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Sommario

In questo lavoro di tesi viene presentato il progetto aerodinamico di su-
perfici di bordo d’attacco atte alla riduzione di resistenza in condizioni di
volo supersonico. Lo scopo principale è valutare, in via preliminare, questo
tipo di soluzione nella prospettiva di un eventuale utilizzo su un aereo da
trasporto supersonico; per far ciò viene considerata la sola sezione 2D di un
profilo adatto al volo transonico; sono omessi aspetti strutturali e cinematici
del meccanismo. Il lavoro è diviso in tre fasi; per cominciare, il profilo di
partenza viene valutato in modo da ottenere i valori di riferimento per le
successive comparazioni. Nella seconda fase si procede ad un’ottimizzazio-
ne basata su modello surrogato (SBO) per ottenere la configurazione adatta
alla crociera supersonica; l’ottimizzazione, che ha come scopo ridurre il coef-
ficiente di resistenza, usa la Shock Expantion Theory come modello a bassa
fedeltà, un ottimizzatore genetico ed un solutore per le equazioni di Eulero
come modello ad alta fedeltà. La terza ed ultima fase si propone di testa-
re l’utilizzo della superficie superiore come dispositivo di ipersostentazione.
Come per la seconda fase l’ottimizzatore è un SBO ; l’ottimizzazione surro-
gata viene svolta da un metodo a gradiente che minimizza la cifra di merito
ottenuta dal metodo a pannelli di Hess-Smith; i risultati ad alta fedeltà sono
ottenuti risolvendo le equazioni RANS incomprimibili. Due distinte ottimiz-
zazioni sono eseguite in differenti condizioni di volo; la prima si prefigge di
massimizzare il coefficiente di portanza in prossimità dello stallo mentre la
seconda lavora sull’indice di salita massimizzandolo ad un’incidenza di 8 gra-
di. Come prevedibile, la resistenza supersonica della configurazione estesa è
stata drasticamente ridotta rispetto al profilo di partenza; il miglioramento
rispetto all’ottimo del surrogato è tuttavia modesto. L’ipersostentazione, in-
vece, registra un netto miglioramento sia rispetto al profilo di partenza sia
rispetto all’ottimo dato da Hess-Smith.

Parole chiave: SST, Ottimizzazione , Manifold Mapping, Multi-fidelity,
Dispositivi bordo d’attacco, Profilo supersonico, Ipersostentatore
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Abstract

In this work the aerodynamic design of leading edge surfaces to reduce
supersonic drag is presented; the aim is to asses the performances of such de-
sign in prospect of its implementation for a two-optimum regime supersonic
transport. The process is limited to the 2D wing section and it do not con-
sider structural and cinematic aspects. This works is divided into three main
steps. Firstly the baseline airfoil, suitable for transonic flight, is evaluated
using the physical models later adopted in the optimizations. In the second
step, a multi-fidelity surrogate based optimization (SBO) is performed to
obtain the supersonic design; the constrained single-objective optimization
aims to reduce the drag coefficient in supersonic cruise; it couples a genetic
optimization and Shock Expansion Theory (SET ) with validation runs that
rely on compressible Euler equation. The third step tests the possible use as
high lift device of the upper surface; two similar optimizations are carried out
to obtain its position in different flow conditions. The first one aims to max-
imize lift coefficient near stall while the second one is focused on the climb
index. Again, the optimization uses multi-fidelity SBO : Hess-Smith panel
method (HSPM ), used as coarse model, is optimized by an interior point al-
gorithm. Incompressible RANS equations serve as high fidelity Model. The
supersonic performance predictably records a great improvement respect the
baseline, but only a modest one respect the low-fidelity optimum; the high
lift configurations show significant improvement respect both the baseline
airfoil and the low-fidelity optimum.

Key words: SST, Surrogate Based Optimization, Manifold Mapping,
Multi-fidelity, Leading Edge Devices, Supersonic Airfoil, High lift Devices
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Chapter 1

Introduction

1.1 Motivation

As NASA completed a series of experiments with the Shaped Sonic Boom
Demonstrator [1], supersonic transport has returned to be of primary inter-
est in the aerospace industry. Despite the tempting capability of half the
time needed to fly across the Atlantic ocean, only two SuperSonic Transport
(SST ) have been used in regular service; the challenges posed by supersonic
cruise for a civilian airplane are, in fact, responsible for the withdraw of nu-
merous projects and studies presented since the 1950s by the most advanced
aerospace industries in the world.

A more comprehensive review and future prediction of SST s is provided
by Sun et al [2], in the paragraphs to follow will be reported only some key
concepts. Development of SST s began almost simultaneously with the opera-
tive debut of the first generation of supersonic military aircrafts. The tactical
advance given by supersonic capability rapidly pushed the technology to a
new evolutionary step in terms of propulsion, materials and aerodynamic.
From a commercial point of view, one of the problems to overcome was to
make this form of transport profitable. The unusual flight conditions penalize
the general efficiency of the plane, especially considering the 1960s technolo-
gies; besides the higher initial and maintenance costs, a narrow fuselage,
dictated by aerodynamic reasons, implies a reduced capacity and therefore
higher cost for the passengers; it is no coincidence that the most enduring
SST, Aèrospatiale-BAC Concorde (1976-2003),had a ticket price that was
as much as ten times the price of a conventional long-range subsonic trans-
port aircraft, while its direct competitor, Tupolev Tu-144 (1977-1983), had
a notably shorter operative life due to, among other reasons, economic inef-

1



Figure 1.1: Shaped Sonic Boom Demonstration (SSBD)1

ficiency. Nowadays it is technologically possible to design a more efficient
transport, but some of the intrinsic limitations are still to be completely
overcome. The problem is posed by the environmental impact of supersonic
cruise; besides the initial concerns about the effects on the ozone depletion
due to the exhaust gas released at unusually high altitude [3], the main lim-
iting factor is noise. Since the operative years of Concorde, noise limitations
conditioned the overall utilization of the aircraft; the high level of noise gen-
erated during take off was an issue to the communities nearby the airports
and therefore it relegated the ground operations to limited hours during the
day. Most importantly, in order to prevent sonic-boom effect over populated
areas, the supersonic flight on land was forbidden by FAA and ICAO. As
result, the eligible routes were drastically reduced and the mission profile
was forced to incorporate a considerable subsonic flight portion, in which
the aircraft underperformed and operated outside the design condition. Un-
der those limitations a SST could still be more effective than a conventional
transonic aircraft in term of flight time, but the number of possible flights
per day would remain similar to the conventional aircraft, while moving just
a fraction of the passengers.

In recent years researches have moved toward a way to make supersonic
flight possible and profitable under those circumstances; two main approaches
can be perused (and eventually combined):

• Reduce the sonic-boom entity in order to comply with the normative.
This could be achieved by a combined effort from the legislator, devel-

1Photo credit: Northrup Grumman: https://www.nasa.gov/centers/langley/

news/releases/2003/03-060.html
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Figure 1.2: Aèrospatiale-BAC Concorde2

oping new standards specifically for supersonic commercial and busi-
ness jet, and constructors, focusing the design to shape the wave; this
approach has been pursued, among others, by NASA in 2003 with the
Shaped Sonic Boom Demonstrator and in 2017 with Quiet SuperSonic
Transport (QueSST ) [4].

• Optimize the aircraft shape such that a two-regime optimal configura-
tion is obtained; recently pursued by TsAGI with a scale model pre-
sented at the 2017 MAKS Airshow [5] This approach would mitigate
the handicap of a profile mission with intermittent supersonic legs.

Thanks to exploitation of technologies and numerical simulations, accu-
rate computation fluid dynamic (CFD) and state of the art multi-disciplinary
optimization technique, unavailable when the design of first SST, a new gen-
eration of business jet and commercial aircraft is under development and is
expected to debut around the second half of the 2020s.

1.2 Aim of the thesis

The first step toward the design of an efficient supersonic wing is the
optimization of the 2D airfoil. In this work is presented a preliminary aero-
dynamic design of a two-regime airfoil derived by a NACA 6-series. In order
to design a wing, a multi-disciplinary approach is necessary, but in the pro-
cess hereby described, only the aerodynamic aspect will be considered; the

2Photo credit: Robert Sullivan: https://www.flickr.com/photos/my_public_

domain_photos/36193741756
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Figure 1.3: Tupolev Tu-144 3

structural and aeroelastic feasibility is left to be assessed in future develop-
ment.

The original NACA airfoil is considered for the subsonic regime and its
performance will be evaluated in chapter 3. The supersonic design is ob-
tained through two leading edge surfaces, implemented to modify the shape
of the airfoil and reduce the wave drag in supersonic condition. The surfaces
shape and deployed positions are obtained through a constrained optimiza-
tion process described in chapter 4. Once obtained the new geometry, the
aerodynamic coefficients will be evaluated in flow conditions that range from
transonic Mach number to the supersonic design condition.

After the definition of the shapes an optimization will be carried to posi-
tion the upper surface to serve as high lift device ad maximize its utilization
during the mission profile. This second optimization frame will be described
in detail in chapter 5. Particularly two optimization will be performed in
different flight condition; the first will aim to maximize the lift coefficient
in a near stall angle of attack allowing to short runway length, the second
will focus on the climb index to reduce the time to climb and enlarge the
efficiency in this flight phase.

3Photo credit: Milan Nykodym: https://www.flickr.com/photos/milannykodym/

6080091405
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Chapter 2

Description of the adopted
optimization procedures

In every optimization process three major players can be identified: op-
timizer, model and simulator. The optimizer is the algorithm that governs
the logic of the optimization, generate and searches for new candidates and
assesses the convergence of the process. The model, mathematical or numer-
ical, is the approximation of the physics of the problem. The simulator,in
which is implemented and solved the model, is the component that actually
returns the figure of interest; the majority of the optimization running time
is occupied by the simulator so it is of great importance that the model is
efficiently implemented and that the fidelity of physics is appropriate with
the available resources. In the sections to follow will be described each of the
component used in the optimizations presented in this work.

2.1 Surrogate Based Optimization (SBO)

No algorithm is universal so the choice of the optimization have to be
carefully thought; according to the particular problem, the chosen method
has to be able to carry on the search, provide the optimum solution in relation
to the desired accuracy, be efficient enough to perform under the available
resources.
Optimization algorithms can be categorized in several different ways; the
main discriminants can be briefly recalled as:

• gradient necessity: methods defined gradient-based need derivative in-
formation of the fitness function to compute the next iteration of the
optimization; these information can be obtained through numerical ap-
proximation or analytically. Oppositely, gradient-free algorithms rely

5



on other information, often the fitness value alone is sufficient.

• number of solution tracked: a method can be trajectory-based if dur-
ing the iterations a single point is tracked; otherwise the algorithm is
called population-based : in this case the iteration takes the name of
generation.

• randomness level: : if optimization is performed without any random
process in it,it is defined deterministic; otherwise the method falls un-
der the stochastic category. The latter, due to its nondeterministic
nature, will return different solutions each time it is run. Different al-
gorithms can be performed in sequence or used within one another in
order to overcome the limitations of the single method. The resulting
algorithms are defined hybrid-method ;

• dependency to the previous iteration:if the next iterations of the algo-
rithm is function of the previous ones, the method is defined history-
based ; memory-free algorithms need to record only the best individual
to carry on the procedure.

• convergence range: local algorithms, contrarily to global methods, don’t
have the ability to escape local minimum, so they are not suitable to a
global optimization;

• model update: if the procedure optimizes the given fitness function the
algorithm it is defined direct. According on the complexity of the prob-
lem, the properties of the cost function and the available resources a
different approach can be more efficiently perused; the optimization is
focused on a cheaper representation of the problem: the simpler model
is solved and updated iteratively with information gained from the com-
plete model or, in some case, actual experiments. The cheaper model
is chosen to be easy to compute and reasonably accurate. Different
approaches to choose it, define different method. Every algorithm that
relies on this kind of procedure is defined surrogate based ;

Surrogate Based Optimization (SBO) [6] fits perfectly for problems that
normally would need a great number of simulations, but the resources needed
for such computations make them not only inconvenient but also unpractical;
this is particularly the case of expensive numerical models that, by their
nature, could be discontinuous and non-differentiable. The expensive direct
problem, find the minimum x∗ of the high fidelity function f(x), is then
replaced by a series of inexpensive surrogate model optimization s(i)(x) (eq.
2.1), depending on the particular algorithm a single expensive evaluation is
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Figure 2.1: General SBO workflow 1

needed for each iteration in order to validate and/or correct the surrogate;
this reduce drastically the resources needed to perform the optimization.

x∗ = arg min f(x)

⇓
until convergence criteria aremet

x(i+1) = arg min s(i)(x)

(2.1)

Under the assumption that the surrogate model sufficiently approximates
the fine model, the series of design points converges to a solution of the orig-
inal problem.
Surrogate models can be obtained from different techniques. All of them

