ror.

4.2 Proposed methodology

The approach proposed by Kümmerle et al. is an attempt at overcoming the

significant challenges related to the collection of ground truth trajectory data

in real world generic application environments, where accurate continuous

robot localization depends on the availability of tracking equipment covering

the entire area of interest.

However, the research community has developed over the years a num-

ber of simulation approaches that can be used to reproduce mobile robots’

behavior with high fidelity without requiring the physical interaction with
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an environment [8, 69, 70]. These techniques offer the ability to exactly and

continuously track a robot’s pose throughout the entire duration of a sim-

ulation run without requiring any special equipment, and can thus be the

foundation for the development of more accurate, objective, and scalable

approaches to SLAM evaluation.

We therefore propose an approach that uses automatized robotic sim-

ulations to simultaneously collect both the SLAM data and the ground

truth trajectory data that are necessary for the computation of the local-

ization error performance metric. Our method has several advantages over

the methodology proposed by Kümmerle et al. , including its complete inde-

pendence from human interaction, the possibility to collect data in a fully

automatized way, and a significantly higher level of representativeness of

SLAM performance.

4.2.1 Automatized exploration

As we mentioned in Section 3.3, collecting a large amount of data concern-

ing a wide variety of training environments is a fundamental requirement

to ensure that the solution to the learning problem effectively captures the

true relationship between an environment’s features and observed localiza-

tion error. As a consequence, the efficiency of the data collection process is

paramount to ensure the actual applicability of our methodology.

To solve this issue, we propose a method that uses automatized robotic

simulations in place of real-world experiments to perform the autonomous

exploration of environments. The usage of simulations allows us to benefit

from three major advantages that vastly simplify the data collection process.

First, simulations are significantly cheaper and more efficient than real-

world experiments, as they don’t require the physical availability of properly

equipped testing environments. This leads to important savings in terms of

both time and money, and allows us to conduct experiments on a much

larger set of environments that what would be possible otherwise.

Second, simulations can be fully automatized without the need for a

human researcher to constantly pay attention to the robot to ensure the

safety of its surroundings. This allows the method to efficiently scale as the

availability of computational resources increases, further contributing to the

overall efficiency of the data collection process.

Third, simulations can be finely tuned to reproduce a specific robot con-

figuration in terms of sensor capabilities and odometry accuracy, potentially

enabling the investigation of a wide variety of different experimental scenar-

ios and therefore improving the representativeness of the obtained results.
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Among the main parameters that can be modified, the most important ones

are certainly the range and field of view of the laser range scanner, as well

as the amount of translational and rotational error affecting the odometry

readings of the virtual robot. A much more exhaustive list of the available

settings is reported in Appendix A.

According to our proposal, simulated exploration runs are conducted as

follows.

Starting from an initial conventional pose, the virtual robot explores its

surroundings by moving towards a series of points in the environment called

goals. Goals are proposed individually in sequential order; whenever a goal

is reached, a new one is proposed, in an iterative process that lasts until the

end of the exploration.

Goals are computed according to the frontier-based exploration paradigm

defined by Yamauchi in [28], where each frontier represents a region on the

boundary between free known space and unexplored space; an area of the

space is considered to be explored once it becomes part of the map pro-

duced by the SLAM algorithm. To make the exploration process more ro-

bust, points that are located at very short distance from each other are

clustered in a single frontier.

In order to select which frontier should be explored after a goal has been

reached, frontiers are ordered according to their Euclidean distance from

the current pose of the robot; the goal is then chosen on the frontier that is

nearest to the robot, with ties broken randomly.

To check if an exploration is complete, our approach periodically takes

snapshots of the map produced by the SLAM algorithm at regular time

intervals and compares every new snapshot to its immediate predecessor

in the series. The comparison is done using the mean square error (MSE)

metric, which is computed by averaging the squared intensity difference

of each pixel in the map between the two snapshots. The exploration is

stopped once the degree of similarity between the two snapshots reaches a

certain predefined threshold. Once an exploration is complete, we compute

its associated εt(δE) and εr(δE) and we use the latest snapshot as the final

reconstructed map of the environment.

As we mentioned, the localization error of an individual exploration run

is often subject to oscillations that limit its reliability as an estimator of

SLAM performance. To compensate for this limitation, in Definition 3.3

we introduced the idea of computing the mean and standard deviation of

the localization error of multiple exploration runs as a way to assess the

expected performance of a SLAM algorithm during a generic exploration of
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an environment.

We therefore repeat the described exploration process until the number

of runs |RE | performed on environment E reaches a critical threshold, whose

value is determined as a function of the desired accuracy of the estimation,

as we will discuss more in depth in Section 4.2.2. The different components

of the expected localization error of that environment, i.e., εt(E), s(εt(E)),

εr(E), and s(εr(E)), are then computed according to Equation 3.6, 3.7, 3.8

and 3.9 respectively.

4.2.2 Estimation of the number of runs

In order to actually enact the procedure we described, it is first necessary

to establish a criterion to identify the |RE | number of runs that should be

performed for each environment E. In the following, we propose an approach

to compute the size of such sample of runs depending on the desired level

of confidence for the estimate of the localization error, under the hypothesis

that two assumptions on the distribution of the sample mean are verified.

Our first assumption requires that the covariance of the localization er-

ror on different runs of the same environment tends to be zero on average.

In principle, we cannot assume different explorations of a same environment

to be completely independent from each other; this is because, despite them

being conducted separately and with no mutual interference, they might be

performed according to the same exploration criteria and thus have similar

trajectories. However, Chebyshev’s weak law of large numbers for poten-

tially correlated sequences guarantees the convergence of the sample mean

of the localization error ε(E) to the true mean E[ε(E)] under the weaker

condition that the average of the covariances between all possible pairs of

measurements of ε(δE) in the sequence tends to zero as the number of mea-

surements increases [81]. In practice, the large amount of external factors

that influence a robot’s trajectory throughout an exploration run, including

noisy measurements and tie-breaking mechanisms in the frontier selection

process, provides a reasonable assurance that this assumption is verified.

Our second assumption is about the distribution of the sample mean,

which we assume to be at least approximately normal. In principle, the

lack of formal guarantees on the independence of different exploration runs

implies that the central limit theorem is not guaranteed to hold, preventing

us from drawing formal conclusions about the normality of the distribution of

the sample mean. For the purpose of determining a viable number of sample

exploration runs, however, we assume the aforementioned external factors

to be sufficient for the normality condition to be at least approximately
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verified.

Under these assumptions, we therefore proceed with the estimation of

the number of runs to be performed for each environment using the following

formula:

|RE | =
zα/2 ∗ s2

d2
(4.1)

where E is the environment, s2 is the unbiased estimator of the population

variance of ε(δE) across multiple runs of E, d is the margin of error, α is the

complement of the desired confidence level and zα/2 is its associated z-score.

It should be noted that, for Equation 4.1 to be applicable, we must

first obtain an estimate of the variance of ε(δE) across multiple runs of E.

To solve this issue, we rely on the widely used statistical practice of pilot

research to obtain an initial estimate of the variance on a small sample of

10 explorations. This value is then used to compute an initial estimate of

the number of required explorations |RE | using Equation 4.1; afterwards,

the additional exploration runs that are needed to reach |RE | are performed

and the newly obtained data are used to compute a new estimate of |RE |,
iteratively repeating the process until the newly estimated sample size is

smaller than or equal to the number of already performed explorations.

It is also important to highlight that the sample sizes required for an

accurate estimation of the translational and rotational components of the

localization error may differ, as the variance of εt(δE) may be different from

the variance of εr(δE). Whenever this happens, the selected sample size is

the maximum of the two.

4.2.3 Relations sampling

Theoretically, the availability of accurate ground truth trajectory data guar-

anteed by the usage of simulation tools enables the straightforward compu-

tation of both εt(δ) and εr(δ) by means of Equation 3.1 immediately after

the conclusion of an exploration run. However, a direct application of such

equation poses significant practical problems because of its computational

complexity, which is quadratic in the number of poses on the robot’s trajec-

tory and thus makes the metric increasingly difficult to compute as the size

of the environment grows.

To help framing the problem, it is useful to examine a few examples.

Consider the case of an autonomous robot exploring indoor environments

at speeds between 0.2 m/s and 0.4 m/s, which is a typical safety range to

ensure adequate human protection. We examine the average time required
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for the complete autonomous exploration of three office environments of in-

creasing size, each explored 15 times under identical circumstances, using

the data collection methodology we introduced in Section 4.2.1. In particu-

lar, we take a snapshot of the reconstructed map every 10 min and we stop

the exploration when the mean square error of the latest snapshot with re-

spect to its immediate predecessor is below a threshold of 10. To be able to

represent small environments as well as large environments, we set the size

of the reconstructed map to be 200 m × 200 m. We also assume a temporal

resolution of 10 poses per second in order to have reasonably fine-grained

measurements. A detailed report of the measured exploration times is shown

in Table 4.1.

(a) A small-sized office (b) A medium-sized office (c) A large-sized office

Figure 4.1: A comparison between the floor plans of three offices of different sizes.

The first office, depicted in Figure 4.1a, consists of 9 rooms and a corridor

covering an area of approximately 1,500 m2. In this case, the simulations

show that the average time required for its complete exploration is 25 min;

with a resolution of 10 poses per second, there are 15,600 poses in the robot’s

trajectory, which result in over 243 million relations.

The second office, depicted in Figure 4.1b, is relatively larger than the

first one, consisting of about 30 spaces among rooms and corridors covering

an area of approximately 4,100 m2. In this case, the average time required

for its complete exploration is 75 min, resulting in 45,000 poses in the robot’s

trajectory and about 2 billion relations.

The third office, depicted in Figure 4.1c, is the largest of the three, com-

prising over 50 spaces among rooms and corridors covering an area of ap-

proximately 6,500 m2. The average time required for its complete exploration

is 102 min, which means there are 61,200 poses in the robot’s trajectory, for

a grand total of over 3.7 billion relations.

These examples clearly illustrate a significant scalability issue that pre-

vents the direct application of Equation 3.1 as a measure of SLAM perfor-

mance. To overcome this problem, we propose to restrict its application to a
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Table 4.1: Exploration times of three different datasets over 15 runs.

Time required for a complete autonomous exploration of the dataset (in minutes)

Dataset r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 avg

Office 4.1a 30 40 20 30 20 20 20 30 30 20 30 30 20 20 30 26

Office 4.1b 100 90 50 70 80 70 70 100 80 100 50 50 70 70 80 75

Office 4.1c 90 90 90 140 110 70 80 100 140 100 80 130 120 100 90 102

limited subset of randomly sampled relations, the size of which is determined

as a compromise between sampling accuracy and computational complexity.

The procedure is conceptually similar to the approach we described in

Section 4.2.2 for the estimation of the number of sample runs for each envi-

ronment, and is based on the usage of the central limit theorem to approxi-

mate the relations’ sampling distribution with a normal distribution [84].

At first, we set the confidence level and the margin of error of the esti-

mation. Then, we apply the following formula to determine the number of

relations to be used to estimate the localization error:

n =
zα/2 ∗ s2

d2
(4.2)

where s2 is the unbiased estimator of the variance of the population of

the errors ε(δi,j) made by the SLAM algorithm on the individual relative

transformations δi,j for the considered exploration run, d is the margin of

error, α is the complement of the desired confidence level and zα/2 is its

associated z-score.

In order to ensure the applicability of the central limit theorem, we

must assume relative transformations to be independent and identically dis-

tributed random variables. In principle, this may not be the case for every

possible pair of relations, as transformations involving pairs of poses that are

close to each other will inevitably be similar and not independent; however,

the number of possible relations is so large that, given any two random re-

lations, the likelihood of them being dependent is negligible for all practical

purposes. Furthermore, as the process used for data collection is the same

for all poses, it is reasonable to assume the identical distribution property

to hold as well.

To validate our approach, we verified the empirical soundness of these

assumptions on a representative set of environments. Figure 4.2 shows the

sample distribution of εt(δE) for an exploration run of two of these environ-

ments; the distributions were obtained by repeatedly applying the sampling

procedure to extract 200 different samples of relations imposing a 99 % con-

fidence level and a margin of error of ± 0.02 m. As it can be seen, the shape

of the distributions is approximately normal.
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Also in this case, for Equation 4.2 to be applicable, we must first obtain

an estimate of the variance of ε(δi,j), which in turn has to be computed on a

sample for performance reasons. We rely again on the statistical practice of

pilot research to compute an initial estimate of the population variance from

the sample variance of a different set of 500 randomly selected relations.
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Figure 4.2: Distribution of the translational localization error of an exploration run of

two test environments; the shape tends towards a normal distribution as the number of

samples increases, in accordance with the central limit theorem.

Similarly to what observed for the estimation of the number of runs,

the sample size required for an accurate estimation of the translational and

rotational components of the localization error may differ, as the variance

of the translational component of ε(δi,j) may be different from that of its

rotational component. Whenever this happens, the selected sample size is

the maximum of the two.

4.3 Summary

In this chapter, we presented the methodology we adopt to perform data

collection. We first analyzed the proposal made by Kümmerle et al. in [11]

to obtain ground truth trajectory data in generic environments, highlight-

ing its limitations in terms of scalability, accuracy, and representativeness

of SLAM performance. We subsequently introduced a modified approach

that overcomes these shortcomings by leveraging the possibility to obtain

highly precise ground truth data through the usage of automatized robotic

simulations. Compared to Kümmerle’s approach, our proposal has the main

advantage of providing a fully automated, objective, and scalable method-

ology for data collection.
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Chapter 5

Proposed solution

In this chapter, we complement the content of Chapter 4 to provide an in-

depth explanation of our solution to the problem we outlined in Chapter 3.

We start by presenting a logical high-level overview of the different modules

of which the solution is composed, after which we delve into a more extensive

discussion of the functionalities covered by each component.

5.1 General overview

In order to minimize code duplication and enhance flexibility and extend-

ability, our solution consists of a chain of several modules, each responsible

for a logically distinct sub-task, as shown in Figure 5.1:

Figure 5.1: A BPMN diagram of the control flow of our solution. Dashed lines represent

optional components.

• Data collection: this module is responsible for the collection of the

true localization error data that are used to train and test the per-
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formance prediction models we aim to obtain. Its design has already

been extensively covered in Chapter 4.

• Feature extraction: this module computes a number of character-

izing features of the environments starting from the analysis of their

floor plans. It is itself composed of three sub-modules, each devoted to

the extraction of a particular type of feature: geometrical, topological,

and based on Voronoi graphs.

• Model learning: this module operates on a set of training environ-

ments for which the localization error is known. Its purpose is to use

machine learning regression techniques to analyze the correlation be-

tween the values of the environmental features of the training environ-

ments, as computed by the feature extraction module, and the corre-

sponding values of the localization error obtained by the data collection

module. It consists of three separate sub-modules, each implementing a

different machine learning approach: a simple linear regression model,

a multiple linear regression model with explicit feature selection, and

a regularized ElasticNet regression model with implicit feature selec-

tion. Each trained model correlates a specific subset of environmental

features to a single component of the localization error.

• Performance prediction: this module predicts the localization er-

ror of a SLAM algorithm on an environment. It relies on the models

built by the model learning module, automatically selecting the most

appropriate model for the component of the localization error that the

user is interested in predicting; the features of the selected model are

evaluated on the input environment by the feature extraction module.

It also allows the user to select a prediction model of choice regardless

of its relative performance with respect to other models, thus offering

the possibility to choose a compromise between model complexity and

prediction accuracy.

• Model validation: this module verifies the experimental accuracy of

the models built by the model learning module, comparing the pre-

dicted localization error of a set of testing environments against their

known true localization error. Its purpose is therefore purely diag-

nostic and its presence is not required for the normal operation of

our methodology. We will discuss the evaluation strategy used by this

module in greater detail in Chapter 7.
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5.2 Feature extraction

In Chapter 3, we formally defined the concept of feature as a function that,

given an environment E, returns a real number that denotes some property

of E. In this section, we provide an in-depth review of the environmental

features we decided to implement in the feature extraction module of our

solution.

It is important to highlight that these features only rely on the availabil-

ity of a bitmap representation of the floor plan of an environment in order

to be computed, and therefore can be used to characterize both the environ-

ments used for training and the environments whose localization error we

want to predict. This property is fundamental, as the independence of the

environmental features from the actual exploration data is the premise to

allow the prediction of SLAM performance on environments for which such

data are not available.

For clarity, we split the discussion in three subsections, according to

the kind of environmental property each feature is based upon: geometrical,

topological, or derived from Voronoi graphs.

5.2.1 Geometrical features

The first set of features we propose is based on the analysis of geometrical

properties of environments. In this context, by geometrical properties we

refer to any kind of property related to the shape or extension of the building

or a part thereof.

A preliminary step towards the computation of such properties is the

extraction of a clean geometrical model of the environment from a bitmap

representation of its floor plan. For this purpose, we rely on the algorithm

described in [82] and in [83] to perform layout reconstruction. For the sake

of completeness, we hereby provide a brief overview of the main steps of the

algorithm.

The method applies the Canny edge detection algorithm to identify the

edges in the image, which are then processed by the Hough line transform

algorithm to detect lines. The Canny edge detection algorithm uses a Sobel

kernel to identify potential edges based on the intensity of the edge gradient

of each pixel, defined as the square root of the sum of the squares of the

first derivatives of the Sobel kernel in the horizontal and vertical direction.

Afterwards, the Hough line transform algorithm takes the floor plan im-

age containing the edges identified by the Canny edge detection algorithm

and uses a probabilistic approach to detect lines. The identified lines are
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then clustered together with the mean shift operator into walls, which are

then used to identify the regions of the image that may belong to the same

delimited space of the environment, like a room or a corridor. Finally, the

identified regions are merged together to form spaces using the DBSCAN [85]

clustering algorithm. Figure 5.2 shows an example of layout reconstruction

for a sample environment.

Figure 5.2: On the left, the ground truth floor plan of the Freiburg 79 environment.

On the right, its reconstructed layout, with the delimited spaces highlighted in different

colors.

We use the results of this analysis to compute two distinct sets of geomet-

rical features: one based on global properties of the environment, the other

based on local properties of the individual spaces. The global properties we

consider are the area and the perimeter of the building, as well as the ratio

between its shortest and its longest wall, the overall number of identified

spaces and the total sum of their perimeters. With the exception of the last

two features, the local properties of the individual spaces are identical, but

are averaged to be treated as features of the environment.

5.2.2 Topological features

The second set of features we propose is based on the analysis of properties

of topological graphs. In this context, by topological graph we mean a graph

structure whose nodes correspond to delimited spaces of the environment

(e.g., rooms and corridors) and whose edges indicate the existence of a direct

connection between them (e.g., doors and passages). Figure 5.3 shows an

example of topological graph for a sample environment.

Figure 5.3: On the left, the ground truth floor plan of the Freiburg 79 environment. On

the right, its associated topological graph.
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Conceptually, a topological graph can be seen as a kind of skeletonized

representation of the structure of an environment in which the specific ge-

ometrical properties of the spaces are ignored in favour of a more abstract

representation of the relationships between them.

The computation of the topological graph of a floor plan is based on an

extension of the layout reconstruction algorithm we described in the previous

subsection. We provide a pseudocode of this extension in Algorithm 1.

Algorithm 1 Create topological graph

function createGraph(img, wallEnlargement)

borderingSpaces, connectedSpaces = []

spaces = reconstructLayout(img)

for s in spaces do

s.enlargeWalls(wallsEnlargement)

for sA in spaces do

for wA in sA.enlargedWalls do

for sB in spaces do

for wB in sB.enlargedWalls do

if wA.intersects(wB) then

borderingSpaces.append(sA, sB)

for sA,sB in borderingSpaces do

if areSpacesConnected(img,sA,sB) then

connectedSpaces.append(sA, sB)

G = createGraphFromConnections(connectedSpaces)

return G

To build the graph, we first verify whether any two spaces are bordering,

i.e., they have at least a wall in common. To minimize the risk of false

negatives, we perform a preprocessing step that consists of enlarging the

walls of each space in order to make them thicker.

However, physical closeness represents a necessary but not sufficient con-

dition for connectivity: in order for a space to be directly reachable from

another, it is also necessary that the two spaces are connected via a door or

some other kind of passage.