1Figure from Koziel et al [6]
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provide inexpensive and/or smooth approximations so rarely the analytic
properties of the surrogate are worse than the original problem, therefore the
algorithm performed for the surrogate optimization can be normally chosen
among a wider range of methods.
Surrogate models can be classified into physical-based and functional. The
latter are simpler and don’t need previous knowledge of the physics involved
in the problem; they are usually algebraic approximation constructed by
sampling the high-fidelity solutions. The benefit given by the virtually negli-
gible optimization cost can be limited by the number of expensive evaluation
needed to gain the required accuracy. The specific technique has to be cho-
sen according to how many evaluations are affordable for each iteration; in
order to attenuate this drawback, several design of experiments (DOE ), have
been developed to maximize the amount of information obtained for a given
number of experiments; to name but a few, factorial design (full or partial),
Latin hypercube,orthogonal array sampling,quasi-Monte Carlo are common
strategies to allocate the sample points; not only the technique can be deter-
ministic based or quasi-random, but the DOE can be seen as a minimization
problem itself and therefore rely on optimization techniques.
The actual construction of a functional surrogate model can be based on an-
alytic formulas,as for polynomial approximation, or can be the result of an
error minimization problem; the latter techniques space from simple least-
square fitting for an oversampled polynomial regression to Kriging method
and neural networks.
A validation assessment is needed to evaluate the prediction error of the sur-
rogate outside sampled points. This add more expensive computation to the
amount needed to obtain and tune the functional surrogate model; the train-
ing points are thus only a fraction of the computed samples: according to
the specific technique two subset could be used (simple-sample) and generate
only one model from the training half; otherwise the computed samples could
be divided in n subsets and cross-evaluate (cross-validation) the n resulting
models overt the remain n− 1 subsets.
Physical-based surrogate, on the other hand, relies on a low-fidelity approxi-
mation of the phenomenas involved on the problem; generally they need few
fine model evaluations to converge because oppositely from function-based
method the problem nature is preserved. The more efficiency in term of eval-
uation does not always reflect on a better running time because the coarse
optimization generally take more time to be performed compared to a func-
tional based surrogate.
The model can be simplified by not considering some therms in the gov-
erning equation, approximating them with a different analytic formulation
or modeling them on empirical formulas. An optimization based on such
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surrogate is defined multi-fidelity. If the simulation relies on numerical com-
putation implemented over a discretized domain, a different approach can be
pursued; since the computational cost usually increases nonlinearly with the
discretization refinement, it can be convenient to computed the problem over
a coarse discretization. Such surrogate model is called multi-resolution and
it uses the same simulator, physic model and numerical techniques than the
fine model but, depending on the required precision, it is much faster and
cheaper to compute. It is worth notice that the improvement is relative only
to the fine problem, any other surrogate techniques are always faster than
the multi-resolution, nevertheless the number of iteration to convergence is
usually much lower.
Once obtained the surrogate, a correction method is needed to proceed with
the optimization loop; the corrections can be additive, multiplicative or a
combination of the two. The level of consistency depends on the particular
corrector form.
Several families of surrogate based optimization strategies have been devel-
oped and tested; four of the most common are hereby briefly described:

• Approximation Model Management Optimization (AMMO) combines
trust-region gradient based optimization and a multiplicative corrector
operator.

• Surrogate Management Frameworks (SMF) is based on pattern-search
that relies on a surrogate model in the search step of the algorithm.

• Space Mapping (SM) corrects the surrogate response by optimizing the
correction parameters in order to reduce the discrepancy between the
fine and coarse model.

In particular, for the SM [7] the high-fidelity optimization objective func-
tion f is assumed to be the output of a functional U operating on the high
fidelity system response Rf (x) that is approximated by Rs(x; pSM) somehow
related to the coarse model Rc(x) (eq. 2.2)

f(x) = U(Rf (x))⇒ U(Rs(x; pSM)) (2.2)

pSM represents the parameter vector of the operator Rs and depends on
which correction is performed; the vector is obtained minimizing the weighted
error over the p available sampled points xk and their high fidelity computa-
tion Rf (x

k); The weight vector ω(k) can used to relax the condition far from
the converging region (eq. 2.3)

pSM = arg min

p∑
k=1

ω(k)||Rf (x
k)−Rs(x

k; pSM)|| (2.3)
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Figure 2.2: MM model alignment 2

Operator Rs(x; pSM) form depends on the specific type of mapping

• Custom: the structure of given problem is exploited and ad-hoc correc-
tions are developed.

• Implicit SM: the coarse model itself is parametrized, the error minimiza-
tion is performed directly over the operator Rs(x; pSM) = Rc(x; pSM).

• Input SM: the input vector of the low-fidelity model is linearly trans-
formed, the parameter vector contains the needed coefficients, the sim-
pler case consists in Rs(x; B,b) = Rc(B ∗ x + b)

• Output SM: similar to the input SM but the transformed quantity is
the response of the coarse model such as Rs(x; B,b) = B ∗Rc(x) + b

Manifold Mapping is a particular case of output SM that has the advan-
tage of not requiring the parameters extraction. The Original Manifold Map-
ping (OMM ) [8] aims to correct the misalignment between the fine model re-
sponse function f(x) and coarse ones c(x) through operator S̃ : c(Z)→ f(X)
(fig. 2.2), where Z is the space of the coarse model and X is the fine model
one; generally if c is a physic-based surrogate the two spaces coincide oth-
erwise an additional right preconditioning is needed such that p̄ : X → Z.
Both models are assumed C2 in their respective space and locally similar to
each other.

2Figure from Echeverria et al [8]
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In every i − esim iteration of the SBO, it is necessary to optimize the
i− esim coarse problem.
The coarse problem is formulated as eq. 2.4

xi = arg min ||S̃(c(x))− y|| := {xl < x < xu | S̃g(gc(x)) < 0 | S̃h(hc(x)) = 0}
S̃(•) = f(xi−1) + S · (• − c(xi−1))

S̃g(•) = gf (xi−1) + Sg · (• − gc(xi−1))

S̃h(•) = hf (xi−1) + Sh · (• − hc(xi−1))
(2.4)

S̃g and S̃h are the correction operators needed for the inequality and the
equality constrain functions; they are computed from the quantity obtained
in the previous steps.
The correction matrices are all computed similarly for the constrains and
fitness function and are computed at the end of the i− esim fine evaluation
for the i+ 1 coarse optimization (eq. 2.5). Σc

† is the result obtained by the
inversion of the non-zero entries of the singular values matrix Σc (obtained
through single value decomposition) of the ∆C.

∆F = [f(xi)− f(xi−1),...,f(xi)− f(xmax(i−n,0))];

∆C = [c(xi)− c(xi−1),...,c(xi)− c(xmax(i−n,0))];

∆C
SV D−−−→ VcΣcU

ᵀ
c

Σc
pseudo-inverse−−−−−−−−→ Σc

†

∆C† = VcΣc
†Uᵀ

c

S = ∆F ·∆C†;

(2.5)
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Echeverr̀ıa et al [8] define the OMM optimization loop as reported in eq.
2.6.

x0 = x∗c = arg min ||c(x)− y||
S̃0(•) = f(x0) + (• − c(x0))

do k =0,1,... while (stop criteria)

xk+1 = arg min ||S̃k(c(x))− y||
break if converged

evaluate models

f(xk+1); c(xk+1);

compute correction

∆F; ∆C; ∆C†

Sk+1 = ∆F ·∆C†

S̃(•) = f(xk+1) + Sk+1 · (• − c(xk+1)

end

(2.6)

The actual algorithm performed in the chapter to follow (eq. 2.7) is
implemented in a slightly different way compared to the canonical one. No
initialization is needed for the first point,the correction matrices for the first
two iteration are imposed to be identities. The initial values for the f and
c (step −1) do not exist at this point; they are set to be zero and will be
overwrite as soon as x0 will be obtained.

S−1 = I; f−1 = 0; c−1 = 0;

do i = 0,1... while (stop criteria)

xi = arg min ||(fi−1 + Si−1 · (c(x)− ci−1))− y||
break if converged

evaluate models

fi = f(xi); ci = c(xi);

if i == 0

Si = I;

else compute correction

∆F, ∆C, ∆C†

Si = ∆F ·∆C†

end

end

(2.7)

From the implementation point of view, this minor change allows to start
directly with the execution of the loop and to have a generalized optimization
function that depends on the correction matrices.
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2.2 Physical Model

In this section will be briefly recalled the physical models used for the two
optimizations; only the fine models will be here described. The coarse models
will be later discussed in their respective chapters. For a more exhaustive
description and the rigorous analytic derivation, reference will be given in
the section to follow.

2.2.1 Euler equations

Euler equations govern the physic of compressible inviscid flows, com-
posed by the conservation laws of mass, momentum and energy; the result-
ing system is hyperbolic. Bi-dimensional Euler equation can be written in
conservative form as equation 2.8,

∂U

∂t
+
∂Fi

∂xi
= 0

U =

 ρ
ρvi
E

 ; Fi =

 ρvi
ρvivj + pδij
vi(E + p)

 ;

(2.8)

Each variable is a field dependent on time and space; ρ represents the fluid
density, vi represents the velocity component along the i− esim direction, E
is the total energy, p is the pressure field and is given by a known function of
the other variables. It is assumed chemical and thermodynamic equilibrium
in the gas, the specific internal energy is related with pressure and density
such that e = e(p,ρ); the particular equation depends on the gas: for a
polytropic ideal gas is reported in eq. 2.9

e =
p

(γ − 1)ρ
;

E =
1

2
ρv2i + ρe;

(2.9)

Euler equations are commonly used in transonic and supersonic computation
due to the ability to predict wave drag. The lack of viscous effects, and
consequently of skin friction, in the considerate physic model is tolerated
since wake drag is the predominant contribute to the total drag.

2.2.2 RANS equations

Only Navier-Stokes incompressible formulation will be considered. It is a
particular case of the compressible equations obtained by fixing the density
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ρ(x,t) = ρ̄. Under this assumption, the unknown variable are reduced to the
fields u(x,t) and p(x,t). The latter, lost its thermodynamic meaning, can be
seen as Lagrange multiplier that ensures the incompressible condition over
the field u(x,t).

The system is composed by two equation: the scalar continuity equation
and the vectorial momentum equation; the energy conservation law, present
in the compressible formulation as well as the state equation for the thermo-
dynamic variables, are made unnecessary to solve the system.

∂u

∂t
+ (u · ∇)u +

∇p

ρ̄
= ν∇2u

∇ · u = 0

(2.10)

Raynolds Averaged Navier-Stokes (RANS) equations govern the mean
velocity field; the system is obtained by taking the time average of the Navier-
Stokes in which the Raynolds decomposition (eq. 2.11) has been applied; each
variable is thus split into its main value, depending only on the position, and
into its fluctuation, depending on time and position.

for a general variable

a(x,t) = ā(x) + a′(x,t)

ā(x) = lim
T→∞

1

T

∫ T

0

a(x,t)dt

(2.11)

The equations are here reported in eq. 2.12. The full derivation can be
found in [9]. For the sake of the notation the constant density will be written
as ρ since from now on, the bar values, will represent the mean term.

∇ · (ūū) +∇ · (u′u′) = −∇p̄

ρ
+ ν∇2ū

∇ · ū = 0

(2.12)

The nonlinear convective term generates the Renolds-Stress tensor u′u′.
it is common to separate it in the isotropic stress tensor and the anisotropic
part, in the Einstein notation can be written as eq. 2.13

u′iuj =
2

3
kδij + aij

k =
1

2
u′iui

(2.13)

Where k is the kinetic energy associated to the velocity fluctuations. The
full tensor is symmetric and thus composed, for a general statistically three-
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dimensional formulation, by six independent element; this results in closure
problem since the number of unknown variable is greater than the number of
available equation. To overcome the problem, a further modeling is needed;
two approaches can be pursued:

• Reynolds-Stress Models (RSM) are a series of techniques in which a
model for the tensor is given directly to complete the closure.

• Eddy viscosity approach is based on the gradient-diffusion hypothesis.
It computes the Reynolds-Stresses through the assumption that they
are proportional to the turbulent viscosity scalar field.

The first approach is relatively more recent and it does not rely on strong
assumption as the latter and it is able to represent physic phenomena other-
wise neglected. As drawback, it implies the adding of as many (usually dif-
ferential unless specific algebraic approach are considered) equations as the
independent elements of Reynolds-Stress tensor. Eddy viscosity approaches
are still the most used due the widely development they have been subjected
to in the years and due to their cheaper computational cost. Also known as
Bussinnesq methods, they models in analogy with the molecular diffusion; in
particular the two hypothesis assumed are:

• intrinsic: aij depends upon mean velocity gradients only.

• specific : aij specifically have the form of eq. 2.14.

aij = −2νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.14)

The system can be rewritten in the form of eq. 2.15 similar to the laminar
formulation; the effective viscosity is now the sum of the kinematic viscosity,
property of the fluid, and the turbulent viscosity, a positive quantity property
of the flow.

∇ · (ūū) = −∇P̄

ρ
+∇ · (νe(x)∇ū)

∇ · ū = 0

νe(x) = νt(x) + ν

νt ∼ u∗l∗

(2.15)

The asterisk stands for the turbulence scales quantities; now a turbulence
model has to be introduced in order define the turbulent viscosity and to
proceed to solve the RANS system. It is worth to mention that the RANS
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solution is equal to the time average of the Navier-Stokes equation only if
the turbulent stress tensor is exactly modeled; this occurrence is unrealistic
so a model induced error will be always to be expected.

Turbulence model: k − ω SST

Among the variety of turbulent model available today, the two-equation
k − ω SST has been chosen. This model ideally combines the advantage
of the k − ω model, more robust and accurate near wall, and k − ε model,
more accurate far from the wall. A cross diffusion term that depends on the
blending function F1 switches the model between the two from which it is
derived; the semi-empirical coefficient of the two differential equations are
linear combinations of the original ones. In the flow solver is implemented a
version derived from [10].