To verify this condition, we propose a technique called selective floodfill,

whose pseudocode is described in Algorithm 2. This method is based on the

assumption that if two spaces are directly connected to each other via a

passage, then it must be possible to perform a floodfill operation from any

point of the first space and detect its effect on any point of the second space.
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To select the two sample points for the analysis, we rely on an algorithm that

iteratively manipulates the centroid of each space to find a representative

point that is guaranteed to fall within the space1.

Algorithm 2 Selective floodfill

function isolateSpaces(img, spaceA, spaceB)

imgA = cutSpaceFromImage(img, spaceA.corners)

imgB = cutSpaceFromImage(img, spaceB.corners)

cutout = bitwiseOR(imgA, imgB)

return cutout

function areSpacesConnected(img, spaceA, spaceB)

cutout = isolateSpaces(spaceA, spaceB)

reprPointA = getFreeReprPoint(img, spaceA)

reprPointB = getFreeReprPoint(img, spaceB)

floodImg = floodfill(cutout, reprPointA, 127)

if cutout[reprPointB] == 127 then

return true

return false

The algorithm then iteratively verifies the connectivity condition for all

pairs of bordering spaces and proceeds with the construction of the topo-

logical graph.

In the following, we review the graph metrics that we implemented for

the analysis of topological graphs, dividing them according to the aspect of

the graph they try to capture. A detailed explanation of these metrics can

be found in [86].

5.2.2.1 Size measures

By size measures we refer to a set of graph metrics that are intended to

capture the extension of a graph from different points of view. In particular,

we discuss the concepts of order, size, density, diameter and radius of a

graph, as well as the notions of bifurcation point and terminal point.

A first kind of measures of this type is based on counting the number

of nodes or edges that compose the graph; this is the case respectively of a

graph’s order and size.

From these quantities, it is possible to define the idea of graph density,

which is a measure of the degree of connectivity of a graph with respect to

1http://toblerity.org/shapely/manual.html#object.representative_point
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its overall number of nodes. In this context, we are interested in providing a

definition of graph density only for undirected graphs, i.e., for graphs where

the existence of an edge between two nodes implies the possibility of moving

freely from one node to the other and viceversa; this assumption stems from

the consideration that, in the large majority of buildings, doors and passages

are two-way connections between spaces. Under this assumption, the density

of a graph is defined as:

d =
2m

n(n− 1)

where m is the number of edges and n is the number of nodes of the graph.

In addition to these metrics, we also consider the concept of eccentricity

of a node, that is the maximum distance from that node to all other nodes

of the graph. The diameter and radius of a graph are respectively defined as

the maximum and the minimum eccentricity among all nodes of the graph.

Finally, we also measure the number of bifurcation points and terminal

points of the graph. A bifurcation point is a node that has more than two

neighbors; a terminal point is a node that has exactly one neighbor.

5.2.2.2 Centrality measures

In graph theory and network analysis, indicators of centrality identify the

most important nodes within a graph. Each measure of centrality provides

its own criterion to assess the importance of a node, depending on the specific

aspect of the network it wants to capture, and its own normalization factor

to obtain values that can be compared across different graphs.

In order to obtain metrics that can be computed on the graph as a whole,

for each of these forms of node centrality we consider its mean and standard

deviation among all nodes as a measure of centrality of the graph itself.

Betweenness centrality

The betweenness centrality of a node v is the sum of the fraction of all-pairs

shortest paths that pass through v:

cB(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths, and

σ(s, t|v) is the number of those paths passing through some node v other

than s, t. If s = t, σ(s, t) = 1, and if v ∈ s, t, then σ(s, t|v) = 0. In practice,

it is a measure of how frequently a certain node appears on the shortest path
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between any two other nodes of the graph: the more frequently it appears,

the more important the node is for the connectivity of the network as a

whole.

Closeness centrality

A related concept is that of closeness centrality of a node u, which is defined

as the reciprocal of the sum of the shortest path distances from u to all the

other n − 1 nodes. Since the sum depends on the number of nodes in the

graph, the measure is usually normalized by the sum of minimum possible

distances; as the minimum distance between a node and every other node is

1, the correction factor amounts to n− 1. The formula for its computation

is therefore:

C(u) =
n− 1

n−1∑
v=1

d(v, u)

where d(v, u) is the shortest-path distance between v and u, and n is the

number of nodes in the graph. The intuition behind this metric is to give

greater importance to nodes that lie at very short distance from all the other

nodes.

Eigenvector centrality

Another approach to node centrality is that of eigenvector centrality. The

eigenvector centrality of a node is a measure of its influence in a network, un-

der the assumption that connections to high-scoring nodes contribute more

to the score of the node in question than connections to low-scoring nodes.

The scalar definition of this metric is the following:

xv =
1

λ

∑
t∈M(v)

xt =
1

λ

∑
t∈G

av,txt

where xv is the eigenvector centrality of node v, G is a graph, M(v) is the

set of neighbors of v, λ is a constant, and A = (av,t) is the adjacency matrix

of graph G, i.e., av,t = 1 if node v is linked to node t and av,t = 0 otherwise.

However, because of the mutual dependence between the relative scores of

neighboring nodes, this metric is often computed by taking advantage of the

following equivalent vectorial definition:

Ax = λx

where x is the eigenvector of centralities for all nodes of the network, i.e.,

the vth component of x is the relative centrality score of node v in the
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network. In general, there may be different eigenvalues λ for which a non-zero

eigenvector solution exists; however, since eigenvector centrality is required

to be positive, only the greatest eigenvalue results in the desired centrality

measure (by the Perron-Frobenius theorem).

Katz centrality

Finally, the last kind of node centrality we consider in this thesis is Katz

centrality. Katz centrality represents a variant of eigenvector centrality that

is computed according to the following formula:

xv = γ
∑
t∈G

av,txt + β

where G is a graph, A = (av,t) is the adjacency matrix of graph G, γ ∈ (0, 1)

is an attenuation factor such that γ < 1
λmax

, λ is the vector of eigenvalues

of A, λmax is the largest such eigenvalue and β is a parameter that controls

the initial centrality of the nodes (in this thesis, it is set to 1).

5.2.3 Voronoi features

The third and last set of features we propose is based on the analysis of

properties of Voronoi graphs.

In Chapter 2, we introduced the concept of Voronoi diagram as a par-

tition of the plane into cells, where each cell encloses a site, i.e., a point of

the plane that represents an obstacle, and contains all points of the plane

whose distance to the site is not greater than their distance to all other

sites. A Voronoi graph is a graph structure that is obtained by considering

the boundaries of the cells of a Voronoi diagram as edges and the points of

intersection between them as nodes.

In the following, we discuss a methodology for the computation of Voronoi

graphs of environments from their floor plans and we present a number of

features based on properties of Voronoi graphs for the estimation of the

localization error.

5.2.3.1 Voronoi graph computation

The first step towards the identification of environmental features based on

properties of Voronoi graphs is developing a methodology to compute the

Voronoi graph associated to a floor plan.

To do so, we first perform a Voronoi tesselation of the floor plan by ex-

ploiting the mathematical property that states that the Voronoi diagram of
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a set of points is dual to its Delaunay triangulation. A Delaunay triangula-

tion for a given set P of discrete points in a plane is a triangulation, i.e.,

a subdivision of the plane into triangles DT (P ), such that no point in P is

inside the circumcircle of any triangle in DT (P ). Several methods have been

proposed to obtain the Delaunay triangulation of an image; in this thesis, we

rely on the algorithm2 proposed by Bowyer and Watson respectively in [87]

and in [88]. The result of this operation is a tessellation of the floor plan

image into Voronoi cells, whose boundaries form a graph-like structure that

serves as the basis for the construction of the Voronoi graph. We call this

structure bitmap Voronoi graph.

Figure 5.4: On the left, the image of a floor plan used as input for the Voronoi graph

computation algorithm. On the right, a visual representation of the computed Voronoi

graph (nodes in red, edges in blue).

Since the images we consider represent floor plans of buildings, it is

always possible to clearly divide their content in two distinct zones: the

inside and the outside of the building. For the purpose of predicting SLAM

performance, we are only interested in obtaining a skeletonization for the

inner part of a building, as it is the one that the robot will explore.

For this reason, we first identify all the contours in the image using

the algorithm proposed by Suzuki et al. in [89]; among them, we select the

longest one as the contour of the polygon that represents the perimeter of

the building. We therefore check each pixel of the bitmap Voronoi graph and

we retain only those pixels that fall inside the polygon.

At this point, we proceed with the conversion of the bitmap Voronoi

graph into a proper graph structure.

To do so, we first apply an image dilation operator to the bitmap Voronoi

graph using a 5× 5 pixels kernel; afterwards, we reduce the resulting image

to a 1 pixel wide representation using the skeletonization operator defined by

Zhang et al. in [90]. These two steps are necessary to obtain a representation

of the bitmap Voronoi graph that is as clean and uniform as possible and

2https://en.wikipedia.org/wiki/BowyerWatson_algorithm
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to remove any imperfection and irregularity that may have been introduced

by the tesselation algorithm.

We therefore consider each pixel as a node of the Voronoi graph, adding

an edge of unitary weight between two nodes if their corresponding pixels

are close to each other, i.e., if one sits within the 3 × 3 pixel area centered

around the other. To reduce the size of the graph and obtain something

more manageable, we then perform a graph sparsification that removes all

pass-through nodes, i.e, nodes that have exactly two neighbors and whose

corresponding pixels belong to a sufficiently long straight line; the neighbors

are then connected via a new edge whose weight is the sum of the weights

of the original edges it’s replacing.

Figure 5.4 shows a visual representation of the Voronoi graph of the

Freiburg 52 environment after the sparsification step, with nodes in red and

edges in blue, together with its corresponding ground truth floor plan.

5.2.3.2 Feature computation

Besides evaluating on the Voronoi graph the same metrics that we have

already introduced for the analysis of the topological graph, we propose to

exploit the unique properties of Voronoi graphs to define two additional

features to better capture a robot’s behavior during the exploration of an

environment.

A notable property of Voronoi graphs that is particularly useful in au-

tonomous robotics is that their edges lie on the path that is furthest from all

obstacles on the plane. This property has significant implications for path

planning; in fact, the edges of the graph constitute the clearest path that a

robot could follow to move from a place of the environment to another.

Although the actual path followed by a robot strongly depends on the

exact path planning algorithm that it runs, we argue that it is possible to

obtain a good approximation of such path by performing a special kind of

graph traversal of the Voronoi graph that takes into account the limitations

of the robot sensors and the physical characteristics of the environment that

the graph refers to.

Our proposal is therefore to use the Voronoi graph of the environment

to obtain an approximation of the path the robot would follow to perform

a complete exploration of that environment. In particular, we define two

quantities, called Voronoi traversal distance and Voronoi traversal rotation,

that respectively represent the overall distance and the overall amount of

rotation that a robot would have to travel to create a map of the environment

while staying exclusively on paths belonging to the Voronoi graph.
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Data structure

To incorporate information about the physical structure of the environment

into the graph traversal process, the algorithm uses the Voronoi graph ob-

tained as previously described in conjunction with its bitmap representation

and a monochrome image of the environment’s floor plan.

A pixel on the floor plan’s image can be either black or white, with black

pixels representing obstacles and white pixels representing free areas.

Instead, a pixel on the bitmap Voronoi graph can be black, gray, or white,

with black pixels representing unexplored nodes of the graph, gray pixels

representing explored nodes of the graph, and white pixels representing free

areas that are not associated to any node of the graph.

The algorithm also maintains an internal model of a virtual robot whose

position at each step of the traversal process coincides with the coordinates

in the bitmap Voronoi graph of the node being visited by the algorithm

in that step. The model holds the robot’s position and orientation in the

environment, as well as the range and field of view of the laser range scanner.

Algorithm description

The traversal process starts from the node of the Voronoi graph whose co-

ordinates in the bitmap Voronoi graph are closest to the actual starting po-

sition of the robot during exploration. From there, the algorithm proceeds

by alternating a mapping phase to an exploration phase.

Mapping phase During the mapping phase, the algorithm identifies which

nodes of the Voronoi graph correspond to pixels of the bitmap Voronoi graph

that are visible from the robot’s pose and uses this information to update

its internal representation of which portions of the environment have been

mapped so far. Intuitively, visible pixels represent areas of the environment

that the robot would be able to perceive with a laser scan from its current

pose, and that would consequently become part of the map maintained by

the SLAM algorithm in the current exploration step.

To discover such pixels, the algorithm performs a ray casting operation

on the superimposition of the bitmap Voronoi graph and the floor plan’s im-

age starting from the pixel that corresponds to the current robot’s position.

A pixel is considered to be visible if it is within the laser’s range and field

of view and if there are no obstacles, i.e., black pixels on the floor plan’s

image, that belong to the straight line connecting it to the current robot

location. The algorithm then marks all visible nodes as seen and turns their

corresponding pixels on the bitmap Voronoi graph to grey. The pseudocode

for this part of the algorithm is detailed in Algorithm 3.
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Algorithm 3 Mapping phase

function lineOfSight(VG, bitmapVG, floorplanImg, currPxl,

prevPxl, laserRng, laserFOV)

visiblePixels = getVisiblePixels(bitmapVG, floorplanImg,

currPxl, prevPxl, laserRng, laserFOV)

visibleNodes = pixelsToNodes(visiblePixels)

markVisiblePixelsAsVisited(bitmapVG, visiblePixels)

seenNodes = markVisibleNodesAsVisited(VG, visibleNodes)

return visibleNodes, seenNodes

function getVisiblePixels(bitmapVG, floorplanImg, currPxl,

prevPxl, laserRng, laserFOV)

visiblePixels = []

nearbyPixels = getNearbyPixels(bitmapVG, currPxl, prevPxl,

laserRng, laserFOV)

for p in nearbyPixels do

pixelsAlongLine = lineBetween(currPxl, p, floorplanImg)

occupiedPixels = [p in pixelsAlongLine | p == 0]

if len(occupiedPixels) == 0 then visiblePixels.append(p)

return visiblePixels

function getNearbyPixels(bitmapVG, currPxl, prevPxl, laserRng,

laserFOV)

occupiedPixels = [p in bitmapVG | p == 0]

refAngle = computeAngle(currPxl, prevPxl)

distances = euclideanDistance(occupiedPixels, currPxl)

angles = arctan(occupiedPixels, currPxl)

idx = [i for i in range(0, lgt) | distances[i] < laserRng

and abs(atan2(sin(refAngle− angles[i]),

cos(refAngle− angles[i]))) < laserFOV]

return occupiedPixels[idx]

Exploration phase In the exploration phase, the algorithm identifies the

node of the Voronoi graph that corresponds to the next frontier to explore

and moves the virtual robot towards it, accounting for the areas of the

environment that get explored while moving. As we discussed in Chapter 2,

in the context of this thesis we assume to proceed using a nearest frontier

exploration criterion; however, the algorithm can be modified to explore the
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environment according to an arbitrary criterion.

To discover the nearest unexplored frontier, the algorithm searches for

the black pixel of the bitmap Voronoi graph that is located at the shortest

Euclidean distance from the current robot’s position; ties are broken ran-

domly. It then uses Dijkstra’s algorithm to compute the shortest path on

the Voronoi graph that connects the node of the robot’s position to the node

that corresponds to the selected pixel.

For each node along the path, the algorithm uses the bitmap Voronoi

graph to update the virtual robot’s position and orientation according to the

node’s relative displacement from its immediate predecessor on the path; it

then adds the amount of performed translation and rotation to the over-

all Voronoi traversal distance and Voronoi traversal rotation respectively.

Finally, the algorithm performs a mapping phase to identify which pixels

would be visible from that pose and updates the seen status of their cor-

responding nodes accordingly, in order to keep track of which areas of the

environment have been explored.

The Voronoi traversal distance is estimated by computing the Euclidean

distance between the pixels of the bitmap Voronoi graph corresponding to

the two nodes, which is a good approximation of the real distance the robot

would have to travel to move between them.

On the other hand, the Voronoi traversal rotation is estimated by com-

puting the absolute value of the minimum angular difference between the

current orientation of the robot and the gradient of the straight line con-

necting the two nodes, but only if the two nodes are at a minimum distance

from each other. This adjustment is made necessary by the consideration

that the relative orientation difference between two nearby pixels does not

correctly reflect the actual amount of rotation the robot performs along the

trajectory, and is instead strongly influenced by imperfections in the pixels

alignment; therefore, evaluating the relative orientation of two nodes only

if their distance is sufficiently large represents a better approximation of

the actual amount of rotation the robot would perform between them, as it

only accounts for rotations in the correspondence of curves in the simulated

trajectory.

Once the final node on the path has been reached, the algorithm identifies

the next frontier to explore and the loop is repeated. The pseudocode for

this part of the algorithm is reported in detail in Algorithm 4.

Stopping condition The algorithm stops when all nodes of the Voronoi

graph have been marked as seen.
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Algorithm 4 Exploration phase

function getNearestFrontier(bitmapVG, currPxl)

occupiedPixels = (bitmapVG == 0)

distances = euclideanDistance(occupiedPixels, currPxl)

nearestIdx = argmin(distances)

return occupiedPixels[nearestIdx]

function exploreVoronoiGraph(VG, bitmapVG, floorplanImage,

startPosition, laserRng, laserFOV, scale, speed, minRotDist)

totalNodes = len(VG.nodes())

totalDist, totalRot, numSeenNodes = 0

partDist, partRot, robotAngle = 0

prevPxl, currPxl, currAnglePxl = startPosition

while numSeenNodes < totalNodes do

nearestPxl = getNearestFrontier(bitmapVG, currPxl)

nearestNode = pixelToNode(nearestPxl)

currNode = pixelToNode(currPxl)

shortestPath = dijkstra(VG, currNode, nearestNode)

for newNode in shortestPath do

newPixel = nodeToPixel(newNode)

totalDist += euclideanDistance(VG, currNode, newNode)

if partDist > (minRotDist × scale) then

partRot += atan2(newPxl[0]-currAnglePxl[0],

newPxl[1]-currAnglePxl[1])

totalRot += abs(atan2(sin(partRot− robotAngle),

cos(partRot− robotAngle)))

robotAngle = partRot

currAnglePxl = newPxl

partDist = 0

prevPxl, prevNode = currPxl, currNode

currPxl, currNode = newPxl, newNode

visibleNodes, nseen = lineOfSight(VG, bitmapVG,

floorplanImg, currPxl,

prevPxl, laserRng, laserFOV)

numSeenNodes += nseen

currPxl = nearestPxl

return totalDist/scale, totalRot
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5.3 Model learning

The next part of our solution focuses on solving the learning problem out-

lined in Section 3.3 by building a model of the relationship between the

features we have extracted from the environments of the training set and

the observed localization error of said environments.

In the following, we describe the three machine learning techniques that

we use to solve the regression problem and we highlight the differences be-

tween their approaches to feature selection.

5.3.1 Simple linear regression

The first machine learning technique we examine is simple linear regres-

sion [91]. The simplicity of this approach lies in its usage of a single explana-

tory variable for the characterization of the behavior of the target variable,

assuming a linear correlation between the two.

At first, the algorithm selects the component of the localization error

that must be used as the target variable and the feature that must be used

as the explanatory variable. Then, the algorithm computes the values of the

two selected variables for all the environments of the training set and uses

ordinary least squares minimization to obtain the regression line that best

fits the data. The process is repeated for each of the four components of the

localization error and for every feature identified in the previous section.

A first important observation is that this model is not regularized, mean-

ing that the identified regression line is the one that best fits the data with

no added constraints. In principle, the lack of regularization in a model can

lead to overfitting, a situation in which the model learns the data so well

that it also fits the samples’ noise and therefore becomes unable to general-

ize to new samples. However, usually overfitting occurs only when the model

has too many parameters with respect to the size of the sample on which

the training is performed; since single feature linear regression models only

have two parameters (slope and intercept), they do not suffer overfitting and

therefore regularization is not necessary.

A second important observation is that this model assumes the depen-

dency between the target variable and the explanatory variable to be linear,

hence it performs poorly if a dependency exists but follows a more complex

law. Therefore, a low performing linear model does not imply a lack of de-

pendency between two variables, but only that such dependency (if it exists)

cannot be described in linear terms.
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5.3.2 Explicit feature selection

The second approach we investigate is that of multiple linear regression,

i.e., a linear regression technique that uses more than one explanatory vari-

able [91].

In order to select the best explanatory variables among the entire set of

features that we have identified in Section 5.2, we use a univariate linear

regression test known as F-regression [92]. The idea behind F-regression is

to evaluate the correlation between each of many regressors and the target

variable in the form of an F-score and retain the regressors that contribute

the most to the explanation of the target variable’s variance.

Considering an input matrix X and an array of observations of the target

variable y, the test applies the following formulas for every feature X[:, i]:

ρi =
(X[:, i]−mean(X[:, i])) ∗ (y −mean(y))

std(X[:, i]) ∗ std(y)

Fi =
ρ2i

1− ρ2i
∗ (n− 2)

where n = len(y) is the number of samples, ρi is the Pearson’s correlation

coefficient between the i-th input feature and the target variable, and Fi is

the F-score of the i-th input feature.

Feature selection is then performed by choosing the K features with

the highest F-scores, with K ranging from one to the overall number of

features identified in Section 5.2. The F-regression test is performed multiple

times for each K on different splits of the training set, keeping track of

which features have the highest F-scores each time; in the end, the algorithm

returns the K features that were selected most frequently and uses them as

the explanatory variables of the K-features linear model.

This approach is also not regularized, therefore the final models are sim-

ply obtained with ordinary least square minimization of the prediction error

on the entire training set. However, the usage of different splits of the train-

ing set for the selection of the best performing K features for each number

of features K through majority voting enhances the probability of obtain-

ing models that are robust and resilient to changes of the training set and

therefore helps preventing overfitting.

It should also be noted that, despite the usage of multiple predictors, the

models produced with this approach are still linear, so the predicted value

is obtained through a linear combination of the input features.
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5.3.3 Implicit feature selection

The third and last approach we investigate is also based on multiple lin-

ear regression, but directly performs feature selection as part of the training

process. The model we use is the ElasticNet, a regularized regression method

that linearly combines the L1 and L2 penalties of the lasso and ridge regres-

sion methods to prevent overfitting [91,93].

Both lasso and ridge regression methods are based on the idea that, in

order for a linear model to overfit the data, the coefficient of each feature

has to be free to assume very large values to ensure enough flexibility for

the model to faithfully follow the data points. Therefore, these methods in-

troduce in the ordinary least squares minimization formula a regularization

term that penalizes the models that rely on features with very large coef-

ficients. These regularizers, known respectively as L1 and L2 for lasso and

ridge, are computed according to the following formulas:

‖β‖1 =
∑
j

|βj | (5.1)

‖β‖2 =
∑
j

β2j (5.2)

where ‖β‖1 is the L1 penalty, ‖β‖2 is the L2 penalty, and βj are the coeffi-

cients of the features employed by the model as explanatory variables.

ElasticNet extends this approach by combining both regularizers in a

single cost function:

β̂ = arg min
β

(‖y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖2)

where λ1, λ2 are the hyperparameters regulating the relative importance of

the L1 and L2 penalties and β̂ is the set of coefficients that optimizes the

regularized cost function.

While the ElasticNet is trained using the entire set of environmental

features we identified in Section 5.2 as regressors, the resulting model has

non-zero coefficients only for a restricted subset of features, effectively em-

bedding feature selection directly in the training process. Furthermore, the

addition of the penalty terms to the overall cost function constrains the

approximation power of the model and therefore increases the likelihood of

producing models with good generalization capabilities.

5.4 Performance prediction

The last part of our solution focuses on the prediction of the localization

error of a SLAM algorithm on an generic environment. More specifically, it
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allows the user to predict the localization error that would be made on an

environment by the same SLAM algorithm that has been used to gather the

training data.

Depending on the specific application, some of the components of the

localization error may be more or less relevant than others. In addition,

different tasks may require different tradeoffs between prediction accuracy

and model complexity. For these reasons, the user is able to specify which

components of the localization error should be predicted for a specific en-

vironment and which models should be used to predict them. The selection

is completely orthogonal: for instance, a single feature linear model may be

used to predict the standard deviation of the translational localization error,

while an ElasticNet regularized model may be simultaneously used for the

prediction of the mean of the rotational localization error.

In addition, it is also possible to let the prediction module automatically

choose the best performing model for each component of the localization

error the user is interested in predicting. In both cases, the desired models

must have already been computed by the model learning module for the

prediction to be actually possible.

In order to predict the localization error of the SLAM algorithm in an

environment, we process the bitmap representation of its floor plan to com-

pute the characterizing features that are needed by the selected regression

models and that we described in Section 5.2. Once the values have been

obtained, we use them as the input variables of the models to look up the

predicted value of the selected components of the localization error.

5.5 Summary

In this chapter, we complemented the content of Chapter 4 to provide an in-

depth explanation of our solution to the problem we outlined in Chapter 3.

We first presented a logical high-level overview of the different modules of

which the solution is composed; then, we extensively discussed the function-

alities covered by each component and we delved into the details of their

design.
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Chapter 6

System architecture

In this chapter, we present the architecture of the system we conceptually

described in Chapters 4 and 5 and we provide a thorough explanation of

the main software components that implement the modules of our solution.

We first describe the implementation of our data collection methodology,

providing an overview of the technological solutions we adopt to perform the

automatic exploration of simulated environments and the evaluation of their

localization error. Then, we delve into the details of our feature extraction

and model learning modules, reviewing the third party libraries we use for

their implementation and discussing the technical aspects of their design.

Finally, we briefly illustrate the functioning of the performance prediction

module.

6.1 Data collection

In this section, we describe the implementation of the data collection method-

ology that we outlined in Chapter 4. First, we provide a brief overview of the

main aspects of the ROS middleware that constitutes the foundation of our

implementation. Then, we discuss our choices for the selection of the robotic

simulator and the exploration, navigation, and mapping packages that we

use to perform simulations. Finally, we discuss the scripts developed to per-

form automatic exploration and we present the tool that we use to compute

the localization error performance metric. A high level diagram of our data

collection solution is shown in Figure 6.1.

6.1.1 ROS

Robot Operating System (ROS) [94] is an open-source, meta-operating sys-

tem for robots that provides high-level features such as hardware abstrac-
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Figure 6.1: A BPMN diagram of the control flow of the data collection process.

tion, low-level device control, package management, standard implementa-

tions of frequently-used functionalities, and inter-process message passing.

It also provides tools and libraries to write, build, and run distributed code

across multiple computers.

ROS acts as a middleware built around the concept of computation graph,

a peer-to-peer network of ROS processes that are processing data together.

There are several types of components that may be part of the graph; in the

following, we describe only the ones that we use in this thesis.

• Nodes: nodes are processes that perform computations. A complete

robot control system typically comprises several nodes, each imple-

menting a different function. These functionalities may be both hard-

ware related, such as those in charge of sensors and actuators control,

or purely software related, such as those performing path planning and

mapping.

• Messages: messages are data structures used by nodes to exchange

information with each other. Similarly to C structs, messages can con-

tain any number of typed fields; each field may be a scalar, an array,

or a nested structure.

• Topics: topics provide a publish/subscribe message passing mecha-

nism to allow inter-node communication. Each topic is identified by
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a name which usually describes the content of the messages that are

exchanged through it. A node that produces content of a certain kind

will publish appropriately formatted messages to the corresponding

topic; similarly, a node that is interested in receiving content of that

kind will subscribe to it. A single topic may receive content from any

number of concurrent publishers and deliver it to any number of con-

current subscribers; similarly, a single node may listen or publish to

multiple topics at the same time.

• Services: services provide a request/reply communication model that

allows two nodes to directly interact with each other. A provider node

offers a service by exposing its name to the computation graph; client

nodes use the service by sending a request message and awaiting the

reply.

6.1.2 Stage

The tool that we use to perform all our robotic simulations is Stage1,2,

a lightweight robot simulator that can handle populations of hundreds of

virtual robots in a two-dimensional bitmapped environment. The choice of

Stage as a simulator is justified by its simplicity, adaptability, proved ro-

bustness, and reasonably good simulation accuracy for 2D environments.

Figure 6.2: On the left, a picture of a Pioneer 3-AT robot equipped with a laser range

scanner from SICK. On the right, a snapshot of a Stage simulation, with the virtual

robot denoted by the red square.

The input of the simulator is a world file providing a description of the

setting that Stage should simulate. The world file specifies the path of the

1https://github.com/rtv/Stage
2http://wiki.ros.org/stage
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file representing the floor plan that should be used to create the simulated

environment, the characteristics and the starting positions of the virtual

robots, the speed and fidelity of the simulation, and other parameters.

The simulated environment is described by a binary image, with white

pixels representing areas of the environment that are free from obstacles,

and black pixels representing obstacles.

Stage supports a variety of actuators and sensors, including grippers, wifi

modules, blinking lights, laser range scanners, sonars, and infrared ranger

sensors. It also provides a simple odometry model to simulate the effect

of a uniformly distributed random error on odometry readings; all other

simulated sensors are noise-free.

In this thesis, we use it in conjunction with the ROS middleware to

perform simulated explorations of indoor environments with a differential-

steer drive robot based on the Pioneer 3-AT robotic platform3 equipped with

a laser range scanner. Figure 6.2 shows a picture of the simulated robot and

a snapshot of a Stage simulation of a test indoor environment.

6.1.3 Exploration package

The explorer package for ROS4 provides a suite of algorithms to perform

frontier-based exploration. In addition to frontier detection, it offers a num-

ber of exploration strategies both for single agent and multiple agents ex-

ploration. In our work, this package is used to continuously generate new

exploration goals for the robot according to a nearest frontier strategy based

on Euclidean distance. In order to increase the exploration efficiency, fron-

tiers that are very close to each other are clustered together and treated as

a single frontier. In addition, we modified the package to introduce a recov-

ery mechanism that prevents the robot from getting stuck while trying to

reach unreachable frontiers: if the proposed frontier is not reached within

a maximum amount of time, the goal is aborted and a random frontier is

selected as the next goal.

6.1.4 Navigation package

In order to reach the goals proposed by explorer, our software stack relies on

the functionalities offered by the ROS navigation package5 to perform path

planning, obstacle avoidance, and navigation. Internally, these functionali-

3http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
4http://wiki.ros.org/explorer
5http://wiki.ros.org/navigation
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ties are implemented by the coordinated effort of several nodes, including a

costmap, a local planner, a global planner, and several recovery mechanisms.

Navigation is performed under the assumption that each cell of the occu-

pancy grid map representing the environment is characterized by a traversal

cost, with values ranging from 0 (completely free cell) to 254 (certainly oc-

cupied cell) and the special value 255 being reserved for cells whose cost

is unknown. Each cell’s cost is kept updated using the sensory information

acquired by the laser scanner; each cell can be either letal (when an actual

obstacle is present, value 254), inscribed (if the cell is less than the robot’s

inscribed radius away from an actual obstacle, value 253), possibly circum-

scribed (if the cell is less than the robot’s circumscribed radius away from

an actual obstacle), freespace (if its cost is zero), potentially reachable (if its

cost is between zero and the value associated to the possibly circumscribed

state), or unknown (if no information is available). The actual cost of a po-

tentially reachable or possibly circumscribed cell is computed according to

the following formula:

cost = 252 ∗ e(−f∗(d−r))

where f is a cost scaling factor, d is the distance of the cell from its closest

certainly occupied cell, and r is the robot’s inscribed radius. Two costmaps

are simultaneously maintained during navigation: a global costmap, which

covers the entire area being mapped by the SLAM algorithm, and a local

costmap, that covers a 6 m × 6 m area centered around the robot. In our

thesis, both costmaps are implemented by the costmap 2d6 ROS package.

On top of the data provided by the costmap 2d package, the actual

navigation process is carried out by a global planner and a local planner.

The task of the global planner is to propose a viable path for the robot

to follow in order to get from its current pose to its next exploration goal

while simultaneously avoiding any obstacle that may be present in the envi-

ronment. Among the several planners offered by the navigation package, we

use the navfn behavior of the global planner7 because of its fast performance

and proved robustness.

On the contrary, the local planner provides the controller that actually

drives the robot around the environment. Its job is therefore to use the

traversal cost of each cell estimated by the costmap package to determine

the dx, dy, and dtheta velocities to send to the robot. For this purpose, we

rely on the trajectory rollout approach provided by the base local planner8

6http://wiki.ros.org/costmap_2d
7http://wiki.ros.org/global_planner
8http://wiki.ros.org/base_local_planner
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ROS package. Under this approach, the controller discretely samples the

robot’s velocities space and, for each sampled velocity, performs a forward

simulation from the robot’s current pose to predict the trajectory the robot

would follow if the sampled velocity were applied for a short period of time;

each trajectory is then evaluated according to its proximity to obstacles, to

the goal, and to the global path, with the highest-scoring trajectory being

used to actually drive the robot forward.

Inter-node communication between the global and the local planner is

provided by the move base9 ROS package. This package provides an action-

based mechanism that allows the global planner to send a goal to the local

planner and receive feedback on its status (e.g., if the goal is currently being

pursued by the local planner, if it has been reached, or if the navigation

was aborted); a complete list of all possible goal statuses can be found

in the package’s documentation10. In addition, move base also maintains

the two costmaps used by the local and the global planner and executes

the recovery mechanisms that are activated whenever the robot gets too

close to an obstacle. In this thesis, we only consider the recovery mechanism

provided by the clear costmap recovery11 ROS package that attempts to

clear out space in the navigation stack’s costmaps by reverting to the static

map provided by the mapping package outside of a given radius away from

the robot.

6.1.5 Mapping package

Localization and mapping tasks are performed by the GMapping package12,

a ROS wrapper for the OpenSlam’s implementation of the GMapping SLAM

algorithm13 originally proposed by Grisetti et al. in [42].

As we mentioned in Chapter 2, GMapping is a particle filter SLAM al-

gorithm that makes use of both odometry data and raw laser range data.

Compared to other SLAM algorithms based on particle filters, the usage

of Rao-Blackwellization and adaptive resampling makes GMapping particu-

larly efficient while still being robust to noise in the data. These properties,

in addition to its widespread usage in the mobile robotics research com-

munity, led to our choice of GMapping as a good representative of SLAM

algorithms.

For this particular implementation, odometry data is encoded using

9http://wiki.ros.org/move_base
10http://docs.ros.org/api/actionlib_msgs/html/msg/GoalStatus.html
11http://wiki.ros.org/clear_costmap_recovery
12http://wiki.ros.org/GMapping
13https://www.openslam.org/GMapping.html
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transform messages of the tfMessage type. Each message is characterized

by a unique numerical identifier and a timestamp and represents the posi-

tion and orientation of the robot in the space with respect to the fixed map

reference frame. The position is encoded in terms of x, y, and z coordinates,

while the orientation is encoded as a quaternion.

Laser data is instead encoded by ROS in the LaserScan message type,

which stores the information of a single scan from a planar laser range

scanner. Each message has a unique numerical identifier and is timestamped

in order to be associated with the most appropriate odometry reading. It

also contains the actual range measurements of the scan, as well as the

characteristics of the sensor that took it in terms of field of view, angular

resolution and range.

It should be noted that the GMapping implementation we use is opti-

mized for long-range laser scanners, like the ones of the SICK LMS family;

shorter range lasers like the Hokuyo URG scanner are likely to achieve lower

performance due to the limited amount of information they provide.

6.1.6 OptiTrack node

Ground truth trajectory data is automatically provided by Stage when-

ever the exploration is performed in a simulated environment. However, our

methodology can also be applied in real world laboratory environments,

provided that they are equipped with accurate localization technologies to

continuously track the robot’s pose throughout the exploration.

In our implementation, we offer native support for the OptiTrack14 po-

sitioning system, a tracking technology developed by NaturalPoint, Inc.15

that uses a variable number of synchronized infrared cameras, each contain-

ing a grayscale CMOS imager capturing up to 100 FPS, to triangulate the

pose of an infrared reflector placed on the robot itself.

The mocap-optitrack ROS node16 is therefore used as a data relay be-

tween the tracking system and the exploration module, converting the lo-

calization data streamed through the network by OptiTrack’s Motive pro-

prietary software into messages that are published to a ROS topic.

6.1.7 Automatic exploration script

The automatic exploration script is a custom Python component that or-

chestrates the sequential automatic exploration of batches of environments.

14https://www.optitrack.com
15https://www.naturalpoint.com
16https://github.com/Enri2077/rsbb/tree/master/rsbb_mocap_optitrack
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Given a directory of environments in Stage world format, the script

schedules a predefined number of explorations for each of them and starts

the first one by means of the roslaunch command of ROS. Once an explo-

ration is underway, it takes snapshots of the map produced by the SLAM

algorithm at regular time intervals; each snapshot is compared to the pre-

vious one using the mean square error metric. When the difference between

two subsequent snapshots falls under a certain threshold, the current explo-

ration is stopped, its localization error is computed and the latest snapshot

is saved as the final reconstructed map of the environment. All sensory and

ground truth trajectory data are saved to disk in a ROS bag file, while the

reconstructed SLAM trajectory is saved in a separate log file in CARMEN

format. The script then launches a new exploration of the environment until

the number of explorations per environment is reached, at which point it

proceeds with the next environment in the dataset. When all environments

in the dataset have been explored, the script quits.

6.1.8 Adjustment tools

Because of the way the exploration process is performed, the robot may

temporarily stop moving after reaching a frontier while it considers which

frontier should be explored next; this implies that all poses on the robot’s

trajectory that correspond to a pause are repeated multiple times in the logs,

which can potentially impact the relations sampling process by increasing

their probability of being extracted. Also, since trajectory data are contin-

uously recorded to disk until the very end of an exploration run, the last

pose in the trajectory may be saved incorrectly if the recording process is

terminated before the writing buffer could be completely flushed.

To mitigate these issues, we have developed a pair of additional support

tools that can be invoked after an exploration is completed to adjust the

obtained log files. More specifically, the adjust metric.py Python script is

designed to mitigate the effect of pauses during the exploration by analyz-

ing the trajectory logs and keeping a single instance of each pose that is

consecutively repeated multiple times. The adjust output.py Python script

instead checks the logs for improper terminations and deletes the entry rel-

ative to the last pose if it has been saved incorrectly.

6.1.9 Metric evaluation

In order to evaluate the performance of a SLAM algorithm in an exploration

run, we rely on the sampling methodology we outlined in Section 4.2.3 for
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the identification of the representative set of ground truth relations on which

to compute the localization error performance metric.

First, we extract an initial set of 500 randomly sampled relations from

the complete ground truth trajectory file to get an estimate of the local-

ization error’s variance, according to the widely used statistical practice of

pilot research. For convention, relations are considered to follow the usual

progression of time, i.e., we consider the relative transformation that is nec-

essary to transform the earliest of the two randomly sampled timestamped

poses into the other. This set of relations is then saved to a ground truth

relations file for evaluation.

The actual computation of the localization error is performed by a stan-

dalone tool called metric evaluator17, a software developed by Kümmerle et

al. at the University of Freiburg as part of the research presented in [11].

The metric evaluator uses the timestamps of the reference relations provided

by the ground truth relations file to reconstruct the corresponding relations

of the SLAM trajectory log file and computes the translational and rota-

tional components of the localization error according to Equation 3.1. It

also computes several statistics about the relations’ distribution, including

the maximum and minimum observed errors on a single relation, the er-

rors’ standard deviations, and the number of relations that were used for

processing.

The computed standard deviations are then used to establish the size of

a new sample of relations on which to compute a more accurate estimate

of the localization error. The intuitive idea behind this process is that if

the majority of the relations show a similar amount of translational and

rotational error, then a good estimate of both components of the localization

error only requires a relatively small sample of relations; on the contrary, if

the observed variability is significant, the sample has to grow proportionally

in size to ensure an accurate estimation. As we mentioned in Chapter 4,

the sample sizes required for an accurate estimation of the translational and

rotational components of the localization error may differ, in which case the

selected sample size is the maximum of the two.

Once the sample size has been estimated, we repeat the sampling process

and we use the metric evaluator again to get the definitive estimate of the

localization error of the run.

17http://ais.informatik.uni-freiburg.de/slamevaluation/software.php
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6.2 Feature extraction

In this section, we provide a detailed description of the components that

constitute our implementation of the feature extraction methodology that

we outlined in Chapter 5. In particular, we discuss the rationale behind our

technical choices and we highlight the third party libraries that we use to

implement them.

6.2.1 Voronoi graph extraction

The Voronoi extractor is the component that performs the computation

of the bitmap Voronoi graph. It is a lightweight standalone C++ utility

that represents an extension of the work of Bormann et al. [95] on the

usage of Voronoi graphs for room segmentation, as implemented by the

ipa room segmentation ROS package18.