Wall function

To correctly compute skin friction, the dimension of the first cells off the
wall, ∆s1, have to be small enough to resolve the viscous sublayer region; this
practically implies that in the dimensionless length scale, y+p , the height of
near-wall region’s cells has to be smaller than the unit (eq. 2.16), a dimension
comparable to a DNS case.

y+ =
yuτ
µ

; uτ =

√
τw
ρ

; τw =
1

2
ρU2Cf (Re); (2.16)

Such concentration of fine cells in a relatively small portion of the domain
mitigates the (relative) inexpensiveness of eddy viscosity RANS formulation.
One method to overcome this drawback is to rely on the theory results on wall
flows and set the boundary condition further away from it. The near-wall
region is thus not computed but modeled after the law of the wall through a
wall-function; this approach has been introduced by Launder et al [11]. The
first point has now to be placed in the log region, approximately at y+ ≈ 50;
the boundary condition are consequently computed.

2.3 Software used during the project

A description of the software used in this work either for programming the
optimization tasks or to solve the physic models introduced in the previous
section. When not specified all computations are made using an Intel Core
i7-2600 Processor.

16



2.3.1 MATLAB

MATLAB (MATrix LABoratory) [12] is a numerical computing environ-
ment based on a proprietary high-level interpreted programming language;
it was first developed from the mid-eighties to perform linear algebra (it in-
corporates LINPACK and EISPACK ). Nowadays it can count on toolboxes
for several engineering practices such as control system, curve fitting, opti-
mization, Partial Differential Equation, signal processing, image processing,
data acquisition and statistic.
The software is composed by five main parts: language, working environ-
ment, graphic handles, function library and application programming inter-
face; together they integrate computation, visualization and programming in
an interacting system.

The main algorithms used in this work, as well as several functions and
executables, are implemented through MATLAB. The algorithm composes
the backbone of each SBO and performs these main tasks:

• the optimization loop is initialized and carried out in it;

• the dedicate toolbox is used to perform the coarse optimization;

• the interactions with external software (mesh generation, computation,
post-process) are managed by it;

The specific optimization strategies will be discussed in their respective
chapters.

2.3.2 Standford University Unstructured (SU 2)

In this work the software will be used to solve stationary compressible
Euler equations and the optimization strategy will rely on a MATLAB im-
plemented algorithm, but even if most of the SU2 potential will be left
unexploded a brief description of the software’s capability will be hereby
presented. Stanford University Unstructured (SU2) [13] [14] is a software
suite developed to solve PDE and PDE-constrained optimization problems.
The software is the results of the work conducted at the Stanford University
Aerospace Design Lab from a team led by Francisco Palcios ; released ini-
tially in 2012, due to its open-source nature, many other individuals as well
as organized teams around the word have contributed to the development of
the code; the complete list of the contributors can be found in the official
web site.
The software is mainly oriented to fluid dynamic problems: compressible
RANS solver and adjoint methods are the pivotal core of the software. The
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framework is extensible to arbitrary set of governing equations of multi-
physics design problems. The suite is composed by high level Python scripts
and of C++ executables that can be combined to perform complex tasks
including optimization and grid refinement. The C++ modules consist in:

• SU2 CFD solves direct, adjoint and linearized Euler, Navier-Stokes and
RANS equations; different methods can be used to perform time and
spatial integration. Advanced features are implemented to enlarge con-
vergence and robustness.

• SU2 DEF performs the mesh deformation.

• SU2 DOT computes the partial derivative of a function with respect to
the shape design variables; it uses the surface sensitivity at each mesh
point provided by adjoin solution of SU2 CFD

• SU2 GEO evaluates constrain during optimization (volume, surface,
thickness)

• SU2 MSH performs grid adaptation based on the converge solution

• SU2 SOL generates the solution files

All of them embedded in a Python framework that allows vertical integra-
tion of the optimizer structure. Python scripts link the five different levels of
the architecture by automatically adapt the input execute lower level com-
ponents and processing the data.
Most of the bibliographic references that will be cited in the following chap-
ters rely on SU2 to compute the flow solution.

2.3.3 OpenFOAM

Open Source Field Operation and Manipulator (OpenFOAM ) is an open
source C + + toolbox for the solution of continuum mechanics problem, par-
ticularly computational fluid dynamic (CFD). The software has been released
in 2004 and developed by the OpenCFD until 2011 when the OpenFOAM [15]
foundation took over the management and distribution to the general public.
The applications in the toolbox can be summed into two category:

• solvers are designed to compute the solution of particular problems in
fluid mechanics

• utility performs data manipulation, pre-processing and post-processing
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Mesh can be generated using built-in applications or imported from out-
side the toolbox thanks to the variety of available converter. User defined
governing equation can also be implemented with relative ease due to the
peculiar syntax used in the libraries. As for the solver application, any other
utility can be adapted; this led to an high degree of flexibility. The list
of solvers covers a variety of physics models; from basic codes that solve
Laplacian equation to multiphase compressible ones; RANS, LES and DNS
simulations are implemented in the toolbox along with heat transfer and also
financial ones. The flexibility, the extensibility of the applications along with
the open-source license make OpenFOAM the most widely used CFD soft-
ware.
OpenFOAM will be used to solve RANS equations thought simpleFOAM a
steady-state solver for incompressible, turbulent flow, that relies on SIMPLE
algorithm [16].
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Chapter 3

Original airfoil characterization

The airfoil chosen as baseline is the NACA 6-series 64212. T he choice is
based on the good performance that this airfoil presents in subsonic flight and
it’s relatively high critical Mach number,its percentage thickness is compa-
rable with the one of a today’s commercial airplane. NACA 6-series airfoils
were used, with thicknesses usually lower than 10%, on several supersonic
fourth generation fighter.

In order to properly asses the variation of the aerodynamic coefficients
given by the optimizations, it is first needed a solid baseline solution for each
model that will be use.

3.1 Steady compressible Euler solution

In the later stage of the first optimization, the aerodynamic coefficients
of the modified geometry will be compared with the ones from the original
airfoil. The evaluation will aim to asses the drag reduction over a range of
Mach numbers and to find the crossover Mach. According to the optimiza-
tion, the generated lift for each condition is forced to satisfy the lift equality
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Figure 3.1: NACA 64212 coordinates
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Figure 3.2: SU2 mesh example of the NACA 64212 : domain overview
(left), zoom near aifoil (right)

constrain using the angle of attack as an independent variable.

3.1.1 Mesh calibration

The overall precision requested over the different Mach evaluation has
been set to be 1 drag count; in order to understand how the mesh parameters
affect the results, a series of preliminary tests have to be performed.
The flow field is computed in SU2 over an O-type mesh clustered around
a NACA 64212 airfoil (fig 3.2) of unit chord. The mesh, generated by a
MATLAB function, is composed by quadrilaterals and it is parametrized
over the far-field distance and the number of elements over the airfoil.

In order to save time, in the calibration runs, the lift constrain is not
enforced and the angle of attack is therefore set to be zero. Focusing on the
mesh radius, an initial study has been realized. With a reasonable number of
elements on the airfoil, far-field distance has been progressively incremented
by ten chords until the difference of computed drag coefficient fulfilled the
request precision; the results showed that, especially in the transonic regime,
aerodynamic coefficients are greatly affected (fig. 3.3). The most critical
Mach number appears to be 0.85, so in order to obtain the proper number of
divisions, the following meshes comparison is carried out only at this velocity.
The drag coefficient converges within the set tolerance when 1600 divisions
have been implemented (fig. 3.4). Figures 3.5 and 3.6 show how a proper
number of elements on the airfoil is needed to correctly identify the shock
position, and consequently to compute aerodynamic coefficient.
The main parameters of the SU2 case are reported in table 3.1.
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Figure 3.3: SU2 mesh calibration: ∆Cd with different mesh radius
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Figure 3.4: SU2 mesh calibration: ∆Cd with different number of elements
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Figure 3.5: SU2 mesh calibration: shock position, suction side
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Figure 3.6: SU2 mesh calibration: shock position, pressure side

Mesh radius 50 chord
Element on the airfoil 1600

Expected precision 1 dc
MGLEVEL 3
CONV NUM METHOD FLOW JST
CONV CRITERIA RESIDUAL
STARTCONV ITER 10
RESIDUAL REDUCTION 6
RESIDUAL MINVAL -8
ITER MAX 5000

Table 3.1: SU2 case parameters
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3.1.2 Aerodynamic coefficient

The computed aerodynamic coefficients are showed in figures 3.7 3.8 3.9
and in table 3.2; both lift constrained coefficients and zero incidence ones
have been calculated.

M Cl Cd Cd|L Cm Cm|L
0.80 0.418 0.030 0.0300 0.1393 0.1394
0.85 0.463 0.070 0.0648 0.2408 0.2164
0.90 0.034 0.114 0.1262 0.0623 0.1244
0.95 0.011 0.108 0.1223 0.0465 0.1023
1.00 0.010 0.104 0.1158 0.0442 0.0942
1.05 0.010 0.100 0.1102 0.0425 0.0876
1.10 0.008 0.097 0.1061 0.0404 0.0812
1.30 -0.004 0.092 0.0975 0.0307 0.0605
1.50 -0.010 0.087 0.0908 0.0233 0.0475
1.70 -0.013 0.082 0.0849 0.0185 0.0382
1.90 -0.014 0.078 0.0800 0.0153 0.0314
2.00 - - 0.0780 - 0.0287

Table 3.2: NACA 64212 : aerodynamic coefficient obtained with SU2; L
subscript indicates the lift constrained values
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Figure 3.7: NACA 64212 : Cl - Mach

3.2 RANS solution

In this paragraph the Cl−α curve of the slat-less airfoil will be computed;
in particular the aim is to obtain the angle of stall αstall of the numerical
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Figure 3.8: NACA 64212 : Cd - Mach
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Figure 3.9: NACA 64212 : Cm - Mach

model. The computations are carried out using simpleFOAM, the mesh is
generated by Gmsh [17] and its parameters are the same used for the fine
evaluations in the second optimization; the grid calibration process and the
solver settings will be more extensively described in the dedicated section
(5.4); a coarser discretization is showed as example in figure 3.10.

3.2.1 Flow solver validation

The validation is carried out using NACA 0012 airfoil of which, unlikely
NACA 64212, experimental and computational data are largely available.
The report presented by Ladson [18] are used as reference; the computation
is performed using an incompressible solver so the lowest available Mach
number data are considered. The datasets were acquired in different flow
conditions covering Mach from 0.15 to 0.36 and Reynolds from 2 · 106 to
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Figure 3.10: OpenFOAM mesh example of the NACA 0012 : domain
overview (top left), zoom over the wake refinement (top right), zoom near
airfoil (bottom right), close-up in the boundary layer refinement (bottom-
left)

Far-field distance 300c
Max element size on the airfoil 0.003c

Solver simpleFOAM
Converge criteria residualControl
p 1e− 7
U 1e− 9
endTime 12000

Table 3.3: simpleFOAM case parameters
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Figure 3.11: NACA 0012 : CFD results compared with Ladson et al

12 · 106. The boundary layer transition was tested both forced and free; in
figure 3.11 are reported all available curves at Re = 6 ·106 and Mach = 0.15.
Free transition data is reported, but it will not be considered due to its
drastically different stall angle.

Depending on the grit size, the experimental curves suffer stall between
α|stallexp = 17.13 − 17.35 deg. The computed results show a stall angle be-
tween α|stallCFD = 16 − 17 deg with unstable flow solution already at 17
degree. The aerodynamic coefficient trends are well approximated in the
linear portion of the curve, lift coefficient is fairly estimated up to the com-
puted stall. The error regarding drag coefficient in contained under ∼ 0.002
for α < 13; in the stall proximity drag prediction become unreliable.
In order to get a more realistic stall assessment, a different computational
setup may be needed, but, for the purpose of comparison, the current results
show sufficient agreement to proceed with the tested mesh.

3.2.2 Aerodynamic coefficients

The Cl − α here computed will become the baseline curve in the later
comparison. The coefficients are reported in figure 3.12 and tab. 3.4.
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α Cl Cd
0.0 0.137 0.008
2.0 0.396 0.009
4.0 0.626 0.009
8.0 1.065 0.011
10.0 1.261 0.014
12.0 1.417 0.018
13.0 1.470 0.024
14.0 1.531 0.027
14.5 1.583 0.049
15.0 1.509 0.071
15.5 1.504 0.075
16.0 1.444 0.087
17.0 1.392 0.393

Table 3.4: NACA 64212 : aerodynamic coefficients (RANS )
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Figure 3.12: NACA 64212 : CFD results
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Chapter 4

Supersonic cruise optimization

The first phase of this work regards the supersonic configuration of the
airfoil in which the leading edge surfaces are extended. In supersonic flight
the airfoil drag is affected by the leading edge sharpness; a sharp edge pre-
vents the formation of a detached shock wave that would cause a drastic
increase of the wave drag. Supersonic shape optimization has been studied
since 1950s when simplified analytical models were used to design wing sec-
tions; nowadays, thanks to the massive computational resources available, the
approach has evolved to directly optimize the entire airplane shape thought
the use numerical simulations. The use of MM for airfoil shape optimization
has been recently tested both in transonic (Ren et al [19]) and supersonic
regime (Siegel et al [20]) with satisfactory results, it will be applied also in
the current optimization.

4.1 Problem formulation

The aim is minimize the drag of the airfoil in supersonic cruise (M =
2). The problem is constrained both linearly and nonlinearly in order to
guarantee that:

• the resulting design will be geometrically feasible

• the maximum thickness of the slats will be greater than t̄hlim = 2% of
their chords.