The tool processes environments in batch. Each environment is charac-

terized by a Stage world file and a floor plan, which is expected to be in png

format and to be a grayscale 8-bit image.

The tool uses the OpenCV19 image processing library to compute the

floor plan’s Voronoi diagram according to the methodology we described in

Section 5.2.3. First, it uses OpenCV’s findContours method to identify the

contours of all the shapes contained in the floor plan; for this operation,

the CV CHAIN APPROX NONE option is used to preserve every point of each

contour. Then, the floor plan’s Delaunay triangulation is computed using

OpenCV’s Subdiv2D class and adding to the initial empty instance all the

points belonging to the identified contours. Finally, the Voronoi facets of the

dual representation are obtained using the getVoronoiFacetList method

of Subdiv2D and their contours are drawn in a new image, together with

the previously identified floor plan’s contours.

At this point, the tool filters from the obtained bitmap Voronoi graph

all the points lying outside the perimeter of the floor plan’s building. First,

the tool uses OpenCV’s threshold operator to obtain a binary representa-

tion of the floor plan, turning every pixel with a value between 0 and 250

to 0. The obtained image is then inverted and processed with OpenCV’s

findContours operator to identify the contours of every shape in the floor

plan, using the CV CHAIN APPROX SIMPLE option to compress horizontal, ver-

tical, and diagonal segments and only retain their end points. The longest

contour is then assumed to represent the perimeter of the building, its length

18http://wiki.ros.org/ipa_room_segmentation
19https://opencv.org
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is computed with OpenCV’s arcLength function, and its shape is approxi-

mated with OpenCV’s approxPolyDP function with a margin of error up to

0.02% of the perimeter’s length. The tool then uses the Geometry class of

the GEOS20 library to create a polygon that closely approximates the build-

ing’s shape. Finally, the membership of each point of the bitmap Voronoi

graph to the approximating polygon is verified using the contains method

of the Geometry class on the polygon’s instance; the points that fail the

membership test are removed from the graph.

If the clear contours command line option is used, the floor plan’s

contours are removed from the final image, leaving a clear representation

of just the bitmap Voronoi graph. Otherwise, the floor plan’s contours are

retained, which can be a useful option for visualization purposes.

6.2.2 Voronoi graph construction

The Voronoi graph construction module is responsible for the conversion of

the bitmap Voronoi graph produced by the Voronoi extractor to the graph

structure that is used by the feature computation module, according to the

methodology we presented in Section 5.2.3.1.

At first, the bitmap Voronoi graph is subject to an image dilation oper-

ation, which is immediately followed by an image skeletonization operation.

These two steps are necessary to obtain a representation of the bitmap

Voronoi graph that is as clean and uniform as possible and to remove

any imperfection and irregularity that may have been introduced by the

tesselation algorithm. The dilation operator is implemented by OpenCV’s

dilate function; instead, the skeletonization operator is implemented by

the skeletonize function provided by the scikit-image image processing li-

brary. It should be noted that the two libraries use a different convention to

represent binarized images, with OpenCV expressing values between 0 and

255 and scikit-image using the [0, 1] range. For this reason, it is necessary

to perform a format conversion from OpenCV’s convention to scikit-image’s

convention before the application of the skeletonization operator, and to

perform the inverse conversion afterwards.

The module then proceeds with the construction of the node-to-pixel

and pixel-to-node mapping tables, both implemented as Python dictionaries,

that are necessary to keep track of the correspondence between the nodes

of the Voronoi graph and the pixels of the bitmap Voronoi graph.

Initially, the image of the bitmap Voronoi graph is scanned in a left-to-

right, top-to-bottom order, and a new node is created for each black pixel.

20https://trac.osgeo.org/geos
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Each node is assigned a unique progressive numerical identifier, which is

then stored in the pixel-to-node mapping table using the coordinates of the

corresponding pixel as key; the node-to-pixel mapping table is then updated

with the opposite assignment.

To identify which nodes of the Voronoi graph should be directly linked to-

gether, the module iterates on all the elements of the pixel-to-node mapping

table and checks the 3× 3 pixels area centered around the pixel correspond-

ing to each node: if a pixel in that area also belongs to the bitmap Voronoi

graph, its node identifier and that of the current node are stored together

in a tuple within the list of all neighboring nodes.

The complete version of the Voronoi graph is then built using the Net-

workX library using the list of neighboring nodes to create edges of uni-

tary weight and is subsequently sparsified according to the procedure we

described in Section 5.2.3.1.

Figure 6.3: An example of Voronoi graph before (left) and after (right) pruning the

nodes and edges that do not belong to its largest connected component subgraph.

Lastly, the module prunes from the Voronoi graph all nodes and edges

that do not belong to its largest connected component subgraph. This op-

eration is performed to remove nodes and edges that are associated with

unreachable parts of the graph, which may be present if one or more inner

areas of the environment are completely detached from the rest of the en-

vironment, like the case of inner gardens. Figure 6.3 shows an example of

environment for which this operation is necessary, in order to exclude the

unreachable area in the center.

The obtained graph is serialized to a file on disk using the pickle Python

serialization format.
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6.2.3 Layout reconstruction

The layout reconstruction module is the component that identifies the ge-

ometrical and topological structure of an environment, in terms of rooms,

corridors and connections between them, and builds the corresponding topo-

logical graph. It is developed in Python and is composed of two distinct sub-

modules: the room segmentation module and the topological graph module.

6.2.3.1 Room segmentation module

The room segmentation module is built upon the work of [82] and [83] on

the identification of delimited functional spaces, like rooms and corridors, in

indoor environments. Its purpose is to implement the geometrical aspects of

the layout reconstruction process, according to the algorithm we described

in Section 5.2.1. To do so, it relies on the implementations of the Canny edge

detection algorithm and of the Hough line transform algorithm provided by

OpenCV, applying them to a filtered and binarized representation of the

environment’s floor plan obtained with OpenCV’s threshold operator. To

cluster the identified lines into walls, the module uses the implementation

of the mean shift operator provided by the scikit-learn21 machine learning

library, which also provides the implementation of the DBSCAN clustering

algorithm used to merge together the regions of the image that belong to

the same delimited space of the environment, like the same room or corri-

dor. Each space is characterized by a unique alphanumeric identifier and a

polygonal representation of its surface implemented with the Polygon class

of the Shapely22 geometric processing library.

6.2.3.2 Topological graph module

The topological graph module is responsible for the implementation of Al-

gorithms 1 and 2 of Section 5.2.2 for the identification of the connections

between the spaces detected by the room segmentation module and the sub-

sequent construction of the topological graph. To maximize code reusability,

the module makes significant usage of functionalities provided by third party

libraries, with the most significant ones being OpenCV, Shapely, and Net-

workX23.

In particular, the OpenCV library is extensively used to perform all the

image processing operations related to the analysis of connectivity between

21urlhttp://scikit-learn.org/
22https://toblerity.org/shapely/
23https://networkx.github.io
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spaces that are at the basis of the selective floodfill method described in

Algorithm 2.

Similarly, the Shapely library has an important role in the identification

of representative points. In fact, to identify a free representative point for

each space, the module uses the representative point function of Shapely

to obtain a point that is guaranteed to be inside the space’s polygon and ver-

ifies its suitability by checking if its color in the binarized floor plan’s image

is white; if it’s not, a new candidate point is selected by iteratively verifying

the suitability of the pixels belonging to progressively larger squares cen-

tered around the original representative point, until a valid point is found.

It should be noted that, under the reasonable assumption that spaces rep-

resent areas of the environment that are actually walkable, this process is

guaranteed to eventually find a suitable representative point.

6.2.3.3 Serialization module

The serialization module has the task of saving the results of the layout

reconstruction process, both in terms of geometrical properties of the iden-

tified spaces and in terms of the topological structure of the environment, for

their subsequent analysis. The results are encoded using XML for maximum

flexibility. There are three major components to be saved: the characteristics

of the identified spaces, the connections between them, and the pixels-to-

meters scale used to encode the environment’s floor plan.

Each space is characterized by an alphanumerical identifier, a bounding

box, a bounding polygon, and a set of line segments representing the walls

delimiting the space’s borders. The polygons and the line segments are de-

scribed by the pixel coordinates of their vertices; in addition, each line seg-

ment has a unique alphanumerical identifier. Since vertices are expressed in

pixels, it is necessary to keep track of the pixels-to-meters conversion ratio in

order to allow the comparison between the geometrical features of different

environments, since each environment’s floor plan can be expressed with its

own scale. This information is therefore stored in the XML document with

a scale element.

Connections between spaces are represented through portals. Each portal

indicates the existence of a passage between the two spaces whose alphanu-

merical identifiers are reported in the portal itself. Optionally, it is possible

to specify whether the portal represents a one-way connection or a bidi-

rectional passage; in this thesis, however, we assume that all portals are

bidirectional.
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6.2.4 Feature computation

The feature computation module is the component that uses the results of

the preprocessing operations performed by the Voronoi extractor and by

the layout reconstruction module to compute the environmental features

described in Section 5.2. It is organized in three sub-modules, one for every

type of feature we are interested in analyzing: geometrical, topological, and

based on Voronoi graphs.

The geometrical sub-module uses the Shapely library to compute the

perimeter and the area of both the environment as a whole, using the bound-

ing polygon as reference, and of the individual spaces identified by the layout

reconstruction module. The aggregated measures are then simply computed

either by averaging the obtained results, in the case of the average room

perimeter and room area, or by summing them, in the case of the total

room perimeter.

The topological sub-module leverages the richness of the built-in func-

tionalities of the NetworkX library to efficiently compute all the graph-

related features of the topological graph, from the simplest ones like the

overall number of nodes and edges, to the most complex ones like the dif-

ferent centrality measures. The only exception to this pattern is represented

by the number of terminal and bifurcation points, which are not directly

provided by a NetworkX function; however, they are easily computed by

counting the number of nodes having only one neighbor and more than two

neighbors respectively.

Finally, the Voronoi sub-module is responsible for the computation of

all the features related to properties of the Voronoi graph. In particular,

it implements Algorithms 3 and 4 of Section 5.2.3.2 for the computation

of the Voronoi traversal distance and Voronoi traversal rotation features.

In addition, it also uses the NetworkX library to compute on the Voronoi

graph the same metrics that the topological sub-module computes on the

topological graph.

6.3 Model learning

The model learning module is a straightforward implementation of the ma-

chine learning approaches we discussed in Section 5.3. Its core purpose is to

verify the existence of correlations between the features computed by the

feature extraction module and the true values of the four components of the

localization error on the training environments in order to build models that

can subsequently be used for SLAM performance prediction.
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The first operation it performs is the retrieval of several pieces of infor-

mation from the logs of the experimental runs performed on the training

environments. Most notably, the module has the task of computing the ag-

gregated localization error of each environment starting from the individual

localization errors of its runs; in addition, it also computes the average true

trajectory length and true trajectory rotation of each environment, so that

they can be used as predictors for reference purposes.

It then proceeds with the model learning phase, executing one or more of

the three implemented model learning methodologies according to the user’s

selection. For this purpose, the module makes extensive usage of the scikit-

learn machine learning library for Python, which provides built-in functions

for both model training and model validation.

In the case of the explicit feature selection approach, the sub-module uses

the feature extraction module to retrieve the values of all possible predictors

for each of the environments of the training set. Then, for each component of

the localization error and for every number of featuresK from 1 to the overall

number of features, it executes the feature selection procedure to identify

the predictors that should be used for the K-features model. The selection

is done using the SelectKBest function of the scikit-learn library using the

f regression scoring function to compute the F-score of each predictor on

a randomly extracted 80% subset of the training set. Each of the best K

performing features gets a vote; the procedure is repeated multiple times for

each K on different splits of the training set, keeping track of which features

have the highest F-scores each time, and finally selecting the K features

that were voted most frequently. The K features are then used to train a

K-features model on the entire training set. At the end of the process, the

sub-module saves a summary of the feature selection procedure indicating

for each component of the localization error the features used by each model.

The behavior is similar for the implicit feature selection approach that

we described in Section 5.3.3, with the difference that in this case all features

are used simultaneously to train a single regularized model for each com-

ponent of the localization error using the implementation of the ElasticNet

regression technique provided by the scikit-learn library. For this ElasticNet

implementation, the hyperparameters are the L1 ratio and the alpha value,

which are defined respectively as:

L1 ratio =
λ1

λ1 + λ1

alpha = λ1 + λ2

where λ1, λ2 are the coefficients regulating the impact of the L1 and the
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L2 penalties of the ElasticNet model that we respectively defined in Equa-

tion 5.1 and 5.2. The values of the hyperparameters are chosen with k-fold

cross-validation, a technique that consists in dividing the training set in k

folds of equal size and iteratively training the model on k − 1 parts while

evaluating it on the remaining one. By keeping a different portion of the

dataset out of the training process at each iteration, k-fold cross-validation

allows us to select the hyperparameters that represent a good compromise

between the model’s accuracy and its generalization capability. In our con-

text, we use a number of folds equal to 5 as a balance between the need

of leaving out of the training process enough data to perform a meaningful

evaluation and the necessity of training the model on a significant and rep-

resentative portion of the original dataset. The identified hyperparameters

are then used to train a model on the entire training set; at the end of the

process, the sub-module saves a summary indicating for each component of

the localization error the features used by the identified ElasticNet model.

In the simple linear regression case, instead, the sub-module verifies the

individual suitability of each of the features we presented in Section 5.2 for

the prediction of the four components of the localization error, producing a

different model for each possible combination of 〈feature, localization error

component〉. Because of the simplicity of the model, the risk of overfitting

is negligible, and therefore the models can be directly trained on the entire

training set without regularization. In addition, it is also possible to directly

train just the model associated with a specific feature, an option that can

be useful to re-train a previously selected model on a larger training set.

Regardless of the adopted regression technique, the obtained models are

saved to disk in pickle format using the dump method of the joblib24 library.

6.4 Performance prediction

The last module of our architecture is the prediction module, whose purpose

is to allow the prediction of the localization error made by a SLAM algorithm

on a generic environment.

The prediction module requires in input the world file and the floor plan

of the environment for which the localization error must be predicted; it also

requires the directory containing the models that have been computed by

the model learning module and that are available for prediction.

The user is able to select which component of the localization error

should be predicted and to choose the preferred prediction model from a list

24https://pypi.python.org/pypi/joblib
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of all the available models for that component. Alternatively, the user can

simply specify the component of the localization error that should be pre-

dicted and the prediction module automatically selects the best performing

model for the selected component.

The prediction module then proceeds with the evaluation of the features

defined in Section 5.2 on the input environment using the feature extraction

module and uses the selected model to predict the chosen component of the

localization error.

6.5 Summary

In this chapter, we discussed the architecture of the solution we conceptu-

ally proposed in Chapters 4 and 5. We first described the implementation of

our data collection methodology, providing an overview of the technological

solutions we adopted to perform the automatic exploration of simulated en-

vironments and the evaluation of the corresponding localization error. Then,

we delved into the details of our feature extraction and model learning mod-

ules, reviewing the third party libraries we used for their implementation and

discussing the technical aspects of their design. Finally, we briefly illustrated

the functioning of the performance prediction module.
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Chapter 7

Experimental results

In this chapter, we present the setup and the results of the experiments that

we conducted to evaluate the validity of our approach.

We start by discussing the evaluation procedure and the metrics that

we adopted to assess the quality of our models. Then, we review their per-

formance in terms of explanation of the localization error’s variance and

average prediction accuracy on simulation data. Afterwards, we verify their

ability to predict the true localization error of GMapping in three differ-

ent evaluation scenarios: some simulated environments, a publicly available

dataset collected by a real robot, and a set of real robot explorations of our

own laboratory at Politecnico di Milano. Finally, we evaluate the computa-

tional efficiency of our approach for SLAM performance evaluation and we

compare it with that of simulations.

7.1 Evaluation procedure

The performance evaluation of a prediction model is a complicated matter

in many branches of science. The exact definition of the qualities that a

prediction model should possess to be considered adequate for a certain task

is in fact subject to many factors, including the task’s criticality, the required

level of precision, and the strictness of resource and time constraints. In

addition, the research community has not agreed on a single performance

metric to assess the accuracy of a model’s predictions, proposing instead

several measures that address the problem from different points of view.

In the context of this thesis, we restrict our attention to the evaluation of

three key aspects of prediction model’s performance: the ability to capture

a significant portion of the variance of the predicted variable, the average

level of accuracy of the predictions, and the power to generalize the results
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obtained on simulation data to predict the performance of GMapping in

real-world application scenarios. We present the results of the evaluation of

the first two and of the last performance measures in Sections 7.2 and 7.3,

respectively.

7.1.1 Explained variance

To determine the amount of variance of the localization error that our models

are able to explain, we evaluate each model according to its R2 coefficient of

determination, which is a measure of the proportion of the variance in the

dependent variable that can be predicted from the independent variables.

In its most general form, the formula for its computation is:

R2 = 1−

n∑
i=1

(yi − y)2∑
i(yi − ŷi)

where n is the number of samples, yi is the true value of the target variable

for the i-th sample, ŷi is the predicted value of the target variable for the

i-th sample, and y is the sample mean of the target variable. A R2 value of

1 implies perfect correlation, while a R2 value of 0 implies that the model

performs no better than the mean prediction, and a negative R2 implies that

the model performs worse than the mean prediction.

However, the R2 coefficient of a model trained on the entire dataset of

available samples may not be representative of the ability of that model

to generalize to new samples; in particular, the addition of new features to

a model always leads to an increase of the R2 coefficient due to a greater

possibility of overfitting the data, reducing its usefulness as a measure of a

model’s performance on unseen items.

To overcome this limitation, we therefore randomly divide the original

dataset in two distinct parts using an 80% training - 20% testing split and

we evaluate the performance of each model on the test set only.

7.1.2 Average prediction accuracy

The average prediction accuracy performance metric is a particularly signif-

icant measure in assessing the quality of a prediction model, since a model’s

usefulness strongly depends on its ability to accurately approximate the true

value of the predicted variable.

The first measure that we adopt to evaluate this performance metric

is the root mean square error, or RMSE, which is defined as the sample
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standard deviation of the differences between the observed values and their

corresponding predictions. It can be computed as:

RMSE =

√∑n
k=1[ŷk − yk]2

n

where n is the number of analyzed environments, ŷk is the value of the target

variable y predicted by the model for environment k, and yk is the true value

of the target variable y for environment k.

Also in this case, the RMSE of a model trained on the entire dataset

may not be representative of the ability of that model to generalize to new

samples, due to the possibility of the model overfitting the data. We therefore

adopt the same approach we previously described to randomly divide the

original dataset in a 80% training - 20% testing split and we evaluate the

performance of each model on the test set only.

A downside of RMSE is that it is not scale-independent. This does not

represent a problem for the evaluation of the relative performance of several

models on the same dataset, but it prevents the direct comparison of the

performance obtained by a single model on two different datasets. For this

reason, in our experiments we also consider the following normalized version

of the RMSE:

NRMSE =
RMSE

ymax − ymin
where ymax and ymin are respectively the maximum and the minimum ob-

served values of the target variable y in each test set.

7.1.3 Generalization ability

The last condition that we aim to verify is the extent to which our method-

ology is able to use the results of training sessions on simulated data to

predict the localization error made by GMapping in real-world application

scenarios.

For this purpose, we compare the true localization errors made by GMap-

ping in a set of real-world experimental scenarios to the corresponding pre-

dictions made by our models according to the analysis of the environments’

floor plans. We do so by means of the percentage error performance metric,

which is defined as:

PE =
|ŷ − y|
y

where ŷ is the value of the target variable predicted by the model, and y is

the target variable’s true value.
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For reference, this metric is also used to compare the true localization

errors made by GMapping in a set of simulated environments to our models’

predictions for those environments, in order to evaluate the difference in

performance of our method on simulation data and on real-world data.

7.2 Model learning

In this section, we present the experimental results of our model learning

approach on simulation data.

We start by discussing the characteristics of the environments that we

simulate as part of our data collection process. We then review the models

produced by our methodology and we extensively discuss their performance

according to their average prediction accuracy and the percentage of the

localization error’s variance they are able to explain.

7.2.1 Training and testing environments

To obtain models that can successfully capture the characteristics of real-

world applications, simulations have to be performed on a representative set

of indoor environments covering a wide range of possible floor plan configu-

rations. For this reason, we consider a total of 100 environments belonging

to three different datasets and differing from each other in terms of size,

shape, and building type (schools, offices, university campuses, and others).

Figure 7.1 shows a sample environment from each of the three datasets.

The first dataset comprises environments originally proposed by Bor-

mann et al. in [95] in the context of their work on room segmentation algo-

rithms. This dataset is available as part of the ipa room segmentation ROS

package1 and contains both real and fictional environments, some of which

can also be found in the Radish repository. The environments have an area

between 100 m2 and 1,000 m2 and are equally divided between offices and

research laboratories at both public and private organizations. The origi-

nal dataset includes 20 environments in three configurations: empty, with

furniture, and with both furniture and trash bins; however, the number of

environments that also include a ground truth floor plan is lower. In our ex-

periments, we select a subset of 11 environments for which the ground truth

floor plan is available and we limit our analysis to their empty configuration.

1http://wiki.ros.org/ipa_room_segmentation
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(a) Bormann dataset (b) MIT dataset (c) Our dataset

Figure 7.1: A sample environment from each of the three datasets used for data collec-

tion (not in the same scale).

The second dataset comprises 25 floor plans of several buildings belong-

ing to the Massachusetts Institute of Technology (MIT) university campus

in Cambridge, Massachusetts, USA. These floor plans are a subset of the

dataset published by Whiting et al. as part of their work on the generation

of topological graphs of multi-building environments [96] and are available

upon request on the website of the KTH Royal Institute of Technology2.

They comprise research laboratories, offices and teaching areas ranging from

about 1,000 m2 to over 30,000 m2.

Finally, we also use our own dataset of 64 floor plans representing real

world buildings [97], of which 26 are offices and 38 are schools, ranging from

about 100 m2 to over 10,000 m2.

7.2.2 Experimental results

In order to assess the viability of our approach and examine its flexibility

in adapting to a variety of robot configurations, we evaluate our models’

performance in two different simulation settings, executing an average of 36

runs for each of the 100 available environments in each scenario. Simulations

are performed according to the methodology we described in Section 4.2.1,

assuming a 95 % confidence level, a margin of error for the estimation of the

mean translational localization error of ± 0.03 m, and a margin of error for

the estimation of the mean rotational localization error of ± 0.002 rad.

Both settings assume the virtual robot to have a translational odometry

error of 0.01 m/m and to be equipped with a laser range scanner having a

field of view of 270°, an angular resolution of 0.5°, a [0, 60] m range, and

a maximum usable mapping range of 30 m. In addition, they assume that

mapping is performed with GMapping using 40 particles and processing a

new scan whenever the robot travels 1 m, rotates 0.25 rad, or 5 s have passed

since the last update of the map. To be able to represent small environments

2http://www.csc.kth.se/~aydemir/floorplans.html
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as well as large environments, we set the size of the reconstructed maps to be

200 m× 200 m, with each cell being 5 cm× 5 cm. Finally, map snapshots are

taken at regular intervals of 600 s and the exploration is considered complete

once the difference between two subsequent snapshots, as measured by the

mean square error metric, is below the value of 10.

However, the two settings differ in the amount of rotational odometry

error the virtual robot is expected to show. In the realistic setting, the

virtual robot is assumed to have a non-perfect rotational odometry and to

exhibit a rotational odometry error up to 2 °/rad, which is considered a

reasonable approximation of the odometry accuracy of a real wheeled robot.

In the optimistic setting, the virtual robot is instead assumed to have perfect

rotational odometry and therefore to have zero rotational odometry error.

Clearly, the optimistic setting is unrealistic from an application-oriented

point of view; nevertheless, we think it provides some valuable insights about

the resilience of our method to changes in the robot’s characteristics.

For both settings, we discuss the fitness of each of the environmental fea-

tures we introduced in Chapter 5 for the prediction of the localization error,

we review the performance of the models obtained with the three machine

learning approaches we presented in Section 5.3 and we analyze their bene-

fits and limitations in terms of prediction accuracy, variance explainability,

and model complexity.

7.2.2.1 Realistic setting

Linear regression

We start our analysis by reviewing the performance of the simple linear

regression method we described in Section 5.3.1, as it is the simplest of the

three machine learning techniques we tested. The simplicity of this approach

lies in its usage of a single explanatory variable for the characterization of

the behavior of the target variable, assuming a linear correlation between

the two.

For our evaluation, we consider 5 different random 80% training - 20%

testing splits of the original dataset. For each split, we train a linear re-

gression model for each of the features we identified in Section 5.2, and we

evaluate its performance on the test data in terms of R2 coefficient, RMSE,

and normalized RMSE. We then consider the average performance of each

feature on the 5 test sets as a proxy of its expected performance on un-

seen data, choosing as the best predictor the one with the highest average

R2 coefficient. Importantly, our experiments show that the model with the

highest average R2 coefficient is also the one offering the best average pre-
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diction accuracy, i.e., the lowest average RMSE (and normalized RMSE) on

test data, and is therefore optimal on all the considered metrics.

Table 7.1 shows the performance of the best performing feature, in terms

of average RMSE, normalized RMSE and R2 coefficient on the 5 test sets,

for each of the four components of the sample localization error, i.e., εt(E),

s(εt(E)), εr(E), and s(εr(E)). For additional context, Table 7.2 shows the

performance of the second best performing feature.

Table 7.1: Average performance on test data in the realistic simulation setting of the

best single feature linear model for each component of the localization error. NRMSE

is expressed in percentage, while RMSE is expressed in meters for the translational

component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) Voronoi traversal distance 0.812 0.145 7.92%

s(εt(E)) Voronoi traversal distance 0.677 0.012 6.78%

εr(E) Voronoi traversal distance 0.725 0.004 11.30%

s(εr(E)) Wall ratio 0.069 0.002 17.04%

Table 7.2: Average performance on test data in the realistic simulation setting of the

second best single feature linear model for each component of the localization error.

NRMSE is expressed in percentage, while RMSE is expressed in meters for the transla-

tional component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) Voronoi eigenvector centr. std.dev 0.400 0.288 15.77%

s(εt(E)) Voronoi traversal rotation 0.393 0.019 10.50%

εr(E) Voronoi eigenvector centr. std.dev. 0.458 0.006 16.23%

s(εr(E)) Voronoi closeness centr. std.dev. 0.012 0.002 17.64%

Looking at Table 7.1, it is immediately evident that the Voronoi traver-

sal distance feature exhibits a significant level of correlation with three out

of the four components of the localization error, ranking first in terms of

highest average R2 coefficient and lowest average RMSE. This level of cor-

relation is also noticeable by looking at the regression lines between the

Voronoi traversal distance feature and the two components of the transla-

tional localization error on the entire set of available environments, as shown

in Figure 7.2. The usage of the Voronoi traversal distance feature to predict

the mean and standard deviation of the translational localization error is

particularly fitting, showing an average normalized RMSE below 8% and
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7% respectively. For comparison, the second-best performing feature for the

mean of the translational localization error has a significantly lower average

R2 score of 0.400 and a much higher average normalized RMSE of 15.77%,

as shown in Table 7.2.
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Figure 7.2: The regression line of the Voronoi traversal distance model for the four

components of the localization error on the entire set of available environments. The x

axis represents the Voronoi traversal distance of the environments, the y axis represents

the value of the localization error, and the black dots show the true performance of

GMapping as measured with simulations performed with the realistic simulation setting.

A first important observation is that these results were obtained as an

average of the performances of the features on 5 different sets of testing

environments, none of which were used for model training. Therefore, they

are quite representative of the actual prediction performance of each feature

on new samples, and suggest that the Voronoi traversal distance feature is

capable of predicting the localization error made by GMapping with signifi-
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cant accuracy. Furthermore, as single feature linear models are the simplest

among all regression models, these results suggest that the usage of more

features could result in a further increase of the prediction accuracy.

A second interesting consideration stems from a closer observation of the

results relative to the prediction of the standard deviation of the rotational

localization error. The low average R2 coefficients of the first and second best

performing feature suggest that none of the predictors we have considered

fits the data particularly well, as their performance is not significantly better

than that of the mean predictor.

However, a closer inspection of their performance on the 5 test sets re-

veals that their prediction accuracy is actually quite reasonable, as they

both achieve an average RMSE of about 0.002 rad. The same holds true for

the Voronoi traversal distance predictor that, despite not ranking in the top

5 predictors in terms of average R2 score, also has an average RMSE of

0.002 rad. In fact, almost all the single feature linear regression models for

the prediction of the standard deviation of the rotational localization error

have an average RMSE on test data of 0.002 rad.

To illustrate the reason behind this seemingly contradictory result, the

bottom right quadrant of Figure 7.2 shows the trend of the standard devia-

tion of the rotational localization error with respect to the Voronoi traversal

distance predictor. As it can be seen from the plot, the scale of the measure-

ments is so small that even large percentage errors are practically negligible

in absolute terms, effectively making the prediction of this particular compo-

nent of the localization error almost insignificant for all practical purposes.

In fact, the measurements’ scale and their apparently erratic behavior sug-

gest that we may be approaching the limit at which the effects of random

noise become visible, making it difficult to capture any trace of regularity.

Table 7.3: Average performance on test data in the realistic simulation setting of the

single feature linear model based on true trajectory data for each component of the

localization error. NRMSE is expressed in percentage, while RMSE is expressed in meters

for the translational component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) True trajectory length 0.885 0.125 6.84%

s(εt(E)) True trajectory length 0.700 0.014 7.72%

εr(E) True trajectory rotation 0.820 0.003 9.44%

s(εr(E)) True trajectory rotation 0.014 0.002 17.72%

A third interesting conclusion comes from the comparison between the
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level of performance achieved by the Voronoi traversal distance predictor,

which allows an ex ante evaluation of the localization error, and the predic-

tion accuracy of models based on the true average amount of distance and

rotation travelled by the virtual robot during the simulated explorations,

whose results and regression lines are shown in Table 7.3 and in Figures 7.3

and 7.4, respectively. It should be noted that these measures can only be

used for the a posteriori analysis of our models’ results and cannot be em-

ployed for prediction, as their values become known only after the simulated

explorations have taken place.
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Figure 7.3: The regression line of the average true trajectory length model for the mean

and the standard deviation of the translational localization error on the entire set of

available environments. The x axis represents the average true trajectory length of the

environments, the y axis represents the value of the localization error, and the black

dots show the true performance of GMapping as measured with simulations performed

with the realistic simulation setting.

The results show that the average measurements on the actual trajectory

data are strongly correlated with the true values of the localization error,

with the exception of the standard deviation of the rotational component

that is substantially uncorrelated as before. This suggests that the amount

of localization error made by GMapping on a generic environment is mostly

dependent on just the overall amount of travelled distance and rotation and

is not significantly related to other characteristics of the environment, a

property that considerably simplifies the prediction problem and provides

strong empirical evidence in support of using a Voronoi approximation of

the actual trajectory as a basis for SLAM performance prediction.

We believe one of the reasons behind this result is that, perhaps in-
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tuitively, longer trajectories in indoor environments typically involve the

traversal of a higher number of long corridors or large spaces, which are

relatively featureless areas that may result in a diminished capability of

GMapping to exploit the characteristics of the environment to perform lo-

calization and mapping.

This correlation between travelled distance and SLAM error is infor-

mally well known in the SLAM community; our observations confirm such

intuition and provide a quantitative evaluation of its magnitude. Similar

considerations may hold for the increase of the overall amount of rotation,

which is likely associated with the robot having to visit a large number of

rooms, a factor that may eventually lead to a decrease of the scan matching

capability of GMapping.
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Figure 7.4: The regression line of the average true trajectory rotation model for the

mean and the standard deviation of the rotational localization error on the entire set

of available environments. The x axis represents the average true trajectory rotation of

the environments, the y axis represents the value of the localization error, and the black

dots show the true performance of GMapping as measured with simulations performed

with the realistic simulation setting.

Finally, if we compare the performance of the true trajectory length

feature with that of the Voronoi traversal distance feature for the prediction

of the mean of the translational localization error, we can see that their

average R2 coefficients on test data are very similar. This suggests that the

Voronoi traversal distance feature is a good predictor of the true distance

travelled by the robot; indeed, the R2 coefficient of determination between

the two features on the entire dataset of available environments is 0.828,

hinting at a strong level of correlation that can also be visually appreciated
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by looking at the left plot in Figure 7.5.

However, the relationship between the Voronoi traversal rotation predic-

tor and the true trajectory rotation predictor is less certain. Looking at the

right plot in Figure 7.5, we can see that there is a linear trend between the

two; indeed, the R2 coefficient of determination between the two features

on the entire set of available environments is 0.684. Despite this, the points

appear more scattered around the regression line, hinting that the Voronoi

traversal rotation feature is not fully able to capture the actual rotation per-

formed by the robot. This lower correlation is reflected by the two features’

different ability to effectively predict the rotational component of the local-

ization error, with the Voronoi predictor achieving an average R2 coefficient

and RMSE on test data of 0.390 and 0.006 rad respectively, compared to the

0.820 and 0.003 rad achieved by the true trajectory rotation model.
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Figure 7.5: On the left, the regression line between the average true trajectory length

and the Voronoi traversal distance of the 100 environments of the realistic simulation

set. On the right, the regression line between the average true trajectory rotation and

the Voronoi traversal rotation of the same set of environments.

One of the reasons behind this discrepancy is most likely related to the

relatively low level of abstraction of our analysis. Intuitively, the distance

between any two pixels on the bitmap Voronoi graph is a reasonable scaled

approximation of the true distance travelled by the robot between the corre-

sponding two points of the space; however, their relative orientation is a less

faithful representation of the actual amount of rotation the robot performs

while moving between the two, which should instead be computed at a higher

level of abstraction, i.e., by considering more realistic geometrical primitives

than individual pixels. The amount of performed rotation may also have a
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stronger dependance on the choice of the path planner than the amount of

travelled distance; however, this aspect requires further investigation.

In conclusion, these results suggest that our approach to the estimation

of the Voronoi traversal distance feature is a good approximation of the true

distance travelled by the virtual robot in the simulation runs, and that it can

successfully produce reasonable and usable predictions of all components of

the localization error but the standard deviation of the rotational compo-

nent. At the same time, they also suggest that, while our attempt to link

the computation of the Voronoi traversal rotation to a minimum amount

of travelled distance seems promising, more sophisticated approaches are

needed to fully capture the true rotational behavior of a wheeled robot.

Explicit feature selection

We now proceed with the analysis of the results obtained with the explicit

feature selection approach we described in Section 5.3.2. The goal of this

analysis is to verify whether more complex linear models based on a combi-

nation of multiple features provide any significant advantage over the sim-

pler single feature models we analyzed in the previous section. For the sake

of clarity, we briefly recall the main steps and parameters of the adopted

methodology.

We first perform an initial 80% training - 20% testing split of the original

dataset of environments for which we have the true values of the sample

localization error. For any given number of features K, we then repeatedly

perform the F-regression test on all the available features for a 100 different

80% training - 20% validation splits of the training set, each time selecting

the K features exhibiting the highest F-score on the 80% training data; we

then choose the top K predictors from the list of the most frequently selected

features as the basis of a multiple-variable linear regression model, which is

then trained on the entire training set and whose performance in terms of

RMSE and R2 coefficient is evaluated on the test data.

Figure 7.6 shows the trend of the RMSE on test data for each of the

four components of the localization error as the number of features used

by the models increases. Looking at the plots, we can see that, perhaps

counterintuitively, the usage of additional features doesn’t bring significant

improvements to the average prediction error for any of the predicted mea-

sures but the mean of the translational localization error. On the contrary,

the RMSE slightly decreases at best and significantly increases at worst as

more features are incorporated into the models.

A notable exception to this pattern is represented by the mean of the

translational localization error. In this case, the RMSE on test data has
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a global minimum at 5 features, which corresponds to a model using the

Voronoi traversal distance, the number of edges and of bifurcation points

of the Voronoi graph, and the standard deviation of both the eigenvector

and the Katz centrality of the Voronoi graph as predictors. This 5 features

model has a RMSE on test data of 0.124 m and a R2 score on test data of

0.869, which represent a 12% decrease and a 7% increase with respect to the

performance achieved by the single feature Voronoi traversal distance model

on the same data.
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Figure 7.6: The trend of the RMSE on test data of multiple-features linear models

as the number of used features increases. Features are selected in decreasing order of

individual F-score according to the methodology we presented in Section 5.3.2.

In order to evaluate the stability of these results, we use the same ap-

proach presented for the assessment of the performance of the single feature

linear models to obtain 4 additional 80% training - 20% testing splits on

which to perform the feature selection process. For the sake of conciseness,

we hereby report the results of just one of these additional evaluations, but

the following observations also apply to the other 3.
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Looking at Figure 7.7, we can see that the overall trend of the RMSE on

this new test set is not significantly different from that observed in the first

evaluation, with the number of features of the best model for each compo-

nent of the localization error being lower than 10. In particular, the model

associated with the best average prediction accuracy for the translational

localization error is now composed of 9 features, which are a superset of the

5 features of the previously identified model that also includes the mean and

standard deviation of a few additional measures of Voronoi graph centrality.

However, the magnitude of the RMSE on this test set is much smaller

than what previously observed; as an example, the mean of the translational

localization error now shows a much smaller RMSE of 0.008 m and a slightly

higher R2 coefficient of 0.94.
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Figure 7.7: The trend of the RMSE on test data of multiple-features linear models

as the number of used features increases. Features are selected in decreasing order of

individual F-score according to the methodology we presented in Section 5.3.2. Note

that, due to the very small scale of the measurements, the RMSE for the rotational

components of the localization error is expressed in milliradians.
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This dramatic difference in the magnitude of the results can be explained

by considering the different composition of the two test sets used in the two

evaluations. In the first evaluation, the test set comprised several environ-

ments having a Voronoi traversal distance greater than 1,500 m, which we

have already determined to be associated with both a high mean and a high

variance of the translational localization error and which therefore led to

an increase of the RMSE of the model. In the second evaluation, the test

set only comprised environments having a Voronoi traversal distance lower

than 500 m, which have a much smaller and much more consistent trans-

lational localization error and therefore induce a significantly lower RMSE.

Moreover, the RMSE on the second test set of the Voronoi traversal distance

single feature linear model is 0.012 m, which is itself an order of magnitude

smaller than the average one observed as part of our evaluation of the per-

formance of single feature linear models, but that is also remarkably close

to that associated with the best model identified with feature selection.

It should be noted that, due to limitations of the set of environments we

used for data collection, the fraction of environments that have very large

Voronoi traversal distances is relatively small (about 10%), and therefore

the extraction of test sets that do not comprise any such environment is a

relatively likely scenario; this consideration also justifies the importance of

evaluating the performance of our models on multiple test sets, to increase

the likelihood of spanning the entire range of environments, from the very

small to the very large.

Overall, the results of this evaluation suggest that, at least with respect

to the selection of features we consider in this thesis, the usage of additional

predictors only leads to relatively small increases in prediction performance,

as the average accuracy on unseen samples of the best models identified

by the feature selection process is not dissimilar from the one associated

with single feature linear model based on Voronoi traversal distance. At the

same time, they suggest that the optimal set of features for the prediction

of all components of the localization error is substantially stable, with the

only exception of the standard deviation of the rotational component which

we have already determined to be of little significance; however, they also

clearly indicate that the limited amount of data at our disposal requires

the evaluation of multiple training and testing sets in order to obtain a

reasonable approximation of the models’ expected performance on unseen

environments.

Implicit feature selection

Finally, we now analyze the prediction accuracy of the models produced
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with the implicit feature selection approach we described in Section 5.3.3.

Also in this case, the original dataset of environments is randomly di-

vided with an initial 80% training - 20% testing split. Since the ElasticNet is

a regularized regression method, the hyperparameters of the best model for

each component of the localization error must be selected through the usage

of some kind of validation technique. For our experiments, we use 5-fold

cross-validation to evaluate the performance of each combination of the hy-

perparameters on 5 different random 80% training - 20% validation splits of

the complete training set, selecting the values of the hyperparameters that

guarantee the minimum cross-validated RMSE. It is worth recalling that,

for the specific implementation of the ElasticNet method that we use, the

hyperparameters are the L1 ratio and the alpha value, which are defined

respectively as:

L1 ratio =
λ1

λ1 + λ1

alpha = λ1 + λ2

where λ1, λ2 are the coefficients regulating the impact of the L1 and the L2

penalty of the ElasticNet model. For our experiments, L1 ratio is chosen

from [0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1], while alpha is selected within [0.01, 0.03,

0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 30, 50, 100]. These values are common choices for

the L1 ratio and the alpha hyperparameters; in particular, L1 ratio is in

the [0, 1] range by construction.