• the lift generated by the final configuration will be equal to the one
generated by the original airfoil in the reference condition α = 0 deg
at M = 0.8
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The optimization is carried out using multi fidelity OMM algorithm that
rely on shock expansion theory (SET ), as low fidelity model, and Euler equa-
tion, as high fidelity one; such combination has been used by Siegel, differ-
ently from its problem, this case add more demanding geometric constrains.
The lift constrain will be enforced thought the angle of attack; surrogate
based optimization is used to minimize the number of fine evaluation that
the equality constrain would have needed: instead of solve the constrain on
the fine model, it will be user to only verify the corrected coarse one.
The optimization ceases if:

• The change in the normalized component input vector is less than 0.001

• No improvement has been registered in the last 5 iteration

• The maximum number of iterations is reached; the number is set to 15

4.2 Geometry description

The design is obtained starting from the unitary chord original airfoil
using eight geometric parameters to define the dimensions,the shape and the
extended configuration of the slats. No symmetry is imposed to the two
surfaces, so the dimensions can vary from one slat to the other. Four out
of eight parameters define the dimensions of the two slats; two out of eight
are needed to set the inner shape and the remain two establish their position
when extended.
The dimensions of the slats are defined by these four parameters (fig. 4.1):

• INCUP represents the distance along x axis between the leading edge
of the airfoil and the leading edge of the retrieved upper slat (point A)

• INCDWN represents the distance along x axis between the leading edge
of the airfoil and the leading edge of the retried lower slat(point B)

• CUP represents the distance between (point A) and (point B) along x
axis

• CDWN represents the distance between (point C ) and (point D) along
x axis

The outer curves of the slats must coincide with the shape of the clean
airfoil; the inner curve of each slat is a parabola computed over the slat
reference system which is aligned so the slat’s chord coincides with the x axis
and the y axis feces outward. The curve is defined by three points: the slat’s
leading edge, the half chord point and the slat’s trailing edge (fig. 4.2).
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Figure 4.1: Parameters that define the dimension of the slats

Figure 4.2: Inner shape geometry examples; in case of th < 0 (top), in case
of th > 0 (bottom); both geometries are represented in the slat reference
system
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Figure 4.3: Parameters that define the extended configuration

• thup is the height of the mid point expressed in percentage respect the
outer curve.

• thdwn is the height of the mid point expressed in percentage respect the
outer curve.

The extended configuration is defined by the last two parameters (fig.
4.3):

• EXT defines the extension of the slats; it is the distance along the x
axis between the clean airfoil leading edge and the trailing edge of the
extended upper slat.

• YLE is the distance along the y axis of the modified leading edge.

This way defined the geometry unambiguously. The eight parameters are
now included into the input array such that:

x = [INCUP ; CUP ; INCDWN ; CDWN ; EXT ; YLE; thup; thdwn] (4.1)

The geometry is computed in a MATLAB function. The steps of the
process are:

1. interpolate the original airfoil

2. select the portions of the airfoil that will become the outer curves of
the slats

34



Flow
deflection

Oblique shok

Rarefaction
fan

θ − β −M
relation

Prandtl-
Meyer

function

pk+1

pk
Cpk+1

θ > 0

θ < 0

Figure 4.4: SET workflow

3. compute the inner shapes of the slats and the slat thicknesses

4. compute the new outer shape of the airfoil

5. position the upper slat as EXT imposes

6. rotate the upper slat until YLE is verified

7. generate new leading edge moving the lower slat

8. rotate the lower slat to close the new airfoil

At the end of each step, the feasibility of the design is checked; few
problems can emerge from the process: for example the slats could penetrate
into the airfoil or the slat don’t close the geometry .
If any of the checks fails, the geometry is declared ’not feasible’ and no other
computation will be done on it.

4.2.1 Test configuration

In order to set up the low fidelity model and the hight fidelity model, tests
were conducted on a feasible design defined by the following input vector:

xtest = [0.05c, 0.25c, 0.059c, 0.24c, 0.051, 0.04c, 3, 3]; (4.2)

4.3 Low fidelity model

The shock expansion theory (SET ) allows the computation of the pressure
distribution over a panel-discretized airfoil in a supersonic flow. The method
considers both sides of the airfoil as a succession of compression or expansion
corners and computes the pressure of the segments solving the θ − β −M
relation or Prandtl-Mayer function.
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The procedure first needs to split the airfoil into upper side and lower
side; then it proceeds to break down the two curves into n/2 panels each.
Once discretized each curve in n/2 + 1 points, it is possible to compute
the pressure distribution along the flow direction. First of all the lengths
∆sk, the normal directions nk and the inclinations θk of the k segments are
computed as eq 4.3.

∆sk =
√

(xk+1 − xk)2 + (yk+1 − yk)2;

nk =

[
− sin(θk)
cos(θk)

]
;

θk = atan

(
yk+1 − yk
xk+1 − xk

)
;

(4.3)

The deflections that the flow have to encounter along the curve are in-
corporated into the array ∆θ (eq. 4.4)

∆θ = [θ(1)− α, diff(θ)]; (4.4)

It is now possible to solve k consecutive problems in which the upstream
Mach number is the Mach of the k−1 panel or, in the case k = 1, the far-field
Mach number.
Depending of whether the deflection is positive or negative, it is formed an
oblique shock or an expansion fan.
For both cases it is possible to compute the pressure ratio pk+1/pk that can
be re-conduct to the far-field pressure p0 (eq. 4.5)

pk
p0

=
k∏
j=0

pk−j
pk−1−j

(4.5)

It is now possible to calculate the force coefficients acting on the upper
side panels as eq. 4.6;

Cf−up(k) =
2

γM2
∞

pk
p0

∆sk
c

;

Cm−up(k) =
1

c

[
xk + 0.5(xk+1 − xk)− xref
yk + 0.5(yk+1 − yk)− yref

]
× Cf−up(k)nk

; (4.6)

From which it is possible to compute the upper side aerodynamic coeffi-
cients (eq 4.7)
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Cx−up =

n/2∑
j=1

Cf−up(k)sin(θk)

Cy−up =

n/2∑
j=1

Cf−up(k)cos(θk)

Cm−up =

n/2∑
j=1

Cm−up(k)

(4.7)

A similar process can be applied for the lower side of the airfoil; afterward
it is possible to calculate the aerodynamic coefficients of the entire airfoil in
the airfoil reference system (eq. 4.8). The y-coefficient is obtained thought
subtraction due to the algorithm implementation; specifically, the lower curve
is mirrored before going thought the same computation of the upper one.

Cx = Cx−up + Cx−dwn

Cy = Cy−dwn − Cy−dwn
Cm = Cm−up + Cm−dwn

(4.8)

The obtained coefficients are then reported in the farfield reference system
(eq 4.9)

Cl = Cycos(α)− Cxsin(α)

Cd = Cysin(α) + Cxcos(α)
(4.9)

4.3.1 Oblique shock

Under the assumption of calorific perfect gas the oblique shock is charac-
terized by the relation reported in eq. 4.10;

Mn1 = M1 sin(β)

M2
n2 =

M2
n1 + [2/(γ − 1)]

[2/(γ − 1)]M2
n1 − 1

M2 =
Mn2

sin(β − θ)
p2
p1

= 1 +
2γ

γ + 1
(M2

n1 − 1)

(4.10)

Where β is the shock angle, θ is the deflection of the flow, the subscript
n indicates the quantity in the normal direction respect to the shock, the
subscript 1 indicates the quantities before the shock and the subscript 2
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indicates the quantities past the shock. In order to compute the pressure
ratio, the shock angle has to be obtained by the θ − β − M relation (eq.
4.11);

tan(θ)− 2 cot(β)

[
M2

1 sin
2(β)− 1

M2
1 (γ + cos(2β) + 2

]
= 0 (4.11)

For every value of M1 there is maximum possible deflection; if θ > θmax
the shock is detached and in this occurrence the calculation is stopped and
the geometry is declared infeasible. It is always considered only the weak
shock solution.

4.3.2 Expansion fan

The expansion fan is a continuous expansion region where the Mach num-
ber increases from the upstream value M1 to the downstream value M2. Con-
sidering infinite small expansions, the deflection can be written as eq. 4.12;∫ θ2

θ1

dθ =

∫ M2

M1

√
M2 − 1

dV

V
(4.12)

Assuming polytropic ideal gas, dV/V can be substituted in order to obtain
the eq. 4.13; ∫ θ2

θ1

dθ = ∆θ =

∫ M2

M1

√
M2 − 1

1 + γ−1
2
M2

dM

M
(4.13)

The integral on the right end side is called Prantl-Meyer function defined
by the symbol ν, that can be rewritten as eq. 4.14;

ν(M) =

∫ √
M2 − 1

1 + γ−1
2
M2

dM

M

=

√
γ + 1

γ − 1
tan

(√
γ + 1

γ − 1
(M2 − 1)− arctan(

√
M2 − 1)

) (4.14)

Combining eq. 4.13 and eq.4.14, eq. 4.15 is obtained;

∆θ = ν(M2)− ν(M1) (4.15)

M2 is computed numerically such that ν(M2) − ∆θ − ν(M1) = 0; once
M2 is known the isoentropic relation (eq. 4.16) can be used to obtain the
pressure ratio between the upstream and downstream.
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Panels 275

Expected precision 0.1 dc
Expected evaluation time ∼ 0.3 s

Table 4.1: Coarse evaluation setting

p1
p2

=

[
1 + γ−1

2
M2

2

1 + γ−1
2
M2

1

] γ
γ−1

(4.16)

As for the oblique shock, if the turning angle can’t be archived the design is
declared unfeasible .

4.3.3 Convergence study

A convergence test has been made to asses the number of panels request
to obtain an appropriate precision. The convergence history and the compu-
tational time are here reported in figures 4.2 4.5 4.6.
It appears that for archive 1 drag count precision 150 panels are needed, to
archive 0.1 drag count precision 275 panels need to be used.
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Figure 4.5: SET convergence study

4.4 High fidelity model

The solution is obtained solving bi-dimensional stationary Euler equa-
tion; as for the characterization of the original airfoil the case is developed
from the NACA 0012 test case available in SU2 .
An O-type (fig. 4.7) mesh has been generated by a MATLAB function to
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Figure 4.6: SET computation time

d Cd Time [s]
50 0.0288955 0.180
75 0.0296256 0.075
100 0.0297504 0.098
125 0.0297988 0.125
150 0.0298211 0.157
175 0.0298306 0.179
200 0.0298379 0.202
225 0.0298417 0.226
250 0.0298449 0.250
275 0.0298501 0.278
300 0.0298516 0.308
325 0.0298527 0.328
350 0.0298537 0.357
375 0.0298543 0.384
400 0.0298553 0.406

Table 4.2: SET convergence study recap
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Figure 4.7: SU2 mesh example: domain overview (left), zoom near airfoil
(right)

Mesh size 20c
Elements on the airfoil 2400

Expected precision 0.1 dc
Expected evaluation time ∼ 40 min

Table 4.3: Fine evaluation setting

be composed by quadrilaterals. The mesh is defined by two parameters: the
mesh radius and the division on the airfoil; the latter parameter is propor-
tionally related to the division on the radial direction. The cells are set to be
squares near the airfoil and then stretched approaching the far-field bound-
ary. Differently from what was done for the characterization of NACA 64212,
the study is focused on Mach 2 only.

Convergence study

A convergence study has been done in order to correctly set the mesh
parameters (fig 4.9 4.8 4.10).
For the test airfoil (section 4.2.1) at Mach 2 and zero incidence, 1500 divisions
over the airfoil are needed to archive 1 drag count precision; to improve the
precision to 0.1 dc, 2400 divisions are needed. The mesh radius almost does
not influence the results (tab. 4.5).
The mesh setting used are used in the optimization are reported in table 4.3;
the other parameters are the same reported in tab 3.1.

41



0 500 1000 1500 2000 2500 3000

Division

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

C
d

Figure 4.8: SU2 convergence study
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Figure 4.9: SU2 iteration to reach convergence
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Figure 4.10: SU2 computation time
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d iteration Cd time [min] res(ρ) res(ρu) res(ρv) res(ρe)
50 62 0.027038 0.01 -8.10 -7.62 -8.16 -7.33
100 79 0.028193 0.06 -8.01 -7.56 -8.13 -7.26
150 87 0.028540 0.08 -8.04 -7.63 -8.14 -7.32
200 97 0.028841 0.27 -8.03 -7.73 -8.06 -7.32
250 121 0.029069 0.21 -8.01 -7.76 -8.00 -7.29
300 126 0.029191 0.36 -8.02 -7.75 -8.02 -7.29
350 143 0.029255 0.43 -8.02 -7.77 -8.03 -7.30
400 157 0.029366 0.66 -8.00 -7.75 -8.00 -7.28
500 175 0.029459 1.37 -8.00 -7.74 -8.00 -7.27
600 189 0.029495 1.54 -8.03 -7.76 -8.03 -7.30
700 195 0.029541 2.41 -8.01 -7.74 -8.04 -7.28
800 213 0.029578 3.49 -8.03 -7.76 -8.03 -7.30
1000 246 0.029635 5.62 -8.02 -7.74 -8.03 -7.28
1100 256 0.029655 6.64 -8.00 -7.74 -8.00 -7.27
1200 274 0.029666 8.12 -8.01 -7.75 -8.01 -7.28
1250 271 0.029675 10.46 -8.01 -7.74 -8.01 -7.28
1350 292 0.029686 13.65 -8.01 -7.76 -8.00 -7.28
1400 290 0.029690 11.33 -8.01 -7.75 -8.00 -7.28
1500 298 0.029700 13.74 -8.01 -7.76 -7.99 -7.28
1550 296 0.029704 14.28 -8.01 -7.75 -8.00 -7.27
1600 314 0.029709 16.18 -8.00 -7.75 -8.00 -7.27
1650 308 0.029712 21.01 -8.01 -7.76 -8.00 -7.28
1750 312 0.029720 20.61 -8.01 -7.75 -8.01 -7.28
1850 328 0.029727 27.92 -8.01 -7.76 -7.99 -7.28
1950 342 0.029733 22.66 -8.01 -7.76 -7.99 -7.28
2000 349 0.029735 29.57 -8.00 -7.75 -7.99 -7.27
2050 334 0.029737 24.66 -8.01 -7.76 -7.99 -7.27
2150 354 0.029741 32.50 -8.01 -7.76 -7.99 -7.28
2250 351 0.029746 53.91 -8.01 -7.76 -7.99 -7.28
2350 401 0.029750 43.20 -8.01 -7.76 -7.99 -7.28
2450 373 0.029754 40.92 -8.00 -7.76 -7.98 -7.27
2550 379 0.029757 47.39 -8.00 -7.76 -7.98 -7.27