The best performing hyperparameters for each component of the local-

ization error are then used to train a new model for that component on the

entire training set. Table 7.4 shows the performance of such models in terms

of R2 value, RMSE, and normalized RMSE on the test set, as well as the

number of features they use for prediction and the values of the L1 ratio

and alpha hyperparameters employed for regularization.

Also in this case, the data suggests that the availability of additional

features does not lead to a significant increase in the models’ performance.

On the contrary, the best performing regularized models only use a limited

number of features, with the extreme case of the model for the rotational

standard deviation of the localization error being identical to its best single

feature counterpart.

It is also interesting to notice that the best models identified by the Elas-

ticNet use a number of features comparable to that of the models identified

by explicit feature selection. The average prediction accuracy is also similar

to both that of the Voronoi traversal distance predictor, as well as that of

the feature selection model evaluated on the first 80% training - 20% testing
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split. In particular, the ElasticNet model for the prediction of the mean of

the translational localization error is a linear combination of the following

features: the Voronoi traversal distance and rotation, the sum of the perime-

ters of all rooms, the average room perimeter and area, the environment’s

perimeter and area, and the number of bifurcation points and nodes of the

Voronoi graph.

Table 7.4: A summary of the characteristics of the best performing models identified

by the ElasticNet regression technique for each component of the localization error in

one of the 5 evaluations performed on the realistic simulation setting.

N. of features Alpha L1 ratio Rˆ2 RMSE NRMSE

εt(E) 9 1 0.5 0.884 0.134 7.35%

s(εt(E)) 5 5 0.1 0.759 0.012 6.66%

εr(E) 5 0.03 0.99 0.730 0.004 10.95%

s(εr(E)) 1 0.3 0.5 0.014 0.002 17.08%

Similarly to what we did for the evaluation of the explicit feature se-

lection regression technique, we also evaluate the stability of the observed

results on 4 additional 80% training - 20% testing splits of the original

dataset.

The results of these additional evaluations closely mimic the ones we have

observed in the case of the explicit feature selection regression technique. For

conciseness, we hereby report the results obtained in just one of such splits,

but the same considerations apply to the other 3 as well.

Table 7.5: A summary of the characteristics of the best performing models identified

by the ElasticNet regression technique for each component of the localization error in

one of the 5 evaluations performed on the realistic simulation setting. The absence of

a value means that its modulus is lower than 0.001.

N. of features Alpha L1 ratio Rˆ2 RMSE NRMSE

εt(E) 7 10 0.1 0.880 0.015 6.82%

s(εt(E)) 5 0.3 0.5 0.728 - 7.23%

εr(E) 3 0.1 0.9 0.732 - 9.87%

s(εr(E)) 1 0.5 0.5 0.114 - 15.46%

Looking at the results in Table 7.5, we can see that the order of mag-

nitude of the RMSE on this second test set is much smaller than that on

the first test set. The reason behind this discrepancy is again the different

composition of the two test sets, with the first one comprising environments
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with a Voronoi traversal distance of over 1,600 m and the second one exclu-

sively made of environments with a Voronoi traversal distance lower than

530 m. We also point out that the RMSE of the Voronoi traversal distance

predictor for the mean of the translational localization error on this test set

is 0.018 m, which is very close to that of the optimal regularized model.

Despite the difference in the magnitude of the RMSE, the features se-

lected in the two evaluations are very similar, with those of the second

evaluation being a subset of those of the first. The values of the selected

hyperparameters are also quite similar, suggesting again that the set of the

optimal features is relatively stable with respect to changes of the training

and testing sets.

Overall, these results are in line with our expectations, since the Elastic-

Net regularization procedure is designed to balance the number of support

variables with the complexity of the proposed model. They also confirm our

conclusion that, at least with respect to the selection of features we consider

in this thesis, the usefulness of employing several features for the prediction

of the localization error is limited.

7.2.2.2 Optimistic setting

Linear regression

Also in this case, we start our analysis by discussing the performance of the

simple linear regression method we described in Section 5.3.1.

For our evaluation, we follow the same procedure we used for the as-

sessment of our models’ performance in the realistic simulation setting. We

consider 5 different random 80% training - 20% testing splits of the entire

set of 100 environments for which we have simulation data; for each split,

we train a linear regression model for each of the features we identified in

Section 5.2, and we evaluate its performance on the test data in terms of

R2 coefficient, RMSE, and normalized RMSE. We then consider the average

performance of each feature on the 5 test sets as a proxy of its expected per-

formance on unseen data, choosing as the best predictor the one with the

highest average R2 coefficient. Our experiments show that the model with

the highest average R2 coefficient is also the one offering the best average

prediction accuracy, i.e., the lowest average RMSE (and normalized RMSE)

on test data, and is therefore optimal on all the considered metrics.

Table 7.6 shows the performance of the best performing feature, in terms

of average RMSE, normalized RMSE, and R2 coefficient on the 5 test sets,

for each of the four components of the sample localization error, i.e., εt(E),

s(εt(E)), εr(E), and s(εr(E)). For additional context, Table 7.7 shows the
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performance of the second best performing feature.

Table 7.6: Average performance on test data in the optimistic simulation setting of the

best single feature linear model for each component of the localization error. NRMSE

is expressed in percentage, while RMSE is expressed in meters for the translational

component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) Voronoi traversal distance 0.731 0.067 9.93%

s(εt(E)) Voronoi traversal distance 0.660 0.015 11.86%

εr(E) Voronoi traversal rotation 0.276 0.002 18.72%

s(εr(E)) Voronoi eigenvector centr. std.dev. 0.031 0.002 15.85%

Table 7.7: Average performance on test data in the optimistic simulation setting of

the second best single feature linear model for each component of the localization

error. NRMSE is expressed in percentage, while RMSE is expressed in meters for the

translational component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) Voronoi Katz centr. std.dev 0.408 0.107 15.93%

s(εt(E)) Voronoi eigenvector centr. std.dev. 0.362 0.021 16.46%

εr(E) Voronoi Katz centr. std.dev 0.275 0.002 19.03%

s(εr(E)) Voronoi diameter 0.028 0.002 15.93%

The results reported in Table 7.6 confirm that, similarly to what we

observed in the realistic simulation setting, the Voronoi traversal distance

feature exhibits a significant level of correlation with both the mean and the

standard deviation of the translational localization error. A visual confir-

mation of this property comes from Figure 7.8, which shows the regression

lines between the Voronoi traversal distance feature and the two components

of the translational localization error on the entire set of available environ-

ments. For comparison, the second best performing feature for the mean of

the translational localization error has a significantly lower average R2 score

of 0.408 and a much higher average normalized RMSE of 15.93%.

The results for the prediction of the mean and standard deviation of the

rotational localization error are much less significant. In particular, all the

single feature models for the standard deviation of the rotational localiza-

tion error have an average RMSE on test data lower than 0.002 rad and an

average R2 score on test data of approximately zero. However, these num-

bers are an expected consequence of the fact that the optimistic simulation
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scenario assumes zero rotational odometry error, and therefore the models

are essentially fitting the noise in the measurements.
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Figure 7.8: The regression line of the Voronoi traversal distance model for the mean

and the standard deviation of the translational localization error on the entire set of

available environments. The x axis represents the Voronoi traversal distance of the

environments, the y axis represents the value of the localization error, and the black

dots show the true performance of GMapping as measured with simulations performed

with the optimistic simulation setting.
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Figure 7.9: The regression line of the Voronoi traversal rotation model for the mean and

the standard deviation of the rotational localization error on the entire set of available

environments. The x axis represents the Voronoi traversal rotation of the environments,

the y axis represents the value of the localization error, and the black dots show the true

performance of GMapping as measured with simulations performed with the optimistic

simulation setting.
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A visual confirmation of this phenomenon can be found by looking at

Figure 7.9, which shows the trend of the mean and standard deviation of the

rotational localization error with respect to the Voronoi traversal rotation

predictor. It is worth observing that the mean of the rotational localization

error is not constant for all environments, instead showing a slight increase

as the amount of Voronoi traversal rotation increases. We believe this is

due to slight numerical imperfections in the way Stage simulates the rota-

tional odometry error, which is never completely zero even when explicitly

configured to be so in the simulation settings3.

A similar pattern can be observed by looking at the performance of the

models based on the true average amount of distance and rotation trav-

elled by the virtual robot during the simulated explorations, whose results

and regression lines are shown in Table 7.8 and in Figures 7.10 and 7.11,

respectively.

Table 7.8: Average performance on test data in the optimistic simulation setting of the

best single feature linear model based on true trajectory data for each component of

the localization error. NRMSE is expressed in percentage, while RMSE is expressed in

meters for the translational component and in radians for the rotational component.

Used feature Rˆ2 RMSE NRMSE

εt(E) True trajectory length 0.812 0.060 8.90%

s(εt(E)) True trajectory length 0.615 0.017 13.33%

εr(E) True trajectory rotation 0.006 0.002 20.53%

s(εr(E)) True trajectory rotation -0.042 0.002 16.07%

Also in this case, the results show that the average true trajectory length

of the simulation runs is significantly correlated with the mean and the

standard deviation of the translational localization error, confirming the

trend that we have observed for the realistic simulation setting.

On the contrary, the average true trajectory rotation shows little to

no correlation with the mean and the standard deviation of the rotational

localization error, to the point that the average R2 value on test data of

the model for the prediction of the rotational standard deviation of the

localization error is negative. This behavior is a direct consequence of the

zero rotational odometry error assumption we adopted for the optimistic

simulation setting.

3http://rtv.github.io/Stage/group__model__position.html
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Figure 7.10: The regression line of the average true trajectory length model for the

mean and the standard deviation of the translational localization error on the entire set

of available environments. The x axis represents the average true trajectory length of

the environments, the y axis represents the value of the localization error, and the black

dots show the true performance of GMapping as measured with simulations performed

with the optimistic simulation setting.
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Figure 7.11: The regression line of the average true trajectory rotation model for the

mean and the standard deviation of the rotational localization error on the entire set

of available environments. The x axis represents the average true trajectory rotation of

the environments, the y axis represents the value of the localization error, and the black

dots show the true performance of GMapping as measured with simulations performed

with the optimistic simulation setting.

Finally, if we compare the performance of the true trajectory length

feature with that of the Voronoi traversal distance feature for the prediction
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of the mean of the translational localization error, we can see that, also in

this case, their average R2 coefficients on test data are very similar. This

confirms our previous intuition that the Voronoi traversal distance feature is

a good predictor of the true distance travelled by the robot; indeed, the R2

coefficient of determination between the two features on the entire dataset of

available environments is 0.803, hinting at a strong level of correlation that

can also be visually appreciated by looking at the left plot in Figure 7.12.
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Figure 7.12: On the left, the regression line between the average true trajectory length

and the Voronoi traversal distance of the 100 environments of the optimistic simulation

set. On the right, the regression line between the average true trajectory rotation and

the Voronoi traversal rotation of the same set of environments.

Instead, the correlation between the Voronoi traversal rotation predictor

and the true trajectory rotation predictor is less significant, similarly to

what we observed in the realistic simulation setting. Looking at the right

plot in Figure 7.12, we can see that there is a linear trend between the two;

indeed, the R2 coefficient of determination between the two features on the

entire set of available environments is 0.621, which is not dissimilar from

the one we observed in the realistic simulation setting. However, the points

are more scattered around the regression line, confirming our intuition that

the Voronoi traversal rotation feature is not fully able to capture the actual

behavior of the robot and that more sophisticated predictors are necessary.

Explicit feature selection

We now proceed with the analysis of the results obtained with the explicit

feature selection approach we described in Section 5.3.2. For our evaluation,

we adopt the same 80% training - 20% testing approach that we followed
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for the assessment of the performance of this regression technique in the re-

alistic simulation setting. For conciseness, we hereby report the best models

identified in just one of the 5 different evaluations we performed, the general

observations about the stability of the observed results are identical to those

of the realistic simulation scenario.

Figure 7.13 shows the trend of the RMSE on test data for each of the four

components of the localization error as the number of features used by the

models increases. Looking at the plots, we can see that, also in this case, the

usage of additional features doesn’t bring significant improvements to the

average prediction error for any of the predicted measures but the mean of

the translational localization error. In fact, the RMSE on test data slightly

decreases at best and significantly increases at worst as more features are

incorporated into the models.
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Figure 7.13: The trend of the RMSE on test data of multiple-features linear models

as the number of used features increases. Features are selected in decreasing order of

individual F-score according to the methodology we presented in Section 5.3.2.

Similarly to what we observed for the realistic simulation scenario, the
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only exception to this pattern is the mean of the translational localization

error. In this case, however, the RMSE on test data has a minimum at 17

features, which corresponds to a more complex model than the ones found

in the realistic simulation scenario; this may be due to the smaller scale of

the measurements making the effect of random noise more prominent, but

the phenomenon requires further investigation. The 17 features model has a

RMSE on test data of 0.054 m and a R2 score on test data of 0.867, which are

a 18% decrease and a 18% increase with respect to the performance achieved

by the single feature Voronoi traversal distance model on the same test set.

In addition to the Voronoi traversal distance and rotation predictors, this

model also uses the number of nodes, edges, bifurcation and terminal points

of the Voronoi graph, the number of rooms and the area of the environment,

the sum of the perimeters of all rooms, the average shortest path length on

the Voronoi graph, and several centrality features of the Voronoi graph.

Implicit feature selection

Finally, we now analyze the prediction accuracy of the models produced with

the implicit feature selection approach we described in Section 5.3.3. The

L1 ratio and the alpha hyperparameters are chosen from the same ranges

and using the same cross-validation technique that we used for the realistic

simulation setting.

Table 7.9 shows the performance of the models associated with the best

selection of the hyperparameters for each component of the localization er-

ror in one of the 5 different 80% training - 20% testing splits of the origi-

nal dataset that we consider, in terms of R2 value, RMSE, and normalized

RMSE on the test set. The number of features used for prediction and the

values of the L1 ratio and alpha hyperparameters employed for regulariza-

tion by each model are also reported.

Table 7.9: A summary of the characteristics of the best performing models identified

by the ElasticNet regression technique for each component of the localization error in

one of the 5 evaluations performed on the optimistic simulation setting.

N. of features Alpha L1 ratio Rˆ2 RMSE NRMSE

εt(E) 12 0.1 0.99 0.817 0.058 9.09%

s(εt(E)) 3 0.3 0.9 0.624 0.015 11.59%

εr(E) 7 0.01 0.99 0.298 0.002 17.57%

s(εr(E)) 1 10 0.5 -0.402 0.002 15.12%

Overall, these results confirm our intuition that the usage of regularized
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regression techniques can be beneficial in finding a compromise between a

model’s performance and complexity, but also that the usefulness of addi-

tional features for the prediction of the localization error is limited.

7.3 Prediction validation

In this section, we further investigate the generalization capabilities of the

Voronoi traversal distance linear model, which the results of the previous

section identified as a promising tradeoff between model complexity and

prediction accuracy, in three different evaluation scenarios: a pair of simu-

lated environments, a publicly available dataset collected by a real robot,

and a set of real robot explorations of our own laboratory at Politecnico di

Milano. All the results that follow were obtained after training the model on

the entire set of 100 environments that we used to perform data collection,

in order to fully make use of all the information at our disposal.

7.3.1 Simulation data

In the first scenario, we evaluate the model’s performance on a pair of ad-

ditional simulated environments to provide a more detailed example of its

ability to accurately predict the performance of GMapping in simulated set-

tings. We hereby provide a brief description of the characteristics of the two

environments and of the simulation settings that have been used for the test,

after which we delve into a more detailed discussion of the results.

7.3.1.1 Environments

The first test environment is the Freiburg 52 building of the Bormann room

segmentation dataset [95], whose floor plan and a sample SLAM map are

shown in Figure 7.14. It consists of 9 rooms and a corridor covering an area

of approximately 1,500 m2.

Figure 7.14: The Freiburg 52 test environment. On the left, the ground truth floor plan;

on the right, the reconstructed SLAM map of one of the simulation runs.
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The second test environment is the Cartesium building of the University

of Bremen, whose floor plan and a sample SLAM map are shown in Fig-

ure 7.15. It consists of 17 rooms, a corridor, and two access spaces covering

an area of approximately 2,200 m2.

Figure 7.15: The Cartesium building test environment. On the left, the ground truth

floor plan; on the right, the reconstructed SLAM map of one of the simulation runs.

The two environments have been explored using both the optimistic and

the realistic simulation scenarios with an overall number of 42 exploration

runs in each setting for each environment.

7.3.1.2 Results

Tables 7.10 and 7.11 show the comparison between the values predicted by

our models and the ground truth localization error obtained on simulation

data for the first and the second environment respectively.

Table 7.10: Values of the translational and rotational components of the localization

error, in meters and radians respectively, for the Freiburg 52 test environment.

εt(E) εr(E) εt(E) εr(E)

Realistic simulation 0.349 0.052 0.019 0.003

Realistic prediction 0.292 0.048 0.021 0.004

Optimistic simulation 0.121 0.038 0.004 0.001

Optimistic prediction 0.131 0.047 0.007 0.003

Table 7.11: Values of the translational and rotational components of the localization

error, in meters and radians respectively, for the Cartesium building test environment.

εt(E) εr(E) εt(E) εr(E)

Realistic simulation 0.534 0.059 0.024 0.004

Realistic prediction 0.471 0.060 0.025 0.005

Optimistic simulation 0.175 0.049 0.003 0.001

Optimistic prediction 0.198 0.057 0.009 0.003
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Looking at the results, we can see that the models’ predictions are able

to closely approximate the true values of the localization error for both

environments.

For the Freiburg 52 environment, in the realistic setting the prediction

error on the translational component is below 17% and 8% for the mean

and the standard deviation, respectively, while the estimate of the mean

of the rotational localization error is off by less than 10% with respect to

the simulation data. As expected, the standard deviation of the rotational

component shows a less satisfactory prediction error of about 26%, which

however amounts to an absolute error of less than 0.05°. In the optimistic

setting, the prediction error on the translational component is below 9% and

24% for the mean and the standard deviation, respectively. The estimates of

the mean and the standard deviation of the rotational localization error are,

as expected, significantly less correct, as the true values of those measures

are essentially noise.

For the Cartesium environment, in the realistic setting the prediction

error on the translational component is below 12% and 2% for the mean

and the standard deviation, respectively, while the estimate of the mean

of the rotational localization error is off by less than 5% with respect to

the simulation data. In this case, the standard deviation of the rotational

component shows a more reasonable prediction error of about 18%, which

amounts to an absolute error of about 0.04°. In the optimistic setting, the

prediction error on the translational component is below 13% and 16% for

the mean and the standard deviation respectively. As before, the estimates

of the mean and the standard deviation of the rotational localization error

are less accurate, but they are expected to be, as the true values of those

measures are essentially noise.

Finally, it is interesting to notice that the models are able to successfully

predict the fact that the SLAM performance of GMapping in the Cartesium

setting is significantly worse than that in the Freiburg 52 setting, as it can

be seen by comparing the models’ predictions and the true localization error

data of the two environments. This represents a further confirmation of the

validity of our approach for SLAM performance prediction and suggests that

our methodology could indeed be useful for both benchmarking and robot

design purposes.

7.3.2 Real robot dataset

The second evaluation scenario we examine is the application of our perfor-

mance prediction methodology to a publicly available dataset of four real-
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robot runs in one of the buildings of the University of Freiburg.

We hereby provide a brief description of the characteristics of the dataset

and of the experimental settings that have been used to perform the data

collection, after which we summarize the main preprocessing steps that were

necessary to perform our evaluation and we delve into a more detailed dis-

cussion of the results.

7.3.2.1 Dataset description

The dataset is provided by the Computer Vision Group of the Faculty of

Informatics at the Technical University of Munich4 and has been collected

by Sturm et al. at the University of Freiburg as part of their work on the

benchmarking of RGB-D SLAM solutions [67].

The four runs are collected in the same environment, which consists of

an L-shaped large industrial hall of about 1,000 m2 that contains several

office containers, boxes, and other feature-poor objects in three runs out of

four, and is empty in the fourth one.

The hall is also equipped with a motion capture system from Motion-

Analysis5 consisting of eight Raptor-E cameras with a camera resolution of

1280× 1024 pixels and a 300 Hz frame rate. The system is able to continu-

ously track the pose of the robot in the space by performing triangulation

on a passive marker attached to the robot itself. This setup was therefore

used to capture accurate ground truth data of the robot’s trajectory during

navigation with millimeter precision. However, as the motion capture sys-

tem is only able to perform accurate tracking inside a limited area of 10×12

m2, all the trajectories performed by the robot were confined to this smaller

area.

The runs were performed using an ActivMedia Pioneer 3 robot, which

follows the specifications of the Pioneer 3-AT research robotic platform6.

The robot moved through the environment in a non-autonomous fashion

and was remotely controlled by the researchers with a joystick.

The robot was equipped with a Microsoft Xbox Kinect sensor mounted

horizontally, looking towards the driving direction of the robot and recording

RGB-D data at a 640 × 480 pixels resolution and a 30 Hz frame rate. In

addition, it was also equipped with a front-facing laser range scanner, whose

characteristics are unfortunately not mentioned in the documentation of the

dataset; we therefore infer its capabilities from the analysis of the raw scans

4https://vision.in.tum.de
5http://www.motionanalysis.com/html/industrial/raptore.html
6http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
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recorded throughout the runs, obtaining a field of view of 80°, an angular

resolution of 1°, a range of about 30 m, and a frequency of 10 Hz.

Similarly, the exact amount of systematic translational and rotational

error affecting the odometry readings is not disclosed in the dataset’s docu-

mentation. It should be noted that the odometry readings of a real robot are

typically affected by different kinds of errors, due to a combination of the

state of the tires, the slipperiness of the floor, the speed at which the robot’s

travelling, the intensity of acceleration and deceleration, and other factors.

For the purposes of our analysis, we disregard these non idealities and we

only consider the amount of systematic error introduced by the odometry

sensors. Considering our prior experience with another robot based on the

same Pioneer 3-AT research robotic platform, we make an educated guess

and assume the translational and rotational odometry error to be not greater

than 0.01 m/m and 2.0 °/rad respectively.

7.3.2.2 Preprocessing

In order to apply our SLAM performance prediction methodology to this

dataset, it is first necessary to perform some preprocessing operations.

The first operation consists of converting the ground truth trajectory

data obtained from the motion capture system to a format that is compat-

ible with our toolkit. The variant of the standard CARMEN log file format

used by the authors encodes poses according to their timestamp, 3D position

along the x, y, and z axes, and quaternion orientation with respect to the

absolute reference frame of the motion capture system. However, our toolkit

expects the orientation to be expressed in Euler angles and the positioning

data to consists of x, y, and yaw information, as it assumes the robot to

be perfectly flat and not experience any variation in pitch or roll. A con-

version between the two representations is therefore necessary for a correct

interpretation of the trajectory data.

The second operation consists of obtaining the GMapping SLAM esti-

mate of the trajectory followed by the robot. To do so, we first remove from

the bag file of each run the raw measurements of the Kinect sensor, as they

are not useful in this context and significantly increase the computational

effort of our analysis. We then rely on a simplified version of our data collec-

tion methodology that uses the rosbag command of the ROS suite to replay

the recorded sensory information and we use the stored raw laser scans and

odometry data as the inputs of the ROS implementation of the GMapping

SLAM algorithm. Afterwards, the estimated SLAM trajectory is realigned

and reoriented to be expressed in the same global reference frame used for
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the ground truth trajectory data. To compensate for the possible variability

of the estimates produced by GMapping, the estimation is repeated multi-

ple times. Since the dataset does not include a ground truth floor plan of

the environment, we also use the maps reconstructed by GMapping from

the recorded navigation data as a basis to obtain a clean floor plan of the

environment to use as reference.

Finally, each SLAM estimate of the robot’s trajectory is compared to

the ground truth trajectory data using the metric evaluator tool that we

introduced in Section 6.1.9 to obtain the amount of the localization error

made by GMapping on that estimate; the values are then used to compute

the average localization error in the environment.

7.3.2.3 Results

As the robot used to collect the dataset has different characteristics, in terms

of sensor capabilities and accuracy of the odometry readings, from the two

configurations that we used to train our models, a direct comparison between

the predictions of our methodology and the true values of the localization

error on this benchmark environment only provides limited information on

the validity of our approach. In fact, since the performance of a SLAM algo-

rithm in an environment is strongly influenced by the characteristics of the

sensory information used to perform the estimation, even small differences in

the experimental setup can lead to significant variations of the localization

error, potentially undermining the validity of the predictions.

For this reason, we evaluate our models’ accuracy on the benchmark

environment in an indirect fashion.

First, we compare the true localization error made by GMapping on the

recorded sensory information to the average localization error of 10 simu-

lations of the same environment performed with the odometry error and

sensors’ characteristics of the real robot, with the purpose of evaluating the

extent to which our simulation results represent a valid approximation of

the attainable level of performance in real-world scenarios. The results of

the empty hall scenario refer to the single run that was performed in that

setting, while those of the furniture scenario represent an average of the

performance achieved by GMapping in the three runs that were performed

in that setting.

We then perform 10 additional simulations of the same environment for

each of the two simulation settings that we used to train our models. For

each component of the localization error, its average value in each simula-

tion setting is then compared to the prediction of the corresponding best
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performing single feature linear model.

Each simulation is performed according to the same methodology we

described in Chapter 4, with the difference that the time between two sub-

sequent snapshots is reduced from 10 min to 2 min due to the small size of

the environment. Figure 7.16 shows a side by side comparison of the maps

produced by GMapping in one of the simulation runs and in one of the

recorded explorations.

The results of the evaluation are shown in Table 7.12. Note that only the

mean values of the localization error can be compared, due to the limited

number of runs performed in the real-robot experiments.

A first consideration is that the difference between our predictions and

the true values of the localization error, in both the empty hall setting

and the furniture setting, is significant. As we discussed earlier, this is an

expected consequence of the difference in capabilities, in terms of odometry

accuracy and sensors’ characteristics, between the real robot used to collect

the dataset and the virtual robot employed to gather the training data. In

particular, we believe the limited field of view of the laser range scanner

used by the real robot to have a negative impact on the effectiveness of scan

matching, making it more difficult for GMapping to use laser information to

compensate for inaccuracies in the odometry estimate and therefore leading

to a higher localization error.

Table 7.12: Values of the translational and rotational components of the localization

error, in meters and radians respectively, for the benchmark dataset defined by Sturm

et al. in [67].

Empty hall With furniture

εt(E) εr(E) εt(E) εr(E)

Dataset real robot 0.189 0.058 0.267 0.070

Simulated real robot 0.223 0.031 0.245 0.045

Optimistic simulation 0.073 0.004 0.089 0.006

Optimistic prediction 0.074 0.004 0.077 0.005

Realistic simulation 0.146 0.023 0.164 0.024

Realistic prediction 0.136 0.018 0.146 0.018

On the contrary, the performance of simulations conducted with the

same robot configuration used by the dataset’s authors to collect their data

is significantly more consistent with the true localization error. This is par-

ticularly true for the translational component of the localization error, while

the rotational component exhibits a lower level of fidelity. We believe this dif-
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Figure 7.16: On the left, the map produced by GMapping using the recorded sensory in-

formation of the dataset. On the right, the map produced by GMapping on a simulation

performed with the same robot setting used to gather the original dataset.

ference may be due to several factors, including the fact that our estimation

of the rotational odometry error disregards many non-idealities that might

have affected the performance of the real robot, like the state of the tires

and the slipperiness of the floor. At least for the translational localization

error, though, these results confirm the hypothesis that Stage simulations

can offer an accurate and cost-effective approximation of the behavior of

a real robot, which provides an interesting albeit limited validation of our

approach to data collection.

The results also show that, when simulations are performed with the

same setting used to gather the training data, our methodology is able

to provide predictions that closely approximate the measured a posteriori

SLAM performance. This is particularly true for the translational compo-

nent of the localization error, where our method exhibits an error below 1%

in the empty hall scenario and below 14% in the furniture scenario under

the optimistic simulation setting; similar results are obtained in the realistic

simulation setting, with our predictions being off by less than 7% in the

empty hall scenario and less than 11% in the furniture scenario. Instead, the

results for the rotational component of the localization error show a slightly

lower degree of accuracy, with our predictions being off by about 23% on

average.

7.3.3 Laboratory experiments

The third and last evaluation scenario we examine is the application of our

performance prediction methodology to our own set of real-robot laboratory
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experiments performed at Politecnico di Milano.

We hereby provide a brief description of the characteristics of the dataset

and of the experimental settings that have been used to perform the data

collection, after which we delve into a more detailed discussion of the results.

7.3.3.1 Experimental setup

The environment we use for our experiments is one of the facilities of the

Artificial Intelligence and Robotics Laboratory (AIRLab) at Politecnico di

Milano.

The space consists of a square 9×9 m2 hall, approximately divided in two

zones: an L-shaped area hosting tables, desks and shelves with experimental

materials, and an empty square 6× 6 m2 area that is used for robot testing

and robotic competitions. Figure 7.17 shows the floor plan and an actual

picture of the testing environment taken during a robot competition.

Figure 7.17: The AIRLab facility. On the left, a schematic floor plan of the entire facility;

on the right, a picture of the robot testing area during a robot competition.

The testing area is equipped with an OptiTrack7 motion capture system

consisting of 12 grayscale CMOS infrared cameras, i.e., 3 at each corner

of the square, operating at 100 Hz; the system uses infrared reflectors to

continuously track the position and orientation of objects in space with

sub-millimeter precision. In our experiments, this system is used to obtain

accurate ground truth trajectory data of the robot’s movements, which is

then recorded in CARMEN log format.

All our experiments are conducted with a three-wheeled differential drive

robot called Robocom8. The three wheels are positioned at the corners of

7https://www.optitrack.com
8http://airlab.elet.polimi.it/index.php/RoboCom\%2BR2P

119



an isosceles triangle, with each of the two front-facing wheels being powered

by a separate motor and the third wheel being powerless.

The robot is powered by control boards provided by NovaLabs9 and

can both perform autonomous exploration of the environment or be tele-

operated with a joypad. To perform autonomous exploration, we use the

same implementation we also employ to perform data collection, substituting

the Stage robotic simulator with the Robocom10 ROS package to provide

the interface with the robot’s sensors and actuators.

Figure 7.18: The Robocom robotic platform. The OptiTrack marker is highlighted in

red in the rightmost image.

The robot is equipped with a front-facing SICK LMS100 laser range

scanner for indoor applications, which offers a field of view of 270°, an an-

gular resolution of up to 0.25°, a range of 20 m and a frequency of 50 Hz.

The marker used for the OptiTrack motion capture system is mounted on

an arm at the top of the robot to avoid any source of interference. Pictures

of the actual robot are shown in Figure 7.18.

As for the accuracy of the odometry sensor, we had the robot travel for

a known reference distance and perform a fixed number of full in-place rota-

tions to estimate the amount of systematic translational and rotational error

affecting the readings, which we evaluated to be not greater than 0.01 m/m

and 4.0 °/rad respectively.

All the odometry information from the robot’s wheels and the raw laser

scans taken by the laser range scanner were recorded in ROS bag format11.

9http://www.novalabs.io
10https://github.com/AIRLab-POLIMI/Robocom2
11http://wiki.ros.org/Bags
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7.3.3.2 Results

We performed a total of 10 real-world experiments, each involving the au-

tonomous exploration of the area of the laboratory covered by the Opti-

Track motion capture system. In addition, we also performed 10 simulated

explorations of the laboratory in Stage. In both cases, explorations were per-

formed according to the same methodology we described in Chapter 4, with

the difference that the time between two subsequent snapshots is reduced

from 10 min to 2 min due to the small size of the environment. Figure 7.19

shows a side by side comparison of the maps produced by GMapping in one

of the simulation runs and in one of the real-world laboratory explorations.

The results of the evaluation are shown in Table 7.13.

Table 7.13: Values of the translational and rotational components of the localization

error, in meters and radians respectively, for the experiments conducted in the AIRlab

facility at Politecnico di Milano.

εt(E) s(εt(E)) εr(E) s(εr(E))

Robocom 0.088 0.026 0.066 0.010

Realistic simulation 0.101 0.019 0.022 0.004

Realistic prediction 0.120 0.037 0.018 0.004

A first consideration is that the difference between the translational com-

ponent of the localization error of the simulations performed with the real-

istic simulation setting and that of the explorations performed by the real

robot in the laboratory setting is very small. Looking at the data, we can see

that the mean and the standard deviation of the translational localization

error of the simulations are respectively 15% higher and 26% lower than

those of the laboratory runs. This difference may seem significant in per-

centage, but in absolute terms it represents an error of less than 1.4 cm on

the mean and less than 1 cm on the standard deviation, which is negligible

for most practical purposes.

The rotational component of the localization error, however, is signifi-

cantly less consistent than expected. In hindsight, we believe this discrep-

ancy to be mostly due to limitations of our own Robocom robotic platform.

While the estimated 0.01 m/m translational odometry error of Robocom

coincides with the value of the simulation setting and represents a realis-

tic estimate of the performance of a generic wheeled robot, the estimated

4.0 °/rad rotational odometry error is effectively twice as high as the value of

the simulation setting and is probably close to the maximum rotational error

that can be tolerated while still achieving acceptable SLAM performance.

121



Figure 7.19: On the left, the map produced by GMapping on an autonomous exploration

of the AIRLab laboratory. On the right, the map produced by GMapping on a simulation

performed with the realistic simulation setting on the laboratory floor plan.

As for the assessment of our methodology, the results show that the pre-

dictions of our models are substantially consistent with the localization error

of the simulations. In particular, the predicted means of the translational

and rotational components of the localization error are remarkably close to

the corresponding simulation values, achieving a prediction error of less than

19% in both cases.

Also in this case, these differences may seem significant in percentage, but

in absolute terms they amount to about 2 cm on the translational component

and less than 0.3° on the rotational component. The prediction error made

on the standard deviation of the rotational localization error is even smaller,

with the prediction being off by about 9%.

The most significant exception is represented by the standard deviation

of the translational localization error, which is closer to the one made by

the real robot than the one measured on the simulation runs. However, in

absolute terms the prediction error is still smaller than 1.8 cm.

Finally, if we compare the predicted mean of the translational local-

ization error with its corresponding laboratory value, we can see that the

prediction is overestimating the true error by about 35%. In absolute terms,

this corresponds to a prediction error of 3.2 cm, which is almost twice the

one made on simulation data. We believe this difference to be at least partly

caused by the area explored by Robocom in the laboratory experiments be-

ing slightly smaller than the full size of the laboratory, a restriction that is

due to the limited coverage of the OptiTrack motion capture system that

was used to record the ground truth trajectory data.
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7.4 Computational analysis

To conclude the analysis of our method’s performance, we spend a few words

about its computational efficiency with respect to the usage of simulations

for the evaluation of the performances of SLAM algorithms. All measure-

ments refer to computations performed on a computer equipped with a Core

2 Quad Q8300 processor and 4GB of DDR2 RAM.

Table 7.14 compares the time required to predict the four components

of the localization error with their best single feature linear regression mod-

els to the time required to get an accurate estimate of their values using

simulations in the realistic simulation setting. The number of simulations

is estimated according to the methodology we presented in Section 4.2.2,

assuming a 95 % confidence level, a margin of error for the estimation of the

mean translational localization error of ± 0.03 m, and a margin of error for

the estimation of the mean rotational localization error of ± 0.002 rad. The

average simulation time is computed a posteriori on the actual simulations.

Table 7.14: Comparison between prediction and simulation times of 5 different environ-

ments in the realistic simulation scenario.

Freiburg 52 Cartesium Henderson Bronxville Cunningham

Prediction time [min] 1 1 3 2 3

N. of simulations 18 25 38 41 44

Avg. simulation time [min] 23 35 58 53 62

Total simulation time [min] 414 875 2204 2173 2728

Looking at the data, it is immediately clear that our performance pre-

diction approach has significant advantages over the usage of simulations.

In fact, despite producing estimates of the localization error with a margin

of error lower than 20% in most cases, and frequently even lower than 10%,

our approach is up to 27 times faster than a single simulation run, and up

to 1, 000 times faster than the entire simulation process.

As for the training process, our experiments show that the time required

to train our models on the set of 100 environments we used for simulations

is in the order of a few hours, depending on the desired number of features.

A reasonable estimate when using all the 41 features we consider in this

thesis is of 4 to 5 minutes per added environment on average, with smaller,

simpler environments requiring less time than larger and more complex ones.

Since the training process is mainly CPU-bound, we believe the availability

of more computational power could easily bring this estimate down to 1

minute per environment.

Of course, the main bottleneck of our approach is the necessity to gather
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a sufficient amount of simulation data to train the models in the first place.

However, it should be noted that this step is not required once a suitable

model to do performance prediction has been found, and is only necessary

if one aims to increase the models reliability by training them on a larger

set of environments.

7.5 Summary

In this chapter, we extensively reviewed the validity of our SLAM perfor-

mance prediction approach in terms of average prediction accuracy, local-

ization error’s variance explainability, generalization to new simulation envi-

ronments and real-world application scenarios, and computational efficiency.

We surveyed the landscape of the features we introduced in Chapter 5

and we identified the Voronoi traversal distance feature as the best perform-

ing predictor for the mean and the standard deviation of the translational

localization error, as well as for the mean of the rotational localization error.

On the contrary, we determined that the Voronoi traversal rotation feature,

albeit promising, is not yet sufficiently sophisticated to fully describe the

behavior of an actual wheeled robot.

We also verified that the usage of additional predictors, at least with

respect to the set of features we consider in this thesis, is generally not

helpful, and that single feature linear models are almost always the best

compromise between model complexity and prediction accuracy.

Finally, we successfully used our models to predict the performance of the

GMapping SLAM algorithm in two real-world application scenarios, obtain-

ing reasonably accurate approximations of the true values of the localization

error in both cases.
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Chapter 8

Conclusions and future

research directions

In this thesis, we addressed the problem of the performance prediction of

SLAM algorithms in the context of autonomous mobile robotics.

We highlighted how state of the art techniques for SLAM evaluation can-

not be used in unexplored scenarios, making it difficult to draw conclusions

on general SLAM performance and posing a significant obstacle towards

widespread adoption of autonomous mobile robots.

We therefore proposed an approach to overcome these limitations by us-

ing machine learning regression techniques to learn the relationship between

an environment’s structure and the expected performance of a SLAM algo-

rithm in it, in order to allow an ex ante evaluation of SLAM performance in

unseen environments. Compared to existing SLAM evaluation techniques,

our method has the main advantage of offering an estimation of the ex-

pected performance of a SLAM algorithm in an environment prior to its

exploration, potentially allowing robot designers and manufacturers to as-

sess the suitability of a SLAM algorithm for a given application scenario at

design time.

We evaluated the validity of our approach on both simulated environ-

ments and real robot experiments, considering several types of environmen-

tal features and regression methods in different evaluation scenarios. The

evaluation has shown that our approach is able to adequately capture the

relationship between an environment’s structure and the expected perfor-

mance of a SLAM algorithm in it, and to predict the performance of a

SLAM algorithm in an unseen environment with high accuracy.

In conclusion, we believe that our work represents a promising first step

towards the achievement of more reliable, general, and useful methods for



SLAM algorithms performance evaluation. Among the many possible exten-

sions of our work, we hereby list those that we deem most significant and

well worthy of future research.

More SLAM algorithms. In this research, we limited the scope of our

analysis to the behavior of the GMapping SLAM algorithm. Determining the

extent to which our results are transferrable to other SLAM algorithms, both

when using the same sensory information and when considering different

sensor types, is a crucial step towards enabling an effective usage of the

proposed approach for robot design and SLAM algorithms comparison.

More robot configurations. Another important step towards strength-

ening the applicability of our method is the extension of the set of robot

configurations used to collect the training data. Albeit in a very limited

fashion, the results we obtained in the optimistic and realistic simulation

settings already suggest that variations in the accuracy of the odometry

readings have a strong impact on the expected localization error of GMap-

ping; however, the impact of other factors, like the field of view and the

range of the laser range scanner, still remains to be precisely determined.