Table 4.4: SU2 convergence study recap (division on the airfoil); residuals
are reported in log10 format
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d iteration Cd time [min] res(ρ) res(ρu) res(ρv) res(ρe)
10 299 0.029699 12.48 -8.01 -7.77 -7.99 -7.29
15 302 0.029700 14.48 -8.01 -7.77 -7.99 -7.28
20 298 0.029700 11.54 -8.01 -7.76 -7.99 -7.28
25 299 0.029700 18.08 -8.01 -7.76 -8.00 -7.28
30 302 0.029700 11.20 -8.01 -7.75 -8.00 -7.27
40 305 0.029700 12.59 -8.00 -7.74 -8.00 -7.27
50 309 0.029700 11.34 -8.00 -7.75 -8.00 -7.27
60 312 0.029700 14.04 -8.01 -7.75 -8.01 -7.28

Table 4.5: SU2 convergence study recap (farfield distance); residuals are
reported in log10 format

4.5 Coarse optimization

The MATLAB genetic algorithm ga, from Global Optimization Toolbox,
has been chosen as optimizer; this due to the fact that it is able to archive
the global optimum for discontinuous (fitness function not defined over the
entire domain), constrained problem. Genetic algorithms are a family of
derivative-free, population based, stochastic optimizers; first presented in the
1960s, their principle is inspired by natural selection of biological systems.
To initialize the optimization process an initial population have to be given
or generated; the individuals are then encoded in string that unequivocally
define them: each string (chromosome) is composed the individual’s codified
input variable (gene). The optimization generally performs four steps each
iteration (generation)

1. a usually large portion (generally between 80 and 95%) of the pop-
ulation obtained from previous generation, composed by individuals
codified in strings, is processed by the crossover function. Given two
current individuals, it generates a new one by mixing the strings of the
parents;

2. a small group of individuals (lower than 5%) of the given population,
are processed by the mutation function; it operates modifying a portion
of the individual’s string creating a new mutated individual

3. all new individuals are evaluated by the fitness function

4. individuals, newly computed and from previews generations, are sorted
by a given criteria (usually their fitness value); the top prospects will
compose the future generation while the other will be discarded; this
task is carried out by the selection function
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Population size 2000
Fitness function tolerance 1e-6
Nonlinear inequality tolerance 1e-6

Max generation 250
Max stall generation 50

Scaling function Rank
Selection function Stochastic uniform
Crossover function Constrain dependent
Migration direction Forward
Nonlinear constrain algorithm Augmented Lagrangian

Table 4.6: ga function parameters

The particular implementation of the three functions defines the specific
algorithm; despite the high level of personalization that MATLAB Global
Optmization toolbox offers, the majority of ga parameters have been left
untouched; the specs used in the optimization are reported in the table 4.6.

The algorithm has the disadvantage to be computational expensive: it
needs several generation (composed by large amount on individuals) to con-
verge to the global optimum. This aspect is mitigated by the use of a surro-
gate model and the parallelization of the optimizer. To furthermore reduce
the computation time, all components of x are integer type, the geometrical
parameters unit refers to a thousandth of the airfoil chord; this implies the
use of special creation, crossover and mutation functions. The minimization
approach is changed by focusing on penalty function instead of fitness func-
tion; the penalty is structured to consider linear constrains, feasibility and
fitness of the individuals; the particular ga implementation relies on tech-
niques described in references [21] [22].

The ga function calls separately the constrain function and the fitness
function; the two functions have virtually the same execution time due to
the fact the feasibility of the individuals can only be assessed at the end
of the SET calculation. In order to reduce the computation time, when a
new individual is generated, its fitness function and constrain vectors are
computed in the same function and stored. This allows a huge time saving
because the time needed for the single individual is now the sum of the actual
computational time plus the time need to retrieve the individual from the
storage array instead of twice the computational time.

The best individuals from previous coarse optimizations are included into
the initial population at the beginning of each OMM iteration.
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4.5.1 Optimization constrains

Linear constrains

The geometric parameters are bounded with both upper and lower limits.
A liner inequality has been set in order to prevent the slat from taking up
more than the 30% of the airfoil’s chord (eq. 4.17).

xmin = [0.05c, 0.1c, 0.05c, 0.1c, 0.05, −0.015, − 999, − 999];

xmax = [0.1c, 0.25c, 0.1c, 0.25c, 0.3c, 0.015c, 99, 99];

Aineq =

[
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

]
;

bineq = [0.3c; 0.3c];

such that Aineqx < bineq;

(4.17)

In order to properly compare two consecutive iterations, the components
of the input vector have been normalized respect their interval (eq. 4.18).

z =
x− xmin

xmax − xmin

(4.18)

The difference in the z will be evaluated to asses the convergence of the
optimization.

Nonlinear inequality constrain

The nonlinear inequality constrain is composed by an array of three ele-
ments:

gc(x) = [ 0.5− ISsol(x); t̄hlim − thup(x); t̄hlim − thdwn(x) ]; (4.19)

where ISsol(x) is logical value indicating whether the configuration is feasible
both geometrical and computational wise, thup and thdwn are the percentage
thicknesses of the slats.
The coarse model is the most demanding respect the feasibility of the design
since the SET is the less robust method of the two. Consequently, since all
the rest of the components of gc(x) are geometrical, there is no need to adapt
the constrain function regard the fine model. The constrains can be directly
applied in the optimizer. In order to simplify the notation from now on the
non linear inequality constrain will be addressed as g(x) (eq. 4.20).

S̃g(gc(x)) = gc(x) = gf (x) = g(x) < 0 (4.20)
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Nonlinear equality constrain

MATLAB ga function does not allow to perform an integer optimization
with nonlinear equality constrain. To overcome this limitation the nonlinear
equality constrain is implemented in the evaluation function. In this case it
is a scalar defined in eq. 4.21.

hc(x,α) = Cl(x, α)− C̄ltgt; (4.21)

The angle of attack α is used as independent variable to archive the constrain.
The constrain function is minimized using Newton–Raphson method until the
constrain tolerance is matched. The derivative has been computed through
central finite difference. This means that at least four SET evaluations are
needed for each feasible individual.
For each individual the problem is set as showed in eq. 4.22.

find ᾱ such that :

|S̃hi−1(hc(x,ᾱ))| = |hf (xi−1,ᾱ) + Sh i−1(hc(x,ᾱ)− hc(xi−1,ᾱ))| < toll

iteratively solved using :

αk+1 = αk −
S̃hi−1(hc(x,αk))∆α

S̃h i−1 [hc(x,αk + ∆α/2)− hc(x,αk −∆α/2)]
(4.22)

4.5.2 Optimization fitness function

The figure of merit for the first iteration is the drag coefficient computed
using SET evaluated at the angle of attack resulting from eq. 4.22, here
showed in 4.23;

c(x) = Cd(x,ᾱ)
∣∣∣
SET

(4.23)

From the second OMM iteration, the correction operator became in-
volved, the SET drag coefficient is corrected as shown in eq. 4.24.

c(x) = S̃
(
Cd(x,ᾱ)

∣∣∣
SET

)
(4.24)
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4.6 Optimization workflow

The OMM optimization workflow scheme has been reported in figure 4.11.

OMM
inizialization

Geometry
construction

Feasibility
check

SET
corrected

Lift
constrain

ga
converged

Coarse Eval
SET

Fine Eval
SU2

OMM
converged

Compute
correction
operator

End of the
optimization

find α to
satisfy

constrain

i-th generation

for each individual x

return: S̃(c(x)),S̃h(h(x)),S̃g(g(x))

new generation

ga optimization

return surrogate optimum x∗,α̃

Figure 4.11: Supersonic optimization workflow
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1 2 3 4 5

OMM iteration

0.0367

0.0368

0.0369

0.037

0.0371

C
d

Fine evaluations

Coarse evaluation

Corrected coarse

Figure 4.13: OMM convergence history

4.7 OMM optimization

The algorithm has been run and it appears that five iterations are needed
to converge. The convergence has been reached due to the fact that the
improvement between the last iteration was lower than the set tolerance.
The optimized input array is:

x∗ = [0.05c, 0.25c, 0.05c, 0.25c, 0.05c, 0.02c, 2, 3]; (4.25)

It appears that x∗ has almost all of its component at the optimization
bounds: the first four elements are equals to their upper limits while the last
two are near the lower ones. The resulting shape is reported in figure 4.12.

Assuming the first iteration (low-fidelity optimum) as baseline for the
modified design, an improvement on the result can be seen over the OMM
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Figure 4.15: Slat thicknesses evolution

iterations (fig. 4.13) . The major improvement has been archived between
the first and the second iteration, where the discrepancy between the fine
model and the corrected model has been cut by an order of magnitude (fig.
4.14). The correction at the end of the algorithm was able to reduce the error
on the merit function by almost two orders of magnitude. The improvement
of the coarse fitness function can be attributed to the increasing quality of
the initial populations over the OMM iterations.

The error on the nonlinear equality constrain is slightly reduced over the
course of the optimization, even if it seems that the correction is ineffective,
the level of error is still acceptable (fig. 4.16). The geometric constrains for
the upper slat are verified since the first iteration; the constrain for the lower
one greatly improves from iteration one but it fail to overcome the minimum
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Figure 4.16: Percentage error of the nonlinear equality constrain
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Figure 4.17: Computational time of ga for each iteration

thickness. The thickness of the lower slat settles on 1.96% (fig. 4.15).

From the ga running time (fig. 4.17) it is possible to roughly estimate
how many feasible individuals has been created for each iteration. For the
majority of individuals it can be speculated just one iteration of the Newton-
Raphson algorithm (section 4.22) so the execution time can be assumed as
the sum of the time needed to generate the geometry plus the time needed
for four SET evaluation; neglecting the geometry generation it is possible to
approximate:

feasible elements ∼ GArunning time
4·SETrunning time

nprocessors

; (4.26)

The values and percentages of estimated feasible individuals are reported
in figure 4.18; it is possible to notice a positive trend on the percentages due
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Figure 4.18: Estimated feasible individuals in the ga for each iteration

to the increasing quality of initial population.

The time needed for the fine evaluation remains almost constant for every
iteration and it’s consistent with the value expected from the test runs.

OMM iteration 5
Improvement from first iteration 2.2571e− 04
Discrepancy between model last iteration 1.1721e− 06
Error on the lift constrain 0.5%
Percentage thickness of upper slat 2.64
Percentage thickness of lower slat 1.96

Total time of OMM 14.9 [h]
Total time of ga 11.4 [h]
Equivalent fine model evaluation1 ∼ 23 (17 + 5)
Equivalent fine lift constrained individuals2 ∼ 6
Individual completely tested in ga 293443
Individual generated in ga ∼ 1272005
Percentage of feasible individuals ∼ 23

Table 4.7: Supersonic OMM recap

2In the overall optimization time, 5 CFD evaluations have been made, 17 evaluations
would have been completed withing the overall ga running time

2Assuming 4 evaluations to satisfy the lift constrain, from a total of 23 evaluations a
total of six lift constrained airfoil would have been obtained
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Figure 4.20: Drag coefficient improvement

4.8 Comparison with the original airfoil

A comparative run (fig. 4.21 to 4.24) has been made in order to asses the
performance of the design at different Mach numbers; at each evaluation the
lift constrain has been enforced through the angle of attack.
All aerodynamic coefficients of the modified airfoil are reported to the initial
unit chord so the values are directly comparable.
The mesh used to perform the calculation is similar to the one used to char-
acterize the original airfoil (section 3.1.1).
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Figure 4.21: (a) Pressure coefficient comparison. (b) Mach contour for
standard airfoil at Mach = 0.8. (b) As for (c) but for the modified airfoil.
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Chapter 5

High lift Configuration

The second phase of this work aims to find the position of the upper slat
previously obtained in order to perform as high lift device in low speed flight.
The design of high-lift configuration is crucial and it directly affects required
runway distance, available payload and operative range. An usual optimiza-
tion of such configuration can comprehend several design variables (the num-
ber drastically increases if the elements’ shapes has to be optimized and
thus the variable vector includes the parametrization variables) and multiple
non-linear constrains (structural, cinematic, noise); therefore it can become
excessively time demanding and computational expensive. Surrogate based
methods have been extensively used in this process since the end of the 1990s;
most applications rely on functional-based e.g. Greenman et al [23] Neural
Network, Kanazaki et al [24] Kriging Method, Leifsson et al [25] Polynomial
Response Surface (for marine application). A physic-based multi-resolution
[26] has been recently tested by Jonsson et al ; the optimization is carried
out using space mapping algorithm to correct the coarse mesh CFD results.
Here it is proposed a physic-based multi-fidelity approach that couples panel
method and expensive CFD.
Usually, high lift configuration is composed by several elements operating on
both leading and trailing edges. In this paragraph, in order to not increase
the number of optimization parameters, only the upper slat will be oper-
ated; it is reasonable to presume that the high lift performance could still be
enlarged coupling its effect with a (or multiple) trailing edge device.

5.1 Problems formulation

The objective is to obtain the optimal displacement of the slat. In this
chapter, two optimization will be performed using the same algorithm; the
objective function and the flow conditions are different for each optimization:
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• Maximum lift condition: at Reynolds Re = 6 ·106, the aim is to enlarge
the baseline lift coefficient in the proximity of its max lift condition
(α = 15 deg). This objective aim to reduce the take-off and landing
speed and therefore the runaway length. A comparison of the Cl − α
curve will be done afterward to assess how the angle of stall is affected
by the deployment of the slat.

• Take off condition: at Reynolds Re = 6 · 106 the aim is to maximize
the climb index Cl3/Cd2 (see references [27] [28]), this merit figure is
directly correlated with the time to climb and therefore its optimization
can provide a reduction in term of fuel consumption during this phase
of the mission;

The optimization is carried out using multi-fidelity surrogate basic tech-
nique, Hess-Smith panel method (HSPM) has been chosen as the surrogate
model; since it is a potential based method, it is necessary to rely on an ad-
ditional condition to contemplate the phenomenon of stall. On this matter
Valarezo et al [29] reported a semi-empirical condition concerning the suc-
tion peak in which it can be assumed that the airfoil is approximately at the
maximum lift.
The position of the slat is the variable of the optimization: the degrees of
freedom are the x-position,y-position and relative incidence respect the main
airfoil. The optimization is constrained so:

• The resulting design will be feasible in therms of clearance between slat
and airfoil;

• The Valarezo condition is respected both in the main airfoil and the
slat;

The optimization ceases if:

• Norm difference of the normalized component input vector is less than
0.005;

• No improvement has been registered in the last 10 iteration;

• The fine evaluation has been performed for more than 15 times;

5.2 Geometry description

The slat and the main airfoil designs (fig 5.1) are obtained from the first
part of this work.

The relative position of the slat respect the main airfoil is defined by three
geometric parameters, as shown in figure 5.2:
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Figure 5.1: Slat (top), Main airfoil (bottom); coordinates normalized re-
spect to the main element chord

• the distance along x-axis between the slat trailing edge and the main
airfoil leading edge normalized respect to main airfoil chord

• the distance along y-axis between the slat trailing edge and the main
airfoil leading edge normalized respect to main airfoil chord

• the angle of attack of the slat expressed in degrees

All distances are normalized respect the main airfoil chord.
The parameters are included into the input array such that:

x = [∆x,∆y, θ]; (5.1)

The geometry is computed in a MATLAB function that executes a 2D
translation of the slat followed by a rotation around its trailing edge.

5.3 Low fidelity model

The Hess-Smith Panel Method (HSPM) has been used as surrogate
model. Under the assumption of incompressible, inviscid, irrotational flow,
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Figure 5.2: Parameters that define slat’s position

the velocity potential satisfies the Laplace equation (eq. 5.2); this formu-
lation can be used in low-speed aerodynamic to describe the flow domain
outside the region in which viscosity effects and rotational flow are confined
(wake and boundary layer).

∇2Φ∗ = 0 (5.2)

Where Φ∗ is the total potential that can be divided into the free stream
potential Φ∞, which is function of asymptotic velocity components, and into
the perturbation potential Φ. The general solution to Laplace Equation for
a submerged body can be obtained from Green’s identity as distribution of
source γ and doublet µ (eq. 5.3), for a compete derivation reference see [30].

Φ∗(x,y,z) = Φ∞ −
1

4π

∫
body

[
σ

(
1

r

)
− µn · ∇

(
1

r

)]
dS (5.3)

HSPM considers source distribution and a constant vortex distribution
γ in order to satisfy the Kutta condition and the body boundary condition
(∂Φ/∂n|body = 0); once the geometry is divided into panels the potential can
be expressed as

Φ∗(x,y,z) = Φ∞ +

npanels∑
j=1

1

2π

∫
panelj

[σ(s) ln r − γθ] dS (5.4)

For a single airfoil configuration, the algorithm divides the body into n
panels, starting from the pressure side’s trailing edge proceeding clockwise to
the suction side’s one. Each i-esim panel has its own source of strength σi,
its own vortex of strength γi and its own control point located in the middle
of the panel. The source strength is assumed to be constant panel-wise and
it is determined by satisfying the flow tangency on each panels, the vortices’
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intensity is set to be equal over the entire body such that γ1 = γi = γ; the
Kutta condition is used to set its value.
From the intensity of sources and vortices, it is possible to obtain the pertur-
bation velocity that is directly related to the pressure coefficient (eq. 5.5).

Cp = 1−
(
upert
‖U∞‖

)2

; (5.5)

In order to compute the intensities of the sources and vortices for each
panel the induced velocities are now calculated on each control point . For
the k-esim control point the influence of the source and the vortex distributed
over the j-esim panel (within the points j and j+1 ) can be expressed in the
panel’s reference system as function of relative distance and angle (eq. 5.6).

ũsource = − σj
2π
log
‖r̃j+1‖
‖r̃j‖

; ṽsource = σj
∆θ̃

2π
;

ũvortex = −γ∆θ̃

2π
; ṽvortex = − γ

2π
log
‖r̃j+1‖
‖r̃j‖

;

r̃j = [x̃j − x̃k,ỹj − ỹk];
r̃j+1 = [x̃j+1 − x̃k,ỹj+1 − ỹk];

∆θ̃ = atan

(
r̃j+1(2)

r̃j+1(1)

)
− atan

(
r̃j(2)

r̃j(1)

)
;

(5.6)

Where the tilde apex represents the quantity in the j-esim panel reference
system. Once transported in the global reference system, the projection along
the normal direction of the k-esim source induced velocity is placed into the
k,j element of the matrix A. At the same time the projection along the
tangent direction is placed into the k,j element of the matrix B and the
same procedure is done for the vortex induced velocities for the matrix C
and D (eq. 5.7).

for k = 1 : n, for j = 1 : n

A(k,j) = nk · [uj,vj]sources;
C(k,j) = nk · [uj,vj]vortex;
B(k,j) = τk · [uj,vj]sources;
D(k,j) = τk · [uj,vj]vortex;

b(k) =−U∞ · nk;

(5.7)

The effect of the vortex induced velocities are considered thought the last
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column of A and B,that are computed from the matrices C e D (eq. 5.8).

A(k,n+ 1) =
n∑
j=1

C(k,j);

B(k,n+ 1) =
n∑
j=1

D(k,j);

(5.8)

In order to satisfy the Kutta condition, in the last row of A as well as the
last row of the b, the vector contains the normal projection of the asymptotic
velocity (eq. 5.9).

for j = 1 : n

A(n,j) = B(1,j) +B(n,j);

b(n) = −U∞ · (τ1 + τn)

(5.9)

A linear system has now been formed with the unknown vector composed
by the intensity of the n sources and the intensity of the distribute vortices.

x = [σ1,...,σj,...,σn−1,γ]′;

Ax = b;
(5.10)

The discretized perturbation velocity of the k-esim panel can be computed
as:

upert(j) =
n∑
k=1

B(j,k)x(k) + U∞ · τj; (5.11)

For a multi-element airfoil composed by m airfoils, the matrix A and B
are replaced by the matrix Ā,B̄ and the vectors x and b are replaced by the
vectors x̄ and b̄. The matrices are assembled from the m2 combination of the
matrix Ap,q and Bp,q , p = 1 : m, q = 1 : m, that considers the influences
over the panels of the body p of the singularities of the body q. The vectors
x̄ and b̄ respectively contain the p vectors xq and bq. The Kutta condition
and the tangency condition are enforced in each sub-matrices. Once solved
the linear system, pressure coefficient is computed in the same way as the
single airfoil. 

A1,1 A1,2 ... A1,m

A2,1 A2,2 ... ...
... ... Ap,q ...

Am,1 ... ... Am,m




x1

x2

...
xm

 =


b1

b2

...
bm

 (5.12)
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ūpert =


upert 1

upert 2

...
upert m

 =


B1,1 B1,2 ... B1,m

B2,1 B2,2 ... ...
... ... Bp,q ...

Bm,1 ... ... Bm,m




x1

x2

...
xm

+


T1

T2

...
Tm

[UxUy
]

(5.13)
Where the array Tq has size n×2 and it contains the n tangential vector

of the body q.
The method has been implemented in a MATLAB function and it has been
be tested (Appendix B) with the analytic results obtained by Suddhoo et
al [31]. The function needs in input the X and Y coordinates (in form of
m × (n + 1) matrices) and the far-field velocity vector and it returns the
lift, drag and pressure coefficient. The pressure coefficient array resulting
from equation 5.5 has dimension 1 × (m × n) since the nonlinear inequality
correction operator will need to be applied to it.

5.3.1 Convergence study

In order to asses the ideal number of panels ti achieve the optimized
quantities’ precision, a convergence study has been made. The pressure co-
efficient is computed solving a linear system; the cost of the computation
nonlinearly increases with the dimension of the matrix, so it is crucial to not
over-discretize the airfoil. The number of divisions along the chord is used as
parameter that corresponds to half of the total number of panel. The quanti-
ties of interest are the lift coefficient and the pressure difference between the
suction peak and the trailing edge. The test has been carried on a NACA
0012 airfoil on three different incidences, it can be seen that 150 division are
sufficient to archive a converged solution for both quantities (figures 5.3 5.4).

5.4 High fidelity model

To obtain more physically accurate results, the geometry resulted from
the coarse optimization has been tested in OpenFOAM. The case has been
set to solve incompressible 2D RANS equations with the simpleFOAM flow
solver. The closure equation relies on the eddy viscosity assumption and
particularly uses k − ω SST formulation and the use of wall-function, both
already implemented in OpenFOAM. Gmesh provides the box-type unstruc-
tured hexaedrical mesh; this type of mesh is easy implemented and fast
computed, the ideal characteristic to be used in an optimization. The main
element leading edge is positioned as the origin, the far-field boundary is
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Figure 5.3: HSPM : ∆Cl with different number of panels
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Figure 5.4: HSPM : suction peak values with different number of panels
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Division Cl min(Cp)− CpTE Time [s]
20 1.7831 -12.763 0.337
30 1.7857 -13.021 0.533
40 1.7871 -12.938 1.082
50 1.7879 -13.066 1.479
60 1.7884 -13.307 1.576
70 1.7888 -13.385 2.102
80 1.7890 -13.384 2.737
90 1.7893 -13.344 3.440
100 1.7894 -13.406 4.255
110 1.7895 -13.457 5.235
120 1.7896 -13.473 7.032
130 1.7897 -13.466 8.174
140 1.7898 -13.453 9.557
150 1.7899 -13.492 11.762
160 1.7899 -13.510 12.853
170 1.7900 -13.514 13.944
180 1.7900 -13.508 14.815
190 1.7901 -13.514 16.690
200 1.7901 -13.532 20.419
210 1.7901 -13.540 21.947
220 1.7902 -13.540 24.243
230 1.7902 -13.534 24.342
240 1.7902 -13.547 25.472
250 1.7902 -13.556 27.584
260 1.7903 -13.560 29.269
270 1.7903 -13.559 31.935
280 1.7903 -13.558 36.098
290 1.7903 -13.568 38.279
300 1.7903 -13.574 41.896

Table 5.1: HSPM convergence study recap
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xtest [ −0.0160c, −0.0057c, −39.993]
Reynolds number 6e6
α 15°
Boundary at far field freestream

Max iteration 7000
residualControl p 1e-7
residualControl U 1e-9

Table 5.2: simpleFOAM parameters
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Figure 5.5: simpleFOAM mesh calibration: ∆Cl

placed at 300 chords of distance to assure that the finite boundary to have
only a minimal influence on the solution; boundary layer’s cells expand with
a ratio of 1.3 in order to obtain the proper y+ for the application of the
wall-function.

Convergence study

The mesh calibration has been carried out on a test configuration in the
same boundary condition as the optimization (tab. 5.2). The computation
is set to end when either the residuals are lower than prescribed values or
maximum iteration limit is exceeded; all the cases used to asses the mesh
calibration are converged under the residual condition.

Different meshes have been tested; the main differences between them
consist on the dimension of the elements over the airfoil, the zone in which
the further refinement have been applied and the size of the elements on the
refinement. To summarize the calibration, the number of faces has been used
as main parameter.

The results are shown in tab 5.3 and in figure 5.5 5.7; the chosen mesh
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Figure 5.6: simpleFOAM mesh calibration: Time to reach convergence
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Figure 5.7: simpleFOAM mesh calibration: Iteration to reach convergence
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nfaces Cl Cd t [min] res(ρ) res(u) res(v) res(k) res(ω)
90365 1.9261 0.03384 8.43 -9.47 -9.00 -8.24 -6.11 -6.01
106530 1.8836 0.02458 5.43 -9.21 -9.00 -8.08 -6.07 -6.02
153460 1.8033 0.02552 7.88 -9.44 -9.00 -8.04 -6.04 -6.01
185380 1.7966 0.02481 9.70 -9.54 -9.14 -8.00 -6.07 -6.03
420930 1.7911 0.02299 24.15 -9.00 -9.40 -8.48 -6.12 -6.00
499800 1.7952 0.02210 29.37 -9.00 -9.11 -8.32 -6.01 -6.00
542080 1.7951 0.02217 77.10 -9.00 -9.09 -8.40 -6.06 -6.01

Table 5.3: simpleFOAM mesh convergence study; the number of face is
used a parameter to sort the configurations; residuals are printed in log10
format

Figure 5.8: Mesh used for the fine evaluation; domain overview (left), zoom
near airfoil (right)

has almost 500000 faces and it is able to predict the lift coefficient of the test
configuration up to the third decimal; the maximum element size over the
airfoil has size of 0.003c while on the far-field element of length 15c are used
and the wake region is refined with element of length 0.005c (fig. 5.8).