A more comprehensive study is therefore required to establish the nature

of their impact over the performance of SLAM algorithms and embed this

knowledge into a more powerful and versatile prediction model. In addition,

the results we obtained in the realistic simulation setting suggest that the

choice of the global and local path planners could have a significant im-

pact on the amount of rotational localization error, posing the need for the

evaluation of a richer set of planning algorithms.

Larger, more varied, and more realistic training set. The datasets

we used to train our models comprise 100 environments of different sizes,

shapes, and building types, and already constitute a solid base to draw con-

clusions about the validity of our approach; however, all environments were

assumed to be uncluttered, static, and made of non-transparent materials

to allow a proper functioning of the LIDAR sensor. A primal goal of future

research is to extend our methodology to environments that more closely

replicate the operational conditions in which mobile autonomous robots are

expected to operate and that cover an even broader set of possible applica-

tion scenarios.

Other features and models. Finally, a significant expansion of our re-

search revolves around the investigation of a broader set of environmental
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features to be used as predictors and of more complex and sophisticated

machine learning methodologies. In particular, we believe that the usage of

non-linear models, generalized linear models, and automatic feature extrac-

tion methods based on deep learning could bring a sizeable improvement

in the accuracy of our models. Naturally, the higher complexity of these

approaches also requires a much larger training set to draw meaningful con-

clusions, making this research opportunity both remarkably interesting and

particularly challenging.
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Appendix A

Parameters manual

In this appendix, we provide an in depth review of the parameters that con-

trol the behavior of our system and we detail the configurations we adopted

for our experiments. The appendix is organized in three sections: first, we

describe the parameters that control the data collection process; then, we

review the main settings of the feature extraction module; finally, we discuss

the parameters that control model learning.

A.1 Data collection

A.1.1 Stage

The Stage robotic simulator provides a significant variety of parameters to

control the many details of the simulations it performs. We hereby limit the

discussion to the two types of parameters that we use in the context of our

experiments: those related to the capabilities of the virtual robot and those

controlling the general properties of the simulation.

A.1.1.1 Virtual robot configuration

The parameters related to the capabilities of the virtual robot are:

• Localization mode: defines whether the odometry readings of the

robot should reflect its ground truth position in the environment (gps

mode) or simulate the presence of noise and imprecisions (odom mode).

To obtain a realistic model of the robot’s behavior, we set this param-

eter to odom mode.

• Odometry error: defines the amount of noise that should be added

to the odometry readings along the x, y, z, and theta axes when using
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the odom localization mode. Each component represents the maximum

proportion of error that is introduced on top of the true location and

orientation of the robot during the integration of the robot’s velocities

to compute the odometric position estimate, expressed with respect to

a unitary change of that component (one meter and one radian respec-

tively for the translational and rotational measures). The translational

components are expressed in meters, while the rotational component

is expressed in degrees. For any given value E on an axis, the actual

amount of error on that axis is chosen randomly at startup according

to a uniform distribution in the range −E/2 to +E/2.

• Laser range: defines the minimum and maximum distance within

which the simulated laser range scanner is able to perceive objects,

expressed in meters.

• Laser field of view: defines the overall symmetrical angle within

which the laser range scanner is able to perceive objects, expressed in

degrees.

• Laser number of samples: defines the number of measurements the

laser range scanner is able to perform in a single scan, distributed over

the entire field of view. The ratio between the laser’s field of view and

number of samples defines the laser angular resolution.

• Type of drive: defines whether the robot is of differential-drive type,

i.e., it turns by moving its wheels at different speeds, or car-drive

type, i.e., it turns by steering the wheels in the desired direction. Our

experiments are conducted by simulating a differential drive robot.

• Velocity limits: defines the minimum and maximum velocity the

robot is able to sustain. In our case, we assume the robot is able to

sustain speeds up to 1.0 m/s.

• Acceleration limits: defines the minimum and maximum accelera-

tion the robot is able to sustain. In our case, we assume the robot is

able to sustain accelerations up to 1.5 m/s2.

• Robot size: defines the shape of the robot. In order to be able to safely

traverse environments with narrow doors and corridors, we simulate a

small square-shaped robot with sides measuring 0.3 m in length.

• Laser position: defines the exact mounting position of the laser range

scanner on the robot’s body. We assume the laser to be mounted in a

centered position along the robot’s perimeter at a height of 0.3 m.
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A.1.1.2 Simulator configuration

The parameters related to the behavior of the simulator are:

• Simulation interval: this parameter, called interval sim in the

Stage configuration files, represents the amount of milliseconds be-

tween simulation steps. For our experiments, we use the default value

of 100 ms.

• Grid resolution: represents the smallest unit of distance the simula-

tion can handle, i.e., the virtual robot cannot distinguish any detail of

the map smaller than this amount. In our context, we use a grid reso-

lution of 0.025 m/pixel as a compromise between simulation accuracy

and computational effort.

• Environment path: this parameter, called bitmap in the Stage con-

figuration files, represents the path to the bitmap image of the floor

plan of the simulated environment.

• Environment size: defines the size in meters of the simulated en-

vironment. It is defined as a tuple whose first and second component

represent the width and height of the environment’s 2D representation,

respectively.

• Initial robot pose: defines the initial absolute position in meters of

the virtual robot inside the simulated environment. A value of 0, 0

represents the center of the simulated environment.

A.1.2 GMapping

• Map size: defines the boundaries of the rectangular area of the en-

vironment that the algorithm maps, with the center coinciding with

the initial position of the robot, expressed in meters. It is controlled

by four parameters: xmin, xmax, ymin, ymax. In our experiments, the

maximum values are set to 100 m and the minimum values are set to

−100 m.

• Angular update: defines the maximum amount of robot rotation,

expressed in radians, after which the algorithm triggers the process-

ing of a new laser scan. In our experiments, this parameter is set to

0.25 rad.

• Linear update: defines the maximum amount of robot translation,

expressed in meters, after which the algorithm triggers the processing

of a new laser scan. In our experiments, this parameter is set to 1.0 m.
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• Temporal update: defines the maximum amount of time, expressed

in seconds, after which the algorithm triggers the processing of a new

laser scan. Negative values have the effect of disabling time based

updates. In our experiments, this parameter is set to 5.0 s.

• Map update interval: defines the amount of time, in seconds, be-

tween two consecutive updates of the map. In our experiments, we

leave this parameter set to its default value of 5.0 s; lower values allow

a higher refresh rate of the produced SLAM map at the expense of a

significantly increased computational load.

• Number of particles: defines the number of possible hypothesis on

the state of the world that GMapping maintains at any given moment

in time. In our experiments, we set this parameter to 40; higher values

can potentially lead to increased SLAM performance and reduce the

risk of particle depletion at the expense of a significantly increased

computational load, while lower values can result in spurious mapping

errors due to an insufficient amount of information being retained at

each update step.

• Map resolution: defines the meters-to-pixels conversion ratio for the

reconstructed SLAM map. In our experiments, we leave this param-

eter set to its default value of 0.05 m/pixel as a compromise between

the quality of the produced map and the amount of computational

resources, both in terms of processing power and of available memory,

that are necessary to maintain it.

• Maximum laser range: defines the maximum range of the laser

range scanner. According to the GMapping guidelines1, this parameter

should be set to match the maximum operational range of the sensor;

in our experiments, we set its value to 60 m.

• Maximum usable laser range: defines the maximum usable range

of the laser range scanner. Any beam is cropped to this value. As

the accuracy of a laser range scanner decreases with distance, the

GMapping guidelines suggest to follow a conservative approach and set

its value to be lower than the maximum operational range of the actual

sensor; in our experiments, we set this parameter to a conservative

value of 30 m.

1http://wiki.ros.org/GMapping
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• Odometry error confidence: defines how much the SLAM algo-

rithm should be confident in the correctness of the odometry readings

provided by the robot. It is controlled by four different components:

stt, which defines the odometry error in translation as a function of

translation; str, which defines the odometry error in translation as a

function of rotation; srt, which defines the odometry error in rotation

as a function of translation; and srr, which defines the odometry er-

ror in rotation as a function of rotation. Their default values are 0.2,

for srt and str, and 0.1, for stt and srr; in our experiments, we

decrease their values by an order of magnitude to reflect the relatively

small margin of error of the odomety readings of our simulated robot.

A.1.3 Controller settings

• Controller frequency: defines the rate at which to run the control

loop and send velocity commands to the robot. In our experiments,

this parameter is set to 10 Hz.

• Planner frequency: defines the rate at which to run the global plan-

ning loop. If its value is set to zero, a new global plan is computed

only when the robot reaches the current goal. To prevent the robot

from getting potentially stuck following erroneous plans, we set this

value to 0.2 Hz.

• Controller patience: defines the amount of time, in seconds, the

controller waits a valid control for before attempting to perform space-

clearing operations. In our experiments, we leave this parameter set to

its default value of 15 s.

• Planner patience: defines the maximum amount of time, in seconds,

the global planner spends to find a valid plan towards the current

goal before attempting to perform space-clearing operations. In our

experiments, we leave this parameter set to its default value of 5 s.

• Maximum planning retries: defines the number of times the global

planner will attempt to find a valid plan towards the current goal

before executing recovery behaviors. In order to limit the amount of

time the global planner spends on potentially unreachable goals, we

set this value to 3.

• Velocity limits: define the translational and rotational velocity ranges

of the robot. In order to simulate the safety limitations that are im-

posed to wheeled robots in human-populated indoor environments,
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we impose a maximum forward velocity of 0.85 m/s and a maximum

angular velocity of 0.7 rad/s.

• Acceleration limits: define the translational and rotational acceler-

ation ranges of the robot. In order to simulate the safety limitations

that are imposed to wheeled robots in human-populated indoor envi-

ronments, we impose a maximum linear acceleration of 1.5 m/s2 and

a maximum angular acceleration of 2.5 rad/s2.

• Minimum in-place rotational velocity: defines the minimum rota-

tional velocity, expressed in radians per second, allowed for the robot

while performing in-place rotations. In our experiments, this value is

set to 0.4 rad/s.

• Escape velocity: defines the linear velocity at which the robot should

move backwards while trying to move away from an obstacle. As our

robot is not equipped with a backward-facing laser range scanner, we

limit the value of this parameter to −0.15 m/s for safety reasons, where

the minus sign denotes the backward motion.

• Escape reset distance: defines the distance, expressed in meters,

after which the robot considers itself sufficiently far from the obstacle

that induced the escape behavior to resume its normal navigation op-

erations. In our experiments, it is set to a conservative value of 0.15 m.

• Holonomic mode: this parameter is true if the robot is holonomic,

i.e., if it can move laterally by using omnidirectional wheels. Since

the robot we are simulating is non-holonomic, this parameter is set to

false.

• Oscillation reset distance: defines the minimum distance the robot

has to travel continuously in a given direction before it may consider

moving in the opposite direction. In our setting, this parameter is set

to 0.25 m.

A.1.4 Path planner settings

• Goal tolerance: defines the maximum distance and rotation differ-

ence from the desired goal position and orientation within which the

controller considers the goal reached. In our experiments, we tolerate

a distance margin of 0.3 m and a yaw margin of 0.2 rad.

• Path distance scale: controls the relative importance the local plan-

ner should give to staying close to the trajectory proposed by the

146



global planner in the evaluation of the cost of the actual trajectory to

be followed. It is set to 0.6.

• Goal distance scale: controls the relative importance the local plan-

ner should give to the distance between the endpoint of the local tra-

jectory and the true local goal for that intermediate planning step in

the evaluation of the cost of the actual trajectory to be followed. It is

set to 0.8.

• Obstacle distance scale: controls the relative importance the local

planner should give to avoiding obstacles in the evaluation of the cost

of the actual trajectory to be followed. It is set to 0.05.

• Meter scoring: if true, the path distance, goal distance, and obstacle

distance values used in the evaluation of the cost of the trajectory to

be followed are expressed in meters; if false, they are expressed in cells.

In our setting, this parameter is true.

• Simulation time: defines the amount of time, in seconds, to forward-

simulate trajectories in order to evaluate their cost. Higher values pro-

duce more accurate results at the expense of an increased computa-

tional effort. In our setting, this parameter is set to 1.5 m.

• Simulation granularity: defines the simulation step size between

points on a given trajectory in meters. In our setting, it is set to its

default value of 0.025 m as a compromise between simulation accuracy

and computational effort.

• Vx samples: defines the number of samples to use when exploring

the x velocity space to determine the intensity of the forward motion

control signal the robot should send to the motors. Higher values pro-

duce more accurate estimates. In our setting, this parameter is set to

10.

• Vtheta samples: defines the number of samples to use when explor-

ing the angular velocity space to determine the intensity of the rotation

control signal the robot should send to the motors. Higher values pro-

duce more accurate estimates. In our setting, this parameter is set to

20.

A.1.5 Common costmap settings

• Robot footprint: defines the area that should be considered as occu-

pied by the robot while performing path planning. To reduce the prob-

147



ability of collisions with obstacles, we set the footprint to be slightly

larger than the true size of the robot, encompassing a square area with

sides of 0.4 m.

• Maximum obstacle height: defines the maximum height an obstacle

may have to be inserted into the costmap, in meters. As this parameter

must be set to be slightly higher than the true height of the robot, we

set its value to 0.6 m.

• Obstacle range: defines the maximum distance from the robot at

which an obstacle may be inserted in the costmap, in meters. Consid-

ering the range of our laser range scanner, we set this parameter to

30 m.

• Raytrace range: defines the maximum distance in meters at which

to raytrace obstacles. This parameter is also set to 30 m.

• Inflation radius: defines the radius in meters to which an obstacle

cost is inflated by the path planner to include its neighboring cells. All

cells that lie at a distance from the obstacle greater than this value

are considered to have zero cost and can certainly be used for path

planning; cells that have a non-zero cost may also be used for path

planning, but preferring lower cost cells to higher cost cells to reduce

the possibility of collisions. In our setting, this parameter is set to

2.25 m.

• Cost scaling factor: controls the rate at which the cost of the costmap

cells exponentially decays as a function of the robot’s distance from

the obstacle. In our setting, this parameter is set to 7.5 m.

A.1.6 Global costmap settings

• Global update frequency: defines the rate at which the global

costmap must be refreshed to reflect new observations of the laser

range scanner. In our setting, this parameter is set to 2 Hz in order to

limit the computational effort required to keep the costmap updated.

• Global static map: defines whether the costmap should be initial-

ized with data coming from a map server. In order to use a SLAM

algorithm, this parameter must be set to true.

• Transform tolerance: defines the maximum delay the costmap tol-

erates while processing incoming transform data, in seconds. If the
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transform between the robot’s reference frame and the costmap’s ref-

erence frame takes longer than this amount, the information contained

in the transform is considered to be outdated and is ignored. This pa-

rameter is set to 0.2 s.

A.1.7 Local costmap settings

• Local update frequency: defines the rate at which the local costmap

must be refreshed to reflect new observations of the laser range scanner.

In our setting, this parameter is also set to 2 Hz in order to limit the

computational effort required to keep the costmap updated.

• Local costmap size: defines the area covered by the local costmap.

The local costmap’s center coincides with the robot’s position and the

costmap follows the robot using a rolling window approach. In our

setting, both height and width are set to 6 m.

• Local costmap resolution: the resolution of the local costmap in

terms of length of a cell’s sides, expressed in meters. It is set to 0.02 m.

• Transform tolerance: defines the maximum delay the costmap tol-

erates while processing incoming transform data, in seconds. If the

transform between the robot’s reference frame and the costmap’s ref-

erence frame takes longer than this amount, the information contained

in the transform is considered to be outdated and is ignored. This pa-

rameter is set to 0.2 s.

A.1.8 Automatic exploration script

• Seconds between map saves: defines the frequency at which the

exploration termination condition is verified by defining the amount

of time, in seconds, between two consecutive map snapshots. In our

experiments, we set this value to 600 s, except for very small environ-

ments (under 250 m2) for which its value is 120 s.

• Maximum number of map saves: defines the maximum duration

of an exploration run by capping the number of consecutive map snap-

shots that can be taken before the simulation is forcefully terminated.

It serves as a safety procedure to prevent the simulation from stalling

in case of particularly bad exploration failures. In our experiments, we

set this value to 18.
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• Image similarity threshold: defines the maximum level of differ-

ence between two consecutive map snapshots, as defined by the mean

square error (MSE) metric, for the images to be considered identical.

Whenever the difference between two consecutive map snapshots falls

below this threshold, the exploration is considered complete and the

simulation is stopped. In our experiments, we set this value to 10,

which we empirically verified to be a good compromise with respect

to the size of the reconstructed SLAM maps between the necessity to

avoid premature terminations and the need to tolerate a certain level

of noise.

• Number of runs: defines how many consecutive simulation runs

should be performed for each environment of the batch. In our ex-

periments, we start with an initial value of 10 runs as described in

Section 4.2.2, which can then be increased to match the required sam-

ple size.

A.2 Feature extraction

In this section, we discuss the main parameters that affect the way in which

the feature extraction module computes the environmental features that

are used for model learning and prediction. In particular, we focus on the

parameters controlling the computation and the exploration of the Voronoi

graph for the elaboration of the Voronoi traversal distance and Voronoi

traversal rotation environmental features.

A.2.1 Voronoi graph computation

The parameters affecting the computation of the Voronoi graph are:

• Dilation kernel: defines the size in pixels of the kernel that is used

to dilate the segments of the bitmap Voronoi graph as part of the

skeletonization process. In our experiments, we use a 5×5 pixels kernel.

• Pass-through node detection distance: defines the length in pixels

of the alignment line that is used to verify whether two adjacent nodes

in the bitmap Voronoi graph are part of a longer straight line or sit on

a curve. The alignment line is centered on the two nodes and effectively

represents an extension of the line that joins them. If at least one pixel

in both the 3 × 3 pixels areas at the extremes of the alignment line

is black, the two nodes are assumed to belong to a longer straight
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line and one of them is removed as it represents a pass-through node;

otherwise, the nodes are interpreted to be part of a curve and are both

kept in the Voronoi graph. In our experiments, this parameter is set

to 5 pixels.

A.2.2 Voronoi graph exploration

The parameters affecting the exploration of the Voronoi graph are:

• Laser field of view: defines the field of view of the simulated laser.

To match the configuration used to perform data collection, we set

this value to 270°.

• Laser range: defines the usable range in meters of the simulated laser.

To match the configuration used to perform data collection, we set this

value to 30 m.

• Starting position: defines the node of the Voronoi graph from which

the exploration starts. This parameter is automatically set for each

environment to coincide with the pose from which the exploration

would start.

• Scale: defines the pixels-to-meters conversion factor. This parameter is

automatically set for each environment to coincide with the resolution

of the associated floor plan.

• Minimum rotation distance: defines the minimum distance be-

tween two nodes that the virtual robot has to travel before estimating

the Voronoi rotation between the second and the first node. In our

experiments, this parameter is set to 0.5 m to avoid misinterpreting

imperfections in the pixels alignment as actual rotations of the robot,

only accounting for rotations in the correspondence of curves in the

simulated trajectory.

A.3 Model learning

In this section, we describe the most relevant parameters that control the

behavior of the model learning module. These parameters affect the way in

which the model learning module attempts to find correlations between the

values of the available environmental features and the components of the

localization error for the environments of the training set.
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• Model class: allows the user to specify which of the three machine

learning techniques described in Section 5.3 should be used for train-

ing. Therefore, its possible values are Linear regression, Feature

selection and ElasticNet.

• Linear regression features: allows the user to specify the behavior

of the model learning module when using the Linear regression

model class. It can be set to an individual feature, in which case

only the regression model using that feature as independent variable

is trained, or to override mode, in which case the module trains a

regression model for each of the available features.

• Feature selection repeats: defines the number of times for which the

F-regression test is performed for each candidate number of features

K to identify the best performing features of each set when using

the Feature selection technique described in Section 5.3.2. In our

experiments, this value is set to 100.

• ElasticNet L1 ratios: allows the user to specify a list of candidate

values for the ratio controlling the relative importance of the L1 regu-

larization term compared to the L2 regularization term when using the

ElasticNet model. A L1 ratio of 0.0 means that only L2 regulariza-

tion is used, while a L1 ratio of 1.0 means that only L1 regularization

is used.

• ElasticNet alphas: allows the user to specify a list of candidate values

for the alpha hyperparameter when using the ElasticNet model.
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