5.5 Coarse optimization

The coarse optimization is carried out using fmincon functopn available
in the MATLAB Optimization Toolbox. The optimizer algorithm is set to
be interior-point [32], a gradient-based method that transforms a nonlinear
constrained problem, with both equality and inequality constrain, in a series
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Figure 5.9: Initial points for the first coarse optmization

of equality constrained problems (eq. 5.14).

x∗ = arg min f(x) := {xl < x < xu |g(x) < 0 |h(x) = 0};
⇓

x∗,s∗ = arg min fµ(x,s) = arg min

(
f(x)− µ

max∑
i

ln(si)

)
x∗,s∗ := {xl < x < xu |g(x) + s = 0 |h(x) = 0};

(5.14)

Where s is a positive vector composed by slack variables; it has the same
dimension of the enforced nonlinear inequalities: as µ decreases to zero the
minimum of fµ approaches to the minimum of f . The MATLAB algorithm
first attempts to solve the approximated equation constrained through La-
grangian multiplier using a gradient method (Newton step); alternatively a
conjugate gradient step is performed.

As gradient-based method, the convergence point depends on the initial
guess and the stopping criteria can be satisfied at a local minimum; to reduce
the probability of this occurrence multiple, starting point are set for the opti-
mization. Nine factorial distributed points are set (fig. 5.9) for the fist OMM
iteration. The optimal point from the last manifold mapping optimization
and the best point recorded in the optimization are then added to the array
for the following iterations. The derivatives are approximated by the solver
through finite forward difference. As for the supersonic optimization the fit-
ness and constrain vectors are computed in the same function and stored.
Due the the deterministic nature of the algorithm it is possible to save fur-
ther time keeping the values from the previous coarse optimizations, to be
effective the value must be saved before applying the corrector operator. The
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Starting point 10 (9 for first iteration)
Objective function tolerance 1e-4
Step tolerance 1e-4

Max evaluation 1000
Max iteration 100

Hessian approximation BFGS
Subproblem setting idl

Table 5.4: fmincon function main parameters
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Figure 5.10: Suitable position of the slat’s trailing edge

main parameters of scheme are reported in the tab 5.4.

5.5.1 Optimization constrains

Linear constrains

The coordinates of the slat’s trailing edge are enclosed in a polygon de-
fined by a linear inequality constrain and bounds for the input parameters
(fig. 5.15). First two element of the input vector are normalized respect to
the unit chord,the third one is expressed in degree.

xmin = [−0.05c,−0.015c,−40];

xmax = [ 0.01c, 0.015c, −5];

Aineq =
[
3/2 −1

]
;

bineq = −0.015/c;

such that Aineqx < bineq;

(5.15)
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Figure 5.11: Pressure difference rule; maximum lift criteria for different
Mach and Reynolds

The resulting box is showed in figure 5.10

Nonlinear inequality constrain

Valarezo et al provided an hybrid criteria that couples panel method
computation and physical criterion to predict maximum lift performance.
The method has been conceived to overcome the drawbacks of the pressure
coefficient peak rule proposed by Smith [33] that:

• is independent from Reynolds and Mach number

• is not applicable to airfoil with leading edge devices, where has been
observed pressure peaks much greater than the Smith prediction

It was noted from Valarezo that even if the pressure peak widely var-
ied depending on free-stream condition, there was a correlation between the
pressure difference between the suction peak and trailing edge value and the
given Mach and Reynolds number, the relation obtainer is reported in figure
5.11.

The critical pressure difference value (PDV) at which is reach maximum
lift is 14 for the main airfoil and 10 for the slat; this values are obtained
considering the Reynolds number associate with the element’s chord. The
hypothesis of incompressible flow are not contemplated by the provided chart
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5.11 because it is obtained from experimental tests. Mach 0.15 curve is take
as reference instead.

For the slatted-airfoil configuration the HSPM provides the pressure dis-
tribution over the airfoils in form of an array of size 2 × n where n is the
number of panels. The obtained distribution is then corrected with the op-
erator S̃g before the execution of function ∆. ∆ performs the extraction of
the array’s portion relative to the considered surface and then proceed to
subtract the trailing edge value to the pressure peak (eq. 5.17).

g(x) =

[
−PDVmain + ∆main(S̃g(Cp|HS(x))

−PDVslat + ∆slat (S̃g(Cp|HS(x))

]
< 0 (5.16)

∆main(Cp) = Cp(1)−min(Cp(1 : n));

∆slat (Cp) = Cp(n+ 1)−min(Cp(n+ 1 : end));
(5.17)

Nonlinear equality constrains

No nonlinear equality constrain have been set for this optimization.

5.5.2 Optimization objective function

The objective function is different for the two conditions, but in either
case it is derived form the aerodynamic coefficient obtained from HSPM
and then corrected using S̃ operator.

Ccor =

[
Cl(x)|cor
Cd(x)|cor

]
= S̃

([
Cl(x)|HSPM
Cd(x)|HSPM

])
(5.18)

The actual value to be minimized is:

c(x)|max Cl = −Cl(x)cor;

c(x)|max TO = −Cl(x)|3cor
Cd(x)|2cor

;
(5.19)
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5.6 Optimization workflow

The work-flow used for the second optimization has been reported in fig-
ure 5.12. Differently from the supersonic case there is a chance of an unstable
fine solution. This can occur if particular regions of the input vector domain
are reached due the corrector operator; in order to prevent the optimizer to
accept such configuration and so wrongfully compute the correction for the
following iteration, an internal loop has been set to reduce the acceptable
PDV until the CFD results are stable. For the i− esim OMM iteration the
expensive CFD computation can be executed up to seven times, each time
the coarse optimization is carried out with a more restrictive PDV value.
Once the stable solution is obtained, the optimization loop regularly pro-
ceeds with the corrector computation. For the next OMM iteration, the
coarse optimization will again try to enforce the Valarezo PDV ; in the oc-
currence of a stable solution with PDV greater than the theorized one the
PDV will be increased for the iteration to follow.

5.7 OMM optimization

In the following sections the results of the optimizations carried out for
the two cases will be reported.

5.7.1 Max lift design condition

The max lift design optimization terminated because of the reaching
of fine evaluation limit; nevertheless a significant improvement respect the
HSPM optimum was fund. The obtained configurations are reported in fig-
ure 5.13; as the optimization did not reach convergence, the initial HSPM
optimum, the CFD best result and the last recorded position are reported.
The resulting flow field is showed in figures 5.20 5.21. Comparing the coarse
optimum and the fine best result (tab. 5.5) shows how lift coefficient im-
proved by almost 5%; the optimization did not constrain neither the airfoil
efficiency nor its drag coefficient; as result, the latter increased by 75% due
to the massive wake caused by the slat.

The optimization lasted 9 OMM iterations; the fine evaluation limit was
reached due to the internal loop that reinforced the PDV inequality constrain
(figure 5.14); in the eighth OMM iteration four additional coarse optimiza-
tions, followed by as much fine evaluation, were required to obtain a stable
CFD solution. On the ninth one a total of 3 internal loops had to be com-
pleted; the enforcement of a stable solution in the last two iterations required
more fine evaluation than all the previews combined (tab. 5.6).

73



OMM
inizialization

HSPM
corrected

fmincon
converged

Multistart
results

hierarchy

Fine Eval
simpleFOAM

Stable
solution

PDV
reduction

Coarse Eval
HSPM

OMM
converged

Compute
correction
operator

End of the
optimization

new step

multistart

fmincon for each initial point x0j

return x∗j

return stable surrogate minimum x∗

n
on

li
n
ea

r
co

n
st

ra
in

fo
r

fm
in

co
n

Figure 5.12: High lift configuration workflow

To prevent an excessive running time of the optimization, the break criterion
was set to on the number of fine evaluations instead to the OMM iteration.

The objective value, showed in figure 5.15, records its minimum (maxi-
mum lift coefficient) on the seventh iteration; the maximum agreement be-
tween the fine evaluation and the corrected coarse one occurred on the sixth
iteration.

The input vector components (fig 5.16) and its norm (fig 5.17) showed
sign of convergence between iteration 4 and 6, but the difference in the norm
(one of the convergence criteria) increased by a factor of 10 in the iteration
7.
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Figure 5.13: Slat positions resulting from the lift coefficient optimization

- ∆x/c ∆y/c θ Cl|CFD Cd|CFD
HSPM optimum -0.0186 -0.0076 -39.992 1.8099 0.0219
CFD optimum -0.0500 0.0400 -20.955 1.9025 0.0917
% difference - - - +4.8688 +76.0833

Table 5.5: Max lift: Comparison between HSPM and CFD optimums
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Figure 5.14: Max lift: Fine evaluation per OMM iteration due to PDV
reduction loop
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Figure 5.15: Max lift: Objective function evolution (left), error between
models (right)

Total time of OMM ∼ 43.7 [h]
Total time of coarse optimization ∼ 8.3 [h]
Mean number of evaluation per coarse optimization1 ∼ 1290 (∼ 117 · 11)
Total time of CFD computation ∼ 35.4 [h]
Time of CFD stable computation2 ∼ 15.3 (∼ 1.79 · 9) [h]
Time of CFD rejected computation3 ∼ 20.0 (∼ 3.3 · 6) [h]

Table 5.6: Max lift: OMM recap

The nonlinear inequality progressions are reported in figure 5.18 and 5.19;
in case of PDV correction (iteration 8 and 9), the value extracted are the
ones from the last internal iteration. The CFD values for the slat are always
satisfied while the main airfoil appears to exceed the constrain in the last
two iterations. This is caused by the PDV correction that operates on both
elements in the same way: the reduction needed to obtain stable solution on
the slat is much greater than the one required for the main element causing
the constrain not to be reachable on the latter.

1Every optimization is composed by 11 starting points that require 117 function eval-
uations on average

2A total of 9 CFD evaluations converged to a stable solution, their average computation
time is 1.7 hours

3A total of 6 CFD evaluations did not converged to a stable solution, their average
computation time is 3.6 hours
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Figure 5.16: Max lift: Evolution of the input vector normalized components
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Figure 5.17: Max lift: Input vector norm evolution (left axis), difference
between two iteration (right axis)
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Figure 5.18: Max lift: Nonlinear inequality constrain for the slat (left);
reference PDV to obtain stable solution (right)
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Figure 5.19: Max lift: Nonlinear inequality constrain for the airfoil (left);
reference PDV to obtain stable solution (right)
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Figure 5.20: Max lift: Pressure contour

Figure 5.21: Max lift: Velocity contour
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Comparison with the original airfoil

The CFD optimum has been tested at different angles of attack; its Cl−α
curve is compared to the slatless airfoil one; the results are showed in figure
5.22 and tab 5.7. As for the supersonic case all coefficients are referred to
the unit chord.
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Figure 5.22: Cl − α comparison between slatted and clean airfoil

α Cl Cd Cl Cd
0.0 0.137 - 0.008 -
2.0 0.396 - 0.009 -
4.0 0.626 - 0.009 -
8.0 1.065 1.1420 0.011 0.013
10.0 1.261 1.3902 0.014 0.022
12.0 1.417 1.6282 0.018 0.046
14.0 1.531 1.8127 0.027 0.075
15.0 1.568 1.9025 0.071 0.092
15.5 1.504 1.9302 0.075 0.100
16.0 1.444 1.9070 0.087 0.110
17.0 1.392 1.8150 0.393 0.131
18.0 - 1.8050 - 0.158
19.0 - 1.8170 - 0.180

Table 5.7: Comparison with the clean airfoil

The lift coefficient, due to the increase of lifting surface, greatly improves,
but the computed stall angle remains virtually the same. This can be due to
the unusual shape of the slat that almost resembles a flat plate.
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Figure 5.23: Slat positions resulting from the climb index optimization

- ∆x/c ∆y/c θ Cl|CFD Cd|CFD climb index
Clean airfoil - - - 1.064 0.0110 9957.2
HSPM optimum -0.0500 0.0400 -21.57 1.132 0.0121 9869.4
CFD optimum -0.0085 0.0022 -24.49 1.131 0.0119 10219.2

% difference
CFD-Clean airfoil - - - +5.923 +7.563 +2.56
CFD-HSPM - - - -0.083 -1.883 +3.42

Table 5.8: Max climb index: Comparison between HSPM and CFD opti-
mums

5.7.2 Max climb index design condition

The optimization converged in five iterations since the change in the norm
of the input vector was lower than the chosen tolerance. The configuration
obtained at the end of the optimization is reported in figure 5.23; the flow
solution are showed in in figures 5.32 5.33.

The objective function ( -C3
l /C

2
d ) is showed in figures 5.24. Due to its

order of magnitude, a semilogarithmic plot has been reported. Both the best
climb index and the maximum agreement are obtained on the last iteration.
The evolution of the aerodynamic coefficients and their errors are reported
in figure 5.25 5.26. The massive error committed by the panel method, that
underestimate drag due to the lack of viscous effect, is gradually corrected
and became lower than 1e−4 by the last iteration. The overall improvement
has been obtained by the reduction of the drag coefficient by almost 2% while
the lift coefficient was 0.08% lower than the low-fidelity optimum.

The convergence of the input vector components’ are shown in figures
5.27 5.28. The error decreases till reach convergence from iteration four;
differently from the high lift condition, none of the components is near its
respective bounds.
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Figure 5.24: Max climb index: Objective function evolution (left), error
between models (right)

1 2 3 4 5

OMM iteration

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

C
l

HS

HS corr

CFD

1 2 3 4 5

OMM iteration

10
-2

10
-1

10
0

| 
C

l -
 C

l 
c
fd

|

|HS - CFD|

|HS
corr

 - CFD|
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Figure 5.26: Max climb index: Cd evolution (left); error between models
(right)
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Figure 5.27: Max climb index: Evolution of the input vector normalized
components
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Figure 5.28: Max climb index: Input vector norm evolution (left axis),
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Figure 5.29: Max climb index: Fine evaluation per OMM iteration due to
PDV reduction loop
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Figure 5.30: Max climb index: Nonlinear inequality constrain for the slat
(left); reference PDV to obtain stable solution (right)
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Figure 5.31: Max climb index: Nonlinear inequality constrain for the airfoil
(left); reference PDV to obtain stable solution (right)
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Total time of OMM ∼ 35.1 [h]
Total time of coarse optimization ∼ 4.5 [h]
Mean number of evaluation per coarse optimization4 ∼ 528 (∼ 48 · 11)
Total time of CFD computation ∼ 30.5 [h]
Time of CFD stable computation5 ∼ 8.5 (∼ 1.7 · 5) [h]
Time of CFD rejected computation6 ∼ 21.9 (∼ 5.4 · 4) [h]

Table 5.9: Max Climb index: OMM recap; optimization carried out on a
dual core Intel Core i7-7500

Compared to the high lift condition, an instable solution is made less
likely to occur due to the lower angle of attack. On iteration 3 (fig.5.29),
such phenomenon was caused by an over deflected slat position obtained
from the corrected coarse optimization. Two more evaluations were needed
to find a stable converged solution; as for the high lift case, the PDV re-
duction for both slat and airfoil resulted in an over restrictive constrain that
is not formally respect by the airfoil (figures 5.30 5.31) but allows a stable
solution.

As for the previews case, the majority of the running time has been used
to perform the un-converged computations (tab. 5.9); an improvement in the
efficiency of the PDV correction together with a different CFD setup may be
a topic for future developments in order to reduce the overall computational
time.

4Every optimization is composed by 11 starting points that require 48 function evalu-
ations on average

5A total of 5 CFD evaluations converged to a stable solution, their average computation
time is 1.7 hours

6A total of 4 CFD evaluations did not converged to a stable solution, their average
computation time is 5.4 hours
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Figure 5.32: Max lift: Pressure contour

Figure 5.33: Max lift: Velocity contour
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Chapter 6

Conclusion and future
developments

6.1 Conclusion

This work provided a preliminary assessment of the aerodynamic perfor-
mance given by the implementation of leading edge surfaces. In the prospec-
tive of a two-optimum regime SST, this fist test provided encouraging results
for the 2D wing section; the drag obtained by the optimized design was pre-
dictably reduced respect the baseline airfoil (∼ −50%). Its value resulted
comparable with a supersonic airfoil of the same thickness (appendix A).
The first optimization proved that SET provided a valid surrogate model
since the coarse model solution was improved by only a 0.6% from the first
iteration. The discrepancies between fine and coarse model were reduced
under evaluation precision after three OMM iterations. The lift constrain
did not improved over the optimization but its error was already negligible;
the thickness constrain was not been reached on the lower slat but it was
improved over the course of the optimization. The feasible space was more
demanding then expected; from a rough esteem base on the coarse optimiza-
tion time, only ∼ 20% of the created individual was fully evaluated.

The high lift configuration resulting from the utilization of the upper
surface provided positive results; in both conditions, even if in one of the
optimization was terminated due to the reaching of maximum iterations, the
objective function was improved from the baseline airfoil. A considerate im-
provement was registered also from the surrogate optimum; the combined
application of Hess-Smith panel method (HSPM), Valarezo Pressure Differ-
ence Value (PDV) as surrogate model showed encouraging results. It was
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demonstrated that overcorrection of the coarse model, that can result in in-
stable solution or stalled configuration, could be prevented with an internal
loop acting on the PDV value. The lift coefficient, in the maximum lift case,
consistently improved for all the tested angles of attack; even thought the
sharp leading edge of the surface, the stall angle slightly improved.

6.2 Future developments

The undertaken approach of varying the wing geometry could potentially
be more effective than the variable sweep configuration since it directly af-
fects the leading edge sharpness. In order to be able to make a more precise
statement, the 3D effects, and thus the full airplane geometry, should be
taken under consideration. Even then, the structural and cinematic con-
strain could still make this solution inefficient or even impossible.
The surrogate approach proved its value so, in a eventual development of this
work, it is reasonable to keep relying on it. The multi-resolution approach,
that generally guaranties best convergence results, was not used due to the
fact that the genetic algorithm needs a great number of evaluations to reach
the optimum; if the geometrical parametrization was rethought to be less
demanding, then the optimizer could be chosen among a wider range of algo-
rithms and multi-resolution could be performed. Viscous effect should also
be considered in order to be able to correctly evaluate the boundary layer
interaction with the shocks and geometrical discontinuities. A final consider-
ation on the supersonic cruise configuration, for a practical implementation,
could concern the pitching moment. The SST s operated in the past needed
a system to contrast the shift of the aerodynamic center position between
subsonic and supersonic flight; the Concorde, for example, used to move fuel
between tanks to trim the plane. Minimize the discrepancy between subsonic
and supersonic pitching moment could theoretically improve the range of the
plane since a more efficient use of the fuel tanks can be archive.
For the high lift configuration, work could be done to improve the capabil-
ity prediction of the surrogate approach. Implementing an integral boundary
layer formulation to the panel method would reduce the gap between models.
PDV proved to be a good constrain criteria for the coarse optimization, but it
showed lack of robustness with the corrector operator. The loop implemented
to obtain stable solution was effective but could be improved to be more effi-
cient. Beside this computational aspects, the physics of the simulation is still
a preliminary approximation of the real environment in which such device
would operate; compressibility and tridimensional effects are neglected, but,
most importantly, no structural nor actuation aspects are considered.
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Appendix A

Supersonic airfoil comparison

The modified airfoil as expected provides a great improvement compared
to the original NACA 64212 in supersonic flight. The aim of this chapter
is to compare the design obtained by the first optimization with an airfoil
specifically designed for supersonic flight.

Figure A.1: Lockheed F-104 Starfighter wing (the airfoil obtained through
image processing is showed in green) 1

The tip airfoil of the bi-sonic interceptor Lockheed F-104 Starfighter has
been chosen due its almost to straight wing design; the airfoil is biconvex and
extremely thin (thickness of 3.36%). Its coordinates, which are not found in
literature, are obtained thought image processing (fig. A.1) of a section
photo. The computations are made over a range of Mach numbers between
1.3 and 2. The solver and the mesh settings are the same used to compare
the NACA 64212 and the slatted airfoil. Lift constrain is again enforced
through the angle of attack.

1Photo credit: Bill Spidle: https://www.flickr.com/photos/22565451@N02/

24995126057/
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Figure A.2: Slatted airfoil (top) compared to Lockheed F-104 Starfighter
airfoil (middle) and the stretched 12% thickness (bottom)

Three sets of data have been computed from the Lockheed airfoil:

• Unit chord airfoil: the normalized airfoil.

• 0.12 thickness (scaled): the normalized airfoil has been scaled to obtain
the maximum thickness of 0.12; the chord, in this configuration, is 3.57.

• 0.12 thickness (stretched): the normalized airfoil has been stretched
along y direction to obtain a thickness of 0.12; the chord is still unitary,
as consequence of the stretching the leading edge angle has increased.

The drag per unit span is the quantity to be evaluated; the values are
reported in figure A.3 and table A.1, where ∆% represents the percentage
difference compared to the optimized slatted configuration. The unit chord
airfoil as expected has much lower drag, but it is also impractical in terms
of fuel tanks allocation. The other two cases, taught to be comparable with
the modified airfoil internal volume, show different trends: in the scaled, case
the drag is significantly reduced for the lower Mach numbers and it become
comparable in the design point. The third case, due to the greater value of
the leading edge angle, shows a detached shock for all the Mach tested and
thus the drag values are much higher than the modified design.
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Figure A.3: Drag per unit span comparison

Mach NACA Slatted Supersonic c=1 Supersonic Scaled Supersonic Stretched

- N/m N/m N/m ∆% Drag/m ∆% Drag/m ∆%
1.3 11684.5 10145.0 2498.6 -75.4 6798.3 -33.0 12614.4 +24.3
1.5 14497.8 9502.6 2944.6 -69.0 8366.2 -12.0 16358.5 +72.1
1.7 17412.5 9625.9 3167.4 -67.1 9357.9 -2.8 20384.9 +111.7
1.9 20491.2 10110.4 3187.7 -68.5 9678.0 -4.3 24659.6 +143.9
2.0 22129.2 10411.0 3242.1 -68.9 9893.5 -5.0 26918.1 +158.5

Table A.1: Drag per unit span comparison
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Appendix B

HSPM alghoritm validation
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Figure B.1: Suddhoo-Hall four-element configuration

In order to verify the correct implementation of the method, a compari-
son with the analytic results obtained by Suddhoo et al [31] has been made.
The analytical pressure distribution is obtained by transforming a set of cy-
cles using a succession of the Karman-Trefftz mapping. Among the geome-
tries available in the article, the four airfoil configuration has been chosen
(figure B.1). The article gives the pressure coefficient and the coordinates
of the geometries for 61 control points for each airfoil. Before proceeding
with the computation, each geometry has been interpolated over 100 cosine-
distributed points in order to obtain a more refined geometry.

The error assessment shown that, in this configuration, the mean differ-
ence between the analytic solution and the HSPM result is of the order of
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Figure B.2: HSPM and analytic results comparison for element 1 and 2

1.5 2 2.5 3 3.5

x coordinate

-6

-4

-2

0

2

C
p

Element 3

Suddhoo-Hall

HSPM

1.5 2 2.5 3 3.5

x coordinate

10
-5

10
0

R
e
la

ti
v
e
 E

rr
o
r

Error on element 3

Pressure side

Suction side

2.8 3 3.2 3.4 3.6 3.8

x coordinate

-1.5

-1

-0.5

0

0.5

1

C
p

Element 4

2.8 3 3.2 3.4 3.6 3.8

x coordinate

10
-4

10
-3

10
-2

10
-1

R
e
la

ti
v
e
 E

rr
o
r

Error on element 4

Figure B.3: HSPM and analytic results comparison for element 3 and 4
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Figure B.4: Trailing edge peak error

1e−2. The method registered the greatest error where the pressure gradient
is higher, this can be observed on the leading edge of every airfoil (figures
B.2 B.3). The analytic pressure coefficient at the trailing edge cannot be
correctly computed (fig. B.4) due to the limited number of panels.

The overall results can be considered satisfying, the method is correctly
implemented and the pressure coefficient is computed with enough precision.
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Appendix C

Pressure distribution correction
test

Before the actual high lift optimization a simpler, much cheaper prob-
lem has been set in order to test the HSPM capability as low-fidelity model;
to save time and computational resources Xfoil [34] has been used as high-
fidelity model. Xfoil is a linear-vorticity panel method that uses source dis-
tribution both on the airfoil and on the wake to solve the potential flow
equation; an integral method can be applied to treat both laminar and tur-
bulent boundary layer.

The choice of this solver is based on the fact that it is able to add physical
component to the problem, respect the simpler HSPM, remaining computa-
tional cheap. As inexpensive solver (especially compared to CFD) it serves
perfectly to be use as benchmark fine model since it is possible to rapidly
explore the entire space of solution and asses the global convergence of the
OMM.

The case aim to test how the OMM perform to correct the pressure dis-
tribution over the airfoil. The airfoil is a NACA 0012 at Reynolds 9 · 106,
the objective is to find the angle of attack such that the Valarezo condition
is met. Both the objective function (error respect PDV) and the nonlinear
inequality constrain are obtained from the pressure distribution array com-
puted by the same algorithm that will be used in the later optimization; the
only variable of this problem is the angle of attack α. The coarse optimiza-
tion is carried out using fmincon; a nonlinear constrain is implemented such
that the pressure difference shall not be greater than the Valarezo value. At
the end of the coarse optimization Xfoil is operated in viscid mode to com-
pute the better approximated pressure difference. As the OMM progresses,
the pressure coefficient on each panel will be corrected using the operator S̃
(fig. C.1). At the end of each OMM iteration the pressure distribution is
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OMM
inizialization

α∗ = argmin ||14 + ∆(S̃(CpHSPM (α)))||
such that: g(α) = −14−∆(S̃(CpHSPM (α))) < 0

fmincon

converged

Coarse Eval
HSPM

Fine Eval
Xfoil

OMM
converged

Compute
correction
operator

End of the
optimization

fmincon

new step

Figure C.1: Test case workflow
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computed over the domain for both the corrected Hess-Smith and Xfoil (fig.
C.3) to better quantify the effect of the correction.
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Figure C.2: Alpha convergence history

- Iter 1 Iter 2 Iter 3 Iter 4 Iter 4 XFoil
α 15.307 16.431 16.788 16.828 16.830 16.831

Table C.1: Convergence history
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Figure C.3: Envelope of the PDV for each OMM iteration

The optimization is converged in five iteration since the change in the
mean error over the panels satisfies the convergence condition. The target
angle of attack has been successfully located (fig. C.2); the correction of the
pressure distribution proved to be valid since the error on the last iteration
is lower than 10−5 (fig. C.4).
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